Table No.	Title	Page No.
1.1	Time scale of various hierarchical control problems	4
4.1	Fuzzy logic rules for the Integral gain	80
5.1	Deviations with proposed controller with respect to other studies in two area system	91
5.2	Deviations with proposed controller with respect to other studies in non-linear case in two area system.	99
5.3	Comparative statement of dynamic parameters of system with reheat turbine with and without HVDC link	107
6.1	Deviations with proposed controller in three area system.	111

List of Figures

Figure No.	Title	Page No.
_		
1.1	Block diagram of overall system control stages	5
1.2	Dynamic frequency deviation	6
1.3	Control hierarchy and organization	12
1.4	Architecture of fuzzy logic controller	16
3.1	Schematic for Load frequency control	37
3.2	Block diagram relating mechanical power, electrical power and	42
	speed change	
3.3	Block diagram of rotating mass and load as seen by prime-mover	44
	output	
3.4	A speed-governing mechanism	46
3.5	Block diagram for governor	47
3.6	Block diagram of turbine generator including speed-control	48
	mechanism	
3.7	Equivalent Network for two area power system	50
3.8	Two area model with only primary LFC loop	51
3.9	Generalized two area model with primary and secondary control	61
3.10	Non-linear turbine model with GRC	62
3.11	Three area interconnected power system	63
3.12	Two-area power system with parallel EHVAC/HVDC links	64
3.13	Transfer function block diagram with DC link for two area system	64

4.1	Triangular membership function of one variable	77
4.2	Surface view of based on rules designed for one type of fuzzy	79
	controller	
5.1	System dynamic responses for LQR, when Q and R as defined	86
5.2	System dynamic response for LQR, when coefficients of Q	87
	multiplied by 10, R as defined	
5.3	System dynamic response for LQR, when Q as defined and R	88
	multiplied by 100	
5.4	System dynamic response for LQR, when Q multiplied by 10 and	89
	R by 100	
5.5	Best response using LQR control strategy in the sense of	90
	minimizing the tie-line deviation.	
5.6	Deviations of frequency for area 1, area 2 and tie line power	92
5.7	Deviations of frequency for area 1, area 2 and tie line power	93
	(+30%)	
5.8	Deviations of frequency for area 1, area 2 and tie line power	94
	(-30 %)	
5.9	System responses with reheat steam turbine at nominal values of	95
	parameters	
5.10	System responses with reheat steam turbine at +30 % of nominal	96
	values of parameters	
5.11	System responses with reheat steam turbine at -30 % of nominal	97
	values of parameters	

5.12	System responses with non-reheat turbine with GRC at nominal	98
	values of parameters	
5.13	System responses with non-reheat turbine with GRC at +30 % of	99
	nominal values of parameters	
5.14	System responses with non-reheat turbine with GRC at -30 % of	100
	nominal values of parameters	
5.15	System responses with reheat turbine with GRC (0.0017 pu /sec.)	101
	at nominal values of parameters	
5.16	System responses with reheat turbine with GRC (0.0017 p.u. /sec.)	102
	at +30 % of nominal values of parameters	
5.17	System responses with reheat turbine with GRC (0.0017 p.u. /sec.)	103
	at -30 % of nominal values of parameters	
5.18	Responses with non- reheat and one hydro turbine upon load	104
	change in area 1	
5.19	Responses with one reheat and one hydro turbine upon load	105
	change in area 1	
5.20	Responses with AC/DC link when area 1 is subjected to load	106
	change of 1%.	
5.21	Responses with AC/DC link at +30 % of nominal values of	107
	parameters when area 1 is subjected to load change of 1%	
5.22	Responses with AC/DC link at -30 % of nominal values of	108
	parameters when area 1 is subjected to load change of 1%	
5.23	Responses with AC/ DC link upon load change in area 1	109

6.1	System responses for step disturbance in load of 1 % in area 1	112
6.2	System responses for step disturbance of 1 % in each area 1 and	113
	area 2	
6.3	System responses for step disturbance of 1 % in each area 1, area 2	114
	and area 3	
6.4	Three area system responses for 1 % disturbance in area 1	115
6.5	Responses of the power system with load changes ΔP_{d1} = -0.01 p.u.	116
	MW	
6.6	Responses of the power system with load changes ΔP_{d2} = 0.01 p.u.	117
	MW	
6.7	Mechanical power output variations in different areas	118
6.8	Responses of the power system for load changes $\Delta P_{d1} = 0.004$ p.u.	119
	MW, ΔP_{d2} = -0.007 p.u. MW	
6.9	Responses of the mechanical power output with load changes	120
	ΔP_{d1} = 0.004 p.u. MW, ΔP_{d2} = -0.007 p.u. MW	
6.10	Responses of the power system with load changes ΔP_{d1} = -0.008	121
	p.u. MW, $\Delta P_{d2} = 0.003$ p.u. MW	
6.11	Responses of the mechanical power output with load changes	122
	ΔP_{d1} = -0.008 p.u. MW, ΔP_{d2} = 0.003 p.u. MW	
6.12	Responses for load changes ΔP_{d1} = -0.01 p.u. MW, ΔP_{d3} = -0.01	123
	p.u. MW	
6.13	Responses of mechanical power output of each area with load	124
	changes ΔP_{d1} = -0.01 p.u. MW, ΔP_{d3} = -0.01 p.u. MW	

6.14	Responses of system when equipped with two non-reheat and one	125
	hydro turbine.	
6.15	System responses of mixed three area power system when area 1	126
	is subjected to load change of 1%	
6.16	System responses of mixed three area power system when area 1	127
	and area 2 are subjected to load change of 1%	

i	Subscript referring to area i ($i = 1, 2, 3$)
Н	Per unit inertia constant
f^0	Rated Frequency
Δf_i	Incremental change in frequency
ΔP_{tie}	Incremental change in tie-line power flowing out of area
D	Load frequency constant
ΔPi	Power interchange deviation
ω	Rotational speed (rad/sec)
α	Rotational acceleration
δ	Phase angle of a rotating machine
T _{net}	Net accelerating torque in a machine
T _{mech}	Mechanical torque exerted on the machine by the turbine
T _{elec}	Electrical torque exerted on the machine by the generator
P _{net}	Net accelerating power
P _{mech}	Mechanical power input
Ι	Moment of inertia for machine
ΔP_g	Incremental change in power generation
ΔP_d	Incremental change in load demand
ΔP_c	Incremental change in speed changer position
ΔX_{gv}	Incremental change in governor valve position
ΔP_R	Incremental change in intermediate output of reheat thermal turbine.

T_g	Speed governor time constant
Tt	Turbine time constant
Tr	Reheater time constant
T_w	Hydro turbine time constant
R	Speed regulation parameter
Pr	Rated area power output
Kr	Reheat coefficient
T_p	Power system time constant
М	Effective rotary inertia
<i>a</i> ₁₂	Area size ratio coefficient
В	Frequency bias constant
δ	Area power angle
T_{dc}	Time constant of HVDC link
K_{dc}	Gain associated with DC link
T_{12}	Synchronizing coefficient of EHVAC link/ Tie-line Constant
LFC	Load frequency control
AGC	Automatic generation control
AVR	Automatic voltage regulator
ACE	Area control error
ISE	Integral square error
LQR	Linear quadratic regulator
FLC	Fuzzy logic controller
GA	Genetic algorithm

- ANN Artificial neural network
- SA Simulated annealing
- HVDC High voltage direct current
- AFRC Automatic frequency ratio control