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Abstract

Peer-to-peer overlay networks brought together end-users from differ-

ent parts of the world and enabled them to share and mobilize re-

sources. Peer-to-peer networks have seen widespread deployment in

applications related to file-sharing, sharing of computing resources,

music streaming, etc. Due to their decentralized and distributed archi-

tecture, peer-to-peer overlays involve many challenges of security. The

distributed and decentralized peer-to-peer infrastructure has offered

a lucrative alternative to bot-masters to build botnets which are not

prone to any single point-of-failure. Recent botnets utilize the peer-

to-peer architecture for their command-and-control. Such botnets have

demonstrated high resilience towards break-down and take-down at-

tempts.

A significant portion of this thesis focuses on the problem of detec-

tion of peer-to-peer botnets in the presence of traffic from benign peer-

to-peer applications. Our approaches leverage on the behavioral dif-

ferences between peer-to-peer botnets and benign peer-to-peer appli-

cations. The first approach combines the benefits of flow-based and

conversation-based mechanisms with a two-tier architecture, and ad-

dresses the limitations of the respective mechanisms. By extracting

statistical features from the network traces of peer-to-peer applica-

tions and botnets, we built supervised machine learning models which

could accurately differentiate between benign peer-to-peer applications

and peer-to-peer botnets, and could also detect unknown peer-to-peer



botnet traffic with high accuracy. The second approach further en-

hances conversation-based mechanisms by leveraging on the timing

and data patterns in peer-to-peer botnets. The resultant approach uti-

lizes Fourier transform and information entropy to extract features

from the traces of peer-to-peer botnets and benign peer-to-peer appli-

cations. We built detection models with multiple supervised machine

learning algorithms, and demonstrated that our detection approach is

resilient towards evasive P2P botnets which may try to evade detec-

tion by deliberate injection of arbitrary noise in their communication

patterns. With our approach, we could detect peer-to-peer botnet traf-

fic in the presence of injected noise with True Positive rate as high

as 90%. The results from peer-to-peer botnet identification modules

are further used by a ‘firewall’ module to generate a dynamic rule-set.

An Iptables-based firewall was setup on our testbed’s Gateway ma-

chine. For the prototype implementation, rules were implemented to

rate-limit the traffic from benign peer-to-peer applications, drop traffic

from peer-to-peer bots, etc.

The third approach studies the problem of strategic positioning of in-

trusion detection systems in a peer-to-peer environment involving a

number of peers and super-peers (who have higher responsibilities in

the network). A malicious entity may become part of the peer-to-peer

network by joining from any part of the network. It can attack a super-

peer and thus disrupt the functioning of the peer-to-peer network. We

use game theory to model the interactions between the adversary and

the peers. Peers may try to secure the network by running intrusion de-

tection systems at certain strategically-chosen locations in the network.

But, a deterministic schedule of deploying the intrusion detection sys-

tems can be observed and thwarted by an adversary. In our work,



we explore the problem of strategically positioning intrusion detection

systems in a peer-to-peer network with a randomized, game-theoretic

approach. This approach distributes the responsibility of running the

intrusion detection systems between the peers in a randomized fashion

and minimizes the probability of a successful attack.

Lastly, we propose a scalable and distributed, Hadoop-based frame-

work for the detection of peer-to-peer botnets. Our work uses the

Hadoop-ecosystem to adopt a ‘host-aggregation based’ approach which

aggregates behavioral metrics for each peer-to-peer host seen in net-

work communications, and uses them to distinguish between benign

peer-to-peer hosts and hosts infected by peer-to-peer botnets. Further,

we propose a distributed data-collection architecture where data col-

lectors sit closer to the nodes in the network. It can monitor inside-to-

inside LAN traffic, as opposed to relying solely on the NetFlow infor-

mation available at a backbone router. Our approach is scalable and

distributed by design, and is especially beneficial for the detection of

smart peer-to-peer bots inside the perimeter of a network – which talk

to each other and send upgrades to themselves on LAN in a ‘peer-to-

peer’ fashion, and limit communication to the outside world via one

or two peers only.
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Chapter 1

Introduction

1.1 P2P networks

Computer networking has undergone a paradigm change over the past decade,

with the number of users, applications, and computing devices going through an

explosive growth. The past decade saw the immense rise of the Peer-to-Peer (P2P)

computing paradigm. In the beginning of the twenty-first century, the P2P archi-

tecture attracted a lot of attention of developers and end-users alike, with the share

of P2P over the Internet in different continents being reported to be in the range

of 45% to 70% [Ipoque 2008]. As an increasing number of users got access to pow-

erful processors, large storage spaces, and increasing bandwidth, P2P networks

presented a great opportunity to share and mobilize resources. The runaway suc-

cess of P2P applications is primarily attributed to the ease of resource sharing

provided by them – be it in the form of music, videos, files (BitTorrent, eMule,

Gnutella, etc.), or sharing of computing resources (SETI @ home project). Apart

from these, the P2P architecture has also been widely used for music streaming

(Spotify), IPTV (LiveStation) and Voice-over-IP based services (Skype1). The 2014

1Skype has now moved to a cloud-based architecture [Gillet 2013].

1



1.1 P2P networks

global Internet phenomena report by Sandvine [Sandvine 2014] points to the over-

all percentage of P2P traffic to be 27% in the Asia-Pacific, with BitTorrent being

the dominant application of P2P.

[Androutsellis-Theotokis & Spinellis 2004] provide a comprehensive definition for

P2P computing systems: “Peer-to-peer systems are distributed systems consisting of in-

terconnected nodes able to self-organize into network topologies with the purpose of shar-

ing resources such as content, CPU cycles, storage and bandwidth, capable of adapting to

failures and accommodating transient populations of nodes while maintaining acceptable

connectivity and performance, without requiring the intermediation or support of a global

centralized server or authority". The client-server based architectures are character-

ized by an asymmetric relationship between client and server, wherein the client

queries and the server responds. In contrast to that are the distributed P2P sys-

tems where every node acts as both a server and a client. The construction of P2P

networks is in the form of an ‘overlay’ on top of the IP layer, typically with a de-

centralized protocol allowing ‘peers’ to share resources. A P2P overlay network is

a logical network at the application layer providing connectivity, routing and mes-

saging amongst addressable end-points of the communication. The ‘peers’ form a

set of interconnections to share and mobilize resources such that peers have sym-

metric roles in the overlay for both message routing and resource sharing [Buford

et al. 2008]. Unlike the client-server model, a P2P network connects several peers

directly. The architecture of a P2P network is determined by the characteristics

of its overlay network, placement and scope of data, and the protocols used for

communication. The choice of the architecture influences how the network can be

used for various tasks like searching and downloading.

In a P2P network, messaging and search APIs are used by the peer to communi-

cate with other peers and search for contents from others. Routing and forwarding

allows each peer to maintain connection state to neighboring peers, which in turn
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1.1 P2P networks

Figure 1.1: Generic peer architecture

could include neighbor discovery and state maintenance within the overlay. The

generic peer architecture is given in Figure 1.1 (adopted from [Buford et al. 2008]).

Using bootstrapping peers, peers could join and leave the overlay network. The

content storage functionality at a peer should facilitate access to the stored ob-

ject locally as well as by other peers using improved search indices and a query

interface. Peers should also self-configure and assess their capabilities based on

resource availabilities and stability.

1.1.1 Categorization of P2P networks

Many different designs of P2P networks have led to researchers proposing vari-

ous kinds of categorization. Based on the topology, P2P networks are generally

classified as being ‘Unstructured’ and ‘Structured’ [Lua et al. 2005].

Peers in an unstructured P2P network are organized in a random graph. The

links between nodes are established arbitrarily and hence there is no correlation
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Figure 1.2: Unstructured P2P network

between a peer and the content being managed by it. A random graph is formed

for a set of n isolated vertices by adding successive edges between pair of vertices

uniformly at random [Buford et al. 2008]. Random graphs are known to be robust

against partition [Vishnumurthy & Francis 2004] and provide connectivity and

expansion even for very small degrees [Wormald 1999]. Random networks have

demonstrated resilience against failures [Kim & Médard 2004]. An example of

unstructured P2P topology is given in Figure 1.2. Unstructured P2P networks use

flooding, random walks or expanding Time-to-Live (TTL) search on the graph to

query content stored by the participating peers [Lua et al. 2005]. If a peer wants

to find some piece of information in the network, the query has to be flooded

through the network in order to find as many peers as possible sharing that in-

formation. In such a system, the network is easy to construct. Unstructured P2P

networks such as Freenet [Clarke et al. 2001], Gnutella, Direct Connect, etc. offer

decentralization and simplicity, but may require O(N) hops (worst case complex-

ity) to search a file when the network is made of N nodes.

In contrast to the unstructured P2P networks, structured P2P overlay networks

tightly control both the network topology and the placement of content. The

content in such systems is not placed at random peers but rather at a specified

location. Every data item in the overlay network is assigned a key, and peers are
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Figure 1.3: Structured P2P network

organized into a graph that maps each data-key to a peer. This enables efficient

discovery of data items using the key of a data element [Sit & Morris 2002]. Specif-

ically, the content is stored at specified locations based on distributed hash tables

(DHTs), which are decentralized and distributed systems providing a lookup ser-

vice similar to a hash table. An example is given in Figure 1.3. With the DHT

data structure and algorithm, peers can easily map data-keys to nodes. This facil-

itates faster lookup for any data object in a small number of overlay hops. These

networks provide a stable and robust mechanism for storing and retrieving con-

tent. Content Addressable Network (CAN) [Ratnasamy et al. 2001], Chord [Stoica

et al. 2001], and Pastry [Rowstron & Druschel 2001] are some examples of struc-

tured P2P overlays.

P2P overlays are also categorized based on the degree of centralization. In the

true sense of the term, P2P overlays are expected to be fully decentralized. This is
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however not true in practice.

Purely decentralized P2P networks involve all peers with more or less the same

role. All participating peers enjoy the same share of resources in the network

and have similar responsibilities. Such networks exhibit robustness to peer-churn

(joining and leaving of peers) and node failures. However, peers have limited

knowledge about the P2P network. Therefore, purely decentralized overlays usu-

ally do not provide guarantee on search efficiency and content availability. Early

versions of Gnutella (0.4), FreeHaven, Freenet, Chord, Pastry and Tapestry are

examples of this architecture.

Partially decentralized P2P architectures introduce the notion of ‘super-peers’ or

‘ultra-peers’. The majority of overlay responsibilities (related to routing, indexing,

etc.) are assigned to a small subset of these more powerful nodes. A super-peer

may be chosen based on the participation/contribution of the peer in the net-

work, its uptime, bandwidth, publicly visible IP address, etc. Super-peers are

connected among themselves in a pure decentralized architecture. Introduction

of super-peers does not bring the problem of single point of failure since they are

chosen dynamically. If a super-peer fails or leaves the network, local peers auto-

matically connect to another super peer and the network will chose a replacement

for the failed super-peer. Gnutella2, Kazaa and eMule are some examples of this

architecture. Skype also had a super-peer based architecture.

Hybrid decentralized architecture uses a centralized facility to allow interactions

between peers. The central server, in general, maintains the metadata, file indices,

etc. If the central server fails, peers can no longer reach out to each other. Napster

and Direct Connect are examples of this architecture.
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1.1.2 Issues of security and privacy

P2P networks and applications have drawn a significant attention from the com-

munity of researchers. P2P file-sharing is notorious for being a source of informa-

tion leakage, piracy, spread of malware etc., and it has known to become a serious

concern for Internet Service Providers (ISPs), Governments and other public and

private organizations.

To detect and prevent information leakage from an internal node or user’s ma-

chine, network administrators must deploy appliances that can handle these types

of applications in an intelligent manner while allowing the users to not worry

about the security and privacy concerns that could arise out of such usage. P2P

file sharing applications such as BitTorrent allow people to share files amongst

themselves. Sharing files on one’s computer with unknown users (‘peers’) on a

public Internet by creating logical identities brings in natural concerns related to

security and privacy. In order to access and share files on one’s computer within

a P2P network, one must open a specific TCP/UDP port through the firewall and

allow the P2P application to communicate. In effect, once firewall has opened

the port, one can no longer be protected from malicious traffic coming through

it. Another major security concern while using P2P applications is to determine

the authenticity of the content that is downloaded or accessed. In other words,

how do you ensure that you have not received malicious content in the form of

spyware or a bot? The self-configurable nature of a peer and the dependence of

peers with each other allows malicious peers to abuse the trust. Since internals

are exposed to fellow peers in the name of sharing or distributing the workload,

adversaries can leverage this to compromise the P2P network and create havoc for

other users.

Furthermore, P2P traffic has many characteristics that overlap with malicious traf-

fic. For example: multiple persistent high-throughput flows (similar to spyware),
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Table 1.1: Well-known port numbers used by several P2P applications

Application TCP Port UDP Port
Direct Connect 411, 412, 1025–32000 1025–32000
eDonkey 3306, 4242, 4500, 4501, 4661–4674, 4677, 4678,

4711, 4712, 7778
4665, 4672

Gnutella 6346, 6347 6346, 6347
Kazaa 1214 1214
Limewire 6346 6347
BearShare 6346 6346
eMule 4662 4672
BitTorrent 6881–6889 6881–6889
winMx 6699 6257

communication with centralized P2P trackers (also seen in botnets), large num-

ber of simultaneous peer connection requests, many of which are unsuccessful

due to peer-churn (similar to self-propagating malware infections and port-scan

attacks), communication on uncharacteristic ports, receiving requests from a peer

and forwarding those requests to neighbors immediately, trying to connect using

both TCP and UDP ports, etc. Consequently, in addition to consuming consider-

able network resources, P2P traffic also creates several issues for network security

devices such as Intrusion Detection Systems (IDS), firewalls, etc.

With the proliferation of P2P systems, it is critical to consider the impact of these

systems on the security of an Internet environment that is already struggling from

several security issues. The usage of P2P applications has not been regulated

much by policy-makers in most of the countries. Present day IDS/IPS solutions

generally block P2P traffic at network as a part of their policy enforcement mech-

anism. This is not an optimal solution as end-user flexibility is lost and rule

enforcements are only at the organizations boundary. Commercial security ap-

pliances like Cyberoam, FortiGate (from Fortinet), etc. detect and alert policy

violations for use of P2P applications using techniques like port-based analysis

and protocol-analysis. However, majority of P2P applications today randomize
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their port numbers and also allow their users to manually change the default port

numbers (see Table 1.1), making it difficult for perimeter security appliances to

effectively use port-based analysis. Protocol-analysis may also fail if encryption

or tunneling is used to hide the traffic. It is also frequently seen that user-owned

devices (like smart-phones and tablets) connect to torrent-based websites on the

Internet directly over cellular networks (3G, 4G, etc.). In this way, they bypass

organizational enforcements and the IDS/firewall solutions placed on the periph-

ery of the network. If such devices get infected by a malware while being directly

connected to the Internet, they pose a security threat to their organization when

they connect to the organizational network again. Hence, there is a great need of

efficient mechanisms to detect and classify malicious traffic in a P2P environment.

1.2 Background on P2P botnets

As P2P networks are inherently modeled without any centralized server, they

lack a single point of failure [Buford et al. 2008]. This resilience offered by P2P

networks has also attracted the attention of adversaries in the form of bot-masters

(a.k.a. bot-herders). A ‘bot’ is a computer program which enables the operator

to remotely control the infected system where it is installed. A network of such

compromised end-hosts under the remote command of a master (i.e., the bot-

master) is called a ‘Botnet’. The ability to remotely command such bots coupled

with the sheer size of botnets (numbering to tens of thousands of bots) gives the

bot-masters immense power to perform nefarious activities. Botnets are employed

for spamming, Bitcoin mining, click-fraud scams, distributed denial of service

(DDoS) attacks, etc. on a massive scale, and generate millions of dollars per year

in revenue for the bot-master [Kanich et al. 2011]. Botnets are being touted as the

largest threat to modern networks [Microsoft 2010].
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Figure 1.4: A centralized botnet

The command-and-control (C&C) communication channel is the key aspect of any

botnet. Traditional botnets had a centralized architecture (e.g., Gaobot, Spybot, R-

bot, etc.), wherein the bot-master commanded the bots using one or few C&C

servers (see Figure 1.4). Internet Relay Chat (IRC) had been the most commonly

used communication channel. A centralized architecture suffered from an obvi-

ous drawback that if the C&C server is identified and taken down, the bot-master

loses control over his/her bots. The distributed and decentralized P2P infrastruc-

ture has offered a lucrative alternative to bot-masters to build botnets which are

not prone to any single point-of-failure. Recent botnets utilize the P2P architecture

for their C&C communications (see Figure 1.5). The bots create an ‘overlay net-

work’ amongst themselves and use P2P channels to exchange commands, pass-on

stolen information, etc. Although setting up P2P communication channels can

be more costly and will suffer from higher latency (compared to a centralized

communication channel), it offers a great advantage to the bot-master in terms

of high resilience towards network break-down and take-down attempts [Rossow

et al. 2013, Andriesse et al. 2013]. Even if a few bots in the network are identified

or taken down, the botnet does not break-down.

10



1.2 Background on P2P botnets

Figure 1.5: A P2P botnet

A number of P2P-based botnets have been seen over the past decade, and a few of

them have been taken down recently with the combined effort of multiple nations.

Some notable example of P2P botnets include the Zeus botnet, the Storm botnet,

its improved version as the Waledac botnet, etc.

The P2P variant of Zeus botnet, also known as ‘Gameover Zeus’ [Drinkwater 2014],

has been a popular toolkit amongst bot-creators which has been tweaked and im-

provised to create newer botnets. The recent banking trojan ‘Dridex’ also belongs

to the Gameover Zeus family [Mimoso 2015]. The massive Citadel botnet [Se-

gura 2012] is also known to be a variant of Zeus. Citadel is believed to have stolen

more than 500 million USD from bank accounts over 18 months. It was reported

in 2013 that 88% of the botnet has been taken down by the combined efforts of

Microsoft and several security agencies and authorities of more than 80 countries

[Fisher 2013]. However, reports in 2014 claim that the botnet is on the rise again,

with a tweaked version being used to target a small number of European banks

[Drinkwater 2014]. A variant of the Zeus P2P botnet also targeted Nokia phones
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using Symbian OS [Greene 2010]. The botnet operated by installing a malware on

the smart phone (via drive-by download from infected websites), which was used

to steal the username-password credentials of the victim’s online bank account

transactions. The stolen details were forwarded to the bot-master.

Storm, a state-of-the-art botnet of its time, was known to comprise of at least a few

million ‘bots’ when at its peak. It was involved in massive spamming activities in

early 2007. Even the anti-spamming websites which targeted Storm came under

a DDoS attack by the botnet [Stewart 2007]. Researchers have confirmed that the

Waledac botnet is an improved version of the Storm botnet [Lelli 2011]. Waledac

was capable of sending about 1.5 billion spam messages a day. It also had the

capabilities to download and execute binaries and mine the infected systems for

sensitive data. It was taken down in the year 2010.

Perhaps the most notable example in this regard is of the highly acclaimed and

sophisticated Stuxnet botnet. Although Stuxnet targeted SCADA systems, and

detection of such botnets cannot be discussed in the same vein as that of Internet

botnets, it is worth mentioning that Stuxnet also used the P2P architecture for

communication between its peers over LAN [Murchu 2010].

A P2P bot’s life cycle consists of the following stages:

• Infection stage, during which the bot spreads (this might happen through

drive-by downloads, a malicious software being installed by the end-user,

infected USB sticks, etc.)

• Rally stage, where the bot connects with a peer list in order to join the P2P

network

• Waiting stage, where the bot waits for the bot-master’s command (and does

not exhibit much activity otherwise)

• Execution stage, in which it actually carries out a command, such as a denial
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of service (DoS) attack, generate spam emails, etc.

To evade detection by IDS and firewalls, botnets tend to keep their communication

patterns (with the bot-master or other bots) quite stealthy. IDS and firewalls,

which rely on anomalous communication patterns to detect malicious behavior of

a host, are not very successful in detecting such botnets. Generating little traffic,

such bots ‘lie low’ and thus pass under the radars of IDS/firewalls.

With the advent of the Internet of Things (IoT), the possibility of malware taking

control of ‘smart’ appliances such as television, air-conditioners, refrigerators, etc.

will not be limited to imagination. In fact, there have been recent reports of

‘smart’ refrigerators and cars being hacked, and Wi-Fi enabled LED bulbs having

security weaknesses [Leyden 2014]. Since P2P computing systems are expected to

be an integral part of IoT [Bedrosian 2013], we can expect that the evolution of

P2P botnets will continue and the detection of such botnets will continue to be an

important research paradigm.

1.3 Firewalls, IDS and IPS

Many different types of devices and mechanisms are used to provide security at

the network perimeter of an enterprise. Firewalls and Intrusion Detection/Preven-

tion Systems are two of the most significant as well as foundational tools in this

regard. In this section, we will present a brief background about these techniques.

A firewall is a network security system that enforces an access control policy on

a network. It can be software-based or hardware-based, and it controls incoming

and outgoing network traffic based on a set of rules. Firewalls can be thought of

as a pair of mechanisms: one which exists to block traffic, and the other which ex-

ists to permit traffic. Policies are typically based on protocol type, source address,

destination address, source port, and/or destination port. Packets that do not
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Figure 1.6: A generic firewall

match the policy are rejected. A firewall establishes a barrier between a trusted

and secure ‘home’ network and another network (e.g., the Internet) that is as-

sumed not to be secure and trusted. A generic example of a firewall is given in

Figure 1.6, wherein the trusted ‘home’ network is on the left, and the untrusted

network (Internet) is on the right.

Intrusion detection is the process of monitoring the events occurring in a computer

system or network, and analyzing them for signs of possible incidents, which are

violations or imminent threats of violation of computer security policies, accept-

able use policies, or standard security practices [Scarfone & Mell 2007]. An IDS is

an application or a device which monitors the network and/or system activities

for such policy violations, threats, malicious activities etc., and generates reports

for the administrator.

Both IDS and firewalls relate to securing a network. However, firewalls primar-

ily work on the aspect of looking for intrusions from outside the network and

stop them from happening. Firewalls assume the ‘home’ network to be secure

and trusted. Firewalls limit access between the ‘home’ network and the untrusted

network to prevent intrusions, and do not signal an attack from inside the net-
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Figure 1.7: An IDS with its different components

work. An IDS evaluates traffic to detect policy violations or potentially malicious

activities, and raises an alarm if such activities are detected. An IDS can also

monitor for attacks generating from within the ‘home’ network. It may achieve

this by using signature-based detection mechanisms, examining communication

patterns, use of other heuristics, etc. As its name suggests, an Intrusion Detection

System is usually limited to the task of ‘detecting’ an intrusion. After an intrusion

is detected, an alarm may be raised for the network administrators. IDS usually

does not react or take live action against an intrusion. This may be because the

IDS module is not located ‘inline’ with the network and thus cannot take any

live action, or because the responsibility of taking live action lies with a separate

firewall module.

An Intrusion Prevention System, on the other hand, is a software that contains

all capabilities of an IDS, and is also coupled with the capability of blocking the

intrusions. Typically, if an IDS module sits ‘inline’ with the network it is moni-

toring, and is coupled with a basic ‘firewalling’ mechanism, it can function as an

IPS. An IDS with ‘prevention’ functionality is usually referred by the single term

‘Intrusion Detection/Prevention System’ or IDPS. A generic diagram for an IDS,
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demonstrating its various components, is given in Figure 1.7.

In general, IDS can be Host-based or Network-based. A Host Intrusion Detection

System (HIDS) runs on individual hosts inside the network. It can monitor all

inbound/outbound packets from that particular host, and it will alert the user or

administrator if some suspicious activity is detected. One generic way in which

a HIDS functions is by taking a snapshot of existing system files and matching

it to the previous snapshot. If certain critical system files have been modified or

deleted, an alert is generated.

A Network Intrusion Detection System (NIDS) is placed at a strategic point(s)

within the network to monitor traffic to and from all devices on the network. It

analyses the incoming and outgoing traffic to identify policy violations, known

threats, etc. In order to identify malicious activities, it may utilize signature-

based matching of the content of traffic payload, or behavior-based profiling of

the traffic. When an attack or abnormal activity is identified, alert(s) can be issued

to the administrator.

1.4 Background study

A significant portion of this thesis utilizes known machine learning approaches in

the realm of supervised and unsupervised learning techniques, feature selection

techniques, etc. Although a complete tutorial on these topics is out-of-scope of

this thesis, we provide a brief introduction to some of these terminologies which

find a frequent mention in our work.

A portion of thesis also relies on game theoretic techniques and strategies. We also

present a very brief background of game theory specific terminologies related to

our work. This section serves to be a quick reference for the reader, and is not

intended to be exhaustive.
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1.4.1 Machine learning

Machine learning is the science of getting computers to act without being ex-

plicitly programmed. A more formal definition is provided by Tom Mitchell in

[Mitchell 1997]: “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E".

1.4.1.1 Supervised learning

Supervised learning is the machine learning task of inferring a function from

labeled training data [Mohri et al. 2012]. The ‘training data’ is defined as a set of

labeled examples, with each example consisting of an input vector and a desired

output value. This output value is the ‘class label’ field for that particular input,

which is the target value of that particular instance of the training set. Supervised

learning algorithms take the labeled training data as the input. The training data is

then analyzed to produce an inference function. This inference function can now

be used to map new examples, and is expected to be able to predict their output

class label. Accurate prediction necessitates that the algorithm is able to generalize

the prediction from the training data to unseen examples in a “reasonable way”.

C4.5 Decision trees, Random forests, Naïve Bayes classifier, etc. are some popular

supervised machine learning algorithms that have been used in this work.

1.4.1.2 Unsupervised learning

Unsupervised machine learning contrasts itself from supervised machine learning

in the end-goal. Unsupervised learning involves finding the hidden structure in

data which is unlabeled. Here, the goal is not to maximize a utility function, but

simply to find similarities in the training data. Unsupervised learning algorithms
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often rely on some kind of clustering of input data. The motivating principle is

that the clusters discovered are often equivalent to an intuitive classification on

the training data. The new instances can be mapped into one of the clusters thus

generated.

Unsupervised learning techniques which utilize clustering algorithms include k-

means clustering, hierarchical clustering, mixture models, etc. In neural networks,

self-organizing maps (SOM) are considered as an unsupervised learning tech-

nique.

The reader is requested to note that there are other categories of ‘learning’ apart

from supervised and unsupervised techniques. However, other techniques are not

relevant to this thesis, and we omit any discussion on them for the sake of brevity.

1.4.1.3 Feature extraction

Feature extraction is a very broad term which includes many routines such as

feature construction, space dimensionality reduction, sparse representations, and

feature selection. These techniques are commonly used as preprocessing steps to

machine learning and statistics tasks of prediction, including pattern recognition

and regression [Guyon & Elisseeff 2006].

The first step of feature extraction may be defined as conversion of raw data into

a set of useful features. This often necessitates human expertise and domain

knowledge. The process of converting raw data into useful features is specific to a

domain. These methods will be discussed in detail during the course of this thesis.

This thesis also involves the use of feature selection techniques, and we discuss

about them in the next section. We ignore discussion on other topics related to

feature extraction since they do not hold much relevance to this thesis.
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1.4.1.4 Feature selection techniques

Feature selection is the process of reducing the number of features, with the aim

of removing those features from the learning algorithm which have low impact

on the “classification problem”. Primary motivation behind feature selection is

that the training data contains many features which are either redundant to the

classification problem (i.e., they provide no further information than the currently

selected features), or are totally irrelevant to the classification problem itself. Con-

sider the simple example of features that may be extracted from network flows

for the purpose of classification of network traffic. Many features that can be

extracted for this purpose – such as average packet size, duration of the flow,

number of unique ports used, etc. But certain features are not relevant to the task

of classifying network traffic. For example, every TCP data packet receives an ac-

knowledgment in response. A count for the number of ACK packets is not a good

feature for classifying network traffic because it will be present in packets of every

application, and cannot help in distinguishing between different applications.

Reducing the number of features provides direct benefit in terms of lesser training

time for the learning model. Such ‘feature selection’ is also known to reduce the

problem of ‘over-fitting’ or the variance error [Hall 1999], and is also helpful in

overcoming the class imbalance problem [Van Der Putten & Van Someren 2004].

It should be noted that although the final accuracy of the learning algorithm will

depend on the learning technique used, the suitability of the original features (i.e.,

those obtained prior to use of feature selection) etc., feature selection techniques

are effective in optimizing the performance of the classifier since the number of

features used for classification are reduced.

Given below is an overview of two well-known feature selection techniques which

have been used for our work in this thesis.
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Correlation-based feature selection: Correlation-based Feature Selection (CFS)

algorithm is based on a simple filter method. Given a full set, it finds an optimal

subset that contains features that are highly correlated with class label and un-

correlated with each other. CFS evaluates correlation of the feature subset on the

basis of this hypothesis – “A good feature subset contains features highly corre-

lated with (predictive of) the classification, yet uncorrelated with (not predictive

of) each other” [Hall 1999]. This hypothesis relies on two metrics – one is ‘feature-

class’ correlation, and other is ‘inter-correlation’ amongst features. The ‘feature-

class’ correlation indicates how much the feature is correlated with its class, while

inter-correlation amongst features tells of correlation between any two features.

Ms =
krc f√

k + k(k− 1)rii
(1.1)

The above equation calculates the merit values (‘Ms’) for each subset of k features.

For each value of k, all possible subsets are chosen and merit values are computed.

The subset giving the highest merit is the output of CFS. In Equation 1.1, rc f is

the average correlation between feature and class, and rii is the average inter-

correlation between two features. The heuristic metrics rc f and rii are calculated

as the Symmetrical Uncertainty (SU) [Hall 1999] given in Equation 1.2.

SU = 2.0×
[

H(X) + H(Y)− H(X, Y)
H(X) + H(Y)

]
(1.2)

where H(X) is defined as entropy, given by:

H(X) = −∑ p(x)
xεX

log2(p(x)) (1.3)

Here p(x) is the probability of occurrence of x.

20



1.4 Background study

Consistency-based subset evaluation: The consistency-based Subset Evaluation

(CSE) search algorithm [Dash & Liu 2003] evaluates the feature subsets and finds

an optimal subset of relevant features that are consistent to each other. To deter-

mine the consistency of a subset, the combination of feature values representing

a class are given a pattern label. All instances of a given pattern should thus rep-

resent the same class. A pattern is inconsistent if there exist at least two instances

such that their patterns are same but they differ in their class labels. The overall

inconsistency of a pattern p is calculated by Inconsistency Count (IC):

IC(p) = np − cp (1.4)

where np is the number of instances of the pattern p, and cp is the number of

instances of the majority class of the np instances.

The overall consistency of a subset S is calculated using Inconsistency Ratio (IR).

IR is the sum of all inconsistency counts over all the patterns of the feature subsets

divided by the total number of instances in the data set:

IR(S) =
∑
p

IC(p)

∑
p

np
(1.5)

1.4.1.5 Performance metrics for classification

Many different metrics have been proposed to measure the performance of a clas-

sification algorithm. In this thesis, we use established metrics such as Precision,

Recall and False Positive rate for evaluation of the approaches proposed by us.

We briefly define these metrics here:

• Precision is the ratio of the number of relevant records retrieved to the total

number of relevant and irrelevant records retrieved. It is given by TP
TP+FP .
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• Recall, or True Positive Rate, is the ratio of the number of relevant records

retrieved to the total number of relevant records in the complete dataset. It

is given by TP
TP+FN .

• False Positive rate is given by the total number of false positives over the

total number of true negatives and false positives. It can be expressed math-

ematically as FP
FP+TN .

TP stands for True Positive, TN stands for True Negative, FP stands for False

Positive and FN stands for False Negative.

1.4.2 Game theory

Game theory is the study of mathematical models of conflict and cooperation be-

tween intelligent and rational decision-makers [Myerson 2013]. It provides math-

ematical rules and concepts for analyzing situations of conflict, competition or

cooperation among two or more individuals, where their decisions influence each

other’s welfare. Such situations are analyzed in form of strategic ‘games’. These

are games of strategy (such as chess) but not of chance (such as rolling a dice). The

strategies chosen by all ‘players’ of the game jointly determine the final outcome

of the game.

1.4.2.1 Nash equilibrium

John Nash formally defined an equilibrium of a non-cooperative game to be a

profile of strategies, one for each player in the game, such that each player’s strat-

egy maximizes his/her expected utility payoff against the given strategies of the

other players [Myerson 1999]. It implies that if each player of the game has chosen

his/her equilibrium strategy, no player in the game can benefit just by changing

his/her strategy while the other players keep their strategies unchanged. Each
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player is assumed to know the equilibrium strategies of the other players, and no

player has anything to gain by changing only his/her own strategy [Osborne &

Rubinstein 1994].

1.4.2.2 Mixed strategy Nash equilibrium

A mixed strategy of a player is defined as a randomization over its given pure

strategies. This implies that the players assign a probability distribution over their

pure strategies and the payoff to each player becomes the expected payoff derived

from that probability distribution [Nash et al. 1950]. In such a case, the mixed

strategies of players are said to be in a Nash Equilibrium when each player’s

mixed strategy is a ‘best response’ to every other player in the game.

1.4.2.3 Two person zero-sum games

A zero-sum game is a situation where the loss incurred by one player by playing

any set of strategies is exactly equal to the gain received by the other player by

playing the same set. Therefore, the sum of payoffs for any choice of strategies of

the players is zero. The matrix form in such games is usually defined by writing

the payoff of only the ‘row’ player; the payoff to ‘column’ player is the negative of

that for each strategy.

1.4.2.4 Von Neumann’s Minimax principle

It is defined for a two-person zero-sum game. The payoffs are treated as the

value (utility) paid by the ‘column’ player to the ‘row’ player. The principle states

that the greatest expected payoff that a row player can derive by playing a mixed

strategy is equal to the smallest expected payoff that the column player will derive

using a mixed strategy (For further details, we refer the reader to [Motwani &
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Raghavan 2010]). If a is such a mixed strategy probability distribution for the row

player, and b for the column player, then there exists value of the game V such

that (i) a guarantees an expected payoff of at least V to the row player, no matter

what the column player does; and (ii) b guarantees an average negative payoff

of at most V to column player, no matter what the row player does. In case of a

zero-sum game, the Minimax strategy is also a Nash Equilibrium.

1.4.2.5 Stackelberg security games

Stackelberg games are leader-follower games. The game is derived from the Stack-

elberg leadership model in economics in which the leader firm moves first and

then the follower firm(s) moves sequentially. The leader knows ex ante that the

follower observes his action. Stackelberg security games are a subset of Stackel-

berg games which focus on the attacker-defender model. In general, they involve

scheduling of scarce defense resources to cover a subset of the potential targets

[Letchford 2013].

1.5 Scope and organization of the thesis

The P2P paradigm has moved beyond its boundaries of file sharing, and has seen

deployment for several applications such as the SETI @ home project, Spotify,

LiveStation, etc. It is clear that the P2P architecture is here to stay, and hence there

is need for the current security and intrusion detection mechanisms to be more

‘P2P-aware’. This need arises from the fact that P2P networks behave differently

from the traditional systems in several aspects, such as the lack the traditional

client-server architecture, peer-churn (the joining and leaving of peers), security

issues in a distributed and decentralized environment, etc.

The objective of this thesis is to build effective intrusion detection mechanisms
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which are ‘P2P aware’. The thesis presents mechanisms for intrusion detection

in P2P networks that: (i) can segregate malicious (botnet) P2P traffic from benign

P2P traffic based on their network behavior, (ii) are resilient to evasive attacks

where an adversary may try to evade detection by deliberate injection of noise in

his communication patterns, (iii) propose strategic deployment of IDS in a P2P

network with a randomized, game-theoretic approach, and (iv) propose a scalable

and distributed, Hadoop-based framework for the detection of P2P botnets.

Given their widespread use, security in P2P networks has naturally attracted a

lot of attention from researchers. In Chapter 2, we discuss related work and past

research efforts on detection of attacks and security threats in P2P networks.

In Chapters 3 and 4, we present our proposed approaches for the detection of

P2P botnet traffic in the presence of benign P2P traffic at a network perimeter.

Our approaches do not assume the availability of any ‘seed’ information of bots

through blacklist of IPs. They do not rely on Deep Packet Inspection (DPI) or

signature-based mechanisms which are rendered useless by botnets/applications

using encryption. They aim to detect the stealthy behavior of P2P botnets on the

basis of their ‘P2P’ behavior and C&C communication with other bots, when they

lie dormant (to evade IDS which look for anomalous communication patterns) or

while they perform malicious activities (spamming, password stealing, etc.) in a

manner which is not observable to a network administrator.

Chapter 5 considers the problem of securing a P2P network from an adversary

who may become part of the P2P network by joining from any part of the network.

We explore the problem of strategically positioning IDS in a P2P network with a

game theoretic approach. Our approach distributes the responsibility of running

the IDS between the peers in a randomized fashion and minimizes the probability

of a successful attack.

Chapter 6 presents a scalable, Hadoop-based framework for the detection of P2P
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botnets which extracts statistical features per host for all P2P hosts involved in

network communication, and uses them to train supervised machine learning

models which can differentiate P2P botnets from P2P applications. We propose

a distributed data collection architecture wherein data collectors are distributed

at multiple locations inside an enterprise network. This allows inside-to-inside

communication view, which can be vital for detecting smart P2P bots inside a

network which communicate to each other over LAN.

We conclude the thesis and present future work in Chapter 7.
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Chapter 2

Literature survey

We begin this chapter by discussing the security threats and attacks which plagued

P2P networks in their early days (Section 2.1). These attacks have been greatly

studied by a number of researchers over the past decade, and many proposed

solutions and improved implementations of P2P applications have resolved these

security threats to a considerable extent. Next, in Section 2.2, we expound prior

efforts on the detection of P2P botnets and present their shortcomings. Further, in

Section 2.3, we look at past research in P2P networks from a perspective of game

theory, and discuss past work on incentives for sharing, modeling of malicious

peers, security games and other related topics.

2.1 Security threats and attacks – early challenges

Any decentralized and distributed computing environment naturally involves

many challenges of security, and P2P overlay networks are no exception. In this

section, we will review some of the prominent attacks and security threats which

were prevalent in P2P networks in their early days (the first decade of the 21st

century). However, this list is not exhaustive. For a taxonomy of attacks on P2P
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overlays, we refer the reader to [Yue et al. 2009] and [Trifa & Khemakhem 2012].

2.1.1 Identity assignment attacks

Peers participate in P2P networks by assuming virtual identities. As a matter of

fairness, it is assumed that one physical entity shall own one random virtual iden-

tity in the P2P network by which it will participate in network activity. However,

a malicious peer may attack this identity assignment principle by creating mul-

tiple identities referred to as ‘sybil’ identities [Douceur 2002]. By positioning its

‘sybil’ nodes at strategic positions within the network, an attacking peer can try

to gain illegitimate control over the network or its part. Sybils can cause multiple

damages. By monitoring the traffic flowing through the sybil nodes, the attacker

can observe the traffic patterns of other peers whose traffic is flowing through

them, and can also attempt to misuse the communication protocol in other ways.

Sybil nodes may also be used to forward routing or search requests to other ma-

licious/sybil nodes, thereby disrupting the normal functioning of the network.

The attacker can also gain control over certain files shared in the network and can

choose to deny access to them or corrupt them.

In DHT-based P2P networks, the nodes having the ID closest to the ID of a par-

ticular file are responsible for maintaining information about that file. Hence, an

attacker could possibly control the availability of a certain resource if he maps his

IDs very close to that resource. [Locher et al. 2010] demonstrated the possibility of

corrupting the information in the DHT-based Kad network by spreading polluted

information through a ‘Node insertion’ or ‘ID mapping’ attack. The attacker may

carry out this attack to pollute information about keywords, comments or list of

sources. [Singh et al. 2006] implemented an attack for keywords where the at-

tacker manipulates the ID assignment mechanism of Kad and generates an ID of

his own, which lies very close to the targeted file-keyword. Hence, when a search
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is carried out for that particular keyword, it does not yield correct results. Rather,

the bogus information planted by the attacker is returned.

A number of approaches have been suggested to defend P2P systems against sybil

attacks. One of the early work in this regard is the use of computational puzzles

[Borisov 2006]. [Haribabu et al. 2010] evaluate the use of CAPTCHAs in detecting

sybils. An approach for detecting sybils using ‘psychometric tests’ is proposed in

[Haribabu et al. 2012]. Authors in [Yu et al. 2006] have argued that a malicious user

can create many identities, but only a few relationships of trust. They use this fact

to locate disproportionately-small ‘cuts’ in the graph between the sybil nodes and

the honest nodes, and attempt to bound the number of identities a malicious user

may create.

2.1.2 Routing attacks

2.1.2.1 Route table poisoning attacks

Due to high rate of churn (joining and leaving of peers) in P2P networks, peers

have to regularly update their routing tables in order to perform correct routing

lookup. Peers create and update their routing tables by consulting other peers. If a

malicious node sends false information in its routing table update, it will corrupt

the routing table entries of benign nodes, leading to queries being directed to

inappropriate nodes or non-existent nodes.

Different solutions have been developed to counter route table poisoning by im-

posing certain requirements on the participating peers. In the Pastry network

[Rowstron & Druschel 2001], each entry in routing tables is preceded by a correct

prefix, which cannot be reproduced by a malicious entity. The CAN network [Rat-

nasamy et al. 2001] considers the round-trip-time in order to favor lower latency

paths in routing tables. [Condie et al. 2006] propose ‘induced’ churn as a counter
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Figure 2.1: Node insertion attack and sybil attack escalated to an eclipse attack

against such attacks.

2.1.2.2 Eclipse attacks

Each node in the P2P network maintains overlay links to a set of neighbor nodes,

and each node uses these links to perform a lookup from its neighbors. Thus, an

attacker may be able to control a significant part of overlay network by controlling

a large part of the neighbors of legitimate nodes. This is known as an eclipse

attack. Eclipse attacks are escalated forms of identity assignment attacks or route

table poisoning attacks described above. If an attacker is able to generate a large

number of fake identities and place those identities in the overlay network, he

could mediate most overlay traffic, and thus eclipse legitimate nodes from each

other. A pictorial representation of node insertion attacks and sybil attacks being

escalated into an eclipse attack is given in Figure 2.1

[Steiner et al. 2007] describe the eclipsing of search keywords in Kad P2P network.

30



2.1 Security threats and attacks – early challenges

Their experiment explains that an eclipse attack and a sybil attack can be per-

formed quite similarly, except that the Kad ID space covered for an eclipse attack

is much smaller. For eclipsing a certain keyword k in a DHT-based network such

as Kad, the authors in [Steiner et al. 2007] choose to position a certain number of

sybils as close as possible to the keyword k. Then, the sybil nodes are announced

to the benign peers in the network which has the effect of ‘poisoning’ the regu-

lar peers’ routing tables for k and attract all the route requests for k to the sybil

nodes. [Steiner et al. 2007] claim through their experiments that as few as eight

sybil peers were sufficient to ensure that any request for k terminates on one of

the sybil nodes which were strategically planted in the network to lie as close

as possible to k. Since all requests for k go via the sybil nodes, the attacker has

effectively eclipsed the keyword k from all peers in the Kad network.

The developer community of eMule (a P2P application which uses the Kad net-

work) had responded to these security threats by making suitable changes to their

applications. For example, the ‘change-log’ for eMule’s version 0.49a released in

February 2008 (available at www.emule-project.net) states, “Kad will now enforce

certain limits when adding new contacts to the routing table: No more than 1

KadNode per IP, 2 similar KadNodes (same bin) from a /24 network and max

10 different KadNodes from a /24 network are allowed". Some countermeasures

have also been proposed in literature, such as an optimized routing table and

verified routing table [Castro et al. 2002], and a combination of induced churn

and one-hop redirection [Puttaswamy et al. 2009]. [Zhang et al. 2011b] presented

a scheme for generating node IDs which requires a user to solve a computa-

tional puzzle generated by their network parameters together with time-related

information. The authors claim that such an ID generation mechanism makes ID

assignment and eclipse attacks computationally infeasible for an attacker, while

levying only a small overhead on a regular user.
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The implementation of many such countermeasures made large eclipse attacks

very difficult or computationally prohibitive for an attacker. But, the emergence

of P2P botnets provided a new ground for the adversaries to launch large-scale

attacks without the time and effort required for an eclipse attack. P2P botnets

can either be created on an existing P2P network’s protocol (for example, Storm

used the Overnet P2P network [Stover et al. 2007]) or they may use a custom P2P

protocol to build their own network of infected hosts (for example, Sality [Fal-

liere 2011]). The bot-master does not need to create multiple sybil identities or

perform node insertions. A victim machine, upon infection from a malware or

trojan, joins and becomes a part of the P2P network of the botnet. The decentral-

ized architecture also helps in evading detection. We will cover P2P botnets in

more detail in Section 2.2.

2.1.3 Application level attacks

2.1.3.1 Index poisoning attacks

P2P file-sharing involves the use of ‘indices’, which are used by peers to search

and find locations of files desired by them. If an attacker inserts massive numbers

of bogus records into the index for a set of targeted titles, it is called as an index

poisoning attack [Liang et al. 2006]. When a legitimate peer searches for a targeted

title, the index will return bogus results, such as bogus file identifiers, bogus IP

addresses, etc.

Key defense against index poisoning is to provide a verifiable identity. This

may be done through Public Key Infrastructure (PKI) cryptography, as in [Berket

et al. 2004]. However, PKI requires the presence of a trusted certificate authority,

which is not always feasible in a P2P network. Even if a certificate authority is

implemented, it will face huge workload due to a large number of peers as well
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as high peer-churn.

2.1.3.2 Query flooding

Flooding of search queries is basic search mechanism employed in many P2P

networks. A peer looking for a resource will broadcast its query to its imme-

diate neighbors. If a neighbor does not have the resource, the query is further

forwarded to its neighbors. This goes on until the ‘hop limit’ is reached or the re-

source is found. Malicious peers can exploit this flooding mechanism to generate

a query flooding attack. A malicious user may generate as many useless queries

as possible to flood the network. As a result, the resources of the network will be

engaged in serving these requests, and benign users may face service degradation.

A solution for preventing query flooding in Gnutella was implemented by putting

an upper limit on the number of queries a node can accept from a requesting peer

[Daswani & Garcia-Molina 2002]. After this number is reached, all other queries

are dropped.

2.1.3.3 Pollution attacks

Since peers participate in the P2P network using virtual identities, it is easy for an

attacker to spread unusable or harmful content without getting the risk of getting

caught. Peers are engaged in downloading chunks of files from different sources.

An attacker may host a file x with himself, but replace the original contents with

some junk pieces of data or some malware. When a peer, looking for file x,

downloads the content from the attacker, he receives ‘polluted’ content in the form

of a corrupted or malicious file. Hash verification and chunk signing are some of

the common approaches used against pollution of content in P2P networks [Liang

et al. 2005, Dhungel et al. 2007].
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2.1.3.4 Rational attacks

P2P networks are based on the principle of peers cooperating to mobilize and

share resources. If peers are unwilling to cooperate, the P2P network will fail to

survive. A self-interested node, however, may attempt to maximize the benefits it

receives from the network while minimizing the contributions it makes. This has

been described as a rational attack. A “free-rider" is a term used in P2P systems to

describe a peer who utilizes the services and benefit of the network, but does not

make any contributions. Since P2P networks are inherently about collaboration

and sharing of resources, the services of the network face degradation if most

of the users behave in a selfish way and choose to free-ride. Since modeling of

‘selfish’ free-riders has often been studied from a game theoretic perspective, we

will discuss more on it in Section 2.3.

2.2 Detection of P2P botnets

2.2.1 Early attempts

The distributed and decentralized nature of P2P networks offered a lucrative alter-

native to bot-masters to build botnets which are not prone to any single point-of-

failure. P2P botnets have also been proven to be highly resilient against take-down

attempts [Rossow et al. 2013]. Moreover, smarter bots are stealthy in their com-

munication patterns, and elude the standard discovery techniques which look for

anomalous network or communication behavior.

Initial work on detection of P2P botnets involved signature-based and port-based

approaches [Schoof & Koning 2007]. Such solutions—which rely on DPI and

signatures—can easily be defeated by bots using encryption. [Schoof & Kon-

ing 2007] deployed and analyzed the Sinit and Nugache P2P bots on their testbeds.
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Their analysis of Nugache reports that it uses a static list of 22 IP addresses to

connect upon initialization and listens on port 8 (an unassigned port), while Sinit

starts probing randomly chosen IP addresses and communicates always on port

53. Although such information is valuable to IDS and firewalls, this approach is

‘signature-based’ and does not guarantee to catch the variants/successors of these

botnets. Moreover, botnets which use encryption will easily evade such detection

mechanisms.

Most prior work has either focused on P2P traffic classification from the perspec-

tive of a more general problem of Internet traffic classification [Sen et al. 2004, Li

et al. 2008, Iliofotou et al. 2009], or has given special attention to detection of

botnets (centralized or distributed) in Internet traffic [Gu et al. 2008a]. The chal-

lenging context of detection of stealthy P2P botnets in the presence of benign P2P

traffic has not received much attention. Furthermore, building a scalable detection

framework did not receive much focus during early research, and has received

very little attention even in recent research (such as in [Zhang et al. 2014, Singh

et al. 2014]).

2.2.2 Statistical approaches

An early work using machine learning techniques was performed by [Livadas

et al. 2006], who attempted to identify the ‘command & control’ traffic of IRC

(Internet Relay Chat) botnets in particular. Their approach used Naïve Bayes clas-

sifier to first segregate the traffic into IRC and non-IRC traffic, and then classify

the IRC traffic as malicious or non-malicious. Although their classifier gave good

results on test data, it performed poorly in classifying the IRC botnet flows gen-

erated by authors on their testbed.

For the detection of P2P botnet traffic, some of the recent work has used su-
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pervised learning approaches [Saad et al. 2011, Rahbarinia et al. 2014, Narang

et al. 2013, Singh et al. 2014], unsupervised learning approaches [Zhang et al. 2011a,

Zhang et al. 2014] and other statistical measures [Noh et al. 2009, Yen & Re-

iter 2010].

[Noh et al. 2009] used a ‘multi-flow’ model to detect P2P botnets. Their approach

tried to detect similar flows occurring between groups of hosts in a network on a

regular basis. Flows with similar behavior were labeled into groups to construct

a transition model of the groups using a probability matrix. ‘Likelihood ratio’

metric was employed by the authors to detect bots inside the network. Their

approach suffers from a drawback that it will be unable to identify bots inside the

network if their number happens to be very small.

[Yen & Reiter 2010] attempted to segregate P2P bots from benign P2P apps based

on metrics of a host such as the volume of data exchanged and number of peers

contacted. Unfortunately, it is difficult to generalize their findings since they are

based on the data of a single botnet. Also, the features used by the authors are

not sufficient to correctly differentiate P2P bots and apps, and their approach fails

to detect bots when bots and apps run on the same machine.

[Saad et al. 2011] studied the application of five commonly used machine learning

algorithms for online detection of P2P botnet traffic. The algorithms used by them

were – Support Vector Machines, Artificial Neural Networks, Nearest Neighbor

Classifier, Gaussian-based classifier and Naïve Bayes Classifier. Their experimen-

tal results showed that traffic behavior of botnets is effective in detecting botnets

during their C&C phase. The authors, however, argued that online botnet detec-

tion requires algorithms to be adaptable and have novel and early detection, but

none of the studied techniques address all the requirements at once.

PeerRush [Rahbarinia et al. 2014] created ‘application profile’ from the network

traces of multiple P2P applications. Their work utilized payload sizes and inter-
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packet delays to categorize the exact P2P application running on a host. The

approach of [Zhang et al. 2011a, Zhang et al. 2014], on the other hand, used ‘con-

trol flows’ of P2P applications to extract statistical fingerprints. P2P bots were

identified based on certain features like fingerprint similarity, number of overlap-

ping contacts, persistent communication, etc. However, their work can detect P2P

bots inside a network only when there are multiple infected nodes belonging to

the same botnet.

A similar work is BotSuer [Kheir & Wolley 2013], which proposes a behavioral

approach to detect P2P botnets. Their work relies on P2P ‘control flows’ and

creates clusters of those P2P malware which implement similar functionality. At

a high-level, their work uses the following bidirectional features extracted from

each flow – number of packets sent and received, bytes sent and received, and

byte rate sent and received. The authors claim that their approach can detect even

single infected bot inside a network perimeter. However, their work refrains from

providing sufficient justification for this claim.

[Singh et al. 2014] presented a ‘Big data analytics’ framework for the detection

of P2P botnets. Using certain well-known flow-based features, the authors uti-

lized the Random forest classifier to build detection models using the Hadoop

framework. However, the detection results obtained by the authors are for a small

botnet dataset. Hence, it is difficult to say whether their detection methodology

will generalize to other P2P botnets.

2.2.3 The notion of ‘conversations’

Most of the past works have employed the classical five-tuple categorization of

network flows. Indeed, one of our preliminary work [Narang et al. 2013] also uti-

lized five-tuple categorization of flows to study the impact of feature selection on
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detection of P2P botnets. Packets were classified as ‘flows’ based on the five-tuple

of source IP, source port, destination IP, destination port, and transport layer pro-

tocol. Flows have bidirectional behavior, and the direction of the flow is decided

based on the direction in which the first packet is seen. This traditional definition

of flows has been greatly employed and has seen huge success in the problems

of Internet traffic classification [Karagiannis et al. 2005] and even in the early days

of P2P traffic classification [Karagiannis et al. 2004]. This definition relies on port

number and transport layer protocol. The latest P2P applications as well advanced

P2P bots are known to randomize their communication port(s) and operate over

TCP as well as UDP. Such applications will not be well-identified by these tradi-

tional approaches. Since such a behavior is characteristic of only the latest variants

of P2P applications (benign or malicious), it is obvious that past research did not

refer to this aspect.

In response to this, some recent work has utilized super-flow and conversation

based approaches which are port-oblivious and protocol-oblivious. [Hang et al. 2013]

used 2-tuple ‘super-flows’ based approach with a graph-clustering technique to

detect P2P botnet traffic. Although authors in [Hang et al. 2013] presented interest-

ing insight using super-flows and obtained good accuracy in detecting the traffic

of two P2P botnets, their approach has certain limitations. Their work evaluates

the detection of P2P botnets only with regular web traffic (which was not analyzed

for the presence or absence of regular P2P traffic). This is a serious limitation be-

cause P2P botnet traffic exhibits many similarities to benign P2P traffic. Thus,

their approach would fail in the presence of benign P2P traffic. Distinguishing

between hosts using regular P2P applications and hosts infected by a P2P botnet

would be of great relevance to network administrators protecting their network.

Similar to the notion of ‘super-flows’ used by [Hang et al. 2013], work of [Li

et al. 2013] used ‘conversation-based’ approach for the detection of overlapping
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P2P communities in Internet backbone. Their work, however, is directed on a

different problem. They do not focus on identification of any specific P2P appli-

cation – whether malicious or benign – and limit themselves to identification of

P2P communities in the Internet backbone. The notion of ‘conversation-based’

approaches for detection of P2P botnets was first seen in [Zhang 2013]. But the

approach chosen by authors in [Zhang 2013] has certain practical limitations. The

authors created ‘thirty second conversations’ from network traces and extracted

statistical features for the detection of P2P botnets. If a bot is stealthy in its com-

munication patterns, a small time window of thirty second will fail to observe any

botnet activity.

2.2.4 Limitations of past efforts & issues addressed in this thesis

Many previous solutions such as BotMiner [Gu et al. 2008a] detect botnets by ob-

serving noisy activities such as spamming or DDoS attacks generated by multiple

infected hosts inside the network perimeter. In contrast, our approaches (in Chap-

ters 3 and 4) can detect stealthy P2P botnets which perform malicious activities

in a manner not observable to a network administrator, and which try to lie low

and generate little traffic in order to evade detection by Intrusion Detection Sys-

tems. Certain other approaches such as BotSniffer [Gu et al. 2008b] and “Friends

of an enemy" by [Coskun et al. 2010] rely on correlating activity amongst multiple

hosts in order to detect hosts infected by bots. Our approaches do not require

activity correlation or presence of multiple infected hosts, and can detect individ-

ual infections inside a network. Moreover, the challenging context of detection

of P2P botnets in the presence of traffic from benign P2P applications was not

addressed by several past solutions such as BotGrep [Nagaraja et al. 2010], Bot-

Track [François et al. 2011] or Botyacc [Nagaraja 2014]. It has received only a little

attention [Kheir & Wolley 2013, Rahbarinia et al. 2014, Zhang et al. 2014]. Our
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approaches presented in this thesis address this challenging context.

None of the past works employing super-flow or conversation-based approaches

[Hang et al. 2013, Li et al. 2013] address an inherent drawback of these approaches:

they fail to detect botnet activity if P2P bots and apps are running on the same

machine (which might be a rare scenario, but cannot be ruled out nonetheless).

This is because conversations (or super-flows) try to give a bird’s eye view of the

communications happening in the network, and miss certain finer details in the

process.

Our work in this thesis, presented in Chapter 3, presents a ‘best of the both

worlds’ approach utilizing flow-based approaches as well as conversation-based

approaches in a two-tier architecture. It begins with the de facto standard of five-

tuple flow-based approach and clusters flows into different categories based on

their behavior. Within each cluster, we create 2-tuple ‘conversations’ from flows.

Conversations are oblivious to the underlying flow definition (i.e., they are port-

and protocol-oblivious) and essentially capture the idea of who is talking to whom.

For all conversations, statistical features are extracted which quantify the inherent

‘P2P’ behavior of different applications. Further, these features are used to build

supervised machine learning models which can accurately differentiate between

benign P2P applications and P2P botnets. Our system was extensively evaluated

with real-world traces of P2P applications and botnets. Our approach can effec-

tively detect activity of stealthy P2P botnets even in the presence of benign P2P

applications in the network traffic. It could also detect unknown P2P botnets (i.e.,

those not used during the training phase) with high accuracy.

Furthermore, the context of P2P botnet detection is adversarial in nature. Statis-

tical or behavioral models for detection are created using ‘botnet’ data which has

been generated by an adversary. Hence, the adversary is in a position to evade

the detection mechanisms if he can change the behavior of his bots. Thus, this

40



2.2 Detection of P2P botnets

necessitates the evaluation of the performance of these detection models in the

presence of noise injected by an adversary. That is, if the bot-master slightly alters

the behavior and communication patterns of the bots, are these detection models

robust and resistant towards such a change? To the best of our knowledge, this

question has not received sufficient attention. We attempt to address this context

in our work in Chapter 4.

Our approach utilizes conversation-based mechanisms and attempts to enhance

them with techniques of Discrete Fourier Transforms (DFTs) and information en-

tropy by leveraging the timing and data patterns in P2P botnet traffic. We ex-

tract two-tuple conversations from network traffic and treat each conversation

as a time-series sequence (or a ‘signal’). We leverage on the fact that commu-

nication of bots amongst each other follows a certain regularity or periodicity

with respect to timing and exchange of data. Bots tend to repeatedly exchange

same kind of commands—which are often in the same format and of the same

size. The repeated C&C communication also follows certain timing patterns—

with bots generally contacting their fellow peers at predefined intervals [Tegeler

et al. 2012]. In order to uncover the hidden patterns between the communica-

tions of bots, we convert the time-domain network communication to the frequency-

domain. From each conversation, we extract features based on Fourier transform

and information entropy. We use real-world network traces of benign P2P applica-

tions and P2P botnets to compare the performance of our features with traditional

flow-based features employed by past research (such as [Livadas et al. 2006, Saad

et al. 2011, Kheir & Wolley 2013, Zhang et al. 2014]). We build detection models

with multiple supervised machine learning algorithms. We inject noise in our

test data to demonstrate that our detection approach is more resilient towards

variation in data or introduction of noise in the data by an adversary. With our

approach, we could detect P2P botnet traffic in the presence of injected noise with

True Positive rate as high as 90%.
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We would like to draw a comparison of our approach with some recent works

that have also employed similar ‘signal-processing’ approaches in the domain of

botnet detection. [Kang & Zhang 2009] applied entropy theory for the detection

of the Storm P2P botnet. A significant difference between our approach and the

approach of [Kang & Zhang 2009] is that they used entropy over the payload

content by employing DPI, which is not suitable for botnets which use encryption.

[Yu et al. 2010] used DFTs on ‘feature streams’ for the detection of botnets. Their

approach employed Snort (a popular Network Intrusion Detection System), which

also uses DPI and will not be effective for botnets which use encryption. Further,

their approach was primarily targeted towards the online detection of IRC bots,

which is conceptually different from the problem of detection of stealthy P2P bots

addressed in our work. BotFinder [Tegeler et al. 2012] is a recent work which is

conceptually similar to ours. BotFinder applies DFT over a binary sampling of

the C&C communication, whereas our work aims to leverage the hidden traffic

regularities in C&C communication by applying DFT over payload lengths and

inter-arrival times. Further, BotFinder was evaluated only for the detection of IRC

bots. Our work addresses detection of stealthy P2P botnets by focusing on their

‘P2P’ C&C communication.

Further, in Chapter 6, we present a scalable, Hadoop-based framework for the de-

tection of P2P botnets which extracts statistical features per host for all P2P hosts

involved in network communication. Although some past research have utilized

host-level features [Zeng et al. 2010, Yen & Reiter 2010], these approaches did

not consider the problem from the perspective of a scalable framework. Our ap-

proach relies on the header information in the network and transport layer, and

extracts statistical features which quantify the ‘P2P’ behavior of the P2P applica-

tions running on a host. Statistical features are extracted per host for all P2P hosts

involved in network communication, and are then used to train supervised ma-

chine learning models which can differentiate P2P botnets from P2P applications.
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We propose a distributed data collection architecture wherein data collectors are

distributed at multiple locations inside an enterprise network and sit close to the

peers, say at an Access switch or a Wi-Fi access point. This allows inside-to-inside

communication view, which can be vital for detecting smart P2P bots inside a

network which communicate to each other over LAN.

2.3 Game theoretic perspective

P2P networks have been studied from the game theoretic perspective mainly

with regard to incentives for sharing [Anceaume et al. 2005], collaboration [Ye

et al. 2004], managing trust [Kamvar et al. 2003], etc. Modeling of malicious be-

havior in this context has received much less attention from the research commu-

nity. Security in P2P networks per se has not received much attention from a game

theoretic perspective. However, the topic of network security with game theory

has attracted a lot of attention. [Manshaei et al. 2013] provide a good survey of

the same.

2.3.1 Incentives for collaboration

Conventional P2P networks did not provide service differentiation and incentives

for users. Therefore, users could easily obtain resources without contributing

any information or service to the P2P community. This led to the well-known

free-riding problem. Consequently, most of the information requests are directed

towards a small number of P2P nodes which are willing to share information or

provide service, causing the “tragedy of the commons” [Ma et al. 2006].

In [Gatti et al. 2004], authors model peers as participants in the system who have

opposing interests. They can choose the level of resources they want to devote
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in fighting each other. A malicious peer gains utility from thwarting a particular

transaction, such as file sharing, document retrieval, etc., while a benign peer

derives utility from succeeding with the transaction. To secure such a network,

it should be sufficient to ensure that the cost of an attack is much more than the

benefit derived by an attacker in launching that attack.

In [Gupta & Somani 2005], the authors devise a model to combat free-riding. They

derive a Nash equilibrium based proof for the probability with which peers will

serve (or not serve) other peers in the network. The authors prove that even in

case of selfish peers, it is in their best interest to serve.

In [Feldman et al. 2006], the authors devise a model to study the phenomenon of

free-riding and free-identities in P2P systems. They model their user as a player

who decides whether to contribute or to free-ride based on how the current con-

tribution cost in the system compares to his/her ‘type’, where the ‘type’ can be

intuitively thought of as a quantitative measure of decency or generosity. The

solution proposed by the authors for dealing with free-riding is that imposing

penalty on all users that join the system is effective under many scenarios.

2.3.2 Modeling malicious peers

Authors in [Moscibroda et al. 2006] model peers in a P2P network by considering

all peers as selfish individuals whose only goal is to optimize their own benefit.

Their model also considers malicious or ‘byzantine’ peers who want to attack the

system, destabilize the network, deteriorate the overall performance, etc. This

way, their model considers a P2P system with selfish peers and byzantine play-

ers, and evaluates the impact of presence of such byzantine players on a selfish

system’s efficiency.

In [Theodorakopoulos & Baras 2007, Theodorakopoulos & Baras 2008], the au-
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thors model malicious users in unstructured networks with a repeated game

model, considering that the users are either good or bad, and not selfish or un-

selfish. All peers are considered as pay-off maximizing strategic agents. The

‘good peers’ are always cooperative, and they value the network’s benefit more

than their individual profits or losses. Whereas the malicious or bad peers aim

at disrupting the functioning of the network and waste the resources of the good

peers. With this model, the authors find the Nash equilibrium for the strategies

of legitimate and malicious peers, by which they identified those strategies of the

legitimate users which enforce upper bounds on the damage that the malicious

users can cause to the network.

2.3.3 Security games

A security game is a two-player game between a defender and an attacker. Secu-

rity games provide an analytical framework for modeling the interaction between

malicious attackers who aim to compromise networks, and owners or adminis-

trators defending them. The ‘game’ is played on complex and interconnected

systems, where attacks exploiting vulnerabilities as well as defensive countermea-

sures constitute its moves. The strategic struggle over the control of the network

and the associated interaction between attackers and defenders is formalized us-

ing the rich mathematical basis provided by the field of game theory. The under-

lying idea behind the game theoretic models in security is the allocation of limited

available resources from both players’ perspectives. Game theoretic solutions have

been well-applied to security in different areas of network security.

In [Bensoussan et al. 2010], the authors analyze the economic aspects of botnet

activity and suggest feasible defensive strategies. They provide a comprehensive

game theoretical framework that models the interaction between the botnet herder

and the defender group (network/computer users). The authors propose that a
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botnet herder’s goal is to intensify his intrusion in a network of computers for

pursuing economic profits whereas the defender group’s goal is to defend botnet

herder’s intrusion. The authors claim that their equilibrium solution in which the

botnet herder exerts a constant attack and the defender maximizes his defense

level is consistent with the real world observations for the Conficker botnet which

targeted the Microsoft Windows operating system. The latest variants of Con-

ficker (Conficker D and Conficker E) are known to be P2P-based for their update

propagation.

In [Chen & Leneutre 2009], the authors formulate the network intrusion detection

as a non-cooperative game and perform an in-depth analysis on the Nash equi-

librium and the engineering implications behind. Based on their game theoretical

analysis, the authors derive the expected behaviors of rational attackers, the min-

imum monitor resource requirement, and the optimal strategy of the defenders.

The authors have also provided guidelines for IDS design and deployment, and

elaborated on the feasibility of the game theoretical framework to be applied to

configure the intrusion detection strategies in realistic scenarios.

2.3.4 Issues addressed in this thesis

Although the decentralized and distributed nature of P2P network offers resilience

towards network-breakdowns, the super-peer architecture is more sensitive in this

regard since an adversary can disrupt (albeit not breakdown) the entire P2P net-

work by attacking the super-peer nodes. For example, a DoS/DDoS attack tar-

geted on relay nodes in Tor can lead to an increased latency and higher number

of time-outs in the network. In our approach presented in this thesis (in Chapter

5), we consider the problem of securing a super-peer based P2P network from an

adversary who may become part of the P2P network by joining from any part of

the network. A malicious peer can disrupt the P2P network by attacking a super-
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peer through various attacks at the overlay layer, such as route table poisoning,

index poisoning, or other traditional attacks (malicious payloads, etc.). Running

an IDS at each peer may not be feasible since self-interested peers may not want

to dedicate resources for that. Peers may try to secure the network by running

IDS at certain strategic locations in the network. But, a deterministic schedule of

running and positioning the IDS can be observed and thwarted by an adversary.

In our work, we explore the problem of strategically positioning IDS in a P2P net-

work with a game theoretic approach. Our approach distributes the responsibility

of running the IDS between the peers in a randomized fashion and minimizes the

probability of a successful attack.

From a network security perspective, two works close to ours are [Kodialam &

Lakshman 2003] and [Vaněk et al. 2012]. Both of these consider optimal resource

allocation by a defender in a network against potentially malicious packets by

adopting a game theoretic approach of inspecting only a fraction of all packets.

The work of [Kodialam & Lakshman 2003] was limited to a single source and

single target, whereas [Vaněk et al. 2012] considered multiple targets. Our work

deals with a different problem of game theoretic strategies for IDS deployment in

a P2P network. By running IDS at strategically chosen nodes in the P2P network,

we aim to conserve the resources of participating peers and minimize the gain of

an attacker. This model is also applicable to ‘collaborative IDS’ involved in ‘P2P

intrusion detection’. [Janakiraman et al. 2003] presented a collaborative, P2P ap-

proach for building a distributed, scalable IDS amongst trusted peers. [Locasto

et al. 2005] deployed a decentralized system for efficiently distributing alerts to col-

laborating peers by creating a distributed ‘watch-list’ from alert streams. [Duma

et al. 2006] explore the challenge of collaborative ‘P2P intrusion detection’ from

the perspective of insider threat. While these works have proposed techniques

for sharing information between trusted peers [Janakiraman et al. 2003], distribut-

ing alerts among collaborating peers [Locasto et al. 2005] and managing trust to
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address insider threats [Duma et al. 2006], we address the issue of strategic de-

ployment of IDS within a P2P network. Past research on different aspects of ‘P2P

intrusion detection’ stands to gain from such strategic deployment of IDS since a

deterministic schedule of running or positioning the IDS might be observed and

thwarted by an adversary.
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Chapter 3

Flow-clustering and

conversation-generation for P2P

botnet detection

3.1 Introduction

Detection of P2P botnets by analysis of their network behavior has frequently uti-

lized ‘flow-based’ mechanisms [Saad et al. 2011, Narang et al. 2013, Singh et al. 2014].

Due to certain limitations of these approaches in identifying modern P2P appli-

cations (discussed in Chapter 2), alternatives have been proposed in the form of

super-flow-based and conversation-based mechanisms. However, even these ap-

proaches are not yet mature and suffer from certain drawbacks.

In this chapter, we present PeerShark, with a ‘best of both worlds’ approach

utilizing flow-based approaches as well as conversation-based approaches in a

two-tier architecture. PeerShark can differentiate between benign P2P traffic

and malicious (botnet) P2P traffic, and also detect unknown P2P botnets with high

accuracy. We envision PeerShark as a ‘P2P-aware’ assistant for network admin-
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istrators to segregate unwanted P2P traffic and detect P2P botnets.

PeerShark aims to detect the stealthy behavior of P2P botnets, that is, when

they lie dormant in their rally or waiting stages (to evade intrusion detection sys-

tems which look for anomalous communication patterns) or while they perform

malicious activities (spamming, password stealing, etc.) in a manner which is not

observable to a network administrator. PeerShark does not assume the availabil-

ity of any ‘seed’ information of bots through blacklist of IPs. It does not rely on

DPI or signature-based mechanisms which are rendered useless by botnets/ap-

plications using encryption.

PeerShark begins with the de facto standard of 5-tuple flow-based approach and

clusters flows into different categories based on their behavior. Within each clus-

ter, we create 2-tuple ‘conversations’ from flows. Conversations are oblivious to

the underlying flow definition (i.e., they are port- and protocol-oblivious) and

essentially capture the idea of who is talking to whom. For all conversations, statis-

tical features are extracted which quantify the inherent ‘P2P’ behavior of different

applications, such as the duration of the conversation, the inter-arrival time of

packets, the amount of data exchanged, etc. Further, these features are used to

build supervised machine learning models which can accurately differentiate be-

tween benign P2P applications and P2P botnets.

To summarize our contributions:

• A ‘best of both worlds’ approach for P2P botnet detection which combines

the advantages of flow-based and conversation-based approaches, as well as

overcomes their limitations.

• Our approach relies only on the information obtained from the IP/TCP/UDP

headers, and does not require DPI. Thus, it cannot be evaded by payload-

encryption mechanisms.
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• Our approach can effectively detect activity of stealthy P2P botnets even in

the presence of benign P2P applications in the network traffic, which has

received little attention in past research (such as [Zhang et al. 2011a, Zhang

et al. 2014]).

• We extensively evaluate our system PeerShark with real-world P2P botnet

traces. PeerShark also detects unknown P2P botnets (i.e., those not used

during the training phase) with high accuracy. This approach appears in

[Narang et al. 2014a].

This chapter is organized as follows: in the next section (3.2), we discuss the sys-

tem design of PeerShark. Section 3.3 gives the details of design choices and im-

plementation of PeerShark, followed by its evaluation in Section 3.4. In Section

3.5, we discuss the limitations and possible evasions of our approach, and briefly

mention about multi-class classification. We conclude this chapter in Section 3.6.

3.2 System design

P2P botnets engage in C&C using custom or well-known P2P protocols. As a

result, their traffic can blend in with benign P2P traffic flowing in a network and

thus pass undetected through IDS or firewalls.

PeerShark uses a two-tier approach to differentiate P2P botnets from benign

P2P applications. The first phase clusters P2P traffic-flows based on the differing

behavior of different applications. In the second phase, conversations are created

from flows within each cluster. Several statistical features are extracted from each

conversation and are used to build supervised machine learning models for the

detection of P2P botnets. In Section 3.4, we will evaluate the effectiveness of our

detection scheme with traces of known and unknown (i.e., not used in the training

phase) P2P botnets.
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Figure 3.1: PeerShark: architecture

Figure 3.1 gives the architecture of PeerShark. The system design of PeerShark

is explained here:

3.2.1 Flow-clustering phase

Flow-based analysis has been the de facto standard for Internet traffic classification

and has yielded great success in the past [Karagiannis et al. 2004, Karagiannis

et al. 2005]. Typically, ‘flows’ are constructed based on the 5-tuple: source IP,

destination IP, source port, destination port and the transport layer protocol (TCP

or UDP). The direction of the flow is determined by the direction in which the first

packet is seen. An important difference between flows of P2P applications and

traditional client-server applications is that P2P traffic is inherently bidirectional

in nature. This differentiating factor has been leveraged by some recent works

[Rahbarinia et al. 2014, Narang et al. 2013] as well.

We leverage the bidirectional behavior of P2P traffic to segregate flows into differ-

ent clusters based on their differing behavior. The correct classification (in terms

of benign or malicious application) is not a concern at this point. At this stage,

we want to separate flows into different clusters based on their behavior. As an
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example, we observed a peculiar behavior in the network traces of the Zeus bot-

net (obtained from [Rahbarinia et al. 2014]). Flows between two hosts switched

between TCP and UDP. However, the communication over TCP was always fast

but short-lived (a few hundred packets exchanged within a matter of seconds),

while communication over UDP was stealthy and long-lived (two or three pack-

ets exchanged in half-an-hour duration). At this stage of flow clustering, these

differing flows of Zeus are expected to get separated into different clusters.

For the purpose of clustering, we extract a five-feature vector for every flow:

• Protocol

• Packets per second (f/w)

• Packets per second (b/w)

• Avg. Payload size (f/w)

• Avg. Payload size (b/w)

with ‘f/w’ and ‘b/w’ signifying the forward and the backward direction of the

flow, respectively. The primary motivation behind the choice of these features is

to exploit the bidirectional nature of P2P traffic and separate flows based on their

‘behavior’ in terms of the transport layer protocol used and packets & payload

exchanged. A more detailed discussion on the choice of features and clustering

algorithm will follow in Section 3.3.

3.2.2 Conversation-generation phase

Once a bot-master infects a particular machine, it is in the prime interest of the

bot-master to not lose connectivity with his bots. The bot-peers near each other in

the P2P overlay network maintain regular communication amongst themselves to

check for updates, exchange commands, and/or check if the peer is alive or not.
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If such messages are exchanged very frequently, the bots are at a risk of getting

detected by IDS/firewalls monitoring the network. Hence, the communication be-

tween the bot-master and his bots, or that of bots amongst themselves, is expected

to be low in volume (note here that this usually corresponds to the rally and wait-

ing stages; ‘execution’ stage can be aggressive or stealthy depending upon the

activity for which the bots are used; e.g., DDoS attack can be quite aggressive,

while password stealing may remain stealthy).

Since certain botnets (and even benign P2P applications) are known to random-

ize their port numbers over which they operate, the classical ‘flow’ definition will

not be able to give a clear picture of the activity a host is engaged in. The tradi-

tional ‘flow’ definition will create multiple flows out of what is actually a single

conversation happening between two such peers (although happening on differ-

ent ports) and thus give a false view of the communications happening in the

network. Two-tuple conversations provide a bird’s eye view of the communication

happening between different hosts in the network, which can be beneficial for a

network administrator to hunt for malicious conversations in the network traffic.

As has been explained in Chapter 2, the present works utilizing conversation-

based (or super-flow based) approaches do not detect systems infected by a P2P

bot if the system runs benign P2P applications as well. The main reason behind

this flaw is that conversations attempt to provide a bird’s eye view of the network

activity to the network administrator, but miss out certain finer details in that pro-

cess. Since all flows between two IPs are aggregated into a single conversation,

this approach creates a single conversation for two IPs having malicious and be-

nign flows between them, and thus fails to detect the malicious traffic. To combat

this drawback, we use flow-clustering in the first phase which separates flows into

different clusters based on their differing behavior. By this, we attempt to perform

a coarse separation of P2P apps and bots based on their differing behavior.
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In the second phase, we create conversations from flows within each cluster. Note

that in earlier work with conversation-based approaches, conversations were cre-

ated by aggregating all flows/conversations between IP1 and IP2 into a single

‘conversation’. Here, we limit conversation creation to the flows within each clus-

ter. Since flows within the same cluster have similar behavior, we are creating

conversations out of only those flows which show similar behavior. Thus, the

drawback of aggregating all flows/conversations between two IPs into a single

conversation (and thus missing out finer details) is addressed.

Furthermore, all P2P applications—whether malicious or benign—operate with

their ‘app-specific’ control messages which are used by peers to connect to the P2P

network, make file searches, leave the network, etc. Since each application has

its own specific control messages, we exploit the timing patterns of these control

messages to differentiate between P2P applications by considering the median

value of the inter-arrival time of packets for each P2P application. Moreover, bot

traffic tends to be stealthy. Hence, bot conversations are expected to have higher

inter-arrival time of packets than benign P2P conversations.

In summary, after creating conversations from flows, we extract four statistical

features from each conversation:

1. The duration of the conversation

2. The number of packets exchanged in the conversation

3. The volume of data exchanged in the conversation

4. The median value of the inter-arrival time of packets in that conversation

These features are then used to build supervised machine learning models to

differentiate between benign and malicious P2P traffic. More details will follow

in the next section.
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3.3 Design choices and implementation details

In this section, we present the implementation aspects and design choices of

PeerShark in detail.

3.3.1 Data

This work uses data of benign P2P applications and P2P botnets obtained from

two different sources. The data of four benign P2P applications, namely uTor-

rent, eMule, Vuze, and Frostwire, and the data of three P2P botnets, namely

Storm, Waledac, and Zeus, was obtained from the University of Georgia [Rah-

barinia et al. 2014]. The data for P2P applications was generated by [Rahbarinia

et al. 2014] by running those applications in their lab environment for a number of

days, using AutoIt1 scripts to simulate human-user activity on the P2P hosts. The

data of P2P botnets corresponds to real-world traces obtained from third parties.

We also obtained real-world traces of another P2P botnet named Nugache from

the authors of [Masud et al. 2008]. Altogether, we used four bots and four apps

for this work.

As mentioned in the previous section, network traces of each application were

parsed to create flows and further generate conversations. The conversations thus

obtained were labeled to create a ‘labeled dataset’ for training and testing pur-

poses. For all conversations corresponding to P2P applications, we use the label

‘benign’.

In the network traces of each P2P botnet, there are certain ‘known malicious hosts’

(Storm had 13, Waledac had 3, Zeus had 1, and Nugache had 4 ‘known malicious

hosts’). However, it is not known whether the other IP addresses seen in the

1https://www.autoitscript.com/site/autoit/
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Table 3.1: Dataset details

Name No. of flows No. of conversations Purpose
eMule 4,13,995 2,93,704 Train/Test

uTorrent 14,09,291 4,58,624 Train/Test
Vuze 12,07,963 6,03,145 Train/Test

Frostwire 8,90,300 2,34,335 Train/Test
Storm 95,316 59,157 Train/Test

Waledac 81,778 5,765 Train/Test
Zeus 43,593 2,751 Validation

Nugache 51,428 49 Validation

network traces are benign or malicious1. Hence, to create a ‘ground truth’ for our

evaluation, we treat a conversation as ‘malicious’ if either of the IPs (either source

or destination) is known to be ‘malicious’. If none of the IPs in the conversation

are known to be malicious, we treat the conversation as benign. Full details of this

dataset are given in Table 3.1. Our training/testing datasets are representative of

the real-world, where the majority of traffic flowing in any network is benign

[Cisco 2014]. Our datasets contain more than 90% benign traffic.

3.3.2 Packet filtering module

PeerShark operates on a dump of network traces. The first module takes net-

work logs in the form of raw packet data (pcap files) as input and parses them

using the libpcap library. The module reads each packet and isolates those

which have a valid IPv4 header. For the purpose of data sanitization, all pack-

ets without a valid IPv4 header are deemed invalid and discarded. The packets

are further filtered to retain only those packets which have a valid TCP or UDP

header. From each packet, its timestamp, source IP, source port, destination IP,

destination port, and payload size are extracted and stored for future use. In ad-

dition to these, we also extract the TCP flags (SYN, ACK, RST, FIN etc.) for all

1Personal communication with Babak Rahbarinia [Rahbarinia et al. 2013] in November 2013
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TCP packets because TCP flags are required to construct flows.

This module is explained in Algorithm 3.1.

Algorithm 3.1: Packet parsing module
Data: packetCapture
Result: f ilteredPackets

1 begin
2 ArrayList < Modi f iedPkt > f ilteredPackets;
3 for Packet pkt in packetCapture do
4 ts← pkt.getTimestamp();
5 if pkt has IPHeader then
6 ip← pkt.getIPHeader();
7 IP1← ip.getSourceIP();
8 IP2← ip.getDestIP();
9 if pkt has TCPheader or UDPheader then

10 IP1port ← pkt.getSourcePort();
11 IP2port ← pkt.getDestPort();
12 header ← pkt.getTransportHeader();
13 pSize← header.getPayloadSize();
14 nextPkt← Modi f iedPkt(ts, IP1, IP1port, IP2, IP2port, pSize);
15 f ilteredPackets.add(nextPkt);

16 return f ilteredPackets;

3.3.3 Flow creation module

The output of the packet filtering module is fed to this module to generate bidi-

rectional flows. Each flow is identified by source IP, destination IP, source port,

destination port and the transport layer protocol (TCP or UDP). The filtered pack-

ets are gathered and sorted based on timestamp. Flows are created based on the

5-tuple and a TIMEGAP value. TIMEGAP is defined as the maximum permissi-

ble inter-arrival time between two consecutive packets in a flow, beyond which

we mark the latter packet as the start of a new flow. For TCP flows, in addi-

tion to TIMEGAP criteria, we initiate a flow only after the regular TCP three-way

handshake has been established. The termination criteria for a TCP flow is met
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either by TIMEGAP or the TCP close connection sequence (in terms of FIN packets

or RST packets), whichever is encountered first. In case of UDP (virtual) flows,

only the TIMEGAP is employed. The module is explained algorithmically in Al-

gorithm 3.2 (TCP connection establishment or termination sequences are skipped

from the algorithm for the sake of brevity).

Note that TIMEGAP is a ‘tunable’ parameter, which must be decided by a network

administrator based on his understanding of the traffic flowing in the network.

Through our experiments, we observed that a high TIMEGAP value is more suit-

able because many bots exchange very few packets after long intervals of time. A

low TIMEGAP value would imply just one or two packets per flow, which will be

useless to extract any useful statistical metrics. We used a TIMEGAP value of 2,000

seconds.

Algorithm 3.2: Flow creation module
Data: f ilteredPackets
Result: initFlowList

1 begin
2 ArrayList < Flow > initFlowList;
3 ArrayList < PacketGroup > pgList;
4 pgList← f ilteredPkts.groupPktsBy5tuple();
5 for PacketGroup pg in pgList do
6 sort packets in pg by timestamp;
7 nextFlow← Flow(NULL);
8 for Packet p in pg do
9 if p.timestamp between (nextFlow.start − TIMEGAP) &&

(nextFlow.end + TIMEGAP) then
10 nextFlow.addPacket(p);

11 else
12 nextFlow← Flow(p);
13 initFlowList.add(nextFlow);

14 return initFlowList;

For every flow, a number of statistical features are extracted, such as:

1. Transport layer protocol
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2. Avg. payload (forward and backward)

3. Total payload exchanged

4. Packets per second (forward and backward)

5. Bytes per second (forward and backward)

6. Total number of packets exchanged

7. Duration of the flow

8. Median of inter-arrival time of packets

Some of these are utilized for the flow clustering module, while some are retained

for later use in the conversation generation module.

3.3.4 Flow clustering module

The flow clustering module aims to separate flows into different clusters based

on their differing behavior. In order to keep our approach suitable for large net-

works, the choice of a fast clustering algorithm was necessary. At the same time,

we want the number of clusters to be chosen automatically as per the behavior

seen in the data. To this end, we use the X-means clustering algorithm [Pelleg &

Moore 2000]. X-means algorithm is a variant of K-means which scales better and

does not require number of clusters as input.

Clustering is an unsupervised learning approach. But, since we had a labeled

dataset available to us, we adopted the route of classes-to-clusters evaluation. In

classes-to-clusters evaluation, the class label is initially ignored and the clusters

are generated. Then, in a test phase, class labels are assigned to clusters based on

the majority value of the class attribute in that cluster. Further, the classification

error is computed, which gives the percentage of data points belonging to the
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wrong cluster. This classification error gives us a rough idea of how close the

clusters are to the actual class labels of the instances.

Since the transport layer protocol naturally distinguishes between TCP and UDP

flows, it was an obvious choice for a feature to be used for clustering. In order

to choose the rest of the features, we began with a superset Sn of n pair of fea-

tures which represent bidirectional behavior of flows, such as: bytes per second

(forward) & bytes per second (backward), packets per second (forward) & packets

per second (backward), avg. payload (forward) & avg. payload (backward), etc.

We computed the classification error obtained from classes-to-cluster evaluation

with Sn and recomputed it for all Sn−2 sets by removing one pair of features at a

time (note that all features occur in pairs of ‘forward’ and ‘backward’). The classi-

fication errors for Sn and all sets of Sn−2 were compared. The set with the lowest

classification error was chosen. If that set was Sn, the computation terminated.

Else, the set Sn−2 with lowest classification error was chosen, and the process was

repeated until the classification error did not drop further.

The final set of features thus obtained were: protocol, packets per second (f/w),

packets per second (b/w), avg. payload size (f/w), and avg. payload size (b/w).

The classification error obtained with these features was 50.12%. The results ob-

tained with classes-to-clusters evaluation are given in Table 3.2. Irrespective of the

number of features used, the X-means algorithm always created four clusters from

the training data. Since our dataset is a representative dataset with four P2P apps

having the majority of instances, an outcome of four clusters was quite expected.

3.3.5 Conversation generation module

Within each cluster, the flows created previously are aggregated into conversa-

tions. Conversations are generated for a FLOWGAP value as desired by a network
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Table 3.2: Classes-to-clusters evaluation with X-means

Application Cluster indices
0 1 2 3

Zeus 1 9,304 154 34,134
Waledac 0 1,260 0 80,518
Storm 1,202 90,236 0 3,878
Nugache 0 165 0 51,263
eMule 2,032 297,373 3,852 11,0738
uTorrent 641,909 526,861 24,295 216,226
Vuze 18,097 1,018,941 23,893 147,032
Frostwire 172,995 308,016 32,0365 88,924

Clustered Instances
Cluster 0: uTorrent 83,6236 20%
Cluster 1: Vuze 2,252,156 54%
Cluster 2: Frostwire 372,559 9%
Cluster 3: eMule 732,713 17%

administrator. Flows between two IPs are aggregated into a single conversation

if the last packet of flow 1 and first packet of flow 2 occur within the FLOWGAP

time. Here, the network administrator is given the flexibility to mine data for the

time period desired by him, say 2 hours, 24 hours, etc., thus giving him visibility

into the network logs as required. Such flexibility is especially valuable to identify

bots which are extremely stealthy in their communication patterns and exchange as

low as a few packets every few hours. For this evaluation, the value being used is

1 hour. This module is explained in Algorithm 3.3.

Using the features extracted from every flow, we extract fresh features for every

conversation: number of packets, conversation volume (summation of payload

sizes), conversation duration, and the median value of inter-arrival time of packets

in the conversation. The reasons behind choosing these features have already been

explained in the previous section.

The median of inter-arrival time of packets was observed to be a better metric than

the mean because PeerShark aggregates several flows into a single conversation
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Algorithm 3.3: Conversation generation module
Data: initFlowList, FLOWGAP
Result: ConvoList

1 begin
2 ArrayList < Conversation > ConvoList;
3 ArrayList < ConversationGroup > cgList;
4 cgList← initFlowList.groupByIPpair();
5 for ConversationGroup cg in cgList do
6 sort IPpairs in cg by timestamp;
7 nextConvo ← Conversation(NULL);
8 if cg.timestamp between (nextConvo.start − FLOWGAP) &&

(nextConvo.end + FLOWGAP) then
9 nextConvo.addConvo(cg);

10 else
11 nextConvo ← Conversation(cg);
12 ConvoList.add(nextConvo);

13 return ConvoList;

as per the FLOWGAP value supplied. In such a scenario, it is quite possible that

flow 1 and flow 2 get merged into a single conversation while the last packet

of flow 1 and first packet of flow 2 occur several minutes (or even hours) apart.

This will skew the mean value, and thus the median value was found to be more

suitable from our experiments.

3.4 Results and evaluation

3.4.1 Training and testing datasets

The labeled data of all four P2P apps along with Storm and Waledac was used

for training and testing purposes. Altogether, the dataset contained 1,654,730 con-

versations (1,589,808 benign and 64,922 malicious). This dataset was split into

training and testing datasets in a 2:1 ratio. The training dataset had 1,092,122

conversations (1,049,242 benign and 42,880 malicious), and the test split contained
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558,348 conversations (540,566 benign and 22,042 malicious). The training as well

as test splits contain more than 90% benign data. Although such class imbalance

makes the task of detecting P2P botnets more challenging, this ratio is represen-

tative of the real-world scenario where majority of traffic flowing in a network is

benign [Cisco 2014].

After building the models on the training set and testing them with the test set,

we evaluate our models against unseen botnet datasets (i.e., not used in training)

of Zeus and Nugache. Since the network traces of Zeus contain only one ‘known

malicious host’, they are not adequate to train detection models. Similarly, al-

though traces of Nugache contain data of four malicious hosts, the dataset is very

small (see Table 3.1) and thus not suitable to build detection models. Neverthe-

less, they can be used to evaluate PeerShark’s capability on profiling unknown

P2P bots.

3.4.2 Data visualization

Figure 3.2 visualizes a portion of the dataset. A comparison of data of uTorrent,

eMule, Storm, and Zeus is given for one hour FLOWGAP duration in the form of

scatter plots. Each point on the plot denotes a conversation, with the intensity of

the color denoting higher number of conversations at that point. The X axis has

the Volume (in Kilobytes), while Duration (in thousands of seconds) is plotted on

the Y axis. The data displayed (for each application) corresponds to a 24 hour

period. Hence 86.4 (86,400 seconds) forms the upper limit on the Y axis.

From the scatter plots, it is evident that bots tend to ‘lie low’ and remain stealthy.

Their traffic is low-volume and high-duration, with only very few conversations

being high in volume. In clear contrast, most conversations seen in benign P2P

traffic (eMule and uTorrent) do not exhibit the trend of low-volume and high-
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(a) uTorrent (b) eMule

(c) Storm (d) Zeus

Figure 3.2: Comparison of network traces of uTorrent, eMule, Storm and Waledac

duration. Rather the points are widely spread over the entire length and breadth

of the plot. The few high-duration conversations seen in benign P2P traffic can

be attributed to the fact that this is dataset was generated at the University of

Georgia [Rahbarinia et al. 2014] by continuously running P2P applications (with

sharing, downloading, etc.) over several days. Since the applications were running

continuously, high durations conversations are present. Such a pattern is not

expected to be seen with an average user of the Internet.
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3.4.3 Classifiers

The training and testing of our models was performed using the Weka machine

learning suite [Hall et al. 2009]. Weka provides a large number of standardized im-

plementations for data preprocessing techniques, supervised learning algorithms,

unsupervised learning algorithms, etc.

Our training and testing dataset contains a high ‘class imbalance’ towards the

benign class. This imbalance is kept on-purpose in order to have a dataset rep-

resentative of real Internet traffic. Hence, we need to utilize learning algorithms

which can handle class imbalance. Moreover, the classifiers must be fast to train.

We use C4.5 decision trees, which are simple to train and fast classifiers, and can

handle class imbalance problems well [Drummond et al. 2003, Chawla 2003].

Second, we use Random forests. Random forests create an ensemble of decision

trees and output the final class that is the mode of the classes output by individual

trees. It randomly chooses a set of features for classification for each data point

and uses averaging to select the most important features. It can effectively handle

over-fitting of data and run efficiently on large datasets [Breiman 2001].

Along with tree-based classifiers, we use a stochastic learning algorithm—Bayesian

network [Friedman et al. 1997]. Bayesian networks are probabilistic graphical

models that can handle class imbalance, missing data and outliers quite well.

They can also identify relationships amongst variables of interest. We use the

Weka implementation of Bayesian network, which utilizes the K2 search algo-

rithm for learning the network.

Ten-fold stratified cross-validation was used over the training dataset to build

detection models with these classifiers. The models were tested with the test

dataset. These results are presented in Table 3.3.

As the results in Table 3.3 show, PeerShark could consistently detect P2P bots
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Table 3.3: Performance of classifiers on test data

Decision trees Random forests Bayesian network

Class Precision Recall FP rate Precision Recall FP rate Precision Recall FP rate

Malicious 95.3% 93.4% 0.2% 95.3% 94.9% 0.2% 91.9% 88.4% 0.3%

Benign 99.7% 99.8% 6.6% 99.8% 99.8% 5.1% 99.5% 99.7% 11.6%

with high accuracy and very low false positives. We emphasize that these results

are over the test set and not the training data. All three classifiers achieved high

precision and recall. Since the training and testing datasets have higher number of

‘benign’ instances, benign traffic is naturally classified with much higher accuracy.

However, even in the presence of more than 90% benign traffic, false positive

rate for the ‘malicious’ class (i.e., benign conversations incorrectly classified as

malicious) was quite low. This is important for any malicious traffic classifier

since it must not create false alarms by classifying benign traffic as malicious.

3.4.4 Testing on unseen data

To further evaluate the effectiveness of PeerShark on profiling new and unseen

P2P botnet traffic, we use the three models trained above and test them against the

conversations of Zeus and Nugache which were not used in training the models.

From the high detection accuracy presented in Table 3.4, it is evident that the

approach adopted by PeerShark is effective and generic enough to detect unseen

P2P botnets with high accuracy.

An ardent reader may note that the detection accuracy achieved for the validation

set of Nugache and Zeus is higher than that of the test set composed of Storm and

Waledac. We would like to make two points in this regard:

Firstly, our training and testing datasets were highly variegated, being composed

of four benign P2P applications and two P2P botnets, with a huge number of
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Table 3.4: Performance of classifiers on unseen P2P botnets

Decision trees Random torests Bayesian network

Classified
Mali-
cious

Classified
Benign

Accuracy
(%)

Classified
Mali-
cious

Classified
Benign

Accuracy
(%)

Classified
Mali-
cious

Classified
Benign

Accuracy
(%)

Zeus 2,696 55 98% 2,717 34 98.76% 2,660 91 96.69%

Nugache 42 7 85.71% 43 6 87.76% 48 1 97.96%

flows/conversations of each and the proportion of benign traffic being more than

90%. With such variety, the results presented by us are indicative of what one

might expect in a real-world scenario. But we did not have the same luxury with

the validation datasets. Had there been more variety in the network traces of

Nugache and Zeus, it is quite possible that the detection rate would have been

slightly lower.

Secondly, we made an interesting observation in the network traces of Storm and

Nugache. Nugache and Storm have been hailed as cousins [Fisher 2007]. Nugache

became well known amongst analysts as a ‘TCP port 8 botnet’ [Stover et al. 2007]

since it used the unassigned port 8 over TCP for several communications. How-

ever, while examining the network traces of Storm, we observed some activity

over TCP on port 8. This is not a typical behavior of Storm. We suspect that these

hosts—believed to have been infected by Storm—also had Nugache infection on

them. This could possibly explain high detection rate for Nugache.

3.5 Discussion

3.5.1 Possible evasions

PeerShark clusters flows based on their behavior and then forms conversations

from the flows within a cluster. Since it employs both approaches, PeerShark
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overcomes many limitations of past efforts. P2P bots which randomize port num-

bers and switch between TCP/UDP distort the network administrator’s view of

the actual communication happening between two hosts. Flow-based techniques

are insufficient for such cases. The conversation-generation scheme adopted by

PeerShark can effectively address this issue by aggregating flows of the same

cluster into a single conversation. Previous works employing conversation-based

approaches could not separate P2P bots and apps on the same machine. By segre-

gating flows into different clusters based on their behavior, the approach adopted

by PeerShark can effectively separate P2P bot and app traffic running on the

same machine.

However, in order to differentiate between malicious and benign P2P traffic,

PeerShark relies on ‘behavioral’ differences in the flows/conversations of P2P

bots and apps. If two bot-peers mimic a benign P2P application, our system may

fail in detecting them accurately. To elaborate more on this, consider the follow-

ing scenario: a bot-master could configure his bots to engage in occasional file-

sharing activity with each other on a regular P2P network (like eMule, uTorrent,

etc.). Seeing such benign-like activity on a host, PeerShark is likely to mis-

classify the flows/conversations between them as ‘benign’. But, since occasional

file-sharing by bots involves network bandwidth usage (and, say, accompanying

monetary charges), such an activity has the likelihood of getting noticed by the

owner of the system or a network administrator and is thus fraught with risks

for the bot-master. Nonetheless, we admit that it is possible for bot-masters to

design smarter bots which mimic benign-like behavior and/or add noise (or ran-

domness) to their communication patterns, and thus evade the present detection

mechanism of PeerShark. Authors in [Nappa et al. 2010] argue on a similar case

by building a botnet with Skype and validate their assertions with simulations.

Furthermore, assume the case of a peer A which is engaged in P2P file sharing
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with a benign peer B, but is also covertly a part of a botnet and is engaged in

exchanging command-and-control with a malicious peer C. PeerShark will see

these as two conversations, namely A to B and A to C. Since PeerShark regards

a conversation as ‘malicious’ even if either of the IPs (source or destination) is

malicious, A to C is identified as ‘malicious’ without hesitation. But, since the

conversation between A and B also involves one malicious peer (namely A), this

conversation will also be tagged as ‘malicious’. Although it is a limitation on the

part of PeerShark to regard that peer B is engaged in a malicious conversation,

it is not a serious shortcoming. Since peer B is, as a matter of fact, conversing

with a peer which has been compromised, it runs high risk of being infected in

the future. Thus, raising an alarm for conversations between A and B (apart from

those between A and C) is not completely unwarranted.

3.5.2 A note on multi-class classification

In the preliminary version of our work [Narang et al. 2014d], we had attempted

a multi-class classification approach which could categorize the exact P2P appli-

cation running on a host. Initially, we attempted multi-class classification for this

work as well. The detection accuracy and false positive rate for P2P botnets was

nearly the same as that of binary classification approach. However, within the

benign P2P applications, we saw a false positive rate of 2% to 10%. This comes

up to thousands of conversations in terms of the actual number. In particular,

we saw many misclassified conversations between Vuze and Frostwire. Such mis-

classification may be attributed to the fact that majority of our benign P2P data

consists of ‘torrent’ based applications. uTorrent, Vuze, and Frostwire are all ‘tor-

rent’ based (while eMule is not). Thus, it is quite natural that conversations of one

torrent-based app were misclassified as that of another. However, this distribu-

tion is representative of the real world where the share of P2P in Internet traffic
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is dying, and torrent-based applications are the only applications of P2P which

continue to dominate [Sandvine 2014].

New P2P botnets continue to be seen every year. Many of these are just variants

or ‘tweaks’ of older ones. For example, Citadel used a tweaked variant of Zeus

[Drinkwater 2014]. A multi-class approach will only be able to correctly classify

those botnets for which it has been trained. It will either miss new variants or call

them as ‘unknown’ (as in [Rahbarinia et al. 2014]). Rather than calling a variant

of an old botnet as ‘unknown’, we find a binary classification approach more

suitable. Further, since a multi-class or binary-class approach had little impact on

the detection accuracy of P2P botnets, we decided to go in favor of a simpler and

intuitive binary approach.

However, in a specific case where a network administrator needs to profile the

exact P2P application running on a host, multi-class classification is the only so-

lution. For the interested reader, we briefly share our experimental findings in

this regard with respect to Gaussian mixture models (GMMs) [Reynolds 2009].

In the flow-clustering phase discussed previously, we explained the use X-means

algorithm, which is a variant of K-means, for the purpose of clustering flows. X-

means reported four clusters in the data, which corresponded to the four benign

P2P applications. As noted earlier, this was quite natural since more than 90%

of the flows belong to P2P applications. Moreover, we also got large false pos-

itives amongst the benign P2P applications, indicating that their data points lie

in overlapping clusters. GMMs are a natural choice in such cases since they are

well known for clustering problems involving overlapping clusters. We repeated

the flow-clustering experiments with the entire dataset (all eight applications)

using GMMs with the optimization approach of expectation-maximization (EM)

[Moon 1996]. The flow-clustering phase with GMMs was run for number of clus-

ters ranging from zero to eight. Lowest classification error in classes-to-clusters
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evaluation was achieved for seven clusters (for a total of eight applications), with

each application except Storm having a cluster where it was dominantly present

(clusters of Storm and Waledac overlapped). The results of this evaluation are

given in Table 3.5.

However, we observed that GMMs with EM is an extremely slow clustering ap-

proach. X-means outperforms GMMs by hundreds of times. Moreover, X-means

has an added benefit that it does not require number of clusters as an input. Thus,

we did not find GMMs with EM suitable for PeerShark. Since this approach is

not the central component of PeerShark, we do not elucidate it further. But

an interested reader may leverage from the ability of GMMs and EM to separate

overlapping clusters.

3.6 Conclusion

In this chapter, we presented our system PeerShark, which uses a ‘best of both

worlds’ approach by combining flow-based and conversation-based approaches

to accurately segregate P2P botnets from benign P2P applications in network traf-

fic. PeerShark clusters flows based on statistical features obtained from their

network behavior and then creates conversations between the flows in the same

cluster. Using several statistical features extracted from each conversation, we

build supervised machine learning models to separate P2P botnets from benign

P2P applications. With the models built using three classifiers, PeerShark could

consistently detect P2P botnets with a true positive rate (or recall) ranging between

88% to 95% and achieved a low false positive rate of 0.2% to 0.3%. PeerShark

could also detect unseen and unknown P2P botnet traffic with high accuracy.
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Table 3.5: Classes-to-clusters evaluation with GMMs/EM

Application Cluster indices

0 1 2 3 4 5 6

Zeus 5 170 0 9,155 8,346 14,423 11,494

Waledac 70 378 0 3,146 415 73,722 4,047

Storm 9,611 0 1,110 1,322 363 11,433 71,477

Nugache 3 2,417 0 11,272 6,653 14,414 16,669

eMule 56,126 726 785 275 19,871 1,11,541 2,24,671

uTorrent 1,788 1,365 639,361 9,654 22,511 212,871 521,741

Vuze 20,028 19,992 362,715 3,163 30,105 164,636 607,324

Frostwire 67,525 12,453 27,424 667 135,034 388,775 258,422

Clustered Instances

Cluster 0: eMule 155,156 4%

Cluster 1: Waledac 37,501 1%

Cluster 2: uTorrent 1,031,395 25%

Cluster 3: Nugache 38,654 1%

Cluster 4: Zeus 223,298 5%

Cluster 5: Frostwire 991,815 24%

Cluster 6: Vuze 1,715,845 41%
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Chapter 4

Noise-resistant mechanisms for P2P

botnet detection

4.1 Introduction

In the previous chapter (in Section 3.5), we had argued that the detection mecha-

nism of PeerShark may fail if bot-masters design smarter bots which randomize

the communication patterns between bot-peers. This chapter will address the con-

text of detection of P2P bots in the presence of such randomness or noise injected

by an adversary. Furthermore, PeerShark presented a two-tier architecture for

the detection of P2P botnets. Although a two-tier architecture undoubtedly offers

certain benefits, it comes at the expense of increased computation. The approach

presented in this chapter directly deals with conversation-based mechanisms and

enhances them by leveraging on the timing and data patterns of communication

amongst bot-peers.

The context of P2P botnet detection is adversarial in nature. Statistical or behav-

ioral models for detection are created using ‘botnet’ data which has been gener-

ated by an adversary. Hence, the adversary is in a position to evade the detection
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mechanisms if he can change the behavior of his bots. Thus, this necessitates

the evaluation of the performance of these detection models in the presence of

deliberate injection of noise by an adversary. That is, if the bot-master slightly

alters the behavior and communication patterns of the bots, are these detection

models robust and resistant towards such a change? This question has not received

sufficient attention in past research.

The contributions of this work are two-fold. First, we propose a novel approach

for detection of P2P botnets in the presence of benign P2P traffic which utilizes

signal-processing techniques of Discrete Fourier Transforms and information en-

tropy. Our approach does not rely on DPI or signature-based mechanisms which

are easily defeated by applications using encryption. Neither do we assume the

availability of any ‘seed’ information of bots through honeypots or a blacklist of

IPs. We aim to detect stealthy P2P bots solely on the basis of their ‘P2P’ behavior

and C&C communication with other bots.

Second, we use real-world network traces of benign P2P applications and P2P bot-

nets to compare the performance of our features with traditional flow-based fea-

tures employed by past research (such as [Livadas et al. 2006, Saad et al. 2011, Kheir

& Wolley 2013, Zhang et al. 2014]). We build detection models with multiple super-

vised machine learning algorithms, and demonstrate that our detection approach

is more resilient towards evasive attacks wherein the bot-master alters the behav-

ior and communication patterns of the bots by deliberate injection of randomness

or noise. With our approach, we could detect P2P botnet traffic in the presence of

injected noise with True Positive rate as high as 90%.

Our approach utilizes the notion of conversations as explained in the previous

chapter. We extract two-tuple conversations from network traffic and treat each

conversation as a time-series sequence (or a ‘signal’). We leverage on the fact

that communication of bots amongst each other follows a certain regularity or
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periodicity with respect to timing and exchange of data. Bots tend to repeat-

edly exchange same kind of commands—which are often in the same format and

of the same size. The repeated C&C communication also follows certain timing

patterns—with bots generally contacting their fellow peers at predefined inter-

vals [Tegeler et al. 2012]. In order to uncover the hidden patterns between the

communications of bots, we convert the time-domain network communication to

the frequency-domain. From each conversation, we extract features based on DFTs

and information entropy. These features were introduced in [Narang et al. 2014b].

Fourier transforms can effectively extract the contributing ingredients of any sig-

nal. Most of the energy of any time series is contained in the top peaks of its

Fourier transform (for details, refer to Chapter 2 (Fourier series representation) of

[Oppenheim et al. 1997]). By modeling a network communication in the form of

a signal and performing a Fourier transform over it, we aim to extract the highest

contributing ingredients of a signal or the top peaks of the Fourier transform. We

focus our attention on these peaks and utilize them as ‘features’ to build our de-

tection models. Since our detection models rely only on these ‘top peaks’ of the

communication, they are more resilient towards variation in the data or injection

of noise.

Information entropy, as introduced by Shannon, defines the amount of informa-

tion contained in an event. The concept has found extensive use in data com-

pression techniques. We use this measure to quantify the randomness of the data

patterns in network communications (modeled as a time-series sequence). Since

bots usually run automated scripts and commands, their network behavior often

displays more periodicity as compared to a human user of the Internet. That

is, communication of bots often exhibits less randomness [Tegeler et al. 2012]. We

harness this factor as a feature in our detection models.

The contents of this chapter are organized as follows: an overview of our approach
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is described in Section 4.2, and implementation details are given in Section 4.3. We

evaluate our system in Section 4.4. Section 4.5 presents a discussion on the results

obtained with our approach. Finally, we conclude this chapter in Section 4.6.

4.2 System Overview

P2P botnets form structured P2P topologies using custom as well as well-known

P2P protocols. As a result, such traffic can easily blend in with legitimate P2P traf-

fic coming from applications such as BitTorrent, Gnutella, eMule, etc., and thus

pass under the radars of IDS/Firewalls monitoring a network. We attempt to dif-

ferentiate P2P bot traffic from P2P applications by leveraging on the timing and

data patterns of communication amongst bot-peers. The C&C communication be-

tween bots often follows certain regular patterns of timing and exchange of data.

We harness this periodicity by converting the time-domain network communica-

tion to the frequency-domain. Our approach makes use of two-tuple conversations

instead of the traditional approach of five-tuple flows. In particular, we extract

‘conversations’ for each pair of hosts occurring in network traffic. We model each

conversation as a time-series sequence and extract features based on DFTs and

information entropy.

Fourier transforms provide the frequency domain representation of any signal.

We use them to capture the patterns in timings and exchange of data in C&C

communication of bot-peers. A conversation between two hosts is modeled in

the form of a time-series sequence. The inter-arrival time of packets and payload

size of the packets are taken as two series of discrete symbols. Fourier transform

is applied over these two series. We focus our attention on the top peaks of the

Fourier transform and utilize them for building detection models.

Bots often engage in repeated exchange of similar commands, which often occur
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Figure 4.1: Design of the IDS used in our module

in a similar format and thus packets of similar sizes. This is to say that con-

versations among bots often have packets of similar sizes, and thus exhibit less

randomness. This is quite expected since bots are designed to run simple and

structurally repetitive tasks. Conversations created from benign applications, on

the other hand, are not expected to display such behavior since different users of

Internet may use different applications and may display different usage patterns.

We quantify this randomness or entropy in payload variation by modeling pay-

load size per packet as a discrete symbol, and calculate the ‘compression ratio’

using information entropy (more details will follow in next section).

The data used in this work corresponds to real-world traces obtained from [Rah-

barinia et al. 2014]. We extract the above-mentioned features from the network

traces of P2P bots and P2P applications. These features are used to build P2P bot

detection models using multiple supervised machine learning algorithms.

4.3 System Implementation

Figure 4.1 gives the design of the IDS used in this module. The IDS design

combines various principles from machine learning, statistical approaches (us-
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ing Fourier transforms and information entropy) and expert knowledge (of P2P

bot behavior). We will discuss each of these in detail as we describe each module

of our system.

4.3.1 Packet parsing module

Our system operates on a dump of network traces (pcap files) as the input. The

packet parsing module uses libpcap library to parse pcap files and extract fea-

tures of relevance. We keep only those packets which have a valid TCP/UDP

header. Corrupted packets or packets which have the header information missing

are discarded. Background traffic in the form of IP Broadcasts, ARP requests, etc.

is filtered out at this stage. For each packet, we extract its timestamp, source IP,

destination IP, and payload length at the transport layer (for TCP or UDP, as ap-

plicable). This information is used by the next modules to generate conversations

and extract all the required features.

Algorithm 4.1: Packet parsing module
Data: packetCapture
Result: f ilteredPackets

1 begin
2 ArrayList < Modi f iedPkt > f ilteredPackets;
3 for Packet pkt in packetCapture do
4 ts← pkt.getTimestamp();
5 if pkt has IPHeader then
6 ip← pkt.getIPHeader();
7 IP1← ip.getSourceIP();
8 IP2← ip.getDestIP();
9 if pkt has TCPheader or UDPheader then

10 header ← pkt.getTransportHeader();
11 pSize← header.getPayloadSize();
12 nextPkt← Modi f iedPkt(ts, IP1, IP2, pSize);
13 f ilteredPackets.add(nextPkt);

14 return f ilteredPackets;

The Packet parsing module is very similar to Algorithm 3.1 explained in Chapter
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Figure 4.2: A snapshot of the run of packet parsing module

3. But, for the sake of completeness, we explain it again in Algorithm 4.1.

The Packet parsing module, implemented in Python as FilterPackets.py, in-

ternally invokes a libpcap library based network protocol analyzer Tshark.

Tshark is used to parse the .pcap files as explained above. FilterPackets.py

is invoked in parallel on a set of .pcap files. Parallel execution is achieved by us-

ing GNU Parallel1. Figure 4.2 shows a snapshot from htop2, and the portion

marked in red indicates parallel execution of FilterPackets.py.

4.3.2 Conversation creation & feature extraction modules

4.3.2.1 Conversation creation module

The output of the Packet parsing module ( f ilteredPackets) is fed to this module

to create conversations. Conversations are created by aggregating packet-level

data. Each Conversation is identified by <IP1,IP2> and a TIMEGAP parameter.

TIMEGAP is defined as the maximum permissible inter-arrival time between two

1http://www.gnu.org/software/parallel/
2http://linux.die.net/man/1/htop

80



4.3 System Implementation

packets in a conversation.

Whenever a new packet p is seen, it is added to an existing conversation or allotted

a new conversation based on the following criteria:

1. If the IP pair of p does not belong to any existing conversation, a new con-

versation is created for the IP pair of p.

2. If the IP pair of p belongs to an existing conversation, we check the times-

tamp of p.

(a) If timestamp of p lies within the TIMEGAP range from the end of the

existing conversation, p will be added to that conversation.

(b) Otherwise, a new conversation is created for the IP pair of p.

TIMEGAP is a ‘tunable’ parameter, which is to be chosen by a network adminis-

trator based on his understanding of the type of traffic flowing in the network.

From our experiments, we observed that a higher value of TIMEGAP is more suit-

able for bots since many bots exchanged only a few packets after long gaps. A

low TIMEGAP value would result in ‘timeouts’, and imply just one or two packets

per conversation. This will not be useful to extract any statistical metrics from

conversations. We use a TIMEGAP of 2,000 seconds.

The Conversation creation module is similar to the Conversation generation mod-

ule (Algorithm 3.3) explained in Chapter 3. However, this module creates conver-

sations directly from packet data, while Algorithm 3.3 utilized flow data to create

conversations. We present this module in Algorithm 4.2. The feature extraction

module is used along with this module to extract relevant the features from every

conversation.

A snapshot from the implementation of this module is given in Figure 4.3. The

module, implemented in Python as convo.py, is invoked in parallel using GNU

Parallel. The parallelized implementation allows each convo.py script to process
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Algorithm 4.2: Conversation creation module
Data: f ilteredPackets
Result: Conversation list

1 begin
2 ArrayList < Conversation > initConvList;
3 ArrayList < PacketGroup > pgList;
4 pgList← f ilteredPackets.groupPktsByIPpair();
5 for PacketGroup pg in pgList do
6 sort packets in pg by ts;
7 nextConv← Conversation(NULL);
8 for Packet pkt in pg do
9 if pkt.timestamp between (nextConv.start – TIMEGAP) &&

(nextConv.end + TIMEGAP) then
10 nextConv.addPacket(pkt);

11 else
12 nextConv← Conversation(pkt);
13 initConvList.add(nextConv);

14 return initConvList;

the parsed .pcap files in parallel. Figure 4.3 shows a snapshot from htop, and

the portion marked in red indicates parallel execution of convo.py.

4.3.2.2 Feature extraction module

The Feature extraction module extracts features based on DFTs and information

entropy for every conversation. In any time-series, most of the energy is contained

in the top peaks of the Fourier transform. Hence, it may be argued that it should

be sufficient to focus our attention only on the top peaks itself. We harness this

characteristic by considering payload length (in Kbs) per packet in a conversation

and the inter-arrival time of packets in a conversation as two series of discrete

symbols. We apply a Fast Fourier Transform algorithm to both these series, and

focus our attention on the ‘top peaks’ obtained from the Fourier transform.

On the sequence of payload lengths, we also compute the ‘compression ratio’ by

using information entropy based on Shannon’s source coding theorem. The source
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Figure 4.3: A snapshot of the run of conversation creation module

coding theorem establishes the limits of data compression. We use information

entropy to calculate the ‘compression ratio’ achieved over the sequence of discrete

symbols obtained by modeling each conversation as a time-series sequence. As

noted before, it is expected that communication of bots will have more ‘structure’

and ‘regularity’ associated with it. The data patterns generated by bots will have

less randomness. Thus, higher ‘compression ratio’ is expected for communication

of bots.

Fourier transform: Discrete Fourier Transforms (DFT) uncover the periodicities

in input data, and also bring out the strength of these periodic components. Given

a vector of N input amplitudes, x(0), x(1) . . . x(N − 1), the DFT yields a set of N

frequency magnitudes.

X[k] =
N−1

∑
n=0

x(n) · e
−2jπkn

N (4.1)
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In the equation above, each X[k] is a complex number which encodes both the

amplitude and phase of sinusoidal component of function x(n). Here, N is the

length of the sequence to be transformed, k is used to denote the frequency do-

main ordinal, and n is used to represent the time-domain ordinal. The sinusoidal

frequency is k cycles per N samples.

We compute Fourier transform over payload length (in Kbs) per packet and the

inter-arrival time of packets in a conversation. For each Fourier transform thus

obtained, we sort its values in descending order of magnitude. The top ten mag-

nitude values are retained. The ‘phase’ component of a Fourier transform has

no meaningful interpretation in this context, and is dropped. We also extract the

vector sum of the top ten values in the form of the ‘prime wave’. We obtain 11

magnitude values corresponding to features of inter-arrival time as well as pay-

load lengths. In total, we extract 22 features based on Fourier transform.

Our features based on Fourier transform rely only on the top peaks of communi-

cation obtained from a conversation. Slight variation in the timing or data patterns

of the conversation will not hamper the top peaks. As a result, our approach is

expected to be more resilient towards variation in the data or injection of noise.

We test this proposition in Section 4.4.4 by injecting noise in our test data, and

present the results of our evaluation in Section 4.5.2.

Entropy: In order to maintain connectivity with each other, bot-peers engage in

regular exchange of C&C messages. It has been noted [Tegeler et al. 2012] that such

communication often occurs in the same format because bots are usually hard-

coded to perform simple and structurally repetitive tasks. Indeed, we noticed in

the network traces of Zeus (obtained from [Rahbarinia et al. 2014]) that the bots

periodically engaged in such communication with small, fixed-size payloads, and

often switched between TCP and UDP ports. The payload sizes of benign Internet
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traffic will exhibit much more variation. This can be attributed to the fact that

human users of the Internet differ in their usage patterns and use a variety of

applications, each having a different behavior with regard to its payload sizes.

Thus, we do not expect to see any such trend(s) in the payload sizes. Benign

conversations are expected to have more randomness or entropy, which will lead

to less compression, while bot conversations are expected to have low entropy

leading to a higher compression.

From Shannon’s source coding theorem [MacKay 2003], we can say that N out-

comes from a source X can be compressed into N×H(X) bits with negligible risk

of information loss, where H(X) is entropy. In order to quantify the amount of

entropy or randomness in payload variation, we model the pair of IPs in a conver-

sation as the source(s), and payload size per packet as the discrete symbol being

generated.

In a conversation, let us consider that xi are the payload sizes generated by the

source(s) X, which are modeled as discrete symbols. However, if an adversary

adds slight randomness in the values of xi, the bot communication will no longer

occur in packets of similar size/format, and the entropy will shoot up. To ac-

count for this slight variation, we round-off each payload value to its nearest

tens. Hence, if payload sizes in a conversation are 259, 263, 271, 277, 278, 267, 261,

they will be rounded-off to nearest tens, and the resulting sequence will be:

260, 260, 270, 280, 280, 270, 260.

For this modified sequence, entropy H(X) will given by:

H(X) = −∑
xiεX

p(xi) · log2(p(xi)) (4.2)

Here p(xi) is the probability of occurrence of xi. For example, for the sequence

given above with 7 symbols, the p(xi) value for 260 is 3/7.
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We need H(X) bits per symbol to encode any sequence without loss of informa-

tion. If N is the total number of packets in the conversation and U is the count

of unique payload sizes in the conversation, the compressed size of this sequence

can be given by:

compressed_size = N × H(X) + U (4.3)

The count of unique payload sizes is added to the ‘compressed size’ to account

for the number of symbols used in the encoding.

To calculate the actual/unencoded size of this sequence, we consider that each

discrete symbol (i.e., the payload size per packet) requires 16 bits to represent.

With 16 bits, the highest value of the payload which can be represented is 65,535

bytes, which is the maximum theoretical limit for transport layer payloads, and far

greater than what is usually seen in Ethernet-dedicated Internet of today. How-

ever, the reader is requested to note that the value of 16 is used only for modeling

and computing the unencoded size of the sequence.

Thus, unencoded length required to represent a conversation with N packets will

be given by 16× N.

The ‘compression ratio’ will be calculated as the ratio of the actual size to the

compressed size.

compression_ratio =
uncompressed_size

compressed_size
=

16× N
N × H(X) + U

(4.4)

This gives us one more feature of compression ratio. This feature is based on

the inherent behavior of bots repeatedly performing structurally repetitive tasks.

The ‘entropy’ of the network behavior will not vary significantly even if slight

variation/noise is introduced in the communication patterns of a bot. In our

approach, we further round-off the payload values (to nearest tens), and thus

further reduce the impact of noise injected by an adversary. Hence, ‘compression
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ratio’ is expected to be tolerant towards introduction of noise by an adversary.

In total, we extracted 23 features from every conversation. It might be noted that,

at this stage, we justified the choice of all these features primarily based on the

behavioral understanding of P2P botnets [Tegeler et al. 2012]. In Section 4.4.1, we

will evaluate the suitability of these 23 features using feature selection algorithms.

4.3.3 Firewall module

The output from our IDS module is in the form of IPs which are P2P applications

or IPs infected by a P2P bot. These results can be of practical benefit to a firewall

module which can reject or limit P2P traffic as desired. We use these results for a

‘firewall’ module to generate a dynamic rule-set governing P2P traffic.

An Iptables based firewall was setup on a Gateway machine of our lab environ-

ment. The ‘firewall’ module utilizes Iptables and bash scripts to create automated

firewall rules for hosts identified as running P2P apps and for hosts infected with

bots. For the prototype implementation of our module, we implemented firewall

rules for top 20 IPs outside our University which were identified as P2P, top 20

IPs outside our University which were identified as bot-infected, and top 20 IPs

inside our University which were identified as bot-infected. Apart from creating

firewall rules pertaining to these set of hosts, we also created generic firewall rules

to rate-limit connections of popular P2P applications. Our firewall rules have a

dynamic nature. We do not block/reject P2P traffic on weekends. On working

days, P2P traffic is disallowed during the working hours (9:00 AM – 5:00 PM).

Apart from working hours, P2P traffic is allowed. Bot traffic, however, is shown

zero tolerance and is rejected under all circumstances.

Given below are the rules written using Iptables3.

3http://linux.die.net/man/8/iptables
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All traffic to the top 20 bot IPs (as detected by our module) outside the BITS

network is outrightly rejected so that any attempt from bot-infected hosts inside

the BITS network attempting to connect to them is denied:

iptables -I FORWARD -t filter -d $ip -j REJECT

Further, the traffic from top 20 bot-infected hosts inside the BITS network is lim-

ited to 3 connections per host:

iptables -I FORWARD -s $ip -m connlimit --connlimit-above 3

-j REJECT

All P2P traffic is permitted during weekends, and blocked during the working

hours of weekdays. P2P traffic is blocked by rejecting all traffic on known stan-

dard ports of popular P2P applications. After working hours, this traffic is again

permitted. Iptables processes rules in the order in which they are written. So,

we add this rule after the rules meant for bot traffic because we want to continue

blocking bot traffic irrespective of day and time. This rule is given here:

iptables -I FORWARD -p tcp -m time --timestart 09:00

--timestop 17:00 --weekdays Mon,Tue,Wed,Thu,Fri -m multiport

--sports 411,412,2323,6347,1214,6346,6881,6889,6699 -j REJECT

Certain P2P applications may escape this rule by using ports other than those

mentioned above. For this purpose, we reject all traffic to the top 20 P2P IPs

during the working hours of weekdays:

iptables -I FORWARD -t filter -d $ip -m time --timestart 09:00

--timestop 17:00 --weekdays Mon,Tue,Wed,Thu,Fri -j REJECT

The rules given above are explained in Algorithm 4.3.
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Algorithm 4.3: Iptables pseudo-code
1 Weekday← [Mon, Tue, Wed, Thu, Fri];

P2P_ports← [411, 412, 2323, 6347, 1214, 6346, 6881, 6889, 6699];
begin

2 while do
3 if IP in Top20_Bot_IPs then
4 REJECT traffic to IP;

5 else if IP in Top20_local_Bot_IPs then
6 Rate_limit traffic to IP to 3 connections;

7 else if Time in [9 : 00− 17 : 00] and Weekday then
8 REJECT TCP traffic on P2P_ports;

9 else if IP in Top20_P2P_IPs then
10 if Timein [9 : 00− 17 : 00] and Weekday then
11 REJECT traffic to IP;

12 else
13 ALLOW traffic;

4.4 System Evaluation

This work uses data of benign P2P applications and P2P bots obtained from [Rah-

barinia et al. 2014]. The dataset contains network traces of four benign P2P appli-

cations, namely uTorrent, eMule, Vuze and Frostwire, and three P2P bots, namely

Storm, Waledac and Zeus. The traces of P2P bots correspond to real-world traces

obtained by [Rahbarinia et al. 2014] from third parties. The network traces of P2P

applications were generated by them by running those applications in their lab

environment for a number of days, using AutoIt scripts to simulate human-user

activity on the P2P hosts. Altogether, we used three bots and four apps for this

work.

The network traces of all applications were parsed using the modules described

in the previous section. Two-tuple conversations and accompanying features were

extracted from each application. The conversations thus obtained were labeled to

create a ‘labeled dataset’, which will be used for training and testing purposes.
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For all conversations corresponding to P2P applications, we use the label ‘benign’.

The network traces of each of the P2P bots contain certain ‘known malicious

hosts’. These hosts are confirmed hosts which are infected by the bot. Zeus

had 1, Waledac had 3 and Storm had 13 ‘known malicious hosts’. However, it

is not known whether the other IP addresses seen in the network traces are be-

nign or malicious4. For the evaluation of our system, we require a labeled dataset

which can be treated as the ‘ground truth’. Thus, to create a labeled dataset from

the network traces of P2P bots, we treat a conversation as ‘malicious’ if either of

the IPs (source or destination) is known to be ‘malicious’. If none of the IPs in a

conversation are known to be malicious, it is treated as benign.

4.4.1 Feature selection

Extraction of features based on Fourier transform and entropy was motivated

based on behavioral understanding of P2P botnets. We extracted 23 features – 22

features based on Fourier transform, and one feature of compression ratio. Before

we begin to create detection models using them, we must test the suitability of

these features for this task. To this end, we turn our attention to popular feature

selection algorithms.

Feature selection is a process of selecting a subset of relevant features from the en-

tire set, with aim of removing those features which do not significantly contribute

towards the classification problem, or are totally irrelevant to the classification

problem. Presence of irrelevant features can lead to construction of poor detec-

tion models which do not generalize to newer data. Since feature selection results

in lesser number of features being used for the classification task, it also leads to

higher classification speed.

4Personal communication with Babak Rahbarinia [Rahbarinia et al. 2013] in November 2013
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Specifically in our context, we had argued that we are selecting the magnitude

of the top ten peaks of the Fourier transform (as well as their vector sum) since

most of the energy of any time series is contained in the top peaks of its Fourier

transform. But, it is very much possible that certain peaks of the Fourier transform

do not provide any further information for the classification problem than what is

already provided by other peaks. Also, we need to evaluate whether the feature

of compression ratio provides valuable information for the classification problem

of detection of P2P bots. Feature selection will help us accomplish this task.

We use two well-known feature selection algorithms for this purpose – Correlation-

based Feature Selection (CFS) algorithm [Hall 1999] and Consistency-based Subset

Evaluation (CSE) search algorithm [Dash & Liu 2003]. An overview of these algo-

rithms has already been presented in Chapter 1.

With the labeled datasets P2P bots and benign applications, we used CFS and CSE

algorithms with stratified ten-fold cross-validation. We select only those features

in the final subset which were chosen by CFS as well as CSE in all the ten runs

of cross-validation. The final subset of features is given in Table 4.1 (‘Fourier

Transform’ is abbreviated as ‘FT’, and ‘inter-arrival time’ as ‘iat’).

For features based on Fourier transform, we observe that the magnitude of first

three peaks and the prime-wave contributed highly towards the classification, and

were thus chosen by both the algorithms. The feature of ‘compression ratio’ was

also selected by both the algorithms. Henceforth, we proceed with these nine

features in our dataset and discard other features.

4.4.2 Dataset creation

The ‘labeled’ conversations of all four benign P2P applications along with Storm,

Waledac and Zeus were used for training our detection models and testing them.

91



4.4 System Evaluation

Table 4.1: Features selected after ‘feature selection’ using CFS and CSE

FT (payload) – prime-wave (magnitude)
FT (payload) – peak 1 (magnitude)
FT (payload) – peak 2 (magnitude)
FT (payload) – peak 3 (magnitude)
FT (iat) – prime-wave (magnitude)
FT (iat) – peak 1 (magnitude)
FT (iat) – peak 2 (magnitude)
FT (iat) – peak 3 (magnitude)
compression ratio

The details are given in Table 4.2. TR is the training dataset which contains con-

versations of all four benign P2P applications along with conversations of Storm,

Zeus and Waledac, and is used to build and train detection models with multiple

supervised machine learning algorithms. TE is the test dataset which is used for

evaluation of the trained models. It contains conversations (distinct from TR) of all

benign P2P applications and P2P bots. Further, we wish to evaluate the resilience

of our features towards noise injected in the data by an adversary. For this pur-

pose, we create the dataset TN from TE by adding noise to the conversations of

bots. The process of injecting noise will be explained in Section 4.4.4.

4.4.3 Extracting flow-based features

In this work, we have used two-tuple conversation-based approach. Most of the

prior approaches on the detection of P2P bots, on the other hand, employ tradi-

tional five-tuple flow-based approaches. In order to compare our approach with

past research, we need a comparison with flow-based approaches, and require to

extract the features used by previous researchers. Hence, we also perform the

entire feature extraction procedure using five-tuple flows.

Just as we extracted two-tuple conversations from the network traces of P2P bots
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Table 4.2: Dataset details

Dataset Type No. of conversations Description

TR
benign 189,100

Training data
malicious 91,620

TE
benign 94,530

Testing data
malicious 45,700

TN
benign 94,530 Testing data

malicious 45,700 injected with noise

and benign applications, we extracted five-tuple flows using similar modules

given in Section 4.3 for the entire dataset. Each flow is identified by source IP,

destination IP, source port, destination port, and transport layer protocol, as ex-

plained before. Flows are created based on the five-tuple and a TIMEGAP value.

We use the same TIMEGAP value as was used in the conversation creation module.

Here, TIMEGAP is defined as the maximum permissible inter-arrival time between

two consecutive packets in a flow, beyond which the later packet is marked as the

beginning of a new flow. For TCP, a new flow is initiated only after the regular

TCP three-way handshake has been established. The termination criteria is met

either by TIMEGAP or the TCP connection termination sequence (in terms of FIN

packets or RST packets), whichever is encountered first. For the termination of

UDP (virtual) flows, only the TIMEGAP can be considered (since UDP does not

have any specific criteria for flow termination).

For each flow, statistical features given in Table 4.3 were extracted. Majority of

these features have been taken from past research on detection of P2P bots. For

example: ‘Protocol’ has been used as a feature by almost all past research using

flow-based approaches; ‘First packet size’ was used by [Saad et al. 2011]; ‘Flow

duration’, ‘Total payload exchanged’, ‘Total packets exchanged’ etc. were used

by [Livadas et al. 2006]; Number of packets sent/received and number of bytes

sent/received were used by [Zhang et al. 2014] and [Kheir et al. 2014]; Bytes per

second sent/received were employed by [Kheir & Wolley 2013]; etc.
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Table 4.3: Traditional flow-based statistical features

Protocol Flow Duration
First Packet Size Max Packet Size
Payload Sent Payload Received
Total Payload exchanged Bytes Per Sec
Bytes Sent Per Sec Bytes Received Per Sec
Median iat (Sent) Median iat (Received)
Median iat Avg iat
Avg iat (Sent) Avg iat (Received)
Packets Sent Packets Received
Total Packets Exchanged Packets Per Second
Packets Per Second Sent Packets Per Second Received
Avg Payload Size (Sent) Avg Payload Size (Received)
Avg Payload Size Variance Of Packet Size
Variance of Packet Size (Sent) Variance of Packet Size (Received)

Two-tuple conversations, by definition, are port and protocol-oblivious. They may

combine several flows between a pair of IPs into a single conversation. Thus, the

number of flows obtained from the same network trace are a lot more than the

number of conversations. Hence, for each P2P application, we sample out number

of flows equal to the number of conversations. Using these flows, we create the

datasets TR, TE and TN, as we did for conversations. The number of flows in each

dataset are kept same as the number of conversations. This was done to facilitate

an easy and intuitive comparison between both the approaches (which will be

presented in Section 4.5).

4.4.4 Noise injection

The problem of detection of P2P bots is adversarial in nature. If a detection model

relies on observing the network behavior of bots, the adversary (in this case, the

bot creator) can try to defeat the detection by adding some randomness to the

network behavior of his bots. Thus, it becomes important to evaluate whether a

suggested approach for P2P bot detection can withstand the injection of noise in
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the data. To this end, we inject noise in our testing data and create the dataset TN.

For the purpose of this work, we utilize a single attack model. The ‘range’ of noise

is chosen to be between 25% and 33% of the original value. We will discuss more

on this choice in Section 4.5.3.

The first level of noise injection is applied at the packet-level, and hence affects

both flows and conversations. The noise injection module is explained in Algo-

rithm 4.4. The input to this algorithm is the list of filtered packets ( f ilteredPackets)

belonging to a five-tuple (in case of flows) or a two-tuple (in case of conversations).

Each packet carries its payload value and the inter-arrival time (abbreviated as

‘iat’) of this packet and the packet previous to it.

The variable var is randomly assigned the value 0, 1 or −1. The variable noise is

randomly assigned a value between 0.25 and 0.33 for each packet, and indicates

the percentage of noise injected. If var is one, this value will be added to the

original value of payload and inter-arrival time of each packet. If var is −1, this

value is subtracted. Nothing is done if var is 0. This implies that the adversary, at

random, adds noise in one-third of the cases, subtracts it in one-third of the cases,

and does nothing at all in the remaining one-third.

Further, the second level of noise is applied at the ‘flow’ level. The transport layer

protocols are swapped for a flow if var is 1. This is done to take into account the

nature of bots which switch between TCP and UDP. However, conversations do

not consider the protocol in their definition, and will not be affected by this.
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Algorithm 4.4: Noise injection module
Data: f ilteredPackets

1 begin
2 for packet in f ilteredPackets do
3 var ← random.choice(0, 1,−1);
4 noise← random_number(25, 33)/100;
5 packet.iat← packet.iat + var · packet.iat · noise;
6 packet.payload← packet.payload + var · packet.payload · noise;

7 for f low in FlowList do
8 var ← random.choice(0, 1,−1);
9 if var is 1 then

10 swap_protocol(); /* not applicable to conversations */

4.5 Results & Discussion

4.5.1 Classifiers

The training and testing of our models was performed using the Weka machine

learning suite [Hall et al. 2009].

Our training and testing dataset contains a high ‘class imbalance’ towards the

benign class. This imbalance was kept on-purpose in order to have a dataset rep-

resentative of real Internet traffic (where malicious traffic is always in minority).

Hence, we need to utilize learning algorithms which can handle class imbalance

problems well.

We train multiple classifiers for this work which have been employed in prior

research [Saad et al. 2011, Livadas et al. 2006, Kheir & Wolley 2013, Kheir et al. 2014,

Singh et al. 2014].

Decision trees are simple to train and fast classifiers, and can handle class im-

balance well. However, they are notorious for creating complex structures and

over-fitting the data. Instead of using regular ‘C4.5 decision trees’, we used ‘re-

duced error-pruning’ (REP) trees. The REP tree implementation of Weka allows
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us to limit the maximum depth of the tree. By limiting the maximum depth, we

can avoid complex structures in the tree. Limiting the depth may lower the train-

ing accuracy, but allows us to obtain a simpler model (as compared to C4.5) which

is less prone to over-fitting and generalizes better. After experimenting with dif-

ferent values for the maximum depth, we chose the value of 10 as it gave highest

training accuracy (over datasets of conversations as well as flows).

Next, we use Random forests. Random forests create an ensemble of decision

trees and output the final class that is the mode of the classes output by individual

trees. It randomly chooses a set of features for classification for each data point

and uses averaging to select the most important features. It can effectively handle

over-fitting of data and run efficiently on large datasets. We present our results

with Random forest of 10 trees in this section.

Along with tree-based classifiers, we use a stochastic learning algorithm—Bayesian

network [Bouckaert 2008]. Bayesian networks are probabilistic graphical models

that can handle class imbalance, missing data and outliers quite well. They can

also identify relationships amongst variables of interest. We use the Weka im-

plementation of Bayesian network, which utilizes the K2 search algorithm for

learning the network.

We also use a Naïve Bayes and Decision tree hybrid classifier, namely Naïve Bayes

tree (NB tree) [Kohavi 1996]. Furthermore, we use the K nearest neighbors algo-

rithm because of its inherent simplicity which does not over-fit the training data.

K-nn was used with number of neighbors equal to 5.

Lastly, we use the ‘stacking’ ensemble learning technique [Wolpert 1992] (also

known as ‘stacked generalization’). The ‘stacking’ method uses several classifi-

cation algorithms (known as ‘base’ classifiers) together in the first step, and then

combines their predictions in the second step using a ‘meta’ classifier. This is

pictorially represented in Figure 4.4. We use Bayesian networks, NB tree and
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Figure 4.4: ‘Stacking’ ensemble learning

REP trees as the base classifiers, and use Naïve Bayes as the meta classifier. By

combining several algorithms, we hope to achieve a robust prediction.

These classifiers were used to build detection models using the training dataset

TR of conversations as well as flows. Ten-fold stratified cross-validation was used

to build the models. The models were tested with the test dataset TE and the

test data injected with noise (TN), for conversations as well as flows, in each case.

These results are presented in Figure 4.5. The ‘True Positive (TP) rate’ (or the

‘recall’) for the ‘bot’ class is presented for each dataset. Each sub-figure gives, on

the left, the TP rate obtained over all four datasets with the new features presented

in this work, and the TP rate over all four datasets with traditional ‘flow-based’

features to the right.

The TR, TE and TN datasets also had benign P2P data in them. Since noise injection

was performed only for bot data, TE and TN are the same in case of benign data.

All classifiers performed exceedingly well in detection of benign traffic—with TP

rate for TR around 98–99%, and TP rate for TE (or TN) around 95–99%. We skip

these results from Figure 4.5 to facilitate easy viewing of TP rate of bot data over

the different datasets.
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4.5.2 Results

Table 4.2 mentions the datasets that were used in this work. Herein we will discuss

the results obtained over each dataset.

4.5.2.1 Training and testing

All the classifiers were trained over TR and tested over TE. The results in Figure 4.5

clearly show that the approach proposed by us performs as good as the traditional

features in most cases, and outperforms the traditional features in some cases. The

TP rate over TR and TE were consistently above 98%. Although high TP rate was

observed even with traditional features with most classifiers, over the dataset TE

it fell down to less than 90% with Random forests, and to 80% with K-nn.

The training and testing datasets establish that our approach fares at least as

good as traditional approaches for the detection of P2P bot traffic. We will further

evaluate both the category of features for their capability in profiling botnet data

injected with noise.

4.5.2.2 Testing with injected noise

As described before, TE was injected with noise to create the dataset TN. Results

over TN will give better indication that whether a detection approach is resilient

towards variation or noise introduced in the data by an adversary.

We consider the performance of tree-based classifiers first. We observe that TP rate

for REP trees with our approach is only 65%. Although the values are not high,

REP trees fared nearly as good with our features as with traditional features—

the TP rate for traditional features being 60%. However, Random forests do not

perform well with either of the features. The TP rate of 50% over new features is
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(a) REP trees (b) Random forests

(c) NB tree (d) Bayesian network

(e) K-nn (K = 5) (f) Stacking

Figure 4.5: TP rate for P2P bot detection, obtained with different machine learning
algorithms over new features and traditional ‘flow-based’ features
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better than 40% over traditional features. However, neither of them are valuable

since such a low TP rate is hardly better than a random or naïve guess.

NB tree performs exceptionally well with our features—with TP rate of 90%. On

the other hand, the TP rate with traditional features is only 56%. A similar trend

is seen with Bayesian networks too. The TP rate with our features is 87%, while

with traditional features it is 61%. With K-nn, our features fare better only by a

small margin.

As expected, combination of several algorithms through stacking presents good

classification results. With new features, the TP rate is 88%. However, the corre-

sponding value for traditional features stands at a mere 55%.

4.5.3 Discussion

The performance obtained with tree-based classifiers draws a clear observation

that they do not perform well in the presence of variation or noise injected in

testing data. This observation held true with traditional features as well as our

features—albeit our features performed at least as good as traditional features.

This observation regarding tree-based classifiers is interesting since a lot of past

research has used and emphasized on tree-based classifiers and flow-based ap-

proaches for Internet traffic classification [Williams et al. 2006], P2P traffic clas-

sification [Li et al. 2008, Zhang et al. 2010] or detection of P2P bots [Rahbarinia

et al. 2014, Singh et al. 2014]. Our experiments clearly establish that, although tree-

based classifiers give high accuracy in a controlled environment (over TR and TE),

they fail to perform in the presence of noise and do not generalize well. Hence,

such classifiers will be unsuitable for deployment in real-world networks.

Although K-nn classifier also performed well with our features, it is known to be

a ‘lazy learner’ classifier which has poor run-time performance if the training data
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is large.

Bayesian network, NB tree and ‘stacking’ approach (which used both of these

classifiers coupled with REP trees as ‘base classifiers’, and Naïve Bayes as the

meta classifier) performed exceedingly well, indicating that a ‘Bayesian’ approach

is more suitable for such classification problems. These classifiers demonstrated

good resilience towards presence of noise in the test data, with the TP rate of

almost 90% with the new features.

Although our noise-resistant approach enhances the capabilities of current P2P

bot detection mechanisms and raises the bar for bot-creators, it is not perfect.

The attack model used by us considers the range of 25% to 33% of injected noise,

and does not consider very low or very high values. We had initially experi-

mented with low levels of injected noise (between 0 to 25%). However, it was

observed that the detection models were quite tolerant to low levels of noise.

Thus, any discussion on them is not necessary. As the level of injected noise was

increased beyond 33%, detection models built with traditional features as well as

our features saw degradation in performance. Nevertheless, our detection models

continued to give higher TP rate when compared to traditional features. With fur-

ther higher levels of noise (more than 50%), the TP rate dropped sharply (below

20%) and both detection approaches were rendered quite useless. The proposed

approach will not work if a powerful adversary is in a position to launch such

attacks with high levels of randomness in the communication pattern of his bots.

If bot-creators can model their bots to mimic benign P2P behavior, our system

may find it difficult to identify bots based on their timing or data patterns. If bots

are programmed to engage in occasional file-sharing, exchange of chat messages,

etc. with other peers, their malicious behavior may get subdued by the benign-

like activity. We acknowledge that our system may miss such bots. However,

creating such a botnet is also fraught with risks for the bot-creator. Activities in
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a bot-infected system (occasional file sharing, uploads, downloads etc.), which

have not been initiated by the owner of the system, may catch the attention of the

owner/administrator, and thus the infection is likely to be detected.

Furthermore, if bots perform C&C communication over anonymity networks like

Tor, Tor’s anonymity service may help in concealing the C&C activity. Our ap-

proach will be unable to detect such bots. However, use of Tor by bots also

leaves behind certain recognizable patterns, as pointed out by [Casenove & Mi-

raglia 2014].

4.6 Conclusion

In this work, we presented a novel approach for the detection of P2P bots which

relies on conversation-based mechanisms and extracts features based on Fourier

transform over the inter-arrival time in a conversation, Fourier transform over

payload sizes in a conversation, and compression ratio over payload sizes in a

conversation. Using these features, our approach differentiates between benign

P2P traffic and P2P bot traffic. By building models with several supervised ma-

chine learning algorithms, we demonstrated that our approach could detect P2P

bot traffic in presence of benign P2P traffic with high True Positive rate. We

also compared the performance of our approach with traditional flow-based ap-

proaches. In comparison with flow-based approaches, our approach performs

better in the presence of noise injected in the test data.

Through our experiments, we also established that tree-based classifiers—a pop-

ular choice in many prior detection approaches such as [Singh et al. 2014], [Rah-

barinia et al. 2014], etc.—are not a good choice for real-world networks since they

do not generalize to variation in test data. ‘Bayesian’ approach fares better in this

regard.
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We acknowledge that we explored a single attack/noise model in our work. If an

adversary is in a position to add high levels of randomness to his bots, our current

models will not work. We intend to perform a more detailed study of the effect of

deliberate injection of noise in detection of P2P botnet traffic. Furthermore, other

concepts from the ‘signal-processing’ domain, such as Wavelets and Discrete Co-

sine Transforms, can also be explored for their suitability in identifying malicious

traffic.
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Chapter 5

Game theoretic strategies for IDS

deployment in P2P networks

5.1 Introduction and motivation

A P2P network lacks any centralized authority, and is thus more vulnerable to se-

curity threats than the traditional client-server architectures. Although the decen-

tralized and distributed nature of P2P network offers resilience towards network-

breakdowns, the super-peer architecture is more sensitive in this regard since an

adversary can disrupt (albeit not breakdown) the entire P2P network by attacking

the super-peer nodes. For example, a DoS/DDoS attack targeted on certain relay

nodes in Tor can lead to an increased latency and higher number of time-outs in

the network. In traditional networks, such a scenario can be secured by use of In-

trusion Detection Systems (IDS), which might be deployed at the backbone router

of an enterprise (NIDS) or at each end-host (HIDS). Owing to its decentralized

and distributed nature, a NIDS is not feasible in P2P networks. Furthermore, a

HIDS-based solution will provide security only to the node running the IDS, and

not to the network. Although a solution based on Distributed IDS (DIDS) can be

105



5.1 Introduction and motivation

explored, self-interested peers may not want to spend their resources in running

an IDS. However, such a solution can be viable if this responsibility and load of

running distributed IDS is divided amongst different peers.

Early work on P2P networks by [Daswani & Garcia-Molina 2002] showed that

super-peer based P2P networks such as Gnutella are susceptible to query-flooding

based DoS attacks. Traffic analysis attacks on Skype Voice-over-IP (VoIP) calls,

which compromise the privacy of Skype calls, have also been explored using

application-level features extracted from VoIP call traces [Zhu & Fu 2011]. Past

research has also demonstrated attacks on Tor where anonymity in the Tor net-

work can be compromised by traffic-analysis attacks by a global passive adversary

[Murdoch & Danezis 2005] or by non-global adversaries with minimal resources

[Bauer et al. 2007].

We consider the scenario of a P2P network such as that of Gnutella or Skype which

involves a super-peer architecture where super-peers hold higher responsibilities

and/or privileges in the network. It is also applicable to networks like Tor which

bear resemblance to P2P networks. Tor uses ‘relay nodes’ which can be equated

to super-peers since they take the responsibility of routing and relaying the traffic

in the Tor network. This scenario also applies to ‘collaborative IDS’ involved in

‘P2P intrusion detection’.

The P2P architecture is inherently about peers coming together to share and mo-

bilize resources. However, self-interested peers would want to maximize their

benefit received from the network and minimize their contribution (in terms of

bandwidth, storage, files or data shared, etc.). Consequently, most of the requests

for service are directed towards a small number of P2P nodes which are willing

to share information or provide service, causing the “tragedy of the commons”

[Ma et al. 2006] in the P2P network. In order to motivate the peers to spend their

resources in running an IDS and contribute to a DIDS approach, it is important
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that the load and responsibility of running the IDS is distributed among the peers

in the network. Thus, we explore the problem of IDS deployment in P2P networks

from a game theoretic perspective.

In this work, we consider the problem of securing a P2P network from an adver-

sary who may become part of the P2P network by joining from any part of the

network. A malicious peer can disrupt the P2P network by attacking a super-peer

through various attacks at the overlay layer, such as route table poisoning, index

poisoning, or other traditional attacks (malicious payloads, etc.). Running an IDS

at each peer may not be feasible since self-interested peers may not want to ded-

icate resources for that. Peers may try to secure the network by running IDS at

certain strategic locations in the network. But, a deterministic schedule of running

and positioning the IDS can be observed and thwarted by an adversary. In this

chapter, we explore the problem of strategically positioning IDS in a P2P network

with a game theoretic approach. Our approach distributes the responsibility of

running the IDS between the peers in a randomized fashion and minimizes the

probability of a successful attack. This approach appears in [Narang & Hota 2015].

This chapter is organized as follows: Section 5.2 presents a detailed discussion on

the ‘game’ environment and explains about the players of the game, the payoffs,

etc. with the example of a P2P network. Section 5.3 discusses our proposed

solution, and Section 5.4 presents a discussion on the proposed approach. We

conclude the chapter in Section 5.5.

5.2 The ‘game’ environment

For the purpose of this work, we consider a super-peer based P2P architecture,

involving super-peer nodes and leaf-peer nodes. In our approach, we limit our

discussion to the super-peer nodes. Owing to high ‘churn’ (joining and leaving
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of peers) seen in leaf-peers, any solution involving them is bound to be inefficient

since a leaf-peer’s lifespan in the network may be very short. Thus, we neglect all

leaf peers connected to the super-peers, and consider only super-peers. In general,

super-peers are selected in a network based on factors such as high uptime, higher

network bandwidth, publicly visible IP address etc., and have lesser churn than

leaf-peers.

The P2P network—with only super-peers considered—is modeled as a graph

G(V, E). The terms and symbols used in this work are given in Table 5.1. Our

approach operates on a snapshot of the network topology, and thus requires the

network topology to remain constant. But, since we base our approach only on

super-peers, high churn-rate in leaf-peers has no impact on our approach.

Every peer is modeled as a vertex, and links between nodes are modeled as edges

between the vertices. An adversary can join the network in the form of a leaf-

peer or infect an existing leaf-peer, and thus connect with existing super-peers.

The adversary may try to disrupt the network by attacking certain super-peers

which hold higher value/responsibilities in the network. The attack(s) can be in

the form of overlay attacks or other traditional attacks (malicious packets which

cause a buffer overflow, injecting malware in shared files, APTs etc.). For the

sake of simplicity, we assume that an attacker gains entry into the network only

through a selected set of ‘source’ nodes.

To model super-peers which hold higher value/responsibilities in the network, we

consider certain ‘target’ nodes in the network and assign a weight or a value to

them. These values might be computed based on the node’s uptime, the number

of super-peers and/or leaf-peers attached to it, its reputation etc. For the purpose

of this work, these values were chosen arbitrarily. Furthermore, we model the

traffic flowing in the network by assigning weights to the edges. A high weight

for edge between two nodes can indicate, for example, higher network traffic over
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that link between the peers. An attacker may find it more luring to choose an

edge with heavy traffic in its attack path since it would be easier for the attack

traffic to blend with heavy network traffic.

Note that it is assumed that other super-peers in the network do not have any

value or worth, and thus an attacker will only attack the target nodes. We also

assume that the attacker has full knowledge of the network topology, the location

of super-peers, the paths leading to them, etc. This is true in real-life networks as

well since an attacker is in a position to gain such information through a ‘recon-

naissance’ involving port-scans etc.

Since game theory primarily deals with rational players, we limit our discussion

of the attacker or the defender(s) to rational, utility-maximizing players. For the

purpose of the game theoretic formulation, we limit ourselves to a zero-sum game

– primarily because computational limits are reached in non-zero-sum games even

for small network graphs. More specifically, we deal with zero-sum Stackelberg

security games. In case of a successful attack, if the attacker gains a payoff of

x, the payoff of the defender is −x. The payoff is zero for other cases. Limit-

ing this discussion to zero-sum games is important because in finite two-person

zero-sum games, different game theoretic solution concepts of Nash Equilibrium,

Minimax strategy, Strong Stackelberg Equilibrium (SSE) etc. are equivalent [Ko-

rzhyk et al. 2011].

5.2.1 The game, players and payoffs

Stackelberg security games are leader-follower games wherein the attacker or the

defender takes the first move and the other follows sequentially. In our game for-

mulation, the ‘attacker’ is a malicious peer who wants to disrupt the P2P network.

The ‘defenders’ are benign super-peers in the network who want to collaboratively
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Table 5.1: Terms and Symbols used

Symbol Meaning
G The graph of P2P network with vertices V and edges E
V The vertices in G, which are the super-peer nodes in the network
E All edges in graph G
T The set of Target nodes in V
S The set of Source nodes in V
Pj The payoff associated with the target node j
Hk,j Simple path from source node k to target node j
A The set of attacker paths chosen [A = A1, A2, A3 . . .]
D The set of defender allocations [D = D1, D2, D3 . . .]
MD Defender’s mixed strategy over D
MA Attacker’s mixed strategy over A
U Value of the game

ensure smooth and secure operation of the P2P network. We restrict the scope of

our discussion to the attacker-defender model, and do not consider the question

of trust or effective collaboration amongst the peers in a P2P network, which

are separate areas of study covered in past research [Anceaume et al. 2005, Ye

et al. 2004].

We attach values to super-peers which indicate their worth in the network. This

value may be chosen based on their contribution to the network, the average

number of super-peers/leaf-peers connected to them, their uptime etc. We also

assign weights to edges to indicate the amount of network traffic flowing through

a link. For this work, we choose these values arbitrarily. We consider the scenario

where super-peers in the P2P network want to collaborate to protect those nodes

which hold higher value in the network and are thus lucrative targets for an

attacker.

Although continuously running an IDS on all peers will provide the maximum

security, such continuous monitoring is not viable because peers may not feel

incentivized to do so. Although participating peers want successful operation

of the P2P network, they are expected to be selfish towards contributing their

resources. Moreover, even if multiple IDS are deployed in the P2P network at
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certain locations, a deterministic scheduling of IDS can be observed and thwarted

by an active adversary.

We use game theoretic strategies to generate a randomized schedule of deploying

IDS at different nodes in the network. The schedule is generated in the form

of a probability distribution over the peers. This probability distribution may be

practically implemented in the form of (a) the percentage of time in a given time-

slice for which a peer should run the IDS, or (b) the strength of the IDS running at

the node in a given time-slice (with a small probability indicating a light-weight

IDS, while a high probability indicating a IDS which can perform heavy tasks

such as DPI and SSL inspection in high-speed networks).

This game theoretic schedule will be generated off-line by one of the super-peers

in the network – say, by the Skype-owned super-peers or Tor’s relay nodes – by

considering the ‘value’ of the ‘target’ super-peers and the weights of the possible

paths which the attacker may choose to attack those nodes.

If the attacker successfully compromises a super-peer whose value is x, the at-

tacker gains a payoff of x plus the weight of the edges which lie on the path from

the source to the target. And the P2P network loses an equivalent amount. But,

the attacker can launch a successful attack only if there is no active IDS on the

path between the attacker and its target node. If there is an active IDS, the attack

is detected and thwarted1. In this scenario, there is no payoff for the attacker or

the defender(s). A non-zero-sum game scenario can consider negative payoff for

the attacker launching an unsuccessful attack (which takes into account the cost

of launching an attack, the punishment on getting caught etc.), or a cost for the

defender(s) to monitor the network. But, as already mentioned, non-zero-sum

games are out-of-scope for this work.

1we assume a perfect detector
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Figure 5.1: A snapshot of the P2P network with only super-peers considered (best
viewed in color)

5.2.2 Example

Since our approach deals only with super-peers, we consider a random P2P net-

work topology in simplified form as given in Figure 5.1. All the nodes shown in

the figure are super-peers which may have any number of leaf-peers connected to

them. The leaf-peers and their connections with super-peers are neglected, and

only super-peers and their connections with other super-peers are shown. For the

sake of simplicity, let us consider that only five nodes in this network (shown in

red) have a value attached to them: nodes 1, 5, 7, 9 and 12. Thus, these are the

probable ‘target nodes’ for a malicious peer, and peers in the network would want

to minimize the probability of attack on these targets. All other nodes are taken to

have zero value. Further, an attacker may gain entry in the network only through

certain ‘source’ nodes: nodes 0, 6, 8, 10, 21, 26. The complete details of the graph

in Figure 5.1 are given in Table 5.2 and 5.3.
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Table 5.2: Details of the Network graph given in Figure 5.1

No. of vertices 35 (# 0 to 34)
No. of edges 53
Source nodes # 0, 6, 8, 10, 21, 26
No. of Target nodes 5
Value of target nodes:
Node # value
1 24
5 17
7 34
9 18
12 32

By noticing the values of target nodes given in Table 5.2, we observe that an

attacker can gain twice as much as payoff by attacking node 7 than by attacking

node 5. He may connect himself to the P2P through any of the ‘source’ nodes,

and attempt to attack one of the target nodes through any of the possible paths

from the source to the target. For example, the attacker may connect to node 6

and attack node 7 using the path 6->16->30->7, and obtain a payoff equal to

the sum of values of each edge and the target. If any node on that path has an

active IDS, the attacker will not be successful and he gains zero payoff. Then, the

attacker may attempt to attack node 9 using the path 8->22->9, and so on.

Our solution proposes a randomized strategy for deploying the IDS at different

nodes in the network with different probabilities. These probabilities are deter-

mined using a game theoretic approach, as described in the next section.

5.3 Proposed solution

Our graph-based modules were implemented using the igraph network analysis

library, and the game theoretic modules were implemented using the gambit
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Table 5.3: Details of the edges of the Network graph given in Figure 5.1

Edge Weight Edge Weight Edge Weight Edge Weight
0-6 6 4-9 5 9-16 7 16-30 5
1-31 6 4-32 5 9-22 6 17-20 7
1-32 6 5-25 5 9-29 4 17-27 1
1-27 3 5-12 4 9-26 3 18-13 1
1-23 3 5-14 4 9-24 1 19-29 5
1-15 3 5-16 1 10-27 2 19-25 4
1-6 2 6-16 6 11-15 1 19-31 3
2-21 7 7-12 7 12-33 7 19-27 1
2-25 2 7-17 6 12-34 5 21-33 7
2-13 1 7-19 5 12-19 2 21-34 3
3-25 7 7-30 5 12-31 1 22-32 2
3-20 2 7-25 3 15-25 3 23-32 3
4-21 7 8-22 4 15-21 2 26-32 5

28-17 1

library. Both these modules were integrated to create a game theoretic framework

which can be applied on any kind of undirected graphs. For the purpose of

this work, we demonstrate our solution through the example of a random graph

topology as given in Figure 5.1.

The network snapshot in Figure 5.1 represents an overlay network of trusted peers

modeled by the undirected graph G(V, E). An Intrusion Detection System (IDS)

can run on each node (super-peer). Our work uses a Distributed IDS (DIDS)

approach. The IDS can monitor the network traffic on all the edges connected to

that node. The resources spent by the network in running IDS can be conserved

if the IDS are strategically deployed in the network and all peers do not need to

run the IDS. Furthermore, this allocation must be done in such a way that the

probability of attack on the ‘target nodes’ is kept to the minimum. The peers

(super-peers, to be precise) play the role of defenders who want to defend the

‘target nodes’ from probable attacks, and collaborate to save their resources at the

same time.
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Each target node j has a payoff (value) associated with it, given by Pj (a real num-

ber). The value of Pj for each target node is determined by the relative importance

of the node, which may be modeled as a function of its up-time, associativity etc.

A pure strategy Di for the defender is to activate the IDS on node i. The set of

all such allocations is D. A pure strategy Aj for the attacker is a path from any

‘source’ node to one of the target nodes j in T. The set of all such paths is A.

The game is a zero-sum game. The attacker gets a utility (or payoff) of Pj for

successfully attacking the target j, and zero otherwise. Similarly, the defender

gets a utility of −Pj if the attacker successfully attacks target j. Success and failure

are defined by the intersection of the Attacker and Defender allocations. If the

defender has used node i in its allocation and an attacker path Ax passes through

i, the attacker will get detected and his attack will fail.

The value of the game is modeled as the utility derived by the attacker for playing

the mixed strategy MA over A. The objective is to find a Minimax strategy MD

for the defender. Since it is a zero-sum game, the Minimax solution is also a Nash

Equilibrium.

Below, we describe the computation of the solution for this attacker-defender

game. This computation for the solution is done off-line by the defender(s) by

computing the best responses for the attacker as well as the defender in each

situation.

The solution space of the defender will grow as the number of IDS running in

the network increase. If there is only a single IDS running in the network (as

considered in our preliminary work [Narang et al. 2014c]), the defender’s solution

space equals the number of nodes, i.e. |V| . For a solution involving n IDS, the

Defender’s strategy space will grow to |V|Cn. For the sake of simplicity, we will

explain the details of our algorithms by considering a single IDS. However, the

proposed solution is equally valid with multiple IDS. The results obtained with
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multiple IDS will also be discussed later sections.

5.3.1 ‘Trivial’ zero-sum game

Since an attacker is targeting some selected ‘target nodes’ in the P2P network, we

describe a trivial solution wherein the IDS is run on the target nodes themselves.

In this case the attacker’s strategy space will be filled with a simple path from any

source node to each of the target nodes: A = A1, A2, A3 . . . where each Aj is an

arbitrarily chosen simple path to target node j. The defender’s strategy space will

include all the target nodes: D = D1, D2, D3 . . . where each Dj is a target node

when number of IDS are 1. For n IDS (n > 1), each Dj consists of a tuple of n

target nodes. The algorithm is presented in Algorithm 5.1:

Algorithm 5.1: Trivial Solution
1 begin
2 for each node j ∈ T do
3 k = ChooseRandomNode(S);
4 A = A ∪ Hk,j;

5 D ← T;
6 (MA, MD) = MMSC(A, D);

The function ChooseRandomNode(S) will select a random ‘source’ node k from the

set of source nodes S. In its next step, a random path between k to j is added to

A.

MMSC implies Minimax Mixed Strategy Calculator. It calculates attacker’s and

defender’s mixed strategies MA and MD respectively over A and D using the

Von Neumann’s Minimax Theorem [Motwani & Raghavan 2010]. This works by

formulating linear equations and solving them as follows: Both, the attacker and

the defender, aim at making the other player indifferent towards choosing any of

the available strategies. This is achieved by equating the average payoff that the

opponent receives on choosing any of the available strategy. This is known as
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the Principle of Indifference (For detail, we refer the reader to the Chapter 4 of

[Keynes 2013]).

If the game matrix between the attacker and defender is represented as C having

A = A1, A2, A3 . . . and D = D1, D2, D3 . . ., then

C =



c11 . . . c1m

c21 . . . c2m

. . .

. . .

cn1 . . . cnm


The attacker is the row player and the defender is the column player. cij is the

payoff to the attacker when attacker chooses Ai and defender chooses Dj. MA

is represented as n-tuple (p1, p2, p3 . . .)T such that ∑ pi = 1. Similarly, MD is the

m-tuple (q1, q2, q3 . . .)T such that ∑ qi = 1. If attacker chooses the mixed strategy

MA and defender chooses a pure strategy Dj, then the average payoff to attacker

is ∑n
i=1 picij. The defender (who is choosing only the strategy j) receives its ex-

act negative. Similarly, if the defender chooses MD and attacker chooses a pure

strategy Ai then the average payoff to the defender is −∑m
j=1 qicij. Alternatively,

the pure strategy of selecting a single row or column can be represented as a unit

vector ei or ej where all elements are zero except the ith/jth elements, which are 1.

The probability distribution (mixed strategy) for attacker is found by solving the

equations
n

∑
i=1

pi = 1 (5.1)

and

∀j, k ∈ D,
n

∑
i=1

picij =
n

∑
i=1

picik f or j 6= k (5.2)
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Table 5.4: Trivial solution for graph in Figure 5.1

Number of IDS Convergence time Value of the game Prob. dist. over IDS nodes

1 4 sec 24.15174709

0.2452← [1]
0.2991← [7]
0.1823← [9]
0.2732← [12]

2 5 sec 17.2453919

0.1421← [1, 5]
0.3189← [1, 7]
0.0578← [7, 9]
0.1227← [7, 12]
0.3582← [9, 12]

3 5 sec 11.49692794

0.3459← [1, 5,7]
0.0432← [1, 5, 12]
0.2515← [1, 9, 12]
0.0388← [5, 9, 12]
0.3204← [7, 9, 12]

4 5 sec 5.748463968

0.1729← [1, 5, 7, 9]
0.1946← [1, 5, 7, 12]
0.1668← [1, 5, 9, 12]
0.2859← [1, 7, 9, 12]
0.1796← [5, 7, 9, 12]

5 6 sec 0 1.0000← [1,5,7,9,12]

In a similar way, the mixed strategy for the defender is found by solving

m

∑
i=1

qj = 1 (5.3)

and

∀i, l ∈ A,
m

∑
j=1

qjcij =
m

∑
j=1

qjcl j f or i 6= l (5.4)

The value of the game is the average payoff to attacker when both play the above

mixed strategy.

U =
n

∑
i=1

m

∑
j=1

picijqj (5.5)
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The Solution: With the trivial solution, we obtain a probability distribution to

run the IDS on the target nodes. The solution thus obtained for the graph in

Figure 5.1 is given in Table 5.4. We give results for number of IDS in the network

ranging from 1 to 5, given in column 1 of the table. The time taken for the game

to reach convergence, i.e. the ‘convergence time’, is given in column 2. Column 3

gives the value of the game obtained for each run. A single IDS solution has the

highest value of the game, and thus results in the highest loss to the defender. As

we increase the number of IDS, the value of the game falls heavily. The time for

convergence of the game does not vary significantly with the increase in number

of IDS.

In column 4, the probability distribution obtained over the participating peers is

listed. Note that only ‘target’ nodes appear in the probability distribution. With

5 IDS running on all 5 target nodes, the value obtained by an attacker reduces to

zero. This is but obvious since highest security is achieved for target nodes by

running IDS at all the target nodes themselves. If all targets are running IDS, the

attacker will always be caught. Although it gives the highest security, this is also

the most expensive solution since we are putting the burden of running IDS on all

the target nodes themselves. Thus, such a solution is called ‘trivial’. A better case

will be explored in the non-trivial solution when we do not have the IDS running

on the ‘target’ nodes.

5.3.2 ‘Non-trivial’ zero-sum game

The target nodes are super-peers which hold certain prime responsibilities or

higher privileges in the P2P network. They already have high load on them.

A good example would be of Tor’s relay nodes. The trivial solution proposed

running IDS on the target nodes themselves. Since the targets themselves become

defenders, surely such a solution achieves lowest value of the game. However, at
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the cost of slightly higher value of the game, we explore the possibility of running

the IDS on super-peers apart from the target nodes (and thus reduce the burden

on the target nodes). This ‘non-trivial’ case is explained in Algorithm 5.2. We

follow the same notations as used in the trivial solution. The value of the game

is calculated in the same way as in the case od trivial solution. The functioning

of MMSC also remains same. In the algorithm, A.B.R. and D.B.R. stand for ‘At-

tacker’s Best Response’ and ‘Defender’s Best Response’ respectively. We discuss

about them next.

Algorithm 5.2: Non-trivial Solution
Data: G = (V, E)
Result: (MD, MA)

1 begin
2 D ← ChooseRandomNode(V − T);
3 A← ChooseRandomPath(S, T);
4 while Uold!=Unew do
5 Calculate Uold;
6 (MD, MA) = MMSC(D, A);
7 a = A.B.R.(D, A, Uold);
8 d = D.B.R.(D, A, Uold);
9 D = D ∪ d;

10 A = A ∪ a;
11 Calculate Unew;

12 return (MD, MA);

The function ChooseRandomNode(V − T) will select a random node from the set

of nodes in (V − T), which implies the set of all nodes apart from the ‘target’

nodes. We exclude the target nodes because the non-trivial solution explores IDS

deployment without considering them. ChooseRandomPath(S, T) will choose an

arbitrary attack path for the Attacker from an arbitrary source in S to any of the

target nodes in T.

Attacker’s Best Response (A.B.R.): Given the defender’s strategy MD, A.B.R.

determines the best response by the attacker. The response in this case is addition
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of a new path to the attacker’s strategy space which maximizes the value of game

(or equivalently, the payoff to the attacker). For this, the attacker adds a simple

path (p), from an arbitrary source node to a possible target node, to its strategy

space A. It now calls MMSC with this modified strategy space (A′) and defender’s

strategy space (D) to arrive at Minimax Mixed Probability Distributions. Using

these new probability distributions, the value of the game (U′) is calculated in the

same way as outlined in the trivial solution case. This is repeated for all possible

simple paths from all possible sources to all the target nodes. The path yielding

maximum value (U′) is selected as the best response. It is explained in Algorithm

5.3.

Algorithm 5.3: Attacker’s Best Response
Data: D, A, Ucurrent
Result: q

1 begin
2 Umax ← Ucurrent;
3 q← NULL;
4 for ∀ paths p from all source to all targets do
5 A′ = A ∪ p;
6 (M′D, M′A) = MMSC(D, A′);
7 Calculate U′ using (M′D, M′A);
8 if U′ > Umax then
9 Umax = U′;

10 q = p;

11 return q

Defender’s Best Response (D.B.R.): Given Attacker’s mixed strategy MA, D.B.R.

calculates the best response by the defender. The defender aims to minimize the

value of the game (thereby minimizing its own loss) and hence the best response

will be the addition of such a node to the defender’s strategy pool which reduces

the current value of the game to the minimum possible. In order to find the best-

response node, the defender adds a single node to its already existing strategy

space (D) and uses MMSC with this new strategy space (D′) and attacker’s strat-
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egy space (A) to arrive at the Minimax Mixed Strategy Distributions. These new

distributions are used to calculate the value of the game (U′) at this point, in the

same way as mentioned in the trivial solution case. This is done for all the (super)

peers in the network and the one yielding minimum value (U′) is selected as the

best response. This can be explained algorithmically in Algorithm 5.4.

Algorithm 5.4: Defender’s Best Response
Data: D, A, Ucurrent
Result: r

1 begin
2 Umin ← Ucurrent;
3 r ← NULL;
4 for ∀ nodes n ∈ {V − T} do
5 D′ = D ∪ n;
6 (M′D, M′A) = MMSC(D′, A);
7 Calculate U′ using (M′D, M′A);
8 if U′ < Umin then
9 Umin = U′;

10 r = n;

11 return r

The Solution: With the non-trivial solution, we obtain a probability distribution

for running the IDS on super-peers other than the target nodes. For the graph

described in Figure 5.1, the non-trivial solution obtained is given Table 5.5. Note

that the probability distribution over participating peers does not include any

target nodes.

The number of IDS kept equal, the non-trivial solution leads to a higher value of

the game in each run (as compared to the ’trivial’ case). It is close to the value

of the game in the trivial solution when number of IDS are small (1 or 2), but

the difference becomes quite notable as we increase the number of IDS. Moreover,

increasing the number of IDS also leads to significant increase in the convergence

time of the game. This will be further discussed in Section 5.4.

As we had mentioned before, the value of the game will be lowest in the trivial
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Table 5.5: Non-trivial solution for graph in Figure 5.1

Number of IDS Convergence time Value of the game Prob. dist. over IDS nodes

1 6 sec 25.55339806

0.5214← [3]
0.4258← [4]
0.0304← [21]
0.0221← [25]

2 8 min 17.62875407

0.0904← [0, 3]
0.0844← [3, 21]
0.2693← [6, 19]
0.0074← [8, 19]
0.0454← [6, 21]
0.0071← [6, 32]
0.0064← [8, 21]
0.2334← [10, 32]
0.0531← [15, 32]
0.2025← [21, 32]

3 1 hr 18 min 14.44420696

0.0417← [0, 2, 27]
0.0098← [0, 8, 25]
0.0606← [0, 10, 25]
0.0855← [0, 21, 27]
0.1778← [0, 2, 32]
0.1781← [8, 10, 25]
0.1778← [0, 3, 32]
0.0907← [0, 10, 32]
0.1775← [2, 26, 27]

4 7 hrs 11.25517573

0.0038← [0, 8, 26, 27]
0.3096← [0, 3, 26, 27]
0.0420← [0, 2, 21, 32]
0.2968← [0, 8, 10, 21]
0.0241← [0, 2, 8, 21]
0.0908← [0, 2, 3, 21]
0.2325← [31, 32, 33, 34]

5 18 hrs 6.5640430556

0.0801← [30, 31, 32, 33, 34]
0.3133← [0, 2, 6, 8, 32]
0.0870← [0, 2, 6, 21, 32]
0.1347← [0, 2, 6, 10, 21]
0.1719← [0, 2, 8, 10, 21]
0.2129← [0, 2, 10, 21, 32]
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case since the targets themselves become the defenders. Running the IDS on nodes

other than the target nodes does result in a small demerit in terms of higher value

of the game (and equivalent negative payoff to the defender), but it saves the

target nodes from the extra load of running an IDS.

5.4 Discussion

The results given in sections above are for a single, random graph topology (as

given in Figure 5.1). However, these experiments were repeated with multiple

random graph topologies in order to understand the impact of various parameters

on the convergence of the solution, such as increasing the degree of target nodes,

increasing the number of edges in the graph, etc.

The defender’s strategy space grows to |V|Cn for a solution involving n IDS. The

solution space is dependent only on two parameters of number of vertices (|V|)

and number of IDS (n). However, convergence of the game is dependent on the

strategy space of the defender as well as the attacker. Attacker’s strategy space

is defined by the number of paths he can take to attack the target nodes. Every

new edge added to the graph will create multiple new paths to the target nodes.

Addition of new edges will significantly change the attacker’s strategy space.

As noted above, neither the defender’s strategy space nor the attacker’s strategy

space is directly dependent on the degree of the target node. As expected, in-

creasing the degree of target nodes had no impact on the convergence time of the

game. In fact, if number of edges in the graph are kept constant, increasing the

degree of target nodes may reduce the total number of paths in the graph, thereby

decreasing the time for convergence. However, increase in the number of edges

had a significant impact. As the number of edges are increased, the number of

paths to the target also increase. With the increase in paths, the time for conver-
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gence of the game grew significantly. For example, for a random graph topology

with double the vertices and edges as compared to the graph used in work, it

took nearly 24 hours for the convergence of the non-trivial solution with 3 IDS.

The convergence time of trivial solution, however, did not vary much irrespective

of the change in the graph input.

The output of our approach is in the form of a probability distribution over super-

peer nodes. This probability distribution may be interpreted in terms of ‘chunks

of time’ for which these nodes will run the IDS in any given time-slice. In general,

this time slice should not be very large. If the time-slice is very large, the IDS

will remain fixed for a long time. An attacker may be able to learn the position

of the IDS by, say, getting caught once, and then evade the IDS in the next turn

by choosing a different path. The strength of our approach lies in its randomized,

game theoretic approach. A very high ‘time-slice’ value will make it ineffective.

We envision a value of about one hour to be suitable for most practical purposes.

Another way to interpret this probability distribution is in terms of the strength

of the IDS running at that node in any given time-slice. A node at a less strate-

gic location may run a light-weight IDS, while a node deemed to be at a highly

strategic location may be required to perform intensive intrusion detection (with

DPI/SSL inspection capabilities in high-speed networks).

It must be noted that our approach operates on a snapshot of the network. If

the P2P network’s topology changes significantly due to high peer-churn, the

solution will need to be re-computed. However, churn rate is higher in leaf-peers

than in super-peers. Rather, a node with short uptime is usually never chosen

as a super-peer. Since our approach does not rely on leaf-peers, it is unaffected

by new leaf-peers joining or leaving the network. As far as the issue of churn

in super-peers is concerned, it will not only impact our approach, but also effect

the attacker’s knowledge of the network. The attacker will be forced to perform
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a fresh reconnaissance to gain knowledge of the network. In fact, even the P2P

network’s routing and indexing does get impacted by ungraceful departure of an

important node.

5.5 Conclusion

This work presented an evaluation of game theoretic strategies for IDS deploy-

ment in P2P networks. The P2P network was modeled in the form of a graph.

All leaf-peers were neglected and only super-peers were considered for the mod-

eling. An attacker may try to gain control of one of the super-peer nodes, and

use it to launch attack on nodes with higher value in the network (i.e., the ‘target’

nodes). We modeled the P2P nodes in the network as the defenders who wish to

protect the network from an arbitrary attacker. Zero-sum Stackelberg games were

used to model the game between the attacker and the defender. By using game

theoretic approaches, we obtained a probability distribution over the super-peers

to run an IDS. We demonstrated the results obtained by our approach for number

of IDS ranging from 1 to 5. Two different solutions were demonstrated – a trivial

solution, wherein the responsibility of running the IDS lies on the target nodes

themselves, and a non-trivial solution, wherein the responsibility of running the

IDS is given to nodes other than the target nodes.

In this work, the value of target nodes and weights of edges were chosen arbi-

trarily in order to simulate random graph topologies. In future work, we plan to

perform detailed modeling of these values in order to obtain more comprehensive

simulation of scale-free networks.

This work considered a zero-sum, Stackelberg security game. The game theoretic

solution concepts of Nash Equilibrium, Minimax strategy and Strong Stackelberg

Equilibrium (SSE) etc. are equivalent in finite two-person zero-sum games. How-
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ever, considering non-zero-sum games will bring up new challenges in terms of

identifying the equilibrium solution. In future work, we wish to explore non-zero-

sum games and also consider solution concepts beyond the Nash equilibrium.
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Chapter 6

A Hadoop-based framework for

detection of P2P botnets

6.1 Introduction

With enterprise-level networks regularly generating billions of events and gath-

ering Terabytes of data each day, tracking malicious activity inside a network is

nothing less than the proverbial needle in the haystack problem. The evolution of

Peer-to-Peer (P2P) based botnets, which have a distributed and decentralized ar-

chitecture, has created further challenges in detection of malicious activities.

Detecting P2P botnets is a challenging task because P2P botnet traffic can very

easily blend with benign P2P traffic in a network, like that of Gnutella, BitTorrent,

eMule etc. Although many approaches have been suggested which evaluated

the detection of P2P botnets in Internet traffic [François et al. 2011] or provide

mechanisms for the detection of P2P botnets in the presence of benign P2P traffic

[Rahbarinia et al. 2014], building a scalable detection framework has received very

little attention (such as in [Zhang et al. 2014]).
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Most of the previous work utilizing network behavior of botnets uses the tra-

ditional 5-tuple flow-based analysis of network traces. The ‘flow’ information

is typically obtained in the form of Cisco’s NetFlow (or by using tools like Ar-

gus1) from a backbone router of an enterprise. Large-scale networks may involve

multiple routers. The NetFlow data collected at one router will not give a com-

plete picture of the communications which happened to and from the network.

A distributed data collection approach – where data collectors sit closer to the

nodes in the network – can give a much better view of the communications. Such

a distributed approach is especially beneficial and essential for the detection of

smart P2P bots inside the perimeter of a network, which talk to each other and

send upgrades to themselves on LAN in a P2P fashion, and limit communica-

tion to the outside world via one or two peers only. The activity of such bots,

which communicate to each other on LAN in a P2P fashion, cannot be detected

by traditional ‘flow-based’ approaches which only monitor the data crossing the

backbone router(s). However, most enterprise network see Gigabit speeds at their

border routers itself. Traffic on LAN is expected to be of much higher volumes. A

scalable framework is necessary for any approach which handles LAN traffic.

Table 6.1 shows the statistics of a one minute capture of the network traffic at the

backbone router of the author’s University. The statistics were generated using the

capinfos2 tool which is a part of the Wireshark (a popular network analyzer)

tool. In a 60 second duration, nearly 1.8 GB of network traffic was generated.

The total number of packets seen were 17,22,539, which comes out to be 28,792.50

packets per second. The reader is urged to note that this only accounts for the

inside-to-outside and outside-to-inside traffic. LAN traffic – generated by LAN

gaming or P2P applications such as Direct Connect – often sees much higher

speeds and is not a part of these statistics. Such high volumes of data (coupled

1www.qosient.com/argus/
2https://www.wireshark.org/docs/man-pages/capinfos.html
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Table 6.1: Statistics of one minute capture of network traffic from the backbone router
of the author’s University

File name: testrun_00001_20150813114729.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Packet size limit: file hdr: 65,535 bytes
Number of packets: 17,22,539
File size: 1,792,405,888 bytes
Capture duration: 60 seconds
Start time: Thu Aug 13 11:47:29 2015
End time: Thu Aug 13 11:48:29 2015
Data byte rate: 29,499,658.04 bytes/sec
Data bit rate: 235,997,264.32 bits/sec
Average packet size: 1,024.56 bytes
Average packet rate: 28,792.50 packets/sec

with the need of inside-to-inside traffic visibility) motivated us to use the Hadoop

ecosystem for building a distributed and scalable framework for the detection of

P2P botnets.

In this work, we present Hades, which is an acronym for ‘Host-aggregation

based detection system’ for P2P botnets. Hades utilizes the distributed com-

puting power of the Hadoop ecosystem to parse large network traces and extract

‘behavioral’ features for every P2P host seen in network communications. The

extracted feature-set is then used to train supervised machine learning models

which can differentiate P2P botnets from P2P applications. Hades does not re-

quire signature-based detection approaches, DPI or a ‘seed’ information of bots

obtained from a blacklist of IPs. Hades just relies on the header information in the

network and transport layer, and extracts statistical features which quantify the

‘P2P’ behavior of the P2P applications running on a host. This approach appears

in [Narang et al. 2014e].

Hades addresses certain limitations of past works and makes the following con-
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tributions:

1. Hades is built on top of the Hadoop ecosystem, which is a de facto standard

for big data analytics. Since it utilizes the power of distributed computing

through Hadoop [Bialecki et al. 2005], Hades is scalable by design.

2. We propose a distributed data collection architecture wherein data collectors

are placed at multiple locations inside an enterprise network and sit close to

the peers, say at a Distribution switch or a Wi-Fi access point. This approach

allows inside-to-inside communication view, which can be vital for detecting

P2P botnets inside a network which communicate to each other over LAN.

Hades is the first attempt at distributed data collection for the detection of

P2P botnet traffic.

3. Hades adopts a Host-aggregation based approach which obtains statistical

features per host for all P2P hosts involved in network communication.

In order to facilitate reproducible research, we also discuss the implementation

aspects of Hades in detail.

This chapter is organized as follows: Section 6.2 presents the system design of

Hades and provides its implementations details. In Section 6.3, we evaluate this

host-aggregation based approach and present the results for detection of P2P bot-

nets. Section 6.4 discusses the limitations of Hades and possible evasions by P2P

botnets. We conclude this chapter in Section 6.5.

6.2 System design and implementation details

The system design of Hades employs the libpcap library for collecting and pars-

ing network traces. It utilizes the Hadoop ecosystem for aggregation of host-based

data and for building scalable models for the detection of P2P botnets. Hades has
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Figure 6.1: Hades: system architecture

been implemented on top of the Hadoop ecosystem with the open-source projects

of Apache Hive [Thusoo et al. 2009] and Apache Mahout [Mahout 2012]. The

system architecture of Hades is given in Figure 6.1.

6.2.1 Distributed data collection

Instead of relying upon NetFlow data obtained at a backbone router, Hades pro-

poses a distributed data-collection technique wherein data collectors sit close to

the peers inside the network perimeter. As mentioned above, placing data collec-

tors closer to the peers allows Hades to have a view of inside-to-inside conversa-

tions and inside-to-outside (or vice-versa) conversations as well.

The implementation of Hades has multiple data collectors distributed inside the

network perimeter. The prototype deployment of the system has data collectors

deployed at Wi-Fi access points within the University campus of the author. The
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multiple data collectors consist of commodity-grade hardware machines with 2

GB RAM, 2 CPU cores and 200 GB of disk space. The Wi-Fi access points used

are NetGear N150 and Belkin N150.

Each data collector uses a libpcap library based module to capture traffic in the

form of network traces .pcap files. Each data collector runs an automated parser

module (built with libpcap library and Python) which parses the network traces

and extracts packet-level features of interest to us. Features are extracted from the

IP header and TCP/UDP header, and no DPI is performed. For this work, the

features extracted from each packet are:

1. Time-stamp of the packet

2. Source IP

3. Destination IP

4. Time-to-live (TTL) value

5. Transport layer protocol (TCP/UDP)

6. TCP or UDP payload length (as applicable)

The extracted features are stored in a .csv file at each data collector. Instead of

transferring large .pcap files, these .csv files are periodically transferred from

all data collectors to the Hadoop Distributed File System (HDFS) [Borthakur 2011].

For the purpose of data sanitization, all packets which are found to not contain a

valid IPv4 header are removed (E.g.- corrupted packets). The present approach of

Hades also disregards all packets corresponding layers below the IP layer, such as

ARP broadcast messages. The implications of this choice will be further discussed

in Section 6.4.
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6.2.2 Host data aggregation

The Hadoop cluster deployed for Hades consists of a ‘name node’ Virtual Ma-

chine with 8 GB RAM, 8 CPU cores and 200 GB disk space, and ten ‘data node’

Virtual Machines, each having 2 GB RAM, 2 CPU cores and 200 GB of disk space.

Each Virtual Machine runs Ubuntu 12.04 Operating System.

Packet-level data obtained from multiple data collectors is aggregated per host for

every host seen in network communication. The packet-level data is stored in Hive

in the form of external tables. Hive commands are written in HQL (Hive query

language) which is very similar to SQL [Thusoo et al. 2009]. The Hive command

used to create the table for storing packet-level data is given here:

CREATE EXTERNAL TABLE packet_data (

timestamp DECIMAL, ip_source STRING,

ip_destination STRING, ttl INT,

proto INT, payload_length INT )

ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’

LOCATION ‘/user/hdfs/PacketDump’;

For the task of detecting P2P botnets, we aggregate the following statistical fea-

tures over a time-period T (say, one hour) for every P2P host inside the network:

1. Number of distinct destination hosts contacted: P2P hosts are involved

in sharing content and downloading different chunks of a file from different

peers across the globe. A benign P2P host might be involved in downloading

a certain file (or its chunk) from Adelaide, uploading a file to another peer

at Birmingham, and download music content from a peer at California. As

a normal user of the Internet engaged in P2P file sharing, a benign P2P host

is expected to contact a number of peers in the different parts of the world,

with no specific pattern involved in the destinations contacted. Moreover,
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due to the sheer size of these networks, most interactions in P2P file sharing

networks are one-time transactions, where peers who share content with

each other may never interact again. But, the behavior of hosts infected

by P2P botnets gives a contrast. Bot-peers do not engage in file sharing or

downloads. Rather they regularly and repeatedly contact their set of bot

peers to receive or propagate commands and updates. Thus, the number of

unique destination hosts contacted by bot-peers are expected to be less as

compared to benign P2P hosts.

2. The total volume of data sent from the source host: As stated above, benign

P2P hosts are engaged in file transfers, downloads, uploads etc. whereas bot

hosts are not expected to be engaged in these activities. The volume of

data sent from a benign host is, quite clearly, expected to be more than the

exchange of data seen at bots which are primarily involved in exchange of

C&C information.

3. The average of the TTL value of the packets sent from the source host: A

user of P2P file sharing systems who is involved in downloading some music

content will not bother whether the seeding peers happen to be from his/her

home country or some other part of the world. Rather, while the user might

himself be situated in India, he may download one part of the file from a

peer in China, another chunk from a peer in Holland, and another from a

peer in Australia. Since the file requests of benign P2P users travel all over

the world, these requests typically have high TTL values associated with

them. In contrast, bot hosts tend to repeatedly contact their set of bot-peers.

For the sake of efficient design and avoiding latency/overheads, bot-masters

would not want their bots to talk to peers in different parts of the world.

Bots are expected to engage in communication with other bot peers near to

them. This leads to the requests sent by bots having lower TTL values when

135



6.2 System design and implementation details

compared to requests seen from benign P2P hosts. However, we admit that

it is possible to see this behavior in benign P2P applications as well if their

search and routing functionalities have been optimized in this regard.

The host-aggregated features described above are stored in another table:

CREATE TABLE host_data (

host STRING, destinations DECIMAL,

avg_ttl DECIMAL, volume BIGINT )

ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’

LINES TERMINATED BY ‘\n’ STORED AS TEXTFILE;

Since the packet-level data arrives from different data collectors periodically, a

Hive script is run periodically to convert it into host-aggregated form and store

it in the table host_data created above. The Hive script given below uses a

‘GROUP BY’ operation to obtain data in host-aggregated format as described be-

low:

INSERT INTO TABLE host_data

SELECT ip_source, COUNT (DISTINCT ip_destination),

AVG(ttl), SUM(payload_length)

FROM packet_data

GROUP BY ip_source;

6.2.3 Detecting P2P bots from hosts

The host-based features extracted above are used to train and test supervised

machine learning models. Apache Mahout is used for this purpose. Mahout is a

fairly new tool, and at present does not offer many machine learning algorithms.

Further, many of Mahout’s algorithms (for classification and clustering) do not run

as MapReduce jobs. Parallelized implementations are important for scalability of
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Hades over large datasets. Thus, for this work, we stick to the Random forest

implementation of Mahout which is a parallelized implementation (in contrast to

other implementations like Linear regression, AdaBoost etc., which are not). More

details on the data used are given in the next section.

Results generated from Hades can be used to alert a network administrator for

suspicious activity in the network, trigger rules to a firewall, and/or log or drop

botnet traffic. This way, Hades can be used by network administrators as an

assisting tool which is ‘P2P-aware’.

6.3 Evaluation and results

For evaluation of Hades, we use P2P data obtained from the University of Georgia

[Rahbarinia et al. 2014]. Our dataset consists of network traces of two P2P appli-

cations, namely Vuze and Frostwire, and two P2P botnets, namely Storm and

Waledac. The data of P2P applications was generated by [Rahbarinia et al. 2014]

by running these applications in their lab environment for a number of days. The

data of P2P botnets was obtained by them from third-parties, and corresponds to

real-world traces of these botnets.

The size of this dataset was around 20 GB (14 GB for Vuze and FrostWire, and

6 GB for Storm and Waledac) in .pcap format, and around 10.5 GB (6.6 GB for

Vuze and FrostWire, and 3.9 GB for Storm and Waledac) when parsed to .csv

format.

After extracting host-based features from each application, we created a ‘labeled’

dataset. Instances belonging to P2P hosts (Vuze or Frostwire) are labeled ‘benign’,

while the instances belonging to P2P bots (Storm or Waledac) are labeled ’mali-

cious’. This dataset was split into training and testing data in 2:1 ratio. With the

training data, Random forest models were built for different number of trees in
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Figure 6.2: True Positive rate and False Positive rate with training and testing data
for Random forests of 10 trees

each run. The models were then evaluated for their accuracy with the test data.

We limit the discussion on results to Random forest of ten trees since that num-

ber gave the highest accuracy. The ‘confusion matrix’ obtained over training data

and testing data is given in Table 6.2. Figure 6.2 and Table 6.3 show the accuracy

obtained for the training and testing data with a Random forest of ten trees. Our

system could detect bot-infected hosts with a True Positive rate of 97% and 99%,

and a low False Positive rate of 5% and 2% over training and testing datasets

respectively.

6.4 Limitations and possible evasions

Hades utilizes host-aggregation based features which can either classify a host as

‘P2P benign’ or ‘P2P malicious’. Hades cannot attribute the exact P2P application

(malicious or benign) running on a host. Also, if a bot-infected machine is running

a P2P application, it is highly likely that the higher volumes of benign traffic will
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Table 6.2: Confusion Matrix for Training and Testing data for Random forests with
10 trees

Training Data

Confusion Matrix

botnet (predicted class) benign (predicted class) Total Instances

botnet (actual class) 78,508 4,625 83,133

benign (actual class) 7,753 76,400 84,153

Testing Data

Confusion Matrix

botnet (predicted class) benign (predicted class) Total Instances

botnet (actual class) 35,094 970 36,064

benign (actual class) 1,528 34,536 36,064

subdue the vision of malicious activity from Hades. Our approach will be unable

to correctly classify it as an infected host.

Further, it was explained in Section 6.2 that Hades ignores messages below the

IP layer, such as ARP broadcast messages. Its implications will be discussed here.

We had argued on the case of ‘smart’ P2P bots which may exchange C&C with

peers on a LAN and limit communication with the outside world to one or two

peers. A bot-master may also configure such smart bots to utilize protocols lower

than the IP layer – such as ARP messages – to facilitate communication between

the bots on the same LAN. Hades will not be able to detect the communication

of such bots since it does not deal with those messages in its present approach.

Although no past work has touched upon this issue and no such botnets are

known to exist at present, we argue that with the evolution of botnet detection

mechanisms, bot-masters will also improvise their botnets in these ways to make

them more efficient and harder to detect.

It may be noted that Hadoop-based solutions are natively batch processing based,

and are not expected to be real-time. Hades does not aim to be real-time in

detection of P2P bots. Rather, the proposed framework is meant to deal with and

process huge volumes of data generated in enterprise networks (say the network
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Table 6.3: Accuracy obtained for Random forests with 10 trees

Training Data
Total Classified Instances: 167,286
Correctly Classified Instances: 154,908 92.6007%
Incorrectly Classified Instances: 12,378 7.9393%

Testing Data
Total Classified Instances: 72,128
Correctly Classified Instances: 69,630 96.5367%
Incorrectly Classified Instances: 2,498 3.4633%

logs of past week or month), which surpasses the processing power and RAM

capacities of server-grade machines.

6.5 Conclusion

This work presented Hades, an approach to collect P2P data inside a network in

a distributed manner, and extract host-aggregated features to distinguish between

P2P applications and P2P botnets using supervised machine learning approaches.

To the best of our knowledge, Hades is the first attempt at distributed data col-

lection for the detection of P2P botnet traffic.

The distributed data collection architecture proposed by us gives inside-to-inside

visibility of traffic. With such an approach, Hades attempts to target the detection

of ‘smart’ P2P bots. However, such botnets are not known to exist at present3.

Thus, no network traces corresponding to such behavior could be obtained or

evaluated. We plan to further evaluate our system by generating synthetic botnet

data which involves inside-to-inside communication over LAN.

Hades can be further improved by considering a more elaborate or sophisticated

set of host-based features, such as number of ports opened and number of suspi-

3With the exception of Stuxnet [Murchu 2010], which we ignore here since it targets SCADA
systems, and evaluating its detection with Internet traffic would not be possible.
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cious ports opened by a host [Zeng et al. 2010], percentage of new IPs contacted by

a host [Yen & Reiter 2010], or evaluating whether the traffic on a host is human-

driven or automated (bot-driven) [Yen & Reiter 2010].

Further, owing to the limited implementations of Mahout, Hades has only been

evaluated with random forests in Mahout. As parallelized implementations in

Mahout grow, we plan to evaluate Hades with other classification algorithms as

well.
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Chapter 7

Conclusions and future scope of work

This thesis proposed novel mechanisms for intrusion detection in P2P networks.

Past research on security and intrusion detection in P2P networks was elucidated

in Chapter 2. Limitations of past efforts were also indicated. A significant portion

of this thesis dealt with the detection of malicious P2P traffic in the form of P2P

botnet traffic (Chapters 3 and 4). A portion of this thesis also proposed game

theoretic strategies for deployment of IDS in P2P networks (Chapter 5). A dis-

tributed and scalable, Hadoop-based framework for detection of P2P botnets was

also proposed (Chapter 6).

7.1 Conclusions and summary of research contribu-

tions

In Chapters 3 and 4, we presented our approaches for the detection of P2P botnet

traffic in the presence of benign P2P traffic at a network perimeter, by exploit-

ing behavioral differences between P2P bots and benign P2P applications. Our

approaches do not rely on DPI or signature-based mechanisms which are eas-

142



7.1 Conclusions and summary of research contributions

ily defeated by botnets/applications using encryption. They do not assume the

availability of any ‘seed’ information of bots through blacklist of IPs. They aim to

detect the stealthy behavior of P2P botnets on the basis of their ‘P2P’ behavior and

C&C communications with other bots, while the bots lie dormant in their rally or

waiting stages (to evade detection by IDS which look for anomalous communica-

tion patterns) or perform malicious activities (spamming, password stealing, etc.)

in a manner which is not observable to a network administrator.

In Chapter 3, we presented PeerShark with a ‘best of both worlds’ approach

utilizing flow-based approaches as well as conversation-based approaches in a

two-tier architecture. PeerShark could differentiate between benign P2P traf-

fic and malicious (botnet) P2P traffic, and also detect unknown P2P botnets with

high accuracy. PeerShark begins with the de facto standard of 5-tuple flow-based

approach, and clusters flows into different categories based on their behavior.

Within each cluster, we create 2-tuple ‘conversations’ from flows. Conversations

are oblivious to the underlying flow definition and essentially capture the idea of

who is talking to whom. For all conversations, statistical features are extracted which

quantify the inherent ‘P2P’ behavior of different applications, and these features

are used to build supervised machine learning models which can accurately dif-

ferentiate between benign P2P applications and P2P botnets. Since PeerShark

could also detect unknown P2P botnets (i.e., those not used during the training

phase) with high accuracy, this approach is expected to be generic enough to de-

tect new variants of botnets.

The context of P2P botnet detection is adversarial in nature since the models cre-

ated for their detection are built using ‘botnet’ data which has been generated

by an adversary. Hence, the adversary is in a position to evade the detection

mechanisms if he can change the behavior of his bots. Our work in Chapter

4 asks an important question: if the bot-master slightly alters the behavior and
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communication patterns of the bots, are these detection models robust and resis-

tant towards such a change? Our approach addressed the context of detection

of P2P bots in the presence of noise injected by an adversary. Our approach uti-

lized conversation-based mechanisms and enhanced them by extracting features

based on Fourier Transforms and information entropy. We leveraged on the fact

that communication of bots amongst each other follows a certain regularity or

periodicity with respect to timing and exchange of data. We extracted two-tuple

conversations from network traffic and treated each conversation as a time-series

sequence (or a ‘signal’). In order to uncover the hidden patterns between the

communications of bots, we converted the time-domain network communication

to the frequency-domain. From each conversation, we extracted features based on

Fourier transform and information entropy. We used real-world network traces

of benign P2P applications and P2P botnets to compare the performance of our

features with traditional flow-based features employed by past research (such as

[Livadas et al. 2006, Saad et al. 2011, Kheir & Wolley 2013, Zhang et al. 2014]). We

built detection models with multiple supervised machine learning algorithms. We

injected noise in our test data to demonstrate that our detection approach is more

resilient towards variation in data or introduction of noise in the data by an ad-

versary. With our approach, we could detect P2P botnet traffic in the presence of

injected noise with True Positive rate as high as 90%.

Our work presented in Chapter 5 studied the problem of securing a super-peer

based P2P network from an adversary who may become part of the P2P network

by joining from any part of the network. The adversary can attack a super-peer

and thus disrupt the functioning of the P2P network. Peers may try to secure

the network by running IDS at certain strategically-chosen locations in the net-

work. But, a deterministic schedule of running and positioning the IDS can be

observed and thwarted by an adversary. In our work, we propose game theoretic

strategies for deployment of IDS in a P2P network. Our approach distributes the
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responsibility of running the IDS between the peers in a randomized fashion and

minimizes the probability of a successful attack. Past research on different aspects

of ‘P2P intrusion detection’ [Locasto et al. 2005, Janakiraman et al. 2003, Duma

et al. 2006] stands to gain from such strategic deployment of IDS.

Although many approaches have been proposed which evaluated the detection

of P2P botnets in Internet traffic [François et al. 2011] or proposed mechanisms

for the detection of P2P botnets in the presence of benign P2P traffic [Rahbarinia

et al. 2014], building a scalable detection framework has received very little atten-

tion in past research (such as in [Zhang et al. 2014]). In our approach presented in

Chapter 6, we presented our system Hades, which utilized the distributed com-

puting power of the Hadoop ecosystem to parse large network traces and extract

‘behavioral’ features for every P2P host seen in network communications. Hades

adopts a Host-aggregation based approach which obtains statistical features per

host for all P2P hosts involved in network communication. The extracted feature-

set is then used to train supervised machine learning models which can differenti-

ate P2P botnets from P2P applications. Another novel contribution of this system

is a distributed data collection architecture wherein data collectors are placed at

multiple locations inside an enterprise network and sit close to the peers, say at a

Distribution switch or a Wi-Fi access point. This approach allows inside-to-inside

communication view, which can be vital for detecting smart P2P botnets inside a

network which communicate to each other over LAN in a P2P fashion and limit

communications to the outside world via one or two peers only. To the best of

our knowledge, Hades is the first attempt at distributed data collection for the

detection of P2P botnet traffic.

145



7.2 Future scope of work

7.2 Future scope of work

The following areas can benefit from further research:

1. A thorough evaluation of the effect of injection of noise in the detection

of P2P botnet traffic is required. Statistical and behavioral models need to

explore and utilize heuristics or features which are resistant towards changes

in communication patterns of bots.

2. Game theoretic approaches – which consider rational, utility-maximizing

peers – can benefit from more detailed modeling of the players (namely

the attacker and the defender) and the payoffs. Considering other forms of

games such as non-zero-sum games will bring up new challenges in terms

of identifying the equilibrium solution. Future work also needs to consider

solution concepts beyond the Nash equilibrium.

3. Distributed and scalable frameworks for malicious (botnet) P2P traffic need

to be further improved to incorporate information from network communi-

cation (in the form of flows/conversations) as well as host-level information.

Integrating these approaches with a distributed data collection approach can

strengthen the detection of malicious activities.
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