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Abstract 

 

Finite element formulations have historically relied on key principles of continuity 

and completeness. Three relatively new concepts of correspondence, 

consistency and correctness are yet to form an inherent part of element 

formulation. This thesis attempts to lay a framework for element formulation that 

is based on these novel 3C concepts of correspondence, consistency and 

correctness. The concept of isoparametric element formulations can be thought 

of as a good reason for the widespread use of finite element analysis across 

different engineering domains. Through the two decades of 1970s and 1980s, 

the early pitfalls of this formulation like shear locking were studied in detail. The 

solutions offered by the researchers can be classified into two broad categories. 

The tactical ones like use of selective integration is one solution. The other 

solution, more strategic in nature was through judicious use of strain fields, which 

could be field-consistent, or a substitute strain field. Great amount of work done 

on the strain fields have resulted in a reasonably clear understanding of the 

phenomena of shear locking, though the new and emerging concepts of 

correspondence were not a part of these formulations. Later formulations like 

anisoparametric elements that did not require selective integration were not 

formulated keeping the concepts of correspondence, consistency and 

correctness in mind. 

 

In this thesis, the 3C concepts are first explained from fundamental principles for 

both statics and dynamics applications. Since isoparametric elements have been 

so versatile in their applications, these elements are first examined from the 

perspective of 3C concepts, more as a prelude to the detailed study of 

anisoparametric formulations from the same 3C concepts. In the process, some 

of the historical elements that were introduced in the 1960’s are studied and 

shown that they are totally oblivious to the 3C concepts. A significant portion of 

this thesis is on ansioparametric elements - which have been extensively used 

for the study of curved shear-flexible shells and quadrilateral plate bending 
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elements. Current applications of anisoparametric elements are mostly on linear 

elastostatics, and this thesis investigates the applications of anisoparametric 

elements for nonlinear elastostatics and linear elastodynamics as well. For both 

cases of isoparametric and anisoparametric elements, beam, axisymmetric shell 

and plate problems are considered for their applications in linear elastostatics, 

nonlinear elastostatics and linear elastodynamics. A total of 67 element 

formulations are studied in detail, that include 22 anisoparametric elements. For 

the nonlinear elastostatics applications, the incremental matrices for 4 element 

formulations are derived explicitly and the results from these formulations are 

compared with those from a commercial finite element software.  Through 

detailed investigations on both isoparametric and anisoparametric elements, this 

thesis brings to light several aspects of these element formulations that have not 

been fully known to researchers in the field of element technology. 
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Chapter-1 

Introduction 

 

The finite element method has been in vogue for close to 50 years now, and has 

evolved over these years as a versatile and powerful numerical technique for 

solving the mathematical formulations of engineering problems. The 

technological advancements in the field of computational mechanics in terms of 

sophisticated computers and efficient numerical algorithms have made the finite 

element method a potent weapon in the arsenal of a mechanical/structural 

design engineer. Unlike in the 1950’s and 1960’s, when the finite element codes 

were written by engineers to solve specific problems, today commercial finite 

element programs are readily available for solving most of the engineering 

problems. The finite element method can now be considered to have matured 

enough to be used as an indispensable tool in engineering design. 

 

In parallel, the mathematical understanding of the finite element method has 

progressed equally rapidly. This has looked at the accuracy, errors and 

convergence of the method using tools such as functional analyses and 

variational calculus.  

 

In this thesis an attempt is made to classify the canonical concepts that form the 

logical formulation of the displacement type approach and obtain an 

understanding of how errors, accuracy and convergence of solutions can be 

predicted a priori where possible, or reconciled a posteriori in the rest of the 

cases, using mathematical tools that include variational calculus.  

 

One of the goals of the work reported in the thesis is to progress towards an 

entropic paradigm for computational modeling. Recent work, Prathap and 

Mukherjee (2003a), on error analyses of the finite element method has shown 

that the canonical concepts (C-concepts) such as Completeness, Continuity, 
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Consistency, Correspondence, and Correctness lead to computational solutions 

governed by energy error theorems. It was also seen that optimal solutions were 

those where the energy errors were distributed in an equi-distribution way 

leading to the possibility that these were entropy optimal solutions.  In other 

words, computational algorithms do imitate the laws of nature and have energy 

and entropy sensibilities.  

 

Prigogine (1997) had observed of entropy in thermodynamics, “…..systems 

considered in thermodynamics are so complex that we are obliged to introduced 

approximations. The Second Law of Thermodynamics would have its roots in 

these approximations!.........entropy is only the expression of our ignorance.” 

Computations are based on approximations of very complex situations. It is not 

surprising that entropic rules should govern how computations produce solutions.  

 

 

1.1 The Canonical C-Concepts Introduced 

 

The pioneering work of Turner et al. (1956) can be considered to be the basis for 

finite element method. In this work, they presented for the first time, the stiffness 

matrix for a triangular and rectangular plate bending element. As the finite 

element approach gives an approximate solution, a question that arises 

immediately is how errors, accuracy and convergence are linked to the choice of 

the admissible functions. As more terms are added to the trial functions, or as 

more nodes are added in to the mesh that replaces the original structure, the 

sequence of approximate solutions is expected to approach the exact solution. 

Melosh (1963) systematically presented a case for monotonic convergence of the 

results of the finite element solution to the exact solution.  

 

During the initial stages of the development of the finite element method, it 

became obvious that the rudimentary requirements of continuity and 

completeness played a crucial role in determining the accuracy and rate of 
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convergence of the solution. However these two were necessary but not 

sufficient conditions in all the cases.  It was in the early 80s’ that the additional 

concept of field-consistency was brought out by Prathap (1984). Through the 

consistency concepts, phenomena like shear locking began to be understood 

with more clarity.  Prathap (1996a) continued further, and brought out the 

concept of stress correspondence and gave a new interpretation to the way the 

results of the finite element solution were related. For example, the fact that the 

stresses and strains obtained from the finite element solution were very accurate 

at certain points (the so-called Barlow points) within an element was taken for 

granted for a long time. Prathap (1993,1996b) showed through the stress 

correspondence concepts the reasons behind the accuracy of the results at 

these points, and proved that these points are not always the Barlow points.  The 

canonical concept that has been around for a while and which is highly relevant 

in the context of adaptive mesh refinement is the variational correctness of the 

finite element formulations. Strang and Fix (1973) had addressed this many 

years back, and a detailed discussion on the relevance of this concept is 

provided in the literature survey of this chapter. 

 

The relevance of C-concepts can be envisioned from the recent report prepared 

by the US National Committee on Theoretical and Applied Mechanics, Oden et 

al.  (2003), an extract of which runs as follows “….model error estimation, and 

model adaptivity are exciting areas of CM (Computational Mechanics) and 

promise to provide an active area of research for the next decade and beyond. It 

is predicted that a posteriori error estimation and adaptivity will become a 

common ingredient in all significant computer simulations in CM during the next 

decade. An important advance in this area has been the recent discovery of 

methods to determine upper and lower bounds of local approximation error, so 

that in any given simulation, once a particular model is selected, computable 

bounds giving upper and lower limits to computed quantities of interest could be 

a natural by-product in every simulation. This is a fertile area of research, one in 

which significant work will be done during the next decade.”   Error estimation 
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requires a deep understanding of the C-concepts, and in a later section of this 

chapter the link between error estimation and C-concepts is explained in detail. 

 

In this section the canonical concepts of continuity, conformity, completeness, 

consistency, correspondence and correctness are explained. Later, in the 

thesis it is shown how these concepts translate into performance in terms of 

energy-error norms and observable entities like errors, convergence and 

accuracy by first formulating the elements which are strictly in accordance with 

these concepts, and later relaxing or enforcing them to assess their impact.   

 

1.1.1 Continuity and Completeness 

The concepts of continuity and completeness have been in existence right from 

the genesis of the finite element method. The significance of the concept of 

continuity can be traced back to Courant (1943), who used piecewise 

polynomials over different regions of a domain. Even before Courant, 

trigonometric functions, or special functions like Legendre or Bessel functions 

were used to approximate the variable within the whole domain. What marked 

the difference in Courant’s idea was the use of the piecewise polynomials over 

each sub-domain. This formed the basis of the finite element method, which 

evolved many years later.  

 

The use of polynomials for the shape functions ensured the continuity of the 

displacements within an element (intra-element continuity). This still did not 

ensure that displacements are continuous across element edges (i.e. no gaps or 

overlaps develop as elements are assembled, and deform after loading). The 

compatibility or conformity condition ensured that the inter-element continuity 

was maintained before, during and after deformation of the elements. The 

compatibility requirement also ensured that “neighbourhoods remain as 

neighbourhoods”, Fung (1968).  Based on the order of the derivatives of the 

displacements that appear in the strain energy functional, the finite element 

compatibility requirements could be established. For example, for a plane stress 
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problem, the strain energy has the terms of the first derivative of displacement 

only (C0 continuity). The finite element formulation thus required inter-element 

compatibility of just the displacement alone.  The strain energy for a beam/plate 

has terms involving the second derivative of the displacement, which required the 

inter-element compatibility of both the displacement and its first derivative (C1 

continuity).   

 

Completeness is more difficult to understand especially as a physical basis for it 

is not obvious. It is usually expressed from a mathematical basis in terms of the 

order of the polynomial which must be represented exactly. The best physical 

rationalization offered for completeness is that the functions must be able to 

represent strain free rigid body motions and constant strain states. The 

completeness requirement calls for the careful choice of the terms that are used 

in the interpolation functions in the finite element model in order to capture 

certain specific states of deformation – like the rigid body displacements of the 

whole element, or the state of a constant strain in an element.  The 

approximation used for the element shape functions is called complete of order 

n, if it represents exactly all monomial terms up to order n in Cartesian 

coordinates. The introduction of parametric elements based on natural 

coordinates complicated this understanding somewhat. 

 

In the finite element method, an unknown function u(x), which is the exact 

solution to a boundary value problem over a domain enclosed  by a boundary is 

replaced by an approximate function uh(x) which is constituted from a set of trial, 

shape or basis functions. It is desired to have a trial function set that will ensure 

that the approximation approaches the exact solution as the number of trial 

functions is increased. It can be argued that the convergence of the trial function 

set to the exact solution will take place if uh(x)  will be  sufficient to represent any 

well behaved function such as u(x) as closely as possible as the number of 

functions used becomes indefinitely large. This is called the completeness 

requirement. In the finite element context, where the total domain is sub-divided 
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into smaller sub-regions, completeness must be assured for the shape functions 

used within each domain. The continuity requirements then provide the 

compatibility of the functions across element edges. 

 

It is also seen that a best-fit arrangement in some sense between u(x) and uh(x) 

takes place, and that this best-fit can be gainfully interpreted as taking place 

between strain or stress quantities (i.e. the correspondence requirement). This 

has important implications in further narrowing the focus of the completeness 

requirement for finite element applications in particular. By bringing in the new 

perspective of best-fit strain or stress paradigm, the completeness requirements 

can be looked at entirely from this physical point of view.  

 

The use of C0 elements in certain structural mechanics applications created 

problems like shear locking. When this threatened to derail the otherwise 

versatile nature of C0 elements, formulations like the Mixed Interpolation of 

Tensorial Components, Bathe and Dvorkin (1985), Enhanced Natural Strain, 

Simo and Rifai (1990) were introduced to overcome the locking problems. In 

these formulations, alternate or substitute fields are used to represent some of 

the fields, e.g. strain field. These approaches indirectly met the completeness 

requirements. On the other side of the completeness, few additional terms have 

been added to the interpolation functions to satisfy specific requirements (zero 

shear under pure bending). These terms have been named as bubble functions, 

Bathe (2002).  Recently, Rajendran and Liew (2003b) revisited the completeness 

requirements in view of the sensitivity of the results of the finite elements due to 

mesh distortion.  The scope of the current work does not address the continuity 

and completeness aspects specifically. 
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1.1.2 Conformance 

The requirement of C1 continuity for plate bending problems was explained in 

section 1.1.1. This condition was difficult to achieve for the plate bending problem 

(for some elements) and this led to the formulation of elements which did not 

meet the conformity requirements in totality.  Soon, these “non-conforming” 

elements became popular and were very widely used for their apparent good 

results, despite the fact that these non-conforming elements did not guarantee 

the boundedness of the strain energy, Desai and Abel (1987).   

 

The concepts of conformance and non-conformance in element formulations and 

their impact on the element performance were not given due attention initially, as 

the first-cut results were promising.  Zienkiewicz & Cheung (1964) established a 

general procedure for deriving the stiffness matrices for quadrilateral plate 

bending elements, though this element is a non-conforming element. The use of 

these elements continued as the results surprisingly were very good and no 

serious second thoughts were given. At the conferences on matrix methods in 

structural mechanics (1965, 1968), researchers deliberated on these aspects, 

and advocated continued use of these formulations.  In a review and catalogue of 

plate bending elements, Hrabok and Hrudey (1984) listed out 88 element 

formulations, several of which are non-conforming elements. To this day, the 

occasional use of non-conforming C1 elements in plate bending problems is 

seen. Wanji and Cheung (1997) satisfied the inter-element compatibility 

continuity conditions in an average sense and derived the interpolation functions. 

Zhang and Cheung (2003) used a refined non-conforming displacement function 

that has additional interpolation functions with coefficients that are chosen 

specifically to ensure the continuity condition. This can be thought of as a 

pseudo-conforming element, and the element has been found to give good 

results for many applications including vibration and stability. Mao and Chen 

(2006) studied the discretisation error for anisotropic meshes and focused their 

investigation on a non-conforming plate bending element. 
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In this thesis, the behaviour of non-conforming elements is studied in detail and 

the performance assessed using the best-fit rule, strain energy boundedness, 

rate of convergence for linear and nonlinear elastostatics and linear 

elastodynamics problems. 

 

1.1.3 Consistency 

While researching on the phenomena of shear locking, Prathap (1984) observed 

that there existed many constrained strain-fields. A constrained strain-field can 

be thought of as a requirement in which the strain-field would vanish in certain 

constraining limits.  The constrained strain-fields could lead to spurious results, if 

adequate care is not exercised during the element formulation. Examples of such 

constrained strain-fields include strain field of a thick plate (in the limit where the 

thickness tends towards the thin plate shear locking occurs), the dilational strain-

field of a nearly incompressible material (in the constraining limit volumetric 

locking occurs) and membrane strain-field during inextensional bending of a 

curved beam (membrane locking occurs).  To overcome this spurious behavior, 

Prathap (1984) proposed the use of strain-fields that are field-consistent.  The 

consistency in the strain-field definition was required so that only true constraints 

emerged in the penalty regimes of constraining of the concerned strain-field. The 

construction of these field-consistent strain-fields was based on meeting the 

same variational principles that governed the original formulation, so that there is 

no deviation from them.  

 

The requirement in a general purpose finite element package for 2-D 

formulations of plane stress/plane strain and 3-D formulations to be field-

consistent was brought out by Ramesh Babu et al. (1985).  This reference has a 

representative list of commonly encountered constrained strain-field problems. A 

comprehensive bibliography on the finite element formulations of different 

classes of constrained media elasticity problems was captured by Prathap and 

Nirmala (1990). The consequence of the use of the finite element formulation not 
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in line with a field-consistent or a formulation that is analogous to field-consistent 

is poor performance, delayed convergence, stress oscillations, locking etc.  

 

Locking is a phenomena which is caused due to certain deficiencies in the 

element formulation (deficiency of consistency), the outcome of which is 

spurious/suspicious results. For example, the displacement in a thin plate, when 

computed using a finite element formulation based on thick-plate (Mindlin theory) 

can be totally erroneous, due to shear locking.  Though mathematical 

explanations of why locking occurs (due to rank deficiency of the stiffness matrix) 

were offered, the remedial measures that were used historically (like reduced 

integration) could not bring out the rationale behind their use. However, locking is 

a phenomenon not restricted to shear alone, and is observed in other derived 

quantities of the finite element solution, like membrane strain (leading to 

membrane locking), dilational srains (leading to volumetric locking).  

 

Olesen (1983) recognized that the shear strain is composed of two 

“incompatible” quantities, with one term of higher order than the second, and 

proceeds to redistribute the terms so that they are of the same order. For the 

simple case of a 2-noded shear flexible beam element the redistribution and 

reduced integration method were found to give the same stiffness matrix. 

 

Prathap  (1984) expounded on the concept of field-consistency and used it on 

many problems.  Prathap and Ramesh Babu (1986), Ramesh Babu and Prathap 

(1986) showed the use of 2-noded and 3-noded shell elements to solve varied 

problems on circular plate, hemispherical shell and cylindrical shell subjected to 

different loads. Prathap and Somashekar (1988) combined the concepts of edge-

consistency and field-consistency to show the efficacy of this element through a 

series of tests. This element has been later chosen by Mukherjee and 

Krishnamurthy (1996) for adaptive mesh refinement of plate problems.  
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Prathap and Ramesh Babu (1987a) used the field-consistency concept to explain 

the stress oscillations in a curved beam element. The a priori prediction of stress 

oscillations, and their removal through appropriate field-consistent reconstitution 

of the strain field is brought out very elegantly. A similar explanation for the stress 

oscillations in the case of Mindlin plates is found in Prathap and Ramesh Babu 

(1987b). In an interesting example of the axial force in a tapered bar, Prathap 

and Naganarayana  (1992) showed the ability of the field-consistent formulation 

to explain and remove the extraneous stress oscillations. This example is not a 

case of a constrained-strain field, where consistency was required in the strain-

terms in the constraints. Here it was the requirement of a consistent stress-field 

that satisfies the equilibrium.  Despite the maturity of the field-consistency 

concept since its advent in 1984, researchers are still oblivious to its efficacy in 

explaining pathological phenomena like shear locking and continue to search for 

accurate prediction of stresses, Wang et al. (2002).  

 

It would be interesting to briefly look at the various other methodologies (other 

than field-consistency) that have been used for overcoming locking. The reduced 

integration approach advocated by Zienkiewicz et al. (1971), Zienkiewicz and 

Hinton (1976) in the 70s overcame the locking problem associated with the shear 

deformations in the plate/beam bending elements. Though it was realized by the 

authors of this publication that the bounded nature of the solutions was no longer 

available, the reduced integration technique became quite popular. 

 

Alternate methods that do not use the selective/reduced integration but could still 

overcome shear locking were researched. Along this time, it was found that a 

different representation of the shear strain component gave good results. The 

works of Bathe and Dvorkin (1985) on the mixed interpolation of tensorial 

components, Donea and Lamain (1987), and field/edge consistency-approach of 

Prathap and Somashekar  (1988) are all in similar lines.  

 



   11  

 In the enhanced strain approach, Simo and Rifai (1990) laid out the conditions 

(orthogonality and constant stress conditions) for constructing the enhanced 

strain interpolation, derived the strain fields for plane elasticity and axisymmetric 

problems, and showed their applications to Mindlin-Reissner plate theory. It is 

interesting to see the close resemblance of the orthogonality condition to the 

correspondence concept, though Simo and Rifai (1990) do not realize it explicitly 

as both are based on Hu-Washizu’s principle. In fact, it is much easier to see the 

analogy of the enhanced strain with the consistency concept.  This was brought 

out by Perego (2000) where the enhanced strain gets embedded in the upfront 

formulation of the matrices from the Hu-Washizu principle. 

 

Other approaches on isoparametric element formulations to overcome shear 

locking would be described at a later point in this thesis. 

  

Tessler (1981), Tessler and Spiridigliozzi (1988) used anisoparametric elements 

to address shear locking. In these formulations, the interpolation functions used 

for the translational displacement w is of higher order than the one that is used 

for the rotation θ.  Marur and Prathap (2000) used the field-consistency argument 

to show why the anisoparametric element does not produce shear locking for the 

case of shear-flexible beam problems.   

 

The problem of locking is not restricted to shear alone. Membrane locking also 

occurs in certain problems, which again calls for special approaches to resolve. 

Prathap and Ramesh Babu (1986) and Ramesh Babu and Prathap (1986) 

examined the shear and membrane locking in axisymmetric shells, and used the 

field-consistent formulation to explain locking and how to overcome the same. 

Yunhua (1998), Yunhua and Eriksson (1999) used the field-consistency 

approach for overcoming shear and membrane locking by using different 

interpolation functions to represent the displacement and rotation.  For avoiding 

membrane locking, the order of the interpolation function that is used here is of 

5th degree. When the large deformation effects are considered, the membrane 
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locking problem continues and reduced integration works successfully here also, 

with the concomitant violations on the variational aspects.  

 

The consistency concept has now gained wide acceptance and many 

researchers use it for varied applications.  Miranda and Ubertini (2003) used it 

effectively in a coupled electroelasticity problem. Ganapathi et al. (1999), 

extended the concept of field-consistency to solve laminated composite beam 

problems by using the B-Spline functions, and redistributing the shear and 

membrane strains in a field-consistent manner 

 

The elegance of the concept of field-consistency in predicting a priori if the 

element is likely to give spurious results or not is shown in this thesis through 

several examples. 

 

1.1.4 Correspondence 

In the context of adaptive mesh refinement, there has been a lot of research 

interest on superconvergent points – points within an element that have the least 

error when compared with the exact solution (in other words, the convergence to 

the exact solution at these points is very high), Zienkiewicz and Zhu (1992).  

Long before the widespread use of the phrase “Superconvergent Points”, 

researchers knew the fact that at certain points called “Barlow Points”, Barlow 

(1976), the finite element solutions for stresses were more accurate.  Hinton and 

Campbell (1974) used a smoothing technique based on least squares method to 

remove the stress oscillations. Herrmann’s (1972) argument of interpreting the 

finite element solution of displacements as a consequence of the minimization of 

the stress errors, and Moan’s (1973) study on distribution of errors can be termed 

as two studies that heuristically had the correspondence concept embedded in 

them, albeit unknown to them at that point of time.  

 

The issues of stress oscillations and points of accurate stresses were 

treated as two separate entities, until Prathap (1984, 1996a) saw the common 
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thread of correspondence and consistency running through them.  Prathap 

(1993, 1996a) laid the variational bases for the existence of these points, and 

through the stress-correspondence paradigm showed that the super-convergent 

points are not always the “Barlow Points”.  The “best-fit” rule explains in simple 

terms the location of the optimal stress points. In fact, the stress correspondence 

paradigm, Prathap (1996b) derived this best-fit rule, through imposing the 

equilibrium and orthogonality conditions on three fields (displacement, stress and 

strain) through the ingenious use of Hu-Washizu theorem.   Prathap (1993, 

1996a) has used the Legendre Polynomials extensively to reconstitute the 

strain/stress fields and has shown that the accurate stress recovery points are 

not always the Barlow points. The use of Legendre Polynomials (in the 

reconstituted force field) in the above work has been explored recently by Hiller 

and Bathe (2001). Kasper and Taylor (2000a, 2000b) followed a similar 

variational formulation from Hu-Washizu theorem. 

 

Prathap (1996b) laid out a conceptual framework for the displacement 

correspondence and stress correspondence paradigms, and explained through 

both the processes, how the finite element method computed the displacements, 

strains and stresses. The displacement correspondence paradigm results in a 

process where the displacements at nodes are matched, and the stresses are 

computed as derivatives of displacements due to which they are less accurate 

than the displacements. The stress correspondence paradigm results in a 

process where the stresses at optimal points are matched, and the 

displacements are integrated from the strains due to which they are more 

accurate than the stresses.  

 

The concept of correspondence was explained by Prathap (1996b) through an 

ingenious interpretation of the Hu-Washizu  theorem.  Prathap (1993, 1996a)  

gave proof to the existence of points in the finite element domain where stresses 

are more accurate. Though the existence of such points were known right in the 

70’s, e.g. Barlow (1976), Prathap laid a variational basis for it and generalized it 
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through correspondence concept.  The recent publication by Zhang (2008) on the 

reasons why Barlow points do not coincide with the Gaussian Quadrature Points 

for higher-order elements, reinforces the correspondence concept of Prathap 

(1996b).  The correspondence concept further lays out the framework for the 

“Best-fit” rule, which predicts the manner in which the finite element computed 

strains/stresses vary with respect to the exact strain/stress.  This point has great 

relevance to the super-convergent patch recovery process, where the knowledge 

of the super-convergent points is critical to the recovery process. Super-

convergence means the existence of points in the finite element domain that give 

the most accurate results for the derived quantities, viz., strains, stresses. Barlow 

(1976) had shown the existence of points within an element where the stresses 

were more accurate than other points. In a sequel, Barlow (1989) extended the 

optimal stress sampling points to the case of distorted elements.   

 

A lot of research has gone into the understanding of the basis for the existence of 

these points, MacNeal (1993), Prathap (1993, 1996a). Yong-woo and Oak-key 

(1996) extended the concept of consistency to find the optimal stress points in 4-

noded, 8-noded and 9-noded elements, using all the while an indirect form of 

correspondence concept.  Oh and Batra (1999) computed the locations of 

optimal stress points for bar and quadrilateral elements of various orders and 

summarized them for the Lagrange and serendipity families of elements till 5th 

order.  Felippa’s (2002) fitting of strains by minimizing dislocation energy is 

conceptually similar to Prathap’s correspondence concept, with fitting 

displacements carried out additionally. Rajendran and Liew (2003) revisited the 

optimal stress sampling points for plane triangular elements using the concept of 

stress correspondence and showed that Barlow points do not exist for all 

stress/strain components. Recently, Zhang (2008) revisited the case of the 

superconvergent points and strengthened the argument of Prathap (1993, 

1996a) that in general, the Barlow points are not the same as the 

superconvergent points. Rajendran (2008) computed the Barlow points for higher 

order bar elements (up to order 10), and compared them with Prathap points. 
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This comparison shows clearly that from third order onwards Barlow points and 

Prathap points are very different.  Mukherjee and Jafarali (2008) reinforced the 

existence of Prathap points for statically indeterminate structures as well. Pinto 

(2008) used elements till fifth order to identify superconvergence (where 

convergence is O(hk+1), k is the order of the interpolation), ultraconvergence 

(where convergence is O(hk+2) )and hyperconvergence (where convergence is 

O(hk+3)).  

 

The importance of the correspondence concept in assessing the performance of 

an element is shown in this thesis through various examples. 

 

 

1.1.5 Correctness 

Correctness refers to the adherence of the finite element formulation to the 

canonical concepts that were outlined above. A variationally correct formulation 

will always give bounded results, like strain energy, natural frequencies, etc.  

Some of these aspects have been addressed in parts by de Veubeke (1965), 

Strang and Fix (1973).  A classic example of an element formulation that is not 

variationally correct is the use of reduced integration in the case of shear-flexible 

beams and plates.  Another example is the use of lumped mass matrix to 

compute the natural frequencies.   

 

Incorrect element formulation could produce erroneous results, which could 

mislead the finite element analyst. In the context of error estimation, the recent 

compendium by Gratsch and Bathe (2005) listed out the characteristics of an 

effective error estimator, and one of them is that the error estimator should yield 

guaranteed and sharp upper and lower bounds on the actual error. If the element 

formulation is not variationally correct, it is very likely that the above requirement 

is violated. In the adaptive finite element analysis of plates by shear-flexible 

quadrilateral elements, Mukherjee and Krishnamoorthy (1996) narrowed down 

their choice of the elements to two formulations – both of which are variationally 



   16  

correct.  Prathap and Mukherjee (2003a) introduced a fresh flavor to the 

concepts of correctness through simple, yet elegant use of the virtual work 

principle and demonstrated the interpretation of the correctness of the finite 

element results for both elastostatics and elastodynamics problems.    

 

The concept of variational correctness has been in place right from 70’s. Strang 

and Fix (1973) in their treatise on the mathematic basis for the finite element 

method discussed in detail the concept of correctness. Strang (1973) referred to 

the use of elements that are not formulated in a variationally correct manner as 

variational crimes. Militello and Felippa (1990a,1990b) used the Hu-Washizu 

principle to justify the use of assumed natural strain. Kasper and Taylor (2000a, 

2000b) also used the Hu-Washizu principle for consistent variational stress 

recovery. Prathap and Mukherjee (2003a) recently reinterpreted the error 

theorem of Strang and Fix (1973) and showed the results for simple elastostatics 

problems.  Marur and Prathap (2000) investigated the variational correctness by 

using a simple two-noded beam element and solved the shear-flexible beam 

problem.  Mukherjee et al. (2005), Jafarali et al. (2007), Muralikrishna and 

Prathap (2003) and Prathap et al. (2003b) assessed the correctness of the 

elastodynamic response of beams and plates.   

  

1.2 Boundedness, Errors and Adaptivity 
  

The aspect on boundedness of the recovered stresses, and more so of the 

energy norm, is critical to the success of the adaptive mesh refinement. One of 

the earliest discussions on the bounds of the finite element solution is by de 

Veubeke (1965). This can be seen as a forerunner for Prathap and Mukherjee’s 

(2003a) re-derivation of the same from virtual work method. In the recent context 

of goal-oriented error estimation (Prathap and Mukherjee (2004)), where the 

interest is in specific local quantities, the bounds on the error measure has 

received more attention.   
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The correctness concept is closely related to adaptive mesh refinement. In fact, 

the use of a variationally incorrect element formulation in the adaptive mesh 

refinement in fact may lead to erroneous results. The boundedenss of strain 

energy is one key attribute of testing the variational correctness of the 

formulation.  Strang and Fix (1973), Prathap and Mukherjee (2003a) showed 

that, the energy inner product of the approximate (Ritz or finite element) solution 

will always be a lower bound of the exact energy. 

 

Error estimation can be broadly divided into two major systems, viz., a priori and 

a posteriori.  A priori error estimation covers the process of arriving at errors even 

before the availability of the results from the solution of the finite element. In 

general, the formulation of closed-form a priori errors estimates are difficult and 

are very problem-specific. For a posteriori error estimation, the results of the 

finite element solution are used to estimate the errors. Here again, there are 2 

sub-sytems, viz., residual based error estimate and recovery based error 

estimate.  

 

One of the earliest works on the errors in the finite element method was by Walz 

et al. (1968). The finite element equilibrium equations are expanded through 

Taylor Series and the discretisation error for bar, beam, plane stress and plate 

element is provided. In the current context of error estimation, the work by Walz 

et al. (1968) can be considered to belong to a priori category.  Prathap (1999) 

laid a framework based on the principles of field-consistency, for estimating a 

priori the errors in the finite element solution.  

 

The vast amount of work done on the error estimates and adaptive mesh 

refinement has been captured in review articles by Iyer and Appa Rao (1992a, 

1992b), Li and Bettess 1997), Mackerle (2001). The fact that most of the a 

posteriori error estimators depend on stress recovery ties up closely with the 

necessity of predicting stresses accurately. Though some techniques have been 

developed that do not require knowledge of these points for stress recovery (e.g. 
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stress recovery through equilibrium of patch by Boroomand and Zienkiewicz 

(1997), displacement recovery through minimization of functional by Mukherjee 

et al. (2001), lot of research continues on recovery of stresses especially with a 

variational aspect attached to it, Tessler et al. (1994,1998a,1998b), Riggs et al. 

(1997).  Lo and Lee (1998) used three different techniques for the recovery of 

stresses in Mindlin plates. In all of the above recovery techniques, the 

correspondence concept is rarely discussed. Mohite and Updadhyay (2002) used 

a combination of strain and displacement recovery to smoothen out the stresses 

and apply it to the study of a posteriori errors for composite plates. The recovery 

process here has close resemblance to the correspondence concept. Miranda 

and Ubertini (2002) used the correspondence concepts to recover the stresses, 

and brought to light the consistent reconstitution of stresses. 

 

Zienwkiewicz (2006) traced the history of error estimation in the engineering 

analysis, and presented the state-of-the-art in error estimation and adaptivity. 

The current state of the art in the field of a posteriori error estimation has been 

recently reviewed by Gratsch and Bathe (2005). From the work done so far, in 

the context of adaptive mesh refinement, the recovery based error estimators 

require accurate knowledge of the stresses at superconvergent points. Due to 

this, research continued on for finding these superconvergent points, Hiller and 

Bathe (2001), Rajendran and Liew (2003a), Liew and Rajendran (2002). A good 

understanding of the best-fit rule (which comes from the correspondence concept 

outlined in (1.1.5) gives the researcher more clarity on the superconvergent 

points, as shown by Rajendran (2008). 

. 

Prathap and Mukherjee (2003a) explained the energy error concepts in a very 

elegant way through the use of virtual work principle and show that for linear 

problems, the energy of the errors is equal to the error of the energies. This 

statement has many important corollaries on the boundedness of the strain 

energy and natural frequencies.  
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Leckie and Lindberg (1963) quantified the error in the natural frequencies of 

beams and concluded that they are of O(h4). Error analysis of natural frequencies 

was done in the 70’s by Lindberg and Olson (1970), Fried (1971), and Fried and 

Malkus (1975). Lindberg and Olson (1970) studied the dynamic response of two 

plate bending elements from a convergence perspective and concluded that the 

conforming element is superior to the non-conforming element.   

 

Rajendran and Prathap (1999) discussed the errors in potential energy and 

kinetic energy separately and studied the convergence of natural frequencies of 

a cantilever beam. They developed an a priori error model for the torsional 

frequencies, and studied in detail the consequences of using lumped mass 

matrices. Prathap and Pavan Kumar (2001) used a 2-node and 3-node element 

to study the convergence of the natural frequencies of a Timoshenko beam.  

Jafarali et al. (2004) used a combination of different formulations for the stiffness 

and mass matrices and studied the errors in the frequencies.  Muralikrishna and 

Prathap (2003) studied in detail the effect of variational correctness on the 

natural frequencies of plates. The field-consistent way of formulating the stiffness 

matrix for use in elastodynamics was done by Ganapathi et al. (2003). In all of 

these cases where the element formulations were variationally correct, 

boundedness was ensured.  

 

1.3 Objectives and Scope  

 

This thesis attempts to lay a framework for element formulation that is based on 

novel 3C concepts of correspondence, consistence, correctness and applies this 

framework to several practical element formulations. Such element formulations 

are expected to be robust and applicable for all classes of problems. To firmly 

establish the core requirements of such an element formulation, a detailed review 

of finite element formulations for the case of beams, axisymmetric shells and 

plate problems over the past 40 years has been undertaken and the pathological 

problems faced by these elements have been identified. In this thesis, the 
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problems faced by finite element formulations that deviate from the canonical 

concepts are studied in detail.  

 

1.3.1 Gaps in Element Formulation 

 

A comprehensive review of the current literature in the area of finite element 

formulations indicates the continued use of the formulations that are not strictly 

adhering to the canonical concepts. Some of these element formulations have 

been from the very early stages of the development of the finite element method 

(e.g. use of non-conforming elements, use of lumped mass matrices), and some 

of them are recent (e.g. use of selective integration, use of anisoparametric 

elements). For the increased generic reliability of these finite elements, many of 

which are a part of the commercially available finite element software, a thorough 

understanding of the element technology is needed.  The best-fit rule, though 

known in various forms, has not been investigated for a large class of problems 

(e.g. a simple plate bending problem, axisymmetric shells). The use of 

anisoparametric elements has not been explored in detail beyond the simple 

case of linear deformations for beams and to a limited case of plates 

(axisymmetric shells using anisoparametric elements have not been studied in 

detail).  The field-consistency concept for large deformation problems which are 

prone to membrane locking has also not been investigated fully. Thus there is a 

case for more work on the critical examination of element formulation that is 

based on the concepts of consistency, correspondence and correctness, which is 

attempted in this thesis. 

 

The scope of this thesis includes examining the 3C concepts on a wide variety of 

commonly used finite elements for beam, plate and shell problems. It is observed 

from the literature survey that anisoparametric elements have not been explored 

in detail for their applications to large deformation problems and hence a 

significant effort is devoted towards this. The isoparametric and field-consistent 

elements have so far not been analysed from the perspective of all of the 3C 
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concepts and hence requires a detailed study.  In this thesis, the application of 

the above element formulations to problems in statics and dynamics is examined 

in detail. For the case of statics problem both linear and nonlinear elastostatics 

are considered.  Under nonlinear elastostatics, the formulations arising due to the 

large deformation are discussed. For the case of dynamics, linear 

elastodynamics problems are considered.   Material nonlinear elastostatics and 

nonlinear elastodynamics are beyond the scope of this thesis.  

 

1.4 Thesis Organization 

 

This thesis is organized in ten chapters. The description of the chapters is as 

follows. 

 

Chapter-1 

This introductory chapter gives an overall perspective of the canonical concepts 

of completeness, conformance, consistency, correspondence and 

correctness in finite element stress analysis, and the performance measures 

that are employed to evaluate these C concepts. A thorough survey of the 

literature for the existing research work on the canonical concepts in the finite 

element method is reported out, and the appropriate gaps are identified. The link 

between error estimation and C concepts is established. The relevance of the 

canonical concepts to the context of adaptive mesh refinement, boundedness 

and error estimation is brought out and a case is made for the requirement of a 

finite element formulation that adheres to all of the C concepts.  The literature 

survey in this chapter focuses on the C concepts, and detailed literature on 

element technology is described in the respective chapters. The gaps that exist 

in the literature in the areas of C concepts and their applications to isoparametric 

and anisoparametric elements are identified, through which the objective and 

scope of the thesis are derived. The methodology that is followed in the thesis, 

and the various element formulations that are developed in the course of the 

thesis are also outlined in this chapter. 
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Chapter-2 

In this chapter, the 3C concepts that are used in this thesis are explained. The 

correspondence concept is explained through Hu-Wazhisu principle. The concept 

of field-consistency is explained from the strain displacement relations. The 

process of a priori prediction of the conditions under which the constraints can 

become spurious is laid out. These constraints are worked out explicitly for both 

isoparametric and anisoparametric formulations for small and large deformation 

cases.  The virtual work principle is used to establish the boundedness of strain 

energy.  The best-fit argument is also explained through the virtual work 

principle. The projection theorem for elastodynamics problems is laid out. The 

subsequent chapters make use of the concepts that are outlined here. 

 

 

Chapter-3 

Chapter-3 deals with linear elastostatics problems for classical beams, 

axisymmetric shells and plates. The finite element formulations for simple beam 

shell and plate problems are derived from the fundamental principles, adhering to 

all of the C-concepts.  For each of these formulations, the current practices that 

do not conform to the canonical concepts are discussed in detail. The impact of 

conforming and non-conforming elements for plate bending problems is shown 

through the concepts of best-fit rule, strain-energy boundedness and order of 

convergence. The conforming element that is chosen is the 4-noded plate 

bending elements with 4 degrees of freedom at each node (translational 

displacement  w, rotation θx, θy , and twist θxy.  The non-conforming element is a 

4-noded plate bending element with 3 degrees of freedom (translational 

displacement w, rotation θx, θy).  For a beam problem, exact closed-form 

solutions exist for all loadings/boundary conditions, and hence it is very 

straightforward to show the best-fit rule. The axisymmetric shell element that is 

developed here shows the best-fit for problems where the exact closed-form 

solution is available – a circular plate with uniform load. For a plate bending 

problem, the exact closed-form solution (without any series expansions) is 



   23  

available for select loading/boundary conditions, and for these cases the best-fit 

rule is shown. For all problems, the rate of convergence and strain-energy 

boundedness are discussed in detail. 

 

Chapter-4 

This chapter discusses the finite element analysis of linear elastostatics problems 

for shear-flexible beams, axisymmetric shells and plates based on Timoshenko 

beam and Reissner-Mindlin plate theories. The phenomena of shear locking for 

the C0 formulation is studied in detail for both isoparametric and anisoparametric 

element formulations. The impact of full integration and selective/reduced 

integration is assessed. For a beam problem, it is shown that the use of reduced 

integration in isoparametric element leads to violation of best-fit rule, whereas the 

anisoparametric element clearly satisfies the best-fit rule. The fact that 

anisoparametric formulation is not a panacea for overcoming shear locking is 

brought out clearly with the example of open hemispherical dome subjected to a 

tip moment. It is demonstrated that for curved shells, due to the coupling of shear 

and membrane terms, anisoparametric formulation also requires reduced 

integration to overcome both shear and membrane locking. A novel 4-noded 

anisoparameteric element that uses cubic Hermite polynomials for the 

translational displacement w, and bilinear polynomials for the independent 

rotations θx, θy has been formulated for plate bending problems. It is shown that 

this formulation does not require use of selective integration.  

 

Chapter-5 

The large deformation behaviour of classical beams, axisymmetric shells and 

plates are discussed in chapter-5. This chapter leads to fresh insights, with a new 

discussion on the errors that are specific to large deformation problems. The 

concept of membrane locking in the context of large deformations is examined in 

detail. A simple problem of a beam with different boundary conditions (hinged-

hinged, pinned-pinned, clamped-clamped) is taken to examine the canonical 

concepts.  This chapter discusses the concept of field-consistent formulation of 
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large deformation problems in detail. The use of reduced integration and partial 

field-consistency in overcoming membrane locking is discussed. The incremental 

matrices for axisymmetric shell elements are derived explicitly. It is demonstrated 

that membrane locking can occur in beam problems, if adequate care is not 

taken during the element formulation.   For the elements considered, it is shown 

that membrane locking does not occur in plate and axisymmetric shells, and 

hence there is no requirement of using reduced integration. The results of the 

field-consistent formulation are robust, and do not produce any spurious 

membrane locking. An innovative concept of a sweep-test has been used for 

explaining the strain energy boundedness.  

 

Chapter-6 

This chapter discusses the large deformation of shear-flexible beams, 

axisymmetric shells and plates. The interesting case of coupling of membrane 

locking and shear locking is examined in detail. The examples that were taken in 

chapter-5 are used here. The anisoparametric elements that were developed in 

chapter-4 for the beam, shell and plate elements are now extended to large 

deformation analysis. Though the anisoparametric formulation does not cause 

shear locking, it shows membrane locking and requires selective integration. A 

detailed study of selective integrations of shear and membrane terms is carried 

out. The field consistent anisoparametric formulation for large deflection 

problems is a novelty of this thesis, and its applications to beam, axisymmetric 

shell and a plate are reported for the first time. The element matrices for the field-

consistent 4-noded Mindlin plate element are derived explicitly.  

 

Chapter-7 

Chapter-7 expands on the element formulations developed in chapter-3 and 

chapter-4 to linear elastodynamic problems.  The boundedness concept for 

vibration problems is studied through elegant use of virtual work principle. The 

extra-variational aspects of different formulations of mass matrix, and stiffness 

matrix are examined. The impact of different lumping procedures on the natural 
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frequencies is examined carefully. The effect of conformance and non-

conformance, selective and full integration, and their consequences are 

discussed in detail for beam and plate bending vibration problems.  

 

Chapter-8 

This chapter summarizes the findings of the study undertaken, and conclusions 

of these investigations are discussed in detail.  

 

Chapter-9 

The specific contributions of this thesis are brought out in this chapter. All the 

element formulations that were studied in this thesis are summarized and the 

new elements that were formulated in the thesis are highlighted. 

 

 

Chapter-10 

This chapter outlines the further scope of work on use of 3C concepts in other 

domains of computational mechanics.  

 

 

1.5 Research Methodology 

 

From the research gaps identified in section 1.3, existing element formulations 

are studied in detail and new elements are formulated where required. Adequate 

care was taken to keep abreast of the current trends in element technology 

through dynamic literature surveys on this subject.  

 

The approach that has been taken in this thesis is to formulate elements afresh 

for beam, axisymmetric shell and plate bending problems. The 3C concepts are 

addressed in the course of the formulation of these elements. For example while 

formulating a 4-noded shear flexible plate element, the concepts of selective/full 

integration, field-consistency, isoparametric and anisoparametric formulations are 
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considered. The results are first benchmarked against known solutions and after 

gaining confidence on the element behaviour detailed studies on best-fit rule, 

strain energy boundedness and rate of convergence are carried out. The element 

formulations are applied to linear elastostatics, nonlinear elastostatics and linear 

elastodynamics problems. Wherever closed form solutions are not available for 

analyzing the results, recourse is taken to solutions given by commercial finite 

element software and in this thesis ANSYS (ANSYS is a registered trademark of 

ANSYS, Inc. in the USA) has been used for comparing the results of the current 

element formulations. 
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Chapter-2 

3C Concepts Revisited 

 
 

2.1 Introduction 

 

In this chapter, a brief mathematical foundation of 3C concepts of 

correspondence, consistency, correctness and energy error is laid out. The 

concepts of correspondence and boundedness of strain energy are derived from 

first principles. The requirement of field-consistency in constrained media 

problems is explained through various problems for both small and large 

deformation cases. Virtual work principle is used to show the boundedness of 

strain energy for elastostatics problems and the boundedness of natural 

frequencies for elastodynamics problems. 

 

2.2. Correspondence Concept 

 

The total potential of the system can be represented in terms of the stresses, 

strains and the applied external loads as follows: 
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In addition to the terms associated with the internal energy and external work in 

the total potential of the system, de Veubeke (1965) introduced another term 

called the dislocation potential.  This dislocation potential can be considered as 

the Lagrangian multiplier, which minimizes the error between the finite element 

strain and the actual strain. 

 

          

 

 

It can be seen that the first and the third terms in eqn. (2.2) are the same as in 

eqn. (2.1). The middle term represents the dislocation potential.  Now this 

becomes a mixed variational problem and the variation of π can be taken with 

respect to 3 quantities.  The equilibrium equations are obtained by taking the 

variation on u (the nodal displacements), which gives. 

 

   

         

Variation on the additional term, the Lagrangian Multiplier (σ with double bar) 

gives the compatibility condition  
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Variation on the quantity ε with single bar gives 

 

           

 

 

Equations (2.4) and (2.5) form the basis of the correspondence concept. For 

linear elastic problems, these equations are identical. The concept of the “Best-

fit” rule or that the stresses from the “finite element” solution are a least-squares 

fit to the “exact” solution is easily understood from these equations.  These 

concepts are used in the assessment of all the element formulations in this 

chapter. Though Kasper and Taylor (2000a) followed a similar variational 

formulation that has been described above, what makes the present treatment 

unique is the interpretation from a “best-fit” rule.  This is examined in more detail 

in the next sections, where virtual work principle is used to establish the same 

result.  

 

2.3 Consistency concept 

 

The strain displacement relations for a shear-flexible beam are given by  

           

 

 

 

 

where χx  is the flexural strain, and γxy is the shear strain and w is the translational 

displacement and θx is the rotation of plane normal to the neutral axis.  

 

It can be seen that the shear strain terms involve multiple “fields”, with the shear 

strain comprising of the transverse deflection w and the slope θx. Field-consistent 

formulation requires that the interaction between these multiple fields should be 
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in a consistent manner, the violation of which can lead to constraints which 

manifests in forms like locking, spurious stresses, delayed convergence etc.   

 

2.3.1 Field-consistency for Isoparametric Element 

From the strain displacement relation in eqn. (2.6), for a 2-noded element (C0 

formulation), the shear strain would comprise of a constant term and a first 

degree polynomial term. This would make the shear stain “inconsistent” and 

would produce spurious strains in certain limits (as the beam becomes more 

slender, or as l/d ratio increases). Field-consistent formulation realizes this and 

the shear strain is reconstituted upfront in such a manner that the spurious 

strains do not exist even in the extreme conditions. 

 

If the displacement w and rotation θx are represented by the following 

interpolation functions 

 

 

 

 

 

Then, the flexural and shear strains are given by 

 

 

 

 

 

 

The flexural and shear strain energies can be expressed as  
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where Ub is the flexural strain energy and Us is the shear strain energy, EI is the 

flexural rigidity of the beam, GA is the shear rigidity and κ is the shear correction 

factor. 

 

In the constraining limit of a very slender beam (as l/d tends to zero) , the shear 

strain energy would tend to zero.  This in turn means that each of the individual 

terms inside the shear strain energy becomes zero 

 

 

 

 

 

 

The first limiting condition in the above equation is field consistent, as it has 

terms from both of the interpolation functions w and θx. The second limiting 

condition introduces a spurious constraint, and it specifies the way in which the 

interpolation function for θ needs to be. This artificial constraint manifests itself as 

locking and generates spurious results, if the shear strain is used as it is.  The 

field-consistent formulation reconstitutes the shear strain so to eliminate the 

inconsistent constraints. Thus for the present case, the shear strain would be just 

the constant term alone. For other interpolation functions, similar arguments hold 

good, and the shear strain can be reconstituted, Prathap (1984).  

 
 
2.3.2. Field Consistency for Anisoparametric Element – Small Deformations 

Consider a 2-noded anisoparametric element, with 4 degrees of freedom at each 

of the nodes (axial displacement u, transverse deflection w, derivative of the 

transverse deflection β, and independent slope θx. The reason for choosing an 

additional degree of freedom derivative of the transverse deflection β, is to have 

a higher order interpolation function for the transverse deflection w which now 

has cubic interpolation functions, and hence the anisoparametric formulation 

results (the other two variables, u and θx will have linear interpolation functions). 
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Contrast this with the element which has 3 degrees of freedom at each node 

(axial displacement u, transverse deflection w, and independent slope θx), which 

would result in a isoparametric formulation with linear interpolation functions for 

all the three variables. 

 

For the aniosparametric formulation, the two strain terms that have the multiple 

field are studied carefully.  The following notation is used for representing the 

displacements and rotations. 

 

 

 

 

 

 

   

The shear strain is obtained as 

 

 

 

 

When Legendre Polynomials are used, and the above expression can be 

rewritten as  
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Rearrangement of the terms gives 

 

 

 

 

 

From field-consistency arguments, for a fully field-consistent element, each of the 

above terms should independently vanish. 

 

 

 

 

 

 

The first of these 2 equations are field-consistent, while the third equation that 

has the contribution of only the transverse deflection w is inconsistent.  The 

contribution of this term in the field-consistent formulation is dropped, and thus 

the following expression for the shear strain is used 

 

 

 

 

The strain energy arising from the 2 strain components, shear strain energy Us, 

and bending strain energy Ub, are as follows 
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Similar concepts of consistency can be worked out for several other structural 

problems, like a curved beam (where membrane locking can occur), 

incompressible hollow sphere (where volumetric locking can occur). Prathap 

(1984) has clearly explained the reasoning for each of the above cases. 

Membrane locking in curved beams/arches has been studied in detail by 

Stolarski and Belytschko (1983), Prathap (1985), Tessler and Spiridigliozzi 

(1986), Raveendranath et al (1999a). 

 

2.3.3 Field-consistency for Anisoparametric Element - Large Deformations 

The field-consistent concept of element formulation of Prathap (1984) is 

extended to the case of membrane strain energy.  For the case of the large 

deformation, the process of the field-consistent representation of the membrane 

strain is similar. The strain term that will now be focused is the membrane strain 

εx, which has the multiple “fields”.  The membrane strain for the case of a large 

deflection problem is  

 

 

 

 

Using a similar approach that was outlined in section 2.3.2, the strain field can be 

represented using the following relations 
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where 

 

Using the process followed earlier, the membrane strain is expressed as 

 
 
 
 
 

In this expression u1, u2, w1, w2, θ1, θ2 are the nodal displacements and rotations.  

The above relations are used to obtain the secant stiffness and tangent stiffness 

matrices as explained below. 

     
 
Rearranging the terms after using Legendre polynomials, the following conditions 

are required  to be met, in the constraining limit  

 

 

 

 

 

 

 

 

 

 

For a fully field-consistent element, the membrane strain energy is given by the 

first of the constraints shown in eqn. (2.21), with the other constraints being 

spurious. Thus the reconstituted field-consistent membrane strain is 
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2.4 Virtual Work Principle - Elastostatics 

 

The boundedness of the strain energy can be established though virtual work 

principle. Following the nomenclature used in Strang and Fix (1973), the weak 

form in terms of the energy inner product for the exact solution u to the problem 

can be written as.  

 

a(u,u) = (f,u)                                              …(2.23) 

 

a(u,uh) = (f,uh)                                           …(2.24) 

 

 

 

The first two virtual work statements refer to the exact solution of the 

elastostatics problem. In eqn. (2.23), the trial function and test function are taken 

as u  and the virtual work argument establishes that eqn. (2.23) is truly satisfied 

only when  u  is the exact solution at the point of equilibrium. In eqn. (2.24) , use 

is made of the fact that the test function uh (the Ritz or finite element solution) 

need not be the exact displacement function for the virtual work principle to be 

true. For convenience, this is taken to be the discrete finite element displacement 

field, as long as it is admissible (that is, satisfies all the geometric boundary 

conditions).   

 

 V. domain system  the over ufdV  integral  theis   u)(f,

 functional  symmetric  bilinear   theis  u)a(u,

 where

∫

    bb
3

1
b

10

1
b

6

1
b

2

1
aε 20

2

2

2

1

2

01x 







++++=  …(2.22) 



 37

2.4.1 Best-fit rule 

By using uh for both the trial and test function, the actual finite element equations 

are obtained, with the right hand side leading to the consistent load vector and 

the left hand side representing the stiffness matrix. 

 

a(uh,uh) 
 = (f,uh)                               …(2.25) 

 

This equation will now reflect the error due to the finite element discretisation.  

Now it is easy to see how the error    e = u - uh can be assessed.  

 

Comparing (2.24) and (2.25) and noting that the energy inner product is bi-linear, 

Reddy (1986), results in  

 

                    a(u,uh)  =   a(uh,uh)                  …(2.26) 

 

From this the projection theorem can be expressed as 

 

a(u - uh,uh)  =  0                  …(2.27) 

 

The finite element solution is therefore seen to be a best-fit or best approximation 

solution. In most simple linear elastostatics cases, this would imply that the 

strains or stresses are obtained in a best-fit sense and that there would be points 

in the element domain where these stresses or strains are very accurately 

computed (superconvergence). If eqn. (2.4 ) or (2.5) is compared with eqn. (2.27) 

it can be seen that both converge to the same fact – which is the best-fit rule.  

 

2.4.2 Strain energy boundedness  

From the fact that the energy inner product is bi-linear, it can be shown that 

 

a(u - uh,u-uh) =   a(u,u) + a( uh,uh)   - 2 a(u,uh)                             

=   a(u,u)  - a( uh,uh)   -  2[ a(u,uh) -  a( uh,uh)  ] 
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=   a(u,u)  - a( uh,uh)   -  2[ a(u - uh,uh )]    

        …(2.28) 

 

Introducing the result from (2.27), the energy error theorem is obtained, which 

can be expressed as 

 

a(u-uh,u-uh)=a(u,u)-a(uh,uh)       …(2.29)    

 

i.e., Energy of the error = Error of the energy 

 

This leads to a useful statement that as the left hand side of (2.29) is 

always positive definite, 

a(uh,uh)  <    a(u,u)                …(2.30) 

 

Thus, in a variationally correct approach, the energy inner product of the 

approximate (Ritz or finite element) solution will always be a lower bound of the 

exact energy.  

 

2.5 Virtual Work  - Elastodynamics 

 

The variational aspects of elastodynamics can be understood from the 

Lagrangian or Hamiltonian statements, where both potential energy and kinetic 

energy enter into the functional.  

 

Unlike Strang and Fix (1973), where the development of the argument is based 

on the Rayleigh quotient, the weak form is written in terms of the energy inner 

product for the exact solution u to the problem and the loading term  f is replaced 

with the inertial force term ω2ρu. The earlier equations yield  

 

a(u,u) = ω2.(ρ u,u)                   … (2.31) 

        a(u,uh) = ω2.(ρu,uh)                     …(2.32) 
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where ρ is the  inertia density of the domain. Again, the first two virtual work 

statements refer to the exact solution of the elastodynamics problem. In (2.31), 

the trial function and test function are taken as u  and the virtual work argument 

establishes that (2.31) is truly satisfied only when  u  is the exact eigenfunction 

and   ω2  is the exact eigenvalue. In (2.32), the fact is noted that the test function 

uh (the Ritz or finite element solution) need not be the exact displacement 

function for the virtual work principle to be true, while ω2 remains the exact 

eigenvalue.  uh  is taken to be the discrete finite element displacement field, as 

long as it is admissible (that is, satisfies all the geometric boundary conditions). 

 

By using  uh  for both the trial and test function, the actual finite element equations 

are obtained, with the right hand side leading to the consistent mass matrix and 

the left hand side leading to the stiffness matrix. 

 

 

 

This equation will now reflect the error due to the finite element discretisation, 

appearing both in the eigenfunction, and in the eigenvalue.  This makes the 

assessment of the errors a trifle more complicated than in the elastostatics case 

earlier, as there is the error in the eigenfunction,  u - uh  as well as the error  in 

the eigenvalue, (ωh)2 - ω2  to be assessed. Comparing (2.32) and (2.33) and also 

noting that the energy inner product is bi-linear, the following equation is obtained 

 

 

[a(u,uh) -  [a(uh,uh)]  -  [ω 2.( ρu, uh) -(ωh) 2.( ρuh, uh)] = 0 

 …(2.34) 

 

or 

a(u-uh,uh) - (ω2ρu-(ωh) 2ρuh, uh) = 0    …(2.35) 

       )u,u.() (    )u,a(u hh2hhh ρω=  …(2.33) 
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becomes the projection theorem for elastodynamics. 

 

The finite element solution is still seen to be a best-fit or best approximation 

solution. However, unlike the simple linear elastostatics cases, this would imply 

that the strains or stresses are only nearly obtained in a best-fit sense. It is no 

longer possible now to relate the error of the energy to the energy of the error, as 

was possible for the elastostatics case as in equation (2.29) earlier. The error of 

the energies is considered first. From equation (2.31) and (2.33), this becomes 

 

[a(u,u)-a(uh,uh)]-[ω2.(ρu,u)-(ωh)2.(ρuh, uh)] = 0      

  …(2.36) 

 

The energy of the errors is considered next.  This is given by 

 

 

a(u - uh,u-uh)   =   a(u, ρu) + a(uh, uh)   - 2 a(u, uh)  

= ω2.( ρu, u) - 2ω2.( ρu, uh) + (ωh) 2.( ρuh, uh) 

   =ω2.(ρu,u)-2ω2.(ρu, uh)+ (ω)2( ρuh, uh) + [(ωh) 2- ω2] (ρuh, uh) 

=ω2.( ρu –ρ uh,  u - uh) + [ (ωh) 2- ω2] .( ρuh, uh)      

      …(2.37) 

This is indeed Lemma 6.3 of Strang and Fix (1973). The three virtual 

work equations (equations (2.31) to (2.33)) have led very easily to a 

projection theorem (equation (2.35)), and a separate energy-error 

theorem (equation (2.36)) and error-energy theorem (equation 

(2.37)). Unlike the case for elastostatics, a simple relationship 

between the energy of the error and the error of the energy cannot be 

derived. Also, it is not easy to show that for a conforming and 

variationally correct formulation, the discretised eigenvalue would 
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always be higher than the exact eigenvalue, whereas for the 

elastostatics problem, there existed an elegant lower bound result 

(equation (2.30)). This is because an eigenvalue problem does not 

give a unique displacement field  u   or  uh . One can side-step this 

issue by introducing into equation (2.37), the idea of a normalized 

generalized mass, where  ( ρu, u) = ( ρuh, uh) = 1.   This gives the 

following relation 

 

(ωh)2  -  ω2    =  -  [a(u,u) - a(uh,uh)]  …(2.38) 

  

2.6 Closure 

 

In this chapter, the broad basis for the 3C concepts was laid out. The concept of 

best-fit rule (the correspondence concept) was explained using both variational 

principle and virtual work principle. The consistency concept was brought out 

through various examples for both small and large deformations, and the 

conditions under which the violation of the consistency requirements would 

produce spurious constraints were explained. The requirement of strain energy 

boundedness for a variationally correct formulation was shown using virtual work 

principle. For elastodynamics problems, the equivalence of the best-fit rule of 

elastostatics has been shown.  All subsequent chapters of this thesis would use 

these concepts for assessing the performance of the different element 

formulations.  
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Chapter-3 

Linear Elastostatics for  

Classical Beams, Shells and Plates 

 
 

3.1 Introduction 

 

In this chapter, the applications of 3C concepts to linear elastostatics problems 

for classical beams, shells and plates are studied in detail. Two one-dimensional 

problems (beam and axisymmetric shell) and a two-dimensional problem (plate) 

are solved using different element formulations. The performance of element 

formulations for an Euler-Bernoulli beam with respect to the 3C concepts, is 

studied in detail using C1 element. Similar study for an axisymmetric shell 

formulation is carried out. Subsequently, the classical thin plate bending 

elements using C1 formulation are investigated. The best-fit rule, boundedness of 

strain energy and convergence behaviour are discussed in detail for all the above 

problems. The results of the findings are summarized in the closure section of 

this chapter.  

 
 

3.2 Euler-Bernoulli Beam 
 
 
The strain displacement relations for this beam are as follows: 

 

where 

χx  is the curvature 

z is the distance from the neutral axis 

w is the deflection (translational displacement)  

       
dx

wd
z                          

2

2

x =χ
…(3.1) 
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3.2.1 Element Formulation 

A 2-noded C1 element with two degrees of freedom at each node (one 

translational and one rotational) is considered for the study of an Euler-Bernoulli 

beam. Since 4 degrees of freedom are available in each element, cubic 

interpolation functions can be used.  The shape functions for this element are 

 

 

 

           

 

 

Where ξ is the non-dimensional parameter (=x/l, l the length of the beam, and x 

is the distance from the first node) 

The details of the formulation of the element stiffness matrix and the force matrix 

are not elaborated here as they can be found in any standard textbook e.g. Cook 

et al. (1989).  

3.2.2 Numerical Experiments and Discussion 

The exact closed form solution for a beam bending problem is available for all 

types of loading and boundary conditions. This would facilitate easy interpretation 

of the best-fit rule that was outlined in chapter-2. For simplicity, the bending 

moments from the finite element solution obtained for a cantilever subjected to 

uniform load, and a linear varying load are reported here. 

The fact that the finite element solution for the bending moment coincides with 

the exact solution at certain points within the element has been known for many 

years now, and these points have been referred as Barlow points (1976), and 

Prathap points (Rajendaran(2008)).  That the finite element solution is a least-

N1(ξ) = 1 - 3ξ2 +2ξ3  

N2(ξ) = 3ξ2 - 2ξ3    

N3(ξ) = ξ - 2ξ2 + ξ3 

N4(ξ) = ξ3 -  ξ2 

…(3.2) 



 45

squares best fit of the exact solution is not very well known. This fact was proved 

from a variational perspective by Prathap (1996b). The cantilever beam example 

was chosen to demonstrate that the current formulation follow a least-squares 

best fit stress recovery. The dimensions of the beam and loading are shown in 

Fig. 3.1 and Fig. 3.2. 

 

 

 
      w N/mm 
    
 
          
 
 
 

Fig. 3.1 A cantilever subjected to a uniform varying load 
 

(Length = 10 mm, Depth = 1 mm, Width = 1 mm, E = 200000 N/mm
2
, w = 1 N/mm) 

 
 

 
 
 
      w N/mm  
 
           
 
 
 
 
 
 
 

Fig. 3.2 A cantilever subjected to a linear varying load 

 
(Length = 10 mm, Depth = 1 mm, Width = 1 mm, E = 200000 N/mm

2
, w = 1 N/mm) 
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The variation of the bending moment and shear force, with length as computed 

from the finite element solution is compared with the theoretical solution as 

shown in Figs. 3.3– 3.4, for the case of uniform load. For a linear varying load the 

corresponding figures are Figs. 3.5 – 3.6. 

 

 

 

 

 
 

 
 
 
 

Fig. 3.3 Variation of bending moment with length (uniform load) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3.4 Variation of shear force with length (uniform load) 
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Fig. 3.5 Variation of bending moment with length (linear varying load) 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.6 Variation of Shear Force with Length (linear varying load) 

 
 
The bending moment predicted by the finite element solution closes on to the 

exact solution as the mesh is progressively refined. Since Mx and Vx depend on 

the second and third order derivatives of w, the element can recover linearly 

varying bending moments and constant shear forces. What is also true is that 

these recovered stresses follow the best-fit rule accurately, as explained below. 

Variation of Mx along Length, for linearly varying load
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To show mathematically that the bending moment given by the finite 

element solution is the least squares best-fit of the exact solution, assume that 

the best fit curve be represented by the equation Ax + B. Then, for the case of 

the uniformly distributed load on the cantilever, the bending moment at any 

distance x from the free end is -wx2/2. Thus the error in the bending moment is - 

wx2/2 – (Ax+B).  The constants A and B are found from the least-squares of this 

error which is given by 

 

E =∫[ - wx2/2 – (Ax+B) ]2  dx                       …(3.3) 

 

The constants A and B can be found by solving ∂ E/∂A  =  0, and  ∂ E/∂B = 0  

 

The above equations give the values of A and B as, A = -1/2, and B = 1/12. Note 

that the length of the beam in this case has been taken to be of 1 unit, and hence 

the bending moment as predicted by our equation Ax + B, at x=0 (Free end of the 

beam) is 1/12, and at the fixed end is –5/12, which match exactly with the finite 

element of the solution for the case of 1X1 mesh, as shown in Fig. 3.3. 

Similarly, for the case of a linear varying load, a solution of the form Cx + D can 

be assumed, and the constants, C and D can be determined, in the least squares 

way as was done earlier for the case of uniformly distributed load. In this case  

 

 

E =∫[ - wx3/6 – (Cx+D) ]2  dx                              …(3.4) 

 

The constants C and D are found from the equations ∂ E/∂C  =  0, and  ∂ E/∂D = 

0 

 

The above equations give the values of C and D as, C= -3/20, and D = 1/30. 

Here too, the bending moment at the free end and the fixed end from the finite 
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element solution match exactly with the values given by the above best-fit curve 

(Fig. 3.5), suggesting that the bending moment from the finite element solution is 

nothing but the best-fit of the exact solution. 

 
Prathap (1999) has shown from the correspondence concept that if the 

displacement fields are chosen so that the finite element strains are complete to 

the order xn-1, then the finite element solution produces strains that are accurate 

to O(hn), energies that are accurate to O(h2n)  and the errors (in displacements) 

are removed at the rate of O(h2n).  Thus for an Euler-Bernoulli beam bending 

problem that is analysed with a finite element that has cubic interpolation 

functions, it can be predicted a priori that the displacements would converge at 

the rate of O(h4). 

 
The convergence of the strain energy for the case of a simply supported beam 

subjected to a uniform load is tabulated in Table 3.1. The length of the beam is 

taken as 1000 mm, with the width and depth both as 10 mm. The Young’s 

Modulus used is 200000 N/mm2. The beam is subjected to a uniformly distributed 

load of 1 unit. It can be seen clearly that the strain energy is bounded as per eqn.  

(2.30) 

 

 

 

 

 

 

 
 

Table 3.1 Strain energy boundedness in a simply supported beam (uniform load) 

 
It can be seen from the Table 3.1 that the displacement at the centre of the beam 

is the same under all cases and is in fact the exact displacement. The reason 

why in this particular example, the finite element solution matches with the exact 

Deflection Strain Energy

2 0.520833 8.327908

4 0.520833 8.332994

8 0.520833 8.333312

16 0.520833 8.333332

32 0.520833 8.333333

64 0.520833 8.333333

Simply Supported Beam - UDL

C
1
 Formulation# of 

Elements
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solution at the nodes is due to the loading and the interpolation function that has 

been used in the element formulation. The exact solution is a 4th order 

polynomial, and with a cubic interpolation functions the displacements at the 

nodes would always match.  It can also be seen that the strain energy converges 

at O(h4).  

It would be of interest to see the convergence of the displacement. For 

this case, an exact solution for the central deflection is known. Fig. 3.7 shows the  

O(h4) rate of convergence predicted theoretically. Here, in this example, the 

results for the nodal displacements are reported at the centre of the beam. This 

formulation gives the exact solution for the displacement, even with one element 

representing the total length of the beam.  The beam has been discretised into 1, 

3, 5, 7, 9 and so on.  Discretisation in this fashion ensures that no node comes at 

the centre of the beam, and the displacement at the centre of the beam was re-

computed from the finite element displacements of the element on which the 

centre of the beam falls. This strategy enables computation of the errors in the 

displacement at the centre of the beam.   

 

 

 

 

 

Fig. 3.7 Rate of convergence of deflection in a simply supported beam (uniform load) 

 

The concepts explained above with the help of a cantilever beam are true for 

other cases boundary conditions/loading conditions also.   
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3.3 Axisymmetric Shell 
 

The applications of the finite element method to the analyses of axisymmetric 

shells started in the early 60’s, Grafton and Strome (1963) and work on this 

subject has since been continuously performed.  Jones and Strome (1965) 

presented detailed reviews of the conical shell elements used for the 

axisymmetric analysis.  The conical shell element can now be found in any 

standard text book on finite element analysis, say, Cook et al. (1989). In this 

section, the formulation of the 2-noded axisymmetric element is discussed. The 

finite element formulation for the classical 2-noded C1 element (with 2 degrees of 

freedom at each node viz, one transverse displacement and one rotation) is 

presented now. The classical example of circular plate with different edge 

conditions (simply supported along the edge, clamped along the edge) for which 

theoretical solution exists is considered for studying the results. 

 

For a circular plate, the curvature can be expressed as 

 

 

 

 

 

 

where,  

 

χr  is the radial curvature 

χθ  is the tangential curvature 

w is the deflection 

r is the radial distance  

 

 

 

dr

dw

r

1

dr

wd

θ

2

2

r

=

=

χ

χ
…(3.5) 
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The Moment-Curvature relations are given by  

 

 

 

 

where 

 

 

 

 

3.3.1 Element Formulation 

 

A 2-noded element, with 3 degrees of freedom at each node, u, w, w,x is 

considered here. This element is shown in Fig. 3.8. The strain displacement 

relation is given in eqn. (3.7) 

 

 

 

       

 

 

 

 

 

 

 

where εs, εθ are the meridional strain and hoop strain respectively, and other 

terms are described in eqn. (3.5). 
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Fig. 3.8 A 2-noded axisymmetric element 

 

The interpolation functions that are used for representing the displacements are 

given in eqn. (3.8) 

 

            

 

 

The stress-strain relation is given is eqn. (3.9) 

 

       

 

 

 

where 
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The stiffness matrix is formed using eqn. (3.11) 

           

 

 

   

 

 

3.3.2 Numerical Experiments and Discussion 

 

This element is now used for studying the results of various axisymmetric 

structures that can be idealized as shell problems. Typical structures that come 

under this category include plates(circular/elliptical), pipes, and pressure vessels.  

 

A few cases where an exact closed form solution is available are now 

considered. A circular plate of radius = 10 in., E=1.0e7 psi, υ =0.3, and t=0.1 in. 

is subjected to a uniform load of 1 lb/in2. Two boundary conditions, one with plate 

clamped along its edge and the other with the plate simply supported along the 

edge are analysed. The deflection at the centre of the plate is shown in Table 3.2 

for the clamped circular plate, and in Table 3.2 for the simply supported circular 

plate. 

 

 

 

 

 

 

 
 

 
Table 3.2 Deflection in a clamped circular plate (uniform load) 

 

 

[ ] [ ][ ]

                              dr2  dA

dABDBK
T

rπ=

= ∫
…(3.11) 

Elements Deflection

2 0.1714556150

4 0.1706845517

8 0.1706292022

16 0.1706252927

32 0.1706250202

64 0.1706250014

Theory 0.1706250000

Clamped Circular Plate, Uniform Load, 

C
1
 Formulation
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Table 3.3 Deflection in a simply supported circular plate (uniform load) 

 

The best-fit rule for the case of a circular plate is an interesting one for the 

reason that there are 2 bending moment components that need to be considered 

– the radial bending moment and hoop bending moment. Neither of them are a 

stand-alone best-fit as they are coupled. Hence the best-fit rule needs to 

consider this. Table 3.4 and 3.5 show clearly that the best-fit rule is obeyed. 

 

The bending moment plots are shown in Fig. 3.9 and Fig. 3.10 for the circular 

clamped plate and Fig. 3.11 and Fig. 3.12 for a simply supported circular plate. 

These plots compare the finite element results with theoretical results, 

Timoshenko and Woinowsky-Krieger (1959). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Radial bending moment in a clamped circular plate (uniform load) 
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Fig. 3.10 Hoop bending moment in a clamped circular plate (uniform load) 

 

 

 

 

 

 

 

Table 3.4 Results of best-fit rule for a  clamped circular plate (uniform load) 

 

 

 

 

 

 

 

 

 

 

 

         Fig. 3.11 Radial bending moment in a simply supported circular plate (uniform load) 

 

0.347855 0.930568 0.009404 -0.00076 0.010905 -0.000915

0.652145 0.669991 0.003713 -0.0036 0.002366 -0.003761

0.347855 0.069432 -0.0094 -0.01016 -0.006726 -0.006792

0.652145 0.330009 -0.00371 -0.00732 -0.004595 -0.006082

Best-fit residual = 0.0000000209514
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Weight
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Fig. 3.12 Hoop bending moment in a simply supported circular plate (uniform load) 

 
 
 

 

 

 

 

 

 

Table 3.5 Results of best-fit rule for a  simply supported circular plate (uniform load) 

 

The strain energy for the cases of circular plate for both clamped edge and 

simply supported edge boundary conditions are tabulated in Table 3.6 and Table 

3.7 for various discretisations. The order of convergence for the C1 formulation is 

O(h4), as seen from the plots shown in Fig. 3.13, and 3.14. 

 

 

 

 

 

0.347855 0.930568 -0.001096 -0.011258 0.000405 -0.011415

0.652145 0.669991 -0.006787 -0.014104 -0.008134 -0.014261

0.347855 0.069432 -0.019904 -0.020662 -0.017226 -0.017292

0.652145 0.330009 -0.014213 -0.017816 -0.015095 -0.016582

Best-fit residual = 0.000000013827
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Table 3.6 Strain energy boundedness in a clamped circular plate (uniform load) 

 

 

 

 

 

  

 

    Table 3.7 Strain energy boundedness in a simply supported circular plate (uniform load) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Convergence of deflection in a clamped circular plate (uniform load) 
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Fig. 3.14 Convergence of deflection in a simply supported circular plate (uniform load) 

 

 

3.4 Classical Plate Bending Elements 
 

Thin plates have been traditionally solved in the finite element analysis using 

many types of elements. The pioneering work by Turner et al. (1956) showed in 

essence the application of the finite element method (though the phrase “finite 

element” was not in existence then). It is to the credit of these pioneers ingenuity 

in coming up with a generic process which has later been named as the finite 

element method (in fact by R.W.Clough, one of the co-authors of this publication) 

that their prophecy “…and the solution offered here is felt to have potential 

usefulness for finding approximates solutions to many two-dimensional problems 

in elasticity” came true within a few years of their publication. Melosh (1963) used 

this process and came up with the stiffness matrices for plate bending problems.  

Zienkiewicz and Cheung (1965) came up with the applications of the generic 

finite element method to the analyses of elastic isotropic and orthotropic slab. 

This period saw a great surge in the development of the finite element method, 

especially to plate bending problems (Proc. Conferences, 1965, 1968).  
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Prominent among the different types of plate bending elements are the 

formulations which are designated as ACM element, reformulated in Brebbia and 

Connor (1973), and BFS element by Bogner et al. (1965).  These elements are 

chosen to examine the 3C concepts, for the reason that the ACM element is a 

non-conforming element while the BFS element is a conforming element.  In this 

thesis, both of these elements have been formulated and tested for different 

loading cases and boundary conditions. This section discusses the results of 

these elements. 

 
3.4.1 ACM Element Formulation 

 

The ACM element has 3 degrees of freedom (displacement w, rotation ∂w/∂x, 

rotation ∂w/∂y)  at each  node.  This needs 12 polynomial terms which would 

constitute the shape functions of the element. These 12 polynomial terms are 

selected so that we can maintain spatial isotropy. The following 12 polynomial 

terms are used - 

 
[1, x, y, x2, y2, xy, x3, x2y, xy2, y3, x3y, xy3 ] 

 
The shape functions that are used for the ACM element are given below: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N1 = 2 (η-1) (ξ-1) (0.5(1+ξ+η)-ξ2 -η2) 

N2 = -a (η-1) (ξ-1) (ξ-1) ξ 
N3 = -b (η-1) (η-1) (ξ-1) η 
N4 = 2 (η-1) ξ (η2 + ξ2 -1.5ξ - 0.5η) 

N5 = -a (η-1) ξ2 (ξ-1) 

N6 = b (η-1) (η-1) ξη 

N7 = 2ξη (-η2 -ξ2 -0.5 + 1.5(ξ+η))      …(3.12) 

N8 = a  η ξ2 (ξ-1) 

N9 = b η2 ξ (η-1) 

N10 = 2 η (ξ-1) (η2 + ξ2 -0.5ξ -1.5η) 

N11 = a ηξ (ξ-1) (ξ-1) 

N12 = -b η2  (ξ-1) (η-1) 
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where a, and b are the dimensions of the rectangular element, and ξ and η are 

non-dimensional quantities x/a and y/b respectively.  

 

3.4.2 BFS Element Formulation 

 

The BFS element is an improvement on the ACM element. It has 4 degrees of 

freedom (displacement w, rotation ∂w/∂x, rotation ∂w/∂y, and a cross-twist 

∂2w/∂x∂y) at each node. This requires 16 polynomial terms. 

 

[1, x, y, x2, y2, xy, x3, x2y, xy2, y3,  x3y, xy3, x2y2 , x3y2,x2y3, x3y3] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

N1 = f1(ξ) f1(η) 

N2 = a g1(ξ) f1(η) 

N3 = b f1(ξ) g1(η) 

N4 = a b g1(ξ) g1(η)         

N5 = f2(ξ) f1(η) 

N6 = a g2(ξ) f1(η) 

N7 = b f2(ξ) g1(η) 

N8 = a b g2(ξ) g1(η)         …(3.13) 
 

N9 = f2(ξ) f2(η)  

N10 = a  g2(ξ) f2(η) 

N11 = b f2(ξ) g2(η)  

N12 = a  b  g2(ξ) g2(η) 

N13 = f1(ξ) f2(η) 

N14 = a g1(ξ) f2(η) 

N15 = b f1(ξ) g2(η)  

N16 = a b g1(ξ) g2(η) 



 62

where a, and b are the dimensions of the rectangular element, and ξ and η are 

non-dimensional quantities x/a and y/b respectively.  

 
 
 

 

 

 

 

The inclusion of the additional 4 terms, as compared to the polynomial terms of 

ACM element, lends inter-element continuity up to the rotation degree of 

freedom.   

 
3.4.3 Numerical Experiments and Discussion 
 
The convergence study on the plate problem is studied now, where the need for  

C1 continuity is important, especially as the ACM element does not have the 

necessary twist degree of freedom to ensure this degree of conformance. A 

square plate problem is chosen.  Both simply supported and clamped edge 

conditions are investigated and in turn, the point-load at centre and uniformly 

distributed loading cases are studied. For these cases, very accurate solutions 

for the central deflection are known. The plate is divided into elements of equal 

size, and meshes ranged from 1x1 to 16x16 for one quarter of the plate. The 

ACM element is used for the solution of the problems of a simply supported 

rectangular plate subjected to two different loading conditions, one - a uniformly 

distributed load, and the other  - a point load acting at the center of the plate.  

Results are also tabulated for a clamped plate subjected to the above loads.  

Due to symmetry, only one quadrant of the plate has been analysed. The 

boundary conditions used are shown in Figs 3.15 and 3.16.  The different 

meshes used for this analyses are shown in Fig. 3.17 – Fig 3.20. The BFS 

element is used for analyzing the same problems as was done earlier with the 

ACM element. The mesh configurations used in this case are also the same as 

the case of ACM element. The boundary conditions used are shown in Fig. 3.15 

f1(ξ) = 1 - 3ξ2 +2ξ3  

f2(ξ) = 3ξ2 - 2ξ3 

g1(ξ) = ξ - 2ξ2 + ξ3 

g2(ξ) = ξ3 -  ξ2 
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and Fig. 3.16, except for the twist degree of freedom which does not exist for the 

ACM formulation. The mesh discretisation that was used in the analysis is shown 

in Fig. 3.17- 3.20.    

 

 

 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 3.15 A simply supported plate 

 
 

Y=b 
 

          

X=0           X=a          
 

 
 
 

     
Y=0 

 
   

Fig. 3.16 One quadrant of the plate 
 
 Boundary Conditions: 
 

1.  on the line  Y = 0,    ∂w/∂y = 0,  ∂2w/∂x∂y = 0 

2.  on the line  X = 0,    ∂w/∂x = 0,  ∂2w/∂x∂y = 0 

3.  on the line  Y = b,    w = 0,  ∂w/∂x = 0 

4.  on the line  X = a,    w = 0,  ∂w/∂y = 0 
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           Fig. 3.17   1X1 Mesh     Fig. 3.18   2X2  Mesh 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

 

 

Fig. 3.20  4X4 Mesh Fig. 3.19   3X3 Mesh 
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From the best-fit rule, explained in section 2.2, the following relation must hold 
good. 
 
 
 
 
 
 

 
 

For a plate bending problem, the exact solution in closed form is readily available 

for a plate simply supported on all the edges (side of the plate=40 units, 

thickness = 0.4, E = 200000 and Poisson’s ratio = 0.3) and subjected to a 

sinusoidal load, Timoshenko & Woinowsky-Krieger (1959).  The results from the 

finite element solution for the BFS and ACM formulations can now be used for 

testing the best-fit rule. 

 

 
The results for the BFS formulation with 1 element modeled for a quarter of the 

plate are tabulated in Table 3.8.  The best-fit integral terms are evaluated at 5 

Gaussian Points in each direction. It can be seen that the best-fit residual is zero 

for this, which confirms that the finite element solution is a best-fit to the exact 

solution for the BFS formulation.  In this example, 5-point numerical integration 

(Gaussian Integration) was used so that the sinusoidal load variation can be 

captured more realistically in the formulation of the consistent load vector. The 

deflection at the center of the plate from the 1-element finite element solution 

comes out to be 5.664384, as against the exact value of 5.605226 indicating a 

good solution for a 1-element discretisation.  

 

stress exact  the is σ

stress element finite  the is σ

strain element finite  the is ε

where

0  σ-σ ε =dV
T

)(∫ …(3.14) 
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 For further confidence on the results of the 1-element solution, the 

bending moment Mx and Mxy along the diagonal of the plate are compared with 

the exact solution in Fig. 3.21 and Fig. 3.22 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 3.8 Results of best-fit rule for a simply supported plate – BFS Formulation 

(sinusoidal load) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21 Twisting moment in a simply supported plate, BFS Element (sinusoidal load) 

 

Weight x y Theory-cur-x Theory-cur-y Theory-cur-xy FEM-cur-x FEM-cur-y FEM-cur-xy Proj. Theorem

0.229085 0.884617 0.884617 -0.004348 -0.004348 0.060457 -0.004419 -0.004419 0.058572 0.010153

0.229085 0.884617 0.615383 -0.011464 -0.011464 0.022928 -0.011724 -0.011218 0.024011 -0.002528

0.113400 0.884617 0.976545 -0.000903 -0.000903 0.064483 -0.000927 -0.002097 0.063491 0.002547

0.113400 0.884617 0.523455 -0.012227 -0.012227 0.004760 -0.012577 -0.013540 0.005328 -0.003934

0.272287 0.884617 0.750000 -0.008670 -0.008670 0.045720 -0.008792 -0.007819 0.045048 0.005788

0.229085 0.615383 0.884617 -0.011464 -0.011464 0.022928 -0.011218 -0.011724 0.024011 -0.002528

0.229085 0.615383 0.615383 -0.030228 -0.030228 0.008695 -0.029757 -0.029757 0.009842 0.008740

0.113400 0.615383 0.976545 -0.002380 -0.002380 0.024455 -0.002355 -0.005567 0.026029 -0.004551

0.113400 0.615383 0.523455 -0.032241 -0.032241 0.001805 -0.031919 -0.035913 0.002184 -0.020411

0.272287 0.615383 0.750000 -0.022860 -0.022860 0.017339 -0.022316 -0.020740 0.018465 0.021191

0.113400 0.976545 0.884617 -0.000903 -0.000903 0.064483 -0.002097 -0.000927 0.063491 0.002547

0.113400 0.976545 0.615383 -0.002380 -0.002380 0.024455 -0.005567 -0.002355 0.026029 -0.004551

0.056134 0.976545 0.976545 -0.000187 -0.000187 0.068777 -0.000440 -0.000440 0.068820 -0.000087

0.056134 0.976545 0.523455 -0.002539 -0.002539 0.005077 -0.005972 -0.002842 0.005776 -0.001728

0.134785 0.976545 0.750000 -0.001800 -0.001800 0.048765 -0.004174 -0.001641 0.048833 -0.001861

0.113400 0.523455 0.884617 -0.012227 -0.012227 0.004760 -0.013540 -0.012577 0.005328 -0.003934

0.113400 0.523455 0.615383 -0.032241 -0.032241 0.001805 -0.035913 -0.031919 0.002184 -0.020411

0.056134 0.523455 0.976545 -0.002539 -0.002539 0.005077 -0.002842 -0.005972 0.005776 -0.001728

0.056134 0.523455 0.523455 -0.034388 -0.034388 0.000375 -0.038523 -0.038523 0.000485 -0.027248

0.134785 0.523455 0.750000 -0.024382 -0.024382 0.003600 -0.026934 -0.022248 0.004097 -0.003433

0.272287 0.750000 0.884617 -0.008670 -0.008670 0.045720 -0.007819 -0.008792 0.045048 0.005788

0.272287 0.750000 0.615383 -0.022860 -0.022860 0.017339 -0.020740 -0.022316 0.018465 0.021191

0.134785 0.750000 0.976545 -0.001800 -0.001800 0.048765 -0.001641 -0.004174 0.048833 -0.001861

0.134785 0.750000 0.523455 -0.024382 -0.024382 0.003600 -0.022248 -0.026934 0.004097 -0.003433

0.323635 0.750000 0.750000 -0.017288 -0.017288 0.034576 -0.015554 -0.015554 0.034645 0.026283

0.000051Best-fit Rule Residual

Best-fit Rule for a Simply Supported Plate Subjected to a Sinusoidal Varying Load - BFS Formulation 
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5

10

15

20

25

30

35

0.5 0.6 0.7 0.8 0.9 1

Normalised Distance Along Diagonal

M
x
y

Exact

FEM-BFS



 67

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.22 Bending moment in a simply supported plate, BFS Element (sinusoidal load) 

 

The same problem is now solved using the ACM formulation, and the results are 

tabulated in Table 3.9. It can be seen clearly that the best-fit residual is not zero, 

indicating that the best-fit rule is violated for the ACM formulation.  The results for 

the deflection at the center of the plate for the 1-element discretisation is 

6.975012, as against the exact value of 5.605226. The results for the bending 

moment and the twisting moment are shown in Fig. 3.23 and Fig. 3.24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.9 Results of best-fit rule for a simply supported plate – ACM Formulation 

(sinusoidal load) 

 

Weight x y Theory-cur-x Theory-cur-y Theory-cur-xy FEM-cur-x FEM-cur-y FEM-cur-xy Proj. Theorem

0.229085 0.884617 0.884617 -0.004348 -0.004348 0.060457 -0.004371 -0.004371 0.066665 -0.038970

0.229085 0.884617 0.615383 -0.011464 -0.011464 0.022928 -0.014570 -0.008913 0.035668 -0.047991

0.113400 0.884617 0.976545 -0.000903 -0.000903 0.064483 -0.000889 -0.002820 0.072394 -0.027429

0.113400 0.884617 0.523455 -0.012227 -0.012227 0.004760 -0.018052 -0.010464 0.020230 -0.027245

0.272287 0.884617 0.750000 -0.008670 -0.008670 0.045720 -0.009470 -0.006642 0.053816 -0.045464

0.229085 0.615383 0.884617 -0.011464 -0.011464 0.022928 -0.008913 -0.014570 0.035668 -0.047991

0.229085 0.615383 0.615383 -0.030228 -0.030228 0.008695 -0.029711 -0.029711 0.004671 0.012491

0.113400 0.615383 0.976545 -0.002380 -0.002380 0.024455 -0.001812 -0.009400 0.041397 -0.041558

0.113400 0.615383 0.523455 -0.032241 -0.032241 0.001805 -0.036813 -0.034881 -0.010767 -0.051139

0.272287 0.615383 0.750000 -0.022860 -0.022860 0.017339 -0.019312 -0.022141 0.022819 0.021835

0.113400 0.976545 0.884617 -0.000903 -0.000903 0.064483 -0.002820 -0.000889 0.072394 -0.027429

0.113400 0.976545 0.615383 -0.002380 -0.002380 0.024455 -0.009400 -0.001812 0.041397 -0.041558

0.056134 0.976545 0.976545 -0.000187 -0.000187 0.068777 -0.000573 -0.000573 0.078123 -0.016853

0.056134 0.976545 0.523455 -0.002539 -0.002539 0.005077 -0.011647 -0.002127 0.025959 -0.019693

0.134785 0.976545 0.750000 -0.001800 -0.001800 0.048765 -0.006110 -0.001350 0.059545 -0.039706

0.113400 0.523455 0.884617 -0.012227 -0.012227 0.004760 -0.010464 -0.018052 0.020230 -0.027245

0.113400 0.523455 0.615383 -0.032241 -0.032241 0.001805 -0.034881 -0.036813 -0.010767 -0.051139

0.056134 0.523455 0.976545 -0.002539 -0.002539 0.005077 -0.002127 -0.011647 0.025959 -0.019693

0.056134 0.523455 0.523455 -0.034388 -0.034388 0.000375 -0.043218 -0.043218 -0.026206 -0.081324

0.134785 0.523455 0.750000 -0.024382 -0.024382 0.003600 -0.022673 -0.027432 0.007381 -0.009691

0.272287 0.750000 0.884617 -0.008670 -0.008670 0.045720 -0.006642 -0.009470 0.053816 -0.045464

0.272287 0.750000 0.615383 -0.022860 -0.022860 0.017339 -0.022141 -0.019312 0.022819 0.021835

0.134785 0.750000 0.976545 -0.001800 -0.001800 0.048765 -0.001350 -0.006110 0.059545 -0.039706

0.134785 0.750000 0.523455 -0.024382 -0.024382 0.003600 -0.027432 -0.022673 0.007381 -0.009691

0.323635 0.750000 0.750000 -0.017288 -0.017288 0.034576 -0.014391 -0.014391 0.040968 0.006349

-69.4471378

Best-fit Rule for a Simply Supported Plate Subjected to a Sinusoidal Varying Load - ACM Formulation 

Best-fit Rule Residual
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Fig. 3.23 Twisting moment in a simply supported plate, ACM Element (sinusoidal load) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.24 Bending moment in a simply supported plate, ACM Element (sinusoidal load) 

 

It would be interest to see the relative performance of the BFS and ACM element 

formulations from the point of boundedness of strain energy.  A 20x20 mm 

quarter plate, of 0.4 mm thickness and Poisson’s ratio of 0.3,  Young’s Modulus 

of 200000 N/mm2, subjected to different loading/boundary conditions is 
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considered for this purpose.  The results of the strain energy as the mesh is 

refined are shown in the Tables 3.10 – 3.13. 

 
 

 
Table 3.10 Comparison of strain energy boundedness in a simply supported plate  

(uniform load) 

 
 
 

 
Table 3.11 Comparison of strain energy boundedness in a clamped plate (uniform load) 

 
 
 
 

 
Table 3.12 Comparison of strain energy boundedness in a simply supported plate  

(point load) 

 
 
 

 

 

 

Elements in 

one quarter

Strain energy 

(ACM)

Strain energy 

(BFS)

1 493.699192 1472.77137

4 1578.98624 1485.95534

16 1511.85256 1487.2168

64 1493.54944 1487.30693

Simply Supported Plate subject to a UDL

Elements in 

one quarter

Strain energy 

(ACM)

Strain energy 

(BFS)

1 323.153369 289.335021

4 369.417308 339.234146

16 349.731934 339.615331

64 342.528813 340.243312

Clamped Plate subject to a UDL

Elements in one 

quarter

Strain energy 

(ACM)

Strain energy 

(BFS)

1 34584.6068 60485.5511

4 67306.7185 62633.8511

16 64583.7893 63165.1815

64 63714.8714 63296.8051

Simply Supported Plate subject to a Point Load
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Table 3.13 Comparison of strain energy boundedness in a clamped plate  (point load) 

 
 
 
It can be observed that in the case of the BFS formulation the strain energy is 

always bounded, and eqn. (2.30) is valid. The ACM formulation, because of the 

non-conformance violates this boundedness. 

 
 

In all cases, the deflections from the BFS element converges from below, 

showing that the condition expressed in eqn. (2.30) is met, i.e. the energy inner 

product of the approximate solution will always be a lower bound to the exact 

energy, and hence deflections would converge from below. The results for the 

BFS element shows O(h4) convergence, as expected. However, in all these 

cases, the ACM element shows larger deflections than predicted by theory. That 

is, the condition expressed in eqn. (2.30) has been violated, and the only 

explanation for this is that the non-conforming nature of the formulation has 

introduced extra-variational conditions. Also, the ACM element showed only a 

degraded  h2 convergence. Fig. 3.25 shows the convergence for the case of the 

simply supported square plate under uniformly distributed loading conditions.  It 

can be noted that now due to the difference in signs of the error (BFS gives 

positive errors while ACM gives negative errors), the modulus of the error 

measure is used for graphical representation. Tables 3.14 – 3.17 compare the 

results of the ACM and BFS formulations for plates with different boundary 

conditions. 

 

 

 

Elements in 

one quarter

Strain energy 

(ACM)

Strain energy 

(BFS)

1 32315.3369 28933.5021

4 33494.1308 29968.9049

16 31682.0648 30465.2347

64 30969.9156 30610.3722

Clamped Plate subject to a point load
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Table 3.14 Deflection at center of a simply supported plate (uniform load) 

 

 

 

 

 

 

Table 3.15 Deflection at center of a simply supported plate  (point load) 

 

 

 
 

  

 

 

Table 3.16 Deflection at center of a clamped plate  (uniform load) 
 

 

 

 

 

 

 

Table 3.17 Deflection at centre of a clamped  plate  subjected (point load) 

 

Mesh ACM BFS

1X1 0.00070772 0.00057625

2X2 0.00060498 0.00056823

3X3 0.00058443 0.00056790

4X4 0.00057717 0.00056784

8X8 0.00057016 0.00056782

Exact 0.00056749 0.00056749

Simply supported plate with uniform load

Mesh ACM BFS

1X1 0.00481672 0.00387108

2X2 0.00430763 0.00400857

4X4 0.00413336 0.00404257

8X8 0.00407775 0.00405100

Exact 0.00405350 0.00405350

Simply supported plate with point load

Mesh ACM BFS

1X1 0.00020682 0.00018517

2X2 0.00019615 0.00017680

3X3 0.00018623 0.00017683

4X4 0.00018226 0.00017729

8X8 0.00017824 0.00017698

Exact 0.00017612 0.00017612

Clamped plate with uniform load

Mesh ACM BFS

1X1 0.00206818 0.00185174

2X2 0.00214363 0.00191644

4X4 0.00202765 0.00195266

8X8 0.00198207 0.00195906

Exact 0.00195686 0.00195686

Clamped plate with point load
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As can be seen from Fig. 3.24, the BFS element gives a higher rate of 

convergence with respect to displacements. All theoretical results have been 

taken from Timoshenko and Woinowsky-Krieger (1959). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.25 Effect of conformance and non-conformance on displacement convergence 
(uniform load) 

 
 

3.5 Closure 

 

In this chapter, a suite of finite elements (beam bending, plate bending, 

axisymmetric shell elements) has been formulated and studied in detail.  The 

results from the various formulations were used to explain the 3C concepts and 

the performance of the elements was assessed from energy error perspective for 

linear elastostatics. It has been shown that the strain energy boundedness and 

the best-fit rules are violated whenever the element formulation deviates from the 

3C concepts.  For the plate bending problems, the ACM formulation has been 

shown to violate the best-fit rule. The results from the ACM formulation also do 

not show the strain energy boundedness. The ACM formulation has also been 

found to degrade the rate of convergence of the solution. In all of the above three 
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measures, the BFS formulation has a perfect score (follows best-fit rule, strain 

energy is bounded, and the rate of convergence is superior to ACM). 

Axisymmetric shell formulation was used for the analysis of circular plates with 

different boundary conditions, and the 3C concepts and energy aspects were 

studied extensively.  

 

Since the 3C concepts and energy error concepts are derived from first 

principles, they should hold good for any example, and the examples presented 

here serve the purpose of demonstration cautioning against indiscriminate use of 

extra-variational tricks.  The results of the studies done across various beam and 

plate problems are summarized in Table 3.18. This table clearly shows what 

performance measure is affected for what deviation from the C-concept.  These 

studies are extended to other applications like linear elastodynamics, nonlinear 

elastostatics and the 3C concepts and energy errors are examined in the 

subsequent chapters.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.18 3C concepts and performance of various element formulations   

     (linear elastostatics) 

 

Note: ���� implies that the performance is good/satisfies the respective attribute 

 ���� implies that it is a violation of the respective attribute 

���� implies that the performance of the respective attribute is degraded

 Element 

Formulation

C-Concept 

Deviation
Example Problem

Strain Energy 

Boundedness

Rate of 

Convergence
Best-fit Rule

Cantilever beam ���� ���� ����

Simply supported beam ���� ���� ����

Simply supported plate ���� ���� ����

Clamped plate ���� ���� ����

Simply supported plate � ↓↓↓↓ �

Clamped plate � ↓↓↓↓ �

Circular simply suported plate ���� ���� ����

Circular clamped plate ���� ���� ����
C

1
 Shell None

Summary of Results for Linear  Elastostatics for Classical Beams, Shells & Plates

BFS Element None

ACM Element Conformance

C
1
 Beam None
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Chapter-4 

Linear Elastostatics for  

Shear-flexible Beams, Shells and Plates 

 
 

4.1 Introduction 

 

In this chapter, the 3C concepts of correspondence, consistency and correctness 

are studied in detail for the linear elastostatics problems of shear-flexible beam, 

shells and plates. The phenomena of shear locking and membrane locking are 

explained using consistency concepts. The element formulations cover both 

isoparametric and anisoparametric elements. The frequently used tactic of 

reduced integration for alleviating locking is discussed in depth through various 

examples, and compared with results of full integration and field-consistent 

formulations. Convergence studies, best-fit rule and boundedness of strain 

energy are discussed in detail for all the above formulations. The results of the 

findings are summarized in the closure section of this chapter.  

 

The simplicity of the element formulations associated with a C0 element made 

this element very attractive and amenable to many applications. However, when 

it was realized that for certain class of problems (shear-flexible) the original C0 

formulation was giving spurious results, which was later recognized as various 

forms of locking, a lot of effort went into understanding the real cause. A quick 

solution to overcome the problem of locking was to use reduced integration for 

shear terms in the evaluation of the stiffness matrices, Zienkiewicz et al. (1971), 

Zienkiewicz and Hinton (1976). Bathe and Dvorkin (1985) used different 

interpolations for the bending and transverse shear strain. The shear strain is 

averaged out across a patch of four elements, and this eliminates shear locking. 

Prathap and Bhashyam (1982) used a functional re-constitution technique for the 

additional stiffness that is present in the exactly integrated element and predict 
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very accurate a priori analytical error models. Hrabok and Hrudey (1984) listed 

out the C0 element formulations for plate bending that used different strategies to 

avoid locking, and with the field remaining active there have been many additions 

to this work. 

 

Hinton and Huang (1986) presented a comprehensive analysis of different types 

of formulations that used a shear strain field  (which they name it as substitute 

shear strain fields) to remove locking. Since then lot of research has been done 

to examine this problem.  Briassoulis (1989a) studied the flexural behavior of a 

Mindlin plate by subjecting the element to polynomial Kirchhoff fields (those that 

would produce zero transverse shear strain) which are different from the shape 

functions of the element, and concluded that typical shear locking occurs with 

lower order elements, and non-typical shear locking (independent of the element 

thickness ratio) occurs in higher order elements. Briassoulis (1989b) proposed a 

new element formulation that removed the spurious stiffness matrix terms from 

the original stiffness matrix and showed that such a maneuver frees the element 

from all locking mechanisms. Kreja and Cywinski (1988) performed a detailed 

study of the shear locking in a beam problem and quantify the “ spurious 

stiffness” for different slenderness ratios of the beam. The specific impact of 

reduced integration on the stiffness matrix terms is identified explicitly.  

 

Tessler (1991) used a higher-order beam theory for bending and stretching on a 

2-noded beam element. Quadratic interpolations functions are used for the 

transverse displacement w and the element does not cause shear locking. Shi 

and Voiyadjis (1991a) formulated a 4-noded element with 3 degrees of freedom 

at each node, and used higher order interpolation functions for the transverse 

displacement w. This made the element free from shear locking. Paramasivam et 

al. (1992) used a cubic displacement function for w and the quadratic 

displacement function for rotation θ. The beam element is shown to be 

completely free from shear locking.  
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The early work of Ahmed et al. (1968) on curved thick shells popularized the use 

of conical shell elements in analysis of axisymmetric structures. Their work used 

degenerated isoparametric elements and did not use the strain displacement 

relations for shear-flexible effects. The finite element analysis of shear-flexible 

axisymmetric shells poses additional challenges. In addition to shear locking, 

there is a possibility of membrane locking.  Venkataramana and Venkateswara 

Rao (1975) implemented a 2-noded conical shell element with 10 degrees of 

freedom at each node to analyse moderately thick shells that include shear-

flexible effects.  This element does not require reduced integration and behaves 

very well in the limit of thin shell as well and does not produce shear/membrane 

locking. Zienkiewicz et al. (1977) used a 2-noded straight element with reduced 

integration and overcome the problems of locking.  

 

Mohr (1982) used a 3-noded curved isoparametric axisymmetric shell element 

with 3 degrees of freedom at each node. A penalty parameter which is a function 

of the thickness of the shell was used to alleviate shear locking. Ramesh Babu 

and Prathap (1986), Prathap and Ramesh Babu (1986) used the field-

consistency concepts to explain shear and memebrane locking in shear-

deformable curved shells. Tessler and Spiridigliozzi (1988) proposed 

kinematically admissible interpolation functions for the in-plane and translational 

displacements (which are of higher order than the interpolation function for 

rotation) to resolve both shear and membrane locking. Shi and Voyiadjis (1991b) 

used the assumed element strain method to avoid both shear and membrane 

locking in arches, beams, plates and shells. Paramasivam and Raj Muthiah 

(1994) introduced a cubic interpolation function for transverse displacement w, 

and a quadratic function for rotation θ on a 2-noded axisymmetric shell element 

to get a displacement convergence of O(h4).  This element does not cause shear 

locking and the additional rotational degree of freedom in the middle of the cone 

was eliminated by static condensation at the end. Raveendranath et al. (1999b) 

used a formulation that has a cubic polynomial function for the translational 
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displacement and a quartic polynomial function for the analysis of curved 

axisymmetric shells. This formulation does not produce shear and membrane 

locking. Gilewski and Radwanska (1991), Yang et al. (2000) provided a 

comprehensive survey on the elements available for the axisymmetric analysis of 

shells. 

 

Auricchio and Taylor (1994) used bubble functions for increasing the order of the 

interpolation function for rotation θx and θx and formulate an element that is free 

from shear locking. Singh et al. (1998) introduced a 4-noded element with 5 

degrees of freedom at each node and developed a lock-free element for the 

analysis of moderately thick rectangular plates. The interpolation functions for the 

rotational degrees of freedom are expressed in terms of the element material 

properties and the element thickness to span ratio.  Mac Neal (1998) traced three 

distinct phases in the history of plate bending elements – the classical Kirchhoff 

elements from 1961-1970, the lower order Mindlin elements from 1969-1990 and 

the higher order elements from 1988 onwards, and examined in detail the impact 

of p refinement on shear flexibility of a clamped square plate. Liu et al. (2000) 

developed a 4-noded element that is based on an assembly of four triangular 

elements.  The formulation used anisoparametric interpolation functions and 

resolved shear locking. Singh et al. (2000b) developed a 4-noded shear-flexible 

element that is based on coupled displacement field derived using the moment-

shear equilibrium and in-plane force equilibrium. This element has 6 degrees 

freedom at each node, and does not cause shear locking. Singh and 

Venkateswara Rao (2000c) summarized the work done on shear-flexible 

elements and discussed the merits/demerits of selective integration, field 

consistency approach and material finite element approach. 

 

Pitkaranta (2000) traced the full history of locking and uses the reduced strain 

formulation to overcome locking. Bletzinger et al. (2000) and Koschnick et al. 

(2005) obtained a shear strain distribution which is free of parasitic shear, 

through calculation of discrete shear gaps at the nodes and their interpolation 
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across the element domain and solved problems of a clamped plate and 

cylindrical shell roof.  Rong and Lu (2003) used the concept of the Parametrized 

Lagrange Multiplier method, and formulated the generalized mixed variational 

principle and applied this to study shear locking problems in plates and beams, 

and give a very good interpretation of the two different convergences of the 

potential energy and the complementary energy solutions.  Olovsson et al. 

(2006) suggested moving the quadrature points as a possible way to circumvent 

certain shear locking problems. Each one of the three shear strain components is 

averaged in groups of four integration points. This can be thought of as another 

case of selective/reduced integration or strain smoothing. Choi and Lee (2003) 

used additional polynomial terms to enrich the interpolation functions. A smart 

linear combination of these terms when used in the strain displacement relations 

has been shown to avoid both shear and membrane locking. Ozkul and Ture 

(2004) used two different elements with 12 and 24 degrees of freedom in each of 

the elements for the analysis of rectangular and circular plates for different 

thickness of plates and conclude that the higher order element (with 24 degrees 

of freedom) has relatively less shear locking.  Voyiadjis and Woelke (2006) used 

alternate fields for representing the displacements and overcome both shear and 

membrane locking.   

 

The field-consistency approach of Prathap (1984), the enhanced-natural strain 

approach of Simo and Rifai (1990) the mixed interpolation of tensorial 

components of Bathe and Dvorkin (1985,1986), all lead to formulations that do 

not produce shear locking. 

 

More approaches continue to evolve, and the corotational approach has been 

used with success, Crisfield (1991), Belytschko et al. (2000), Urthaler and Reddy 

(2005).  Duarte Filho and Awruch (2004) discussed at length the various 

methods available in literature to overcome locking, but go ahead with reduced 

integration and explain clearly the advantage of the corotational approach for 

addressing the problem of locking. Felippa (2006) discussed the element 
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stiffness formulation in natural coordinates using the kinematic decomposition of 

the in-plan motion. This formulation does not cause shear locking. Cen et al. 

(2006) used an independent shear field in conjunction with a fourth-order 

deflection field in terms of the area coordinates of the element. This formulation 

is implemented on a 4-node element with 3 degrees of freedom at each node. 

 

Reddy (1997) discussed the concept of consistent interpolation (CI)  element and 

interdependent interpolation (II) element. For the CI case, for the three-noded 

element there is a differential number of degrees of freedom per node. Though 

full integration is employed, due to the different degree of interpolation function 

for the deflection and the slope degrees of freedom, this element does not lock. 

For the II case, the interpolation functions for the deflection and the slope have 

common parameters, which are expressed in terms of the nodal degrees of 

freedom. This formulation uses full integration and produce shear locking-free 

results for both the CI and II cases. 

 

Mukherjee and Prathap (2001) defined field-consistent and field-inconsistent 

spaces and use function space approach to predict a priori error estimates for 

shear locking. Mukherjee and Prathap (2002a) used the concepts of functional 

analysis to compare the response of the 3-noded Timoshenko beam element to 

that of a 2-noded element and attribute the delayed convergence due to the field-

inconsistent shear terms.  Singh and Venkateswara Rao (2003) provided a 

closed form solution for the discretisation error for shear-flexible beams for three 

different element formulations. 

 

While for isoparametric elements, the field-consistency concepts are fairly well-

understood for a variety of applications, (Prathap and Ramesh Babu (1986), 

Prathap and Naganarayana (1992), Ganapathi et al. (2003, 2004), the same 

cannot be said of anisoparametric elements. In fact the genesis of 

anisoparametric elements can be traced to the efforts in the 1980’s to overcome 

shear locking, Tessler (1986), Tessler and Spiridigliozzi (1988).   
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The first detailed investigation of anisoparametric elements from field-

consistency point was by Marur and Prathap (2000), where the example of a 

shear-flexible beam is used for explaining the concept of shear locking. This work 

examined the consistency and correctness aspects directly, and the 

correspondence part is brought in indirectly when the order of convergence is 

discussed. In this example, the inconsistent terms do not produce spurious 

constraints and hence no shear locking is observed prima facie. However, the 

impact of continuing with this inconsistent term is not studied in detail from a 

best-fit argument.  Additionally, the conditions under which the inconsistent terms 

could become spurious constraints are not brought out. 

 

None of the above work, and those that are in open literature of shear-

deformable curved shells address the correspondence concept explicitly. In the 

following sections, after introducing briefly the element formulation, the best-fit 

rule is checked. Later in the chapter, the consistency aspects for different classes 

of shear-flexible problems (beams, circular plates, curved shells) are examined in 

detail. In section 2.3, the field-consistency concept was explained and the 

spurious constraints that may arise due to non-adherence to field-consistency 

was outlined.   In each of the cases, it was shown that it is possible to predict a 

priori from the strain-displacement relations what type of locking (shear 

locking/membrane locking) would occur under what conditions. Further to this, in 

this chapter, the use of reduced integration technique to overcome locking is 

examined and its impact on the correctness and correspondence aspects are 

investigated. 

   

4.2 Shear-flexible Beam  
 

The shear-flexible beam is an interesting example through which many of the 3C 

concepts can be clearly understood.  The basic differences between the 

behaviour of an Euler-Bernoulli beam and shear-flexible beam can be found in 
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many textbooks, e.g. Cook et al. (1989). The difference lies in the fact that the 

rotational degree of freedom is an independent degree of freedom, unlike the 

case in section 3.2 where it was the derivative of the translational displacement.   

In this section, the focus is on 3C concepts, which is brought in through the study 

of the same examples that were discussed in section 3.2.  For the element 

formulation of a shear-flexible beam, two approaches can be envisaged. In the 

first formulation, a 2-noded element with 2 degrees of freedom per node is used. 

Here, the degrees of freedom are the same as that of the 2-noded element 

discussed in section 3.2, namely, one translation and one rotation. In the second 

type of formulation, a 2-noded element with 3 degrees of freedom per node is 

used.  The rotational degree of freedom that is used in the strain displacement 

relation is still an independent degree of freedom, as will be explained later.  This 

formulation is typical of an anisoparametric formulation.  

 

The anisoparametric element formulation for shear-flexible beams is an 

interesting formulation that brings out the field-consistency concept in a newer 

light. The concept of variational correctness is very subtle in this case and it is 

very easy to miss out the errors that can come in when mixed integration is used 

for the shear terms.   

 

4.2.1 Strain Displacement Relations 

 

 The strain displacement relations for a shear-flexible beam are given by  

 

 

 

 

 

where χx  is the flexural strain, and γxy is the shear strain and w is the translational 

displacement and θx  is the rotation of plane normal to the neutral axis.  

 

  - θ
dx

dw
    γ

dx

dθ
 χ

xxy

x
x

=

=   
…(4.1) 
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4.2.2 Phenomena of Shear Locking 
 
When the above formulation is used for finding the deflection of a cantilever 

beam subjected to a tip load, interesting results can be seen. As the beam 

becomes slender (l/t >>20), the deflections as computed from the above 

formulation do not turn out to be physically correct.  It can be seen that for very 

high l/t, the formulation gives totally meaningless values of deflections. These 

results are tabulated in Table 4.1 for a cantilever beam (E=1.0e6 units, width=1.0 

unit, Tip load=1 unit). The deflection at the tip of the cantilever when full 

integration is used is tabulated under the column F and when mixed integration is 

used is tabulated under column M. 

 

 

 

 
Table 4.1 Effect of reduced integration on displacement of a shear-flexible cantilever 

beam (tip load) 

 

4.2.3 Reduced Integration Technique 

 

It was seen in the preceding section, that the results for the cantilever are highly 

erroneous when used with the full integration on a C0 element and is not able to 

get the desired displacements even with a large number of elements.  A remedy 

that has been proposed by Zienkiewicz et al. (1971) is to use reduced integration 

for the terms involving shear strains. The stiffness matrix is now decomposed 

into two parts, one involving the bending terms and other involving shear terms. 

 
 
 
 

F M F M F M F M F M F M

100 0.0010 3.0010 0.0038 3.7510 0.0015 3.9385 0.0605 3.9853 0.2316 3.9971 0.7892 4.0000

1000 0.0000 3.0000 0.0000 3.7500 0.0002 3.9375 0.0006 3.9843 0.0002 3.9960 0.0098 3.9990

10000 0.0000 3.0000 0.0000 3.7500 0.0000 3.9372 0.0000 3.9843 0.0000 3.9960 0.0010 3.9990

32 Elements
L/t

Comparison of Deflection for a Cantilever between Full & Mixed Integration

1 Element 2 Elements 4 Elements 8 Elements 16 Elements
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The stiffness matrix is expressed as follows 

  
 

 

 

 

 

 

 

where [Bb] represents the strain displacement relations between the bending 

strains and the displacements, and [Bs] represents the strain displacement 

relations between the shear strains and the displacements. Similarly, the material 

matrix, [D] will now be split into [Db] and [Ds]. 

 

The stiffness matrix  [Kb] is integrated using the 2X2 Gaussian Quadrature rule 

and [Ks] is integrated using 1X1 rule.  This technique shows very good 

improvement in the results for the cantilever as seen in Table 4.1 

 

4.2.4 Field-consistent Formulation – Isoparametric Element 

 

The field-consistent formulation for this element was explained in chapter-2. It 

can be seen from eqn. (4.1) that the shear strain terms involve multiple “fields”, 

with the shear strain comprising the transverse deflection w and the slope θx. 

Field-consistent formulation requires that the interaction between these multiple 

fields should be in a consistent manner, the violation of which can lead to 

constraints which manifests in forms like locking, spurious stresses, delayed 

convergence etc.   

 

From the strain displacement relation in eqn. (4.1), for a 2-noded element (C0 

formulation), the shear strain would comprise of a constant term and a first 

degree  polynomial  term. This  would make the  shear strain   “inconsistent”  and  

[ ] [ ] [ ] K K  K   sb += …(4.2) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]   dAB  D B   dAB  D B  K  ss

T

sbb

T

b ∫∫ += …(4.3) 
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would produce spurious strains in certain limits (as the beam becomes slender 

and slender, or as l/d ratio increases). Field-consistent formulation realizes this 

and the shear strain is reconstituted upfront in such a manner that the spurious 

strain does not exist even in the extreme conditions. The reconstituted shear 

strain for this case is 

 

 

 

 

 

4.2.5 Field-consistent Formulation - Anisoparametric Element 

 

The field-consistent formulation for this element was earlier explained in chapter-

2. The constraints that need to be met are reproduced below here. 

 

 

 

 

 

 

The first of these 2 equations are field-consistent, as they contain terms coming 

from both w and θx. The third equation has the contribution of only the transverse 

deflection w, and hence is inconsistent. Despite being inconsistent, if the shear 

strain terms retain the term b2, it would not cause any spurious constraint, as this 

term b2 does not influence the flexural strain. This is unlike the isoparametric 

formulation discussed earlier, where the inconsistent shear strain term b1 in eqn. 

(2.8) influences the flexural strain and produces a spurious constraint.  This 

uniqueness of anisoparametric formulation for shear-flexible beams thus obviates 

the necessity for reduced integration or even a field-consistent formulation to 

alleviate shear locking, as it does not exist. The same would not hold true for 

curved beams or shells, where anisoparametric formulation would still create a 
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spurious constraint due to interplay of the field inconsistent terms in the flexural, 

membrane and shear strains. This was discussed in detail in Section 2.3. 

 

It can be shown that the use of reduced integration or full integration for 

anisoparametric formulation of a beam problem does not disturb the strain 

energy. For one element, the shear strain energy for a field-consistent 

formulation is given by  

 

 

 

 

 

 

 

 

 

When full-integration is employed for evaluating the strain energy (by using 3-

point Gaussian Integration), the shear strain energy is given by 

 

 

 

 

 

When reduced integration is employed (with use of 2-point Gaussian Integration 

instead of the 3-point integration), the shear strain energy is identical to eqn. 

(4.6). 

 

The strain energy comparison from eqns. (4.6) and (4.7) will be shown later (in 

Table 4.3). 
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The field-consistent formulation for the anisoparametric formulation for shear-

flexible beams is discussed now. After Legenderization of the shear strain 

(explained in section 2.3.2), the contribution of the b2 in shear strain term in the 

field-consistent formulation, the following expression for the shear strain is 

realized as 

 

 

 

 

The strain energy arising from the 3 strain components, shear strain energy Us, 

membrane strain energy Um, and bending strain energy Ub, are as follows 

 

 

 

 

 

 

 

 

 

 

The total strain energy is  

 

 

 

It should be noted that in the total strain energy expression shown in eqn. (4.10), 

the membrane strain energy is also included. For the purpose of obtaining a 

general stiffness matrix, the membrane strain energy is retained. 

 

The stiffness matrix is obtained from the strain energy by taking 

 

11100
2

0xy ]Pc-[b]Pc -
3

b
 + [b =γ + …(4.8) 

( )  c-b
3

1
c -

3

b
 + bkGAl =U

2

11

2

0
2

0s












+









l

2

1
b

c
 EI  U =

l

l
2

1
m

a
 EA  U =

…(4.9) 

 U  U  U  U bms ++= …(4.10) 



 88

 

 

 

which gives 

 

 

 

 

 

 

 

 

 

 
where [D] is 

 

 

 

The matrix {q} can be expressed in terms of the nodal displacements {d} as 
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The matrices can be expanded as 
 
 

  
 

 

 

 

 

 

 

 

 

The stiffness matrix is thus  

 

 

 

 

The stiffness matrix can also be formulated using the conventional approach 

from the strain displacement relations, and using reduced/selective integration 

technique. This has been historically done to overcome the problem of shear 

locking. However, for higher order elements, it has been observed that even 

without reduced/selective integration, shear locking does not occur. These 

aspects are explained elegantly from a field-consistency formulation by Marur 

and Prathap (2000). The use of full and reduced/selective integration is 

examined for the present study of anisoparametric shear-flexible beam, and 

results are compared against those obtained from the field-consistent 

formulation. 
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4.2.6 Numerical Experiments and Discussion 

 

A cantilever beam is considered for evaluating the performance of different 

element formulations. When reduced integration is used for the shear-flexible 

beam, the bending moment for the cantilever with uniform load is shown in Fig. 

4.1, and the shear force in Fig. 4.2. Following the procedure described in section 

3.2.2, the equivalent of eqn. (3.3) for this case comes out to be 

 

E =∫[ {-wl2/2+wlx - wx2/2} – C ]2  dx        ….(4.16) 

where C is the bending moment  (constant for this particular case) obtained from 

the 1-term finite element solution. It can be clearly seen that this does not follow 

best-fit rule (If it were to follow the best-fit rule, the constant bending moment 

should have been wl2/6, which is not the case here. For this problem, the length 

of the beam has been taken as 100 units and the uniform load as 1 unit. 

 

Mukherjee and Prathap (2002b) studied this problem in detail and accounted why 

the reduced integration (or in this particular case the field-consistent formulation 

and the reduced integration give identical results), does not satisfy the best-fit 

rule.  There is a stiffening effect produced due to the differing bending moment 

sensed by the finite element method from the actual bending moment for the C0 

formulation, and hence the finite element results are not the best-fit to the exact 

solution, but do form a best-fit of the stiffened solution.  In this reference, they 

deal with both 2-noded and 3-noded elements and show that for both of these 

cases the best-fit is violated. For the anisoparametric element, going with the 

same reasoning proposed by them, the finite element method senses the applied 

loading correctly (due to the C1 formulation that is used) and hence the results 

would a best-fit, as would be seen shortly. 
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Fig. 4.1 Bending moment in a shear-flexible cantilever beam (uniform load) – 

Isoparametric element  

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Shear force in a shear-flexible cantilever beam (uniform load) –  

Isoparametric element  
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The concepts explained above with the help of a cantilever beam are true for 

other cases boundary conditions/loading conditions also.   

 

To demonstrate the adherence/violation of the best-fit rule for the C0 formulation, 

the same procedure described in section 3.2.2 is followed here as well. The 

bending moment and shear force along the length of the beam are shown in 

Figs. 4.3 and 4.4 along with the results obtained using 1 element. 

 

 

 

 

The bending moment C that is constant along the length of the beam, can now 

be determined by  

 

  

which gives  

 
 
 

 

Thus for a cantilever beam subjected to a uniform distributed load, the results of 

the anisoparametric formulation do show that the best-fit rule is obeyed. It is 

interesting to note that the shear force obtained from the finite element solution 

matches with the exact solution (the exact solution for a shear-flexible beam is 

discussed in Reddy et al. (1997)).  
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Bending Moment in a Cantilever - Uniform Load 

(Anisoparametric Formulation - 1 Element)
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Fig. 4.3 Bending moment in a  shear-flexible cantilever beam (uniform load) – 

 Anisoparametric element 
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Fig. 4.4 Shear force in a shear-flexible cantilever beam (uniform load) – 
Anisoparametric Element 

 

 
A comparison of the results for a simply supported beam subjected to a uniformly 

distributed load for the field-consistent, full integration and reduced integration 

formulations is tabulated in Table 4.2. The length of the beam is taken as 100 

units, width =1 unit, depth = 1unit, E= 30e6 units, and Poisson’s ratio=0.0. 
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Table 4.2 Strain energy boundedness in a shear-flexible simply supported beam 

(uniform load) – Isoparametric element 

 

This table shows that the field consistent formulation and reduced integration 

formulations give identical results for the deflection at the center of the beam. 

The full integration formulation as expected locks, and gives spurious results. 

 

The results of the anisoparametric formulation for a simply supported beam (the  

dimensions/loading/material properties of the beam remain same) are tabulated 

in Table 4.3. For the purpose of comparison, the results obtained by using full 

integration and reduced integration are also tabulated, and as predicted in 

section 3.4.3, there is no impact on the strain energy and deflection between full 

and reduced integrations. Till date, this has been the primary driver for the strong 

advocacy of use of anisoparametric elements. 

 

 

 
 
 
 
 
 
 

Table 4.3 Strain energy boudedness in a shear-flexible  simply supported beam 

(uniform load) – Anisoparametric Element 

 
 
 

Deflection Strain Energy Deflection Strain Energy Deflection Strain Energy

2 0.4948611116 7.9221643674 0.4948610968 7.9221641313 0.4948611116 7.9221643674

4 0.5143923612 8.2273401369 0.5143923459 8.2273398918 0.5143923612 8.2273401369

8 0.5192751736 8.3074487765 0.5192751582 8.3074485291 0.5192751736 8.3074487769

16 0.5204958767 8.3277143549 0.5204958612 8.3277141070 0.5204958767 8.3277143553

32 0.5208010526 8.3327956520 0.5208010370 8.3327954026 0.5208010526 8.3327956521

64 0.5208773465 8.3340669066 0.5208773310 8.3340666597 0.5208773465 8.3340669077

Simply Supported Beam - Uniform Load

Anisoparametric-FC Anisoparametric-FI Anisoparametric-RI# of 

Elements

Deflection Strain Energy Deflection Strain Energy Deflection Strain Energy

2 0.468819 7.080078 0.001316 0.019915 0.468819 7.081163

4 0.507882 8.010864 0.005429 0.085687 0.507882 8.012004

8 0.517648 8.252144 0.021249 0.338837 0.517648 8.253297

16 0.520089 8.313000 0.075881 1.213074 0.520089 8.314156

32 0.520699 8.328248 0.211292 3.379971 0.520699 8.329405

64 0.520852 8.332062 0.381257 6.099822 0.520852 8.333219

Simply Supported Beam - Uniform Load

Isoparametric-FC Isoparametric-FI Isoparametric-RI# of 

Elements
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The results for a simply supported beam subjected to a uniform load, obtained 

from field consistent formulation and reduced integration for this case are 

identical. The convergence of the deflection at the center of the beam is O(h2), 

and is shown in Fig. 4.5 and Fig.  4.6. The same plot also shows the high errors 

when full integration is used. This can be predicted a priori using the 

correspondence concept (best-fit paradigm), as explained in section 3.2.2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Convergence of deflection in a shear-flexible simply supported beam 

(uniform load)– Isoparametric element 

 
 
 

It can be observed that the deflection at the center of the beam and the strain 

energy for all the three formulations are the same – which further proves that the 

anisoparametric formulation is insensitive to locking even when full integration is 

employed.  Fig. 4.6 shows the rate of convergence for all the three formulations, 

and a comparison with the rate of convergence of the isoparametric reduced 

integration shows that both ansioparametric full integration and reduced 

integration case give the same order of convergence as that of isoparametric 

reduced integration. 
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Fig. 4.6 Convergence of deflection in a shear-flexible simply supported beam 

(uniform load) – Anisoparametric Element 

 
 

4.3 Axisymmetric Shell Problems 
 

  

4.3.1 Strain Displacement Relations 

 

Since the slope and rotations are independent, and the strain-displacement 

relations as given in eqn. (4.20) 
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4.3.2 Two-noded C0 Element -  Isoparametric Formulation 

 

The interpolation functions that are used for the three displacements are given in 

eqn. (4.21) 

 

 

 

 

 

 

where 

 

 

 

 

 

The stress-strain relations are now given by 
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The stiffness matrix is now formulated, using eqn. (4.15). To overcome shear-

locking, reduced integration is used for evaluating all the terms of the stiffness 

matrix. For this particular case (due to the choice of the linear interpolation 

functions), the field-consistent formulation and the reduced integration 

formulation represent the shear term as constant. 

 

 

 

4.3.3 Two-noded C0 Element - Anisoparametric Formulation 

 

For this element, the interpolation functions that are used are similar to the ones 

used for the shear-flexible beam element discussed in section 4.2.5 (with cubic 

polynomial to represent w, and linear polynomial to represent u and β). 

 

  

 

 

 

 

 

 

         Fig. 4.7 A 2-noded axisymmetric element 

 

4.3.4 Numerical Experiments & Discussion  

 

In the shear-flexible isoparametric formulation for analysis of circular plates, we 

can clearly see the impact of shear locking when full integration is used. 

Consider a circular plate of radius = 10 in., E=1.0e7 psi, υ =0.3, and t=0.1 in.  
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Table 4.4  Deflections in a  shear-flexible  simply supported circular plate  (uniform load) – 

Isoparametric element 

 

which is subjected to a uniform load of 1 lb/in2. For the specific case of this plate, 

there would be no membrane locking even when full integration is used, as the 

membrane strains for small deformations do not exist.  This is clearly seen in 

Table 4.4, where the effect of selective integration on various strain terms is 

assessed. The bending moment also matches closely with the theoretical 

solution as shown in Fig. 4.8. 

 

 

For a curved shell however, membrane locking occurs in addition to shear 

locking, due to the interplay of the translational displacement term in the 

membrane strains. This is seen clearly in Table 4.5. 

 

 

 

 

 

 

Table 4.5  Deflections in a shear-flexible open spherical dome subjected to tip moment – 

Isoparametric element 

 

# of Elements

Iso-Reduced (Bending-

2, Shear-1, 

Membrane-1)

Iso-Reduced (Bending-

2, Shear-2, 

Membrane-1)

Iso-Reduced (Bending-

2, Shear-1, 

Membrane-2)

Iso-Full        (Bending-

2, Shear-2, 

Membrane-2)

4 0.0000062420 0.0000008076 0.0000015307 0.0000006201

8 0.0000115792 0.0000019649 0.0000051210 0.0000016611

16 0.0000145522 0.0000041305 0.0000107268 0.0000037763

32 0.0000156918 0.0000077644 0.0000143678 0.0000074420

64 0.0000161062 0.0000120593 0.0000157405 0.0000118625

128 0.0000162678 0.0000148725 0.0000161737 0.0000147974

Open Spherical Dome - Tip Moment

# of Elements

Iso-Reduced (Bending-

2, Shear-1, 

Membrane-1)

Iso-Reduced (Bending-

2, Shear-2, 

Membrane-1)

Iso-Reduced (Bending-

2, Shear-1, 

Membrane-2)

Iso-Full             

(Bending-2, Shear-2, 

Membrane-2)

1 0.130762 0.000349 0.130762 0.000349

2 0.400187 0.003929 0.400187 0.003929

4 0.541695 0.024937 0.541695 0.024937

8 0.618232 0.113966 0.618232 0.113966

16 0.657194 0.316628 0.657194 0.316628

32 0.676587 0.509147 0.676587 0.509147

Circular Simply Supported Plate - Uniform Load
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It has already been shown in section 4.2.9 that the field-consistent formulation 

gives identical results as that of reduced integration, and hence are not tabulated 

specifically in the above tables.  

 

 

 

 

 

 

 

Fig. 4.8 Bending moments in a shear-flexible simply supported circular plate 

(uniform load) – Isoparametric element 

 

 

 

 

 

 

 

 

 

Fig. 4.9 Bending moments in a shear-flexible clamped circular plate (uniform load) 

– Isoparametric element 

 

For the C0 formulation, it has already been shown in section 3.5.1.1 that the best-

fit rule is violated, and similar reasoning holds good for this as well. For  a 1-

element discretisation, the radial and hoop bending moments are overlayed with 

the exact bending moments in Fig. 4.10.  
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Fig. 4.10 Bending moments in a shear-flexible simply supported circular plate (uniform 

load) – 1 element solution for isoparametric formulation 

 

 

 

 

 

 

 

Table 4.6 Results of best-fit rule for a shear-flexible simply supported circular plate               

(uniform load) – Isoparametric element 

 

Table 4.6 shows the best-fit residual that should ideally be zero if the best-fit is 

obeyed. Since it is not zero, it can be concluded that best-fit is violated (due to 

use of reduced integration in the stiffness matrix). 

 

A 1 element solution for a clamped plate is very inaccurate and predicts bending 

moment as zero (the nodal displacement components on which the bending 

moment is computed is zero at both nodes). Hence best-fit rule check for a single 

element is not valid here, and even for a 2-element solution, the finite element 

solution is not a best-fit. 

 

The strain energy for the cases of circular plate for both clamped edge and 

simply supported edge boundary conditions are tabulated in Table 4.7 and Table 
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4.8 for various discretisations. As expected, the reduced integration and the field 

consistent formulation give identical results. For both of these formulations the 

strain energy is bounded.  

 

 

 

 

 

 

 

Table 4.7 Strain energy boundedness in a shear-flexible simply supported circular 

plate (uniform load) – Isoparametric element 

 

 

 

 

 

 

Table 4.8 Strain energy boundedness in a shear-flexible clamped circular plate 

(uniform load) – Isoparametric element 

 

The reduced integration and the field consistent formulation give identical results 

for both the clamped and simply supported circular plates. The order of 

convergence for the C1 formulation is O(h4), while for the C0 formulation is O(h2), 

as seen from the plots shown in Fig. 4.11 and 4.12 . This can be explained from 

the correspondence concept (on similar lines as done in section 3.2.2). If the 

displacement fields are chosen so that the finite element strains are complete to 

the order xn-1, then the finite element solution produces strains that are accurate 

to O(hn), energies that are accurate to O(h2n)  and the errors (in displacements) 

are removed at the rate of O(h2n). Thus for a Timoshenko beam bending problem 

that is analysed with a 2-noded finite element that has linear interpolation 

Elements C
0
-Selective Integration C

0
-Field Consistent

2 86.52191106 86.52191106

4 96.80393995 96.80393995

8 99.44373769 99.44373769

16 100.11133050 100.11133050

32 100.27875990 100.27875990

64 100.32065130 100.32065140

Boundedness of Strain Energy, Circular Simply Supported Plate, 

Uniform Load

Elements C
0
-Selective Integration C

0
-Field Consistent

2 17.22688322 17.22688322

4 17.73745455 17.73745455

8 17.83372042 17.83372042

16 17.85913856 17.85913856

32 17.86563104 17.86563104

64 17.86726365 17.86726365

Boundedness of Strain Energy, Circular Clamped Plate,      

Uniform Load
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functions, it can be predicted a priori that the displacements would converge at 

the rate of O(h2), which is shown in Figs. 4.11 and 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Convergence of deflection in a shear-flexible simply supported circular plate 

(uniform load)  - Isoparametric element 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Convergence of deflection in a shear-flexible clamped circular plate 

(uniform load) – Isoparametric Element 

 

 

SS Circular Plate - UDL

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Log (h)

L
o

g
 (

E
rr

o
r)

C1 - Formulation

C0 - Formulation, RI

C0 - FC Formulation

Clamped Circular Plate - UDL

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Log (h)

L
o

g
 (

E
rr

o
r)

C1 - Formulation

C0 - Formulation

C0 - FC Formulation



 104

Fig. 4.13 captures the rate of convergence for the problem of an open 

hemispherical dome subjected to a tip moment (this problem was reported by 

Grafton and Strome (1963)). The results shown in Table 4.5 are plotted on this 

chart, and this clearly shows that the analysis case for which reduced integration 

is used for both shear and membrane terms gives the least error. It is to be noted 

here that the errors are plotted on the positive side, due to the fact they are 

converging from above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.13 Convergence of deflection in a shear-flexible open spherical dome – 

Isoparametric Element 

 

For a circular plate subjected to a uniformly distributed load, there is no interplay 

between the shear and membrane strain terms, and hence no locking is 

expected due either of these terms, even when full integration is used. This is 

seen in Table 4.9. The bending moment results match very well with exact 

solutions as shown in Fig. 4.13. 

 

However, for the case of a general curved shell (e.g. a open spherical dome), the 

membrane and shear strains are coupled, and hence locking is observed when 

full integration is used as shown in Table 4.10. For the open spherical dome, the 

membrane locking becomes more significant, and only when reduced integration 

is used, it gets alleviated. 
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Table 4.9  Deflections in a shear-flexible simply supported circular plate (uniform load) – 

Anisoparametric element 

 

 

 

 

 

 

 

Table 4.10  Deflections in a shear-flexible open spherical dome subjected to tip moment – 

Anisoparametric element 

 

 

 

 

 

 

 

Fig. 4.14 Bending moments in a shear-flexible simply supported circular plate for a 

uniform load – Anisoparametric element 

 

 

 

 

 

 

# of Elements

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-2, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-4)

Aniso-Reduced 

(Bending-4, Shear-4, 

Membrane-1)

Aniso-Full      (All 

terms -4)

4 0.0000681528 0.0000681681 0.0000036086 0.0000681364 0.0000034397

8 0.0000268575 0.0000268579 0.0000085491 0.0000268495 0.0000083776

16 0.0000181831 0.0000181831 0.0000126145 0.0000181804 0.0000125296

32 0.0000165935 0.0000165935 0.0000149957 0.0000165927 0.0000149672

64 0.0000163326 0.0000163326 0.0000159120 0.0000163323 0.0000159042

128 0.0000163247 0.0000163247 0.0000162177 0.0000163246 0.0000162157

Open Spherical Dome - Tip Moment
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# of Elements

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-2, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-4)

Aniso-Reduced 

(Bending-4, Shear-4, 

Membrane-1)

Aniso-Full      

(All terms -4)

2 0.668655 0.668829 0.668655 0.668671 0.668671

4 0.689983 0.690004 0.689983 0.689991 0.689991

8 0.694340 0.694342 0.694340 0.694345 0.694345

16 0.695366 0.695366 0.695366 0.695368 0.695368

32 0.695619 0.695619 0.695619 0.695620 0.695620

64 0.695681 0.695682 0.695681 0.695682 0.695682

Simply Supported Circular Plate - Uniform Load
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Fig. 4.15 Bending moments in a shear-flexible clamped circular plate for a uniform load – 

Anisoparametric element 

 

The radial and hoop bending moments for a 1-element discretisation is shown in Fig. 

4.15 for clamped plate and Fig. 4.16 for simply supported plate. The best-fit residual 

in tabulated in Table 4.11 and It can be clearly seen that the best-fit rule is obeyed. 

 

 

 

 

 

 

Table 4.11 Results of best-fit rule for a shear-flexible simply supported circular plate  

(uniform load) – Anisoparametric Element 

 

 

 

 

 

 

 

 

Fig. 4.16 Bending moments in a shear-flexible simply supported circular plate 

(uniform load) - 1 element solution for anisoparametric formulation 
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The strain energy boundedness is now studied for the anisoparametric 

formulation for a circular plate subjected to a uniform load and an open spherical 

dome subjected to a tip moment. The results are tabulated in Tables 4.12 and 

4.13 for the simply supported and open spherical dome. 

 

 

Table 4.12 Strain energy boundedness in a shear-flexible simply supported circular plate 

(uniform load) – Anisoparametric element 

 

 

 

 

 
 
 
 
 
 

Table 4.13 Strain energy boundedness in a shear-flexible open spherical dome subjected 
to a  tip moment  - Anisoparametric element 

 

 

It can be seen from Table 4.13 that the boundedness is lost due to use of 

reduced integration. The rate of convergence for the displacement at the centre 

of the circular plate subjected to a uniform load is shown in Fig. 4.17 and Fig. 

4.18 for simply supported and clamped boundary conditions. It can be observed 

that the rate of convergence for the anisoparametric formulation is lower than 

that of the C1 formulation, and there is no degradation of the anisoparametric 

element per se. 

 

# of Elements

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-2, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-4)

Aniso-Reduced 

(Bending-4, Shear-4, 

Membrane-1)

Aniso-Full      

(All terms -4)

4 0.761063 0.761408 0.002878 0.760981 0.002590

8 0.168035 0.168040 0.021067 0.167991 0.019710

16 0.101986 0.101986 0.053544 0.101969 0.053357

32 0.094085 0.094085 0.079258 0.094075 0.081517

64 0.093700 0.093700 0.090232 0.093691 0.094134

128 0.094244 0.094244 0.093960 0.094235 0.098674

Open Spherical Dome - Tip Moment; Strain Energy Boundedness

# of Elements

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-2, Shear-2, 

Membrane-1)

Aniso-Reduced 

(Bending-4, Shear-2, 

Membrane-4)

Aniso-Reduced 

(Bending-4, Shear-4, 

Membrane-1)

Aniso-Full      

(All terms -4)

2 50.822251 50.840037 50.822251 50.819730 50.819730

4 50.634561 50.635877 50.634561 50.630472 50.630472

8 50.368423 50.368507 50.368423 50.362394 50.362394

16 50.248122 50.248128 50.248122 50.239776 50.239776

32 50.205911 50.205906 50.205911 50.194869 50.194869

64 50.194120 50.194123 50.194120 50.179991 50.179991

Simply Supported Circular Plate - Uniform Load; Strain Energy Boundedness
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Fig. 4.17 Convergence of deflection in a shear-flexible simply supported circular plate 

(uniform load) – Anisoparametric element 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18 Convergence of deflection in a shear-flexible clamped circular plate (uniform 

load)  – Anisoparametric Element 

 
Fig. 4.19 captures the rates of convergence of anisoparametric formulation for 

the different combinations of reduced integration for shear and membrane terms. 

The order of convergence is O(h2), as predicted from correspondence concept. 
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Fig. 4.19 Convergence of deflection in a shear-flexible open spherical dome (tip moment) – 

Anisoparametric element 

 
 
 

4.4 Plate Bending Problems – Isoparametric Formulation 

 
The formulation of the simple and elegant isoparametric element led to the 

applications of the finite element method to a wide variety of problems, and 

allowed the mesh to be a generic quadrilateral. For plate bending problems, the 

formulation of a C1 element for an arbitrary quadrilateral was not very straight 

forward, and the isoparametric formulation was very appealing. This led to the 

development of C0 elements for plate bending. In this section, the Mindlin theory 

is used for formulating the C0 element and its effects on the results are studied. A 

case is then made for the use of an element that is variationally correct for 

getting the correct results.   
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4.4.1 Strain Displacement Relations  

 

In the Mindlin theory of bending, one of the crucial assumptions of the Euler-

Bernoulli beam bending theory – lines normal to the neutral axis of the beam 

remain straight and normal to the neutral axis after bending is relaxed.  In the 

Mindlin theory, the line normal to the neutral axis remains straight, but not 

necessarily normal to the neutral axis, after bending. This relaxation brings with 

it, two additional independent degrees of freedom of a node belonging to an 

element modeling the plate/beam. Thus, the node now has w, θx and θy as the 

three independent movements.  Due to this, the bending and shear strain terms 

are now different from those of the Euler-Bernoulli theory, and are as follows.  

 

 

 

 

 

 

 

 

Since only first derivative terms are involved in the strain energy expansion, only 

C0 continuity is required.  

 

4.4.2 Four-noded C0 Element – Isoparametric Formulation 

 

The interpolation functions are bi-linear for the case of the four noded element. 

These functions are – 
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where, N1, N2, N3 and N4 are the interpolation functions and w is the transverse 

displacement of the nodes 1, 2, 3 and 4.  Similar expressions for the rotations of 

the node are 

 

 

 

where the symbol φ is generic, denoting both θx and θy 

 

The same interpolation functions can be used for the geometry  

 

   

      

  

   

where, x1, x2, x3, x4 and y1, y2, y3 and y4 are the geometric locations of the nodes 

1, 2, 3 and 4. 

 

 

 
 
 
 
 
 
 
 
 
 
 

The stiffness matrix formulation can be found in any standard text book, e.g. 

Cook et al. (1989) and is not elaborated here.   

 

            NNNN  44332211 φφφφφ +++= …(4.29) 
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 Thus all the equations necessary for the formulation of the stiffness matrix are in 

place. Numerical integration using an appropriate Gaussian Quadrature (2X2) 

rule is employed for computing these matrices. 

 

The biggest advantage of using isoparametric elements is that complex 

geometric shapes can also be discretised, which is not at the cost of different 

interpolation functions for displacement and geometry. Thus, same interpolation 

functions can be used, making the generation of matrices easier. The 

transformation of the variable from the natural coordinate system to the element 

coordinate system is very important here, which is achieved through the 

Jacobian of the element.  

     
If the mixed integration technique is used here and the stiffness matrix 

corresponding to the shear strains integrated  with the appropriate quadrature as 

demanded by the terms (in this case 2X2 rule), the element still gives erroneous  

results. Thus, locking which disappeared in the earlier case has reappeared. 

Obviously, the mere usage of different rules has to have a deeper mathematical 

significance.  Possibly, the mandatory use of 1X1 rule for the shear strain terms 

for quadrilateral elements just happens to be the solution to avoid locking. But, 

this again fails in the case of the 3-corner supported plate problem. 

 

This necessitates the requirement of a more logically supported strategy for 

analyzing the locking problem. For the quadrilateral elements, the shear strains 

across the inter-element boundary need to be preserved, and this can not be 

achieved by a mere Jacobian transformation of the nodal derivatives. Numerous 

formulations can be found in literature which tackle this transformation of shear 

strains, and the edge-consistency formulation by Prathap and Somasekhar 

(1988) is the one which would be discussed next. 
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4.4.3 Four-noded C0 Element –Field-consistent/Edge-consistent Element 

 

The shear strains in the plate are a function of both the rotation and the 

transverse displacement, (see eqn. 4.27). Thus any transformation of the shear 

strain from a natural coordinate system to a Cartesian coordinate system, should 

appropriately take care of the transformations of both, rotation and the derivative 

of the transverse displacement.  In the edge consistency formulation, the shear 

strains across the inter-element boundary are preserved irrespective of the 

transformation of the coordinate system, Prathap and Somashekar (1988).  

 

When the above edge-consistency formulation is implemented in the C0 element, 

the element becomes free of locking. The results for the cantilever with both 

rectangular and non-rectangular mesh are quite consistent with expected results. 

Also, this formulation gives the correct results for the 3-corner supported plate as 

well. The simple and efficient mathematical basis of the edge-consistency 

formulation has made the implementation of this strategy possible for adaptive 

mesh refinement of plate bending problems by Mukherjee and Krishnamoorthy 

(1996) 

 

4.4.4 Numerical Studies and Discussion  

 

The above element formulation is now used to study plates with different loads 

and boundary conditions. Many of these test cases are well known problems for 

which analytical solutions exist. To further check the remedy used above, tests 

on a simply supported square plate were done, Averill and Reddy (1990). The 

plate is shown in Fig. 4.20, and the results are tabulated in Table 4.14 for the 

non-dimensionalized displacement at the centre of the plate. Here again it can be 

observed that the strategy of mixed integration apparently works. Based on the 

above two test problems, if one concludes that the technique of mixed integration 

can overcome locking, one would be committing a serious mistake. For, this 
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technique does not come from a theoretical perspective. It is just a stop-gap 

solution. It fails in many cases, as discussed in the following sections. 

 

 

 

 

 
 

 
 

 

 
 
 
 
 
 
 

Fig. 4.20 A simply supported plate 

 
 

Y=b 
 

                 

   X=0               X=a        
 
 
 
 

        Y=0 
 
 
   

Fig. 4.21 One quadrant of the plate 
 

 Boundary Conditions: 
 

1.  on the line  Y = 0,    ∂w/∂y = 0 

2.  on the line  X = 0,    ∂w/∂x = 0 

3.  on the line  Y = b,    w = 0,  ∂w/∂x = 0 

4.  on the line  X = a,    w = 0,  ∂w/∂y = 0 
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Table 4.14 Effect of reduced integration on displacement in a  shear-flexible simply 

supported square plate (uniform load) 

 

A three-corner supported square plate with a concentrated load at the fourth 

cornet is studied now (side of the plate=20 units, thickness = 0.4 units, Poisson’s 

ratio = 0.3 and E=200000 units, load=1000 units). This is a standard test 

recommended in Prathap and Somashekar (1988) for studying the response of 

the mixed integration technique. Fig. 4.22 shows the plate, supported at the three 

corners, and load by a concentrated load at the fourth corner.  This loading 

produces a constant twisting moment in the plate and should be captured by any 

finite element modeling this. The mixed integration formulation fails miserably in 

this case, giving violet oscillations in the twisting moments. On the contrary, the 

C1 element, even with one element modeling the entire plate gives good results. 

The results are tabulated in Table 4.15. It is also observed that the mixed 

integration technique fails in the case of non-rectangular elements being used to 

model a plate/beam.  

 

 

 

 

 

 

 

Table 4.15 Effect of reduced integration on displacement of a shear-flexible 3-corner 

supported plate (loaded at 4
th

 corner) 

 

 

F M F M F M F M

100 0.0112 3.5902 0.0478 4.4720 0.1819 4.5549 0.6497 4.5731 4.5720

50 0.0447 3.6352 0.1861 4.5020 0.6516 4.5822 1.8270 4.5996 4.5790

40 0.0695 3.6690 0.2850 4.5245 0.9443 4.6026 2.3353 4.6198 4.5840

20 0.2695 3.9502 0.9794 4.7120 2.3632 4.7728 3.7331 4.7866 4.6250

10 0.9639 5.0752 2.5573 5.4620 3.8835 5.4534 4.5268 5.4538 4.7910

a/t

Effect of Full Integration and Mixed Integration  in a simply supported square plate - uniform load

1X1 2X2 4X4 8X8
Exact

F M F M

2x2 243.98 -21.83 499.99 1324.4, 8.07, 895.5

4x4 244.28 248.60 501.63 1268.9, 1330.9

8x8 244.81 256.11 492, 498 596.4, 2060, 1942

16x16 245.81 257.81 477, 493 188, -53811

Deflection Twisting Moment

Three-Corner suported square plate

# of 

Elements 
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Fig.  4.22 A  3-corner supported plate 

(40X40 plate, t=0.4, ν=0.3, Load=1000) 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.23 Transformation of a quadrilateral element 

 

 

 

 

 

Fig. 4.24 A cantilever beam discretised with a non-rectangular mesh 
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Fig. 4.25 Tests on a patch of elements 
(E =1.0E6 units, ν = 0.3 units, t =1.0 units) 
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The patch tests are now conducted for studying the element behaviour. To 

simulate the constant state of strains in a patch of elements, consider the patch 

shown in Fig. 4.25. 

 

From Tables 4.16 and 4.17, it can be observed that the patch of elements pass 

the patch test. Now, this element will be used for studying a cantilever with 

distorted mesh that had earlier produced erroneous results. 

 

 

 

 

 
 

 

 

 

 
Table 4.16 Results of patch test (bending case) 

 

 

 

 

 

 

 

 
 

 

 

Table 4.17 Results of patch test (twist case) 

 
 

Thus, it can be concluded that the edge-consistency formulation satisfactorily 

explains the phenomena of locking as evidenced from the results reported 

above. 

 
 

Element Number Mx at Centroid Qx at Centroid

1 0.1 0

2 0.1 0

3 0.1 0

4 0.1 0

5 0.1 0

Results of Patch Test (Bending Case)

Element # Mxy at Centroid

1 0.4999

2 0.4999

3 0.5004

4 0.4999

5 0.4998

Patch Test (Twist Case)
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There are many other tests to study the behaviour of the element. Here, a square 

cantilever plate is subjected to a unit moment at the free edge. The schematic is 

shown in Fig. 4.26. The displacement at the free nodes is found as 6.0, and the 

moment at the centroid of both the elements as 0.1, confirming the theoretical 

solutions. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.26 Mesh for a cantilever subjected to a tip moment  

 

It was shown that for a shear-deformable beam using a 2-noded C0 element 

violated the best-fit rule is violated. Using similar arguments, the best-fit rule for a 

shear-deformable plate, for a 4-noded C0 element is violated (Table 4.18). A 

detailed study of a square plate simply supported on all four sides (side of plate = 

40 units, thickness = 0.4 units, E=200000 units and Poisson’s ratio = 0.3) and 

subjected to a sinusoidal load,  (similar to the one described in section 3.4.4) 

reveals this fact. It is significant to note that the bending moments and the shear 

forces for these boundary conditions for both classical plate and shear-

deformable plate remain the same, Wang et al. (2000). 

 

 

(0,0)
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(100,100)

(0,100) (40,100)

(60,0)

 



 120

 

Table 4.18 Results of best-fit rule for a shear-flexible simply supported plate (sinusoidal 

load) 

 

The Quad-4 element formulated using the field-consistency and edge-

consistency concepts gives results that are bounded, and eqn. (2.29) remains 

valid. The strain energy boundedness is shown in Tables 4.19 – 4.22 for the 

cases of simply supported and clamped plates subjected to uniform and point 

loads. 

 

 

  

 

 

  

Table 4.19 Strain energy boundedness in a shear-flexible simply supported plate 

(uniform load) 

 

 

Elements in 

one quarter
QUAD-4 (FC) QUAD-4 (RI)

1 697.013576 923.8573054

4 1272.785107 1273.676536

16 1432.886116 1433.766877

64 1474.271466 1475.149577

Strain Energy of a SS Plate subject to a UDL

Weight Theory-Mx Theory-My Theory-Mxy FEM-Mx FEM-My FEM-Mxy Projection

0.121003 0.62422074 0.62422074 28.0338126 2.420564 2.420564 17.46871 0.05374518

0.2268519 2.84144785 2.84144785 24.4963913 4.516958 9.408544 15.02291 0.06686654

0.121003 5.70076103 5.70076103 3.06964055 9.348561 25.51389 9.386043 -0.06919243

0.2268519 4.98141566 4.98141566 13.9729794 7.252167 18.52591 11.83184 -0.03384374

0.2268519 2.84144785 2.84144785 24.4963913 9.408544 4.516958 15.02291 0.06686654

0.4252933 12.934248 12.934248 21.4053363 11.50494 11.50494 12.57712 0.12434232

0.2268519 25.9498189 25.9498189 2.68230074 16.33654 27.61028 6.94025 -0.00787615

0.4252933 22.6753645 22.6753645 12.2098116 14.24015 20.6223 9.386043 0.06802561

0.121003 5.70076103 5.70076103 3.06964055 25.51389 9.348561 9.386043 -0.06919243

0.2268519 25.9498189 25.9498189 2.68230074 27.61028 16.33654 6.94025 -0.00787615

0.121003 52.0627948 52.0627948 0.33611886 32.44188 32.44188 1.303381 0.10055246

0.2268519 45.4932981 45.4932981 1.53001038 30.34549 25.4539 3.749174 0.13810313

0.2268519 4.98141566 4.98141566 13.9729794 18.52591 7.252167 11.83184 -0.03384374

0.4252933 22.6753645 22.6753645 12.2098116 20.6223 14.24015 9.386043 0.06802561

0.2268519 45.4932981 45.4932981 1.53001038 25.4539 30.34549 3.749174 0.13810313

0.4252933 39.7527675 39.7527675 6.96459508 23.35751 23.35751 6.194967 0.21864417

Best-fit Rule for a Simply Supported Plate - Sinusoidal Load, Mindlin Theory, Field-consistent Formulation

Best-fit Residual =  328.580
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Table 4.20 Strain energy boundedness in a shear-flexible simply supported plate 

(point load) 

 

 

 

 

 

 

 

Table 4.21 Strain energy boundedness in a shear-flexible clamped plate (uniform load) 

 

 

 

 

 

 

 

Table 4.22 Strain energy boundedness in a shear-flexible clamped plate (point load) 

 
 
The relationship between shear deformable plates and classical plates has been 

extensively analyzed by Wang et al. (2000).  The exact solution obtained using 

the relationship provided by Wang et al. (2000) is used to plot the rate of 

convergence of the displacements. For a simply supported plate subjected to a 

uniform load, the convergence of the displacements is shown in Fig.  4.27 

Elements in 

one quarter
QUAD-4 (FC) QUAD-4 (RI)

1 69701.3576 92385.73054

4 62914.80678 63048.5223

16 63091.35758 63271.26662

64 63329.09561 63559.48348

Strain Energy of a SS Plate subject to a Point Load

Elements in 

one quarter
QUAD-4 (FC) QUAD-4 (RI)

1 0.585000028 1.56

4 265.4208846 266.6395151

16 321.2729319 322.3537074

64 335.9808104 337.0235158

Strain Energy of a Clamped Plate subject to a UDL

Elements in 

one quarter
QUAD-4 (FC) QUAD-4 (RI)

1 58.50 188.7600075

4 26527.10 32243.40873

16 29603.15 35601.39303

64 30444.27 36552.04065

Strain Energy of a Clamped Plate subject to a Point 
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Fig. 4.27 Convergence of displacement in a shear-flexible simply supported plate 

(uniform load) – Isoparametric FC element 

 

4.5 Plate Bending Problems – Anisoparametric Formulation 

 

4.5.1 Element Formulation 

 

The anisoparametric formulation is now extended to shear-deformable plates.  

Tessler (1981) uses a conforming element that has the translational 

displacement interpolated from 9 nodes, and rotational displacements 

interpolated from 6 nodes. In this thesis, it was felt that since the interpolation 

functions from a conforming element already exist, they could be leveraged. 

Thus, the same cubic Hermite shape functions that were used for the BFS 

element to represent the translational displacement w are used for the Mindlin 

element as well. The rotational degrees of freedom θx and θy are represented 

using bilinear polynomials.   The element is shown in Fig.4.28. 
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Fig.4.28 4-Noded anisoparametric plate bending element with 

6 degrees of freedom at each node 

 

4.5.2 Numerical Studies and Discussion 

 

For this formulation there is no requirement of using reduced integration. This 

element does not produce any shear locking and the results for the deflection at 

the centre of a simply supported plate are tabulated in Table 4.23. The results of 

the 4-noded conforming anisoparametric element for the case of a simply 

supported plate subjected to a uniform load (side of plate = 40 units, thickness = 

0.4 units, E=200000 units and Poisson’s ratio = 0.3) are shown in Table 4.22. It 

should be noted that the boundary conditions now need to specify the twist 

parameter as well, in addition to the displacement and rotations. The strain 

energy for a simply supported plate subjected to a uniform load is shown in Table 

4.24 for different mesh discretisations. 

 

 

 

 

 

 

Table 4.23 Deflection at the centre of shear-flexible simply supported plate (uniform load) – 

Anisoparametric element 

 

# Elements Deflection @ Centre Theoretical Deflection

2 0.396591021

4 0.830990882

8 0.882934272

16 0.887099406

0.8873

Anisoparametric Element, SS Plate, UDL
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Table 4.24 Strain energy boundedness in a shear-flexible simply supported plate (uniform 

load) - Anisoparametric element 

 

Fig. 4.29 shows the order of convergence for the case of simply supported plate 

subjected to uniform load. There is no benefit in the order of convergence due to 

the use of anisoparametric formulation, which was already explained in section 

4.2.12.  There is no degradation either due to the use of full integration.  

 

 

 

 

 

 

 

 

Fig. 4.29 Convergence of displacement in a shear-flexible simply supported plate for a 

uniform load – Anisoparametric FC element 

 

4.6 Closure 

 

In this chapter, a suite of shear-flexible finite elements (beam bending, plate 

bending, axisymmetric shell elements) was formulated and studied in detail.  

Extensive studies were carried out on anisoparametric elements, which have 

been used so far for overcoming shear locking. It has been conclusively shown 
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2 649.9243894

4 1386.235237

8 1479.054693

16 1486.947007
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that anisoparametric formulation cannot overcome membrane locking, whereas 

field-consistency does. The results from the various formulations were used to 

explain the 3C concepts and the performance of the elements was assessed 

from energy error perspective for shear-flexible linear elastostatics problems. It 

has been shown that the strain energy boundedness and the best-fit rules are 

violated whenever the element formulation deviates from the 3C concepts.  For 

the plate bending problems of shear-deformable plates, the reduced integration 

technique does not follow the best-fit rule. A novel 4-node conforming 

anisoparametric plate bending element has been developed and the results are 

very positive.  

 

Since the 3C concepts and energy error concepts are derived from first 

principles, they should hold good for any example, and the examples presented 

here serve the purpose of demonstration cautioning against indiscriminate use of 

extra-variational tricks.  The results of the studies done across various beam, 

plate and shell problems are summarized in Table 4.25. This table clearly shows 

what performance measure is affected for what deviation from the 3C concept.  

These studies are extended to other applications like linear elastodynamics and  

nonlinear elastostatics and the 3C concepts and energy errors are examined in 

the subsequent chapters.  
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Table 4.25 3C concepts and performance of various shear-flexible element formulations 

 

Note: ���� implies that the performance is good/satisfies the respective attribute 

 ���� implies that it is a violation of the respective attribute 

 ���� implies that the performance of the respective attribute is degraded 

 Element 

Formulation

C-Concept 

Deviation
Example Problem

Strain Energy 

Boundedness

Rate of 

Convergence
Best-fit Rule

Cantilever Beam � ↓↓↓↓ �

 Circular Plate � ↓↓↓↓ �

Open Spherical Dome � ↓↓↓↓ �

Square Plate � ↓↓↓↓ �

Cantilever Beam ���� ���� �

 Circular Plate ���� ���� �

Open Spherical Dome ���� ���� �

Square Plate ���� ���� �

Cantilever Beam ���� ���� ����

 Circular Plate ���� ���� ����

Open Spherical Dome ���� ↓↓↓↓ ����

Square Plate ���� ���� ����

Cantilever Beam ���� ���� ����

 Circular Plate ���� ���� ����

Open Spherical Dome ���� ���� ����

Square Plate ���� ���� ����

Correctness, 

Consistency

C
0
 Iso - RI

Correctness, 

Correspondence

Summary of Results for Linear Elastostatics for shear flexible beams,shells and plates

C
0
 Iso - FI

C
0
 Aniso - FI Consistency

C
0
 Aniso - FC None
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Chapter-5 

Nonlinear Elastostatics for 

Classical Beams, Shells and Plates 

 

5.1 Introduction 

 

In chapters three and four, the application of 3C concepts of correspondence, 

consistency and correctness to linear elastostatics to beams, axisymmetric shells 

and plates was studied. The consistency concepts were able to remove shear 

and membrane locking and stress oscillations. The correspondence concepts 

were able to predict the accuracy of stresses at what are now called Prathap 

points, Rajendran (2008). The correctness concept showed that the variationally 

correct formulations were all bounded and the extra-variational formulations like 

use of non-conforming elements, reduced integration were not necessarily 

bounded.  

 

In this chapter, the problem of large deformation of beams, shells and plates 

taken up. This is of interest due to its practical applications in fields as diverse as 

robotic manipulators, composites, vibrations, piezo-electrics etc.  Von Karman 

(1939) gave a review of nonlinear problems which are of practical interest and 

devotes a whole section to the nonlinear problems in the theory of elasticity due 

to large deflections. The large deformation problems are nonlinear in nature and 

require a good understanding of the kinematics of the deformation. The finite 

element method can be effectively used for the large deformation analysis of 

structures.  

 

The applications of the stiffness matrix method to the large deflection problems 

started in late 1950s and early 1960s. Martin (1965) presented a detailed 
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account of the work done in this early period, and derived the initial stress 

stiffness matrix for a plate bending element.  

 

 Brebbia and Connor and (1969) used a nonconforming element for the large 

deflection analysis of a clamped plate and a clamped cylindrical panel. A mixed 

procedure - linearized equations for a limited number of load steps and then 

correction with Newton-Raphson method is employed. Mallett and Marcal (1968) 

laid out a framework for linear incremental method for the geometric nonlinear 

analysis, and derived the incremental matrices for typical elements. Rajasekaran 

and Murray (1974) brought out the restrictions on the incremental matrices, 

naming them as adequate, inadequate matrices and derive them for typical 

elements.  

 

Wood and Zienkiewicz (1977) used a total Lagrangian formulation for the large 

deflection analysis of structures. A modified isoparametric element with reduced 

integration is used.  Mattiason (1981) analysed the large deformation behavior of 

beam using the elliptic integral approach, and tabulated the results for various 

loads. Surana (1982) used a total Lagrangian formulation for axisymmetric shell 

elements in which the displacements are nonlinear functions of nodal rotations. 

Linear, parabolic and cubic isoparametric elements are used in the formulation.  

 

Yuan and Liang (1989) presented an updated Lagrangian formulation for 

geometric nonlinear analysis of axisymmetric shell problems using a 

degenerated isoparametric shell element. The formulation also incorporated the 

corotational concepts. Narayanan and Krishnamoorthy (1990) used both updated 

and total Lagrangian formulation for the geometric nonlinear analysis of 3D 

beams. The incremental matrices of Rajasekaran and Murray (1974) are used in 

the formulation. Liu and Surana (1993) presented a geometric nonlinear 

formulation for the axisymmetric curved shell based on p-version elements. The 

element displacement field is made hierarchical and derived from Lagrangian 

family of interpolation functions. Little (1999) studied the large deflection 
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behaviour of thin, elastic plates expressing the lateral displacement as a series, 

each term of which involves the product of a sinusoidal term in the longitudinal 

direction, and a polynomial term in the transverse direction. Pai et al. (2000) 

presented a total-Lagrangian displacement-based finite-element formulation for 

general anisotropic beams undergoing large displacements and rotations. Zhang 

and Chueng (2003) used a refined non-conforming triangular plate/shell element 

for geometric non-linear analysis of plates/shells using the total 

Lagrangian/updated Lagrangian approach for geometric non-linear analysis.  

 

The concept of co-rotational formulation has been successfully used in the large 

deformation problems, and is now covered in advanced books on finite element 

analysis, e.g. Crisfield (1991), Belytschko et al. (2000), Felippa (2005). Urthaler 

and Reddy (2005) used the co-rotational concept for the analysis of planar 

beams for both small and large deformations.  Li (1997,1998) used an approach 

which is similar to the co-rotational formulation. 

 

Geometrical nonlinear finite element formulations are prone to a mild form of 

membrane locking. The possibility of membrane locking in a geometrically 

nonlinear formulation as in the Von Karman moderately large deflection theory is 

less well known. The phenomenon of locking (in the form of delayed 

convergence and spurious stress oscillations) for linear formulations was 

discussed at length in chapters 2 and 4. However, there are very few studies on 

locking type behaviour in nonlinear problems. It is not unusual to consider these 

non-linear locking (where the inconsistency originates from the nonlinear 

displacement term in the membrane strain component) to be of the same 

provenance as membrane locking (where the inconsistency emerges from a 

linear term involving the curvature).  So far no studies have been undertaken on 

the interpretation of the use of 3C concepts to the applications of such nonlinear 

problems.  Most of the books on nonlinear analysis of structures, Palazotto and 

Dennis (1992), Sathyamoorthy (1997), do not cover the membrane locking. 
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Kikuchi and Aizawa (1982) were the first to demonstrate that in the finite element 

geometrically nonlinear formulation, a form of locking appears which could be 

removed by a technique called partial field description or by reduced integration.    

Yunhua (1998) and Laulusa and Reddy (2004) used consistency or reduced 

integration to resolve the locking issue in similar nonlinear problems. Reddy 

(2004) returned to this problem recently and used a “similarity” argument to 

rationalize the use of reduced integration on the non-linear strain displacement 

term so that lock-free solutions could be obtained for beam (Euler-Bernoulli and 

Timoshenko) and plate formulations. In these publications, the specific aspects of 

the membrane locking associated with large deformation problems was not dealt 

with. Zhu and Chen (1997) used a combination of one-order and two-order 

interpolation for displacement w instead of three-order interpolation, and 

overcome the membrane locking in the geometric nonlinear analyses of thin 

plates. Choi and Lee (2003) discussed the various assumed strain formulations 

that are used to alleviate the membrane locking in large deformation problems-

and add the hierarchical non-conforming terms to the membrane component to 

make the nonlinear strain field consistent and thereby avoid locking.  Reese et al. 

(2000) proposed a combination of reduced integration plus stabilization concept 

with the stabilization factors being computed on the basis of the enhanced strain 

method, to remove locking. Zhang and Cheung (2003) used a lower-order 

displacement function in the non-linear term in order to avoid membrane locking. 

Asta and Zona (2002) used two additional internal nodes for improving axial 

translations only to overcome the membrane locking of beam problems.  

Nanakorn and Vu (2006) used a similar technique by adding a degree of freedom 

at the center of the element to increase the order of the interpolation of the axial 

displacement.   

 
In this chapter the field-consistency approach is used to explain membrane 

locking. First, the conventional approach for the geometrically nonlinear problems 

using the incremental matrices of Mallett and Marcal (1968), Rajasekaran and 

Murray (1974) is discussed for an Euler-Bernoulli beam. The simplest two-node 
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classical beam element (Euler-Bernoulli Formulation) is used to elucidate the 

principles involved. It is shown that reduced integration can produce an accurate 

element free of locking and stress oscillations.  The use of reduced integration 

and partial field consistency is shown to alleviate the membrane locking.  The 

field-consistency formulation for the large deflection analysis is laid out for an 

Euler-Bernoulli beam, axisymmetric shell and Kirchhoff plate.  The concepts of 

field-consistency for membrane strain are brought out and the required matrices 

for the solution of the nonlinear analyses are formulated.  Three carefully chosen 

beam problems are solved and the results of the field-consistent formulation and 

compared the results with other formulations. The field-consistent formulation for 

a Kirchhoff plates using the classical plate elements developed in chapter-3 is 

explained and the results of this formulation for plates with different boundary 

conditions (simply supported, clamped etc.) and loadings (uniform load, point 

load etc.) are discussed.  For the case of Kirchhoff plate, the field-consistent 

formulation though in principle can be applied, the nature of the shape functions 

that need to be used for ensuring the C1 continuity make the formulation 

complex.  Since membrane locking is not expected in plates, there is no need for 

use of selective integration either. The conventional formulation is employed here 

and the results are discussed for plates with different boundary conditions 

(simply supported, clamped etc.) and loadings (uniform load, point load etc.).  

 
 

5.2 Large Deformation Analyses of Euler-Bernoulli Beams  

 
5.2.1 Strain-displacement relations 

 

The strain-displacement relations for the geometrically nonlinear analysis of a  

long slender beam, from Euler-Bernoulli beam bending theory are as follows: 
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and 

 

 

 

where εx is the membrane strain in the axial direction, and χx is the curvature. 

      

5.2.2 Incremental Matrices 

 

The strain energy when expressed in terms of the above strain-displacement 

relations takes the form, Mallett & Marcal (1968). 

 

 

 

 

 where U is the strain energy, d is the displacement matrix, K is the linear 

stiffness matrix, KN1 and KN2 are nonlinear stiffness matrices, which are functions 

of the displacements. 

The equilibrium equation for a given load increment can be expressed in the 

following form: 

 

 

      

where λ is the load increment for the force matrix F.      

 

The above equation is a nonlinear equation which can be solved using Newton-

Raphson iterative technique. The tangent stiffness matrix which is required for 

this purpose is given by 
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where 
 
 
 

 
 
 
 
 
 
 
and 
 

 
 
 
 

where 
 
 
 
 
 
 

The reduced integration technique involves using numerical integration with one 

Gaussian point for the evaluation of matrices KN1 and KN2.   
 
 

5.2.3 Preliminary Numerical Studies 
 
In this section, the study will be restricted to examining how locking phenomenon 

can appear in the large deformation formulation of a simple beam element. The 

application of field-consistency to remove locking will be taken up in section 

5.2.6. 

 
The incremental matrices derived above are used for the large deformation 

analysis of beams with various boundary conditions. To start with, 2 special 
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cases of hinged-hinged beam and pinned-pinned beam are chosen. These 2 

examples have recently been examined in detail by Reddy (2004).  For a clear 

understanding of the nonlinear response of the beam at an element level, it 

would be good to discretise the beam in to 2 elements.  

 
A uniform beam of length L = 100 units, cross section dimensions of 1 x 1 units, 

made of a material with E = 30 x 106 units   that is simply supported at both ends 

subjected to a uniformly distributed load of intensity  q  per unit length (Reddy 

2004)  is considered.  The units are consistently chosen, so that the exact 

deflection at the middle of the beam in linear bending theory is 0.5208, when  q = 

1. In linear bending theory, where the beam is assumed to undergo pure bending 

(i.e. there is no axial deformation), it is immaterial to consider whether the beam 

is allowed free movement in the axial direction  (i.e. u) at the supported ends, 

Fig. 5.1. However, in non-linear bending, this is a crucial distinction. Hence the 

case where there is no axial restraint at both ends is designated by the hinged-

hinged (HH) condition, and where there is full restraint by the pinned-pinned (PP) 

condition. In the former case, it is inextensional bending, which is largely of a 

linear nature, and in the latter case, it is bending with extension.  Both of these 

cases are modeled with two versions of the EB element. The first version which 

will have locking uses 2 point integration for bending energy and extensional 

energy (this is referred as the EB2x2 element) while the second version which 

will be lock free according to our foregoing analysis will use 2 point integration for 

bending energy but only 1 point integration for the extensional energy (the EB2x1 

element). Using symmetry, half of the beam is modeled with equal length 

elements (Reddy 2004).  

 

The HH case is ideal to test the consistency aspect of the problem. As a 

nonlinear beam element formulation is being used, a correct model should be 

able to recover the purely linear bending response under increasing load. This is 

possible only if the element can ensure that the inextensional axial condition (i.e. 

as there is no axial restraint at both ends, no axial force should develop) is 
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consistently recovered throughout. Table 5.1 shows the deflection under the load 

as q increases from 1 to 10, when half of the beam is modeled with four equal 

length elements. Results from Reddy (2004) are also shown. It is clear that the 

EB2x1 model is able to capture the linear behaviour exactly but the EB2x2 model 

shows an additional stiffening due to the inability of the model to capture the zero 

axial force consistently. 

 
5.2.4 Reduced Integration Formulation 
 
This is a clear indication that the EB2x2 model is unable to recover the zero axial 

force condition consistently due to the presence of the inconsistent terms 

described in section 2.3.3 by eqn. 2.21.  Fig. 5.2 now shows the variation of axial 

force for the same problem when 2 EB2x2 elements are used. The sampling 

strategy must now be carefully interpreted. Using the original strain-displacement 

functions (eqn. 5.1) would show a complex quartic oscillation of the axial force.  

Fig. 5.3 shows the variation of axial force for q = 1 when half of the the  HH beam 

is modeled with  2  EB2x1  elements. It is seen that when the axial force is 

sampled at the Gauss point, it predicts  the exact zero value expected accurately. 

Also shown for effect is the variation in axial force when the displacements are 

used directly in the nonlinear membrane strain (eqn. 5.1) showing the complex 

quartic variation. It is this variation that accounts for the additional stiffening effect 

seen if a 2x2 integration strategy is used. As a 2 pt. integration rule has been 

used for the evaluation of the extensional energy, the first level of filtering is 

shown in Fig. 5.3 by sampling the stresses at the Gauss points corresponding to 

the 2 pt. rule and then extrapolating linearly (EL-1, EL-2). A very curious result 

emerges. It is seen that filtering this stress further by sampling this linear 

variation at the centroid will produce the correct axial force. The constant term is 

consistently recovered and only this should be used in the evaluation of the 

stiffness matrix. A higher order rule will introduce spurious energies that cause 

the additional stiffening. It will be shown in later sections that the field-

consistency argument does exactly this. 
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Fig. 5.1 A hinged-hinged beam 

(E=3000000 N/mm
2
, L = 100 mm, D= 1 mm, B = 1 mm) 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Table 5.1. Deflection at centre of a hinged-hinged beam (uniform load) – Large deflection 
analysis 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5.2 Axial force in a hinged-hinged beam (uniform load) – Large deflection analysis, 

Full Integration 

 

 

Axial Force Variation, Hinge-Hinge Beam, 2 Elem, 2X2 Integ, Load=1
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2x2 2x1 2x2 2x1

1 0.5108 0.5208 0.5108 0.5208

2 0.9738 1.0417 0.9739 1.0417

3 1.3764 1.5625 1.3764 1.5625

4 1.7265 2.0833 1.7265 2.0833

5 2.0351 2.6042 2.0351 2.6042

6 2.3115 3.1250 2.3116 3.1250

7 2.5624 3.6458 2.5630 3.6458

8 2.7926 4.1667 2.7930 4.1667

9 3.0060 4.6875 3.0060 4.6875

10 3.2051 5.2083 3.2051 5.2083

q
Present Reddy (2004)
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Fig. 5.3 Axial force in a hinged-hinged beam (uniform load) – Large deflection analysis, 

Reduced  Integration 

 

 
Figures 5.4 and 5.5 show the bending moment predictions from EB2x2 and 

EB2x1 models of the hinged-hinged Beam with q  =  1. It is seen that the EB2x1 

model of the problem, even though it incorporates the geometrical non-linearity 

due to moderately large deformation, produces predictions for the bending 

moment variation for each element which is exactly a best-fit of the analytically 

exact solution (this can be proved using the process explained in 2.3.3). This 

implies that there are only local errors and no global errors (pollution errors). This 

is true even as the load increases (computations were done up to  q  =  10). 

Thus, the EB2x1 element is variationally correct in the sense of the projection 

theorem of Strang and Fix (1973). 

 

These exercises are now repeated for the pinned-pinned (PP) condition. The PP 

case is ideal to examine the significance of the consistency aspect of the 
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problem where the nonlinear action becomes important. The use of the nonlinear 

beam element formulation should now recover a nonlinear bending response 

under increasing load. The geometry of the beam, the material properties and the 

boundary conditions are shown in Fig. 5.6. Table 5.2 shows the deflection under 

the load as q increases from 1 to 10, when half of the beam is modeled with four 

equal length elements. Results from Reddy (2004) are also shown. It is clear that 

the EB2x1 model is able to capture the nonlinear behaviour exactly (consider 

Reddy (2004) as the benchmark for this problem) but the EB2x2 model now 

shows only a hardly noticeable additional stiffening. This is because the 

inconsistent forces excited contribute negligible energy compared to the primary 

axial force generated due to the immovable ends.  

 

 Fig. 5.5 shows the variation of axial force for the same problem when 2 EB2x2 

elements are used. The variation over the element shows how field-inconsistency 

excites spurious oscillations. Note that now the element does not sample the 

correct stress at the centroid, nor does the filtering strategy (level 1 

corresponding to removal of the linear and quadratic oscillations) give the correct 

stress. This is indicative of the small error seen in the deflections in Table 5 2. 

Figures 5.7 and 5.8 shows how the axial force predictions vary as load  q  

increases for EB2x2 and EB2x1. For comparison is shown a solution using 1000 

elements from ANSYS (2008) is assumed as the exact solution. It is seen that 

EB2x1 gives very nearly the exact answer while EB2x2 gives answers (after 

filtering) which are reasonably close.  The variation of the bending moment along 

the length of the beam is shown in Fig. 5.9 for EB2x2, and in Fig. 5.10 for EB2x1. 

For the HH case, it was seen earlier that the bending moment variation for each 

element was exactly a best-fit of the analytically exact solution However, this is 

no longer true in the presence of locking (EB2x2 element) and the best-fit rule is 

violated. There are now global errors (Prathap and Mukherjee 2004) seen as the 

jump in the bending stress from the best-fit value with each element and across 

element nodes.  
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Fig. 5.4 Bending moment in a hinged-hinged beam (uniform load) –   Large 

deflection analysis, Full Integration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5 Bending moment in a hinged-hinged beam (uniform load) –   

Large deflection analysis, Reduced Integration 
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Fig. 5.6 A pinned-pinned beam 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.2 Deflection at centre of a pinned-pinned beam (uniform load) –   
Large deflection analysis 

 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7 Axial force in a pinned-pinned beam (uniform load) – 

Large deflection analysis, Full Integration 
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2x2 2x1 2x2 2x1

1 0.3668 0.3687 0.3669 0.3687

2 0.5424 0.5466 0.5424 0.5466

3 0.6601 0.6663 0.6601 0.6663

4 0.7510 0.7591 0.7510 0.7591

5 0.8263 0.8361 0.8263 0.8361

6 0.8912 0.9027 0.8912 0.9027

7 0.9485 0.9617 0.9485 0.9617

8 1.0002 1.0150 1.0002 1.0150

9 1.0473 1.0638 1.0473 1.0638

10 1.0908 1.1089 1.0908 1.1089

q
Present Reddy (2004)



                                                                                                   141 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.8 Axial force in a pinned-pinned beam (uniform load) – 

Large deflection analysis, Reduced Integration 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Bending moment in a pinned-pinned beam (uniform load) – 

Large deflection analysis, Full Integration 
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Fig. 5.10 Bending moment in a pinned-pinned beam (uniform load) –  

Large deflection analysis, Reduced Integration 

 

For the pinned-pinned case, the exact solution is not known. Though various 

solutions exist, they are all approximate and even a highly refined finite element 

solution from a commercial finite element software does have some small errors. 

This is the best that can be used for studying the best-fit rule for this case and it 

is seen that it is not exactly zero, but very close to zero with the errors due to the 

non-availability of the exact solution. 

 

Both of the above examples show the impact of the integration-points on the 

results, and the hinged-hinged beam brought out how a spurious axial force is 

produced due to incorrect use of the integration-points. This phenomena is called 

membrane locking, and is significant for large deformation problems.  The 

examples shown above have now laid a case for a requirement of understanding 

of the phenomena of membrane locking during the element formulation level 

itself, and in the next sections 2 element formulations are described that explain 

the membrane locking and the solutions for eliminating the same, using the field-
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consistency concepts. Muralikrishna and Prathap (2006) report a detailed study 

on this. 

 

5.2.5 Partial Field-Consistent Formulation 
 
In this formulation, w,x is assumed to be constant and is represented by eqn. 

(5.8). This approach was followed by Kikuchi and Aizawa (1982).   

 

 
 

 

 

This is very easy to implement in the algorithm for the nonlinear solution through 

the incremental matrices approach of Mallett and Marcal (1968).  

 
 
5.2.6 Full Field-Consistent Formulation 
 
The field-consistent concept of element formulation of Prathap (1984) is 

extended to the case of membrane strain energy.  For the case of the large 

deformation, the process of the field-consistent representation of the membrane 

strain is similar. The strain term that is now being focused is the membrane strain 

εx, which has the multiple “fields”.  From eqn. (5.1), the membrane strain is  

 

 

 

and 

 

 

 

 

 

where 

  )w-(w
2

1
 = w, 12x

…(5.8) 

 
dx

dw

2

1

dx

du
ε

2

x 







+=     …(5.9) 

2
210

10

10

ξbξbb
dx

dw

              ξccθ

ξaau

++=

+=

+=
    …(5.10) 



                                                                                                   144 

 

 

 

 

 

 

 

Using the concepts of field-consistency outlined in section 2.3.3, the field-

consistent membrane strain is 

 

 

 

 

This expression is now used for computing the membrane strain energy, which 

now includes both linear and nonlinear deformations.  The strain energy now 

involves nonlinear terms, and the solution of the equations requires the secant 

stiffness and tangent stiffness matrices in addition to the linear stiffness matrix 

that was derived earlier. The secant stiffness matrix is derived from 

 

 

 

 

where U has the nonlinear terms as well. This leads to the following equations 
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The matrix {qs} can be expressed in terms of the nodal displacements as 
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and 

 

 

The secant stiffness matrix is 
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where 

 

The tangent stiffness matrix is derived on similar lines, using 

 

 
 
which gives the tangent stiffness matrix as 
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The above formulations are now used for studying the large deformation 

behaviour of a hinged-hinged beam, pinned-pinned beam and clamped-clamped 

beam. In addition to the comparison of deflections, axial forces and bending 

moments, the rates of convergence and strain-energy boundedness are also 

discussed. 

 
5.2.6 Numerical Experiments and Discussion  

 
Table 5.3 augments the results of Table 5.1 for the various formulations where 

locking is removed.  The KA element is based in partial approximation of the 

displacement w,x. The FC element is based on application of the field-

consistency concept (Note that in section 5.2.2, a reduced integration approach 

was used). The ANSYS  (2008) results are based on a 1000 element 

discretisation (BEAM3 element is used). JNR elements are based on reduced 

integration, Reddy (2004).  It can be seen that in this linear problem (nonlinearity 

is not induced as there are no membrane forces due to hinged-hinged condition), 

the KA, FC and JNR formulations capture the linearity of the problem (deflections 

for load=10 are exactly 10 times the deflection for load=1). This is confirmed by 

the axial force shown in Table 5.4. 

 

 
 
 

 
 
 
 

 
 
 
 

Table 5.3 Comparison of deflection at the center of a hinged-hinged beam (uniform load) – 

Large deflection analysis 

 

 

 

 

 

KA FC ANSYS JNR KA FC ANSYS JNR

1 0.520833 0.520833 0.520692 0.520833 0.003330 0.003373 0.003370 0.003373

2 1.041667 1.041667 1.040545 1.041667 0.013319 0.013491 0.013461 0.013491

3 1.562500 1.562500 1.558739 1.562500 0.029969 0.030355 0.030213 0.030355

4 2.083333 2.083333 2.074449 2.083333 0.053277 0.053965 0.053531 0.053965

5 2.604167 2.604167 2.587074 2.604167 0.083246 0.084320 0.083286 0.084320

6 3.125000 3.125000 3.095785 3.125000 0.119874 0.121420 0.119317 0.121421

7 3.645833 3.645833 3.599968 3.645833 0.163162 0.165267 0.161436 0.165268

8 4.166667 4.166667 4.099017 4.166667 0.213109 0.215859 0.209430 0.215860

9 4.687500 4.687500 4.592349 4.687500 0.269717 0.273196 0.263062 0.273197

10 5.208333 5.208333 5.079442 5.208333 0.332983 0.337279 0.322078 0.337281

Hinged-Hinged Beam

Load
Max. Vertical Deflection at Centre Max. Axial Displacement
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Table 5.4 Comparison of maximum forces in a hinged-hinged beam (uniform load) –  

Large deflection analysis 

 
 

Table 5.5 and 5.6 give the deflection and results for a pinned-pinned beam. Here 

there is a significant amount of nonlinearity.  The FC (with 128 elements) and 

ANSYS  (2008) results (with 1000 elements) are closest to each other, both at 

displacement and force levels.  This is also seen in Fig. 5.11 and 5.12 where the 

force distribution obtained from various formulations are compared.  The Von 

Karman theory of moderately large deformation predicts constant axial force 

throughout the length of the element.  This is captured only by the FC/KA/RI 

formulations (Fig. 5.12). This is also seen for the clamped-clamped case in Fig. 

5.13 – the FC/KA/RI formulations give a constant axial force throughout the 

length of the element. 

 

 

 
 
 
 
 

 

 

 

 

Table 5.5 Comparison of deflection at the center of a pinned-pinned beam (uniform load) 

Large deflection analysis 

 

KA FC ANSYS JNR KA FC ANSYS JNR

1 -1263.0 -1263.0 -1250.0 -1263.0 0 0 0.8

2 -2526.0 -2526.0 -2498.0 -2526.0 0 0 3.3

3 -3789.1 -3789.1 -3742.0 -3789.1 0 0 7.5

4 -5052.1 -5052.1 -4981.0 -5052.1 0 0 13.3

5 -6315.1 -6315.1 -6213.0 -6315.1 0 0 20.7

6 -7578.1 -7578.1 -7437.0 -7578.1 0 0 29.7

7 -8841.2 -8841.2 -8651.0 -8841.2 0 0 40.2

8 -10104.2 -10104.2 -9854.0 -10104.2 0 0 52.4

9 -11367.2 -11367.2 -11045.0 -11367.2 0 0 66.0

10 -12630.2 -12630.2 -12222.0 -12630.2 0 0 81.0

Zero @ 

centre of 

each 

element

Hinged-Hinged Beam

Load
Max. Bending Moment at Centre Max. Axial Force

KA FC ANSYS JNR KA FC ANSYS JNR

1 0.370203 0.368466 0.368467 0.368733 0.000567 0.000556 0.000556 0.000569

2 0.548789 0.545390 0.545397 0.546556 0.001261 0.001232 0.001233 0.001261

3 0.668467 0.663943 0.663958 0.666265 0.001887 0.001842 0.001844 0.001885

4 0.760865 0.755490 0.755514 0.759090 0.002464 0.002403 0.002407 0.002459

5 0.837257 0.831194 0.831228 0.836144 0.003003 0.002928 0.002934 0.002995

6 0.902999 0.896358 0.896402 0.902705 0.003513 0.003425 0.003433 0.003503

7 0.961082 0.953941 0.953996 0.961718 0.004000 0.003899 0.003909 0.003987

8 1.013357 1.005776 1.006000 1.015008 0.004468 0.004354 0.004367 0.004452

9 1.061057 1.053081 1.053000 1.063788 0.004919 0.004793 0.004809 0.004900

10 1.105046 1.096712 1.097000 1.108910 0.005356 0.005218 0.005237 0.005334

Pinned-Pinned Beam

Load
Max. Vertical Deflection at Centre Max. Axial Displacement
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Table 5.6 Comparison of maximum forces in a pinned-pinned beam (uniform load) 

Large deflection analysis 

 
 
 

 
 
 
 
 
 
 

 
 
 

Fig. 5.11 Bending moment in a pinned-pinned beam (uniform load), 

Large deflection analysis – Comparison of various formulations 

 
 
 
 

 
 
 
 
 
 
 

 

Fig. 5.12 Axial force in a pinned-pinned beam (uniform load),  

Large deflection analysis  – Comparison of various formulations 
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Fig. 5.13 Bending moment in a clamped-clamped beam (uniform load), 

Large deflection analysis  – Comparison of various formulations 

 

 

 

 

 

 

Fig. 5.14 Axial force in a clamped-clamped beam (uniform load),  

Large deflection analysis – Comparison of various formulations 

 

The behaviour of the rate of convergence of the deflections for the above cases 

is discussed now.  It is pertinent to note that the total deflection is the sum of two 

parts, one coming due to the linear portion, and the other due to the nonlinear 

portion, as shown in Fig. 5.15. The load-deflection line shown in blue colour in 

Fig. 5.15 is due to the linear behaviour of the beam due to small deflection 

theory. The load-deflection line shown in magenta colour is the total deflection at 

the centre of the beam from large deflection theory. The difference in the 

deflection of the beam for a give load due to small deflection and large deflection 

theory is due to the stress stiffening of the beam (due to the axial forces that are 

generated from the nonlinear axial strains). The total deflection of the beam 

needs to be separated out into linear and nonlinear portions, as the behaviour of 

the convergence for these two portions could be different. This fact is often 

confounded in most of the current error norms that are used in the adaptive mesh 
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refinement strategies, e.g. Lee and Bathe (1994), Hernandez et al. (1999, 2003), 

Izzuddin et al. (2004). More on this would be discussed in the succeeding 

sections of this chapter and the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15 Linear and nonlinear deflections in a simply supported beam (uniform load) 

 

For the field-consistent formulation for the hinged-hinged case where there is no 

nonlinearity, the rate of convergence is the same as that of the linear 

deformation.   

 

It is possible to establish the rate of convergence a priori, as follows. The 

displacement field for a general 1-D problem can be represented as 

 

 

 

The discretised field is represented by element size h, and there are n elements, 

(n+1 nodes).  
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The strain field is now represented by 

 

 

 

The strain-energy for this case is given by 

 

 

 

 

 

 

 

Thus the order of convergence of the energy (and the displacement) is O(h2n). 

For a 2-noded element where u is represented by a first-order polynomial, this 

comes out to be O(h2) for membrane displacement.  As with EB element where 

cubic functions are used for w, and the bending strain terms (w,xx) are of linear 

order, the accuracy  of w should be O(h4).  In Fig. 5.16 – 5.18, it can be seen that 

only the FC formulation gives the ideal performance of O(h4). It can also be 

noticed notice that all three formulations, FC/RI/KA give positive E+, implying that 

the convergence is from above. This becomes clear when the strain energy 

boundedness of the various formulations is studied in the next sections. 

 

The error is defined as follows: 

 

 

 

where 

E+ is the error in the deflections, with the + sign indicates that the finite element 

solution is converging from above (lower bound). 

wexact is the exact solution  

wfem is the solution from the finite element analysis 
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Fig. 5.16 Convergence of displacement in a hinged-hinged beam (uniform load),  

Large deflection analysis - Comparison of various formulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17 Convergence of displacement in a pinned-pinned beam (uniform load), 

Large deflection analysis - Comparison of various formulations 
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Fig. 5.18 Convergence of displacement in a clamped-clamped beam (uniform load), 

Large deflection analysis - Comparison of various formulations 

 

It can be clearly seen from Fig. 5.16 – 5.18 that the field-consistent formulation 

gives higher rate of convergence than the reduced integration or the partial field-

consistent formulation.  

 

For the hinged-hinged beam, the strain energy for the beam for different load 

cases and mesh discretisations are tabulated in Table 5.7. These results are 

obtained from the field consistent formulation, and for this case of load/boundary 

conditions, the KA formulation and RI formulations give identical results. 

 

 

 

 
 
 
 
 

Table 5.7 Strain energy boundedness in a hinged-hinged beam (uniform load) -  

 FC formulation, Large deflection analysis 

 

For the particular case of hinged-hinged beam, the strain energy from all the 

three formulations, field-consistent, reduced-integration and partial field-

consistent formulations give identical results. 

 

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements Theory

1 16.655816 16.665989 16.666624 16.666664 16.666667 16.666667 16.666667

2 66.623264 66.663954 66.666497 66.666656 66.666666 66.666667 66.666667

3 149.902344 149.993897 149.999619 149.999976 149.999999 150.000000 150.000000

4 266.493057 266.655816 266.665989 266.666624 266.666664 266.666666 266.666667

5 416.395401 416.649713 416.665607 416.666600 416.666663 416.666667 416.666667

6 599.609377 599.975586 599.998474 599.999905 599.999994 600.000001 600.000000

7 816.134986 816.633437 816.664590 816.666537 816.666659 816.666667 816.666667

8 1065.972226 1066.623265 1066.663954 1066.666497 1066.666656 1066.666664 1066.666667

9 1349.121099 1349.945070 1349.996567 1349.999786 1349.999987 1349.999998 1350.000000

10 1665.581603 1666.598851 1666.662428 1666.666402 1666.666650 1666.666666 1666.666667

Strain Energy Boundedness in a Hinged-Hinged Beam, FC Formulation
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For the case of a pinned-pinned beam, the strain energy for different loads and 

mesh discretisations are summarized in Table 5.8 for the FC formulation, in 

Table 5.9 for the KA formulation and Table 5.10 for the RI formulation. It can be 

seen that only the FC formulation gives guaranteed lower bound of the strain 

energy, and also shows the fastest convergence.  The same trend is seen for the 

case of clamped-clamped beam as shown below. 

 

 

 

 

 

 

 

Table 5.8 Strain energy boundedness in a pinned-pinned beam (uniform load) - 

 FC formulation, Large deflection analysis 

 

 

 

 

 

Table 5.9 Strain energy boundedness in a pinned-pinned beam (uniform load) -  

 KA formulation,  Large deflection analysis 

 

 

 

 

 

Table 5.10 Strain energy boundedness in a pinned-pinned beam (uniform load) -  

  RI formulation, Large deflection analysis 

 

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements ANSYS

1 10.090221 10.092873 10.093047 10.093058 10.093058 10.093058 10.093200

2 26.728881 26.734314 26.734701 26.734726 26.734728 26.734728 26.735300

3 45.746059 45.755335 45.756042 45.756089 45.756092 45.756092 45.757500

4 66.485848 66.499963 66.501093 66.501168 66.501173 66.501173 66.503800

5 88.647739 88.667498 88.669143 88.669253 88.669260 88.669261 88.673500

6 112.044444 112.070491 112.072732 112.072883 112.072893 112.072894 112.079000

7 136.543484 136.576332 136.579243 136.579441 136.579454 136.579455 136.589000

8 162.044435 162.084498 162.088144 162.088394 162.088410 162.088411 162.101000

9 188.467726 188.515334 188.519776 188.520083 188.520102 188.520104 188.536000

10 215.748309 215.803725 215.809019 215.809387 215.809411 215.809413 215.830000

Strain Energy Boundedness in a Pinned-Pinned Beam, FC Formulation

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements ANSYS

1 10.357490 10.160307 10.109954 10.097287 10.094116 10.093323 10.093200

2 27.633965 26.960076 26.791183 26.748850 26.738259 26.735611 26.735300

3 47.403387 46.166516 45.858847 45.781794 45.762518 45.757699 45.757500

4 68.967078 67.113134 66.654353 66.539488 66.510753 66.503568 66.503800

5 92.011521 89.495929 88.876168 88.721016 88.682201 88.672496 88.673500

6 116.343034 113.125757 112.336404 112.138810 112.089376 112.077014 112.079000

7 141.825132 137.868911 136.902169 136.660184 136.599641 136.584501 136.589000

8 168.354536 163.624058 162.472724 162.184554 162.112452 162.094422 162.101000

9 195.849472 190.310908 188.968249 188.632219 188.548138 188.527113 188.536000

10 224.243109 217.863822 216.323491 215.938028 215.841573 215.817453 215.830000

Strain Energy Boundedness in a Pinned-Pinned Beam, KA Formulation

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements ANSYS

1 10.149294 10.106008 10.096246 10.093852 10.093257 10.093108 10.093200

2 27.194340 26.838218 26.759992 26.741008 26.736295 26.735119 26.735300

3 47.064980 46.049956 45.827741 45.773895 45.760536 45.757203 45.757500

4 69.122290 67.088923 66.644399 66.536757 66.510055 66.503393 66.503800

5 93.073155 89.655970 88.909628 88.728974 88.684166 88.672986 88.673500

6 118.734893 113.564589 112.436190 112.163140 112.095420 112.078523 112.079000

7 145.978347 138.682845 137.091627 136.706678 136.611210 136.587390 136.589000

8 174.705660 164.910730 162.775527 162.259083 162.131011 162.099057 162.101000

9 204.839341 192.169005 189.408328 188.740721 188.575169 188.533865 188.536000

10 236.316071 220.392903 216.924991 216.086492 215.878570 215.826695 215.830000

Strain Energy Boundedness in a Pinned-Pinned Beam, RI Formulation
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For the case of a clamped-clamped beam, the strain energy for different loads 

and mesh discretisations are summarized in Table 5.11 for the FC formulation, in 

Table 5.12 for the KA formulation and Table 5.13 for the RI formulation. For 

reference, the strain energy from a commercial finite element software ANSYS 

(2008) using a discretisation of 1000 BEAM3 elements has also been tabulated. 

 

 

 

 

 

 

Table 5.11 Strain energy boundedness in a clamped-clamped beam (uniform load) -  

FC formulation,  Large deflection analysis 

 

 

 

 

 

Table 5.12 Strain energy boundedness in a clamped-clamped beam (uniform load) - 

KA formulation, Large deflection analysis 

 

 

 

 

 

 

 

Table 5.13 Strain energy boundedness in a clamped-clamped beam (uniform load) - 

RI formulation, Large deflection analysis 

 

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements ANSYS

1 2.736249 2.746412 2.747048 2.747087 2.747090 2.747090 2.747240

2 10.610864 10.651588 10.654149 10.654309 10.654319 10.654320 10.654300

3 22.820017 22.912784 22.918673 22.919042 22.919065 22.919067 22.919000

4 38.460553 38.629646 38.640534 38.641219 38.641262 38.641265 38.642100

5 56.764292 57.037712 57.055624 57.056758 57.056829 57.056833 57.056200

6 77.155263 77.564529 77.591847 77.593584 77.593693 77.593699 77.592400

7 99.222178 99.801568 99.840979 99.843497 99.843656 99.843666 99.841600

8 122.673755 123.459486 123.513925 123.517420 123.517640 123.517653 123.515000

9 147.301221 148.330754 148.403353 148.408035 148.408330 148.408349 148.403000

10 172.951743 174.263267 174.357313 174.363407 174.363791 174.363816 174.357000

Strain Energy Boundedness in a Clamped-Clamped Beam, FC Formulation

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements ANSYS

1 2.745455 2.749412 2.747849 2.747291 2.747141 2.747103 2.747240

2 10.741231 10.693586 10.665321 10.657145 10.655031 10.654498 10.654300

3 23.372367 23.088236 22.965143 22.930827 22.922022 22.919806 22.919000

4 39.874921 39.073108 38.757538 38.670863 38.648698 38.643125 38.642100

5 59.522020 57.893622 57.280806 57.113767 57.071126 57.060410 57.056200

6 81.709740 78.968280 77.960484 77.686869 77.617085 77.599552 77.592400

7 105.969264 101.872734 100.384375 99.980976 99.878127 99.852290 99.841600

8 131.946997 126.301590 124.259420 123.706021 123.564930 123.529485 123.515000

9 159.377932 152.033458 149.374917 148.653855 148.469969 148.423770 148.403000

10 188.062215 178.905011 175.576217 174.671872 174.441143 174.383168 174.357000

Strain Energy Boundedness in a Clamped-Clamped Beam, KA Formulation

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements ANSYS

1 2.732118 2.746155 2.747033 2.747087 2.747090 2.747090 2.747240

2 10.554574 10.648326 10.654043 10.654328 10.654326 10.654322 10.654300

3 22.593348 22.901204 22.918825 22.919275 22.919136 22.919085 22.919000

4 37.910634 38.606602 38.642754 38.642289 38.641562 38.641342 38.642100

5 55.746852 57.006412 57.063854 57.059857 57.057669 57.057047 57.056200

6 75.556080 77.535823 77.612211 77.600476 77.595530 77.594166 77.592400

7 96.961063 99.793301 99.881487 99.856431 99.847067 99.844529 99.841600

8 119.700975 123.495195 123.584084 123.539027 123.523300 123.519085 123.515000

9 143.592084 148.438398 148.513835 148.441249 148.416990 148.410536 148.403000

10 168.501561 174.474180 174.519679 174.411390 174.376258 174.366962 174.357000

Strain Energy Boundedness in a Clamped-Clamped Beam, RI Formulation
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The sweep test is a very convenient technique to study at a meta-level the effect 

of the discretisation of the problem.  It is a very effective tool for mesh sensitivity 

studies. In a sweep test, the position of the nodes are varied geometrically and 

so become one more parameter for discretisation. For the current beam problem, 

if the beam is discretised in to 2 elements (giving rise to a total of 3 nodes), the 

sweep test can be conducted by keeping the geometrical positions of the first 

and third node fixed, and varying the geometrical position of the 2nd node, as 

shown in Fig.  5.19. In this manner, the position of the middle node becomes one 

more parameter in the discretisation, and is varied from 0 – 50.  

 

 

 

 

 

Fig. 5.19 Sweep-Test in a beam – The position of 2
nd

 node (x) is varied 

 

The results of the sweep test for a pinned-pinned beam from the FC/RI/KA 

formulations are shown in Fig. 5.20.  It can be seen that it is the FC formulation 

that is most insensitive to the sweep test for all loads. Indeed, what can be 

concluded from Fig. 5.20 is that a 1-element solution (as x approaches 0 or 50) is 

as accurate as the 2 element solution. Also, for the RI/KA formulations, the error 

in the strain energy increases with increase in load while the FC formulation is 

insensitive. In Fig. 5.20, the “exact” strain energy is shown in red line, and the FC 

formulation is always bounded for all loads, whereas the RI/KA formulations do 

not remain bounded. 

 

Fig. 5.21 shows the results of the sweep test for a clamped-clamped case. The 

results from FC formulation show guaranteed boundedness of strain energy, 

which is not the case with the KA formulation for this specific case. Unlike the 

case of pinned-pinned beam, the 1-element solution from FC formulation has 

higher errors for all the load cases. 

x 
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Fig. 5.20 Sweep-Test in a pinned-pinned beam (uniform load),  

Large deflection analysis - Comparison of various formulations 

 
 

 

 

 

 

 

 

 

 

Fig. 5.21 Sweep-Test in a clamped-clamped beam (uniform load),  

Large deflection analysis - Comparison of various formulations 

 

 
 

5.3 Large Deformation Analysis of Circular Plates 

 

 
5.3.1 Strain-displacement relations 

 

The strain-displacement relations for the case of large deflections of a circular 

plate are given in Timoshenko and Woinowsky-Krieger (1959): 
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Sweep Test Results - Pinned-Pinned Beam, Load=10
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Sweep Test Results - Clamped-Clamped Beam, Load=4
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5.3.2 Incremental Matrices 

 

The incremental matrices for this case have been derived in this thesis on the 

lines explained by Rajasekaran and Murray (1974). These matrices come out to 

be  

 
 
 
 
 
 
 
 
 
 
 
 
 
where 
 

 
 
and 
 
 
 
 
These incremental matrices are generic in nature and can be applied to different 

element formulations.  
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5.3.3 Numerical Experiments and Discussion  
 
The case of a circular plate undergoing axisymmetric large deflection is now 

studied in detail using a 2-noded element with 3 degrees of freedom at each 

node (1 in-plane axial displacement, 1 transverse displacement and rotation). 

This is a one-dimensional problem and the same element that has been used in 

chapter-3 for linear elastostatics is used.  

 

The results from the above formulation for the case of a circular plate simply 

supported on the edges (radius = 10 in., E=1.0e7 psi, υ =0.3, and t=0.1 in. is 

subjected to a uniform load of 1 lb/in2) are shown in Table 5.14. The results of 

the approximate solution are based on the formula in eqn. (5.27) Timoshenko 

and Woinowsky-Kreiger (1959).  

 

 

 

where 

w is the translational deflection 

h is the thickness of the plate 

a is the radius of the circular plate 

q is the uniform load 

A, B are constants that depend on the boundary conditions (A=1.852 and B 

=0.696 for a simply supported plate, A=0.471 and B=0.171 for a clamped plate) 

 

 

 

 

 
 

 
 

 
Table 5.14 Deflection in a simply supported circular plate (uniform load) -  

 Large deflection analysis 
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Load ANSYS C
1
 Formulation Approximate solution

0.1 0.048075 0.048075 0.044813

0.2 0.070373 0.070371 0.069054

0.3 0.085126 0.085122 0.085131

0.4 0.096427 0.096423 0.097462

0.5 0.105719 0.105714 0.107621

0.6 0.113684 0.113678 0.116350

0.7 0.120699 0.120692 0.124056

0.8 0.126996 0.126988 0.130989

0.9 0.132731 0.132723 0.137315

1 0.138012 0.138002 0.143150

Deflection at centre of a simply supported circular plate - uniform load
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The membrane forces and bending moments shown in Fig. 5.22 – Fig. 5.25 for 

the case of both simply supported and clamped circular plate match very well 

with results from commercial finite element software ANSYS  (2008) (element 

SHELL51 is used), and gives confidence on the results predicted by the 

elements developed herein. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5.22 Membrane forces in a simply supported circular plate (uniform load) –  

Large deflection analysis 

 

 

 

 

 

 

 

 
Fig. 5.23 Bending moments in a simply supported circular plate (uniform load) –  

Large deflection analysis 

 

 

 

 

 
 

 

 

 

 
Table 5.15 Deflection in a clamped circular plate (uniform load) - Large deflection analysis 

 

Large Deflection of a Circular SS Plate - Uniform Load

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

Radial distance from centre

R
a
d

ia
l 

F
o

rc
e

ANSYS-1000

C1-128

Large Deflection of a Circular SS Plate - Uniform Load

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

Radial distance from centre

H
o

o
p

 F
o

rc
e

ANSYS-1000

C1-128

Large Deflection of a Circular SS Plate - Uniform Load

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 2 4 6 8 10

Radial distance from centre

R
a

d
ia

l 
M

o
m

e
n

t

ANSYS-1000

C1-128

Large Deflection of a Circular SS Plate - Uniform Load

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 2 4 6 8 10

Radial distance from centre

H
o

o
p

 M
o

m
e
n

t

ANSYS-1000

C1-128

Load ANSYS C
1
 Formulation Approximate solution

0.1 0.016810 0.016803 0.016177

0.2 0.032283 0.032283 0.031917

0.3 0.045884 0.045883 0.045972

0.4 0.057679 0.057678 0.058311

0.5 0.067960 0.067958 0.069165

0.6 0.077024 0.077020 0.078801

0.7 0.085114 0.085109 0.087449

0.8 0.092416 0.092410 0.095292

0.9 0.099074 0.099067 0.102470

1 0.105198 0.105190 0.109093

Deflection at centre of a circular clamped plate - uniform load
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Fig. 5.24 Membrane forces in a clamped circular plate (uniform load) - 

 Large deflection analysis 

 
 
 
 
 
 
 
 
 
 

 

Fig. 5.25 Bending moments in a clamped circular plate (uniform load) - 

Large deflection analysis 

 
As explained earlier, the total deflection of the plate can be considered to have a 

linear and a nonlinear portion. The behaviour of each of these portions is 

distinctly different. The linear portion was already studied in chapter-3 where it 

was shown to converge at O(h4), and the same is seen here. The order of 

convergence of the nonlinear portion for the simply supported circular plate is 

close to O(h2) as shown in Fig. 5.26, and the total deflection follows the same as 

the nonlinear portion.  For the case of clamped circular plate as well, a similar 

behaviour is seen in Fig. 5.27 
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Fig. 5.26 Convergence of displacement in a simply supported circular plate 

(uniform load) - Large deflection analysis 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 5.27 Convergence of displacement in a clamped circular plate (uniform load) - 

Large deflection analysis 
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Table 5.16 and 5.17 show the results of the strain energy for different 

discretisations for simply supported and clamped circular plates, and the 

boundedness of the results can be seen clearly. 

 
 
 

 
 
 
 
 
 
 
 

Table 5.16 Strain energy boundedness in a simply supported circular plate 

(uniform load) – Large deflection analysis 

 
 
 
 
 
 

 

 

 

 
Table 5.17 Strain energy boundedness in a clamped circular plate (uniform load) – 

Large deflection analysis 

 
 
The results of the sweep test for a simply supported circular plate are shown in 

Fig. 5.28. For all the load cases, the sweep test results show that the strain 

energy is bounded and is fairly insensitive to the position of the 2nd node. Also, a 

1-element solution gives a fairly accurate prediction of the results (strain energy).  

Similar behaviour is seen for the case of the clamped circular plate as shown in 

Fig. 5.29. 

 

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements 128 Elements ANSYS

0.1 0.292087 0.295847 0.296963 0.297257 0.297331 0.297351 0.297353 0.297347

0.2 0.766620 0.779989 0.784037 0.785136 0.785415 0.785485 0.785501 0.785476

0.3 1.308681 1.334463 1.342417 1.344614 1.345173 1.345316 1.345350 1.345320

0.4 1.900115 1.940317 1.952938 1.956464 1.957377 1.957607 1.957667 1.957630

0.5 2.532368 2.588598 2.606540 2.611612 2.612927 2.613262 2.613341 2.613260

0.6 3.200064 3.273663 3.297502 3.304314 3.306088 3.306535 3.306648 3.306590

0.7 3.899383 3.991512 4.021769 4.030490 4.032771 4.033346 4.033495 4.033410

0.8 4.627432 4.739112 4.776255 4.787051 4.789881 4.790596 4.790784 4.790710

0.9 5.381918 5.514057 5.558521 5.571543 5.574968 5.575835 5.576052 5.575990

1 6.160965 6.314387 6.366570 6.381957 6.386017 6.387052 6.387306 6.387250

Strain Energy in a Simply Supported Circular Plate - Uniform Load, Large Deflections, C
1
 Formulation

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements 128 Elements ANSYS

0.1 0.086761 0.087429 0.087552 0.087579 0.087588 0.087592 0.087600 0.087646

0.2 0.324424 0.330798 0.332274 0.332618 0.332707 0.332727 0.332728 0.332710

0.3 0.670541 0.691837 0.697370 0.698663 0.698990 0.699075 0.699094 0.699050

0.4 1.091968 1.137362 1.150329 1.153330 1.154097 1.154290 1.154336 1.154260

0.5 1.568404 1.645270 1.669121 1.674587 1.675985 1.676334 1.676426 1.676290

0.6 2.087694 2.201684 2.239775 2.248414 2.250622 2.251180 2.251318 2.251120

0.7 2.642187 2.797710 2.853258 2.865738 2.868927 2.869731 2.869934 2.869660

0.8 3.226739 3.427374 3.503460 3.520423 3.524746 3.525840 3.526120 3.525760

0.9 3.837685 4.086463 4.186049 4.208109 4.213731 4.215152 4.215516 4.215040

1 4.472272 4.771860 4.897790 4.925554 4.932619 4.934414 4.934859 4.934290

Strain Energy in a Clamped Circular Plate - Uniform Load, Large Deflections, C
1
 Formulation
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Fig. 5.28 Sweep-Test in a simply supported circular plate (uniform load) – 

 Large deflection analysis 

 

 

 

 

 

  

 

 

 
 
 
 
 
 
 

 

 

 
Fig. 5.29 Sweep-Test in a clamped circular plate (uniform load) – Large deflection analysis 
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5.4 Large Deformation Analysis of Classical Plates 

 

5.4.1 Strain-displacement relations 
 
The Von Karman strain displacement relations for the case of large deflections of 

a rectangular plate are given in Timoshenko and Woinowsky-Krieger (1959) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.4.2 Incremental Matrices - BFS Formulation 

 
The BFS element was described earlier in chapter-3 for applications to linear 

elastostatics. The same element is leveraged for considering the nonlinear 

effects, with additional degrees of freedom (in addition to the 4 degrees of 

freedom at each node that was used in chapter-3, this has 2 more – 1 for in-

plane displacement u and the other for in-displacement v. Both u and v have 

bilinear interpolation functions). The incremental matrices for the BFS element 

formulation can be derived on same lines as described in section 5.2. The N1 and 

N2 matrices are as follows: 
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5.4.3 Incremental Matrices – ACM Formulation 

 

The ACM element described in chapter-3 is now used for large deformation 

studies. The incremental matrices for the ACM element formulations are similar 

to those obtained for the BFS formulation, with the only difference being the 

interpolation function w (the interpolation functions for the other displacement 

components u and v are bilinear and the same as that of BFS). 

 

5.4.4 Numerical Experiments & Discussion  

 

The results for the case of a simply supported plate (20x20 mm quarter plate, 0.4 

mm thickness and Poisson’s ratio of 0.3,  Young’s Modulus of 200000 N/mm2 ) 

are shown in Table 5.18, where the results are compared with ANSYS  (2008) 

(with 1000 elements of SHELL63). Unlike the case of beam problems where 

membrane locking required, large deflections of plates do not produce 

membrane locking, and hence there is no requirement of using reduced 

integration to overcome locking. Table 5.18 compares the results obtained from 

both reduced and full integration, and they are very close. 

 

 

 

 

 

 

 

Table 5.18 Deflection in a simply supported plate (uniform load) -  
 Large deflection analysis, BFS Element 

 
The membrane forces and bending moments obtained from this element are 

compared with the results from ANSYS  (2008) in Fig. 5.30 and Fig. 5.31 and 

seen to match very closely.  

 

Load BFS Deflection, FI BFS Deflection, RI ANSYS Deflection

1 0.377013161 0.377006729 0.378168

2 0.505197558 0.505162039 0.506211

3 0.590699941 0.590631297 0.591338

4 0.657072729 0.656969829 0.657296

5 0.712270478 0.712132989 0.712085

6 0.760025623 0.759853495 0.759453

7 0.802414808 0.802208108 0.801477

8 0.840723182 0.840482025 0.839444

9 0.875806578 0.875531096 0.874208

10 0.908266402 0.907956731 0.906367

Large deformation of simply supported plate UDL
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Fig. 5.30 Membrane forces in a simply supported square plate (uniform load) - 

Large deflection analysis, BFS Element 

 

 
 
 
 
 
 
 
 
 

Fig. 5.31 Bending moments in a simply supported square plate (uniform load) - 

Large deflection analysis, BFS Element 

 

The above observations of a simply supported plate are also noted for a  

clamped plate. Table 5.19 shows the impact of using reduced and full integration, 

and as observed for the case of a simply supported plate, there is very little 

impact. Fig. 5.32 and Fig. 5.33 show the comparison of the membrane forces 

and bending moments with ANSYS  (2008) and are seen to match well. 

 

The convergence of displacements as explained earlier is studied for total, linear 

and nonlinear displacements individually and shown in Fig. 5.34 for a simply 

supported plate. The order of convergence of the linear portion is O(h4), and for 

the nonlinear portion is O(h2).  The results for a clamped plate are shown in Fig. 

5.35 
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Table 5.19 Deflection in a clamped plate (uniform load) -   

 Large deflection analysis, BFS Element 

 

 

 
 
 
 
 
 
 
 
 

Fig. 5.32  Membrane forces in a clamped square plate (uniform load) -  

Large deflection analysis, BFS Element 

 

 
 
 
 

 
 
 
 
 
 

Fig. 5.33 Bending moments in a clamped square plate (uniform load) -  

Large deflection analysis, BFS Element 

 

 

Load BFS Deflection, FI BFS Deflection, RI ANSYS Deflection

1 0.23372499 0.233724871 0.23399

2 0.374670511 0.374669981 0.37529

3 0.471039704 0.471038591 0.471923

4 0.545089425 0.545087619 0.546175

5 0.605880967 0.605878381 0.60713

6 0.657870017 0.657866572 0.659257

7 0.703566819 0.703562444 0.705075

8 0.744525658 0.744520282 0.746142

9 0.78177705 0.781770607 0.783492

10 0.816040456 0.816032879 0.817848

Large deformation of clamped plate UDL

Axial Force in a Clamped Plate - UDL, Large Deflection
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Fig. 5.34 Convergence of displacement in a simply supported square plate (uniform load) - 

Large deflection analysis, BFS Element 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.35 Convergence of displacement in a clamped square plate (uniform load) -  

Large deflection analysis, BFS Element 
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Tables 5.20 and 5.21 show the results of the strain energy for different mesh 

discretisations for both simply supported and clamped plate conditions. The 

boundedness of the strain energy can be seen clearly from these tables. 

 

 
 

 
 

 
 
 
 
 

Table 5.20 Strain energy boundedness in a simply supported plate (uniform load) -

Large deflection analysis, BFS Element 

 
 
 
 

 
 
 

 
 
 

Table 5.21 Strain energy boundedness in a clamped plate (uniform load) - 

 Large deflection analysis, BFS Element 

 

 
The sweep test for a plate problem is conceptually similar to that of a beam 

problem. The mesh here would comprise of 4 elements, and sweeping is done 

along the diagonal of the plate, as shown in Fig. 5.36.  The results of the sweep 

test for large deformation analysis of simply supported and clamped plates using 

the BFS element are shown in Fig. 5.37 and Fig. 5.38, and it can be clearly seen 

that the strain energy is bounded. 

 

Load 2x2 4x4 8x8 16x16 ANSYS

1 9.211876608 9.435422246 9.500580527 9.518244326 9.53038

2 22.63628006 23.27367949 23.47282543 23.52904922 23.566

3 38.13015706 39.27060018 39.64235107 39.75035081 39.8208

4 55.20819333 56.91487357 57.487508 57.65756195 57.769

5 73.60212652 75.92492776 76.72087509 76.96148084 77.1208

6 93.1360034 96.11661885 97.15454114 97.47298871 97.6865

7 113.6835644 117.3581041 118.6540387 119.0567407 119.33

8 135.1488811 139.5493865 141.1174392 141.6101391 141.949

9 157.4560993 162.6115038 164.4643007 165.0522134 165.463

10 180.5434356 186.4802125 188.6292097 189.3171205 189.804

Strain Energy in a SS Plate - Uniform Load, Large Deflection, BFS Formulation-FI

Load 2x2 4x4 8x8 16x16 ANSYS

1 5.164471942 5.432095087 5.499312185 5.513503679 5.52249

2 15.310932 16.45433398 16.83764179 16.91888107 16.9636

3 27.58707808 29.93366882 30.86153396 31.05986026 31.1628

4 41.30512028 45.07842959 46.74049987 47.10283659 47.2838

5 56.15670283 61.54362933 64.09921022 64.67115006 64.9488

6 71.95871582 79.12717266 82.71143786 83.53758818 83.9298

7 88.58720741 97.69241157 102.421351 103.545413 104.069

8 105.951686 117.1390354 123.1133375 124.5781275 125.25

9 123.9827119 137.3893912 144.6974563 146.5449102 147.381

10 142.6250616 158.3810899 167.1013663 169.3725415 170.389

Strain Energy in a Clamped Plate - Uniform Load, Large Deflection, BFS FI Formulation
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Fig. 5.36 Sweep-Test in a plate (The position of the centre-node shown in red colour is 

swept along the diagonal) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.37 Sweep-Test in a simply supported square plate (uniform load) -   

Large deflection analysis, BFS Element 
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Fig. 5.38  Sweep-Test in a clamped square plate (uniform load) -  

 Large deflection analysis, BFS Element 

 
 
The above studies are now repeated for the ACM element. Table 5.22 gives the 

deflection at the centre of a simply supported square plate subjected to a uniform 

load. For the ACM formulation also, it can be seen that full-integration and 

reduced-integration give very close results, confirming that membrane locking in 

large deformation of plate problems is not significant. The membrane forces and 

bending moments for the ACM element for the case of simply supported plate 

are shown in Fig. 5.39 and Fig. 5.40. 
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Table 5.22 Deflection in a simply supported plate (uniform load) -  

 Large deflection analysis, ACM Element 

 

 
 

 

 

 

 

 

Fig. 5.39 Membrane forces in a simply supported square plate (uniform load) -  

 Large deflection analysis, ACM Element 

 

 

 

 

 

 

 

 

Fig. 5.40 Bending Moments in a simply supported square plate (uniform load) - 

  Large deflection analysis, ACM Element 

 

Load Full-Integration (5x5) Reduced-Integration (2x2) ANSYS Deflection

1 0.377978 0.377994 0.378168

2 0.505925 0.505933 0.506211

3 0.591012 0.591086 0.591338

4 0.656948 0.657107 0.657296

5 0.711724 0.711972 0.712085

6 0.759081 0.759417 0.759453

7 0.801098 0.801519 0.801477

8 0.839057 0.839560 0.839444

9 0.873814 0.874394 0.874208

10 0.905967 0.906620 0.906367

Large Deflection of a SS Plate - UDL (ACM Formulation)

Axial Force in a SS Plate - UDL, Large Deflection
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The deflection at the centre of a clamped plate using ACM element are shown in 

Tab.5.23. The membrane forces and bending moments are shown in Fig. 5.41 

and Fig. 5.42. 

 

 

 

 

 

 

 

Table 5.23  Deflection in a clamped plate (uniform load) -   

Large deflection analysis, ACM Element 

 

 

 

 

 

 

Fig. 5.41 Membrane forces in a clamped square plate (uniform load) -  

 Large deflection analysis, ACM Element 

 

 

 

 

 

 

 

Fig. 5.42 Bending moments in a clamped square plate (uniform load) -  

 Large deflection analysis, ACM Element 

Load Full-Integration (5x5) Reduced-Integration (2x2) ANSYS Deflection

1 0.235145 0.235140 0.233990

2 0.376195 0.376177 0.375290

3 0.472227 0.472192 0.471923

4 0.545780 0.545726 0.546175

5 0.606003 0.605928 0.607130

6 0.657389 0.657293 0.659257

7 0.702466 0.702348 0.705075

8 0.742798 0.742658 0.746142

9 0.779421 0.779259 0.783492

10 0.813060 0.812875 0.817848

Large Deflection of a Clamped Plate - UDL (ACM Formulation)
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The convergence of displacements for the simply supported plate is shown in 

Fig. 5.43 for various load cases, and in Fig. 5.44 for a clamped plate. When 

compared with similar convergence studies obtained from BFS element (Fig. 

5.34 and Fig. 5.35), the ACM element shows relatively higher errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.43 Convergence of displacement in a simply supported square plate (uniform load) - 

Large deflection analysis, ACM Element 

 

 

For the ACM element for large deflection studies, the strain energy remains 

bounded for both simply supported and clamped plate conditions, as shown in 

Table 5.24 and Table 5.25 
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Fig. 5.44 Convergence of displacement in a clamped square plate (uniform load) -  

 Large deflection analysis, ACM Element 

 

 
 

 

 

 

 

 

 

Table 5.24 Strain energy boundedness in a simply supported plate (uniform load) -  

 Large deflection analysis, ACM Element 

 

 

The results of the sweep-test using the ACM element for the large deflection 

studies of a simply supported plate subjected to a uniform load are shown in Fig. 

5.45.  For all the loads considered here, the strain energy remains bounded.   

Load 2x2 4x4 8x8 16x16 ANSYS

1 9.204844 9.436274 9.500853 9.518315 9.530380

2 22.558461 23.261609 23.469876 23.528311 23.566000

3 37.977683 39.248092 39.636929 39.748996 39.820800

4 54.977171 56.883422 57.480106 57.655718 57.769000

5 73.288732 75.885392 76.711819 76.959234 77.120800

6 92.736665 96.069495 97.144061 97.470400 97.686500

7 113.194999 117.303666 118.642303 119.053856 119.330000

8 134.568081 139.487766 141.104576 141.606996 141.949000

9 156.780298 162.542738 164.450411 165.048840 165.463000

10 179.770080 186.404276 188.614375 189.313541 189.804000

Strain Energy in a SS Plate - Uniform Load, Large Deflection, ACM Formulation-FI
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Table 5.25 Strain energy boundedness in a clamped plate (uniform load) -   

Large deflection analysis, ACM Element 

 

However, for the case of a clamped plate subjected to a uniform load, the sweep-

test for the ACM element shows a cross-over, as can be seen from Fig. 5.46. 

This is a measure of the robustness of the element and clearly indicates that the 

ACM element (due to its non-conforming nature) does not pass the sweep-test. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.45 Sweep-Test in a simply supported square plate (uniform load) -  

 Large deflection analysis, ACM Element 

 

 

Load 2x2 4x4 8x8 16x16 ANSYS

1 5.411510603 5.519581882 5.522874963 5.5194886 5.52249

2 15.6733099 16.59600245 16.87686196 16.92885517 16.9636

3 27.98906103 30.10509881 30.91011316 31.0722124 31.1628

4 41.72211697 45.27371754 46.7970252 47.11722093 47.2838

5 56.57923782 61.76161997 64.16342071 64.68752093 64.9488

6 72.38314075 79.36808731 82.78335236 83.55597262 83.9298

7 89.01249372 97.95686999 102.5010441 103.5658521 104.069

8 106.3780875 117.4277293 123.2008787 124.6006598 125.25

9 124.4111397 137.7029697 144.7928952 146.5695684 147.381

10 143.0567707 158.7201223 167.2047327 169.3993516 170.389

Strain Energy in a Clamped Plate - Uniform Load, Large Deflection, ACM Formulation-
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Fig. 5.46 Sweep-Test in a clamped square plate (uniform load) – 

Large deflection analysis, ACM Element 

 

5.5 Closure 

 

 In this chapter, the use of field-consistent formulation for the large deformation 

analyses of Euler-Bernoulli beam, axisymmetric plate and Kirchhoff plate were 

presented. This formulation eliminates membrane locking that is normally 

associated with this class of problems. Alternate mechanisms of overcoming the 

locking phenomena were examined, and compared with the field-consistent 

formulation. Since the field-consistent formulation is derived from first-principles, 

it is variationally correct, and the results clearly bring this out. For shell and plate 

bending problems, membrane locking due to the nonlinear terms has not been 

observed, and hence there is no need for additional steps in the element 

formulations. Table 5.26 summarizes the results of the various element 

formulations on different example problems that were presented in this chapter. 
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Table 5.26 3C concepts and performance of various element formulations   

(large deflections) 

Note: ���� implies that the performance is good/satisfies the respective attribute 

 ���� implies that it is a violation of the respective attribute 

 ���� implies that the performance of the respective attribute is degraded 

 

 

 

 

 

 

 

 

 

 

 

 

 Element 

Formulation

C-Concept 

Deviation
Example Problem

Strain Energy 

Boundedness

Rate of 

Convergence
Sweep-Test

Pinned-Pinned Beam ���� ���� ����

Hinged-Hinged Beam ���� ���� ����

Clamped-Clamped Beam ���� ���� ����

Pinned-Pinned Beam � ↓↓↓↓ ����

Hinged-Hinged Beam ���� ↓↓↓↓ ����

Clamped-Clamped Beam � ↓↓↓↓ �

Circular simply supported plate ���� ���� ����

Circular clamped plate ���� ���� ����

Simply supported plate ���� ���� ����

Clamped plate ���� ���� ����

Simply supported plate ���� ↓↓↓↓ ����

Clamped plate ���� ↓↓↓↓ �

C
1
 Shell

Summary of Results for Nonlinear  Elastostatics for Classical Beams, Shells & Plates

BFS Element None

ACM Element Conformance

NoneC
1
 Beam

Correctness C
1
 Beam

None
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Chapter-6 

 
Nonlinear Elastostatics for 

Shear-flexible Beams, Shells and Plates 

 

6.1 Introduction 

 

The large deformation of beams, shells and plates based on classical theory was 

discussed in the earlier chapter. In this chapter, the large deformation of shear-

flexible beams, shells and plates based on Timoshenko and Reissner-Mindlin 

theories are discussed. The geometric nonlinear analysis of shear-flexible beams 

has many unique challenges, like both shear and membrane locking. 

Independently, the two phenomena of shear and membrane locking have been 

researched a lot, and many solutions have been offered to overcome them.  

 

Pica et al. (1980) provided a geometric nonlinear formulation of a Mindlin plate 

and present results for 4-noded element, 8-noded serendipity elemnt and 9-

noded Lagrangian elements.  Reduced integration is used for shear terms for the 

4-noded element. Dvorkin and Bathe (1984) introduced separate interpolations 

for the shear strain component for the 4-noded shell element and perform the 

nonlinear analysis of thick and thin shells. Oliver and Onate (1984) presented a 

total Lagrangian formulation for the large displacement/large rotation analysis of 

3D shell problems considering the shear deformation effects. Haefner and Willam 

(1984) used one-point integration for the shear terms in the formulation of the 

stiffness matrix in their analysis of large deflection of shear-flexible beams. Their 

total Lagrangian approach considered moderate rotations of the beam as well. Li 

et al.  (1984) enforced discrete Kirchhoff constraints in the thin plate limit to 

suppress the transverse shear energy and used this method for the geometric 

nonlinear analysis of plates and shells. Oliver and Onate (1986) presented a 
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unified approach for the geometric nonlinear analysis of arches, frames and 

axisymmetric shells that included shear deformation effects. A 3-noded element 

with reduced integration is used in this formulation. Dvorkin et al. (1988) studied 

the nonlinear behaviour of a Timoshenko beam using total Lagrangian 

formulation for curved beam elements that includes the effect of large rotation 

increments.  

 

Narayanan and Krishnamoorthy (1989) used a one-point integration for terms 

associated with shear strains in their geometric nonlinear analysis of mindlin 

plates/shells. The incremental matrices of Rajasekaran and Murray (1974) are 

used in this formulation. Shi and Voyiadjis (1991c) used a quasi-conforming 

element and updated Lagrangian formulation in the geometric nonlinear analysis 

of plates. Cubic polynomials are employed for the interpolation of the transverse 

displacement w.  Liu and Surana (1995) presented a three noded axisymmetric 

finite element formulation for the geometric nonlinear analysis of laminated 

composites. p-version hierarchicial interpolation functions up to order 7 are used.  

 

Singh et al. (1993) used a 4-noded rectangular element with 14 degrees of 

freedom at each node for the large deflection analysis of shear-deformable 

plates. Cubic interpolation functions are used for all the translational 

displacements. The interpolation functions for the transverse displacement w are 

separated into components coming from bending and shear.  Sita Thankam et al.  

(2003) used a displacement field that is derived from force and moment 

equilibrium conditions and call their formulation as material finite element 

formulation which is used in the large deflection analysis of laminated plates.  

Zhang and Kim (2006) used a 4-noded element with 5 and 6 degrees of freedom 

at each node for the geometric nonlinear analysis of laminated composites. 

Bilinear polynomial functions are used in the interpolation functions for all the 

translational displacements. Drilling degrees of freedom are used for the element 

formulation with 6 degrees of freedom per node. Natural shear strain is used for 

overcoming shear locking. 
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The concept of co-rotational formulation has been successfully used in the large 

deformation problems for shear-flexible structures also. Urthaler and Reddy 

(2005) used the co-rotational concept for the analysis of shear-flexible beams for 

both small and large deformations.  

 
Ibrahimbegovic (1995) provided a cure for overcoming the locking by using one 

higher order hierarchical term for the displacement interpolation over the 

corresponding rotation interpolation. Yunhua (1998) used the field-consistency 

concept for a shear-flexible beam element, which eliminated the shear and 

membrane locking. To make the membrane strain field-consistent, Yunhua 

(1998) chose a higher order  (5th order polynomial) displacement function for the 

axial displacement for a 2-noded element, which makes the formulation complex.  

All of these approaches work fine for overcoming the membrane locking.  

Laulusa and Reddy (2004) studied the shear and membrane locking in nonlinear 

composite beams. They use linear, quadratic and cubic elements and study the 

effect of using reduced integration for overcoming the shear and membrane 

locking for beams with different boundary conditions/cross-sections. Agarwal et 

al. (2006) introduced a statically exact solution for the construction of 

interpolation function for the geometric nonlinear analysis of a shear deformable 

beam. This element does not require use of reduced integration for overcoming 

shear locking. 

 
 
In this chapter the field-consistency approach is used to explain locking in shear-

flexible structures undergoing large deflections. The field-consistency formulation 

for the large deflection analysis is laid out for a shear-flexible beam, an 

axisymmetric shell and a Mindlin plate.  For the one-dimensional problem of 

bending of a shear flexible beam, two types of elements are chosen for close 

study – a 2-noded isoparametric element and a 2-noded anisoparametric 

element (where the interpolation functions for the transverse displacement are 
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cubic and that for the axial displacement are linear – section 2.3.2 in this thesis) 

to demonstrate how the field-consistency concepts help to understand the 

membrane locking. The case of the large deformation formulation of an 

isoparametric 2-noded element (where the interpolation functions for both the 

transverse displacement and axial displacement are linear) does not produce any 

membrane locking (though it causes shear locking) is a matter of simplification of 

this more generic case of anisoparametric formulation. The concepts of field-

consistency for the shear and membrane strain are brought out and the required 

matrices for the solution of the nonlinear analyses are formulated.  Three 

carefully chosen beam problems are solved and the results of the field-consistent 

formulation and compared the results with other formulations. The field-

consistent formulation for a Mindlin plate element is explained and the results of 

this formulation for plates with different boundary conditions (simply supported, 

clamped etc.) and loadings (uniform load, point load etc.)  are discussed. The 

conventional formulation is employed here and the results are discussed for 

plates with different boundary conditions (simply supported, clamped etc.) and 

loadings (uniform load, point load etc).  

 

6.2 Large Deformation Analyses of Beams – Isoparametric 

Formulation 

 
6.2.1 – Strain Displacement Relations 
 
For a Timoshenko beam, the nonlinear strain displacement relations become 
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6.2.2 Element Matrices 

 

The incremental matrices were explained in section 5.2.2 and are similar for the 

case of shear-flexible case. The reduced integration technique involves using 

numerical integration with one Gaussian point for the evaluation of matrices KN1 

and KN2.   

 
6.2.3 Partial Field-Consistent Formulation 
 
In this formulation, w,x is assumed to be constant and is represented by eqn. 

(4.8). This approach was followed by Kikuchi and Aizawa (1982).   

 
 
 
 
 

This is very easy to implement in the algorithm for the nonlinear solution through 

the incremental matrices approach of Mallett and Marcal (1968).  

 
 
6.2.4 Full Field-Consistent Formulation 
 
The field-consistent concept of element formulation of Prathap (1984) is  

extended to the case of membrane strain energy.  For the case of the large 

deformation of classical EB beam, the field-consistent formulation was 

elaborated in section 4.2. The formulation of the tangent and secant stiffness 

matrices for a Timoshenko beam is very similar. 

 

The secant stiffness matrix is derived from 

 

 

 

where U has the nonlinear terms as well. This leads to the following equations 

 

 )w-(w
2

1
 = w, 12x

…(6.2) 

0  δU = …(6.3) 
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The secant stiffness matrix is 
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where 

and 

 

The tangent stiffness matrix is derived on similar lines, using 

 

 

 
 
Which gives the tangent stiffness matrix as 
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and 

 

6.2.5 Numerical Experiments and Discussion  

As in the earlier chapter, these matrices are used on the following beam 

problems: 

1. A hinged-hinged beam 

2. A pinned-pinned beam 

3. A clamped-clamped beam 

 
 
 

Fig.  6.1 A hinged-hinged beam  

 
 
 

Fig.  6.2 A pinned-pinned beam  

 

 

 

Fig.  6.3 A clamped-clamped beam  

 

These examples are chosen for their simplicity and for the specific case of the 

hinged-hinged beam, where there is no nonlinear behaviour (as both the 

supports are free to move axially, resulting in zero axial force), it will be 

interesting to see the prediction of the results by the above field-consistent 

formulation. The results for the deflection at the centre of the hinged-hinged 

beam obtained from the field-consistent formulation are tabulated in Table 6.1. It 
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can be clearly seen that this formulation predicts the results as expected (with no 

nonlinearity). 

 

 

 

 

 

 

 

Table 6.1 Deflection at the center of a hinged-hinged shear-flexible beam (uniform load) - 

FC formulation, Large deflection analysis 

 

The field-consistent formulation and the reduced integration formulation for this 

case give identical results. The axial force in the beam is given is shown in Fig.  

6.4, and is zero throughout the length. This is expected as both of the supports 

are free to move and hence do not generate any axial force in the beam.  

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.4 Axial force in a hinged-hinged shear-flexible beam (uniform load) -   

FC formulation, Large deflection analysis 

 
The bending  moment along the length of the beam is shown in Fig. 6.5, and for 

this formulation it is constant within each element. For the case of the hinged-

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements Theory

1 0.46883681 0.50789931 0.51766493 0.52010634 0.52071669 0.5208

2 0.93767361 1.01579861 1.03532986 1.04021267 1.04143338 1.0416

3 1.40651042 1.52369792 1.55299479 1.56031901 1.56215006 1.5624

4 1.87534722 2.03159722 2.07065972 2.08042535 2.08286675 2.0832

5 2.34418403 2.53949653 2.58832465 2.60053168 2.60358344 2.604

6 2.81302083 3.04739583 3.10598958 3.12063802 3.12430013 3.1248

7 3.28185764 3.55529514 3.62365451 3.64074436 3.64501682 3.6456

8 3.75069444 4.06319444 4.14131944 4.16085069 4.16573351 4.1664

9 4.21953125 4.57109375 4.65898437 4.68095703 4.6864502 4.6872

10 4.68836806 5.07899306 5.17664931 5.20106337 5.20716688 5.208

Shear Felxible Beam, 2-Noded Isoparamteric, Hinged-Hinged Beam, UDL, FC Formulation

Axial Force Variation, Hinge-Hinge Beam, Isoparametric FC Formulation 
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hinged beam, the bending moment for the shear-flexible and Euler-Bernoulli 

formulations are the same, Reddy et al. (1997). 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.5 Bending moment in a hinged-hinged shear-flexible beam (uniform load) -  

 FC formulation, Large deflection analysis 

This is not a best-fit (for the same reason that was explained in section 4.2.6).  

The behaviour of the rate of convergence of the deflections for the above cases 

is discussed now.  It is pertinent to note that the total deflection is the sum of two 

parts, one coming due to the linear portion, and the other due to the nonlinear 

portion. This  needs to be separated out as the behaviour of the convergence for 

these two portions could be different. This fact is often confounded in most of the 

current error norms that are used in the adaptive mesh refinement strategies, 

Lee and Bathe (1994). More of this will be discussed in the subsequent sections. 

 

  

 

 

 

 

Table 6.2 Deflection at the center of a pinned-pinned shear-flexible beam (uniform load)- 

FC formulation, Large deflection analysis 

 

 

Bending Moment Variation, Hinged-Hinged Beam

Isoparametric FC Formulation, Load=1
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Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements Exact

1 0.35442304 0.3653667 0.36772825 0.36829703 0.3684379 0.368466664

2 0.53771461 0.54389601 0.54504526 0.54531092 0.54537602 0.545396738

3 0.66142753 0.66368392 0.6638973 0.66393217 0.66393978 0.663957739

4 0.7570825 0.75619261 0.75567628 0.75553223 0.75549533 0.75551383

5 0.83621348 0.83268529 0.83157055 0.83128039 0.83120717 0.831228249

6 0.90433672 0.89851869 0.89689524 0.89648131 0.89637735 0.89640237

7 0.96453918 0.95668485 0.95461794 0.95409645 0.9539658 0.953995728

8 1.01873379 1.00903668 1.00657608 1.00595935 1.00580509 1.00584067

9 1.06819393 1.05680728 1.05399235 1.05329012 1.05311465 1.05315647

10 1.11381326 1.10086202 1.09772478 1.09694492 1.09675022 1.09679873

Shear Felxible Beam, 2-Noded Isoparamteric, Pinned-Pinned Beam, UDL, FC formulation



 193

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 Axial force in a pinned-pinned shear-flexible beam (uniform load)-   

 FC formulation, Large deflection analysis 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 6.7 Bending moment in a pinned-pinned shear-flexible beam (uniform load)-

 FC formulation, Large deflection analysis 
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Table 6.3 Deflection at the center of a clamped-clamped shear-flexible beam 

(uniform load)-  FC formulation, Large deflection analysis 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.8 Axial force in a clamped-clamped shear-flexible beam (uniform load)-  

  FC formulation, Large deflection analysis 

 

 

 

For the field-consistent formulation for the hinged-hinged case where there is no 

non-linearity, the rate of convergence is the same as that of the linear 

deformation O(h2), which is what is seen in Fig. 6.10 (as the interpolation 

functions that are used for u and θx are linear – refer to section 4.2.6) 

 

 

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements Exact

1 0.07803342 0.09715929 0.10187778 0.10305252 0.10334588 0.10336217

2 0.15502493 0.19104788 0.19962474 0.20173752 0.20226369 0.202282463

3 0.23006391 0.27935372 0.29053506 0.29325279 0.29392732 0.293941173

4 0.30245961 0.36102266 0.37363051 0.37665474 0.37740288 0.377407594

5 0.37176899 0.43597167 0.44911167 0.45222693 0.45299541 0.452975019

6 0.4377742 0.50465231 0.51772063 0.52078849 0.52154351 0.521500557

7 0.5004334 0.56772436 0.5803413 0.583279 0.5840006 0.583934339

8 0.5598265 0.62587552 0.63781498 0.64057601 0.64125313 0.641164863

9 0.61610823 0.67974115 0.69087674 0.69343708 0.69406415 0.693950545

10 0.66947286 0.7298776 0.74014592 0.74249522 0.74306996 0.742934251

Shear Felxible Beam, 2-Noded Isoparamteric, Clamped-Clamped Beam, UDL, FC formulation

Axial Force Variation, Clamped-Clamped Beam
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Fig. 6.9 Bending moment in clamped-clamped shear-flexible beam (uniform load)-  

  FC formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10 Convergence of displacement in a hinged-hinged shear-flexible beam 

(uniform load)- FC formulation, Large deflection analysis 
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Fig. 6.11 Convergence of displacement in a pinned-pinned shear-flexible beam 

 (uniform load)- FC formulation, Large deflection analysis 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 6.12 Convergence of displacement in a clamped-clamped shear-flexible beam 

 (uniform load)- FC formulation, Large deflection analysis 
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The boundedness of the total strain energy can be seen clearly in Tables 6.4 – 

6.6 for the cases of H-H, P-P and C-C beams. Due to coupling of  

shear/membrane/bending terms, the boundedness of the  individual components 

of the strain energy (bending/shear) is not seen.  

 

 

 

 

 

 

 
Table 6.4 Strain energy boundedness in a hinged-hinged shear-flexible beam 

 (uniform load) - FC formulation, Large deflection analysis 
 

 

 

 

 

 

 

 
Table 6.5 Strain energy boundedness in a pinned-pinned shear-flexible beam 

 (uniform load) - FC formulation, Large deflection analysis 
 

 

 

 

 

 

 

 

 

 

 
Table 6.6 Strain energy boundedness in a clamped-clamped shear-flexible beam  

(uniform load) - FC formulation, Large deflection analysis 
 

 

Shear Memb. Bend. Total Shear Memb. Bend. Total Shear Memb. Bend. Total

1 0.003 0.000 16.022 16.025 0.003 0.000 16.626 16.629 0.003 0.000 16.667 16.670

2 0.011 0.000 64.087 64.098 0.012 0.000 66.504 66.516 0.012 0.000 66.667 66.678

3 0.026 0.000 144.196 144.221 0.026 0.000 149.634 149.660 0.026 0.000 150.000 150.026

4 0.046 0.000 256.348 256.393 0.046 0.000 266.016 266.062 0.046 0.000 266.666 266.712

5 0.071 0.000 400.543 400.614 0.072 0.000 415.650 415.722 0.072 0.000 416.666 416.738

6 0.103 0.000 576.782 576.885 0.104 0.000 598.536 598.640 0.104 0.000 599.999 600.103

7 0.140 0.000 785.065 785.204 0.142 0.000 814.674 814.816 0.142 0.000 816.665 816.806

8 0.182 0.000 1025.391 1025.573 0.185 0.000 1064.064 1064.249 0.185 0.000 1066.664 1066.849

9 0.231 0.000 1297.760 1297.991 0.234 0.000 1346.706 1346.940 0.234 0.000 1349.997 1350.231

10 0.285 0.000 1602.173 1602.458 0.289 0.000 1662.600 1662.889 0.289 0.000 1666.663 1666.952

Strain Energy for  Hinged-Hinged Beam, Uniform Load, Field-Consistent Isoparametric Formulation

Load
Elements=4 Elements=16 Elements=512

Shear Memb. Bend. Total Shear Memb. Bend. Total Shear Memb. Bend. Total

1 0.001 1.6134 8.31545 9.93039 0.001 1.7133 8.3687 10.0834 0.00147 1.71997 8.37202 10.0935

2 0.003 7.9634 18.4938 26.4605 0.003 8.2845 18.4302 26.718 0.00328 8.30583 18.4258 26.7349

3 0.005 17.73 27.6258 45.3614 0.005 18.296 27.4302 45.7315 0.00496 18.3338 27.4172 45.756

4 0.007 29.991 35.9684 65.9658 0.007 30.812 35.6485 66.4675 0.00655 30.8668 35.6275 66.5008

5 0.008 44.236 43.7298 87.9738 0.008 45.322 43.2953 88.6253 0.00807 45.3937 43.2668 88.6686

6 0.01 60.146 51.0442 111.2 0.01 61.504 50.5038 112.018 0.00954 61.5939 50.4685 112.072

7 0.011 77.501 58.0012 135.513 0.011 79.138 57.3625 136.512 0.01098 79.2465 57.3209 136.578

8 0.013 96.138 64.6638 160.815 0.012 98.062 63.9333 162.008 0.01239 98.189 63.8857 162.087

9 0.014 115.93 71.0782 187.026 0.014 118.15 70.2612 188.425 0.01379 118.297 70.2081 188.519

10 0.015 136.79 77.2792 214.084 0.015 139.3 76.3807 215.7 0.01516 139.47 76.3223 215.808

Strain Energy for  Pinned-Pinned Beam, Uniform Load, Field-Consistent Isoparametric Formulation

Load
Elements=4 Elements=16 Elements=512

Shear Memb. Bend. Total Shear Memb. Bend. Total Shear Memb. Bend. Total

1 0.003 0.0073 2.53414 2.54429 0.003 0.01 2.72409 2.73695 0.00286 0.01021 2.73681 2.74988

2 0.011 0.1094 9.81158 9.93202 0.011 0.1469 10.461 10.6191 0.01113 0.14969 10.5038 10.6646

3 0.024 0.5003 21.0224 21.5466 0.024 0.656 22.1744 22.8544 0.02403 0.66727 22.2484 22.9397

4 0.041 1.3959 35.2057 36.6426 0.041 1.7854 36.7248 38.5509 0.04069 1.81308 36.8199 38.6737

5 0.061 2.9698 51.5016 54.5325 0.06 3.7106 53.1768 56.9479 0.06042 3.76236 53.2789 57.1016

6 0.084 5.3341 69.244 74.6621 0.083 6.5276 70.8634 77.4738 0.08269 6.60969 70.9589 77.6513

7 0.109 8.5479 87.9552 96.6123 0.107 10.274 89.3383 99.7192 0.10713 10.3909 89.4165 99.9145

8 0.136 12.633 107.304 120.073 0.134 14.95 108.31 123.394 0.1335 15.1055 108.363 123.602

9 0.165 17.586 127.065 144.817 0.162 20.537 127.591 148.289 0.16163 20.7333 127.612 148.507

10 0.196 23.391 147.085 170.672 0.192 27.005 147.056 174.252 0.19138 27.244 147.042 174.478

Strain Energy for  Clamped-Clamped Beam, Uniform Load, Field-Consistent Isoparametric Formulation

Load
Elements=4 Elements=16 Elements=512
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The sweep-test is conducted on similar lines as explained in section 5.2.6, and 

the results are shown in Fig. 6.13 for hinged-hinged beam which shows the 

boundedness of the strain energy for all load cases. Fig. 6.14 shows the results 

of the sweep-test for a pinned-pinned beam which also shows the boundedness 

of the strain energy for all load cases. The results of the sweep-test for a 

clamped-clamped beam are shown in Fig. 6.15, which is on similar lines as that 

of pinned-pinned and hinged-hinged cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.13 Sweep-Test in a hinged-hinged shear-flexible beam (uniform load) -  

 FC formulation, Large deflection analysis 
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Fig. 6.14 Sweep-Test in a pinned-pinned shear-flexible beam (uniform load) -  

 FC formulation, Large deflection analysis 

 

 

 
 
 

 

 

 

 

 

 

 

 

Fig.  6.15 Sweep-Test in a clamped-clamped shear-flexible beam (uniform load) -  

 FC formulation, Large deflection analysis 
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6.3. Large Deformation Analysis of Beams - Anisoparametric 

Formulation  

 

The anisoparametric element formulation has already been explained in sections 

2.3, 4.2.5, and is briefly recaptured here without getting into details. This is a 2-

noded element, with 4 degrees of freedom at each of the nodes (axial 

displacement u, transverse deflection w, derivative of the transverse deflection β, 

and independent slope θx). The reason for choosing an additional degree of 

freedom derivative of the transverse deflection β, is to have a higher order 

interpolation function for the transverse deflection w which now has cubic 

interpolation functions, and hence the anisoparametric formulation results (the 

other two variables, u and θx will have linear interpolation functions).  

 

For the aniosparametric formulation, the two strain terms that have the multiple 

fields are studied carefully using the following notation 

 

 

 

 

 

The strain energy arising from the 3 strain components, shear strain energy Us, 

membrane strain energy Um, and bending strain energy Ub, are as follows 

 

 

 

 

The field-consistent representation of the shear strain was already discussed in 

detail in section 2.7. The field-consistent strain terms for anisoparametric 

formulation was explained in section 2.3.3. It is of interest to note that there are 2 

field-consistencies that are ensured in this formulation – shear and membrane. 

The field-consistent shear term is explained in section 2.3.2, and for a straight 

2
210

10

10

ξbξbb
dx

dw

                 ξccθ

ξaau

++=

+=

+=
…(6.9) 

         U  U  U  U bms ++= …(6.10) 
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beam problem, the field-inconsistent shear term is innocuous and does not 

produce any spurious constraint. As a result, the use of full or reduced integration 

for the shear terms does not result in any significant impact on the 

displacements, as shown in Table 4.3 and 4.9. For the membrane strains, the 

field-consistency becomes more important as it has the potential to cause a 

spurious constraint as will be seen now. 

 

6.3.1 Element Matrices 

 

The element matrices remain similar to the matrices derived in section 6.2.4, as 

the nonlinear membrane strain terms remain the same in anisoparametric 

formulation as well. The additional degree of freedom for the anisoparametric 

element was actually considered in the derivations there. 

 

6.3.2 Numerical Experiments and Discussion 

 

The above formulations are now used for studying a hinged-hinged, pinned-

pinned and clamped-clamped beam on similar lines of section 5.2. Table 6.7 

shows the deflection at the centre of a shear-flexible hinged-hinged beam, where 

there is no nonlinearity. The results simulate this linear behaviour accurately. The 

axial force is shown in Fig. 6.16, and can be seen to be zero for all the load 

cases.  

 

 

 

 

 

 

Table 6.7 Deflection at the center of a hinged-hinged shear-flexible beam (uniform load) - 

FC Anisoparametric formulation, Large deflection analysis 

 

 

Load 2 Element 4 Element 8 Element 16 Element 32 Element Theory

1 0.49487847 0.51440972 0.51929253 0.52051324 0.52081841 0.5208

2 0.98975695 1.02881944 1.03858507 1.04102648 1.04163683 1.0416

3 1.48463542 1.54322917 1.5578776 1.56153971 1.56245524 1.5624

4 1.97951389 2.05763889 2.07717014 2.08205295 2.08327365 2.0832

5 2.47439236 2.57204861 2.59646267 2.60256619 2.60409207 2.604

6 2.96927084 3.08645833 3.11575521 3.12307943 3.12491048 3.1248

7 3.46414931 3.60086806 3.63504774 3.64359267 3.6457289 3.6456

8 3.95902778 4.11527778 4.15434028 4.1641059 4.16654731 4.1664

9 4.45390625 4.6296875 4.67363281 4.68461914 4.68736572 4.6872

10 4.94878473 5.14409722 5.19292535 5.20513238 5.20818414 5.208

Shear Flexible Hinged-Hinged Beam, UDL, Anisoparametric FC Formulation
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Fig.  6.16 Axial force in a hinged-hinged shear-flexible beam (uniform load)- 

 FC Anisoparametric formulation, Large deflection analysis 

 

The bending moment is shown in Fig. 6.17, and in this case the bending moment 

is a best-fit, and can be seen both pictorially in Fig. 6.17 and can be proven 

analytically. 

 

 
 
 
 
 
 

 

 

 

 

 

 

Fig. 6.17 Bending moment in a hinged-hinged shear-flexible beam (uniform load) - 
FC Anisoparametric formulation, Large deflection analysis 
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For the pinned-pinned case, the deflection at the centre of the beam is tabulated 

in Table 6.8 for all the load cases. The exact solution corresponds to the solution 

obtained from a commercial finite element software ANSYS  (2008), where the 

beam was discretised into a large number of elements (in this case it was 1000 

elements of BEAM3 element). 

 

 
 
 

 

 

 

Table 6.8 Deflection at the center of a pinned-pinned shear flexible beam (uniform load)- 

FC Anisoparametric formulation, Large deflection analysis 
 

The axial force for this case is shown in Fig. 6.18, and bending moment in Fig.    

6.19. In the absence of a theoretical exact solution for the axial force and 

bending moment for a pinned-pinned beam, the best-fit rule is not evaluated 

here. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.18 Axial force in a pinned-pinned shear-flexible beam (uniform load)- 

FC Anisoparametric formulation, Large deflection analysis 

 

Load 2 Element 4 Element 8 Element 16 Element 32 Element Exact

1 0.36001996 0.36650394 0.36799775 0.3683635 0.36845446 0.368467

2 0.53812584 0.54378255 0.54500579 0.54530039 0.54537335 0.545397

3 0.65778395 0.66263923 0.66363019 0.66386506 0.66392298 0.663958

4 0.7502228 0.75442431 0.75523302 0.75542137 0.75546761 0.755514

5 0.82666984 0.83032276 0.83098304 0.83113373 0.83117052 0.831228

6 0.89247073 0.89564959 0.89618505 0.89630421 0.89633311 0.896402

7 0.95061254 0.95337263 0.95380064 0.95389279 0.95391492 0.953996

8 1.00294542 1.00532959 1.0056635 1.00573208 1.00574832 1.005841

9 1.05070077 1.05274338 1.05299379 1.05304154 1.05305257 1.053156

10 1.09474286 1.09647221 1.09664777 1.09667691 1.09668329 1.096799

Shear Felxible Beam, 2-Noded Anisoparamteric, Pinned-Pinned Beam, UDL, FC formulation

Axial Force Variation, Pinned-Pinned Beam

Anisoparametric FC Formulation,Load=1 
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Fig. 6.19 Bending Moment in a pinned-pinned shear-flexible beam (uniform load)- 

FC Anisoparametric formulation, Large deflection analysis 
 

The deflection in a clamped-clamped beam is shown in Table 6.9 for all the load 

cases. Here again, the exact solution is from ANSYS  (2008) (BEAM3 element). 

It can be seen that the results from a relatively less number of elements form the 

anisoparametric element match closely with ANSYS  (2008) results. The axial 

force in the beam is shown in Fig. 6.20 for various load cases. Fig. 6.21 shows 

the bending moment in the beam along the length. 

 
 

 

 

 

 

 

 

Table 6.9 Deflection at the center of a clamped-clamped shear flexible beam (uniform load) 

FC Anisoparametric formulation, Large deflection analysis 

 

Bending Moment Variation, Pinned-Pinned Beam,

Anisoparametric FC Formulation, Load=1
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Load 2 Element 4 Element 8 Element 16 Element 32 Element Exact

1 0.07789669 0.0970903 0.10185769 0.10304731 0.10334457 0.103362

2 0.1539893 0.19055105 0.19948243 0.20170076 0.20225442 0.202282

3 0.22685274 0.27791641 0.29013173 0.29314917 0.29390123 0.293941

4 0.29562423 0.35818515 0.37285028 0.37645531 0.37735275 0.377408

5 0.35996601 0.43141572 0.44788111 0.45191375 0.45291676 0.452975

6 0.41991393 0.49819812 0.51600307 0.52035293 0.52143422 0.521501

7 0.47571876 0.55929465 0.57812493 0.58271854 0.58386006 0.583934

8 0.52772863 0.61545939 0.63510286 0.63989172 0.64108164 0.641165

9 0.57631702 0.66736726 0.68768005 0.69263197 0.69386247 0.693951

10 0.62184447 0.71559646 0.73647986 0.74157322 0.74283906 0.742934

Shear Felxible Beam, 2-Noded Anisoparamteric, Clamped-Clamped Beam, UDL, FC 



 205

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.20 Axial force in a clamped-clamped shear-flexible beam (uniform load)  

 FC Anisoparametric formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.21 Bending moment in a clamped-clamped shear-flexible beam  

(uniform load), FC Anisoparametric formulation, Large deflection analysis 

 
 

The convergence of the displacements in a hinged-hinged beam are shown in 
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is also independent of the load. The convergence of displacements for pinned-

pinned beam and clamped-clamped beam are shown in Fig. 6.23 and Fig. 6.24.  

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 6.22 Convergence of displacement in a hinged-hinged shear flexible beam 

(uniform load) FC Anisoparametric formulation, Large deflection analysis 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.23 Convergence of displacement in a pinned-pinned shear flexible beam 

(uniform load)  FC Anisoparametric formulation, Large deflection analysis 
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Fig. 6.24 Convergence of displacement in a clamped-clamped shear flexible beam 

(uniform load) FC Anisoparametric formulation, Large deflection analysis 

 

The strain energy in a hinged-hinged beam for various load cases and element 

discretisations is tabulated in Table 6.10. It can be seen clearly that the total 

strain energy remains bounded for all the load cases. 

 

 
Table 6.10 Strain energy boundedness in a hinged-hinged beam (uniform load)-  

FC Anisoparametric formulation, Large deflection analysis 
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Shear Memb. Bend. Total Shear Memb. Bend. Total Shear Memb. Bend. Total

1 0.003 0.000 16.452 16.455 0.003 0.000 16.653 16.656 0.003 0.000 16.667 16.670

2 0.012 0.000 65.809 65.821 0.012 0.000 66.612 66.624 0.012 0.000 66.667 66.678

3 0.026 0.000 148.071 148.097 0.026 0.000 149.878 149.904 0.026 0.000 150.000 150.026

4 0.046 0.000 263.238 263.284 0.046 0.000 266.450 266.496 0.046 0.000 266.666 266.713

5 0.072 0.000 411.309 411.381 0.072 0.000 416.328 416.400 0.072 0.000 416.666 416.739

6 0.104 0.000 592.285 592.389 0.104 0.000 599.512 599.616 0.104 0.000 600.000 600.104

7 0.142 0.000 806.166 806.308 0.142 0.000 816.003 816.144 0.142 0.000 816.666 816.808

8 0.185 0.000 1052.951 1053.137 0.185 0.000 1065.799 1065.984 0.185 0.000 1066.666 1066.851

9 0.234 0.000 1332.642 1332.876 0.234 0.000 1348.902 1349.137 0.234 0.000 1349.999 1350.233

10 0.289 0.000 1645.237 1645.526 0.289 0.000 1665.311 1665.601 0.289 0.000 1666.665 1666.955

Strain Energy for  Hinged-Hinged Beam, Uniform Load, Field-Consistent Anisoparametric Formulation

Load
Elements=4 Elements=16 Elements=512
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For the pinned-pinned beam the shear strain energy and the bending strain 

energy converge from above for all load cases, as seen in Table 6.11. For the 

clamped-clamped case, it can be seen from Table 6.12 that the shear strain 

energy converges from above, and the bending and membrane strain energy 

converge from below. The reason for the above behaviour is attributed to the 

exclusion of higher-order Legendre terms in the field-consistent formulation. 

 

Table 6.11 Strain energy boundedness in a pinned-pinned beam (uniform load)- 

FC Anisoparametric formulation, Large deflection analysis 

 

Table 6.12 Strain energy boundedness in a clamped-clamped beam (uniform load)- 
FC Anisoparametric formulation,  Large deflection analysis 

 

The results of the sweep-test for a hinged-hinged beam are shown in Fig. 6.25, 

where the strain energy remains bounded for all the load cases. For the pinned-

pinned beam, the results of the sweep-test are shown in Fig. 6.26, and as 

discussed in the preceding paragraph, the convergence is not from below  (and 

hence not bounded) for all the load cases. The results of the sweep-test for the 

Shear Memb. Bend. Total Shear Memb. Bend. Total Shear Memb. Bend. Total

1 0.001 1.681 8.381 10.063 0.001 1.717 8.373 10.092 0.001 1.720 8.372 10.093

2 0.003 8.191 18.527 26.721 0.003 8.299 18.432 26.734 0.003 8.306 18.426 26.735

3 0.005 18.145 27.616 45.766 0.005 18.322 27.429 45.756 0.005 18.334 27.417 45.756

4 0.007 30.609 35.917 66.533 0.007 30.851 35.645 66.503 0.007 30.867 35.627 66.501

5 0.008 45.070 43.643 88.722 0.008 45.373 43.290 88.672 0.008 45.394 43.267 88.669

6 0.010 61.208 50.926 112.144 0.010 61.570 50.497 112.076 0.010 61.594 50.469 112.072

7 0.011 78.800 57.857 136.668 0.011 79.219 57.354 136.583 0.011 79.247 57.321 136.578

8 0.013 97.684 64.496 162.193 0.012 98.157 63.923 162.093 0.012 98.189 63.886 162.087

9 0.014 117.735 70.891 188.640 0.014 118.261 70.250 188.525 0.014 118.297 70.208 188.519

10 0.016 138.853 77.076 215.944 0.015 139.432 76.368 215.815 0.015 139.471 76.322 215.808

Strain Energy for Shear-Flexible Pinnned-Pinned Beam, Field-Consistent Anisoparametric Formulation

Load
Elements=16 Elements=512Elements=4

Shear Memb. Bend. Total Shear Memb. Bend. Total Shear Memb. Bend. Total

1 0.003 0.008 2.531 2.542 0.003 0.010 2.724 2.737 0.003 0.010 2.737 2.750

2 0.011 0.122 9.762 9.894 0.011 0.148 10.457 10.616 0.011 0.150 10.504 10.665

3 0.024 0.551 20.810 21.385 0.024 0.660 22.159 22.843 0.024 0.667 22.248 22.940

4 0.041 1.520 34.663 36.224 0.041 1.794 36.687 38.521 0.041 1.813 36.820 38.674

5 0.061 3.201 50.446 53.708 0.060 3.726 53.104 56.891 0.060 3.762 53.279 57.102

6 0.084 5.698 67.505 73.287 0.083 6.551 70.746 77.381 0.083 6.610 70.959 77.651

7 0.109 9.059 85.386 94.554 0.107 10.306 89.168 99.582 0.107 10.391 89.416 99.914

8 0.136 13.295 103.784 117.216 0.134 14.991 108.080 123.205 0.134 15.106 108.363 123.602

9 0.166 18.398 122.494 141.058 0.162 20.587 127.295 148.043 0.162 20.733 127.612 148.507

10 0.197 24.345 141.382 165.923 0.192 27.063 146.689 173.944 0.191 27.244 147.042 174.477

Strain Energy for  Clamped-Clamped Beam, Uniform Load, Field-Consistent Anisoparametric Formulation

Load
Elements=4 Elements=16 Elements=512
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clamped-clamped beam are shown in Fig. 6.27 and the total strain energy is 

bounded. 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 

Fig. 6.25 Sweep-Test in a hinged-hinged shear-flexible beam (uniform load)- 

 FC Anisoparametric formulation,  Large deflection analysis 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 6.26 Sweep-Test in a pinned-pinned shear-flexible beam (uniform load)- 

 FC Anisoparametric formulation,  Large deflection analysis 

Sweep Test on a Hinged-Hinged Beam, UDL, 

FC Anisoparametric Formulation

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=1

Load=4

Load=10

Sweep Test on a Hinged-Hinged Beam, UDL, 

FC Anisoparametric Formulation

7

7.2

7.4

7.6

7.8

8

8.2

8.4

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=1

Exact

Sweep Test on a Hinged-Hinged Beam, UDL, 

FC Anisoparametric Formulation

110

115

120

125

130

135

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=4

Exact

Sweep Test on a Hinged-Hinged Beam, UDL, 

FC Anisoparametric Formulation

700

720

740

760

780

800

820

840

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=10

Exact

Sweep Test on a Pinned-Pinned Beam, UDL, 

FC Anisoparametric Formulation

0

20

40

60

80

100

120

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=1

Load=4

Load=10

Sweep Test on a Pinned-Pinned Beam, UDL, 

FC Anisoparametric Formulation

4.85

4.9

4.95

5

5.05

5.1

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=1

Exact

Sweep Test on a Pinned-Pinned Beam, UDL, 

FC Anisoparametric Formulation

33.2

33.3

33.4

33.5

33.6

33.7

33.8

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=4

Exact

Sweep Test on a Pinned-Pinned Beam, UDL, 

FC Anisoparametric Formulation

107.8

108

108.2

108.4

108.6

108.8

109

109.2

109.4

109.6

109.8

0 10 20 30 40 50

Position of node

S
tr

a
in

 E
n

e
rg

y

Load=10

Exact



 210

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.27 Sweep-Test in a clamped-clamped shear-flexible beam (uniform load)-  

FC Anisoparametric formulation,  Large deflection analysis 
 

 

The anisoparametric formulation for large deflection problems makes a good 

case for detailed study of impact of selective integration, which has been 

historically used to overcome the problem of shear locking. For large deflection 

problems, it has already been shown in section 2.3.3 that membrane locking 

occurs due to field-inconsistent membrane strains. This is typically overcome 

through use of reduced integration. In the present study, full and 

reduced/selective integration are used for the large deflection analysis of 

anisoparametric shear flexible beams. Here, the nonlinear incremental matrices, 

[KN1] and [KN2], are computed using full and reduced/selective integration. This 

results in the following four cases for the formulation of the stiffness matrices 

(which includes both linear and nonlinear strains). 
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1. Full integration for the linear shear strain, and full integration for the 

nonlinear membrane strain. 

2. Reduced integration for the linear shear strain, and full integration for the 

nonlinear membrane strain. 

3. Full integration for the linear shear strain, and reduced integration for the 

nonlinear membrane strain. 

4. Reduced integration for the linear shear train, and reduced integration for 

the nonlinear membrane strain. 

 

For the present case of anisoparametric beam element, full integration for the 

linear shear strain terms requires 3-point Gaussian quadrature. For reduced 

integration for the linear shear stress terms, 2-point Gaussian quadrature is used.  

For the nonlinear membrane strain terms, full integration requires use of 4-point 

Gaussian quadrature for evaluating [KN1], and 5-point Gaussian quadrature for 

evaluating [KN2], while for reduced integration 1-point Gaussian quadrature is 

used for evaluating both [KN1] and [KN2]. The examples of a hinged-hinged beam, 

pinned-pinned beam, and clamped-clamped beam will now be used for the 

studying the 4 cases of the different numerical integration schemes that were 

explained in the preceding paragraph.   

 

The results for the displacement in a hinged-hinged beam for the above 4 cases 

are shown in Table 6.13. The results from cases 3, 4 and field-consistent 

formulations are very close, as expected (The impact of using either full 

integration or reduced integration on the shear strain terms for this 

anisoparametric beam element is insignificant, as it does not generate any 

spurious constraint, unlike the case for membrane strain where there is a 

spurious constraint which needs to be relieved only by reduced integration or 

field-consistent formulation). It can be observed that the effect of the load on the 

displacement at the center of the beam is not linear, for cases 1 and 2 where full 

integration is employed for membrane strains. This is in violation of the physics of 

the hinged-hinged beam, where there is no axial force and hence no nonlineartiy 
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is to be expected. This nonlinearity is primarily caused due to the use of full 

integration for the membrane strain terms which generates a spurious axial force 

as shown in Fig. 6.28. The stress oscillations also can be seen in Fig. 6.28. 

Cases 1 and 2 are seen to follow a similar trend, and cases 3 and 4 follow a 

similar trend. This is expected as the impact of reduced or full integration on the 

shear terms is minimal. Similar behaviour is seen in the bending moment plot 

shown in Fig. 6.29. 

 

 

 

 

 

 

 

Table 6.13 Deflection at the center of a hinged-hinged shear flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.28 Axial force in a hinged-hinged shear-flexible beam  (uniform load) – 

 Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

Load S-FI, M-FI S-RI, M-FI S-FI, M-RI S-RI, M-RI FC Theory

1 0.516619 0.516621 0.519293 0.519293 0.519293 0.520800

2 1.018249 1.018294 1.038585 1.038585 1.038585 1.041600

3 1.494247 1.494485 1.557877 1.557878 1.557878 1.562400

4 1.939638 1.940320 2.077169 2.077170 2.077170 2.083200

5 2.353812 2.355205 2.596460 2.596463 2.596463 2.604000

6 2.738579 2.740902 3.115751 3.115755 3.115755 3.124800

7 3.096722 3.100125 3.635041 3.635048 3.635048 3.645600

8 3.431204 3.435774 4.154331 4.154340 4.154340 4.166400

9 3.744805 3.750580 4.673619 4.673633 4.673633 4.687200

10 4.039991 4.046977 5.192906 5.192925 5.192925 5.208000

Comparison of Deflection at the centre of a Hinged-Hinged Beam, 8 Elements

Axial Force in a Hinged-Hinged Beam 

(Shear-Flexible, Large Deformation)
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Fig. 6.29 Bending moment in a hinged-hinged shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

The displacements in a pinned-pinned beam are shown in Table 6.14. It is  

interesting to note that case-4 gives higher displacements due to use of reduced 

integration for both shear and membrane strain terms (which causes a softening 

effect leading to higher displacements). 

 

 

 

 

 

 

 

 

Table 6.14 Deflection at the center of a pinned-pinned shear flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

Load S-FI, M-FI S-RI, M-FI S-FI, M-RI S-RI, M-RI FC Theory

1 0.367578461 0.367578676 0.368452018 0.369536302 0.36799775 0.368467

2 0.544220181 0.544220972 0.545936322 0.550633704 0.54500579 0.545397

3 0.662623499 0.662624953 0.664918939 0.674262096 0.66363019 0.663958

4 0.754077782 0.754079906 0.756818846 0.771298294 0.75523302 0.755514

5 0.829721546 0.829724321 0.832829406 0.852733908 0.83098304 0.831228

6 0.894844764 0.894848164 0.898267593 0.923789186 0.89618505 0.896402

7 0.952400737 0.95240473 0.956101911 0.987378514 0.95380064 0.953996

8 1.004218026 1.004222581 1.008170329 1.045306364 1.0056635 1.005841

9 1.051513433 1.05151852 1.055695882 1.098773492 1.05299379 1.053156

10 1.095140873 1.095146462 1.09953683 1.148622549 1.09664777 1.096799

Comparison of Deflection at the centre of a Pinned-Pinned Beam, 8 Elements

Bending Moment in a Hinged-Hinged Beam 
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The axial force and bending moment plots are shown in Fig. 6.30 and Fig. 6.31. 

Once again cases 1,2 and cases 3,4 show similar trends. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.30 Axial force in a pinned-pinned shear-flexible beam  (uniform load) – Comparison 

of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.31 Bending moment in a pinned-pinned shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

The deflection in a clamped-clamped beam is tabulated in Table 6.15. The axial 

force is shown in Fig. 6.32 and the bending moment in Fig. 6.33. There is very 
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little difference between the 4 cases, as the stiffening axial force that is 

generated is very less compared to a pinned-pinned beam. 

 

 

 

 

 

 

 

 

 

Table 6.15 Deflection at the center of a clamped-clamped shear flexible beam  

 (uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.32 Axial force in a clamped-clamped  shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

 

 

Load S-FI, M-FI S-RI, M-FI S-FI, M-RI S-RI, M-RI FC Theory

1 0.101837 0.101840 0.101875 0.101877 0.101858 0.103362

2 0.199352 0.199357 0.199620 0.199623 0.199482 0.202282

3 0.289771 0.289779 0.290529 0.290549 0.290132 0.293941

4 0.372164 0.372175 0.373626 0.373703 0.372850 0.377408

5 0.446812 0.446828 0.449112 0.449304 0.447881 0.452975

6 0.514528 0.514548 0.517731 0.518107 0.516003 0.521501

7 0.576242 0.576265 0.580366 0.580995 0.578125 0.583934

8 0.632821 0.632849 0.637859 0.638808 0.635103 0.641165

9 0.685016 0.685048 0.690944 0.692275 0.687680 0.693951

10 0.733451 0.733487 0.740241 0.742009 0.736480 0.742934

Comparison of Deflection at the centre of a Clamped-Clamped Beam, 8 Elements

Axial Force in a Clamped-Clamped Beam 
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Fig. 6.33 Bending moment in a clamped-clamped  shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

The convergence of displacements for the hinged-hinged, pinned-pinned and 

clamped-clamped conditions are shown in Fig. 6.34, Fig. 6.35 and Fig. 6.36 

respectively for load =10.  Errors for cases 1 and 2 are higher due to use of full 

integration for the membrane strain terms.  For the pinned-pinned beam, case-4, 

the errors are the highest (due to compounding of errors from use of reduced 

integration for both shear and membrane strains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.34  Convergence of displacement in a hinged-hinged shear-flexible beam  

(uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 
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Fig. 6.35 Convergence of displacement in a pinned-pinned shear-flexible beam  

 (uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.36 Convergence of displacement in a clamped-clamped shear-flexible beam  

(uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 
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The boundedness of strain energy for the hinged-hinged beam are shown in 

Table 6.16. For all the four cases, the strain energy converges from below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.16 Strain energy boundedness in a hinged-hinged shear flexible beam 

 (uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 

 

For the case of a pinned-pinned beam, the strain energy is summarized in Table 

6.17. When reduced integration is used for the membrane strain terms, the strain 

energy converges from above. In fact when reduced integration is used for both 

shear and membrane strain terms, it was already seen in Table 6.14 that the 

displacements are higher due to softening effect. The same is now seen in the 

strain energy as well, where the strain energy is seen to be high for this case. 

The strain energy for the case of a clamped-clamped beam is summarized in 

Table 6.18. For all of the 4 cases, the strain energy converges from below. 

 

 

 

Load

1 7.192 7.982 8.241 8.311 8.329 8.333

2 24.167 29.638 32.215 33.041 33.263 33.333

3 46.087 60.862 70.043 73.613 74.651 75.000

4 70.939 98.616 119.446 129.151 132.243 133.333

5 97.837 141.107 178.309 198.585 205.703 208.333

6 126.323 187.281 244.903 280.754 294.622 300.000

7 156.129 236.478 317.898 374.490 398.526 408.333

8 187.081 288.255 396.286 478.682 516.892 533.333

9 219.056 342.296 479.306 592.302 649.165 675.000

10 251.965 398.365 566.375 714.433 794.766 833.333

Strain Energy for  H-H Beam, UDL, Shear-FI, Membrane-FI

2 El 4 El 8 El 16 El 32 El Exact Load

1 7.192 7.982 8.241 8.311 8.329 8.333

2 24.172 29.644 32.217 33.041 33.263 33.333

3 46.109 60.897 70.062 73.617 74.651 75.000

4 70.996 98.729 119.518 129.166 132.245 133.333

5 97.949 141.359 178.490 198.627 205.709 208.333

6 126.511 187.738 245.260 280.844 294.635 300.000

7 156.415 237.208 318.495 374.657 398.551 408.333

8 187.486 289.325 397.186 478.956 516.936 533.333

9 219.602 343.770 480.561 592.719 649.236 675.000

10 252.674 400.301 568.032 715.026 794.871 833.333

Strain Energy for  H-H Beam, UDL, Shear-RI, Membrane-FI

2 El 4 El 8 El 16 El 32 El Exact

Load

1 7.922 8.228 8.308 8.328 8.333 8.333

2 31.690 32.911 33.231 33.312 33.332 33.333

3 71.302 74.049 74.770 74.952 74.998 75.000

4 126.759 131.642 132.924 133.248 133.329 133.333

5 198.061 205.690 207.693 208.200 208.327 208.333

6 285.208 296.194 299.078 299.807 299.990 300.000

7 388.199 403.152 407.078 408.071 408.320 408.333

8 507.035 526.566 531.693 532.990 533.315 533.333

9 641.716 666.434 672.923 674.564 674.976 675.000

10 792.241 822.757 830.768 832.794 833.302 833.333

Strain Energy for  H-H Beam, UDL, Shear-FI, Membrane-RI

2 El 4 El 8 El 16 El 32 El Exact Load

1 7.922 8.228 8.308 8.328 8.333 8.333

2 31.690 32.911 33.231 33.312 33.332 33.333

3 71.302 74.049 74.770 74.952 74.998 75.000

4 126.759 131.642 132.924 133.248 133.329 133.333

5 198.061 205.691 207.694 208.200 208.327 208.333

6 285.208 296.195 299.079 299.808 299.991 300.000

7 388.200 403.154 407.079 408.072 408.321 408.333

8 507.037 526.568 531.695 532.992 533.317 533.333

9 641.719 666.438 672.927 674.568 674.980 675.000

10 792.245 822.763 830.774 832.800 833.309 833.333

Strain Energy for  H-H Beam, UDL, Shear-RI, Membrane-RI

2 El 4 El 8 El 16 El 32 El Exact
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Table 6.17 Strain energy boundedness in a pinned-pinned shear flexible beam 

 (uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.18 Strain energy boundedness in a clamped-clamped shear flexible beam 

 (uniform load) – Comparison of Anisoparametric formulations, Large deflection analysis 

 

Load 2 El 4 El 8 El 16 El 32 El Exact

1 4.853 4.996 5.034 5.043 5.046 5.047

2 12.886 13.237 13.334 13.359 13.365 13.368

3 22.062 22.651 22.819 22.863 22.874 22.879

4 32.059 32.913 33.163 33.228 33.245 33.252

5 42.735 43.874 44.214 44.304 44.327 44.337

6 53.998 55.442 55.880 55.997 56.026 56.040

7 65.786 67.551 68.095 68.240 68.277 68.295

8 78.050 80.153 80.809 80.984 81.029 81.051

9 90.753 93.207 93.981 94.189 94.242 94.268

10 103.865 106.683 107.580 107.822 107.883 107.915

Strain Energy for  P-P Beam, UDL, Shear-FI, Membrane-FI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 4.853 4.996 5.034 5.043 5.046 5.047

2 12.886 13.237 13.334 13.359 13.365 13.368

3 22.062 22.651 22.820 22.863 22.874 22.879

4 32.061 32.913 33.163 33.228 33.245 33.252

5 42.737 43.875 44.215 44.304 44.327 44.337

6 54.001 55.443 55.881 55.997 56.026 56.040

7 65.790 67.553 68.096 68.240 68.277 68.295

8 78.056 80.156 80.809 80.984 81.029 81.051

9 90.761 93.211 93.982 94.189 94.242 94.268

10 103.874 106.688 107.581 107.822 107.883 107.915

Strain Energy for  P-P Beam, UDL, Shear-RI, Membrane-FI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 5.126 5.066 5.052 5.048 5.047 5.047

2 13.837 13.479 13.397 13.377 13.372 13.368

3 23.821 23.102 22.940 22.901 22.891 22.879

4 34.708 33.599 33.350 33.289 33.274 33.252

5 46.338 44.816 44.476 44.393 44.373 44.337

6 58.613 56.660 56.225 56.119 56.093 56.040

7 71.465 69.063 68.529 68.400 68.368 68.295

8 84.843 81.976 81.339 81.185 81.147 81.051

9 98.705 95.357 94.615 94.436 94.392 94.268

10 113.019 109.175 108.325 108.119 108.068 107.915

Strain Energy for  P-P Beam, UDL, Shear-FI, Membrane-RI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 5.127 5.072 5.078 5.150 5.416 5.047

2 13.848 13.529 13.601 14.172 16.201 13.368

3 23.854 23.245 23.518 25.148 30.824 22.879

4 34.776 33.886 34.506 37.774 49.046 33.252

5 46.453 45.298 46.416 51.911 70.753 44.337

6 58.788 57.389 59.157 67.472 95.871 56.040

7 71.713 70.092 72.662 84.395 124.350 68.295

8 85.176 83.357 86.884 102.632 156.150 81.051

9 99.137 97.143 101.781 122.148 191.240 94.268

10 113.562 111.418 117.323 142.910 229.596 107.915

Strain Energy for  P-P Beam, UDL, Shear-RI, Membrane-RI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 0.967 1.269 1.348 1.368 1.373 1.374

2 3.754 4.928 5.230 5.307 5.326 5.327

3 8.080 10.614 11.254 11.416 11.456 11.460

4 13.623 17.912 18.979 19.247 19.314 19.321

5 20.104 26.465 28.028 28.419 28.518 28.528

6 27.310 36.001 38.118 38.647 38.781 38.796

7 35.088 46.321 49.047 49.728 49.900 49.921

8 43.329 57.285 60.673 61.517 61.729 61.758

9 51.954 68.792 72.891 73.910 74.167 74.202

10 60.907 80.767 85.627 86.832 87.136 87.179

Strain Energy for  C-C Beam, UDL, Shear-FI, Membrane-FI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 0.967 1.270 1.348 1.368 1.373 1.374

2 3.755 4.929 5.231 5.307 5.326 5.327

3 8.081 10.615 11.255 11.416 11.456 11.460

4 13.626 17.915 18.980 19.247 19.314 19.321

5 20.110 26.469 28.029 28.420 28.518 28.528

6 27.319 36.006 38.120 38.649 38.781 38.796

7 35.102 46.329 49.051 49.730 49.900 49.921

8 43.348 57.296 60.678 61.519 61.730 61.758

9 51.979 68.806 72.898 73.913 74.168 74.202

10 60.939 80.786 85.635 86.835 87.138 87.179

Strain Energy for  C-C Beam, UDL, Shear-RI, Membrane-FI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 0.974 1.272 1.349 1.368 1.373 1.374

2 3.859 4.966 5.241 5.309 5.327 5.327

3 8.544 10.772 11.298 11.427 11.459 11.460

4 14.873 18.320 19.089 19.276 19.322 19.321

5 22.664 27.264 28.240 28.475 28.533 28.528

6 31.733 37.328 38.468 38.740 38.807 38.796

7 41.909 48.304 49.565 49.865 49.940 49.921

8 53.040 60.035 61.386 61.707 61.786 61.758

9 64.994 72.409 73.823 74.160 74.244 74.202

10 77.664 85.339 86.800 87.149 87.236 87.179

Strain Energy for  C-C Beam, UDL, Shear-FI, Membrane-RI

Load 2 El 4 El 8 El 16 El 32 El Exact

1 0.975 1.272 1.349 1.368 1.373 1.374

2 3.859 4.966 5.241 5.310 5.331 5.327

3 8.545 10.773 11.299 11.435 11.495 11.460

4 14.875 18.320 19.096 19.311 19.470 19.321

5 22.666 27.266 28.260 28.576 28.940 28.528

6 31.736 37.333 38.514 38.962 39.681 38.796

7 41.911 48.314 49.653 50.278 51.539 49.921

8 53.041 60.054 61.534 62.392 64.409 61.758

9 64.996 72.439 74.054 75.208 78.217 74.202

10 77.665 85.386 87.137 88.656 92.908 87.179

Strain Energy for  C-C Beam, UDL, Shear-RI, Membrane-RI
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The results of the sweep-test for a hinged-hinged beam are shown in Fig. 6.37. 

For all the load cases, there is no cross-over of the strain energy curve. The field 

consistent formulations is the least sensitive to the position of the node. 

 

 

 

 

 

 

 

 

Fig. 6.37 Sweep-Test in a hinged-hinged shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

 For the case of a pinned-pinned, the sweep-test results are shown in Fig. 6.38. It 

is the field-consistent formulation that shows steady response with respect to the 

position of the middle node. When reduced integration is used, the strain energy 

in fact converges from above. 

 

 

 

 

 

 

 

 

Fig. 6.38 Sweep-Test in a pinned-pinned shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

  

Fig. 6.39 shows the results of the sweep-test for a clamped-clamped beam. For 

this beam, the axial forces that are produced are relatively small as compared to 
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a pinned-pinned beam, and the results from all the 4 cases and the field-

consistent formulation lie very close to each other. 

 

 

 

 

 

 

 

 

 

Fig. 6.39 Sweep-Test in a clamped-clamped shear-flexible beam  (uniform load) – 

Comparison of Anisoparametric formulations, Large deflection analysis 

 

Table 6.19 summarizes the gist of the results of all of the above analysed 

conditions, and it can be seen clearly that the field-consistent formulation gives 

the best results. 

 

 

 

 

 

 

 

 

Table 6.19 Summary of results for shear flexible beams due to use of selective integration 

in Anisoparametric formulations, Large deflection analysis 

 

 

Case Shear Membrane Impact

1 Full Full

Generally produces a stiffer solution;  

Generates a spurious axial force for a hinged-

hinged beam; 

2 Reduced Full

Generally produces a stiffer solution;  

Generates a spurious axial force for a hinged-

hinged beam; 

3 Full Reduced
Causes a softening effect;  No spurious axial 

force for a hinged-hinged beam; 

4 Reduced Reduced

Causes a softening effect;  No spurious axial 

force for a hinged-hinged beam; Loses 

boundedness for the pinned-pinned case.

Summary of Results - Large Deformation of Shear-Flexible Beams
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6.4 Large Deformation Analysis of Circular Plates  - 

Isoparametric Formulation 

 

6.4.1 Strain Displacement Relations 
 
The strain-displacement relations for the case of large deflections of a circular 

plate are given by 

 
 
 
 
 
 
 
 

 

 

 

6.4.2 Incremental Matrices 

 

The incremental matrices for this case can be derived on the lines explained by 

Rajasekaran  and Murray (1974), and come out to be  
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These incremental matrices are generic in nature and can be applied to different 

element formulations.  

 
 
The case of a circular plate undergoing large deflection is now studied in detail 

using a 2-noded element with 3 degrees of freedom at each node (1 in-plane 

axial displacement, 1 transverse displacement and rotation).  

 

6.4.3 Numerical Experiments and Discussion  

 

The results from the above formulation for the case of a circular plate simply 

supported on the edges (radius = 10 in., E=1.0e7 psi, υ =0.3, and t=0.1 in. is 

subjected to a uniform load of 1 lb/in2) are shown in Table 6.20. The approximate 

solution is from Timoshenko and Woinowsky-Krieger (1959). The ANSYS  

(2008) solution is obtained from a discretisation of 1000 elements (of SHELL51 

element), whereas the C0 isoparametric solution is from a discretisation of 128 

elements. 

 

 

 

 

 

 

 
 

Table 6.20 Deflection at the center of a shear-flexible simply supported circular plate 

(uniform load) – Isoparametric element, Large deflection analysis 

 

The membrane forces for the simply supported circular plate are shown in Fig.  

6.40, and the bending moments are shown in Fig. 6.41. Both of these plots show 

good comparison with results from ANSYS  (2008) 

 

Load ANSYS Isoparametric Approximate Solution

0.1 0.048075 0.048077 0.044813

0.2 0.070373 0.070374 0.069054

0.3 0.085126 0.085125 0.085131

0.4 0.096427 0.096425 0.097462

0.5 0.105719 0.105716 0.107621

0.6 0.113684 0.113680 0.116350

0.7 0.120699 0.120693 0.124056

0.8 0.126996 0.126990 0.130989

0.9 0.132731 0.132724 0.137315

1 0.138012 0.138003 0.143150

Deflection at centre of a circular simply supported plate - UDL
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Fig. 6.40 Membrane forces in a simply supported shear-flexible circular plate 

(uniform load) – Isoparametric element, Large deflection analysis 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.41 Bending moments in a simply supported shear-flexible circular plate 

(uniform load) – Isoparametric element, Large deflection analysis 

 
The deflection in a clamped circular plate is tabulated in Table 6.21 and found to 

match very closely with the ANSYS  (2008) results. The discretisation for the 

ANSYS  (2008) results is from 1000 elements (of SHELL51 element), and the 

C0 isoparametric element uses 128 elements. The membrane forces and 

bending moments are shown in Fig. 6.42 and Fig. 6.43 and found to match 

closely with results from ANSYS  (2008). 
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Table 6.21 Deflection at the center of a shear-flexible clamped circular plate (uniform load) 

Isoparametric element, Large deflection analysis 

 
 

 

 

 

 

 

 

Fig. 6.42 Membrane forces in a clamped shear-flexible circular plate (uniform load) – 

Isoparametric element, Large deflection analysis 

 

 

 

 

 

 

 

 

Fig. 6.43 Bending moments in a clamped shear-flexible circular plate (uniform load) – 

Isoparametric element, Large deflection analysis 
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Load ANSYS Isoparametric Approximate Solution

0.1 0.016810 0.016811 0.016177

0.2 0.032283 0.032297 0.031917

0.3 0.045884 0.045902 0.045972

0.4 0.057679 0.057699 0.058311

0.5 0.067960 0.067982 0.069165

0.6 0.077024 0.077046 0.078801

0.7 0.085114 0.085136 0.087449

0.8 0.092416 0.092439 0.095292

0.9 0.099074 0.099098 0.102470

1 0.105198 0.105221 0.109093

Deflection at centre of a circular clamped plate - UDL
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Fig. 6.44 Convergence of displacement in a simply supported shear-flexible circular plate 

(uniform load) – Isoparametric element, Large deflection analysis 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.45 Convergence of displacement in a clamped shear-flexible circular plate 

 (uniform load) – Isoparametric element,  Large deflection analysis 
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The convergence of displacements for the simply supported circular plate is 

shown in Fig. 6.44 for various load cases. For all the load cases, the 

convergence is O(h2), as expected. Similar results are seen for the case of a 

clamped circular plate as shown in Fig. 6.45. 

 

The strain energy boundedness for the simply supported circular plate can be 

seen in Table 6.22. All the results shown in this table converge from below. For 

the case of a clamped circular plate, the boundedness is lost.  It is to be noted 

that the shear strain terms here required the use of reduced integration and its 

effects are seen clearly. 

 
 
 

 
 
 
 
 
 
 
 
Table 6.22 Strain energy boundedness in a shear-flexible simply supported circular plate 

(uniform load) – Isoparametric element, Large deflection analysis 

 

 
 
 
 
 
 
 
 
 
 
 

Table 6.23 Strain energy boundedness in a shear-flexible clamped circular plate 

 (uniform load) – Isoparametric element, Large deflection analysis 
 

 

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements 128 Elements ANSYS

0.1 0.282411 0.293486 0.2963887 0.29712146 0.297305 0.297351 0.297363 0.297347

0.2 0.764097 0.778919 0.7838158 0.78508903 0.785410 0.785491 0.785511 0.785476

0.3 1.315843 1.335238 1.3427289 1.3447031 1.345203 1.345328 1.345360 1.345320

0.4 1.916848 1.943083 1.9538734 1.95672569 1.957448 1.957629 1.957675 1.957630

0.5 2.558164 2.593485 2.6081853 2.61206665 2.613049 2.613296 2.613358 2.613260

0.6 3.234377 3.280826 3.2999533 3.30499109 3.306266 3.306585 3.306666 3.306590

0.7 3.941709 4.001119 4.0251193 4.03142277 4.033016 4.033416 4.033517 4.033410

0.8 4.677318 4.751339 4.7806021 4.78826657 4.790203 4.790689 4.790811 4.790710

0.9 5.438960 5.529090 5.5639595 5.5730695 5.575370 5.575947 5.576092 5.575990

1 6.224806 6.332410 6.3731958 6.38382735 6.386511 6.387184 6.387353 6.387250

Strain Energy in a Circular SS Plate - Uniform Load, Large Deflections, Isoparametric Formulation

Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements 128 Elements ANSYS

0.1 0.085382 0.087180 0.087520 0.087614 0.087639 0.087645 0.087646 0.087646

0.2 0.332615 0.332657 0.332814 0.332904 0.332931 0.332938 0.332940 0.332710

0.3 0.719473 0.702109 0.699982 0.699613 0.699532 0.699514 0.699509 0.699050

0.4 1.219468 1.163397 1.156704 1.155390 1.155085 1.155012 1.154994 1.154260

0.5 1.808577 1.693683 1.680750 1.678148 1.677536 1.677387 1.677351 1.676290

0.6 2.467739 2.278069 2.257891 2.253800 2.252835 2.252599 2.252542 2.251120

0.7 3.182741 2.906848 2.878905 2.873229 2.871887 2.871559 2.871479 2.869660

0.8 3.943213 3.573479 3.537562 3.530267 3.528542 3.528120 3.528017 3.525760

0.9 4.741589 4.273361 4.229446 4.220536 4.218428 4.217913 4.217788 4.215040

1 5.572287 5.003119 4.951280 4.940780 4.938297 4.937690 4.937541 4.934290

Strain Energy in a Circular Clamped Plate - Uniform Load, Large Deflections, Isoparametric Formulation
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The results of the sweep-test for a simply supported circular plate are shown in 

Fig. 6.46. For higher loads, the curve crosses over the theoretical strain energy 

indicating the sensitivity of the position of the node. The results of the sweep-test 

on a clamped circular plate are shown in Fig. 6.47, where the boundedness is 

affected clearly 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.46 Sweep-Test in a simply supported shear-flexible circular plate (uniform load) – 

Isoparametric element, Large deflection analysis 
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Fig. 6.47 Sweep-Test in a clamped shear-flexible circular plate (uniform load) – 

Isoparametric element, Large deflection analysis 

 
6.5 Large Deformation of Circular Plates - Anisoparametric 
Formulation 
 
The anisoparametric formulation is now exteneded to the study of large 

deflection of circular plates. In principle, the formulation applies to the study of 

any body of revolution (as was seen in section 4.3 for the linear elastostatics 

case).  

 
 
6.5.1 Incremental Matrices  

 
The incremental matrices are similar to the matrices shown in section 6.4.2. 

There is an additional degree of freedom here at each node which needs to be 

accounted in the formulation, as explained in section 4.3.3.  
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6.5.2 Numerical Experiments and Discussion  
 
The test problems of a simply supported and clamped circular plates are taken 

again to study the response of the element.  The deflection in the centre of a 

simply supported circular plate (radius = 10 in., E=1.0e7 psi, υ =0.3, and t=0.1 in. 

is subjected to a uniform load of 1 lb/in2) is shown in Table 6.24 which show very 

good agreement with ANSYS  (2008) solution. The membrane forces and 

bending moments are shown in Fig. 6.48 and Fig. 6.49 respectively and match 

closely with ANSYS  (2008) solution (with SHELL63 element) 

 

 

 
 
 
 
 
 
 
 

Table 6.24 Deflection at the center of a shear-flexible simply supported circular plate 

(uniform load) – Anisoparametric element, Large deflection analysis 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.48 Membrane forces in a simply supported shear-flexible circular plate  

(uniform load) – Anisoparametric element, Large deflection analysis 
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0.2 0.070373 0.070373 0.069054

0.3 0.085126 0.085123 0.085131
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Fig. 6.49 Bending Moments in a simply supported shear-flexible circular plate 

 (uniform load) – Anisoparametric element, Large deflection analysis 
 

The deflection in a clamped circular plate is tabulated in Table 6.25 and the 

results from the anisoparametric element matches very well that of ANSYS
  

(2008). The membrane forces and bending moments are shown in Fig. 6.50 and 

Fig. 6.51, which confirm the confidence in the use of this element for further 

studies.  

 

 
 
 

 

 

 

Table 6.25 Deflection at the center of a shear-flexible clamped circular plate (uniform load) 

– Anisoparametric element,  Large deflection analysis 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6.50 Membrane forces in a clamped shear-flexible circular plate (uniform load) – 

Anisoparametric element, Large deflection analysis 
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Fig. 6.51 Bending Moments in a clamped shear-flexible circular plate (uniform load) – 

Anisoparametric element, Large deflection analysis 

 
 

The convergence of the displacements for simply supported circular plate is 

shown in Fig. 6.52. It converges at O(h2). The clamped circular plate also shows 

similar results as seen in Fig. 6.53. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.52 Convergence of displacement in a simply supported shear-flexible circular plate 

(uniform load) – Anisoparametric element, Large deflection analysis 
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Fig. 6.53 Convergence of displacement in a clamped shear-flexible circular plate 

 (uniform load) – Anisoparametric element, Large deflection analysis 

 
 
The boundedness of strain energy for the case of a simply supported circular 

plate is seen in Table 6.26.  The strain energy converges from below. For the 

clamped circular plate also, the strain energy is bounded, converging from below 

for all the load cases. 

 
 
 
 
 
 
 
 
 
 
 
Table 6.26 Strain energy boundedness in a shear-flexible simply supported circular plate 

(uniform load) – Anisoparametric element, Large deflection analysis 
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Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements 128 Elements ANSYS

0.1 0.287830 0.294619 0.296652 0.297186 0.297321 0.297355 0.297364 0.297347

0.2 0.762209 0.778417 0.783643 0.785043 0.785399 0.785488 0.785511 0.785476

0.3 1.304194 1.332496 1.341930 1.344497 1.345152 1.345316 1.345357 1.345320

0.4 1.895032 1.937789 1.952325 1.956324 1.957348 1.957605 1.957669 1.957630

0.5 2.526139 2.585355 2.605769 2.611435 2.612891 2.613257 2.613348 2.613260

0.6 3.192177 3.269571 3.296552 3.304097 3.306041 3.306530 3.306652 3.306590

0.7 3.889375 3.986452 4.020618 4.030232 4.032717 4.033342 4.033498 4.033410

0.8 4.614884 4.732975 4.774886 4.786747 4.789820 4.790594 4.790787 4.790710

0.9 5.366445 5.506747 5.556918 5.571189 5.574895 5.575829 5.576063 5.575990

1 6.142217 6.305815 6.364721 6.381554 6.385935 6.387041 6.387317 6.387250

Strain Energy in a Circular SS Plate - Uniform Load, Large Deflections, Anisoparametric Formulation
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Table 6.27 Strain energy boundedness in a shear-flexible clamped circular plate 

 (uniform load) – Anisoparametric element, Large deflection analysis 

 
 
The results of the sweep-test for a simply supported circular plate are shown in 

Fig. 6.54, showing no cross-over of the curve. The clamped circular plate shows 

similar response, as seen in Fig. 6.55. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.54 Sweep-Test in a simply supported shear-flexible circular plate (uniform load) – 

Anisoparametric element, Large deflection analysis 
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Load 2 Elements 4 Elements 8 Elements 16 Elements 32 Elements 64 Elements 128 Elements ANSYS

0.1 0.063161 0.081246 0.086020 0.087237 0.087544 0.087544 0.087640 0.087646

0.2 0.237830 0.308180 0.326660 0.331356 0.332541 0.332541 0.332915 0.332710

0.3 0.494019 0.645938 0.685955 0.696086 0.698646 0.698646 0.699453 0.699050

0.4 0.805883 1.063218 1.131844 1.149141 1.153515 1.153515 1.154894 1.154260

0.5 1.156518 1.538564 1.642462 1.668522 1.675118 1.675118 1.677197 1.676290

0.6 1.535655 2.058296 2.203877 2.240216 2.249421 2.249421 2.252324 2.251120

0.7 1.936985 2.613596 2.807083 2.855157 2.867344 2.867344 2.871190 2.869660

0.8 2.356474 3.198560 3.445997 3.507215 3.522744 3.522744 3.527647 3.525760

0.9 2.791410 3.809046 4.116306 4.192036 4.211257 4.211257 4.217329 4.215040

1 3.239888 4.442024 4.814805 4.906383 4.929638 4.929638 4.936988 4.934290

Strain Energy in a Clamped Circular Plate - UDL, Large Deflections, Anisoparametric Formulation
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Fig. 6.55 Sweep-Test in a clamped shear-flexible circular plate (uniform load) – 

Anisoparametric element, Large deflection analysis 

 
 

6.6 Large Deformation Analysis of Thin Plates – Isoparametric 

Formulation 

 

The problem of large deflections of shear-flexible plates is discussed now. The 

element used here is similar to the one described in section 4.4.2 for the linear 

case, with additional complexities due to the nonlinear strains. 

 
6.6.1 Strain Displacement Relations 

 
The nonlinear strain displacement relations for the membrane strains are given 

by  
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6.6.2 Incremental Matrices 
 
The incremental matrices, in principle, remain similar to the incremental matrices 

of ACM element, described in section 5.4.3, with proper caution for the degrees 

of freedom that are different for the ACM and the QUAD-4 element. 

 
6.6.3 Numerical Experiments and Discussion  
 
The stiffness matrix now has both shear and membrane strains, and as 

explained in section 6.3.2, the use of selective integration for these strains are 

now studied independently. The results for a simply supported square plate 

(20x20 mm quarter plate, 0.4 mm thickness and Poisson’s ratio of 0.3,  Young’s 

Modulus of 200000 N/mm2 ) are tabulated in Table 6.28. It can be seen that there 

is no impact of full/reduced integration on membrane strain terms, whereas the 

shear strain has a big impact. 

 

 

 
 

 
 
 
 
 

Table 6.28 Deflection at centre of a shear-flexible simply supported square plate 

 (uniform load) - C
0
 Selective integration formulation, Large deflection analysis 

Load Shear-2, Membrane-3 Shear-2, Membrane-3 Shear-1, Membrane-3 Shear-1, Membrane-2 ANSYS Deflection

1 0.03770947 0.03770948 0.385668355 0.385684956 0.378168

2 0.07531037 0.07531040 0.517858799 0.517881586 0.506211

3 0.11269716 0.11269725 0.605648294 0.605674221 0.591338

4 0.14977017 0.14977036 0.673588001 0.673615885 0.657296

5 0.18643793 0.18643831 0.729968772 0.729998019 0.712085

6 0.22261903 0.22261966 0.778674251 0.778704522 0.759453

7 0.25824324 0.25824422 0.82186059 0.821891671 0.801477

8 0.29325207 0.29325346 0.860859167 0.860890916 0.839444

9 0.32759869 0.32760060 0.896554681 0.896587001 0.874208

10 0.36124752 0.36125003 0.929567557 0.929600375 0.906367

Large Deflection of a SS Plate - UDL (Mindlin Formulation-Selective Integration)
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Fig. 6.56 Membrane forces in a simply supported shear-flexible square plate (uniform load) 

- C
0
 Selective integration formulation, Large deflection analysis 

 

 

The membrane forces and bending moments for the simply supported plate are 

shown in Fig. 6.56 and 6.57 respectively, and show close match with ANSYS  

(2008)  results (with SHELL63 element). 

 

 
 
 
 
 
 
 
 

Fig.  6.57 Bending Moments in a simply supported shear-flexible square plate  

(uniform load) - C
0
 Selective integration formulation, Large deflection analysis 

 
 
Table 6.29 shows the deflection in a clamped square plate. When full integration 

is used for the shear strain terms, the element locks and produces very low 

deflections. The membrane strain is insensitive to use of full or reduced 

integration. 

 

The axial forces and bending moment s for the clamped plate are shown in Fig. 

6.58 and Fig. 6.59 and show good match with ANSYS  (2008) results. 
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Table 6.29 Deflection at centre of a shear-flexible clamped square plate (uniform load) – 

 C
0
 Selective integration formulation, Large deflection analysis 

 
 
 
 
 
 
 
 
 
 

Fig. 6.58 Membrane forces in a clamped shear-flexible square plate (uniform load) –  

C
0
 Selective integration formulation, Large deflection analysis 

 

 
 
 
 
 
 
 
 

Fig. 6.59 Bending moments in a clamped shear-flexible square plate (uniform load) – 

 C
0
 Selective integration formulation, Large deflection analysis 

 
 
The convergence of displacements is shown in Fig. 6.60 for the case of simply 

supported square plate, and in Fig. 6.61 for a clamped square plate.  Both of 

them show a convergence of O(h2). 

Load Shear-2, Membrane-3 Shear-2, Membrane-2 Shear-1, Membrane-3 Shear-1, Membrane-2 ANSYS Deflection

1 0.00801864 0.008018639 0.236373162 0.236378078 0.23399

2 0.01603703 0.016037028 0.383760284 0.383774054 0.37529

3 0.02405492 0.024054916 0.48512127 0.485142096 0.471923

4 0.03207205 0.032072054 0.562901028 0.562927408 0.546175

5 0.04008819 0.040088191 0.626571664 0.626602611 0.60713

6 0.04810308 0.048103079 0.680853661 0.680888503 0.659257

7 0.05611647 0.056116468 0.728424055 0.728462311 0.705075

8 0.06412811 0.064128109 0.770946536 0.770987847 0.746142

9 0.07213775 0.072137755 0.809526477 0.809570564 0.783492

10 0.08014515 0.080145158 0.844936416 0.844983056 0.817848

Large Deflection of a Clamped Plate Plate - UDL (Mindlin Formulation-Selective Integration)

Axial Force in a Clamped Plate - UDL, Large Deflection
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Fig. 6.60 Convergence of displacement in a simply supported shear-flexible square plate 

(uniform load) - C
0
 Selective integration formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.61 Convergence of displacement in a clamped shear-flexible square plate 

 (uniform load) - C
0
 Selective integration formulation, Large deflection analysis 
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The strain energy boundedness is shown in Table 6.30 for the case of a simply 

supported square plate, and the strain energy converges from below. Similar 

behaviour is seen for a clamped square plate as well, as shown in Table 6.31. 

 

 

 

 

 
 
 
 
 
 
 

Table 6.30 Strain energy boundedness in a shear-flexible simply supported square plate 

(uniform load) - C
0
 Selective integration formulation, Large deflection analysis 

 
 

 
 
 
 
 
 
 
 

Table 6.31 Strain energy boundedness in a shear-flexible clamped square plate 

 (uniform load) - C
0 
Selective integration formulation, Large deflection analysis 

 

 

The results of the sweep-test for a simply supported square plate are shown in 

Fig. 6.62 and show the boundedness clearly for all the load cases. Fig. 6.63 

shows the results of the sweep-test for a clamped plate, and here also the strain 

energy is bounded. 

 

 

 

 

 

Load 2x2 4x4 8x8 16x16 ANSYS

1 8.853526 9.356822 9.483089 9.514638 9.530380

2 21.849069 23.127766 23.444414 23.523429 23.566000

3 36.819848 39.060982 39.608123 39.744545 39.820800

4 53.311198 56.646164 57.452263 57.653230 57.769000

5 71.071039 75.601056 76.688832 76.960090 77.120800

6 89.932821 95.740629 97.129393 97.475849 97.686500

7 109.776260 116.932266 118.639041 119.065033 119.330000

8 130.509492 139.075345 141.115495 141.624943 141.949000

9 152.059577 162.090410 164.478024 165.074526 165.463000

10 174.366910 185.912830 188.660975 189.347868 189.804000

Strain Energy in a SS Plate - UDL, Mindlin Formulation (Shear-RI, Memb-FI)

Load 2x2 4x4 8x8 16x16 ANSYS

1 4.643056 5.320888 5.488927 5.530809 5.522490

2 14.776828 16.474196 16.884242 16.985520 16.963600

3 27.190213 30.329981 31.031458 31.202507 31.162800

4 40.927318 46.058238 47.096108 47.346214 47.283800

5 55.642373 63.295293 64.702669 65.038745 64.948800

6 71.166248 81.823399 83.624565 84.051818 83.929800

7 87.397527 101.491715 103.705209 104.227745 104.069000

8 104.267031 122.187283 124.827981 125.449193 125.250000

9 121.723493 143.821372 146.901795 147.624606 147.381000

10 139.726759 166.321981 169.853110 170.680116 170.389000

Strain Energy in a clamped plate - UDL, Mindlin Formulation (Shear-RI, Memb-FI)
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Fig. 6.62 Sweep-Test in a simply supported shear-flexible square plate (uniform load) – 

 C
0
 Selective integration formulation, Large deflection analysis 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 6.63 Sweep-Test in a clamped shear-flexible square plate (uniform load) –  

C
0
 Selective integration formulation, Large deflection analysis 
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6.7 Large Deformation Analysis of Thin Plates  - Field-consistent 
Formulation 
 
In section 4.4.3, the requirement of edge consistency for shear strains was 

explained clearly and the results of the element formulation with a reconstituted 

shear strain were shown. In this section, the results of this element (which is both 

field consistent and edge consistent) are shown for the case of large deflection 

problems. It is of interest to note that though this element has been used in the 

adaptive mesh refinement process by Mukherjee and Krishnamurthy (1996), here 

is assessed for large deflection purposes. 

 
6.7.1 Element Matrices 

 

The incremental matrices of Rajasekaran and Murray (1974) shown in section 

5.4.1 are used for this element, and the same matrices are valid for the shear 

flexible plate element as well. The degrees of freedom corresponding to the 

slopes θx and θy do not directly participate in the nonlinear membrane strain 

terms and hence these matrices are valid. 

 

6.7.2 Numerical Experiments and Discussion  

 

For the case of a simply supported square plate (20x20 mm quarter plate, 0.4  

mm thickness and Poisson’s ratio of 0.3, Young’s Modulus of 200000 N/mm2 )  

subjected to a uniformly distributed load, the deflection at the centre of the plate  

is shown in Table 6.32 for various load cases, and compared with results from 

ANSYS  (2008) (with SHELL63 element). Table 6.33 gives the deflection in a 

clamped plate for various loads, and the results are compared with ANSYS  

(2008) results (with SHELL63 element). The membrane forces and bending 

moments for the simply supported plate are shown in Fig. 6.64 and Fig. 6.65 

respectively, and show good match with the results from ANSYS  (2008) (with 

SHELL63 element).  For a clamped square plate, the membrane forces and 

bending moments are shown in Fig. 6.66 and Fig. 6.67 respectively. 
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Table 6.32 Deflection at centre of a shear-flexible simply supported square plate 

 (uniform load) – C
0
 FC Formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

Table 6.33 Deflection at centre of a shear-flexible clamped square plate (uniform load) – 

 C
0
 FC Formulation, Large deflection analysis 

 

 

 

 

 

 

 

Fig. 6.64 Membrane forces in a simply supported shear-flexible square plate (uniform load) 

- C
0
 Selective integration formulation, Large deflection analysis 

 

Load FC/EC Element ANSYS Deflection

1 0.379510 0.378168

2 0.508263 0.506211

3 0.593823 0.591338

4 0.660088 0.657296

5 0.715114 0.712085

6 0.762674 0.759453

7 0.804860 0.801477

8 0.842966 0.839444

9 0.877853 0.874208

10 0.910122 0.906367

Large Deflection of a SS Plate - UDL (Mindlin Element, 

Field Consistent and Edge Consistent)
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Load FC/EC Element ANSYS Deflection

1 0.234520 0.233990

2 0.376980 0.375290

3 0.474476 0.471923

4 0.549351 0.546175

5 0.610773 0.607130

6 0.663263 0.659257

7 0.709369 0.705075

8 0.750671 0.746142

9 0.788217 0.783492

10 0.822736 0.817848

Large Deflection of a Clamped Plate - UDL (Mindlin 

Element, Field Consistent and Edge Consistent)
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Fig. 6.65 Bending moments in a simply supported shear-flexible square plate 

 (uniform load) - C
0
 Selective integration formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

Fig. 6.66 Membrane forces in a clamped shear-flexible square plate (uniform load) –  

C
0
 Selective integration formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.67 Bending moments in a clamped shear-flexible square plate (uniform load) – 

 C
0
 Selective integration formulation, Large deflection analysis 
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Fig. 6.68 Convergence of displacement in a simply supported shear-flexible square plate 

(uniform load) - C
0
 Selective integration formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.69 Convergence of displacement in a clamped shear-flexible square plate 

 (uniform load) - C
0
 Selective integration formulation, Large deflection analysis 
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The convergence of displacements for a simply supported plate are shown in Fig. 

6.68 and seen to be of O(h2). Similar results are seen for a clamped plate as 

shown in Fig. 6.69. The strain energy in a simply supported square plate is 

tabulated in Table 6.34 for various load cases, and for all the load cases, it is 

bounded and converging from below. The results for a clamped plate are on 

similar lines, as shown in Table 6.35. 

 

 

 

 

 

 

Table 6.34 Strain energy boundedness in a shear-flexible simply supported square plate 

(uniform load)- C
0 
FC Formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

Table 6.35 Strain energy boundedness in a shear-flexible clamped square plate 

 (uniform load)- C
0 
FC Formulation, Large deflection analysis 

 

 

The results of the sweep-test for a simply supported plate are shown in Fig. 6.70 

and the strain energy is bounded for all the load cases. The clamped plate also 

shows a similar result, as seen in Fig. 6.71. 

 

Load 2x2 4x4 8x8 16x16 ANSYS

1 4.317712 5.278874 5.512561 5.573793 5.522490

2 13.565560 16.335085 16.952810 17.119606 16.963600

3 24.660214 30.047189 31.147497 31.446629 31.162800

4 36.733924 45.592974 47.259100 47.711717 47.283800

5 49.498254 62.614945 64.911627 65.534056 64.948800

6 62.823085 80.899488 83.878425 84.683759 83.929800

7 76.635058 100.298568 104.002892 105.002073 104.069000

8 90.886146 120.701237 125.168400 126.370893 125.250000

9 105.541631 142.020273 147.283857 148.698065 147.381000

10 120.574696 164.184863 170.275713 171.909248 170.389000

Strain Energy in a clamped plate - UDL, Mindlin Formulation, FC EC Element

Load 2x2 4x4 8x8 16x16 ANSYS

1 8.327700 9.325966 9.549603 9.612056 9.530380

2 20.259239 22.968570 23.592682 23.760604 23.566000

3 33.886208 38.715337 39.845014 40.141979 39.820800

4 48.833884 56.072538 57.783869 58.226795 57.769000

5 64.890971 74.766457 77.120579 77.723038 77.120800

6 81.916151 94.617398 97.666170 98.439691 97.686500

7 99.806480 115.496442 119.285315 120.240025 119.330000

8 118.482829 137.305703 141.875384 143.020380 141.949000

9 137.882061 159.967841 165.355359 166.698939 165.463000

10 157.952376 183.419921 189.659346 191.209168 189.804000

Strain Energy in a SS Plate - UDL, Mindlin Formulation, FC EC Element
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Fig. 6.70 Sweep-Test in a simply supported shear-flexible square plate (uniform load) –  

C
0
 Selective integration formulation, Large deflection analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.71 Sweep-Test in a clamped shear-flexible square plate (uniform load) –  

C
0
 Selective integration formulation, Large deflection analysis 
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6.8 Large Deformation Analysis of Thin Plates  - Anisoparametric 

Formulation 

 

6.8.1 Incremental Matrices  

 

The incremental matrices remain in the same form as used in section 6.6.2. In 

fact the incremental matrices for the anisoparametric element leverage the 

incrementral matrices of the BFS element discussed in section 5.4.2. There are 

now 8 degrees of freedom at each of the 4 nodes, u, v, w, w,x, θx,w,y,θy and w,xy. 

The reason for chosing the BFS element over the ACM element for the 

anisoparametric formulation here is the simplicity of the interpolation functions for 

w,x,w,y and w,xy which have Hermite cubic polynomials. The interpolation 

functions for u, v, θx and θy are bilinear polynomials. This element has already 

been discussed for linear elastostatics applications in section 4.5.  

 

6.8.2 Numerical Experiments and Discussion  

 

The results for a simply supported plate (20x20 mm quarter plate, 0.4 mm 

thickness and Poisson’s ratio of 0.3, Young’s Modulus of 200000 N/mm2 ) are 

discussed in Table 6.36. The anisoparametric formulation for shar-flexible plates 

does not produce any shear locking and there is no necessity of using selective 

integration. For plate bending problems, it has already been demonstrated in 

section 5.4 that the membrane locking is not significant, and hence there is no 

need for selective integration for the membrane strains either. This is clearly 

seen in Table 6.36, and the results are compared with ANSYS  (2008) (with 

SHELL63 element) and are seen to match closely.The results for the clamped 

square plate are tabulated in Table 6.37, and show a similar trend as that of the 

simply supported case. The membrane forces and bending  moments for the 

simply supported plate are compared with ANSYS  (2008) (SHELL 63 element) 

in Fig. 6.72 and Fig. 6.73 and match very well. The anisoparametric element that 
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was used here had a discretisaion of 16 x 16 elements in one quadrant of the 

plate. The ANSYS  (2008) mesh had 32 x 32 elements in each quadrant. 

 

 

 

 

 

 

Table 6.36 Deflection at centre of a shear-flexible simply supported square plate 

(uniform load), C
0
 Anisoparametric formulation, Large deflection analysis 

 

 

 

 

 

 

  

Table 6.37 Deflection at centre of a shear-flexible clamped square plate (uniform load),  

C
0
 Anisoparametric formulation, Large deflection analysis 

 

 

 

 

 

 

 

Fig. 6.72 Membrane forces in a simply supported shear-flexible square plate 

 (uniform load), C
0
 Anisoparametric formulation, Large deflection analysis 

 

 

Load Integration (5x5) Integration (2x2) ANSYS Deflection

1 0.377644 0.377646 0.378168

2 0.505898 0.505900 0.506211

3 0.591216 0.591217 0.591338

4 0.657338 0.657339 0.657296

5 0.712272 0.712273 0.712085

6 0.759767 0.759767 0.759453

7 0.801906 0.801905 0.801477

8 0.839976 0.839975 0.839444

9 0.874834 0.874833 0.874208

10 0.907081 0.907079 0.906367

Large Deflection of a shear-flexible simply supported plate - UDL 

Load Integration (5x5) Integration (2x2) ANSYS Deflection

1 0.229365 0.229374 0.233990

2 0.369089 0.369116 0.375290

3 0.464803 0.464847 0.471923

4 0.538336 0.538394 0.546175

5 0.598663 0.598735 0.607130

6 0.650215 0.650299 0.659257

7 0.695492 0.695587 0.705075

8 0.736042 0.736148 0.746142

9 0.772894 0.773009 0.783492

10 0.806766 0.806889 0.817848

Large Deflection of a shear flexible clamped plate - UDL 

Axial Force in a SS Plate - UDL, Large Deflection
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Fig. 6.73 Bending moments in a simply supported shear-flexible square plate  

(uniform load), C
0
 Anisoparametric formulation, Large deflection analysis 

 

The membrane forces and bending moments for the clamped plate are shown in 

Fig. 6.74 and Fig. 6.75 respectively and show a good match with ANSYS  

(2008). The mesh discretisation is the same as used earlier for the simply 

supported plate. 

 
 

 

 

 

 
 
 

 

Fig. 6.74 Membrane forces in a clamped shear- square plate (uniform load),  

C
0
 Anisoparametric formulation, Large deflection analysis 

 

 

 

 

 

 

 

Fig. 6.75 Bending moments in a clamped shear-flexible square plate (uniform load),  

C
0
 Anisoparametric formulation, Large deflection analysis 
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Fig. 6.76 Convergence of displacement in a simply supported shear-flexible square plate 

(uniform load), C
0
 Anisoparametric formulation, Large deflection analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.77 Convergence of displacement in a clamped shear-flexible square plate 

 (uniform load), C
0
 Anisoparametric formulation, Large deflection analysis 
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The convergence of displacements in a simply supported plate is shown in Fig. 

6.76. It can be seen that the order of convergence is less than O(h2), and the 

reason that is attributed is due to the complex interpolation functions that were 

used in the element formulation. Similar trend is seen in the displacement 

convergence of the clamped plate which is shown in Fig. 6.77. 

 

The boundedness of strain energy for simply supported plate is seen in Table 

6.38 for all the load cases. The clamped plate also shows similar results as seen 

in Table 6.39. 

 

 

 

 

 

 

 

Table 6.38 Strain energy boundedness in a shear-flexible simply supported square 

plate (uniform load), C
0
 Anisoparametric element, Large deflection analysis 

 

 

 

 

 

 

 

Table 6.39 Strain energy boundedness in a shear-flexible clamped  square plate 

(uniform load), C
0
 Anisoparametric element, Large deflection analysis , 

 

 

Load 4x4 8x8 16x16 ANSYS

1 4.165290 5.340577 5.492589 5.522490

2 13.535636 16.407941 16.855445 16.963600

3 25.383898 30.091113 30.938756 31.162800

4 38.803545 45.564026 46.910672 47.283800

5 53.412571 62.457817 64.395863 64.948800

6 68.999604 80.551746 83.168105 83.929800

7 85.427656 99.694299 103.071415 104.069000

8 102.599355 119.773269 123.989895 125.250000

9 120.441296 140.701450 145.833212 147.381000

10 138.895853 162.408748 168.528557 170.389000

Strain Energy in a clamped plate - UDL, Anisoparametric Formulation

Load 4x4 8x8 16x16 ANSYS

1 9.408245 9.495917 9.517486 9.530380

2 23.267190 23.465179 23.527272 23.566000

3 39.266875 39.629988 39.747448 39.820800

4 56.901555 57.469316 57.653485 57.769000

5 75.893027 76.696017 76.956194 77.120800

6 96.059148 97.122324 97.466461 97.686500

7 117.269366 118.613851 119.048940 119.330000

8 139.424580 141.068725 141.601034 141.949000

9 162.446478 164.406546 165.041771 165.463000

10 186.271313 188.561930 189.305309 189.804000

Strain Energy in a SS Plate - UDL, Mindlin Anisoparametric Formulation
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The results of the sweep-test for a simply supported plate are shown in Fig. 6.78 

and for smaller loads, the strain energy curve does not cross the theroretical line. 

However, for larger loads, as the membrane forces start developing, the total 

strain energy appears to show a cross-over. This is attributed to the relative 

higher stiffness of the elements at larger loads, as seen in Table 6.37 as well. 

The boundary conditions for the clamped plate for performing the sweep-test are 

not good enough for mesh used in the study, and hence are not reported.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.78 Sweep-Test in a simply supported shear-flexible square plate 

 (uniform load), C
0
 Anisoparametric element, Large deflection analysis 
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6.9 Closure 

 

 In this chapter, the use of field-consistent formulation for the large deformation 

analyses of shear-flexible beams, shells and plates were presented. This 

formulation overcomes both the shear and membrane locking that is normally 

associated with this class of problems. Alternate mechanisms of overcoming the 

locking phenomena were examined, and compared with the field-consistent 

formulation. Since the field-consistent formulation is derived from first-principles, 

it is variationally correct, and the results clearly bring this out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.40 3C concepts and performance of various shear-flexible element formulations 

(large deflection analysis) 

Note: ���� implies that the performance is good/satisfies the respective attribute 

 ���� implies that it is a violation of the respective attribute 

���� implies that the performance of the respective attribute is degraded 

 

 Element 

Formulation

C-Concept 

Deviation
Example Problem

Strain Energy 

Boundedness

Rate of 

Convergence
Sweep-Test

Pinned-Pinned Beam � ���� ����

Hinged-Hinged Beam ���� ���� ����

Clamped-Clamped Beam � ���� ����

Pinned-Pinned Beam � ↓↓↓↓ �

Hinged-Hinged Beam ���� ↓↓↓↓ ����

Clamped-Clamped Beam ���� ���� ����

Pined-Pined Beam � ���� �

Hinged-Hinged Beam ���� ���� ����

Clamped-Clamped Beam � ���� ����

SS Circular Plate ���� ���� �

Clamped Circular Plate � ���� �

SS Circular Plate ���� ���� ����

Clamped Circular Plate ���� ���� ����

SS Circular Plate ���� ���� ����

Clamped Circular Plate ���� ���� ����

SS Plate ���� ���� ����

Clamped Plate ���� ���� ����

SS Plate ���� ���� ����

Clamped Plate ���� ���� ����

Aniso Plate Correctness SS Plate ���� ���� �

C
0 

 Plate – FC None

Aniso Shell - 

RI
Correctness

C
0 

 Plate – RI Correctness

Aniso Shell - 

FI
Consistency

Correctness

C
0 
 Shell – RI Correctness

Summary of Results for Nonlinear Elastostatics for Shear-flexible problems

Aniso Beam - 

RI
Correctness

Aniso Beam - 

FC
None

C
0
 Beam - RI
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Chapter-7 

Linear Elastodynamics 

 

7.1 Introduction 

 

Finite element analysis of structures subjected to transient loads quite often 

requires the natural frequencies of the structure to be determined. Though the 

analysis required may vary depending on the nature of applied loads, e.g. 

spectrum analysis, random vibration analysis, time-history analysis, impact 

analysis etc., one important feature common to all these types of analysis is the 

accurate determination of the natural frequencies of the structure. In a finite 

element analysis, this involves the formulation of the stiffness and mass matrices 

of the structure. Once these matrices are established, the mathematical 

treatment of the generalized eigenvalue problem is used to determine the natural 

frequencies and the mode shapes. It is the input that goes to these algorithms, 

viz., the stiffness and mass matrices of the discretised structure that determines 

the accuracy of the natural frequencies as compared to the exact frequencies of 

the actual structures. For example, the natural frequencies of the simplest 

problem such as the simply supported beam when obtained from the finite 

element model of the beam still contain an error, when compared to the exact 

frequencies. In this work, the source of this error is interpreted due to the 

discretisation of the structure and the manner in which the mass matrices were 

obtained to the 3C concepts paradigm.  

 

A deeper study of the rates of convergence and behaviour of the elements (bar 

element, beam element, plate element etc.) is required for better understanding 

of the errors in the natural frequencies. In this chapter the natural frequencies of 

the beams and plates using different elements are studied. The C1 plate bending 

element based on classical Kirchhoff theory, and the C0 plate bending element 

based on Mindlin’s theory are used in this study. The effect of using consistent 
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and lumped mass matrices on the natural frequencies are studied using the 

above elements. The various types of lumping schemes are briefly discussed. 

The effect of using reduced integration in the stiffness matrices for determining 

the natural frequencies is also addressed.   

 

The modeling of dynamic behaviour of structural elements requires correct 

modeling of strain energy and kinetic energy. Any errors in either or both of these 

terms can cause errors in the natural frequencies, and the respective mode 

shapes.  The source of the errors in the kinetic energy terms is the mass matrix, 

and various formulations of mass matrix were studied by many researchers.   

 

Leckie and Lindberg (1963) proposed a dynamic stiffness matrix whose error in 

the frequency varies inversely as the fourth power of the number of elements. 

Lindberg and Olson (1970) showed that the conforming plate bending element 

converges from above, and is far superior to the non-conforming element. Fried 

(1971) estimated a priori the accuracy in eigenvalues as a function of order of 

element and geometrical characteristics of the element. 

 

Hinton et al. (1976) used a scaling factor to scale all the diagonal elements of a 

mass matrix. This scaling factor is based on the ratio of the total mass to the sum 

of the diagonal coefficients of the mass matrix associated with the translational 

degree of freedom that are in the same direction.  Cook (1991) proposed the use 

of a linear combination of lumped (6%) and consistent (94%) mass matrices to 

estimate the errors in the natural frequencies. There is no rationale for the basis 

for this specific combination of the lumped and mass matrices. Rajendran and 

Prathap (1999) showed that the lumped mass approach conserves mass but not 

necessarily the momentum or kinetic energy of the consistent mass matrix.  

 

Archer and Whalen (2005) proposed a new formulation of the mass matrix for 

plate and beam elements, and study the errors in the natural frequencies. In this 
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approach, there is a possibility of generation of negative mass terms in certain 

cases, and a work-around is suggested. 

 

Error measures of the natural frequencies were studied by Ladeveze and Pelle 

(1989, 2003), Cook and Avrashi (1992), Stephen and Steven (1997a, 1997b, 

1997c), Zhao and Steven(1996a, 1996b). Fuenmayor et al. (2001) dealt with the 

problem by taking the contributions of the individual errors in stiffness and mass 

matrices, and also address the errors due to the choice of consistent or lumped 

mass matrices in the formulation. A combination of errors in the kinetic and strain 

energy was used by Hager and Wiberg (2000). Cheung et al. (2000) used a 4-

noded refined non-conforming plate bending element to form the stiffness matrix 

and a modified mass matrix based on a combination of the conventional 

displacement interpolation function (of cubic order) and linear displacement 

interpolation function with an adjustable factor α to improve the accuracy of the 

vibration analysis. The rationale for the choice of α is however not explained. 

Singh and Venkateswara Rao (2000a) used a four-node shear flexible 

rectangular element with six degrees of freedom per node. The interpolation 

functions are derived from the equilibrium conditions and the element does not 

exhibit shear locking. Jafarali et al. (2004) used a hybrid beam element that has 

the stiffness matrix based on Timoshenko beam theory and the mass matrix from 

classical beam theory and show that it is the cancellation of errors that results in 

the apparent accurate performance of the element. Jafarali et al. (2007) showed 

that use of reduced integration violates virtual work principle which in turn causes 

the loss of boundedness of the finite element eigenvalues. 

 

In this chapter, the error analyses is based on the projection theorem of Prathap 

and Mukherjee (2003a). The projection theorem for the elastodynamics problem 

was outlined in chapter-2, and these results are used to assess the performance 

measures, rate of convergence and boundedness for beam and plate problems. 

What is important is that the error is still governed by the error in the strain 

energy, and therefore, as long as no variational crimes are committed, the orders 
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of convergence for the elastostatics case should apply. These concepts are now 

applied to study the accuracy of the natural frequencies of beams and plates, 

and the accompanying errors due to use of extra-variational concepts. For this, it 

is important that the measure of error to be used is clearly defined. For 

elastodynamics, where, a variationally correct formulation would have produced 

higher frequencies, one can define error as 

 

Error  =   (ωh)2/ω2  -  1    …(7.1) 
 

It was already seen even in the elastostatics cases earlier that, if the problem is 

not formulated in a variationally correct way, boundedness is lost. In an 

elastodynamics case, it will therefore be possible that frequencies are lower than 

the analytical ones. In such cases it may be necessary to use |Error| in the 

logarithmic plots. 

 
 
7.2 Natural Frequencies of Classical Beams and Plates  
 
 
7.2.1 Formulation of Element Matrices 
 

The derivation of the stiffness matrix and mass matrix for a finite element follows 

standard finite element textbook, Cook et al. (1989). Here, the final forms of 

these matrices are reproduced. The stiffness matrix is represented as 

 

[K] = ∫ [B]T[D][B] dV     …(7.2) 

    

       

and the mass matrix M as 

 

 

[M] = ∫ ρ [N]T[N] dV      …(7.3) 
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where  

ρ is the density of the material 

N is the interpolation function    

 

Depending on the element being used, interpolation functions N can be defined. 

For a C1 plate bending element, the ACM and BFS elements described in 

Chapter-3 are used. For the C0 plate bending element, the field consistent and 

edge consistent formulation of Prathap and Somasekhar (1988) is used. The 

mass matrix formulated as above is termed consistent mass matrix. The other 

formulation of the mass matrix, lumped mass matrix, is implemented using the 

HRZ lumping scheme of Hinton et al. (1976) lumping scheme, which is discussed 

in section 7.2 

 

The stiffness matrices and mass matrices are formed using the above 

interpolation functions and respective strain displacement relations. Numerical 

integration is used, and the order of integration used is for exact integration. For 

the specific case of reduced integration for the C0 formulation of Mindlin element, 

the stiffness matrix is obtained as 

 

 
[K] = [Kb] + [Ks]        …(7.4) 

 
 

 [K] = ∫ [Bb]
T[Db][Bb] dA  +  ∫ [Bs]

T[Ds][Bs] dA     …(7.5) 

 

where [Bb] represents the strain displacement relations between the bending 

strains and the displacements, and [Bs] represents the strain displacement 

relations between the shear strains and the displacements. The stiffness matrix  

[Kb] is integrated using the routine 2X2 Gaussian Quadrature, and [Ks] is 

integrated using 1X1 rule.   
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7.2.2 Numerical Experiments 

A simply supported beam of length 1000 mm, width 10 mm and depth 10 mm is 

considered first. The Young’s modulus of the material of the beam is 200000 

N/mm2, and the density is 7850 kg/m3. The theoretical fundamental frequency for 

this beam is  

 

ω = (π)2 sqrt(EI/ml4)                …(7.6) 

 

where EI is the flexural rigidity of the beam, and m is the mass per unit length of 

the beam, and l is the length of the beam. 

 

The results obtained using BFS, ACM and Mindlin elements are shown in Fig. 

7.1. The beam is discretised into 40 elements. The variation of error is shown 

with respect to the mode number as explained in Prathap and Pavankumar 

(2001). We observe that the rate of convergence for the BFS/ACM is O(h4).  

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Variation of error with mode number for a simply supported beam 
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7.2.3 Effect of Conformance and Non-conformance 

 

A second example, of a simply supported plate is taken with the following 

properties – Square plate of 40 mm side, Thickness as 0.4 mm, Young’s 

Modulus as 200000 N/mm2, Poisson’s ratio as 0.3 and density as 7850 kg/m3. 

Due to the symmetry of the plate, we use only one quadrant of the plate. The 

theoretical frequency is given in Shames and Dym (1987), as 

 

ω = π2 {p2/a2 + n2/b2}
m

D
         …(7.7) 

 

where D is the flexural rigidity of the plate, and m is the mass per unit area of the 

plate,  a and b are the dimensions of the rectangular plate, and n and p are the 

mode numbers. 

The results obtained using BFS and ACM elements for this plate are 

shown in Fig. 7.2. The error is now reported as varying with respect to the mesh 

refinement. 

 

 

 

 

      

 

 

 

Fig. 7.2 Comparison of convergence of frequencies of a simply supported plate 

 

Note that the BFS element gives very low errors even for a mesh of 2x2. This 
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non-conforming element. Also, it can be observed that the results for the BFS 

Variation of Error in Fundamental Frequency with Mesh Refinement

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

log(N)

lo
g

(E
rr

o
r)

BFS Element

ACM Element



 262

element converge from the top, whereas for the ACM element converge from the 

bottom. 

 

7.2.4 Effect of Consistent and Lumped Mass Modeling 

 

The effects of consistent and lumped formulation of the mass matrices are 

discussed now. The same two examples of simply supported beam and simply 

supported square plate are considered. Formulation of the consistent mass 

matrix was explained in section 7.1. For BFS element, numerical integration of 

order 4x4 is used for formulating the mass matrix. For ACM element also, 4x4 

order is used. For the lumped formulation the HRZ lumping scheme of Hinton et 

al. (1976) is used. This process is summarized in the following steps: 

 

1. Compute the diagonal terms of consistent mass matrix. 

2. Compute total mass of element, m 

3. Compute ss  by  adding diagonal coefficients associated with translational D-O-F 

that are in same direction. 

4. Scale all diagonal coefficients by multiplying by m/s  

 

The results for the case of a simply supported beam in which the beam is 

discretised into two elements, for both consistent and lumped mass matrices are 

shown in Fig. 7.3 

 
 
 
 
 
 
 
 
 
 
 
 
    

Fig. 7.3 Sweep-Test in a simply supported beam 
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The results for the case of the fundamental frequency of the plate using BFS 

element are shown in Fig. 7.4 

 
 
     
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.4 Comparison of frequencies in a simply supported plate – BFS Element 

 
Here it can be observed that the results for the consistent mass matrix converge 

from the top, whereas for the lumped mass matrix converge from the bottom. 

Also, the rate of convergence of lumped mass is lower than the consistent mass. 

 
 
For the ACM element, the results are shown in Fig. 7.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

Fig. 7.5 Comparison of frequencies in a simply supported plate – ACM Element 
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In this case, the results for both consistent and lumped mass matrices converge 

from the bottom. Also when Fig. 7.4 and Fig. 7.5, are compared the rate of 

convergence of the BFS lumped mass case is almost the same as the rate of 

convergence of ACM consistent and lumped mass case. 

 
7.2.4 Discussion of Results 
 
The problem of determining the position of the nodes in a given mesh that makes 

the error between the computed natural frequency and the exact frequency, a 

minimum is considered. This position can be considered as the optimal mesh. 

The simple case of a simply supported beam is considered. When the beam is 

discretised into two elements, and the natural frequency is computed by varying 

position of the middle node, it can be observed from the variation of the error 

from the consistent case, that the error is the least when the mid node is 

positioned exactly at the center of the beam.  The results are shown in Fig. 7.3 

 

Based on the same argument if the position of the mid node is to be ascertained 

in the case of lumped mass which makes the error in the fundamental frequency 

the least, it is found that it is not at the center but at two locations of 400 mm and 

600 mm from one end. This is a result, which does not give any physical 

meaning as the consistent case. This is explained by the fact that the lumping 

process has introduced additional errors in the representation of the the kinetic 

energy and in the process has lost variational correctness that is maintained in 

the consistent mass approach. 

 

One half of the beam can be considered, (due to symmetry of the beam and the 

symmetry of the fundamental mode), and this is discretised into two elements. 

The position of the middle node which makes the error minimum, is determined 

from the following results, as shown in Fig. 7.6. 

 

Note that due to symmetry only one half is taken, and the same variation of the 

curve is expected for the other half. 
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Fig. 7.6 Sweep-Test in a simply supported beam (4 elements) 

 

For the lumped mass matrix case, it can be deduced from the curve that the error 

is minimum, once again, at two locations, thus corroborating the finding that 

lumped mass matrix does not give a unique position of nodes leading to an 

optimum mesh. Thus it can be seen that the variational violations due to lumping 

of mass matrices may produce results which could mislead. 

 

To study the rate of convergence of the errors, the approach introduced by 

Prathap and Pavankumar (2001) is followed. An accurate high density mesh of 

uniformly sized elements (NxN mesh) is used and then the error in the 

frequencies is computed with increasing mode number (for a plate, m or n, 

varying one and keeping the other fixed). Consider a simply supported plate, 

where the exact solution involves simple trigonometric waves; for example, the 

(m,n) mode will be the eigenfunction sin(mπx/a)sin(nπy/b).  The ratio of the 

element length, h = a/N  to the wave-length of the mth wave  λ = a/m, is now r = 

h/λ   =  m/N, when the other mode number (say  n) is kept fixed. The errors will 

now be a function of  r, and this will mean that the order of convergence with one 

of the mode numbers of the frequency (say  m) will follow the exact trend as with 

h, if  N and n are fixed for the problem. Thus, with one single eigenvalue 

computation, the errors can be swept for varying mode number m. Fig. 7.7 shows 

the error trends in this fashion, for the BFS model of the free vibration of a simply 
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supported plate. It is seen that the convergence is consistent with the prediction 

that the eigenfrequencies will have a convergence of  O(h4). Fig. 7.8 shows the 

errors in the natural frequencies, when ACM model is used. It  is clear that there 

is no definite order of convergence for any general mode (m,n). However, it is 

interesting to note that for m=n modes, it follows O(h2).  

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.7 Errors in natural frequencies of a simply supported plate - BFS element 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.8 Errors in natural frequencies of a simply supported plate - ACM element 
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so that have a highly asymmetrical mesh is obtained. Fig. 7.9 shows the 

eigenvalues obtained when the node is swept over the plate for the BFS element 

model. 

 

Fig. 7.9 shows that the frequencies are very neatly bounded, and the perfectly 

symmetrical mesh, which is also the mesh which is uniform, has the most 

accurate frequency. Fig. 7.11 shows what happens when the central node is 

swept along the diagonal (x = y). The boundedness aspect is seen very clearly. 

 

 

Fig. 7.9 Sweep-Test in a simply supported plate – Surface plot (BFS element) 
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Fig. 7.10 Sweep-Test in a simply supported plate – Line plot (BFS element) 
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Fig. 7.11 and 7.12 show this exercise repeated with the ACM elements. 

Boundedness is now lost, and in fact, there are points where the mesh, if 

sufficiently non-symmetrical, gives the exact frequency. This can be interpreted 

to mean that the extra-variational errors introduced due to loss of conformity 

have exactly compensated for the errors due to the discretisation process 

described by eqn. (7.2) and (7.3). It is easy to see that this has important 

implications where error estimates are used to achieve automatic mesh 

refinement. 

 

Fig. 7.11 Sweep-Test in a simply supported plate – Surface plot (ACM element) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.12 Sweep-Test in a simply supported plate – Line plot (ACM element)  
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Fig. 7.13 Errors in natural frequencies of a simply supported plate due to lumping  

(BFS Element) 

 

In Fig. 7.13, it can be noted that the rates of convergence have dropped to O(h2) 

as compared to the O(h4) achieved for the consistent mass case for the BFS 

element. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.14 Errors in natural frequencies of a simply supported plate due to lumping 

 (ACM Element) 

 

In Fig. 7.14, the effect of lumping on the natural frequencies of the plate is shown 

for the ACM formulation. Here again, the loss of rate of convergence can be 
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observed. Fig. 7.15 emphasizes the boundedness aspect further from the 

lumping point of view. A 2x2 element mesh is used, with the central node swept 

to cover the whole plate. Lumping causes the boundedness to be lost. The 

perfectly symmetrical mesh yields a frequency that is lower than the exact 

frequency. For a non-symmetrical mesh, the frequencies increase at first, and at 

some fortuitous configurations, the exact frequencies are obtained. At highly non-

symmetrical situations, the trend changes and the frequencies begin to fall.  

 

Fig. 7.15 Sweep-Test in a simply supported plate – Surface plot 

 (BFS element Lumped Mass) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.16 Sweep-Test in a simply supported plate – Line plot (BFS element Lumped Mass) 
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The main conclusion from this is that it is unreliable to use lumped mass 

approaches in an automatic adaptive mesh refining approach, as the errors of 

lumping may actually be compensating for the errors of discretisation. Fig. 7.16 

shows what happens when the central node is swept along the diagonal of the 

plate. 

 

Fig. 7.17 and 7.18 show the results obtained when the same exercise is repeated 

with lumped ACM elements. More information on these investigations is reported 

in Muralikrishna and Prathap (2003). 

 

Fig. 7.17 Sweep-Test in a simply supported plate – Surface plot 

 (ACM   element  Lumped Mass) 

 

 

 

 

 

 

 

 
 

 

 

 
Fig.  7.18 Sweep-Test in a simply supported plate – Line  plot (ACM   element Lumped 

Mass) 
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7.3 Natural Frequencies of Shear-Flexible Beams and Plates – 
Isoparametric Formulation 
 

7.3.1 Formulation of Element Matrices 

 

The effect of C0 elements on the natural frequencies of a simply supported beam 

is discussed now. Here, the locking phenomenon that is observed in the C0 

elements for certain problems is not discussed in depth. Rather, the focus is on 

the effect of the C0 element per se, on the natural frequencies, when the most 

often suggested remedy of reduced integration is used. Fig. 7.19 compares the 

errors in frequencies between the C1 and C0 elements. It is to be noted that a 

plate element can be used for computing the frequencies of a beam as well, and 

in all these studies the plate elements are used for beams as well.  

 

7.3.2 Numerical Experiments 

 

The element formulations are now tested on beams and plates for which 

theoretical frequencies are available. The impact of integration on the natural 

frequencies is assessed for both full integration and reduced integration. This is 

followed by assessing the impact of consistent and lumped matrices. 

 

7.3.3 Effect of Full Integration/Selective Integration 

 

The results of the standard C0 element formulated using Mindlin theory are 

compared with the field and edge consistent C0 element of Prathap and 

Somasekhar (1988) in Fig. 7.20. It can be observed that the erratic behaviour of 

the error at higher modes, is due to the use reduced integration for formulating 

the stiffness matrices. This indicates that the reduced integration strategy has 

introduced spurious zero energy modes which act up at higher modes.  
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7.3.4 Effect of Consistent and Lumped Mass Modeling 

 

Fig. 7.21 shows the effect of lumping on the C0 element. There is no loss of 

convergence due to lumping. The results of the sweep-test for a simply 

supported beam (length 1000 mm, width 10 mm, depth 10 mm, Young’s modulus 

of the material of the beam is 200000 N/mm2, and the density is 7850 kg/m3) and 

a simply supported plate (square plate of 40 mm side, thickness as 0.4 mm, 

Young’s Modulus as 200000 N/mm2, Poisson’s ratio as 0.3 and density as 7850 

kg/m3) for different lumping schemes, HRZ (Hinton et al. 1976) and Archer 

(Archer and Whalen 2005) are shown in Fig. 7.22 and Fig. 7.23.   

 

 

 

 

 

 

 

 

 

 

Fig.  7.19 Comparison of errors in natural frequencies of a simply supported beam  

 

 

 

 

 

      

 

 

 

Fig. 7.20 Comparison of errors in natural frequencies of a simply supported plate 
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Fig. 7.21 Effect of lumping on natural frequencies of a simply supported  

 shear-flexible beam 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.22 Effect of different lumping schemes on natural frequencies of a  

simply supported shear-flexible beam 
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Fig. 7.23 Effect of lumping on natural frequencies of a simply supported  

shear-flexible plate 

7.3.5 Discussion of Results 

 

In the plots shown in Fig.7.22 and Fig. 7.23, the effects of lumping can be clearly 

seen. Fig. 7.23 shows that lumping causes a cross-over of the frequency curve 

with the exact frequency, thus indicating a loss of boundedness. Table 7.1 shows 

the impact of the two lumping schemes considered here. The lumping scheme of 

Archer and Whalen (2005) gives consistently higher frequencies for all the 

modes. 

 

 

 

 

 

 

 

 

 

 

 

Table 7.1 Effect of different lumping schemes on natural frequencies of a 

 simply supported square plate 

Sweep Test in a Simply Supported Plate
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n m Theory HRZ Archer

1 1 238.3629 237.7701 239.3208

1 2 595.9072 595.1089 605.0952

2 1 595.9072 595.1089 605.0952

2 2 953.4515 944.0367 969.8232

1 3 1191.8143 1197.9182 1240.4106

3 1 1191.8143 1197.9182 1240.4106

2 3 1549.3586 1532.8187 1604.1254

3 2 1549.3586 1532.8187 1604.1254

1 4 2026.0843 2058.1581 2193.1484

4 1 2026.0843 2058.1581 2193.1484

3 3 2145.2658 2098.1910 2238.1027

2 4 2383.6286 2373.4010 2557.3227

4 2 2383.6286 2373.4010 2557.3227

3 4 2979.5358 2905.9519 3194.3793

4 3 2979.5358 2905.9519 3194.3793

1 5 3098.7172 3194.9855 3555.9475

5 1 3098.7172 3194.9855 3555.9475

2 5 3456.2615 3484.9001 3925.0454

5 2 3456.2615 3484.9001 3925.0454

4 4 3813.8058 3667.6617 4160.9731

Effect of different lumping schemes on Natural Frequencies in a SS Plate
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Fig. 7.24 Errors in natural frequencies of a simply supported  

shear-flexible plate due to lumping 

 

7.4 Natural Frequencies of Shear-Flexible Beams– 

Anisoparametric Formulation  

 

7.4.1 Formulation of Element Matrices 

The anisoparametric elements developed in chapter-4 are now studied for their 

dynamic behaviour.  The 2-node anisoparametric beam described in section 4.2 

is now used for studying the natural frequencies of beams. 

 

 The error in the fundamental frequency of a simply supported beam (length 1000 

mm, width 10 mm, depth 10 mm, Young’s modulus of the material of the beam is 

200000 N/mm2, and the density is 7850 kg/m3) for various combinations of 

stiffness matrix and mass matrix is shown in Fig. 7.23. As already discussed in 

chapter-4, the use of full integration and reduced integration for an 

anisoparametric beam does not make any impact (anisoparametric beam does 

not cause shear locking, and hence there is no need for a reduced integration). 
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The use of lumped mass does not degrade the rate of convergence as can be 

seen in Fig. 7.23. 

 

7.4.2 Numerical Experiments 

Fig. 7.25 shows the convergence of the fundamental frequency of a simply 

supported beam, for the various combinations of full/reduced integration and 

consistent/lumped mass.  

 

7.4.3 Effect of Full Integration/Selective Integration 

As already demonstrated for the linear elastostatics case, the use of full/reduced 

integration for the anisoparametric formulation of a straight beam does not have 

any impact on the stiffness of the beam. The same is seen in Fig. 7.25.  

 

7.4.4 Effect of Consistent and Lumped Mass Modeling  

Further, the anisoparametric formulation has shown that the use of consistent or 

lumped mass matrix does not degrade the performance of the element from a 

convergence perspective. 

 

 

 

 

 

 

 

 

 

Fig. 7.25 Comparison of errors in fundamental frequency – shear-flexible beam, 

Anisoparametric formulation 
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7.4.5 Discussion of Results 

 

Table 7.2 compares the fundamental frequency of the beam for the various 

formulations for a beam that was discretised in to n elements.  

 

 

 

 

 

 

Table 7.2 Comparison of fundamental frequency of shear-flexible simply supported beam - 

Anisoparametric formulation 

 

 

The results of the sweep test are shown in Fig. 7.26 for various combinations of 

stiffness and mass matrices. It can be seen clearly that use of lumped mass 

matrices clearly cuts the theoretical frequency line and is no more bounded, 

whereas the use of reduced integration preserves the boundedness (as reduced 

integration for an anisoparametric formulation has very little impact on the 

stiffness of the beam). 

 

 

For a simply supported plate (square plate of 40 mm side, thickness as 0.4 mm, 

Young’s Modulus as 200000 N/mm2, Poisson’s ratio as 0.3 and density as 7850 

kg/m3 ), the results of the sweep test are shown in Fig. 7.27 for the case of  a 

consistent mass matrix, and the boundedness of results can be seen clearly. 

 
 
 
 
 
 
 

# Elements FI-Full RI-Full FI-Lump RI-Lump

2 4.656956 4.656927 4.633446 4.633437

4 4.567484 4.567484 4.567809 4.567807

8 4.545493 4.545492 4.552340 4.552339

16 4.540018 4.540018 4.548529 4.548529

32 4.538651 4.538651 4.547580 4.547580

Anisoparametric - SS Beam Frundamental Frequency
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Fig. 7.26 Sweep-Test in a simply supported shear-flexible beam -   

Anisoparametric formulation 

 

When lumped mass matrix is used, the fundamental frequency is compared with 

the results obtained using consistent mass matrix in Fig. 7.28 and there is no 

degradation of the results. 

 

Fig. 7.27 Sweep-Test in a simply supported shear-flexible plate-   

Anisoparametric formulation 
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Fig. 7.28 Effect of lumped mass on a shear-flexible plate with anisoparametric formulation 

 

7.5 Closure 

 

It can be seen from the above detailed study of the errors produced due to the 

use of extra-variational processes in beam and plate bending problems, that 

whenever the variational principles are not adhered to, there is no guaranteed 

boundedness of the results.  Use of non-conforming elements, and lumped mass 

matrix for both conforming and non-conforming elements brings down the order 

of convergence.  Similarly, the use of reduced integration introduces errors that 

show for higher frequencies. The anisoparametric element has been found to 

relatively more stable with respect to use of full/reduced integration or 

consistent/lumped mass matrix. Table 7.3 summarizes the results of the studies 

carried out on linear elastodynamics in this chapter. 
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Table 7.3 3C concepts and performance of various element formulations – Linear 

elastodynamics 

Note: ���� implies that the performance is good/satisfies the respective attribute 

 ���� implies that it is a violation of the respective attribute 

���� implies that the performance of the respective attribute is degraded 

���� implies that there is no degradation of the performance  

 Element 

Formulation

C-Concept 

Deviation
Example Problem

Frequency 

Boundedness

Rate of 

Convergence
Sweep-Test 

SS Beam ���� ���� ����

SS Plate ���� ���� ����

Clamped Plate ���� ���� ����

SS Beam � ↓↓↓↓ �

SS Plate � ↓↓↓↓ �

Clamped Plate � ↓↓↓↓ �

SS Beam ���� ���� ����

SS Plate ���� ↓↓↓↓ ����

Clamped Plate ���� ↓↓↓↓ ����

SS Beam ���� ↓↓↓↓ �

SS Plate ���� ���� �

Clamped Plate ���� ���� �

SS Beam ���� ���� ����

SS Plate ���� ↓↓↓↓ �
SS Beam ���� ���� ����

SS Plate ���� ���� �

SS Beam ���� ���� ����

SS Plate ���� ���� �

SS Beam ���� ���� ����

SS Plate ���� ���� ����

Clamped Plate ���� ���� ����

SS Beam � ���� ����

SS Plate � ���� ����

Clamped Plate � ���� ����
SS Beam � ���� �

SS Plate � ���� ����

Clamped Plate � ���� ����

Aniso

Aniso Lumping

None

Quad-4 FC None

ACM Element
Conformance 

+ Lumping

Quad-4 RI
Correctness 

only

Quad-4 FC Lumping

Summary of Results for Linear Elastodynamics

Quad-4 RI

BFS Element None

ACM Element
Conformance 

only

BFS Element Lumping

Correctness + 

Lumping



   

 

283 

 

Chapter-8 

 

Conclusions 

 

This thesis has made an attempt to lay a framework for element formulations 

based on novel 3C concepts of consistency, correspondence and correctness. 

Towards this end, a total of 67 element formulations were studied in detail 

covering beams, axisymmetric shells and plates (i.e. 1D and 2D problems) for 

their applications to linear and nonlinear elastostatics and linear elastodynamics 

problems. Isoparametric elements are the most widely used elements and this 

thesis has attempted to assess the robustness of these elements using 3C 

concepts. By robustness is meant the ability of elements to produce accurate 

results even with coarse meshes. In the course of this study, it was also seen 

that some of the historical plate bending elements that were formulated in 1960s, 

did not adhere to the canonical principles and hence were worthwhile re-

examining now using the 3C concepts. It was further seen that anisoparametric 

elements have been sporadically used for studying the shear-flexible structures, 

and have not really been studied in detail for their use in wider applications like 

axisymmetric shells and large deflections, and hence offered a lot of ground for 

further study. In fact, out of the 67 element formulations studied in this thesis, 24 

are anisoparametric formulations, and 16 of these element formulations are new. 

 

As a part of this thesis, a systematic study of the conforming and non-conforming 

plate bending elements has also been undertaken. Through the examples of a 

rectangular plate with both simply supported and clamped boundary conditions, it 

has been demonstrated that the non-conforming elements do not follow the best-

fit rule (correspondence concept). It has also been shown that the non-

conforming elements do not guarantee the boundedness of strain energy. The 

conforming element follows the best-fit rule and guarantee the boundedness of 
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strain energy. For the case of axisymmetric shell problems, an element that is 

formulated using the canonical principles, adheres to the best-fit rule and the 

strain energy is bounded. 

 

This thesis included a detailed study of shear-flexible structures, which are 

investigated using isoparametric and anisoparametric elements. The 

consequence of use of procedures like reduced integration (used for overcoming 

shear locking) results in violation of best-fit rule and once again does not 

necessarily guarantee the strain energy boundedness.  Anisoparametric 

elements were thought to overcome shear locking, without the requirement of 

any additional techniques like reduced integration. It has been shown in this 

thesis for a general curved axisymmetric structure, even anisoparametric 

elements cause locking, and it is field-consistent formulation that overcomes 

locking by virtue of its element formulation. A novel 4-noded anisoparametric 

element that does not require specifically field or edge consistency modifications 

has been formulated for the analysis of plates, and has been shown to behave 

well. 

 

Through consistency concepts, the phenomenon of membrane locking has been 

explained for large deformation problems. A detailed study of errors due to the 

linear and nonlinear deflections has been carried out. The incremental matrices 

that are used during the solution of large deformation problems are explicitly 

derived for axisymmetric shell elements. An innovative sweep test has been 

devised for assessing the comparative behaviour of element formulations, 

reduced integration, partial field-consistency and full field-consistency. For all the 

cases of the beam problems that were studied, it has been shown that the fully 

field-consistent formulation produces the best results. The field-consistency 

concept is used to explain that for the case of an axisymmetric shell problem or a 

plate bending problem, the problem of membrane locking in large deflection 

problems is very mild, and there is no requirement of techniques like reduced 

integration. 
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For large deformation of shear-flexible structures, the coupling of shear and 

membrane locking has been investigated in detail, using both isoparametric and 

anisoparametric elements. The 4-noded field and edge consistent element has 

been shown to be a reliable element for large deformation problems as well. This 

thesis contains the first known study on anisoparametric elements for large 

deformation problems for beam, axisymmetric shells and plates. Since, exact 

solutions exist for very limited problems, all the results of the isoparametric and 

anisoparametric elements for the problems studies are compared with those 

obtained from a commercial finite element software ANSYS , and the results 

from the elements that are formulated in this thesis are in excellent agreement. It 

has been shown that use of few elements based on the 3C concepts perform as 

accurately as a mesh of much larger number of conventional elements, indicating 

the robustness of elements formulated based on 3C concepts. 

 

The correspondence and correctness concepts for linear elastodynamics were 

studied in detail. Use of lumped mass matrices is a direct violation of the 

variational correctness of the formulation, and through sweep tests, it has been 

shown that use of lumped mass does not necessarily guarantee the 

boundedness of the natural frequencies. The results of non-conforming plate 

bending elements, as shown in this thesis also prove this fact. The new 4-noded 

anisoparametric beam/plate bending element formulated earlier for the linear and 

nonlinear elastostatics applications has been found to behave well for linear 

elastodynamics applications as well.  

 

A summary of the above paragraphs is captured below. 

 

1. Non-conforming elements do not follow the best-fit rule (correspondence 

concept), and do not guarantee the boundedness of strain energy. The 

conforming elements follow the best-fit rule and guarantee the 

boundedness of strain energy. 
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2. Reduced integration results in violation of best-fit rule and once again 

does not necessarily guarantee the strain energy boundedness. 

3. For a general curved axisymmetric structure, anisoparametric elements 

cause locking, and it is field-consistent formulation that overcomes locking 

by virtue of its element formulation. 

4. Anisoparametric element with reduced integration and the anisoparametric 

formulation with field-consistent formulation give identical results for 

beams and flat shells. 

5. A novel 4-noded anisoparametric element that does not require field or 

edge consistency has been formulated for the analysis of plates. 

6. For large deflections of beams, strong membrane locking occurs for 

conventional element formulations. Field consistent formulation 

overcomes the membrane locking.  Minimal membrane locking for large-

deflections of plates and axisymmetric shells.   

7. Anisoparametric element formulations behave extremely well for large 

deflection problems as well. 

8. Use of non-conforming element/lumped mass matrices shows loss of 

boundedness during sweep-test for fundamental frequency. 

9. The anisoparametric element is relatively stable with respect to errors and 

order of convergence, when full/reduced integration and 

consistent/lumped mass matrices are used. 

10. Elements based on 3C concepts are robust – a mesh of a few of these 

elements performs as well as a mesh of a much large number of 

conventional elements. 
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Chapter-9 

 

Specific Contributions 

 

 

In this thesis a total of 67 element formulations were studied in detail. Fig. 9.1 

captures the summary of the element formulations. The body of knowledge on 

anisoparametric elements has been expanded through a thorough study of 24 

different formulations out of which 16 are new. The field-consistent and edge –

consistent formulation for Mindlin plates has been extended to large deflection 

problems. 

 

This thesis has explored the anisoparametric finite element formulations for 

beam, shell and plate problems in detail for linear and nonlinear elastostatics 

problems. The significance of the novel 3C concepts of correspondence, 

consistency and correctness in element formulations is examined in depth, by 

taking classical and shear-flexible beams, shells and plates.  The work presented 

in this thesis on use of anisoparametric formulations to the study of large 

deformation of shear-flexible structures has expanded the applications of 

anisoparametric elements. The ansioparametric formulations for the 2-noded 

axisymmetric shell element and 4-noded plate element are new additions to the 

anisoparametric element family. The current understanding that the use of 

ansioparamertic elements does not cause shear locking has been shown to be 

true only for limited cases. Using the consistency concept, it is shown clearly that 

for curved axisymmetric problems anisoparametric formulation causes both 

shear and membrane locking.  

 

Shear-flexible formulations with isoparametric elements that use reduced 

integration have been shown to deviate from the correspondence concept. It is 
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also shown that there is no guaranteed boundedness of the strain energy when 

such elements are used.  

 

For large deformation problems, the errors due to linear and nonlinear terms 

have been studied in detail, and it has been shown that the rates of convergence 

need to be analysed for each of them separately. The stress oscillations for a 

large deformation problem are explained from a consistency concept in this 

thesis. 

 

 The correspondence concept for non-conforming classical plate bending finite 

element formulation has been critically analysed and the results presented in this 

thesis clearly show that the non-conformance is a clear violation of the 

correspondence concept.   

 

This thesis briefly reports the study on the correctness concept for 

elastodynamics of both classical and shear-flexible beams and plates. The 

boundedness of the frequencies has been examined by conducting a sweep-test, 

and it has been demonstrated that this boundedness is lost in cases where 

lumped mass matrices are used. 
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Fig.9.1 Finite element formulations used in this thesis 
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Chapter-10 

 

Further Scope of Work 

 

The consistency concept was examined in detail in this thesis for the cases of 

shear locking and membrane locking. Another type of locking called volumetric 

locking occurs in the finite element analysis of incompressible materials. This is 

an area where not much of work has been carried out from the perspective of 3C 

concepts and has potential for detailed study. Constitutive modeling in finite 

element analysis is a challenging field and current practices in this field have not 

been studied in detail from the perspective of 3C concepts. The application of 3C 

concepts to nonlinear material problems (e.g. hyperelastic materials, elasto-

plastic materials) definitely has a bigger scope. Detailed studies on higher order 

shear deformation theories can be undertaken with the help of 3C concepts.  

 

For nonlinear dynamics the problem becomes more challenging due to coupling 

of large deformations, material nonlinearity and dynamics. A detailed 

examination of the 3C concepts for this class of problems can be undertaken, 

based on the framework laid out in this thesis.   

 

For buckling problems, the boundedness of the buckling loads predicted from the 

finite element solutions is a good further scope of work. 

 

Some of the current practices in element technology, viz., use of bubble 

functions, condensation, recovery of stresses/eigen frequencies, etc. have not 

yet been fully tested from these 3C concepts and hence provide a great scope 

for further study. 

 

The 3C concepts are derived from fundamental principles and in this thesis their 

applications to displacement based finite element formulations were highlighted. 
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Presently the territory of some of the recent advancements in the field of 

computational mechanics like meshless methods, boundary element method 

remains quite open and invites the study of 3C concepts in their domain. The 3C 

concepts can also be extended to coupled field problems like fluid-structure 

interactions.  
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Annexure 

Flow chart for solution of large deflection problems 
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