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ABSTRACT 

Neurological disorders are a group of incurable, chronic disorders of central nervous (CNS) 

and peripheral nervous systems. They are characterized by gradual loss of neuronal function 

in brain areas and the abnormalities related to consequent deficits in specific brain (e.g., 

cognition, memory, or movement). Several extensive studies reported that an atypical protein 

kinase C, PKMzeta plays a crucial role in neurodegenerative disorder such as Alzheimer’s, 

maintenance of long term potentiation, cognition, neuropathic pain and cancer. Drug 

discovery efforts have been hindered due to the non-availability of the protein structure and 

hence in the present study, we attempted to classify and build open and closed models of the 

protein PKMzeta using comparative modeling and molecular dynamics approaches. The 

refined models were used to identify PKMzeta inhibitors utilizing a high-throughput virtual 

screening protocol from large commercial chemical and in-house databases. Hit compounds 

were selected based on the binding interactions and Glide score. Compounds were subjected 

to in vitro luminescent based kinase assay for their inhibitory activity on the target protein. 

Twelve compounds (7 from commercial and 5 from in-house databases) exhibited IC50s less 

than or equal to 10 µM. Cell based assays revealed that the Leads AC3, AC6, BO5 and BC3 

exhibited selectivity towards methyl mercury treated neuroblastoma growth inhibition and 

suppressed reactive oxygen species with IC50s of 0.03, 0.13, 0.68 and 0.17 μM, respectively. 

Furthermore, LeadBO5 exhibited higher selectivity index as well as low cytotoxicity in 

normal cells. Thus, LeadBO5 was selected as promising lead for synthesis and further neuro-

pharmacological screening to evaluate its potential in various animal models of neuro-

degeneration, neuro-inflammation and neuropathic pain. LeadBO5 was found to reverse 

spontaneous pain, cold allodynia and tactile allodynia with ED50s of 48.53 mg/kg, 9.25 mg/kg 
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and 25.96 mg/kg, respectively. The LeadBO5 also showed analgesic and anti-inflammatory 

properties in acetic acid-induced writhing and carrageenan-induced paw edema models, 

respectively. In addition to the anti-inflammatory property, the neuroprotective effect of the 

compound was assessed in methyl mercury treated mice model. The results revealed the 

importance of PKMzeta inhibitions with neuro-therapeutic implications. 
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Chapter 1 

Introduction 

 1.1. Neurological disorders 

Neurological disorders are a group of incurable, chronic disorders of central nervous system 

(CNS) and peripheral nervous system. In other words, they are the brain, spinal cord, cranial 

nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, 

and muscles. They are characterized by the gradual loss of neurons in discrete brain areas and 

the abnormalities related to consequent deficits in specific brain functions (e.g., cognition, 

memory, or movement), spine and nerves [1]. Neurological disorders could affect an entire 

neurological pathway or a single neuron. Even a small disturbance to a neuron's structural 

pathway could result in improper function. Social security approves disability benefits for 

serious cases of epilepsy, cerebral palsy, Parkinson's disease, multiple sclerosis, ALS, and 

other nerve-based diseases. More than 36 million people worldwide suffer from Alzheimer’s 

disease (AD) and Parkinson’s disease (PD) [1]. 

Clinical semiology has contributed to the well accepted classification of the 

neurodegenerative diseases, the main representatives of which are Alzheimer’s disease and 

related dementia, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), frontal-temporal-

dementia (FTD) and Huntington’s disease among many others [2].  

The progressive loss of neuronal cells is often used to describe a diverse group of 

neurological disorders known as neurodegenerative disorders. There are more than hundreds 

of disorders that describe the term neurodegenerative disorder and among them many are 
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rare. The most common neurodegenerative disorder is Alzheimer’s [3]. Most of the 

pathophysiological processes of neurodegenerative diseases share the aggregation of related 

proteins which is one of the hallmarks of the degenerative processes. Recent advances in the 

knowledge of these proteinopathies show that the same protein could contribute to a number 

of diseases, thus suggesting a common pathological process [4-5]. If this is so, specific 

instances of the brain neuronal system targeted by protein dysfunction could be a sign of a 

different clinical expression rather than different pathological processes. This very 

stimulating view of the neurodegenerative diseases based on physiopathology has led us to 

suggest that possible degenerative mechanisms may be shared by different diseases, although 

the causes of the disease itself still remain unclear. 

Hundreds of millions of people worldwide are affected by neurological disorders. 

Approximately 6.2 million people die because of stroke each year; over 80% of deaths take 

place in low- and middle-income countries. More than 50 million people have epilepsy 

worldwide. It was estimated that there are globally 35.6 million people with dementia with 

7.7 million new cases every year - AD was the most common cause of dementia and may 

contribute to 60–70% of cases (http://www.who.int/features/qa/55/en/). The prevalence of 

migraine was more than 10% worldwide. AD is a lethal disorder associated with progressive 

neuronal cell death beginning in hippocampus and cortex regions. Typical indications of AD 

are gradual memory loss, cognitive impairment and behavior dysfunction to death. Owing to 

the complex pathological cascade, the cause of AD is not yet clearly understood. Among the 

numerous pathological causes of AD in dispute, cumulative neurotoxicity induced by 

misfolded β-amyloid (Aβ) and phosphorylated tau proteins was strongly supported by genetic 
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and clinical evidences [6]. At present, there is no complete cure prevailing to treat AD 

patients for recovery. 

The major symptoms of AD are dementia and aging. Many kinases have found to play 

various roles in developing the symptoms [7]. The development of treatments by modulating 

the improper functioning of kinases would require a proper assessment of protein kinases and 

an understanding of the pathophysiology for effective development of diagnostic tools and 

biomarkers to detect the presence of the disease at an early stage which could be an essential 

step for effective treatment of neurological disorders [8]. 

1.2. Protein Kinases 

Protein kinases are the important families of protein, which maintains the regulation of 

biological progressions by phosphorylation at posttranslational level of serine, threonine and 

tyrosine amino acid residues [9]. Protein kinases have turned into the most sort-after families 

for protein and the greater part of the kinase targets are being concentrated on for the 

treatment of different neurological issue, neuropathic pain, drug addiction and malignancy. 

This group of proteins shares the conserved catalytic and regulatory domain which regulates 

the catalytic activity of the kinases [10-14]. In this way, making an order of these kinases will 

be useful for comprehension comparable protein kinase bunches, which could be utilized in 

considering comparable kinases for identifying particular kinase inhibitors. 

1.2.1. Need for classification of kinases 

Kinases are well known enzymes involved in the regulation of eukaryotic cellular processes. 

Any perturbation from the normal condition causes human diseases or disorders. Kinases act 

of transferring a phosphate group from ATP to the amino acid chain of target protein. Any 
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changes in the mechanism cause alteration in biological processes. There are many types of 

kinases which have profound biological impact on the organism. In this manner, classifying 

kinases would be useful for protein kinases for outlining particular kinase inhibitors. 

Examining further the protein classification, there are many databases on the kinases such as 

Homokinase, KinBase, KinG and KinWeb [15-17]. Nevertheless, the classification offers less 

accuracy because of their fundamental classification algorithms and the assignments of 

relating unknown kinases with the known kinases could be encouraged by classification and 

by comprehension the kinase families and subfamilies [18]. 

1.2.2. Various tools used for classification 

There are various databases of protein kinases which include human protein kinase [19-21].  

Some of the likely databases are KinBase which contains all the information of manually 

curated kinases based on Hanks and Hunter’s classification of kinases for all nine genomes 

which include human kinases too. This Hanks and Hunter classification is based on 

phylogenetic analysis of the kinase. KinG is another database which contains 40 genomes 

kinases which are classified based on kinome based sequences search methods [19]. In 

addition to KinBase and KinG, KinWeb is another database which is dedicated to store 

protein kinases [20]. In any case, there is not much information on digging methodology for 

characterization of kinases apart from the latest study in which Kinannote system was utilized 

in order of eukaryotic kinases barring human kinases for classification of protein kinases 

utilizing HMM [22]. And due to lack of underlying machine learning approach used for 

classification of kinases, an attempt to benchmark various machine learning approaches along 

with features extraction effect was needed. 
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1.3. Importance of feature selection 

Feature selection is advantageous in different ways. Firstly, a packed subset of features could 

alleviate the curse of dimensionality and alienates the over-fitting problem which is usually 

encountered while training a classifier. Secondly, the accuracy of classification could be 

improved by removing noisy features and processing the dataset. Thirdly, the exact and 

crucial subset of the dataset could be utilized with altogether diminished computational cost. 

Finally, an illustrative subset of features could make the model output more comprehensible 

and reasonable. Hence, the major challenge lies in search of feature subset that leads to 

enhanced performance of a classifier by removing the redundant and unnecessary features. 

Consequently, the efficacy of a feature selection method is commonly assessed by the 

performance of the final model trained with the feature subset [23]. 

Many studies have been conducted in the last few years for comparison and optimization of 

various feature selection techniques for classification of various biological problems with 

high accuracy. Feature selection techniques are widely used in text categorization [24] and 

gene selection problems [25].  

Feature selection reduces the complexity of the learning process of a model by reducing to 

subset features for learning and by prediction algorithms [26]. Most classification algorithms 

are computationally intensive due to curse of dimensionality. Hence, feature selection avoids 

this issue by selecting the optimal features of subset without effecting the variance in the data 

[27]. 

In many situations, feature selection could also improve prediction accuracy. In situations 

where there are wide ranges of matrices, there is a plausibility of immaterial or feebly 
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important features which could affect the accuracy. Indeed, even the most efficient 

algorithms may not give the most elevated conceivable accuracy in such cases. Be that as it 

may, once a little arrangement of good features has been discovered, even basic learning 

algorithms may yield great execution. Another advantage of feature selection is that the 

identity of selected features could give bits of knowledge into the issue's way close by. 

1.4. Drug Design Strategies 

Drug discovery and development is a cost effective and time consuming task. Traditional 

approaches to drug discovery and development is a step wise synthesis and screening of a 

large number of compounds for identification of potential leads. For the last ten to twenty 

years there is an elevated attempt to implement computational methods to blend biological 

and chemical space in order to streamline drug discovery and development [28]. 

Computational methods help in understanding the lead molecules and possible target 

macromolecules [29]. Computational approaches ease the identification and design of new 

inhibitors and for prediction of various properties for lead optimization of absorption, 

distribution, metabolism, excretion and toxicity profile of identified molecules from various 

sources. Drug design could be categorized into two types: Structure based drug design 

(SBDD) and Ligand based drug design (LBDD) [30]. 

1.4.1. Structure Based Drug Design (SBDD) 

SBDD is a computational drug design approach where the structural information of the drug 

target is explored and exploited for the development of its specific modulators which could 

be an inhibitor or an activator. In SBDD, receptor structure is a prerequisite in designing a 

specific target based inhibitor. These structures are determined using various experimental 
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methods such as x-ray crystallography or NMR which is being deposited in PDB. And in case 

the structure of a particular drug target is not solved by experimental methods and is not 

present in the PDB, then the structure could be predicted using computational approaches like 

homology modeling and threading. Threading is also known as fold recognition approach of 

modeling to build protein structures that do not have any homologous protein with known 

structure. Amino acid sequences are searched for compatibility with the structures present in 

the database with known folds and the structure of query protein is built from these folds. 

Similarly, another structure prediction approach for SBDD is homology modeling or 

comparative modeling approach that relies completely upon the homologous proteins present 

in the protein database. The process of homology modeling of protein consist of the 

following steps: Identification of homologous protein with known 3D structure which could 

serve as a template for the respective target sequence; sequence alignment of the target and 

the template sequences; the generation of the 3D models based on alignment of the target and 

template sequences; followed by refinement and validation of the models [31-32]. Over the 

years, homology modeling has become the major alternative to get a solved 3D structure of 

the target in absence of crystal structures in PDB. 

1.4.1.1. Structure based virtual screening 

Structure based virtual screening is one of the common and widely used methods for 

identification of leads and is regarded as an emerging computational approach for screening 

of large number of molecules using high throughput screening (HTS) to improve the speed 

and efficiency of the drug discovery and development process [33]. This approach involves 

molecular docking processes, predicting the binding sites and scoring based on the binding 
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affinity. Various lead compounds could be screened from databases for selecting and 

exploring modulators with respect to the target protein. 

1.4.2. Ligand Based Drug Design (LBDD) 

LBDD is a computational approach which could be used when the receptor 3D information is 

lacking and it relies on the knowledge based approach of the ligands which is already proven 

to be a potent modulator and bind with the respective template of interest. 3D quantitative 

structure activity relationships (3D QSAR) and pharmacophore modeling are the most 

important and widely used tools in ligand based drug design. The ligand based approach 

could provide suitable leads for lead identification, designing and optimization [34].  
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Chapter 2 

Literature Review 

2.1. Background 

A meticulous literature survey is conducted to define the various objectives and to have a 

substantial summary of the current knowledge available in the public domain. This includes 

research articles, reviews, patents and newsletters on protein kinases classification and 

protein kinases M zeta (PKMzeta). A PubMed search (www.ncbi.nlm.nih.gov/pubmed), 

SciFinder (http://www.cas.org/products/scifinder) and a Google scholar search 

(www.scholar.google.co.in/) of the literature published between 1996 and 2015 was 

conducted using the following search terms individually or combined: ‘Protein kinase 

classification’, ‘Feature selection’, ‘PKMzeta’, ‘PKMzeta inhibitors’, ‘homology modeling’, 

‘PKMzeta in neurological disorder’, and ‘PKMzeta in neuropathetic pain’. The bibliography 

of the included studies was searched for additional references. 

2.2. Protein kinase classification 

In human genome, kinases are the most importantly identified protein families which regulate 

various biological processes by phosphorylation of serine, threonine and tyrosine residues at 

post transcriptional level [19]. Human genome consists of 500 kinases which contribute to 

only 2% of all genes [35] and approximately 2000 kinases are encoded by the human 

genome. These kinases are important for metabolism, cell growth, cell motility, cell 

differentiation and cell division, and signaling pathways involved in normal development and 

in disease conditions [36]. About 30% to 50% of the proteins in the human genome 



10 | P a g e  

 

undergoes phosphorylation and any perturbation or changes in the normal functioning of 

these kinases may lead to various human disorders [37]. Activating and inactivating kinases 

maintain the cellular processes due to its role in the regulation of many processes, they are 

linked with many disorders and considered as an essential drug target.  

2.2.1. Classification of kinases 

The three majorly used databases for protein kinases as discussed in section 1.2.2 are 

KinBase, KinG and KinWeb, but there are no machine learning approaches for classification 

of kinases except Kinannote program. Kinannote relates new kinases to a known one which 

was facilitated by the works of Hanks and Hunter [38]; Manning et al and KinBase [19]. The 

classification of kinases by Manning et al is shown in the Figure 2.1. Kinases classification 

majorly comprises of eight classes of kinases which include CK1, Casein kinase 1 family; 

AGC, Protein A, G and C kinase family; CAMK, Calcium/Calmodulin dependent kinase 

family; CMGC, Cyclin-dependent kinase family; RGC, Receptor guanylate cyclase family; 

TK, Tyrosine kinase family; TKL, Tyrosine kinase-like family and STE, serine threonine 

kinase family.  
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Figure 2.1.  The protein kinases complement of the human genome. 

Kinases act by covalently attaching a phosphate to its target kinases and thus facilitate 

biological reactions. Kinases are mainly involved in signal transduction and various pathways 

in living cells. Kinase phosphorylation includes proteins, nucleotide, lipids, etc. The largest 

group of kinases is involved in phosphorylation of Ser/Thr or Tyr residues. And about 2% of 

proteins encoded in the genomes of most of the eukaryotes are Ser/Thr/Tyr kinases . These 

proteins are important in cell cycle control, embryonic development, cancer pathways and 

thus constitute popular drug targets [9] [39]. 

The genome sequencing projects generate data at such a rate that makes it difficult to conduct 

any biological experiments to characterize the functions of each and every protein encoded in 

a genome. In the same context, several groups including ours have developed bioinformatics 

approaches to analyze and identify the protein kinases [40-41]. Currently there are databases 

of kinases namely KinG database (http://hodgkin.mbu.iisc.ernet.in/~king/) which contains the 

http://hodgkin.mbu.iisc.ernet.in/~king/
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analysis made from 488 genomes: 54 eukaryotes, 49 archaebacteria, 259 eubacteria, and 126 

viruses. These are classified into many subfamilies which usually correspond to different 

substrate specificities and activation mode. Protein kinase classification encoded in a genome 

into various subfamilies is very much important to fetch further insight into their detailed 

biological function. However, the existing classification algorithms used KinG and Kinomer 

databases uses amino acid sequences of catalytic kinase domain only and ignore the sequence 

of the regions outside the catalytic domain [42]. 

In the past, there have been studies for kinases classification in the literature. Hanks and 

Hunter performed conservation and phylogeny studies of the eukaryotic kinases including the 

catalytic domain [43-44]. The classification enabled to unleash the conserve features of the 

kinases and its catalytic domain. Further, protein kinases with similar functions and 

regulation mode were clustered together in the phylogenetic tree [38]. In subsequent studies, 

phylogenetic analyses were conducted exhaustively to all protein kinases of eukaryotes 

whose sequences were available at the time of the study which were about 243 in number. 

Relying upon the phylogenetic trees, Hanks and Hunter proposed classification of kinases 

which consists of 5 groups, 55 subfamilies, with related substrate specificity and regulation 

mode [38]. This classification scheme is completely dependent on amino acid sequences and 

is currently stored in the KinBase. The protein classification of Hanks and Hunter has been 

widely used for classification studies. The extra form of Hanks and Hunter classification 

which was created for protein kinase is openly accessible [45-46]. This version consisted of 9 

groups, 81 families and 238 subfamilies. Another addition of Hanks and Hunter classification 

of kinases was introduced by Manning and coworkers for the KinBase database 

(http://www.kinase.com/kinbase). 
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Families obtained by sequence comparison of the catalytic domains are encouraged by the 

information obtained from sequence similarity and domain structure of the catalytic domains, 

known biological roles, and similarity in biological tasks of kinases across organisms.  It 

currently contains 10 groups divided into 256 families which are organism-specific. This 

classification has been implemented by Miranda and Barton, who proposed a multilevel 

classification based on Hidden Markov Model (HMM) profiles of catalytic domains for 

sequence classification [47]. Their classification process has been utilized to elaborate the 

sequences stored in the Kinomer database [48]. The Kinase Sequence Database 

(http://sequoia.ucsf.edu/ksd/) consists of 7128 protein kinases from 948 organisms classified 

into 287 families [49].  

A recursive algorithm combining Basic Local Alignment Search Tool (BLAST) and profile-

based searches were used for clustering subfamilies. A pair-wise score was generated using 

an all-against-all BLAST search. HMM profile was generated and the sequence matching to 

the profile was integrated into the family and was eliminated from the dataset. The procedure 

was repeated reaching the lower limit of BLAST score. In this classification scheme 

structural information is also used as a feature for classification. Scheeff and Bourne in their 

classification used sequence alignment along with structural features to perform Bayesian 

phylogenetic inference, which yielded an evolutionary tree consisting of 31 protein 

kinases [50]. In a recent study, Jabobs et al attempted to classify 426 structures to 71 different 

human protein kinases, based on the conformations of two structural elements [51]. 

Regrettably, structural information is only available for few protein kinases and thus these 

approaches were not appropriate for whole kinome analysis. Therefore, it appeared that the 

main classification schemes currently and majorly in use for kinome classification is based on 

http://sequoia.ucsf.edu/ksd/
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Hanks and Hunter classification that is completely based on the catalytic domain sequences 

[52-54]. Therefore, Hanks and Hunter classification could be utilized for benchmarking data 

mining approaches for classification of kinases. 

2.3. Feature selection on classification  

Relevant feature identification for learning algorithms has become a quintessential task for 

effective prediction in real-world scenarios. Therefore, many feature selection algorithms and 

methods have been put forward to acquire the relevant feature, or minimized feature subsets 

in the literature to achieve their objectives of classification and clustering. Feature selection 

has become a very important topic of interest. The combination of good databases and good 

machine learning approaches are required for classification and novel approaches for feature 

selection are in high demand. The major real world problems for the classification requires 

supervised learning in which the underlying probabilities for class and probabilities for class 

conditional are not known, and every instance could be related to a class label [55]. In a real 

world problem, it is difficult to know the relevant feature to represent the domain at its best as 

many candidates’ features exist which includes the existence of irrelevant/redundant features 

to the target concept. Feature selection is independent of learning algorithms. Unlike learning 

algorithms, it filters the best features to increase the performance of learning algorithms to 

evaluate the quality of selected features. The main aim of feature selection could be to 

minimize the raw feature data which could lead to increase in classification accuracy. 

Assume that F = {f1, f2, . . . , fm} and C = {c1, c2, . . . , cK} denote the feature set and the class 

label set respectively, where M and K are the number of features and labels, respectively. X = 

{x1, x2, . . . , x3} ∈ R m×n is the data where N is the number of instances and the label 

information of the i-th instance xi. 
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Figure 2.2. A framework of feature selection for classification 

A framework of feature selection for classification is represented in Figure 2.2. In machine 

learning approaches, training phase is the essential stage of selecting the features. Feature 

selection primarily impacts the training phase rather than prediction phase. Subsequent to 

creating the feature subset utilizing feature selection methods, rather than preparing the entire 

features to the learning algorithms, feature selection would be performed to choose a subset 

of features than handling the information with all the features. With the finally selected 

features a classifier could be affected for the prediction phase. 

Machine learning methodologies have been utilized for many classifications to classify with 

high accuracy. A study showed a direct correlation between the amino acid composition 

(AAC) and dipeptide composition (DC) features with the proteins and such studies will 

facilitate identification of subfamilies of proteins for drug discovery process [56]. In earlier 

studies, AAC has been used to predict the structural class and localization of proteins using a 

fixed pattern length of 20 [57-59]. The DC is also found to be essential for classification, 

prediction of protein subcellular localization and fold recognition using fixed pattern length 
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of 400 [60].  There have been several studies where Support Vector Machine (SVM) was 

used for classification using different features like DC and AAC. SVM module based on DC 

of the proteins performed better than that of the SVM module for AAC. To improve the 

accuracy of prediction Chou et. al., in 2002 implemented 400 DCs, 33 physiochemical 

properties, 20 AAC of the protein and 5 from PSI-BLAST output. The prediction accuracy 

was found to be 95.3, 85.2, 68.2 and 88.9%, for nuclear, cytoplasmic, mitochondrial and 

extracellular proteins respectively. The accuracy of all the SVM modules was evaluated using 

5 fold cross validation techniques [61]. 

Chou et. al., in 2005 used amphiphillic pseudo amino acid composition (APAAC) for protein 

structure classification. An improved accuracy of the SVM classifier was reported using 

APAAC for protein classification [61]. 

A study for predicting cofactor oxidoreductases was performed by extracting AAC. Features 

extraction is a critical part in the classification prediction system. So, it required the raw data 

to be transformed into numerical feature vectors for minimizing the information loss. 

Therefore, AACs were extracted from the raw sequence for classification of kinases and the 

accuracy was found to be increased to 92.53% [62]. 

In another study, Chou's APAAC was used for discriminating cell wall lytic enzymes from 

non-lytic enzymes and fisher-discriminant based classifier was used to predict cell wall lytic 

enzymes. This method showed overall accuracy of 92.9% with 66.7% sensitivity and 88.6% 

specificity. This study demonstrated the importance of feature extraction for classification 

[63].  
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2.4. Protein Kinase M zeta  

Protein kinase Cs has been implicated in phosphorylation of several neuronal proteins which 

were thought to control the regulation of neurotransmitters release and establishment of long-

term potentiation in memory formation [64-65]. At least 10 isoforms of PKCs are known and 

classified by their activation requirements as presented in Table 2.1[66].  

Table 2.1. PKC isoforms and their features 

Type of PKCs Activators Isoforms Distribution 

Classical Ca
2+

, PS, DAG Α Widespread  

  βI Widespread (low levels)  

  βII Widespread 

  γ Brain, Spinal cord  

Novel PS, DAG δ Widespread  

  ε Brain, Hematopoietic tissues  

  η Heart, Lung, Skin  

  θ Hematopoietic tissues, Brain, Skeletal 

muscle  

Atypical PS, PI-3,4,5-P3 ζ Widespread  

  ι/λ Brain, Kidney, Lung  

Recently identified  DAG, PI-4,5-P2  μ/PKD Lung, Epithelial cells  

  ν Widespread  

Ca
2+

=Calcium; PS=Phosphatidylserine; DAG=Diacylglycerol; PI-3,4,5-P3=phosphatidylinositol-3,4,5-

triphosphate, PI-4,5-P2=phosphatidylinositol 4,5 diphosphate [67] . 

As shown in the table 2.1, PKCs are majorly divided into subfamilies, namely: classical 

PKCs, novel PKCs, atypical PKCs and the recently identified ones. Classical PKCs are the 

protein kinases which are regulated by intracellular Ca
2+

, diacylglycerol (DAG) and 

phosphatidylserine binding at N-terminal regulatory domain. Novel PKCs are regulated by 

only DAG and phosphatidylserine, and insensitive to intracellular Ca
2+

. On the flip side, 

PKCs are neither regulated by intracellular Ca
2+

 nor regulated by DAG, but is regulated by 

phosphatidylserine and protein-protein interactions [68-69]. There are three major atypical 
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PKC isoforms in vertebrates which are PKCiota, PKCzeta and PKMzeta. PKCiota is derived 

from Prkcl gene, while PKCzeta and PKMzeta are derived from Prkcz gene. There is a high 

degree of similarity between PKCiota and PKCzeta with an identity of 86% between the 

kinases. PKCzeta and PKMzeta originated from the same genes and are isoforms, which 

means they are derived from different mRNA structures [70]. All PKCs except PKMzeta 

share similar N-terminal regulatory domain as shown in Figure 2.3. This N terminal 

regulatory domain regulates the C-terminal kinase domain. The mature mRNA of PKMzeta 

and PKCzeta are identical to the coding sequence of the C-terminal kinase catalytic domain. 

All PKCs, except for PKMzeta, lack the pseudo-substrate and the PB1 motifs, present in the 

N-terminal regulatory region of PKCs which regulate the C-terminal domain.  

 

Figure 2.3. This figure represents the atypical protein kinase. 

PKCiota, PKCzeta and PKMzeta. PKMzeta is the only PKC isoforms which lack the 

regulatory domain unlike other PKCs and hence remains consecutively active. The N 

terminal region of atypical protein kinases consists of the PB1 unique domain.  
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The displacement of the pseudosubstrate region leads to activation of PKCs and allows the 

substrate binding. And the maturation of PKCs which are newly synthesized requires 

interaction with HSP90, followed by priming phosphorylations [71-72]. The activation loop 

in the catalytic domain is constitutively phosphorylated by PDK1 after the synthesis of PKCs. 

After the phosphorylation of activation loop, the turn motif phosphorylation results from auto 

phosphorylation or phosphorylation by mammalian target of rapamycin complex 2 

(mTORC2). The third phosphorylation takes place in hydrophobic motif. It is interesting to 

note that the classical protein kinases do not require continued phosphorylation of activation 

loop for activity and the phosphorylation is down regulated in a mature kinase. Atypical 

PKCs are also phosphorylated in the turn motif. The hydrophobic motifs of the atypical PKCs 

consist of the glutamic acid as shown in figure 2.3. The significance of this residue is still 

unclear. Unlike other PKCs, atypical PKCs contains PB1 (Phox and Bem 1) domain in the N 

terminus. The PB1 domain binds to ZIP/p62, Par6, or MEK5 via PB1-PB1 domain 

interaction which regulates the atypical kinases localization. 

Atypical PKC isoform, PKMzeta has been implicated for the hippocampus long term 

potentiation [73], synaptic plasticity and tau phosphorylation in Alzheimer’s disease [74]. 

PKMzeta was also reported to play a central role in neuropathic pain, drug addiction and 

cancer [75-78]. It is produced by a unique PKMzeta mRNA. The mRNA is produced by a 

promoter present within PKCzeta. PKMzeta lacks the regulatory domain present on most of 

the kinases group, due to which it remains constitutively in active form. These atypical 

protein kinase Cs are exclusively expressed in the brain [79]. Several reports have shown that 

PKMzeta phosphorylation and translation were found to increase in various brain areas 

indicated for pain in response to injury [80] and in anterior cingulate cortex PKMzeta 
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phosphorylation was detectable in neuropathic pain [81]. Recent research reports had 

indicated an alteration in PKMzeta with a strong link in neurodegeneration [82].
 

Furthermore, recent studies had shown PKMzeta to play a role in sustaining late LTP in 

spinal nociceptive pathways. It is one such enzyme which has been reported for maintaining 

LTP [80]. Suppression of late LTP in spinal nociceptive pathways could be helpful in 

inhibiting the amplified maturation of post surgical pain. It could also be possible to reverse 

the late established LTP for the treatment of chronic pain [77]. However the exact underlying 

mechanism for understanding the chronic pain with sustainment of late LTP is poorly 

understood. Another study by Ruscheweyh R et.al., in 2011 revealed that LTP in nociceptive 

pathways contributed to the characteristics of hyperalgesia and played an important role in 

pain amplification followed by trauma, inflammation and nerve injury. This could be a novel 

strategy for pain therapy [83].   

PKMzeta shares the kinase domain of protein kinases which are highly conserved among the 

classes of PKCs. Therefore, targeting a kinase for finding good selective inhibitors depends 

on differentiating the PKC isoforms. Since most of the homology models are built for 

targeting PKC to design inhibitors, such studies are found to be very few with regard to 

PKMzeta. The only inhibitor known for PKMzeta is ZIP (Zeta inhibitory peptide), a cell 

permeable peptidic compound and is based on the PKCzeta pseudo substrate sequence. Also 

the injection of alkaloid chelerythrine had been reported to erase permanently the long-term 

memories [84]. ZIP is a selective inhibitor of PKMzeta based on the PKC-zeta pseudo 

substrate sequence which established a role in synaptic plasticity and reversed late phase of 

LTP with an IC50 of 1-2.5 μM concentration [85]. These studies related to PKMzeta and its 

involvement in post surgical pain, inflammation and nerve injury implied the need for 
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designing cost effective and non-peptidic PKMzeta inhibitors for its therapeutic evaluation 

and thus considered important for the treatment for neuropathic pain and for its 

neuroprotective action. 

2.4.1 Regulation of PKMzeta in LTP and LTM 

LTP is one of the most attractive topics in neurobiology for the past 20 years as a putative 

mechanism of memory storage in mammalian brain have been very interesting. In many 

studies and reviews, various researcherss have concluded that, LTP is a viable mechanism for 

storage and induction of memories and also served as a promising target [86]. In an article 

[87] the authors reviewed the link between LTP and memory. They concluded that most 

evidence firmly supported a role for LTP in learning and memory.  

Learning and memory were found to be associated with neuronal plasticity which included 

long-lasting strengthening of existing synapses [88], synaptogenesis, modulation of intrinsic 

excitability [89], and adult neurogenesis [90]. For maintenance of these kinds of plasticity, 

kinases played an important role by transferring phosphate groups to the side chains of 

particular amino acids of the target proteins involved in respective biological processes. Any 

perturbation or changes in the normal process impacted the normal functioning and led to 

disorders [91]. Different kinases shared different activation properties, in which small subsets 

of kinases have been implicated in learning and memory. 

PKMzeta a brain specific isoform of PKCzeta had brought a lot of interest due to evidence of 

PKMzeta in memory storage [92]. After the synthesis PKMzeta mRNA by an alternate 

promoter, gets transported to dendrites. PKMzeta is mainly found in dendrites, where it gets 

translated. Inhibiting PKMzeta was found to be effective in the treatment of LTP related 
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issues. The continued release of PKMzeta was found to lead GluA2 trafficking to maintain 

enhanced synaptic transmission [93]. Further, in an LTP experiment, ZIP inhibiting PKMzeta 

erased the established the memory in PKCzeta/PKMzeta knockout mice indicating that 

PKMzeta contributed to memory storage [94]. 

2.4.2 Role of PKMzeta in developing neurofibrillary tangles  

Many studies on memory impairment have been found to attribute to Alzheimer’s which 

disrupt the synaptic plasticity and hence expression and distribution of PKMzeta were 

investigated. PKMzeta accumulation was found to be higher in neurofibrillary tangles 

(NFTs), whereas conventional and novel PKC isoforms did not. The over expression of 

PKMzeta was only identified in the region associated with Alzheimer’s. It was found in the 

subset of NFTs restricted to limbic or medial temporal structure unlike tau protein which is 

present regardless of the location of the brain. PKMzeta was not identified in NFTs of the 

control brain. In medial temporal lobe structures in Alzheimer’s, other than PKMzeta there 

was an abnormal expression of glutamatergic synaptic transmission. These studies suggested 

that PKMzeta could be an essential key protein for memory impairment and synaptic 

plasticity in Alzheimer’s [95]. 

In a recent study it was reported that insulin resistance in Alzheimer’s was in response to the 

production and accumulation of Aβ and found that insulin induces phosphorylation of Serine 

831 GluR1 subunit of AMPAr and induced over-expression of PKMzeta. Inhibition of 

PKMzeta was found helpful in bringing the GluR1 to control level [96]. 
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2.4.3 Role of PKMzeta in inflammation 

The role of PKCzeta and PKMzeta was found also in inflammatory pain. Studies have shown 

that PKCzeta especially PKMzeta isoforms played a significant role in spinal persistent 

nociceptive processing following peripheral inflammation. The role of PKCzeta and 

PKMzeta seemed to be limited to, chronic inflammatory pain conditions. The importance of 

spinal PKMzeta is a key factor to understand the differences between the molecular 

mechanisms of persistent spinal nociceptive processing between inflammatory and 

neuropathic pain. It was speculated from a few studies that the peripheral stimulus and the 

release of inflammatory mediators could specifically promote the activation of spinal 

PKMzeta. PKCzeta has been already reported to be involved in receptor signaling complexes 

such as TNFα and IL1β receptors and also activated NFkB transcription factor during 

immune reactions in inflammatory pain states. Further studies are required to understand 

properly the involvement of PKCzeta and PKMzeta in inflammation and neuropathic pain 

[97]. 

2.4.4 Role of PKMzeta in neuropathic pain 

PKMzeta is the protein that makes us remember the pain. Todd C. Sacktor in 2006 found that 

PKMzeta was found in the synapses and required to be continually created at the synapses. If 

PKMzeta fades away, so do the pain memories. Sacktor's team found a way to erase 

memories of pain in rats by using ZIP which inhibited PKMzeta. Researchers also found that 

PKMzeta created memories of chronic pain caused by nerve damage and they also reported 

that the protein affected the anterior cingulated cortex (ACC) part of the brain. A ZIP 

injection was found to reduce hypersensitivity to pain, but only temporarily and not 

permanently [98]. 
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PKMzeta also worked well in a paw edema test where the injection with IL-6 in the paw of 

mice and treatment with prostaglandin E2 (PGE2) along with ZIP revealed that the paw 

volume was found to be more than that of IL-6 treated along with ZIP treated mice and paw 

never became more sensitive to PGE2. This supported the involvement of PKMzeta in 

inflammation related pain. This field has now advanced for discovery and development to 

understand the role, or lack thereof, for atypical PKCs in underlying neurobiological 

processes like pain plasticity [99]. 

2.4.5. ZIP peptide inhibition of PKMzeta 

The PKMzeta inhibition using ZIP was experimented on hippocampus and basolateral 

amygdala to check one day old memory retention in the radial arm maze, water maze, and 

inhibitory avoidance, contextual and cued fear conditioning paradigms. Inhibition of 

PKMzeta in the hippocampus did not affect contextual information after fear conditioning, 

but in contrast inhibition of PKMzeta in basolateral amygdala impaired both contextual and 

auditory fear as well as in the inhibitory avoidance. Thus, the continuous PKMzeta activity 

was found to be a general mechanism for both appetitively and aversively motivated retention 

of specific, accurate learned information, but was not required for processing contextual, 

imprecise, or procedural information [100]. 

In a study to distinguish the pathophysiology of sustaining kindling and pathophysiology for 

maintaining LTP and memory storage, ZIP (10 nmol) was administrated by intra-amygdala 

route in developing (P15) rats. Since there were similarities between kindling and LTP in 

their induction, there was dissociation in the role that PKMzeta played within the two in 

memory maintenance. Inhibition of PKMzeta by ZIP did not affect the kindling rate or 

retention in developing rats and there was no effect observed in adult rats. This showed that 
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despite the similarities between kindling and LTP, PKMzeta played different roles in 

maintaining the two [101]. 

Further, in another study, to unveil boundary conditions of ZIP effects, microinfusion of ZIP 

into the insular cortex (IC) of the behaving rat deleted long-term memory associated with 

conditioned taste aversion (CTA). This indicated the importance of PKMzeta in persisting 

memory in neocortex as neocortex is the ultimate storage of long term memory [102]. 

Another study on ZIP inhibition of PKMzeta reversed tetanic LTP and prevented expected 

LTP mediated deleterious effects on eye-blink conditioning [103]. A study was conducted to 

know the four brain structures (lateral ventricle, dorsal hippocampus, basolateral amygdala 

and IC) which involved in memory processes and anxieties were investigated. The result 

showed that inhibition of PKMzeta in lateral ventricle and dorsal hippocampus within an 

hour of exposure reduced Posttraumatic stress disorder (PTSD) like behavioral disruption and 

trauma response 8 days later. Inhibition of PKMzeta for 10 days showed a similar effect 

when administrated in IC. This brought IC to limelight that it was the potential region 

associated with traumatic stress induced disorders [104]. 

Another study also showed that inhibition of PKMzeta by administrating ZIP into rat 

sensorimotor cortex disrupted sensorimotor memories for a skilled reaching task even after 

several weeks of training.  ZIP disrupts the rate of relearning the memory task which was 

different from the initial learning rate which suggested that there could be no substantial 

savings after the memory loss.  This indicated a similar storage mechanism for declarative 

and procedural memory forms [105]. Another study associated with memory, where the 

snails were trained to conditional food aversion. Inhibition of PKMzeta was not directly 
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involved in memory reconsolidation, however, reminding decreased the amnesic effect 

of ZIP [106]. 

2.5. Current drug discovery strategies on PKMzeta 

With the experimentally solved structures of a known enzyme, the drug design and discovery 

process could be facilitated significantly. However, one of the most frequent situations faced 

for structure based drug designing would be when there are no experimentally solved 

structures available. In such cases, comparative modeling could be employed in building a 

3D (three dimensional structure) model of targeted protein on the basis of sequence similarity 

to the protein of experimentally known structure, which shares high identity with the targeted 

protein sequence [107-108]. To the best of our knowledge, only one study addressed 

homology modeling of PKMzeta. There was an attempt made for the homology model for 

PKMzeta based on protein kinase C-iota and was employed for the binding motifs of 

chelerythrine using Autodock [109].
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Chapter 3 

Objective and Plan of Work 

3.1. Objective  

Based on the literature evidences it is quite evident that neurological disorders are the major 

health issues, affecting the population worldwide in both developing and developed countries 

as well. In order to accelerate the development of new drugs for treatment of these disorders, 

several strategies have been developed, which could help in shortening the therapy and be 

effective in the treatment of various symptoms which was associated with neurodegenerative 

disorders. The future of neurodegenerative therapeutics development depends upon effective 

modification targeting various pathways. And PKMzeta was a novel and emerging target for 

neurodegenerative disorders like Alzheimer’s. Designing inhibitors for PKMzeta was 

considered as prime importance and drug discovery efforts have been hindered due to the 

non-availability of the protein structure. Considering the gaps in research, we attempted to 

build the structure of PKMzeta and designed specific PKMzeta inhibitors to treat the 

population at the risk of developing cognitive deficit and combat neurodegenerative disorder 

symptoms. Thus, the main objectives of the current study are as follows: 

 Classification of kinases and sequence identification 

 Homology model and structure based drug designing of PKMzeta 

 In-vitro enzyme inhibition assay 

 In vitro screening of leads 

 Effect of the lead on MeHg induced neurodegeneration 

 Activity of the lead in neuropathic pain and neuroinflammatory models. 
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3.2. Plan of work 

The plan of work has been categorized as follows:  

3.2.1. Classification of kinases 

An experimental study was carried out for comparing widely used machine learning 

algorithms like SVM, Random Forest, Logistic regression and naïve Bayes for classification 

of kinases using various physiochemical properties (AAC, DC and APAAC). Further, the 

impacts of feature selection on classification algorithms were validated using Area Under the 

Curve (AUC). 
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3.2.2. Design of novel inhibitors for PKMzeta using structure based drug design 

 

Figure 3.1. Work for drug design and development 

3.2.3. In vitro enzyme inhibition assay 

To check the inhibitory concentration of the identified inhibitors, the PKMzeta enzymatic 

assay was conducted at different concentrations and IC50 values were calculated. 

3.2.4. In vitro toxicity studies  

To evaluate the toxicity of the designed and synthesized compounds, HEK 293 cells were 

utilized and tested at five different concentrations using MTT assay to evaluate the lead 

cytotoxicity to normal cells.  
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3.2.5. In vitro cell based screening of leads 

Neuroblastoma cell lines (IMR-32) and glioblastoma cell lines (U87) were used to screen the 

potency of each leads towards neurodegenerative models, by employing chemical induction 

methods. 

3.2.6. In vivo screening of the lead 

In vivo screening was done to find the effectiveness of the lead on motor behaviors and brain 

functionality in neurological conditions. 

3.2.6.1. Neuropathic pain and Neuroinflammatory model study 

Effectiveness of PKMzeta inhibitor was evaluated for effectiveness of the test compound in 

neuropathic pain and also for anti-inflammatory effect. 

3.2.6.2. In vivo model to screen the lead on MeHg induced neurodegeneration 

The compound’s effectiveness on motor behavior and brain functionality in MeHg induced 

neurodegeneration was evaluated. 

3.2.7. Measurement of in vivo gene expression levels of various key regulators NFκB, IL-

1β, IL-6 and TNF-α using RT-qPCR. 

Inflammatory response was checked by measuring the gene expression level of various pro 

inflammatory mediators like NFκB, IL-1β, IL-6 and TNF-α. 
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Chapter 4 

Materials and Methods 

4.1 Classification of Kinases  

With the aim to classify kinases with high accuracy and to identify modulators for restraint of 

PKMzeta, we implemented different machine learning methodologies and the structure based 

drug discovery approaches for PKMzeta. We utilized various computational methodologies, 

in vitro and in vivo intercessions to recognize potential inhibitors of PKMzeta. 

4.1.1. Dataset description  

The dataset used for classification of kinases was generated using 10 classified families of 

human and mouse kinases whose sequences were obtained from KinBase excluding all 

pseudo-genes and a few sequences which contained different amino acid residues. A total of 

1065 sequences for human and mouse were obtained as presented in Table 4.1. The AAC, 

DC and APAAC for each sequence were extracted using R. The structure (S) of the dataset 

was formulated as Equation (1), where ⋃ symbol expresses the union operator. 

S=AGC1 ⋃ Atypical2 ⋃ CAMK3 ⋃ CK14…………………..⋃ TKL10     Eqn. (1) 
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Table 4.1: The dataset consists of 1065 sequences and are classified into ten classes. 

Human and Mouse 

kinases families 

Number of Human 

sequences 

Number of Mouse 

sequences 

AGC 63 60 

Atypical 44 43 

CAMK 74 96 

CK1 12 11 

CMGC 64 62 

OTHERS 81 83 

RGC 5 7 

STE 47 47 

TK 90 90 

TKL 43 42 

Dataset 523 541 

Total 1064 

 

4.1.2. Selection of physicochemical properties of kinases 

Physiochemical properties of proteins join bits of knowledge into the fundamental unit of 

proteins proposing the inconceivable invention and common differentiations that can be 

credited to the various protein families. Along these lines and taking into account the various 

literature evidences, in this study, we have utilized different properties to classify kinases 

with high accuracy. 

4.1.2.1. Representing kinases using amino acid composition (AAC) 

Protein sequence composition was expressed in 20 dimensional features with AAC. In the 

recent past, researchers have used AAC for classification of protein and also for predicting 

sub cellular localization [110]. AAC was the fraction of each amino acid type in a protein. 

The fractions of all 20 natural amino acids were calculated by using Equations (2) and (3). 
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    PAAC= {p1……….p20}             Eqn. (2) 

F𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠(p1) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
 

Eqn. (3) 

4.1.2.2. Representing kinases using dipeptide composition (DC) 

DC has been used earlier by Bhasin and Raghava for the prediction of families and 

subfamilies of G-protein coupled receptors (GPCRs) [111]. DC was used to transform the 

variable length of proteins to fixed length feature vectors. DC has been expressed in 400 

dimensional features. DC encapsulates information about the fraction of amino acids as well 

as their local order. In our experiment for classification, apart from DC we have used two 

physiochemical properties of protein, which include previously defined ACC and APAAC. 

The DC was calculated using Equations (4) and (5). 

PDC= {p1……….p400}             Eqn. (4) 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑑𝑖𝑝𝑒𝑝𝑡𝑖𝑑𝑒 (p1) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑑𝑖𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑖𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠
  Eqn. (5) 

4.1.2.3. Representing amphiphillic pseudo amino acid composition (APAAC)  

APAAC was initially used by Chou et.al., in 2005 for prediction of enzyme subfamily 

classes. Along with AAC and DC for classification of kinases, none of the classification used 

APAAC features for classification of kinases [112]. Although it was found that APAAC 

features are operational descriptor of protein classifications, it has been used in several 

studies, but not for kinases classification [113-114]. APAAC consisted of 80 dimensional 

feature vector wherein the first 20 components of APAAC dimensional vectors consist of 

naïve amino acid residue composition as shown in Equation (2), along with hydrophobic and 



34 | P a g e  

 

hydrophilic features of kinase sequences. This plays an important role in protein interaction 

protein folding. The APAAC is expressed in 20 + 2λ components and the vector is 

represented using Equation (6). 

PAPAAC = {p1.  . . p20, p20+1. . . p20+λ, p20+λ+1. . . p20+2λ}        Eqn. (6) 

It is the point where the first 20 components of the vector represent AAC as discussed in 

Equation 2 and the rest of the vector represent the set of correlation factors 2λ, for 

hydrophobic and hydrophilic properties of proteins. The 2λ values are calculated as described 

in the study of Bhasin et al. [111] and the number of weight and correlation factors used, 

where the default parameters present in ProtR, hence resulting in 80 features. 

4.1.3. Classification of kinases using various machine learning approaches  

A study was conducted using the following features like AAC, DC and APAAC. The 

following sections described the classifiers used for classification of kinases. 

4.1.3.1. Classification using Naive Bayes Classifier (NBC) 

The probability model for a classifier was a conditional model and was given by the equation 

p(C|x) = p(C | x1, … . , xn)      Eqn. (7) 

For x vector consisted of the features 1 to n. The problems arise when the number of features 

was large and when model with a large number of features with large number of values are 

taken, such model was not feasible enough. Therefore using Bayes theorem, the probability 

model could be rewritten as 

p(C|𝑥) =
p(C)p(𝑥/ C)

p(𝑥)
      Eqn. (8) 
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In practice, we were interested in the numerator of the fraction, since the denominator did not 

depend on C. The values of the features xi were given so that the denominator stayed 

effectively constant. So, p(C | 𝑥1, … . , 𝑥𝑛) could be rewritten as  

 

p(C)p( x1, … . , xn|C) Eqn. (9) 

p(C)p(𝑥1|C)p( 𝑥2, … . , 𝑥𝑛|C, 𝑥1)  Eqn. (10) 

p(C)p(𝑥1|C)p(𝑥2|C)p( 𝑥3, … . , 𝑥𝑛|C, 𝑥1, 𝑥2) Eqn. (11) 

p(C)p(𝑥1|C)p(𝑥2|C) … p( 𝑥𝑛|C, 𝑥1, 𝑥2, … , 𝑥𝑛−1)  Eqn. (12) 

According to naïve conditional independence, each feature xi was conditionally independent 

of every other features xj for j≠i. 

p(𝑥𝑖|C, 𝑥𝑗) =  p(𝑥𝑖|C)   Eqn. (13) 

For i≠j, the joint model could be expressed as  

𝑝(C, 𝑥1, . . 𝑥𝑛) = p(C)p(𝑥1|C)p(𝑥2|C)      Eqn. (14) 

 

Therefore, the independence assumptions and the conditional distribution could be written as  

𝑝(C|𝑥1, . . 𝑥𝑛) =
1

𝑍
p(C)𝜫𝒊=𝟏

𝒏 p(𝑥𝑖|C)      Eqn. (15) 

 

The naïve Bayes classifier combined this naïve Bayes probability model with decision rule. 

Common rule was to choose the hypothesis which was most probable. This was also known 

as the maximum a posteriori (MAP) decision rule and was given by the equation: 
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Classify(s1, . . , sn) = argmaxp(C = c) 𝜫𝒊=𝟏
𝒏 p(xi = xi|C = c) Eqn. (16) 

Where s1 to sn are the n number of features to classify, C is the condition distribution of 

features. The naïve Bayes classifier was chosen because it was particularly for high 

dimensionality data.  Despite its simplicity, Naive Bayes could often outperform other 

sophisticated classification methods [115]. 

4.1.3.2. Classification using Logistic Regression 

Logistic model was a binary classification model based on calculation of success probability. 

The probability was calculated based on two possible categories 0 and 1. Based on the data 

available, the probability for both the values of the given input classes could be calculated. 

The logistic regression was based on logistic function, which could be defined as P= e
t
/ (1+ 

e
t
) [116]. The logistic regression was a simple but yet powerful classification tool in data 

mining applications. Therefore the results of logistic regression could be compared with other 

data mining algorithms for classification of kinases. 

4.1.3.3. Classification using Random forest  

A random forest algorithm was the generalization of recursive partitioning which combined a 

collection of trees called an ensemble. Random forests were a collection of identically 

distributed trees whose class value was obtained by a variant on a majority vote. The 

classifier consisted of a collection of tree like classifiers which used a large number of 

decision trees, all of which were trained to tackle the same problem [117]. There were three 

factors that governed the individuality of the trees: 

 Each tree was trained using a random subset of trained samples. 
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 When the tree was growing the best split on each node in the tree was found by 

searching through n randomly selected features. For a data set with N features, n was 

selected and kept smaller than that of N. 

 Each tree was made to grow to the fullest so that there was no pruning.  

Random forests where tree classifiers that were trained in randomly choosing the subset of 

input data where the final classification was based on the majority vote by the trees in the 

forest. 

4.1.3.4. Classification using Support Vector Machine (SVM) 

A SVM classifier seeks to find an optimal separating hyperplane by concentrating on the 

training set data that lay on the class boundaries and were necessary for discriminating the 

classes. Since SVM was designed for binary classification and could be extended for multiple 

classification problems, the adopted approach for multiclass classification using SVM was 

employed as one-against-all approach. A set of binary classifiers was used to reduce multi-

class problem, where each classifier was trained to separate a class from the rest of the class. 

With a SVM classifier, a training data set of n number of classes was represented by {xi, yi}, i 

= 1. . . R, yi ∈ {1, −1} in a dimensional space [118].The optimal separating hyperplane is 

defined by ω · x + b=0, where x represents the data point on the hyperplane, ω represents the 

hyperplane and b represents bias. For linearly separable case, a hyperplane could be defined 

as ω · xi + b≥+1 and ω · xi + b≥-1 for yi ∈ {1, −1}, respectively. 

For non-linearly separable case, hyperplane equation is employed with a slack variable called 

{ξ𝑖}
𝑟
𝑖
 and was represented as given in Equation (17). 

y(w. xi + b) > 1 − 𝜉i    Eqn. (17) 
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To fit the data in non-linear separable case, the training dataset was mapped into higher 

dimensional space which had the spreading effect of data distribution in a manner that 

alleviated fitting of a linear hyperplane. Specifically, since the training data was projected 

into a higher dimensional space, the cost effective computation in a high dimensional space is 

reduced using definite kernels. On such majorly used kernel was radial basis function kernel 

found using Equation (18), where γ controls the width of the kernel function. 

k(x, xi) = exp(−γ||x − xi||
2

)      
Eqn. (18) 

The classification of multiple kinases families was a multi-class problem in machine learning. 

In this case, the number of families of kinases was 10. SVM was designed to be a binary 

classifier and hence 10 binary SVMs were adapted to address our problem of classification. 

Using the three kinase physiochemical properties, we trained four classification models for 

all ten classes of kinases, which included naïve Bayes, logistic, random forest and SVM 

classifiers using 10 fold cross validation. The models were built using 2/3rd training data and 

the testing models were validated with remaining 1/3rd data as test data. The division of 

training and test data was done randomly.  

4.1.4. Effect of feature selection on classification of kinases and the AUC measure 

Classification of kinases will provide a comparison of related human kinases and insights into 

kinases functions and evolution. Several algorithms exist for classification and most of them 

failed to classify when the dimension of the feature set large. Selecting the relevant features 

for classification is significant for a variety of reasons such as simplification of performance, 

computational efficiency and feature interpretability. Feature selection techniques are 

employed in such cases. However, there has been a limited study of feature selection 
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techniques for classification of biological data. This work tries to determine the impact of 

feature selection algorithms for classification of kinases. We have used forward greedy 

feature selection algorithm along with the random forest classification algorithm. 

Classification models were built by considering one feature at a time. The model with best 

prediction precision was picked. Subsequently, the selected feature was joined with the 

remaining features one at a time. The model with the best prediction accuracy was picked 

further. This procedure was further rehashed until a model containing all features was built. 

The feature subset with most extreme prediction accuracy was picked as the best feature 

subset. The performance was evaluated by selecting the feature subset which maximizes Area 

Under the ROC Curve (AUC). 

4.2 Homology models and molecular simulations on PKMzeta  

4.2.1. Sequence identification using BLAST 

The peptide sequence of PKMzeta consisted of 267 amino acids length and was retrieved 

from the UNIPROT protein sequence data bank (Accession no. Q05513, 252-518). 

Identification of templates for building the model was found using BLASTp against PDB.
 

The templates were chosen based on the identity. PDB ID: 1ZRZ and 3ZH8 were taken, 

which shared 88% identity with PKMzeta sequence. PDB ID: 1ZRZ is an intermediate open 

conformation structure of PKCiota and 3ZH8 is the closed structure conformation of PKCiota 

[119]. Multiple sequence alignment was derived with CLUSTALW using BLOSUM matrices 

for scoring the alignments. Obtaining a good quality multiple sequence alignments of the 

target sequence with the template sequences was an important step in protein homology 

modeling. The alignment was then visually inspected for structural integrity with the template 

sequences. PRIME module was then used for building homology models.  
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4.2.2. Molecular modeling of open and closed conformations model 

After identification of template structure sequences with 88% identity using NCBI Protein 

BLASTp
 
against PDB, both the open and closed conformation structure sequences were used 

to build 3D models through homology modeling approach using PRIME in Maestro 9.3 

software package (Schrödinger, LLC). The intermediate open and closed conformation 

models obtained were energy minimized by employing PRIME with OPLS-2005 force field 

in Maestro 9.3 software package. After the minimization step, refinement was carried out for 

both the models using PRIME. The procedure was followed as described by Nayeem et al. 

[120].
 
To evaluate the sterical features, Ramachandran plots [121] for both the models were 

analyzed using PROCHECK [122] and validated using ProSA webserver [123] which was 

widely used to check 3D models of protein structures for potential errors.  

4.2.3. Model validation using ProSA and iPBA web servers 

The phi-psi plots for the final models were obtained and were compared to the templates.  

Similarly, closed conformation model was checked for favored regions, additionally allowed 

regions and generously allowed regions. Similarly, closed conformation model was also 

evaluated. ProSA-web “Z” score values of the built models was checked to lie in the native 

conformations range of experimentally solved structures [123]. Z-score values for the open 

and closed conformation models and the templates were established. 

4.2.4. Molecular dynamics simulation.  

The simulation was performed for 10 ns. The initial steps of simulations were performed 

using OPLS-2005 molecular mechanics force field. Water molecules were placed to the 

models with SPC (simple point charge) water model, respectively. System was then 

neutralized with counter ions. SHAKE algorithm
 
[124]

 
was used to constrain the water 
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molecule geometry and heavy atom bond lengths with hydrogen. PME (particle mesh ewald) 

[125] method was applied for electrostatic interactions and PBC (periodic boundary 

conditions) was also employed. The full system of all atoms was then simulated by following 

MD protocol of Maestro. Precisely, the full system minimization with solute restraint was 

performed for a maximum of 2000 iterations with combined algorithm of steepest descent 

and limited memory Broyden-Fletcher-Gold-farb-Shanno (LBFGS) algorithms along with a 

convergence threshold of 50.0 kcal/mol/Å
30

. Similar minimization by releasing the solute 

restraint and without any restraints was performed with a convergence threshold of 5.0 

kcal/mol/Å. The non-hydrogen atoms were restrained in the NVT (constant number of atoms 

N, volume V and temperature T) ensemble for 10 ps and 10K temperature. Simulations 

retaining the non-hydrogen atoms were then performed in the NPT ensemble for 12 ps and 

10K temperature. Later, NPT ensemble for all retrained non hydrogen atoms was performed 

for 24 ps and 300K temperature. NPT ensemble without retrained was performed to relax the 

system for 24 ps and 300K temperature. The relaxed systems were then simulated for 10 ns 

with a time step of 2 fs, velocity re-sampling for every 1 ps and NPT ensemble using a 

Berendsen thermostat at 310K. The trajectories were recorded after every 4.8 ps. RMSD of 

the models and their respective templates were then analyzed. 

4.3. Lead Identification   

4.3.1. Binding site identification and ligand preparation  

Most of the kinase inhibitors utilize ATP binding pocket and inhibit kinase activity by 

competing with ATP binding. Thus, ATP binding pockets were identified for both the open 

and closed conformation models of PKMzeta, using SITEMAP (Schrödinger L.L.C., USA) 

[126]. Since the models were built using the templates (PDB ID: 1ZRZ and 3ZH8), the 
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binding sites of both the built models were then mapped with the ATP binding pockets of 

their respective templates to confirm the actual ATP binding pocket of the models. The center 

of the respective Glide grids were defined by the position of binding site identified using 

SITEMAP. The generated grids were then subjected to HTVS (high-throughput virtual 

screening) docking against Asinex database (commercial chemical database with 5, 00,000 

molecules) and in house database (with 3000 molecules). The database compounds were 

energy minimized using LigPrep. The structures were prepared using LigPrep 2.5 module 

[127] to expand protonation and tautomeric states at 7.0±2.0 pH. Conformational sampling 

was also performed for all database molecules using the ConfGen search algorithm with 

OPLS_2005 force field. Duplicate poses were eliminated if the RMSD was less than 2.0 Å. A 

distance-dependent dielectric constant of 4 and a maximum relative energy difference of 10 

kcal mol-1 were applied.  

4.3.2. High throughput virtual screening of commercial database 

The generated grids were subjected to HTVS (high-throughput virtual screening) docking 

against Asinex database (commercial chemical database with 5,00,000 molecules). The 

database compounds were energy minimized using LigPrep. Post docking minimization was 

implemented to optimize the ligand geometries. The compounds with best docking score, 

Glide score and good binding interactions were shortlisted and subjected to Glide SP 

(Standard precision) and Glide XP. The top hits from the screened list of compounds were 

selected based on binding interactions and glide score. The top hits were then docked using 

GOLD [128] to compare the docking score with the Glide score obtained using GLIDE.  



43 | P a g e  

 

4.3.3. High throughput virtual screening of in-house database 

In addition to the commercially available Asinex database, we also employed screening of 

our in house database (BITS-DB). The in house database was a central repository of 

structurally diverse (3000) compounds earlier synthesized in the Drug Discovery Research 

Laboratory (DDRL) – BITS Pilani, Hyderabad Campus. The molecules were stored in 

Maestro’s native “.maegz” file format. The molecules were first drawn in 2D format using 

ACD/Chemsketch software, where 3D structures were generated and ionization states were 

optimized for pH 7 using LigPrep module of Schrödinger suite.  

The BITS-DB molecules were directly subjected to molecular docking. Docking process was 

the same like the ones previously described in section 4.3.2. After XP docking, the molecules 

were sorted and subjected to GOLD to validate the docking score and were shortlisted based 

on docking score, binding interaction and GOLD score.  

4.4. Enzyme Inhibition studies 

Top hits were procured from Asinex and in house database. The PKMzeta clone was received 

as a gift from TC. Sactor’s laboratory [129]. 

4.4.1. PKMzeta protein expression and purification 

Recombinant baculovirus was used for infection using the following standard protocol.
 
Sf9 

cells were procured from National Centre for Cell Science (NCCS), Pune, India. Sf9 cells 

were grown in shaker flasks in TNM-FH medium (HiMedia Laboratories) and 10 μg/ml 

gentamycin with 10% FBS. Sf9 cells were infected with recombinant baculoviruses at a 

multiplicity of infection of 5. The cells were pelleted after 72 h of post infection in relative 

humidified environment at 28
o
C and re-suspended in lysis buffer (20 mM sodium phosphate 
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buffer (NaH2PO4/Na2HPO4) (pH 7.4), 0.5 M NaCl, 20 mM imidazole, 5% (v/v) glycerol, 

1% (v/v) Triton X100, 5 mM b-mercaptoethanol, 50mM sodium fluoride and then lysed with 

a sonicator (Vibra cell, SONIC & MATERIALS, Inc). The lysate was pre-equilibrated for 3 h 

against Ni-NTA beads at 4⁰C (Qiagen). Later, washed with buffer A (20mM sodium 

phosphate (pH-7.4), 500 mM NaCl, 20 mM imidazole, 5% glycerol, 5 mM β-

mercaptoethanol, 1% Triton X 100) until the unbound protein was washed completely from 

BIO-RAD column. Bound protein was eluted with buffer B (buffer A with 500 mM 

imidazole).  Final concentration of protein was estimated using Bradfords reagent [119]. 

4.4.2. PKMzeta enzyme inhibition assay 

The enzyme inhibition studies were performed using ADP-Glo™ Kinase Assay Protocol – 

(Promega). This assay was based on luminescent ADP detection and served as a high-

throughput screening method to measure kinase activity by measuring the ADP amount 

produced during a kinase reaction. The ADP-Glo™ kinase assay was performed in a 

multiwell plate. The kinase activity was detected in a reaction volume less than 5 μl and was 

performed in two steps. After kinase reaction, an equal amount of ADP-Glo™ reagent was 

added to terminate the kinase reaction and also to deteriorate the remaining ATP.  Then, the 

kinase detection reagent was added to simultaneously convert ADP to ATP. The newly 

synthesized ATP was then measured using a luciferase/luciferin reaction. For each plate one 

blank (containing only CREBTIDE substrate) well was kept to normalize the readings to 

calculate percentage inhibition [130]. The control and blank wells, with and without the 

enzyme were used to reduce the background signals respectively. 96 well plates were utilized 

for screening in which the control well was filled with 100 ng of PKMzeta, 1 µg of 

CREBTIDE substrate, 1 µM of ATP and 1X of kinase reaction buffer. The blank well was 
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filled with 1 µg of CREBTIDE substrate, 1 µM of ATP and 1X of kinase reaction buffer and 

without PKMzeta and the other wells contained respective test compounds in single/different 

concentrations. The luminescence level was measured using VICTOR X3, Perkin Elmer, Inc. 

4.5. Cell based assays 

HEK-293, IMR-32 and U87 cells were utilized for the cell based assays and were procured 

from NCCS Pune. Supplies were procured from Sigma-Aldrich or Himedia. The cells were 

cultured in MEM medium supplemented with FBS (10%), L-glutamine (1%), penicillin 

(10,000 units) and streptomycin (10 mg/ml) at 37 ºC in 5% CO2 atmosphere. For all assays, 

cells were maintained at 90% confluence and were used as required [131]. MeHg (2 μM/ml) 

and LPS (1 μM/ml) were used. All test compounds were dissolved in DMSO (10%). 

4.5.1 Cytotoxicity studies 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay was 

used to measure cytotoxicity [132]. Briefly, exponentially growing HEK-293 cells (10,000 

cells/ well) seeded in 96-well plate in MEM medium containing 1% FBS were treated with 

100 μM of test compounds for 48 h. For cell viability evaluations, 10 mg/ml of MTT in 1X 

PBS was added to the wells and incubated for 3 h. The violet crystals formed were dissolved 

in 100% DMSO and absorbance was measured at 595 nm in spectrophotometer (Perkin 

Elmer victor X3). The experiment was performed in triplicates and percent cytotoxicity was 

reported. 

4.5.2. Effect of leads on MeHg treated neuroblastoma cells  

Inhibition of growth of IMR-32 cells induced with MeHg by the test compounds was 

measured in a dose-response curve in triplicates. Approximately 5000 cells per well were 

utilized for this study. Cell cultures were first treated with MeHg (10 μM) for 2 h. After 
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MeHg exposure, the cells were treated with test compounds in varying concentration (0.01-

100 μM). Growth inhibition was measured by MTT addition, similar to the cell cytotoxicity 

studies. GI50 values were calculated using GraphPad prism 5.03 [La Jolla, CA, USA]. 

4.5.3. Effect of leads on LPS treated glioblastoma cells 

LPS treated U87 cells were grown and trypsinized when confluent from T75 flasks and 

seeded in 96-well microtiter plates in 200 μL aliquots at a 10000 cells/well plating density. 

ROS was measured as using 6-carboxy-2,7 -dichlorodihydrofluorescein diacetate (DCFH-

DA) (Invitrogen) in dimethyl sulfoxide (DMSO) [133].  The plates were incubated for 12 h 

and 5 μM DCFH-DA was added to each well of the plates. The DCFH-DA added plates were 

then incubated for 1 h at 37
0
C. After incubation, aliquots of different drug dilutions were 

added to the respective microtiter wells and incubated for further 3 h. The fluorescence 

signals were then read using Victor X3, Perkin Elmer, Inc. at excitation and emission spectra 

of 495 nm and 530 nm respectively. The ROS IC50 was calculated using the GraphPad Prism 

software. 

4.5.4. Gene expression studies on MeHg treated neuroblastoma cells 

Gene expression study was performed on MeHg treated neuroblastoma cells. Gene 

expression was normalized for GAPDH expression to accurately reflect input cDNA quantity. 

Primer sequences employed were GAPDH forward: 5’ GGAGTCCACTGGCGTCTT 3’, 

GAPDH reverse: 5’ AGGCTGTTGTCATACTTCTCAT 3’, IL-6 forward: 5’ 

TTCGGTCCAGTTGCCTTCTC 3’, IL-6 reverse: 5’ GAGGTGAGTGGCTGTC            

TGTG 3’, TNF-α forward: 5’CTCCAGGCGGTGCCTTGTTC 3’, TNF-α reverse: 5’ 

CAGGCAGAAGAGCGTGGTG 3’, IL-1β forward: 5'-

GCAAGGGCTTCAGGCAGGCCGCG 3’, IL-1β reverse: 5'-
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GGTCATTCTCCTGGAAGGTCTGT 3’ [134]. Normalized expression was then taken for 

statistical calculation. Statistical significance was determined by one way ANOVA test 

followed by Dunnette’s multiple comparison [135].
 
A difference was considered statistically 

significant when p value was less than 0.05 or 0.001. 

4.6. In-vivo pharmacological evaluation 

Wistar rats (Male, 4 weeks, 250-350 g) and Swiss albino (SA) mice (male, 4 weeks, 25-30 g) 

were used for the experiments. Animals were maintained in a temperature-controlled room 

(22±2 ºC) with a 12 h light/dark cycle. All behavioral experiments were conducted in a quiet 

room between 9 am to 1 pm to avoid diurnal variations. Before each experiment, the animal 

was acclimatized for 10 min. The investigator was blinded to the treatment groups. The 

procedure was adhered to the guidelines from the Institutional Animal Ethical Committee of 

the host institute. MeHg was obtained from Sigma Chemical Co. (St. Louis, MO, USA). 

Animals (n=6) were randomly assigned into groups. 

4.6.1. Neurotoxicity  

The minimal motor impairment was measured in mice by the rotarod test and actophotometer 

[136]. Before drug administration, mice were trained to stay on rotating rod (diameter 3 cm), 

rotating at 30 revolutions per minute. Neurotoxicity was indicated by the inability of the 

animal to maintain balance on the rotating rod for at least 1 min. All the animals received 

dose of the test compounds in the order of 300, 100 and 30 mg/kg respectively independently. 

The animals were subjected to rotating rod before dosing and 1 and 2 h after dosing 

respectively.  
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4.6.2. Locomotor activity 

The effect of the test compounds on spontaneous motor activity was measured using 

actophotometer as reported earlier [137]. The animal was kept in a digital actophotometer 

(Dolphin, India) which consisted of a dark rectangular chamber (30 x 30 cm), and was lined 

with six photoelectric cells. The instrument recorded a count when the rays of lights were 

blocked (cut-off) by the animal. Hence the counts represented the measure of locomotor 

activity of animals. These cut-offs were counted for a period of 5 min and the wire-mesh 

bottom of the actophotometer was cleaned before the next reading. 

4.6.3. Acetic acid induced writhing 

An intraperitoneal injection of 0.1 mL of 2.0% v/v acetic acid was used to induce writhing. 

After 30 min of drug administration, mice received acetic acid and the number of writhes was 

recorded for 30 min. The writhes were noted as indicated by the stretching of the abdomen 

with concurrent stretching of the hind limbs. The percentage inhibition of the writhing 

response was calculated [138]. 

4.6.4. Formalin induced flinching 

Intra plantar injection of 25 mL of 1.0% formalin into the hind paw of mice was performed, 

30 min after administration of the test compound. Flinches in the paw in the early phase (0-5 

min) and the late phase (10-30 min) were noted. Time spent in paw licking and biting was 

monitored for each 5 min for both the phases as reported earlier [139]. 

4.6.5. Chronic constriction nerve injury model 

Unilateral mononeuropathy was produced in rats using the CCI model [140]. The rats were 

anesthetized with intraperitoneal injections of ketamine (55 mg/kg) and xylazine (5 mg/kg) 
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with additional doses of the anaesthetics given if required. Under aseptic conditions, a 3-cm 

incision was made on the lateral aspect of the left hind limb at the mid-thigh level. The left 

paraspinal muscles were then separated from the spinous processes and the common left 

sciatic nerve was exposed just above the trifurcation point. Four loose ligatures were made 

with a 4-0 braided silk suture around the sciatic nerve with about 1-mm spacing. The wound 

was then closed by suturing the muscle using chromic catgut with a continuous suture 

pattern. Finally, the skin was closed using silk thread [141]. 

The test compound was administered via i.p. at 30 mg/kg, 10mg/kg and 3mg/kg with 5% of 

PEG as vehicle. The control group received only vehicle and gabapentin (GBP) was 

administered as a positive control. Paw withdrawal duration (PWD) was observed in 

spontaneous pain and cold allodynia. Paw withdrawal threshold (PWT) was assessed in 

tactile allodynia and mechanical hyperalgesia. Percentage reversal in spontaneous pain, 

allodynia and hyperalgesia was calculated for each animal [139]. 

4.6.5.1. Spontaneous pain 

Spontaneous pain was monitored for a total of 5 min as described previously by Choi et 

al.,1994 [142]. The operated rats were placed into the observation cage which was 5 cm 

above the ground level. Acclimatization period of 10 min per rat was considered. The test 

consisted of estimating the cumulative duration for which the rat held its ipsilateral paw off 

the floor. The paw lifts associated with locomotion or body positioning was not accounted. 

4.6.5.2. Tactile allodynia 

In response to a mechanical stimulus, paw withdrawal was measured using von Frey 

filaments (UGO Basile, Italy). Rats were placed on a metallic mesh floor covered with a 

plastic box. A set of von Frey monofilaments (0.4-15 g), with intensities of mechanical 
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stimulation increasing in graded manner with successively greater diameter filaments, were 

applied to the plantar surface of the hind paw five times at intervals of 1-2 s [143]. The 

weakest force (g) inducing withdrawal of the stimulated paw at least three times was taken as 

the paw withdrawal threshold with a cut off value at 15 g. 

4.6.5.3. Cold allodynia 

A few drops (100-200 mL) of acetone were sprayed onto the mid plantar region of the 

affected paw of rats. A cold allodynic response was assessed by noting down the duration of 

paw-withdrawal response. For each measurement, the paws were sampled three times and 

mean values were calculated. At least 3 min elapsed between each tests [144]. 

4.6.5.4. Mechanical hyperalgesia 

The mechanical paw withdrawal thresholds were measured using analgesymeter (UGO 

Basile,Italy). This instrument maintained a force which increased at a constant rate. This 

force was applied to the right hind paw of the operated rats. The force was applied by placing 

the paw on a small plinth under a cone shaped pusher with a rounded tip till the animal drew 

back its paw. 

4.6.5.5. Determination of the median effective dose (ED50) 

To determine the ED50 plotted of the test compound, the dose response curves were plotted 

using Graphpad prism 6. ED50 was the dose that yielded for 50% of the response. 

4.6.5.6. Molecular Characterization 

All samples were analyzed in triplicates, which was followed by addition of forward (F) and 

reverse (R) rat primers: for NFκB (gene accession number NM_199267.2) forward: 5’-

CCTCTACACATAGCGGCTGG-3’; reverse: 5’-GCACCTTGGGATGCGTTTTT-3’[145], 
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for IL-1β; forward: 5’-ATAGCAGCTTTCGACAGTGAG-3’[146]; reverse: 5’-

GTCAACTATGTCCCGACCATT-3’, for TNF-α;
 
forward: 5’-

CCACGTCGTAGCAAACCACCAAG-3’; reverse: 5’-CAGGTACATGGGTCATACC-3’ 

[147] and for GAPDH; 
 
forward: 5’-GGTGAAGGTCGGTGTGAACGG-3’;reverse: 5’-

CATGTAGTTGAGGTCAATGAAGGG-3’ [148]. The thermal cycling conditions to run real 

time reaction was carried with initial enzyme activation at 94ºC for 20 sec and 35 cycles of 

amplification with denaturation at 94°C for 15 sec, and 30 sec annealing at respective nearby 

temperatures (61-69°C), and 1 min extension at 72°C. All the PCR products from each 

sample were subjected to a melting curve analysis (60–95°C) for specificity. The amount of 

mRNA for all the target genes was normalized against the housekeeping gene GAPDH in the 

corresponding samples. Sample quantification was carried out with Sequence Detection CFX 

Manager 3.0 analysis software (Bio-Rad Laboratories, Inc.). Statistical significance was 

measured using two-way ANOVA test followed by Dunnett’s multiple comparison. The 

significant difference was found with a p value <0.05. 

4.6.6. Anti-inflammatory activity in carrageenan induced paw edema 

In carrageenan induced paw edema test [149], acute inflammation was induced by sub planter 

injection of 1% of carrageenan in saline at the right hind paw of rats, 20 min after i.p. 

administration of test compound (30 mg/kg). The paw volume was measured using 

plethysmometer for 5 hrs. The test compound was administered i.p. with 5% PEG. Anti-

inflammatory activity was expressed as percent of inhibition of edema compared to the 

control group. 
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4.6.7 Activity of the lead in attenuating neuroinflammation in neurodegeneration 

The mice were divided into three groups, four in each group: control, MeHg and test 

compound. The control group received drinking water, the MeHg group received MeHg by 

oral administration at 10 ppm dose and the MeHg (10 ppm) + lead compound (30 mg/kg) 

group received both MeHg and test compound as regular doses every day for 3 weeks [150]. 

Animals were checked for behavioral signs of neurodegeneration on every alternative day. 

Determination of dyskinetic posture and gait analysis using footprint analysis and 

spontaneous locomotion was studied according to standard protocols. Detailed descriptions 

for each test are provided in following sections. 

4.6.7.1. Gait analysis 

The footprint test was performed by randomly picking an animal from each of the three 

groups. The footprint analysis was performed at the end of 3
rd

 week, 3 h after administration 

of test compound. The hind and forelimbs were coated with blue non-toxic ink. The 

individual mouse was then allowed to walk on a 30 cm long and 2 cm wide paper to record 

their foot print, stride and stance differences [151].  

4.6.7.2. Clasping 

After three weeks, the mice were tested for the manifestation of hind limb clasping 

phenomenon. Hind limb clasping was characterized as a dyskinetic posture whereby the mice 

clasped their hind limbs tightly into their abdomen [152]. 

4.6.7.3. Locomotor test 

The locomotor test was performed by placing individual animals in digital actophotometer 

(Dolphin CAT No-1126) with a square enclosed chamber (dimensions 30 x 30 x 10 cm) and 

locomotor behavior was recorded as a digital score for a period of 5 min [153]. 
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4.6.7.4. Body weight analysis 

Body weights were checked for each mouse from each group. The body weights of the mice 

were tested for manifestation of gradual toxicity.  

4.6.7.5. Molecular characterization 

RNA was isolated from the brain and spinal cord samples of all the 3 groups. MeHg treated 

brain samples were considered as control and were compared with the MeHg + test 

compound and with the untreated group to check the selectivity of the drug towards the 

disease model for their effect on downstream proinflammatory mediators using RT-PCR 

analyses.  Gene expressions for all the mediators were normalized using GAPDH expression 

of mice. The mice primers used for quantification of expressions were GAPDH forward: 5’ 

ATCAGGCTTGTCCAGGATTATG 3’, GAPDH reverse: 5’ 

TCACCTCTGCTTCAATGTATGG 3’, TNF-α forward: 5’CTCCAGGCGGTGCCTTGTTC 

3’, TNF-α reverse: 5’ GACCCTCACACTCAGATCATCTTC 3’, IL-1β forward: 5'- 

CTCCGCTTGGTGGTTTGCTAC 3’, IL-1β reverse: 5'- 

ACCAGCAGGTTATCATCATCATCC 3’[154]. The normalized expressions of the 

mediators were then further taken for statistical analyses. Statistical significance was 

measured using two-way ANOVA test followed by Dunnett’s multiple comparison. The 

significant difference was found with a p value <0.05. 
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Chapter5 

Results and Discussion 

Kinase phosphorylates particular substrates by exchanging phosphate group from ATP 

(adenosine triphosphate). Kinases are the imperative groups of protein which keeps up the 

regulation of natural movements by phosphorylation at posttranslational level of serine, 

threonine and tyrosine amino acid residues [9]. Protein kinases have turned into the most 

researched families for protein. PKMzeta is one such kinase which is an essential focus for 

the treatment of different neurological disorders, neuropathic pain, drug addiction and cancer 

[73]. To organize the kinases diversity and to compare distantly related sequences it is 

important to classify kinases with high precision. In this study we made an endeavor to 

classify kinases utilizing four diverse classification algorithms with three distinctive 

physiochemical features. 

5.1. Classification of kinases 

In this work we made an attempt to classify the various families of kinases based on amino 

acid, dipeptide and APAAC. The pre-classified kinases are retrieved from KinBase, where 

sequences are classified based on sequence similarity and is grouped into 10 families as 

mentioned in the section 2.2.1 [155].We found several similar works on classification using 

AC, DC and APAAC, taking that into account we extracted AAC, DC and APAAC features 

from kinase sequences [156]. In earlier studies, AAC was used to predict the structural class 

and localization of proteins using fixed pattern length of 20 [157-159]. The DC was also 

found to be essential for classification, prediction of protein’s sub-cellular localization and 

fold recognition using fixed pattern length of 400 [160]. Chou et.al used APAAC for protein 
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structural classification. An improved accuracy of the SVM classifier was obtained using 

APAAC for protein classification [161]. Therefore, in our study, we have made an attempt to 

do a comparative study to classify the kinases and to benchmark the algorithms for 

classification of kinases. We attempted to use naïve Bayes, Logistic, random forest and SVM 

(radial basis function) classifiers and validated the performance of the classifiers by 

calculating precision, recall and ROC. 

5.1.1. Evaluation of Accuracy of Classification  

The precision, recall and ROC values for four algorithms to classify all ten families were 

calculated. The precision and recall measures were calculated for accuracy of specific classes 

that were predicted. The precision and recall were defined in the following equations (19) and 

(20). In this study, the accuracy of classification was measured using precision, recall and 

ROC for four algorithms as discussed in section 4.1.3. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
   Eqn. (19) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
   Eqn. (20) 

Precision provided an accuracy measure that a specific class was predicted. Recall was also 

known as sensitivity of a classifier and was a measure of the ability of the prediction model to 

select the instances of a certain class from a dataset. Considering the importance of Precision 

and Recall, we calculated both the measures for all the classifiers for all ten classes of 

kinases. The results are shown in three figures 5.1, 5.2 and 5.3. Figure 5.1 shows the 

precision, recall and ROC values. Precision recall and ROC values were more consistent for 
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APAAC compared to AAC and DC. Representations of the performance of all four classifiers 

(Naïve Bayes, Logistic, Random Forest and SVM) for ten classes of kinases are shown. 

Another term called ROC (receiver operating characteristic) was calculated. ROC being an 

illustrative detail for evaluating the performance of classifier in binary classification was 

obtained as a graphical plot of the true positive rate against false positive. Thus, ROC gave 

the details of the function of fall-out. 

Along with precision and recall, the ROC was also calculated for all the classifiers. In case of 

AAC, Random Forest classifier provided good precision values than when compared to other 

classifiers. As shown in Figure 5.1, the classifiers performance for AAC for all the ten 

families AGC, atypical, CAMK, CK1, CMGC, OTHER, RGC, STE, TK and TKL of kinases 

were obtained. The random forest gave the best precision, recall and ROC value compared to 

other classifiers. This implied that when AAC was considered, random forest classifiers 

performed the best which could be due to small number of feature set. But out of all 4 

classifiers, 3 classifiers namely logistic, random forest and SVM classifier outperformed, 

which could be due to small number of sequences (instances) present in the families. 

However, the number of classifiers predicting the test data with high precision was less 

compared to DC features set and APAAC features set. 
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Figure 5.1: Performance representation of all four classifiers for ten classes of kinases using AAC. 

Similarly for DC, the representation as shown in Figure 5.2, the result varied with different 

families. In case of AGC, random forest and logistic outperformed other classifiers with a 

precision, recall and ROC value of 1. In case of atypical and CAMK family, logistic showed 

good precision, recall and ROC value of 1. For the CK1 family, random forest performed 

well whereas in case of CMGC, OTHER, RGC and STE families, logistic showed good 

precision score compared to other classifiers. Naïve Bayes classifier showed good model 

validation with RGC and TK test data. And SVM classifier performs well for TKL family of 

data using DC. The variability in performance of the dataset could be due to different number 

of sequences present in each family. 
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Figure 5.2: Performance representation of all four classifiers for ten classes of kinases using DC. 

Using APAAC, in most of the family SVM and logistic performed better compared with 

random forest and naïve Bayes classifiers. As shown in Figure 5.3, Logistic and SVM 

classifier performed better for the families AGC, atypical, CK1, CMGC, RGC, STE and TKL 

whereas for the family CAMK, SVM showed good precision, recall and ROC score. In case 

of RGC, three classifiers (naïve Bayes, Logistic and SVM classifiers) out of four 

outperformed with a precision, recall and ROC of 1. And in case of TK, logistic showed good 

precision value. 

 

Figure 5.3: Performance representation of all four classifiers for ten classes of kinases using APAAC. 
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An attempt to find the effect of feature selection on different classification algorithms was 

studied and experimented exhaustively. We focused on three different physiochemical 

properties namely AAC, DC and APAAC, and four classifiers namely Naïve Bayes, Logistic 

regression, Random forest and SVM (rbf). Looking at the performance of all the classifiers 

using AAC, DC and APAAC features with ten different family, it could be understood that 

random forest outperformed the other classifier using precision, recall and ROC. From these 

set of experiments described in results and discussion section, we conclude two observations: 

 Random forest could be the best possible classifier for classification of kinases. And 

from these set of experiments described in the figures above, Random forest gave an 

average precision of 0.99;  

 When APAAC was used as feature for classification, the precision of the classifier 

was much higher than compared to AAC and DC; Random forest with APAAC was 

considered the best combination to achieve classification of kinases with high 

precision. 

Further, the same could be extended and studied for subfamilies, which might give more 

insight into the predominant features specific to each subfamily of kinases. 

5.1.2. Effect of feature selection on kinase classification using AUC measure 

From the previous conclusion random forest outperforms the other classifiers. Hence, we 

have used random forest where 2/3
rd

 was used as training dataset and 1/3
rd

 as test dataset.   

Alongside the classifier, the components utilized were AAC and DC, which were utilized by 

Manoj Bhasin and G. P. S. Raghava for nuclear receptor classification [162]. Earlier pseudo 

AAC was employed by Zbigniew and Ewaryst for structural classification of proteins based 
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on pseudo AAC with a measure of accuracy [163]. But recently, both theoretical and 

empirical studies revealed that a classifier with highest accuracy extent might not be idyllic in 

real world problems. Instead, area under the ROC curve (AUC) was demonstrated as an 

alternative approach and measure to evaluate the performance of any classifier. Therefore, we 

attempted to develop classification models using Random Forest classifier [164]. We 

developed an algorithm by building the model using 2/3
rd

 of the training dataset and 

remaining 1/3
rd

 of the test dataset. The test datasets were partitioned randomly.  

The performance of the classifier was evaluated using AUC. Suppose we need to select k 

feature subset from a feature set of F = {f1, f2, . . . , fm}. Forward greedy search builds model 

by considering one feature at a time and by calculating AUC for each of them [165]. Then the 

combination feature subsets were ranked based on the descending order. The combination of 

features with maximum AUC value was selected for classification of kinases. 

 

Figure 5.4: The AUC measures of the classifier for all 10 kinase classes using AAC feature subset and all AAC 

features. 
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AUC measures with all features when compared to the features selected by forward greedy 

outperformed in all 10 classes. Figure 5.4 shows the AUC measure for AAC. The major 

difference in AUC measure was found for RGC class compared to other kinase classes. The 

feature subset with respect to RGC class was found to be reduced to 3 features instead of all 

20 features, using forward greedy algorithm. A negligible difference was identified in case of 

CK1 and TK classes, which could further be studied for marking a significant difference in 

all the kinase classes.  

 

Figure 5.5.: The AUC measures of the classifier for all 10 kinase classes using DC feature subset and all DC features. 

Similarly, the performance in AUC measure was compared using all 400 features and subset 

of features using DC as shown in Figure 5.5. The major difference was found in case of 

atypical class of kinases using all 400 features and subset of 4 features (using forward 

greedy) and the negligible difference was found in case of TK class. Similarly, for APAAC 

the difference measured was found to be more in case of atypical compared to all other 

classes and was very less in case of RGC as shown in Figure 5.6. The number of features 

generated using forward greedy was found to contain 6 features with highest AUC measure. 
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This brought us to the hypothesis that kinases could be classified with maximum AUC extent, 

if good subsets of features were used. 

 

Figure 5.6: The AUC measures of the classifier for all 10 kinase classes using APAAC feature subset and all 

APAAC features. 

We have shown the pros of feature selection method for identifying the feature subset for 

classification of kinases. The performance of the classification model was shown using the 

feature subset and also using all the features. The evaluation of the performance was done by 

measuring AUC. The random forest classifier was able to classify kinase groups with a better 

AUC measure for feature subsets compared to all the features. But the difference in AUC 

measure was found to be negligible for a few classes of kinase like RGC class using AAC, 

atypical class using dipeptide and APAAC which indicated that group of kinases were 

classifiable with maximum AUC extent, if a good subset of features were used. Further, 

feature selection method could be useful to classify a large set of biological data and also for 

dimensionality reduction. 
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5.2. Homology model and molecular simulation of PKMzeta  

With the experimentally solved structures of a known enzyme, the drug design and discovery 

process could be facilitated significantly. However, one of the most frequent situations faced 

for structure based drug design was when there were no experimentally solved structures 

available. In such cases, comparative modeling could be employed for building 3D of a 

targeted protein on the basis of sequence similarity with the protein of experimentally known 

structure, which share high identity with the targeted protein sequence [105-106]. To the best 

of our knowledge, only one study addressed homology modeling of PKMzeta. There was an 

attempt made for the homology model for PKMzeta based on protein kinase C-iota and was 

employed for the binding motifs of chelerythrine using Autodock [107]. Based on the 

available reports, we undertook an attempt to develop homology models of PKMzeta 

(Q05513; 252-518) utilizing the intermediate open conformation structure of PKCiota (PDB 

Id: 1ZRZ) and closed conformation structure of PKCiota (PDB Id: 3ZH8), both as templates 

with 88% identity. The results were validated using various computational tools as described 

further. 

5.2.1. Sequence identification and homology modeling of open and closed conformation 

As there were no PKMzeta structure available and due to its importance in the neurobiology, 

structural insights would aid better understanding of the substrate specificities and help in 

designing improved structure-based inhibition [166]. The atypical PKCiota and PKCzeta 

shared a high degree of sequence identity (86%) in the kinase domain [167] and PKMzeta 

could be represented as N-terminal truncated form of PKCzeta and lack the regulatory 

domain and hence constitutively active. 3D models of PKMzeta were developed using the 

sequence Q05513 (Phe252-Phe518). Using BLASTp, the suitable templates for building the 
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homology model were carefully chosen based on the sequence identity. The catalytic domain 

was found to have 88% identity with both intermediate open and closed conformation of 

PKCiota, both were further used as a template to build the models of PKMzeta (Figure 5.7). 

 

Figure 5.7. Multiple sequence alignment using ClustalW of PKMzeta. 

Sequence alignment using ClustalW of PKMzeta amino acids (Q05513 (Phe252-Phe518)) 

with two crystal structure sequences of the catalytic domain of Atypical PKCiota [Homo 

sapiens] (PDB ID 1ZRZ & 3ZH8) templates is shown. Alignment length is of 267 residues 

and the mismatch residues are represented in brackets. The stereochemical properties of the 

predicted and refined 3D models were evaluated using PROCHECK to analyze the 

Ramachandran plots. The RMSD of the intermediate open conformation model with the 

template 1ZRZ is 1.03 Å and the RMSD of the closed conformation model with the template 

3ZH8 is 1.11 Å. The catalytic domain of kinases consists of N-terminal and C-terminal lobes 

and the ATP binding pocket of PKMzeta was found in the cavity lying in between the N-

terminal and C-terminal lobes of PKMzeta (Figure 5.8). Further, the ATP binding pocket of 

both the models were analyzed and mapped with their respective templates.  
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A 

 

  

B 

Figure 5.8. Superimposition of the modeled structures (A) Superimposition of intermediate open conformation 

model (pink) with 1ZRZ template (grey) showed RMSD of 1.03Å; and (B) Superimposition of closed 

conformation model (blue) with 3ZH8 template (red) showed RMSD of 1.11Å. The highlighted residues are the 

residues present in the binding pocket of the templates. 
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5.2.2. Model validation using PROCHECK and ProSA web server  

The models were validated as mentioned in materials and methods section, the 

Ramachandran plot was compared between the built model structures with their respective 

open and closed conformation template. The ProSA scores were also found to be suitable for 

both the template based built structures which validated our built model.  

The phi-psi plot for the final models is shown in the Figure 5.9 and the detailed result in 

comparison with the template structure is shown in Table 5.1. The Ramachandran plots for 

the intermediate open formation model showed most favored regions (85.1%), additional 

allowed regions (11.9%) and generously allowed regions (0.9%). Similarly, closed 

conformation model showed most favored regions (89.8%), additionally allowed regions 

(9.4%) and generously allowed regions (0.4%). Only 5 residues in case of open conformation 

model and 1 residue in case of closed conformation model were found in the disallowed 

regions. ProSA-web “Z” score values of the built models lies in the native conformations 

range of experimentally solved structures. Z-score values for the open conformation models 

and the template are -7.8 and -8.35, respectively. And the Z-score values for closed 

conformation model with the template are -7.1 and -8.22, respectively. Therefore, Figure 4.1 

shows the overall modeled structures are reasonably good. 
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Figure 5.9. Ramachandran plots of (A) 1ZRZ, the intermediate open conformation structure in PDB, (B) the 

intermediate open conformation model structure of PKMzeta, (C) 3ZH8, the closed conformation structure in 

PDB, (D) the closed conformation model structure of PKMzeta. Different colors in the plot represents most 

favored in red, disallowed region in white, additional allowed in yellow and generously allowed in light yellow 

regions. (Shown in Table1) 
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Table 5.1. Results of the protein structures check by PROCHECK and ProSA. 

Residues 1ZRZ Open structure 

conformation 

model 

3ZH8 Closed 

conformation 

model 

Most favored regions 218(80.1%) 200(85.1%) 248(89.2%) 211(89.8%) 

Additional allowed regions 46(16.9%) 28(11.9%) 27(9.7%) 22(9.4%) 

Generously allowed regions 5(1.8%) 2(0.9%) 2(0.7%) 1(0.4%) 

Disallowed regions 3(1.1%) 5(2.1%) 1(0.4%) 1(0.4%) 

Z-Score(ProSA-web) -8.35 -7.8 -8.22 -7.1 

 

Hence, the intermediate open and closed conformation models showed good number of 

residues in favorable region than compared with the template. Looking at the good scores of 

the models, we went further to make an attempt confidently to do a molecular dynamics 

simulation to check the validity to the model even in dynamic conditions. 

5.2.3. Molecular dynamics simulation  

Molecular dynamics (MD) simulations were performed to check the stability of the model 

over a period of time for 10 ns. Dynamics study was performed using Desmond 3.4 as 

implemented in Schrödinger package with OPLS_2005 (Optimized Potentials for Liquid 

Simulations 2005) force field [168]. The backbone RMSDs were analyzed from the 

trajectories of both the models built using 1ZRZ and 3ZH8 template for 10 ns of MD 

simulation and both were compared with their respective templates. The backbone RMSD of 

the intermediate open conformation model and the 1ZRZ template were compared and found 

to remain constant approximately even in the dynamic conditions, which indicated the 

stability of the intermediate open conformation model (Figure 5.10A). And the backbone 

RMSD of the closed conformation model and the template 3ZH8 were found to show 

constant RMSD approximately for 10 ns in dynamic conditions (Figure 5.10B). Therefore, 

molecular dynamics simulation studies of both the templates and the models helped us to 



69 | P a g e  

 

have an insight into the model stability and further useful for the binding site prediction and 

to screen large number of compounds database for potential lead identification for PKMzeta 

inhibition.      

A

B 

 

Figure 5.10. Molecular dynamics simulation of the model structure (A) Backbone RMSD of both the template 

and the intermediate open conformation model for 10 ns (B) RMSD of both the template backbone atoms and 

the closed conformation model for 10ns. 
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5.3. Lead identification 

In a nutshell, the entire process of identifying novel PKMzeta inhibitors could be majorly 

divided into two phases:  

(a) Design I: It included utilization of built open and closed conformation models for the 

identification of leads from the commercial database using in silico techniques, by 

biophysical characterization and in vitro biological characterization of the lead molecules.  

 (b) Design II: It included utilization of built open and closed conformation models for lead 

identification and optimization from in-house database using in silico methods, biophysical 

characterization, in vitro biological characterization and in vivo pharmacological 

characterization of lead. 

5.3.1. Binding site prediction and ligand preparation 

Binding site prediction was essential for structure-based and virtual screening of compound 

libraries. Thus, the binding sites of both the 3D models were predicted using SITEMAP and 

were used for grid generation. The generated grid information for both the models is listed in 

Table 5.2. The grids were then used to identify inhibitors from a large set of compound 

libraries (Asinex database) using Glide module. The commercial database known as Asinex 

database (http://www.asinex.com) and in-house library were used for screening the leads. 

Asinex collection included all the compared to the present in the Asinex, while the in-house 

library was a repository of the drug discovery laboratory of Department of Pharmacy, BITS 

Pilani, Hyderabad campus. 
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Table 5.2. Grid Information along with their PDB IDs Employed for Docking Studies. 

Sl.No. Model Model template 

used (PDB ID) 

Conformation X-center Y-center Z-center 

1 Model1 1ZRZ Intermediate 

Open  

-9.0072 19.9236 18.8711 

2 Model2 3ZH8 Closed 17.3376 17.6445 13.2012 

 

The amino acids present in the vicinity of the binding site of the intermediate open 

conformation model were Asp129, Asp86, Asp143, Lys30, Val63, Glu80, Ile79, Ala28, 

Leu132, Tyr81, Val15, Ile7, Gly8, Asp86, Thr142, Glu80 and Val82. And the amino acids 

present in the vicinity of closed conformation model were Gly252, Ala257, Val259, Asp387, 

Thr386, Ala272, Glu324, Tyr325, Val326, Gly329, Leu376, Asp330 and Ile251.  

The Asinex database (http://www.asinex.com) contained 525,807 molecules and was 

processed through redundancy check and Lipinski filters. Similar task was performed for in 

house database. The structures were prepared using LigPrep 2.5 module to expand 

protonation and tautomeric states at 7.0±2.0 pH. Conformational sampling was also 

performed for all database molecules using the ConfGen search algorithm with OPLS_2005 

force field. Duplicate poses were eliminated if the RMSD was less than 2.0 Å. A distance-

dependent dielectric constant of 4 and maximum relative energy difference of 10 kcal mol-1 

were applied.  
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5.3.2. Design I: Identification of PKMzeta inhibitors from commercial library and 

biological evaluation 

5.3.2.1. Ligand identification methods 

The protocol followed for screening of inhibitors for both the models involved an initial high-

throughput virtual screening (HTVS) for a set of large number molecules which was followed 

by a secondary Glide standard precision (SP) docking. The shortlisted compounds from these 

docking calculations were then subjected to Glide extra precision (XP) docking, to 

understand the hydrogen-bond interactions, electrostatic interactions, π-π stacking 

interactions and hydrophobic enclosures.  

About 22000 compounds were selected using HTVS screening, which were further subjected 

to Glide SP. Eventually top 1000 compounds were selected from the screened list Glide SP 

with a glide score may be less than or equal to -6 kcal/mol, along with one or more hydrogen 

bonds.
 

These shortlisted compounds were then subjected to Glide XP, which gave 

compounds with scores ranging from -7.43 to -10.10 kcal/mol. The final lists of the leads 

were obtained based on the important amino acids interaction in the binding site. For open 

conformation model Val82, Glu80 and Thr142 were preferred because of the reason that, the 

intermediate open conformation template contained similar interacting residues with its 

bound ligand, bisindolylmaleimide based PKC inhibitor (3-{1-[3-(Dimethylamino)propyl]-

1h-Indol-3-Yl}-4-(1h-Indol-3-Yl)-1h-Pyrrole-2,5-Dione). Similar steps were followed using 

closed conformation model, which gave the compounds with Glide score ranging between -

6.03 to -10.00 kcal/mol. And the preferred interactions for closed conformation model was 

selected Val326 and Thr386 which is based on the interactions of the ligand bound apkc 

inhibitor with the closed conformation template. Final hits using both conformation models 
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were then evaluated using GOLD 5.1.2 (genetic algorithm based ligand docking) to confirm 

their binding efficiency. Top 11 compounds were selected using the open conformation 

model and top 7 compounds were selected using the closed conformation model (Figures 

5.11 and 5.12) and their hydrogen bond interactions along with Glide and GOLD scores are 

presented in Table 5.3.  

 

Figure 5.11. Structures of shortlisted inhibitors from Asinex database using the homology model of 

intermediate open structure. 



74 | P a g e  

 

The lead compounds identified from open conformation model of PKMzeta (O1-O11) were 

from diverse nucleus like quinolidine, thiazolidine, thiosemicarbazone, benzopyrazole, 

phthalimide, coumarin, pyrimidine, thiazole and naphthalene scaffolds 

 

Figure 5.12. Structures of shortlisted inhibitors from Asinex database using the homology model of the closed 

conformation. 

The lead compounds identified from closed conformation model of PKMzeta (C1-C7) were 

also from diverse nucleus like pyrroldine, tetrazole, triazole, benzotriazole, quinoline, isatin 

and pyrimidine.   
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Table 5.3. The glide score and GOLD score of the shortlisted compounds for both the models. 

SL.No. Glide 

score 

H 

bond 

Amino acid involved in interactions with 

ligand 

Gold score 

Open Conformation Model 

LeadAO1 -9.91 5 Val82(2),Thr142, Lys30, Asp86 47.68 

LeadAO2 -8.67 6 Glu80(2), Val82(2),Thr142, Asn83 37.20 

LeadAO3 -8.44 4 Val82(2), Thr142, Lys30 49.57 

LeadAO4 -8.31 3 Val82, Glu80, Asp129 40.18 

LeadAO5 -8.23 4 Val82(2), Thr142,  Lys30 58.42 

LeadAO6 -8.19 4 Glu80 , Val82,Thr142, Asp129 39.25 

LeadAO7 -9.87 7 Lys30 (2), Thr142, Glu80, Val82(2), Arg9 44.22 

LeadAO8 -7.43 4 Thr142,Glu80, Val82,Arg5 40.50 

LeadAO9 -8.52 4 Val83, Glu80,  Thr142, Asp129 38.94 

LeadAO10 -8.04 4 Glu80, Thr142, Val82, Arg5 51.04 

LeadAO11 -8.79 4 Glu80, Val82, Asp129, Asp143 54.72 

Closed Conformation Model 

LeadAC1 -6.03 3 Thr386, Val326, Lys274 48.78 

LeadAC2 -9.49 4 Thr386, Val326, Lys274, Tyr388 53.88 

LeadAC3 -9.10 5 Val326, Lys274, Thr386, Tyr388 53.97 

LeadAC4 -7.13 4 Thr386, Val326, Gly328, Gly329 49.87 

LeadAC5 -6.83 3 Thr386, Val326,Asp373 51.03 

LeadAC6 -9.18 3 Thr386, Val326(2) 48.68 

LeadAC7 -7.67 3 Thr386, Val326(2) 46.72 

 

The leads from open and closed conformation model showed good docking score ranges from 

-6.03 to -9.91. Among the leads from open conformation model, LeadAO7 showed highest 

docking score of -9.91 with amino acid residues Lys30, Thr142, Glu80, Val82 and Arg9. 

Also the binding information obtained from LeadAO1 showed that, the compound fits well 

in hydrophobic pocket of the kinase domain with a docking score of -9.91 kcal/mol. 

LeadAO2 showed binding interaction with a docking score of -8.67 kcal/mol with amino 
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acid residues Glu80, Val82, Thr142 and Asn83. Similarly, LeadAC3 from closed 

conformation model showed best docking score among the other leads shortlisted using 

closed conformation model of PKMzeta. The docking score of LeadAC2 was -9.49 kcal/mol 

with interacting amino acid residues Thr386, Val326, Lys274 and Tyr388; and a gold score 

of 53.88 kcal/mol.  

5.3.2.2. ADME prediction 

The ADME properties were calculated using QikProp module of Schrodinger (Table 5.4). For 

each successfully processed molecule, QikProp produced a set of descriptors and properties 

as follows, MW denoted molecular weight of the molecule; QPlogPo/w was the predicted 

partition coefficient between octanol and water (recommended range: –2.0 – 6.5); QPlogS 

represented predicted aqueous solubility, where S (mol dm–3) was the concentration of the 

solute in a saturated solution in equilibrium with the crystalline solid. Recommended range 

should lie between –6.5 and – 0.5. QPlogHERG denoted predicted IC50 value for blockade 

of HERG K+ channels (acceptable range <-5) which was an indicator of cardiotoxicity, 

QPPCaco indicated predicted apparent Caco-2 cell (human colon cell line) permeability in 

nm/sec that indicated permeability features. Caco-2 cell was a model for the gut-blood barrier 

(recommended range: <25, poor permeability; >500, good permeability), and QPlogBB 

represented predicted brain/blood partition coefficient for orally delivered drugs 

(recommended range: -3.0 to -1.2). 

QPPMDCK was predicted apparent Madin-darby canine kidney (MDCK) epithelial cell 

permeability in nm/sec. MDCK cells were considered to be a good mimic for the blood-brain 

barrier (recommended range: <25, poor permeability; >500, good permeability). QPlogKp 

meant predicted skin permeability with log Kp in the recommended range of -8.0 to -1.0. The 
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assessments used knowledge-based set of rules, including checking for suitable values of % 

human oral absorption, number of rotatable bonds, logP, solubility and cell permeability. 

Another QikProp prediction was the percent human oral absorption which was predicted on 0 

to 100% scale. The prediction was based on a quantitative multiple linear regression model. 

Last but not the least properties which QikProp predicted were Lipinski’s rule of five. The 

rules were: MW < 500, octanol/water partition coefficient <5, number of hydrogen bond 

donors ≤ 5, number of hydrogen bond acceptors ≤ 10. Compounds satisfying these rules were 

considered drug-like. Maximum limit of allowed violations was 2. Interestingly all the 

compounds exhibited acceptable range.  

The predicted logP values for all the compounds were found to be acceptable and the 

predicted HERG property was also found acceptable except LeadAC3, AC4, AO2, AO6 and 

AO9. Similarly, the blood brain barrier predicted values are in the range i.e. -3 to 1.2. Lead 

AO6, AO9 and AO10 were found to have less Caco-2 property indicating problems with 

permeation and absorption through intestine. LeadAC6, AO6-AO10 showed less MDCK 

property and the predicted % human oral absorption values for the compounds LeadAO6 and 

AO9 were less (<25%) which implied that the bioavailability of these compounds could be 

less. The leads (LeadAO6 and LeadAO9) were found to have one violation could be taken 

into consideration. The ADME predictions for the selected compounds were tabulated in the 

Table 5.4. 
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Table 5.4. ADME properties of PKMzeta inhibitors screened from Asinex. 

MW: molecular weight, QPlogPo/w: Predicted octanol and water coefficient (acceptable range -2.0 - 6.0); Qplogs: Predicted aqueous solubility (acceptable range -6.5 - 0.5); 

QplogHERG: Predicted IC50 value for blockage of HERG k+ channels (acceptable range: below -5); QPPcaco: Predicted caco cell-2 permeability (<25 is poor and >500 

high); QPlogBB: Predicted brain/blood partition coefficient (acceptable range -3.0 - 1.2); QPPMDCK: Predicted apparent MDCK cell permeability (<25 is poor and >500 is 

high); QPlogkP: Predicted skin permeability (acceptable range -8.0 to -1.0); % Human oral absorption (<25% is poor and >80% is high); Rule of 5: Number of violations of 

Lipinski's rule of 5 (mol_MW < 500, QPlogPo/w < 5, donorHB≤5, accptHB≤10) acceptable maximum 1. 

Compound MW QPlogPo/w QPlogS QPlogHERG QPPCaco QPlogBB QPPMDCK QPlogKp 

%Human 

Oral 

Absorption 

Rule Of 5 

violations 

Closed conformation models 

LeadAC1 384.43 2.97 -4.15 -5.03 1393.36 -0.65 708.05 -1.97 100 0 

LeadAC2 397.40 1.46 -3.69 -5.44 118.66 -1.66 62.91 -3.93 72.62 0 

LeadAC3 377.46 2.63 -4.40 -3.82 138.28 -1.16 142.76 -3.58 80.70 0 

LeadAC4 280.29 1.31 -2.76 -2.90 52.11 -1.33 36.35 -3.82 65.34 0 

LeadAC5 332.35 2.55 -4.95 -6 193.22 -1.93 83.68 -3.50 82.81 0 

LeadAC6 354.32 2.51 -5.18 -6.24 41.80 -2.46 15.99 -4.58 70.65 0 

LeadAC7 289.29 1.32 -4.38 -5.91 61.42 -2.16 24.25 -4.69 66.69 0 

Intermediate open conformation model 

LeadAO1 392.51 2.69 -4.35 -6.47 210.04 -0.55 198.13 -4.45 84.31 0 

LeadAO2 211.23 -0.05 -1.78 -4.23 146.91 -1.21 169.24 -4.06 65.41 0 

LeadAO3 344.36 3.047 -5.07 -5.83 553.91 -0.72 570.98 -2.77 93.89 0 

LeadAO4 251.28 2.78 -3.81 -5.42 668.35 -0.82 320.03 -2.34 93.83 0 

LeadAO5 397.49 2.90 -4.38 -5.38 799.04 -0.84 735 -2.14 95.92 0 

LeadAO6 296.28 -0.88 -2.50 -4.42 6.36 -2.63 2.09 -6.75 23.21 1 

LeadAO7 302.24 0.32 -2.55 -4.75 26.10 -2.15 9.61 -5.26 54.17 0 

LeadAO8 319.27 0.36 -3.97 -6.14 43.57 -2.42 16.73 -4.98 58.39 0 

LeadAO9 320.21 -0.49 -2.34 -4.3 4.03 -2.94 1.27 -7.04 21.93 1 

LeadAO10 328.34 2.30 -4.8 -5.45 18.06 -2.28 10.15 -3.79 62.92 0 

LeadAO11 267.29 0.40 -2.06 -4.73 170.33 -1.45 73.17 -3.60 69.23 0 
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5.3.2.3. Enzymatic inhibition assay 

In vitro enzymatic assay was performed to check the percentage inhibition of the designed 

inhibitors based on luminescence generated. We employed the enzyme activity assay to prove 

the drug design concept. Seven lead compounds from open (O) and from closed (C) 

conformations (LeadAO1, LeadAO2, LeadAO6, LeadAC2, LeadAC3, LeadAC4 and 

LeadAC7) showed more than 90% inhibition at 25 µM. The compounds which were active 

with more than 90% of inhibition were quantified further in lower concentrations to estimate 

the IC50s (Table 5.5). We ensured that the compound self-fluorescence property was nullified 

by including control wells with the compound without the enzyme assay solutions. Hence, 

auto-fluorescence was nullified and ascertained that the lead compounds identified were not 

artifacts.  

Table 5.5. Depicting the percentage inhibition of PKMzeta at 25µM and IC50s of promising leads 

Compound 

Name 

Percentage Inhibition  

at 25 µM 

IC50 µM
a 

Open conformation model 

LeadAO1 99.96 0.02±0.01 

LeadAO2 93.37 5.31±2.06 

LeadAO3 29.48  

LeadAO4 14.64  

LeadAO5 -18.84  

LeadAO6 92.47 6.04±0.31 

LeadAO7 -3.40  

LeadAO8 -1.92  

LeadAO9 0.89  

LeadAO10 15.40  

LeadAO11 17.22  

Closed conformation model 

LeadAC1 94.31 10.04 ±0.65 

LeadAC2 93.38 9.58±0.47 

LeadAC3 92.98 5.99±0.38 

LeadAC4 6.23  

LeadAC5 2.67  

LeadAC6 92.74 3.63±0.31 

LeadAC7 16.18  
a 
values presented as mean of triplicate study along with SEM 
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Figure 5.13. The binding 2D and 3D interaction pictures of LeadAO1. 

The interactions of these 7 leads (3 leads using intermediate open conformation model and 4 

using closed conformation model) are represented in Figures 5.13. The structural information 

obtained from the homology models of the PKMzeta with the LeadAO1 suggested that, the 

compound fits in the hydrophobic pocket of the kinase domain of PKMzeta with a docking 

score of -9.91 kcal/mol. The carbonyl group and amino group of the lead established two H-

bond interactions with Val82. Tertiary amine of the lead shared one hydrogen bond with the 

negatively charged amino acid residue Asp86 and the hydroxyl group showed two hydrogen 

bonds with one polar amino acid residue Thr142 and the positively charged residue Lys30 of 

the open conformation model (Figure 5.13).  
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Figure 5.14. The binding 2D and 3D interaction pictures of LeadAO2. 

Similarly, the second active lead (LeadAO2) with a docking score of -8.67 kcal/mol docking 

score, was found to fit in the hydrophobic pocket consisting of hydrophobic residues Leu132, 

Val15, Ile7, Ile79, Ala28, Val63, Tyr81 and Val82 (Figure 5.13). The two phenol groups 

present in LeadAO2 showed one hydrogen bond with a polar residue Thr142, two with 

negatively charged amino acid residue Glu80 and one with Val82. The amino groups of 

thiourea showed two hydrogen bonds with Val82 and Asn83. Due to these favorable 

interactions, LeadAO2 could have displayed good inhibitory activity with IC50 of 5.3 µM 

(figure 5.14). 

Another shortlisted lead compound, LeadAO6 displayed good activity with IC50 of 6.04 µM 

and showed four favorable hydrogen bond interactions with Asp129, Thr142, Glu80 and 

Val82. The LeadAO6 also was found to be well-placed in the hydrophobic pocket of the 

kinase domain (figure 5.15). The amino group of LeadAO6 exhibited one hydrogen bond 

with Asp129 and carbonyl group in the isoindolindione nucleus showed two hydrogen bonds 
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with Val82 and Thr142. Also the amino group in the isoindolindione showed one hydrogen 

bond with Glu80.  

 

Figure 5.15. The binding 2D and 3D interaction pictures of LeadAO6 

The in vitro inhibitory activity of compounds (LeadAC1, LeadAC2, LeadAC3 and 

LeadAC6) shortlisted using closed conformation model showed more than 92% of inhibition 

at 25 µM concentration and was further estimated for their IC50s. The docking scores were 

found in the range of -6.03 to -9.49 kcal/mol suggesting that these compounds were well 

fitted in the ATP binding pocket of the closed conformation model. The docking analyses of 

these compounds with the closed conformation model showed LeadAC1 exhibiting hydrogen 

bond interaction with amino acid residue Val326 and the carbonyl group present in the 

pyrrolidine ring. Another carbonyl group showed interaction with Thr386. The oxygen of the 

methoxy group also showed hydrogen bond interaction with Lys274 (Figure 5.16). This lead 

showed an IC50 of 10.04 µM.  
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Figure 5.16. The binding 2D and 3D interaction pictures of LeadAC1 

On the other hand, LeadC2 was found to be oriented in a similar fashion as that of 

LeadAC1. Hydrogen bonding was observed between the two oxygen of the benxodioxole 

group with Tyr388 and Lys274 amino acid residues. One more hydrogen bond interaction 

between the carbonyl group and Thr386 was also observed (Figure 5.17). This lead showed 

good inhibitory activity with an IC50 of 9.52 µM. 
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Figure 5.17. The binding 2D and 3D interaction pictures of LeadAC2 

Further, the binding analyses of LeadAC3 revealed four hydrogen bonding interactions with 

amino acid residues Thr386, Val326, Tyr388 and Lys274 (Figure 5.18). Val326 showed 

hydrogen bond interaction with the amino group of indole nucleus. Apart from these two 

interactions, the carbonyl group showed two hydrogen bond interactions with Lys274 and 

Tyr388. And the fourth hydrogen bonding was found between Thr386 and the phenyl 

substituted nitrogen of the triazole group. This compound was found to be good in the pocket 

of the PKMzeta model with a docking score of -9.10 kcal/mol and exhibited an IC50 of 5.99 

µM. 
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Figure 5.18. The binding 2D and 3D interaction pictures of LeadAC3 

The binding analyses of LeadAC6 showed three interactions with the residues in the binding 

pocket of the closed conformation model, out of which two interactions were with the 

carbonyl and amino group of isatin, respectively. The carbonyl group showed interaction with 

Val326 and the amino group showed hydrogen bond interaction with Thr386 (Figure 5.19).  
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Figure 5.19. The binding 2D and 3D interaction pictures of LeadAC6 

The LeadAC6 exhibited an IC50 of 3.63 µM, which could be attributed to the number of 

hydrogen bonds. Thus, three compounds (LeadAO1, LeadAO2 and LeadAO6) from 

intermediate open conformation model and four compounds (Lead LeadAC1, LeadAC2, 

LeadAC3 and LeadAC6) from the closed conformation model were selected further for cell 

based assays and estimation of intracellular ROS IC50 and cytotoxicity evaluation. 

5.3.2.4. Cytotoxity studies 

The effect of the designed inhibitors on normal cell toxicity was tested. MTT assay measured 

cell proliferation rate and viability. The reduction of yellow tetrazolium MTT by 

metabolically active cells was indicated by the formation of intracellular purple formazan 

which could be solubilized and quantified by spectrophotometric methods. After subjecting 

HEK 293 cells (Human embryonic kidney cell line) to MTT assay, all the top PKMzeta 

inhibitors (LeadAO2, LeadAO2, LeadAO6, LeadAC1-AC3, and LeadAC6) were tested 
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for cytotoxicity and the results are shown in Table 5.6. To understand the quantified 

cytotoxicity (CC50) of the inhibitors, we tested on HEK-293T cell line at five different 

concentrations (0.01-100 μM). From the results, as shown in table 5.6, it could be inferred 

that two leads (LeadAC3 and LeadAC6) showed lesser cytotoxicity compared to other leads 

which were found to be toxic. 

Table 5.6. Cell based studies on PKMzeta inhibitors 

Compound 

Name 

CC50 

(μM) 

GIC50 

(μM) 

SI=CC50/GIC50 ROS IC50 (µM) 

Open Conformation Model 

Lead AO1 4.55±0.55 9.65±0.71 0.472 17.66±0.50 

LeadAO2 1.520.02 1.98±0.21 0.767 2.12±0.76 

LeadAO6 0.35±0.11 2.39±0.26 0.146 1.79±0.96 

Closed Conformation Model 

LeadAC1 0.06±0.05 9.54±0.72 0.006 188.1±0.35 

LeadAC2 0.79±3.37 5.02±1.12 0.157 0.33 0.20 

LeadAC3 8.75±0.54 1.62±0.77 5.401 0.89 0.35 

LeadAC6 22.09±0.88 3.83±0.43 5.767 0.17±0.13 

Percentage cytotoxicity was studied using HEK-293 cell lines whereas GI50, IC50 for ROS 

inhibition were studied in IMR-32 cell lines. 

5.3.2.5. Growth inhibition assay 

MTT reduction was reported as a marker for viable cell metabolism [169]. Hence, we 

performed the assay for growth inhibition using neuroblastoma cell line (IMR-32). As we 

know that atypical isoform of PKC was reported in various diseases specifically nervous 

system disorders and cancer,
 
we evaluated the selected compounds in cell based assays that 

included growth inhibition in methylmercury (MeHg) treated neuroblastoma cell line. We 

decided to use IMR-32, which being a human neuroblastoma cell line, when differentiated, 

mimic large projections of the human cerebral cortex and under certain tissue culture 

conditions, formed intracellular fibrillary material, commonly observed in brains of patients 
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affected with AD and other neurological disorders. Also to check the expression of PKMzeta 

in MeHg treated IMR-32 cell line, we conducted initially RTPCR check to quantify the 

expression of PKMzeta. MeHg induction was found to increase the expression of PKMzeta in 

comparison to naïve neuroblastoma cell line (IMR-32) (Figure 5.20) and hence utilized this 

system to assess the neuroprotection by the designed PKMzeta inhibitors. The PKMzeta 

expression in MeHg treated IMR-32 cells was found significantly different from the untreated 

naïve IMR-32 cells at p<0.001. 

 

Figure 5.20. Gene Expression of PKMzeta in MeHg treated IMR-32 cell lines and in naïve untreated IMR-32 

cell lines. 

Cells were subjected to different inhibitor concentrations (0.01-100 μM) and cell viability 

was measured in terms of GI50 values. GI50 value indicated growth inhibition ability of a 

compound. The GI50 results of all the compounds revealed that they were able to inhibit 

growth of IMR-32 cells. LeadAO2 and LeadAC3 were able to inhibit growth with GI50 < 2 

μM. This could be further postulated to be due to PKMzeta inhibition (table 5.5). 
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5.3.2.6. Measurement of ROS production 

We have treated the U87 cell lines were pre-treated with LPS, as there was an evidential 

study that LPS induced neuroinflammation and there was a link between occurrence of 

inflammation in the brain and neurodegeneration [170]. We checked the ROS production and 

the effect of leads on intracellular ROS production. Intracellular ROS production was 

estimated using DCFH-DA. Cells were treated with 1 μM/ml LPS followed by all five 

concentrations of leads (0.01-100 μM) treatment. LeadsAC2, LeadAC3 and LeadAC6, 

showed significant ROS inhibition as described in Table 5.5. Thus, reduction in ROS 

production by inhibitors indicated that the lead compounds reduces proinflammatory 

cytokines release. 

5.3.2.7. Selectivity index 

The selectivity indces (SI=CC50/GIC50) were calculated for all the lead compounds to 

estimate their safety and selectivity (table 5.6). The two leads obtained from closed 

conformation model (LeadAC3 and LeadAC6) exhibited good selectivity index compared to 

other lead compounds and hence emerged as potential leads for further development for 

neurodegenerative disorders. Table 5 lists all the cell-based assay results. The most potential 

compounds LeadAC3 and LeadAC6 also revealed better ROS IC50s of 0.89 and 0.17µM, 

respectively. These two highly selective and active compounds were further selected for RT-

PCR studies for the expression levels of proinflammatory mediators. 

5.3.2.8. Gene expression studies 

MeHg was known to be an environmental neurotoxicant, induced neuropathlogical changes 

in both the peripheral sensory and central nervous systems [171]. Therefore, the MeHg 

treated IMR-32 cells were considered as control. MeHg untreated IMR-32 cells were 
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considered as naive and MeHg treated IMR-32 cells along with test compounds were taken to 

study the effect of the highly selective drugs on proinflammatory mediators. Inflammation 

being an important component in immunological defense mechanism of an organism against 

pathogens, dysregulated inflammatory response could also lead to tissue damage and 

disorders. However, inflammation has been known to have toxic and protective effects in 

chronic neurodegenerative diseases such as Alzheimer's, Parkinson's and Prion disorders 

[172]. Therefore, we evaluated the effect of the designed inhibitors on proinflammatory 

mediators such as IL-6, IL-1β and TNFα. The gene expression study was performed, as 

discussed in materials and method section. The performance of both the lead compounds 

(LeadAC3 and LeadAC6) on MeHg treated neurodegeneration model (IMR-32) was 

examined (Figure 5.21) An elevated expression of proinflammatory mediators such as IL-6, 

IL-1β and TNFα was observed in MeHg treated IMR-32 cells. Both the lead compounds 

suppressed the proinflammatory mediators when compared to the MeHg treated cells 

significantly. The differences in expression data of IL-6, IL-1β and TNFα between the drug 

treated cells and untreated cells were found to be significant with p<0.05.The LeadAC3 was 

found to be better than LeadC6 in suppressing the proinflammatory mediators IL-6, IL-1β 

and TNFα. The effect of PKMzeta designed inhibitors on MeHg induced neuritic 

degeneration in IMR-32 cells was found significantly different from the drug untreated MeHg 

treated IMR-32 cells (*p<0.05,**p<0.001), in all the expression data of IL-6, IL-1β and 

TNFα.  
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Figure 5.21. The quantitative analyses of inflammatory factors such as TNFα, IL-6 and IL-1β in MeHg treated 

IMR-32 cells. 

5.3.2.9. Molecular dynamics simulations of the lead compounds 

Based on the biological data, LeadAO1 was the most active enzyme inhibitor with an IC50 of 

0.02 µM, but was not found to be selective in the cell based assay due to cytotoxicity. Hence 

based on the cell-based and gene expression pattern, LeadAC3 emerged to be a promising 

PKMzeta inhibitor with an IC50 of 5.99 µM and was found selective in cell based assays and 

also suppressed the proinflammatory mediators much efficiently compared to other lead 

compounds tested. Hence to understand better, we carried out MD simulations for the 

PKMzeta model with LeadAC3 for 10 ns. The backbone and side chain RMSD for the 

residues in the binding pocket were analyzed. Along with backbone and side chain RMSD, 

the RMS deviation of the ligand heavy atoms in the binding pocket was also examined 

(Figure 5.22A and 5.22B). The binding site residues of protein and the ligand heavy atoms 
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showed stability with lesser fluctuation even in dynamics conditions. The RMS deviation for 

the ligand heavy atoms in the binding pocket was found to be stable after a time scale of 2.5 

ns (Figure 5.21B). The four hydrogen bond distances (Val326, Lys274, Thr386 and Tyr388) 

between the LeadAC3 and PKMzeta protein were also analyzed (Figure 5.23A, Figure 5.23B 

and Figure 5.24). Out of these 4 interactions, 2 interactions, Thr386 and Lys274 interactions 

were retained and thought to play an important role for stability of the protein-ligand 

complex. After a time scale of 7 ns, the plot of Lys274 (Figure 5.23A) distance was 

maintained unlike Val326 and Tyr388 distances (Figure 5.23B) where as Thr386 (Figure 

5.23A) also maintained similar distances compared to the initial distance throughout the 

simulations. Thus, Lys274 and Thr386 were found to be the important interactions and could 

be further considered for designing PKMzeta inhibitors based on these two interactions. 

Figure 5.24 represents the interaction picture of the last frame after dynamics simulation. 
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A 

 

B 

Figure 5.22. Molecular dynamics simulation of the closed conformation model with LeadAC3. (A) The 

backbone, side chain RMSD of the residues in the binding pocket of PKMzeta model simulated for 10 ns. (B) 

The RMS deviation for the ligand heavy atoms in the binding pocket 
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A 

 

B 

Figure 5.23.Plot of amino acid residues in molecular dynamics simulation (A) The plot of the distances of 

Thr386 and Ly274 residues in the binding pocket (B) The plot of the distances of Tyr388 and Val326.  



95 | P a g e  

 

 

Figure 5.24. Interaction picture of the last frame after dynamics simulation. 
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5.3.3. Design II- High throughput virtual screening of in-house database 

5.3.3.1. Ligand identification methods 

The intermediate and closed conformation model structures were utilized further for BITS 

database screening. The grid was generated using SITEMAP
 
and were further used to screen 

the compounds using GLIDE [173] and GOLD [174] docking. The binding pocket sitescore 

for closed conformation model was found to be 1.041. For open conformation model, the 

binding pocket sitescore was found to be 1.069. The amino acid residues present in the 

binding site of open and closed conformation models were analyzed. The docked poses were 

visually inspected for the interactions of ligand with the model structures. About 11 

compounds were shortlisted (Table 5.7) among which six compounds were obtained from 

open conformation model (Figure 5.25A). The other five compounds were obtained using 

closed conformation model (Figure 5.25B). The docking parameters are presented in Table 

5.7. 

Table 5.7. The glide score, GOLD score and the interacting amino acid residues of the shortlisted compounds 

SL.No. Glide 

score 

H 

bond 

Amino acid residues involved in interactions 

with the shortlisted compounds 

Gold score 

Open Conformation Model 

LeadBO1 -7.74 2 GLU80, THR142 61.61 

LeadBO2 -6.22 4 ASP86, VAL82(2), LYS30(2) 54.07 

LeadBO3 -6.46 3 VAL82(2),ASP86 51.93 

LeadBO4 -5.25 4 ASN83, LYS30,VAL82(2) 65.87 

LeadBO5 -6.21 4 Lys30, val82(2), ASN83 48.80 

LeadBO6 -6.14 3 VAL82,THR142(2) 45.92 

Closed Conformation Model 

LeadBC1 -6.48 2 THR386, VAL326 51.71 

LeadBC2 -6.55 2 THR386, VAL326 56.06 

LeadBC3 -6.95 4 THR386, VAL 326(2), LYS274 61.50 

LeadBC4 -6.56 4 THR386, VAL 326(2), ASP330 60.46 

LeadBC5 -6.25 4 THR386, VAL 326, ASP 330, ARG 337 63.98 
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A 

 

B 

Figure 5.25. Structures of screened inhibitors (A) 6 compounds (LeadBO1-LeadBO6) were shortlisted using 

the open conformation model. (B) 5 compounds (LeadBC1-LeadBC5) were shortlisted using the closed 

conformation model. 
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Analyzing the structures of hit compounds obtained from open conformation model (Figure 

5.25A) it was clear that they were most benzimidazoles (LeadBO2, LeadBO3 and 

LeadBO5, LeadBO6) and with either nitrile function or urea and two compounds were 

different belonging to nitrothiozolyl thiazolidine (LeadBO1) and nitrothiophenyl thiazolidine 

(LeadBO4). 

Similarly the hit compounds obtained from closed conformation were analyzed and were 

found to be structurally diverse. There were two benzimidazole compounds (LeadBC3 and 

LeadBC4) and other compounds were found to be pyrazolidine, benzoxadiazolidine and 

indane derivatives. 

5.3.3.2. ADME prediction 

The ADME properties were calculated for all the II compounds using QikProp module of 

Schrodinger and presented in Table 5.8. For each successfully processed molecule, QikProp 

produced a set of descriptors and properties as follows, MW denoted molecular weight of the 

molecule; QPlogPo/w was the predicted partition coefficient between octanol and water 

(recommended range: –2.0 – 6.5); QPlogS represented predicted aqueous solubility, where S 

(mol dm–3) was the concentration of the solute in a saturated solution in equilibrium with the 

crystalline solid. Recommended range should lie between –6.5 and – 0.5. QPlogHERG 

denoted predicted IC50 value for blockade of HERG K+ channels (acceptable range <-5) 

which was an indicator of cardiotoxicity, QPPCaco indicated predicted apparent Caco-2 cell 

(human colon cell line) permeability in nm/sec. Caco-2 cell was a model for the gut-blood 

barrier (recommended range: <25, poor permeability; >500, good permeability), and 

QPlogBB represented predicted brain/blood partition coefficient for orally delivered drugs 

(recommended range: -3.0 to -1.2). 



99 | P a g e  

 

QPPMDCK was predicted apparent Madin-darby canine kidney (MDCK) epithelial cell 

permeability in nm/sec. MDCK cells were considered to be a good mimic for the blood-brain 

barrier (recommended range: <25, poor permeability; >500, good permeability). QPlogKp 

meant predicted skin permeability with log Kp in the recommended range of -8.0 to -1.0. The 

assessments used knowledge-based set of rules, including checking for suitable values of % 

human oral absorption, number of rotatable bonds, logP, solubility and cell permeability. 

Another QikProp prediction was the percent human oral absorption which was predicted on 0 

to 100% scale. The prediction was based on a quantitative multiple linear regression model. 

Last but not the least properties which QikProp predicted were Lipinski’s rule of five. The 

rules were: MW < 500, octanol/water partition coefficient <5, number of hydrogen bond 

donors ≤ 5, number of hydrogen bond acceptors ≤ 10. Compounds satisfying these rules were 

considered drug-like. Maximum limit of allowed violations was 2. Interestingly all the 

compounds exhibited acceptable range. 

The predicted logP values for the all compounds were found to be more or less acceptable 

and the predicted HERG property was also found to be acceptable except LeadBC3 and 

LeadBC5. Similarly, the blood brain barrier predicted values are in the range i.e. -3 to 1.2 

except Leads BO3, BC2 and BC4. LeadBC2 and LeadBC5 were found to have less Caco-2 

property, whereas LeadBO3, LeadBO6 and LeadBO5 were found to have high Caco-2 

property indicating problems with permeation and absorption through intestine. LeadBC2 

and LeadBC5 showed less MDCK property, whereas LeadBO3 and LeadBC3 showed high 

MDCK property. The predicted % human oral absorption values for the LeadBC5 was less 

(>80%) which implied that the bioavailability of these compounds could be less. All the leads 
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were found to be acceptable by Lipsinki’s rule of 5. The ADME predictions for the selected 

compounds are tabulated in the Table 5.7. 
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Table 5.8. ADME properties of PKMzeta inhibitors screened from in house. 

 

MW: molecular weight, QPlogPo/w: Predicted octanol and water coefficient (acceptable range -2.0 - 6.0); Qplogs: Predicted aqueous solubility (acceptable range -6.5 - 0.5); 

QplogHERG: Predicted IC50 value for blockage of HERG k+ channels (acceptable range: below -5); QPPcaco: Predicted caco cell-2 permeability (<25 is poor and >500 

high); QPlogBB: Predicted brain/blood partition coefficient (acceptable range -3.0 - 1.2); QPPMDCK: Predicted apparent MDCK cell permeability (<25 is poor and >500 is 

high); QPlogkP: Predicted skin permeability (acceptable range -8.0 to -1.0); % Human oral absorption (<25% is poor and >80% is high); Rule of 5: Number of violations of 

Lipinski's rule of 5 (mol_MW < 500, QPlogPo/w < 5, donorHB≤5, accptHB≤10) acceptable maximum 1. 

Compound MW QPlogPo/w QPlogS QPlogHERG QPPCaco QPlogBB QPPMDCK QPlogKp 

%Human 

Oral 

absorption 

Rule Of 5 

violations 

Intermediate open conformation model 

LeadBO1 438.47 3.64 -6.11 -7.12 142.73 -1.81 167.81 -5.05 86.86 0 

LeadBO2 391.36 3.09 -6.01 -5.96 99.87 -1.66 108.59 -3.21 80.85 0 

LeadBO3 342.39 3.84 -6.01 -6.11 832.21 -0.63 593.72 -1.37 100 0 

LeadBO4 377.45 3.17 -5.88 -6.4 162.29 -1.39 307.80 -3.52 85.07 0 

LeadBO5 336.30 2 -5.05 -5.82 74.08 -2.10 29.69 -4.00 72.12 0 

LeadBO6 305.33 2.86 -5.16 -5.41 518.46 -1.09 243.21 -2.55 92.28 0 

Closed conformation model 

LeadBC1 333.68 1.66 -4.27 -5.89 97.24 -1.58 98.36 -4.15 72.28 0 

LeadBC2 383.40 1.96 -2.73 -6.48 11.95 -0.52 5.058 -8.00 57.74 0 

LeadBC3 203.19 1.46 -2.97 -2.73 50.21 -1.38 24.80 -3.60 65.97 0 

LeadBC4 376.38 3.89 -6.08 -5.95 829.42 -0.57 1066.57 -1.41 100 0 

LeadBC5 444.4 3.96 -7.84 -3.55 0.47 -3.71 0.20 -5.68 44.29 0 
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5.3.3.3. Enzymatic inhibition assay 

The inhibitory potential of the shortlisted compounds were assessed using enzymatic kinase 

assay [130] to validate the leads generated using structure-based drug design. Four lead 

compounds (LeadBO1, LeadBO5, LeadBC2 and LeadBC3) which were shortlisted using 

both the conformation models were found to exhibit more than 60% inhibition at 25 µM and 

were thus further quantified to determine IC50s as shown in table 5.8. 

Table 5.8. The percentage inhibition of all the 11 shortlisted leads and the IC50 of the top 4 leads. 

Compound 

Name 

Percentage Inhibition  

at 25 µM 

IC50 µM* 

Open conformation model 

LeadBO1 94.58 2.07 ±1.06 

LeadBO2 54.46  

LeadBO3 55.11  

LeadBO4 31.52  

LeadBO5 94.12 1.70 ±0.46 

LeadBO6 43.82  

Closed conformation model 

LeadBC1 -6.39  

LeadBC2 67.00 0.31±0.28 

LeadBC3 76.35 2.70±0.42 

LeadBC4 52.66  

LeadBC5 51.91  

* Values presented as mean of triplicate study along with SEM 

The assay revealed that two lead compounds obtained from open conformation of PKMzeta 

(LeadBO1 and LeadBO5) exhibited more than 90% of inhibition at 25 µM concentration. 

The docking score of LeadBO1 and LeadBO5 were found to be -7.74 and -6.21 kcal/mol, 

respectively which revealed that the compounds were well fitted in the pocket. The binding 

interaction analyses of LeadBO1 with an IC50 of 2.07 µM revealed two hydrogen bonds with 

Thr142 and Glu80 and a hydrophobic interaction with Phe89 as shown in Figure 5.26.  
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Figure 5.26. The binding 2D and 3D interaction pictures of LeadBO1 

Similarly, LeadBO5 with an IC50 of 1.70 µM was found to be well placed in the hydrophobic 

pocket of the open conformation model with three hydrogen bonding interactions. The 

nitrogen of the nitrile group showed a hydrogen bond with Lys30 and the hydroxyl group 

showed two hydrogen bonds with Val82 and Glu80 as shown in Figure 5.27.  

 

Figure 5.27. The binding 2D and 3D interaction pictures of LeadBO5 
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The two leads shortlisted using closed conformation model (LeadBC2 and LeadBC3), 

showed more than 60% inhibition at 25 µM concentrations. The docking scores of these leads 

were found to be -6.55 and -6.75 kcal/mol, respectively. The binding interaction analysis of 

the LeadBC2 with a good inhibitory potency (IC50 of 0.31 µM) revealed hydrogen bond 

interactions of Val326 and Thr386 with oxygen present on the benzodioxole group and the 

amino group present in the piperazine ring was found involved respectively (Figure 5.28). 

 

Figure 5.28. The binding 2D and 3D interaction pictures of BC2 

Finally, LeadBC3 with an IC50 of 2.07 µM revealed 4 hydrogen bond interactions with 

Val326, Thr386 and Lys274 residues (Figure 5.29). Thus these four compounds were then 

carried further for cell based assays. 
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Figure 5.29. The binding 2D and 3D interaction pictures of LeadBC3 

5.3.3.4. Cytotoxity studies 

Initially we evaluated the toxicity of the promising inhibitors (LeadBO1, LeadBO5, 

LeadBC2 and LeadBC3) using MTT assay on HEK-293 cell line (Human embryonic kidney 

cell line) at different concentrations and quantified (CC50). Lead compounds, LeadBC3 and 

LeadBO5 exhibited lesser cytotoxity when compared to other leads as shown in Table 5.10. 

Table 5.10. Representing SI and ROS IC50 values of PKMzeta designed inhibitors* 

Compound 

Name 

CC50 GIC50 SI=CC50/GIC50 ROS IC50 (µM) 

Open Conformation Model 

LeadBO1 0.54±0.31 0.52±0.71 1.04 0.11±0.06 

LeadBO5 13.87±3.19 0.01±0.21 1387 0.06±0.03 

Closed Conformation Model 

LeadBC2 3.71±1.25 40.2±1.76 0.09 0.07±0.01 

LeadBC3 3.53±1.07 0.02±2.10 176.50 0.13±0.08 

*Mean ± SEM of triplicates 

5.3.3.5. Growth inhibition assay 

Further, the compounds were tested in MeHg treated IMR-32 cell lines to check their 

effectiveness to protect the cell lines (GIC50), since PKMzeta was found to be over-expressed 
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in neurotoxic (MeHg treated IMR-32 cells) conditions than compared to untreated naïve 

IMR-32 cell lines (Figure 5.20). LeadBC3 and LeadBO5 revealed good GIC50 of 0.01 and 

0.02 µM (Table 5.10) respectively compared to other leads, suggesting that these compounds 

could be promising in the development of neuroprotective agents. Other compounds 

LeadBO1 and LeadBC2 though exhibited activity and activity of LeadBO1 was found to 

overlap with cytotoxicity concentration, while LeadB2 was less potent.   

5.3.3.6. Selectivity index 

Taking into account of GIC50 and CC50 values, the selectivity indices (SI) were calculated for 

all the tested compounds as shown in Table 5.10. The two leads (LeadBC3 and LeadBO5) 

indicated good SI values compared to other lead compounds revealing their safety profile. 

While LeadBO1 was found to be not much useful due to its toxicity and LeadBC2 was 

found to be highly cytotoxic. 

5.3.3.7. Measurement of ROS production 

As PKMzeta was also implicated in peripheral inflammation [11], the efficacy of these lead 

compounds in progressive inflammatory conditions was evaluated by estimating reactive 

oxygen species (ROS) levels and quantified (ROS-IC50). To mimic this condition in-vitro, 

LPS induced U87 cell line (glioblastoma) was employed to check the efficacy of the lead 

compounds. The results are presented in Table 5.9. All the test compounds were found to 

suppress ROS activity with LeadBO5 and LeadBC2 being most promising. However due to 

cytoxicity of LeadBC2, this result may not be advantages. 

5.3.3.8. Gene expression studies 

The proinflammatory mediators are the phenotypes which seem to be activated in various 

chronic neurodegenerative disorders such as Parkinson's, Alzheimer's and prion disorders 
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[175]. Dysfuntioning of inflammatory responses could lead to tissue damage as reported in 

various neurological disorders. Therefore, we attempted to estimate the proinflammatory 

mediators like IL-6, IL-1β and TNFα in the cell systems. The protocol followed for gene 

expression study was as presented in materials and method section 4.5.4. The performance of 

the test drugs (LeadBC3 and LeadBO5) on MeHg treated IMR-32 cell lines was examined 

in which expressions of IL-6, IL-1β and TNFα (Figure 5.30).There were significant 

differences in expression levels of IL-6, IL-1β and TNFα in drug treated MeHg induced cells 

compared to untreated MeHg induced cells with p<0.05. This indicated that the lead 

compounds could attenuate neuroinflammatory mediators and thus could be useful in treating 

various neurological conditions with inflammatory conditions. 

 

Figure 5.30. The quantitative analysis of inflammatory factors such as TNFα, IL-6 and IL-1β in MeHg treated 

IMR-32 cells. 
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5.3.4. In-vivo pharmacological evaluation  

Recent studies showed that LTP in nociceptive pathways contributed to hyperalgesia and also 

played an important role in pain amplification followed by trauma, inflammation and nerve 

injury [176]. Hence, in the present study, neuropharmacological screening was conducted to 

check for LeadBO5 being the most potent lead compound in various animal models. 

As discussed earlier, PKMzeta is an enzyme which makes us remember pain. And if 

PKMzeta could be taken away, so do the pain memories. Sacktor's team working majorly on 

PKMzeta found that pain memory in rats could be erased by inhibiting PKMzeta with ZIP 

[177]. Researchers have found that PKMzeta create memories in chronic pain caused by 

nerve damage and they also found that protein affected the anterior cingulated cortex (ACC) 

part of the brain. A ZIP injection was found to reduce the hypersensitivity of pain, but only 

temporarily and not permanently. PKMzeta also worked well in the paw edema test where the 

team injected IL-6 in the paw of the mice. When the mice paw was injected with 

prostaglandin E2 (PGE2) in IL-6 treated mice along with ZIP treated mice, the paw volume 

was found to be more than in IL-6 along with ZIP treated mice and paw never became more 

sensitive to PGE2. This supported the involvement of PKMzeta in inflammatory related pain. 

This field is now advancing for discovery, development and for understanding the role, or 

lack thereof, for atypical PKCs in underlying neurobiological processes like pain plasticity. 

Therefore, we made an attempt to check the potency of LeadBO5 in neurological conditions 

and tested on various neurological models. 
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5.3.4.1. Neurotoxicity determination  

Initially, neurotoxicity assessment was conducted for the LeadBO5. In the present study, 

neurotoxicity was assessed using two animal models, viz rotarod and actophotometer based 

screening.  

Compounds were administered at three dose levels (30, 100 and 300 mg/kg). Minimal motor 

impairment was measured by rotarod test and neurotoxicity was indicated by the inability of 

the animal to maintain balance on the rotating rod for at least 1 min. LeadBO5 showed 

neurotoxicity at highest dose in both rotarod and actophotometer evaluations (300 mg/kg, 

Table 5.11)  

Table 5.11. Neurotoxicity of LeadBO5. 

Neurotoxicity 

Treatment Rotarod Actophotometer 

 0.5 1h 0.5h 1h 

Vehicle - - - - 

BO5
*
 300 300 300 300 

 

*Doses of 30, 100 and 300 mg/kg were administered. The figures in the table indicate the minimum dose 

whereby bioactivity was demonstrated in half or more of the mice (three in each group). The animals were 

examined at 0.5 and 3.0 h. The line (-) indicates an absence of neurotoxicity at the maximum dose tested. 

5.3.4.2. Acetic acid- induced writhing 

The ability of the lead to inhibit writhing in acetic acid-induced writhing model was tested, as 

a model of acute pain. LeadBO5 (30 mg/kg) was found to suppress acetic acid induced 

writhing responses more than 90% which was almost similar to standard drug Indomethacin. 

Table 5.12 
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Table 5.12. Neurotoxicity and activity of the compounds on acute nociceptive models. 

Treatment   Acetic acid 

induced 

writhing 

 Formalin induced 

flinching 

(% inhibition) 

       

   % inhibition  Phase I Phase II 

Vehicle   -  - - 

LeadBO5   91.00
b
  - 30.00 

Indomethacin
a
   96.10

b
  4.70 72.10

b
 

 

b
 Indomethacin was taken as positive control at 5 mg/kg. 

c
 Represents significance at p < 0.05 compared to vehicle (One way ANOVA followed by Dunnett’s test, n= 4) 

at a dose of 30 mg/kg 

5.3.4.3. Formalin-induced flinching 

Similarly, the ability of LeadBO5 (30 mg/kg) to inhibit flinching responses in formalin-

induced flinching models in mice was tested. The formalin model was majorly used for 

evaluating the effects of analgesic compounds. Injection of formalin-induce pain response in 

two phases; the first phase is result from direct activation of primary afferent sensory neurons 

and the second phase reflect the combined effects of afferent input and central sensitization in 

the dorsal horn [178]. The test compound was found to be ineffective in formalin induced 

flinching in both the phases (table 5.12). This indicated that the lead was moderately effective 

on the tonic inflammatory pain response.    

5.3.4.4. Chronic constriction nerve injury model 

Based on the promising results of the compounds in acetic acid-induced writhing model, we 

were interested to evaluate their efficacy in standard chronic neuropathy model. Hence, 

chronic constriction injury (CCI) model, which was a surgically induced chronic pain model, 

was employed to evaluate anti-neuralgic efficacy of the lead compound. Gabapentin was used 
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as standard drug for comparison. Briefly, a small incision (2-3 cm) was made at mid-thigh 

level of rat hind limb and common left sciatic nerve was exposed. Four loose ligatures were 

tied around sciatic nerve using 4-0 braided silk suture with about 1 mm spacing and the 

wound was closed using a continuous surgical suture pattern. Animals were tested 9th day 

post-surgery. As shown in Table 5.13 ED50 values of the tested compound based on methods 

spontaneous pain, cold allodynia and mechanical hyperalgesia in CCI Model are represented 

in means ±S.E.M different doses of LeadBO5 was administered to animals displaying 

allodynic and hyperalgesic responses and testing was re-performed at 30, 60 and 120 min 

post drug administration with a stopwatch.  

Table 5.13. ED50 values of selected compounds based in CCI model 

 

*Mean ± S.E.M of triplicates 

 

The LeadBO5 reversed the spontaneous pain response similarly like gabapentin. The lead 

was found to be effective in attenuating spontaneous pain, tactile allodynia and cold allodynia 

response in CCI rats, as significant reversal was observed. Overall, it appeared that LeadBO5 

showed promising result in neuropathic CCI pain model. LeadBO5 reversed spontaneous 

pain, cold allodynia and tactile allodynia with an ED50 of 48.53mg/kg, 9.25 mg/kg and 25.96 

mg/kg respectively. LeadBO5 was more effective than gabapentin in cold allodynia.  

Furthermore, the expressions of inflammatory mediators (IL-1β, NFκB and TNFα) are 

Compounds Spontaneous 

pain 

ED50 (mg/kg) 

Cold Allodynia 

ED50 (mg/kg) 

Mechanical 

Hyperalgesia 

ED50 (mg/kg) 

LeadBO5
*
 48.53±1.00 9.25±0.50 25.96±0.19 

Gabapentin
*
 34.97±0.45 > 30.00 23.45±1.01 
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checked in the brain, spinal cord and sciatic nerve of the CCI rats, could confirm their effect 

on inflammatory mediators in neuropathic pain following nerve injury. 

5.3.4.5. Molecular Characterization 

After animals were sacrificed on 12
th

 day after confirming pain response, the mRNA 

expressions of NFκB, IL-1β and TNFα were found over-expressed in CCI rats as compared 

to normal naive rats in all the three nervous tissues (brain, spinal cord and sciatic nerve)  

(Figure 5.31). Quantitative mRNA, relative normalized expression (10
3
) of NFκB, IL-1β and 

TNF-α in brain, spinal cord and sciatic nerve were expressed as mean ± SEM. Treatment with 

LeadBO5 and standard compound gabapentin (GBP) at 30 mg/kg was found to downregulate 

mRNA expressions as compared to vehicle treated CCI control group. The test compound 

LeadBO5 significantly attenuated mRNA expression of NFκB, in brain, spinal cord and 

sciatic nerve, whereas GBP was found to ineffective in any of these tissues (Figure 5.31A) 

indicating the advantage of the lead compound over standard drug. Also in case of TNFα, 

LeadBO5 exhibited remarkable down regulation better than that of GBP (Figure 5.31B) in 

brain, spinal cord and sciatic nerve tissues. The cytokine expression levels of IL-1β revealed 

satisfactory inhibition in sciatic nerve tissues with LeadBO5 than in other tissues, while GBP 

was found ineffective (Figure 5.31C). Conclusively, the study proved the potential of the 

LeadBO5 in treating inflammatory neuropathic pain. The lead compound has the potential to 

treat inflammatory neuropathic pain conditions in which gabapentine was found to be 

ineffective. Hence, the PKMzeta inhibitor LeadBO5 could be advantageous over the clinical 

drugs.
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A  

B C  

Figure 5.31. Effect of treatment of LeadBO5 and GBP on quantitative expression of NFκB, TNF-α and IL-1β in brain, spinal cord and sciatic nerve. Data is represented as 

mean±SEM of n=4 rats and analyzed by a two-way ANOVA followed by Dunnett’s test. Significance values are represented as ***p<0.0001 and *p<0.05 
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5.3.4.6. Anti-inflammatory effects of the lead on carrageenan induced paw edema 

Further, to confirm the anti-inflammatory potential of LeadBO5, carrageenan induced paw 

edema test in rats was utilized. The compound showed significant anti-inflammatory activity 

at 30 mg/kg at various time points as revealed by the reduction in paw volume as shown in 

Figure 5.32. This indicated that the compound could be useful as an anti-inflammatory agent. 

The effect of the test compound on carrageenan induced paw edema was found to be reduced 

significantly than compared to the control at p<0.05, which validates the anti-inflammatory 

effect of LeadBO5. 

 

Figure 5.32. Quantification of paw edema in carrageenan induced model and carrageen induced with the 

LeadBO5. Data reported is the means ± S.E.M (n= 4) 

5.3.4.7. Activity of the lead in neurodegenerative model 

To study the neuro-protective effect of the LeadBO5, we conducted tests using MeHg-

induced neurodegeneration model in mice. LeadBO5 was selected for further screening. 

Neurodegeneration was induced in mice by oral administration of MeHg. Mice were divided 
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into three groups (n=4); viz naïve, control and treatment. Naïve group received only drinking 

water, whereas control and treatment groups received MeHg dissolved in regular drinking 

water. Control group received drinking water while the other two groups received MeHg and 

intraperitoneal injection of LeadBO5 (30 mg/kg) was given every day 30 min after MeHg 

administration in the third group. We avoided higher dose of MeHg (>5mg/kg) because of its 

fast-onset of neurotoxicity leading to increased mortality.  

Over a period of 3 weeks time, the MeHg treated groups showed heterogeneous motor 

impairment with respect to the control and lead treated groups. Clasping, locomotor activity, 

footprint analysis and body weight were measured every alternative day and the results are 

presented below. 

5.3.4.7.1. Gait analysis 

Motor impairment due to chronic exposure of MeHg treatment in one randomly chosen 

mouse was taken for gait analyses using foot print estimation. Non-toxic ink was applied to 

hind limbs and the footprints were taken on white paper after inking the hind limbs. When 

compared to the control and MeHg treated mouse, LeadBO5 was able to reverse the signs of 

gait impairment as observed with MeHg treatment which produced irregular gait and stance 

with no clear foot print (Figure 5.33). Clear difference is seen between the MeHg treated 

group with the naïve and LeadBO5 treated group. From the figure it is evident that 

LeadBO5 was able to reverse the gait impairment due to the neurotoxic effect of MeHg. The 

footprint marks were clear and similar to the normal animals. 
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Naïve MeHg BO5 

   

Figure 5.33. Gait analysis of mice. Representation of walking footprints of all three groups at the end of 3 

weeks (A) The naïve group (B) MeHg treated Group (C) LeadBO5 treated group. 

5.3.4.7.2. Clasping 

After three weeks, the mice were tested for the manifestation of hind limb clasping 

phenomenon (Figure 5.34). Hind limb clasping was characterized as a dyskinetic posture 

whereby mice clasped their hind limbs tightly into their abdomen when suspended by their 

tail [179]. The control group showed no clasping whereas MeHg treated group showed severe 

clasping. Interestingly, moderate clasping was seen in case of LeadBO5 treated along with 

MeHg treated mice and appeared normal, similar to the untreated control group. Therefore 

the compound has shown promising neuroprotective effect on the mice which could further 

validate and optimize the LeadBO5. 
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Naive MeHg BO5 

   

Figure 5.34.Clasping of mice. Clasping behaviour after three weeks in different groups: (A) naive group, (B) 

MeHg group and (C) LeadBO5 treated group. 

5.3.4.7.3. Locomotor test 

It has been already reported that MeHg, an environmental pollutant, induce serious 

degenerative effect on neuronal system by inducing neuropharmacological changes in both 

central nervous and peripheral sensory nervous systems [180]. Further, the locomotor activity 

was decreased in MeHg treated group and when treated with LeadBO5 was reverted similar 

to control group (Figure 5.35).  Significance difference was found between MeHg treated 

group and MeHg treated with test compound group at p < 0.05. 
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Figure 5.35: Locomotor activity. Dose 30 mg/kg of test compound was administered. The figure indicates the 

activity and toxicity level after chronic administration of MeHg and MeHg with LeadBO5. Data reported is the 

means ± S.E. (n= 4). 

5.3.4.7.4. Bodyweight 

Body weight was also measured on alternative days and the MeHg treated group showed 

decrease in body weight compared to control group. It was interesting to observe that signs of 

motor impairment were moderately reversed with LeadBO5 treatment when compared to 

MeHg treated group. Thus the results of the present study demonstrated neuroprotective 

effects of LeadBO5 in neurotoxic conditions. 

5.3.4.7.5. Quantitative expression study 

Since elevated levels of cytokine were common features observed in various 

neurodegenerative disorders [181], we estimated the expression of inflammatory mediators 

(IL-1β, NFκB and TNFα) in brain and spinal cord of MeHg treated animals and the effect of 

LeadBO5.  
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The mRNA expression of NFκB, IL-1β and TNFα were found to be increased in MeHg 

induced mice compared to normal naïve animals, while LeadBO5 treatment showed 

significant reduction of NFκB and TNFα (Figure 5.36). The normalized expression of NFκB, 

IL-1β and TNF-α in brain and spinal cord were expressed as mean ± SEM. Thus LeadBO5 

significantly attenuated mRNA expression of NFκB, in brain (Figure 5.36A). In case of TNF-

α, there was no significant changes found in spinal cord as compared to brain (Figure 5.36B). 

Also the expression of IL-1β was down regulated significantly in brain compared to the 

MeHg group (Figure 5.36C).  
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A  

B C  

Figure 5.33. Effect of LeadBO5 treatment on quantitative expression of NFκB, TNFα and IL-1β in brain and spinal cord. Data is represented as 

mean±SEM of n=4 rats and analyzed by a two-way ANOVA followed by post hoc Dunnett’s test. Significance values are represented as ****p<0.01 and 

***p<0.05. The significant reductions of inflammatory mediators were found in brain when compared with MeHg treated samples. 
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5.4. Summary 

PKMzeta is the most important drug target for various neurological disorders including 

neurodegeneration, neuroinflammation and neuropathic pain. This work aimed at classification 

of kinases using machine learning approaches, building and validating homology models and 

identifying non-peptidic PKMzeta inhibitors by screening ASINEX and in house databases, 

which could be further evaluated and optimized as future prospective drug candidates. The 

biological evaluation of the designed compounds showed good inhibition with IC50s less than 4 

µM. Based on the IC50, intracellular ROS estimation and cell based studies, LeadBO5 was found 

promising with PKMzeta IC50 of 1.7 µM, ROS IC50 of 0.03 µM with highest SI of 1387 and was 

also found to suppress proinflammatory mediators. This compound in neuropharmacological 

screening showed good neuroprotective effect in MeHg induced neurodegeneration in mice. 

Along with the neuroprotective effect, the lead showed anti-inflammatory effect by significantly 

reducing the inflammatory mediators. LeadBO5 reversed spontaneous pain, cold allodynia and 

tactile allodynia with ED50 of 48.53 mg/kg, 9.25 mg/kg and 25.96 mg/kg, respectively. Thus, it 

was evident from both the chronic pain and MeHg induced neurodegenerative studies, the 

effectiveness of a novel PKMzeta inhibitor LeadBO5 in attenuating neuroinflammation and thus 

could be developed further as a prototype. However further studies need to be performed to 

assess the specificity of the lead compound with other kinase enzymes. In conclusion by 

employing the homology models of the target protein PKMzeta, we could successfully 

demonstrate the effectiveness of a small molecule inhibitor with promising attributes in 

attenuating neuroinflammation in chronic pain and neurodegeneration.  
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Chapter 6 

Recapitulation and Future perspective 

6.1 Recapitulation 

With the intention to classify kinases and to identify modulators for inhibition of PKMzeta, we 

explored various machine learning approaches and the target based drug discovery approach for 

PKMzeta. We employed a series of computational approaches and various in vitro and in vivo 

interventions to identify potential inhibitors of PKMzeta. 

6.1.1. Classification of kinases  

1. To classify kinases, all the sequences were taken from KinBase and physiochemical properties 

of all the sequences are extracted. 

2. The features extracted were taken for comparing and benchmarking various machine learning 

algorithms for classifying kinases with high accuracy. 

3. Forward greedy search was done to select important features for improving the accuracy. 

4. Comparing the AUC measure of the classification using all features and using the feature 

subset selected using forward greedy search. 

6.1.2. Identification of PKMzeta inhibitor 

1. To do sequence identification of the homologous sequences of PKMzeta 
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2. Building the homology models of open and closed conformation of PKMzeta using the 

identified homologous sequences. 

3. Validating the built two conformation models of PKMzeta using various online available tools 

PROCHECK and ProSA web server, followed by molecular dynamics validation of the models. 

4. Binding site identification using SITEMAP and grids were generated based on the site 

predicted by SITEMAP, specifically for both the models to screen the compounds from 

commercial and in house database. 

5. Grids were generated for both the models which were then utilized to screen commercial 

database. The docking program Glide employed HTVS, SP and XP modes to give a list of 

molecules as potential hits. These molecules were visually inspected and finally, we procured 11 

molecules from Asinex for further studies.  

6. The docking program Glide employed HTVS, SP and XP modes to give a list of molecules as 

potential hits from in house database. These molecules were visually inspected and finally, we 

procured 11 molecules for further studies. The most potent compound was found to be 

LeadBO5. 

7. Based on the availability, we studied the effect of selected compound for neurotoxicity. We 

also employed various animal models of pain, inflammation and neurodegeneration: Except 

neurotoxicity, all studies were carried out at 30 mg/kg dose. 

8. The Neuroprotective effects of LeadBO5 were studied against acute pain model, CCI model, 

paw edema model and MeHg induced neurodegeneration model. The compound showed 
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inhibition of PKMzeta by alleviating neuropathetic pain hypersensitivity and also by attenuating 

neuroinflammation related neuropathetic pain. The compound showed a promising 

neuroprotective efficacy in different tests of gait impairment, locomotor activity and reversed the 

detrimental effect of MeHg to a level, comparable to control animals.  

6.2. Future Perspective 

To fully utilize the unique potential of these identified hits against their respective targets, it was 

required to have the complete characterization of their modes of actions. The only way to make 

progress in this respect is to check the various factors in the molecular environments of these 

proteins, thus identifying the factors contributing towards the activity. Further extension of the 

pharmacological assays with large number of sample size and with other leads would be first 

required for drug development of PKMzeta. Second, to screen other databases or they could be 

optimized further to give better hits. Third, newly reported inhibitors could be utilized to 

generate better pharmacophoric models, or the collective structure-activity data could be utilized 

to develop QSAR models which would further add knowledge to the existing models. Fourth, 

molecular dynamics simulations of all the leads could be beneficial to track the movement of 

important amino acids interactions. Fifth, pharmacological evaluation of the leads could be done. 

The pain and MeHg model is complex, yet definitive test as it can give a lot of information about 

the role of protein kinase inhibitors in locomotor and cognitive behavioral aspects. 
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