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CHAPTER 5 

OPTIMAL CYCLE LENGTH AND NUMBER OF INSPECTIONS IN A 
DETERIORATING PRODUCTION PROCESS WITH INVESTMENT ON 

SETUP COST REDUCTION AND QUALITY IMPROVEMENT 
 

This chapter provides the analytical model and numerical examples to determine simultaneously 

optimal production run length and inspection schedules in a deteriorating production process 

under the investment in both setup cost reduction and quality improvement. Also the analytical 

model and numerical case studies to determine optimal cycle length using both time-varying lot 

sizes and common cycle approach, and the number of inspections considering process inspection 

and restoration under the investment in both setup cost reduction and quality improvement are 

presented. The managerial implications based on the results are presented. 

 

5.1 Optimal Cycle Length and Number of Inspections in a Deteriorating Production 

Process with Investment in Setup Cost Reduction and Quality Improvement 

Kim et al., (2001) presented an economic production quantity model to determine the optimal 

production run length and inspection schedules simultaneously in a deteriorating production 

process. The production process is subject to a random deterioration from the in-control state to 

the out-of-control state and, thus, produces some proportion of defective items. They assumed 

that one inspection at the end of each production run must be done to ensure that the process is in 

the in-control state at the beginning of the next production cycle. Hou (2007) considered an 

economic production quantity model with imperfect production processes, in which the setup 

cost and process quality are functions of capital investment. In real production environment, the 

defective items are produced due to imperfect production processes. The defective items must be 

rejected, repaired and reworked, and thus substantial costs incur. Also, in practice, setup cost can 

be controlled and reduced through various efforts such as worker training, procedural changes 

and specialized equipment acquisition. Freimer et al., (2006) considered two kinds of 

investments in process improvements: (i) reducing setup costs and (ii) improving process quality. 

They have considered a production system of a single item on a single machine which produces 

some (time-varying) fraction of defective items.  
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This research extends the work of Kim et al., (2001) to derive the optimal production run length 

and inspection schedule by optimizing the (i) investment on setup cost reduction, (ii) quality 

improvement and (iii) both setup cost reduction and quality improvement. In this work it is 

assumed that the relationship between setup cost reduction (or process quality improvement) and 

capital investments can be described by the logarithmic investment function. Setup cost 

reduction is also considered an important element of successful implementation of JIT 

production. While the setup cost will be fixed in the short term, it will tend to decrease in the 

long term because of the possibility of investment in specialized equipment. However, 

substantial capital expenditure required for the installation of new equipment or production 

process gives rise to high interest charges and depreciation cost. The product can be produced 

more efficiently using a specialized equipment or production process that substantially reduces 

the production setup time and setup cost. It is thus economical to produce in smaller batches 

there by reducing the inventory holding cost. Therefore, for attaining production system 

efficiency, reduced lot sizes alone are not sufficient, unless accompanied by corresponding setup 

cost reduction and quality improvement. The remainder of the section is organized as given 

below.  

 

The analytical models for optimal production run length and number of inspections in a 

deteriorating production process with investment in (i) setup cost reduction, (ii) quality 

improvement, and (iii) both setup cost reduction and quality improvement are provided. 

Algorithms are presented to determine the optimal production run length, optimal number of 

inspections, optimal setup cost, and percentage of defective items for optimal quality investment. 

Solution procedure and numerical example are described to determine the optimal production run 

length, the optimal setup cost and the optimal process quality. 

 

The symbols used in this model are defined as follows: 

D demand rate (units per unit time) 

iK fractional opportunity cost of capital investment in setup cost reduction per unit time 

iα fractional opportunity cost of capital investment in process quality improvement per unit 

time 

Ko original setup cost for each production run ($ per setup) 
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K setup cost for each production run ($ per setup) 

h  inventory holding cost per unit time ($ per unit per unit time) 

MK  capital investment in setup cost reduction  

Mα  capital investment in process quality improvement  

N number of inspections undertaken during each production run 

P  production rate per unit time (units per unit time), P > D 

r restoration cost of the process from the out-of-control state to the in-control state ($ per 

restoration) 

s cost incurred by producing a defective item ($ per unit) 

T production run time (time) 

v  inspection cost ($ per inspection) 

αo original percentage of defective items produced when the process is in the out-of control 

state 

α percentage of defective items produced when the process is in the out-of control state 

µ deterioration rate of the production process 

 

The assumptions used in the development of mathematical model are (Lee and Rosenblatt, 1987 

and Kim et al., 2001): 

1. The production process is in-control state at the beginning of a production cycle. The 

production process may shift from the in-control state to the out-of control state during a 

production run.  

2. When the production process is in the in-control state, it only produces perfect items, and 

when the process shifts to the out-of control state, a fixed portion of produced items are 

defective. 

3. During a production run, inspections to monitor the state of production process are 

undertaken N times including an inspection at the end of production run. 

4. As soon as the process is detected to be in the out-of-control state by inspection, it is 

restored to the in-control state instantaneously.  

5. The elapsed time until shift is exponentially distributed. 
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5.1.1 Optimal cycle length and number of inspections in a deteriorating production process  

The analysis for setup cost reduction, quality improvement, and both setup cost reduction and 

quality improvement are presented.  

 

5.1.1.1 Model for setup cost reduction in a deteriorating production process 

The mathematical formulation for optimization of setup cost reduction is as follows: 

Rosenblatt and Lee (1986) presented an economic production quantity (EPQ) model which 

determines an approximated optimal production run length in deteriorating production process 

with fixed setup cost and quality. The total cost presented by Rosenblatt and Lee (1986) is a sum 

of setup cost, holding cost and rework cost, and is expressed as 
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Further, Lee and Rosenblatt (1987) presented the average cost per unit time as the sum of setup 

cost, holding cost, inspection cost, restoration cost and cost incurred by defective items. The 

average cost per unit time as a function of number of inspections and production run length is: 
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Freimer et al. (2005) presented results for optimal run length and expected total cost of a 

production system assumed to produce some time varying proportion of defective parts 

considering the opportunity to invest in reducing setup cost and improving process quality. 

A logarithmic investment function MK required to reduce the setup cost from Ko to K=Ko (1-δ). 

In order to reduce the cost of production setup, investment is required in improving the 

production process. Considering an opportunity cost of iKMK is charged per unit time, the total 

cost function is (Freimer et al., (2005)): 
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The relationship between the investment function MK and setup cost K is described as, 

( )KBAM KKK ln−=          (5.4) 

since ( )( ) 0ln =−= oKKK KBAM
o

; ( )oKK KBA ln=     (5.5) 
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Substituting AK in Eq. (5.5) in Eq. (5,4) and considering ( )KoKK δ−= 1 , results in: 

( )
K

K

K

M
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1ln
         (5.6) 

where AK and BK are constants. 

Differentiating Eq. (5.3) with respect to setup cost yields, 
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Simplifying Eq. (5.7) results in the optimal setup cost as: 

D

PTBi
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From Eqs. (5.4), (5.5) and (5.8), investment in setup cost reduction is possible when *
KK o >  or 

1>
PTBi

DK

KK

o . Therefore investment in setup cost reduction is appropriate for high value of initial 

setup cost (Ko), high demand rate (D), low fractional opportunity cost of capital per unit time 

(iK), small production run time (T). 

Differentiating Eq. (5.3) with respect to the number of inspections undertaken (N) yields, 
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which implies ( )TNKC ,,*  is a strictly increasing function of N, for all 1≥N  and hence N=1. 

Differentiating Eq. (5.3) with respect to production run time (T) yields, 
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where K
* is substituted from Eq. (5.8). Further differentiating Eq. (5.13) with respect to 

production run time (T) yields, 
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From Eqs. (5.15)-(5.16), the optimal solution satisfying 
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Substituting T=T
* in Eq. (5.9), and using Eq. (5.13), results in 
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The solution algorithm for this model is as follows: 

Step 1: Determine T* from Eq. (5.17). 
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Step 2: If rv
Ps

+≤
µ

α
, then N*=1. Otherwise, substitute the value of T* from Eq. (5.17) in Eq. 

(5.9) to find N* numerically. 

Step 3:  

(i) If N* < 1, then choose N*=1. Determine K* (1) from Eq. (5.8). If oKK ≤* , then 

optimal setup cost is taken as K*, otherwise, set K* = Ko, and no capital investment 

for setup cost reduction is required. Find T*(1) from Eq. (5.13) numerically till 

convergence is obtained. 

(ii) If N* >1, then for J* <N*<J*+1 (where J is a positive integer). Determine K* (J) and 

K*(J+1) from Eq. (5.8). If oKK ≤* , then optimal setup cost is taken as K*, otherwise, 

set K* = Ko. Find T*(J) and T*(J+1) from Eq. (5.13) numerically till convergence is 

obtained.  

The convergence criteria for algorithm is:
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Step 4:  

(i) If N* < 1, then compute C**(K**( T**), N**=1, T**( N**=1)) from Eq. (5.3).  

(ii) If N* >1, then for J* <N*<J*+1 (where J is a positive integer), then compute 

C(K*(J), J, T*(J)) and C(K*(J+1), J+1, T*(J+1)) from Eq. (5.3) respectively, and 

choose the one with smaller value (C**(K**(T**), N**, T**(N**))) as the optimum 

solution. 

 

5.1.1.2 Model for quality improvement in a deteriorating production process 

The classical economic production quantity (EPQ) model assumes that the production facility is 

failure free and all the items produced are of perfect quality, and that quality level is fixed at an 

optimal level. However, in real production environment, it can often be observed that the product 

quality is not always perfect and usually depends on the state of production process. Moreover, it 

has been evidenced that just-in-time production is based on the belief that product quality can be 

improved through various efforts. 
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Although the production process begins by producing a lot in the in-control state, it may become 

out-of-control producing defective items. Thus defective items produced due to imperfect 

production process incur substantial costs. Substantial investment in improving the quality of 

production process results in reduction of the cost incurred on defective items produced in a 

process. A logarithmic investment function Mα is required to reduce the percentage of defective 

items produced from αo to α=αo (1-δα). Considering an opportunity cost of iαMα is charged per 

unit time, the total cost function is (Freimer et al., (2005)): 
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The relation between the investment function for quality improvement Mα and the percentage of 

defective items when the process is in out-of-control state α is described by; 

( )αααα lnBAM −=             (5.19) 

Since ( )( ) 0ln =−= oBAM
o
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Substituting Aα from Eq. (5.20) in Eq. (5.19), and considering ( )αδαα −= 1o , results in: 
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where Aα and Bα are constants  

Differentiating Eq. (5.18) with respect to the percentage of defective items produced (α) yields, 
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Simplifying Eq. (5.22) results in: 




























−−−

=

N

T

T

N
sD

Bi

µ

µ

α αα

exp11

*        (5.23) 

From Eqs. (5.19), (5.20) and (5.23), investment in quality improvement is possible when *αα >o  

or 1exp11 >
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. Therefore investment in quality improvement is 

appropriate for high value percentage of defective items produced when the process is in the out-
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of-control state (αo), high cost incurred for producing a defective item (s), high demand rate (D), 

low fractional opportunity cost of capital per unit time (iα), more production run time (T) and less 

number of inspections undertaken during each production run (N). 

Differentiating Eq. (5.18) with respect to the number of inspections undertaken (N) yields, 
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The conditions for determination of optimal value of N* are given in Eqs. (5.10) – (5.12). 

 

Differentiating Eq. (5.18) with respect to production run time (T) yields, 
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From Eqs. (5.27)-(5.28), the optimal solution satisfying 
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Substituting Eq. (5.24) in Eq. (5.25), results in 
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The solution algorithm for this model is as follows: 

Step 1: Calculate the value of T* from Eq. (5.29) and initialize N*. 
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Step 2: Substitute the value of T* from Eq. (5.29) and N* to find α* using Eq. (5.23).  

Step 3: Compute N* from Eq. (5.24) using T* from Eq. (5.29), α* from Eq. (5.23). If oαα ≤* , 

then optimal quality is taken as α*, otherwise, set α* = αo, and no capital investment for quality 

improvement is required. Using the current value of N*, repeat the steps 2 and 3 till the 

convergence in the value of N* is obtained.  

The convergence criteria for algorithm is: 
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Step 4:  

(i) If N* < 1, then choose N*=1. 

(a) Substitute the value of and N* in Eq. (5.23) to find α*. 

(b) If oαα ≤* , then optimal quality is taken as α*, otherwise, set α* = αo, and no 

capital investment for quality improvement is required. 

(c)  Compute T* from Eq. (5.25) using N*, α* from Eq. (5.23).  

(d) Repeat the steps (a) and (b) till the convergence in the value of T* is obtained.  

(ii) If N* >1, then for J* <N*<J*+1 (where J is a positive integer), 

(ii) Substitute the value of J* and J*+1 in Eq. (5.23) to find α*(J) and α*(J+1). 

(iii) If oαα ≤* , then optimal quality is taken as α*, otherwise, set α* = αo. 

(iiii) Compute T*(J) and T*(J+1) from Eq. (5.25) numerically, using J* and J*+1, 

α*(J) and α*(J+1) from Eq. (5.23).  

(iiv) Repeat the steps (e) and (g) till the convergence in the value of T*(J) and 

T*(J+1) are obtained.  

The convergence criteria for algorithm is: 
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Step 5:  

(i) If N* < 1, then compute C**(α**( N**=1), N**=1, T**( N**=1)) from Eq. (5.18).  
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(ii) If N* >1, then for J* <N*<J*+1 (where J is a positive integer), then compute 

C(α*(J), J, T*(J)) and C(α* (J+1), J+1, T*(J+1)) from Eq. (5.18) respectively, and 

choose the one with smaller value (C**( α**(N), N**, T**(N**))) as the optimum 

solution. 

 

 5.1.1.3 Model for both setup cost reduction and quality improvement in a deteriorating 

production process 

Considering opportunity costs of iKMK and iαMα charged per unit time to yield the optimal setup 

cost and optimal quality, the total cost function is:  
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The partial derivatives of Eq. (5.30) with respect to K and α are given by; 
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Simplifying Eqs. (5.31) - (5.32) yields the optimal setup cost and optimal quality as given by Eq. 

(5.8) and Eq. (5.23) respectively.  

Eq. (5.30) is convex in K and α, since 
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can be calculated as; 
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The partial derivative of Eq. (5.30) with respect to the number of inspections undertaken (N) is 

given by Eq. (5.24) and the conditions for determination of optimal value of N* are given in Eqs. 

(5.10) – (5.12).  

The partial derivative of Eq. (5.30) with respect to the production run time (T) is same as that 

given by 
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           (5.33) 

where K* and α*
 are substituted from Eqs. (5.8) and (5.23). The conditions for determination of 

optimal value of T* are given in Eqs. (5.15) – (5.16). 

 

The solution algorithm is as follows: 

Step 1: Calculate the value of T* from Eq. (5.17) and initialize N*. 

Step 2: Substitute the value of T* from Eq. (5.17) and N* to find α* using Eq. (5.23).  

Step 3: Compute N* from Eq. (5.24) using T* from Eq. (5.17), α* from Eq. (5.23). If oαα ≤* , 

then optimal quality is taken as α*, otherwise, set α* = αo, and no capital investment for quality 

improvement is required. Using the current value of N*, repeat the steps 2 and 3 till the 

convergence in the value of N* is obtained. 

The convergence criteria for algorithm is: 
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Step 4:  

(i) If N* < 1, then choose N*=1. 

(a) Using the values of N*, find α*(1) in Eq. (5.23) and K*
(1) from Eq. (5.8). 

(b) If oKK ≤* , then optimal setup cost is taken as K*, otherwise, set K* = Ko, and no 

capital investment for setup cost reduction is required. Similarly, if oαα ≤* , then 

optimal quality is taken as α*, otherwise, set α* = αo, and no capital investment 

for quality improvement is required. 

(c)  Compute T*(1) from Eq. (5.13).  

(d) Repeat the steps (a) to (c) till the convergence in the value of T*(1) is obtained.  

(ii) If N* >1, then for J* <N*<J*+1 (where J is a positive integer), 



 110 

(e) use the values of J* and J*+1 in Eq. (5.8) to determine K*
(J) and K*

(J+1)  and in 

Eq. (5.23) to find α*(J) and α*(J+1). 

(f) If oKK ≤* , then optimal setup cost is taken as K*, otherwise, set K* = Ko. 

Similarly, if oαα ≤* , then optimal quality is taken as α*, otherwise, set α* = αo.  

(g) Compute T*(J) and T*(J+1) from Eq. (5.13) numerically.  

(h) Repeat the steps (e) to (g) till the convergence in the value of T*(J) and T*(J+1) 

are obtained.  

The convergence criteria for algorithm is: 
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Step 5:  

(i) If N* < 1, then compute C**( K**(T**( N**=1)), α**( N**=1, T**( N**=1)), 

N**=1, T**( N**=1)) from Eq. (5.30).  

(ii) If N* >1, then for J* <N*<J*+1 (where J is a positive integer), then compute C(K*( 

T*(J)), α*(J, T*(J)), J, T*(J)) and C(K* (T*(J+1)), α* (J+1, T*(J+1)), J+1, T*(J+1)) 

from Eq. (5.30) respectively, and choose the one with smaller value (C**( K **( 

T**(N**)), α**(N, T**(N**)), N**, T**(N**))) as the optimum solution. 

 

5.1.2 Numerical example  

5.1.2.1 Numerical example for setup cost reduction model 

The following data used by Kim et al., (2001) is considered in this study. P=40, D=30, Ko=50, 

h=0.1, s=10, αo=0.05, ik=0.01, Mk=100, δk=0.25. 

Table 5.1 shows the optimal number of inspections, the optimal production run length, and the 

minimum average cost of the proposed model and the solution given by Kim et al., (2001), and 

the percentage difference of the production run length and the minimum average cost between 

the two solutions. Table 5.1 show that considering setup cost reduction reduces the optimal 

number of inspections. The impact of setup cost reduction is more at lower values of restoration 

cost of the process from the out-of-control state to in-control state (r) for a given range of values 

of deterioration rate of the production process (µ) and inspection cost (v). 
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When low values of restoration cost of the production process (r) and inspection cost (v), with 

increase in µ from 0.1 to 0.5, the present method predicts optimal number of inspections less than 

or equal that predicted by Kim et al., (2001) without considering setup cost reduction. However 

at higher values of r and v considered in this study for µ from 0.1 to 0.5, the optimal number of 

inspections predicted by the present method agrees with that obtained from Kim et al. (2001), 

which shows no influence of investment in setup cost reduction.  

 

With the investment in setup cost reduction, there is a significant reduction in optimal production 

run length (T**) at low and intermediate values of restoration cost (r) and inspection cost (v) for 

all values of deterioration rate (µ) in comparison to without investment in setup cost reduction. 

However at high values of restoration cost (r) and inspection cost (v), there is a marginal 

reduction in the optimal production run length (T**) with investment in setup cost reduction. For 

all the parameters considered in this study the optimal production run length (T**) reduces with 

investment in setup cost reduction.  

 

The average cost per unit time C**(K**(N**), N**, T**(N**)) is slightly reduced with 

investment in setup cost reduction (Table 5.1). The influence of setup cost reduction on the 

average cost per unit time is more at (i) µ=0.1, r=10 and v=10 as compared to µ=0.5, r=10 and 

v=10, and (ii) µ=0.1, r=10 and v=10 as compared to µ=0.1, r=180 and v=10. This indicates 

decrease in reduction of average cost function with investment on setup cost reduction as: (i) 

deterioration of the production process (µ) increases from 0.1 to 0.5 for a given restoration cost 

(r) and inspection cost (v), (ii) restoration cost (r) increases for a given deterioration of the 

production process (µ) and inspection cost (v). 
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Table 5.1 Comparison of the optimal solution with and without investment in setup cost 
reduction 

 

   Kim et al.(2001) Setup cost reduction % Difference 
with Kim et 

al.(2001) 

µ r v J** T** C** K** J** T** C** T** C** 

10 2 8.25 13.81 33.07 2 7.13 13.60 -15.64 -1.57 10 

20 2 9.41 15.51 28.12 1 6.07 15.30 -55.10 -1.38 

10 2 8.33 14.43 33.56 2 7.24 14.23 -15.04 -1.43 20 

20 2 9.50 16.11 28.72 1 6.20 15.86 -53.30 -1.58 

10 2 8.41 15.04 34.07 2 7.35 14.86 -14.41 -1.24 30 

20 2 9.60 16.71 29.36 1 6.33 16.42 -51.59 -1.78 

10 2 8.67 16.87 35.70 2 7.70 16.73 -12.53 -0.83 60 

20 1 8.04 18.33 31.44 1 6.78 18.07 -18.53 -1.46 

10 1 8.15 20.49 30.71 1 6.63 20.23 -22.98 -1.30 120 

20 1 8.85 21.38 36.61 1 7.90 21.26 -12.04 -0.57 

10 1 9.11 23.51 37.48 1 8.09 23.42 -12.66 -0.38 

0.1 

180 

20 1 9.86 24.30 43.47 1 9.38 24.28 -5.14 -0.09 

10 3 8.61 16.00 28.72 2 6.20 15.86 -38.94 -0.88 10 

20 2 8.73 18.09 37.07 2 8.00 17.97 -9.14 -0.66 

10 3 8.81 17.14 30.02 2 6.48 16.97 -36.04 -1.00 20 

20 2 8.98 19.09 38.55 2 8.32 19.00 -7.97 -0.48 

10 3 9.02 18.27 31.44 2 6.78 18.07 -32.98 -1.12 30 

20 2 9.24 20.07 27.91 1 6.02 19.90 -53.44 -0.85 

10 2 8.85 21.38 36.61 2 7.90 21.26 -12.04 -0.57 60 

20 1 8.61 22.54 34.51 1 7.45 22.38 -15.63 -0.71 

10 1 9.05 23.80 36.84 1 7.95 23.70 -13.87 -0.40 

0.2 

90 

20 1 9.81 24.60 43.04 1 9.29 24.57 -5.63 -0.11 

 



 113 

Table 5.1 Comparison of the optimal solution with and without investment in setup cost 
reduction (contd….) 

 

   Kim et al.(2001) Setup cost reduction % Difference with 
Kim et al.(2001) 

µ r v J** T** C** K** J** T** C** T** C** 

10 3 8.28 17.72 33.85 3 7.30 17.52 -13.38 -1.16 10 

20 2 8.53 19.99 35.60 2 7.68 19.83 -11.05 -0.79 

10 3 8.65 19.23 29.18 2 6.30 19.08 -37.41 -0.77 20 

20 2 8.97 21.24 27.02 1 5.83 21.14 -53.83 -0.45 

10 3 9.06 20.73 31.94 2 6.89 20.51 -31.49 -1.05 30 

20 1 8.15 22.44 30.57 1 6.60 22.17 -23.58 -1.24 

10 1 8.48 23.19 32.00 1 6.91 22.98 -22.81 -0.90 50 

20 1 9.27 24.03 38.90 1 8.39 23.96 -10.46 -0.28 

10 1 9.08 23.98 36.93 1 7.97 23.88 -13.94 -0.40 

0.3 

60 

20 1 9.85 24.77 43.29 1 9.34 24.75 -5.46 -0.08 

10 4 8.98 19.09 32.88 3 7.09 18.89 -26.59 -1.05 10 

20 2 8.58 21.42 35.57 2 7.67 21.27 -11.81 -0.70 

10 3 8.73 20.92 29.88 2 6.45 20.76 -35.41 -0.78 20 

20 2 9.24 22.82 30.11 1 6.50 22.59 -42.22 -1.02 

10 2 8.61 22.54 34.51 2 7.45 22.38 -15.63 -0.71 30 

20 1 8.88 23.71 35.63 1 7.69 23.59 -15.53 -0.52 

10 1 8.78 23.69 34.17 1 7.37 23.54 -19.08 -0.65 

0.4 

40 

20 1 9.57 24.50 41.09 1 8.87 24.46 -7.94 -0.16 

10 4 8.93 20.25 32.67 3 7.05 20.05 -26.68 -0.98 10 

20 2 8.78 22.52 36.51 2 7.88 22.40 -11.45 -0.54 

10 3 8.97 22.28 31.77 2 6.86 22.08 -30.85 -0.91 20 

20 1 8.78 23.68 34.38 1 7.42 23.54 -18.36 -0.61 

10 1 8.72 23.67 33.43 1 7.21 23.51 -20.91 -0.68 

0.5 

30 

20 1 9.53 24.49 40.67 1 8.78 24.45 -8.60 -0.18 

 

5.1.2.2 Numerical example for quality improvement model 

Apart from the data used in the previous example on the optimization of setup cost reduction, the 

following data are used to obtain the numerical results of optimization of quality improvement: 

iα=0.01, Mα=100, δα=0.25. 

Table 5.2 shows the optimal quality, optimal number of inspections, the optimal production run 

length, and the minimum average cost of the due to investment on quality improvement. Table 

5.2 also shows the percentage difference of the production run length and the minimum average 
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cost between the present solution and that given by Kim et al., (2001) with no investment in 

process quality improvement. Table 5.2 shows that for deterioration rate (µ) of 0.1, inspection 

cost of (v) of 10 and restoration cost of the process (r) of 10, 20, 30, and 60 respectively, there is 

no need for investment in quality improvement. The optimal percentage of defective items 

produced decrease with (i) increase in deterioration rate of the production process (µ) from 0.1 to 

0.5 and (ii) increase in restoration cost of the process from out-of-control state to in-control state 

(r) (for various parameters of µ=0.1 to 0.5). 

 

The optimal number of inspections are unity for µ=0.3 to 0.5, for all the parameters of r and v 

considered in this study. The optimal number of inspections decrease to unity for µ=0.1 and 0.2, 

with increase in r, and also the optimal number of inspections decrease or remain same with 

increase in v for a given r for µ=0.1 and 0.2.  

 

With investment in quality improvement, the optimal production run length (T**) (i) increases 

with increase in µ from 0.1 to 0.5, for a given set of values of r and v, (ii) increases with increase 

in r, for a given set of µ and v, and (iii) increases with v, for a given µ and r. With increase in the 

parameters µ and r, the optimal production run length is higher due to investment in quality 

improvement as compared to without investment in quality (Kim et al., 2001). This indicates that 

investment in quality improvement results in reduction in the number of inspections and increase 

in the optimal production run length with (i) increase in deterioration rate of the production 

process, (ii) increase in the restoration cost of the process, (iii) increase in the inspection cost. 

 

The average cost per unit time is reduced with investment in quality improvement (Table 5.2). 

The influence of investment in quality improvement on the reduction in average cost per unit 

time is more at (i) with increase in µ from 0.1 to 0.5 for a given r and v , (ii) with increase in 

restoration cost of the process (r) for a given µ and v, and (iii) with increase in inspection cost (v) 

for a given value of µ and r (the influence of inspection cost is negligible for higher values of µ 

and r).  
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Table 5.2 Comparison of the optimal solution with and without investment in quality 
improvement 

 

   Quality improvement % Difference with Kim 
et al.(2001) 

µ r v α
** J** T** C** T** C** 

10 0.05 2 8.25 13.81 0.00 0.00 10 

20 0.05 2 9.41 15.51 0.00 0.00 

10 0.05 2 8.33 14.43 0.00 0.00 20 

20 0.0364 1 8.21 16.10 -15.71 -0.06 

10 0.05 2 8.41 15.04 0.00 0.00 30 

20 0.0359 1 8.37 16.61 -14.70 -0.60 

10 0.05 2 8.67 16.87 0.00 0.00 60 

20 0.0343 1 8.89 18.11 9.56 -1.21 

10 0.0334 1 9.23 20.25 11.70 -1.19 120 

20 0.0312 1 10.16 21.02 12.89 -1.71 

10 0.0298 1 10.81 23.09 15.73 -1.82 

0.1 

180 

20 0.0281 1 11.76 23.76 16.16 -2.27 

10 0.0481 3 8.68 16.00 0.81 0.00 10 

20 0.0218 1 8.85 17.42 1.36 -3.85 

10 0.0354 2 8.54 17.11 -3.16 -0.18 20 

20 0.0212 1 9.29 18.11 3.34 -5.41 

10 0.0217 1 8.90 17.98 -1.35 -1.61 30 

20 0.0207 1 9.75 18.78 5.23 -6.87 

10 0.0200 1 10.42 19.97 15.07 -7.06 60 

20 0.0192 1 11.23 20.67 23.33 -9.05 

10 0.0186 1 12.03 21.77 24.77 -9.32 

0.2 

90 

20 0.0181 1 12.78 22.37 23.24 -9.97 
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Table 5.2 Comparison of the optimal solution with and without investment in quality 
improvement (Contd…) 

 

   Quality improvement % Difference with Kim 
et al.(2001) 

µ r v α
** J** T** C** T** C** 

10 0.0180 1 8.64 17.36 4.17 -2.07 10 

20 0.0173 1 9.47 18.18 9.93 -9.96 

10 0.0175 1 9.28 18.13 6.79 -6.07 20 

20 0.0169 1 10.09 18.90 11.10 -12.38 

10 0.0170 1 9.94 18.87 8.85 -9.86 30 

20 0.0165 1 10.72 19.60 23.97 -14.49 

10 0.0162 1 11.23 20.23 24.49 -14.63 50 

20 0.0159 1 11.95 20.88 22.43 -15.09 

10 0.0159 1 11.86 20.86 23.44 -14.96 

0.3 

60 

20 0.0157 1 12.54 21.48 21.45 -15.32 

10 0.0158 1 9.07 17.77 0.99 -7.43 10 

20 0.0154 1 9.88 18.57 13.16 -15.35 

10 0.0154 1 9.80 18.55 10.92 -12.78 20 

20 0.0151 1 10.57 19.29 12.58 -18.30 

10 0.0151 1 10.52 19.27 18.16 -16.97 30 

20 0.0149 1 11.24 19.97 21.00 -18.73 

10 0.0149 1 11.19 19.96 21.54 -18.69 

0.4 

40 

20 0.0146 1 11.88 20.60 19.44 -18.93 

10 0.0147 1 9.35 18.01 4.49 -12.44 10 

20 0.0144 1 10.14 18.78 13.41 -19.91 

10 0.0144 1 10.11 18.78 11.28 -18.64 20 

20 0.0142 1 10.84 19.49 19.00 -21.50 

10 0.0142 1 10.82 19.49 19.41 -21.45 

0.5 

30 

20 0.0140 1 11.51 20.16 17.20 -21.48 

 

5.1.2.3 Numerical example for both setup cost reduction and quality improvement model 

The data used in this study is same as those used in the previous examples for optimization of 

setup cost reduction and optimization of quality improvement.  

 

Table 5.3 shows the optimal solution with investment in both setup cost reduction and quality 

improvement. Table 5.3 also shows the calculation of percentage difference of the production 

run length and the minimum average cost without investment given by Kim et al., (2001). Table 
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5.3 shows that for all values of deterioration rate of the production process (µ=0.1 to 0.5) and the 

corresponding higher values of restoration cost (r) and inspection cost (v) considered in this 

study, such as for µ=0.1, (r, v)= (180, 10), (180, 20) and for µ=0.2, (r, v)= (60, 20), (90, 10), (90, 

20) respectively, there is no requirement for investment in setup cost reduction and investment is 

only needed for quality improvement. Similarly for deterioration rate of the process (µ) of 0.1 

and inspection cost (v) of 10 considered in this study, the investment in quality improvement is 

not required for restoration cost values (r) of 10, 20, 30 and 60 respectively.  

The results obtained for optimal number of inspections for all the parameters of µ, r and v 

considered in this case is same as those obtained in the previous example for optimal investment 

in quality improvement.  

 

With investment in both setup cost reduction and quality improvement, the optimal production 

run length (T**) (i) increases with increase in µ from 0.1 to 0.5, for a given set of values of r and 

v, (ii) increases with increase in r, for a given µ and r and (iii) increases with v for a given set of 

µ from 0.2 to 0.5 and v from 10 to 20. The decrease in the production run length (T**) with 

increase in inspection cost (v) for low values of deterioration rate (µ) and restoration cost (r) is 

due to the predominance of investment in setup cost reduction over investment in quality 

improvement.  

 

The optimal production run length is lower due to investment in both setup reduction and quality 

improvement as compared to without investment (Kim et al., 2001), for values of deterioration 

rate of process (µ) from 0.1 to 0.2 and low value of restoration cost. The optimal production run 

length is higher due to investment in both setup reduction and quality improvement as compared 

to without investment (Kim et al., 2001), for values of deterioration rate of process (µ) from 0.3 

to 0.5 and high value of restoration cost.  

 

The average cost per unit time is reduced with investment in both setup cost reduction and 

quality improvement (Table 5.3). The influence of investment in both setup cost reduction and 

quality improvement on the reduction in average cost per unit time increases as compared to 

without investment (Kim et al., 2001) (i) with increase in deterioration rate (µ) from 0.1 to 0.5 
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Fig. 5.1 Variation of C with δk  
 

Fig. 5.2 Variation of C with δα 
 

for a given r and v, (ii) with increase in r for a given µ from 0.2 to 0.5 and v, and (iii) with 

increase in v from 10 to 20, for a given value of µ and r.  
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Figures 5.1 – 5.3 show the variation of cost with investment in both setup cost reduction and 

quality improvement. Figures 5.1 shows that the total cost (C) decreases with increase in δk 

(percentage reduction in the setup cost), while Fig. 5.2 shows that total cost (C) initially remains 

Fig. 5.3 Variation of C with δk and δα 
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constant and then decreases with increase in δα (percentage reduction in the defective items 

produced).  As shown in Fig. 5.2 no investment in quality improvement is made for δα values of 

0.15, 0.25 and 0.35 respectively as the total cost remained unchanged. Smaller values of δk and 

δα indicates higher values of Bk (rate of increase in dollar investment per fraction of reduction in 

setup cost) and Bα (rate of increase in dollar investment per fraction of reduction in non-

conforming units) respectively. The total cost function (C) increases with increase in the values 

of Bk and Bα (or decrease in the values of δk and δα respectively). Figure 5.3 shows the variation 

of total cost (C) with both δk and δα. Figure 5.3 shows the variation of total cost (C) with both δk 

and δα. For the data considered in the analysis, the decrease in total cost (C) with increase in δk is 

significant as compared to decrease in total cost (C) with increase in δα. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 120 

Table 5.3 Optimal solution with investment in both setup cost reduction and quality 
improvement and its comparison without investment 

 

   Both setup cost reduction and quality improvement % Difference 

µ r v K** α
** J** T** C** T** C** 

10 33.07 0.0500 2 7.13 13.60 -15.71 -1.54 10 

20 29.47 0.0446 1 6.36 15.28 -47.96 -1.51 

10 33.56 0.0500 2 7.24 14.23 -15.06 -1.41 20 

20 30.46 0.0434 1 6.57 15.84 -44.60 -1.70 

10 34.07 0.0500 2 7.35 14.86 -14.42 -1.21 30 

20 31.53 0.0422 1 6.80 16.38 -41.18 -2.01 

10 35.71 0.0500 2 7.70 16.73 -12.60 -0.84 60 

20 35.19 0.0387 1 7.59 17.99 -5.93 -1.89 

10 35.89 0.0381 1 7.74 20.15 -5.30 -1.69 120 

20 44.96 0.0322 1 9.70 21.01 8.76 -1.76 

10 50.00 0.0298 1 10.81 23.09 15.73 -1.82 

0.1 

180 

20 50.00 0.0281 1 11.76 23.76 16.16 -2.27 

10 30.46 0.0434 2 6.57 15.84 -31.05 -1.01 10 

20 35.08 0.0239 1 7.57 17.29 -15.32 -4.63 

10 32.66 0.0410 2 7.05 16.92 -24.96 -1.30 20 

20 38.51 0.0226 1 8.31 18.04 -8.06 -5.82 

10 34.05 0.0243 1 7.35 17.84 -22.72 -2.41 30 

20 42.13 0.0215 1 9.09 18.75 -1.65 -7.04 

10 47.11 0.0202 1 10.16 19.97 12.89 -7.06 60 

20 50.00 0.0192 1 11.23 20.67 23.33 -9.05 

10 50.00 0.0186 1 12.03 21.77 24.77 -9.32 

0.2 

90 

20 50.00 0.0181 1 12.78 22.37 23.24 -9.97 
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Table 5.3 Optimal solution with investment in both setup cost reduction and quality 
improvement and its comparison without investment (contd..) 

 

   Both setup cost reduction and quality improvement % Difference 

µ r v K** α
** J** T** C** T** C** 

10 31.97 0.0201 1 6.90 17.17 -20.00 -3.20 10 

20 40.06 0.0180 1 8.64 18.13 1.27 -10.26 

10 37.96 0.0185 1 8.19 18.06 -5.62 -6.48 20 

20 44.93 0.0172 1 9.69 18.90 7.43 -12.38 

10 43.52 0.0174 1 9.39 18.85 3.51 -9.97 30 

20 49.52 0.0165 1 10.69 19.60 23.76 -14.49 

10 50.00 0.0162 1 11.23 20.23 24.49 -14.63 50 

20 50.00 0.0159 1 11.95 20.88 22.43 -15.09 

10 50.00 0.0159 1 11.86 20.86 23.44 -14.96 

0.3 

60 

20 50.00 0.0157 1 12.54 21.48 21.45 -15.32 

10 36.24 0.0167 1 7.82 17.67 -14.83 -8.04 10 

20 43.34 0.0157 1 9.35 18.54 8.24 -15.53 

10 42.60 0.0158 1 9.19 18.52 5.01 -12.96 20 

20 48.48 0.0152 1 10.46 19.29 11.66 -18.30 

10 48.05 0.0152 1 10.37 19.27 16.97 -16.97 30 

20 50.00 0.0149 1 11.24 19.97 21.00 -18.73 

10 50.00 0.0149 1 11.20 19.96 21.61 -18.69 

0.4 

40 

20 50.00 0.0146 1 11.88 20.61 19.44 -18.87 

10 38.89 0.0151 1 8.39 17.95 -6.44 -12.81 10 

20 45.33 0.0145 1 9.78 18.77 10.22 -19.98 

10 45.07 0.0146 1 9.72 18.77 7.72 -18.70 20 

20 50.00 0.0142 1 10.84 19.49 19.00 -21.50 

10 50.00 0.0142 1 10.82 19.49 19.41 -21.45 

0.5 

30 

20 50.00 0.0140 1 11.51 20.16 17.20 -21.48 

  
 
5.2 Optimal Cycle Length and Number of Inspections in a Deteriorating Production 

Processes with Investment in Setup Cost Reduction and Quality Improvement 

Moon et al., (2002) studied the imperfect production processes having significant changeovers 

between the products. The mathematical models are developed using both the common cycle 

approach and the time-varying lot sizes approach, taking into account the effects of imperfect 

quality and process restoration. Common Cycle approach restricts all the products’ cycle times to 

equal length. Time-varying lot sizes approach allows different lot sizes for any given products 

during a cyclic schedule. The constraint of setup time and total production time per cycle equal 
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to cycle length are to be satisfied. The production of each product would be in batches and the 

issue of batching arises because the system usually incurs a setup cost and/or a setup time when 

the machine switches from one product to another. The setup cost and setup time depend only on 

the item going into production.  

 

In this research, Moon et al., (2002) model is extended to consider an investment in setup cost 

reduction and quality improvement. The optimal cycle length, the number of inspections, setup 

cost and process quality are determined considering process inspection and restoration using both 

time-varying lot sizes and common cycle approach. In the imperfect process with inspection and 

restoration the process is inspected at regular intervals of time during the production of each 

product and if the system is found to be ‘out-of-control’, necessary actions are taken to restore it 

to the ‘in-control’ state. 

 

 The remainder of the section is organized as follows. Basic assumptions and notations are 

described. The mathematical models on (i) the imperfect process and (ii) the imperfect process 

with inspection and restoration, with capital investments to reduce setup cost and quality 

improvement are developed first using time varying lot sizes approach and then using common 

cycle approach. The algorithms to determine the expected total cost are described. In the 

subsequent section on numerical case studies, examples to show the optimal solutions of the 

time-varying lot sizes approach and the common cycle approach are provided.  

 

The following notation is used in developing the models 

i item index, i=1,2,………, m 

Ai setup costs, i=1,2,………, m 

di constant demand rates (di < pi), i=1,2,………, m 

hi holding costs, i=1,2,………, m 

ia, iα fraction of amortization investment cost under setup reduction and quality improvement 

ni number of inspections for item i, i=1,2,………, m 

pi constant production rates for item i, i=1,2,………, m 

r0, r1  cost parameters for process restoration cost functions  

si setup times, i=1,2,………, m 
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ti length of the production run for items, i=1,2,………, m 

Ti cycle length for items, i=1,2,………, m 

ui constant cost for producing defective items, i=1,2,………, m 

vi inspection costs, i=1,2,………, m 

αi constant fraction of nonc-conforming items, i=1,2,………, m 

ρi di/pi, i=1,2,………, m 

 

The following basic assumptions are used to formulate the mathematical model  

1. Multiple items compete for the use of single facility 

2. Demand rates, production rates, setup costs, holding costs, process inspection, and 

restoration costs for all items are known constants.  

3. No backlogging of demand is permitted 

4. Production capacity is sufficient to meet the total demand. 

5. At the start of the production cycle, for each product the production process is always in 

an in-control state and perfect items are produced. Once the production process shifts to 

an out-of-control state, the shift cannot be detected until the end of production cycle, and 

the process continues production, and a fixed proportion of produced items are defective. 

6. The elapsed time until the production process shifts, θi, is assumed to be exponential 

distributed for item i. 

7. All defective items produced are detected after the production cycle is over, and rework 

cost for defective items will be incurred. 

8. The process is brought back to the in-control state with each setup. 

9. Following Porteus (1986), continuous relationship between the amount of investment and 

the setup cost reduction/quality improvement is considered. Sarker and Coates (1997) 

investigated the case of finite number of opportunities for setup cost reduction investment 

which is a more realistic situation. The commonly used setup reduction functions in the 

literature are exponential, linear, convex parabola, and concave parabola. The algorithms 

developed in this work are applicable to any setup cost reduction/quality improvement 

function as long as it is convex and once differentiable (Banerjee et al., 1996).  The 

relationship between the setup cost reduction and capital investment can be described by 

the logarithmic investment function. That is setup cost Ai and the capital investment 
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function aiφ can be stated as  







=

i

i

iai
A

A
a 0lnφ  for oii AA ≤≤0 , mi ,.......,2,1= . Similarly, 

the relationship between process quality αi, and the capital investment in process quality 

improvement, iαφ can be stated as  







=

i

i

ii b
α

α
φα

0ln  for oii αα ≤≤0 , mi ,.......,2,1= , where 

ia

1
 and 

ib

1
 are the fraction of the reduction in Ai and αi per dollar increase in investment, 

respectively.  

 

5.2.1 Optimal cycle length and number of inspections in a deteriorating production 

processes under time-varying lot sizes approach and common cycle approach 

The models for investment in setup cost reduction and quality improvement in a deteriorating 

production processes under both time-varying lot sizes approach and common cycle approach are 

presented. 

 

5.2.1.1 Model for investment in setup cost reduction and quality improvement in a 

deteriorating production processes under time-varying lot sizes approach 

The total relevant cost in an economic production batch size model as the sum of setup cost and 

inventory carrying cost is 

( )
∑

=







 −
+=
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i
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i Tdh

T

A
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1 2

1 ρ
       (5.34) 

Moon et al., (2002) presented the imperfect process model under time-varying lot sizes models to 

determine the optimal cycle length. It is assumed that once a shift occurs the process stays in the 

‘out-of-control’ state until the setup of the next production. Let t be the elapsed time for which 

the process remains in the ‘in-control’ state before a shift occurs. The number of non-conforming 

items produced while processing the ith product is 

( ) ( )ii

i i
t

iiiii
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i

t
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−
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     (5.35) 

For mathematical simplicity, Moon et al., (2002) used McLaurin series approximation 

( )2
5.01

iiii

t
tte ii θθ

θ
+−≈

−
 to obtain the number of non-conforming items as 
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i
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i
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N

θ

α
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=  where 
i

ii

i
p

Td
t =        (5.36) 

Therefore, the expected quality related cost per unit time due to the production of non-

conforming units is 
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The expected total annual cost per unit time of their model includes setup cost, holding cost and 

quality related cost. The objective function is to minimize the expected total cost per unit time  

Min ( )∑
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        (5.38) 

where 
( )
2

1 iii

i

dh
H

ρ−
= , 

i

iiii

i

du
Q

θ

ρα

2
= , and the constraint for the expected total cost per unit 

time in Eq. (5.38) is that the sum of the ratios of setup time for the product to the cycle length for 

the product must be less than or equal to ∑
=

−=
m

i

i

1

1 ρκ , and is given as 

∑
=

≤
m

i i

i

T

s

1

κ ,  0≥iT ,   mi ,.......,2,1=      (5.39) 

In the present study, the setup cost and quality level are considered to be decision variables. 

Capital investments allocated to reduce setup cost and improve the quality level and hence we 

should include amortized investment cost. The total annual cost per unit time of the system is 

composed of setup cost, holding cost, quality related cost and the amortized total capital cost 

( )iaia ii ααφφ +  and is given as follows 
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subject to upper bound of the equality constraint of Eq. (5.39) given as 

∑
=

=
m

i i

i

T

s

1

κ ,  0≥iT ,   mi ,.......,2,1=      (5.41) 

The Lagrangian function L of the above optimization problem in Eq. (5.40) with the constraint in 

Eq. (5.41) is 
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where λ1 in Eq. (5.42) is the Lagarange multiplier corresponding to the constraint set in Eq. 

(5.41). 

The Karush-Kuhn-Tucker (KKT) conditions for the minimization of Lagrangian function in Eq. 

(5.42) give, 

ii

ii

i
QH

sA
T
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+
= 1* λ

  mi ,.......,2,1=       (5.43) 

iiai TaiA =*    mi ,.......,2,1=       (5.44) 

iiii
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i
Tdu

bi

ρ

θ
α α2* =   mi ,.......,2,1=       (5.45) 

To determine the optimal values of *** ,, iii AT α , the following algorithm  is used. 

1. Initialize 
( )

∑
=

+
=

m

i

iii QHs

1

1
κ

λ , Ai0 and αi0 to the values given in the example data. 

2. Determine Ti from Eq. (5.43) and solve ∑
=

=
+

+m

i ii

ii

i
sA

QH
s

1 1

κ
λ

 for mi ,.......,2,1=  to 

determine the converged value of λ1 using Newton-Raphson iterative procedure. 

3. Determine Ai for oii AA ≤≤0 , mi ,.......,2,1=  and α i for oii αα ≤≤0 , mi ,.......,2,1=  from 

Eqs. (5.44) and (5.45) using Ti from Eq. (5.43) based on the converged value of λ1.  

4. Repeat steps 2 and 3 till convergence in the value of A i and α i is obtained. 

The convergence criteria for algorithm is: 3
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5. Compute Ci from Eq. (5.40) 
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5.2.1.2 Model for investment in setup cost reduction and quality improvement in a 

deteriorating production processes under common cycle approach 

 

In the common cycle (CC) approach ( TTTT m ==== ............21 ), the above expression for the 

expected total cost in Eq. (5.40) can be written as 
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subject to upper bound of the equality constraint of Eq. (5.39) given as 
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The equality constraint in Eq. (5.47) shows that time devoted to changeover ∑
=

m

i

is
1

is equal to the 

time available for machine setups Tκ . 

Minimization of the expected total cost function in Eq. (5.46) yield, 
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α α2* =    mi ,.......,2,1=       (5.50) 

To determine the optimal values of **,, iiAT α , the following algorithm is used. 

1. Initialize Ai0 and αi0 to the values given in the example data 

2. Determine T from Eq. (5.48) and the optimal cycle length is maximum of {T, ∑
=

m

i
is

1

1

κ
}.  

3. Determine Ai for oii AA ≤≤0 , mi ,.......,2,1=  and α i for oii αα ≤≤0 , mi ,.......,2,1=  

from Eqs. (5.49) and (5.50) using the value of T from step 2.  

4. Repeat steps 2 and 3 till convergence in the value of A i and α i is obtained. 
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The convergence criteria for algorithm is: 3
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5. Compute expected total cost from Eq. (5.46). 

 

5.2.1.3 Model for investment in setup cost reduction and quality improvement in a 

deteriorating production processes with inspection and restoration under time-varying lot sizes 

approach 

Moon et al., (2002) also presented imperfect process model with inspection and restoration under 

time-varying lot sizes to determine the optimal cycle length and optimal number of inspections. 

The process inspection cost carried out during production of item i is equal to ∑
=

m

i

iivn
1

 and the 

expected quality cost per unit time is equal to ∑
=

m

i

i

i
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1

. Moon et al., (2002) assumed that 

restoration cost to be a linear function of its detection delay and restoration time is negligible, 

and obtained the expected restoration cost per unit time as ∑∑
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θ −= . The objective function on the expected total annual cost per unit time of 

their model includes setup cost, holding cost, quality related cost, inspection cost and restoration 

cost and is 

Min ∑
= 











+







 +
++

+m

i ii

i

i

i

ii

i

i

iii

p

dr
T

n

RQ
H

T

vnA

1

0

θ
     (5.51) 

subject to the constraint in Eq. (5.39). 

 

The Lagrangian of the optimization problem given in Eq. (5.51) with the constraint set in Eq. 

(5.39) is written as 
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where λ2 is the Lagarange multiplier corresponding to the constraint set in Eq. (5.39). 

In the present study, considering the setup cost and quality level as decision variables, the total 

annual cost per unit time of the system composed of setup cost, holding cost, quality related cost, 

inspection cost and restoration cost and the amortized total capital cost ( )iaia ii ααφφ +  is written 

as 
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subject to equality constraint of Eq. (5.41). 

 

The Lagrangian function L of the above optimization problem in Eq. (5.53) with the constraint in 

Eq. (5.41) is 
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where λ2 in Eq. (5.54) is the Lagarange multiplier corresponding to the constraint set in Eq. 

(5.41). 

 

Using the objective function in Eq. (5.53) and the constraints in Eq. (5.42) and applying the 

Karush-Kuhn-Tucker (KKT) conditions for the minimum of the associated Lagrangian function 

in Eq. (17), yield 
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To determine the optimal values of **** ,,, iiii ATn α , the following algorithm is used. 

1. Initialize ∑
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λ , ni to unity, Ai0 and αi0 to the values given in the 

example data. 

2. Determine Ti from Eq. (5.55) and solve ∑
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 for mi ,.......,2,1=  to 

determine the converged value of λ2 using Newton-Raphson iterative procedure. The 

proof of convergence of λ2 is shown in the Appendix C.1. 

3. Determine ni using the converged value of λ2  

4. Repeat steps 2 and 3 till convergence in the value of ni is obtained. 

The convergence criteria for algorithm is: 3

1

,

1

, 10−

==

≤−∑∑
m

i

oldi

m

i

newi nn   

 

5. Determine A i for oii AA ≤≤0 , mi ,.......,2,1=  and α i for oii αα ≤≤0 , mi ,.......,2,1=  from 

Eqs. (5.56) - (5.58) using the converged values of ni and λ2.  

6. Repeat steps 2 to 5 till convergence in the values of A i and α i are obtained. 

The convergence criteria for algorithm is: 3
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7.  

a. If 1≤in , mi ,.......,2,1= , then choose 1=in  for mi ,.......,2,1= . Using A(ni) for 

oii AA ≤≤0 , mi ,.......,2,1=  and α(ni) for oii αα ≤≤0 , mi ,.......,2,1=  from Eqs. 

(5.56) - (5.58), and solve Eq. (5.55) to determine the converged value of T(ni) for 

mi ,.......,2,1= using Newton-Raphson iterative procedure. The proof of 

convergence of T(ni) is shown in the Appendix C.2. 
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b. If 1>in , mi ,.......,2,1= , then choose 1+<< iii jnj  for mi ,.......,2,1= , where j 

is a positive integer. Using A(ji) and A(ji+1) for oii AA ≤≤0 , mi ,.......,2,1=  and 

α(ji) and α(ji+1) for oii αα ≤≤0 , mi ,.......,2,1=  from Eqs. (5.56) - (5.58), and 

solve Eq. (5.55) to determine the converged value of T(ji) and T(ji+1) for 

mi ,.......,2,1=  using Newton-Raphson iterative procedure.  

8.  

a. If 1≤in , mi ,.......,2,1= , then compute C(ni) for mi ,.......,2,1=  from Eq. (5.53). 

b. If 1>in , mi ,.......,2,1= , then choose 1+<< iii jnj  for mi ,.......,2,1= , then 

compute C(ji) and C(ji+1) for mi ,.......,2,1=  respectively from Eq. (5.53) and 

choose the one with smaller value of sum as the optimal solution. 

 

5.2.1.4 Model for investment in setup cost reduction and quality improvement in a 

deteriorating production processes with inspection and restoration under common cycle 

approach 

In the common cycle (CC) approach, the above expression for the expected total cost in Eq. 

(5.53) can be written as 
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subject to the equality constraint of Eq. (5.47).  

Minimization of Eq. (5.59) yield, 
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Tdu

nbi

iii

iii

i
ρ

θ
α α2* =    mi ,.......,2,1=      (5.63) 

To determine the optimal values of *** ,,, iii ATn α , the following algorithm is used. 

1. Initialize ni to unity, Ai0 and αi0 to the values given in the example data. 

2. Determine T from Eq. (5.60) and optimal cycle length is maximum of {T, ∑
=

m

i

is
1

1

κ
}.  

3. Determine ni using the value of T from step 2 above. 

4. Repeat steps 2 and 3 till convergence in the value of ni is obtained. 

5. Determine A i for oii AA ≤≤0 , mi ,.......,2,1=  and α i for oii αα ≤≤0 , mi ,.......,2,1=  

from Eqs. (5.56) - (5.58) using the converged values of ni.  

6. Repeat steps 2 to 5 till convergence in the values of A i and α i are obtained. 

7.  

a. If 1≤in , mi ,.......,2,1= , then choose 1=in  for mi ,.......,2,1= . Using A(ni) for 

oii AA ≤≤0 , mi ,.......,2,1=  and α(ni) for oii αα ≤≤0 , mi ,.......,2,1=  from Eqs. 

(5.62) - (5.63), determine T from Eq. (5.60) numerically till convergence is 

obtained. The optimal cycle length is maximum of {T, ∑
=

m

i

is
1

1

κ
}. 

b. If 1>in , mi ,.......,2,1= , then choose 1+<< iii jnj  for mi ,.......,2,1= , where j 

is a positive integer. Using A(ji) and A(ji+1) for oii AA ≤≤0 , mi ,.......,2,1=  and 

α(ji) and α(ji+1) for oii αα ≤≤0 , mi ,.......,2,1=  from Eqs. (5.62) - (5.63), 

determine T(j) and T(j+1) from Eq. (5.60) numerically till convergence is 

obtained. The optimal cycle length is maximum of {T, ∑
=

m

i

is
1

1

κ
}. 

8.  

a. If 1≤in , mi ,.......,2,1= , then compute expected total cost C(ni) for mi ,.......,2,1=  

from Eq. (5.59). 

b. If 1>in , mi ,.......,2,1= , then choose 1+<< iii jnj  for mi ,.......,2,1= , then 

compute C(ji) and C(ji+1) for mi ,.......,2,1=  respectively from Eq. (5.59) and 

choose the one with smaller value of sum as the optimal expected total cost. 
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Table 5.4 Example data (ro=$10, r1=$0.1, ik= iα=0.1, ai =1000, bi =30) 
 

Item Ai  

($) 
θi  

(y) 
αi pi 

(units/y) 
di 

(units/y) 
ui  

($) 
hi  

($) 
si  

(y) 
vi  

($) 

1 125 1.2 0.20 5000 1850 30 12.50 0.00068 3 

2 100 0.5 0.25 3500 1150 200 87.50 0.00171 3 

3 110 0.8 0.30 3000 800 50 21.25 0.00091 3 

 
 

Table 5.5 Example data (ro=$10, r1=$0.2, ik= iα=0.1, ai =40, bi =30) 
 

Item Ai  

($) 
θi  

(days) 
αi pi 

(units/day) 
di 

(units/day) 
ui  

($) 
hi  

($) 
si  

(days) 
vi  

($) 

1 75 10 0.20 1550 300 8 0.5 0.05 2 

2 90 12 0.25 1890 400 5 0.4 0.08 2 

3 50 15 0.30 1415 250 10 0.8 0.06 2 

4 100 25 0.20 1260 300 12 1.0 0.05 2 

5 80 8 0.15 1625 200 6 0.6 0.15 2 

 

Table 5.6 Example data (ro=$150, r1=$10, ik= iα=0.1, ai =40, bi =30) 
 

Item Ai  

($) 
θi  

(days) 
αi pi 

(units/day) 
di 

(units/day) 
ui  

($) 
hi  

($) 
si  

(days) 
vi  

($) 

1 3000 80 0.12 133 20 10 0.0461 4.0 4 

2 1800 75 0.08 300 24 15 0.0312 2.4 4 

3 3600 140 0.10 266 30 25 0.0651 4.8 4 

4 1500 90 0.06 146 36 16 0.1180 2.0 4 

5 6000 210 0.15 532 40 20 0.1190 4.0 4 

6 30000 112 0.05 373 50 30 0.0847 8.0 4 

 
 

Table 5.7 Example data (ro=$10, r1=$2, ik= iα=0.1, ai =40, bi =30) 
 

Item Ai  

($) 
θi  

(days) 
αi pi 

(units/day) 
di 

(units/day) 
ui  

($) 
hi  

($) 
si  

(days) 
vi  

($) 

1 15 12.5 0.04 3075 400 0.6500 0.000130 0.125 2 

2 20 8.0 0.07 8000 400 0.1775 0.000355 0.125 2 

3 30 6.5 0.10 9500 800 0.1275 0.000255 0.250 3 

4 10 15.0 0.03 7500 750 1.0000 0.000200 0.125 2 

5 110 14.0 0.15 2000 80 2.7850 0.005570 0.500 3 

6 50 18.0 0.08 6015 80 0.2675 0.000535 0.250 2 

7 310 10.0 0.14 2400 104 1.5000 0.003000 1.000 3 

8 130 9.0 0.10 1300 340 3.2900 0.000580 0.500 6 

9 200 16.0 0.05 2000 340 0.9000 0.001800 0.700 4 

10 24 20.0 0.12 15038 400 0.0400 0.000080 0.125 2 



 134 

5.2.2 Numerical case studies 

Tables 5.4 – 5.7 show the data chosen by Moon et al. (2002). The time varying optimal solution 

and the expected total cost for imperfect process model are given in Table 5.8.  

 
 

Table 5.8 Optimal solutions and comparisons for imperfect process model 
 

Order periods 
Expected total cost 

Order periods, 
set up cost 
Expected total cost 

Order periods, 
quality level 
Expected total 
cost 

Order periods, 
setup cost, 
quality level 
Expected total cost 

Example 
Data 

Without 
investment (Moon 
et al., 2002) 

Investment in setup 
cost reduction 

Investment in 
quality 
improvement 

Investment in both 
setup cost reduction 
and quality 
improvement 

I T1=0.1453 y, 34.87 
days 
T2=0.0707 y, 16.96 
days 
T3=0.1546 y, 37.11 
days 
ETC=$ 9289.36 

T1=0.1191 y, 28.59 
days, 
T2=0.0753 y, 18.07 
days, 
T3=0.1434 y, 34.41 
days, 
A1 = $11.91, A2 = 
$7.53, 
A3 = $14.34 
ETC=$ 7216.31 

T1=0.1446 y, 
34.71 days, 
T2=0.0709 y, 
17.01 days, 
T3=0.1534 y, 
36.82 days, 
α1 = 0.0024, α2 = 
0.0006 
α3 = 0.0029 
ETC=$ 7450.65 

T1=0.1105 y, 26.51 
days,  
T2=0.0777 y, 18.66 
days, 
T3=0.1376 y, 33.02 
days 
A1 = $11.05, A2 = $7.78, 
A3 = $13.76 
α1 = 0.0032, α2 = 
0.0005, α3 = 0.0033 
ETC=$ 5348.45 

II T1=5.71 days, 
T2=7.06 days, 
T3=5.37 days, 
T4=4.27 days, 
T5=10.73 days 
ETC=$ 2461.82 

T1=5.69 days, 
T2=7.06 days, 
T3=5.39 days, 
T4=4.23 days, 
T5=10.80 days 
A1 = $22.75, A2 = 
$28.24 
A3 = $21.58, A4 = 
$16.90 
A5 = $43.20 
ETC=$ 2438.00 

T1=5.77 days, 
T2=7.13 days, 
T3=5.38 days, 
T4=4.23 days, 
T5=10.62 days 
α1 = 0.0224, α2 = 
0.0239 
α3 = 0.0378, α4 = 
0.0413 
α5 = 0.0306 
ETC=$ 2395.10 

T1=5.76 days, T2=7.13 
days,  
T3=5.41 days, T4=4.19 
days,  
T5=10.69 days 
A1 = $23.04, A2 = 
$28.53,  
A3 = $21.63, A4 = 
$16.76,  
A5 = $42.76 
α1 = 0.0224, α2 = 0.038,  
α3 = 0.0377, α4 = 
0.0418, 
α5 = 0.0304 
ETC=$ 2371.26 
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Table 5.9 Optimal solutions and comparisons for imperfect process model using common 
cycle (CC) approach 

 

Order periods, 
Expected total 
cost 

Order periods, 
set up cost, 
Expected total 
cost 

Order periods, 
quality level, 
Expected total 
cost 

Order periods, 
setup cost, 
quality level, 
Expected total cost 

Example 
Data 

Without 
investment 
(Moon et al., 
2002) 

Investment in 
setup cost 
reduction 

Investment in 
quality 
improvement 

Investment in both 
setup cost reduction 
and quality 
improvement 

I T=0.0949 y, 
22.78 days 
ETC=$ 
10164.86 

T=0.0949 y, 
22.78 days, 
A = $9.4932 
ETC=$ 7674.23 

T=0.0949 y, 
22.78 days, 
α1 = 0.0037, α2 

= 0.0004, α3 = 
0.0047 
ETC=$ 8071.62 

T=0.0949 y, 22.78 
days,  
A = $9.4932 
α1 = 0.0037, α2 = 
0.0004,  
α3 = 0.0047 
ETC=$ 5580.99 

II T=6.85 days 
ETC=$ 
2735.28 

T=6.85 days, 
A = $27.39 
ETC=$ 2718.25 

T=6.85 days, 
α1 = 0.0189, α2 

= 0.0248, α3 = 
0.0298, α4 = 
0.0256, α5 = 
0.0475 
ETC=$ 2655.65 

T=6.85 days, 
A = $27.39 
α1 = 0.0189, α2 = 
0.0248,  
α3 = 0.0298, α4 = 
0.0256,  
α5 = 0.0475 
ETC=$ 2638.63 

 
For the data given in Table 5.4, the expected total cost using the investment in both setup cost 

reduction and quality improvement is $5348.45 which is lower than the expected total cost 

without investment ($9289.36). Using investment in both setup cost reduction and quality 

improvement for the data given in Table 5.4, the setup cost and fraction of non-conforming items 

are reduced to A1 = $11.05, A2 = $7.78, A3 = $13.76, and α1 = 0.0032, α2 = 0.0005, α3 = 0.0033 

respectively. The order periods considering investment in both setup cost reduction and quality 

improvement for the data given in Table 5.4 are T1=0.1105 year, T2=0.0777 year, and T3=0.1376 

year. The imperfect process model using the data given in Table 5.5 also shows a reduction in 

the expected total cost from $ 2461.82 without investment to $ 2371.26 with investment in both 

setup cost reduction and quality improvement.  

 

The common cycle solution of imperfect process model using the data given in Table 5.4 and 5.5 

are given in Table 5.9. For the data given in Table 5.4, the optimal cycle length is taken as 
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0.0949 year and the expected annual total cost is obtained as $ 10,164.86. Considering the 

investment in both setup cost reduction and quality improvement for the data given in Table 5.4, 

the expected annual total cost is obtained as $ 5580.99, and the setup cost and fraction of non-

conforming items are reduced to A = $9.4932, α1 = 0.0037, α2 = 0.0004, α3 = 0.0047 respectively. 

The common cycle solution of imperfect process model using the data given in Table 5.5 also 

shows a reduction in the expected total cost from $ 2735.28 without investment to $ 2638.63 

with investment in both setup cost reduction and quality improvement. 

 

The time varying optimal solution and the expected total cost for imperfect process model with 

inspection and restoration using the data given in Table 5.4 and 5.5 are given in Table 5.10. For 

the data given in Table 5.4, the expected total cost using the investment in both setup cost 

reduction and quality improvement is $ 5485.19 which is lower than the expected total cost 

without investment ($ 8185.97). Using investment in both setup cost reduction and quality 

improvement for the data given in Table 5.4, the number of inspections are n1=1, n2=1, n3=1, 

which are lower than the number of inspections without investment (n1=3, n2=6, n3=4). The 

imperfect process model using the data given in Table 5.5 also shows a reduction in the expected 

total cost from $ 2378.06 without investment to $ 2353.64 with investment in both setup cost 

reduction and quality improvement.  
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Table 5.10 Optimal solutions and comparisons for imperfect process model with inspection 
and restoration 

 

Order periods, 
number of 
inspections 
Expected total cost 

Order periods, 
number of 
inspections and 
set up cost 
Expected total 
cost 

Order periods, 
number of 
inspections and 
quality level 
Expected total 
cost 

Order periods, number of 
inspections, setup cost 
and quality level 
Expected total cost 

Example 
Data 

Without investment 
(Moon et al., 2002) 

Investment in 
setup cost 
reduction 

Investment in 
quality 
improvement 

Investment in both setup 
cost reduction and 
quality improvement 

I T1=0.1448 y, 34.75 
days, 
T2=0.0708 y, 16.99 
days,  
T3=0.1536 y, 36.86 
days,  
n1=3, n2=6, n3=4 
ETC=$ 8185.97 

T1=0.1079 y, 
25.91 days,  
T2=0.0775 y, 
18.61 days,  
T3=0.1357 y, 
32.56 days, 
n1=2, n2=6, 
n3=3 
A1 = $10.81, A2 

= $7.75,  
A3 = $13.58 
ETC=$ 6054.92 

T1=0.1488 y, 
35.70 days,  
T2=0.0739 y, 
17.73 days,  
T3=0.1580 y, 
37.91 days,  
n1=3, n2=5, n3=3 
α1 = 0.0071, α2 = 
0.0027,  
α3 = 0.0085 
ETC=$ 7830.72 

T1=0.1123 y, 26.96 days, 
T2=0.0782 y, 18.78 days,  
T3=0.1393 y, 33.43 days,  
n1=1, n2=1, n3=1 
A1 = $11.22, A2 = $7.82, 
A3 = $13.92 
α1 = 0.0031, α2 = 0.0005, 
α3 = 0.0032 
ETC=$ 5485.19 

II T1=5.78 days, 
T2=7.13 days, 
T3=5.38 days, 
T4=4.23 days, 
T5=10.61 days 
n1=9, n2=11, n3=8, 
n4=6, n5=9 
ETC=$ 2378.06 

T1=5.76 days, 
T2=7.13 days, 
T3=5.41 days, 
T4=4.19 days, 
T5=10.68 days,  
n1=8, n2=10, 
n3=8, n4=5, 
n5=8 
A1 = $23.06, A2 

= $28.52 
A3 = $21.63, A4 

= $16.74 
A5 = $42.72,  
ETC=$ 2353.42 

T1=5.78 days, 
T2=7.13 days, 
T3=5.38 days, 
T4=4.23 days, 
T5=10.61 days 
n1=8, n2=10, 
n3=8, n4=5, n5=8 
α1 = 0.1788, α2 = 
0.2386 
α3 = 0.30, α4 = 
0.20 
α5 = 0.15 
ETC=$ 2377.48 

T1=5.76 days, T2=7.13 
days,  
T3=5.41 days, T4=4.19 
days,  
T5=10.68 days 
n1=8, n2=10, n3=8, n4=5, 
n5=8 
A1 = $23.06, A2 = $28.52, 
A3 = $21.63, A4 = $16.74, 
A5 = $42.72 
α1 = 0.1793, α2 = 0.2385, 
α3 = 0.30, α4 = 0.20, α5 = 
0.15 
ETC=$ 2353.64 

 
Using investment in both setup cost reduction and quality improvement for the data given in 

Table 5.5, the number of inspections are n1=8, n2=10, n3=8, n4=5, n5=8, which are lower than the 

number of inspections without investment (n1=9, n2=11, n3=8, n4=6, n5=9). Using investment in 

both setup cost reduction and quality improvement for the example II, the fraction of non-

conforming items are reduced to α1 = 0.1793, α2 = 0.2385, α3 = 0.30, α4 = 0.20, α5 = 0.15 
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respectively. It is shown that no investment is required for quality improvement for items 3 to 5 

respectively.  

 
Table 5.11 Optimal solutions and comparisons for imperfect process model with inspection 

and restoration using common cycle (CC) approach 
 

Order periods, 
Expected total cost 

Order periods, 
set up cost, 
Expected total 
cost 

Order periods, 
quality level, 
Expected total 
cost 

Order periods, 
setup cost, 
quality level, 
Expected total cost 

Example 
Data 

Without 
investment (Moon 
et al., 2002) 

Investment in 
setup cost 
reduction 

Investment in 
quality 
improvement 

Investment in both 
setup cost reduction 
and quality 
improvement 

I T=0.0949 y, 22.78 
days, 
n1=2, n2=7, n3=2 
ETC=$ 8811.58 

T=0.0949 y, 
22.78 days, 
n1=2, n2=7, n3=2 
A = $9.4932 
ETC=$ 6308.30 

T=0.0949 y, 22.78 
days, 
n1=1, n2=1, n3=1 
α1 = 0.0037, α2 = 
0.0004, α3 = 
0.0047 
ETC=$ 8167.15 

T=0.0949 y, 22.78 
days,  
n1=1, n2=1, n3=1 
A = $9.4932 
α1 = 0.0037, α2 = 
0.0004, α3 = 0.0047 
ETC=$ 5715.12 

II T=6.85 days 
n1=2, n2=2, n3=2, 
n4=1, n5=1 
ETC=$ 2692.25 

T=6.85 days, 
n1=11, n2=11, 
n3=11, n4=9, n5=6 
A = $27.39 
ETC=$ 2619.65 

T=6.85 days, 
n1=11, n2=11, 
n3=11, n4=9, n5=6 
α1 = 0.20, α2 = 
0.25,  
α3 = 0.30, α4 = 
0.20, 
α5 = 0.15 
ETC=$ 2636.68 

T=6.85 days, 
n1=11, n2=11, n3=11, 
n4=9, n5=6 
A = $27.39 
α1 = 0.20, α2 = 0.25,  
α3 = 0.30, α4 = 0.20, 
α5 = 0.15 
ETC=$ 2619.65 

 
The common cycle solution of imperfect process model with inspection and restoration using the 

data given in Table 5.4 to 5.7 are given in Table 5.11. For the data given in Table 5.4 without 

investment, the expected annual total cost is obtained as $ 8811.58 and the number of inspections 

are n1=2, n2=7, n3=2. Considering the investment in both setup cost reduction and quality 

improvement for the data given in Table 5.4, the expected annual total cost is obtained as $ 

5715.12, and the number of inspections are n1=1, n2=1, n3=1 respectively. The common cycle 

solution of imperfect process model using the data given in Table 5.5 also shows a reduction in 

the expected total cost from $ 2692.25 without investment to $ 2619.65 with investment in both 

setup cost reduction and quality improvement. It is shown that no investment is required for 

quality improvement for all the items. 
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Table 5.12 shows the comparison of results of the expected total cost for the data given in Table 

5.4 to 5.7 considering the investment in setup cost reduction and quality improvement. Data 

given in Table 5.6 is chosen to consider a situation where proportion of time available for setups 

is high and data given in Table 5.7 is applicable to a situation where as many as 10 items are to 

be produced in a single machine. The numerical study for the data given in Table 5.4 to 5.7 in 

Table 5.12 shows reduction in the expected total cost with investment in both setup cost 

reduction and quality improvement for (i) imperfect process model and (ii) imperfect process 

model with inspection and restoration. 

 

Table 5.12 A comparative study of the expected total average cost 
 

Example Data  

I II III IV 

Imperfect process model without investment 
(Moon et al. 2002) 

9289.36 2461.82 1190.79 120.49 

setup cost reduction 7216.31 2438.00 910.68 119.81 

quality improvement 7450.74 2395.10 1181.86 88.22 

Imperfect process 
model with 
investment in both setup cost 

reduction and quality 
improvement 

5348.45 2371.26 909.17 88.04 

Imperfect process model with inspection and 
restoration without investment (Moon et al. 
2002) 

8185.97 2378.06 1166.74 72.99 

setup cost reduction 6054.92 2353.42 893.06 72.59 

quality improvement 7830.72 2377.48 1166.51 72.82 

Imperfect process 
model with 
inspection and 
restoration with 
investment in 

both setup cost 
reduction and quality 
improvement 

5485.19 2353.64 893.06 72.59 
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Figures 5.4 – 5.6 show the variation of expected total cost for imperfect process model with 

inspection and restoration using the data given in Table 5.4. Figures 5.4 and 5.5 show the 

expected total cost (ETC) increases with increase in ai (rate of increase in dollar investment per 

fraction of reduction in setup costs, (Ai)) and bi (rate of increase in dollar investment per fraction 

of reduction in non-conforming units, (αi)) respectively. Figures 5.4 - 5.5 show that increase in 

Fig. 5.6 Variation of ETC with ai and bi 
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ETC with increase in ai is more as compared to increase in ETC with increase in bi, due to the 

higher magnitude of ai. Figure 5.6 shows the variation of ETC with both ai and bi respectively.  

 

Figures 5.4 and 5.5 show the expected total cost (ETC) increases with increase in ai (rate of 

increase in dollar investment per fraction of reduction in setup costs, (Ai)) and bi (rate of increase 

in dollar investment per fraction of reduction in non-conforming units, (αi)) respectively. Figures 

5.4 - 5.5 show that increase in ETC with increase in ai is more as compared to increase in ETC 

with increase in bi, due to the higher magnitude of ai. Figure 5.6 shows the variation of ETC with 

both ai and bi respectively. For the data considered in the analysis, the increase in expected total 

cost (ETC) with increase in ai is significant as compared to increase in expected total cost (ETC) 

with increase in bi.  

 

5.3 Managerial Implications 

The managerial implications are as follows: 

• Investment in setup cost reduction is appropriate for high value of initial setup cost (Ko), 

high demand rate (D), low fractional opportunity cost of capital per unit time (iK), small 

production run time (T). From Eqs. (5.4), (5.5) and (5.8), investment in setup cost 

reduction is possible when *
KK o >  or 1>

PTBi

DK

KK

o . 

• Investment in quality improvement is appropriate for high value of percentage of 

defective items produced when the process is in the out-of-control state (αo), high cost 

incurred for producing a defective item (s), high demand rate (D), low fractional 

opportunity cost of capital per unit time (iα), more production run time (T) and less 

number of inspections undertaken during each production run (N). From Eqs. (5.19), 

(5.20) and (5.23), investment in quality improvement is possible when *αα >o  or 

1exp11 >


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• Under the scenario of investment in both setup cost reduction and quality improvement, 

investment in quality improvement but not in setup cost reduction is recommended under 

conditions of high restoration cost and high inspection cost of the process. Similarly 

under this scenario of investment in both setup cost reduction and quality improvement, 
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investment in setup cost reduction but not in quality improvement is recommended for 

low value of deterioration rate of the process and low value of restoration cost. Table 5.3 

shows that for all values of deterioration rate of the production process (µ=0.1 to 0.5) and 

the corresponding higher values of restoration cost (r) and inspection cost (v) considered 

in this study, investment is only needed for quality improvement and not in setup cost 

reduction is required for µ=0.1, (r, v)= (180, 10), (180, 20) and for µ=0.2, (r, v)= (60, 20), 

(90, 10), (90, 20) respectively. Similarly for deterioration rate of the process (µ) of 0.1 

and inspection cost (v) of 10 considered in this study, the investment in setup cost 

reduction but not in quality improvement is required for restoration cost values (r) of 10, 

20, 30 and 60 respectively. 

• Reduction in the expected total cost results with investment in both setup cost reduction 

and quality improvement for all the cases considered in this study viz., (i) imperfect 

process model under time varying approach, (ii) imperfect process model under common 

cycle approach, (iii) imperfect process model with inspection and restoration under time 

varying approach, and (iv) imperfect process model with inspection and restoration under 

common cycle approach. The numerical study also shows (i) reduction in the expected 

total cost of time-varying lot sizes approach over common cycle approach, (ii) reduction 

in the number of inspections with investment in setup cost reduction and quality 

improvement. The results of expected total cost obtained based on the Example data I are 

as follows. As shown in Table 5.8 for optimal solutions of imperfect process model under 

time varying approach, the expected total cost with investment in both setup cost 

reduction and quality improvement is $ 5348.45, while without investment (Moon et al., 

2002) is $ 9289.36. Table 5.9 shows that for optimal solutions of imperfect process 

model using common cycle (CC) approach, the expected total cost with investment in 

both setup cost reduction and quality improvement is $ 5580.99, while without 

investment (Moon et al., 2002) is $ 10164.86. Table 5.10 shows that for optimal solutions 

of imperfect process model with inspection and restoration under time varying approach, 

the expected total cost with investment in both setup cost reduction and quality 

improvement is $ 5485.19, while without investment (Moon et al., 2002) is $ 8185.97. As 

shown in Table 5.11 for optimal solutions of imperfect process model with inspection and 

restoration using common cycle (CC) approach the expected total cost with investment in 
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both setup cost reduction and quality improvement is $ 5715.12, while without 

investment (Moon et al., 2002) is $ 8811.58. Table 5.10 shows that for optimal solutions 

of imperfect process model with inspection and restoration under time varying approach, 

the number of inspections for the three items with investment in both setup cost reduction 

and quality improvement are 1, 1, and 1 respectively, while without investment (Moon et 

al., 2002) are 3, 6, and 4 respectively. As shown in Table 5.11 for optimal solutions of 

imperfect process model with inspection and restoration using common cycle (CC) 

approach the number of inspections for the three items with investment in both setup cost 

reduction and quality improvement are 1, 1, and 1 respectively, while without investment 

(Moon et al., 2002) are 2, 7, and 2 respectively. 


