Table of Contents

ACKNOWLEDGEMENT		
ABSTRACT		
TABLE OF CONTENTS		
LIST OF TABLES		
LIST OF FIGURES		
LIST OF SYMBOLS AND ABBREVIATIONS		
CHAPTER 1:INTRODUCTION		
1.1	INTRODUCTION	1
1.2	PRIMARY CONTROL	5
	1.2.1 Primary Control Basics	6
1.3	SECONDARY CONTROL	8
	1.3.1 Principle of Secondary Controller	10
	1.3.2 Control Hierarchy and Organization	11
1.4	TERTIARY CONTROL	12
1.5	MEASURES FOR EMERGENCY CONDITIONS	13
1.6	VARIOUS TECHNIQUES TO TACKLE	
	LFC PROBLEM	13
	1.6.1 Optimal Control	13
	1.6.2 Adaptive Control	14

		1.6.3 Pole Placement Technique	14
		1.6.4 Intelligent Techniques	15
		1.6.4.1 Fuzzy Logic	15
	1.7	OBJECTIVES OF THE THESIS	17
	1.8	ARRANGEMENT OF THE THESIS	18
CHAPTER	2: LIT	ERATURE SURVEY ON LFC	20
	2.1	INTRODUCTION	20
	2.2	CLASSICAL TECHNIQUES	21
	2.3.	ADAPTIVE AND SELF-TUNING LFC SCHEMES	28
	2.4	CONCEPTS OF AI TECHNIQUES	28
	2.5	OTHER LFC SCHEMES	32
	2.6	SUMMARY	34
CHAPTER	3: PRO	OBLEM IDENTIFICATION AND	
	SYS	TEM MODELING	35
	3.1	INTRODUCTION	35
	3.2	PROBLEM IDENTIFICATION	36
	3.3	SYSTEM MODELING	
		3.3.1 Generator Model	39
		3.3.2 Load Model	43
		3.3.3 Governor Model	45

	3.3.4	Prime Mover Model	47	
3.4	DIVIS	DIVISION OF POWER SYSTEM INTO		
	CONT	TROL AREAS	49	
	3.4.1	Definition of Control Area	49	
	3.4.2	LFC in Multi-Area System	49	
	3.4.3	Tie-Line Bias Control	52	
3.5	COM	PLETE SYSTEM DYNAMIC MODEL	53	
	3.5.1	Dynamic System in State Variable Form	57	
3.6	SUMI	MARY	65	
CHAPTER 4: PROPOSED CONTROL STRATEGIES				
4.1	INTRODUCTION		66	
4.2	LINEAR QUADRATIC OPTIMAL CONTROL			
	REGU	JLATOR	68	
	4.2.1	System States	72	
	4.2.2	Performance Index	72	
	4.2.3	Optimal Controller	73	
4.3	FUZZ	Y LOGIC CONTROLLER	75	
	4.3.1	Normalization of Controller Inputs and Output	76	
	4.3.2	Fuzzification	77	
	4.3.3	Fuzzy Conditional Statements and Control Rules	78	
	4.3.4	Defuzzification	80	

		4.3.5	Steps in Designing of Proposed Fuzzy Controller	
			for Multi-area LFC	80
	4.4	SUMI	MARY	83
CHAPTER S	5: SIM	ULATI	ON RESULTS AND ANALYSIS-	
	TWO	AREA	SYSTEMS	84
	5.1	INTR	ODUCTION	84
	5.2	RESU	LTS WITH LQR TECHNIQUE	85
	5.3	RESU	LTS WITH FUZZY LOGIC CONTROLLER	90
		5.3.1	Two Area System with Non-Reheat Turbine	90
		5.3.2	Two Area System with Reheat Turbine	94
		5.3.3	Two Area System with Non-Reheat with GRC	97
		5.3.4	Two Area System with Reheat with GRC	100
		5.3.5	Two Area System with one Non-reheat and	
			one Hydro Turbine	103
		5.3.6	Two Area System with one Reheat and	
			one Hydro Turbine	104
	5.4	RESU	ILTS WITH PARALLEL AC/HVDC	
		TRAN	ISMISSION LINK	105
		5.4.1	Two Area System with Reheat Turbines	106
		5.4.2	Two Area System with one Reheat and	
			one Hydro Turbine	108
	5.5	SUM	MARY	109

CHAPTER 6: SIMULATION RESULTS AND ANALYSIS-

	THRI	EE AREA SYSTEMS	110
	6.1	INTRODUCTION	110
	6.2	THREE AREA SYSTEM WITH NON-REHEAT	
		TURBINES	111
	6.3	THREE AREA WITH NON-REHEAT TURBINES AND	
		DIFFERENT PARAMETERS	115
	6.4	THREE AREA WITH REHEAT TURBINES AND GRC	116
	6.5	THREE AREA WITH TWO NON-REHEAT TURBINES	
		AND ONE HYDRO TURBINE	125
	6.6	THREE AREA WITH A NON-REHEAT, A REHEAT	
		AND A HYDRO TURBINE	126
	6.7	SUMMARY	128
CHAPTER 7:	CHAPTER 7: CONCLUSIONS AND SCOPE FOR FUTURE WORK		
	7.1	CONTRIBUTIONS AND CONCLUSIONS	129
	7.2	SCOPE FOR FUTURE WORK	133
REFERENCI	ES		134
APPENDIX A	\		151
APPENDIX I	3		152
LIST OF PUBLICATIONS			153
BRIEF BIOGRAPHY OF THE CANDIDATE			154
BRIEF BIOGRAPHY OF THE SUPERVISOR			155