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ABSTRACT 

 
 

An optimization problem involving more than one objective to be optimized simultaneously 
is referred as multi-objective optimization (MOO) problem. Unlike single objective 
optimization problems, multi-objective optimization problems deal with two kinds of search 
spaces. These are the decision variable search space and the objective search space. Thus, 
while searching for the optimum in MOO problems, (1) the perturbation of variables takes 
place in the decision variable space, (2) the cost corresponding to the objective space is 
evaluated, and (3) the selection from the objective space is based on the value of objective 
function. The objective space for complex problems is often nonlinear and they have multi-
dimensional decision variable space. The objective functions also conflict with each other. 
Thus, combining these basic aspects, the multi-objective optimization problems are more 
complex to solve than the single objective optimization problems. In case of multi-objective 
optimization problems, due to the conflicting nature of objectives, the decision maker is often 
interested in obtaining a set of non-dominated solutions (Pareto front) instead of a single 
solution. Therefore evolutionary multi-objective optimization algorithms (as they result in set 
of solutions in a single run) are preferred for solving multi-objective optimization problems 
over the deterministic search methods which yield a single solution in a run. Due to the 
nonlinear nature of objective functions and multi-dimensional decision variable space with 
nonlinear constraints, there is a need for developing new and efficient algorithms. 
 In the present study, an existing evolutionary multi-objective optimization algorithm, 
i.e., multi-objective differential evolution (MODE) is improved for better performance in 
terms of convergence to the Pareto front and the diversity of solutions on the obtained Pareto 
front. Strategies of MODE, namely, MODE II and MODE III are developed. MODE II 
algorithm is further improved by incorporating the concepts of elitism and the crowding 
distance sorting approach. MODE III algorithm is hybridized with deterministic search 
method, i.e., sequential simplex method. The trigonometric mutation strategy of MODE 
algorithm is also proposed in this study.  
 The performance of newly developed strategies of MODE algorithm (namely, MODE 
III, elitist MODE, hybrid MODE, and trigonometric MODE) is compared with respect to the 
convergence and divergence with other evolutionary multi-objective optimization algorithms 
from the literature [NSGA II (real- and binary –coded variants), SPEA and PAES]. The 
Pareto fronts obtained using newly developed algorithms for benchmark test problems (SCH, 
FON, KUR, ZDT1, ZDT2, ZDT3, ZDT4) are also compared with the true Pareto front and 
that obtained using another evolutionary MOO algorithm (i.e., NSGA-II). The robustness of 
original MODE algorithm is checked with respect to its control parameters [crossover 
constant (CR), number of population points (NP), and scaling factor (F)]. Subsequently MOO 
of industrial case studies involving process design decisions [namely, styrene reactor (both 
adiabatic and steam injected configurations), polyethylene terephthalate (PET) reactor, 
oxidation of p-xylene to purified terephthalic acid (PTA), low density polyethylene (LDPE) 
tubular reactor, and supply chain & planning] is carried out using the newly developed 
algorithms. The performance of newly developed algorithms is checked with respect to the 
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effects of dominant decision variables on the Pareto front. The Pareto fronts obtained using 
the algorithms developed in this study are compared among themselves, with the industrial 
data, and the data reported in the literature. The results obtained in this study show that the 
developed algorithms are able to converge to the true Pareto front for majority of the test 
problems. However the diversity of solutions obtained using newly developed algorithms is 
comparable with those obtained using other evolutionary MOO algorithms reported in the 
literature. The newly developed strategies of MODE algorithm are able to converge to a 
better Pareto front as compared to the Pareto fronts obtained using MODE and NSGA for 
styrene reactor. For PET reactor, where NSGA algorithm gave a single point solution, the 
strategies of MODE algorithm resulted in a Pareto front (consisting of setoff solutions). For 
oxidation of p-xylene problem, the Pareto front obtained using elitist MODE and MODE 
algorithms is better than that obtained using other strategies of MODE. For LDPE tubular 
reactor, the results obtained in this study show that MODE III algorithm is able to give a wide 
range of solutions on the Pareto front as compared to those obtained using other strategies of 
MODE. MODE algorithm gave a good distribution of solutions when applied on MOO of 
supply chain and planning problem. The points on the Pareto front are of interest to the 
decision makers (plant engineers) involved in process design decisions.  
 
Keywords: Multi-objective Optimization; Optimization; Evolutionary Algorithms; Multi-

objective Differential Evolution; Differential Evolution; Pareto Front; Industrial Problems; 

Modeling and Simulation; Styrene; PET; PTA; Supply Chain & Planning; Test Problems; 

Process Design Decisions. 
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CHAPTER – 1  

INTRODUCTION 

 

1.1 Motivation 

An optimization problem involving more than one objective to be optimized is referred as 

multi-objective optimization problem (MOOP). The optimum solution corresponding to a 

single objective optimization problem refers to the optimal basic feasible solution 

(satisfying bounds of variables and the constraints). However, in case of multi-objective 

optimization, the optimum solution refers to a compromised (not necessarily the optimum 

with respect to any objective) set of multiple feasible solutions. In the most general form, 

the multi-objective optimization problem (with m objectives, n variables, p inequality 

constraints and q equality constraints) can be expressed as given by Eq. (1.1): 
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   (1.1) 

The optimization algorithms can be broadly classified into two categories, i.e., 

traditional or classical methods and the non-traditional or population based search 

algorithms. The traditional algorithms often start with a single point (guess value) and 

end up with a single point solution. The ideal outcome of a single objective optimization 

problem is a single global solution. However, the outcome of gradient based traditional 

algorithms largely depends on its control parameters such as the step size and the 
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direction of search that are being used. In a complex and non-linear search space (as 

shown in Fig. 1.1), which may involve multiple local and a single global solutions, an 

inefficient local search algorithm may get trapped at local optimal solution. In contrast, 

evolutionary algorithms which mimic nature’s principle of survival of the fittest, start 

with multiple population points (Goldberg, 1989; Deb, 2001, 2005; Babu, 2004; 

Onwubolu and Babu, 2004). Due to the strong genetic operators, evolutionary algorithms 

are found to achieve the global optimum in majority of industrial applications for single 

objective optimization (Angira, 2005).  

In case of MOO problems, the decision maker is always interested in obtaining a 

solution suitable to his/her design requirements, i.e., a single solution. But due to the 

multi-objective nature of the problem and the associated trade-off, the desired solution 

may vary as per the decision makers need and the choice. Thus providing multiple 

solutions rather than a single optimum solution (traditional multi-objective optimization 

algorithms give single optimum solution) would be an advantage to the decision maker, 

so that one can have a choice of selecting one from the several equally good solutions 

from the Pareto front. The specialty of such solutions is that as we move from one 

solution to the other we gain in terms of one objective at the cost of loss in another 

objective involved in the study. Such a set of solutions are referred as the Pareto optimal 

set and the solutions in this set are non-dominated with respect to each other.  
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1.1.1 Definition of dominance 

A solution x(1) is said to dominate the other solution x(2), if both the following conditions 

1 and 2 are true.  

1. The solution x(1) is no worse than x(2) in all objectives, or ( )( ) ( )( )21
xfxf jj >// for all 

j=1,2,…M 

2. The solution x
(1) is strictly better than x

(2) in at least one objective, or 

( )( ) ( )( )21
xfxf jj <

 
for at least one ( Mj ,...2,1∈ ) 

If any of the two conditions is violated, the solution x(1) does not dominate the solution 

x
(2) (Deb, 2001). As multi-objective optimization algorithm results in a set of solutions, 

the following two goals are associated with each multi-objective optimization algorithm. 

1. The algorithm should converge to the true Pareto front 

2. The algorithm should maintain a diverse set of solutions on the Pareto front. 

In pursuit of achieving the convergence, the algorithm may loose diversity of 

solutions in the Pareto front. But it is worth to mention here that though both convergence 

and divergence issues are equally important in MOO study, the diverse set of solutions is 

meaningless if the algorithm did not converge to the true Pareto front. Thus, any efficient 

multi-objective optimization algorithm should first focus on achieving the convergence to 

the true Pareto front and then new solutions in the neighborhood of solutions on Pareto 

front may be searched to enhance the divergence. Though both the goals of achieving 

convergence and maintaining diverse set of solutions are important, focus should first be 

given in algorithm to attain the convergence.  

Unlike single objective optimization, the MOO problems deal with two kinds of 

search space. Fig. 1.2 shows the decision variable space and objective space with global 
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and local Pareto fronts. The decision variables space is obtained by plotting decision 

variables and constraints within bounds. On evaluation, each point in the decision 

variable space generates an additional point in the objective space. Thus a given 

algorithm proceeds based on the comparison of objective function values from the 

objective space but perturbation of variables occurs in the decision variable space. Thus 

multi-objective optimization problems are more difficult to solve as compared to single 

objective optimization problems.  

In case of simple test problems (where there exists a direct relationship between the 

objective function and the decision variables), the cost of the objective function can 

easily be evaluated and then used in evolutionary algorithm. However, in case of 

industrial problems, the mathematical model needs to be evaluated first. Once the model 

is formulated, it needs to be integrated and simulated using suitable numerical technique. 

Judicious choice of numerical technique is made to solve the mathematical model.  

Fig. 1.3 shows the solution methodology for model based evaluation of Pareto front. 

The decision variables are initialized randomly within the bounds. These decision 

variables are then converted to the specific input form of model. These input parameters 

are passed to the model. The model is integrated and simulated along the space 

coordinate and/or time domain. The objectives are evaluated from the output of the 

model. 

The termination criteria are checked, and if not terminated, the offspring is 

generated after applying the corresponding genetic operators. Selection is performed 

based on the objective function values of the parent and the offspring. The algorithm 

continues until the termination criteria are met.  
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Fig. 1.1 Local and global optimal solutions of a complex search space 
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Fig. 1.2 Decision space, objective space, local and global Pareto fronts involved in 
multi-objective optimization study 
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Fig. 1.3 Solution methodology for model based evaluation of Pareto front 
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  While achieving these two goals of MOO and dealing with two search spaces, the 
search for the true Pareto front in case of MOO study depends upon the following key 
issues: 

o Number and type of decision variables (continuous, discontinuous) and nature of 

decision variable space 

o Type of objective functions (minimization, maximization) and nature of objective 

space 

o Nonlinearity and stiffness of model equations 

o Type of constraints (equality, inequality) 

o Ability of algorithms to handle the search spaces of objectives and decision 

variables 

Out of 5 aspects as mentioned above, first four are problem specific. However, Pareto 

front output also largely depends on the algorithm’s ability to converge towards the true 

Pareto front and then produces a well diverse set of solutions. An inefficient algorithm 

may get trapped at local optimal nondominated set of solutions (Fig. 1.2) or may result in 

a single point solution. Few of the reasons by which algorithm may result in local Pareto 

front or a single point solutions are: 

o Algorithms may not produce a superior offspring which is nondominated with 

respect to other solutions in the current population 

o An inefficient selection scheme of algorithm may restrict a new solution to enter 

in the current population 

o In case of binary coded algorithms, accuracy of newly obtained solutions depends 

on the number of bits used in defining string 

o Of its inability to handle the complexity of a problem (i.e., multi-dimensional 

decision variable space) 
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Thus it is necessary to have an algorithm, which not only overcome above limitations 

but also results in a well diverse Pareto front and close to true Pareto front. The literature 

survey on several evolutionary algorithms shows a large demand towards developing new 

algorithms. The algorithm output also depends on the complexity of MOO problems. The 

industrial engineering problems and some of the test problems involve multi-dimensional 

decision variable space, multi-modal objective space with equality and inequality 

constraints. Some of the commonly observed trade-offs associated with process design 

decisions involved in industrial problems are described below.  

 

1.1.2 Industrial styrene reactor  

Styrene is commercially produced from ethyl benzene [Sheel and Crowe (1969); Yee et 

al. (2003); Babu et al. (2005a)]. The main reaction producing styrene is a reversible 

endothermic reaction. As per the Li-Chatelier’s principle, for a reversible endothermic 

reaction, high temperature and low pressure favors the rate of forward reaction. But as the 

temperature is increased, other side products (due to thermal cracking) such as toluene, 

benzene, etc. are formed. Thus, at low temperature the yield and productivity are low, 

while selectivity is high. If the temperature of reactor is increased, the selectivity 

decreases (due to the formation of byproducts) but the yield increases. But the objectives 

of the process are to increase simultaneously the yield, selectivity and the productivity. If 

the decision variables such as temperature of ethyl benzene (feed), steam over reactant 

(SOR), operating pressure and initial ethyl benzene flow rate are used subject to a 

constraint on temperature, the optimization problem would become more complex and 

trade-off among the objectives would clearly be observed. The decision maker has to 
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sacrifice for one of the objectives, while achieving the better value of another objective. 

Thus, in case of industrial styrene reactor there exits potential trade-off among the said 

objectives of simultaneous maximization of yield, productivity and the selectivity.  

 

1.1.3 Wiped film polyethylene terephthalate reactor (PET) reactor 

The production process of PET [Ravindranath and Mashelkar (1982, 1986a, 1986b); 

Laubriet et al. (1991); Bhaskar et al. (2000, 2001); Babu et al. (2007)] involves four 

stages, (1) trans-esterification or direct esterification, (2) prepolymerization, (3) melt 

condensation, and (4) solid state polycondensation. In trans-esterification process 

dimethyl terephthalate (DMT) is reacted with ethylene glycol (EG). Methanol is 

continuously removed and bis (hydroxyethyl) terephthalate (BHET) is recovered. In 

direct esterification process, terephthalic acid (TPA) is reacted with EG and side product 

(water) is removed. In second stage, prepolymerization of BHET and some oligomers 

from stage-1 is carried out to produce a polymer having degree of polymerization (DP) 

value of 30. In stage-3, DP value is increased to approximately 100 using high vacuum 

and a special agitator system. Solid state polycondensation process is employed to 

produce PET having a value of DP >150. The two major and important objectives for this 

process are the minimization of the concentrations of the acid and vinyl end group, Ea 

and Ev, respectively, in the product of the finisher. During the downstream separation 

operation, the acid end group makes the polymer susceptible to hydrolysis and leads to 

the breakage of the filaments during spinning (where the humidity is very high). The 

vinyl end groups are responsible for the unfavourable coloration of PET. The reduction of 

Ea simultaneously increases the rate of polymerization of the acid end group catalysed 
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poly-condensation reaction and thus the throughput is maximized. Thus the simultaneous 

minimization of acid and vinyl end groups can be formulated as a multi-objective 

optimization problem.  

 

1.1.4 Low density Polyethylene (LPPE) tubular reactor 

Polyethylene is commercially produced by both high pressure (free-radical) and low 

pressure (ionic) addition ethylene polymerization processes. Two types of reactors 

(tubular and stirred autoclave) are essentially applied in the free-radical high-pressure 

polymerization processes. Ethylene free-radical polymerization is conducted in the 

presence of free-radical initiators such as azo compounds, peroxides, or oxygen at very 

high pressures (1300-3400 bars) and high temperatures (225-610 K). Under the reaction 

conditions employed in high-pressure processes, LDPE is produced as a result of short-

chain branching formation. A commercial reactor consists of 3-5 reaction zones and 

several cooling zones (Brandoline et al., 1998; Agarwal et al., 2003). The reactor includes 

a number of initiator side-feed points. The temperature and flow rate of each coolant 

stream entering a reaction/cooling zone is used to control the temperature profile in the 

reactor. A mixture of ethylene, a free-radical initiator system, and a solvent are injected at 

the entrance of reactor. Maximization of monomer conversion is one of the objectives to 

be considered during MOO of LDPE. While maximizing the conversion, the undesirable 

side chain concentration (sum of methyl, vinyl, and vinylidene) also increases. Thus, 

minimization of unwanted side products and maximization of monomer conversion gives 

rise to conflicting set of objectives. More meaningful and industrially important results 
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can be generated if these sets of objectives are coupled with equality constraints on 

number average molecular weight.  

 

1.1.5 Liquid phase oxidation of p-xylene 

Liquid phase oxidation of hydrocarbons, using air or oxygen has gained popularity in 

industrial applications due to its ability of converting petroleum hydrocarbon feed stocks 

such as olefins, aromatics and alkanes, into industrial organic chemicals which are 

important in many polymer and petrochemical industries. One of the important chemicals 

produced from p-xylene is purified terephthalic acid (PTA). Liquid phase oxidation of p-

xylene to PTA is a complex process which involves series of multiple oxidation steps. In 

liquid phase p-xylene oxidation process, the quality of product, is decided by the amount 

of 4-carboxybenzoic acid (4-CBA) present in it. Several properties of PTA such as 

optical density and 4-carboxy-p-terphenyl (4-CTr) concentration of crude terephthalic 

acid (CTA) are related to the amount of 4-CBA present in the final product. 4-CBA can 

also contaminate CTA as it is prone to co-crystallization with crude TA (Mu et al., 2004). 

Thus minimization of the concentration of 4-CBA in the final product is one of the major 

objective in the production of PTA. The operating profit of the industry depends on the 

production rate, and the production rate is directly related to the flow rate of the feed 

entering the reactor. Thus maximization of feed flow rate can be considered as one the 

objectives of the study. But with an increase in the production rate, the level of impurity 

(concentration of 4-CBA) also increases. A set of decision variables may exist, which 

may favor the objective of increasing the productivity, but may not favor the objective of 
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minimization of 4-CBA concentration. Thus there exists a clear conflict in both the 

objectives and they can be modeled as a multi-objective optimization problem. 

 

1.1.6 Supply chain and planning 

The supply chain is basically the integrated network (Chopra and Meindl, 2004) among 

retailers, distributors, transporters, storage facilities and suppliers that participate in the 

sale, delivery and production of a particular product for the following purposes: 

1. Maximizing the overall profit generated 

2. Increasing the competitiveness of the whole chain  

3. Minimizing the systemwide costs while satisfying the service level requirements  

4. Matching the supply and demand profitably for products and services 

It is due to the above reasons that the supply chain optimization problem is 

considered as a multi-objective optimization problem (MOOP). The supply chain 

problem therefore has to be considered as a whole (system optimization) without placing 

the individual preferences of the individual objectives. The built up supply chain model 

should be capable of integrating all the entities so that the flow of information happens 

among the entities in order to meet the highly fluctuating demand of the market. The 

important issues that drive the supply chain models and subsequently govern its design 

are: 

1. Inventory planning and management 

2. Transportation and logistics management  

3. Facilities location and layout design 

4. Flow of information among the entities 
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These four drivers represent the major flows associated with supply chain problem. In 

order to maximize overall profitability, it is not possible to get a unique solution that 

satisfies either all the criteria or the objectives. If all the objectives are satisfied then the 

solution obtained could be a non-Pareto optimal point. Hence in multi-objective 

optimization problem, we are interested in set of solutions (rather than a single solution) 

which are non-inferior with respect to each other and are part of Pareto optimal front. 

Simultaneous optimization of individual objectives is necessary without giving weightage 

to individual objectives. A goal programming approach to optimization would not result 

in a set of solutions and a compromised, but a single solution, would result in a single 

run. Evolutionary algorithms have shown a good potential to generate multiple equally 

good solutions for many engineering and test problems both for single and multi-

objective optimization problems. Hence an attempt to solve such problems using newly 

developed evolutionary algorithms may result in a possibly better set of solutions.  

Thus, to deal with above mentioned problems there is a need towards development of 

new and efficient algorithms. To judge the robustness of newly developed algorithms, it 

needs to be tested on several benchmark test problems and then applied on industrial 

applications. This motivated us to design following objectives of the present study 

research. 



14 
 

 
1.2 Objectives of research 

The following objectives of the present research-based study are formulated based on the 

background on this subject: 

1. To identify some process design decision problems involving multi-objectives to 

be optimized 

2. To apply evolutionary multi-objective optimization approach for finding Pareto 

optimal set of solutions 

3. To improve the existing population based search algorithms by using hybrid 

concept and to develop new strategies for evolutionary computation 

4. To validate by the performance of various existing evolutionary strategies applied 

to selected multi-objective optimization problems (benchmark test problems and 

real world industrial engineering problems) 

 

1.3 Organization of thesis 

The above mentioned objectives are achieved in this study and an exhaustive literature 

survey on evolutionary algorithms and modeling, simulation aspects & process design 

decisions involved in several industrial applications is given in chapter 2. Detailed 

working principles of newly developed strategies of MODE algorithms, i.e., multi-

objective differential evolution-III, elitist-multi-objective differential evolution (E-

MODE), hybrid multi-objective differential evolution (H-MODE), and trigonometric 

mutation multi-objective differential evolution (T-MODE) are discussed in chapter 3. 

Multi-objective optimization problem formulation is given in Chapter 4. In section 4.1, 

various test problems (both constrained and unconstrained) considered in this study are 
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defined. In Section 4.2, formulation of various process design decisions based multiple 

objectives involved in several industrial applications (such as styrene reactor, 

polyethylene terephthalate reactor, liquid phase oxidation of p-xylene, low density 

polyethylene tubular reactor, and supply chain management) is given. Detailed 

parametric estimation and simulation analysis of LDPE tubular reactor is given in section 

4.3. The obtained simulated results are discussed in detail in chapter 5. In section 5.1, 

Pareto fronts obtained using various proposed strategies of MODE are compared with 

NSGA-II and parametric estimation of selected test problems is carried out using MODE 

algorithm. In section 5.2, Pareto optimal fronts obtained using proposed strategies of 

MODE are compared with the Pareto front reported in the literature for several cases of 

the industrial case studies as mentioned above. Performance evaluation of proposed 

strategies of MODE is carried out by comparing the performance metric values obtained 

in this study with other well known algorithms from the literature. Chapter-6 deals with 

the summary of the work and important conclusions drawn from the present study.  
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CHAPTER – 2  

LITERATURE REVIEW 

 

Various studies reported in literature on development of multi-objective optimization 

algorithms and industrial applications on multi-objective optimization are discussed in 

detail in section 2.1 and 2.2 respectively. 

 

2.1 Multi-objective optimization algorithms 

The multi-objective optimization algorithms can be broadly classified into classical or 

traditional methods (deterministic) and nontraditional or population based search 

algorithms. Since last two decades, evolutionary population based search algorithms have 

captured more attention due to their ability of giving number of population points in a 

single simulation run. Classical methods also have their own place in the research of 

multi-objective optimization due to their simple transition rules as compared to 

evolutionary algorithms. In the following sections, a brief survey on classical and 

nontraditional methods used for solving multi-objective optimization problems is given. 

 

2.1.1 Classical methods 

The classical methods for solving multi-objective optimization (MOO) problems have 

been in use for more than five decades. The classical methods transform the multi-

objective optimization problem into a single objective optimization problem. Thus 

classical methods avoid the complexities involved in a true MOO problem. As multi-
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objective optimization problem is solved using a single objective optimization problem, 

such methods result in a single point solution in a single run. In this section some of the 

classical methods used for solving MOO problems are discussed in brief. 

 

2.1.1.1 Weighted sum method  

The weighted sum method (Deb, 2001) transforms MOO problem into a single objective 

optimization problem by pre-multiplying each of the objective functions with user 

defined weights. As MOO problem is converted into a single objective problem, this 

method is considered to be simplest one to solve MOO problems. In the weighted sum 

method the optimization problem is formulated as follows: 
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The value of weights to be used during optimization runs is based on the importance 

of given objectives to a decision maker. These may also be obtained from the previous 

experience of decision maker. The extreme solutions of each objective can be obtained by 

solving the problem as a single objective optimization problem by setting λi = 1 for the 

desired objective and λi=0 for the remaining objectives. However, in case of nonlinear 

and multimodal search space, set of weights may not give uniformly distributed solutions 

of the Pareto front. It is usual practice to set the weights such that the sum of weights 
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equals to 1. As only a single solution is obtained during each run, in order to obtain the 

solutions of the Pareto front using weighed sum method, several runs may be simulated 

(by varying λi value during each run). A Weighted sum method may not find certain 

solutions on the Pareto set in case of non-covex search space (Deb, 2001). However, bi-

objective adaptive weighted sum method (Kim and Weck, 2004), determines uniformly-

spaced Pareto optimal solutions and finds solutions on non-convex regions. This method 

can only solve the problems with two objective functions. The major drawbacks 

associated with weighted sum method include: 

1. They cannot provide all points of the Pareto front 

2. They cannot provide a good control over location of the optimal point on the 

Pareto optimal front 

3. They result in a single point solution in a single simulation run 

4. They cannot handle non-convex search space efficiently 

 

2.1.1.2 ε-Constraint method 

Haimes et al. (1971) used ε-constraint method to solve problems having non-convex 

objective space. ε-constraint method consists of reformulating the MOOP by considering 

only one of the objectives and forcing the remaining objectives within user specified 

bounds as constraints.  
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This method is especially applicable, where the decision maker is interested in 

optimum value of only one of the objectives with slight relaxation in other objectives 

involved in the studies. A value of ε is considered in such a way that it marks the upper 

bound as permissible limit of the objectives. The range of feasible solution is increased in 

such a way that it lies in the domain of the ε values.  

 

2.1.1.3 Goal programming method 

Charnes et al. (1955) introduced goal programming to solve single objective linear 

programming problem.  Later, goal programming gained much popularity due to its 

simplicity in converting MOO problems in goals as per the priorities set by the decision 

maker. Goal programming attempts to find solutions which attain a predefined target 

(goal) for one or more objectives. If no solutions exists which achieves the specific goal, 

then the objectives are relaxed by certain deviation from the original goal.  Each 

inequality is converted into a flexible goal in which the corresponding constraints may be 

violated. This goal is then achieved by minimizing the deviation considered in the study. 

Consider the following problem, where two goals need to be achieved as given by Eqs. 

2.3a and 2.3b:  

1621 ≥+ xx           (2.3a) 

23 ≤x            (2.3b) 

0,, 321 ≥xxx  

The flexible goals may be written as Eqs. 2.4a and 2.4b: 

161121 =−++ +− ssxx          (2.4a) 
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2223 =−+ +− ssx         

 (2.4b) 0,, 321 ≥xxx  

2,1   ,0, =≥+− iss ii  

The nonnegative variables −
is and +

is  are called deviational variables as they represent the 

deviations below and above the R.H.S. of constraint i. These deviation variables are 

dependent and at most one of the two deviation variables can assume a positive value. If 

the ith inequality is of the ≤ type, and its −
is >0, then the ith goal is satisfied; otherwise if 

+
is >0, the goal i is not satisfied (Taha, 2007). Thus the reformulated goals of problem 

become Eq. 2.5a and 2.5b:  

Minimize G1= −
1s         (2.5a) 

Minimize G2=
+
2s         (2.5b) 

A good review on goal programming applications is reported by Trzaskalik and 

Michnik (2002). One of the drawbacks of goal programming is that each goal needs to be 

addressed separately.  Evolutionary algorithms have shown a good potential in handling 

MOO problems in the recent past. 

 

2.1.2 Population based search algorithms 

The population based search algorithms have specific characteristics that they start with 

multiple population points and all points usually converge towards the Pareto optimal 

front after required number of simulation runs. The detailed survey on some of the 

evolutionary algorithms (population based search algorithms) is given in the literature 

(Back, 1996; Miettinen, 1999; Deb, 2001; Abbas et al., 2001; Onwubolu and Babu, 2004; 
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Eiben and Smith, 2003; Coello and Lamont, 2004; Tan et al., 2005; Biswas, et al., 2009a, 

2009b). Following sections give the working principles of some of the widely accepted 

MOO algorithms in brief.   

 

2.1.2.1 Nondominated sorting genetic algorithm-II (NSGA-II) and its jumping gene 

variants 

NSGA-II was proposed by Deb et al. (2002a) as an improved and modified version of 

NSGA (Srinivas and Deb, 1994). NSGA is an extension of genetic algorithm (Goldberg, 

1989) to solve the multi-objective optimization problems. NSGA has major 

disadvantages like high computational complexity of nondominated sorting, lack of 

elitism and a need for specifying the sharing parameter. Considering those drawbacks of 

NSGA, two major changes were proposed in NSGA-II namely fast non-dominated 

sorting based on the concept of dominance and the crowding distance assignment as a 

measure of density.  

Fast nondominated sorting  

A rank value is assigned to each individual of the population using fast nondominated 

sorting. All individuals are compared with each other and the number of solutions 

dominating the individual i is referred as ni. Si is a set of individuals dominated by 

individual i. For each level of nondominated front on which the nondominated individual 

i posses ni=0, a repeated search is performed untill no further individual for the next level 

is found.  

Crowding distance sorting 
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The sharing function was used in NSGA to maintain diversity of solutions. The sharing 

function approach was replaced by crowding distance sorting approach in NSGA-II. 

Following pseudo-code describes the crowding distance assignment applied on a 

population of size NP.  

Function (Crdst) = CROWDING(pop) 

 Fun (i, j)=the normalized jth objective function of individual I in population pop 

( )( )NPijiFf j ,...2,1),(maxmax =∀=  

( )( )NPijiFf j ,...2,1),(minmin =∀=  

for i=1:size of pop 

Crdst(i)=0 

end for 

for m=1:number of objectives 

I
m
 = Sort population in worse order of fm and store it in index vector I 

Crdst(1)=Crdst(Np)=∞   %Extreme points 

for i=1: size of pop-1 

( )( )
( )( ) ( )( )[ ]

minmax

,1,1
))((

mm ff

miIFmiIF
iICrdstiICrdst

−

−−+
+=  

End for 

End for 

End function 

The function CROWIDNG describes the working of crowding distance 

assignment operation. A crowding distance measure of each element of population is 

returned by CROWDING function which represents the average distance of two 
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individuals on either side of the population member with respect to each of the 

objectives. First, the population is sorted in an ascending order of the objective function 

values with respect to each of the objectives. To give preference to the extreme solution, 

a sufficiently high value of crowding distance is assigned to the extreme points of 

population. For the remaining population members the crowding distance is calculated as 

the normalized absolute distance of the objective function between the two neighboring 

population members. The crowding distance is calculated for each of the objective 

functions. The sum of the individual crowding distance with respect to each objective 

function is called the crowding distance of the particular population member. The larger 

the value of crowding distance of a population member, the less crowded is the 

population member. The following pseudo-code shows the working principle of NSGA-

II. 

Set value of maximum number of generation 

Set upper and lower bounds of variables 

Initialize population pop of size NP 

Initialize offspring population Off_pop as NULL 

gen=0 

While (the stopping criterion is not met) 

Combo_pop= pop ∪ offspring_pop 

rank_pop=NONDSORT(Combo_pop) 

pop=NULL 

rank_NP=rank value of NPth member in Combo_pop sorted in ascending order 

of rank 
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pop=members from Combo_pop with rank_pop<rank_NP 

popsize= size of (pop) 

  Top_pop=members from Combo_pop with rand value of rank_NP 

Crdst=CROWDING(Top_pop) 

pop=pop ∪ [(NP-popsize) members with largest value of Crdist] 

 Off_pop=genetic_algorithm_operators(pop) 

gen=gen+1 

end while 

Return set of non-dominated set and decisions variable 

NSGA-II-JG and NSGA-II-aJG: Two types of jumping genes (JGs) (namely 

replacement and reversion) were applied on NSGA-II after mutation operation (Kasat and 

Gupta, 2003). A probabilistic approach is used where a fraction, pjump, of randomly 

selected strings in population are modified by the jumping gene operator. In both the 

replacement and reversion operations, two sites (between which replacement or reversion 

occurs) are selected randomly. In replacement, a part of binary string in the offspring 

population is replaced with a randomly generated binary string of same length. In 

reversion, the string in the offspring population is reversed. In case of binary coded 

NSGA-II-aJG, the second site in the chromosome is selected by the predefined string 

length of JGs (Agarwal et al., 2006). 

 

2.1.2.2 Strength Pareto evolutionary algorithms (SPEA)  

Zitzler and Thiele (1999) proposed strength Pareto evolutionary algorithm, an elitist 

multi-criterion evolutionary algorithm with the concept of non-dominance. An external 
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population archive (P’) at every generation is maintained. All nondominated solutions 

identified from Parent population (P) are stored in this archive and any dominated 

individuals in the archive are removed. This external population participates in 

evolutionary operations. At each generation, a combined population with the external and 

the current population is first constructed. All non-dominated solutions in the combined 

population are assigned a fitness based on the number of solutions they dominate. Thus a 

higher fitness value (also called as strength) is assigned to a nondominated solution 

having more dominated solutions in the combined population. To avoid overcrowding of 

nondominated individuals, if the number of population members in archive exceeds a 

predefined threshold, the archive is shortened by means of clustering, i.e., elites which 

are less crowded in the non-dominated front are kept. The individuals in the population 

are evaluated with reference to the members of archive, while the individuals in the 

external population archive are ranked with reference to the members of population. 

SPEA algorithm includes fitness sharing where niches are not allowed in terms of 

distances but are based on Pareto dominance.  

In SPEA2 (an improved version of SPEA) (Zitzler et al., 2001), changes are included 

related to fitness assignment strategy, archive size and replacement of clustering. The 

changes are given below: 

i) A fitness assignment strategy was included which consists of density information 

and considers for each individual regarding how many other individuals it 

dominates or dominated by. 
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ii) A fixed archive size (where as in SPEA, the size of archive was floating), i.e., 

archive may also contain dominated individuals whenever the number of 

nondominated individuals are less than the predefined threshold value. 

iii) The clustering was replaced with an alternate truncation method which does not 

loose boundary points. 

An empty archive (NewPop) is created in the beginning and at each generation, 

fitness values are assigned to individuals in population (NPop) and the archive.  

( ) ( )ijNPopNewPopiiiZ  dominates  &&∪∈=  

Where, .. denotes the cardinality of a set. Based on the value of Z, the raw fitness R(i) 

of an individual i is defined by the strength of its dominators as given by 

( ) ( )( )∑= iZ jZiR  

Nondominated population members from NPop and NewPop are stored in a 

temporary population (TmpPop). If the size of TmpPop exceeds the predefined 

threshold (NP), TmpPop is truncated. If the size of TmpPop is less than NP, then the 

nondominated individuals having higher fitness value from NPop and NewPop are 

copied into TmpPop. All new individuals in TmpPop are copied into NewPop. 

Genetic operators are applied on NewPop and to generate the offspring in NPop. This 

process continues till the stopping criterion is met. When the stopping criterion is 

met, the latest individuals in NewPop are returned.  

The density estimation (as given by Eq. 2.6) is applied to those individuals which 

have identical raw fitness value. 
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Where k

id is the distance of individual i to its kth nearest neighbor. The summation of 

D(i) and R(i) gives the overall fitness F(i), which is used in the process of removing 

any extra individuals from the archive (NewPop) or filling up the archive with other 

individuals. The pseudo-code for SPEA2 is given as below. 

Initialize population of size NP 

Initialize generation, g=0; 

Set Gmax value,  

While (Stopping criterion is not met) 

Evaluate Fitness of individuals in NPop and NewPop. 

TmpPop={Nondominated solutions from NewPop and NPop} 

If size of Tempop > NP 

Truncate TmpPop to size NP based on fitness value 

Else 

Add individuals from NewPop and NPop (based on their fitness 

values) to the empty space in TmpPop  

End 

NewPop=TmpPop 

Apply genetic operators on NewPop and store the offspring in NPop 

g=g+1 

End while loop 

Return (NewPop,…) 

 

2.1.2.3 Pareto archived evolution strategy (PAES)  
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The PAES algorithm was proposed by Knowles and Corne (1999) to serve two main 

objectives. The first objective is that the algorithm should strictly be restricted to local 

search. It is expected to move from a current solution to a nearby neighbour using a local 

search operator (mutation) only. The second objective is that the algorithm should 

converge to a true Pareto front. An archive of previously found nondominated solutions is 

maintained and used as a means of estimating the true dominance ranking of a pair of 

solutions. Considering these two-objectives, the algorithm is called a (1 + l)- evolution 

strategy. The algorithm is composed of three main parts, i.e., the candidate solution 

generator (pop), the candidate solution acceptance function, and the Non-dominated 

solutions (NDS) archive. The candidate solution generator function is similar to simple 

mutation or hill climbing for the current individual where it maintains a single current 

solution, and at each iteration produces a single new candidate via random mutation. 

Archive NDS is applied to a set of solutions to explicitly store nondominated individuals 

so as to maintain the spread of solutions on Pareto front. The (1+1) PAES algorithm was 

modified to a better version, i.e., (µ+λ), where µ and λ include current individuals of 

population and mutants respectively (Knowles and Corne, 2000). This approach was used 

to solve a wide range of problems. The working principle of PAES is given by the 

following pseudo-code. 

Generate an initial current population, pop 

Initialize generation, g=0; 

Set Gmax value,  

NDS=NDS ∪ {pop} 

While (stopping criterion is not met) 
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Use local search (mutation) to product offspring M from pop 

If pop dominates M 

Discard M 

Else if M dominates pop 

pop=M 

NDS= NDS ∪ {M} 

Else 

If M is dominated by any individual in NDS 

Discard M 

Else if size(NDS)<NP 

NDS= NDS ∪ {M} 

If M is in a less crowded region of NDS than pop 

pop=M 

End 

Else 

If M is in a less crowded region of NDS than X for some members in NDS 

NDS=NDS/{a member of NDS from the most crowded region} 

NDS= NDS ∪ {M} 

If M is in a less crowded region of NDS than pop 

Pop=M 

End 

Else if M is in a less crowded region of NDS than pop 

Pop=M 
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End if  

End if  

End if  

End 

g=g+1 

End (while) 

Return (NDS,..) 

 

2.1.2.4 Multi-objective simulated annealing (MOSA)  

Multi-objective simulated annealing (Nam and Park, 2000) is an extension of simulated 

annealing algorithm (of single objective optimization) to solve multi-objective 

optimization problems. However, as multi-objective evolutionary algorithms are expected 

to give a set of solutions on the Pareto front, the major problem with MOSA is that it 

cannot find multiple solutions in a single run. In order to obtain a set of solutions on the 

Pareto front, multiple runs are taken by repeating the trials.  

The following three major objectives are considered in the SA based multi-objective 

optimization algorithm (MOSA):  

1. The objective function corresponding to the energy function to be identified.  

2. To select a proper annealing scheme of decreasing temperatures with an increase in 

number of iterations.  

3. A need for a method of generating a neighbour near the current search position. 

Psuedo-code for MOSA is given below: 

S = S0 

T = T0 
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While ((the stopping criterion is not met) 

Generate a neighbour S’=N(s) 

If C(S’) dominates C(S) 

move current solution to S’ 

else if C(S) dominates C(S’) 

move to current solution to S’ with transition probability Pt(C(S), C(S’), T) 

else if C(S) and C(S’) are nondominated with respect to each other 

move to S’ 

end if 

T=annealing (T) 

End while  

Parameters S and T are the current search position (or current state) and temperature 

respectively. The temperature is gradually decreased as time goes on. A new search position 

S’ is generated in the neighbourhood by the N(s) function, its cost is evaluated and compared 

with the previous cost. The domination based test is carried out and a new state 

corresponding to a better solution is accepted. Even though the new position is dominated by 

the current state, it is accepted with some acceptance probability. When there is no 

superiority between the current state and the next state (i.e., they are equally good), the new 

state is accepted instead of the current one. Moving in the nondominated situation helps 

increase the spread and avoid convergence to the local optima. When it is determined either 

to move or stay, the algorithm repeats its loop with lower temperature until the termination 

conditions are satisfied. Like deterministic methods, MOSA also has the same disadvantage 

that of not being able to produce a set of data in a single run.  
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2.1.2.5 Non-dominated sorting differential evolution (NSDE) 

NSDE algorithm (Angira, 2005; Angira and Babu, 2005) is a simple extension of DE for 

solving multi-objective optimization problems. The working of NSDE and DE is similar 

except the selection operation that is modified in order to solve the multi-objective 

optimization problems. The detail of the NSDE algorithm is as follows: First of all set the 

key parameters, i.e., CR- crossover constant, F - scaling factor, NP - population size, 

Max_gen - maximum number of generations of NSDE algorithm. And then randomly 

initialize the population points within the bounds of decision variables. After 

initialization of population, randomly choose three mutually different vectors for 

mutation and crossover operation (as is done in DE algorithm) to generate trial vector. 

Evaluate the trial and target vector and perform a dominance check. If trial vector 

dominates the target vector, the trial vector is copied into the population for next 

generation otherwise target vector is copied into population for next generation. This 

process of mutation crossover, and dominance check is repeated for specified number of 

generations. Evaluate and then sort this final population to obtain the non-dominated 

solutions. Sorting can be done using naïve and slow approach or any of the standard 

approaches reported in Deb (2001). If no solution is found to dominate solution i, it is 

member of the non-dominated set otherwise it does not belong the non-dominated set. 

The stopping criteria for the algorithm can be any one of the following conditions:  

(a) There is no new solution added to the non-dominated front for a specified number of 

generations.  
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(b) Till the specified number of generations.  

Pseudo-code for NSDE algorithm can be given as below: 

**Pseudo-code for NSDE algorithm 

Set the values of NSDE parameters D, NP, CR and Max_gen (maximum generations).  

Initialize all the vectors of the population randomly within the bounds.  

for i = 1 to NP  

for j = 1 to D  

Xi,j =Lower bound+ random number *( upper bound - lower bound);  

End for  

End for  

Perform mutation, crossover, selection and evaluation of the objective function for trial 

and target vector for a specified number of generations.  

While (gen < Max_gen)  

{ for i = 1 to NP /** first for loop***/  

{_ For each vector Xi (target vector), select three distinct vectors Xa, Xb and Xc randomly 

from the current population other than the vector Xi  

do  

{ r1 = random number * NP  

r2 = random number * NP  

r3 = random number * NP  

} While (r1=i) OR (r2=i) OR (r3=i) OR (r1=r2) OR (r2=r3) OR (r1=r3)  

Perform mutation and crossover for each target vector Xi and create a trial vector, Xt,i.  

For binomial crossover:  
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{ p = random number  

jrand = int (rand[0,1]* D)+1  

for n = 1 to D  

{ if ( p<CR or n = jrand )  

Xt,i = Xa,i + F ( Xb,i - Xc,i )  

} else Xt,i = Xi,j } 

 

2.1.2.6 Multi-objective differential evolution (MODE) 

MODE is an extension of DE to handle multi-objective optimization problems (Babu et 

al., 2005a). The flow chart for MODE is given in Fig. 2.1. The specific characteristic of 

MODE algorithm is that in each generation, the dominated solutions are removed from 

the list and only the non-dominated solutions are allowed to undergo DE operations. The 

scaling factor F is generated from a random number generator between 0 and 1.2. The 

off-springs are placed into the population if they dominate the main parent. The algorithm 

works as follows: An initial population is generated at random. All dominated solutions 

are removed from the population. The remaining non-dominated solutions are retained 

for recombination. Three parents are selected at random. A child is generated from the 

three parents and is placed into the population if it dominates the first selected parent; 

otherwise a new selection process takes place. The stopping criteria may be of two kinds: 

(1) There is no new solution added to the non-dominated front for a specified number of 

generations, or (2) Assign an upper bound on the number of generations. The stopping 

criteria may be a combination of the two as well. In this study, the second criterion is 

applied. 
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Fig. 2.1 Working principle of MODE algorithm 
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2.2 Industrial applications on multi-objective optimization 

One of the major uses of optimization techniques is to find optimum design and operating 

variables of the process that give an optimum value of the desired objective. However, 

most of the industrial processes are rich in terms of objectives which may show conflict 

among the objectives. That is, if the decision maker attempts to minimize the cost of one 

of the objectives, he/she has to sacrifice for the other (out of two objectives). Thus the 

decision makers are interested in obtaining a set of solutions (called Pareto optimal set) 

rather than a single point solution. Out of several solutions obtained in the Pareto set, the 

decision maker can then judiciously choose one of the solutions suitable to his/her design 

requirements. A brief account on literature survey of several processes which involve 

multiple process design decisions to be optimized simultaneously is given below. 

 

2.2.1 Industrial Styrene reactor 

Styrene, C6H5CH=CH2, (a synthetic chemical) is used extensively in the manufacture of 

plastics, rubber, and resins. Manufacturers across the globe use styrene-based resins to 

produce a wide variety of everyday goods ranging from cups and utensils to furniture, 

bathroom, and kitchen appliances, hospital and school supplies, boats, sports and 

recreational equipment, consumer electronics, automobile parts, and durable lightweight 

packaging (Styreneforum, 2009). In terms of monomer production rate, styrene ranks 

fourth with an annual turnover of 60 billion USD in the United States behind ethylene, 

vinyl chloride and propylene. The styrene monomer is largely used for crystalline and 
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rubber-modified polystyrene. Styrene is also copolymerized with other monomers for use 

in a variety of products. Industrially important and easily recognizable products obtained 

from styrene include polystyrene, acrylonitrile-butadiene styrene (ABS), styrene-

acrylonitrile (SAN) plastic, styrene-butadiene rubber (SBR), and unsaturated polyester 

resins, commonly known as fibreglass and two types of foams - extruded polystyrene 

foam (XPS) and expanded polystyrene foam (EPS). With such a large demand, even a 

slight improvement in the multiple process design decisions related to yield, selectivity 

and product flow rate of the process may improve the operating profit of an organization. 

Sheel and Crowe (1969) proposed a model for the dehydrogenation of ethyl 

benzene to produce styrene by a reversible reaction. Actual plant data was used to tune 

the pseudo-homogeneous model (with axial dispersion neglected and diffusional 

resistance or mass and heat transfer related limitations were lumped into rate constants). 

The model predicted the profiles of temperature and other major products along the 

length of reactor within acceptable accuracy. Rosenbrock’s multivariable search 

technique was used to seek optimum operating conditions for the reactor using a set of 

decision variables (namely, steam temperature, steam rate and bed depth). From the 

results observed in their study, they concluded that the plant was running under 

suboptimal conditions. The mathematical model of steam injected reactor was proposed 

by Clough and Ramirez (1976). They emphasized on location of steam injection port in 

their study. Later, Abdalla et al. (1994) and Elnashaie et al. (1993) included an account of 

diffusion in the catalyst pellet and used the pseudo-homogeneous model (Sheel and 

Crowe, 1969) as well as the more detailed heterogeneous model. The kinetic data was 

extracted from the industrial data using this model. The intrinsic kinetics for three 
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promoted iron oxide catalysts using the pseudo-homogeneous and heterogeneous models 

was compared to check the performance of catalysts by Abdalla et al. (1994). 

Considering the valuable outcome of pseudo-homogeneous mathematical model, 

conflicting set of objectives namely productivity, yield and selectivity of styrene were 

identified by Yee et al. (2003). Yee et al. (2003) used NSG algorithm to carry out the 

multi-objective optimization study of styrene reactor for the adiabatic and steam injected 

reactor configurations. However, in their study, they mainly emphasized on the adiabatic 

operation. The results on the steam injected configuration, though reported in their study, 

were not discussed extensively. Four decision variables (namely temperature of feed 

(ethylbenzene), pressure of reactor, steam over reactant and initial flow rate of ethyl 

benzene) were used for adiabatic configuration where as two additional decision 

variables (namely location of steam injection port and fraction of steam injected) were 

employed in steam injected configuration. Two constraints (namely flow rate of steam 

and temperature of ethylbenzene and steam mixture entering the reactor inlet) were used.  

Babu et al. (2005a) applied MODE algorithm to solve adiabatic configuration of 

styrene reactor. As DE was found to give better results than GA for single objective 

optimization problems (Babu and Sastry, 1999; Babu and Munawar, 2000, 2001; Babu 

and Angira, 2005; Babu et al, 2005b), the application of DE was extended to solve MOO 

problems. Another study showed (Babu and Jehan, 2003) that MODE algorithm showed 

promising results when compared with the NSGA results for the test problems. Babu et 

al. (2005a) considered same set of objectives and decision variables as those used by Yee 

et al. (2003) to test the performance of MODE algorithm. It was observed that MODE 

algorithm resulted in a better Pareto front when compared to the Pareto front obtained 
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using NSGA. It was found that the decision variables those were responsible for 

producing Pareto front were feed temperature of ethyl benzene and initial molar flow rate 

of ethyl benzene. Though same set of decision variables and constraints are used, two 

algorithms may result in different non-dominated set of variables. Thus, due to the 

complexity associated with industrial multi-objective optimization problems, the 

algorithm may need to be tuned for its performance before it is used to find the Pareto 

front for an industrial application. Though NSGA and MODE algorithms resulted in a set 

of solutions (said to be Pareto front) for industrial styrene reactor problem, there exist a 

need to explore the search space associated with the problem using a better algorithm to 

obtain the possibly the true Pareto front.  

 

2.2.2 Polyethylene terephthalate reactor 

Polyethylene terephthalate is a major polymer made into a resin, fibre or film and exists 

both as an amorphous (transparent) and a semi-crystalline (opaque and white) 

thermoplastic. World polyester fiber demand is expected to continue growing at 6% year 

(ICIS, 2009a). PET has captured market share in the bottled water market due to its good 

transparent look and not leaving any taste in the water. It is also used by majority of food 

grade industries in the packing of soft drinks, fruit juices, cooking and salad oils, sauces 

and dressings, etc. It is predicted that by 2011 the carbonated soft drinks will represent 

36% of total PET packaging. From 2007-2011 in United States, PET solid state resins, 

polyster fibres and PET engineering resins are expected to grow by 7% , 5% and 4% per 

year respectively (ICIS, 2009b). With such a demand and growth, a slight improvement 
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in the process parameters due to simulation based research may prove to be beneficial to 

the industry.  

Ravindranath and Mashelkar (1982) reported modeling of final stage 

polycondensation process. Higbie’s penetration theory was applied to a film phase where 

the mass transfer of ethylene glycol was assumed to be the rate controlling process. 

Following approximation (as given by Eq. 2.7) for the rate of change in hydroxyl group 

concentration in the film was derived assuming concentration of ester linkages [Z]:  
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       (2.7)

 

in which, k = 4k`[Z], where k` is the polycondensation of EG in the film; and [EG]0, 

[EG]i, are the initial concentration of EG in the film and the interfacial concentration of 

EG respectively. This rate expression was used in the reactor modeling, where both plug 

flow and axial dispersion were examined. Only the main polycondensation reaction was 

considered and the side reactions leading to other end groups and byproductss were not 

considered in their modeling. 

Ravindranath and Mashelkar (1986a, 1986b) presented extensive review on 

polyethylene terepthalate. In their first review article, they focused on chemistry, 

thermodynamics and transport properties related issues on PET. Historical perspective of 

synthesis of PET was given in their review article. Detailed production process and 

chemistry pertaining to PET synthesis was discussed. A detailed mechanism of catalysis 

related to tran-esterification catalysis and polycondensation catalysis was explored. The 

catalysts used in the trans-esterification reaction include salts, or mixed salts of sodium, 

potassium, lithium, calcium, manganese, magnesium, lead, zinc, aluminium and 

cadmium. However, acetates of zinc, manganese, calcium and sodium gained commercial 
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acceptance due to their good solubility and catalytic effect in the trans-esterification 

reaction. Antimony trioxide or antimony triacetate catalysts are commonly used during 

the polycondensation stage. They presented kinetics of trans-esterification, esterification 

and polycondensation reactions. A detailed review related mechanism and kinetics of 

degradation reactions (which occur during all the stages of PET synthesis and during PET 

processing) were also given. Thermodynamic and transport data pertinent to PET 

formation mainly focusing on phase equilibria, molecular diffusion in PET, diffusion in 

molten polymers, diffusion experiments in molten PET and diffusion of volatile products 

in solid PET were reported.  

In their second review article, Ravindranath and Mashelkar, (1986b) presented a 

detailed engineering analysis of PET. In their work, they extended their earlier modelling 

(Ravindranath and Mashelkar, 1982) by including various reactions. However it was 

limited to the analysis of polycondensation in the thin film. In their study, the literature 

based review related to design of PET reactor system pertaining to stirred polymerization 

reactors for batch processes, interfacial surface generators for continuous processes, 

rotating disc contactors, wiped film devices and partially filled screw extruders were 

reported. Models of PET reactors (e.g. semibatch and continuous trans-esterification, 

continuous direct esterification, semibatch and continuous polymerization and 

polycondensation reactors) were also discussed in their review article. In addition, brief 

review on molecular weight distribution (MWD) related to reversible reactions, 

interchange reactions, practical implications of MWD equilibration were also given.  

Laubriet et al. (1991) presented a steady state analysis of two-phase model for 

continuous final stage melt polycondensation of PET. The drawbacks of the work of 
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Ravindranath and Mashelkar (1986b) were identified in their study and an improved 

mathematical model was proposed. It was proposed that the flow pattern of the melt 

phase was of the plug flow type and that the vapour phase was well mixed. No distinction 

between the film phase and the bulk pool was made. No reaction was assumed to occur in 

the vapour phase. Also it was assumed that mass transfer resistances reside in melt phase 

only. The major difference in the models proposed by Ravindranath and Mashelkar 

(1986b), and Laubriet et al. (1991), was that later viewed both the film and the bulk 

phases as a single reacting phase with mass transfer to a vapour phase through vapour-

liquid interface. Thus specific interfacial area (a) represents both the reactor geometry 

and melt flow distribution pattern in the reactor (Laubriet et al., 1991).  

The steady state model proposed by Laubriet et al. (1991) was improved by Saint 

et al. (1991). They proposed a transient state model for continuous final stage melt 

polycondensation of PET. The effects of various reactor parameters, such as 

polymerization pressure, temperature, residence time, feed polymer molecular weight, 

and the mass transfer parameters, on polymer molecular weight and ethylene glycol rate 

were examined through numerical simulation of the reactor model. The sensitivity 

analysis related to the effect of heat-, and mass-transfer coefficients on the reactor 

performance was also reported.  

Bhaskar et al. (2000) used NSGA to carry out the multi-objective optimization of 

reactor producing fiber-grade PET. In their study, they modified the model of Laubriet et 

al. (1991) and simulated an industrial wiped film reactor. The model parameters were 

tuned using three sets of industrial data. Multi-objective optimization study results 

showed that they obtained a unique optimum solution (no Pareto set of several equally 
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good, non-dominating points was obtained). They also found several minima in the 

decision-variable space, where the values of both the objective functions were almost 

identical. This result, though interesting, was somewhat unexpected and so they 

attempted to explore this problem further to develop more insight in their subsequent 

study (Bhaskar et al., 2001). It was found that for the wiped film PET reactor, Pareto set 

of solutions was obtained whenever temperature was kept constant and was not used as a 

decision variable. In contrast, a unique point was obtained when the temperature was 

taken as one of the decision variables. This was due to the conflicting effect of dominant 

decision variable, i.e., temperature of reactor, on the objective function’s value. Thus, 

NSGA results were dependant on the choice of decision variables. These results also 

prove the need for a robust algorithm, which caters towards both the convergence to the 

true Pareto front and the diversity of solution to give maximum spread. They concluded 

that there is a need to improve NSG algorithm as it failed to give a set of solutions. 

Babu et al. (2007) carried out multi-objective optimization of wiped film PET 

reactor using MODE algorithm. In their study, using same problem formulation, MODE 

algorithm resulted in a set of solutions, as against single solution obtained using NSGA. 

The Pareto front obtained using MODE algorithm was due to the conflicting effect of 

decision variables θ∗ and N∗, temperature was found to be at its lower bound at 564.02K 

and pressure was found to be scattered when plotted against one of the objectives. 

Though MODE resulted in a set of non-dominated solutions against a single point 

solutions obtained using NSGA, MODE algorithm needs further improvement. Therefore 

there exists a need for improving the existing MODE algorithm and test the performance 

of newly developed strategies of MODE on industrial applications.  
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2.2.3 Low density polyethylene tubular reactor 

Low-density polyethylene (LDPE) is a thermoplastic made from ethylene with a density 

ranging from 0.915-0.935 g/cm3. It was the first grade of polyethylene, produced in 1933 

by Imperial Chemical Industries (ICI) using a high pressure process via free radical 

polymerization. Since the inception of production technology of LDPE, there have been a 

lot of changes in its process due to high demand of the quality finished product. It can be 

produced using a continuous process either in tubular or autoclave reactors at very high 

pressure (1300-3400 bars) and high temperatures (225-610 K). The high pressure 

polymerization using tubular reactors has gained popularity due to its better heat removal 

capacity, which helps in controlling the properties of the finished product. Some of the 

desirable properties of LDPE include low crystallinity, low density (0.915-0.935 g/cm3), 

and resistance to solvents, chemicals and oxidating agents, apart from the acceptable 

rheological behaviour (Kalyon et al., 1994). LDPE is widely used for manufacturing 

various high demand products such as containers, dispensing bottles, wash bottles, 

tubing, plastic bags for computer components, and various molded laboratory equipment. 

Due to these varied uses, there has been an increase in demand of LDPE.  

Agarwal and Han (1975) reported the effect of various operating parameters such 

as the axial mixing parameter (the Peclet number), change of feed conditions, the chain 

transfer to the dead polymers, etc. on the performance of reactor. Axial mixing analysis 

of tubular reactor was carried out by incorporating the Peclet number in the model. 

However, Chen et al. (1976), in their study, observed the condition of excessive 

turbulence and concluded that the axial mixing must not be included due to a high value 

of Peclet number. Shirodkar and Taien (1986) presented a mathematical model for 
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tubular reactor and compared the performance of the model with the actual plant data. 

Their predicted conversion and temperature profiles matched well with actual plant data 

within 10% accuracy. Brandoline et al. (1988) presented a mathematical model for high 

pressure tubular reactor for ethylene polymerization. The rate law parameters were 

evaluated using a set of experimental data available with them. They also reported the 

order of reaction to be 1.1 for the reaction of oxygen initiation. Dhib and Al-Nidawy 

(2002) carried out the modeling of free radical polymerization of ethylene using di-

functional initiators in an autoclave reactor. The mechanism of di-functional initiation 

was investigated and the proposed model was tested with the conversion data of ethylene 

collected from the literature for one mono-functional initiator and two di-functional 

initiators. Goto et al. (1981) investigated the reaction mechanism of LDPE tubular 

reaction. They discussed the important experimental and modeling based aspects of 

polymerization describing the correlations of molecular structure, overall rate of 

polymerization, termination and propagation, chain transfer to solvent, backbiting, chain 

transfer to polymer, formation of unsaturated structure, etc. The values of rate law 

parameters corresponding to the above mentioned mechanism and the calculation method 

for molecular weight were reported. A simulation based study of the single initiator feed 

tubular reactor showing the effect of several parameters such as change in initiator 

concentration, initial temperature, jacket temperature, reactor diameter, wall heat transfer 

coefficient, etc. on reactor performance was reported by Gupta et al. (1985). They 

showed the importance of such simulation based study and concluded by emphasizing the 

need for a detailed stability analysis considering that the inherent reactor instability can 

pose a considerable problem. Very few researchers (Lacunza et al., 1998) discussed the 
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heat transfer aspects involved in the high pressure tubular reactor. They showed that the 

assumption of constant overall heat transfer coefficient (U) lead to a certain degree of 

error in conversion and the polymer property when compared with the experimental 

values. Lee et al. (2000) investigated the effects of change in initiator flow rate, and 

monomer flow rate, initiator concentration using a mathematical model for industrial high 

pressure autoclave polyethylene reactor including the decomposition phenomena. 

Brandoline et al. (1991) presented an optimization study and discussed the technical 

feasibility of each set of objectives with respect to the weight based multi-objective 

optimization scenario. Issues related to the effect of multiple feeds on temperature 

profile, and the trade-off between the conversion and the polydispersity index were 

discussed. The optimal control of the industrial reactor with and without initiator 

injections was carried out to maximize the final monomer conversion using the reactor 

jacket temperature as the control variable. Kalyon et al. (1994) presented a mathematical 

model and the rheological characterization of LDPE. Data from a commercial reactor 

having a reactor length of 720 (m) was used. They presented the results of their model 

predictions and the experimentally determined LDPE properties for long- and the short-

chain branching for three different polyethylene resins. Rheological behavior of these 

different resins was studied with respect to apparent viscosity, shear stress, modulus of 

elasticity, etc. Recently, Kim and Iedema (2008) carried out the modeling of branching 

density and branching distribution in LDPE polymerization. They concluded that the 

concentration of long chain branching (LCB) is close to those of first branching moment 

in both the CSTR and the tubular reactor systems.  
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Table 2.1a Rate constant parameters and bounds used in some of the studies reported in the literature 

Reaction Parameter 

Bounds of 
variables 
considered in this 
study 

Values reported by  

Goto et al. (1981)* 

Values reported by 

Chen et al. (1976)** 

Values reported by  

Agarwal and Han (1997)* 

Values reported by  

Shirodkar and Tsien 
(1986)* 

A0 

(L/mol.s) 

E 

(cal/mol) 

A0 

(L/mol,s) 

E 

(cal/mol) 

A0 

(L/mol. s) 

E 

(cal/mol) 

A0 

(L/mol.s) 

E 

(cal/mol) 

Initiation Eo 125604<Eo<138164 2.39x1019 37300 + 0.06P 1.6x1016 38400 0.75kd0 Ed+0.17P -- -- 

Peroxide 
Initiation 1 

Ed1 117230<Ed1<136071 -- -- -- -- -- -- -- -- 

Peroxide 
Initiation 2 

Ed2 117230<Ed2<133977 -- -- -- -- -- -- -- -- 

Propagation Ep 14653<Ep<18003 5.63x1011 10520-0.477P 2.95x107 7091 1.25x108 7800+0.5P 5.8x107 7,769-0.259P 

Chain transfer 
to solvent/ 
modifier 

Etrs 14653<Etrs<20934 1.23x1019 12820-0.4722P -- -- 
k0

trsexp 
(12000/RT0) 

12000 -- -- 

Backbitting 
(Intramolecular 
chain transfer) 

Ebb 56521<Ebb<66988 5.63x1012 13030-0.569P -- -- -- -- -- -- 

β-Scisson of 
seco. radical 

Eb1 71175<Eb1<87922 8.51x1010 14530-0.477P 2.72x1011 20000 -- -- -- -- 

β-Scisson of 
tert. radical 

Eb 62802<Eb<87922 5.82x1011 15760 –0.547P -- -- -- -- -- -- 

Termination by 
combination 

Ebc -- 3.00x1011 3000 +0.3418P 1.6x109 2400 2.2x1010 1000+0.244P 2.8x108 298+0.012P 

By thermal 
degradation 

Etdt -- -- -- -- -- -- -- -- -- 

By chain 
transf. to 
polymer 

 

Etrp 
-- 1.75x1012 14080+0.1065P 9.0x105 9000 

k0
trpexp 

(12000/RT0) 
12000 7.5x106 8942+0.019P 

*
E in cal/mol, P in atm, k=A0 exp(-E/RT), **

E at 2000 atm 
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Table 2.1b Rate constant parameters and bounds used in the remaining studies (continued from Table 2.1a) 

Reaction Parameter 

Values reported by  

Brandoline et al. 
(1991)* 

Values reported by  

Lee et al. (2000)* 

Values reported by  

Kim and Iedema(2008)* 

Values reported by  

Brandoline et al 
(1996)# 

Values 
reported 
by  

Agrawal 
et al. 
(2006)# 

A0 

(L/mol.s) 

E 
(cal/mol) 

A0 

 

E 

(cal/mol) 

A0 

 

E 

 (cal/mol) 

A0 

 

E 

(kJ/kmol) 

E 

(kJ/kmol) 

Initiation Eo 3.0x1010 27,941 -- -- -- -- $1.6x1016 135945 132168 

Peroxide 
Initiation 1 

Ed1 -- -- @1.309x1019 33,872 &1.35x1013 14130+0.033P θ1.0x1014 
94621-
133140 

119929 

Peroxide 
Initiation 2 

Ed2 -- -- @1.396x1013 30,103 &2.89x1014 16627+0.1217P θ1.0x1012 
94621-
132721 

123117 

Propagation Ep 1.0x106 5,245 ∆4.16x106 
6477-
0.56P 

θ1.88x107 4125-0.324P θ1.6x1016 17626 17431 

Chain transfer 
to solvent/ 
modifier 

Etrs 1.7x106 9,443 ∆1.309x1019 33,872 θ1.99x107 5499-0.3253P θ4.0x105 17253 18406 

Backbitting 
(Intramolecular 
chain transfer) 

Ebb -- -- -- -- -- -- θ1.6x1016 61964 60537 

β-Scisson of 
seco. Radical 

Eb1 -- -- -- -- -- -- θ1.6x1016 79967 84747 

β-Scisson of 
tert. radical 

Eb -- -- -- -- -- -- θ1.6x1016 79967 70205 

Termination by 
combination 

Ebc 3.0x108 3,950 ∆3.0x108 3.950 θ8.11x108 553.26+0.19P θ1.6x1016 15282 15282 

By thermal 
degradation 

Etdt 7.3x106 11,315 ∆3.0x108 3.950 -- -- θ1.6x1016 79968 79968 

By chain transf. 
to polymer 

 

Etrp 
4.4x106 9,500 ∆3.0x104 

9375-
0.48P 

θ2.15x105 5921-0.04059P θ1.6x1016 36844 36844 

*E in cal/mol, P in atm, k=A0 exp(-E/RT), **E at 2000 atm; 
θ
A0 in m3/kmol.s; &A0 in m3/s; @A0 in L/mol.s; 

∆
A0 in s-1  

#k=A0 exp(-(E+103 P∆V)/RT) , where, P in Mpa, E in kJ/kmol, ∆V in m3/mol, A0=m3kmol-1s-1
; 

$ m3.3kmol-1s-1 
a Asteasuain et al. (2001)          



49 
 

Large variation in the rate law parameters is observed from the literature survey and the 

data observed in those studies is reported in Table 2.1a and Table 2.1b. The large 

variation in the values of rate law parameters is attributed to the complexity of the 

process and also to the variation in the geometry (length, number of initiator injections 

and their positions) of the reactor considered by the individual workers. Agarwal et al. 

(2006) used NSGA-IIaJG to solve LDPE tubular reactor under multi-objective 

optimization scenario. They maximized the monomer conversion and minimized the sum 

of the normalized concentrations of the three important side products (methyl, vinyl, and 

vinylidene groups). There exists a scope to reconsider the same problem for parametric 

estimation using different solver (if required) and reattempt to solve the problem for 

MOO, as true Pareto front for industrial problems is not known. It is possible that a new 

algorithm may or may not give a better Pareto front, but in search of true Pareto front, 

there exists a need to reconsider the problem with improved newly obtained parameters 

and using a new evolutionary MOO algorithm. 

 

2.2.4 Supply chain and planning 

The supply chain is an integrated network of retailers, distributors, transporters, storage 

facilities and suppliers that participate in the sale, delivery and production of a particular 

product. The purpose of supply chain is to enhance the profit of an organization by 

availing of raw materials, transforming raw materials into finished products, enhancing 

distribution system of products and facilitating the flow of raw materials, finished 

products, information and liquidity among suppliers, manufactures, retailers, distributors 

and the logistic providers. Lasschuit and Thijssen (2004) had emphasized the importance 
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of supply chain planning and scheduling decisions in the oil and chemical industry. The 

decisions taken at various stages within the supply chain (i.e., supply, manufacturing and 

distribution) and at various levels in the management hierarchy (i.e., planning, scheduling 

and operation) differ in business scope, time horizon adn resolution, data certainty and 

accuracy. They recommended the need for integrated planning of these entities. The 

mathematical model resulting at strategic and global planning level is a mixed-integer 

non-linear programming (MINLP). They mentioned that inclusions of such mathematical 

models during the strategic decision-making process yields substantial benefits in 

economic terms and also provide an improved understanding of the interactions among 

various components of business.  

Masini et al. (2009) presented the optimization of supply chain planning in fruit 

industry. They developed a mixed integer linear programming model for apple and pears 

concentrated juice plant. The net profit was maximized considering the cost of each 

variety of raw material, selling prices of each product in different markets, fruit 

production for each farm and fruit variety, distances (among farms, processing plants and 

markets), packaging and juice plant capacities, demands for each product and market, 

etc., as model parameters. The whole model comprised of 14,335, continuous variables, 

3,372 binary variables, 4,421 equality and 7,524 inequality constraints. The open solver 

licensing (OSL) within GAMS package was used to solve the MILP optimization model 

and generate the optimum solutions. Ferrio and Wassick (2008) presented a MILP which 

is capable of optimizing a multi-product supply chain network made up of production 

sites, an arbitrary number of echelons of distribution centres, and customer sites. The 

model results were processed to assign cost components to individual customer records. 



51 
 

Silva et al. (2009) used ant colony optimization to optimize the distributed supply chain 

management. Based on the modeling of a generic supply with suppliers, logistics and 

distributers as a distributed optimization problem, they presented a supply chain 

management technique. Considering the importance of supply chain planning in 

academics and industry, several books are published (Simchi-Levi et al., 2008; Shah, 

2009; Silver et al., 1998, etc.). 

Researchers used models based on multi-objective optimization functions 

(Melachrinoudis and Min, 2000; Nozick and Turnquist, 2001) but they solved these 

problems using classical method converting the problem into a single objective 

optimization problem. Considering the potential of evolutionary algorithms, Pinto (2007) 

used NSGA-II to optimize supply chain planning model for multiple objectives. 

Objectives such as minimization of total operating cost, minimization of the ratio of 

manufacturing costs to total operating cost, maximization of profit, minimization of 

manufacturing cost, minimization of total cost, and maximization of revenue were 

considered under 4-cases of two-objective optimization study. This MOO problem 

involved 36 variables and 6 constraints in the study.  

 

2.2.5 Liquid phase oxidation of p-xylene 

Liquid phase oxidation of hydrocarbons, using air or oxygen has gained popularity in 

industrial applications due to its ability of converting petroleum hydrocarbon feed stocks 

such as olefins, aromatics and alkanes, into industrial organic chemicals which are 

important in many polymer and petrochemical industries. One of the important chemicals 

produced from p-xylene is purified terephthalic acid (PTA).  
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PTA is mainly consumed worldwide in the production of polyester fiber (65%). 

Other uses of PTA include the production of polyethylene terephthalate bottle resin 

(27%) and the remaining (8%) is used in the production of plastic end products such as 

cyclohexane dimethanol, terephthaloyl chloride, copolyester-ether elastomers, 

plasticizers and liquid crystal polymers (ICIS, 2007). Considering the demand of this 

product, it is mandatory to either develop new plants or to improve the efficiency of 

existing plant by means of proper scale up and modeling, simulation and optimization of 

the existing process. Even a slight improvement in yield/quality of the desired product 

can be of immense importance in the production of PTA. Liquid phase oxidation of p-

xylene to PTA is a complex process which involves series of multiple oxidation steps. 

The reaction scheme for catalytic oxidation of p-xylene is shown by Eq. 2.8. The process 

is called Amoco Mid-Century (MC) process which is named after the discovery of Mid-

Century catalyst (Partenheimer, 1995). The reaction takes place in a continuously stirred 

tank reactor (CSTR) with Ti/hastelloy lining. Liquid phase mixture of p-xylene (PX), 

acetic acid (solvent), water, and catalyst are added into the reactor. The temperature is 

allowed to increase to a desired value. The gas, i.e., air is then continuously fed through 

the liquid. The reaction takes place in a typical temperature range of 190-205 0C and at a 

pressure in the range of 15-30 bar. The initial water content in the solvent plays an 

important role in the reaction mechanism. For oxidation of first methyl group, the 
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oxidation rate decreases monotonically with an increase in water content, thus inhibiting 

the oxidation rate. But for the oxidation of second methyl group, the oxidation rate 

increases with an increase in the water content. There also exists an optimal water content 

for the reaction. When water content is less than this optimum value, the overall 

oxidation rate increases with an increase in water content, and when the water content is 

greater than the optimal value, overall oxidation rate decreases with the increase in water 

content (Wang et al., 2005a). The catalyst concentration also has a strong influence on 

the main reaction step. At low concentration of the catalyst, the reaction rates are more 

sensitive to catalyst concentration than at high catalyst concentration. The variation of 

catalyst concentration affects the rate constants k1 and k2 much more significantly than k3 

and k4 (Wang et al., 2005b). Therefore, reaction rates k1 and k2 only are correlated with 

the catalyst concentration in the present study. Vent oxygen content also has a significant 

effect on the reaction performance. Wang et al. (2005b) have shown that partial pressure 

of oxygen in the range of 10-20 kPa influences the reaction significantly. The 

temperature dependence of each of the reaction is given by Arrheneous rate law. Thus the 

outcome of complex series reaction mechanism depends on several parameters. 

Several studies related to kinetics of p-xylene are reported in the literature. Suresh 

et al. (2000) have given elaborated engineering aspects of industrial oxidation of several 

hydrocarbons, such as p-xylene, cyclohexane, cumene, isobutane, cycloalkenes, vinyl 

cyclohexene etc. Their study includes survey, mechanism, chemistry, kinetics and other 

processing aspects of industrial hydrocarbons oxidation. The p-toluic acid is 10 times less 

reactive than p-xylene and high yields of p-toluic acid can be obtained before oxidation 

of second methyl group commences (refer Eq. 2.8 for reaction sequence). Milan et al. 
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(1985) presented the kinetics and the mechanism for cobalt catalyzed oxidation of p-

xylene in the presence of water. They mentioned that with an increase in conversion, the 

concentration of 4-carboxybenzoic acid (4-CBA) increases in the final product. 

Raghavendrachar and Ramchandran (1992) reviewed the technological aspects of p-

xylene oxidation highlighting several industrial processes for manufacturing of PTA. 

They discussed several processes for technical grade PTA such as HNO3 oxidation of p-

xylene, catalytic liquid phase air oxidation, Mid-Century process, Eastman-Kodak 

process, Maruzen process, Toray process, Teijin process, etc. Cao et al. (1994a) presented 

a lumped kinetic scheme for catalytic oxidation of p-xylene to terephthalic acid. They 

concluded that all lumped reactions were of first order with respect to the liquid reactant 

and of zero order with respect to oxygen. In another study, Cao et al. (1994b) presented a 

model for simulation of gas liquid semi-batch reactor for oxidation of p-xylene. Their 

model accounts for zero-order kinetics by checking at each time whether the oxygen flux 

entering the liquid bulk is sufficient enough to sustain the reaction. The studies related to 

the development of kinetic scheme in the field of catalytic liquid phase oxidation of p-

xylene are well documented in the literature (Cheng et al., 2005, 2006; Yan et al., 2004; 

Milan et al., 1982). Mu et al. (2004) carried out multi-objective optimization study of 

industrial purified terephthalic acid (PTA) oxidation process using Neighborhood and 

Archived Genetic Algorithm (NAGA). Their study included 7 decision variables, namely, 

total feed rate (FFEED), catalyst concentration (C0), water withdrawal rate from the reactor 

(WWD), vent oxygen content of reactor (VOR), vent oxygen content of crystallizer (VOC), 

temperatures of reactor (TR) and crystallizer (TC). Out of these 7 decision variables which 

Mu et al. (2004) considered, the data and the correlations for some of them are either 



55 
 

unavailable in the literature or proprietary with the industry and hence inaccessible, as 

mentioned by the authors (Mu, 2007). Taking this practical problem into account we 

made an attempt to simplify the above problem by reformulating and incorporating the 

readily available and easily measurable decision variables. There also exists a scope for 

reconsidering the same problem to be solved using an improved multi-objective 

optimization algorithm and compare the performance of new algorithm.  

 

2.3 Existing gaps of research 

The existing literature on evolutionary multi-objective optimization algorithms suggests 

that great strides have been made in developing new algorithms based on natural 

phenomena in the last two decades. However, due to the complexity involved in the 

industrial processes and benchmark test problems, the attainment of global Pareto front 

with good diverse set of solutions is scarce. Various algorithms such as NSGA, NSGA-II 

and their improved variants, SOMA, SPEA, PAES are applied successfully to find the 

Pareto optimal set of solutions. Though these algorithms have been successfully applied 

to some problems, they failed to give global Pareto fronts with diverse set of solutions for 

many other problems. MODE algorithm has been successful even for those problems 

which the popular EMO algorithms (NSGA) failed to give multiple solutions on Pareto 

front.  Differential evolution which is an improved version of GA is found to give 

optimal solutions at a faster rate for single objective optimization (Angira, 2005; Angira 

and Babu, 2006a, 2006b, 2006c). Therefore there exists a scope to extend DE to solve 

multi-objective optimization problems. Though MODE algorithm was developed earlier, 

it has specific problems such as removal of dominated solutions in each generation and 
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non-preservation of solutions. MODE algorithm gave comparable Pareto fronts for few 

industrial problems. However, there is a great scope and potential to improve the existing 

MODE algorithm. There is also a need to test the performance and robustness of MODE 

algorithm with the help of benchmark test problems.  

Various industrial applications as discussed in section 2.2 involving multiple 

objectives to be optimized are studied and gaps have been identified as mentioned against 

each of process in section 2.2. These problems are solved using different algorithms. But 

as true Pareto optimal front for industrial applications is not known, there is a need to 

revisit such industrial applications and then apply the newly developed and validated (for 

their performance) algorithms to find the Pareto optimal fronts and the optimal set of 

decision variables.  

Taking some of the limitations of MODE algorithm into account, there exists a 

need to develop new strategies of MODE. Hybrid algorithms involve a combination of 

traditional deterministic methods and the evolutionary algorithms to improve the 

performance of a standalone evolutionary algorithm. Hybrid algorithms have shown good 

potential in terms of achieving the optimal solutions at a faster rate in case of single 

objective optimization (Chiou and Wang, 1999). Hybrid methods have been developed 

for solving both single- and multi-objective optimization problems. But MODE algorithm 

or its strategies are not yet been hybridized with the local search methods. Therefore 

there is a great potential and need to develop a hybrid strategy of MODE algorithm and 

test its performance on identified processes and benchmark test problems. NSGA-II 

algorithm involves combination of elite population preservation and a crowding distance 

approach for solving MOO problems. There is a scope towards developing an elitist 
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strategy of MODE. Along with Elitist and hybrid strategy of MODE, there also exists a 

need towards improving the performance of MODE by perturbing its mutation strategy 

using trigonometric mutation approach.  

It is necessary to test the performance of newly developed algorithms (especially 

in terms of Pareto front and convergence and divergence) with other well known 

algorithms. Many evolutionary algorithms, though give good visual view of the Pareto 

front, its comparison with true Pareto front using benchmark test function is important. 

Therefore, there exists a need towards testing the performance metrics of newly 

developed strategies of MODE algorithm and compare them with those obtained using 

other popular algorithms.  

 

2.4 Scope of Work 

Industrial applications reported in the literature which involve multiple process design 

decisions are studied and the gaps of the research have been identified (as mentioned in 

section 2.2 and 2.3). These processes are simulated using suitable numerical techniques 

and multi-objective differential evolution algorithm is used to obtain the Pareto optimal 

set of solutions and the decision variables. The industrial applications include Styrene 

reactor, PET reactor, LDPE tubular reactor, oxidation of p-xylene to PTA and supply 

chain and planning. New strategies of MODE namely MODE III, Elitist MODE, hybrid 

MODE and trigonometric MODE are developed. The Pareto optimal set of solutions is 

obtained for benchmark test problems using new strategies of MODE and are compared 

with the results obtained using NSGA-II. The Pareto optimal set for industrial 

applications (case studies) is also obtained using strategies of MODE and is compared 
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with Pareto front obtained using other evolutionary algorithms. Important performance 

metrics such as convergence metric and divergence metrics are computed for newly 

developed strategies and their performance is compared with other well known 

algorithms from the literature [such as NSGA-II (both real- and binary- versions), SPEA, 

PAES]. 

 

Summary of chapter: In this chapter a detailed literature survey on MOO algorithms 

and few of the industrial applications on multi-objective optimization is given. MOO 

algorithms are classified into two categories, namely, classical methods and the 

evolutionary population based search algorithms. The industrial applications include 

MOO of styrene reactor, MOO of PET reactor, MOO of oxidation of p-xylene, MOO of 

LDPE tubular reactor and MOO of supply chain and planning. Existing gaps of the 

research are identified and are reported. The chapter ends with scope of the present work. 

Next chapter deals with detailed description of various strategies of MODE 

algorithms developed in this work.  

CHAPTER – 3  

DEVELOPED ALGORITHMS AND DETAILED 

WORKING PRINCIPLES 

 

Inspiring from the outcome of MODE algorithm, a need towards developing new and 

innovative strategies of MODE was felt. Therefore, few improved strategies were 
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developed. This chapter presents various multi-objective differential evolution strategies 

developed in this study. 

 

Strategies of MODE Algorithm 

MODE algorithm proposed by Babu et al. (2005) has been successfully used for multi-

objective optimization of industrial styrene reactor. Differential evolution (DE) (Price 

and Storn, 1997; Babu, 2004; Onwubolu and Babu, 2004; Babu and Angira, 2005; Babu 

and Angira, 2005, 2006; Angira and Babu, 2006a, 2006b, 2006c; Babu et al, 2005b; 

Babu, 2007) is an improved version of Genetic Algorithms (GA) (Goldberg, 1989). 

MODE is an extension of differential evolution for multi-objective optimization study.  

 

3.1 MODE -I algorithm 

The simplified flowchart of the original MODE algorithm (MODE-1) is presented in Fig 

3.1. The detailed flowchart of MODE algorithm is given in chapter 2. In MODE-1 

algorithm, in each generation, the dominated solutions are removed from the list and only  
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Fig. 3.1 Simplified flowchart of MODE-I algorithm 
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the non-dominated solutions are allowed to undergo DE operations. The scaling factor is 

generated from a random number generator between 0 and 1. The off springs are placed 

into population if they are better than the the main parent. The pseudo-code of MODE-I 

algorithm is given below: 

**Pseudo-code for MODE - I 

• Choose a seed for the random number generator. 

• Initialize the values of D, NP, CR and MAXGEN. 

• Initialize all the vectors of the population randomly. The 

variables are normalized within the bounds. 

for i = 1 to NP 

{ for j = 1 to D 

Xi,j = Lower bound + random number ∗ (upper bound 

−lower bound)} 

• All the vectors generated should satisfy the constraints (if present). Penalty function 

approach, i.e., penalizing the vector by giving it a large value, is followed only for those 

vectors, which do not satisfy the constraints. 

• Evaluate the functions of each vector. 

for i = 1 to NP 

Ci,j = functj ( ) j = 1, . . . , no of objectives 

• Remove all the dominated solutions using naïve and slow approach. 

• Perform mutation, crossover, selection and evaluation of the objective function for non-  

dominated solutions for a specified number of generations. 
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While (gen < MAXGEN) 

{ for i = 1 to number of Non-dominated solutions 

{ 

• For each vector Xi (target vector), select three distinct 

vectors Xa, Xb and Xc randomly from the current population 

other than the vector Xi 

do 

{r1= random number ∗ NP 

r2= random number ∗ NP 

r3= random number ∗ NP 

}while(r1 = i)OR(r2 = i)OR(r3 = i)OR(r1 = r2)OR 

(r2 = r3)OR(r1 = r3) 

• Perform crossover for each target vector Xi with its noisy vector Xn,i and create a trial 

vector, Xt,i . The noisy vector is created by performing mutation. 

• for binomial crossover 

{p= random number 

jrand = int(rand[0, 1] ∗ D) + 1 

for n = 1 to D 

{if (p <CR or n = jrand) 

Xn,i = Xa,i + F(Xb,i − Xc,i ) 

Xt,i = Xn,i 

} else Xt,i = Xi,j 
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Again, the NP noisy random vectors that are generated should satisfy the constraints (if 

present). Penalty function approach is applied to those vectors which do not satisfy the 

constraints. 

• Perform selection for each target vector, Xi by comparing 

its function value with that of the trial vector, Xt,i . If Xt,i 

dominates completely Xi then replace Xi by Xt,i 

if (Ct,i dominates Ci ) 

new Xi = Xt,i 

else new Xi = Xi } 

/∗ return the set of non-dominated solutions ∗/ 

} 

 Print the results (after the stopping criterion is met). 

 

3.2 MODE -II algorithm 

In MODE-I algorithm, we apply non-dominated sorting procedure in each generation. 

Due to this, the size of population decreases in every generation. In order to perform 

differential evolution operations, we need at least four chromosomes (one target vector 

and three other vectors for mutation operation). In any generation, if the population size 

becomes less than four after non-dominated sorting, then it will not be possible to run DE 

algorithm and Pareto optimal front will not be obtained. This problem can be overcome 

by increasing the initial population size. But even then we cannot guarantee that more 

than minimum required (four) non-dominated solutions will be obtained. Other way is to 

keep the population size constant in every generation by adding randomly generated 
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chromosomes to the non-dominated chromosomes after non-dominated sorting. As the 

number of generation increases, the non-dominated individuals will increase and finally 

all the individuals will converge to the Pareto optimal front. The Simplified flow chart of 

MODE-II is presented in Fig. 3.2. 

The pseudo-code of MODE-II algorithm is given below: 

**Pseudo-code for MODE - II 

• Choose a seed for the random number generator. 

• Initialize the values of D, NP, CR and MAXGEN. 

• Initialize all the vectors of the population randomly. The variables are normalized 

within the bounds. 

for i = 1 to NP 

{ for j = 1 to D 

Xi,j = Lower bound + random number ∗ (upper bound 

−lower bound)} 

• All the vectors generated should satisfy the constraints (if present). Penalty function 

approach, i.e., penalizing the vector by giving it a large value, is followed only for those 

vectors, which do not satisfy the constraints. 

• Evaluate the functions of each vector. 

for i = 1 to NP 

Ci,j = functj ( ) j = 1, . . . , no of objectives 

• Remove all the dominated solutions using naïve and slow approach.  

• Perform mutation, crossover, selection and evaluation of the objective function for non-  

dominated solutions for a specified number of generations. 
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Fig. 3.2 Simplified flowchart of MODE-II algorithm
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While (gen < MAXGEN) 

• Remove dominated points from the population and generate additional population 

points randomly using the mapping rule till total population size is NP.  

{ for i = 1 to number of Non-dominated solutions 

{ 

• For each vector Xi (target vector), select three distinct 

vectors Xa, Xb and Xc randomly from the current population other than the vector Xi 

do 

{r1= random number ∗ NP 

r2= random number ∗ NP 

r3= random number ∗ NP 

}while(r1 = i)OR(r2 = i)OR(r3 = i)OR(r1 = r2)OR 

(r2 = r3)OR(r1 = r3) 

• Perform crossover for each target vector Xi with its noisy 

vector Xn,i and create a trial vector, Xt,i . The noisy vector 

is created by performing mutation. 

• for binomial crossover 

{p= random number 

jrand = int(rand[0, 1] ∗ D) + 1 

for n = 1 to D 

{if (p <CR or n = jrand) 
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Xn,i = Xa,i + F(Xb,i − Xc,i ) 

Xt,i = Xn,i 

} else Xt,i = Xi,j 

Again, the NP noisy random vectors that are generated should satisfy the constraints (if 

present). Penalty function approach is applied to those vectors which do not satisfy the 

constraints. 

• Perform selection for each target vector, Xi by comparing its function value with that of 

the trial vector, Xt,i . If Xt,i dominates completely Xi then replace Xi by Xt,i 

if (Ct,i dominates Ci ) 

new Xi = Xt,i 

else new Xi = Xi } 

/∗ return the set of non-dominated solutions ∗/ 

} 

 Print the results (after the stopping criterion is met). 

The algorithm works as follows: An initial population is generated at random. In 

every generation all dominated solutions are removed from the population. And same 

number of random solutions is added to the non-dominated population to maintain the 

population size constant. DE operations, recombination and selection, are performed on 

this population to obtain the next generation individuals. This process continues till 

stopping criterion is met or Pareto optimal front is obtained. 

 

3.3 MODE -III algorithm 
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The recombination operation in DE is proved to be a powerful technique. In 

recombination, a competition is made between trial and target vectors. It means that there 

is a competition between the child (offspring) and Parent vector. The non-dominated 

vector between the trial and target vectors is sent to the next generations (Survival of the 

fittest). This domination check alone can give the Pareto optimal front. So the non-

dominated sorting before the DE loop can be removed (from original MODE algorithm). 

At the end of the maximum generations, a non-dominated sorting check is kept to remove 

the individuals which are not on the Pareto optimal front. Simplified flow chart of 

MODE-III algorithm is presented in Fig 3.3. 

The algorithm works as follows: An initial population is generated at random. In 

every generation the DE operations, recombination and selection, are performed on the 

individuals of the population to obtain the next generation of individuals. This process 

continues till stopping criterion is met or Pareto optimal front is obtained. After the last 

generation non-dominated sorting is performed to remove the dominated solutions, if 

any. The pseudo-code of MODE III algorithm may be represented as below: 

**Pseudo-code for MODE - III 

Initialize the Crossover Constant (CR), Maxgen, Size of Population (NP), Number of 

Dimensions (D) 

for i=1:NP 

  for j=1:D 

  Xij= Lower (j) + (Upper (j) –Lower (j)) *rand (0,1); 

End for 

Evaluate Cost(i)  
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End for 
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Fig. 3.3 Simplified flowchart of MODE-III algorithm 
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%Perform mutation, crossover, selection and evaluation of the objective function for 

%trial and target vector for a specified number of generations. 

For gen=1:Maxgen **Generation Loop** 

For i:1:NP   **Population Loop** 

 Select Target vector Xi 

 Select three distinct vectors Xa, Xb and Xc other than Xi 

 do 

 { 

  r1=round (rand*NP) 

  r2=round (rand*NP) 

  r3=round (rand*NP) 

 }  

while [(r2== i) || (r1==i) ||(r3== i) ||(r1== r2 ) ||(r1== r3) ||(r2== r3)] 

 

Jrand=int[rand(0,1)*D] + 1 

for q=1:D 

{ 

if (p<CR || q==jrand) 

Xt,i=Xr1 + F (Xr2-Xr3)  %Trial vector 

else 

Xt,i=Xi,,j   %Trial vector 

} 

Evaluate Trial vector 
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%Perform selection for each target vector, Xi by comparing its function value with %that 

of the trial vector, Xt,i . If Xt,i dominates Xi then select Xt,i otherwise select Xi %for the 

%next generation population.  

If (Xt,i dominates Xi) 

Replace Target with current Xt,i 

else Retain current Xi as a Target vector 

end for **population loop end** 

end for **generation loop end** 

/∗ return the set of non-dominated solutions ∗/ 

 Print the results (after the stopping criterion is met). 

Although MODE is a powerful algorithm which captures a global search space and 

generates the trial vector by its efficient recombination operation (crossover and 

mutation), it needs a sufficient minimum number of population points for converging to 

the global Pareto front. However, non-dominated sorting technique reduces the number 

of population points and thus limiting the number of non-dominated solutions obtained in 

MODE algorithm. This problem of reduction of number of non-dominated solutions was 

identified and two additional strategies of MODE algorithm namely MODE II and 

MODE III are proposed. Further improvements of MODE algorithm could be realized, 

(1) by incorporating the concept of elitism in MODE-II, (2) by using trigonometric 

mutation operator in MODE-III, and (3) by hybridizing MODE-III with selected 

deterministic method for local search. 
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3.4 Elitist-multi-objective differential evolution 

The schematic diagram of elitist MODE is shown in Fig. 3.4. There are three major steps 

in elitist MODE algorithm: (1) Processing of initial population of size NP using 

differential evolution, (2) Combining the solutions obtained from DE (NP) and those 

obtained from non-dominated sorting (Q) to get a total of (NP+Q) solutions ensuring 

elitism, and (3) Maintaining NP number of population points in the next generation by 

using a crowding distance sorting.  

Step 1: Processing of initial population using DE 

An initial population of size NP (parent population) is created using the mapping rule 

(Price and Storn, 1997). A target vector is chosen from the population points. Three 

different vectors Xa, Xb and Xc are also chosen randomly from the initial population. The 

weighted difference of Xa and Xb vectors is then added into the third vector, Xc. This 

vector is termed as noisy random vector. Cross over is carried out between target and 

noisy random vectors to generate the trial vector (Xc’). Competition is then made between 

the trial and target vectors and the vector giving better cost values is replaced into the 

population for the next generation.  

Step 2: Combining the solutions obtained from DE (NP) and those obtained from non-

dominated sorting (Q) to get a total of (NP+Q) solutions ensuring elitism  

In a parallel operation, the initial population (parent population) is also sorted for getting 

the non-dominated solutions. Naïve and Slow sorting algorithm (Deb, 2001) is used for 

non-dominated sorting of solutions. Say, the number of these non-dominated solutions is 

Q.  
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Fig. 3.4 Working principle of elitist MODE algorithm 
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This Q number of non-dominated population points is then mixed with NP number of 

offspring population points (as obtained in step-1 above) to generate a total mixed 

population of size NP+Q. 

Step 3: Maintaining NP population points in the next generation by using crowding 

distance sorting: 

The NP+Q number of population points is sorted for non-dominance to classify the 

solutions in different fronts. The first non-dominated solution is referred as front 1.This 

front is copied into NPt+1 population of next generation. The non-dominated sorting is 

recursively carried out on remaining number of population points and fronts 2, front 3, 

front 4, upto front N are copied into the population. Since the overall size of intermediate 

population is NP+Q (>NP), not all the fronts may be accommodated into NPt+1 (of size 

NP). Out of NP+Q population points (as generated in steps 1 and 2 above), only NP 

number of solutions are to be passed through to the next generation. For ensuring this, a 

crowded tournament selection operator is used. According to the crowded tournament 

selection operator, a solution i wins the tournament with another solution j if any of the 

following conditions are true (Deb, 2001): 

1. If solution i has a better rank, i.e.  ri < rj. 

2. If they have the same rank but solution i has a better crowding distance than 

solution j, i.e. ri = rj and di > dj. 

This procedure is illustrated in Fig. 3.4. When the previously considered front is not 

allowed into NPt+1, it may be containing more number of solutions than the vacant space 

in NPt+1. Crowded distance sorting is then carried out, and the solution containing higher 

crowding distance value is copied into NPt+1 in vacant space.  
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This operation is continued till the convergence criterion is met. The convergence 

criteria may be of the following three types: (1) There is no new solution added to the 

non-dominated front for a specified number of generations, or (2) An upper bound on the 

number of generations is met, or (3) Combination (1) and (2) mentioned above. In this 

study, the second criterion is applied. 

The pseudo-code of elitist MODE algorithm is given below: 

**Pseudo-code for elitist MODE  

• Choose a seed for the random number generator. 

• Initialize the values of D, NP, CR and MAXGEN. 

• Initialize all the vectors of the population randomly. The variables are normalized 

within the bounds. 

for i = 1 to NP 

{ for j = 1 to D 

Xi,j = Lower bound + random number ∗ (upper bound 

−lower bound)} 

• All the vectors generated should satisfy the constraints (if present). Penalty function 

approach, i.e., penalizing the vector by giving it a large value, is followed only for those 

vectors, which do not satisfy the constraints. 

• Evaluate the functions of each vector. 

for i = 1 to NP 

Ci,j = functj ( ) j = 1, . . . , no of objectives 

• Remove all the dominated solutions using naïve and slow approach.  
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• Perform mutation, crossover, selection and evaluation of the objective function for non-  

dominated solutions for a specified number of generations. 

While (gen < MAXGEN) 

• Remove dominated points from the population and generate additional population 

points randomly using the mapping rule till total population size is NP.  

{ for i = 1 to number of Non-dominated solutions 

{ 

• For each vector Xi (target vector), select three distinct 

vectors Xa, Xb and Xc randomly from the current population other than the vector Xi 

do 

{r1= random number ∗ NP 

r2= random number ∗ NP 

r3= random number ∗ NP 

}while(r1 = i)OR(r2 = i)OR(r3 = i)OR(r1 = r2)OR 

(r2 = r3)OR(r1 = r3) 

• Perform crossover for each target vector Xi with its noisy 

vector Xn,i and create a trial vector, Xt,i . The noisy vector is created by performing 

mutation. 

• for binomial crossover 

{p= random number 

jrand = int(rand[0, 1] ∗ D) + 1 

for n = 1 to D 

{if (p <CR or n = jrand) 
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Xn,i = Xa,i + F(Xb,i − Xc,i ) 

Xt,i = Xn,i 

} else Xt,i = Xi,j 

Again, the NP noisy random vectors that are generated should satisfy the constraints (if 

present). Penalty function approach is applied to those vectors which do not satisfy the 

constraints. 

• Perform non-dominated sorting of parent population. Say the number of non-dominated 

solution is Q. 

• Merge NP number of noisy random vectors and Q number of non-dominated vectors to 

get a total size of population of (NP + Q) 

• Carry out nondominated sorting of NP+Q number of population points recursively 

• Append the obtained non-dominated solutions in an array of next generation, if size of 

current population array + nondominated solutions < NP 

• If size of current population array + nondominated solutions > NP, Use crowding 

distance sorting. Calculate the crowding distance for each population points. Assign a 

high value of crowding distance to the corner points (to give them more priority to enter 

in next generation population). Sort the population in descending order of crowding 

distance. Append the required number nondominated solutions in the current population 

and discard the remaining points.  

/∗ return the set of non-dominated solutions ∗/ 

}/* End of generation loop */ 

 Print the results (after the stopping criterion is met). 
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3.5 Trigonometric mutation multi-objective differential evolution 

algorithm 

The mutation operation is carried out in MODE and MODE-III algorithms by using three 

distinct vectors. These vectors are perturbed by applying a scale factor so that a new and 

hopefully efficient vector (noisy random vector) is created (Price and Storn, 1997). 

However, the noisy random vector thus created does not get any direction towards the 

better function value. This is achieved by applying trigonometric mutation operation to 

the selected vectors. Earlier trigonometric mutation operation was applied to differential 

evolution algorithm to solve single objective optimization problems (Fan and Lampinen, 

2003, Angira and Alladwar, 2007)). In this work we apply trigonometric mutation 

operation to MODE III algorithm to solve multi-objective optimization problems. The 

simplified flowchart of trigonometric mutation multi-objective differential evolution 

algorithm is given in Fig. 3.5. The pseudo-code of trigonometric MODE algorithm may 

be represented as below: 

**Pseudo-code for trigonometric mutation operation for MOO 

Select three distinct vectors Xa, Xb and Xc other than Xi 

 do 

 { 

  r1=round (rand*NP) 

  r2=round (rand*NP) 

  r3=round (rand*NP) 

 } while [(r2== i) || (r1==i) ||(r3== i) ||(r1== r2 ) ||(r1== r3) ||(r2== r3)] 
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Fig. 3.5 Simplified flowchart of trigonometric MODE algorithm 



80 
 

 

If (rand(0,1) >Mt) 

Tempp1=f(Xr1); 

Tempp2=f(Xr2);; 

Tempp3=f(Xr3); 

Sum= |Tempp1|+| Tempp1|+| Tempp1| 

p1= |Tempp1|/sum; 

p2= |Tempp2|/sum; 

p3= |Tempp3|/sum; 

 for j=1:D 

Xt,i,j = (Xr1(1,j)+X r2(1,j) + X r3(1,j))/3 + abs(p2-p1)*(X r1 (1,j) - X r2 (1,j)) + abs(p3-

p2)*(X r2(1,j) - Xr3(j)) + abs(p1-p3)*(X r3 (1,j)-X r1(1,j)); 

 end for 

else 

Xt,i=Xr1 + F (Xr2-Xr3)  %Trial vector 

End  

Simple mutation operation involves the random selection of first individual vector 

out of the randomly selected three vectors. The weighted difference of the two vectors is 

added to the third randomly selected individual. In case of trigonometric mutation 

operation, the center point of the hyper geometric point is taken as the vector to be 

perturbed. As seen from the pseudo-code of trigonometric mutation operation for MOO, 

the perturbation in the trigonometric mutation operation is contributed together by three 

vertices of the triangle defined by three randomly selected vectors. The weights applied 

to the vectors differentials i.e. (p2-p1), (p3-p2), and (p1-p3) ensures that the new point 
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moves in the direction of improved objective function value. In case of single objective 

optimization, Tempp1, Tempp2 and Tempp3 (as given in pseudo-code above) are the 

variables which contain a single objective function value. 

However, in case of multi-objective optimization Tempp1, Tempp2 and Tempp3 are 

the vectors which contain the values of evaluated multiple objective functions. The sum 

is also a vector which contains the sum of individual objective functions. The mean value 

of all the objectives is calculated as shown by p1, p2 and p3 variables. The noisy random 

vector is now created by using the p1, p2 and p3 variables as weight as given in above 

pseudo-code. It is ensured that the noisy random vector moves towards a better direction 

where there is an improvement in the objective function value. The mutation probability 

used in this algorithm is 0.5%, i.e., if the random number generated is greater than 0.5 

then trigonometric mutation operation is carried out otherwise simple mutation operation 

as given in MODE III algorithm is used.  

 

3.6 Hybrid multi-objective differential evolution 

Both the methods of optimization (deterministic and evolutionary) in isolation have their 

own limitations and advantages over the other. For example, the evolutionary 

optimization algorithms starts with multiple population points and all the population 

points usually converge to a single point (in case of single objective optimization) or non-

dominated optimal set (in case of multi-objective optimization) after the specified 

number of generations are met. However, the deterministic methods often start with a 

single initial guess. The new point is created either by the method of gradient or by 

certain perturbation law (in case of direct search methods) and the new point is compared 
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with the existing point. If the new point is found to be better than the current point, then it 

replaces the current point. The outcome of these methods is often dependent on initial 

guess and the method of perturbation or the step size of the gradient. It may be possible in 

the deterministic methods that it may get converged to local minima, if the initial guess is 

selected wrongly. But at the same time it has the advantage of faster convergence. The 

evolutionary based optimization methods, due to multiple function evaluations in a single 

run, are more accurate at the cost of slower convergence. In this work, we propose the 

hybrid strategy of multi-objective differential evolution algorithm taking the advantage of 

both the deterministic local search method and the evolutionary approach based 

optimization method. The deterministic sequential simplex method is used for local 

search, whereas one of the evolutionary multi-objective differential evolution strategy  

(MODE-III) is used for global search. The deterministic method is used as an accelerator, 

which finds new superior points to converge to the Pareto front at a faster rate. Chiou and 

Wang (1999) applied hybrid strategy of differential evolution algorithm to solve the static 

and dynamic single objective problems with application to fed-batch fermentation 

process. Gradient based descent local search method was used to accelerate the algorithm 

while evolutionary algorithm (DE) was used for migration to a wider domain. Multi-

objective genetic algorithm (MOGA) was hybridized with a neural network (NN) and a 

gradient-based optimizer to solve complex design problem in fluid dynamics (Poloni et 

al., 2000). Recently NSGA-II was hybridized with simplex method which is named as 

nonlinear simplex search genetic algorithm (NSS-GA) (Martinez and Coello, 2008). A 

detailed working principle and application of random-weight based generic local search 

(RWGA) and multi-objective genetic local search (MOGLS) methods is available in the 
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literature (Deb, 2001). Thus, though this concept of hybrid algorithms in general is not 

new (Fonesca and Flemming, 1995), this is the first attempt to hybridize MODE 

algorithm with a local search method for solving MOOPs.  

Sequential Simplex method (Nelder and Mead, 1965; Rao, 1995; Babu, 2004) is 

used as a local search algorithm in the hybrid MODE strategy. Fig. 3.6 shows the 

working principle of hybrid multi-objective differential evolution algorithm. The 

population set is initialized randomly within the specified bounds of the variables and the 

corresponding costs (objective function value) are evaluated. Entire population points are 

preserved for recombination operation. Three vectors from the initial population are 

selected at random in order to create a noisy random vector. Then the trial (child) vector 

is generated by cross over between the target and noisy random vectors (parents). The 

cost of the trial vector is compared with that of the target vector for dominance. The 

winner vector is then used for local search to obtain a better population point in the 

neighbourhood using sequential simplex algorithm. The local search deterministic 

methods cannot handle multiple objectives directly. They require a single objective 

function to evaluate. Therefore, in order to handle multiple objectives using a 

deterministic sequential simplex method, the Overall objective (D) is calculated. The 

Overall objective (D) of a population point for a min-min type of problem; is defined as 

given by Eq. 3.1. 

n

n
n ii fd

absDObjectiveOverall

/1

1

1
)( 









∑
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=

      (3.1) 

Where 10 ≤≤ id  and 11 =∑ =
n
i id  (n = number of objective functions) 
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Fig. 3.6 Working principle of hybrid MODE algorithm 
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For a two-objective min-min type of problem, the overall objective is given by 

Eq. 3.1a: 

2/1

2211
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



+
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fdfd
absDObjectiveOverall

 

     (3.1a)  

Here, to avoid the priority based weightage, values of both the weights are assumed to be 

the same, i.e., 5.021 == dd . This formulation is applicable provided that both f1 and f2 

function values are in the same range. If the range of function values is different, say 

( )1,01 ∈f  and ( )64

2 1,1 eef ∈ , then normalized function value may be used, as given by Eq. 

3.2. 

min,max,

min,

ii

ii

i
ff

ff
f

−

−
=          (3.2) 

Where, fi, fi,min and fi,max are the actual, minimum and maximum value of i
th function 

respectively. In case of an industrial problem, where the minimum and maximum values 

of individual functions are not known, then current population is sorted with respect to an 

individual function to obtain the minimum and maximum value of individual function. 

All function values are evaluated corresponding to the best point obtained in the 

sequential simplex method. Though a single objective based overall objective function is 

used in the sequential simplex method, the best point obtained in the sequential simplex 

method is checked for non-dominance before it is accepted in the current population. If 

the point obtained using sequential simplex method dominates any point in the current 

population, the dominated point gets replaced by the new point, and otherwise a new 

selection procedure takes place. As a local search method is applied on each point, not 
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only convergence becomes faster, but diversity of solutions is also maintained. The value 

of the overall objective function acts as a guideline for determining new simplex value. 

(n+1) number of vertices (where n is the number of dimensions of the problem) are used 

in the local search sequential simplex algorithm. The overall objective function value (D) 

is evaluated at each of these vertices. In every-iteration of the sequential simplex method, 

the simplex is changed to enhance the function values. Several possible transformations 

are considered, namely reflection, contraction and expansion. The reflection is the 

simplest one, where the vertex at which the function value is worst, is reflected in the 

hyper plane formed by the other n vertices. The function value at the new vertex is then 

evaluated and the process is repeated. However, it may be possible that the function value 

may be worst at the new vertex, in which case, if it is reflected, we will get back to the 

old simplex and no progress can be made. It is also possible that the reflection operation 

leads to a cyclic process i.e. after some iteration it gets back to the original simplex. 

Under these circumstances, the simplex is extended or contracted in some direction. The 

iteration proceeds in such a manner that the volume of simplex keeps on decreasing once 

appropriate conditions are satisfied, and ultimately the volume may shrink to the required 

accuracy. The process is repeated till the termination criterion is met. Following selection 

strategy is used in hybrid MODE algorithm.  

If the newly obtained point using hybrid mode dominates any point in the population 

{ 

If newly obtained point further improves the divergence metric or convergence metric 

{ 

Replace the dominated point and its cost with the new point and cost 
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} 

} 

The newly obtained point replaces the dominated point in the population; otherwise a 

new selection procedure takes place.  

This operation is continued till the convergence criterion is met. The convergence 

criteria may be of the following three types: (1) there is no new solution added to the 

non-dominated front for a specified number of generations, or (2) an upper bound on the 

number of generations is met, or (3) combination of (1) and (2) mentioned above. In this 

study, the second criterion is applied. 

 

Summary of chapter: In this chapter the detailed working principles of newly developed 

strategies of multi-objective differential evolution in terms of flowchart, pseudocode, and 

detailed description of algorithm are given. Strategies of MODE algorithm include 

MODE-II, MODE-III, elitist-MODE, trigonometric mutation MODE and hybrid MODE. 

In the next chapter, MOO problem formulation of benchmark test problems and 

selected industrial case studies considered in the present work are given. 
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CHAPTER – 4  

PROBLEM FORMULATION OF CASE 

STUDIES ON MULTI-OBJECTIVE 

OPTIMIZATION 

 

This chapter is divided into two major sections. Section 4.1 includes the benchmark test 

problems of MOO (both constrained and unconstrained) considered in this study. Section 

4.2 gives the problem formulation of various industrial case studies of MOO considered 

in this study.  

 

4.1 Bench Mark Test Problems 

Table 4.1 and 4.2 show 12-unconstrained and 5-constrained test problems of MOO 

considered in this study taken from various literature sources respectively. The objective 

function, its type (minimization/maximization, convex/non-convex and 

continuous/discontinuous), number of variables and bounds of each of the MOO problem 

considered are also shown in these tables. The 12-uncosntrained test problems (Table 4.1) 

consists of three categories: (1) SCH-1, SCH-2 (Schaffer, 1984), ZDT-1, ZDT-4, (Zitzler, 

2000), Max-Max (Deb, 2001), and B&C (Belegundu and Chandragupta, 2002) test 

problems have a convex search space and a convex Pareto front, (2) FON (Fonesca and 

Fleming, 1995) and ZDT-2 (Zitzler, 2000) test problem have a non-convex search space 

and a non-convex Pareto front.  



89 
 

 

Table 4.1 Unconstrained MOO test functions, problem type and number & bounds of variables 

Sr. No.  Test problem Problem type Objective functions Number of variables  
and bounds 
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Table 4.1 Unconstrained MOO test functions, problem type and number & bounds of variables (Contd..) 

Sr. No.  Test problem Problem type Objective functions Number of variables  
and bounds 
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Table 4.1 Unconstrained MOO test functions, problem type and number & bounds of variables (Contd..) 

Sr. No.  Test problem Problem type Objective functions Number of variables  
and bounds 
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Table 4.1 Unconstrained MOO test functions, problem type and number & bounds of variables (Contd..) 

Sr. No.  Test problem Problem type Objective functions Number of variables  
and bounds 
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Table 4.2 Constrained MOO test functions, constraints, problem type and number & bounds of variables 

Sr. No. Test problem Problem type  Objective functions and constraints Number of variables  
and bounds 
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Table 4.2 Constrained MOO test functions, constraints, problem type and number & bounds of variables (Contd..) 

Sr. No. 
Test problem 

Problem type  
Objective functions and constraints 

Number of variables  
and bounds 
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(3) SCH-2 (Schaffer, 1984), KUR (Kursawe, 1990), ZDT-3 (Deb, 2001) and POL (Poloni 

et al., 2000) have non-convex search space and a non-convex and discontinuous (or 

disconnected) Pareto front.  

Table 4.2 shows the constrained MOO problems considered in this study. The 5-

constrained test problems consist of three categories: (1) BNH (Binh and Corn, 1997), 

SRN (Chankong and Haimes, 1983) and Min-Min (Deb, 2001) test problems are 

constrained MOO problems having convex search space and the convex Pareto front, (2) 

CONSTR-Ex (Deb, 2001) is a constrained MOO problem with non-convex search space 

and the convex Pareto front, (3) TNK (Tanaka, 1995) involves non-convex search space 

and disconnected and non-convex Pareto front. 

 

4.2 Industrial case studies 

Five industrial case studies, taken from various literature sources, are considered for 

carrying out MOO study. These are: industrial styrene reactor, polyethylene terephthalate 

reactor, liquid phase oxidation of p-xylene, low density polyethylene tubular reactor and 

supply chain planning involving various process design decisions. Detailed process 

description and objective function formulations of these studies are given in the following 

subsections. 

 

4.2.1 Industrial styrene reactor 

4.2.1.1 Process description and modeling aspects 

Adiabatic dehydrogenation is the most widely used technology for the production of 

commercial grade styrene (Li and Hubbell, 1982; Chen, 1992; Denis and Castor, 1992). 
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The process flow diagram for the production of styrene by dehydrogenation of ethyl 

benzene is shown in Fig. 4.1. The pressure of the reactor varies from 8-15 psig during an 

industrial operation. Fresh and recycled ethyl benzene streams are mixed with steam 

which are subsequently vaporized and heated in the heat exchangers. The ethyl benzene 

and steam vapor mixture is further heated to desired reaction temperature of over 875 K 

by mixing it with steam (superheated) in a direct-fired heater and sent to the first reactor. 

The temperature of ethyl benzene and steam mixture decreases along the length of the 

reactor as the reaction is endothermic. Superheated steam provides the necessary heat of 

reaction and lowers the partial pressure of styrene and hydrogen to shift the 

thermodynamic equilibrium in favor of the dehydrogenation of ethyl benzene to styrene. 

In addition, it not only inhibits the coke formation by reaction, but also flushes away the 

traces of coke deposited on the catalyst surface by sudden sparging of steam with the 

coke deposited on the catalyst surface. Usually the molar ratio of steam to ethyl benzene 

in the feed is fixed to 15:1. In case of steam injected reactor, the reaction effluent from 

the first reactor is mixed with the fresh superheated steam before it enters the next 

reactor. Six main reactions occurring in the styrene reactor are: 

22563256 HCHCHHC               CHCHHC +⇔
     (4.1) 

42663256 HC    HC                CHCHHC +⇒
      (4.2) 

435623256 CH    CHHC      H   CHCHHC +⇒+
     (4.3)  

2422 4H   2CO                HC   O2H +⇒+       (4.4) 

242 3H   CO                    CH   OH +⇒+       (4.5) 

222 H   CO                      CO   OH +⇒+       (4.6) 
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Fig. 4.1 Simplified process flow sheet for production of styrene 
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The major aromatic byproducts from the dehydrogenation of ethyl benzene are 

benzene and toluene. The light gases produced from the reaction include hydrogen, 

carbon dioxide, carbon monoxide, methane and ethylene. The main reaction in the 

styrene reactor is the reversible endothermic conversion of ethyl benzene to styrene and 

hydrogen (Eq. 4.1). A high temperature lowers the yield, while the catalytic reaction 

increases the yield. As per Le Chatelier’s principle, a reversible reaction producing two 

moles of products to one mole of reactant, low pressure and high temperature favor the 

forward reaction. Some preliminary calculations based on the energy balance have been 

carried out to get the data on equilibrium conversion profile for styrene (Eq. 4.1) as a 

function of temperature, and plotted in Fig. 4.2.  

At equilibrium, the reversible reaction results in 80-85 % conversion of ethyl 

benzene in the given temperature range. Although the dehydrogenation of ethyl benzene 

is both kinetically and thermodynamically favored by high temperature, more byproducts 

[benzene and toluene (see Eq. 4.2 and Eq. 4.3)] are produced by thermal cracking at high 

temperatures, thus reducing the styrene yield. High temperature favors the styrene 

productivity but it also affects adversely by the formation of byproducts. Therefore, an 

optimum inlet temperature needs to be used. 

The flow in the reactor is considered to be plug flow for simulation of both 

adiabatic and pseudo-isothermal configurations. Axial dispersion is neglected in pseudo-

homogeneous model and any limitation of mass or heat transfer to the catalyst pellet or 

diffusion within the pellet is lumped into the rate constants.  
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Fig. 4.2 Equilibrium conversion profile for styrene 
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Sheel and Crowe (1969) reported the design and operating conditions of this 

pseudo-homogeneous model. Abdalla et al. (1994) and Elnashaie et al. (1993) used this 

model as well as the more detailed heterogeneous model, which takes into account of 

diffusion in the catalyst pellet. This model was used by them to extract the kinetic data 

from the industrial data. Abdalla et al. (1994) reported intrinsic kinetics for three 

promoted iron oxide catalysts using the pseudo-homogeneous and heterogeneous models, 

and compared the performance of these catalysts. Among these models, the kinetic model 

proposed by Sheel and Crowe (1969) has been widely used (Clough and Ramirez, 1976; 

Elnashaie et al., 1993; Abdalla et al., 1994; Savoretti et al., 1999 and Sheppard et al., 

1986). In their studies, Babu et al. (2005) and Yee et al. (2003) observed that the 

predictions by both pseudo-homogeneous and heterogeneous models are comparable, but 

pseudo-homogeneous model took significantly less time than the heterogeneous model. 

Hence the pseudo-homogeneous model is considered for multi-objective optimization of 

styrene reactor in this study. The operating conditions and design parameters for the 

industrial reactor are given in Appendix A (Table A1). The differential equations 

employed in the current study are also given in Appendix A (Eq. A1 - A15). 

4.2.1.2 Formulation of objective functions 

Simultaneous maximization of three-objectives namely styrene productivity (FST), 

selectivity (SST), and yield of styrene (YST) are considered in this study. The three-

objectives are given by Eqs. 4.7 - 4.9. 

Maximize:          (4.7) 

Maximize:        (4.8) 
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Maximize:         (4.9) 

Styrene is widely used as a raw material for several polymer products. Styrene is 

also known in the market place as one of the costly products. Therefore maximization of 

productivity and yield are considered as the objectives. Minimization of the unwanted 

byproducts such as toluene and benzene is also important as it causes the raw material 

loss and also increases the cost of separation. In order to minimize the production of 

toluene and benzene (byproducts) in the reactor, the selectivity of styrene should be 

increased and hence maximization of selectivity is considered as another objective 

function in this study. F0
EB is one of the decision variables and as it appears in Eq. 4.9 

(independently) and along with unconverted ethyl benzene (F0
EB- FEB) in Eq. 4.8, the 

trade-off associated with all the three objectives is apparent. The multi-objective 

optimization problem of Styrene production is well-documented in the literature [Yee et 

al., 2003; Babu et al., 2005]. Two reactor configurations are considered for the multi-

objective optimization study. Fig. 4.3a shows a single bed adiabatic reactor in which 

entire amount of steam is mixed with ethyl benzene and enters the reactor at the inlet 

In case of steam injected operation (Fig. 4.3b), the total amount of steam is 

bifurcated into two fractions. A fraction (δ) of steam is mixed with ethyl benzene at the 

reactor inlet while the remaining steam is injected at λ fraction of total reactor length, 

where λ and δ are considered as decision variables that are to be optimized. For the 

optimization of styrene reactor, the decision variables were chosen from the operating 

variables of existing plants and from the key decision variables of the reactor (Sheel and 

Crowe, 1969; Elnashaie and Elshishini, 1994; Yee et al., 2003 and Babu et al., 2005). 
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In earlier studies, the inlet temperature of the superheated steam was fixed at 1025 

K. But practically in any process plant, it is nearly impossible to get the steam at one 

constant temperature. Therefore one additional variable i.e., the temperature of steam is 

included in this study. So, for adiabatic operation, five decision variables namely, feed 

temperature (TEB), pressure (P), steam over reactant ratio (SOR), initial ethyl benzene 

flow rate ( ) and temperature of steam (TSTEAM) are considered for optimization. The 

bounds of decision variables are given by Eq. 4.10 through Eq. 4.14. 

K         (4.10) 

bar         (4.11) 

          (4.12) 

kmol/h        (4.13) 

 K        (4.14) 

The lower and upper limits of the inlet pressure are taken as 1 and 2.63 bar, 

respectively, following the industrial practice. In Fig. 4.3a, Tmix1 is the temperature of the 

mixture of ethyl benzene and steam. The lower bound on the temperature of ethyl 

benzene (TEB) is fixed at 550 K, in order to ensure that Tmix1 is not too low for the reaction 

to occur. The upper bound on TEB is set at 800 K to prevent undesirable side reactions 

before ethyl benzene enters the reactor (Claugh and Ramirez, 1976). The lower bound on 

the steam to ethyl benzene molar ratio, SOR (steam over reactant) is chosen as 7 to 

prevent the coke formation on the catalyst surface and to regenerate the catalyst by 

removing the traces of coke already deposited on the catalyst surface. The upper limit of 

SOR is chosen as 20 as too high a value of SOR would be uneconomical due to the 
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higher energy needed for heating the excess steam to the required reaction temperature. 

Also, the downstream reactor units such as condenser and heat exchangers have to be 

considered for capacity limitations. F0
EB refers the total pure ethyl benzene feed and the 

bounds on this variable individually lie between -25% and +10% of the industrial value 

of 36.87 kmol/h (Claugh and Ramirez, 1976). The temperature of the superheated steam 

varies between 1000 K and 1050 K.  

Two additional decision variables are considered for steam injected reactor 

configuration, (δ, the fraction of steam used at the reactor inlet, and λ, the fraction of 

reactor length and location of injection port for the remaining fraction of steam).  

          (4.15) 

            (4.16) 

Normally 10 % of the superheated steam (F0
EB) is mixed with the feed (ethyl benzene) to 

prevent the side reactions before ethyl benzene feed is injected into the reactor. Hence, 

the steam fraction, δ, has been given a range of 0.1 to 1.0. Because minimum 10% of the 

total steam enters at the inlet of the reactor, we set the lower limit of λ as 0.1 for the 

steam injected reactor considering linear drop in temperature in a shorter (initial 10%) 

length of reactor. Three constraints as shown by Eqs. 4.17 – 4.19 are also considered for 

the optimization study. 

kmol/h         (4.17) 

K         (4.18) 

K  (Valid for the steam injected reactor only)  (4.19) 

Although the furnace in Fig. 4.3(a) and 4.3(b) can produce more steam, may be at 

a lower temperature, the downstream condenser may not be able to handle the increased 

11.0 << λ
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throughput (Sheel and Crowe, 1969). The first constraint (Eq. 4.17) is based on the size 

limitation of the condenser. Tmix1 [see Fig. 4.3(a)] of Eq. 4.18 is the temperature of the 

mixture of ethyl benzene and steam entering the reactor. Tmix2 [see Fig. 4.3(b)] of Eq. 

4.19 is the temperature of the same at a reactor length of z = λL. For the adiabatic reactor 

configuration only two constraints (Eq. 4.17 and Eq. 4.18) are applicable, whereas for the 

steam injected case all three constraints (Eqs. 4.17-4.19) are applicable. The constraint on 

both Tmix1 and Tmix2 is based on the minimum temperature required for the reaction to 

take place, and the temperature at which the catalyst starts to deactivate (Claugh and 

Ramirez, 1976). Constraints are incorporated into each of the objective functions 

mentioned above and handled using the penalty approach (Deb, 2001). As discussed 

subsequently in sections 5.1 and 5.2 of chapter 5, where rigorous simulations on 

parametric estimation of MODE on several test problems are included, it was found that 

the penalty weights are highly problem specific, especially during the initial generation 

runs. MODE algorithm (due to its strong recombination operation) is found to approach 

to the same front at higher value of generations for certain test problems. And hence, the 

present industrial case study problem is also tested with several penalty weights along 

with the dominant MODE parameters. It is ensured that a high value of penalty parameter 

is used. It assigns a very low value to the infeasible objective function (in case of 

maximization type of problems). Thus the infeasible solutions are removed from the 

competition. The modified objective functions are shown in Eq. 4.20 through Eq. 4.27. 

Maximize:  ∑
=

−=
5

1

6

1 10
i

iST fFI        (4.20) 

Maximize: ∑
=

−=
5

1

4

2 10
i

iST fSI        (4.21) 
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Maximize:  ∑
=

−=
5

1

6

1 10
i

iST fYI        (4.22) 

where i = 1 to 5 and  

       (4.23) 

       (4.24) 

       (4.25) 

       (4.26) 

       (4.27) 

Three cases of two-objective optimization (Eqs. 4.28 - 4.30) and one case of 

three-objective optimization (Eq. 4.31) are possible for the three-objectives, namely, 

maximization of FST, SST and YST (Eqs. 4.28 - 4.31). 

Case-1: Maximization of FST and SST       (4.28) 

Case-2: Maximization of SST and YST       (4.29) 

Case-3: Maximization of FST and YST       (4.30) 

Case-4: Maximization of FST, SST and YST      (4.31) 

4.2.2 Polyethylene terephthalate (PET) reactor 

4.2.2.1 Process description and modeling aspects 

Commercially, PET is manufactured in three stages (namely, esterification, pre-

polymerization and the poly-condensation in the finishing reactor), using continuous 

reactors. PET is manufactured in three continuous reactors using ethylene glycol (EG) 

and purified terphthalic acid (PTA). Usually EG is taken in excess. In the first stage, 

esterification is carried out in continuous stirred tank reactor (CSTR) or plug flow reactor 

(PFR) at 270–280 0C and at atmospheric pressure. A poly-condensation catalyst, 
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antimony trioxide, is injected in small concentrations (0.03 – 0.05 wt.%) into the 

oligomer stream leaving this reactor. In the second stage, pre-polymerization is carried 

out to get a degree of polymerization (DP) of 30 – 40. Agitated vessel is used and 

maintained at a pressure in the range of 15 – 30 mm Hg and at a temperature range of 

270–280 0C. In the third stage (wiped-film reactor), final condensation occurs at a 

pressure of 1 – 2 mm Hg and at a temperature of 280 – 295 0C. Optimization of third 

stage (wiped film reactor stage) is more important as it controls the final properties of the 

product. Due to a high value of viscosity of the reaction mass, the finishing reactor has a 

special construction (a jacketed cylindrical vessel with a horizontal agitator, with large 

screens mounted on the latter) in order to enhance the mass transfer and the removal of 

by-product (ethylene glycol).  

The continuous removal of ethylene glycol, drives the reaction in the forward 

direction and gives a product having a high value of degree of polymerization (DP) 

(Bhaskar et al., 2001). The reaction mass in the third-stage reactor is usually heated by 

condensing vapor in the jacket of the reactor. A horizontal vessel equipped with a screw-

type or rotating disk agitator is used as a reactor for continuous finishing poly-

condensation (Fig. 4.4). Such agitators create polymer films on the screw or disk surfaces 

continuously. These films, after exposure to a bulk vapor phase, are mixed with a bulk 

polymer melt (Laubriet et al., 1991). Low molecular weight PET pre-polymer from pre-

polymerization reactor is fed to the wiped-film reactor. Various volatiles such as ethylene 

glycol, di-ethylene glycol (DEG), water, and acetaldehyde are removed from the bulk 

melt phase by applying high vacuum (e.g., 0.1 –1.0 mm Hg) and high temperature (e.g., 

270 – 300 0C).  
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Fig. 4.4 Simplified schematic diagram of horizontal wiped film PET reactor 
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Bhaskar et al. (2000) proposed the model for continuous finishing stage melt poly 

condensation of PET. The assumptions considered by Bhaskar et al. (2000) for proposing 

a two-phase model are: (1) flow pattern of melt phase is of plug flow type and that of 

vapor phase is of well mixed, (2) no distinction between the film and bulk part in melt 

phase, (3) no reaction in vapor phase, and (4) mass transfer resistance resides in only melt 

phase. The set of equations in the melt polymerization of PET is given in Appendix B. In 

the present study, a two-phase reactor model originally proposed by of Laubriet et al. 

(1991), and as described by Bhaskar et al. (2001) is used. The simplified model equations 

are given by Eqs. 4.32 - 4.33. 

( )uxf
dz

dx
,= ; x(z = 0) = x0        (4.32) 

where x is the vector of state variables, defined by  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )DEGWEGEEZEEx DEGvag , , , , , , , =      (4.33) 

and u is the vector of decision variables. In Eq. 4.32, z represents the (dimensionless) 

axial position in the wiped-film reactor. Table B1 (In Appendix B) shows the values of 

initial conditions corresponding to the given ordinary differential equations (ODEs). 

Values of the parameters / properties for the reference case are listed in Table B2 (In 

Appendix B). The ODE 23s subroutine with adaptive step size of MATLAB (Ver. 7.0) is 

used to integrate these equations. Upon integration, the model provides the values of DP 

and the concentrations of the hydroxyl end groups (Eg), acid end groups (Ea), di-ester end 

groups (Z), vinyl end groups (Ev), DEG end groups (EDEG), EG, W and DEG, as a 

function of the axial position in the reactor. 
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4.2.2.2 Formulation of objective functions 

In this study simultaneous minimization of two objectives, namely, acid end group 

concentration and vinyl end group concentration is considered. The multi-objective 

optimization problem is described mathematically as given by Eqs. 4.34 - 4.42: 

Minimize 

( ) [ ] [ ] [ ] T

outv
E

outa
ETIINTPI 






=≡ ,

2
,

1
**,,, θ

 
     (4.34) 

Subject to  

d
DP

out
DP =           (4.35) 

[ ] 3/310038.1 mkmol
outa

E
−×≤        (4.36) 

[ ] 3/17.01660.0 mkmol
outDEG

E ≤≤       (4.37) 

( ) ( )
0

0;, xzxuxf
dz

dx
===        (4.38) 

( )HgmmP 0.24.0 ≤≤         (4.39) 

KT 570564 ≤≤          (4.40) 

06.1*9.0 ≤≤θ           (4.41) 

05.1*93.0 ≤≤ N          (4.42) 

The acid end group makes the polymer susceptible to hydrolysis during the downstream 

operations and leads to breakage of the filaments during spinning, where the humidity is 

very high. The vinyl end groups have been shown to be responsible for the unfavourable 

coloration of PET (Bhaskar et al., 2000). Hence the minimization of these two end groups 

are considered as the main objectives as used in the earlier study (Babu et al., 2007b). 

The reduction of Ea simultaneously increases the rate of polymerization of the acid end 
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group catalyzed poly-condensation reaction and helps maximize the throughput. One 

equality constraint on degree of polymerization (DP) (Eq. 4.35) and two inequality 

constraints on the concentration of acid (Eq. 4.36) and DEG end groups (Eq. 4.37) are 

also considered in the present study. The constraints are handled using the penalty 

approach (Deb, 2001). The DEG end groups affect the crystallinity and hence the melting 

point of the polymer unfavourably, they also improve the dye ability of the fiber. The 

inequality constraint on DEG is imposed to ensure the melting point and dye ability in an 

allowable range. A further inequality constraint on the maximum allowable limit for the 

acid end group concentration is imposed to ensure that it is not only minimized but also 

lies below an upper limit. 

Decision variables namely, the reactor pressure (P), temperature (T), residence 

time of the polymeric reaction mass inside the reactor (θ), and the speed of the wiped-

film agitator (N) are used in the present study (Eqs. 4.39 - 4.42). The variables, θ* and 

N*, represent dimensionless values, θ / θref  and N / Nref , where θref and Nref are values 

being used currently in the industrial reactor being studied. These two values are kept 

confidential in the literature and hence the value of θref  = 99 was found by trial and error 

method in our earlier study (Babu et al., 2007b). All of these decision variables can easily 

be changed in any industrial, wiped-film reactor for PET manufacture, including the one 

being studied, and are therefore used to obtain the best optimal operating conditions in 

the present study. 
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4.2.3 Liquid phase oxidation of p-xylene 

4.2.3.1 Process description and modeling aspects 

Fig. 4.5 is the simplified schematic flowsheet for the manufacturing of TA from liquid 

phase oxidation of p-xylene. In order to simulate the entire process, it is necessary to 

build up a mathematical model which takes into account of the reaction mechanism in the 

reactor and crystallizer, the separation, and the heat and mass transfer aspects in 

distillation column and absorbers. The raw materials of the process such as p-xylene, 

catalyst, air, and mother liquor are fed into the reactor. Oxidation takes place in the 

reactor through a series of reactions (see Eq. 2.8). After a stipulated residence time, the 

effluent from the reactor is further passed through a series of three crude terephthalic acid 

(CTA) crystallizers. The reactor effluent undergoes secondary oxidation and crystal aging 

in these crystallizers. The slurry from these crystallizers is then pumped into a pressure 

filter and a vacuum dryer to get the CTA Powder. The obtained CTA powder can be 

treated by hydrogenation procedure to obtain the purified terephthalic acid (PEP, 2007). 

The off-gas from the reactor passes through a series of heat exchangers from which steam 

is generated. The off-gas stream after getting cooled in the heat exchangers passes 

through the absorbers and the purifiers. The separation of acetic acid and other 

combustion byproducts (such as carbon dioxide and carbon monoxide) occur in the 

absorber and the subsequent distillation column. The stream finally passes through the 

expanders for the recovery of pressure energy. Part of the condensate is refluxed to the 

reactor and the remaining is fed to the distillation column (Wang, 2007). The model 

equations of the process and the objective function formulation that are being used in the 

simulation of this study are discussed in the following section. 
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Fig. 4.5 Simplified process flow sheet for liquid phase oxidation of p-xylene  
for CTA production 

TA 

Filter 

ca
ta

ly
st

 

p
-x

y
le

n
e 

First 
Crystallizer 

Third 
Crystallizer 

Catalyst 
Recovery 

Second 
Crystallizer 

CTA dryer 

air 

TA 

Filter 

ca
ta

ly
st

 

p
-x

y
le

n
e 

First 
Crystallizer 

Third 
Crystallizer 

Catalyst 
Recovery 

Second 
Crystallizer 



114 
 

 
4.2.3.2 Formulation of objective functions  

For CSTR, the design equations are expressed in terms of a set of algebraic equations 

given by Eq. 4.43:  

τ)( 10, −−−=− jjjj rrCC  for j = 2 to 4 

τ)( 110,1 rCC −=−    and τ)( 40,55 rCC =−      (4.43) 

Cj,0 and Cj are the feed and exit concentrations of p-xylene, tolualdehyde, p-toluic acid, 4-

carboxy benzaldehyde for j = 1 to 5 respectively. 

The reactor model considered in this study includes the reaction process in the reactor 

and the first crystallizer (Mu et al., 2004). The rate law is given by Eq. 4.44 (Wang, 

2005a).  

j

i
ii

jj

jj

Cd

fC
kr

β

θ 





∑ +

=

=

4

1

          j = 1 to 4      (4.44) 

The mathematical model of the process is based on two sequential ideal CSTRs 

and a crystallizer. The outlet stream from the second reactor consisting of unconverted 

reactant (PX), the three intermediate products (TALD, P-T, and 4-CBA), and the product 

(TA) goes to the crystallizer. In the liquid phase p-xylene oxidation process, the quality 

of product is decided by the amount of 4-CBA present in it. Several properties of PTA 

such as the optical density and the concentration of 4- carboxy-p-terphenyl (4-CTr) in 

CTA are related to the amount of 4-CBA present in the final product. 4-CBA can also 

contaminate CTA as it is prone to co-crystallization with crude TA (Mu et al., 2004). 

Thus minimizing the concentration of 4-CBA in the final product is one of the major 

objectives in the production of PTA. The profit of an industry depends on the production 



115 
 

rate. The production rate is directly related to the flow rate of the feed entering the 

reactor. Thus the maximization of feed flow rate can be considered as one the objectives 

of the present study. But with an increase in the production rate, the % of impurity 

(concentration of 4-CBA) also increases. A set of decision variables may exist, which 

may favor the objective of increasing the productivity, but may not favor the objective of 

minimizing the 4-CBA concentration. Thus there exists a clear conflict in both these 

objectives and they can be modeled as a multi-objective optimization problem. 

Minimization of the concentration of 4-CBA in the crude TA and the maximization of 

feed flow rate of reactor are the main objectives of this study. Mu et al. (2004) carried out 

the multi-objective optimization study of industrial purified terephthalic acid. Their study 

included 7 decision variables, namely, total feed rate (FFEED), catalyst concentration (C0), 

water withdrawal rate from the reactor (WWD), vent oxygen content of reactor (VOR), 

vent oxygen content of crystallizer (VOC), temperatures of reactor (TR) and crystallizer 

(TC). Out of these 7 decision variables Mu et al. (2004) considered, the data and the 

correlations for some of them are either unavailable in the literature or proprietary with 

the industry and hence inaccessible, as mentioned by the authors (Mu, 2007). Taking this 

practical problem into account we made an attempt to simplify the above problem by 

reformulating and incorporating the readily available and easily measurable decision 

variables as explained below.  

 Oxidation (about 2-3%) also takes place in the first crystallizer. The low value of 

vent oxygen content in the crystallizer may not affect the product quality to a great extent 

because the air flow rate to the first crystallizer is only 2% of the whole requirement of 

air flow rate of the PTA oxidation reaction. Eq. 4.44 represents the kinetic model based 
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on radical chain reaction mechanism (Wang, 2005b). It contains important parameters, 

such as the co-crystallization factor (θ) and the kinetic parameters (di and βj). These 

kinetic parameters are designed to consider the reaction in both the crystallizer and the 

reactor. Therefore, in this study we incorporated this kinetic model. The vent oxygen 

from the reactor (VOR) and crystallizer (VOC) are merged and denoted as
2OV . The 

difference in the temperature of reactor (TR) and crystallizer (TC) is insignificant, and 

hence the temperature of reactor only is considered in this study. The rate constant is 

directly related to the total water content in the solvent ( OHW
2

) (Wang, 2005a). The 

correlations for rate constants in terms of water content are well documented in the 

literature. Industrially it is easy to control the water content in solvent than controlling the 

water withdrawal rate from the reactor. Therefore, in this study the decision variable 

WWD (total water withdrawal) is replaced with OHW
2

, to study its effect in the presence 

of other decision variables. The detailed mathematical model (Eqs. C1 - C5) and the 

correlations used (Eqs. C6 - C14) in the present study are given in Appendix C. The flow 

rate of p-xylene in the feed determines the mole fraction of xylene in the feed stream. The 

mole fraction of p-xylene is an important term in rate law. Therefore considering its 

importance, we included the flow rate of p-xylene as an extra decision variable in the 

present study. The correlations related to the new decision variables added in this study 

are easily available in the open literature. They are easily measurable quantities and it is 

also more feasible to control these variables. By incorporating these changes, the 

objective function has been simplified and reformulated in the present study as given by 

Eqs. 4.45 - 4.47: 

FEEDFMaximize          (4.45) 
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),,],[,,(
22 04 TVWCoFFcMinimize OHFEEDPXCBA−      (4.46) 

Subject to     130000≥FeedF  kg/h 

          35004 ≤−CBAc    ppm       (4.47) 

The second objective function (minimization of 4-CBA concentration) is a function 

of 6 process decision variables, namely FPX, FFEED, [C0], OHW
2

, 
2OV  and T. However, 

during a normal operation of the plant, it is difficult to control/manipulate all the decision 

variables (mentioned above) together due to practical limitations. Usually the industrial 

plant is operated by controlling only one or two decision variables mentioned above by 

keeping the rest of the decision variables constant during a normal operation. We 

considered a total of 6 variables in order to study the effect of those decision variables on 

the objective functions. Four combinations of decision variables (as given by Eqs. 4.48 - 

4.51) are considered for multi-objective optimization in this study. 

1. FEEDFC ],[ 0         (4.48) 

2. OHFEED WFC
2,0 ],[         (4.49) 

3. 
22

,,,],[ 00 OPXHFEED VFWFC       (4.50) 

4. TVFWFC OPXHFEED ,,,,],[
22 00       (4.51) 

Case-1 

 

 

])[,( 04 CFcMinimize FEEDCBA−        (4.52)  

In this case study, the first objective function (FFEED) appears as one of the decision 

variables in the second objective function. The most widely used tunable decision 

variable in PTA oxidation process industry is [C0]. The operating value of [C0] is 341.1 

FEEDFMaximize
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ppm, however in this study we have selected the range of [C0] as 300-800 ppm to see the 

effect of increased catalyst feed concentration. Other decision variables such as FPX, 

OHW
2

, 
2OV , and T are kept constant during the simulation runs for this case. 

Case-2 

FEEDFMaximize  

)],[,(
204 OHFEEDCBA WCFcMinimize −        (4.53) 

Earlier studies showed the effect of water content on the reaction kinetics (Wang, 2005b; 

Suresh, et al., 2000). The water content in the reactor also regulates the reactor 

temperature. Wang et al. (2005b) showed the importance of the optimal water content 

while operating the PTA reactor. It is suggested to have the water content less than the 

optimal water content value so that the overall rate of oxidation increases with an 

increase in the water content. The optimal water content in the reactor also ensures the 

decreased concentration of 4-CBA. The amount of water present in the reactor is in 

saturated state in the given range of temperature and pressure, having the degrees of 

freedom value of 1. In this state, the pressure of the reactor automatically gets fixed with 

a change in the temperature. Therefore both the temperature and pressure of the reactor 

depend on the percentage water content in the reactor. The reactor pressure in turn 

determines the percent vent oxygen content. As the percentage water is indirectly related 

to several operating parameters of PTA oxidation process, it has been included as one of 

the decision variables in this study. 

Case-3 

FEEDFMaximize  

),,],[,(
22 004 OPXHFEEDCBA VFWCFcMinimize −      (4.54) 
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The amount of excess oxygen in the feed air determines the values of vent oxygen from 

the reactor and the first crystallizer. Due to the saturated state of process mixture, 

pressure is also related to the temperature as discussed earlier. Optimum vent oxygen 

content is necessary in the PTA oxidation reaction. If the vent oxygen content value is 

less than the optimum value, then an excess amount of 4-CBA gets formed, thus 

degrading the quality of final product. The flow of p-xylene fixes the mole fraction of p-

xylene in the process stream. It is necessary to have an optimum amount of p-xylene in 

the inlet stream; otherwise undesired excessive byproduct formation may take place. 

Decision variable, 
2OV  also plays an important role in the reactor operation, as the amount 

of vent oxygen from the reactor is directly related to the pressure in the reactor. 

Case-4 

FEEDFMaximize  

),,,],[,(
22 004 TVFWCFcMinimize OPXHFEEDCBA−      (4.55) 

The catalyst concentration affects the 4-CBA concentration at the exit of reactor. We 

considered the bound on catalyst concentration as 300 - 800 ppm. The lower bound is set 

considering the minimum catalyst concentration necessary for the reactor while the upper 

bound is fixed to a relatively higher value in order to consider the effect of an increased 

concentration of the catalyst on the process. The mole fraction of p-xylene in the feed 

stream affects the rate of forward reactions greatly. Therefore the lower and upper bounds 

of flow rate of p-xylene are fixed at 20 % of the total feed rate at both the ends. The total 

feed rate (one of the decision variables) is directly related to the production capacity, 

which ranges between 1,30,000 to 1,70,000 kg/h (Mu et al., 2004). The amount of water 

present in the reactor plays an important role in deciding the conversion value in the 
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reactor as it is directly related to the rate constant. Wang et al. (2005a) concluded that the 

overall oxidation rate of p-xylene to TA reaches a certain maximum (optimum) amount 

of water content in the solvent. Therefore, in this study, we considered the water content 

in the solvent as a decision variable and its bounds are selected between 0 - 8 % of the 

total reactor volume. The amount of vent oxygen from the reactor is varied between 0 - 6 

% as per the industrial practice. All the other decision variables are directly or indirectly 

linked with the reactor operating temperature. Due to this reason, even a small change in 

the reactor temperature may cause a large operational instability in the process. 

Therefore, controlling the temperature of reactor is chosen as a last choice when all the 

other decision variables fail to regulate the optimal operation. The ranges of various 

decision variables considered in this study are given by Eq. 4.56 through Eq. 4.61. 

461453 ≤≤ T    K         (4.56) 

800][C300 0 ≤≤  ppm        (4.57)  

3400026000 ≤≤ PXF   kg/h        (4.58) 

170000130000 ≤≤ FEEDF   kg/h       (4.59) 

%80
2

≤≤ OHW           (4.60) 

%62
2

≤≤ OV           (4.61) 

Values of various constants and parameters involved in the study are reported in Tables 

C1 - C3. 
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4.2.4 Low density polyethylene (LDPE) tubular reactor 

4.2.4.1 Process description and modeling aspects 

Fig. 4.6 shows the schematic of 5 zone LDPE tubular reactor. The reactor being tubular 

in nature has a specific characteristic of high value of length to diameter ratio. Depending 

upon the requirement of degree of reaction occurring in the reaction, the total length of 

1390 m is divided into five different zones. Zone 1 is considered to be a heating zone, in 

which no reaction occurs.  

The feed [consisting of ethylene monomer, telogen solvent, oxygen, peroxide, and 

inert (n-butane)] is fed at the inlet of the reactor. Initiator I1 (tert-butyl peroxypivalate) is 

injected at the entrance of 3rd zone while initiator I2 (tert-butyl, 3,5,5 trimethyl 

peroxyhexaonate) is injected at the entrance of 5th zone. The reactor model includes mass, 

energy and momentum balances for tubular reactor (Agrawal et al., 2006). Ideal plug 

flow conditions are assumed both in the reactor and in the jacket. The reaction mixture is 

assumed to be homogeneous. The characteristic growing and dead polymer 

concentrations are expressed in terms of bi-variate moments (Katz and Saidel, 1967). An 

average constant temperature of jacket fluid is used for each zone. The physical 

properties of the reaction mixture such as density, viscosity and thermal conductivity are 

assumed to vary along the length of the reactor in axial direction. The temperature and 

pressure dependence of specific reaction rate is given by Arrhenius rate law (Eq. D28). 

The reaction scheme, model equations, the kinetic rate constants and correlations (Eqs. 

D1 – D29c) related to LDPE tubular reactor considered in this study are given in 

Appendix D.  
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Fig. 4.6 Schematic diagram of 5-zone tubular LDPE reactor 
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4.2.4.2 Formulation of objective functions 

Two objective functions namely, maximization of the monomer conversion (XM,f) and 

minimization of the (weighted average value of the) undesirable side product contents 

([Me]f, [Vi]f, and [Vid]f) are considered. The undesired side products are minimized to 

improve the final product quality and strength. The economics of an organisation is 

largely related to optimum conversion, therefore maximization of conversion is 

considered as the second objective. The problem formulation considered in this study is 

same as that considered by Agarwal et al. (2006). Following two case studies are 

considered for MOO of LDPE tubular reactor. 

Case-1: Two-objective optimization (maximization of conversion and minimization of 

the weighted average value of the undesirable side products) 

Case-2: Four-objective optimization (maximization of conversion and minimization of 

side products (namely, methyl, vinyl and vinylidene side chians content) is considered 

independently) 

Case-1: Maximization of Conversion and Minimization of the weighted average value of 

the undesirable side products (Eqs. 4.62 - 4.63) subject to constraint on temperature and 

number average molecular weight (Eqs. 4.64 and 4.65) and variable bounds (Eqs. 4.66 - 

4.76). Three additional variations are considered in case study 1 by varying the bounds of 

second constraint (Eq. 4.65) by ± 20 kg/kmol, ± 200 kg/kmol, ± 1100 kg/kmol and 

keeping the objectives, rest of the constraints and bounds of variables as same. 
 

fMXf Maximize ,1 ≡
         (4.62)

 

[ ] [ ] [ ]
7.01.030

2

fidfife VVM
 fMinimize  ++≡

      (4.63)
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Subject to  

( ) K   15.610max ≤zT
         (4.64) 

kg/kmol   900,21fn, =M
        (4.65) 

K 423.15  K    15.323 ≤≤ inT
        (4.66)

 

MPa 248.25    MPa  30.182 ≤≤ inP
       (4.67)

 

kg/s  10 10    kg/s  10 5 -5
0

-5 ×≤≤× F
       (4.68)

 

kg/s  .50    kg/s  10 2 -2 ≤≤× sF
       (4.69)

 

kg/s  10 10    kg/s  10 5 -3

1,

-5 ×≤≤× IF
       (4.70)

 

kg/s  10 10    kg/s  10 5 -3

2,

-5 ×≤≤× IF
       (4.71)

 

s K 543.15  K    15.413 1, ≤≤ JT
       (4.72)

 

K 543.15  K    15.473 2, ≤≤ JT
        (4.73)

 

K 543.15  K    15.473 3, ≤≤ JT
        (4.74)

 

K 543.15  K    15.413 4, ≤≤ JT
        (4.75)

 

K 543.15  K    15.413 5, ≤≤ JT
        (4.76) 

Case-2: Maximization of conversion and minimization of side products (namely, methyl, 

vinyl and vinylidene side chians content) is considered independently as given by Eqs. 

4.77 - 4.80): subject to constraint on temperature and number average molecular weight 

(Eqs. 4.81 and 4.82) and variable bounds (Eqs. 4.66 – 4.76). 
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fMXf Maximize ,1 ≡
         (4.77) 

 

[ ]
30

2

feM
fMinimize  ≡

   
     (4.78)

 

[ ]
1.0

3

fiV
fMinimize  ≡

 
        (4.79)

 

[ ]
7.0

4

fidV
fMinimize  ≡

     
    (4.80)

 

Subject to  

( ) K   15.610max ≤zT
         (4.81)

 

kg/kmol 200 900,21fn, ±=M
        (4.82)

 

Two constraints on maximum temperature in the reactor [Tmax (z)] and on number 

average molecular weight (Mn) are imposed in both the case studies. Due to the injection 

of initiator in the reactor and due to exothermic nature of reaction, the temperature of the 

reaction mixture shoots up suddenly. The high temperature gives rise to undesirable side 

reactions and is also not suitable from the safety considerations. Therefore maximum 

temperature of the reactor is restricted to 610.15 K. The number-average molecular 

weight is constrained to lie at 21900 kg/kmol. Penalty method (Deb, 2001) is used to 

handle constraints. 11 decision variables namely, inlet temperature (Tin), the feed flow 

rates (Fo, FS, FI,1, and FI,2) of oxygen, solvent and the two additional initiators added, the 

five average temperatures, TJ,1 - TJ,5, of the jacket fluids and the inlet pressure (Pin) are 

considered.  
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4.2.5 Supply chain and planning 

4.2.5.1 Supply chain viewed as a network model 

As a part of the planning process, the structure of the supply chain needs to be 

represented. This is usually done using a network model. A network model is used in this 

study to graphically represent a supply chain model. Fig. 4.7 represents the flow of 

material and entities involved in the supply chain. Each node represents existing facilities 

(e.g., supplier, plant and customer). The arks and link are used to connect the nodes in the 

supply chain model. These arks represent the flow of material from one node to another, 

e.g., the raw material supply from the supplier to the plant and then from the plant to the 

customer zone. Supplier also represents the most upstream entity whereas customer zone 

represents the most downstream entity. Thus, the flow of material occurs from supplier to 

customer zone and the flow of financials occurs from customer zone to the supplier. The 

direction of these flows can change only in the case of reimbursement or rebate. In this 

problem only one way flow of material and the financials is considered. Present study 

also considers that a single product is manufactured from three different components (raw 

materials). The nomenclature used in the present problem is as follows (Fig. 4.7): S1 - S5 

denote the five suppliers; P1-P3 denotes the three Manufacturing establishments (plants), 

and C1 - C4 denote the four customer zones. The flow of goods and finance are also 

shown in Fig. 4.7. It is considered that all five suppliers can supply three different 

components to all three plants. These components can be transported by road/rail or 

shipped to any of the three plants where the product is manufactured. The cost of 

transportation is also taken into account.  
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Fig. 4.7 Flow of financials, materials and the entities involved in supply chain 
problem 
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The finished product from the plant is then shipped to the customer zones based 

on demand. In actual practice, few suppliers are preferred over others depending on their 

previous performance, quality, and timeliness of goods delivered. Thus the most 

preferred supplier has a lowest cost for a particular component. Different indices describe 

the interactions between different entities in supply chain model. The set of those indices 

are: 

(i, j): Component-Supplier 

(i, j, k): Component-Supplier-Plant 

(k, l): Plant-Customer Zone 

 

4.2.5.2 Formulation of optimization functions  

In this study, five objective functions are considered which are divided into three sets of 

two objective problems. The objective functions reported in this study are taken from 

literature (Pinto, 2007). The objectives are minimization of Total operating cost (TOC), 

Total cost (TC) and Machinery cost (MC) and maximization of profit and revenue. Three 

sets of objective functions used in this formulation are as follows: 

1) Objective Functions Set 1 

Objective Function 1: Minimize TOC 

Objective Function 2: Minimize MC/TOC 

Total operating cost plays an important role in statistics of manufacturing of product. 

Therefore, minimization of TOC has been given greater importance in supply chain 

optimization problems. The second objective function is the ratio of manufacturing cost 

to total operating cost. This objective function also holds importance since it is very 
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important to ensure that manufacturing cost falls within a certain permissible bound as a 

percentage of the total operating cost. Those two objectives clearly show the trade-off 

between each other, as the value of first objective (TOC) is appearing in the denominator 

of second objective function. 

2) Objective Functions Set 2 

Objective Function 1: Maximize Profit 

Objective Function 2: Minimize MC 

In this problem, the conflict is not easily seen. The results are analyzed in the subsequent 

section, which show the conflict among the objectives.  

3) Objective Functions Set 3 

Objective Function 1: Maximize Revenue 

Objective Function 2: Minimize TC 

This multi-objective optimization problem consists of maximization of revenue and 

minimization of transportation cost. The transportation cost is an important component in 

the total operating cost and it also acts as an interacting medium between different 

entities of the supply chain model. Therefore it needs to be considered in every supply 

chain optimization problem. Total 36 variables are involved in this study. The summary 

of these variables is as follows: 15 variables for 3 components transported from 5 

suppliers to three plants; 12 variables for amount of product from 3 plants to 4 customer 

zones, and 9 variables for inventory of each component (3) at each plant (3). The 

constraints are also imposed on plant capacities, supplier capacities, inventory balancing 

and total operating cost of the supply chain model. Penalty function method (Deb, 2005) 

is used to handle constraints. The constraints involved in the study include: 
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( )( )∑∑=
i j

kjiji XSjiCSSC ,,,,         (4.90) 

SCTMCTCTOC ++=         (4.91) 

Eqs. 4.86 - 4.87 represent the constraints used in the present study. Eqs. 4.86 - 

4.87 represent the constraints on plant and supplier capacity respectively. Constraints are 

imposed on inventory balance of component 1, 2 and 3, which are represented by set of 

Eqs. 4.88, - 4.90. A variable S(i, j) in the above constraints is a binary variable which 

denotes whether component i is supplied by supplier j or not. In this study, the S(i, j) 

values are fixed as 0 and 1 randomly. Eqs. 4.88, 4.89 and 4.90 are expressions for 

transportation cost (TC), total manufacturing costs [TMC; which include the plant labor, 

inventory (IC) and manufacturing costs (MC)] and supplier costs (SC). Eq. 4.91 
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represents the total operating cost (TOC), which a sum of transportation cost, total 

manufacturing costs and supplier costs. 

 

Summary of chapter: In this chapter MOO problem formulation, for benchmark test 

problems (both constrained and unconstrained) and industrial case studies considered in 

this study, is discussed. The problem formulation for test problems include detailed 

description of the test problems. In case of industrial case studies, process and 

mathematical model pertaining to specific process is discussed followed by formulation 

of MOO problem (which includes optimization functions, constraints & variables and 

their bounds).  

Next chapter deals with results and discussion of MOO test problems and MOO 

process design decisions pertaining to specific process considered in this study.  
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CHAPTER – 5  

RESULTS AND DISCUSSION 

 

In this chapter the results obtained on benchmark test problems and industrial processes 

using newly developed strategies of MODE algorithms are discussed. In section 5.1 the 

performances of newly developed algorithms are tested with other algorithms reported in 

the literature on bench mark test problems using widely accepted performance measures. 

The Pareto fronts are obtained and compared for each of the test problems. In section 5.2 

newly developed algorithms are used to obtain Pareto fronts for industrial processes 

considered in this study.  

 

5.1 Bench Mark Test Problems 

5.1.1 Parametric performance evaluation of MODE algorithm 

Differential Evolution (DE) algorithm is considered to be robust algorithm for parametric 

setting, i.e. it does not depend upon its control parameters, [i.e. Crossover constant (CR), 

Number of population points (NP), Scaling factor (F), Number of generations (Ng) and 

Penalty parameter (R)] (Angira, 2005). To check this, we tried to test the performance of 

MODE algorithm by varying its control parameters, such as CR, F, and NP, Ng and R. 

Four benchmark MOO problems are used in the investigation of effect of key control 

parameters of MODE on the resulting Pareto front. These results are obtained during the 

preliminary stage of this thesis. Each Test problem consists of two objective functions 
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with/without constraints. The following Test problems namely, B & C, Max-Max, BNH, 

SRN and Min-Min (Tables 4.1 and 4.2) are considered in this study. 

Fig. 5.1a shows the objective space and Pareto optimal front at various generations, with 

CR = 0.9, R = 0.1 and NP = 1000. It is observed that MODE approaches to the true 

Pareto front at lower value of generation. Once converged, with increase in the number of 

generations, the solutions on Pareto front remain unchanged. In Fig. 5.1b, Pareto optimal 

front is plotted at various values of CR and NP combinations. Irrespective of CR values, 

with lesser values of NP (in the range of 100) the performance of MODE is very poor. 

With low value of initial population size, the possibility of getting diversified and well – 

distributed solutions in the feasible region is very less, as MODE algorithm involves 

removal of dominated solutions at each generations. Fig. 5.1b also shows that with CR 

value of 0.9 and NP value of 1000 the Pareto optimal front is well spread as compared to 

non-dominated solutions obtained when NP value of 100, 500 were used. Fig. 5.1c shows 

that a small penalty parameter results in an infeasible set of non-dominated solutions. 

Since penalty terms are added to each objective function, the resulting penalized 

objective functions may form a Pareto optimal front, i.e., different from the true Pareto-

optimal front, particularly if the chosen penalty parameter values are not adequate. 

However, higher values of penalty parameters are recommended, and used throughout the 

present study. It also reveals from Figs. 5.1b - 5.1c that local Pareto fronts seem to 

approach to the true front with increasing value of R but the population with a large R (R 

= 100) shows a poor spread of solutions.  
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Fig. 5.1 Objective space at various generations [Fig. (a)]; Effect of CR at various 
values of NP [Fig. (b)]; Feasible and infeasible solutions at various values of Penalty 

parameter [Fig. (c)]; Bar chart representation of Pareto solution [Fig. (d)] for 
Constr-Ex test problem 
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Fig. 5.1d shows the bar chart representation of the objective functions, which is one of 

the ways of representing normalized values of Pareto solutions. This representation is 

especially suitable for lower number of Pareto solutions.  

In Fig. 5.2a all the solutions obtained for B & C unconstrained test problem are 

plotted at various values of generations using MODE algorithm. In the objective space, 

the distribution of solutions is nearly uniform during the initial generations. In Fig 5.2b, 

the Pareto front is plotted at various values of CR. MODE converges to the same Pareto 

Optimal front with all CR values considered in this study. Fig. 5.3a shows the Pareto 

front obtained using different values of CR (i.e., CR = 0.15, 0.5, 0.9 and 1.0) for Max-

Max test problem. The algorithm converges to the same Pareto front, however, the 

distribution of solutions is poor at lower value of CR. Fig. 5.3b shows the obtained Pareto 

front at various generations, (i.e., Ng = 1, 10, 100, and 10000) with CR = 0.9 and NP = 

1000. The points shown at generation 1 show the feasible objective space for the Max-

Max test problem.  The numbers of non-dominated solutions (for B & C test problem) in 

generations 1, 10, 100 and 1000 are 298, 10, 8 and 2 respectively. The results obtained in 

present study had expected a tremendous improvement in the working of MODE 

algorithm, which motivated us to find new strategies of MODE. Binh and Korn (1997) 

introduced the two variable constrained problem (BNH) as given in table 4.2. Figs. 5.4a - 

540f show the Pareto front obtained using MODE algorithm for two variable constrained 

test problem of minimize-minimize type. Fig. 5.4a shows the effect of CR on the Pareto 

front. MODE is found to converge to the same front at various values of CR. But the 

number of non-dominated solutions is found to be increasing with increasing the value of 

CR.  
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Fig. 5.2 Objective space at various generations [Fig. (a)]; Effect of CR on the Pareto 
optimal solutions [Fig. (b)] for B & C test problem 
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Fig. 5.3 Effect of CR on the Pareto optimal solutions [Fig. (a)]; Objective space and 
the Pareto solutions[Fig. (b)] for Max-Max test problem 
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The non-dominated solutions at the CR value of 0.15, 0.5 and 0.9 for BNH 

problem are 101, 136 and 149 respectively after 500 generations. Pareto front is plotted 

with various NP values after 500 generations in Fig. 5.4b. MODE algorithm is tested with 

various NP values and results with NP 100, 500 and 1000 are shown in Fig. 5.4b. MODE 

is found to converge to the same front at any value of NP. However the number of non-

dominated solutions in the Pareto set is found to vary with NP values. Number of non-

dominated solutions for NP 100, 500 and 1000 is 107, 98 and 147 respectively. The 

objective space and the Pareto Optimal front for BNH problem at various generations is 

shown in Fig. 5.4c. MODE is found to converge to true Pareto Optimal front within 10 

generations. After 500 generations although Pareto front remains same as that at 

generation 10, it contains 2 non-dominated solutions less than that at generation 10. 

Effect of scaling factor F on Pareto Optimal front is shown in Fig. 5.4d. MODE 

algorithm converges to the true Pareto front irrespective of the value of F in the range. 

The number of non-dominated solutions is found to be same at all values of F including 

the random generation of F. The results obtained in this study showed that MODE 

algorithm requires high value of initial population size. But with increase in initial 

population size, the complexity of algorithm increases, thus making the algorithm more 

complex. A high value of CR is recommended, which is used consistently in the rest of 

the study. Focusing on these issues, MODE is developed further and additional strategies 

of MODE are developed, which caters towards the need of achieving both the 

convergence and divergence of Pareto solutions in case of MOO study. 

 

 

 



138 
 

 

 

 

 

0 20 40 60 80 100 120 140

0

10

20

30

40

50

 

 

M
in

im
iz

e
 f

2

Minimize f
1

 CR=0.15
 CR=0.5
 Cr=0.9

(a)

0 20 40 60 80 100 120 140

0

10

20

30

40

50

 

 

M
in

im
iz

e
 f

2

Minimize f
1

 NP=100
 NP=500
 NP=1000

(b)

0 20 40 60 80 100 120 140

0

10

20

30

40

50

 

 

m
in

im
iz

e
 f

2

Minimize f
1

 NG=1
 Ng=10
 NG=500

(c)

0 20 40 60 80 100 120 140

0

10

20

30

40

50

 

 

M
in

im
iz

e
 f

2

Minimize f
1

 F- Random
 F=0.5
 F=0.8
 F=1.0

(d)

 

Fig. 5.4 Effect of CR on the Pareto optimal solutions [Fig. (a)]; Effect of NP on the 
Pareto front [Fig. (b)]; Objective space and the Pareto solutions at various 

generations [Fig. (c)]; Effect of scaling factor on Pareto solutions obtained [Fig. (d)] 
using MODE for BNH test problem 
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5.1.2 Performance assessment using benchmark test problems 

Some of the most difficult test problems are selected from the literature for evaluating 

and comparing the performance of the proposed strategies of MODE algorithm with other 

well known algorithms such as NSGA (both real- and binary-coded versions), SPEA and 

PAES. 7 test problems are used to judge the performance of algorithms, which include 

SCH, FON, KUR, ZDT1, ZDT2, ZDT3, and ZDT4 (refer Table 4.1).  

 

5.1.2.1 Measures for performance assessment of the obtained Pareto front 

The decision maker is always interested in selecting a single point from the set of points 

available in the Pareto front. Therefore, it is better to obtain a Pareto front that is as close 

as possible to the true or global Pareto front and also the points are as diverse as possible 

from each other. Mere visual observation cannot provide the idea of efficiency of any 

multi-objective optimization algorithm. The two possible criteria for the evaluation of 

Pareto front comprise the measurement of the obtained non-dominated solutions 

closeness with the true Pareto front and avoidance of crowding (among the solutions), 

thereby maintaining a uniform diversity of non-dominated population points. Therefore, 

the widely accepted performance measures [such as convergence metric (γ) and 

divergence metric (∆)] (Deb, 2001; Knowles and Corne, 2002) are used to calculate the 

performance measure for strategies of multi-objective differential evolution algorithms 

and are compared with the existing algorithms from the literature such as binary coded 

NSGA-II, real coded NSGA-II, SPEA and PAES in this study. The details of the 

performance measures such as the extreme solutions, Global Pareto front, algorithm 

output and the Euclidean distance are shown in Fig. 5.5. The global Pareto fronts used in 

this study are taken from the literature (Huang et al., 2005) and the corresponding actual 
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data is obtained from the authors through personal communication (Sugandhan, 2008). 

Various terms associated with performance measures are explained by taking a specific 

test problem as an example (SCH, refer Table-4.1) and demonstrated in Fig. 5.5. The 

output (set of non-dominated solutions), obtained for this problem using MODE 

algorithm shown through the points 1-9, is plotted and compared with the global Pareto 

front. The global Pareto front is termed as P*. The line joining points 1 and 2 represents 

the Euclidian distance shown as d1. 
ed1 and ed2  are the distances between the extreme 

solutions of global Pareto front and the algorithm output (non-dominated solutions) 

corresponding to 1st and 2nd objectives respectively. 

 

Convergence Metric (γ) 

The convergence metric (γ), which measures the extent of convergence to a known Pareto 

set of solutions is adapted for measuring the extent of convergence of the obtained set of 

solutions from the true Pareto front. It is necessary to have a prior knowledge of true 

Pareto front. The true Pareto front (considered in this study) for each test problem 

consists of a set of 500 equally spaced points named as P*. The convergence metric (as 

given by Eq. 5.1), calculates the average of distance of each solution with the nearest 

member in the set P*. The smaller is the value of γ, the better is the convergence toward 

the true Pareto optimal front. The total number of non-dominated solutions (Pareto front) 

obtained using current algorithm is stored in set Q. 
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Table 5.1 Values of control parameters used in reference run of present study 

Parameter 
MODE MODE 

III 
Elitist 
MODE 

Trigonometric 
MODE 

Hybrid 
MODE 

NSGA-
II real 
coded 

Population size 
(NP) 

100 100 100 100 100 100 

Number of 
generations 
(Genmax) 

300 300 300 300 300 300 

Scaling factor 
(F) 

(0,1) 
Random 

(0,1) 
Random 

(0,1) 
Random 

(0,1)  
Random 

(0,1) 
Random 

-- 

Crossover 
rate(CR) 

0.8 0.8 0.8 0.8 0.8 0.8 

Mutation 
probability (M) 
/ Trigonometric 
mutation 
probability (Mt) 

-- -- -- 0.5 -- 0.05 

Reflection 
factor (α) 

-- -- -- -- 1 -- 

Contraction 
factor (β) 

-- -- -- -- 0.5 -- 

Expansion 
factor (γ) 

-- -- -- -- 2 -- 
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Fig. 5.5 Performance measure details used in MOO 
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Where di is the Euclidean distance between the solution Qi ∈  and the nearest member of 

P*.  

 

Diversity Metric (�) 

The distribution of solutions obtained in the Pareto front should be as diverse as possible. 

The diversity metric is used to measure the spread of solutions lying on the obtained 

Pareto front. The Euclidean distance di (the distance between consecutive solutions on the 

Pareto front) is calculated, and the average of all such distances is taken. Extreme 

solutions corresponding to each individual objective is calculated and the divergence 

metric (�) is used to calculate the extent of divergence. The diversity metric, ∆, measures 

the extent of the spread achieved among the Pareto optimal solutions. The metric ∆ is 

calculated using Eq. 5.2. 
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       (5.2) 

Where, edd 1+e
f  is the sum of the Euclidean distances between the currently obtained 

extreme solutions and the extreme solutions of Pareto set, di is the Euclidean distance 

between the consecutive non-dominated solutions. The parameter, d , is the average of all 

Euclidean distances di, i = 1, 2,. . ., (N−1), assuming that there are N solutions on the final 

non-dominated front or the obtained Pareto optimal front. The higher value of metric ∆ 

shows a worse distribution of solutions within the extreme Pareto optimal solutions. 
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Parameter Settings 

The simulation runs were performed on several test problems of MOO taken from the 

literature. All the cases of MODE algorithms developed in this study are written using 

Matlab (7.0) software, whereas C++ version of NSGA-II code used is taken from open 

sources of KanGAL (http://www.iitk.ac.in/kangal/codes.shtml). Visual C++ of Visual 

studio (version 6.1) is used to run NSGA-II codes. Pareto fronts are generated using 

MODE, MODE III, Elitist MODE, Trigonometric MODE, hybrid MODE, and real-coded 

NSGA-II in the present study. However, values of performance measures of NSGA-II 

(both binary- and real-code versions), SPEA and PAES are taken from the literature 

(Deb, 2001). The comparison of performance measure is entirely based on selected test 

problems as true Pareto front data for these test problems is known. The outcome of 

performance measures comparison is also helpful in establishing the performance 

efficiency of the proposed algorithms, so that it could be confidently applied 

subsequently to real world industrial problems. Ten experimental runs are performed for 

each problem so as to have the same basis of comparison for all the algorithms, i.e., NP = 

100, CR = 0.8, and Genmax = 300. In order to carry out the comparative study, the 

control parameters such as maximum number of generations, crossover constant (cross 

over probability in case of other EMO algorithms), initial population size, etc. are kept 

same as those reported in the literature (Deb, 2001). The scaling factor (used in DE 

operation) is obtained randomly in this study. The mutation probability for NSGA is 

chosen to be 0.05. The trigonometric mutation probability for trigonometric MODE 

algorithm is set as 0.5. The list of control parameters and their values used in the present 

study is given in Table 5.1. 
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5.1.2.2 Performance assessment using selected benchmark test problems 

Two important and widely used metrics are employed to calculate the convergence and 

divergence extents of algorithm to assess the quality of the Pareto front. The results 

obtained in the present study and their comparison with the results of other algorithms 

with respect to the convergence is shown in Table 5.2. The values of diversity metric 

obtained using different algorithms are shown in Table 5.3. The average (γ for 

convergence and ∆ for divergence)  and the variance (σ2
γ for convergence and σ2

∆ for 

divergence) of 10 individual runs are used [as given in the literature (Deb, 2001)] to 

judge the performance of algorithms for both the metrics. For the SCH test function, all 

the strategies of MODE and NSGA-II algorithms are able to converge to the true Pareto 

optimal solutions (Fig. 5.6a). However, a smooth and well diverse Pareto front is 

observed in case of Trigonometric MODE, Hybrid MODE, and NSGA-II (both real- and 

binary coded versions). The number of non-dominated solutions obtained using hybrid 

MODE, and Real- coded NSGA-II is 100 against 40 obtained using MODE III algorithm 

(Table 5.4). The lesser number of non-dominated solutions resulted in a scattered Pareto 

front using MODE and MODE III. Table 5.2 shows that hybrid MODE, elitist MODE, 

trigonometric MODE and PAES are equally good in terms of average of convergence 

metric. However, the variance for all the strategies of MODE algorithm is 0 as against 

0.000003 obtained in case of PAES. The variance value of 0 also indicates that the 

algorithm is able to give consistent results. Real coded NSGA-II algorithm performed 

better in terms of diversity metric achieving the lowest value of 0.449265.
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Table 5.2 Performance metric (convergence) comparison of several algorithms on selected test problems 

Algorithm Metric SCH FON KUR ZDT1 ZDT2 ZDT3 ZDT4 

Real coded NSGA-II~ 
γ 

 σ2
γ 

0.003391 
0 

0.001931 
0 

0.028964 
0.000018 

0.033482 
0.004750 

0.072391 
0.031689 

0.114500 
0.007940 

0.513053 
0.118460 

NSGA-II 
Binary~ 

γ 

 σ2
γ 

0.002833 
0.000001 

0.002571 
0 

0.028951 
0.000016 

0.000894 
0 

0.000824 
0 

0.043411 
0.000042 

3.227636 
7.307630 

SPEA~ γ 

 σ2
γ
 

0.003465 
0 

0.010611 
0.000005 

0.049077 
0.000081 

0.001249 

0 
0.003043 

0.000020 

0.044212 
0.000019 

9.513615 
11.321067 

PAES~ γ 

 σ2
γ 

0.001313 
0.000003 

0.151263 
0.000905 

0.057323 
0.011989 

0.082085 
0.008679 

0.126276 
0.036877 

0.023872 
0.00001 

0.854816 

0.527238 

MODE* γ 

 σ2
γ 

0.0021 
0 

0.02554 
0.00063 

0.03837 
0.00057 

-- -- -- -- 

MODE III* γ 

 σ2
γ 

0.002236 
0 

0.003381 
0 

0.003028 

0 
0.010329 
0.000002 

2.7777 
0.0303 

0.01019 
0.00002 

75.67845 
96.38974 

Hybrid MODE* γ 

 σ2
γ 

0.001967 
0 

0.002807 
0 

0.003723 
0 

0.033624 
0.000541 

0.06813 
0.001413 

0.010681 

0.000013 
7.0635 

18.39044 

Elitist MODE* γ 

 σ2
γ 

0.001948 

0 
0.002119 

0 
0.002921 
0 

0.389309 
0.010519 

0.856404 
0.016157 

0.287371 
0.002854 

12.58368 

13.18463 

Trigonometric MODE* γ 

 σ2
γ 

0.002035 
0 

0.003151 
0 

0.00665 
0.000009 

1.752266 
0.046958 

3.242328 
0.046701 

1.406625 
0.066905 

2.244484 

0.721678 

*Results obtained in the present study; ~Results reported in Ref  (Deb, 2001) 

First Best: Bold Font; Second Best: Italic font 
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Table 5.3 Performance metric (divergence) comparison of several algorithms on selected test problems 

Algorithm Metric SCH FON KUR ZDT1 ZDT2 ZDT3 ZDT4 

Real coded NSGA-II~ 
∆ 

 σ2
∆

 

0.477899 

0.003471 
0.378065 
0.000639 

0.411477 
0.000992 

0.390307 
0.001876 

0.430776 
0.004721 

0.738540 
0.019706 

0.702612 
0.064648 

NSGA-II~ 

Binary 
∆ 

 σ2
∆ 

0.449265 
0.002062 

0.395131 

0.001314 
0.442195 

0.001498 
0.463292 

0.041622 
0.435112 

0.024607 
0.575606 
0.005078 

0.479475 
0.009841 

SPEA~ 
∆ 

 σ2
∆

 

0.818346 
0.004497 

0.804113 
0.002961 

0.880424 
0.009066 

0.730155 
0.009066 

0.678127 
0.004483 

0.665726 
0.000666 

0.732097 
0.011284 

PAES~ ∆ 

 σ2
∆ 

1.063288 
0.002868 

1.162528 
0.008945 

1.079838 
0.013772 

1.229794 
0.004839 

1.165942 
0.007682 

0.789920 
0.001653 

0.870458 
0.101399 

MODE* ∆ 

 σ2
∆ 

0.67099 
0.01332 

0.70069 
0.03397 

0.82097 
0.0053 

-- -- -- -- 

MODE III* ∆ 

 σ2
∆ 

0.59953 
0.00155 

0.620052 
0.00095 

0.671036 
0.00192 

0.732524 
0.00582 

0.8022 
0.0103 

0.593596 

0.00399 
0.788153 
0.019711 

Hybrid MODE* ∆ 

 σ2
∆ 

0.597286 
0.001238 

0.538185 
0.000891 

0.675896 
0.002681 

0.614445 
0.001567 

0.615554 
0.001502 

0.654213 

0.0065652 

0.631216 

0.002158 

Elitist MODE* 
∆ 

 σ2
∆ 

0.571475 
0.006496 

0.700227 
0.018964 

0.714344 
0.003301 

0.62127 
0.00368 

0.892956 
0.019759 

0.677013 

0.004157 

1.073553 

0.02861 

Trigonometric MODE* 
∆ 

 σ2
∆ 

0.596636 
0.000926 

0.612571 
0.002878 

0.661016 
0.001459 

0.605579 
0.00068 

0.653906 
0.000274 

0.670325 

0.002343 

0.612488 

0.001702 

*Results obtained in the present study; ~Results reported in Ref  (Deb, 2001) 

First Best: Bold Font; Second Best: Italic font 
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Table 5.4 Percent of initial population points converged to the Pareto front for 
several test problems 

Algorithm SCH FON KUR ZDT1 ZDT2 ZDT3 ZDT4 

MODE 9 3 3 -- -- -- -- 

MODE III 40 49 100 9 9 26 -- 

Hybrid MODE 100 98 100 100 86 100 94 

Elitist MODE 100 100 100 100 100 100 100 

Trigonometric 

MODE 

100 99 87 100 100 40 100 

Real Coded 

NSGA-II 

100 100 100 100 100 100 -- 
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To increase the clarity of Pareto fronts, the Pareto fronts obtained using individual 

algorithms is plotted separately along with true Pareto front through Figs. 5.6b - 5.6h. 

The Pareto front of FON is a non-convex type, as shown in Figs. 5.7a - 5.7h, and 

therefore it is difficult for any algorithm to converge to the true Pareto front. The Pareto 

optimal solutions correspond to 31* −=
i

x . MODE algorithm resulted in only 2 

numbers of points on the Pareto front (out of initial population of 100) after a specified 

numbers of generations. All the algorithms are able to cover the entire range of solutions 

on the Pareto front except MODE algorithm. Comparison of Pareto fronts show that the 

non-dominated solutions obtained with MODE III are slightly scattered and are away 

from the global Pareto front. However, the Pareto fronts obtained using other strategies of 

MODE and NSGA-II algorithms are converged to the true Pareto fronts. In terms of 

convergence, both the versions of NSGA (i.e., binary and real coded) and strategies of 

MODE (i.e., MODE III, Elitist MODE, Trigonometric MODE and hybrid MODE) 

attained good accuracy as compared to other algorithms such as SPEA and PAES. 

However, diversity metric of NSGA-II (Binary) is better as compared to other algorithms. 

Elitist MODE algorithm resulted in second best in terms of convergence metric.  
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Fig. 5.6 (Contd…) 
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Fig. 5.6 (a) Pareto optimal solutions for SCH test problem using MODE, MODE-III, 
Elitist MODE, Trigonometric MODE, Hybrid MODE, real-coded NSGA-II, and 

true Pareto front; (b - h) Pareto fronts plotted independently for SCH test problem 



152 

 

KUR test problem has multiple disconnected non-convex Pareto fronts as shown 

in Figs. 5.8a - 5.8h. The special feature of KUR test problem is to obtain the unique point 

(such as point P) in Fig. 5.8a. Point P is a non-dominated solution with 0* =ix  for all the 

variables. Region y and region z (as shown in Fig 5.8a) have a good distribution of 

solutions as compared to region x. Region x and point P appear with a value of decision 

variable (DV) x1 = 0, while region x and region y correspond to x1< 0. Hybrid MODE and 

MODE III algorithms approached the Pareto front to the closest accuracy as compared to 

other algorithms. However, diversity of solutions corresponding to real coded NSGA-II is 

better than that obtained with other algorithms.  

Zietler, Deb and Thiele (ZDT) test problems (Deb, 2001) are few of the most 

difficult test problems specially designed to test the ability of newly developed 

algorithms for convergence to the true Pareto front. NSGA-II (Binary-coded) converged 

to the best accuracy for ZDT1 test problem. Both real coded NSGA-II, and hybrid 

MODE algorithms resulted in closely associated (or nearly same) value of convergence 

metric. MODE algorithm due to its basic feature of removal of dominated solutions in 

each generation could not produce any result in any of the ZDT series problems. For 

ZDT1, the diversity of real-coded NSGA-II algorithm is better than other algorithms. Fig. 

5.9 shows the Pareto front obtained using strategies of MODE and real-coded NSGA. It 

is observed that MODE-III, elitist MODE and trigonometric MODE algorithms could not 

approach the true Pareto front. This is also evident from Table 5.2, where the value of 

convergence metric for those algorithms is fairly high.  
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Fig. 5.7 (Contd…) 
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Fig. 5.7 (a) Pareto optimal solutions for FON test problem using MODE, MODE-III, 
Elitist MODE, Trigonometric MODE, Hybrid MODE, real-coded NSGA-II and true 

Pareto front; (b-h) Pareto fronts plotted independently for FON test problem 
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Fig. 5.8 (Contd…) 
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Fig. 5.8 (a) Pareto optimal solutions for KUR test problem using MODE, MODE-
III, Elitist MODE, Trigonometric MODE, Hybrid MODE, real-coded NSGA-II and 
true Pareto front; (b - h) Pareto fronts plotted independently for KUR test problem 
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The Pareto front obtained for ZDT2 test problem using MODE III and hybrid 

MODE algorithm is shown in Fig. 5.10. Hybrid MODE and real-coded NSGA-II 

algorithms are able to converge to the true Pareto front with fairly good distribution of 

solutions. However, other strategies of MODE algorithm could not approach the true 

Pareto front as shown in Fig. 5.10, and therefore resulted in a very high value of 

convergence metric as shown in Table 5.2. The convergence metric of ZDT3 test 

problem is least for MODE III and Hybrid MODE algorithm as compared to other 

algorithms as shown in Table 5.11. However, the divergence of NSGA-II (Binary-coded) 

is good. As discussed in earlier sections, the evolutionary algorithms are relatively slower 

in terms of convergence. Fig. 5.11 shows that MODE III, Elitist MODE and 

trigonometric MODE algorithms are not able to converge towards the true Pareto front. 

However, the hybrid strategy of MODE and real-coded NSGA-II algorithms converged 

to the true Pareto front covering the entire range of solutions. Fig. 5.11 shows the 

comparative Pareto front of strategies of MODE, real-coded NSGA-II and the global 

Pareto front. ZDT4 test problem is one of the most difficult problems in terms of 

attaining the true Pareto front. None of algorithms is able to converge towards the true 

Pareto front. In the present study, real-coded NSGA-II also could not converge on the 

Pareto front. After 300 iterations, real coded NSGA-II algorithm resulted in two points 

with negative values in it. The NSGA-II code is downloaded from KanGAL 

(http://www.iitk.ac.in/kangal/codes.shtml) and Visual Studio platform is used to run the 

codes. In case of MODE III algorithm, the convergence metric value is very high. This is 

mainly attributed to the lesser number of solutions (7 solutions) obtained on the Pareto 

front.  
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Fig. 5.9 Pareto optimal solutions for ZDT1 test problem using MODE-III, Elitist 
MODE, Trigonometric MODE, Hybrid MODE, real-coded NSGA-II and true 

Pareto front 
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Fig. 5.10 Pareto optimal solutions for ZDT2 test problem using MODE-III, Elitist 
MODE, Trigonometric MODE, Hybrid MODE, real-coded NSGA-II and true 

Pareto front 
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The global Pareto front corresponds to 10 *

1 ≤≤ x and 0* =ix  for x = 2, 3,...10  (Deb, 

2001). With these values of variables, the value of g(x*) (refer Table 4.1) is 1. In case of 

hybrid MODE algorithm, the values of g(x) at generations 1, 50, 100, 150, 200, and 250 

are 164.21, 164.49, 10.51, 10.51, 10.51, 10.51 respectively. As multiple local Pareto 

fronts are possible [starting with g(x) = 1 to g(x) = 25], the Pareto optimal front obtained 

in this study is also one of the local Pareto with g(x) = 10.51. As the value of convergence 

metric is fairly high for all the algorithms (as shown in Table 5.2), it shows that none of 

the algorithms completely converged to the true Pareto front for ZDT4 test problem. 

 Figs. 5.13a -5.13c and Figs. 5.14a – 5.14c show the convergence metric plotted 

against the generations and the number of function evaluations (NFE) for FON and KUR 

test functions respectively. Both the figures show that the strategies of MODE algorithm 

(i.e. hybrid and trigonometric) converged to these metrics during the initial generations 

and remain almost constant thereafter as compared to other strategies of MODE (i.e. 

MODE-III and elitist MODE). Fig. 5.13a shows that hybrid MODE and trigonometric 

MODE algorithms converged to the true Pareto front within 12-15 generations. 

Thereafter, the points of the Pareto front do not change thus keeping a constant value of 

convergence metric. In case of KUR test function, the convergence is achieved in 25th 

generation as shown in Fig. 5.14a. Hybrid MODE algorithm involves several function 

evaluations during the local search, thus the number of function evaluations increases.  
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Fig. 5.11 Pareto optimal solutions for ZDT3 test problem using MODE-III, Elitist 
MODE, Trigonometric MODE, Hybrid MODE, real-coded NSGA-II and true 

Pareto front 
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Fig. 5.12 Pareto optimal solutions for ZDT4 test problem using Elitist MODE, 
Trigonometric MODE, Hybrid MODE, and true Pareto front 
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It is important to compare the convergence not only with respect to the number of 

generations but also with NFE. The NFE vs. convergence plots (Figs. 5.13b and 5.14b) 

show that the trigonometric MODE and hybrid MODE algorithms converged to the true 

Pareto front in less number of function evaluations for both FON and KUR test problems 

indicating their speed in convergence. While achieving the convergence at relatively 

faster rate, the hybrid and trigonometric strategy of MODE are also able to maintain a 

good diversity of solutions for FON and KUR test problems. In Fig. 5.13c and Fig. 5.14c 

the divergence metric is plotted against the number of generations for FON and KUR test 

problems respectively. The diversity metric obtained using hybrid MODE algorithm also 

remains constant once the convergence is achieved. The diversity of elitist and 

trigonometric strategy of MODE also remains consistent. However, the diversity metric 

obtained using MODE III algorithm does not remain constant (this is mainly attributed to 

non-convergence of MODE III towards the true Pareto front during the initial 

generations). The speed with which the trigonometric- and hybrid- MODE algorithms 

converged is clearly evident from Figs. 5.13a - 5.13b & 5.14a- 5.14b. Thus Hybrid 

MODE is a very capable algorithm for handling the complex engineering problems as it 

acquires both the speed and accuracy in achieving the true Pareto front for almost all the 

test problems. The % of initial population points converged to the Pareto optimal front 

using strategies of MODE and real-coded NSGA-II for various test problems is shown in 

Table 5.4.  
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Fig. 5.13 (Contd…) 
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Fig. 5.13 Convergence and divergence metric for FON test problem. Convergence 
metric plotted against generation number [(Fig. (a)]; Convergence metric plotted 
against number of function evaluations (NFE) [(Fig. (b)]; Divergence metric as a 

function of generation number [Fig. (c)] 
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 Fig. 5.14 (Contd…) 
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Fig. 5.14 Convergence and divergence metric for KUR test problem. Convergence 
metric plotted against generation number [(Fig. (a)]; Convergence metric plotted 
against number of function evaluations (NFE) [(Fig. (b)]; Divergence metric as a 

function of generation number [Fig. (c)] 
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5.1.3 Search space analysis of selected constrained and unconstrained test 

problems 

Many test problems may have a continuous objective space but may result in 

discontinuous/disconnected Pareto front. The disconnected Pareto fronts may render 

difficulty in search procedure, which may lead to a premature convergence of algorithm 

to a local region or in one of the disconnected regions. It is therefore, necessary to study 

such problems separately with respect to objective space and have a critical review of the 

Pareto solutions. Four test problems [Two unconstrained test problems (SCH2, and POL) 

and two constrained test problems (Constr-Ex and TNK) (Table 4.1 and Table 4.2)] are 

considered for study under this section. All simulation runs are taken with the same 

parameter values as reported in Table 5.4. 

 

5.1.3.1 Unconstrained test problems 

SCH2 is a single variable bi-objective optimization problem with two discontinuous 

regions as shown in Fig. 5.15 and Fig. 5.16. The objective space is nonconvex in nature. 

The dominated region and the objective space boundary are shown in Fig. 5.15. The 

Pareto optimal front is shown in the region marked with box. The Pareto front lies in the 

range of decision variable ]5,4[]2,1[* ∪∈x . Region AB (in Fig. 5.15) corresponds to f1 

value in the range of [-1 0] and region CD corresponds to f1  value in the range of [0  1] 

satisfying the *
x  value as given above. The Pareto fronts obtained using several 

strategies of MODE algorithm is shown in Fig. 5.16. The percent of initial population 

points (IIP) converged to the final Pareto front along with the maximum and minimum 

individual function values attained by algorithm (i.e., f1max, f1min, f2max, f1min) are shown in 
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Table 5.5 Elitist MODE is able to produce 100% of initial population converged to the 

Pareto front. This is due to non- removal of solutions, and preserving the elite population 

members. But this feature of preserving of elite population members, also resulted in 

premature convergence (as mentioned in section 5.2) for ZDT series problems. Some of 

the ZDT test problems have a typical characteristic of high number of decision variables 

(30 decision variables) (refer Table 4.1) and nonconvex Pareto front. They also have a 

number of local Pareto fronts (Deb, 2001) which restricts the algorithm to search for new 

solutions. This study also shows the need for improving elitist MODE algorithm by 

combining a new selection strategy along with the partial preservance of elite members 

(as complete preservance of elite members with present selection strategy resulted in 

local Pareto fronts).  

The nonconvex objective space and the discontinuous and nonconvex Pareto 

fronts for POL test problem are shown in Fig. 5.17. Region X and region Y totally 

depend on the bounds of the decision variables. Region X is obtained when the decision 

variable x1 converged to its lower bound. Fig. 5.18 shows that MODE algorithm 

converged to the local Pareto front in region X. Point A [(f1, f2) = (1.00, 28.422)] is the 

dominated point when the algorithm gets converged to the global Pareto front. Thus the 

local Pareto optimal front may not only shrunk but also may widen the local Pareto front 

in the given search space. The value of f1 < 2 is obtained when x1 approaches its lower 

bound of  π− . 
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Fig. 5.15 Search space and the disconnected Pareto front for SCH2 test problem 

 

-1.0 -0.5 0.0 0.5 1.0

0

4

8

12

16  MODE
 MODE III
 Hybrid MODE
 Elitist MODE
 Trigonometric MODE

f 2

f
1

 

Fig. 5.16 Pareto front using several algorithms for SCH2 test problem 
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Fig. 5.17 Search space and the disconnected Pareto front for POL test problem 
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Fig. 5.18 Pareto front for POL test problem 
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Table 5.5 Percent of initial population points (IPP) converged to the Pareto front 
and minimum & maximum values of objective functions (OF) 

Test 

Problem 

IIP 

& 

OF 

MODE MODE- 

III 

Hybrid 

MODE 

Elitist 

MODE 

Trigonometric 

MODE 

SCH 2 NPS 60 100 100 100 100 

f1max 0.99028 0.99407 0.9712 0.99427 0.99916 

f1min -0.99994 -0.99985 -0.98051 -0.99957 -0.9992 

f2max 15.99948 15.99883 15.84447 15.9966 16.00641 

f2min 0.000094 0.00003521 0.00082972 0.0000328129 0.00000071 

POL NPS 9 100 100 100 98 

f1max 14.85726 15.96278 15.45174 16.33451 17.31232 

f1min 1.00087 1.00954 1.2582 1.00925 1.00181 

f2max 28.42291 24.45336 23.89765 24.46115 24.75925 

f2min 0.23863 0.00352 0.00926 9.55E-04 0.0075 

Constr-Ex NPS 00 76 93 100 98 

f1max -- 1.03589 1.04856 1.02096 1.03333 

f1min -- 0.04929 0.0464 0.07388 0.24835 

f2max -- 1.04233 1.04208 1.01719 1.03848 

f2min -- 0.05505 0.05448 0.0747 0.07286 

TNK NPS 00 74 84 100 92 

f1max -- 0.04929 0.0464 0.07388 0.24835 

f1min -- 1.04233 1.04208 1.01719 1.03848 

f2max -- 0.05505 0.05448 0.0747 0.07286 

f2min -- 1.03589 1.04856 1.02096 1.03333 
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5.1.3.2 Constrained test problems  

Strategies of MODE developed in this work, are also tested on some of the constrained 

test problems.  In this section, two widely used test problems [Constr-Ex (Deb, 2001) and 

TNK (Tanaka, 1995)] (Table 4.2) having nonconvex search space are studied in terms of 

the objective space and the obtained Pareto front. Penalty function approach using a high 

value of penalty weight (= 10,000) is employed to handle the constraints. The selection 

strategy of MODE III and hybrid MODE algorithm is designed in such a way that even 

the not so efficient constraint handling technique such as the Penalty approach works 

well with the strategies of MODE. If a newly obtained solution is infeasible, then the 

Penalty approach will assign a very high weight to that solution. In this way, as per the 

selection strategy, this solution will never enter in a current set of solutions. If initial 

population points are infeasible, then the crossover and recombination operation will 

diversify the search and the feasible points would replace the current infeasible point. 

During the initial generations the infeasible points present in the population help in 

diversifying the search by the recombination operation to produce a diverse noisy random 

vector. The first problem considered is Constr-Ex test function, which is of minimize-

minimize type of bi-objective optimization problem. In this problem, both objective 

functions and constraints formulate the feasible search space boundary. The second 

problem under consideration is TNK test problem. TNK test problem has a discontinuous 

and nonconvex Pareto front. For both the test problems, simulation runs are taken with 

same parametric settings as reported in Table 5.1.  
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Fig. 5.19a shows the objective space (both feasible and infeasible) for CONSTR test 

problem. Both constrained and unconstrained regions of CONSTR test problems have a 

nonconvex search space. Unconstrained Pareto front, constrained Pareto front, 

constrained search space and the constraints boundary for CONSTR test problem are 

shown in Fig. 5.19b. As the Pareto front is a concatenation of both the constraint 

boundary and the objective functions, it is difficult to obtain a well diverse Pareto front. 

Specially using the penalty method to solve constrained problems it is difficult to obtain 

the true Pareto front in both the regions (i.e., region X and region Y) as shown in Fig. 

5.19b. This is evident from the results shown in Fig. 5.19c, where the Pareto fronts 

obtained using developed strategies of MODE are plotted. The convergence of Pareto 

front obtained using MODE III is restricted to a small portion of the front (region X in 

Fig. 5.19b). However, the hybrid-, trigonometric- and elitist strategy of -MODE 

algorithms are able to capture entire region (i.e., regions X and Y in Fig. 5.19b) and thus 

give a well diverse Pareto front. These results are attributed to its wide spread search 

benefit (i.e. both local and global search) in case of hybrid MODE, to the strong mutation 

operation in case of trigonometric MODE, and to an enhanced selection strategy in case 

of elitist MODE. The region Y is achieved if x2* achieves the value of 0. For CONSTR 

test problem it is observed that 93%, 76%, 100% and 98 % of initial population points 

converged to the final Pareto front using hybrid MODE, MODE III, elitist MODE and 

trigonometric algorithms respectively. 
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Fig. 5.19 (Contd…) 
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Fig. 5.19 Constrained and unconstrained objective search space [Fig. (a)]; 
Constrained and unconstrained Pareto front [Fig. (b)]; Pareto optimal front 

obtained using hybrid MODE and MODE III algorithms [Fig. (c)] for CONSTR test 
problem 
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Fig. 5.20a shows the feasible and infeasible objective space for TNK test problem. Both 

the constraints act in such a way that the feasible space occupies the internal region of 

total search space. Fig. 5.20a also shows both the decision variable space and the 

objective space, as the objective functions and the decision variables are same in TNK 

test problem. Unconstrained problem has a decision space ranging between π≤≤ 21,0 xx . 

In this way, if unconstrained test problem is optimized simultaneously for both the 

objectives, it will result in an extreme single (corner point) optimal solution as shown by 

(0, 0) in Fig. 16a. The Pareto front cannot be obtained for such problems. However, the 

constraints are responsible for producing the Pareto front as shown in Fig. 5.20b. Fig. 

5.20b shows the constrained search space and multiple disconnected Pareto regions, 

which are responsible for producing a disconnected Pareto front. Fig. 5.20c shows the 

Pareto optimal fronts obtained using newly developed strategies of MODE algorithm. 

84%, 74%, 100% and 92% of initial population points converged to the Pareto front using 

hybrid MODE, elitist MODE and trigonometric MODE algorithms respectively. Fig. 

5.20c also shows that trigonometric MODE algorithm resulted in local solutions 

especially in the region ( )4.02.011 −∈xf . 

 In the next subsection, results obtained on multi-objective optimization of 

selected industrial case studies using the newly developed strategies in this work are 

discussed. 
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Fig. 5.20 (Contd…) 
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Fig. 5.20 Feasible and infeasible objective search space [Fig. (a)]; Constrained 
search space and Pareto region [Fig. (b)]; Pareto optimal front obtained using 

strategies of MODE algorithm [Fig. (c)]; Individual Pareto fronts obtained for using 
strategies of MODE [Fig. (d-g)] for TNK test problem 
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5.2 Industrial case studies 

This section of thesis deals with the results and discussion of the multi-objective 

optimization of industrial case studies considered in this study. Several process design 

decisions based objectives (as formulated in section 4.2) for several industrial processes 

(such as styrene reactor, Polyethylene terephthalate (PET) reactor, oxidation of p-xylene 

to purified terepthhalic acid (PTA), Low density polyethylene (LDPE) tubular reactor, 

and supply chain and planning) are solved using newly developed strategies of MODE 

algorithm.  

 

5.2.1 Multi-objective optimization of styrene reactor 

A set of ordinary differential equations (ODEs), as given in Appendix A through Eqs. A8 

- A15, describing the reaction scheme were integrated and simulated using the ODE45 

subroutine of MATLAB (7.0) library. ODE45 uses a fourth-order Runge-Kutta method to 

integrate the ODEs. The model equations were solved on Pentium-IV, 2.4 GHz core 2 

duo processor. The cpu time for MODE III, hybrid MODE, elitist MODE and 

trigonometric MODE algorithms for 300 generations is 1576.125, 50,144, 2716.05, and 

4730.70 seconds respectively. The design and operating conditions, as well as the 

thermodynamic and kinetic data, related to the reaction scheme (as given by Eqs. 4.1 – 

4.6) of the styrene reactor considered in this study are taken from the literature. 

(Elnashaie and Elshishini, 1994; Yee et al., 2003). The simulated model output is 

compared with the industrial data and is shown in Table A6 (Appendix A). The simulated 

model profiles of (a) Temperature (3 chromosomes and industrial, Adiabatic operation), 

(b) Flow rate styrene, (c) Yield, and (d) Pressure (comparison of adiabatic and steam 
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injected operation), and (e) molar concentration of side products along the length of 

reactor profiles for selected chromosomes for adiabatic and steam injected configurations 

are shown through Figs. 5.21a - 5.21e. 

 

5.2.1.1 Case-1: Simultaneous maximization of SST and YST 

The first case considers simultaneous maximization of selectivity and yield. Four 

decision variables (namely TEB, P, SOR and 0

EBF ) are used. As discussed in section 5.1, the 

hybrid- MODE algorithm is much faster in terms of convergence for the benchmark test 

problem. A similar trend is observed in the case of the industrial styrene problem as well. 

In Fig. 5.22, the conflicting objectives (selectivity and yield) are plotted at various 

generations, as indicated. The penalty function method was used to handle the constraints 

with a very high value of weights (104) in order to ensure that the constraint-dominated 

solutions were removed from the Pareto solutions. The effect of the penalty function 

parameter on the Pareto front was studied and is discussed in section 5.2.1.3.  

The numbers of points violating the constraints at several generations as obtained 

using the strategies of MODE algorithms are reported in Table 5.6. In all algorithms, all 

the initial population solutions are evaluated first and then sent to the generation loop. 

The values given in Table 5.6 correspond to the output obtained after the specified 

number of generations. As the initial population was generated randomly, the number of 

solutions violating the constraint in the initial population can vary depending on the 

random population generated.  
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Fig. 5.21 Profiles of (a) Temperature (3 chromosomes and industrial, adiabatic 
operation), (b) Flow rate of styrene, (c) Yield and (d) Pressure (comparison of 
adiabatic and steam injected operation) and (e) Molar concentration of side 

products along the length of reactor 



185 

 

  

 

 

 

 

 

 

Table 5.6 Number of points violating the constraints (VNP) and number of point 
satisfying constraints (SNP) at various generations 

Generation MODE 
 

MODE III 
 

Hybrid 
MODE 

Elitist 
MODE 

Trigonometric 
MODE 

VNP/SNP VNP/SNP VNP/SNP VNP/SNP VNP/SNP 
1 0/18 33/67 15/85 0/100 0/100 

3 0/15 3/97 0/100 0/100 0/100 

5 0/12 0/100 0/100 0/100 0/100 

300 0/10 0/100 0/100 0/100 0/100 
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The hybrid MODE algorithm, because of its acceleration phase (sequential simplex 

method coupled with evolutionary MODE algorithm); was able to remove the constraint-

dominated solutions more quickly, thus leading towards the true Pareto front. However, 

trigonometric MODE and Elitist MODE algorithms, due to improved mutation strategy 

and preserving of elite population members, are able to remove all constraint dominated 

solutions in first generation. Original MODE algorithm has very limited number of 

solutions from generation 1 onwards (Table 5.6), thus resulted in a local Pareto front. The 

MODE III algorithm had zero constraint-violated points in generation 5, whereas the 

hybrid MODE algorithm achieved this stage during generation 3. It is possible that, 

during the search process, a new point might be encountered that has a violation of 

constraints. The selection strategy of MODE algorithms (both MODE III and hybrid 

MODE) does not allow such solution (point) to enter into the current population list. 

However, if both the current point and the newly obtained point are constraint-violated 

points, then the better of the two points gets a place in the population. Thus, the selection 

strategy of the MODE algorithms is designed in such a way that even a not-very-efficient 

constraint handling technique such as the penalty approach works very well, ensuring that 

the constraint dominated solutions are removed from the initial generations and are not 

allowed to enter during later generations, unless they are better than the current 

constraint-dominant solutions.  

Table 5.6 and Figs. 5.22a and 5.22b clearly show that the hybrid strategy of 

MODE algorithm is able to converge towards the Pareto front more quickly than MODE 

III algorithm. Pareto fronts obtained for case-1 using various strategies of MODE 

algorithms is shown in Fig. 5.23a. The results of Fig. 5.23a are re-plotted (for better 
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clarity of Pareto fronts) in Fig. 5.23b with vertical shift in value of ordinate by +2 in 

MODE III, +4 in Hybrid MODE, +6 in Elitist MODE and +8 in Trigonometric MODE 

data points. The inferences from Figs. 5.21-5.23b can also be drawn with the help of a set 

of decision variables (i.e., TEB, P, SOR, and 0

EBF ). The decision variables corresponding to 

the Pareto solutions in Figs. 5.23a - 5.23b are shown against one of the objective 

functions in Figs. 5.24a - 5.24h. Figs. 5.24a - 5.24b show the effect of the temperature of 

ethyl benzene on the objective functions (namely, selectivity and yield, respectively). 

Because the main reaction is reversible and endothermic in nature, a high temperature 

favors the rate of the forward reaction. This is apparent from the plot of yield versus 

temperature (Fig. 5.24b). However, at higher temperature, side products such as toluene 

and benzene are also formed, thus reducing the selectivity value (Fig. 5.24a).  

Thus a clear conflicting behavior is observed in both the objectives, which is 

attributed to the dominance of temperature on the objectives and hence it is termed as a 

dominant variable. To select a particular value of yield, the user has to sacrifice for the 

selectivity, and vice versa. If a too high value of yield is selected, then the corresponding 

value of selectivity would be on lower side, thus increasing the cost of separation 

incurred on the separation of side products from the main product, i.e., styrene. Operating 

pressure also affects desired values of objective functions. According to the Li-

Chatelier’s principle, the low pressure favors the formation of main product. By lowering 

the value of the operating pressure, the selectivity is increased while the yield is 

decreased (Figs. 5.24c - 5.24d). 
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Fig. 5.22 Convergence of algorithm towards Pareto front for case-1 (a) Hybrid 
MODE; (b) MODE III 
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Fig. 5.23 (a) Pareto fronts obtained for case-1 using strategies of MODE algorithms; 
(b) The results of Fig. 5.23a are re-plotted (for better clarity of Pareto fronts) with 
vertical shift in value of ordinate by +2 in MODE III, +4 in Hybrid MODE, +6 in 

Elitist MODE and +8 in Trigonometric MODE data points 
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Fig. 5.24 (Contd….) 
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Fig. 5.24 (a-h) Decision variables (T, P, F
0

EB, and SOR) plotted against one of the 
objective functions 
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The feed flow rate of ethyl benzene has approached a lower bound because the lower 

flow rate is also responsible for generating relatively low pressure. If an initial ethyl 

benzene flow rate is maintained at a lower value, the mixture of ethyl benzene and the 

steam would produce a relatively higher temperature (as per energy balance of mixing 

streams). High temperature and low pressure are favored at lower initial flow rate of ethyl 

benzene and therefore all the points corresponding to the Pareto optimal solutions belong 

to the lower initial ethyl benzene flow rate (Figs. 5.24e - 5.24f). The steam over reactant 

ratio (SOR) also controls the desired objectives. Higher SOR value is favored for high 

value of yield and vice versa for the selectivity. Figs. 5.24a - 5.24h also show the 

comparison of decision variables corresponding to the Pareto optimal solutions obtained 

using MODE III, hybrid MODE, elitist MODE, and trigonometric MODE algorithms. A 

comparatively better trend of decision variables is observed in case of hybrid MODE, 

elitist MODE and trigonometric MODE algorithms whereas the decision variables are 

slightly scattered in case of MODE and MODE III algorithms. Figs. 5.24b and 5.24f 

show that for few of the points, MODE algorithm approached lower bound of 

temperature and upper bound of initial flow rate of ethyl benzene. This resulted in a 

lower combined inlet temperature of the steam and the ethyl benzene mixture. Thus 

MODE algorithm resulted in local Pareto solutions, as due to high value of initial ethyl 

benzene flow & lower steam temperature. Thus, in order to reach towards the global 

Pareto solutions, it is necessary to attain a relatively high temperature of the combined 

stream of mixture of steam and ethyl benzene to the inlet of reactor.  
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Effect of initial number of population points on hybrid MODE 

The initial number of population points may play an important role in deciding the 

distribution of solutions on the Pareto front. However, as the number of initial population 

points increases, the total number of function evaluations also increases. Thus an 

optimum size of an initial population is very necessary in any MOO algorithm. Fig. 5.25 

shows the Pareto front obtained using initial population size of 100 and 200, where the 

convergence is equally good for both the cases. The Pareto front is able to cover a wider 

range (with scattered points) when initial population size is kept 200. However, with an 

initial population size of 100, the convergence of algorithm to the Pareto front is good 

with nearly uniform diversity. Thus, the population size is chosen as 100 for the rest of 

the experimental runs in this study. 

 

Effect of Step size used for obtaining a new neighborhood solution in Hybrid MODE 

algorithm 

Hybrid algorithm uses a local search of solutions by creating a neighborhood point near 

the current point. Following mapping rule is used to generate a new neighborhood point 

(Eq. 5.3). 

New neighborhood solution = current solution ± rand (0, 1)*desired step size  (5.3) 

The step size used in the above equation also affects the quality of the Pareto 

front. This aspect is studied by considering various values of step size. Three different 

step sizes are considered for each of the variables depending upon the number of digits of 

the variable in the current solution. For e.g., the upper bounds of four decision variables 

considered in this study, i.e., TEB, P, SOR and 
0

EBF  are 800 K, 2.63 bar, 20 and 40.56 
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kmol/h respectively. Then for these cases, depending upon the number of digits of the 

variables the three sets of step sizes are 100, 1, 10 & 10 (step size-1); 10, 0.1, 1 & 1 (step 

size-2) and 1, 0.01, 0.1 & 0.1 (step size-3) respectively. The effect of step size on the 

Pareto front is studied and is shown in Fig. 5.26a. The percentage of initial population 

points converged to the final Pareto front for step size-1, step size-2 and step size-3 are 

86%, 96% and 93% respectively (Fig. 5.26a). Because all the results with these 3 step 

sizes converged to the same front and as it is difficult to distinguish the overlapping 

points on the Pareto front, these results are re-plotted in Fig. 5.26b, using vertical 

displacements in the values by +2 in the results with step size-2, and by +3 in the results 

with step size-3. Also the diversity of Pareto front is better when a step size-2 is used. 

With step size-1, the location of neighborhood solution may be far away from the current 

solution (as per Eq. 5.3), which may not give a better solution when local search method 

is used. However, when step size-3 is used, the solutions are crowded on the Pareto front 

as shown in Fig. 5.26a and Fig. 5.26b. With step size-2, a well-diversified Pareto front is 

obtained with a maximum number of solutions on the Pareto front. Therefore, in entire 

simulation runs step size-2 is used for creating a new neighborhood point. Similar results 

were obtained when hybrid MODE algorithm was tested on several other test problems.  

Effect of an additional decision variable (TSTEAM) on the Pareto front 

Superheated steam is used to preheat the reaction mixture. It is difficult to obtain a 

uniform temperature of steam. Therefore, in the second set of decision variables, the 

effect of an extra variable, i.e., temperature of the inlet steam (along with the set-I 

decision variables) is also considered. The Pareto front obtained using set-II decision 

variables are compared with the Pareto front obtained using set-I decision variables and is 
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shown in Fig. 5.27. The inlet steam temperature is responsible for altering the 

temperature of mixed stream entering the reactor. The temperature of mixed steam 

largely affects the reaction kinetics and reactor performance as stated above. Thus a 

variation in inlet steam temperature creates conflicting scenario in the desired objectives 

(i.e., selectivity and yield). Therefore, the Pareto front obtained using set-II variables is 

scattered in nature as shown in the Fig. 5.27. Hence, set-I variables are used in the rest of 

the experimental runs in this study. However, as not much difference is observed in the 

Pareto front due to addition of a new variable, this variable is omitted from the rest of the 

study and only 4 regular variables (as defined by Eqs. 4.10 – 4.13) are used.  

 

5.2.1.2 Analysis of profit function 

Table 5.7 shows the values of objective functions, decision variables and profit functions 

obtained in this study using strategies of MODE algorithm for selected data points. A 

profit function can be used as a further guideline for choosing the appropriate non-

dominated point from the Pareto front. The profit function considers the cost of major 

feed materials (cost of ethyl benzene and steam) and final valued products (such as 

Styrene, benzene and toluene). 

For this purpose, a simplified profit function (Yee et al., 2003) is defined as given 

by Eq. 5.4a. 

Profit = Revenue generated by styrene and byproducts– Raw material cos t (5.4a)  

Eq. 5.4a in mathematical form can be written as Eq. 5.4b 

( ) OHOHEBEBEBTOLTOLBZBZSTST HFHFFHFHFHFrofitP
22

0 −−−++=    (5.4b) 



196 

The costs of styrene, ethyl benzene, benzene and toluene are based on the prices 

published in the on-line purchasing magazine (Purchasing, 2009). However, we 

considered the older cost values (as on April 2001) in this study in order to have a 

comparison with the previously obtained results of Yee et al. (2003).  

Table 5.7 also shows the profit function values obtained using different 

algorithms for adiabatic styrene reactor. The objectives namely, FST, SST and YST 

(calculated values) are plotted against the profit function in Figs. 5.28a, 5.28b and 5.28c 

respectively using the strategies of MODE algorithm. Table 5.7 and Figs. 5.28a, 5.5.28b 

and 28c show that as the value of FST increases, the profit value increases. Figs. 28a also 

shows that using MODE III algorithm, the maximum profit obtained is 584 ($/h) which is 

obtained at FST value of 11.91 kmol/h. Using hybrid MODE the maximum profit 

obtained is 728 ($/h). In terms of both the selectivity and yield, nearly same values are 

obtained using both the algorithms. However, using MODE III and hybrid MODE 

algorithms, the values of SST vary in between 87.14 - 95.5 % and 87.22 - 95.41 % 

whereas the values of YST vary in between 21.38 - 42.02 % and 20.41 - 36.90 % 

respectively. The profit obtained using MODE III and hybrid MODE algorithms ranges 

in between 344.62 - 584.47 $/h and 383.32 - 728.44 $/h respectively.  

The profit obtained using elitist MODE and trigonometric MODE algorithms ranges 

between the values of 362.5 - 732.5 $/h and 344.6 – 701.5 $/h respectively. The major 

improvement obtained in profit function value is due to the increased value of FST 

obtained using hybrid MODE. The value of FST ranges from 6.60 - 12.36 kmol/h and 

from 7.72 - 15.81 kmol/h using MODE III and hybrid MODE algorithms respectively. 

However, with FST value of 15.50 kmol/h and 14.48 kmol/h, the trigonometric MODE 
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and elitist MODE resulted in a profit value of 701 $/h and 738 $/h. The maximum profit 

obtained among all the algorithms corresponds to that obtained using elitist MODE. The 

reason for this improvement can be observed from Table 5.7, where the values of 

decision variables are also shown along with the values of objective functions and the 

profit function; and from Figs. 5.28d- 5.28g, where the decision variables are plotted 

against the profit function.  

Both Figs. 5.28d and 5.28e show that the enhancement in profit function is 

obtained because hybrid MODE is able to capture the upper bound of the decision 

variables, namely TEB and the 0

EBF . As per the kinetics, for the reversible endothermic 

reactions, the higher temperature is favored to enhance the rate of forward reaction, thus 

giving a higher productivity. The higher initial temperature coupled with a higher initial 

flow rate of ethyl benzene, is responsible for producing higher flow rate of styrene, which 

in turn is responsible for giving higher profit values. Table 5.7 also shows that as the 

value of temperature (decision variable) increases, the values of objective function FST 

and the profit also increase.  
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Fig. 5.26 (a) Effect of the step size used in obtaining a neighborhood solution on the 
Pareto optimal solutions using hybrid MODE algorithm; (b) The results of Fig. 

5.26a are re-plotted with vertical shift in value of ordinate by +2 in step size-2, and 
by +3 in step size-3 data points 
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Fig. 5.27 Effect of number of decision variables on the Pareto front after 300 
generations using hybrid MODE algorithm 
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Table 5.7 Values of objective functions, decision variables and profit functions for selected data points using strategies of MODE 
algorithm 

Sr. 
No. 

MODE III  Hybrid MODE   

FST 

(kmol/h) 
SST 

(%) 
YST

* 
(%) 

T (K) P 

(bar) 

0
EBF  

(kmol/h) 

SOR Profit 

($/h) 
FST 

(kmol/h) 
SST 

(%) 
YST

* 

(%) 
T (K) P 

(bar) 

0
EBF  

(kmol/h) 

SOR Profit 

($/h) 

1 6.60 95.50 21.38 702.13 1.02 27.77 9.470 344.6 7.72 95.41 20.41 692.90 1.201 34.56 8.78 393.3 
2 7.52 94.78 24.38 743.52 1.19 28.12 7.416 415.9 8.14 95.20 20.96 613.54 1.571 35.64 11.39 380.0 
3 7.80 94.49 25.49 597.88 1.69 27.97 13.79 367.3 9.09 94.73 21.88 694.78 1.415 38.52 8.78 458.1 
4 8.39 94.03 26.66 662.48 1.68 28.98 11.38 420.8 9.33 94.67 21.87 646.1 1.665 39.6 10.32 446.0 
5 8.50 93.70 28.08 590.35 1.95 27.88 14.62 398.2 9.57 94.50 22.08 596.47 1.821 40.32 12.19 429.5 
6 8.72 93.38 29.08 596.11 2.00 27.71 14.81 409.7 10.41 93.76 24.38 650.35 1.860 39.96 10.95 495.5 
7 9.10 92.81 30.54 676.66 1.80 27.62 12.44 454.3 10.80 93.29 25.59 629.02 1.921 39.6 12.68 493.8 
8 9.29 92.74 30.66 580.08 2.15 28.13 16.09 425.7 11.18 93.05 26.08 695.94 1.793 40.32 9.90 551.9 
9 9.37 92.47 31.37 635.9 2.06 27.75 14.21 450.9 11.50 92.68 26.86 735.88 1.651 40.32 8.53 589.0 
10 9.57 92.24 32.04 645.45 1.99 27.77 14.53 458.2 11.76 92.42 27.75 646.92 2.064 39.96 12.73 544.0 
11 9.65 92.04 32.60 625.49 2.13 27.56 15.33 456.1 12.22 92.07 28.39 639.64 2.157 40.68 13.33 557.1 
12 9.71 92.03 32.60 638.46 2.00 27.75 15.29 458.7 12.47 91.72 29.27 675.58 2.099 40.32 12.15 589.6 
13 9.93 91.75 33.29 557.29 2.35 27.82 18.28 440.1 12.96 91.14 30.48 592.57 2.449 40.32 16.23 556.7 
14 10.10 91.40 34.12 635.89 2.06 27.63 16.44 468.5 13.30 90.76 31.33 601.05 2.565 40.32 15.99 578.8 
15 10.17 91.33 34.30 584.44 2.37 27.71 17.78 459.1 13.52 90.50 31.60 639.60 2.573 40.68 14.21 615.0 
16 10.31 91.01 34.95 711.99 1.82 27.60 13.43 510.2 14.17 89.71 33.18 746.45 1.979 40.68 11.26 692.3 
17 10.61 90.36 35.99 742.34 1.59 27.63 13.62 523.6 14.75 88.81 34.93 744.74 2.035 40.32 12.84 701.3 
18 11.17 89.79 37.30 697.68 2.07 28.17 15.40 533.9 15.12 88.17 35.85 742.20 2.270 40.32 12.69 723.0 
19 11.67 88.67 39.33 721.25 2.13 27.99 15.29 562.1 15.68 87.56 36.90 739.63 2.278 40.68 14.20 728.4 
20 12.36 87.18 42.02 686.97 2.47 27.82 19.21 559.1 15.81 87.22 37.55 705.58 2.556 40.32 16.17 708.2 

*Calculated value of third objective function during two-objective optimization study 
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Table 5.7 Values of objective functions, decision variables and profit functions for selected data points using strategies of MODE 
algorithm (Contd..) 

Sr. 
No. 

Trigonometric MODE  Elitist MODE   

FST 

(kmol/h) 

SST 

(%) 
YST

* 
(%) 

T 

(K) 
P 

(bar) 

0
EBF  

(kmo
l/h) 

SOR Profit 

($/h) 
FST 

(kmol/h) 
SST 

(%) 
YST

* 

(%) 
T 

(K) 
P 

(bar) 

0
EBF  

(kmol/h) 

SOR Profit 

($/h) 

1 7.93 95.59 18.65 612.0 1.44 38.94 10.8 362.5 6.60 95.50 21.38 702.1 1.02 27.77 9.47 344.6 
2 9.07 94.98 20.80 577.2 1.89 40.41 11.7 407.9 8.39 95.47 19.20 700.4 1.24 40.24 7.76 428.5 
3 9.73 94.44 22.38 602.2 1.95 40.51 11.5 447.2 8.85 95.16 20.21 710.5 1.32 40.51 7.38 459.1 
4 10.5 93.74 24.32 626.2 1.96 40.52 11.7 488.5 9.12 94.94 20.85 718.4 1.34 40.52 7.25 475.8 
5 10.87 93.41 25.18 636.3 1.97 40.53 11.8 506.7 9.17 94.89 21.04 645.2 1.63 40.40 10.04 438.1 
6 11.05 93.24 25.61 642.7 1.98 40.53 11.7 517.0 9.47 94.65 21.78 607.6 1.89 40.43 11.15 439.0 
7 11.31 92.98 26.26 650.1 1.99 40.52 11.8 530.4 9.59 94.55 22.07 610.1 1.89 40.44 11.24 444.2 
8 11.69 92.60 27.19 662.9 1.98 40.54 11.8 550.8 9.71 94.46 22.31 579.3 2.08 40.52 11.92 440.6 
9 11.89 92.39 27.68 676.6 1.95 40.53 11.5 565.5 10.00 94.20 23.07 565.9 2.10 40.47 12.86 443.5 
10 12.25 92.01 28.56 678.3 1.99 40.55 11.9 579.7 10.04 94.16 23.16 616.3 1.99 40.46 11.26 468.6 
11 12.51 91.71 29.23 688.3 1.99 40.52 11.8 595.1 10.70 93.57 24.76 609.4 2.07 40.54 12.37 489.0 
12 12.74 91.45 29.80 695.0 2.00 40.52 11.8 607.8 11.05 93.23 25.63 562.0 2.35 40.52 13.87 486.4 
13 13.29 90.80 31.16 714.4 1.97 40.52 11.8 637.5 11.80 92.48 27.47 627.1 2.22 40.54 12.91 541.5 
14 13.64 90.38 32.01 719.9 2.01 40.52 12.0 653.6 11.93 92.34 27.82 584.5 2.37 40.48 14.55 524.8 
15 14.30 89.50 33.66 741.9 1.98 40.50 12.0 688.5 12.55 91.68 29.31 633.8 2.30 40.55 13.70 570.9 
16 14.53 89.19 34.22 746.8 2.01 40.52 12.0 701.2 13.03 91.12 30.50 684.9 2.08 40.53 12.74 610.5 
17 14.79 88.82 34.87 742.8 2.05 40.49 12.8 702.7 13.84 90.13 32.53 669.3 2.34 40.50 14.32 631.4 
18 14.89 88.67 35.11 764.8 1.95 40.51 11.7 723.3 13.99 89.94 32.89 671.1 2.35 40.51 14.51 636.4 
19 15.20 88.19 35.93 766.9 2.00 40.44 12.1 733.6 14.63 89.07 34.50 681.1 2.43 40.48 15.08 662.2 
20 15.48 87.71 36.61 764.8 2.01 40.46 13.2 732.2 15.50 87.80 36.61 706.6 2.46 40.51 15.45 701.7 

*Calculated value of third objective function during two-objective optimization study 
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Fig. 5. 28 Analysis of the profit-function with respect to objective functions and the 
decision variables. Profit function plotted against FST (Fig. [a]), SST (Fig. [b]) and 

YST (calculated objective) (Fig. [c]). Profit function plotted against decision variables 

T [Fig. (d)], P [Fig. (e)], 0

EBF  [Fig. (f)] and SOR [Fig. (g)] 
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5.2.1.3 Case-2: Simultaneous maximization of FST and SST  

Simultaneous maximization of FST and SST objectives is carried out using MODE, MODE 

III, hybrid MODE, elitist MODE and trigonometric MODE algorithms. However, to 

compare the performance of hybrid MODE algorithm with MODE III, the comparative 

results of MODE III and hybrid MODE are presented first. Fig. 5.29 shows the Pareto 

optimal solutions obtained after 300 generations using the hybrid MODE and MODE III 

algorithms. 20 points are selected at random from Fig. 5.29 and are shown along with 

their respective decision variables in Table 5.7. Table 5.7 shows that the range covered 

by MODE III and hybrid algorithms in terms of objective-1 (i.e., FST) is 6.60 - 12.36 

kmol/h and 7.56 - 15.84 kmol/h and in terms of objective-2 (i.e., SST) is 87.18 - 95.5 % 

and 87.22 - 95.41 % respectively. Hybrid MODE algorithm produced a wider range in 

terms of both the objectives when compared to the range of objectives obtained using 

MODE III and the industrial operating point (Sheel & Crowe, 1969; Elnashaie and 

Elshishini, 1994). MODE III algorithm resulted in lower values of FST as compared to the 

hybrid MODE because MODE III approached the lower bound of decision variable 0

EBF . 

If 0

EBF  (decision variable) values are compared for both MODE III and hybrid MODE, 

then it is observed that the hybrid MODE approached the upper bound (i.e. 40.56 kmol/h) 

whereas MODE III approached the lower bound (i.e. 27.56 kmol/h).  
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Fig. 5.29 Pareto optimal solutions obtained after 300 generations using hybrid 
MODE and MODE III algorithms 
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Fig. 5.30 (a) Comparison of Pareto fronts obtained using MODE, MODE III, hybrid 
MODE, elitist MODE, trigonometric MODE and NSGA. (b)The results of Fig. 5.30a 
are re-plotted with vertical shift in value of ordinate by +2 in hybrid MODE, +4 in 
Elitist MODE, +6 in Trigonometric MODE and +8 in NSGA results data points; (c-

j) Decision variables plotted against corresponding objectives
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In earlier studies of Yee et al. (2003) and Babu et al. (2005), it was observed that 

the multi-objective optimization study of maximization of FST and SST was independent 

of this decision variable ( 0

EBF ) because the lower bound of 0

EBF  was captured in these 

studies. But in this study, it is seen that only a robust algorithm can search entire search 

space and gives a possibly-true Pareto optimal front for an industrial problem. A 

compromise (corresponding to the set of optimum non-dominated solutions) with other 

conflicting variables (such as T, P, and SOR) is required to get the suitable Pareto front 

with higher values of initial ethyl benzene flow rate. If such compromise is not met along 

with the initial ethyl benzene flow rate (one of the decision variables), then it may 

produce a non-optimal or a set of non-dominated solutions away from the true Pareto 

optimal front. Hence, the algorithm may result in a local Pareto front. When higher initial 

ethyl benzene flow rate is obtained (in case of hybrid algorithm), the values of 

corresponding decision variables such as T and SOR are also high. 

This is because higher temperature of mixed stream (steam and initial ethyl 

benzene) is responsible for higher productivity. It is important for any efficient algorithm 

to explore the entire corner of multi-dimensional search space so that a true Pareto front 

is obtained. MODE III algorithm in this study (see Fig. 5.29), and MODE and NSGA 

algorithms in earlier studies (Yee et al., 2003; Babu et al., 2005) converged to the lower 

bound of initial ethyl benzene flow rate, hence resulted in local Pareto front. Table 5.7 

also shows the conflicting scenario, wherein the value of SST decreases while the value of 

calculated YST increases as the value of FST increases. The range covered by MODE III 

and hybrid MODE algorithm in terms of calculated value of YST is 21.38 - 42.02 % and 

20.41 - 37.51 % respectively. The results of current study are compared with those 
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obtained with NSGA algorithm published in the literature (Yee et al., 2003). Fig. 5.30 

shows the comparison of Pareto fronts obtained using MODE, MODE III, hybrid MODE, 

elitist MODE, trigonometric MODE and NSGA algorithms along with an industrial 

operating point.  

From the results obtained with each of the algorithms, some data points are 

selected from Fig. 5.30b and are marked as L-M-N-O for MODE, A-B-C-D for MODE 

III, A`-B`-C`-D` for Hybrid MODE, P-Q-R-S for elitist MODE, P`-Q`-R`-S` for 

trigonometric MODE, and D-E-F for NSGA. These selected data points are analyzed 

further and are shown in Table 5.8. Table 5.8 shows the selected data points from the 

Pareto front of Fig. 5.30b (points as L-M-N-O for MODE, points A-B-C-D for MODE 

III, points A`-B`-C`-D` for Hybrid MODE, points P-Q-R-S for elitist MODE, points P`-

Q`-R`-S` for trigonometric MODE, and points D-E-F for NSGA.). Figs. 5.30a - 5.30b 

show that the hybrid MODE, elitist MODE and trigonometric MODE algorithms resulted 

in better non-dominated solutions (Pareto fronts) as compared to those obtained using 

MODE III and NSGA when the same set of decision variables is used. Pareto solutions 

obtained using hybrid-, elitist- and trigonometric- strategy of -MODE algorithms covered 

a wider range on Pareto front as compared to non-dominated solutions obtained when 

NSGA was used. Fig. 5.30b also shows that both MODE III and NSGA algorithms 

converged to a local Pareto front compared to the Pareto front obtained using hybrid 

MODE. Hybrid MODE algorithm is able to give better results in terms of both the 

objectives. The variation of objective space with respect to key decision variables 

obtained using individual runs and industrial data can be seen through Figs. 5.30c – 5.30j. 

Table 5.8 also gives the comparison of industrial operating point with the selected points 
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obtained using different algorithms using various parameters. As we move from point A 

to C (similarly from point A` to C`; from points D to F; from L to N; from P to R and 

from P` to R`), both the values of FST and profit increase. The value of FST and profit 

increases in case of MODE III algorithm output, primarily due to the increase in SOR 

(from 9.47 to 19.21). MODE III algorithm resulted in local Pareto solutions because a 

point (now onwards we refer it as ‘chromosome’ as per the evolutionary terminology) 

which has a higher value of TEB (chromosome A) and a lower value of SOR and vice 

versa (chromosome C). As per the energy balance, this combination of decision variables 

(TEB and SOR) is responsible for generating the temperature of the mixed stream entering 

the reactor (Tmix1). In case of hybrid MODE algorithm, a high value of either TEB or SOR 

resulted in a higher value of Tmix1 [e.g. chromosome A` against D: TEB=692.9 K & 

SOR=8.78 by hybrid MODE against TEB=651.5 K & SOR=10.74 by NSGA; and 

chromosome C` against F: TEB=705.5 K & SOR=16.71 by hybrid MODE against 

TEB=799.9 K & SOR=10.94 by NSGA]. Tmix1 has a strong opposing effect on FST and SST. 

High Tmix1 maximizes the flow rate of styrene (point C`) while low Tmix1 maximizes the 

selectivity (point A`). This is due to the reversible endothermic nature of the main 

reaction (Eq. 4.1). The NSGA algorithm resulted in local Pareto front because SOR 

approached a lower bound. Thus it is necessary for an efficient algorithm to have a wide 

spread search of population points in all the dimensions. As hybrid MODE algorithm 

approached the Pareto optimum values of all the decision variables, it resulted in a wider 

and a better Pareto front as compared to NSGA and MODE III. Point G (profit = 584 $/h) 

and G’ (profit = 728 $/h) (in Fig. 5.30 and Table 5.8) are the points having maximum 

profit values obtained using MODE III and hybrid MODE algorithm respectively.  
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Table 5.8 Comparison of MODE, MODE III, hybrid MODE, elitist MODE, trigonometric MODE and NSGA 
algorithms for selected data points 

Parameter Industria
l value 

MODE (present study) MODE III (present study)  Hybrid MODE 
(present study) 

L M N O A B C G A` B` C` G' 

FST (kmol/h) 14.9 7.04 11.62 15.54 15.54 6.608 9.93 12.36 11.91 7.72 12.47 15.81 15.68 
SST (%) 85.15 96.02 92.48 86.08 86.08 95.50 91.75 87.18 87.88 95.41 91.72 87.22 87.56 
YST (%) 40.30 16.01 27.68 37.77 37.77 21.38 33.29 42.02 40.60 20.41 29.27 37.55 37.55 
TEB 800.00 669.15 711.80 786.52 786.52 702.1 557.29 686.9 780.7 692.9 675.5 705.5 739.5 
P (bar) 2.4 1.01 1.75 2.32 2.32 1.02 2.35 2.47 1.69 1.20 2.09 2.55 2.55 
SOR (-) 12.29 8.98 10.14 11.02 11.02 9.47 18.28 19.21 14.35 8.78 12.15 16.17 14.20 

0

EBF  36.87 39.80 39.55 39.65 39.65 27.77 27.82 27.82 27.7 34.56 40.32 40.32 40.68 

FBZ 1.37 0.302 0.613 1.34 1.34 0.30 0.60 1.18 1.18 0.32 0.70 1.47 1.43 
FTOL(kmol/h) 1.20 0.95 1.26 2.06 2.06 0.96 1.21 1.52 1.36 1.00 1.34 1.73 1.68 
Profit ($/h) 651 335.91 574.97 774.05 774.05 344 440 559 584 393 589 708 728 
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Table 5.8 Comparison of MODE, MODE III, hybrid MODE, elitist MODE, trigonometric MODE and NSGA 
algorithms for selected data points (Contd..) 

Parameter Industria
l value 

Elitist MODE (present study) Trigonometric MODE (present 
study)  

NSGA (Yee et al.) 

P Q R S P` Q` R` S` D E F 

FST (kmol/h) 14.9 6.608 9.13 15.501 15.501 7.93 11.02 15.48 15.20 8.45 11.04 15.01 
SST (%) 85.15 95.50 94.46 87.80 87.80 95.59 93.27 87.71 88.19 94.86 92.69 87.51 
YST (%) 40.30 21.38 22.31 36.61 36.61 18.65 25.53 36.61 35.93 21.88 27.38 35.26 
TEB 800.00 702.1 557.29 706.66 706.66 612.01 641.84 764.83 766.98 651.5 713.5 799.9 
P (bar) 2.4 1.02 2.08 2.46 2.46 1.44 1.98 2.01 2.00 1.84 1.84 2.03 
SOR (-) 12.29 9.47 11.92 15.45 15.45 10.87 11.752 13.28 12.19 10.74 10.69 10.94 

0

EBF  36.87 27.77 40.52 40.51 40.51 38.94 40.52 40.46 40.44 38.63 40.31 40.47 

FBZ 1.37 0.301 0.385 1.36 1.36 0.325 0.527 1.46 1.317 0.24 0.50 1.25 
FTOL(kmol/h) 1.20 0.968 1.13 1.68 1.68 0.999 1.20 1.59 1.617 0.22 0.37 0.90 
Profit ($/h) 651 344.62 440.67 701.73 701.73 362.50 515.27 732.27 733.66 330 467 673 
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The point O` has the maximum value of profit among the non-dominated 

solutions obtained using different algorithms (i.e., MODE III, hybrid MODE, elitist 

MODE, trigonometric MODE and NSGA) and an industrial operating point as shown in 

Table 5.8. A high value of profit is also mainly due to the high value of side products that 

are being formed (such as benzene and toluene). This also shows a drawback of the profit 

functions, as it does not consider the cost of separation of these byproducts. But this 

profit can give some preliminary idea of the profit, provided that the separation systems 

followed by reactors (i.e., train of distillation columns) are efficient.  

 

Effect of a penalty parameter on the Pareto front 

The Penalty function approach is used to handle the constraints. Three different weights 

of penalty parameters (i.e., 104, 108 and 1012) are used in the present work to study the 

effect of the penalty parameter on MOO of adiabatic styrene reactor and the Pareto fronts 

obtained are shown in Fig. 5.31.  

The algorithm converged to the same Pareto front but the diversity of solutions is 

different for each of the penalty parameter value. However, the diversity of solutions is 

found to be independent of the penalty parameter for most of the range, excepting that 

there is no specific trend is observed towards the extreme ends of the Pareto front. 

Considering the same convergence rate, the penalty parameter value of 104 is used in this 

study. It may be noted that a population size of 100 is used for these simulations 

consistently throughout this study. However, with a population size of 200 and with a 

penalty parameter value of 104, the Pareto front covers the entire range as is with 

population size of 100 and with a penalty parameter value of 1012. The diversity of the 
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obtained solutions is one area of the hybrid MODE algorithm, which needs to be further 

improved. Considering the same convergence rate and computational complexity (with 

high value of NP), the penalty parameter value of 104 and population size of 100 are used 

in this study. 

 

5.2.1.4 Case-3: Simultaneous maximization of FST and YST  

The Pareto front obtained for case-3 (simultaneous maximization of FST and YST) and 

corresponding decision variables are shown in Figs. 5.32a–5.32i. Unlike the results 

obtained for case-1 and case-2 (where the decision variable 0

EBF  either approached lower 

or upper bound), for case-3 the decision variable 0

EBF  is also equally important in 

producing the Pareto solutions. While maximizing FST and YST simultaneously, the 

decision variable P, remains practically constant and acquires the upper bound. The 

conflicting variables observed in this study (which are responsible for producing the 

Pareto solutions) are T, SOR and 0

EBF . These results show the ability of existing algorithm 

to produce more valuable and practical results which are important to the plant engineer. 

Fig. 5.32a shows that the industrial point lies below the Pareto front and the non-

dominated solutions are present on either side of the industrial point, thus offering a wide 

range and choice to the decision maker. However, in the study of Yee et al.(2003), the 

industrial point (for maximization of FST and YST) lies at one extreme (left) end of the 

obtained non-dominated solutions (Pareto front in their work) giving a limited choice for 

the decision maker. Figs. 5.32b–5.32c and Figs. 5.32f–5.32i show that the temperature of 

industrial operating point is higher than optimum Pareto temperatures, and SOR of 

industrial point is lower than the optimum Pareto SOR obtained in this study.  
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Fig. 5.31 Effect of Penalty parameter and population size on the Pareto optimal 
solutions obtained using hybrid MODE algorithm 
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Fig. 5.32 (a) Pareto optimal solutions obtained after 300 generations using the 
strategies of MODE (b-i) corresponding decision variables plotted against one of the 

objectives
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However, though the value of 0

EBF  (decision variable) is same as that of the Pareto 

values, the Pareto front is away from the industrial point due to the effect of conflicting 

effect of temperature and SOR on the said objectives. Therefore an optimum and 

judicious compromise of all the conflicting decision variables is important in such 

industrial multi-objective optimization studies.  

 

5.2.1.5 Case-4: Simultaneous maximization of FST, SST and YST 

Three-objective optimization study is carried out by simultaneously maximizing FST, SST 

and YST. The point corresponding to the best profit is taken from each of the case studies. 

The decision variables, objectives, concentration of unwanted byproducts and profit 

corresponding to these selected points along with those for the industrial point are shown 

in Table 5.9. The profit obtained for SST vs. YST objectives (case-2) (using MODE III, 

hybrid MODE and NSGA) is lower than the profit of industrial operating point. The 

profit strongly depends on the amount of styrene produced. As the productivity of styrene 

is not one of the objectives in SST vs. YST studies, the obtained best profit is lower than 

that of the industrial operating point. However, for the remaining cases (case-1, case-3 

and case-4) (both two-objective and three-objective optimization studies), hybrid MODE 

resulted in a higher profit than that obtained with the industrial operating point using 

MODE III & NSGA algorithms. Unlike hybrid MODE and MODE III algorithms results, 

NSGA algorithm results show that the profit obtained during a three-objective 

optimization study is less than the industrial operating profit. An evolutionary multi-

objective optimization algorithm usually results in a set of solutions (probably Pareto 
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front) in a single simulation run. The set of decision variables corresponding to these sets 

of solutions are also known. The decision maker can select any one particular solution 

from the Pareto front suitable to his/her requirements. Once the decision maker selects a 

point suitable to his/her need from the objective space, the corresponding decision 

variables may be obtained from the decision variable space. It is expected that if the 

mathematical model output matches with industrial data (along with satisfaction of 

constraints), the selected set of decision variables if adopted, may result in the desired 

values of objectives as selected by the decision maker. 

 

5.2.1.6 Adiabatic and steam injected configurations 

In this section, MOO of simultaneous optimization of three objectives namely, 

productivity, selectivity, and yield are considered using adiabatic and steam injected 

reactor configuration. In case of steam injected configuration, a part of steam is injected 

at the entrance of the reactor and the remaining half is added to a partway of reactor at a 

desired length. The schematic and discussion related to steam injected configuration is 

given in section 4.2.1. In this section MOO problem results obtained using elitist strategy 

of MODE algorithm are used to compare the adiabatic and steam injected reactor 

configuration.  

Figs. 5.33a - 5.33c show the Pareto fronts obtained for case-1, case-2 and case-3 

respectively using elitist MODE algorithm. As the steam is injected partway along the 

reactor length, two additional variables are involved in the steam injected reactor 

configuration. Due to proper utilization of the steam, this reactor configuration is 

supposed to give a better result as compared to an adiabatic reactor configuration.  
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Table 5.9 Summary of optimization case studies using MODE III, hybrid MODE and NSGA algorithms 

Parameter Industria
l 

MODE III (present 
study) 

 Hybrid MODE 
(present study)  

 NSGA (Yee et al., 2003)  

FST 

vs. 
SST 

SST 
vs. 
YST 

FST vs. 
YST 

3-Obj. 
Opt. 
Study 

FST 

vs. SST 
SST vs. 
YST 

FST vs. 
YST 

3-Obj. 
Opt. 
Study 

FST vs. 
SST 

SST vs. 
YST 

FST vs. 
YST 

3-Obj. 
Opt. 
Study 

FST (kmol/h) 14.9 11.91 12.38 16.73 14.47 15.68 12.26 16.64 16.41 15.01 10.89 14.48 13.09 
SST (%) 85.15 87.88 86.80 84.75 88.24 87.56 87.35 84.89 86.14 87.51 88.83 84.70 88.18 
YST (%) 40.30 40.60 42.23 39.84 36.52 37.55 41.83 39.97 39.10 35.26 39.47 40.80 38.23 
TEB 800.00 780.7 762.4 771.51 791.61 739.5 667.53 767.15 732.60 799.98 787.25 800.00 776.13 
P (bar) 2.4 1.69 2.13 2.62 1.75 2.55 2.55 2.62 2.54 2.03 1.76 2.45 1.99 
SOR (-) 12.29 14.35 15.07 13.49 11.35 14.20 19.91 13.86 16.03 10.94 12.54 12.47 13.16 

0

EBF  36.87 27.7 27.74 40.31 37.81 40.68 27.72 39.96 40.25 40.47 27.58 35.49 34.24 

FBZ 1.37 1.18 1.18 1.67 1.29 1.43 1.15 1.67 1.67 1.25 0.85 1.36 1.10 
FTOL(kmol/h) 1.20 1.36 1.58 2.20 1.53 1.68 1.51 2.16 1.84 0.90 0.82 1.25 0.66 
Profit ($/h) 651 584 601 792 716 728 547 783 741 673 482 637 565 
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Figs. 5.33a - 5.33c show that an enhanced value of the selectivity (in case-1 

and case-2 results), and enhanced values of the yield and the productivity (in case-3 

results) are obtained using the steam injected reactor configuration as compared to an 

adiabatic rector configuration. Decision variables involved in the steam injected 

reactor configuration are plotted against Case-1 objectives and are shown through 

Figs. 5.33d - 5.33o. Figs. 5.33d - 5.33e show that the majority of the variables 

(temperature of ethyl benzene) approached an upper bound as compared to adiabatic 

configuration decision variables for (TEB).. Figs. 5.33f - 5.33g show that a lower 

pressure value is preferred for the steam injected reactor configuration. The major 

reaction being a reversible endothermic reaction, high temperature and low pressure 

are preferred for forward reaction, which resulted in higher selectivity values for some 

of the variables of the steam injected reactor configuration. As productivity is directly 

related to the feed flow rate, an upper bound on the initial flow rate of ethyl benzene 

is approached for both the reactor configurations (Figs. 5.33h - 5.33i). SOR variable 

range varies between 9.47 - 15.45 and 12.59 - 19.73 for the adiabatic and the steam 

injected reactor configuration respectively (Figs. 5.33j - 5.33k). These ranges of 

variables resulted in the productivity values varying between 9.47 & 15.45 kmol/h 

and 6.26 & 14.413 kmol/h for the adiabatic and the steam injected reactor 

configuration respectively. The selectivity values vary between 87.8 & 95.5 % and 

89.28 & 96.15 % respectively for the adiabatic and the steam injected reactor 

configurations. Thus an upper bound of selectivity is achieved in case of steam 

injected configuration, while an upper bound of productivity is achieved in case of the 

adiabatic configuration. Figs. 5.33l - 5.33m and Figs. 5.33n - 5.33o show the variation 

of objectives, namely FST and the SST, with respect to the variation in the decision 

variable, δ (fraction of steam fed at the entrance), and λ (the location of steam 
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injection partway the reactor length) respectively, for the steam injected reactor 

configuration. All the decision variables approached the lower bound of δ. The 

remainder of the fraction is fed at λ fraction of the length of the reactor. The values of 

location of the second steam injection port vary in the ranges of 27 to 80% of the 

reactor length.  

In the next sub-section the results obtained using several strategies of MODE 

algorithm on PET reactor are discussed.  
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Fig. 5.33 Steam injected reactor configuration. Pareto fronts obtained for (a) 
case-1, (b) case-2, (c) case-3, (d-o) variation of case-1 objectives with respect to 

key decision variables using elitist MODE algorithm 
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5.2.2 Multi-objective optimization of polyethylene terephthalate (PET) reactor 

The set of reaction schemes (Eqs. B1-B9 in Appendix B), the objective functions (Eq. 

4.34), the constraints and the variables (as defined by Eqs. 4-35 – 4.42) are solved 

using ODE23s routine of Matlab (version 7.0) library. The model equations were 

solved on Pentium-IV, 2.4 GHz core 2 duo processor. The cpu time for MODE III, 

hybrid MODE, elitist MODE and trigonometric MODE algorithms for 300 

generations is 1884.92, 59,973, 3553.34, and 5658.64 seconds respectively. Table B1 

(Appendix B) shows the initial values of model parameters used in the present study. 

The values of parameters & properties, and the mathematical model output compared 

with industrial data are given in Tables B2-B3 (Appendix B) respectively. Simulation 

results obtained in the present study, such as concentration profiles along the length of 

the reactor of, the hydroxyl end group ([Eg]), the acid end group ([Ea]), ester linkages 

([Z]), the vinyl end group ([Ev]), the diethylene glycol end group ([EDEG]), the 

ethylene glycol ([EG]), water ([W]), and free DEG ([DEG]) are shown in Figs. 5.34a-

5.34g. In simulation, the following values of parameters are used for multi-objective 

optimization: NP = 200, CR = 0.9, F = random (0, 1), and GenMax=200.  

 Five cases of two-objectives namely, simultaneous minimization of concentrations 

of acid end groups and the vinyl end groups are considered by varying the set of 

decision variables. The results obtained using MODE, MODE III, hybrid MODE, 

elitist MODE and the trigonometric MODE algorithms (developed in this study) are 

discussed by emphasizing on the ability of algorithms to produce the Pareto fronts and 

the effects of dominant decision variables on the conflicting set of objectives.  
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Fig. 5.34 (Contd….) 
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Fig. 5.34 Concentration profiles along the length of reactor: (a) Hydroxyl end 
group ([Eg]); (b) Acid end group ([Ea]); (c) Ester Linkages ([Z]); (d) Vinyl end 

group ([Ev]); (e) Diethylene glycol end group ([EDEG]); (f) Ethylene glycol ([EG]); 
(g) Water ([W]) (h) Free DEG ([DEG]) 
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5.2.2.1 Case-1: With T, P, θθθθ* and N
*
 as decision variables  

Fig. 5.35 shows the Pareto optimal fronts obtained using the strategies of MODE 

algorithm for case-1. In this case, the optimization problem of simultaneous 

minimization of acid and vinyl end groups is solved using four decision variables 

namely, temperature, pressure, dimensionless time and the dimensionless agitator 

speed. In the earlier studies, Bhaskar et al. (2001) and Babu et al., (2007b), it was 

observed that the NSGA algorithm converged to a single optimal point. But MODE 

algorithm was able to give sufficient number of Pareto optimal points (9 points in this 

case) against the single point obtained using NSGA code. In this study, newly 

developed strategies are used to obtain the set of non-dominated solutions for PET 

reactor. Fig. 5.35 shows the quality of Pareto fronts obtained using these strategies of 

MODE algorithm. MODE algorithm resulted in local Pareto fronts as compared to the 

Pareto fronts obtained using MODE II, hybrid MODE, elitist MODE and the 

trigonometric MODE. The solutions obtained using MODE III, hybrid MODE, elitist 

MODE and trigonometric MODE algorithms lie on the same front. However the 

diversity and range of solutions vary. The Pareto fronts obtained using MODE III, 

hybrid MODE and elitist MODE algorithms are well spread with uniform diversity 

which covers a wide range of objective function values against that obtained using 

trigonometric MODE algorithm. It is interesting to note that NSGA study resulted in a 

single optimum point for the same problem, when same set of decision variables and 

constraints were used. However, for a min-min type of problem, through it seems that 

NSGA resulted in a better point, but it is more important in any MOO study to 

generate large number of wide spread points, which can serve the purpose of decision 

making. NSGA algorithm resulted in the lowest value in terms of vinyl end group 

objective function as compared to the solutions obtained using strategies of MODE. 
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However, NSGA algorithm could not capture the range of solutions in terms of 

another objective, i.e., the minimization of acid end group. Each point on Fig. 5.35a 

corresponds to a set of decision variables as given in Figs. 5.35b - 5.35i. Figs. 5.35a - 

5.35b show that hybrid MODE and MODE III algorithms approached the lower 

bound of pressure (P = 0.4 mm Hg), whereas the objective function values obtained 

using elitist strategy of MODE algorithm varies with pressure. The scattered solutions 

(values of decision variable, P) are obtained when trigonometric MODE algorithm is 

used. A lower bound of decision variable, T is approached. As both the reactions (B2 

& B9 in Appendix B) are degradation reactions, an increase in the temperature 

increases the production of Ea,out and Ev,out, and hence a lower bound of temperature is 

approached. The decision variable θ*nearly attains a constant value of 1.06. However 

slight scattered set of values are obtained using MODE III algorithms (as shown in 

Figs. 5.35f - 5.35g). The trend of solutions obtained using elitist and MODE II 

strategy of MODE show that the concentration of acid end group decreases with an 

increase in the speed of agitation, while the concentration of vinyl end groups 

increases with increasing the speed of agitation (Figs. 5.35h -5.35i). 
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Fig. 5.35 (a) Pareto front obtained for Case-1 using the strategies of MODE, (b-i) 
decision variables plotted against the respective objectives 
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5.2.2.2 Case-2: With P, θθθθ * and N
*
 as the decision variables 

It is interesting to note that the value of the decision variable temperature, T, remains 

constant and it is at its lower bound (value of 564.02 K) (Figs. 5.35d and 5.35e). As 

temperature does not cause any conflict among the objectives, the decision variable 

temperature, T, is removed from the multi-objective optimization problem. 

Fig. 5.36a shows the Pareto front obtained using the strategies of MODE 

algorithm developed in the present study. Fig. 5.36a shows the Pareto front obtained 

using a constant value of decision variable T as 568 K. From the results obtained in 

case-1, it is observed that a lower value of T is approached for meeting both the 

objectives simultaneously. However, in the industrial practice, it is possible that the 

temperature may shoot up by few degrees. Under these circumstances, in order to 

achieve both the objectives values, it becomes important to control the process by 

controlling other decision variables. Simulations are carried out by increasing the 

value of temperature to a value of 568 K. MODE algorithm could not result in any 

feasible solution when T was set to 568 K. However, other strategies of MODE 

resulted in a set of solutions as shown in Fig. 5.36a. The Pareto fronts obtained using 

the strategies of MODE with two different values of temperatures (i.e., T = 564 and T 

= 568) are shown on the same Fig. (i.e., Fig. 5.36b). It shows that by increasing the 

temperature, the decision maker has to sacrifice for both the objectives under 

consideration. This is because the degradation reactions (B2 and B9) are more 

favourable at high temperatures, and thus tend to increase the concentrations of acid 

and vinyl end groups, which is evident from Fig. 5.36b. 
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Fig. 5.36 (Contd…) 
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Fig. 5.36 Pareto fronts obtained for Case-2 results using the strategies of MODE, 
(a) Pareto fronts obtained using T=568 K, (b) Pareto fronts obtained using T = 

564 K and T = 568 K, (c-h) decision variables plotted against the respective 
objectives 
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When the temperature of reactor is kept constant at a higher value, the acid and vinyl 

end groups are independent of pressure of the reactor and the time of operation (as 

nearly constant values are approached). However, in an earlier study using MODE 

algorithm by Babu et al., 2007b, the objectives were dependent on the value of 

variable, dimensionless time. Thus, if the temperature of reactor is increased, the 

dimensionless time turns out to be a independent variable. Thus, the decision variable, 

temperature has more dominant effect than the variable dimensionless time, on the set 

of objectives considered in this study. In case-1, all the strategies of MODE algorithm 

resulted in a lower bound of temperature, i.e., T = 564. This is equivalent to the 

problem considered in Case-1, with T = 564. Hence, to avoid the repetition, the results 

obtained using T=564 are not discussed here. Unlike the results obtained using NSGA 

(where a single point solution was obtained), and the results obtained using MODE 

[with T = 564] (Babu et al., 2007b), the results obtained in this study show that, at 

higher temperature, the values of the objective function depend upon the speed of 

agitation.  

 

5.2.2.3  Case-3: With θθθθ * and N*as the decision variables 

In order to a gain further understanding of the problem and to check the robustness of 

the code developed, the modified multi-objective optimization is used in case-3. As 

θ* and N* are the main decision variables that are responsible for producing Pareto 

optimal front, we tried to simplify the formulation with only these two as the decision 

variables. For pressure, a reference value of 2.0 mm Hg is used during the 

simulations, and for the temperature the optimal value of 564.02 K from case-1 is 

chosen.  
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Since both the variables θ * and N*, which are responsible for producing the Pareto 

front, are considered, the algorithm should give Pareto set of solutions. However, at a 

higher value of temperature, MODE and MODE III strategies could not produce even 

a single feasible solution. This is because; a lower bound of pressure is approached 

when a high value of temperature is used (from Case-2 results). Thus at a high 

temperature, i.e., T = 568 K, if high pressure value is used, the set of equally good 

solutions or the Pareto set cannot be obtained. However, if the value of temperature is 

lowered to T = 564 K (or if the pressure is lowered [at high temperatures (i.e., T = 

568) as discussed in case-2 results], the Pareto front is obtained. However, hybrid 

MODE, elitist MODE and the trigonometric MODE algorithms are able to produce 

the Pareto set of solutions even when a high value of temperature is selected for case-

3 study. The reasons, for obtaining a smooth and well diverse Pareto front, are (1) 

improved local and global search in case of hybrid MODE algorithm, (2) improved 

selection strategy and preserving the elite population members in case of elitist 

MODE, and (3) an improved local search mutation approach in case of trigonometric 

MODE algorithm. The Pareto front obtained for case-3 using T = 564 K, using the 

strategies of MODE algorithm after 200 generations is shown in Fig. 5.37a. As a 

reference value of pressure (2 mm Hg) is considered in this case, the Pareto front is 

slightly above than, that reported in case-1 and -2. This also underlines the fact that 

the reference value of pressure is not the optimal value for an operation of a PET 

reactor. The trend followed by the two decision variables considered, is same as seen 

in the previous cases (case-1 and -2) (Figs. 5.37b - 5.37e). However, the elitist MODE 

algorithm approached an upper bound of decision variable, N
*, as shown in Figs. 

5.37d - 5.37e.  
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Fig. 5.37 Pareto fronts obtained for Case-3 results using the strategies of MODE, 
(a) Pareto fronts obtained using T = 568 K, and T = 564 K, (b-e) decision 

variables plotted against the respective objectives 
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5.2.2.4  Case-4: Only with P as the decision variable 

The importance of θ * and N* in producing a Pareto set of solutions is highlighted in 

this case. Here, all the values except pressure, are taken to be constant. The bounds on 

the pressure are kept same, while an optimal value of temperature is taken (564.02 K), 

and reference values are taken for θ * and N* (See Table B3 in Appendix B). The 

reason for considering only pressure as the decision variable is to study, how it affects 

the operation of PET reactor when other variables are considered constant. From 

cases -1 and -2, it is evident that pressure plays an important role in the optimization 

as its effect on the objective function is scattered and not the constant one. In the 

present MOO case, only P is allowed to vary. 

 Fig. 5.38a shows the Pareto fronts obtained using the strategies of MODE. 

None of the algorithms resulted in any feasible set of solutions, when T is held 

constant to a value of 568 K. However, a smooth Pareto front is obtained when T is 

allowed to reduce to a lower value and kept constant at a value of T = 564 K. The 

results are found to be interesting. Fig 5.38a shows that when θ* and N* are 

considered constant, there is no Pareto front, but a unique solution is obtained, when 

MODE algorithm is used. However, a smooth Pareto front is obtained using MODE 

II, hybrid MODE, elitist MODE and the trigonometric MODE. Also in case of results 

obtained when MODE algorithm is used, the values of pressure are found to be almost 

same, i.e., around 0.6 mm Hg and not scattered (Fig 5.38b). However, a uniform 

variation of pressure against the objectives is observed when, the improved strategies 

of MODE (developed in this study) are used (Figs. 5.38b - 5.38c). These results show 

that the effect of pressure is dependent on the speed of rotation of agitator. However, 

if the agitator speed is kept constant at a reference value, a single optimum value of 

pressure is obtained and not a scattered one, when MODE algorithm is used. Thus the 
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effect of pressure on producing Pareto front depends on the agitator speed, and there 

is no Pareto front produced using MODE algorithm when θ * and N* are constant. 

However, the values of the decision variable, P, corresponding to the solution on the 

Pareto front (Fig. 5.38a), varied between its range (0.4 – 2.0 mm Hg), when improved 

strategies of MODE algorithm is used. These results also show that the improvements 

made in the MODE algorithm resulted in a better set of solutions when industrial 

problem of MOO of PET reactor is reattempted to solve in this study.  

 

5.2.2.5  Case-5: With T and P as the decision variables 

The importance of reference time and reference speed values in producing a Pareto set 

of solutions is further stressed by considering only T and P as decision variables, and 

assuming a constant value for the decision variables θ* and N
*. The results, as 

expected, produced a single optimal solution when MODE algorithm is used. There 

are no trade-off solutions seen, and a unique solution obtained using MODE 

algorithm as shown in Fig. 5.39a. The solution obtained in this case is slightly 

different from the one obtained in case-4. In addition, a constant temperature value of 

565 K is obtained, and not 564.02 K, when MODE algorithm is used (Figs. 5.39b-

5.39c). This discrepancy in the value of temperature is due to the inability of MODE 

algorithm to effectively search the equally good global optimum points. Fig. 5.39a, 

though, shows a single point solution in case of hybrid MODE algorithm, yet it is a 

set of solutions not visible due to the increased scale used on both the axes.  
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Fig. 5.38 (a) Pareto fronts obtained for Case-4 results using the strategies of 
MODE, (b-c) decision variable P plotted against the respective objectives 
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Fig. 5.39 (Contd…) 
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Fig. 5.39 (a) Pareto fronts obtained for Case-5 results using the strategies of 
MODE, (b-e) decision variables plotted against the respective objectives 
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The Pareto front obtained using hybrid MODE algorithm is shown as a snapshot in 

Fig. 5.39a itself. However, the Pareto front obtained using hybrid MODE, (though 

superior to that obtained when MODE algorithm is used), is a local Pareto front as 

compared to the other Pareto fronts obtained when MODE III, elitist and 

trigonometric strategy of MODE are used. Among the Pareto fronts obtained using 

MODE III, elitist and trigonometric MODE algorithms, the MODE III and elitist 

Pareto fronts are well diverse, as compared to the Pareto fronts obtained using the 

trigonometric MODE algorithm.  

 Figs. 5.39b -5.39c show the effect of temperature on the objective functions 

Ea,out and Ev,out. The values are again found to be constant as in cases -3 and -4. 

Scattered points of decision variable, P, are obtained when MODE or hybrid MODE 

algorithms are used. This is because both the algorithms converged to a local region 

leading to a local Pareto front. However, a linear dependency of pressure on the 

values of objectives is obtained using MODE III, elitist- and the trigonometric- 

MODE algorithms. The results obtained in this section, prove that an improvement 

(MODE III, hybrid MODE, elitist MODE and trigonometric MODE algorithms) in an 

existing algorithm (MODE), resulted in providing a (perhaps) global Pareto front for 

the said industrial case study. 

In the next sub-section (Sec. 5.2.3) results obtained in the present study on 

MOO of oxidation of p-xylene to produce purified terephthalic acid are discussed.  
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5.2.3 Multi-objective optimization of oxidation of p-xylene to purified 

terephthalic acid (PTA) 

Fourth order Runge-Kutta method is used to solve the coupled differential equations 

of the model using ODE23 subroutine of Matlab (7.0). The model equations were 

solved on Pentium-IV, 2.4 GHz core 2 duo processor. The cpu time for MODE III, 

hybrid MODE, and trigonometric MODE algorithms for 50 generations is 684.09, 

2629.063, and 332.90 seconds respectively.The values of key parameters of different 

MODE strategies used in this study are reported in Table 5.10. The trigonometric 

mutation probability is set to 0.5. As discussed in section 5.1.1, MODE algorithm 

requires a high number of initial population points. Also, as MODE algorithm could 

not produce any feasible solution with a population size of 600 for case-4, an initial 

population size of 1000 is used in the present study. The reference values of several 

variables considered in the study are shown in Table C4 (Appendix C). Fig. 5.40 

shows the output of simulated results and typical concentration profiles for the liquid 

phase oxidation of p-xylene. Differential equations (Eqs. C1-C14) corresponding to 

series of oxidation reactions (see Eq. 2.8) are given in Appendix C. All the 

concentration terms of various species in terms of kinetic parameters for each step are 

obtained by solving the series of step reactions analytically. As the final product of 

interest is terephthalic acid (TA), its maximum yield can be obtained if 4-CBA 

concentration is optimum (minimum). Thus, p-toluic acid (intermediate) product 

concentration increases along with the final product (TA). This is evident from Fig. 

5.40, where the TA concentration increases monotonically while 4-CBA 

concentration decreases with respect to time. It can also be inferred from, Fig. 5.40, 

that the formation of TA commences only after the formation of p-toluic acid. The 

oxidation process takes place in the reactor and crystallizer as well.  



252 
 

 

 

 

 

 

 

 

Table 5.10 Key parameter values of MODE and elitist MODE used in the 
present study 

Algorithm NP CR F MaxGen 

MODE 1000 0.9 Random (0,1) 50 

MODE III 600 0.9 Random (0,1) 50 

Hybrid MODE 600 0.9 Random (0,1) 50 

Elitist MODE 600 0.9 Random (0,1) 50 

Trigonometric 
MODE 

600 0.9 Random (0,1) 50 
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Therefore, apart from the initial concentration of p-xylene, another factor which determines the 

conversion in the reactor is the residence time. The residence times of reactor and crystallizer 

are combined to get a total residence time of the process (Mu et al., 2004). In the following 

sections, different cases, (case-1- case-4 as defined in section 4.2.3) are discussed with respect 

to the industrial process parameters and corresponding objective function values. 

 

5.2.3.1 Case-1: [C0], and FFEED as decision variables 

Fig. 5.41a shows the Pareto optimal solutions obtained using MODE, MODE III, hybrid 

MODE and elitist MODE algorithms for case-1. Pareto solutions obtained from all the 

strategies of MODE algorithms lie on the same Pareto front (Fig. 5.41a). The results of Fig. 

5.41a are re-plotted (for better clarity of Pareto fronts) in Fig. 5.41b with horizontal shift in 

value of abscissa by +100 in MODE III, +200 in Hybrid MODE, +300 in Elitist MODE and 

+400 in Trigonometric MODE data points. Though, the inference obtained from Fig. 5.41a and 

Fig. 5.41b show that all the algorithms converged to the same level, the distribution of 

solutions, the range of solutions and the number of final solution converged on the Pareto front 

are different. Table 5.11 gives the lower and upper bounds of objective functions for each 

individual case attained by the strategies of MODE algorithm developed in this study. Table 

5.12 shows the number of points converged to the Pareto fronts (NOS) and percent of points 

converged (% CON) on the Pareto front using the individual strategy of MODE. Both MODE 

and elitist MODE algorithms are found to cover same range on the Pareto front. The value of 

all other decision variables is kept constant as shown in Table C4 (Appendix C) except for [C0] 

and FFEED. The plot of decision variable [C0] against 4-CBA concentration is shown in Fig. 

5.41c. Majority of the points lie on the upper bound of the decision variable in case of elitist 

MODE. However, a scattered set of variables are observed in the results obtained using all the 

strategies of MODE. The MODE and trigonometric MODE algorithms resulted in 173 and 170 
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numbers of points (NPS) converged on the Pareto front (17.3% and 28.3% of initial points) 

respectively. Fig. 5.41b shows that majority of the points obtained using MODE algorithms lie 

on the upper bound of [C0]. In case of trigonometric MODE algorithm, most of the points of 

decision variable, [C0], converged towards the middle portion of the bounds (i.e., 500-600 

ppm). Hybrid MODE and Elitist MODE algorithms resulted in higher percent of initial points 

converged on the Pareto front as shown in Table 5.12.  

5.2.3.2 Case-2: [C0], FFEED, and OHW
2

as decision variables 

In case-2, an additional decision variable, namely, water content, OHW
2

, is considered along 

with the set of decision variables considered in case-1. Fig. 5.42a shows the Pareto optimal 

front and the objective space. For a max-min type of problem, the Pareto front should lie on top 

left corner region. Fig. 5.42b shows the Pareto fronts obtained using the strategies of MODE 

and NSGA-II. All the algorithms captured the boundary of the feasible search space. Elitist 

MODE algorithm performs better than the other strategies of MODE in terms of distribution of 

solutions on the Pareto front. In order to check, whether the strategies of MODE algorithms 

converged to the global Pareto front or not, NSGA-II algorithm is also used for case-2. Fig. 

5.42b shows that the Pareto solutions obtained in this study using MODE, MODE III, hybrid 

MODE, elitist MODE, trigonometric MODE and NSGA-II algorithms lie on same Pareto front.  
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Fig. 5.41 Case-1: (a) Pareto optimal solutions using the strategies of MODE algorithm; (b) 
The results of Fig. 5.41a are re-plotted (for better clarity of Pareto fronts) in Fig. 5.41b 
with horizontal shift in value of abscissa by +100 in MODE III, +200 in Hybrid MODE, 

+3000 in Elitist MODE and +400 in Trigonometric MODE data points, (c) Effect of 
catalyst concentration [C0] (decision variable) on the concentration of 4-CBA 
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Table 5.11 Lower and upper bound attained by objective functions in each individual case 

Algorithm Case 

FFEED  (kg/h) c4-CBA (ppm) 

Bounds attained Bounds attained 

Lower  Upper  Lower  Upper  

MODE 

Case-1 
Case-2 
Case-3 
Case-4 

130013.00 
130380.93 
130102.96 
139445.55 

169991.00 
169991.19 
169991.19 
169955.82 

524.99 
527.60 
101.55 
171.18 

  918.76 
1076.18 
1037.61 
2450.69  

MODE III 

Case-1 
Case-2 
Case-3 
Case-4 

130122.02 
130122.65 
130122.57 
130122.99 

169999.18 
169999.18 
169996.56 
169855.53 

524.08 
524.08 
524.08 
524.77 

918.69 
918.69 
918.00 
914.36 

Hybrid MODE 

Case-1 
Case-2 
Case-3 
Case-4 

130123.38 
130298.66 
130122.39 
130170.78 

169996.55 
169998.20 
169857.22 
169999.31 

524.07 
524.07 
524.08 
524.20 

918.71 
918.70 
914.5 
918.69 

Elitist MODE 

Case-1 
Case-2 
Case-3 
Case-4 

130091.00 
130101.49 
137394.50 
133248.43  

169998.00 
169999.60 
169957.80 
169406.10 

524.34 
522.67 
122.01 
148.99  

918.70 
907.06 
1132.90 
1953.26 

Trigonometric MODE 

Case-1 
Case-2 
Case-3 
Case-4 

130088.45 
130298.66 
130105.14 
130123.36 

169970.63 
169990.54 
169998.07 
169975.42 

524.36 
525.81 
524.22 
524.07 

918.95 
918.77 
918.07 
918.90 

 

Table 5.12 Number of points converged on the Pareto front (NPS) and the percent of 
initial points converged (% CON) on the Pareto front in each case 

Algorithm Case-1 Case-2 Case-3  Case-4 

NPS %Con NPS %Con NPS %Con NPS %Con 

MODE 173 17.3 231 23.1 20 2.0 10 1.0 

MODE III 369 61.5 368 61.3 433 72.16 438 73 

Hybrid MODE 555 92.5 557 92.8 488 81.33 491 81.83 

Elitist MODE 600 100 600 100 600 100 600 100 

Trigonometric MODE 170 28.3 372 62.0 398 66.33 482 80.33 
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Fig. 5.42 (Contd…) 
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Fig. 5.42 (Contd…) 
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Fig. 5.42 Case-2:(a) The objective space and the Pareto front; (b) Pareto optimal solutions 
and objective space using MODE and Elitist MODE; (c) Comparison of Pareto front with 

actual range of values; (d) Magnified view with small range of values (A to D); (e) 
Magnified view with small range of values (E to B) 
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As all algorithms converged to the same front, the Pareto front resulted in present study may be 

termed as a global Pareto front. However, MODE is able to cover a better range than other 

strategies of MODE and NSGA-II as shown in Fig. 5.42c. For clarity, a portion of Fig. 5.42b 

(4-CBA concentration ranging 520 - 620 ppm, between A and D) is magnified and shown in 

Fig. 5.42c. Fig. 5.42c shows that the solutions obtained using the strategies of MODE are 

spread uniformly and almost at equidistance from each other. The Pareto fronts obtained using 

MODE and elitist MODE algorithm are shown with same range (as Fig. 5.42c) and is shown in 

Fig. 5.42d.  

Fig. 5.42d shows that the elitist MODE algorithm gave a better distribution of solutions 

compared to the MODE algorithm. Thus an improvement proposed in terms of preserving the 

elite population members resulted in a better set of solutions with equal distribution on the 

Pareto front. Again, a portion of Fig. 5.42b (4-CBA concentration ranging 750 - 900 ppm 

between E and B) is magnified and shown in Fig. 5.42e. The elitist MODE algorithm is found 

to give a well converged Pareto front when compared to Pareto fronts obtained using MODE 

and NSGA-II (Region E to B in Fig. 5.42e). Table 5.11 shows that all the strategies of MODE 

are able to capture the upper bound of the total feed rate (first objective function). Only MODE 

algorithm could capture the lower bound of first objective function. However, in case of second 

objective function, i.e., concentration of 4-CBA, MODE algorithm alone could capture the 

region BC as shown in Fig. 5.42b. This is the region of interest to those industries, which focus 

more on profit rather than the quality of product. Only three points are observed in region B-C 

using MODE algorithm. In elitist MODE algorithm the decision variables corresponding to 

point A are 688.96 ppm and 7.82 % ([C0] and water % respectively) and corresponding 

variables for point B are 798.418 ppm and 6.74 % respectively. This clearly indicates that in 

the presence of high concentration of catalyst, 4-CBA concentration increases with a slight 

decrease in % water content. Fig. 5.43a shows 4-CBA concentration as a function of catalyst 
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concentration. Fig. 5.43b shows the variation of 4-CBA concentration with % water. Catalyst 

concentration plays an important role in controlling 4-CBA concentration at the exit of the 

reactor, but in the presence of another decision variable, i.e., % of water in the solvent, catalyst 

concentration becomes almost independent of the 4-CBA concentration as shown in Fig. 5.43a. 

The values of other decision variables are kept constant as shown in Table C4 in Appendix C. 

Fig. 5.43c shows a 3-dimensional view of the decision variables plotted against 4-CBA 

concentration (objective function). The XZ plane shows the projection of Water % and 4-CBA 

concentration and the projection of [C0] and 4-CBA concentration is shown on YZ plane. Such 

projection plots are in general very useful for predicting the effect of individual decision 

variable on the objective function in a 3-dimensional plot. From this 3-D plot, it is clear that the 

3D surface formed is due to the effect of decision variable (water %) on 4-CBA concentration. 

Fig. 5.43b and 5.43c show that 4-CBA concentration increases with an increase in % water 

content.  

 

5.2.3.3 Case-3: [C0], FFEED , OHW
2

, FPX and VO2 as decision variables 

Fig. 5.44a shows the Pareto optimal solutions for case-3. In Figs. 5.44b- 5.44e the 

corresponding decision variables are plotted against one of the objective functions, 

(concentration of 4-CBA).  
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Fig. 5.43 (Contd….) 
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 Fig. 5.43 Case-2: (a) Effect of catalyst concentration [C0] on concentration of 4-CBA; (b) 

Effect of water content OHW
2

 on concentration of 4-CBA; (c) 3-dimensional view of 4-

CBA concentration vs. decision variables 
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The decision variables considered in this study are feed (xylene) flow rate, total feed rate, % 

water in the solvent, catalyst concentration and vent oxygen content. The value of the sixth 

decision variable, i.e., temperature of the reactor is kept constant at 461 K during the entire 

simulation run (optimum value obtained in results of case-4). From the result of case-4, it is 

observed that most of the decision variables approach the value of 461 K as a higher 

temperature favors the rate of forward reaction. The number of non-dominated solutions after 

50 generations in case of MODE algorithm is 20 with an initial population size of 1000. 

However, in elitist MODE algorithm after 100 generations, the number of non-dominated 

solutions is same as that of the initial population and multiple copies of a few solutions are 

formed. But both the MODE and elitist MODE algorithms converged to the same front. Other 

strategies of MODE, which include MODE III, hybrid MODE, and the trigonometric MODE 

algorithms converged to the same but local Pareto front as against the global Pareto front 

obtained using MODE and elitist MODE algorithms.  

The MODE and elitist MODE captured the entire range of second objective, i.e., 

concentration of 4-CBA (Fig. 5.44a & Table 5.11). MODE III, hybrid MODE and the 

trigonometric MODE converged to a local front and could not cover a complete range of 

second objective, i.e., concentration of 4-CBA, below a value of 500 ppm. In Fig. 5.44b, the 

outcome of MODE and elitist MODE are shown together, as these algorithms give a better 

Pareto front as compared to the Pareto fronts obtained using other strategies of MODE. As we 

move from point A towards D (In Fig. 5.44b and Table 5.11), we observe that the values of c4-

CBA and FFEED increase. If we compare points A, B and C with point D, we observe that point D 

has a very high value of 4-CBA content as compared to point A, B and C (in Fig. 5.44b).  

However, the total feed rate value (value of first objective function) is almost same for point B 

and D. The decrease of value of decision variable, % water content, from 3.33 % to 1.84 % and 

increase in value of another decision variable FPX from 31,610 kg/h to 33,165 kg/h has 
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increased the value of objective function c4-CBA from 302.03 ppm to 1037.6 ppm. Also, the 

comparison of points A, B and C reveals that the increase in 4-CBA impurity is mainly due to 

the decrease in % water content in the solvent and increase in the feed xylene rate. As we move 

from points A’ to D’ (in Fig 5.44b and Table 5.11), we observe an increase in 4-CBA impurity 

concentration. We find a sharp peak in the value of 4-CBA from point B and D. But in this 

case, unlike the result obtained using MODE, this peak in the value of 4-CBA concentration is 

due to a decrease in water content and a decrease in vent oxygen. Fig. 5.44c shows the effect of 

value of FPX on the objective function c4-CBA. Lower flow rate of xylene is desirable for low 

value of 4-CBA concentration at the exit of reactor. Fig. 5.44d shows that the decrease in vent 

oxygen content increases the 4-CBA concentration at the exit of reactor. 

Unlike the results of case-2, in the presence of other decision variables (
2OV , [C0], and 

FPX), the effect of value of 02HW  is negligible. Fig. 5.44e shows that the concentration of 4-

CBA is almost independent of % water content (unlike the results of case-2). Thus in the 

presence of oxygen content, the water content does not affect the 4-CBA concentration at the 

exit of reactor. The concentration of 4-CBA depends more on oxygen content irrespective of 

the presence of % water content. This consolidates the dominance of vent oxygen content over 

water content.  
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Fig. 5.44 (Contd….) 
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Fig. 5.44  Case-3: (a) Pareto fronts obtained using the strategies of MODE 
algorithm; (b) MODE and elitist MODE Pareto fronts; (c-f) Effect of different 

decision variables on concentration of 4-CBA  
    



270 
 

 
However, in the absence of vent oxygen content (or when vent oxygen content value is fixed), 

the 02HW parameter plays an important role in deciding the exit concentration of 4-CBA. The 

catalyst concentration is found to lie on the upper bound of its range as shown in Fig. 5.44f. 

High catalyst concentration is preferred for the reduction in 4-CBA concentration at the exit of 

reactor. From Fig. 5.44f, it is evident that the majority of the points have a value of [C0] greater 

than 720 ppm. Hence, we may conclude at this juncture that it is not a single variable that 

controls the output (4-CBA concentration) at the exit. But, the output depends on several 

variables, which is the typical feature of dependence of objective functions on the values of 

decision variables that are responsible for generating a trade-off in multi-objective optimization 

problems.  

 

5.2.3.4 Case-4: [C0], FFEED , OHW
2

, FPX VO2, and T as decision 

The Pareto fronts for strategies of MODE and elitist MODE algorithms for case-4 are shown in 

Fig. 5.45a. Similar to the results obtained in case-3 the Pareto fronts obtained using MODE III, 

hybrid MODE and the trigonometric MODE algorithms lie on the same, but, a local Pareto 

front for case-4 also. The smoothness of Pareto fronts obtained using MODE and elitist MODE 

algorithms is missing mainly due to the complexity of search space, which limits the 

algorithms to find improved and uniformly spread solutions on the Pareto front. This difficulty 

is also observed because the number of solutions converged on the Pareto front are less. The 

total number of solutions obtained using MODE algorithm with an initial population size of 

1000 is 10. All population points are found to converge towards the Pareto front in case of 

elitist MODE algorithm. A summary of number of solutions and the percent of initial points 

converged to the Pareto front for all the cases (case-1 – case-4), using the strategies of MODE 

algorithms are given in Table 5.12. 
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Fig. 5.45b shows the effect of vent oxygen content on 4-CBA concentration. As 

observed in case-3, the concentration of 4-CBA increases with a decrease in vent oxygen 

content. For the favored region of the Pareto front (lower value of 4-CBA), the vent oxygen 

content occupies the upper region. Liquid phase p-xylene oxidation is a zero-order reaction 

with respect to the oxygen content and first-order reaction with respect to p-xylene 

concentration. Lowest value of the 4-CBA concentration is achieved at the exit of reactor, if the 

first oxidation step occurs at a faster rate. This is possible by means of higher temperature 

(according to Arrheneous law) or at a higher oxygen concentration. If the first-stage oxidation 

is restricted, due to lack of oxygen concentration or reduced temperature, then the unconverted 

p-xylene may compete for reaction with the remaining oxidation products. In this way, it is 

possible to have an unconverted 4-CBA in the final product as an impurity. This is evident 

from Fig. 5.44b. It shows that at lower concentration of vent oxygen, the concentration of 4-

CBA in the reactor effluent increases.  

Fig. 5.44c shows the effect of water present in the solvent on the concentration of 4-

CBA at the reactor exit. A higher amount of % water content is required to reduce the 

concentration of 4-CBA. But this high amount of water has another practical difficulty in the 

separation step. The excess water and the water generated during oxidation reactions, form an 

azeotrope with solvent acetic acid, causing difficulty in separation of solvent from the process 

liquor for possible recycle of the solvent. Therefore in order to ensure a maximum possible rate 

of reaction, an optimum water content in the reactor is very necessary (considering the 

formation of water during the reaction also). In industrial PTA process, this excess water is 

usually removed by means of condensers connected to the reactor. Low pressure steam is 

generated from the heat recovered in condensing the vapors of water and solvent. This 

condensed stream is then sent to an azeotropic distillation column for further purification 

(Wang et al., 2007). 
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A higher catalyst concentration is preferred in liquid phase oxidation of p-xylene as 

shown in Fig. 5.44d. Catalyst plays an important role in enhancing the rate of reaction. 

However, there are a few points on the Pareto front, which lead to high 4-CBA concentration 

despite having high catalyst concentration. A careful observation of those points reveals that 

those points either belong to a low water content or to a low temperature. In the same way, 

there are a few points which have low catalyst concentration values but also have a low value 

of 4-CBA concentration as they possess high temperature values. The effect of temperature of 

reactor on the reaction is evident from Fig. 5.44e. A high temperature is favored for oxidation 

reactions. Thus, most of the points approach the upper bound as shown in Fig. 5.44e. The value 

of temperature was fixed to a reference value in case-3 (a high temperature favors the rate of 

forward oxidation reactions). Therefore, the Pareto front for case-3 is better than that obtained 

for case-4. 
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Fig. 5.45 (Contd….) 
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Fig. 5.45 Case-4: (a) Pareto optimal solutions using the strategies of MODE; (b-e) 
Effect of different decision variables on concentration of 4-CBA  
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Fig. 5.46 (Contd…..) 
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Fig. 5.46 (Contd…..) 
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Fig. 5.46 Comparison of Pareto front for all 4 cases; (a) MODE; (b) MODE III; (c) 

Hybrid MODE; (d) Elitist MODE; (f) Trigonometric MODE 

5.2.3.5 Comparison of cases 1-4 



277 
 

Figs. 5.46a- 5.46e show the comparison of Pareto front obtained for case-1- case-4, using, 

MODE, MODE III, hybrid MODE, elitist MODE and trigonometric MODE algorithms 

respectively. MODE algorithm as expected from the results obtained in section 5.1.1, resulted 

in a very little number of points, though started with a high number of initial points. Elitist 

MODE algorithm gave maximum number of Pareto solutions, resulting in 100 % convergence 

to the Pareto front with respect to the initial number of points for all the cases. However, 

MODE algorithm gave fairly good number of solutions, lying on the same front as that of elitist 

MODE. MODE III, hybrid MODE and trigonometric MODE algorithms resulted in local 

Pareto fronts for case-3 and case-4, as compared to the Pareto fronts obtained using Elitist 

MODE and the MODE algorithms. The reason for this is that hybrid MODE and trigonometric 

MODE algorithms are the extension of MODE III algorithm, whereas elitist strategy of MODE 

is an extension of MODE II algorithm (where new points are created and preserved). MODE II 

and elitist MODE algorithm work on the principle of adding new population points and 

preserving the best among them, However, in the strategies of MODE III algorithm, new points 

are created by perturbation and are  added to the existing population, if and only if, the new 

points dominate any of the member of current population. Thus, both the extensions of MODE 

II and MODE III algorithms have their own advantages and disadvantages. The summary of 

the number of non-dominated solutions obtained in each case using the strategies of MODE 

algorithm is shown in Table 5.12. 

In the next subsection, results obtained for MOO of low density polyethylene tubular 

reactor are discussed. 

5.2.4 Multi-objective optimization of Low Density Polyethylene (LDPE) Tubular 

Reactor 

The reaction scheme (Eqs. D1 - D10), model equations (Eqs. D11 - D18), and the kinetic rate 

constants and equations related to LDPE tubular reactor (Eqs. D19 - D29c) considered in this 
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study are given in Appendix D. Open literature contains several studies which incorporated 

several aspects related to modeling of continuous LDPE reactor. But due to the complexity of 

reaction mechanism, large number of kinetic parameters and a wide range of experimental 

conditions over which the kinetic parameters are to be determined, the consistent set of rate 

constants has not been established. Table 2.1a shows the rate constant parameters in some of 

the studies reported in the literature. Table 2.1b shows the rate constant parameters used in the 

remaining studies (continued from Table 2.1a) and in the present study. Kiparissides et al. 

(1993) reported that under normal operating (experimental) conditions the values of 

propagation and termination (by combination) rate constants cannot be obtained. The reported 

values of rate constants by various authors (Tables 2.1a and 2.1b) also show a large deviation. 

Differential Evolution (DE), an evolutionary, population based search algorithm is found to be 

successful in handling many complex and non-linear engineering problems both in the field of 

single and multi-objective optimization (Price and Storn, 1997; Lee et al., 1999; Stumberger et 

al., 2000; Chakraborty et al., 2003; Babu, 2004; Babu et al., 2005; Babu and Munawar, 2007). 

To bring down the deviation in the rate constant parameters and operating parameters, the 

differential evolution algorithm is used in the present study to obtain the optimum values of the 

parameters. The industrial values of temperature are read from the plot (Asteasuain et al., 

2001), using a computer oriented ‘scanit’ software which can read the data with high accuracy. 

The data is read at 28 discrete points from the plot and are shown in Table 5.13a along with the 

model predicted data at a specified length. Apart from the temperature at 28 discrete points, the 

exit values of monomer conversion, the side product concentration and the number-average 

molecular weight are used for minimizing function, I. Brandoline et al. (1996) presented a 

comprehensive model that proved to be a well known model which included several 

mechanisms of termination reactions. Agarwal et al. (2006) made use of a model proposed by 

Brandoline et al. (1996). They carried out the tuning of important rate parameters involved in 
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the model. When we tried to use the model predicted parameters reported by Agarwal et al. 

(2006) in the present study simulation runs using Matlab, we observed an average deviation of 

0% in Xm, 14.36 % in [SCB] and 12.58 % in Mn respectively at the exit of reactor. However, the 

trends obtained for each species in our study remain the same, as reported in the literature 

(Brandoline et al., 1996; and Agarwal et al., 2006). The important equations (such as friction 

factor) related to the heat transfer operations were not reported in the literature (Agarwal et al., 

2006). Therefore we considered two different cases of heat transfer in this study. In Case A, 

Eq. D29a, which represents the explicit form of friction factor (Brandoline et al., 1991) is used. 

In case B, an implicit form of friction factor (Eqs. D29b and D29c), as reported by Kiparissides 

et al. (1993) is considered. The comparison of industrial data and the model predictions (for 

both case A and case B) is given in Table 5.13b. In terms of monomer conversion, model 

predictions are exactly matching with industrial data in both the cases (i.e., case A & case B). 

Case B model predicted the exact value of number-average molecular weight, whereas case A 

model predicted the value of Mn with a relative error of 0.48%.  

Both Tables 5.13a and 5.13b show that with an efficient numerical solution procedure 

(NDFs), the model predicted values of present study match well with the industrial data. The 

difference in parameter values obtained in the present study and in the previous study (Agarwal 

et al., 2006) may be attributed to the two different solution procedures used in these studies. 

Considering the much accurate estimation of model output, case B is used for simulation in this 

study.  

5.2.4.1 Simulation, parametric estimation using differential evolution and parametric 

analysis 

Simulation and parametric estimation using differential evolution 

ODE15s subroutine of Matlab (7.0) library is used in the present study. Agarwal et al. (2006) 

used the Gears Routine (D02EJF of NAG library) in their simulation runs. ODE15s (in 



280 
 

MATLAB 7.0 library) is a variable order solver based on the numerical differentiation formula. 

ODE15s has an option to use backward differentiation formula (BDFs, also known as Gears 

method) that is usually less efficient. NDF can achieve the same accuracy as BDF with step 

size about 26% bigger (Shampine and Reichelt, 1997). This clearly highlights the inefficiency 

of BDF (Gears routine) in comparison with NDF. The slight deviation in the exit concentration 

of various species [obtained using the reported values of parameters in literature (Agarwal et 

al., 2006)] encouraged us to fine tune the model in order to find the rate law parameters 

associated with the eight reactions of initiation, propagation and termination. Differential 

Evolution (DE) algorithm is used to minimize the sum of square of the normalized error, I, 

between the model-predicted values and the industrial values (Eq. 5.5). 
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where, Ni is the value of i
th property, and the superscripts m and “ind” represent the values 

predicted by the model and the industrial values, respectively. Properties used in the estimation 

of function I in this study are temperature of reactor, number-average molecular weight, 

monomer conversion, and methyl, vinyl and vinylidene end groups per 1000 carbon atoms in 

the chain. The decision variables involved in this study are given by Eq. 5.6. 

( ) ( )vjjjbbbbtrspddo aVVVEEEEEEEEfuI ,,,,,,,,,,, 432121≅      (5.6) 

The internal heat transfer coefficient also affects the reaction kinetics and therefore the jacket 

fluid flow rates and parameter involved in viscosity estimation were also incorporated in the 

list of decision variables as shown in Eq (5.5). The final iteration of DE algorithm resulted in 

several near global solutions with an accuracy of the order of 10-4. Out of those near global 

solutions, the set of optimal decision variables is randomly selected and the variables are 

reported (for both case A and case B) in Table 5.14 along with the optimum values reported by 

Agarwal et al. (2006), operating plant values reported by Brandoline et al. (1996) and the 
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bounds of the parameters used for optimization study. Brandoline et al. (1996) provided the 

values of initiator concentration in the form of ranges due to certain proprietary reasons. Initial 

initiator concentration plays an important role in controlling the performance of reaction 

scheme (especially in the presence of varied set of input conditions).  Table 5.14 shows that 

most of the optimum parameters obtained in this study are close to those obtained by 

Brandoline et al. (1996). As the model predictions are matching well with the industrial data 

(Table 5.13b), a detailed parametric study is carried out through extensive simulations by 

varying different variables and design parameters. In the next sub-sections, the results of 

simulation of LDPE tubular reactor are discussed by considering the effect of various feed 

conditions and the operating design parameters.  

 

Effect of feed and jacket temperature on the reactor performance 

The effect of feed and jacket temperature is analyzed by plotting the axial variation of 

temperature, short chain branching (SCB), vinyl and vinylidene end group per 1000 C atoms 

along the length of the reactor as shown in Figs. 5.47-5.50. The data is analyzed by varying one 

variable, while fixing the values of other variables constant at reference values (Table D1 in 

appendix D). Table 5.15 shows the effect of change in feed and jacket temperature on various 

aspects [such as, TMAX, La, Mw, Mn, PDI, Xm and the exit concentrations of side groups (i.e. 

SCB, vinyl and vinylidene groups per 1000 C atoms as given by Eqs. D23-D29)].  
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Table 5.13a Comparison of model predictions with the industrial data on temperature 

profile along the axial length of the reactor 

Axial 
length 
(m) 

Temperature, T (K) Axial 
length 
(m) 

Temperature, T (K) 

Industrial data 
(Asteasuain et 
al., 2001) 

Model 
predicted 
[present 
study] 

Industrial data 
(Asteasuain et 
al., 2001) 

Model 
predicted 
[present 
study] 

0 350.0 350.00 603 529.2 528.27 

80 390.1 386.89 640 520.1 522.02 

113 407.8 402.99 677 514.4 516.38 

139 421.3 414.09 720 507 510.32 

173 439.9 431.14 762 499.2 504.89 

180 450.9 437.56 810 492.6 499.20 

209 516.4 531.68 857 503.7 497.42 
273 588.8 610.97 904 543.3 533.35 

307 592.7 600.36 940 562.3 555.54 

350 584.9 586.58 980 568.8 570.19 

388 575.4 576.03 1034 563.9 566.00 

430 563.8 565.27 1110 560.4 557.00 

463 553.5 555.63 1176 556 550.00 

510 546.1 545.51 1254 547.5 541.00 

549 539.1 537.81 1329 542.7 533.86 

 

Table 5.13b Comparison of model predictions of present study with the reported 
industrial data (Agarwal et al., 2006) of various properties at the exit of the reactor 

Specific property at 
the exit of reactor 

Industrial Model Predicted values  
Using gears 
routine (Nag 
library) and 
NSGA (Agarwal 
et al., 2006) 

Using numerical differentiation 
formulas (Matlab library) and DE 
(Present Study) 
Case A Case B 

Mn (kg/kmol) 21900* 21901 21793 21900 

XM
 0.3* 0.2971 0.3 0.3 

SCB (per 103 C 
atom) 

30∆ 30.13 29.63 29.91 

Vi (per 103 C atom)  0.1§ 0.1 0.099 0.099 

Vid (per 103 C atom) 
0.7∆ 0.7 0.684 0.695 

*Data taken from Asteasuain et al. (2001); §Data taken from Gupta et al. (1985); ∆Data taken from Goto et al. 
(1981) 
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Table 5.14 Bounds, reported values and final tuned values (present study) of the 
parameters 

Parameter Bounds Value of the parameter 
Reported 
(Brandoline 
et al., 1996) 

Using Gears 
method and 
NSGA 
(Agarwal et 
al., 2006)  

Using Numerical 
differentiation formulas 
(NDFs) and DE  
(Present study) 
Case A Case B 

Eo 125604 < Eo< 
138164 

135945 132168 133232 134892 

Ed1 117230 < Ed1< 
136071 

94621-
133140 

119929 123702 130189 

Ed2 117230 < Ed2< 
133977 

94621-
132721 

123117 127803 122373 

Ep 14653 < Ep< 
18003 

17626 17431 18002 17809 

Etrs 14653 < Etrs< 
20934 

17253 18406 20927 20930 

Ebb 56521 < Ebb< 
66988 

61964 60537 60832 60591 

Eb1 71175 < Eb1< 
87922 

79967 84747 79828 79809 

Eb 62802 < Eb< 
87922 

79967 70205 76149 75959 

Vj2 0.005<Vj2<0.007 0.0012 0.00403 0.00690141 0.00673415 

Vj3 0.005<Vj3<0.007 0.0012 0.00394 0.00634553 0.00399092 

Vj4 0.005<Vj4<0.007 0.0012 0.00332 0.00167684 0.00097869 

Vj5 0.001<Vj5<0.005 0.0012 0.00022 0.00125074 0.00278861 

av 0.009<av<0.0185 0.017 0.018 0.0132271 0.01477835 
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Table 5.15 shows that the maximum temperature attained in the reactor and the length 

at which it is attained play an important role in deciding the overall quality of the 

polymer. Polydispersity index (PDI), which is a measure of the distribution of 

polymer molecular mass in a given polymer sample, depends on these two factors. As 

per the kinetics, a lower value of jacket temperatures delays the propagation reaction. 

Fig. 5.47 shows that the maximum attained temperature (TMAX) and its location 

depend on the temperature of jacket fluid. As the initiator concentration gets depleted, 

the temperature of the reaction mass increases. Once the maximum temperature in the 

reactor is attained, the monomer conversion ceases and the properties such as, Mn, ρ, 

and concentration of [SCB], [vinyl] & [vinylidene] remain constant until the addition 

of another initiator at a length of 850 m along the length of the reactor (Figs. 5.48 - 

5.50). The concentrations of side chains ([SCB], [vinyl] and [vinylidene]) depend on 

the maximum temperature attained in the reactor. Higher the value of peak 

temperature attained in the reactor, the higher is the concentration of undesired side 

chain species. Sr. No. 4 of Table 5.15 corresponds to the lowest value of jacket 

temperatures (383 K in zones 1, 4, and 5; and 430 K in zones 2 and 3). The low 

heating rate resulted in lowest value of maximum temperature attained among the 5 

different cases considered in Table 5.15. The low value of jacket fluid temperature 

also resulted in a greater reactor length (Fig. 5.47 and La in Table 5.15) to attain the 

maximum temperature. This operating condition however resulted in low values of 

unwanted side chain concentration with an enhanced value of polydispersity index. 

Sooner is the peak temperature achieved in the reactor length, the smaller is the 

concentration of undesired side chains. The lower bound of jacket temperature (i.e., 

Sr. No. 4 in Table 5.15) due to low heating rate causes shortest distance of peak 

temperature, resulting in the lowest value of side chain concentrations per 1000 
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carbon atoms (i.e., SCB = 26.26, vinyl end group = 0.083846 and vinylidene end 

group = 11.891). The reaction mixture is cooled in the fourth zone in order to obtain a 

maximum efficiency of the initiator. It is also interesting to note that maximum 

temperature attained in the reactor and the concentrations of side chain products are 

relatively insensitive to the feed temperature over the ranges covered in this study. 

This result is consistent with those reported by Gupta et al. (1985). However, the 

changes in the values of jacket temperature show the effect on these parameters as 

shown in Table 5.15. PDI also depends on the jacket temperature and feed 

temperature. Smaller the value of jacket temperature and feed temperature 

(considered in this study), the greater is the value of PDI. Undesired side chain 

profiles (Figs. 5.48 - 5.50) show that the concentration of SCB, vinyl and vinylidene 

groups are observed immediately after the initiator injection in zone 3. The 

concentration of these species remains almost constant until the second initiator is 

injected in the fifth zone. The change in concentration of unwanted side products in 

zone 5 is less abrupt as compared to that observed in zone 3. This could be due to the 

high concentration of already formed polymer in zone 3, 4 and at the beginning of 

zone 5. 

 

Effect of initiators concentration on the reactor performance 

Figs. 5.51 – 5.55 show the effect of change in the injected initiator concentration on 

the axial variation of various entities along the length of the reactor. Initiator I1 and I2 

are injected at a length of 160 m and 850 m from the entrance respectively. The effect 

of initiator injections on temperature profile along the reactor length is shown in Fig. 

5.51a. 
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Fig. 5.47 Effect of jacket temperature on the temperature profile along the 
reactor length 
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Fig 5.48 Effect of feed and jacket temperature on short chain branching content 

along the reactor length 
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Fig. 5.49 Effect of feed and jacket temperature on vinyl end group profile along 

the reactor length 
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Fig. 5.50 Effect of feed and jacket temperature on vinylidene end group profile 

along the reactor length 
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Table 5.15 Various properties and exit concentration of different functional groups at various feed and reactor jacket temperatures 
 

Sr. 
No. 

T
Feed 

(K) 

Jacket 
temperature 

Max. 
temp 
TMAX 
(K) 

Axial 
position 
at Max 
temp  
La (m) 

M
w 

(kg/kmol) 
M

n 
(kg/kmol) 

PDI 

X
m

 

(%) 
(Exit) 
 

Exit side chain 
concentration/103 C atoms 

Unconverted 
ethylene 
(kmol/m3) 
 

T
1
 

(K) 

 T
2 

(K) 

Methyl 
group 
(SCB) 

Vinyl 
group 

Vinylidene 
group 

1 325 441 498 611.29 231.8 295175 21004 14.053 0.316 30.66874 0.10419 0.712635 13.61 

2 350 441 498 611.29 251.9 242368 20827 11.636 0.310 30.91519 0.105093 0.718724 13.796 

3 403 441 498 612.86 204.8 162743 20245 8.0384 0.2932 31.60865 0.108265 0.73925 14.616 

4 350 383 430 605.18 334.7 554464 25388 21.8393 0.3922 26.26394 0.083846 0.580967 11.891 

5 350 503 543 615.66 207.3 133493 17064 7.8230 0.2444 36.10889 0.130979 0.883567 15.7839 

T1 = Jacket temperature in zones 1, 4, and 5; T2 = Jacket temperature in zones 2 and 3 
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For clarity, Fig. 5.51a is magnified in Fig. 5.51b and Fig. 5.51c. Both figures are 

magnified in such a way that the region of initiator injection (150-300m and 800-

1250m) is clearly visible. Lower the concentration of initiator I1, the greater is the 

length it acquires for reaching the maximum temperature (see Fig. 5.51a). The peak 

attained in the temperature marks the depletion of initiator concentration. Thereafter, 

not much happens in the reactor, except the cooling of reaction mixture. The 

concentrations of side chains ([SCB], [vinyl] and [vinylidene] end groups) also depend 

on the peak attained by temperature in the respective regions (Figs. 5.52 - 5.54). The 

peaks attained in these regions in turn depend on the extent of propagation reaction 

that occurs in the respective regions in the reactor. Figs. 5.51b-5.51c and Table 5.16 

show that the length required attaining the maximum temperature in the reactor, in 

both the zones, increases with an increase in the concentration of initiators in the 

respective zones. The studies reported by Gupta et al. (1985), Brandoline et al. (1988), 

and Shirodkar and Taien, (1986) show a single peak in the profiles of temperature, 

unwanted side chain concentrations, and the monomer conversion. However, in this 

study and other studies reported in the literature (Asteasuain et al., 2001; Agarwal et 

al., 2006), multiple peaks of temperature, side chain concentrations and monomer 

conversion are observed. The exit monomer conversion remains nearly independent 

of initiator concentration over the ranges considered in this study (Fig. 5.55). 

However, the number-average molecular weight decreases with an increase in the 

values of initiator 1 and initiator 2 over the ranges reported in Table 5.16. The value 

of Reynolds number gradually decreases along the post peak temperature region 

(Fig.5.56). The initiator injection marks the start of highly exothermic reaction, thus 

increasing the values of Reynolds number and temperature. 
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Effect of reactor diameter, wall heat transfer coefficient and initial solvent 

concentration  

Table 5.17 shows the effect of reactor diameter, the wall heat transfer coefficient, and 

the initial solvent concentration on the performance of LDPE reactor. With an 

increase in reactor diameter, the time taken to attain the peak temperature in the 

reactor increases (Fig. 5.57) and the monomer conversion decrease. Effect of each 

parameter is studied independently keeping the values of other parameters constant at 

reference value (as given in Table D1 in Appendix D). Again the peak temperature 

remains almost constant with a change in values of these variables; however the 

location of peak temperature changes (Fig. 5.57). Polydispersity index increases with 

increasing the reactor diameter (Fig. 5.58 and Table 5.17). Polydispersity index is the 

ratio of weight-average molecular weight to the number-average molecular weight, 

which is a measure of the distribution of molecular mass in a given polymer sample. 

PDI also varies slightly with a variation in the wall heat transfer coefficient. The 

effect of presence of solvent is also tested on PDI. PDI shoots to a value of 37.84 

when solvent concentration is neglected. Sr. No. 1 to 3 of Table 5.17 and Fig.5.59 

show that the number-average molecular weight decreases marginally with an 

increase in diameter. But the weight-average molecular weight increases (with 

relatively high value) with an increase in the reactor diameter, which tends to increase 

the PDI. The number-average molecular weight increases substantially to a very high 

value in the first zone in the absence of solvent. The solvent plays an important role in 

controlling the temperature of the reactor by terminating the chain to the solvent.  
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Fig. 5.51 (a) Effect of initiator concentration on the reactor temperature profile; 

(b) Magnified part of Figure (a) in the range of 150-300 m reactor length (c) 
Magnified part of Figure (a) in the range of 800-1250 m reactor length 
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Fig. 5.52 Effect of initiator concentration on short chain branching content 

profile along the reactor length 
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Fig. 5.53 Effect of initiator concentration on vinyl end group per 1000 C atoms 

profile along the reactor length 
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Fig. 5.54 Effect of initiator concentration on vinylidene end group per 1000 C 

atoms profile along the reactor length 
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Fig. 5.55 Effect of initiator concentration on monomer conversion along the 

reactor length 
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Fig. 5.56 Fluid Reynolds number and temperature profile of tubular LDPE 

reactor along the reactor length 
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Table 5.16 Various properties and exit concentrations of various species at different values of initiator concentration 

Sr. 
No 

CI1 

(kmole/m
3) 

CI2 

(kmole/m
3) 

Max 
temp. 
TMAX 
(K) 

Axial 
position 
at TMAX, La 

(m) 

Mw 

(kg/kmol) 
Mn 
(kg/kmol) 

PDI 

Xm 
(%) 
(Exit) 
 

Side chain concentration/103 C 
atoms Unconverted 

ethylene 
(kmol/m3) 

Methyl 
group 
(SCB) 

Vinyl 
group 

Vinylidene 
group 

1 1.270e
-4

 4.14e-5 609.99 258.73 280599 22286 12.59 0.2964 29.64 0.0995 0.6825 14.05 

2 2.304e
-4

 4.14e-4 611.16 239.25 256053 22020 11.62 0.302 29.57 0.099 0.6817 13.96 

3 2.880e
-4

 4.14e-5 611.63 231.82 243594 21792 11.17 0.302 29.63 0.09985 0.6807 13.96 

4 3.168e
-4

 4.14e-5 611.93 229.63 238116 21668 10.98 0.303 29.68 0.100 0.6857 13.94 

5 4.02 e
-4

 4.14e-5 612.63 223.17 223829 21371 10.48 0.305 29.75 0.100 0.68838 13.91 

6 5.760e
-4

 4.14e-5 611.64 214.73 201120 20821 9.659 0.307 29.87 0.1012 0.69276 13.87 

7 2.88e-4 2.07e-5 613.82 231.82 246426 23127 10.66 0.290 27.91 0.0932 0.639 14.21 

8 2.88e-4 6.21e-5 611.63 231.82 242368 20827 11.63 0.310 30.92 0.1050 0.7187 13.80 
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Table 5.17 Various properties and exit concentration of different species at different reactor diameter, the wall heat transfer coefficient and the 
initial solvent content 

 

Sr. 
No 

Di  

(m) 

hw 

(W/m
2
.
0
C) 

[S]0 

(kmol/m
3
) 

Max 
temp. 
TMAX 
(K) 

Axial 
position 
at TMAX, 
La (m) 

Mw 

(kg/kmol) 
Mn 
(kg/kmol) 

PDI 

Xm 
(%) 
(Exit) 
 

Side chain concentration/103 
C atoms 

Unconverted 
ethylene 
(kmol/m3) 
 

Methyl 
group 
(SCB) 

Vinyl 
group 

Vinylidene 
group 

1 0.038 1256 0.0641 610.95 218.77 205163 21558 9.5167 0.3188 30.065 0.1009 0.69214 13.79 

2 0.05 1256 0.0641 611.63 231.82 242368 20827 11.636 0.3104 30.915 0.1050 0.71872 13.79 

3 0.063 1256 0.0641 612.16 245.76 278176 20547 13.538 0.3089 31.213 0.1068 0.72945 13.74 

4 0.05 628 0.0641 613.14 274.03 333787 19605 17.025 0.2975 32.297 0.1127 0.76675 13.83 

5 0.05 1884 0.0641 610.99 218.01 204120 21386 9.5443 0.3162 30.259 0.1018 0.69818 13.84 

6 0.05 1256 0 611.69 231.98 871875 23262 37.480 0.3110 30.951 0.1052 0.71984 13.78 
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Fig. 5.57 Influence of reactor diameter, wall heat transfer coefficient and initial 

solvent content on the temperature of the reactor 
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Fig. 5.58 Influence of reactor diameter, wall heat transfer coefficient and initial 

solvent content on the polydispersity index 
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Fig. 5.59 (a) Influence of reactor diameter, wall heat transfer coefficient and initial solvent 

content on the number-average molecular weight of polymer (b) Magnified part of 
Fig. (a) in the range of 15000-30000 Mn on y axes
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Fig. 5.60 Influence of reactor diameter, wall heat transfer coefficient and initial 

solvent content on the short chain branching per 1000 C atoms along the reactor 
length 
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Fig. 5.61 Influence of reactor diameter, wall heat transfer coefficient and initial 

solvent content on the vinyl end group per 1000 C atoms along the reactor length 



 300

An optimum choice of solvent is required in order to avoid the reactor instabilities and 

formation of side chains. In the absence of solvent, a relatively high value of Mn (=23, 

262) is observed at the exit of reactor, which substantiates the above discussion. Figs. 

5.60 - 5.61 show that the concentration of the side chain increases with increasing the 

reactor diameter, while it remains high at a lower value of the wall heat transfer 

coefficient. The side chain concentration is relatively independent of solvent 

concentration over the ranges covered in this study.  

 

Effect of initial monomer concentration and initial feed velocity 

The effect of initial concentration of monomer and the initial feed velocity on 

temperature, short chain branching and monomer conversion are shown in Figs. 5.62 – 

5.64. With a low value of initial monomer concentration, the location at which the peak 

temperature is attained in the reactor is delayed (Fig. 5.62). The concentration of SCB 

and the monomer conversion is raised to a very high value when a relatively low 

monomer concentration was injected at the inlet of the reactor. With an increase in the 

initial monomer concentration (in the range considered in this study), the peak 

temperature increases while the concentration of side chain (SCB) and monomer 

conversion decrease as shown in Figs. 5.62 and 5.64. With an increase in the feed 

velocity, the monomer conversion increases while the concentration of SCB decreases. 

The reduction in SCB at relatively lower feed velocity is due to the lower value of 

maximum temperature attained in the reactor (see Figs. 5.62 and 5.63). With an increase 

in the feed velocity, the location of peak temperature is delayed as shown in Fig. 5.63.  

In the next subsection, results obtained on MOO of LDPE tubular reactor are 

discussed.  
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Fig. 5.62 Influence of initial monomer flow rate and feed velocity on the 

temperature profile along the reactor length 
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Fig. 5.63 Influence of initial monomer flow rate and feed velocity on the short chain 

branching profile along the reactor length 
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Fig. 5.64 Influence of initial monomer flow rate and feed velocity on the monomer 

conversion profile along the reactor length 
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5.2.4.2 Multi-objective optimization of low density polyethylene (LDPE) tubular reactor 

ODE15s subroutine of MATLAB (7.0) library, which uses numerical differentiation 

formulas (NDFs), is used in the present study. The model equations were solved on 

Pentium-IV, 2.4 GHz core 2 duo processor. The cpu time for MODE III, hybrid MODE, 

and trigonometric MODE algorithms for 1500 generations is 206041.3, 2317101, and 

353610 seconds respectively. Detailed description of simulation and analysis of LDPE 

tubular reactor is given in section 5.2.4.1. The present study involves MOO of two 

objectives namely, maximization of conversion and minimization of sum of normalized 

side products (methyl, vinyl and vinylidene end groups). The problem formulation is 

given in section 4.2.4. In simulation, the following values of parameters are used for 

multi-objective optimization: NP = 200, CR = 0.9, F = random (0, 1). The maximum 

number of generations is fixed at 1500 generations. The penalty function approach is 

used with normalized form of the constraints. Weights, w1, and w2 are imposed on 

violation of constraints, namely, temperature and the number-average molecular weight. 

The value of both the weights (w1, and w2) is set to 1010 for all the cases. However, to 

study the effects of weights, w1=102 and w2=105 are also tried and the results are reported. 

The MOO study is carried out using MODE, MODE III, hybrid MODE and 

trigonometric MODE algorithms. However, MODE algorithm could not result in any set 

of feasible solutions.  

Case 1: Two-objective optimization study 

Multi-objective optimization of two objectives, namely maximization of conversion and 

minimization of sum of normalized side products is carried out using the algorithms 

developed in this study. A set of eleven decision variables, which consists of operating 

variables, namely, inlet temperature (Tin), inlet pressure (Pin), the feed flow rates of -
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oxygen (Fo), -solvent (FS), -initiators (FI,1, FI,2), and the five average jacket temperatures 

(TJ,1 - TJ,5), is considered.  

The Pareto fronts obtained using MODE III, hybrid MODE and trigonometric 

MODE algorithms are shown in Fig. 5.65. Three variations are considered in case 1 study 

(as given in section 4.2.4). The equality constraint on number-average molecular weight 

is relaxed by ± 2, ± 20, ± 200, and ± 1100 kg/kmol from its original value of 21, 900 

kg/kmol. However, the constraint with MN,f  = 21,900 ± 200 kg/kmol, is considered as a 

reference case and the results are discussed with respect to the reference case. Fig. 5.65 

shows that the trigonometric MODE algorithm converged to a local Pareto as compared 

to the Pareto fronts obtained using MODE III and hybrid MODE algorithms. Both hybrid 

MODE and MODE III algorithms converged to the same front. However, the diversity of 

solutions obtained using both the algorithms is different. To compare the performance of 

MODE III and hybrid MODE algorithms, the Pareto fronts obtained using both the 

algorithms are shown on the same plot (Fig. 5.66). MODE III algorithm covered a range 

of conversion of 0.335-0.375 on the abscissa. Fig. 5.67 shows the converged Pareto 

optimal solutions for various end point constraints on the number-average molecular 

weight (i.e., MN,f  = 21, 900 ± 2; MN,f  = 21, 900 ± 20; MN,f  = 21, 900 ± 200; MN,f  = 21, 

900 ± 1100) using hybrid MODE algorithm. More relaxed is the constraint, the better is 

the distribution of solutions (Fig. 5.67). With a strict constraint, i.e., MN,f  = 21, 900 ± 2, it 

is difficult to obtain a smooth Pareto front. Also, with such a strict constraint, the 

solutions obtained have a typical nature of high value of side chain products and a low 

conversion value as shown in Fig. 5.67. 
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Fig. 5.65 Pareto optimal solutions for case 1 using strategies of MODE for a 
reference case (MN,f  = 21,900 ± 200 kg/kmol) 
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Fig. 5.66 Pareto optimal solutions for case 1 using MODE III and hybrid MODE 
algorithms for a reference case (MN,f = 21,900 ± 200 kg/kmol) 
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Fig. 5.67 Converged Pareto optimal solutions for various end point constraints on 
the number-average molecular weight using hybrid MODE algorithm 
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Fig. 5.68 Pareto optimal solutions for case 1 using hybrid MODE algorithm for a 
reference case (MN,f = 21,900 ± 200 kg/kmol) 
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The Pareto optimal solutions obtained for case 1, using hybrid MODE algorithm after 

1500 generations for a reference case (MN,f = 21,900 ± 200 kg/kmol) is shown in Fig. 

5.68. Fig. 5.68 shows that a good distribution of solutions is obtained in the middle 

portion of Pareto front using hybrid MODE algorithm. However, the distribution is poor 

at the periphery of the Pareto front. The choice of step size in hybrid MODE algorithm 

was to be made after several trial and error runs. The step size used in generating a new 

neighborhood solution, in this problem is same, as that reported in section 5.2.1 for the 

case of MOO of styrene reactor. For a problem having more number of variables, it is 

difficult to consider a variation in step size for each individual variable. This drawback of 

hybrid MODE algorithm is observed during the MOO study of LDPE tubular reactor. For 

all the remaining test problems and the industrial case studies, the hybrid MODE 

algorithm performed better than MODE III. This shows that, unless a judicious choice of 

step size in generating a neighborhood solution is made, hybrid MODE cannot guarantee 

a well-diversed Pareto front. However, the hybrid MODE algorithm is able to converge 

to the same Pareto front as that obtained using MODE III algorithm.  

Fig. 5.69 shows the converged Pareto optimal solutions for various end point 

constraints on the number-average molecular weight (i.e., MN,f  = 21, 900 ± 2; MN,f  = 21, 

900 ± 20; MN,f  = 21, 900 ± 200; MN,f  = 21, 900 ± 1100) for case 1 objectives using 

trigonometric MODE algorithm. It is difficult to obtain a smooth Pareto front with a strict 

constraint imposed on the number-average molecular weight.  
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Fig. 5.69 Converged Pareto optimal solutions for various end point constraints on 
the number-average molecular weight using trigonometric MODE algorithm 
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Fig. 5.70 Pareto optimal solutions for case 1 using trigonometric MODE algorithm 
for a reference case (MN,f = 21,900 ± 200 kg/kmol) 
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As per the discussions made in section 5.2.4.1, the number-average molecular weight is a 

strong function of operating variables. Very limited range of optimum variables exists for 

such a strict constraint and even a slight change in operating variables from its optimum 

value may make it difficult to satisfy the constraints, and the algorithm may result in an 

infeasible set of solutions. Thus, it is difficult for any algorithm to converge to a smooth 

and well-diverse Pareto front. The trigonometric MODE algorithm could not approach 

the true Pareto front, as it involved a mutation strategy, which is greedy in nature. In the 

original article on trigonometric MODE algorithm (Fan and Lampinen, 2003), it is 

referred that the mutation operation used in the trigonometric differential evolution 

(TDE) algorithm for a single objective optimization problem, may result in a premature 

convergence, as the strategy of mutation used in TDE is greedy in nature and acquires a 

fast convergence. Therefore, the trigonometric MODE algorithm needs to be used with 

lesser value of trigonometric mutation probability, for an industrial problem, where a true 

Pareto is not known. Fig. 5.70 shows the Pareto front resulted for case 1 using 

trigonometric MODE algorithm. The quality of solutions from the Pareto front reveals 

that, the algorithms are not able to generate sufficient number of solutions especially at 

both ends of the front (extreme solutions). Thus, both the innovations considered in 

MODE III algorithms have their own benefits (both local and global search for faster 

convergence in case of hybrid MODE and an improved mutation strategy for 

trigonometric MDOE algorithm for a faster convergence). But the trigonometric mutation 

algorithm converged to a local Pareto front, and the hybrid MODE could not produce a 

well-diverse set of solutions as compared to the solutions obtained using MODE III 

algorithm.  
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Fig. 5.71 shows the converged Pareto optimal solutions for various end point 

constraints on the number-average molecular weight using MODE III algorithm. It is 

interesting to note that, unlike the results obtained using hybrid MODE and trigonometric 

MODE algorithm (where different Pareto fronts are obtained by relaxing the constraints 

bounds), the Pareto fronts obtained using MODE III algorithm for all the end point 

constraints (except, MN,f = 21900 ± 2) is same. However, the distribution of solutions on 

the Pareto front varies in each case. Fig. 5.72 shows the converged Pareto optimal 

solutions for various end point constraints on the number-average molecular weight (i.e., 

MN,f  = 21, 900 ± 20; MN,f  = 21, 900 ± 200; MN,f  = 21, 900 ± 1100) using MODE III 

algorithm. The Pareto front obtained with an end point constraint, of MN,f  = 21, 900 ± 

1100, covers a wide range of solutions as compared to the range of solutions obtained 

when a strict constraint on MN,f is used (as shown in Figs. 5.72 - 5.73).  

The set of decision variables corresponding to the Pareto optimal solutions 

obtained using MODE III algorithm for case 1 objectives using a reference case of MN,f = 

21900 ± 200 is plotted along with one of the objectives and is shown through Figs. 5.74a 

- 5.74k. PDI and number-average molecular weight for the reference case run using 

MODE III algorithm are also plotted against one of the objective functions and are shown 

in Figs. 5.74l - 5.74m. Fig. 5.74a shows that a lower inlet temperature is favored for a 

higher conversion. This is because; at high temperature the degradation reactions are 

more favorable, which are responsible to produce more side products, thus reducing the 

conversion value. 
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Fig. 5.71 Converged Pareto optimal solutions for various end point constraints on 
the number-average molecular weight using MODE III algorithm 
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Fig. 5.72 Converged Pareto optimal solutions for various end point constraints on 
the number-average molecular weight using MODE III algorithm 
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Fig. 5.73 Results of Fig. 5.72 are replotted with vertical shift of 0.2 (i.e., the values of 
the ordinate for MN,f = 21900 ± 200, MN,f = 21900 ± 1100 and are displaced vertically 

upwards by 0.2, and 0.4 respectively 
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A lower pressure is also favored for a higher conversion value as shown in Fig. 5.74b. 

The bounds on oxygen concentration lie in between 7.55414x10-5 - 1.5766x10-4 kmol/m3. 

Thus, Fig. 5.74c shows that the optimum decision variables, corresponding to the Pareto 

solutions obtained using MODE III algorithm for case 1, converged towards their lower 

bounds. However, the solvent concentration varies in between 0.19 – 0.255 kmol/m3 (Fig. 

5.74d). The conversion increases by increasing the flow rates of both the initiators (Figs. 

5.74e - 5.74f). However, the initiation reaction, being exothermic in nature, is responsible 

for generating a sudden high temperature in the reactor. A high temperature affects the 

number-average molecular weight and also is responsible for producing unwanted side 

chains as discussed in section 5.2.4.1.  

 A lower value of inlet temperature to the reactor is favored (from Fig. 5.74a). 

Thus a lower bound of jacket temperature for zone-1 is established corresponding to the 

Pareto optimal solutions (Fig 5.74g). The initiator-1 is injected at the inlet of zone-2 of 

reactor, causing a sharp rise in the temperature of the reactor. To remove the exothermic 

heat of reaction, a relatively cold utility is preferred in zones 2-5. This is evident from 

Figs. 5.74h - 5.74k. The PDI increases with an increase in conversion (Fig. 5.74l). The 

number-average molecular weight varies between the specified bounds, i.e., MN,f =21, 

900 ± 200 (Fig. 5.74m). This also ensures that all the solutions lying on the Pareto front 

belong to the feasible solutions (i.e., no violation of constraints).  
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Fig. 5.74 (Contd…..) 
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Fig. 5.74 (a-m) Decision variables, MN,f and PDI corresponding to the Pareto optimal 
solutions obtained using MODE III algorithm for the reference case (MN,f = 21900 ± 

200) 
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Effect of weight of the penalty parameter on the Pareto front 

The penalty function method (Deb, 2001) is used to handle the constraints in this study. 

Sufficiently high weights of penalty weights are used in this study to ensure the 

feasibility of Pareto optimal solutions. The normalized form of constraints is used. Two 

different simulation runs on MOO of case 1 are carried out using different sets of Penalty 

weights. In set 1, the weights of the penalty parameters are set as w1=102 and w2=105. In 

the second set of the penalty parameters, both the weights are set to as 1010. Fig. 5.75 

shows the Pareto fronts obtained using both the sets of penalty parameter weights. 

MODE III algorithm is able to converge to the same Pareto front irrespective of the 

weight of the penalty parameters considered in this study. However, such results can be 

obtained, only if, a large value of penalty parameter weight (as used in the present study) 

is used. For a smaller value of Penalty parameter, infeasible solutions may be obtained on 

the Pareto front.  

 

Effect of the monomer feed rate on the Pareto front 

The effect of the monomer (ethylene) feed rate on the Pareto optimal solution is also 

studied. MOO simulation runs are carried out by varying the monomer feed rate (such as, 

FM = 13 kg/s, FM = 11 kg/s, and FM = 9 kg/s), using MODE III algorithm, for case 1 

objectives using the reference case, i.e., MN,f = 21900 ± 200. As observed in the previous 

results (as discussed in section 5.2.4.1), monomer conversion reduces by increasing the 

monomer feed rate (Fig. 5.76). A higher conversion is obtained for a lower value of feed 

monomer rate.  
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Fig. 5.75 Pareto optimal solutions obtained using different weights of Penalty parameter 
using MODE III algorithm for the reference case (MN,f = 21900 ± 200) 
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Fig. 5.76 Pareto optimal solutions obtained using different initial monomer feed 
rates using MODE III algorithm for the reference case (MN,f = 21900 ± 200) 
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Case 2: Four-objective optimization study 

Four-objective optimization problem is considered in which each of the side products is 

taken as an independent objective function, along the maximization of the conversion. 

Thus case 2 considers simultaneous minimization of methyl, vinyl and vinylidene side 

chain content/1000 C atoms and maximization of the monomer conversion.  

Fig. 5.77 shows the Pareto fronts obtained after 1500 generations for case 1, and 

2500 generations for case 2 problems, using MODE III algorithm, for the reference case 

of MN,f = 21900 ± 200. As expected, the Pareto front obtained using four-objective 

optimization study for case 2 objectives, is scattered as compared to the Pareto front 

obtained using case 1 objectives (two-objective optimization study). While achieving the 

simultaneous satisfaction of all the objectives (in case of more than two-objectives) it 

may not be possible to obtain a smooth Pareto front and hence results in a scattered front 

(as is the case with 4-objective optimization of this study).  

The generation-wise progress of non-dominated set of solutions obtained for case 

2 problem using MODE III algorithm is shown in Fig. 5.78. The algorithm is able to 

reach towards the feasible Pareto region in less number of generations (i.e., less than 500 

generations). However, at higher generations, the convergence speed reduces as it is 

relatively difficult to find new and improved solutions than the existing ones. The side 

chain concentrations (such as methyl, vinyl and vinylidene groups/1000 C atoms) are 

plotted as a function of population points (in increasing number) named as population 

index and are shown through Figs. 5.79a - 5.79d respectively. 
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Fig. 5.77 Pareto optimal solutions obtained using four-objective optimization (case 2) and 
two-objective optimization (case 1) using MODE III algorithm for the reference case 

(MN,f = 21900 ± 200) 
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Fig. 5.78 Solutions obtained for case 2 at various generations using MODE III algorithm 
for the reference case (MN,f = 21900 ± 200) 
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Fig. 5.79 (Contd…) 
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Fig. 5.79 (a-d) Side chain concentrations (methyl, vinyl, and vinylidene) per 1000 C 
atoms and monomer conversion vs. population index respectively for case 2 using 

MODE III algorithm for the reference case (MN,f = 21900 ± 200) 
 



 326

0.345
0.350

0.355

0.360

0.365

0.370

0.66

0.67

0.68

0.69

0.70

0.71

0.75
0.76

0.77
0.78

0.79
0.80

0.81
0.82

V
in

y
l 
 g

ro
u

p
s
/ 
1

0
0

0
 C

H
2

Methyl 
gro

ups/ 
1000 C

H 2

X
M, f

a)

 

0.345
0.350

0.355

0.360

0.365

0.370

0.68

0.69

0.70

0.71

0.72

0.73

0.65

0.66
0.67

0.68
0.69

0.70
0.71

0.72V
in

y
lid

e
n
e

 g
ro

u
p

s/
 1

0
0
0

 C
H

2

Vinyl 
 gro

ups/ 
1000 C

H 2

X
M, f

b)

 

Fig. 5.80 (a-b) Three dimensional plot corresponding to the objectives, namely 
methyl, vinyl, and vinylidene per 1000 C atoms and monomer conversion for case 2 

using MODE III algorithm for the reference case (MN,f = 21900 ± 200) 
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The population is first sorted in increasing order of conversion. The rest of the values of 

the objective functions are rearranged in increasing order of conversion and then plotted 

in Figs. 5.79a - 5.79d. It is observed that a scattered variation of methyl end groups is 

observed with respect to the monomer conversion. This is also evident from Figs. 5.80a - 

5.80b, where three-dimensional Pareto fronts are plotted among the objectives. However, 

increasing trends are observed for vinyl and vinylidene end groups/ 1000 C atoms when 

plotted against the monomer conversion (Figs. 5.79b - 5.79c and Fig. 5.80b). 

 In the next subsection, the results obtained on supply chain and planning problem 

using multi-objective optimization considered in this study are discussed.  
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5.2.5 Multi-objective optimization of supply chain and planning 

In the present study, so far the attention is given in testing the performance of developed 

strategies of MODE on test problems (to validate their convergence and divergence 

issues) and some industrial case studies where major process design decisions are 

involved. Supply chain and planning is another area which is directly related with the 

profitability of several organizations. Though the problem of supply chain and planning 

is not directly related to process design decisions, in this study we made an attempt to test 

the performance of one of the strategies of multi-objective differential evolution (MODE) 

algorithm on the problem related to supply chain and planning. The detailed problem 

formulation (Pinto, 2007) is given in section 4.2.5. In this study, multi-objective 

differential evolution algorithm is applied successfully to solve multi-objective 

optimization problem on supply chain and planning. Several simulations runs were 

carried out using different sets of MODE parameters. Smooth Pareto fronts are obtained 

from each combination. The obtained results are also compared with those obtained using 

the evolutionary multi-objective optimization algorithm (NSGA-II). 

 

5.2.5.1 Case 1: Minimization of TOC and ratio of MC to TOC 

Figs. 5.81 – 5.83 show the Pareto fronts between total operating cost and the ratio of 

manufacturing cost to total operating cost obtained using MODE algorithm and NSGA-II 

(Pinto, 2007). Fig. 5.81 also shows the effect of NP on Pareto front after 10 generations 

and comparison of results of MODE study with NSGA-II, where the results are taken 

from the literature (Pinto, 2007).  
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Fig. 5.81 Comparison of Pareto fronts between TOC and MC/TOC using NSGA-II 
and MODE and effect of NP on Pareto front using MODE algorithm 
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Fig. 5.82 Pareto front between TOC and MC/TOC using MODE (at various values 
of CR) and NSGA-II 
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The same problem formulation is considered in this study. It is observed that there is no 

change in the number of solutions or the Pareto front after 10 generations. The Pareto 

front obtained is well diverged and smooth for all the reported values of NP (Fig. 5.81). 

However, for NP = 50, the number of non-dominated solutions is less (only 19 solutions 

are obtained). The Pareto front is found to be dragged towards the right in the region of 

MC/TOC value of 1.5 - 2.0 for this NP value. Fig. 5.81 also illustrates that for NP value 

of 100, or greater than 100, although the Pareto front remains the same, the number of 

non-dominated solutions vary. The number of non-dominated solutions for NP value of 

50, 100, 150 and 170 are 19, 23, 32 and 23 respectively. Fig. 5.82 shows the effect of CR 

on Pareto front at a fixed NP (= 150) and fixed number of generation (Ng = 10). Several 

simulation runs were carried out using various values of CR, and some of the 

combinations are shown in Fig. 5.82. MODE algorithm gives a smooth and well-

diversified set of non-inferior solutions for all values of CR in the range considered in 

this study. Population points at first generation (Ng = 1) and Pareto front after 10 

generations (Ng = 10) are shown in Fig. 5.83. After 10 generations, TOC is found to vary 

between the value of 35,14,335 and 8,31,75,376 while the ratio of MC to TOC varies 

between the range of 0.027752 and 0.561639. There is a clear trade off in these solutions. 

Table 5.18 shows the comparative analysis of current study results with results reported 

in literature (Pinto, 2007). As this is minimize-minimize (min-min) type of multi-

objective optimization problem, the extreme left point on the Pareto front would be the 

point that gives the maximum value of MC/TOC and a minimum value of TOC.  

In the study mentioned in literature (Pinto, 2007), the maximum value of 

objective function (TOC) does not correspond to the minimum value of objective 

function MC/TOC. In the current study, the maximum value of objective function TOC 
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in the entire Pareto range is 8,31,75,376, and the corresponding value of MC/TOC is 

0.0261639 which is the minimum value of MC/TOC in the entire Pareto set (Table 5.18). 

If the extreme right point on Pareto front is compared, then MODE algorithm gives better 

results than NSGA-II, which is shown in Table 5.18, when same problem is considered.  

 

5.2.5.2 Case 2: Maximization of profit and minimization of MC 

Fig. 5.84 shows the Pareto front between the objective functions, profit and MC. This set 

consists of maximize-minimize (max-min) type of objective functions. The values for 

profit vary between 287 and 94,466 while the values for manufacturing cost varies 

between 2,03,990 and 2,28,709. Fig. 5.84 also shows the Pareto front between two 

objectives and objective space after generation 1 and after 10 generations. The objective 

space is discrete in nature. This could be due to the effect of several complex constraints 

on objective space. The Pareto front remains the same for all reported values of the 

number of population points. The number of non-dominated points for NP values of 50, 

100, 150, and 170 are 6, 6, 8 and 8 respectively. The effect of the control parameter CR 

on the spread and diversity of Pareto front with NP = 150 and after 10 generations is also 

studied. No change in number of solutions or Pareto front is observed for different CR 

values in range (0.2 to 1.0). 

 

5.2.5.3 Case 3: Maximization of revenue and minimization of transportation cost 

Transportation cost is considered as an important cost in every supply chain problem. The 

trade-off among the objectives of revenue and transportation cost is shown in Fig. 5.85.  
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Fig. 5.83 Trade-off between TOC and MC/TOC after 10 generations and population 
points at generation 1 
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Fig. 5.84 Trade-off between Profit and MC after 10 generations and initial 
population points at generation 1  



 333

0.0 2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

1.0x10
5

1.2x10
5

0.0

2.0x10
7

4.0x10
7

6.0x10
7

8.0x10
7

1.0x10
8

 

 

M
in

 T
C

 (
IN

R
)

Max Revenue (INR)

 NP=150 CR=0.9 Ng=1

 NP=150 CR=0.9 Ng=10

 

Fig. 5.85 Trade-off between revenue and TC after 10 generations and objective 
space at generation 1 
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Fig. 5.86 Pareto fronts after 10 generations and effect of NP on Pareto front 
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The Pareto front for CR value of 0.9 and after 10 generations with different NP values is 

shown in Fig. 5.86. It is interesting to note that with 50 number of population points 

(NP), the Pareto front is converged to the local region. But if NP is increased 

subsequently beyond the value of 100, the Pareto set of solutions remains the same in 

terms of number of solutions and objective function values.  

Simulation runs are carried out with NP = 150 and Ng =10. Pareto fronts are 

obtained with good spread and diversity. Fig. 5.85 also illustrates the objective space for 

current supply chain problem. The objective space is discrete and the shape of objective 

space is nearly triangular with more number of solutions in the dominated region. Also 

the objective space is constructed in such a way that there are few points in the region of 

Pareto front. Because of very less number of solutions in the preferred region, the number 

of non-dominated solutions in the Pareto front is less. Fig. 5.86 shows the comparison of 

Pareto front obtained using MODE and NSGA-II (Pinto, 2007). NSGA-II has shown 

good diversity but in the region of higher value of objective function revenue. The Pareto 

front obtained using MODE is also well spread but in the range of lower value of revenue 

and higher value of TC.  

Table 5.19 shows the comparison of results obtained in present study with those 

reported in the literature (Pinto, 2007) using revenue and TC as objective functions. The 

standard deviation and mean values for objective function revenue using MODE 

algorithm are 58,656.33 and 50487.34 respectively. For objective function TC, the values 

for mean and standard deviation are 20,08,0159 and 2,87,273,803 respectively.  
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Table 5.18 Comparison of objective functions TOC vs. MC/TOC 
 

 NSGA-II (Pinto, 2007) MODE (Present Study) 
Objective 
function 

Corresponding 
value 

Objective 
function 

Corresponding 
value 

Statistic TOC   MC/TOC  TOC  MC/TOC  

Maximum 1,75,129 0.327840 8,31,75,376 0.027752 

Minimum 51,477.0742 0.4800 3,5,14,335 0.561639 

Mean 1,07,536.784  2,45,25,698  

Std. Dev. 25,382.0615  2,11,06,445  

 MC/TOC TOC MC/TOC TOC  

Maximum 0.494218 1,11,098.08593 0.561639 35,14,335 

Minimum 0.168562 87,393.14848 0.027752 83,17,537 

Mean 0.356052  0.175072  

Std. Dev. 0.051778  0.161984  

 
 
 
 

Table 5.19 Comparison of objective functions revenue vs. TC 

 
 NSGA-II (Pinto, 2007) MODE (Present Study) 

Objective 
function 

Corresponding 
value 

Objective 
function 

Corresponding 
value 

Statistic Revenue TC Revenue  TC  

Maximum 4,97,068.625 80233.382813 1,09,382 67,84,773 

Minimum 3,08,609.468 47546.855469 332 1,12,367.4 

Mean 4,36,037.487  58,656.33  

Std. Dev. 36,426.0705  50,487.34  

 TC Revenue TC Revenue  

Maximum 82,823.6171 493821.8750 67,847,736 1,09,382 

Minimum 47,546.8554 308609.45875 1,12,367.4 332 

Mean 66,736.9272  2,00,80,159  

Std. Dev. 6,267.46296  28,273,803  
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Fig 5.87 Change in number of non-dominated solutions (ND) vs. population size 
using MODE algorithm 



 337

 
This study also shows that the Pareto front obtained with various values of key 

parameters is almost same (except for very low value of NP). It is observed that the 

percentage of change in number of non-dominated solutions decreases with an increase in 

the number of population points. When CR values are changed in between 0.2 and 0.9, 

the Pareto front obtained is the same. F is assigned as a random value which ranges 

between 0 and 1. The % change in the number of non-dominated solutions decreases if 

NP value exceeds the value of 100 (Fig. 5.87), i.e., more number of non-dominated 

solutions are obtained when a higher value of NP is used. 

The success of MODE largely depends on its strong combined mutation and 

crossover policy. This combined operation is named as recombination. Usually in genetic 

algorithm both the mutation and crossover operations are carried out separately. Any 

multi-objective optimization algorithm needs to include two very important aspects, i.e., 

convergence and divergence of solutions. In MODE, crossover operator takes care of 

divergence, which enables it to search for better solution in every step. At the same time 

the scaling factor takes care of convergence of solutions, thus making the algorithm faster 

and accurate in a single step. 

Summary of the chapter: In this chapter, the results obtained using newly developed 

strategies of MODE algorithm (namely, MODE, MODE III, hybrid MODE, elitist 

MODE and trigonometric MODE) are discussed. This chapter is broadly divided into two 

parts. The first part is related to the analysis of MODE algorithm on the test problems. 

Effects of various parameters on MODE algorithms using several benchmark test 

problems are reported. Search space related analysis is carried out using complex test 

functions using newly developed strategies of MODE. Performance estimation (in terms 

of convergence and divergence metric) of newly developed strategies of MODE 
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algorithms is carried out and compared with other well known algorithms [(NSGA-II 

(both real- and binary- coded variants), SPEA, and PAES]. In part 2, the developed 

strategies of MODE are used to find the Pareto optimal fronts for several industrial case 

studies [which include, styrene reactor (both adiabatic and steam injected configuration], 

PET reactor, oxidation of p-xylene to PTA, LDPE tubular reactor and supply chain and 

planning).  

Next chapter deals with the concluding remarks of results obtained in the present 

study which includes the summary, conclusions and the major contributions followed by 

the future scope of research.   
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CHAPTER – 6  

CONCLUDING REMARKS 

 

The present study deals with development of new algorithms on evolutionary multi-

objective differential evolution and establishing their performance on several test 

problems and also on industrial case studies. Multi-objective differential evolution 

(MODE) algorithm is modified for improving its performance and new strategies of 

MODE, which include, MODE III, hybrid MODE, elitist MODE and the trigonometric 

MODE are developed in this study. A detailed literature survey is carried out on various 

evolutionary multi-objective optimization algorithms and their industrial case 

applications. The identified industrial case studies for present research which involve 

multiple process design decisions (which are considered as multiple objectives) include 

styrene reactor (both adiabatic and steam injected configuration), Polyethylene 

terephthalate (PET) reactor, oxidation of p-xylene to purified terephthalic acid (PTA), 

Low density polyethylene (LDPE) tubular reactor and supply chain & planning. This 

chapter presents a brief summary of the present work followed by conclusions, and future 

scope for research in this area.  

 

6.1 Summary 

6.1.1 Introduction 

An optimization problem involving more than one objective to be optimized 

simultaneously is referred as multi-objective optimization (MOO) problem. The expected 

outcome of MOO algorithm is a set of solutions which are non-dominated with respect to 
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each other. Such a set of solutions is called the Pareto optimal front. Unlike single 

objective optimization problems, MOO problems involve two search spaces, namely the 

decision variable space and the objective space. Two major goals that need to be 

achieved in any MOO algorithm are, (1) to converge to the true Pareto front, and (2) to 

have a diverse set of solutions on the Pareto front. Due to these multiple goals and 

multiple search spaces, the MOO problems are considered to be more difficult to solve, 

as compared to the single objective optimization problems.  

Industrial problems which involve multiple process design decisions such as 

maximization of yield of a complex process, maximization of conversion of a reactant, 

maximization of profit or the productivity of entire process plant or an individual process, 

maximization of selectivity of a process, minimization of unwanted byproducts, 

minimization of unwanted side chains in case of free radical reactions, minimization of 

sum of square of normalized error between the model predicted and the industrial 

results/data, maximization of heat exchanger area or minimization of heat load in heat 

exchange processes, maximization of mass transfer or rate of reaction in case of a 

complex chemical reaction, maximization of distillate in case of mass transfer processes, 

etc. This clearly indicates that there is a need to make multiple process design decisions 

in process industries; moreover, there exists a trade-off among many process design 

decisions. Many decision makers are interested in achieving two or more of the 

objectives simultaneously. The complexity of the industrial processes (which are unique 

blends of various aspects associated with reaction engineering, heat transfer, mass 

transfer, fluid flow phenomena, thermodynamics, separations, etc.), and the interest of 

decision makers, have attracted the attention of researchers to develop new and improved 

MOO algorithms. These MOO algorithms not only handle the complex search space of 

industrial problems efficiently, but also result in a set of non-dominated or non-inferior 
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solutions, i.e., the Pareto front for the said process. Therefore there is a need towards 

developing new and efficient algorithms.  

6.1.2 Gaps in Literature  

The existing literature on evolutionary multi-objective optimization algorithms suggests 

that great strides have been made in developing new algorithms based on natural 

phenomena in the last two decades. However, due to the complexity involved in the 

industrial processes and benchmark test problems, the attainment of global Pareto front 

with good diverse set of solutions is scarce. Various algorithms such as NSGA, NSGA-II 

and its improved variants, SOMA, SPEA, PAES are applied successfully to find the 

Pareto optimal set of solutions. Though these algorithsm have been successfully applied 

to some problems, they failed to give global Pareto fronts with diverse set of solutions for 

many other problems. MODE algorithm has been successful even for those problems 

which the popular EMO algorithms (NSGA) failed to give multiple solutions on Pareto 

front.  Differential evolution which is an improved version of GA is found to give 

optimal solutions at a faster rate for single objective optimization (Angira, 2005). 

Therefore there exists a scope to extend DE to solve multi-objective optimization 

problems. Though MODE algorithm was developed earlier, it has specific problems such 

as removal of dominated solutions in each generation and non-preservation of solutions. 

MODE algorithm gave comparable Pareto fronts for few industrial problems. However, 

there is a great scope and potential to improve the existing MODE algorithm. There is 

also a need to test the performance and robustness of MODE algorithm with the help of 

benchmark test problems.  

Various industrial applications as discussed in section 2.2 involving multiple 

objectives to be optimized are studied and gaps have been identified as mentioned against 

each of process in section 2.2. These problems are solved using different algorithms. But 
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as true Pareto optimal front for industrial applications is not known, there is a demand to 

revisit such industrial applications and then apply the newly developed and validated (for 

their performance) algorithms to find the Pareto optimal fronts and the optimal set of 

decision variables.  

As MODE algorithm is a newly developed algorithm, there exists a need towards 

developing new strategies of MODE. Hybrid algorithms involve a combination of 

traditional deterministic methods and the evolutionary algorithms to improve the 

performance of a standalone evolutionary algorithm. Hybrid algorithms have shown good 

potential in terms of achieving the optimal solutions at a faster rate in case of single 

objective optimization (Chiou and Wang, 1999). Hybrid methods have been developed 

for solving both single- and multi-objective optimization problems. But MODE algorithm 

or its strategies are not yet been hybridized with the local search methods. Therefore 

there is a great potential and need to develop a hybrid strategy of MODE algorithm and 

test its performance on identified processes and benchmark test problems. NSGA-II 

algorithm involves combination of elite population preservation and a crowding distance 

approach for solving MOO problems. There is a scope towards developing an elitist 

strategy of MODE. Along with Elitist and hybrid strategy of MODE, there also exists a 

need towards improving the performance of MODE by perturbing its mutation strategy 

using trigonometric mutation approach.  

It is necessary to check the performance of newly developed algorithms 

(especially in terms of Pareto front and convergence & divergence) with other well 

known algorithms. Many evolutionary algorithms, though give good visual view of the 

Pareto front, its comparison with true Pareto front using benchmark test function is 

important. Therefore, there exists a need towards checking the performance metrics of 
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newly developed strategies of MODE algorithm and compare them with other widely 

accepted algorithms.  

 

6.1.3 Scope of Work 

Industrial applications reported in the literature which involve multiple process design 

decisions are studied and the gaps of the research have been identified (as mentioned in 

section 2.2 & 2.3). These processes are simulated using suitable numerical techniques 

and multi-objective differential evolution algorithm is used to obtain the Pareto optimal 

set of solutions and the decision variables. The industrial applications include Styrene 

reactor, PET reactor, LDPE tubular reactor, oxidation of p-xylene to PTA and supply 

chain & planning. New strategies of MODE namely MODE III, Elitist MODE, hybrid 

MODE and trigonometric MODE are developed. The Pareto optimal sets of solutions are 

obtained for benchmark test problems using new strategies of MODE and are compared 

with the results obtained using NSGA-II. The Pareto optimal set for industrial 

applications (case studies) is also obtained using strategies of MODE and is compared 

with Pareto front obtained using other evolutionary algorithms. Important performance 

metrics such as convergence metric and divergence metrics are computed for newly 

developed strategies and their performance with other well known algorithms from the 

literature [such as NSGA-II (both real and binary versions), SPEA, PAES] are compared. 

6.1.4 Newly Developed Algorithms 

In this study, the existing strategy of MODE algorithm is improved for its performance, 

keeping in view the objectives of convergence to the true Pareto front and divergence of 

solutions on the Pareto front. Three major objectives are set to improve the performance 

of MODE algorithm: 1) To maintain a constant population size (thus giving stability and 

enough opportunity to all points to converge towards the Pareto front), 2) To improve the 
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convergence of MODE algorithm, so as to converge to the true Pareto front, 3) To 

maintain the diversity of solutions on the obtained Pareto front. In the beginning, two 

new strategies of MODE, i.e., MODE II and MODE III are proposed. MODE II 

algorithm is developed considering the drawback of removal of solutions from the 

original MODE algorithm After the non-dominated sorting in MODE algorithm, the 

dominated solutions are removed and equal number of solutions [randomly generated 

using the mapping rule (Price and Storn, 1997)], are added to the population. But it is 

found that this algorithm does not converge to the true Pareto front, because there is a 

random addition of population in each generation, which disturbs the stable search 

process. Therefore, the concept of elitism is incorporated in MODE II algorithm along 

with crowded distance sorting procedure and a new algorithm is proposed as the elitist 

MODE algorithm. MODE III algorithm is a simple extension of differential evolution 

algorithm with a modified selection scheme to handle multiple objectives simultaneously. 

As MODE III algorithm strongly relies on a simple working principle of differential 

evolution (with improved selection scheme), it converges towards the true Pareto front 

for majority of the test problems. However, hybridization of MODE III with a local 

search method is thought of and a new algorithm, namely hybrid MODE, is proposed. 

Hybrid MODE algorithm involves hybridization of evolutionary MODE III algorithm 

with a deterministic sequential simplex method. Trigonometric mutation operation is 

incorporated in the MODE III algorithm and another new algorithm, trigonometric 

MODE also has been proposed in this study.  
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6.1.5 Results and discussion 

The MOO study is divided into two major parts, i.e., MOO of the test problems and the 

industrial case studies. In the following sections, the MOO results obtained in the present 

study are summarized.  

 

6.1.5.1 Test problems 

Several benchmark test problems (both constrained and unconstrained) are considered in 

this study. The results obtained using newly developed strategies of MODE algorithm 

(namely, MODE, MODE III, hybrid MODE, elitist MODE and trigonometric MODE) 

are discussed. Test function analysis is divided in three parts. The first part is devoted to 

the analysis of MODE algorithms with respect to its control parameters. Various control 

parameters of MODE, which include, Crossover constant (CR), Number of population 

points (NP), Scaling factor (F), Number of generations (Ng) and Penalty parameter (R) 

are varied to test the performance and robustness of MODE algorithm. The results 

obtained in this study showed that MODE algorithm requires a high value of initial 

population size. But with increase in initial population size, the complexity of algorithm 

increases, thus making the algorithm more complex. MODE algorithm results in the same 

Pareto front, irrespective of the value of CR. However, a high value of CR is 

recommended, which is used consistently in the rest of the study. MODE algorithm has a 

typical drawback of removal of dominated solutions in each-iteration, which disturbs the 

search process. Focusing on these issues, MODE is improved further and additional 

strategies of MODE are developed, which caters towards the need of achieving both the 

convergence and divergence of Pareto solutions in case of MOO study. 

The second part of test function analysis includes checking the performance of 

new developed strategies of MODE algorithm (i.e., MODE III, hybrid MODE, elitist 
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MODE and the trigonometric MODE). Two widely accepted and important metrics from 

the point of view of MOO study are considered for evaluating the performance of newly 

developed strategies of MODE algorithm. These metrics include the convergence metric 

and the divergence metric. Pareto fronts are obtained using newly developed strategies of 

MODE and are compared with the Pareto front obtained using another evolutionary 

multi-objective optimization (EMO) strategy (NSGA-II). The important performance 

metrics are calculated for the selected test problems (SCH, FON, KUR, ZDT1, ZDT2, 

ZDT4, and ZDT3 and ZDT4) and the results are compared with other EMOs from the 

literature [NSGA-II (both real- and –binary coded variants), SPEA and PAES]. It is 

found that all the developed strategies of MODE converge to the true Pareto front for 

most of the test problems. However, the strategies of MODE result in slightly lower value 

of diversity metric as compared to NSGA-II for most of the test problems considered in 

this study. The elitist MODE and MODE III algorithms achieved a lowest value of 

convergence metric for KUR (=0.002921) and and ZDT3 (=0.01019) test problems 

respectively. The value of variance obtained is zero for all the newly developed strategies 

of MODE algorithm for test problems (SCH, FON and KUR), which indicates that these 

strategies of MODE algorithm are able to give a consistent set of results. None of the 

other EMOs from literature (as given above), have a variance value of zero for the test 

problems (SCH, FON and KUR).  

The search space analysis of selected test problems [SCH2 and POL 

(unconstrained) and Constr-Ex and TNK (constrained) (Table 4.1 and 4.2 respectively)] 

is carried out using the newly developed strategies of MODE. The discrete search space 

and a discontinuous Pareto front renders difficulty in the search process. It is difficult to 

obtain a uniform distribution of solutions on the Pareto front (in case of a discontinuous 

Pareto front). In case of Constr-Ex test problem the convergence of Pareto front obtained 
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using MODE III is restricted to a small portion of the front (region X in Fig. 5.19b). 

However, the hybrid-, trigonometric- and elitist strategy of -MODE algorithms are able to 

capture the entire region (i.e., regions X and Y in Fig. 5.19b) and thus give a well diverse 

set of solutions on the Pareto front. 

 

6.1.5.2 Industrial case studies 

A. MOO of industrial styrene reactor 

Multi-objective optimization of industrial styrene reactor is carried out using newly 

developed strategies of MODE. Two reactor configurations, namely, adiabatic and steam 

injected configurations are considered. Three objectives namely, maximization of 

productivity, yield and selectivity are considered. Four cases consisting of three cases of 

two-objective and one case of three-objective optimization are studied. For case-1 study 

(maximization of the FST and SST), it is found that MODE III, hybrid MODE, 

trigonometric MODE and the elitist MODE algorithms achieved 100% convergence to 

the Pareto front. A comparatively better trend of decision variables is observed in case of 

hybrid MODE, elitist MODE and trigonometric MODE algorithms, whereas the decision 

variables are slightly scattered in case of MODE and MODE III algorithms. For a few of 

the points, MODE algorithm approached lower bound of temperature and upper bound of 

initial flow rate of ethyl benzene (Figs. 5.24b and 5.24f). This resulted in a lower 

combined inlet temperature of the steam and the ethyl benzene mixture. Thus MODE 

algorithm resulted in local Pareto solutions, as due to high value of initial ethyl benzene 

flow & lower steam temperature. Thus, in order to reach towards the global Pareto 

solutions, it is necessary to attain a relatively high temperature of the combined stream of 

mixture of steam and ethyl benzene to the inlet of reactor. The Pareto front is obtained 

using initial population size of 100 and 200, where the convergence is equally good for 
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both the cases. The Pareto front is able to cover a wider range (with scattered points) 

when initial population size is kept at 200. However, with an initial population size of 

100 the convergence of algorithm to the Pareto front is good with nearly uniform 

diversity. 

The percentage of initial population points converged to the final Pareto front for 

step size-1, step size-2 and step size-3 (step size used in obtaining the neighbourhood 

point) are 86%, 96% and 93% respectively (Fig. 5.26a). The diversity of Pareto front is 

better when a step size-2 is used. With step size-1, the location of neighborhood solution 

may be far away from the current solution (as per Eq. 5.3), which may not give a better 

solution when local search method is used. However, when step size-3 is used, the 

solutions are crowded on the Pareto front. Therefore, step size-2 is recommended for this 

study.  

The profit function is analyzed using the newly developed strategies of MODE, 

i.e., MODE III, hybrid MODE, elitist MODE and the trigonometric MODE. The profit 

function considers the cost of major feed materials (cost of ethyl benzene and steam) and 

final valued products (such as Styrene, benzene and toluene). However, it does not 

account for the cost of separation. As the value of FST increases, the profit values also 

increase. MODE III algorithm, the maximum profit obtained is 584 ($/h) which is 

obtained at FST value of 11.91 kmol/h. Using hybrid MODE, the maximum profit 

obtained is 728 ($/h). In terms of both the selectivity and yield, nearly the same values 

are obtained using both the algorithms. However, using MODE III and hybrid MODE 

algorithms, the values of SST vary in between 87.14 - 95.5 % and 87.22 - 95.41 % 

whereas the values of YST vary between 21.38 - 42.02 % and 20.41 - 36.90 % 

respectively. The profit obtained using MODE III and hybrid MODE algorithms ranges 

in between 344.62 - 584.47 $/h and 383.32 - 728.44 $/h respectively. The profit obtained 
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using elitist MODE and trigonometric MODE algorithms ranges in between 362.5 - 732.5 

$/h and 344.6 - 701.5 $/h respectively. The major improvement obtained in profit 

function value is due to the increased value of FST obtained using hybrid MODE. The 

value of FST ranges from 6.60 - 12.36 kmol/h and from 7.72 - 15.81 kmol/h using MODE 

III and hybrid MODE algorithms respectively. However, with FST value of 15.50 kmol/h 

and 14.48 kmol/h, the trigonometric MODE and elitist MODE resulted in a profit value 

of 701 $/h and 738 $/h. The maximum profit obtained among all the algorithms 

corresponds to that obtained using elitist MODE.  

In case-2 results, when a higher initial ethyl benzene flow rate is obtained (in case 

of hybrid algorithm), the values of corresponding decision variables, such as T and SOR 

are also high. This is because, the higher temperature of mixed stream (steam and initial 

ethyl benzene) is responsible for a higher productivity. It is important for any efficient 

algorithm to explore the entire multi-dimensional search space so that a true Pareto front 

is obtained. MODE III algorithm in this study (see Fig. 5.29), and MODE and NSGA 

algorithms in earlier studies (Yee et al., 2003; Babu et al., 2005) converged to the lower 

bound of initial ethyl benzene flow rate, hence resulted in a local Pareto front. The value 

of SST decreases while the value of calculated YST increases as the value of FST increases. 

The range covered by MODE III and hybrid MODE algorithm in terms of calculated 

value of YST is 21.38 - 42.02 % and 20.41 - 37.51 % respectively. The NSGA algorithm 

resulted in a local Pareto front because SOR approached a lower bound. 

Unlike the results obtained for case-1 and case-2 (where the decision variable 

0

EBF  either approached lower or upper bound), for case-3 the decision variable 0

EBF  is 

also equally important in producing the Pareto solutions. While maximizing FST and YST 

simultaneously, the decision variable, P, remains practically constant and acquires the 



 350

upper bound. The conflicting variables observed in this study (which are responsible for 

producing the Pareto solutions) are T, SOR and 0

EBF . These results show the ability of 

existing algorithm to produce more valuable and practical results which are important to 

the plant engineer. The industrial point lies below the Pareto front and the non-dominated 

solutions are present on either side of the industrial point, thus offering a wide range and 

choice to the decision maker. However, in the study of Yee et al.(2003), the industrial 

point (for maximization of FST and YST) lies at one extreme (left) end of the obtained non-

dominated solutions (Pareto front in their work) giving a limited choice for the decision 

maker. 

The profit obtained for SST vs. YST objectives (using MODE III, hybrid MODE 

and NSGA) is lower than the profit of industrial operating point. The profit strongly 

depends on the amount of styrene produced. As the productivity of styrene is not one of 

the objectives in SST vs. YST studies, the obtained best profit is lower than that of the 

industrial operating point. However, for the remaining cases (case-1, case-3 and case-4) 

(both two-objective and three-objective optimization studies), the strategies of MODE 

resulted in higher profit than that obtained with the industrial operating point using 

MODE III & NSGA algorithms. Unlike hybrid MODE and MODE III algorithms results, 

NSGA algorithm results show that the profit obtained during a three-objective 

optimization study is less than the industrial operating profit.  

In case of steam injected configuration, an enhanced value of the selectivity (in 

case-1 and case-2 results), and enhanced values of yield and the productivity (in case-3 

results) are obtained using the steam injected reactor configuration as compared to an 

adiabatic rector configuration. For Case-1, the majority of the variable values 

(temperature of ethyl benzene) approached an upper bound as compared to adiabatic 
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configuration decision variables for (TEB).. The major reaction being a reversible 

endothermic reaction, a high temperature and low pressure value is preferred for forward 

reaction, which resulted in higher selectivity values for some of the variables of the steam 

injected reactor configuration. As the productivity is directly related to the feed flow rate, 

an upper bound on the initial flow rate of ethyl benzene is approached for both the reactor 

configurations. SOR variable range varies between 9.47 – 15.45 and 12.59 – 19.73 for the 

adiabatic and the steam injected reactor configurations respectively. These ranges of 

variables resulted in the productivity values varying between 9.47 & 15.45 kmol/h and 

6.26 & 14.413 kmol/h for the adiabatic and the steam injected reactor configuration 

respectively. The selectivity values vary between 87.8 & 95.5 % and 89.28 & 96.15 % 

respectively for the adiabatic and the steam injected reactor configurations. Thus an 

upper bound of selectivity is achieved in case of steam injected configuration, while an 

upper bound of productivity is achieved in case of adiabatic configuration. 

B. MOO of PET reactor 

In case-1, the optimization problem of simultaneous minimization of acid and vinyl end 

groups is solved using four decision variables, namely, temperature, pressure, 

dimensionless time and dimensionless agitator speed. MODE algorithm resulted in local 

Pareto fronts as compared to the Pareto fronts obtained using MODE II, hybrid MODE, 

elitist MODE and the trigonometric MODE. The solutions obtained using MODE III, 

hybrid MODE, elitist MODE and trigonometric MODE algorithms lie on the same front. 

However the diversity and range of solutions vary. The Pareto fronts obtained using 

MODE III, hybrid MODE and elitist MODE algorithms are well spread with uniform 

diversity which covers a wide range of objective function values against that obtained 

using trigonometric MODE algorithm. NSGA study resulted in a single optimum point 

for the same problem, when same set of decision variables and constraints were used. For 
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case-2, a lower value of T (decision variable) is approached for meeting both the 

objectives simultaneously. By increasing the temperature (from T = 564 K to 568 K), the 

decision maker has to sacrifice for both the objectives under consideration. This is 

because the degradation reactions (Eqs. B2 and B9) are more favourable at high 

temperatures, and thus tend to increase the concentrations of acid and vinyl end groups. 

At higher temperatures, the value of the objective function depends upon the speed of 

agitation. 

 For case-3, at a high temperature, i.e., T = 568 K, if high pressure value is used, the 

set of equally good solutions or the Pareto set cannot be obtained. However, if the value 

of temperature is lowered to T = 564 K (or if the pressure is lowered [at high 

temperatures (i.e., T = 568) as discussed in case-2 results], the Pareto front is obtained. 

However, hybrid MODE, elitist MODE and the trigonometric MODE algorithms are able 

to produce the Pareto set of solutions even when a high value of temperature is selected 

for case-3 study. For case-4, none of the algorithms resulted in any feasible set of 

solutions, when T is held constant to a value of 568 K. However, a smooth Pareto front is 

obtained when T is allowed to reduce to a lower value and kept constant at a value of T = 

564 K. When θ* and N* are considered constant, there is no Pareto front, but a unique 

solution is obtained, when MODE algorithm is used. However, a smooth Pareto front is 

obtained using MODE II, hybrid MODE, elitist MODE and the trigonometric MODE. 

Also in case of results obtained when MODE algorithm is used, the values of pressure are 

found to be almost same, i.e., around 0.6 mm Hg and not scattered (Fig 5.38b). However, 

a uniform variation of pressure against the objectives is observed when, the improved 

strategies of MODE (developed in this study) are used (Figs. 5.38b - 5.38c). These results 

show that the effect of pressure is dependent on the speed of rotation of agitator. 

However, if the agitator speed is kept constant at a reference value, a single optimum 
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value of pressure is obtained and not a scattered one, when MODE algorithm is used. 

Thus the effect of pressure on producing Pareto front depends on the agitator speed, and 

there is no Pareto front produced using MODE algorithm when θ * and N* are constant. 

However, the values of the decision variable, P, corresponding to the solution on the 

Pareto front (Fig. 5.38a), varied between its range (0.4 – 2.0 mm Hg), when improved 

strategies of MODE algorithm are used. These results also show that the improvements 

made in the MODE algorithm resulted in a better set of solutions when industrial problem 

of MOO of PET reactor is reattempted to solve in this study.  

C. Oxidation of p-xylene to PTA 

For case-1, the Pareto solutions obtained from all the strategies of MODE algorithms lie 

on the same Pareto front. Majority of the points lie on the upper bound of the decision 

variable in case of elitist MODE. However, a scattered set of variables are observed in 

the results obtained using all the strategies of MODE. In case of trigonometric MODE 

algorithm, most of the points of decision variable, [Co], converged towards the middle 

portion of the bounds (i.e., 500-600 ppm). For case-2, an additional decision variable, 

namely, water content, OHW
2

 is considered. Pareto solutions obtained in this study using 

MODE, MODE III, hybrid MODE, elitist MODE, trigonometric MODE and NSGA-II 

algorithms lie on the same Pareto front. As all algorithms converged to the same front, 

the Pareto front resulted in present study may be termed as a global Pareto front. 

However, MODE is able to cover a better range than other strategies of MODE and 

NSGA-II. The elitist MODE algorithm gave a better distribution of solutions compared to 

the MODE algorithm. Thus an improvement proposed in terms of preserving the elite 

population members resulted in a better set of solutions with equal distribution on the 

Pareto front. The catalyst concentration plays an important role in controlling 
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concentration of 4-CBA at the exit of the reactor, but in the presence of another decision 

variable, i.e., % of water in the solvent, catalyst concentration becomes almost 

independent of the 4-CBA concentration.  

 For case-3, the MODE and elitist MODE captured the entire range of second 

objective, i.e., concentration of 4-CBA. MODE III, hybrid MODE and the trigonometric 

MODE converged to a local front and could not cover a complete range of second 

objective, i.e., concentration of 4-CBA, below a value of 500 ppm. Unlike the results of 

case-2, in the presence of other decision variables (
2OV , [Co], and FPX), the effect of 

value of 02HW  is negligible. The concentration of 4-CBA is almost independent of % 

water content (unlike the results of case-2). Thus in the presence of oxygen content, the 

water content does not affect the 4-CBA concentration at the exit of reactor. The 

concentration of 4-CBA depends more on oxygen content irrespective of the presence of 

% water content. This consolidates the dominance of vent oxygen content over water 

content. However, in the absence of vent oxygen content (or when vent oxygen content 

value is fixed), the 02HW parameter plays an important role in deciding the exit 

concentration of 4-CBA. The catalyst concentration is found to lie on the upper bound of 

its range. High catalyst concentration is preferred for the reduction in 4-CBA 

concentration at the exit of the reactor. From Fig. 5.44f, it is evident that the majority of 

the points have a value of [Co] greater than 720 ppm. Hence, we may conclude at this 

juncture that it is not a single variable that controls the output (4-CBA concentration) at 

the exit. But, the output depends on several variables, which is the typical feature of 

dependence of objective functions on the values of decision variables that are responsible 

for generating a trade-off in multi-objective optimization problems. 
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Liquid phase p-xylene oxidation is a zero-order reaction with respect to the 

oxygen content and first-order reaction with respect to p-xylene concentration. For case-

4, lowest value of the 4-CBA concentration is achieved at the exit of the reactor, if the 

first oxidation step occurs at a faster rate. This is possible by means of a higher 

temperature (according to Arrheneous law) or at a higher oxygen concentration. If the 

first-stage oxidation is restricted, due to lack of oxygen concentration or reduced 

temperature, then the unconverted p-xylene may compete for reaction with the remaining 

oxidation products. In this way, it is possible to have an unconverted 4-CBA in the final 

product as an impurity. At lower concentration of vent oxygen, the concentration of 4-

CBA in the reactor effluent increases (Fig. 5.44b). Catalyst plays an important role in 

enhancing the rate of reaction. However, there are a few points on the Pareto front, which 

lead to high 4-CBA concentration despite having high catalyst concentration. Those 

points either belong to a low water content or to a low temperature. In the same way, 

there are a few points which have low catalyst concentration values but also resulted in 

low value of 4-CBA concentration as they possess high temperature values.  

 

D. LDPE tubular reactor 

i) Parametric Study: Simulation of Low density Polyethylene tubular reactor is carried 

out using ode15s subroutine of MATLAB (7.0). An efficient numerical solution 

procedure (Numerical differentiation formula) resulted in an improved model output 

when compared with the results reported in the literature. Differential Evolution, an 

evolutionary algorithm is applied successfully for finding the optimum rate law 

parameters and the operating conditions. In terms of monomer conversion, model 

predictions are exactly matching with industrial data in both the cases (i.e., case A & case 

B). Case B model predicted the exact value of number-average molecular weight, 
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whereas case A model predicted the value of Mn with a relative error of 0.48%. 

Following results are obtained during parametric study of LDPE tubular reactor.  

The maximum temperature attained in the reactor and the length at which it is 

attained play an important role in deciding the overall quality of the polymer. As the 

initiator concentration gets depleted, the temperature of the reaction mass increases. Once 

the maximum temperature in the reactor is attained, the monomer conversion ceases and 

the properties such as, Mn, ρ, and concentrations of [SCB], [vinyl] & [vinylidene] remain 

constant until the addition of another initiator at a length of 850 m along the length of the 

reactor. The maximum temperature attained in the reactor and the concentrations of side 

chain products are relatively insensitive to the feed temperature over the ranges covered 

in this study. Polydispersity index (PDI) also depends on the jacket temperature and feed 

temperature. Smaller the value of jacket temperature and feed temperature (considered in 

this study), the greater is the value of PDI. 

Lower the concentration of initiator I1, the greater is the length it acquires for reaching 

the maximum temperature. The peak attained in the temperature marks the depletion of 

initiator concentration. Thereafter, not much happens in the reactor, except the cooling of 

reaction mixture. The concentrations of side chains ([SCB], [vinyl] and [vinylidene] end 

groups) also depend on the peak attained by temperature in the respective regions. The 

number of peaks achieved in a reactor depends on the number of injections.  

With an increase in the reactor diameter, the time taken to attain the peak 

temperature in the reactor increases and the monomer conversion decreases. PDE 

increases with increasing the reactor diameter. PDI shoots to a value of 37.84 when 

solvent concentration is neglected. The number-average molecular weight increases 

substantially to a very high value in the first zone in the absence of solvent. The solvent 

plays an important role in controlling the temperature of the reactor and for terminating 
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the chain to the solvent. The concentration of the side chain increases with increasing the 

reactor diameter, while it remains high at a lower value of the wall heat transfer 

coefficient. With a low value of initial monomer concentration, the location at which the 

peak temperature is attained in the reactor is delayed. The reduction in SCB at relatively 

lower feed velocity is due to the lower value of maximum temperature attained in the 

reactor. With an increase in the feed velocity, the locations of peak temperature in the 

reactor are delayed. 

ii) Multi-objective optimization study: Two case studies consisting of two-objective 

optimization and four-objective optimization are considered. In case-1, two objectives, 

namely, maximization of conversion and minimization of the sum of square of 

normalized side chain concentrations are considered. A set of eleven decision variables, 

which consists of operating variables, namely, inlet temperature (Tin), inlet pressure (Pin), 

the feed flow rates of -oxygen (Fo), -solvent (FS), -initiators (FI,1, FI,2), and the five 

average jacket temperatures (TJ,1 - TJ,5), are considered.  

The trigonometric MODE algorithm converged to a local Pareto front as 

compared to the Pareto fronts obtained using MODE III and hybrid MODE algorithms. 

Both hybrid MODE and MODE III algorithms converged to the same front. However, the 

diversity of solutions obtained using both the algorithms is different. A good distribution 

of solutions is obtained in the middle portion of Pareto front using hybrid MODE 

algorithm. However, the distribution is poor at the periphery of the Pareto front. Unless a 

judicious choice of step size in generating a neighborhood solution is made, hybrid 

MODE cannot guarantee a well-diversed Pareto front. However, the hybrid MODE 

algorithm is able to converge to the same Pareto front as that obtained using MODE III 

algorithm. The trigonometric MODE algorithm could not approach the true Pareto front, 

as it involved a mutation strategy, which is greedy in nature. Unlike the results obtained 



 358

using hybrid MODE and trigonometric MODE algorithms (where different Pareto fronts 

are obtained by relaxing the constraints bounds), the Pareto fronts obtained using MODE 

III algorithm for all the end point constraints (except, MN,f = 21900 ± 2) are same. The 

Pareto front obtained with an end point constraint of MN,f  = 21, 900 ± 1100, covers a 

wide range of solutions as compared to the range of solutions obtained when a strict 

constraint on MN,f is used. A lower inlet temperature is favored for a higher conversion. 

This is because, at high temperature the degradation reactions are more favorable, which 

are responsible to produce more side products, thus reducing the conversion value. 

MODE III algorithm is able to converge to the same Pareto front irrespective of 

the weight of the penalty parameters considered in this study. However, such results can 

be obtained, only if, a large value of penalty parameter weight (as used in the present 

study) is used. The monomer conversion reduces by increasing the monomer feed rate. A 

higher conversion is obtained for a lower value of feed monomer rate. The Pareto front 

obtained using the four-objective optimization study for case-2 objectives, is scattered as 

compared to the Pareto front obtained using case-1 objectives (two-objective 

optimization study). 

E. Supply Chain and Planning 

In this subsection a summary of results obtained on MOO of supply chain and planning 

(as discussed in section 4.2.5) is given. Multi-objective optimization consisting of two 

objectives simultaneously of minimization of total operating cost (TOC) and 

minimization of the ratio of MC to TOC is considered for case-1. There is no change in 

the number of solutions or the Pareto front after 10 generations. The Pareto front obtained 

is well diversified and smooth for all the reported values of NP (Fig. 5.81). However, for 

NP = 50, the number of non-dominated solutions is less (only 19 solutions are obtained). 

The number of non-dominated solutions for NP value of 50, 100, 150 and 170 are 19, 23, 
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32 and 23 respectively. MODE algorithm gives a smooth and well-diversified set of non-

inferior solutions for all values of CR in the range considered in this study. Case-2 

consists of two objectives, namely maximization of profit and minimization of MC. The 

values for profit vary between 287 and 94,466 while the values for manufacturing cost 

varies between 2,03,990 and 2,28,709. The Pareto front remains the same for all reported 

values of the number of population points. The number of non-dominated points for NP 

values of 50, 100, 150, and 170 are 6, 6, 8 and 8 respectively. No change in number of 

solutions or Pareto front is observed for different CR values in the chosen range (0.2 to 

1.0). Case-3 consists of two objectives, namely maximization of revenue and 

minimization of transportation cost. With 50 number of population points (NP), the 

Pareto front is converged to the local region. But if NP is increased subsequently beyond 

the value of 100, the Pareto set of solutions remains the same in terms of number of 

solutions and objective function values. The objective space is discrete and the shape of 

objective space is nearly triangular with more number of solutions in the dominated 

region. Also the objective space is constructed in such a way that there are very few 

points in the region of Pareto front. Because of very less number of solutions in the 

preferred region, the number of non-dominated solutions in the Pareto front is less. The 

standard deviation and mean values for the objective function (revenue) using MODE 

algorithm are 58,656.33 and 50487.34 respectively. For objective function TC, the values 

for mean and standard deviation are 20,08,0159 and 2,87,273,803 respectively.  

 

6.2 Conclusions 

Based on the results obtained in the present study, following conclusions are drawn. 
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1. The outcome of Multi-objective differential evolution algorithm depends on the 

size of population. A large value of initial population size is recommended. 

2. The elitist MODE and MODE III algorithms achieved a lowest value of 

convergence metric for KUR (= 0.002921) and ZDT3 (= 0.01019) test problems. 

3. The value of variance obtained is zero for all the newly developed strategies of 

MODE algorithm for test problems (SCH, FON and KUR), which indicates that 

these strategies of MODE algorithm are able to give a consistent set of results. 

None of the other EMOs from the literature (Table 5.2), has a variance value of 

zero for the test problems (SCH, FON and KUR). 

4. In case of Constr-Ex test problem the convergence of Pareto front obtained using 

MODE III is restricted to a small portion of the front (region X in Fig. 5.19b). 

However, the hybrid-, trigonometric- and elitist strategy of -MODE algorithms 

are able to capture the entire region (i.e., regions X and Y in Fig. 5.19b) and thus 

give a well diversed Pareto front. 

5. Diversity metric values obtained using the strategies of NSGA-II are better as 

compared to the diversity metric values obtained using other algorithms 

considered in this study. 

6. For case-1 (Maximization of YST and SST) of styrene reactor, all the strategies of 

MODE algorithm (except MODE) converged to the same front. However the 

diversity of solutions on the Pareto front varies.  

7. For case-1 of styrene reactor, a comparatively better trend of decision variables is 

observed in case of hybrid MODE, elitist MODE and trigonometric MODE 

algorithms whereas the decision variables are slightly scattered in case of MODE 

and MODE III algorithms. 
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8. For case-1 of styrene reactor, in order to reach towards the global Pareto 

solutions, it is necessary to attain a relatively high temperature of the combined 

stream of mixture of steam and ethyl benzene to the inlet of the reactor. 

9. For case-1 of styrene reactor, the Pareto front is able to cover a wider range (with 

scattered points) when initial population size is kept 200. However, with an initial 

population size of 100, the hybrid MODE algorithm converges to the same Pareto 

front with nearly uniform diversity. 

10. The choice of step size used in generating a new neighborhood point in hybrid 

MODE algorithm affects the quality of Pareto front, thus the outcome of hybrid 

MODE algorithm depends on the value of step size used.  

11. For case-1 of styrene reactor, The maximum profit obtained among all the 

algorithms corresponds to that obtained using elitist MODE algorithm.  

12. For case-1 of styrene reactor, The higher initial temperature coupled with a higher 

initial flow rate of ethyl benzene, is responsible for producing higher flow rate of 

styrene, which in turn is responsible for giving higher profit values. As the value 

of temperature (decision variable) increases, the values of objective function FST 

and the profit also increase. 

13. For case-2 (Maximization of FST and SST) of styrene reactor, MODE III algorithm 

in this study, and MODE and NSGA algorithms in earlier studies (Yee et al., 

2003; Babu et al., 2005) converged to the lower bound of initial ethyl benzene 

flow rate, hence resulted in local Pareto front. The NSGA algorithm resulted in a 

local Pareto front also because SOR (decision variable) approached a lower 

bound, which resulted in lower value of combined stream of steam and reactant. 

14. The profit obtained for SST vs. YST objectives (using MODE III, hybrid MODE 

and NSGA) is lower than the profit of industrial operating point. The profit 
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strongly depends on the amount of styrene produced. As the productivity of 

styrene is not one of the objectives in SST vs. YST studies, the obtained best profit 

is lower than that of the industrial operating point. 

15. For Case-1, case-3 (Maximization of FST and YST) and case-4 (both two-objective 

and three-objective optimization studies), the strategies of MODE resulted in 

higher profit than that obtained with the industrial operating point and NSGA 

algorithms. 

16. In case of steam injected configuration, an enhanced value of the selectivity (in 

case-1 and case-2 results), and enhanced values of yield and the productivity (in 

case-3 results) are obtained compared to an adiabatic rector configuration. 

17. For case-1 (With T, P, θ* and N*as decision variables) of PET reactor, the Pareto 

fronts obtained using MODE III, hybrid MODE and elitist MODE algorithms are 

well spread with uniform diversity which covers a wide range of objective 

function values against that obtained using trigonometric MODE algorithm. 

NSGA study resulted in a single optimum point for the same problem, when same 

set of decision variables and constraints were used.  

18. For case-2 (With  P, θ* and N*as decision variables) of PET reactor, a lower 

value of T (decision variable) is approached for meeting both the objectives 

simultaneously. By increasing the temperature (from T = 564 K to 568 K), the 

decision maker has to sacrifice for both the objectives under consideration. 

19. For case-3 (With θ* and N*as decision variables) of PET reactor, at a high 

temperature, i.e., T = 568 K, if high pressure value is used, the set of equally good 

solutions or the Pareto front is not obtained. However, if the value of temperature 

is lowered to T = 564 K (or if the pressure is lowered at high temperatures (i.e., T 
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= 568)], the Pareto front is obtained. However, hybrid MODE, elitist MODE and 

the trigonometric MODE algorithms are able to produce the Pareto set of 

solutions even when a high value of temperature is selected. 

20. For case-4 (only P as decision variables) of PET reactor, none of the algorithms 

resulted in any feasible set of solutions, when T is held constant to a value of 568 

K. However, a smooth Pareto front is obtained when T is allowed to reduce to a 

lower value and kept constant at a value of T = 564 K. 

21. For case-1 of PTA oxidation, the Pareto solutions obtained from all the strategies 

of MODE algorithms lie on the same Pareto front. Majority of the points lie on 

the upper bound of the decision variable in case of elitist MODE. However, a 

scattered set of variables is observed in the results obtained using all the strategies 

of MODE. 

22. For case-2 of PTA oxidation, all algorithms converged to the same front. 

However, MODE is able to cover a better range than the other strategies of 

MODE and NSGA-II. The elitist MODE algorithm gave a better distribution of 

solutions compared to MODE algorithm.  

23. For case-3 of PTA oxidation, MODE and elitist MODE algorithms captured the 

entire range of second objective, i.e., concentration of 4-CBA. MODE III, hybrid 

MODE and the trigonometric MODE converged to a local front and could not 

cover a complete range of second objective, i.e., concentration of 4-CBA, below a 

value of 500 ppm. 

24. For case-4 of PTA oxidation, at lower concentration of vent oxygen, the 

concentration of 4-CBA in the reactor effluent increases.  

25. In LDPE problem, an efficient numerical solution procedure (numerical 

differentiation formulas) is used to integrate and simulate the mathematical 
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model. In terms of monomer conversion, model predictions are exactly matching 

with industrial data in both the cases (i.e., case A & case B). Case B model 

predicted the exact value of number-average molecular weight, whereas Case A 

model predicted the value of Mn with a relative error of 0.48%. 

26. Differential evolution, an evolutionary algorithm is applied successfully for 

finding the optimum rate law parameters and the operating conditions. 

27. Detailed simulation based study of LDPE tubular reactor is carried out 

emphasizing on the effects of feed and jacket temperature, initiators 

concentrations, reactor diameter, wall heat transfer coefficient, initial solvent 

concentration, initial monomer concentration and initial feed velocity on the 

performance of reactor. 

28. It is important to control the jacket temperature which affects the location of peak 

temperature in the reactor. The location of peak temperature affects the important 

characteristic properties of LDPE such as the concentration of side chain groups, 

PDI, and Mn, etc.  

29. Initiator concentration gets depleted at a faster rate soon after the initiator 

injection with sharp peak in temperature profile. Not much happens in the reactor 

once the conversion of initiator is completed. It becomes important to control the 

temperature of reactor at this point in order to avoid the formation of undesired 

side chain groups and also to have a control on mean molecular weight. 

30. The concentration of solvent plays an important role in controlling the number 

average molecular weight and the PDI; however the side chain concentration is 

relatively independent of solvent concentration over the ranges covered in this 

study. 
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31. For LDPE reactor MOO study, the trigonometric MODE algorithm converged to 

a local Pareto front as compared to the Pareto fronts obtained using MODE III 

and hybrid MODE algorithms. Both hybrid MODE and MODE III algorithms 

converged to the same front. However, the diversity of solutions obtained using 

both the algorithms is different. 

32. Unlike the results obtained using hybrid MODE and trigonometric MODE 

algorithms (where different Pareto fronts are obtained by relaxing the constraints 

bounds), the Pareto fronts obtained using MODE III algorithm for all the end 

point constraints (except, MN,f = 21900 ± 2) are same. The Pareto front obtained 

with an end point constraint of MN,f  = 21, 900 ± 1100, covers a wide range of 

solutions as compared to the range of solutions obtained when a strict constraint 

on MN,f is used. 

33. MODE III algorithm is able to converge to the same Pareto front irrespective of 

the weight of the penalty parameters considered in this study. However, such 

results can be obtained, only if, a large value of penalty parameter weight (as used 

in the present study) is used. 

34. The monomer conversion reduces by increasing the monomer feed rate. A higher 

conversion is obtained for a lower value of feed monomer rate. The Pareto front 

obtained using the four-objective optimization study for case-2 objectives, is 

scattered as compared to the Pareto front obtained using case-1 objectives (two-

objective optimization study). 

35. Multi-objective optimization of supply chain and planning problem is carried out 

using MODE algorithm and the results are compared for 4 different cases. The 

MODE algorithm output gives consistent set of results for all the cases even after 

varying the set of its control parameters (CR, NP, and F). MODE algorithm also 
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performed better than NSGA-II, in terms of spread and diversity, when same 

problem formulation is considered.  

 

 

 

6.3 Major Contributions 

Major contributions of the present study are 

1. The original MODE algorithm is modified and two additional strategies, namely, 

MODE II and MODE III are developed. 

2. Hybridization of evolutionary MODE III algorithm is carried out with 

deterministic sequential simplex method and hybrid MODE algorithm is 

proposed. 

3. MODE II algorithm is improved further by incorporating the concepts of elitism 

and the crowding distance approach and another new algorithm, viz., elitist 

MODE is proposed. 

4. The trigonometric mutation operation is included in the evolutionary MODE III 

algorithm and trigonometric MODE algorithm is proposed. 

5. The performance metrics (in terms of convergence and divergence) of developed 

algorithms are compared with the performance metric values obtained using other 

evolutionary MOO algorithms from the literature.  

6. The Pareto fronts are obtained for the selected test problems using the newly 

developed strategies of MODE and are compared with those obtained using 

another evolutionary MOO algorithm (NSGA-II).  
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7. MOO of selected industrial case studies (styrene reactor, PET reactor, oxidation 

of p-xylene to PTA, LDPE tubular reactor and supply chain & planning) are 

carried out using the newly developed strategies of MODE. The performance of 

newly developed strategies of MODE algorithm (with respect to the effect of set 

of key dominant decision variables on the values of objectives) is compared 

among themselves and with other EMOs reported in the literature.  

6.4 Future Scope of Research 

1. An improved constraint handling technique can be included in the existing MOO 

algorithms.  

2. The existing MODE algorithm and its strategies can further be improved by 

incorporating new recombination and selection schemes. 

3. In the present study, all the variables are initialized using the mapping rule. 

However, more initialization methods may be incorporated and their performance 

may be compared with the existing algorithms.  

4. Various mutation schemes may be tried in the existing strategies of evolutionary 

MOO algorithms and their performance may be compared with the existing 

algorithms.  

5. More local search methods may be hybridized with the existing strategies of 

evolutionary MOO algorithms and their performance may be compared with 

existing standalone evolutionary MOO methods and the hybrid evolutionary 

methods. 

6. The Pareto front for the existing MOO industrial case studies may be obtained 

using newly developed algorithms.  
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7. More new industrial problems can be identified and the existing & newly 

developed strategies of evolutionary MOO algorithms can be used to obtain the 

Pareto optimal front for the industrial case studies. 

8. More complex test problems can be designed so that it resembles with the 

complexity of industrial problems. Such test problems can be used to test the 

performance of evolutionary MOO algorithms.  
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APPENDIX A 

 
The rates of reaction are as follows (Elnashaie and Elshishini, 1994): 

( )EBHSTEB Kpppkr /211 −=         (A1) 

( )EBpkr 22 =           (A2) 

( )233 HEB ppkr =          (A3) 

( )5.0

244 ETHOH ppkr =          (A4) 

( )METOH ppkr 255 =          (A5) 

( )( )3
266 TPppkr TCOOH=         (A6) 

The rate constants ki of reaction i are expressed by: 

 ( )[ ]RTEAk iii /exp −=         (A7) 

where Ai and Ei are the apparent frequency factors and activation energy of reaction i. 

The Six material balance equations are given by: 

0

EB

itbi

F

rA

ld

xd ρ
=  i is for reactions 1, 2 and 3      (A8) 

 xi - fractional conversion of ethyl benzene in each of the three reactions 

0

2OH

itbi

F

rA

ld

xd ρ
=  i is for reactions 4, 5 and 6      (A9) 

xi - fractional conversion of steam in each of the remaining three reactions 

The Ergun equation (Bird et al., 2005) is used to compute the pressure profiles 
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    (A10a) 

However, as pressure is used in the units of ‘bar’, following form of Ergun equation was 

used in this study 

( ) ( )


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×−=

∆ −
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µε

ρε

ε     (A10b) 

The energy balance differential equation can be derived from this equation 

( )eH
j

jbtj
i

ii TTdlAUdlrAHdTCpF −∑ =∆∑ +
==

6

1

10

1

ρ      (A11) 

As reactor is adiabatic: ( ) 0=− eH TTdlAU and the energy balance differential equation 

is given by: 

∑ ∑∆=
= =

6

1

10

1

//
j i

iijbtj CpFrAHdlTd ρ        (A12) 

The heats of reactions are computed as functions of temperature from the following 

relation (Sheel and Crowe, 1969): 

TbaH jjj +=∆          (A13) 

The set of values of aj and bj in Eq. A13 is taken from Sheel and Crowe (1969) is given 

in Table A3. 

The molar heat capacities (Cpi and Cpj) of the components are given by Eqs. A14, A15 as 

functions of temperature.  

2
TTCp iiii γβα ++=   (Organic Components)   (A14) 

2/ TcTbaCp jjjj ++=   (Inorganic Components)   (A15) 

The set of the values of the constants is given in Table A4 for organic components and 

Table A5 for inorganic components (Smith and Van Ness, 1975). 
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The additional data for equilibrium constant of ethyl benzene is found from the literature 

(Elnashaie and Elshishini, 1994), and the values are given in A2. The equations for 

conversion and molar flow rate are taken from Elnashaie and Elshishini, (1994). 

 

Table A1 Operating conditions and design for the industrial reactor (Elnashaie and 
Elshishini, 1994) 

Quantity Numerical value and dimension 

Reactor diameter 1.95 m 

Reactor length 1.7 m 

Catalyst bulk density 2146 kg/m3 

Catalyst particle diameter 0.0047 m 

Bed void fraction 0.445 

Catalyst composition 62 % Fe2O3, 36 % K2CO3, 2 % Cr2O3 

Inlet pressure 2.4 bar 

Inlet temperature 922.59 K 

Ethyl benzene in the feed 36.87 kmol/h 

Styrene in the feed* 0.67 kmol/h 

Benzene in the feed* 0.11 kmol/h 

Toluene in feed* 0.88 kmol/h 

Steam 453.63 kmol/h 

Total molar feed 491.63 kmol/h 
*These components are present as impurities in the ethyl benzene feed. 
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Table A2 Frequency factor and activation energy for the six reactions (Sheel and 
Crowe, 1969) 

Reaction No. Frequency factor Ai 
(dimensionless) 

Activation energy Ei 

 (kJ/kmol) 

1 -0.0854 90981.40 

2 13.2392 207989.23 

3 0.2961 91515.26 

4 -0.0724 103996.71 

5 -2.9344 65723.34 

6 21.2402  73628.40 

Equilibrium constant 
2

0;
0

cTbTaF
RT

F
ExpEBK ++=∆

∆−
= 








;  (kJ/kmol); 

a = 122725 kJ/kmol; b = -126.3 kJ/kmolK; and c = -0.002194 kJ/kmolK2 (Elnashaie and Elshishini, 1994).  

 

Table A3 Values of the constants a and b for heat of reactions ∆∆∆∆Hi= ai + biT (Sheel 
and Crowe, 1969) 

Reaction 
No. 

ai 

(kJ/kmol) 
bi 

(kJ/kmol K) 
1 120649.6337 4.56 

2 108723.9635 -7.9476 

3 -53132.186 -13.176 

4 81994.734 8.826 

5 211073.068 16.5645 

6 -45184.528 10.4574 
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Table A4 Values of the constants of molar heat capacities Cpi for organic 
components (Smith and Vanness, 1975; Elnashaie and Elshishini, 1994) 

Components ααααi 

(kJ/kmol K) 
ββββI 

(kJ/kmol K2) 
-γγγγi X 105 

(kJ/kmol K3) 
Ethyl benzene  9.3458 0.4604 15.361 

Styrene 17.0437 0.417 13.852 

Benzene -1.7126 0.325 11.10 

Toluene 2.41 0.392 13.10 

Ethylene 11.85 0.120 3.65 

Methane 14.16 0.076 1.80 
The expression is Cpi = αi + βi T + γi T 2 

 

Table A5 Values of the constants of molar heat capacities Cpi for inorganic 
components (Smith and Vanness, 1975; Elnashaie and Elshishini, 1994) 

Components ααααi 

(kJ/kmol K) 
ββββI 

(kJ/kmol K2) 
-γγγγi X 10 -5 

(kJ/kmol K-1) 
Steam  28.849 0.012 1 

Hydrogen 27.012 3.508e-3 0.690062 

Carbon monoxide 28.068 4.63e-3 -0.257734 

Carbon dioxide 45.369 8.688e-3 -9.619 
The expression is Cpi = αi + βi T + γi T -2 

 

Table A6 Comparison of simulation runs of present study with industrial data (Sheel 
and Crowe, 1969; Elnashaie and Elshishini, 1994) 

Parameter at the exit of reactor Simulation Results (Present 
Study) 

Industrial 
data 

Temperature (K)  850.08 850 

Pressure (bar) 2.33 2.32 

Conversion of ethyl benzene per 
pass (%) 

46.78 47.25 

Styrene flow rate (kmol/h) 15.37 15.57 

Flow rate of ethyl benzene (kmol/h) 19.61 19.45 

Benzene flow rate (kmol/h) 1.46 1.5 

Toluene flow rate (kmol/h) 2.07 2.03 
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APPENDIX B 

 
The set of reactions in the melt polymerization of PET are: 

Ester Interchange Reaction (Main Poly-condensation) 

    
 
 
                                     +   
  

COOC2 H4OH COOC2 H4OOC  HOC2 H4OH 

Eg Z EG 

'

1k  

k1 

           (B1) 

Acetaldehyde Formation (a) 

    
 
 
               +   COOC2 H4OH COOH  CH3CHO 

Eg Ea A 

k2 

  

(B2) 

Acetaldehyde Formation (b) 

    
 
 
        +                          
                                                                           

COOCH=CH2 

COOC2 H4OOC  CH3CHO 

Ev 

Z A 

 k3 

OHC2 H4OOC 

Eg 

+ 

           (B3) 
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Diethylene Glycol Formation (a) 

    
 
 
      +                                 +   COOC2 H4OH COOH           OHC2H4OC2H4OH 

Eg Ea DEG 

 k4 
 OHC2H4OH 

EG 
  

           (B4) 

Diethylene Glycol Formation (b)  

    
 
 
        +                          
                                             
                               

COOC2H4OH 

COOC2 H4OOC  OHC2H4OC2H4OH 

Eg 

Z DEG 

 k5 
OHC2 H4OC2 H4OOC 

EDEG 

+ 

 '

5k  

           (B5) 

Diethylene Glycol Formation (c) 

    
 
 
        +                          
                                                                           

COOC2H4OH 

COOH  OHC2H4OC2H4OOC 

Eg 

Ea EDEG 

 k6 
OHC2 H4OOC 

Eg 

+ 

           (B6) 

Water Formation (a) 
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        +                                        +  
   

COOH COOC2 H4OH  HOC2 H4OH 
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'
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k7 

H2O 
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           (B7) 

Water Formation  (b) 

    
 
 
    +                                        COOC2 H4OH 
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Z 
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 + 
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           (B8) 

Degradation of Diester Group 

    
 

 
      
                                

  

Ev 

Z 

COOC H=CH2 

COOC2 H4OOC 
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 COOH 

Ea 

+

 

           (B9) 

The detailed set of model equations used in the present study is same as that reported in 

the literature (Bhaskar et al, 2001). 
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Table B1 Feed conditions used for simulation in the present study 

Feed Concentrations (kmol/m3) of Pure Liquid Components 

[Eg] f  = 4.0 × 10-1              [EDEG] f  = 0.17 

[Ea] f  = 2.57 × 10-3        [EG] f  = 6.5 × 10-3
 

[Z] f    = 11.2                 [W] f   = 4.6 × 10-4 

[Ev] f  = 1.17 × 10-3        [DEG] f  = 4.0 × 10-4 

 

 

Table B2 Values of the parameters / properties for the reference case 

Parameters Values 
(k1a) ref 2.6875 

α 2.6647 

ao 1.0378 

bo 2.1838 

ρ EG  (kg/m3) 1108 

ρ W    (kg/m3) 1000 

ρ DEG  (kg/m3) 1118 

P (mmHg) 2.00*, 1.5*** 

T (K) 566*, 567** 
*Set 1; **Set 2;***Set 3 

 
Table B3 Comparison of the simulation results with the reported data (Bhaskar et 

al., 2001) 

Set No Product Property Industrial Value Model Predicted Value 
1 DP 

[EDEG] (kmol/m3) 
[Ea] (kmol/m3) 

82.00 
0.17 

1.038 × 10-3 

82.00 
0.167 

1.028 × 10-3 
2 DP 82.60 82.53 

3 DP 82.70 82.65 
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APPENDIX C 

 
Material balance equations for series of oxidation reactions are related by following 

differential equations.  

PX

PX Ck
d

Cd
1

)(
−=

τ          (C1) 

TALDPX
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d

Cd
21

)(
−=

τ         (C2) 
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d
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CBA CkCk
d

Cd
−−

− −= 443
4 )(
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CBA

TA Ck
d
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−= 44

)(
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The kinetic expressions involved in the rate law are given by the following expressions. 
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3.12
)170/]([1

1
5443.0

Co
f

+
−=

       (C10) 

][1026.81178.0 4
3 Cof −×+=

       (C11) 

][1072.50641.0 4
4 Cof −×+=

       (C12) 

Above correlations are only valid for [Co2+], [Mn2+] and [Br-] ratio fixed to 1. 

The rate constant is related to % water in solvent by following expression. 

( )2

00, 22
1 OHjHjjj Wwkk γα ++=

  where j =1 to 4.   (C13) 





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
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Table C1 Optimal parameters for various water contents used in model equations 
(Wang et al., 2005a) 

Parameter j=1 j=2 j=3 j=4 

jα
 

2.19 -1.65 3.51 0.79 

jγ
 

-23.15 -7.05 -4.60 1.58 

 

Table C2 Parameters and constants used in model equations (Wang et al., 2005b) 

Reaction No. dj 
(kgHOAc/mol) 

βj θθθθ 

j=1 1.4247 0 0.0146 

j=2 0 0.5254  

j=3 0 0  

j=4 4.8419 0.8111  

 

Table C3 Specific Reaction rate constants and activation energies (Wang et al., 
2005b) 

Kinetic 
Parameter 

j=1 j=2 j=3 j=4 

Kj, 0 (min-1) 4.07 X 106 1.08 X 106 9.80 X 108 1.17 X 109 

Ej (kJ/mol) 65.5 54.9 92.8 84.9 

 

Table C4 Reference values of various variables 

Parameter Reference Value 
T (K) 461a 

[C0] (ppm) 341.07b 

FPX   (kg/h) 26243.57b 

FFEED    (kg/h) 143008.71b 

2OV      (%) 4.075b 

02HW    (%) 6.015c 

a: optimum value obtained from the simulation of present study 
b: Mu et al. (2004) 
c: Wang et al. (2005b) 
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APPENDIX D 

 
Reaction scheme involved in the LDPE reactor 

Oxygen Initiation    ( )ORMO ok

12 2→+    (D1) 

Peroxide Initiation   ( ) 1,2)m(for       2 1 = → ORI dmmkf

m   (D2)  

Propagation    ( ) ( )1+→+ xRMxR i

k

i
p     (D3) 

Termination by combination  ( ) ( ) ( )yxPyRxR ji

k

ji
tc +→+ −+ 1  

 (D4) 

Termination by Thermal degradation ( ) ( ) ( )ORxPMxR i

k

i
tdt

11 +→++    (D5) 

Chain transfer to telogen  ( ) ( ) ( )ORxPSxR i

k

i
trs

1+→+
 

 (D6) 

Chain transfer to polymer  ( ) ( ) ( ) ( )yRxPyPxR ji

k

ji
trp

1++→+   (D7) 

Intramolecular chain transfer  ( ) ( )xRxR i

k

i
bb→      (D8) 

(short-chain branching)  

β-scission of secondary radical ( ) ( ) ( )ORxPxR i

k

i
b

1
11 +→+

 
  (D9) 

(formation of vinyl group) 

β-scission of territory radical   ( ) ( ) ( )ORxPxR i

k

i
b

11 +→+    (D10) 

(formation of vinylidene group) 

 

MODEL EQUATIONS 

Continuity equation 
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Mass balance Model Equations for components j 

[ ]
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j
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Where j=3, 4,..11 for I1, I2, O2, M, S, Me, Vi, and Vid, Ri(0) respectively 

Reactor temperature: Heating and reaction zones 
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Frictional pressure drop 
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Moment equations related to dead and live polymer 
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Table D1 Operating conditions used for industrial tubular LDPE reactor in the 

present study for reference run (Brandoline et al., 1996; Agarwal et al., 2006) 

Parameter Value 
Feed temperature, Tin 349.15 K 

Feed pressure Pin 227.98 Mpa 
Initiator 1 feed flow rate, FI1 1.0 x 10-3 kg/s 
Initiator 2 feed flow rate, FI2 1.6 x10-4 kg/s 
Feed flow rate of oxygen, FO2  6.8 x 10-5 kg/s 

Feed flow rate of solvent, FS  7.4 x 10-2 kg/s 
Feed flow rate of inert, Finrt 0.22 kg/s 
Feed flow rate of jacket fluid, 
Vjm (m=2,…5) 

Feed flow rate of jacket fluid, 
Vjm (m=2,…5) 

6.90e-3, 6.34e-3,1.67e-3,1.25e-3 m3/s  
(Case A)* 

6.73e-3, 3.99e-3,0.978e-3,2.78e-3 m3/s  
(Case B)* 

Wall heat transfer coefficient, 
hW  

1256 W/m
2
C 

Feed conditions for live and 
dead moment, λnp µnp (n=0,1; 
p=0,1,2) 

0.0 kmol/m3  

Specific heat of reaction 
mixture, Cpm 

2.42834, 2.42834, 3.1401, 3.1401, 
4.01933 kJ/kg K 

Mean jacket temperature, Tj,m 

(m=1,…,5) 
441.15, 498.15, 498.15, 441.15, 
441.15 K 

Feed velocity v 10.14 m/s  
Total reactor length, Lt 1390 m 
Inside diameter of reactor, Dt 0.05 m 
Thickness of reactor wall, t 0.0254 m 
Inner diameter of outer (jacket) 
wall DJi 

0.2032 m 

Axial lengths of reactor zones , 
Lzn (n=1,2,..5) 

60, 100,180, 510, 540 m 

*Results obtained in present study 
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APPENDIX E 

 
Multi-objective optimization algorithms developed in this study: 
%%MATLAB CODE FOR Multi-objective Differential Evolution- (MODE)%%%% 
%DEVELOPED BY ASHISH M. GUJARATHI AND B V BABU, BITS PILANI, 
INDIA – 333031  
clc 
clear all 
t=cputime; 
CR =0.8;            %%%Insert Value of Cross over constant here 
Np=500;            %%%%%%%Insert Population size here 
GMAX=200;          %%%%%%%%Insert Maximum no of generations here 
D=1;  %%%%%%%%%%%%%Insert No. of dimensions here 
n_obj=2;    %%%%%%%%%%%%Insert number of objectives here 
xl=-10;  %%%%%%%%%%Insert lower bound of variables here 
xu=10;   %%%%%%%%%%%Insert upper bound of objectives here %SCH Test 
function 
for i=1:Np 
    for j=1:D 
        pop1(i,j)=xl(j)+(xu(j)-xl(j))*rand(1); 
    end 
%TYPE OBJECTIVE FUNCTIONS HERE%%%%%%%%%%%%%%% 
        f1(i,1)=pop1(i,1)^2; 
        f2(i,1)=(pop1(i,1)-2)^2; 
        f3(i,1)=0;   %%% Add third objective function here, if present 
    end 
for gen=1:GMAX 
    gen 
    nond=ones(1,D); 
    nondf=[0 0 0]; 
    a=1; 
    for i=1:Np 
        flag=0; 
        for j=1:Np 
%following code is for min-min type of problems 
            if (((f1(i)>=f1(j))&(f2(i)>=f2(j))) & ((f1(i)>f1(j))|(f2(i)>f2(j)))) 
                flag=1; 
                break; 
            end 
        end 
        if(flag~=1) 
            nond(a,:)=pop1(i,:); 
            nondf(a,1)=f1(i,1); 
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            nondf(a,2)=f2(i,1); 
            nondf(a,3)=f3(i,1); 
            a=a+1; 
        end 
    end 
    nond; 
     tmp=size(nond); 
    Np=tmp(1,1); 
     if(Np<4) 
        break; 
    end 
  
    % DE 
    for i=1:Np 
        Xt=nond(i,:); 
        n=randperm(D); 
        flag=0; 
        for(k=1:D) 
            c=rand(1); 
            if ((c<CR)|(k==D) ) 
                if(flag==0) 
                    flag=1; 
                    r1=ceil(rand(1)*Np); 
                    while(r1==i) 
                        r1=ceil(rand(1)*Np); 
                    end 
                    r2=ceil(rand(1)*Np); 
                    while(r2==i|r2==r1) 
                        r2=ceil(rand(1)*Np); 
                    end 
                    r3=ceil(rand(1)*Np); 
                    while(r3==i|r3==r1|r3==r2) 
                        r3=ceil(rand(1)*Np); 
                    end 
                    Xa=nond(r1,:); 
                    Xb=nond(r2,:); 
                    Xc=nond(r3,:); 
                    Diff=Xa-Xb; 
                    F=rand(1); 
                    Wdiff=F.*Diff; 
                    Xc1=Xc+Wdiff; 
                end 
                Xtr(:,n(k))=Xc1(:,n(k)); 
            else 
                Xtr(:,n(k))=Xt(:,n(k)); 
            end 
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        end 
        for j=1:D 
            if(Xtr(1,j)<xl(j) | Xtr(1,j)>xu(j)) 
                Xtr(1,j)=xl(j) + (xu(j)-xl(j))*rand(1); 
            end 
        end 
        f1Xt=nondf(i,1); 
        f2Xt=nondf(i,2); 
        f3Xt=nondf(i,3); 
%%%Type OBJECTIVE Function here for calculating Trial Variables Cost 
        f1Xtr=(Xtr(1,1))^2; 
        f2Xtr=(Xtr(1,1)-2)^2; 
        f3Xtr=0;   
        if (((f1Xtr<=f1Xt)&(f2Xtr<=f2Xt)) & ((f1Xtr<f1Xt)|(f2Xtr<f2Xt))) 
            nond(i,:)=Xtr; 
            nondf(i,1)=f1Xtr; 
            nondf(i,2)=f2Xtr; 
            nondf(i,3)=f3Xtr; 
        end 
    end   %%% end of population loop 
================================================ 
%MATLAB CODE FOR Multi-objective Differential Evolution- III (MODE-
III)%%%DEVELOPED BY ASHISH M. GUJARATHI AND B V BABU, BITS 
PILANI, INDIA – 333031 
clc 
clear all 
t=cputime; 
CR =0.8;           %%%%%%%Insert Value of Cross over constant here 
Np=500;            %%%%%%%Insert Population size here 
GMAX=200;          %%%%%%%Insert Maximum no of generations here 
D=1;               %%%%%%%Insert No. of dimensions here 
n_obj=2;           %%%%%%%Insert number of objectives here 
xl=-10;            %%%%%%%Insert lower bound of variables here 
xu=10;             %%%%%%%Insert upper bound of objectives here %SCH Test function 
for i=1:Np 
    for j=1:D 
        pop1(i,j)=xl(j)+(xu(j)-xl(j))*rand(1); 
    end 
end 
for gen=1:GMAX 
    gen 
    for i=1:Np 
%TYPE OBJECTIVE FUNCTIONS HERE%%%%%%%%%%%%%%% 
        f1(i,1)=pop1(i,1)^2; 
        f2(i,1)=(pop1(i,1)-2)^2; 
        f3(i,1)=0;   %%% Add third objective function here, if present 
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    end 
%%DO NOT CHANGE BELOW TILL FURTHER INFORMATION% 
    for i=1:Np 
        %         dei=i 
        %         Np 
        Xt=pop1(i,:); 
        n=randperm(D); 
        flag=0; 
        for(k=1:D) 
            c=rand(1); 
            if ((c<CR)|(k==D) ) 
                if(flag==0) 
                    flag=1; 
                    Np 
                    r1=ceil(rand(1)*Np); 
                    while(r1==i) 
                        gh=i 
                        r1=ceil(rand(1)*Np) 
                    end 
                    r2=ceil(rand(1)*Np); 
                    while(r2==i|r2==r1) 
                        r2=ceil(rand(1)*Np); 
                    end 
                   r3=ceil(rand(1)*Np); 
                    while(r3==i|r3==r1|r3==r2) 
                        r3=ceil(rand(1)*Np); 
                    end 
                    Xa=pop1(r1,:); 
                    Xb=pop1(r2,:); 
                    Xc=pop1(r3,:); 
                    Diff=(Xa-Xb); 
                    F=rand(1); 
                    F=0.7; 
                    Wdiff=F.*Diff; 
                    Xc1=Xc+Wdiff; 
                end 
                Xtr(:,n(k))=Xc1(:,n(k)); 
            else 
                Xtr(:,n(k))=Xt(:,n(k)); 
            end 
        end 
        for j=1:D 
            if(Xtr(1,j)<xl(j) | Xtr(1,j)>xu(j)) 
                Xtr(1,j)=xl(j) + (xu(j)-xl(j))*rand(1); 
            end 
        end 
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        f1Xt(i)=f1(i,1); 
        f2Xt(i)=f2(i,1); 
        %  f3Xt(i)=f3(i,1); 
%%%%Type OBJECTIVE Function here for calculating Trial 
        f1Xtr=(Xtr(1,1))^2; 
        f2Xtr=(Xtr(1,1)-2)^2; 
        f3Xtr=0;  %%%%%Insert third objective function here, if present 
        flag=0; 
        if (((f1Xt>f1Xtr)|(f2Xt>f2Xtr))) 
            pop1(i,:)=Xtr; 
            f1(i)=f1Xtr; 
            f2(i)=f2Xtr; 
            f3(i)=f3Xtr; 
            flag=1; 
            break; 
        end 
        if flag==0 
            for pp=1:Np 
                if (((f1(pp)>f1Xtr)|(f2(pp)>f2Xtr))) 
                    pop1(pp,:)=Xtr; 
                    f1(pp)=f1Xtr; 
                    f2(pp)=f2Xtr; 
                    f3(pp)=f3Xtr; 
                    flag=1; 
                    break; 
                end 
            end 
        end 
    end% end of pop loop 
end  % end of generation loop 
nond=zeros(1,D); 
nondf=[0 0 0]; 
a1=1; 
for i=1:Np 
    flag=0; 
    for j=1:Np 
        if (((f2(i)>=f2(j))&(f1(i)>=f1(j))) & ((f2(i)>f2(j))|(f1(i)>f1(j)))) 
            flag=1; 
            break; 
        end 
    end 
    if(flag~=1) 
        nond(a1,:)=pop1(i,:); 
        nondf(a1,1)=f1(i,1); 
        nondf(a1,2)=f2(i,1); 
        nondf(a1,3)=f3(i,1); 
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        a1=a1+1; 
    end 
end 
nond; 
a1 
Np=a1-1 
clear f1 
clear f2 
clear f3 
for i=1:Np 
    f1(i,1)=nondf(i,1); 
    f2(i,1)=nondf(i,2); 
    f3(i,1)=0; 
end 
clear pop1 
pop1=nond 
============================================================= 
%%%%%%%%%%%%%%%%%%%%MATLAB CODE FOR HYBRID MULI-
OBJECTIVE DIFFERENTIAL EVOLUTION %%%%%%%%%%%%%%THIS CODE 
IS DEVELOPED BY ASHISH M GUJARATHI AND B V BABU     
%%%%ENTER YOUR OBJECTIVE FUNCTION in mo_test_file 
%%%Enter the number and bounds of variables in fun file 
clc 
clear all 
    t=cputime; 
    CR=0.9; 
    Np=300; 
    GMAX=100; 
    %step=[1,10,.1,.1]; 
    %%% VALUES OF CONSTANTS USED IN HYBRID ALGORITHM 
    step=.002; 
    d=0.5; 
    count=0; 
    DPD=82; 
    C1=0; 
    C2=0; 
    Beta = 0.5; 
    gamma=2; 
    p=1; 
    [D,n_obj,xl,xu]=fun(p); 
    for i=1:Np 
        for j=1:D 
            pop1(i,j)=xl(j)+(xu(j)-xl(j))*rand(1); 
        end 
    end 
    for gen=1:GMAX 
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        gen 
        for i=1:Np 
            [f]=mo_test_func(pop1(i,:),D,p); 
            f1(i,1)=f(1,1); 
            f2(i,1)=f(1,2); 
            f3(i,1)=0; 
        end 
%DO NOT CHANGE BELOW TILL FURTHER INFORMATION% 
        for i=1:Np 
            %         dei=i 
            %         Np 
            Xt=pop1(i,:); 
            n=randperm(D); 
            flag=0; 
            for(k=1:D) 
                c=rand(1); 
                if ((c<CR)|(k==D) ) 
                    if(flag==0) 
                        flag=1; 
                        Np 
                        r1=ceil(rand(1)*Np); 
                        while(r1==i) 
                            gh=i 
                            r1=ceil(rand(1)*Np) 
                        end 
                        r2=ceil(rand(1)*Np); 
                        while(r2==i|r2==r1) 
                            r2=ceil(rand(1)*Np); 
                        end 
                        r3=ceil(rand(1)*Np); 
                        while(r3==i|r3==r1|r3==r2) 
                            r3=ceil(rand(1)*Np); 
                        end 
                        Xa=pop1(r1,:); 
                        Xb=pop1(r2,:); 
                        Xc=pop1(r3,:); 
                        Diff=(Xa-Xb); 
                        F=rand(1); 
                        F=0.7; 
                        Wdiff=F.*Diff; 
                        Xc1=Xc+Wdiff; 
                    end 
                    Xtr(:,n(k))=Xc1(:,n(k)); 
                else 
                    Xtr(:,n(k))=Xt(:,n(k)); 
                end 
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            end 
            for j=1:D 
                if(Xtr(1,j)<xl(j) | Xtr(1,j)>xu(j)) 
                    Xtr(1,j)=xl(j) + (xu(j)-xl(j))*rand(1); 
                end 
            end 
            f1Xt(i)=f1(i,1); 
            f2Xt(i)=f2(i,1); 
            %  f3Xt(i)=f3(i,1); 
            sum=0; 
            % % % %      [f]=mo_test_func(Xtr(1,:),D,p); 
            % % % %      i 
            [f]=mo_test_func(Xtr(1,:),D,p); 
            f1Xtr=f(1,1); 
            f2Xtr=f(1,2); 
            f3Xtr=0; 
            %%%%%%%%%%%%%%%%%%%%CHANGE THE SIGN DEPENDING 
UPOM MAX-MIN PROBLEM%% 
            if (((f1Xt>f1Xtr)|(f2Xt>f2Xtr))) 
                pop1(i,:)=Xtr; 
                f1Xt(i)=f1Xtr; 
                f2Xt(i)=f2Xtr; 
            else 
                pop1(i,:)=Xt; 
            end 
            %hybrid starts 
            for u=1:D 
                ls(1,u)=pop1(i,u); 
                for m=2:D+1 
                    ls(m,u)=500000000; 
                    while (ls(m,u)<=xl(u) | ls(m,u)>=xu(u)) 
                        DDzii1=i 
                        if (rand<.5) 
                            ls(m,u)=pop1(i,u) - (step*rand); 
                        else 
                            ls(m,u)=pop1(i,u) + (step*rand); 
                        end 
                     end 
                end 
                %% neighbourhood point 
            end 
            for kk=1:(D+1) 
                % %     [f]=mo_test_func(ls(kk,:),D,p); 
                [f]=mo_test_func(ls(kk,:),D,p); 
                ls_f1(kk)=f(1,1); 
                ls_f2(kk)=f(1,2); 
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                ls_f3(kk)=0; 
            end 
             %%SELECT ANY ONE OF THE FLOOWING DESIRABILITY EQNS 
DEPENDING UPON THE 
            %%TYPE OF PROBLE, COMMENT THE REMAINING LINES%%%% 
            %if min-min 
            for kk = 1:(D+1) 
                f_avg(kk) = (abs(1/((d*ls_f1(kk))+((1-d)*ls_f2(kk)))))^0.5; 
            end 
            [Bf,I1]=max(f_avg);                 %% finding out best element 
            B(1,:)=ls(I1,:);                 %% assigning the decision varibles 
            costBf1=ls_f1(I1); 
            costBf2=ls_f2(I1);                %%assinging the idividual cost 
            costBf3=ls_f3(I1); 
            [Wf,I2]=min(f_avg); 
            W(1,:)=ls(I2,:); 
            costWf1=ls_f1(I2); 
            costWf2=ls_f2(I2); 
            costWf3=ls_f3(I2); 
            %%%start of sequential simplex method 
            %for o=1:5 
            Q=10; 
            while(Q >.01)   % for tolerance check 
                for u=1:D 
                    s(1,u)=0; 
                end 
                for kk = 1:D+1 
                    s(1,:)= s(1,:)+ls(kk,:);  
                end 
                P(1,:)=(s(1,:)-W(1,:))/D;% centroid of existing point except worst 
                %             P(1,:)=(N(1,:)+B(1,:))/2; 
                R(1,:)=P(1,:)+(P(1,:)-W(1,:));  % Reflection point 
                 for m=1:D 
                    while(R(1,m)<xl(m) | R(1,m)>xu(m)) 
                        %                     DDrrr=i 
                        if ((R(1,m)<=xl(m) | R(1,m)>=xu(m))) 
                            if rand<0.5 
                                R(1,m)= pop1(i,m)+step*rand;    %making R in Range 
                            else 
                                R(1,m)= pop1(i,m)-step*rand; 
                            end 
                        end 
                    end            %%end of while 
                end   %end of for 
                [f]=mo_test_func(R(1,:),D,p); 
                 Rf1=f(1,1); 
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                Rf2=f(1,2);            %%assinging the cost to R 
                Rf3=0; 
                Rf = (abs(1/((d*Rf1)+((1-d)*Rf2))))^0.5;  % cost of R=reflection 
                [f]=mo_test_func(P(1,:),D,p); 
                Pf1=f(1,1); 
                Pf2=f(1,2);            %%assinging the cost to P 
                Pf3=0; 
                Pf = (abs(1/((d*Pf1)+((1-d)*Pf2))))^0.5; 
                             if(Rf> Bf) 
                    E=P+gamma*(R-P);%%% expansion coefficient calculated 
                    for m=1:D 
                        while(E(1,m)<xl(m) | E(1,m)>xu(m)) 
                            %                     DDEEr=i 
                            if ((E(1,m)<=xl(m) | E(1,m)>=xu(m))) 
                                if rand<0.5 
                                    E(1,m)= pop1(i,m)+step*rand;    %making E in range 
                                else 
                                    E(1,m)= pop1(i,m)-step*rand; 
                                end 
                            end 
                        end            %%end of while 
                    end   %end of for 
                    % %     [f]=mo_test_func(E(1,:),D,p); 
                    [f]=mo_test_func(E(1,:),D,p); 
                    Ef1=f(1,1); 
                    Ef2=f(1,2);            %%assinging the cost to E 
                    Ef3=0; 
                     Ef = (abs(1/((d*Ef1)+((1-d)*Ef2))))^0.5; 
                     if(Ef>Bf) 
                        ls(I2,:)=E(1,:); 
                        ls_f1(I2)=Ef1; 
                        ls_f2(I2)=Ef2; 
                        ls_f3(I2)=Ef3; 
                        f_avg(I2)=Ef; 
                    else 
                        ls(I2,:)=R(1,:); 
                        ls_f1(I2)=Rf1; 
                        ls_f2(I2)=Rf2; 
                        ls_f3(I2)=Rf3; 
                        f_avg(I2)=Rf; 
                    end 
                else 
                    if (Rf>Wf) 
                         ls(I2,:)=R(1,:); 
                        ls_f1(I2)=Rf1; 
                        ls_f2(I2)=Rf2; 
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                        ls_f3(I2)=Rf3; 
                        f_avg(I2)=Rf; 
                    else 
                        C= P+Beta*(W-P);  % contraction coefficent 
                        for m=1:D 
                            while(C(1,m)<xl(m) | C(1,m)>xu(m)) 
                                %                     DDCCr=i 
                                if ((C(1,m)<=xl(m) | C(1,m)>=xu(m))) 
                                    if rand<0.5 
                                        C(1,m)= pop1(i,m)+step*rand;    %making C in Cange 
                                    else 
                                        C(1,m)= pop1(i,m)-step*rand; 
                                    end 
                                end 
                            end            %%end of while 
                        end   %end of for 
                        % %     [f]=mo_test_func(C(1,:),D,p); 
                        [f]=mo_test_func(C(1,:),D,p); 
                        Cf1=f(1,1); 
                        Cf2=f(1,2);            %%assinging the cost to P 
                        Cf3=0; 
                        Cf = (abs(1/((d*Cf1)+((1-d)*Cf2))))^0.5; 
                        if(Cf>Bf) 
                            ls(I2,:)=C(1,:); 
                            ls_f1(I2)=Cf1; 
                            ls_f2(I2)=Cf2; 
                            ls_f3(I2)=Cf3; 
                            f_avg(I2)=Cf; 
                        else 
                            for kk =1:D+1 
                                ls(kk,:)=(ls(kk,:)+B(1,:))/2; 
                            end 
                        end 
                    end 
                end 
                sum =0; 
                for kk=1:D+1 
                    sum = sum+(f_avg(kk)-Pf)^2 
                end 
                Q = (sum/(D+1))^0.5 
            end      %% end of while loop or o loop 
            [Bf,I1]=max(f_avg);                 %% finding out best element 
            B(1,:)=ls(I1,:);                 %% assigning the decision varibles 
            costBf1=ls_f1(I1); 
            costBf2=ls_f2(I1);                %%assinging the idividual cost 
            costBf3=ls_f3(I1); 
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            for (pp=1:Np) 
                if (f1(pp,1)>costBf1 & f2(pp,1)>costBf2) 
                     %  if (f1Xt>costBf1 | f2Xt>costBf2) 
                    pop1(pp,:)=B(1,:); 
                    f1(pp,1)=costBf1; 
                    f2(pp,1)=costBf2; 
                    f3(pp,1)=costBf3; 
                   count=count+1; 
                     break; 
                end 
            end 
            pop1; 
            %hybrid ends 
            Ttime=cputime-t; 
            % count 
        end    % end of pop loop 
         Ttime=cputime-t; 
        % count 
    end  % end of generation loop 
    nond=zeros(1,D); 
    nondf=[0 0 0]; 
    a=1; 
    for i=1:Np 
        flag=0; 
        for j=1:Np 
            if (((f2(i)>=f2(j))&(f1(i)>=f1(j))) & ((f2(i)>f2(j))|(f1(i)>f1(j)))) 
                flag=1; 
                break; 
            end 
        end 
        if(flag~=1) 
            nond(a,:)=pop1(i,:); 
            nondf(a,1)=f1(i,1); 
            nondf(a,2)=f2(i,1); 
            nondf(a,3)=f3(i,1); 
            a=a+1; 
        end 
    end 
    nond; 
    a 
    Np=length(nond); 
Np=a-1 
     for i=1:Np 
        [f]=mo_test_func(nond(i,:),D,p); 
        f1(i,1)=f(1,1); 
        f2(i,1)=f(1,2); 
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        f3(i,1)=0; 
        %               g(i,1)=g; 
    end 
    for i=1:(a-1) 
        f1(i,1)=nondf(i,1); 
        f2(i,1)=nondf(i,2); 
        f3(i,1)=0; 
    end 
    obj1 = nondf(:,1); 
    obj2 = nondf(:,2); 
    obj3 =nondf(:,3); 
    figure(1); 
    plot(obj1 , obj2 ,'*') 

%%%%%%%%%%%%%%%%%%%%MATLAB CODE FOR ELITIST MULI-
OBJECTIVE DIFFERENTIAL EVOLUTION 
%%%%%%%%%%%%%%THIS CODE IS DEVELOPED BY ASHISH M 
GUJARATHI AND B V BABU 
%%%%ENTER YOUR OBJECTIVE FUNCTION in mo_test_file 
%%%Enter the number and bounds of variables in fun file 
clc 
clear all 
nond=1; 
pop1=0; 
Xtr=0; 
gen=1 
t=cputime; 
CR=0.85; 
Np=100; 
GMAX=60; 
R=10000; 
t=cputime; 
t1=cputime; 
CR=0.85; 
Np=100; 
GMAX=100; 
p=1;  %%problem 1 for SCH 
[D,n_obj,xl,xu]=fun(p); 
for i=1:Np 
    for j=1:D 
        pop1(i,j)=xl(j)+(xu(j)-xl(j))*rand(1); 
    end 
    [f]=mo_test_func(pop1(i,:),D,p); 
    f1(i,1)=f(1,1); 
    f2(i,1)=f(1,2); 
    f3(i,1)=0; 
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    Ttime=cputime-t 
end 
for gen=1:GMAX 
    pole=0; 
    count=0; 
    a1=1; 
    Q=0; 
    i=1;j=1; 
    for i=1:Np 
        flag=0; 
        for j=1:Np 
            if (((f2(i)>=f2(j))&(f1(i)>=f1(j))) & ((f2(i)>f2(j))|(f1(i)>f1(j)))) 
                flag=1; 
                break; 
            end 
        end 
        if(flag==0) 
            for j=1:D 
                nond(a1,j)=pop1(i,j);  %%%% population points 
            end 
            nondf(a1,1)=f1(i,1);  %%% function 
            nondf(a1,2)=f2(i,1); 
            nondf(a1,3)=f3(i,1); 
            a1=a1+1; 
        end 
    end 
    nond; 
    nondf(:,1); 
    nondf(:,2) ; 
    nondf(:,3); 
    Q=a1-1; 
    for i=1:Np 
        Xt=pop1(i,:); 
        n=randperm(D); 
        flag=0; 
        for(k=1:D) 
            c=rand(1); 
            if ((c<CR)|(k==D) ) 
                if(flag==0) 
                    flag=1; 
                    r1=ceil(rand(1)*Np); 
                    while(r1==i) 
                        r1=ceil(rand(1)*Np); 
                    end 
                    r2=ceil(rand(1)*Np); 
                    while(r2==i|r2==r1) 
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                        r2=ceil(rand(1)*Np); 
                    end 
                    r3=ceil(rand(1)*Np); 
                    while(r3==i|r3==r1|r3==r2) 
                        r3=ceil(rand(1)*Np); 
                    end 
                    Xa=pop1(r1,:); Xb=pop1(r2,:);Xc=pop1(r3,:); 
                    Diff=(Xa-Xb);F=rand(1); 
                    Wdiff=F.*Diff;Xc1=Xc+Wdiff; 
                end 
                Xtr(:,n(k))=Xc1(:,n(k));  %% tral vextr 
            else 
                Xtr(:,n(k))=Xt(:,n(k)); 
            end 
        end 
        for j=1:D 
            if(Xtr(1,j)<xl(j) | Xtr(1,j)>xu(j)) 
                Xtr(1,j)=xl(j) + (xu(j)-xl(j))*rand(1); 
            end 
        end 
        sum=0; 
        [f]=mo_test_func(Xtr(1,:),D,p); 
        f1Xtr=f(1,1); 
        f2Xtr=f(1,2); 
        f3Xtr=0; 
CHANGE THE SIGN DEPENDING UPOM MAX-MIN PROBLEM%% 
        flag=0; 
        flag1=0; 
        if (((f1(i)>=f1Xtr)&(f2(i)>=f2Xtr)) & ((f1(i)>f1Xtr)|(f2(i)>f2Xtr))) 
            %            if (((f1(i)>f1Xtr)&(f2(i)>f2Xtr))) 
            if flag1==0 
                pop1(i,:)=Xtr; 
                f1(i)=f1Xtr; 
                f2(i)=f2Xtr; 
                f3(i)=f3Xtr; 
                flag1=1; 
            end 
        end 
        if flag1==0 
            for pp=1:Np 
                if flag1==0 
                    if (((f1(pp)>=f1Xtr)&(f2(pp)>=f2Xtr)) & ((f1(pp)>f1Xtr)|(f2(pp)>f2Xtr))) 
                        %                     if (((f1(pp)>f1Xtr)&(f2(pp)>=f2Xtr))) 
                        pop1(pp,:)=Xtr; 
                        f1(pp)=f1Xtr; 
                        f2(pp)=f2Xtr; 



 422

                        f3(pp)=f3Xtr; 
                        flag1=1; 
                        break; 
                    end 
                end 
            end 
        end 
    end    % end of pop loop 
    Ttime=cputime-t; 
    mixedpop=pop1; 
    mixedf1=f1; 
    mixedf2=f2; 
    mixedf3=f3; 
    for i=1:Q 
        for j=1:D 
            mixedpop(Np+i,j)=nond(i,j); 
        end 
        mixedf1(Np+i,1)=nondf(i,1); 
        mixedf2(Np+i,1)=nondf(i,2); 
        mixedf3(Np+i,1)=nondf(i,3); 
    end 
    Npt=Np+Q; 
    count=Npt; 
    % % now ND sorting on mixed pop 
    nextpop=0; 
    for kk=1:Npt 
        for j=1:D 
            mixedback(kk,j)=mixedpop(kk,j); 
        end 
    end 
    mixedbackf1=mixedf1; 
    mixedbackf2=mixedf2; 
    mixedbackf3=mixedf3; 
    a2=0;a3=0; a4=1; 
    pole=0; ccount=1; 
    while(pole<Np) 
        a2=0;  a3=0; 
        clear front; 
        clear frontf1; 
        clear frontf2; 
        clear frontf3; 
        clear copyf1; 
        clear copyf2; 
        clear copyf3; 
        clear copy; 
        clear posn; 
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        copyf1=mixedbackf1; 
        copyf2=mixedbackf2; 
        copyf3=mixedbackf3; 
        copy = mixedback; 
        posn(count) = 0; k=0; 
        for i=1:count 
            flag=0; 
            for j=1:count 
                if (((mixedbackf1(i)>=mixedbackf1(j))&(mixedbackf2(i)>=mixedbackf2(j))) & 
((mixedbackf1(i)>mixedbackf1(j))|(mixedbackf2(i)>mixedbackf2(j)))) 
                    flag=1; 
                    posn(i)=i; 
                    break; 
                end 
                if(flag == 0) 
                    posn(i) = 0; 
                end 
            end 
        end  %% end of for count 
        clear mixedbackf1; 
        clear mixedbackf2; 
        clear mixedbackf3; 
        clear mixedback; 
        %         posn 
        for i = 1:count 
            if(posn(i)==0) 
                a2=a2+1; 
                for j=1:D 
                    front(a2,j)=copy(i,j);  %%%% population points 
                end 
                frontf1(a2,1)=copyf1(i,1);  %%% function 
                frontf2(a2,1)=copyf2(i,1); 
                frontf3(a2,1)=copyf3(i,1);            %front(a1,3)=0; here when p=8 
            elseif (i==posn(i)) 
                a3=a3+1; 
                for j=1:D 
                    mixedback(a3,j)=copy(i,j); 
                end 
                mixedbackf1(a3,1)=copyf1(i,1); 
                mixedbackf2(a3,1)=copyf2(i,1); 
                mixedbackf3(a3,1)=copyf3(i,1); 
            end 
        end 
        count = a3; 
        frontpop=a2; 
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        if ((frontpop+pole)<=Np) 
            for j=1:frontpop 
                for kk=1:D 
                    nextpoplist(pole+j,kk)=front(j,kk); 
                end 
                nextpoplistf1(pole+j,1)=frontf1(j,1); 
                nextpoplistf2(pole+j,1)=frontf2(j,1); 
                nextpoplistf3(pole+j,1)=frontf3(j,1); 
            end 
            pole=pole+frontpop; 
            poleflag=0; 
        else 
            poleflag=1; 
            break; 
        end 
    end %end of while loop 
    a=1; b=1; 
    clear dist; 
    if (((frontpop+pole)>Np) & (poleflag==0)) 
        for b=1:frontpop 
            for a=1:frontpop-1 
                if(frontf1(a,1)<frontf1(a+1,1))         %%%%%%% sorting of variables wrt f1 
                    temp=frontf2(a+1,1); 
                    frontf1(a+1,1)=frontf1(a,1); 
                    frontf1(a,1)=temp; 
  
                    temp=frontf2(a+1,1); 
                    frontf2(a+1,1)=frontf2(a,1); 
                    frontf2(a,1)=temp; 
  
                    temp=frontf3(a+1,1); 
                    frontf3(a+1,1)=frontf3(a,1); 
                    frontf3(a,1)=temp; 
                    for pp=1:D 
                        temp=front(a+1,pp); 
                        front(a+1,pp)=front(a,pp); 
                        front(a,pp)=temp; 
                    end 
                end 
            end 
        end 
        [f1min,i1]=min(frontf1); 
        [f1max,i2]=max(frontf1); 
        [f2min,i3]=min(frontf2); 
        [f2max,i4]=max(frontf2); 
        [f3min,i5]=min(frontf3); 
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        [f3max,i6]=max(frontf3); 
        rangef1=f1max-f1min; 
        rangef2=f2max-f2min; 
        rangef3=f3max-f3min; 
        for ptr=1:frontpop 
            dist(ptr,1)=0;   %%%%%initializing all distances to zero 
        end 
        dist(1,1)=100; 
        dist(frontpop,1)=100; 
        dist; 
        for ptr=2:(frontpop-1) 
  
            dist(ptr,1)=dist(ptr,1)+ (abs(frontf1(ptr-1,1)-frontf1(ptr+1,1))/rangef1); 
        end 
        dist; 
        for b=1:frontpop 
            for a=1:frontpop-1 
                if(frontf2(a,1)<frontf2(a+1,1)) 
                    temp=frontf1(a+1,1); 
                    frontf1(a+1,1)=frontf1(a,1); 
                    frontf1(a,1)=temp; 
  
                    temp=frontf2(a+1,1);frontf2(a+1,1)=frontf2(a,1); 
                    frontf2(a,1)=temp;temp=frontf3(a+1,1); 
                    frontf3(a+1,1)=frontf3(a,1); 
                    frontf3(a,1)=temp; 
                    for pp=1:D 
                        temp=front(a+1,pp); 
                        front(a+1,pp)=front(a,pp); 
                        front(a,pp)=temp; 
                    end 
                end 
            end 
        end 
        ptr=0; 
        for ptr=1:frontpop 
            dist(ptr,2)=0;   %%%%%initialising all distances to zero 
        end 
        dist(1,2)=100; 
        dist(frontpop,2)=100; 
  
        for ptr=2:frontpop-1 
            dist(ptr,2)=dist(ptr,1)+  (abs(frontf2(ptr-1,1)-frontf2(ptr+1,1))/rangef2); 
        end 
        ptr=0; 
        for b=1:frontpop 
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            for a=1:frontpop-1 
                if(dist((a),2)<dist((a+1),2))        
                    temp=dist(a+1,2); dist(a+1,2)=dist(a,2); 
                    dist((a),2)=temp; 
                   temp=frontf1(a+1,1); 
                    frontf1(a+1,1)=frontf1((a),1); 
                    frontf1((a),1)=temp;temp=frontf2(a+1,1); 
                    frontf2(a+1,1)=frontf2((a),1); 
                    frontf2((a),1)=temp;temp=frontf3(a+1,1); 
                    frontf3(a+1,1)=frontf3((a),1); 
                    frontf3((a),1)=temp; 
                    for pp=1:D 
                        temp=front(a+1,pp); 
                        front(a+1,pp)=front(a,pp); 
                        front(a,pp)=temp; 
                    end 
                end 
            end 
        end 
        for chk=1:frontpop 
            if (pole+chk<=Np) 
                nextpoplist(pole+chk,:)=front(chk,:); 
                nextpoplistf1(pole+chk,1)=frontf1(chk,1); 
                nextpoplistf2(pole+chk,1)=frontf2(chk,1); 
                nextpoplistf3(pole+chk,1)=frontf3(chk,1); 
            else 
                break 
            end 
        end 
        size(nextpoplist); 
    end %end of  if nextpop>Np crowded loop 
    if poleflag==1 
        nextpoplist=pop1;nextpoplistf1=f1; 
        nextpoplistf2=f2;nextpoplistf3=f3; 
    end 
    size(pop1); 
    clear pop1,f1,f2;   clear f3 
    pop1=nextpoplist; 
    f1=nextpoplistf1; 
    size(f1); 
    f2=nextpoplistf2; 
    size(f2); 
    f3=nextpoplistf3; 
    size(f3); 
    plot(f1,f2,'*'); 
    pole=0; 
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    clear a1; 
    clear Q; 
    clear mixedpop 
    clear mixedpopf1 
    clear mixedpopf2 
    clear mixedpopf3 
    clear nextpoplist 
    clear nextpoplistf1 
    clear nextpoplistf2 
    clear nextpoplistf3 
    clear crowdpopdist 
    clear nextpoplist 
    clear nextpoplistf1 
    clear nextpoplistf2 
    clear nextpoplistf3 
    Ttime=cputime-t; 
    t2=cputime-t; 
    plot(f1,f2,'*'); 
end% end of generation loop 
nond=zeros(1,D); 
nondf=[0 0 0]; 
a=1; 
for i=1:Np 
    flag=0; 
    for j=1:Np 
        if (((f2(i)>=f2(j))&(f1(i)>=f1(j))) & ((f2(i)>f2(j))|(f1(i)>f1(j)))) 
            flag=1; 
            break; 
        end 
    end 
    if(flag~=1) 
        nond(a,:)=pop1(i,:); 
        nondf(a,1)=f1(i,1); 
        nondf(a,2)=f2(i,1); 
        nondf(a,3)=f3(i,1); 
        a=a+1; 
    end 
end 
Np=length(nond); 
Np=a-1 
for i=1:Np 
    [f]=mo_test_func(nond(i,:),D,p); 
    f1Xtr=f(1,1); 
    f2Xtr=f(1,2); 
    f3Xtr=0; 
    nondf1(i,1) = f(1,1); 
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    nondf2(i,1) = f(1,2); 
    nondf3(i,1) = f(1,3); 
end 
for i=1:(a-1) 
    f1(i,1)=nondf1(i,1); 
    f2(i,1)=nondf2(i,1); 
    f3(i,1)=nondf3(i,1); 
end 
plot(f1,f2,'*'); 

%MATLAB CODE FOR TRIGONOMETRIC MUTATION MULI-OBJECTIVE 
DIFFERENTIAL EVOLUTION ALGORITHM THIS CODE IS DEVELOPED BY 
ASHISH M GUJARATHI AND B V BABU %ENTER YOUR OBJECTIVE 
FUNCTION in mo_test_file %%%Enter the number and bounds of variables in fun file 
clc 
clear all 
nond=1; 
pop1=0; 
Xtr=0 
mt=0.05; 
t=cputime; 
t1=cputime; 
CR=0.85; 
Np=100; 
GMAX=300; 
p=1;  %%problem number 1 SCH 
[D,n_obj,xl,xu]=fun(p); 
for i=1:Np 
    for j=1:D 
        pop1(i,j)=xl(j)+(xu(j)-xl(j))*rand(1); 
    end 
end 
for gen=1:GMAX 
    gen 
     for i=1:Np 
            [f]=mo_test_func(pop1(i,:),D,p); 
        f1(i,1)=f(1,1); 
        f2(i,1)=f(1,2); 
        f3(i,1)=0; 
    end 
%%DO NOT CHANGE BELOW TILL FURTHER INFORMATION% 
    for i=1:Np 
       Xt=pop1(i,:); 
        n=randperm(D); 
        flag=0; 
        for(k=1:D) 
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            c=rand(1); 
            if ((c<CR)|(k==D) ) 
                if(flag==0) 
                    flag=1; 
                    r1=ceil(rand(1)*Np); 
                    while(r1==i) 
                        r1=ceil(rand(1)*Np) 
                    end 
                    r2=ceil(rand(1)*Np); 
                    while(r2==i|r2==r1) 
                        r2=ceil(rand(1)*Np); 
                    end 
                    r3=ceil(rand(1)*Np); 
                    while(r3==i|r3==r1|r3==r2) 
                        r3=ceil(rand(1)*Np); 
                    end 
                    r4=ceil(rand(1)*Np); 
                    while(r4==i|r4==r1|r4==r2|r4==r3) 
                        r4=ceil(rand(1)*Np); 
                    end 
                    Xa=pop1(r1,:); 
                    Xb=pop1(r2,:); 
                    Xc=pop1(r3,:); 
                    Xd=pop1(r4,:); 
                        if(rand>mt) 
                        tempp1 =mo_test_func(Xa(1,:),D,p) ; 
                        tempp2 = mo_test_func(Xb(1,:),D,p); 
                        tempp3= mo_test_func(Xc(1,:),D,p); 
                        sum= tempp1+tempp2+tempp3  ; 
                        p1= tempp1/ sum ; 
                        p2= tempp2/sum ; 
                        p3=  tempp3/sum ; 
                        for j=1:D 
Xtr(1,j) = (Xa(1,j)+Xb(1,j)+Xc(1,j))/3 +(p2-p1)*(Xa(1,j)-Xb(1,j))+(p3-p2)*(Xb(1,j)-
Xc(1,j))+(p1-p3)*(Xc(1,j)-Xa(1,j)); 
                            if Xtr(1,j)<xl(j) | Xtr(1,j)>xu(j) 
                                Xtr(1,j)=xl(j) + (xu(j)-xl(j))*rand(1); 
                            end 
                        end 
                      else 
                        Diff1=((Xa-Xb)); 
                        Diff2=((Xc-Xd)); 
                        F=rand(1); 
                        F1=rand(1); 
                        Wdiff=F1.*Diff1 + F.*Diff2; 
                        W1diff=F1.*Diff1 ; 
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                        for ii=1:Np 
                            flag=0; 
                            for jj=1:Np 
                                if (((f2(ii)>=f2(jj))&(f1(ii)>=f1(jj))) & ((f2(ii)>f2(jj))|(f1(ii)>f1(jj)))) 
                                    flag=1; 
                                    break; 
                                end 
                            end 
                            if(flag~=1) 
                                Xbestpop = pop1(ii,:); 
                                break; 
                            end 
                        end 
                        %                         Xc1=Xbestpop + Wdiff; 
                        Xc1=Xc+ W1diff; 
                        Xtr(:,n(k))=Xc1(:,n(k));  %% tral vextr 
                        end                end 
            else 
                Xtr(:,n(k))=Xt(:,n(k)); 
            end 
        end 
        for j=1:D 
            if(Xtr(1,j)<xl(j) | Xtr(1,j)>xu(j)) 
                Xtr(1,j)=xl(j) + (xu(j)-xl(j))*rand(1); 
            end 
        end 
        sum=0; 
        [f]=mo_test_func(Xtr(1,:),D,p); 
        f1Xtr=f(1,1); 
        f2Xtr=f(1,2); 
        f3Xtr=0; 
        %CHANGE THE SIGN DEPENDING UPOM MAX-MIN PROBLEM%% 
        flag=0; 
        if (((f1(i)>=f1Xtr)&(f2(i)>=f2Xtr)) & ((f1(i)>f1Xtr)|(f2(i)>f2Xtr))) 
            if flag==0 
                pop1(i,:)=Xtr; 
                f1(i)=f1Xtr; 
                f2(i)=f2Xtr; 
                f3(i)=f3Xtr; 
                flag=1; 
            end 
       end 
        if flag==0 
            for(pp=1:Np) 
                if (((f1(pp)>=f1Xtr)&(f2(pp)>=f2Xtr)) & ((f1(pp)>f1Xtr)|(f2(pp)>f2Xtr))) 
                    pop1(pp,:)=Xtr; 
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                    f1(pp)=f1Xtr; 
                    f2(pp)=f2Xtr; 
                    f3(pp)=f3Xtr; 
                    flag = 1 
                    break; 
                end 
            end 
        end 
        pop1; 
        % count 
    end    % end of pop loop 
    midnond(:,1)=f1(:,1); 
    midnond(:,2)=f2(:,1); 
    midnond(:,3)=f3(:,1); 
    t2= cputime - t1; 
    nond=zeros(1,D); 
    a1=1; 
    for i=1:Np 
        flag=0; 
        for j=1:Np 
            if (((f2(i)>=f2(j))&(f1(i)>=f1(j))) & ((f2(i)>f2(j))|(f1(i)>f1(j)))) 
                flag=1; 
                break; 
            end 
        end 
        if(flag~=1) 
            nond(a1,:)=pop1(i,:);  %%%% population points 
            nondf(a1,1)=f1(i,1);  %%% function 
            nondf(a1,2)=f2(i,1); 
            nondf(a1,3)=f3(i,1); 
            a1=a1+1; 
        end 
    end 
    obj1=nondf(:,1); 
    obj2=nondf(:,2) 
    plot(obj1,obj2,'*'); 
end  % end of generation loop 
t1=cputime-t  %% CPU TIME in seconds 
obj1 =f1; 
obj2 = f2; 
obj3 =f3; 
figure(1); 
plot(obj1 , obj2 ,'*') 
 


