
Chapter 3 

Problem Identification and System Modeling 

3.1 Introduction 

In a continuous control of the power system, it is necessary to match the active power demand 

and generation and to maintain steady – state frequency within a reasonable limit of standard 

frequency. Load frequency controller thus requires not only information about the change in 

frequency but also about the change in power demand. As this control is exercised through the 

speed – governing system, turbine and the synchronous machine, comparatively larger time 

constants of these components make the system slower in response. But on the other hand, 

excitation voltage control or QV control is exercised through voltage regulator and exciter 

having comparatively smaller time constant. For this reason the latter system is fast acting. 

Under transient condition thus dynamics of load frequency control remain unaffected by QV 

control dynamics. Constancy of system frequency and tie-line loading must be maintained for 

satisfactory performance of transformers,  auxiliary induction motor drives of generating units 

in generating stations and large ac drives of various industries in very large scale 

interconnected systems [7], [9]. Thus automatic generation control in response to area load 

changes and abnormal system operating parameters and conditions in large-scale 

interconnected power systems has following objectives. 

� The generation must be adequate to meet all the load demands. 

� System frequency is to be satisfactorily maintained at or, very close to specified 

nominal value i.e. deviation in frequency ( f∆ ) must be made zero as quickly as 

possible. 
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� Deviation in tie-line interchanges ( tieP∆ ) from the pre-scheduled contracted 

interchanges among the areas must also be made zero as fast as possible. 

� Lastly, optimal generation scheduling must also be done. 

When real power balance between generation and demand is achieved the frequency 

specification is automatically satisfied. Similarly, with a balance between reactive power 

generation and demand, voltage profile is also maintained within the prescribed limits. Under 

steady state conditions, the total real power generation in the system equals the total MW 

demand plus real power losses. Any difference is immediately indicated by a change in speed 

or frequency. Generators are fitted with speed governors which will have varying 

characteristics: different sensitivities, dead bands response times and droops. They adjust the 

input to match the demand within their limits. Any change in local demand within permissible 

limits is absorbed by generators in the system in a random fashion [3]-[4]. 

3.2      Problem Identification 

An independent aim of the automatic generation control is to reschedule the generation 

changes to preselected machines in the system after the governors have accommodated the 

load change in a random manner. Thus, additional or supplementary regulation devices are 

needed along with governors for proper regulation. For interconnected operation, the last of 

the four requirements mentioned earlier is fulfilled by deriving an error signal from the 

deviations in the specified tie-line power flows to the neighboring utilities and adding this 

signal to the control signal of the load-frequency control system. Should the generation be not 

adequate to balance the load demand, it is imperative that one of the following alternatives be 

considered for keeping the system in operating condition: 

� Starting fast peaking units. 
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� Load shedding for unimportant loads, and 

� Generation rescheduling. 

It is apparent from the above that since the voltage specifications are not stringent, load 

frequency control is by far the most important in power system control. The block schematic 

for such a control is shown, in figure 3.1. 
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Figure 3.1:      Schematic for Load frequency control 

In order to understand the mechanism of frequency control, consider a small step increase in 

load. The initial distribution of the load increment is determined by the system impedance; and 

the instantaneous relative generator rotor positions. The energy required to supply the load 

increment is drawn from the kinetic energy of the rotating machines. As a result, the system 

frequency drops. The distribution of load during this period among the various machines is 

determined by the inertias of the rotors of the generators partaking in the process. 
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 After the speed or frequency fall due to reduction in stored energy in the rotors has 

taken place, the drop is sensed by the governors and they divide the load increment between 

the machines as determined by the droops of the respective governor characteristics. 

Subsequently, secondary control restores the system frequency to its normal value by 

readjusting the governor characteristics [2], [5]. 

3.3 System Modeling 

The first step in the analysis and design of a control system is mathematical modeling of the 

system. The two most common methods are the transfer function method and the state variable 

approach. The state variable approach can be applied to portray linear as well as non-linear 

systems. In order to use the transfer function and linear state equations, the system must first be 

linearized. Proper assumptions and approximations are made to linearize the mathematical 

equations describing the system, and a transfer function model is obtained for the components. 

A generator driven by a turbine can be represented as a large rotating mass with two 

opposing torques acting on the rotation. Tmech, the mechanical torque, acts to increase rotational 

speed whereas Telec, the electrical torque, acts to slow it down. When Tmech and Telec are equal 

in magnitude, the rotational speed, ω, will be constant. If the electrical load is increased so that 

Telec is larger than Tmech, the entire rotating system will begin to slow down. Since it would be 

damaging to let the equipment slow down too fast, something must be done to increase the 

mechanical torque Tmech to restore equilibrium; that is, to bring the rotational speed back to an 

acceptable value and the torques to equality so that the speed is again held constant. This 

process must be repeated constantly on a power system because the loads change constantly.  

Furthermore, because there are many generators supplying power into the transmission system, 
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some means must be provided to allocate the load changes to the generators. To accomplish 

this, a series of control systems are connected to the generator units. A governor on each unit 

maintains its speed while supplementary control, usually originating at a remote control center, 

acts to allocate generation.  

3.3.1 Generator Model 

Before starting, it will be useful to define terms. 

 ω  = rotational speed (rad/sec) 

 α  = rotational acceleration 

 δ  = phase angle of a rotating machine 

 

Tnet  = net accelerating torque in a machine 

Tmech  = mechanical torque exerted on the machine by the turbine  

Telec = electrical torque exerted on the machine by the generator 

Pnet = net accelerating power 

Pmech = mechanical power input 

   I = moment of inertia for the machine 

  M = angular momentum of the machine 

Where all quantities (except phase angle) will be in per unit on the machine base, or, in 

the case ofω , on the standard system frequency base. Thus, for example, M is in per unit 

power/per unit frequency/sec.  

 In the development to follow, we are interested in deviations of quantities about steady-

state values. All steady-state or nominal values will have a “0” subscript (e.g. ω 0, Tnet0), and 

all deviations from nominal will be designated by a ( ω∆  , netT∆ ). Some basic relationships are  

 



 40 

Iα  = Tnet,  M      = Iω  

Pnet  =  ω Tnet  = ω (Iα ) = Mα                         (3.1) 

 To start, we will focus our attention on a single rotating machine. Assume that the 

machine has a steady speed of 0ω  and phase angle 0δ . Due to various electrical or mechanical 

disturbances, the machine will be subjected to difference in mechanical and electrical torque, 

causing it to accelerate or decelerate. We are chiefly interested in the deviations of speed, ω∆ , 

and deviations in phase angle, δ∆ , from nominal.  The phase angle deviation, δ∆ , is equal to 

the difference in phase angle between the machine as subjected to an acceleration of α and a 

reference axis rotating at exactly 0ω . If the speed of the machine under acceleration is 

ω  = 0ω  + α t, then 

                                     δ∆  = ( )∫ + dttαω0            -         ∫ dt0ω                (3.2) 

 

Machine absolute  Phase angle of 
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=  ttt 0
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The deviation from nominal speed, ,ω∆ may then be expressed as 

                        ( )δαω ∆==∆
dt

d
t                                                                   (3.4) 

The relationship between phase angle deviation, speed deviation, and net accelerating torque is 

Tnet  = I =α I ( )ω∆
dt

d
 = I ( )δ∆

2

2

dt

d
                                                           (3.5) 
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Next, the deviations in mechanical and electrical power will be related to the deviations in 

rotating speed and mechanical torques. The relationship between net accelerating power and 

the electrical and mechanical powers is 

                                               Pnet  =  Pmech   -  Pelec                                                         (3.6) 

which is written as the sum of the steady – state value and the deviation term, 

Pnet  =  Pneto  + netP∆ , Where                                                                            (3.7) 

Pneto  =  Pmecho  -  Peleco                                                                                    (3.8) 

netP∆  = mechP∆  -  elecP∆ , then                                                                         

netP∆  = (Pmecho – Peleco) + ( mechP∆  -  elecP∆ )      (3.9) 

Similarly for torques, 

Tnet = (Tmecho – Teleco) + ( mechT∆  - elecT∆ )      (3.10) 

Using equation 3.1,  

Pnet =  Pneto + netP∆  = ( 0ω  + ω∆ )(Tneto + netT∆ )     (3.11) 

Substituting equation 3.9 and obtain 

(Pmecho – Peleco) + ( mechP∆  - elecP∆ ) = ( 0ω  + ω∆ )[(Tmecho – Teleco) + ( mechT∆  - elecT∆ )] (3.12) 

Assume that the steady-state quantities can be factored out since 

Pmecho =  Peleco, and 

Tmecho  =  Teleco 

And further assume that the second-order terms involving products of ω∆  with mechT∆  and  

elecT∆  can be neglected. Then 

mechP∆  - elecP∆  = 0ω ( mechT∆  - elecT∆ )       (3.13) 

as shown in equation 3.5, the net torque is related to the speed change as follows: 
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(Tmecho – Teleco) + ( mechT∆  -  elecT∆ ) = I )( ω∆
dt

d
   (3.14) 

 

mechP∆  ω∆  

   

 elecP∆  

Figure 3.2:   Block diagram relating mechanical power, electrical power and speed change.  

Then since Tmecho = Teleco, we can combine equations 3.13 and 3.14 to get 

mechP∆ - elecP∆  =  )(0 ωω ∆
dt

d
I  

                                                               = M )( ω∆
dt

d
                                          (3.15) 

This can be expressed in Laplace transform operator notation as 

                                                       mechP∆  - elecP∆  = Ms ω∆                     (3.16) 

This is shown in block diagram form in figure 3.2. The units for M are watts per radian per 

second per second. We will always use per unit power over per unit speed per second where 

the per unit refers to the machine rating as the base. 

We shall define the inertia constant H such that  

GH = K.E. = 0
2

1
ωM  MJ                                                              (3.17) 

Where  

G = machine rating (base) in MVA (3-phase) 

H = inertia constant in MJ/MVA or MW-s/MVA 

It immediately follows that 

Ms

1
 

+ 
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f
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M is also called the inertia constant. 

 Taking G as base, the inertia constant in pu is  

M (pu) = 
f

H

π
 s

2 
/elect rad 

The angular velocity iω  of the ith bus equals 

 )(  00 iii t
dt

d
δδωω ∆++=  = i

dt

d
δω ∆+0  

and is no longer constant, since it evidently is characterized by a nonzero perturbation 

ii
dt

d
δω ∆∆∆       rad./sec.               (3.18) 

or, if expressed in cycles per second, 

ii
dt

d
f δ

π
∆=∆

2

1
 Hz                                                                                    (3.19)  

3.3.2 Load Model 

The loads on a power system consist of a variety of electrical devices. Some of them are purely 

resistive, some are motor loads with variable power-frequency characteristics, and others 

exhibit quite different characteristics. Since motor loads are a dominant part of the electrical 

load, there is a need to model the effect of a change in frequency on the net load drawn by the 

system. The relationship between the change in load due to the change in frequency is given by  

)( freqLP∆  = D ω∆   or D = 
ω∆

∆ )( freqLP
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Where D is expressed as percent change in load divided by percent change in frequency. For 

example, if load changed by 1.5% for a 1% change in frequency, then D would equal 1.5 

however, the value of D used in solving for system dynamic response must be changed if the 

system base MVA is different from the nominal value of load.  

     i.e. 
i
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Figure 3.3:   Block diagram of rotating mass and load as seen by prime-mover output 

 

From equation (3.20) and (3.21) the rotating mass and load block can be replaced by equation 
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3.3.3 Governor Model  

Suppose a generating unit is operated with fixed mechanical power output from the turbine. 

The result of any load change would be a speed change sufficient to cause the frequency-

sensitive load to exactly compensate for the load change. This condition would allow system 

frequency to drift far outside acceptable limits. This is overcome by adding a governing 

mechanism that senses the machine speed, and adjusts the input valve to change the 

mechanical power output to compensate for load changes and to restore frequency to nominal 

value.  

The earliest such mechanism used rotating “flyballs” to sense speed and to provide 

mechanical motion in response to speed changes. Modern governors use electronic means to 

sense speed changes and often use a combination of electronic, mechanical, and hydraulic 

means to effect the required valve position changes. The simplest governor, called the 

isochronous governor, adjusts the input valve to a point that brings frequency back to nominal 

value. If we simply connect the output of the speed-sensing mechanism to the valve through a 

direct linkage, it would never bring the frequency to nominal. To force the frequency error to 

zero, one must provide what control engineers call reset action. Reset action is accomplished 

by integrating the frequency (or speed) error, which is the difference between actual speed and 

desired or reference speed. Such a speed-governing mechanism is illustrated and shown in 

Figure 3.4.  

The speed-measurement device’s output, ω , is compared with a reference, ,refω  to 

produce an error signal, .ω∆  The error, ,ω∆  is negated and then amplified by a gain KG and 

integrated to produce a control signal, ,VALVEP∆  which causes the main steam supply valve to 

open ( ( )positionPVALVE∆  when ω∆  is negative. 
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Figure 3.4:   Speed-governing mechanism 

If, for example, the machine is running at reference speed and the electrical load 

increases, ω  will fall below refω and ω∆  will be negative. The action of the gain and 

integrator will be to open the steam valve, causing the turbine to increase its mechanical 

output, thereby increasing the electrical output of the generator and increasing the speedω . 

When ω  exactly equals ,refω  the steam valve stays at the new position (further opened) to 

allow the turbine generator to meet the increased electrical load. 

 The isochronous (constant speed) governor of Figure 3.4 can not be used if two 

or more generators are electrically connected to the same system since each generator would 

have to have precisely the same speed setting or they would “fight” each other, each trying to 

pull the system’s speed (or frequency) to its own setting. To be able to run two or more 

generating units in parallel on a generating system, the governors are provided with a feedback 

signal that causes the speed error to go to zero at different values of generator output 

This can be accomplished by adding a feedback loop around the integrator as shown in 

Figure 3.4. Here a new input is inserted (called load reference). The block diagram for this 
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governor is shown in Figure 3.5, where the governor now has a net gain of 1/R and a time 

constant TG.       

                                                                                                                                                                                                                               

                      ω           

refω  ω∆      valveP∆  

                                                     

      

Figure 3.5:    Block diagram for governor 

3.3.4 Prime Mover Model 

The prime mover driving a generator unit may be a steam turbine or a hydro turbine. The 

models for the prime mover must take account of the steam supply and boiler control system 

characteristics in the case of a steam turbine, or the penstock characteristics for a hydro 

turbine.  

                 The interest is not in turbine valve position per second, but rather the resulting 

generator power increase mechP∆ . The change in valve position ,EX∆  causes an incremental 

increase in turbine power, ,TP∆  which, via the electromechanical interactions within the 

generator, will result in an increased generator power Gmech PorP ∆∆   . This overall mechanism is 

relatively complicated, particularly if the generator voltage simultaneously undergoes wild 

swings due to major network disturbances.   

 If, as in the present case, we can assume that the voltage level is constant and the torque 

variations are of small size, then an incremental analysis of the type we performed for the 

speed governor will give a relatively simple dynamic relationship between EX∆   and .GP∆  

Such an analysis reveals considerable differences, not only between steam turbines and hydro-
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turbines, but also between various types (reheat and non-reheat) of steam turbines. In the 

crudest model representation we can characterize a non-reheat turbine generator with a single 

gain factor KT and a single time constant TT, and thus write 

GT(s) ∆
T

T

E

G

sT

K

sX

sP

+
=

∆

∆

1)(

)(
                          (3.23) 

 Typically, the time constant TT lies in the range 0.2 to 2 s. In standard block-diagram 

symbols we can represent transfer functions as shown in figure 3.6, diagram therefore 

represents the linearized model of a non reheat turbine controller, including the speed governor 

mechanism.    

 

 

 

 

 

 

 

Figure 3.6:      Block diagram of turbine generator including speed-control mechanism 

In the above figure 3.6, transfer function representation of power control mechanism of 

generator where non-reheat turbine is assumed. A reheat turbine can quite adequately be 

represented by the transfer function block 
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 The time constant Tr has a value in the range of 10s, and approximates the time delay 

for charging the reheat section of the boiler. Kr is a reheat coefficient, equal to the proportion 

G

G

sT

K

+1
 

T

T

sT

K

+1
 

R

1
 

+ 

_ 

)(sF∆  

)(sPC∆  

Speed Control 

Mechanism Turbine  

mechP∆  



 49 

of torque developed in the high-pressure section of the turbine, which is approximately equal 

to 1 minus the fraction of steam reheated. Thus, when there is no reheat, Kr = 0, and the 

transfer function reduces to a single time constant and on the other hand the hydro turbine is 

given by the equation (3.24 a). 

                             G hydro(s) ∆
w

w

E

G

sT

sT

sX

sP

5.01

1

)(

)(

+

−
=

∆

∆
      (3.24 a) 

 The transfer functions represented by equation (3.23), equation (3.24) and equation 

(3.24 a) give good representation [6], [7], [39] [109]. 

3.4 Division of Power System into Control Areas 

3.4.1 Definition of Control Area 

The load frequency control, in contrast to the above, is handled collectively by a unison effort 

by all generator units within a so-called control area, usually; the boundaries of the control 

areas coincide with those of the individual power systems belonging to the pool. In the strictest 

sense, all the generators in a control area should constitute a coherent group. In the analysis to 

follow, coherency is assumed.  

3.4.2 LFC in the Multi-area System 

In many cases, groups of generators are closely coupled internally and swing in union. 

Furthermore, the generator turbines tend to have the same response characteristics. Then it is 

possible to let the LFC loop represent the whole system, which is referred to as a control area. 

The LFC of a multi-area system can be realized by studying first the AGC for a two area 

system. Consider two areas represented by an equivalent generating unit interconnected by a 

lossless tie line with reactance Xtie. Each area is represented by a voltage source behind an 

equivalent reactance as shown in figure 3.7. 
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Figure 3.7:       Equivalent Network for two area power system. 

During normal operation, the real power transferred over the tie line is given by 

P12 = 12

12

21

sinδ
X

EE
          (3.25) 

Where X12 = X1 + Xtie + X2, and .2112 δδδ −=  in equation 3.25 which can be linearized for a 

small deviation in the tie-line flow 12P∆  from the nominal value, i.e.,      

012

12

12
12 δ

δd

dP
P =∆  12δ∆   

                   = 12δ∆sP  

The quantity Ps is the slope of the power angle curve at the initial operating angle   

012δ  = 
01δ  - .

02δ  This was defined as the synchronizing power coefficient. Thus we have 
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The tie-line power deviation then takes on the form 

)( 2112 δδ ∆−∆=∆ SPP  

The tie-line power flow appears as a load increase in one area and a load decrease in the other 

area, depending on the direction of the flow. The direction of flow is dictated by the phase 

Xtie 
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angle difference; if 21 δδ ∆>∆ , the power flows from area 1 to area 2. A block diagram 

representation for the two-area system with LFC containing only primary loop is shown in 

figure 3.8. 

 

Figure 3.8:     Two area model with only primary LFC loop 

 Let us consider a load change 1LP∆  in area 1. In the steady-state, both areas will have 

the same steady-state frequency deviation, i.e. 

21 ωωω ∆=∆=∆  

and 

.11121 DPPP Lm ω∆=∆−∆−∆  

      2122 DPPm ω∆=∆+∆        (3.26) 

The change in mechanical power is determined by the governor speed characteristics, given by 
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Substituting from (3.27) into (3.26), and solving for ω∆ , we have 

)
1

()
1

( 2

2

1

1

1

D
R

D
R

PL

+++

∆−
=∆ω  

=
21

1

BB

PL

+

∆−
 

where,        B 1  = 1

1

1
D

R
+  

B2 = 2

2

1
D

R
+  

B1 and B2  are known as the frequency bias factors. The change in the tie-line power is 
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3.4.3 Tie-Line Bias Control 

So far LFCs were equipped with only the primary control loop; a change of power in area 1 

was met by the increase in generation in both areas associated with a change in the tie-line 

power, and a reduction in frequency. In the normal operating state, the power system is 

operated so that the demands of areas are satisfied at the nominal frequency. A simple control 

strategy for the normal mode is 

• Keep frequency approximately at the nominal value. 

• Maintain the tie-line flow at about schedule. 
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• Each area should absorb its own load changes. 

Conventional LFC is based upon tie-line bias control, where each area tends to reduce the area 

control error (ACE) to zero. The control error for each area consists of a linear combination of 

frequency and tie-line error. 

                                                    ACE i = ∑
=

∆+∆
n

j

iij fKP
1

                                                 (3.29) 

The area bias Ki determines the amount of interaction during a disturbance in the neighboring 

areas. An overall satisfactory performance is achieved when K i  is selected equal to the 

frequency bias factor of the area, i.e., B i  = .

1
i

i

D
R

+  Thus, the ACEs for a two-area system are 

                                                          ACE1 = ∆ P12 + B1 1f∆                                                            (3.30 a) 

                                                          ACE2 = 2221 fBP ∆+∆                                          (3.30 b) 

Where ∆ P12 and ∆ P21 are departures from scheduled interchanges. ACEs are used as actuating 

signals to activate changes in the reference power set points, and when steady-state is 

reached, ∆  P12 and f∆ will be zero. The integrator gain constant must be chosen small enough 

so as not to cause the area to go into a chase mode. We can easily extend the tie-line bias 

control to an n-area system. 

3.5 Complete System Dynamic Model 

The complete dynamic model for the system to be studied is developed.  Two assumptions are 

made. The first assumption is that for incremental changes in demand power, control of real 

power and frequency, and control of reactive power and voltage, are decoupled and can be 

considered separately. The load-frequency control problem is the first of the two problems. By 

maintaining control over the real power the frequency deviation is kept within prescribed 
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limits. The second assumption is that the individual electrical connections within an area are so 

strong in comparison to the ties between adjoining areas, that each area may be represented by 

a single frequency. In other words, all generators in a single area swing in unison during 

changes in area load. 

Power Equilibrium Equation:  

 The net surplus power in an area, represented by the difference in increased generation 

P∆  and increased demand ,dP∆ is absorbed by the system in three ways: 

1) Increased kinetic energy represented by ( )*/2 fWkin f
dt

d
∆ where Wkin is the kinetic 

energy of the system and *f  is the nominal frequency; 

2) Increased load consumption represented by D ,f∆  where the constant D, MW/Hz, is the 

rate at which system load changes with frequency evaluated at nominal frequency ;*f  

3) Increased export of power over tie lines represented by .tieP∆  

Expressing what has been said in mathematical form gives the power equilibrium 

equation in per unit for area :i  

 
*

2

f

H i  iiii PtiefDf
dt

d
∆+∆+∆  

dfGi PP ∆−∆=                                           (3.31) 

where,  H 
ri

kin

P

W
    ∆  inertia constant, seconds 

=riP   Rated power of area ,i  MW. 

Tie-line Power: 

 The total real power exported from area i  equals the sum of all out flowing line 

powers tieP  iv  to adjoining areas ,v  i.e., 
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tieP  i = ∑
v

tieP  iv  

 the real power in per unit transmitted across a lossless line of reactance ivX  is 

                                              tieP  iv  = )sin( vi

riiv

vi

PX

VV
δδ −                                        (3.32) 

where 

ij

ii eVV
 δ=  

vj

vv eVV
 δ=  

Assuming small deviation in phase angles iii δδδ ∆+=
*

 and realizing that 

ii f∫∆=∆ πδ 2  dt  

the expression for incremental changes in tie-line power in area i  is 

           tieP∆  ∑ ∫ ∆=
v

iiv fTi (
*

 vfdt ∆− ∫  )dt  

where 

                                              ∆
*

ivT  cos2
riiv
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PX

VV
π  ).(

**

vi δδ −                                           (3.33) 

 

Incremental Generated Power: 

 The real power generated by a synchronous machine is controlled by means of the 

prime mover torque. A study of the system for small changes around nominal settings reveals 

that the generator-turbine-governor system may be represented by two time constants, Tt of the 

turbine and Tg of the governor. The generator response is considered to be instantaneous in 

comparison with the time constants of the turbine and governor.  
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We can write 
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where gP∆  is the incremental change in generation in pu MW, gvX∆  is the incremental change 

in the governor valve position in pu MW, R is the self-regulation of the generator in Hz/pu 

MW, and cP∆  is the incremental change in the speed changer position in pu MW.  

 

System Equation: 

 Taking the equations for the power equilibrium, the incremental tie-line flow, and the 

change in generation and position of the speed governor in area ,i  we have 
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For each area we have this set of three differential equation describing the dynamic 

performance of the system to incremental load changes. 
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3.5.1   Dynamic System in State Variable Form  

The three equations (3.36)-(3.38) that describe a single area of the multi-area system must be 

rewritten in terms of the state and control variables. The state and control variables are defined 

in the following way: 

1 tie1 Px ∆∆ ∫ dt  

2x  1f∆∆ ∫ dt  

3x  ∆  1f∆  

4x  ∆  1gP∆  

5x  ∆  1gvX∆  

1u  ∆  1cP∆  

 In each area the control input is the generator power. By manipulating the output of the 

generator we can maintain the frequency deviation within limits following load changes. To 

vary the generator power, we must change the speed-changer position. Hence we define the 

control variable as the speed-changer position. 

 The variables that change as a result of surplus power in an area are the governor valve 

position, the generator output, the frequency deviation, and the tie-line power, which is a 

function of the integral of frequency deviation. We define these variables as states. The integral 

of tie-line deviation must also be defined as a state. One of the specifications we place on the 
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system is that the tie-line deviation be zero following a step-load disturbance. To guarantee this 

we must have knowledge of the integral of the tie-line deviation. 

 For each area there is a set of five state variables and one control input. However in the 

two-area problem, the tie-line deviation in the first area is proportional to the tie-line deviation 

in the second by a constant is considered: 

tieP∆  2  = tiePa ∆12  1  

where,      12a  ∆  - 21 / rr PP  

In this case we need not define an additional state for the integral of tie-line deviation in area 2. 

Matrices A and B-Two-Area Problem 

 For the two-area problem the states and the control variables 

1x  ∆  ∫∆ 1tieP  dt  

2x  ∆   
1∫∆f dt 

3x  ∆  1f∆  

4x  ∆  P∆  g1 

5x  ∆  1gvX∆   

1u  ∆  1cP∆  
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6x  ∆  dtf 2∆∫  

7x ∆  2f∆  

8x  ∆  2gP∆  

9x  ∆  2gvX∆  

2u  ∆ .2cP∆  

 Substituting the definition of the states and the control into the six differential equations 

that define the two-area problem places the system in the form 
•

x  = Ax + Bu + Γ dP∆  where 
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Γ′ = 


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 The matrix ,Γ  which is of dimension n x p, is called the disturbance distribution 

matrix. We observe that our model is not in the form we desire for two reasons. First, in the 

optimal control theory there is no Γ  matrix, and second, the cost function requires the states to 

be driven to zero for it to have a minimum. For a step-load change in area 1, we will require 

the steady-state frequency deviation in each area to be zero. But the increased generation in 

area 1 will by necessity in steady state equal the increased demand, a nonzero quantity: 

.11 dg PP ∆=∆  

Some of the other states will also be nonzero. 

 the states in terms of their steady-state values are redefined, i.e., 

 
1

ix  ∆  ,issi xx −  =i  1,2, K , n.  

This change of variable puts the system in the form 

111
BuAxx +=  

.)0(1

ssxx −=  

By redefining the state in terms of their steady-state values we have shifted the reference 

position of the system. We shall drop the superscript 1 to prevent unnecessary notation 

problems. The matrices A and B remain unchanged.  
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After the complete system model for two-area with non-reheat turbine system without 

generation rate constraint in state variable form and transfer function form, three area system 

can also be designed following the same steps. Main emphasis is now given on controller 

design, which is discussed in detail in the next chapter. Before elaborating control strategies, 

all models studied for load frequency control problem here are shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:     Generalized two area model with primary and secondary control 
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Figure 3.9 is generalized block diagram with primary and secondary control of two area 

system. In case of non-reheat steam turbine, governor and turbine will be represented by 

equation 3.39 (a) and 3.39 (b) while the load by equation 3.39 (c).  

Governor transfer function =  
Gi

Gi

sT

K

+1
      (3.39 a) 

Turbine transfer function = 
Ti

Ti

sT

K

+1
       (3.39 b) 

Load transfer function = 
Pi

Pi

sT

K

+1
       (3.39 c) 

In case of reheat steam turbine, another block for reheat will be cascaded with turbine block 

given in equation (3.24). The load frequency control problem discussed so far does not 

consider the effect of the restriction on the rate of change of power generation. In power 

systems having steam plants, power generation can change only at a specified maximum rate. 

The generation rate for reheat units is quite low and most of them have a GRC between 5 % to 

10 %. The generation rate in the hydro area normally remains below safe limit and therefore 

GRCs for all the hydro plants can be ignored. Non-linear turbine model with generation rate 

constraint is presented in figure 3.10.  

 

 

 

 

 

Figure 3.10:     Non-linear turbine model with GRC 
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The three area system with non-reheat turbine is shown in figure 3.11. Similarly this model can 

also be analyzed with reheat turbine and GRC. Dynamic performance analysis of all above 

mentioned models is carried out with different operating conditions, mainly varying B, Ttie, and 

TP. Observations are also taken when; Area 1 is subjected to sudden disturbance, Area 2 is 

subjected to sudden disturbance  and Any two areas are subjected to sudden disturbance. 

 

Figure 3.11:      Three area interconnected power system 
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diagram is described in figure 3.13. The transmission links are considered as long transmission 

lines specifically of length (Lac and Ldc) greater than break even distance length of EHVAC 

and HVDC transmission lines. 

 

Figure 3.12:     Two-area power system with parallel EHVAC/HVDC links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13:    Transfer function block diagram with DC link for two area system. 
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Having designed all models for the study of load frequency control problem of interconnected 

power system, next step is to decide the control strategy for the same. Three different types of 

control strategies have been discussed to comprehensively analyze the dynamic performance of 

two and three area interconnected power system with different operating conditions. Dynamic 

performance characteristics like peakovershoot and settling time for the systems are studied 

and compared with other researcher’s work. 

3.6     Summary 

This chapter thoroughly discusses the mathematical models of two area and three area 

interconnected power system. Transfer function and state variable models for each component 

contributing in load frequency control problem of interconnected system have been devised. 

Apart from linearity and non reheat turbine model, reheat turbine and non-linear model are also 

designed to make system more realistic. HVDC link parallel to EHVAC link is also 

incorporated in study for improvement of dynamic performance enhancement and achieving 

the objectives of load frequency control.   


