LIST OF FIGURES

Figure No.	Title of the Figure	Page No.
1.1	Summary of machining energy decomposition, saving strategies, knowledge gaps, and challenges	4
1.2	Research methodology to achieve the thesis objectives	8
2.1	Research methodology for the systematic literature review	15
2.2	Distribution of reference articles across journals, conferences and books	16
2.3	Distribution of reference articles along timeline	18
2.4	Geographical distribution of the reference articles	19
2.5	Distribution of articles across authorship	20
2.6	Six step hierarchical model for machine tool energy classification	31
2.7	Variation of the stand-by power for different machine tools	49
3.1	The schematic diagram of the experimental set-up used for power data acquisition	108
3.2	The actual experimental set-up used for power data acquisition	109
3.3	Start-up power profile for LMW klein KODI 40 VMC	111
3.4	FANUC alpha 6i spindle motor power curve	113
3.5	Model fitness for unloaded spindle power	114
3.6	Model fitness for unloaded X- and Y- axis feed motor	116
3.7	Model fitness for Z-axis motor power (upward movement)	118
3.8	Model fitness for Z-axis motor power (downward movement)	119
3.9	Coolant pump power profile for LMW klein KODI 40 VMC	122
3.10	Lubrication pump power profile for LMW klein KODI 40 VMC	122
3.11	Methodology adopted for the development of the proposed structured algorithm	126
3.12	Power profile for spindle activation at 6000 RPM	127
3.13	Details of the workpiece specimen	130
3.14	Identification, power signature and classification of spindle activation at 6000 RPM	131

Figure No.	Title of the Figure	Page No
3.15	Identification of cutting and no-cutting zones using the proposed algorithm	132
3.16	Time and energy consumed for each machining state for the test workpiece	132
3.17	System boundary of the machining process	134
3.18	Type of electricity generation for different countries	136
4.1	Methodology	145
4.2	Power profile and energy decomposition for the machining process	147
4.3	Experimentally measured and predicted values of SEC for dry cutting	153
4.4	Residual v/s fitted value plot for SEC during dry cutting	156
4.5	Normal probability plot of residuals for SEC during dry cutting	156
4.6	Main effect plot for SEC during dry cutting	157
4.7	Interaction plot for SEC during dry cutting	158
4.8	Experimentally measured and predicted values of surface roughness during dry cutting	159
4.9	Normal probability plot of residuals for SEC during dry cutting	161
4.1	Residual v/s fitted value plot for surface roughness during dry cutting	161
4.11	Main effect plot for surface roughness during dry cutting	162
4.12	Interaction plot for surface roughness during dry cutting	162
4.13	Experimentally measured and predicted values of CE during dry cutting	163
4.14	Residual v/s fitted value plot for CE during dry cutting	165
4.15	Normal probability plot of residuals for CE during dry cutting	165
4.16	Main effect plot for CE during dry cutting	166
4.17	Interaction plot for CE during dry cutting	166
4.18	Shape functions for desirability of responses	169
4.19	Optimization plot for case 1 (Minimization of Ra) during dry cutting	171

Figure No.	Title of the Figure	Page No
4.20	Optimization plot for case 2 (Target Ra = 1 μ m) during dry cutting	171
4.21	Optimization plot for case 3 (Target Ra = 2 μ m) during dry cutting	172
4.22	Optimization plot for case 4 (Target Ra = 3 μ m) during dry cutting	172
4.23	Optimization plot for case 5 (Target Ra = 4 μ m) during dry cutting	173
4.24	Pareto charts for multi-objective optimization using MOGA during dry cutting	174
4.25	Experimentally measured and predicted values of SEC during wet cutting	175
4.26	Residual v/s fitted value plot for SEC during wet cutting	177
4.27	Normal probability plot of residuals for SEC during wet cutting	177
4.28	Main effect plot for SEC during wet cutting	178
4.29	Interaction plot for SEC during wet cutting	178
4.30	Experimentally measured and predicted values of surface roughness during wet cutting	179
4.31	Normal probability plot of residuals for surface roughness during wet cutting	181
4.32	Residual v/s fitted value plot for surface roughness during wet cutting	181
4.33	Main effect plot for surface roughness during wet cutting	182
4.34	Interaction plot for surface roughness during wet cutting	182
4.35	Experimentally measured and predicted values of carbon emissions during wet cutting	183
4.36	Residual v/s fitted value plot for carbon emissions during wet cutting	185
4.37	Normal probability plot of residuals for carbon emissions during wet cutting	185
4.38	Main effect plot for carbon emissions during wet cutting	186
4.39	Interaction plot for carbon emissions during wet cutting	186
4.40	Optimization plot for case 1 (Minimization of Ra) during wet cutting	188

Figure No.	Title of the Figure	Page No.
4.41	Optimization plot for case 2 (Target Ra = $0.5 \mu m$) during wet cutting	188
4.42	Optimization plot for case 3 (Target Ra = 1 μ m) during wet cutting	189
4.43	Optimization plot for case 4 (Target Ra = 1.5 μ m) during wet cutting	189
4.44	Optimization plot for case 5 (Target Ra = $2 \mu m$) during wet cutting	190
4.45	Pareto charts for multi-objective optimization using MOGA during wet cutting	191
5.1	Methodology adopted for the present study	
5.2	Power profile recorded for the case study	205
5.3	Workpiece and operations used for the case study	205
5.4	Current state mapping of the activities involved in the machining case study	217
5.5	Future state mapping of the activities involved in the machining case study	220
5.6	Energy demand reduction using the proposed methodology	222
5.7	Comparison of time efficiency, energy efficiency and carbon emissions in CSM and FSM	223
6.1	Methodology for machining sustainability assessment	235
7.1	Life cycle assessment framework	249
7.2	System boundary for the life cycle analysis of the milling process	250
7.3	Schematic outline of the reference factory building	251
7.4	Endpoint environmental impact assessment of the three categories	254
7.5	Endpoint environmental impact assessment of five life cycle phases	255
7.6	Midpoint environmental impact assessment results	257
7.7	Midpoint assessment results of as per machining phases	258
7.8	Sensitivity analysis results with actual and changed values of input variables	262

LIST OF TABLES

Table No.	Title of the Table	Page No.
2.1	Distribution of reference literature across journals and conferences	17
2.2	Summary of the existing review articles and the present study	22
2.3	Energy classification based on operating state of the machine tool	27
2.4	Energy classification based on machine tool sub-systems	28
2.5	Energy classification based on machine tool components	30
2.6	Summary of specific energy based models at machine tool level	36
2.7	Summary of state-based machining energy models across timeline	46
2.8	Summary of energy models for cutting tool change state	55
2.9	Energy distribution among machine tool components for different machine tools	63
2.10	Summary of cutting parameter optimization studies	78
3.1	Technical specifications of the LMW klein KODI 40 VMC	107
3.2	Mechanical properties of the workpiece material	109
3.3	Chemical composition of the workpiece material	110
3.4	Technical specifications of the surface roughness measurement instrument	110
3.5	Technical specifications of the spindle motor for LMW klein KODI 40 VMC	112
3.6	Unloaded spindle rotation power at different rotation speeds	113
3.7	Technical specifications of the feed system for LMW klein KODI 40 VMC	115
3.8	Unloaded X- and Y- axis feed motor power at different feed rates	116
3.9	Unloaded Z- axis feed motor power for upward direction at different feed rates	117
3.10	Unloaded Z- axis feed motor power for downward direction at different feed rates	117
3.11	Rapid feed power for X-, Y- and Z-axis feed motors for LMW klein KODI 40 VMC	119

Table No.	Title of the Table	Page No.
3.12	ATC specifications for LMW klein KODI 40 VMC	121
3.13	Details of the features extracted for power signature	127
3.14	Process parameters used in the case study	129
3.15	Carbon intensity of common energy sources (Gutowski, 2007)	135
3.16	Carbon emission factors for electricity generation for different countries by different sources	136
4.1	Range and levels of machining parameters	146
4.2	Standard L_{27} orthogonal array with parameters and interactions	149
4.3	Calculation parameters used in the present study	150
4.4	Experimental results under dry and wet cutting conditions	151
4.5	ANOVA results for SEC during dry cutting	154
4.6	ANOVA results for surface roughness during dry cutting	160
4.7	ANOVA results for carbon emissions during dry cutting	164
4.8	Multi-objective optimization results (dry cutting) using desirability approach	173
4.9	Multi-objective optimization results (dry cutting) using MOGA	174
4.1	ANOVA results for SEC during wet cutting	176
4.11	ANOVA results for surface roughness during wet cutting	180
4.12	ANOVA results for carbon emissions during wet cutting	184
4.13	Multi-objective optimization results (wet cutting) using desirability approach	190
4.14	Multi-objective optimization results (wet cutting) using MOGA	191
5.1	List of Therbligs used in the machining process (Jia et al., 2014)	197
5.2	Cutting conditions used for the case study	206
5.3	Therblig powers for machining operation on LMW klein Kodi 40 VMC	206
5.4	Extracted activities with time durations and corresponding Therbligs	207
5.5	Energy consumed by various Therbligs for operations 1-6 in CSM	216

Table No.	Title of the Table	Page No.
5.6	Energy consumed by various Therbligs for operations 1-6 in FSM	221
6.1	List of machining sustainability indicators and reference studies	229
6.2	Standard random consistency index values	238
6.3	Data used for indicator calculation	240
6.4	Calculation of economic and environmental performance indicators	241
6.5	The empirical data of SA indicators	242
6.6	The normalized data of SA indicators	243
6.7	Global weights and AHP ranking of SA indicators	244
6.8	Calculation of the machining sustainability assessment index	245
7.1	Inventory table for LCA of a milling process	252
7.2	Endpoint assessment results for LCA phases	255
7.3	Endpoint assessment results of the milling process	256
7.4	Midpoint assessment results for the milling process (phase wise)	259
7.5	Midpoint assessment results for the milling process	260
7.6	Actual and changed values of input variables for conducting sensitivity analysis	261

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation/Symbol	Description
ae	Radial depth of cut
AECM	Active energy consumption of the machine tool
AMGA	Archive based micro-genetic algorithm
AMOPSO	Adaptive multi-objective particle swarm optimization
ANN	Artificial neural network
a_p	Axial depth of cut
APCM	Active power consumption of the machine tool
ATR	Activity-Therblig relationship
C/O	Change over time
C/T	Cycle time
$C_{coolant}$	Coolant cost
Ccoolant	Coolant price per liter
CE	Carbon emissions
CEC	Comprehensive energy consumption
CE_{chip}	Carbon emissions caused by the chips treatment
$CE_{coolant}$	Carbon emission caused by coolant
CE_{elec}	Carbon emission caused by electricity
CEF_{chip}	Carbon emission factor for chip processing
$CEF_{coolant}$	Carbon emission factor of coolant production
$CEF_{coolant ext{-}dis}$	Carbon emission factors of coolant disposal
CEF_{elec}	Carbon emission factor due to electricity production
$CEF_{material}$	Carbon emission factor of raw material production
CEF_{tool}	Carbon emission factor of the cutting tool
C_{elec}	Electricity cost
CEmaterial	Carbon emission caused by raw material production
CE_{tool}	Carbon emission caused by cutting tool
CEU	Comprehensive energy utilization
C_L	Labor cost
C_{MT}	Machine tool depreciation cost
CNC	Computer numeric control
Com-MGGP	Complexity based multi-gene genetic programming
C_p	Production cost
CSEC	Cutting specific energy consumption

Abbreviation/Symbol	Description
CSM	Current state map
C_{tool}	Cutting tool cost
ECprocess	Energy consumption during machining process
E_{i}	Energy consumed by activity i
E_{j}	Energy consumed by Therblig <i>j</i>
f	Feed rate
FRP	fiber reinforced plastic
FSM	Future state map
f_z	Feed rate per tooth
GA	Genetic algorithm
НВМО	honey-bee mating optimization
HMM	Hidden markov model
k	Specific cutting energy of material
MEC	Machine energy consumption
MOBSA	Multi objective backtracking search algorithm
MOO	Multi objective optimization
MOPSO	Multi objective particle swarm optimization
MQL	Minimum quantity lubrication
MQL	Minimum quantity lubrication
MRR	Material removal rate
NC	Numeric control
NLP	Nonlinear programing
NNVAA	Necessary non-value-added activity
NSGA	Non-dominated sorting genetic algorithm
NVAA	Non-value-added activity
NVAT	Non-value-added Therbligs
OEC	Operator energy consumption
P(t)	Power drawn by machine tool at time t
P _{air-cut}	Air cutting power
PF	Power factor
\mathbf{p}_{ij}	Power of j th Therblig in i th activity
PSO	Particle swarm optimization
PT	Processing time
R_a	Surface roughness
RPM	Rotation per minute

Abbreviation/Symbol	Description
RSM	Response surface methodology
S/N	Signal to noise ratio
SA	Simulated annealing
SCE	Specific cutting energy
SEC	Specific energy consumption
Sij	Execution state of jth Therblig in ith activity
SOO	Single objective optimization
SQP	Sequential quadratic programming
STEP-NC	Standard for exchange of product model data- numerical control
t_c	Cutting time
T_c	Cutting temperature
$T_{coolant}$	Coolant replacement time
TEC	Total energy consumption
t_i	Duration of ith activity
TP	Therblig power
TT	Therblig time
T_{tool}	Cutting tool life
TVSM	Therblig-based value stream map
U	Energy utilization ratio
UM	Machine specific energy
U_{nc}	Net specific cutting energy
UNVAA	Unnecessary non-value-added activities
V	Cutting speed
VAA	Value-added activity
V_{ad}	Volume of additional cutting fluid used before replacement
VAT	Value-added Therbligs
v_c	Cutting speed
$V_{coolant}$	Total volume of coolant used before replacement
V_{in}	Volume of cutting fluid used initially
VMC	Vertical milling center
VSM	Value stream map
W_{chip}	Weight of chips produced
W_{tool}	Weight of cutting tool
α	Concentration of the coolant

Abbreviation/Symbol	Description
ηΑ	Energy efficiency at the activity level
η_T	Energy efficiency at Therblig level
η_{time}	Time efficiency
E_{sb}	Total standby energy
E_{st}	Total starting energy
E_u	Total idling energy
E_c	Total cutting energy
E_a	Additional load loss
ρ	Density of workpiece material