ACKNOWLEDGEMENTS

I convey my sincere thanks to Professor Dr. M. Ramachandran, Director, BITS, Pilani – Dubai, for his constant encouragement and advice all through my research work.

I am extremely indebted to my supervisor and mentor Dr. T. V. V. L. Narasimha Rao, Assistant Professor, BITS, Pilani, for his guidance throughout the research work. I am grateful for his invariable support, help and motivation in completing this research.

I express my sincere thanks to Dr. L.K. Maheshwari, Vice Chancellor, BITS, Pilani and Dr. Ravi Prakash, Dean, Research and Consultancy Division, BITS, Pilani for their constant support throughout my research work.

I also express my sincere thanks to Dr. B.K. Rout and Dr. K.S. Sangwan, BITS, Pilani; Dr. R. Karthikeyan and Dr. M.V.N. Sankaram, BITS, Pilani - Dubai, for their valuable review comments and suggestions towards the betterment of my thesis.

I express my honest thanks to Dr. S. Venkateswarn, Advisor, BITS, Pilani for his support and encouragement.

My truthful thanks go to Mr. L. Padmanabhan, QHS Engineer, Overseas AST Company LLC. Dubai, for his support in literature survey.

I also thank Mr. Divakar and Mr. Thayalan, Department of Aerospace Engineering, IIT, Chennai for enabling me to access valuable literature needed for this research work.

I thank my colleagues of Mechanical Engineering Department, BITS, Pilani – Dubai for their support and encouragement.

My heartfelt thanks go to my dear family, for their love, patience, moral support and encouragement in completion of this research work.

I thank Almighty for guiding me and protecting me all along.

MALLIKA PARVEEN

iii

ABSTRACT

The objective of this research is to emphasize a need for an integrated approach to the lean manufacturing system in order to achieve total leanness along the supply chain to gain significant competitive advantages. The research focuses on the following five key dimensions.

- i. Pricing, investment and order quantity decisions in a supply chain between a manufacturer and a retailer: The relation between the optimal configuration of investment, price and order quantity from the perspective of manufacturer and retailer are discussed. The collaboration between manufacturer and retailer for setting a maximum-profit price is recommended.
- ii. Just-in-time (JIT) inventory analysis for a buyer and vendor considering the quality improvement, setup cost and lead time reductions: The integrated joint buyer-vendor optimal policy compared to independent buyer-vendor optimal policy is recommended with the objective of minimum total cost. Buyer integration with high quality vendor is preferred due to lower total costs. Constraints on the quality improvement yields higher total relevant cost for buyer and vendor coordination. Investment on quality results in small lot size, which is a hallmark of JIT system. JIT integrated inventory model is investigated with the objective of simultaneously optimizing the order quantity, setup cost, process quality, number of deliveries and lead time. The investments in setup cost reduction, quality improvement and lead time reduction, results in reduction of total cost, order quantity and number of deliveries.
- iii. Optimal cycle length and number of inspections considering the setup cost reduction and quality improvement: Investment in setup cost reduction will result in reduction in primarily the optimal production run length means small lot size, while the investments in quality improvement results in number of inspections undertaken to be unity during each production run. The investment in setup cost reduction and quality improvement in (a) imperfect production process and (b) imperfect production process with inspection and restoration are considered using both time-varying lot

sizes approach and common cycle approach. The time-varying lot sizes approach is recommended with the objective of minimizing the total cost.

- iv. Optimal batch size in a single-stage production system with inspection errors and optimal number of kanbans in a multi-stage JIT production-delivery system with rework consideration: The effect of process inspection and restoration in the imperfect production process with inspection errors considering the following three different scenarios are investigated: (a) single lot of raw material multiple lot of finished product multiple delivery of the product, (b) single lot of raw material multiple lot of finished product single delivery of the product, and (c) single lot of raw material single lot of finished product single delivery of the product. The analysis shows that incorporating the inspection and restoration in the imperfect production process results in larger batch sizes and lower total costs. Modeling aspects of rework process is developed for the following cases: (i) economic order quantity and production run length for a single-stage production system, and (ii) the optimal batch quantity and number of kanbans in a multi-stage production system. The rework policy consideration results in higher total cost.
- v. Analysis of lean manufacturing tools for supply chain performance: This study focuses on distinguishing and analyzing the lean tools in achieving reduced lead time, minimum rework, less inspections, low inventory, less setup cost, optimal cycle time, optimal batch size, quality improvements and JIT production-delivery. Fourteen lean tools are identified and investigated with their percentage importance by providing insight into organizations designing lean supply chains through secondary data collected from the Industry Week's best plant award winners. The study reaffirms that adopting a lean supply chain in any manufacturing organization is significant in increasing the productivity gains. Six major lean tools emerged from this work (a) kaizen, (b) 5S, (c) JIT, (d) value stream mapping, (e) kanban, and (f) six sigma are recommended for the commitment to lean manufacturing by industries at the supply chain level coupled with the employee involvement to realize the benefits of lean.

TABLE OF CONTENTS

	S. No.	Title	Page
		ACKNOWLEDGEMENTS	No. iii
		ABSTRACT	iv
		TABLE OF CONTENTS	vi
		LIST OF TABLES	xii
		LIST OF FIGURES	xiv
		LIST OF ABBREVATIONS	xvi
		CHAPTER 1: INTRODUCTION	1
1.1		Research Background	1
	1.1.1	Supply chain system	1
	1.1.2	Supply chain integration	2
	1.1.3	Lean manufacturing principles	3
	1.1.4	Lean manufacturing tools and classification	4
	1.1.5	Lean manufacturing implementation in supply chain	5
	1.1.6	An integrated approach to lean supply chain	6
	1.1.7	Lean supply chain performance	7
	1.1.8	Productivity gains using lean tools	7
1.2		Organization of Chapters	8
		CHAPTER 2: LITERATURE REVIEW	10
2.1		Research Scope	10
	2.1.1	Supply chain analysis for coordination, pricing, order quantity and investment decisions	10
	2.1.2	JIT integrated inventory model for a buyer and a vendor	12
	2.1.3	Analysis of deteriorating production processes lot sizing, number of inspections, investments for setup cost reduction and quality improvement	15
	2.1.4	Optimal batch size and optimal number of kanbans in a single- stage and multi-stage JIT production system with rework of defective items	19
2.2	2.1.5	Lean manufacturing tools for supply chain Research Propositions and Managerial Implications	22 23
2.2	2.2.1	Pricing, investment and order quantity decisions in collaboration between a manufacturer and a retailer	23 24
	2.2.2	JIT integrated inventory model for a buyer and a vendor considering the impact of quality improvement, setup cost and lead time reductions	26
	2.2.3	Optimal cycle length and number of inspections in a deteriorating production process with investment on setup cost reduction and quality improvement	28

S. No.).	Title	
	2.2.4		Optimal batch size in a single-stage imperfect production system with inspection errors and optimal number of kanbans in a multi-stage JIT production-delivery system with rework	No. 31
• •	2.2.5		consideration Analysis of lean tools for supply chain performance	33 35
2.3 2.4			Research Objectives Research Methodology	35 36
2.4	2.4.1		Comprehensive research methodology	36
	2.4.2		Generalized solution algorithm and procedure	37
	2.4.3		Optimization method	38
			CHAPTER 3: PRICING, INVESTMENT AND ORDER QUANTITY DECISIONS IN COLLABORATION BETWEEN A MANUFACTURER AND A RETAILER	40
3.1			Analysis of Pricing, Investment and Order Quantity for a Manufacturer and Retailer	40
	3.1.1		Coordination models	42
		3.1.1.1	Model I No-coordination	46
		3.1.1.2	Model II Intra-coordination of manufacturer	48
		3.1.1.3	Model III Intra-coordination of retailer	50
		3.1.1.4	0 0	52
		3.1.1.5	Model V Inter-coordination of manufacturer and retailer for order quantity	54
		3.1.1.6	Model VI Inter-coordination of manufacturer and retailer for investment and pricing	55
		3.1.1.7	Model VII Inter-coordination of manufacturer and retailer for order quantity & investment and pricing	57
		3.1.1.8	Model VIII Inter and Intra-coordination of manufacturer and retailer	57
	3.1.2		Numerical investigations	59
3.2			Managerial Implications	66
			CHAPTER 4: JIT INTEGRATED INVENTORY MODEL FOR A BUYER AND A VENDOR CONSIDERING THE IMPACT OF QUALITY IMPROVEMENT, SETUP COST AND LEAD TIME REDUCTIONS	69
4.1			JIT Integrated Inventory Model for a Buyer and Vendor considering Quality Improvement	69
	4.1.1		Integrated inventory model for a vendor and buyer	72
	4.1.2		Quality improvement models	74
		4.1.2.1	<i>Quality improvement in an integrated model with joint investment</i>	74
		4.1.2.2	Quality improvement in a decentralized model with vendor investment	76
		4.1.2.3	Quality improvement in a decentralized model with buyer investment	77
		4.1.2.4	Quality improvement in a decentralized model with both buyer and vendor investment	78

	S. No.		Title	Page No.
	4.1.3	4.1.3.1	Numerical case study Vendor selection	79 82
4.2		4.1.3.2	Budgetary constraints JIT Integrated Inventory Model for a Buyer and Vendor considering Quality Improvement, Setup Cost and Lead Time Reductions	86 89
	4.2.1		Quality improvement, setup cost and lead time reduction model	92
4.3	4.2.2		Numerical computation Managerial Implications	93 96
			CHAPTER 5: OPTIMAL CYCLE LENGTH AND NUMBER OF INSPECTIONS IN A DETERIORATING PRODUCTION PROCESSES WITH INVESTMENT ON SETUP COST REDUCTION AND QUALITY IMPROVEMENT	98
5.1			Optimal Cycle Length and Number of Inspections in a Deteriorating Production Process with Investment in Setup Cost Reduction and Quality Improvement	98
	5.1.1		Optimal cycle length and number of inspections in a deteriorating production process	101
		5.1.1.1	Model for setup cost reduction in a deteriorating production process	101
		5.1.1.2	Model for quality improvement in a deteriorating production	104
		5.1.1.3	process Model for both setup cost reduction and quality improvement	108
	5.1.2		<i>in a deteriorating production process</i> Numerical example	110
	5.1.2	5.1.2.1	Numerical example for setup cost reduction model	110
			Numerical example for quality improvement model	113
		5.1.2.3	Numerical example for both setup cost reduction and quality improvement model	116
5.2			Optimal Cycle Length and Number of Inspections in a Deteriorating Production Processes with Investment in Setup Cost Reduction and Quality Improvement	121
	5.2.1		Optimal cycle length and number of inspections in a deteriorating production processes under time-varying lot sizes approach and common cycle approach	124
		5.2.1.1	Model for investment in setup cost reduction and quality improvement in a deteriorating production processes under time-varying lot sizes approach	124
		5.2.1.2	Model for investment in setup cost reduction and quality improvement in a deteriorating production processes under common cycle approach	127
		5.2.1.3	Model for investment in setup cost reduction and quality improvement in a deteriorating production processes with inspection and restoration under time-varying lot sizes approach	128

	S. No.		Title	
		5.2.1.4	Model for investment in setup cost reduction and quality improvement in a deteriorating production processes with inspection and restoration under common cycle approach	131
	5.2.2		Numerical case studies	134
5.3			Managerial Implications	141
6.1			CHAPTER 6: OPTIMAL BATCH SIZE IN A SINGLE- STAGE IMPERFECT PRODUCTION SYSTEM WITH INSPECTION ERRORS AND OPTIMAL NUMBER OF KANBANS IN A MULTI-STAGE JIT PRODUCTION- DELIVERY SYSTEM WITH REWORK CONSIDERATION Optimal Batch Size in a Single-Stage Imperfect Production	144 144
	6.1.1		System due to Inspection Errors Model formulation for optimal batch size and number of	147
			inspections in a single-stage imperfect production system	
			incorporating process inspection and restoration	
		6.1.1.1	Single purchase multiple delivery (SPMD) with inspection	147
		< 1 1 A	errors	
		6.1.1.2		154
		6.1.1.3	inspection and restoration Single purchase single delivery (SPSD, m=1) with inspection	157
		0.1.1.5	errors	137
		6.1.1.4	Single purchase single delivery (SPSD, $m=1$) with process inspection and restoration	159
		6.1.1.5	•	161
		6.1.1.6	Lot-for-lot (LFL, $m=1,n=1$) with process inspection and	163
			restoration	
	6.1.2		Numerical computation	164
6.2			Optimal Batch Size in a Single-Stage Imperfect Production-	169
			Delivery System with Rework	
	6.2.1		Model formulation for single-stage production-delivery system with rework	171
	6.2.2		Computational results	174
6.3			Optimal Number of Kanbans in a Multi-Stage JIT Production-	176
	(21		Delivery System with Rework Consideration	170
	6.3.1		Model formulation for multi-stage production-delivery system with rework controlled by kanban mechanism	179
		6.3.1.1	Cost of raw material inventory	179
		6.3.1.2	Cost of work-in-process inventory	180
		6.3.1.3	Cost of finished goods inventory	181
		6.3.1.4	Total cost of multi-stage production system	181
		6.3.1.5	Total cost of multi-stage production system with rework	181
			processing cost	
	6.3.2		Computational results	183
6.4			Managerial Implications	186

	S. No.	Title	Page No.
		CHAPTER 7: ANALYSIS OF LEAN MANUFACTURING TOOLS IN LEAN SUPPLY CHAIN	188
7.1		Analysis of Lean Manufacturing Tools in Lean Supply Chain	188
7.2		Data Collection and Plants' Characteristics	189
7.3 7.4		Lean Manufacturing Tools	190 191
/.4	7.4.1	Analysis of Lean Manufacturing Tools Analysis of lean manufacturing tools for quality	191
		improvements	
	7.4.2	Analysis of lean manufacturing tools for reduced inspections	194
	7.4.3	Analysis of lean manufacturing tools for JIT methods	195
	7.4.4	Analysis of lean manufacturing tools for setup cost reduction	196
	7.4.5	Analysis of lean manufacturing tools for lead time reduction	197
	7.4.6	Analysis of lean manufacturing tools for rework reduction	197
	7.4.7	Analysis of lean manufacturing tools for optimum batch size and optimum cycle time	198
7.5		Managerial Implications	199
		CHAPTER 8: CONCLUSIONS AND SCOPE FOR FUTURE WORK	201
8.1		Conclusions	201
	8.1.1	Collaboration between manufacturer and retailer for setting a maximum-profit price	201
	8.1.2	An integrated inventory optimal policy considering quality improvement, setup cost reduction and lead time reduction	202
	8.1.3	Determination of optimal cycle length and optimal number of inspections using time-varying lot sizes approach in an imperfect production processes considering quality improvement and setup cost reduction.	203
	8.1.4	Determination of the optimal raw material ordering quantity, finished product batch size and number of kanbans (for a multi-stage production system) for production – delivery situations considering process inspection, restoration and rework	204
	8.1.5	Lean tools for the supply chain performance	204
8.2		Scope for Future Work	205
		REFERENCES	207
A 1		APPENDIX A	225
A.1		Concavity of Π_1 in P_1^* and α^* and Π_2 in P_2 and θ Variation of Π^* , Π^* , P^* , α^* , P^* , and θ^* , with n and ζ	225
A.2		Variation of $\Pi_1^*, \Pi_2^*, P_1^*, \alpha^*, P_2^*$ and θ^* wrt η and ζ Concavity of Π_j in α^* , and θ^*	225
A.3		Concavity of $\Pi_j \Pi_l \alpha$, and σ Variation of $\Pi^* D^* \alpha^* D^*$ and θ^* where and ζ	226
A.4		Variation of Π_{j}^{*} , P_{l}^{*} , α^{*} , P_{2}^{*} and θ^{*} wrt η and ζ	226
A.5		Proof of Lemma 3.1 Proof of Lemma 3.2	227
A.6		Proof of Lemma 3.2 Proof of Lemma 3.2	228
A.7		Proof of Lemma 3.3	229
A.8		Proof of Lemma 3.4	230

S. No.	Title	Page No.
	APPENDIX B	231
B.1	Proof of Positive Definiteness of Hessain Matrix of $TRC(M,N,Q,\theta)$ in Q and θ	231
B.2		231
B.3		232
B.4	Proof of Positive Definiteness of Hessain Matrix of $TRC_b(Q,\lambda,\theta)$ and $TRC_s(M,N,\lambda,\theta)$ in in Q and θ	232
B.5		233
	APPENDIX C	235
C.1	Proof of Convergence of λ_2	235
C.2	Proof of Convergence of $T(n_i)$	235
	APPENDIX D	237
D.1	Derivation of Average Finished Goods Inventory	237
D.2	Derivation of Average Finished Goods Inventory with Rework	238
D.3	Proof for Global Optimality of Total Cost	240
	APPENDIX E	241
Ε	Analysis of Supply Chain Parameters with Lean Tools	241
	LIST OF PUBLICATIONS	242
	BRIEF BIOGRAPHY OF THE CANDIDATE	243
	BRIEF BIOGRAPHY OF THE SUPERVISOR	244

LIST OF TABLES

Table No.	Title	Page No.
2.1	Comparison of different features on some research works on supply chain coordination for pricing, order quantity and investment decisions	25
2.2	Comparison of different features on some research works on integrated JIT inventory	27
2.3	Comparison of different features on some research works on economic production quantity model	29
2.4	and number of shipments in a production system	32
2.5	Comparison of different features on some research works on analysis of lean manufacturing tools	34
3.1	Optimized results for various models for demand as a function of price, selling effort, and product quality level	61
3.2	Optimized results for various models for demand as a function of price	62
3.3	Optimized results for various models for demand as a function of price, selling effort, and product quality level as a result of 10% increase in A	63
3.4	Optimized results for various models for demand as a function of price, selling effort, and product quality level as a result of 10% increase in e	63
3.5	Optimized results for various models for demand as a function of price, selling effort, and product quality level as a result of 10% increase in γ	64
3.6	Optimized results for various models for demand as a function of price, selling effort, and product quality level as a result of 10% increase in λ	64
4.1	Comparison of results of integrated and decentralized quality improvement (Banerjee and Kim, 1995)	81
4.2	Comparison of results of integrated and decentralized quality improvement (Yang and Pan, 2004)	82
4.3	Comparison of results of vendor with high quality using integrated and decentralized quality policies (Banerjee and Kim, 1995)	83
4.4	Comparison of results of vendor with high quality using integrated and decentralized quality policies (Yang and Pan, 2004)	83
4.5	Comparison of results of vendor with lower cost rate for quality improvement (Banerjee and Kim, 1995)	84
4.6	Comparison of results of vendor with lower cost rate for quality improvement (Yang and Pan, 2004)	85
4.7	Comparison of results of vendor with budgetary constraints on the minimum quality using integrated and decentralized quality policies (Banerjee and Kim, 1995)	89
4.8	Lead time component data	95
4.9	Optimal values of quality improvement, setup cost and lead time reduction	96
4.10	Summary of the comparison considering investment in setup cost reduction	96
5.1	Comparison of the optimal solution with and without investment in setup cost reduction	112- 113
5.2	Comparison of the optimal solution with and without investment in quality improvement	115- 116

Table	No.
-------	-----

Title

Table No.	Title	Page No.
5.3	Optimal solution with investment in both setup cost reduction and quality improvement and its comparison without investment	120- 121
5.4	Example data ($r_o = \$10$, $r_1 = \$0.1$, $i_k = i_a = 0.1$, $a_i = 1000$, $b_i = 30$)	133
5.5	Example data $(r_0 = \$10, r_1 = \$0.2, i_k = i_a = 0.1, a_i = 1000, b_i = 30)$	133
5.6	Example data (r_0 =\$150, r_1 =\$10, i_k = i_a =0.1, a_i =40, b_i =30)	133
5.7	Example data $(r_0 = 10, r_1 = 12, i_k = i_a = 0.1, a_i = 40, b_i = 30)$	133
5.8	Optimal solutions and comparisons for imperfect process model	134
5.9	Optimal solutions and comparisons for imperfect process model using common cycle (CC) approach	135
5.10	Optimal solutions and comparisons for imperfect process model with inspection and restoration	137
5.11	Optimal solutions and comparisons for imperfect process model with inspection and restoration using common cycle (CC) approach	138
5.12	A comparative study of the expected total average cost	139
6.1	Optimal batch size and expected total cost	164
6.2	Effect of fraction of non-conforming units (α) with quality and rework	165
6.3	Effect of fraction of non-conforming units (α) with quality and rework including inspection and restoration	166
6.4	Effect of value added by the manufacturing process (V) with quality and rework	166
6.5	Effect of value added by the manufacturing process (V) with quality and rework including inspection and restoration	167
6.6	Effect of type I inspection error (E_1) with quality and rework	167
6.7	Effect of type I inspection error (E_1) with quality and rework including inspection and restoration	167
6.8	Effect of type II inspection error (E_2) with quality and rework	168
6.9	Effect of type II inspection error (E_2) with quality and rework including inspection and restoration	168
6.10	Input data for a single-stage production system ($\beta_f = 0.01$, $C_f = 10$)	175
6.11	Comparison of optimum results for a single-stage production system	175
6.12	Comparison of modified results for a single-stage production system	176
6.13	Input data for a multi-stage production system under kanban mechanism (K_o =110, H_o =45, β_i =0.01, C_i =10 (i =1,2,3,4))	184
6.14	Comparison of results for a multi-stage production system under kanban mechanism	184
6.15	Comparison of all possible modified results for a multi-stage production system under kanban mechanism	185
7.1	Comprehensive description of lean tools used in lean supply chain	190

LIST OF FIGURES

Fig. No.	Title	Page
1 1		No.
1.1	Supply chain system	2
2.1 2.2	Multi-stage production system with kanban operations	20 37
2.2 2.3	Flow diagram for research methodology	38
2.3 3.1	Generalized flow diagram for solution algorithm and procedure Supply chain models for manufacturer and retailer	38 44-
5.1	Suppry chain models for manufacturer and retailer	44-
3.2	Variation of Z with A	4 <i>5</i> 65
3.3	Variation of Z with e	65
3.4	Variation of Z with γ	65
3.5	Variation of Z with λ	65
3.6	Variation of Z with A and e	66
3.7	Variation of Z with γ and λ	66
4.1	Inventory pattern for raw materials, production and retail	73
4.2	Variation of TRC with θ_0	85
4.3	Variation of TRC with q	85
4.4	Variation of TRC with θ_0 and q	86
4.5	Variation of TRC with q_{θ}	94
4.6	Variation of TRC with q_s	94
4.7	Variation of TRC with q_{θ} and q_{s}	95
5.1	Variation of C with δ_k	118
5.2	Variation of C with δ_{α}	118
5.3	Variation of C with δ_k and δ_α	118
5.4	Variation of ETC with a _i	140
5.5	Variation of ETC with bi	140
5.6	Variation of ETC with a _i and b _i	140
6.1	Single purchase multiple delivery (SPMD)	148
6.2	Effect of inspection errors	151
6.3	Single purchase single delivery (SPSD)	158
6.4	Lot-for-Lot (LFL)	162
6.5	Variation of ETC with α and v	166
6.6	Variation of ETC with E_1 and E_2	166
6.7	Raw material inventory level in a single-stage production system	172
6.8	Finished goods inventory level in a single-stage production system	173
6.9	Raw material inventory level in a multi-stage production system	180
6.10	Work-in-process inventory of an intermediate stage	180
6.11	Variation of TC with β_i	183
6.12	Variation of TC with C _i	183
6.13	Variation of TC with β_i and C_i	184
7.1	Classification of Manufacturing Plants based on similarity of products	189
7.2	Analysis of Plants achievements based on supply chain parameters	193
7.3	Analysis of quality improvements	194
7.4	Analysis of reduced inspections	195
7.5	Analysis of JIT methods	196
7.6	Analysis of set-up cost reduction	196
7.7	Analysis of lead time reduction	197
7.8	Analysis of rework reduction	198

Fig. No.	Title	Page
		No.
7.9	Analysis of optimum batch size and optimum cycle time	199
7.10	Major lean tools used in lean supply chain	200
D.1	Inventory build-up and lumpy demand	237
D.2	Inventory build-up and lumpy demand with rework	238

LIST OF ABBREVIATIONS

Abbreviation	Full Expansion of the Abbreviation
58	Sort-Set-Standardize-Shine-Sustain
CC	Common Cycle
ELSP	Economic Lot Scheduling Problem
EPQ	Economic Production Quantity
ETC	Expected Total Cost
IW	Industry Week
JELS	Joint Economic Lot Size
JIT	Just In Time
JTC	Joint Total Cost
KKT	Karush-Kuhn-Tucker
LEAP	Lean Processing Programme
LFL	Lot For Lot
LSC	Lean Supply Chain
R&D	Research And Development
ROP	Re Order Point
SPC	Statistical Process Control
SPMD	Single Purchase Multiple Delivery
SPSD	Single Purchase Single Delivery
TPM	Total Productive Maintenance
TPS	Toyota Production System
TQM	Total Quality Management
TRC	Total Relevant Cost
VSM	Value Stream Mapping
WIP	Work In Process