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Abstract

This thesis deals with second order nonlinear boundary value problems. We have considered
both continuous as well as discrete boundary value problems. In continuous case, we examine
both analytical and numerical methods, while in discrete case, we discuss analytical results.
In analytical approach, monotone iterative methods are developed for nonlinear three point
nonsingular/singular boundary value problems and nonlinear two point discrete boundary
value problem, respectively. Under the existence of upper and lower solutions, we establish
the analytical results for both cases. In numerical approach, we present two methods and
solve the nonlinear two point singular boundary value problems, which arise in real life. We
focus on variational iteration method (VIM), and homotopy perturbation method (HPM).

This thesis contains twelve chapters. It commences with introduction which is our chapter
1, then eleven chapters 2–12 and a bibliography section. In chapter 1, we discuss briefly
about boundary value problems and show how the problems get more complicated when we
deal with nonlinear three point boundary value problems. A brief introduction of monotone
iterative method with upper and lower solutions are given. Further a survey of literature is
given to provide a platform required for the forthcoming chapters. In chapters 2–5, nonlinear
nonsingular boundary value problems are studied along with mixed type, Neumann type
and Dirichlet type boundary conditions. In chapters 6–9, we consider the nonlinear singular
boundary value problems with three point boundary conditions. In all cases, we make use
of monotone iterative method with the support of upper and lower solutions to establish
the existence results. Mostly, we prove existence results for two cases, i.e., when upper
and lower solutions follow well order relation or reverse order relation. In chapter 10 &
chapter 11, we study the numerical results for nonlinear two point singular boundary value
problems by using variational iteration method (VIM) and homotopy perturbation method
(HPM). Finally in chapter 12, by using the concept of monotone iterative method with upper
and lower solutions, the existence results for nonlinear two point discrete boundary value
problem are discussed.
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Chapter 1

Introduction

1.1 Introduction

The rate of change whether it is continuous or discrete is a natural phenomena of the
universe, e.g., growth of plants, variation in investment market, population growth of species,
or expansion of universe. According to domain either, we get a differential equation or
difference equation and both are of great importance in pure as well as applied mathematics.
Differential and difference equations are one of the most useable models which arise very
frequently in various branches of modern science and engineering.

Boundary value problems are a combination of differential (or difference) equation and
certain conditions defined at the boundary of the domain. These boundary conditions play
a very crucial role, as minor modification in boundary condition can change the solution
drastically.

In the present work, we have studied nonlinear boundary value problems for both cases,
continuous as well as discrete. In continuous case, we discuss analytical and numerical
solutions for three point and two point nonlinear boundary value problems, respectively.
In discrete case, we deal with analytical results for a class of nonlinear two point discrete
boundary value problems.

1.2 Boundary value problems (BVPs)
Consider the second order differential equations of the following form

y′′(t)+ f (t,y,y′) = 0, t ∈ [a,b]. (1.1)
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If the solution y(t) of the differential equation (1.1) on the interval [a,b], has a specific value
and slope at any point t0 ∈ [a,b] given as

y(t0) =Constant, y′(t0) =Constant, (1.2)

then such problem is called Initial value problem. However, when the conditions are
prescribed at the two endpoints of interval, then it is called two point boundary value
problem. On the basis of boundary conditions we can classify the BVPs in the following way

Dirichlet or First kind : y(a) = ξ1, y(b) = ξ2,

Neumann or Second kind : y′(a) = ξ1, y′(b) = ξ2,

Robin or Mixed kind : α1y(a)+α2y′(a) = ξ1,

β1y(b)+β2y′(b) = ξ2,

Periodic : y(a) = y(b), y′(a) = y′(b).

In differential equation, the theory of linear/nonlinear (Nonsingular (Regular)/Singular)
boundary value problems are of great importance. In comparison to initial value problem,
the theory of boundary value problem is substantially more complicated because of its totally
different nature of the underlying physical process. For boundary value problems, existence
of one and only one solution on any sufficiently small interval [a,b] is guaranteed, if f (t,y,y′)
is continuous in (t,y,y′) and satisfy the Lipschitz condition, which is defined as∣∣ f (t,y,y′)− f (t,x,x′)

∣∣≤ K|y− x|+L|y′− x′|, (1.3)

where K and L are two non negative Lipschitz constant, while the functions f (t,y,y′) and
f (t,x,x′) are defined in the domain of f . However, in the case of large intervals, existence
and uniqueness of the solution may fail, for both linear problem and nonlinear problem. We
refer the work of Bailey et al. [18].

1.2.1 Existence and uniqueness : Linear BVPs

Consider the linear boundary value problem

y′′(t)+ y(t) = 0, (1.4)

y(0) = 0, (1.5)

y(b) = B. (1.6)
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Here f (t,y,y′) = y(t). It is clear that f (t,y,y′) is continuous and satisfies the Lipschitz
condition (1.3) with K = 1, L = 0.

The general solution of the differential equation (1.4) is

y(t) =C1 cos t +C2 sin t.

Now making use of the boundary condition (1.5), we obtain

y(t) =C2 sin t, 0 < t < b.

It is not always possible to choose such a value of C2 so that boundary condition (1.6) holds.
One can easily observe the following

(i) When b ̸= nπ, n being an integer, then we receive a unique value of C2, such that
C2 sinb = B, i.e., there exists a unique solution of the boundary value problem.

(ii) When b = nπ and B ̸= 0, there is no solution.

(iii) When B = 0, every value of C2 gives a solution, i.e., we receive an infinite number of
solution.

From above discussion, it is clear that for a fixed a, the existence and uniqueness of linear
problem fails on the interval [a,b] for certain notable value of b.

Now we can see that even in the linear case a lot of problems occur due to the length of
interval. Now one can imagine the degree of complexity, which might occur if the problem is
nonlinear.

1.2.2 Existence and uniqueness : Nonlinear BVPs

Consider the nonlinear boundary value problem

y′′(t)+ |y(t)|= 0, (1.7)

y(0) = 0, (1.8)

y(b) = B. (1.9)

Here f (t,y,y′) = |y| is continuous and satisfies the Lipschitz condition (1.3) with K = 1, L =

0.
We can rewrite the differential equation (1.7) in the following way

y′′(t)− y(t) = 0, when y(t)≤ 0, (1.10)
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and
y′′(t)+ y(t) = 0, when y(t)≥ 0. (1.11)

Equation (1.10) helps us in showing that a solution of differential equation (1.7) has at most

Fig. 1.1 The number of solutions of the boundary value problem (1.7)–(1.9) depends upon
the magnitude of b and sign of B (see [18])

one zero if it has a negative slope at zero. Suppose y(t0) = 0 and y′(t0)< 0, then y(t)< 0 for
all t ∈ [t0, t1). If t1 =+∞, then y(t) remains a solution of (1.10), at least until it has another
zero, but it cannot have another zero since solutions of (1.10) have one zero at most. Now
using the similar analysis, we can state that any solution y(t) of (1.7), such that y′(t0)> 0,
has a second zero at t0 +π.

Taking into the account of above discussion, it is clear that the nonlinear boundary value
problem (1.7) may be solved by using the solution of (1.10) or (1.11).

Now, if b < π , we define y(t) as

y(t) =


C sin t, if B > 0

−C sinh t, if B < 0
0, if B = 0.

(1.12)
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where C is any nonnegative constant. Here y(t) is a solution of (1.10) or (1.11) and hence, it
is a solution of (1.7) and the length of interval is too small, for containing the second zero.

Further, making use of boundary condition (1.9), we get a unique number C for different
sign of B, such that

C =

{
B[sinb]−1, if B > 0

−B[sinhb]−1, if B < 0.
(1.13)

Hence, for b < π , the nonlinear boundary value problem has a unique solution.

If b = π , and B = 0, then equation (1.11) gives an infinite number of solution, while if
B > 0, there is no solution at all.

If B < 0, then we get one and only one solution of boundary value problem defined as

y(t) = B[sinhπ]−1 sinh t.

In case when b > π , the situation is quite interesting. For B > 0, all solutions with positive
slope at t = 0, have a zero at π also, i.e., it must remain negative for t > π at least until it has
another zero. Hence, for B > 0 there is no solution at all.

For B = 0, we get a unique solution y ≡ 0, because there is no nontrivial solution, which
has a zero at t = 0 and has a zero at t > π. Now, if B < 0, we receive exactly two solutions,
satisfying equations (1.7), (1.8) and (1.9). One solution is defined as

y1(t) = B[sinhb]−1 sinh t, (1.14)

while other solution is apparent, as

y2(t) =

{
C1 sin t, if 0 ≤ t ≤ π

C2[sinh t − tanhπ cosh t], if π ≤ t ≤ b,
(1.15)

where, for 0 ≤ t ≤ π , solution satisfies equation (1.11) and equation (1.10) for π ≤ t ≤ b and
has a zero at π . Now we choose C2, in terms of B, such that boundary condition (1.9) at t = b
is satisfied, here we choose C2 as

C2 = B[sinhb− tanhπ coshb]−1. (1.16)

We choose C1 such that first derivative of y(t) is continuous at t = π , to accomplish this, we
choose

C1 =−B[sinh(b−π)]−1. (1.17)
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Hence, we can rewrite the second solution of boundary value problem in the following form

y2(t) =

{
−B[sinh(b−π)]−1 sin t, if 0 ≤ t ≤ π

B[sinh(b−π)]−1 sinh(t −π), if π ≤ t ≤ b.
(1.18)

To recapitulate the above argument, for b < π the nonlinear boundary value problem (1.7)–
(1.9) has unique solution for every value of B, while for b ≥ π , the problem has either unique
solution, no solution, or more than one solution, depending upon the value of B.

Now we can see that, when we shift from linear to nonlinear BVPs, the existence theory
becomes more complicated. If it is a nonlinear BVPs, which is singular also, one can imagine
how complicated the theory will be.

The theory of singular boundary value problems (SBVPs) is a more sophisticated and
challenging. It always remains at the center of attraction for researcher due to behaviour
of its solution in the neighbourhood of singular point, e.g., solution often becomes large in
magnitude or experiences rapid change in magnitude or might be peculiar in some other
manner. Thus, the study of the behaviour of physical systems, which are governed by SBVPs
is essential. Also, the singular point of differential equation may also arise due to geometric
singularities such as corners or sharp edges. Thus it is important and necessary to study the
behaviour of solution most carefully.

In next section, we discuss about real life applications, which are modeled by nonlinear
boundary value problems.

1.3 Real life applications

Nonlinear boundary value problems arise frequently in many branches of engineering, applied
mathematics, astronomy, biological system, modern science etc. Few of them are briefly
discussed in this section.

1.3.1 Oxygen diffusion in a spherical cell

In 1976, Lin [95] analyzed the oxygen diffusion in a spherical cell with the support of an
oxygen uptake kinetics of the Michaelis-Menten type. In addition, he has used an unsteady
state oxygen diffusion model. As the metabolic reaction in a cell are catalyzed by enzymes,
he represented the oxygen uptake kinetics by the Michaelis-Menten equation

oxygen uptake =
V P

P+ km
,
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where V is the maximum reaction rate, P the oxygen tension, and km, the Michaelis-Menten
constant.

Mathematically, in a spherical cell, the unsteady state oxygen diffusion can be denoted
by the following equation

∂P
∂ t

= D
(

∂ 2P
∂ r2 +

2
r

∂P
∂ r

)
− V P

P+ km
, (1.19)

with initial and boundary conditions

t = 0; P = 0, (1.20)

r = 0;
∂P
∂ r

= 0, (1.21)

r = r0; D
∂P
∂ r

= h(P0 −P), (1.22)

where D is the diffusion coefficient of oxygen in the protoplasm, r0 the radius of cell, h
the permeability of membrane, r the radial co-ordinate, and t the time. We can reduce,
equation (1.19) and initial and boundary conditions (1.20)–(1.22) into dimensionless form
for computational point of view, by introducing the following dimensionless variables and
parameters

C =
P
P0

, τ =
tD
r2

0
, R =

r
r0
, (1.23)

α =
V r2

0
P0D

, Km =
km

P0
, H =

hr0

D
. (1.24)

Equations (1.19) to (1.22) are then to transformed into

∂C
∂τ

=
∂ 2C
∂R2 +

2
C

∂C
∂R

− αC
C+Km

(1.25)

subject to

τ = 0; C = 0, (1.26)

R = 0;
∂C
∂R

= 0, (1.27)

R = 1; D
∂C
∂R

= H(1−C). (1.28)

In 1978, McElwain [104] examined steady state, equations (1.25)–(1.28) given by,
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d2C
dR2 +

2
C

dC
dR

− αC
C+Km

= 0, (1.29)

R = 0;
dC
dR

= 0, (1.30)

R = 1; D
dC
dR

= H(1−C). (1.31)

1.3.2 Thermal explosion

In the theory of thermal explosions critical condition for inflammability is reached when the
amount of heat developed by the chemical reaction is just equal to the amount lost to the
surroundings.

Studies (see [31] and references there in) reveal that the loss of heat to the vessel walls,
which must be in balance with the chemical heat liberation, takes place entirely by conduction
inside the gas volume. For this limiting case of pure conduction the theory should yield
the explosion limits from the kinetics of the reaction, the heat of reaction, the thermal
conductivity of the gaseous mixture, and the form and dimensions of the vessel.

Chamber [31], considered the following equation, which relates the heat generated by
the chemical reaction and that conducted away

λ∇
2T =−QW, (1.32)

where T is the gas temperature, Q the heat of reaction, λ the thermal conductivity, W the
reaction velocity, and ∇2 the Laplacian operator. P. L. Chamber considered this chemical
reaction as monomolecular, and he further assumed that its velocity follows the Arrhenius
law, i.e.,

W = caexp(−E/RT ), (1.33)

where c is the concentration of the reactant, a the frequency factor, and E the energy of
activation of the reaction. Hence, from equation (1.32), we have

∇
2T =−(Q/λ )caexp(−E/RT ). (1.34)

If (T −T0) is the maximum temperature increment, then

θ = (E/RT0
2)(T −T0), (1.35)
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where T0 is the temperature of walls of the vessel. Hence, equation (1.34) becomes

∇
2
θ =−

[
Q
λ

E
RT0

2 caexp(−E/RT0)

]
exp(θ). (1.36)

Since the theory is concerned for geometries, where the conduction process depends on only
one space coordinate (say x). If we replace, the space coordinate x by z = x/r, where r is
the significant geometric dimension of the vessel, then we can get dimensionless Laplacian
operator. There results then finally the Poisson-Boltzmann equation

d2θ

dz
+

k
z

dθ

dz
=−δ expθ , (1.37)

where

δ =

[
Q
λ

E
RT0

2 r2caexp(−E/RT0)

]
. (1.38)

The Poisson-Boltzmann equation (1.37) has been used to obtain the explosion limits in

(a.) an infinite plane-parallel vessel (k = 0),

(b.) cylindrical vessel of length very much greater than its radius (k = 1),

(c.) spherical vessel (k = 2).

The suitable boundary conditions are given as follows :
At centre of vessel,

z = 0,
dθ

dz
= 0, Owing to symmetry. (1.39)

At walls of vessel,
z = 1, θ = 0. (1.40)

He has shown that the analytical result for k = 1, in terms of quadratures is possible and that
for k = 2, the solution of the equation can be obtained in terms of a known tabulated function.
Earlier, it was a general belief that the analytical solution can be obtained only for k = 0.

1.3.3 Shallow membrane cap

Baxley and Robinson [21] considered a shallow membrane cap which is rotationally symmet-
ric in its undeformed state. When radial stress is applied on the boundary and a small uniform
vertical pressure P is applied to the membrane, the shape that the cap takes, is described by
a nonlinear model. In paper (see [21] and reference therein) authors show that under the
assumptions of small strain and small constant vertical pressure, if the deformed membrane
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is rotationally symmetric, then the (rescaled) radial stress on a membrane whose undeformed
profile is given in cylindrical coordinates by z(r) =C(1− rγ), γ > 1, is determined by the
following equation

r2S′′r +3rS′r =
λ 2r2γ−2

2
+

βνr2

Sr
− r2

8S2
r
.

Here, the undeformed radius of the membrane is r = 1 and ν is the Poisson ratio while λ and
β are positive constants depending on the pressure P, the thickness of the membrane, and
Young’s modulus. The boundary conditions are given as follows

Sr(1) = S > 0, if the stress S at the boundary is specified,

or,

b0Sr(1)+b1S′r(1) = A > 0, if the radial displacement at the boundary is specified,

where b0 > 0 and b1 ≥ 0 and A is any real number. They also imposed a condition at the
singular end (r = 0), and defined as

Sr bounded as r → 0+.

1.3.4 Electrohydrodynamics

Keller [82] analyzed the equilibrium of a uniformly charged gas in a perfectly conducting
container.

As equilibrium is the balance between the electric forces in the gas and the pressure forces.
He observed that, in equilibrium their is a constant maxima for the density and pressure at
the container surface.

The equilibrium condition, in terms of the pressure p, the mass density ρ , the charge
density aρ and the electric field vector E, can be written as

∇p = aρE, (1.41)

where constant a is the ratio of electric charge density to mass density in the gas or fluid and
the charge (source of the field) is expressed by

∇ ·E = 4πaρ. (1.42)
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Making use of equations (1.41) and (1.42), he obtained

∇
2v = f (v), (1.43)

where f (v) = 4πa2ρ[p(v)] is a nonnegative increasing function of v, here v =
∫ p

p0

d p
ρ p .

For ideal gas, and p0 = 1, equation (1.43) becomes

∇
2u = eu, (1.44)

where
u =

m
RT

v+ log4π

[am
RT

]2
,

and
v =

RT
m

log p,

where T is the constant temperature, R is the gas constant, and m is the average mass of the
molecules in the gas.

On the basis of geometry of the container (i.e., either it is sphere, a cylinder, or a pair of
parallel planes), it may be assumed that the solution u of (1.44) is a function of one variable
only. This variable which is denoted by r is the distance from the center of the sphere, from
the axis of the cylinder, or from the median plane in the three, two or one dimensional cases,
respectively. If u = u(r) and n represents the dimension, then the equation (1.44) gives

urr +
n−1

r
ur = eu. (1.45)

Regularity of u at the center of sphere or axis of the cylinder is needed that

ur(0) = 0. (1.46)

If equation (1.46) holds for n = 1, then the solution in that case will be symmetric in the
median plane.

1.3.5 The distribution of heat sources in the human head

In 1975, Flesch [52] calculated the temperature distribution by considering two cases of heat
generation rates. In which one was an explicit function of the radial distance from the centre
and other an implicit function of the ambient temperature. He considered the following
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differential equation, which describes the study of the distribution of heat sources in human
head

∂ 2θ

∂ r2 +
2
θ

∂θ

∂ r
+

q
k
= 0 (1.47)

where q, θ , k and r are heat production rate per unit volume, absolute temperature, coefficient
of thermal conductivity and radial coordinate of the sphere, respectively. He considered two
sets of q as

q = q1 · r2, and q = q2 · r3.

Here q1 and q2 are constant.

In 1980, Gray [56] considered the spherically symmetrical equation of heat conduction

d2θ

dr2 +
2
θ

dθ

dr
+

q(θ)
k

= 0, (1.48)

subject to,

θ(0) finite, − k
dθ

dr
= β (θ −θa), at r = R, (1.49)

where β is a heat exchange coefficient, θa is the ambient temperature. He considered a
different approximation for q(θ) as

q(θ) = α −Nθ ,

where α and N are constants such that N is large subject to q > 0. This law then can only hold
over a limited range of temperature and would certainly not be applicable for temperatures in
the hyperthermic region.

In 1981, Anderson and Arthurs [14] considered the nonlinearized form of q(θ) given by

q(θ) = αe−
Nθ

α , α, N > 0

compared with linearized model and discuss its significance over linear model. For smaller
values of Nθ

α
, this q(θ) is similar to [56].

1.3.6 Astronomy

Chandrashekhar [32, Chapter IV : Polytropic and Isothermal Gas Spheres] in connection
with the equilibrium of isothermal gas spheres derived the following Lane-Emden equation
of index γ , where γ is a physical constant
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1
x2

d
dx

(
x2 dy

dx

)
=−yγ ,

y′(0) = 0, y(1) = B > 0.

1.4 Multi-point boundary value problems

As we have seen boundary conditions play pivot role in deciding existence and uniqueness
of solutions for linear (or nonlinear) boundary value problems. The nature of two point
nonlinear boundary value problem is totally different and complicated as compared to initial
value problem. This complication will further increase if we have multi-point boundary
conditions. That is the reason recently, multi-point boundary value problems have been center
of attraction. Many physical phenomena can be modeled by ordinary differential equation
with multi-point boundary conditions. The multi-point boundary conditions give a new edge,
to the study of differential equations, with the presence of such boundary conditions, we
can improve the qualitative and quantitative characteristics of the solution of differential
equations.

Multi-point boundary value problems arise when the boundary conditions not only rely
on the function values or its derivatives at end points, but also in the interior of the interval.
We can have the following multi-point boundary conditions

y(a) =
m−2

∑
i=1

αiy(ξi)+ γ1, y(b) =
n−2

∑
j=1

β jy(η j)+ γ2,

y′(a) =
m−2

∑
i=1

αiy′(ξi)+ γ1, y(b) =
n−2

∑
j=1

β jy(η j)+ γ2,

y(a) =
m−2

∑
i=1

αiy(ξi)+ γ1, y′(b) =
n−2

∑
j=1

β jy′(η j)+ γ2,

y′(a) =
m−2

∑
i=1

αiy′(ξi)+ γ1, y′(b) =
n−2

∑
j=1

β jy′(η j)+ γ2,

where αi, ξi, β j, η j, γ1,γ2 ∈R and ξi, η j ∈ (a,b), (1 ≤ i ≤ m−2), (1 ≤ j ≤ n−2). Three
point boundary value problem is a special case of multi-point boundary value problem, i.e.,
there is only one value of y or y′ in the interior of the domain, which is connected to y or y′ at
the boundary.
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Analytically, the study of three point boundary value problems is more interesting and
challenging and quite different from two point boundary value problems.

1.4.1 Real life application

In this section, we discuss about some real life applications, which are modeled by three
point boundary value problems.

1.4.1.1 Thermostat model

In 2000, Guidotti and Merino [58] discussed the thermostat model, by the following linear
parabolic evolution equation

ut −uxx = 0, (x, t) ∈ (0,π)× (0,∞), (1.50)

∂u
∂ν

(0, t)+βu(π, t) = 0, t ∈ (0,∞), (1.51)

∂u
∂ν

(π, t) = 0, t ∈ (0,∞), (1.52)

u(x,0) = u0(x), x ∈ (0,π), (1.53)

where boundary condition ∂νu(0, t)+βu(π, t) = 0 is a variation of the classical local Robin
condition ∂νu(0, t)+βu(0, t) = 0.

In this model, temperature is measured by sensor at x = π . Making use of controller heat
releases or extracts at x = 0, which is proportional to the temperature at x = π. Further, this
model was studied by Infante and Webb [74] for nonlinear problems. They considered the
following class of nonlinear three point boundary value problems

−u′′(t) = f (t,u(t)), t ∈ (0,1), (1.54)

u′(0) = 0, βu′(1)+u(η) = 0, η ∈ [0,1], (1.55)

where β > 0, and f is a non-negative function. The above three point BVP represents as the
stationary state of a model for a heated bar, which is insulated at t = 0. With the support of
controller adding or removing heat at the other end t = 1, depending on the temperature at
t = η . A point sensor is placed at an arbitrary point t = η

1.4.1.2 Bridge design

Lazer and McKenna [90] observed that a linear model is insufficient to explain the large
oscillatory behavior in suspension bridges. Also suspension bridges have other nonlinear
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behaviors such as traveling waves. If the roadbed of a suspension bridge is treated as a
one-dimensional vibrating beam, the following equation is derived (see [90, Section 3])

utt +EIuxxxx +δut =−ku++W (x)+ ε f (x, t), (1.56)

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0. (1.57)

Thus the suspension bridge is seen as a beam of length L, with hinged ends, whose downward
deflection is measured by u(x, t), with a small viscous damping term, subject to three separate
forces; the stays, holding it up as nonlinear springs with spring constant k, the weight per
unit length of the bridge W (x) pushing it down, and the external forcing term ε f (x, t). The
loading W (x) would usually be constant.

If W is replaced by the term W (x) =W0 sin(πx/L), an error of magnitude around 10% is
introduced in the loading and little less in the steady-state deflection. Second, if the forcing
term is given by f (x, t) = f (t)sin(πx/L) and general solutions of (1.56)–(1.57), is of the
form u(x, t) = y(t)sin(πx/L). These no-nodal solutions were the most commonly observed
type for low velocities on the Tacoma Narrows Bridge. When this u(x, t) is substituted into
(1.56), this results into the differential equation

− y′′(t) = f (t,y,y′), (1.58)

where f (t,y,y′) = δy′ +EI(π/L)4y+ ky+−W0 − ε f (t), where y+ denotes y if y is non-
negative, and zero if y is negative.

Large size bridges are sometimes contrived with multi-point supports, which gives rise to
multi-point boundary conditions.

Zou et al. [168], discussed the bridge design model. They used a second order ordinary
differential equation

u′′(t)+ f (t,u) = 0, 0 < t < 1, (1.59)

where u(t) denotes the displacement of the thread from the unloaded position.

They analyzed that generally small size bridges are designed with two supported points,
which produces a standard two point boundary value conditions

u(0) = 0, u(1) = 0. (1.60)

While, large size bridges are mainly designed with multi-point supports, which leads to
multi-point boundary conditions. They examined that the two different types of boundary
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conditions can be set up at each end points. The position of the bridge at supporting points
near t = 0 can be defined by the following boundary value condition

u(0) =
m−2

∑
i=1

αiu(ξi)+λ1, (1.61)

where ξi ∈ (0,1), 1 ≤ i ≤ m−2 and λ1 is parameter. For controlling the angles of the bridge
at supporting points near x = 0, they considered the following boundary value condition

u′(0) =
m−2

∑
i=1

αiu′(ξi)+λ1. (1.62)

Similar situation holds near t = 1 and the multi point boundary conditions can be formulated
as

u(1) =
m−2

∑
i=1

βiu(ξi)+λ2, (1.63)

or,

u′(1) =
m−2

∑
i=1

βiu′(ξi)+λ2. (1.64)

1.5 Existing techniques for nonlinear BVPs

For boundary value problems, we try to find out the solutions, mainly in two ways either
analytically or numerically. Both techniques have its own importance and challenges. We
can discuss the qualitative properties of the solutions with the help of analytical techniques,
whereas numerical techniques assist us to solve more complicated problems, when analytical
approach does not work.

In this thesis, we follow both approaches, i.e.,

• Analytical approach : We focus on existence and uniqueness of the solutions of
nonlinear three point boundary value problems as well as two point discrete boundary
value problem.

• Numerical approach : We deal with nonlinear two point singular boundary value
problems.

1.5.1 Analytical study

The analytical study of boundary value problems has been discussed by several methods.
Comprehensively, they can be divided into the following categories [149, 164]
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1.5.1.1 Shooting method

Some special classes of second order singular boundary value problems have been studied
successfully by shooting method like Negative Exponent Emden-Fowler boundary value
problems [147]. This method is more productive if f (t,y) is decreasing in y, while for other
cases it often seems useless. Henderson et al. [70] have employed shooting method to obtain
the solution of three point boundary value problem.

1.5.1.2 Nonlinear alternative

Leray and Schauder [91] in their celebrated paper introduced some “Nonlinear Alternative”
theorems for compact maps (see [111]). These theorems have enhanced greatly the theory
of ordinary differential equations. There are two major approaches to modern non-linear
alternative theory

• Topological Degree Method: This is based on Degree theory [97].

• Topological Transverslity: This is based on Essential maps and was introduced by
Granas [55].

For three point boundary value problems, Gupta [61], Ma [100], Liu [96], Infante and
Webb [74] have discussed the existence and uniqueness of the solutions with the support of
Topological methods.

Operator methods or topological methods are more relevant and has many advantages,
when they deal with non-singular problems. But it still has some difficulties when treating
singular problems.

1.5.1.3 Upper and lower solutions method

Upper and lower solutions method is one of the most substantial way for discussing the
existence results for nonlinear problems. This technique covers a wide range of nonlinear
boundary value problems.

Recently, there has been a lot of activity related to the theory of upper and lower solutions.
It has been successfully coupled with other existing techniques (see [149]), e.g.,

• Topological Degree Theory (Duhoux [47]),

• Topological Transversality (Bobisud and O’Regan [24], Agarwal and O’Regan [7]),

• Monotone Iterative Method (Ladde et al. [89], Cherpion et al. [40], Coster and Habets
[41]),
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• Quasilinearization (O’Regan and El-Gebeily [112]).

In comparison to two point boundary value problems, lot of investigations are still pending
related to second order three point boundary value problems. Zhang and Wang [165], Xian et
al. [161] coupled the concept of upper and lower solutions with monotone iterative technique
and fixed point index theory, respectively. While Henderson et al. [70], Guo and Ge [59],
and Bao et al. [19], coupled it with shooting method, fixed point index method and fixed
point theorem in a cone, respectively.

Zhang [164] shown that upper and lower solution technique is very promising technique
as far as singular boundary value problems are concerned.

1.5.2 Numerical study

In last few decades, numerical methods for solving two point boundary value problem
for ordinary differential equation have been discussed by several researcher. As we have
already mentioned, nonlinear singular boundary value problems arise very commonly in
various disciplines of applied mathematics and engineering such as, thermal explosion [31],
electrohydrodynamics [82], physiological studies, oxygen diffusion in spherical cell [95, 104]
and distribution of heat sources in the human head [14, 52, 56].

The numerical solutions of these singular boundary value problems have been dis-
cussed by several methods such as cubic spline and B-spline methods [39, 80, 132], mixed
decomposition-spline methods (MDSM) [84], finite difference methods [36, 116, 121, 124],
collocation methods [135]. Recently, some iterative methods like Adomian decomposition
method (ADM), modified Adomian decomposition method (MADM) and homotopy analysis
method (HAM) [1, 2, 43, 48], variational iteration method (VIM) [65, 79, 145], homotopy
perturbation method (HPM) [64, 67] have been used to solve the singular boundary value
problems.

1.6 Analytical approach

In this thesis, we discuss the analytical results for nonlinear three point boundary value
problems and two point discrete boundary value problem. Here, we focus on upper and lower
solutions method related to monotone iterative technique.

The method of upper and lower solution has a long history and some of its concepts can
be traced back to Picard [131]. Dragoni [45] was first who established the notion of the
method of lower and upper solutions for ordinary differential equations. He considered the
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second order boundary values problems

u′′(t) = f (t,u(t),u′(t)), t ∈ [a,b]≡ I,

u(a) = A, u(b) = B,

for f : I ×R2 → R being a continuous function and A,B ∈ R.

A function α ∈C2(I) defines a lower solution if it satisfies the inequalities

α
′′(t)≥ f (t,α(t),α ′(t)),

α(a)≤ A, α(b)≤ B.

Similarly, a function β ∈C2(I) is called an upper solution if it satisfies the reverse inequalities,
i.e.,

β
′′(t)≤ f (t,β (t),β ′(t)),

β (a)≥ A, β (b)≥ B.

For α ≤ β , existence of the solution of the above considered problem lying between α and
β is proved.

Actually upper and lower solutions are treated as the bounds of the solution of the
nonlinear BVP, and they ensure that there exists a solution of the problem lying between the
lower and the upper solutions. It means, with the help of two well-ordered functions that
satisfy some suitable inequalities, we can find a solution of nonlinear BVPs (see [26]).

Recently, several authors have been successfully employed these methods for different
kinds of boundary value problems, e.g., first, second and higher order ordinary differential
equations with different type of boundary conditions. Also partial differential equations of
first and second order, have also been treated in the literature. For an overview of the method
of lower and upper solutions of ordinary differential equations, we refer [26, 41].

In this thesis, we endeavour to combine fruitfully two basic techniques, namely, the
method of upper and lower solutions and monotone iterative method, and investigate the
existence of the solution of nonlinear three point boundary value problems. In recent years,
this technique, i.e., monotone iterative method and upper and lower solutions have been
studied successfully by several researchers. The popularity of this method is not only just
for its constructive approaches, but also for the qualitative properties of solutions. The
monotone sequences, which are governed by an iterative scheme also play a valuable role in
the numerical treatment of various boundary value and initial value problems. That is why
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researchers have been using this technique to nonlinear regular as well as singular boundary
values problems.

To summarize, the basic idea of monotone iterative method and upper-lower solutions,
let us consider the following general second order nonlinear boundary value problem

−L[u] = f (x,u), x ∈ [0,1],

B[u] = A,

where u ∈ C2(I), I = [0,1], L is differential operator of second order and B is a boundary
operator. Let there exist upper and lower solutions β and α in C2(I), such that α ≤ β

(or, α ≥ β for reverse order case) such that

−L[β ]≥ f (x,β ), x ∈ [0,1],

B[β ]≥ A,

and α satisfies the reversed inequalities. Now we can generate two monotone sequences (αn)

and (βn) from the iterative scheme

−L[un+1]−λun+1 = f (x,un)−λun, x ∈ [0,1],

B[un+1] = A,

where β and α are treated as initial guesses, and λ may be constant or function.

Making use of monotonicity of these sequences leads to the following relation

α = α0 ≤ α1 ≤ ·· · ≤ αn ≤ αn+1 · · · ≤ u
¯
≤ ū ≤ ·· · ≤ βn+1 ≤ βn ≤ ·· · ≤ β1 ≤ β0 = β .

These sequences converge uniformly to a solution, say ū and u
¯

such that

lim
n→∞

βn = ū, and lim
n→∞

αn = u
¯

of nonlinear boundary value problem.

1.7 Literature review

We have already mentioned that, monotone iterative method associated with upper and lower
solutions goes back at least to Picard [131]. He published this work in two “Mémoires”,
mainly, one for partial differential equation (PDE) [130] and other for ordinary differential
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equation (ODE) [131]. In both cases, the existence of a solution is guaranteed. He considered
the following boundary value problem (BVP)

u′′+ f (t,u) = 0, u(a) = 0, u(b) = 0, (1.65)

assuming u = 0 is a solution and f (t,u) is increasing, i.e., f (t,0) = 0. For nontrivial solution,
he developed a convergent sequence of approximations (αn)n from the following scheme

−α
′′
n = f (t,αn−1) = 0, αn(a) = 0, αn(b) = 0. (1.66)
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Which gives a monotonic approximation

α0 ≤ α1 ≤ α2 ≤ ·· · , (1.67)

that satisfies α0 > 0 on (a,b). Under some more assumptions, he proved the existence of a
positive function α0 such that

α
′′
0 + f (t,α0)> 0, α0(a) = 0, α0(b) = 0. (1.68)

Later on, such a function is referred as a lower solution and the method used by Picard is
referred as the monotone iterative method.

Following, Chaplygin’s work [33], with the support of upper and lower solutions tech-
nique, the Russian school has further studied and developed the monotone methods in a very
precise way. In 1954, Babkin [16] considered the following approximation scheme, under
the condition of upper β0 and lower α0 solutions with β0 ≥ α0, for the problem (1.65)

−α
′′
n +λαn = f (t,αn−1)+λαn−1, αn(a) = 0, αn(b) = 0, (1.69)

−β
′′
n +λβn = f (t,βn−1)+λβn−1, βn(a) = 0, βn(b) = 0. (1.70)

The assumption such that f (t,u)+λu is increasing in u, for some λ > 0, is the key to prove
that the sequences (αn)n and (βn)n are monotone and converge to the unique solution of
(1.65).

In 1939, a notable result was given by Kantorovich [81]. He analyzed that the first
monotone approximation scheme, which are mainly used for Cauchy problem as well as
for other boundary value problem, has a common structure related to positive operators.
Making use of this, he established an abstract formulation of the method, which was further
developed by several authors [10, 11, 87, 88, 162].

Without reference of Russian school, Courant and Hilbert [42] described a monotone
iterative scheme similar to Babkin’s [16]. The main problem was to find appropriate con-
ditions on the function f to apply the method. In 1968, one sided Lipschitz condition was
introduced by Shampine [139],

f (x,v)− f (x,u)≤ k(x)(u− v), if u ≥ v. (1.71)

This condition unifies Courant and Hilbert [42] and other approaches in the literature (see
[41]). In 1974, by assuming a Hölder condition on f , Amann [9] has generalized the
one-sided Lipschitz condition, which is a particular case of the condition studied by Mlak
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[106], for parabolic problem. Additionally, In 1978, Stuart [146] has considered that f
is of bounded variation on compact intervals which gives f = g− h, where g and h are
increasing functions. In 1992, Carl [30] has also used such assumption. In such a case, the
approximation sequences are defined by the following equations

−α
′′
n +h(t,αn) = g(t,αn−1), αn(a) = αn(b) = 0,

−β
′′
n +h(t,βn) = g(t,βn−1), βn(a) = βn(b) = 0.

In general, this method gives implicit solutions, which reduces considerably the interest of
the approach.

In 1964, a major result is established by Gendzhoyan [53]. He studied the problem, when
nonlinearity depends on the derivative, i.e.,

u′′+ f (t,u,u′) = 0, u(a) = 0, u(b) = 0.

In the presence of lower and upper solution α0 and β0 such that β0 ≥ α0, the sequences of
approximations (αn)n and (βn)n are solutions of the following BVP,

−α
′′
n (t)+ l(t)α ′

n + k(t)αn = f (t,αn−1,α
′
n−1)+ l(t)α ′

n−1 + k(t)αn−1,

αn(a) = αn(b) = 0,

−β
′′
n (t)+ l(t)β ′

n + k(t)βn = f (t,βn−1,β
′
n−1)+ l(t)β ′

n−1 + k(t)βn−1,

βn(a) = βn(b) = 0,

where k(t) and l(t) are functions which depend on the nonlinear term f .

In 1977, Bernfeld and Chandra [23] studied the monotone iterative method for nonlin-
earities depending on derivative. The first approximations are defined as upper and lower
solutions β0 and α0(≤ β0) and other approximations are evaluated with the help of the
following nonlinear problems

−α
′′
n (t)+λαn = f (t,αn−1,α

′
n)+λαn−1, αn(a) = αn(b) = 0,

−β
′′
n (t)+λβn = f (t,βn−1,β

′
n)+λβn−1, βn(a) = βn(b) = 0,

where λ is related to f . As right hand side of the above equations depends explicitly on α ′
n

and β ′
n respectively, i.e., computation of the approximations is not explicit.

In 1986, Omari [109] proposed an alternative approach for the boundary value problem
where nonlinearity depends on the derivative. The iterative process, for the Dirichlet problem,
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defined from the following piecewise BVP,

α
′′
n (t)− k|α ′

n −α
′
n−1|−λαn = f (t,αn−1,α

′
n−1)−λαn−1,

αn(a) = αn(b) = 0,

β
′′
n (t)− k|β ′

n −β
′
n−1|−λβn = f (t,βn−1,β

′
n−1)−λβn−1,

βn(a) = βn(b) = 0.

He also dealt with periodic and Neumann problems.
For the non well ordered case, i.e., α ≥ β , the first existence result was given by Amann et

al. [12]. For monotone iterative method, first contribution was made by Omari and Trombetta
[110]. Authors have considered in particular the periodic problem

−u′′(t)+ cu′+ f (t,u) = 0, u(a) = u(b), u′(a) = u′(b),

and have proved the convergence of approximations (αn)n and (βn)n defined as

−α
′′
n (t)+ cα

′
n +λαn =− f (t,αn−1)+λαn−1,

αn(a) = αn(b), α
′
n(a) = α

′
n(b),

−β
′′
n (t)+ cβ

′
n +λβn = f (t,βn−1)+λβn−1,

αn(a) = αn(b), α
′
n(a) = α

′
n(b).

The existence of non well order (reverse order) case is due to the occurrence of anti-maximum
principle, which is basically, result of the assumptions that the function f (t,u)−λu is non-
decreasing in u for some λ < 0 and that this λ is such that the operator −u′′+ cu′+λu is
inverse negative on the space of periodic functions, i.e., anti maximum principle holds (see
[41]). In 1996, Cabada and Sanchez [29] studied similar results for Neumann problem.

For the reverse order case, when f depends nonlinearly on u′, Bellen [22], for periodic
problem, Cabada et al. [27] and Cherpion et al. [40] for Neumann problems proved some
important results.

All these discussion are for regular cases. Let us consider some important results for
singular BVPs.

In 1952, Chambre [31] considered the singular boundary value problems (1.37)–(1.40)
and discussed analytical solution for k = 1 in the terms of quadratures and for k = 2 in terms
of known tabulated function. Probably this was the first result which started motivating
researchers to explore analytically further possibilities in the singular boundary value prob-
lems. Next in 1956, Keller [82] established the existence results for singular boundary value
problems with the use of monotone iterative methods.
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Here, we discuss the results for two point singular boundary value problems, which
are tackled with the support of monotone iterative method associated with upper and lower
solutions. In 1975, Russell and Shampine [135] considered a special class of singular
boundary value problems. Usually, such problems arise when partial differential equation are
reduced to ordinary differential equation due to physical symmetry. They also state that if
physical law is represented by the following equation

∆u(P) = f (P,u(P)), (1.72)

and if one is interested in planar, cylindrical or spherical geometries, he is led to the differen-
tial equation

u′′(x)+
k
x

u′(x)+ f (x,u(x)) = 0, (1.73)

with k = 0, 1 or 2, respectively. They considered the following boundary conditions,

u′(0) = 0, (or equivalently, u(0) finite), u(b) = 0. (1.74)

By using monotone iterative technique in the presence of upper and lower solutions, they
established existence-uniqueness of the solutions of singular boundary value problems (1.73)–
(1.74). They proposed the following iterative scheme

Lun+1 = F(x,un(x)),

where,

Lu(x) =−
(

u′′(x)+
k
x

u′(x)−λu(x)
)
,

F(x,u(x)) = f (x,u)+λu.

Here k satisfies the inequalities

k >−
(

j0
b

)2

, if k = 1,

k >−
(

π

b

)2
, if k = 2,

where j0 is first positive zero of the Bessel function of first kind of order zero.

In 1987, Chawla and Shivkumar [38] have generalized the result of Russell and Shampine
[135]. They examined the existence-uniqueness of the solution of the class of nonlinear two
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point singular boundary value problems

−
(

u′′(x)+
α

x
u′(x)

)
= f (x,u(x)), 0 < x < 1, α ≥ 1

u′(0+) = 0, u(1) = B.

They used the following iterative scheme

−
(
xαu′n+1

)′− xαu∗un+1 = xα [ f (x,un)−u∗un] , 0 < x < 1, α ≥ 1,

u′n+1(0) = 0, un+1(1) = B,

where u∗ =
∂ f
∂y < k1, and k1 is the first positive zero of Jα−1

2
(
√

k) and k < k1.
In 1996 and 1997, Pandey [114, 115, 117], studied a more generalized class of singular

differential equation
−(p(x)y′)′ = p(x) f (x,y), 0 < x ≤ b, (1.75)

where p(x) satisfies the following conditions

(i) p(x)> 0 on (0,b).

(ii) p(x) ∈C1(0,r) for some r > b.

(iii) x p′(x)
p(x) is analytic in {z : |z|< r}, with Taylor series expansion

x
p′(x)
p(x)

= b0 +b1x+b2x2 + · · · .

He imposed the following boundary conditions

(i) y(0) = A, y(b) = B when
∫ b

0
dt

p(t) < ∞ and b0 ∈ [0,1) (see [114]).

(ii) limx→0+ y′(x) = 0, y(b) = B when
∫ b

0
dt

p(t) < ∞ and b0 ∈ [0,1) (see [115]).

(iii) limx→0+ y′(x) = 0, y(b) = B when
∫ b

0
dt

p(t) = ∞ and b0 ≥ 1 (see [117]).

He established existence of unique solutions of the considered problems by using eigen-
function expansion and monotone iterative technique with the support of upper and lower
solutions.

Pandey and Verma [125–127] have analyzed the following class of singular differential
equation

− (p(x)y′)′ = q(x) f (x,y), 0 < x ≤ b, (1.76)
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where p(x) satisfies the properties similar to [114, 115, 117], and q(x) follows the following
assumption

(i) q(x)> 0 on (0,b).

(ii) q(x) ∈ L1(0,r) for some r > b.

(iii) x2 q(x)
p(x) is analytic in {z : |z|< r}, with Taylor series expansion

x
q(x)
p(x)

= c0 + c1x+ c2x2 + · · · .

They imposed the boundary conditions

(i) y(0) = a, & α1y(b)+β1y′(b) = γ1 for b0 ∈ [0,1) (see [125]),

(ii) y′(0) = 0, & α1y(b)+β1y′(b) = γ1 for b0 ≥ 0 (see [126]),

(iii) limx→0+ p(x)y′(x) = 0 & α1y(b)+β1 p(b)y′(b) = γ1, for b0 > 0 (see [127]),

where a ≥ 0, α1 > 0, β1 ≥ 0 and γ1 is finite. In these results [125–127], they established
existence of unique solutions by using monotone iterative technique and eigen function
expansion.

Recently, Verma [150], considered a class of nonlinear singular BVP

− (xαy′(x))′+ xα f (x,y(x),xαy′(x)) = 0, 0 < x < 1, α ≥ 1,

y′(0) = y′(1) = 0,

where the source function f (x,y(x),xαy′(x)) is derivative dependent and boundary conditions
are Neumann type. In this paper he used an iterative scheme which is as simple as possible
from the computational point of view. He proposed the following iterative scheme

− (xαy′n(x))
′+λxαy′n(x) =−xα f (x,yn−1(x),xαy′n−1(x))+λxαy′n−1(x)

y′n(0) = y′n(1) = 0

The work in this paper generalizes the work of Cherpion et al. [40] (for the non-singular case,
α = 0) to the singular case (α ≥ 1) and also generalizes the work of Chawla and ShivKumar
[38] to derivative dependent source functions.

Further, Pandey and Verma [128, 129], Verma [151] and Verma and Agarwal [152],
considered more generalized class of nonlinear singular boundary value problems and proved
some important results.
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Pandey and Verma [128, 129] considered the following class of singular differential
equation

−(p(x)y′(x))′ = q(x) f (x,y(x), py′(x)), 0 < x ≤ b, (1.77)

where p(x) and q(x) satisfy the following assumptions

(i) p(x)> 0 on (0,b), p ∈C[0,b)
⋂

C1(0,b).

(ii) q(x)> 0 in (0,b),
∫ b

0 q(t)dt < ∞.

Pandey and Verma [128], considered the boundary conditions

lim
x→0+

p(x)y′(x) = 0 & α1y(b)+β1 p(b)y′(b) = γ1.

where α1 > 0, β1 ≥ 0 and γ1 is any finite constant. While in [129], they considered boundary
conditions for

∫ b
0

dt
p(t) < ∞ such as

y(0) = a, & α1y(b)+β1y′(b) = γ1,

where a ≥ 0, α1 > 0, β1 ≥ 0 and γ1 is finite. With the support of monotone iterative method
and upper and lower solutions method, they established existence of unique solutions of the
considered problems for well order case

Verma [151] considered the following second order nonlinear singular boundary value
problem

− (p(x)y′(x))′+ p(x) f (x,y(x), py′(x)), 0 < x < 1, (1.78)

y′(0) = 0, y′(1) = 0, (1.79)

where f (x,y, py′) is Lipschitz in py′, and one sided Lipschitz in y, The functions p(x) satisfies
the following assumptions

(i) p(0) = 0 and p > 1 in (0,1).

(ii) p(x) ∈C[0,1]
⋂

C1(0,1).

(iii) for some r > 1, xp′(x)
p(x) is analytic in {z : |z|< r}.

(iv)
∫ 1

0
dt

p(t) = ∞.

Verma and Agarwal, [152], considered the following nonlinear singular boundary value
problem

−(p(x)y′(x))′+q(x) f (x,y(x), py′(x)), 0 < x < 1, (1.80)
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subject to the boundary conditions

lim
x→0

p(x)y′(x) = 0 & lim
x→1

p(x)y′(x) = 0, (1.81)

where p(x) satisfies the assumptions similar to [151] (except (iv)), and q(x) follows the
following assumptions

(i) q(x)> 0 in (0,1) and q(x) ∈C(0,1].

(ii)
∫ 1

0 q(x)dx < ∞.

(iii) limx→0
q(x)
p′(x) ̸= 0.

(iv)
∫ 1

0
1

p(x)

∫ x
0 q(s)dsdx < ∞.

(v) x2 q(x)
p(x) is analytic in {z : |z|< r,r > 1}.

Verma [151] and Verma and Agarwal [152], established the existence results for nonlinear
singular boundary value problems. They used the concept of monotone iterative method with
upper and lower solutions and discussed the results for both well order and reverse order
cases.

1.7.1 Three point boundary value problems

As compared to two point boundary value problems, multi-point boundary value problems do
not have very vast literature. In 1918, Wilder [160] studied a differential system consisting
of an ordinary differential equation with auxiliary conditions at more than two points. Since
in this thesis we focus on three point BVPs, we will mention results only related to three
point BVPs.

Neuberger [107], Zettl [163] and Loud [98] have discussed self adjoint boundary value
problem with interior conditions. They analyzed their results, with the support of Green’s
functions, associated with non-homogeneous problems.

According to the literature, the main contribution to the theory of multi-point boundary
value problem was made by II’in and Moiseev [73]. II’in and Moiseev [73] and Gupta [61]
dealt with non-linear three point boundary value problems for ordinary differential equations.
Since then, several researchers have been discussed various nonlinear multi-point boundary
value problems by using Leray-Schauder continuation theorem, nonlinear alternative of
Leray-Schauder, Coincidence degree theory or Fixed point theorem in cone (see [103] and
references therein).
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In 1971, Greguš et al. [57] established existence results of solution for the two point
eigenvalue problem formed by the differential equation

y′′+[q(x;λ ,µ)+ r(x)]y = 0, x ∈ [a,c],

with three point boundary conditions

y(a) = y(b) = y(c) = 0, b ∈ (a,c),

where λ and µ are the parameters, whose eigenvalues are sought.

In 1998, Ma [99] proved the existence of positive solutions for the following three point
boundary value problem

u′′+a(t) f (u) = 0, t ∈ (0,1), (1.82)

u(0) = 0, αu(η) = u(1), (1.83)

where 0 < η < 1 and 0 < α < 1
η

. Here he used the fixed point theorem in cones.

Liu [96] used the Krasnoselskii’s fixed point theorem in a cone. He studied the existence
of single and multiple positive solutions to the second order differential equation (1.82), with
three point boundary conditions

u′(0) = 0, βu(η) = u(1), η ,β ∈ (0,1). (1.84)

Infante and Webb [74] studied the nonlinear three point boundary value problem (1.54)–
(1.55). They have discussed the existence of nontrivial solutions by using the theory of fixed
point index.

In 2003, Ma [101] has proved several multiplicity results for the following three point
boundary value problem,

u′′(t) = f (t,u(t)), t ∈ (0,1),

u(0) = 0, u(1) = αu(η),

where f : [0,1]×R → R is continuous, α ∈ (0,∞) and β ∈ (0,1). For this, the author
developed the method of lower and upper solutions which are well ordered as well as reverse
ordered.

Zhang and Wang [165] discussed existence results, with the support of upper and lower
solution method related to the monotone iterative technique, for a class of second order



1.7 Literature review 31

nonlinear three point singular boundary value problems of the form

−u′′(t) = f (t,u(t)), t ∈ (0,1), (1.85)

u(0) = ξ , u(1)−λu(δ ) = η , (1.86)

where δ ∈ (0,1), λ > 0 and ξ ,η ∈ R.

Xian et al.[161] considered the nonlinear differential equation (1.85), with boundary
conditions u(0) = 0, u(1)−αu(η) = 0, where η ,α ∈ (0,1), and f ∈C

(
[0,1]×R1,R1).

Using fixed point index theory, they studied some multiplicity results for the solutions of
three point boundary value problem for non well ordered upper and lower solutions.

In 2008, Li et al. [92] studied the existence and uniqueness of solutions of the second
order nonlinear three point boundary value problem

u′′(t)+ f (t,u(t)) = 0, t ∈ (0,1), (1.87)

u′(0) = 0, u(1) = δu(η), (1.88)

where 0 < η < 1, δ > 1, f ∈ C ([0,1]×R,R), with lower and upper solutions in reverse
order. They obtained the sufficient conditions for the existence and uniqueness of solutions
by using monotone iterative method. Li et al. [93] introduced a new concept related to upper
and lower solutions and studied the existence and uniqueness of solutions of second order
three point boundary value problems (1.87)–(1.88) with upper and lower solutions in reverse
order.

In case, when f depends on u′, we quote the work of Henderson et al. [70], Guo and Ge
[59], and Bao et al. [19]. They used Shooting methods, Fixed point index method and Fixed
point theorem in a cone, respectively.

Bao et al. [19] discussed the existence results for positive solutions of the following
nonlinear three point boundary value problem

u′′(t)+ f (t,u(t),u′(t)) = 0, t ∈ (0,1), (1.89)

u(0) = 0, u(1) = γu(η), (1.90)

where f : C
(
[0,1]×R+×R1,R

)
is continuous, α ∈ (0,∞) and γ,η ∈ (0,1). They used the

concept of the fixed point index method under a non well ordered upper and lower solution
condition.
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1.8 Numerical approach

This thesis also deals with numerical solutions of nonlinear two point singular boundary
value problems (SBVPs). Our main attention is on iterative methods, namely, variational
iteration method (VIM), and homotopy perturbation method (HPM). There is an enormous
literature related to numerical methods to solve nonlinear two point singular boundary value
problems.

In 1970, Jamet [78] considered the following second order differential equation

Lu =
d2u
dx2 + f (x)

du
dx

−g(x)u = H(x), 0 ≤ x ≤ 1, (1.91)

where f (x) ∈C(0,1], f (x)→ ∞, as x → 0, g(x),H(x) ∈C[0,1] and g(x)≥ 0. On the basis
of the rate of growth of f (x) near the origin, he considered either the two point boundary
conditions,

u(0) = a, u(1) = b,

u ∈C2(0,1)∩C[0,1],
(1.92)

or the one point boundary condition

u(1) = b, u(x) is bounded at origin,

u ∈C2(0,1)∩C[0,1]∩B[0,1],
(1.93)

Note that the operator L of (1.91) can be written as

Lu =
1

p(x)
d
dx

[
p(x)

du
dx

]
−g(x)u, (1.94)

where p(x) = exp
(
−
∫ 1

x f (t)dt
)

. Here, he studied two finite difference schemes, a direct
central difference analog of the equation (1.91) and a scheme obtained by differentiating the
equation (1.94). He proved that the two point BVP (1.91)–(1.92) has unique solution for

f (x)<
σ

x
, for x small,

where σ is a number, 0 < σ < 1. Similarly, he discussed that if

f (x)>
1
x
−C, for x small, C ≥ 0,
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then one point BVP (1.91)–(1.92) has unique solution. He also shown that the solutions of
both finite difference schemes converge to it. He also obtained a principal error function for
the case f (x) = σ

x , g(x)≡ q (a constant) and illustrated a method of uniform error estimation.
He shown the error to be O(h1−σ ).

In 1975, Russell and Shampine [135] have studied analytical results for singular boundary
value problems (1.73)–(1.74) for the case k = 1 and k = 2. Additionally, they examined
numerical solutions with three numerical techniques, namely, (i) Collocation method (ii)
Finite difference (iii) Patch bases. These results modifid the result of Jamet [78]. The
collocation method and singular spline for two-point singular boundary value problems
have been discussed by Reddien [133] and Reddien and Schumaker [134]. They studied the
existence, uniqueness and convergence rates of these methods.

The following class of singular boundary value problems are considered by several
authors

(xαy′)′ = f (x,y), 0 < x ≤ 1, y(0) = A, y(1) = B, (1.95)

and
(+/−)x−α(xαy′)′ = f (x,y), 0 < x ≤ 1,

y′(0) = 0, (or y(0) = finite), y(1) = B,
(1.96)

where A, B are finite constants. In 1982, Chawla and Katti [35] developed finite difference
schemes for singular point boundary value problem (1.95). They assumed that the α ∈ (0,1)
and source function f (x,y) is continuous, ∂ f

∂y exists, continuous and ∂ f
∂y ≥ 0 in {(x,y) :

[0;1]×R}. They established an identity based on non-uniform mesh, which gives various
methods. They presented three methods for the singular boundary value problem (1.95)
which are O(h2) convergent.

The authors ([34, 36]) constructed a new finite difference method for weakly singular two
point boundary value problems (1.95). In papers [34] and [36] authors, shown that the method
are based on uniform mesh and they provide O(h4) and O(h2) convergent approximation for
all α ∈ [0,1), respectively.

In [37, 76, 136] two point singular boundary value problem (1.96) is considered. Chawla
et al. [37] constructed a finite difference method based on uniform mesh and provides
O(h2) convergence for all α ≥ 1, while, the construction of spline finite difference method
for α = 1, 2 or α ∈ (0,1) is discussed by Iyengar and Jain [76]. They established O(h2)

convergence. For the same problem (1.96), Sakai and Usmani [136] have considered an
application of simple non-polynomial splines and proved O(h2) convergence. They discussed
two cases when 0 < α < 1 and α ≥ 1.
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Jain and Jain [77], have derived three point finite difference method for singular boundary
value problem

y′′+
2
x

y′ = f (x,y), 0 < x ≤ 1, y′(0) = 0, y(1) = A.

In 2000, Guoqiang et al. [60] discussed three point finite difference approximation and
a spline approximation for singular differential equation (1.96) with boundary conditions
y′(0+) = 0, y(1) = A, α ≥ 1. In 2002, a second order spline method for the singular
differential equation (1.96) with boundary conditions y′(0) = 0 or y(0) = a, and a1y(1)+
b1y′(1) = c1, where a1 > 0, b1 ≥ 0 has been derived by Pandey [119].

Let us consider a general class of singular boundary value problem

(p(x)y′(x))′ = p(x) f (x,y(x)), (1.97)

lim
x→0+

py′ = 0, y(1) = A, (1.98)

or, y′(0) = 0 or y(0) = A, ay(1)+by′(1) = c, a > 0, b ≥ 0. (1.99)

Pandey [113, 116, 118] and Pandey and Singh [121] derived a finite difference method for
singular boundary value problem (1.97)–(1.99), and extended various results existing in
the literature. They established O(h2) convergence under quite general conditions of the
functions p(x) and f (x,y).

Pandey and Singh [120, 122, 123] have described the finite difference method for the
following singular boundary value problems

(p(x)y′(x))′ = f (x,y(x)), (1.100)

y′(0) = 0, ay(1)+by′(1) = c, a > 0, b ≥ 0, (1.101)

or, y(0) = A, ay(1)+by′(1) = c, a > 0, b ≥ 0. (1.102)

The second order convergence of the methods have been established under quite general
conditions on p(x) and f (x,y). These results extend the work of Chawla [34], Chawla and
Katti [35] for a class of functions p(x).

In 1996, Sen and Hossain [138] used a method, which is based on Newton’s method. In
order to linearize the following singular boundary value problem of the form

2

∑
k=0

(−1)k dk

dxk

[
pk(x)

dku
dxk

]
= F(x,u), 0 < x ≤ 1, (1.103)
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they assumed that one or more coefficients of pk(x) can be infinite at x = 0, with boundary
conditions

2

∑
k=0

(Alk)

(
dku
dxk

)
x→0

+
3

∑
k=0

(Blk)

(
dku
dxk

)
x=1

= gl, l = 1,2,3,4. (1.104)

They applied series expansion about a small neighbourhood of the point x = 0 and difference
method in the rest of interval and presented consistency, stability and error estimates.

Making use of Green’s functions and shooting method, Ha and Lee [63] discussed
numerical solutions for the following two point singular boundary value problem

(p(x)u′(x))′+q(x)u(x) =− f (x), a < x < b,

a1u(a)+a2u′(a) = 0, b1u(b)+b2u′(b) = 0.

In 2003, El-Gabeily and Attili [49] proposed an iterative method, coupled with shooting for
the following differential equation subject to certain boundary conditions,

−(py′)′+qy = w f , on J,

where J = (a,b), −∞ < a < b < ∞.

In last few years, some iterative numerical methods like Adomain decomoposition method
(ADM), modified Adomain decomoposition method (MADM), homotopy analysis method
(HAM), variational iteration method (VIM) and Homotopy perturbation method (HPM) are
developed (see [1, 2, 43, 48, 64, 65, 67, 79, 145]).

In 2008, Mittal and Nigam [105] discussed Adomain decomposition method for singular
differential equation (1.100), with boundary conditions y(0) = A, y(1) = B, or y(0) =
A, ay(1)+ by′(1) = B, where p(x) = xγg(x), 0 ≤ γ < 1 and A, B are finite constant. In
2010, Khuri and Sayfy [84] discussed a new approach for the numerical solution of singular
boundary value problems of the form

y′′+
α

x
y′ = f (x,y), x ∈ [0,b], α = 0, 1, 2,

y′(0) = 0, (or, y(0) = η), a1y(b)+a2y′(b) = B,

where a1 > 0, a2 ≥ 0, and B are finite constant. This approach based on a modified decom-
position method in combination with the cubic B-spline collocation technique.

Lot of computations are required, when we use ADM or MADM, to solve the nonlinear
singular boundary value problem (1.105)–(1.106). Basically, it requires computation of
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undetermined coefficients in a sequence of nonlinear algebraic or more difficult transcendental
equations. Additionally, in some cases, it is not possible to determined the undetermined
coefficients uniquely which may be the biggest demerit of these methods for solving nonlinear
singular boundary value problem.

In 2014, Singh and Kumar [144] have presented an improved decomposition method
(IDM) for singular boundary value problem

y′′+
α

x
y′ = f (x,y), 0 < x ≤ 1, α ≥ 1, (1.105)

y′(0) = 0, a1y(b)+a2y′(b) = B, (1.106)

where a1 > 0, a2 ≥ 0, and B are finite constant. This work is based on Green’s function and
the Adomian decomposition method (ADM).

Most recently, the variational iteration method and its modification have been studied
extensively in the literature [65, 68, 79, 158]. The basic concept of this method is to construct
a correction functional using a general Lagrange multiplier. We choose the multiplier in such
a manner that its correction solution is improved with respect to the initial approximation or
to the trial function. In 2010, Kanth and Aruna [79] used variational iteration method for the
singular boundary value problem

y′′+
α

x
y′+ f (x,y) = 0, x ∈ [0,1], α ≥ 1, (1.107)

y(0) = A, (or, y′(0) = B), y(1) =C (or, a1y(1)+a2y′(1) = b), (1.108)

where A,B,C,a1,a2 and b are real constant. Wazwaz [158] has also explored variational
iteration method for singular boundary value problem (1.105)–(1.106) for α = 0,1,2,3.

1.9 Discrete Boundary Value Problem

The boundary value problems in continuous case have been studied in great detail. However,
the discrete analogue requires further exploration.In 1997, Agarwal and O’Regan [5] have
presented two new existence results for a second order two point discrete boundary value
problem

∆
2y(i−1)+µ f (i,y(i)) = 0, i ∈N, (1.109)

y(0) = 0, y(T +1) = 0, (1.110)

where u ≥ 0, T ∈ {1,2,3, · · ·}, N = {1,2 · · ·} N+ = {1, · · ·T + 1}, y : N+ → R and f :
N ×R→ R is continuous. One existence method is based on the notion of upper and lower
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solutions and the second result is based on the discrete Gelfand problem. In 1999, they [6]
dealt with a nonlinear discrete boundary value problem (1.109)–(1.110), in which µ = 1 and
nonlinear source terms f (i,u) may be singular at u = 0 point.

In 2003, Atici and Cabada [15] considered the following nonlinear periodic discrete
boundary value problem

−∆
2y(n−1)+q(n)y(n) = f (n,y(n)), n ∈ [1,N],

y(0) = y(N), ∆y(0) = ∆y(N),

where N is a fixed integer. They proved existence and uniqueness results for the solutions
of considered problem by using an application of the Brower fixed point theorem and the
properties of the Green’s function. In 2002, Henderson and Thompson [71] coupled Brouwer
degree theory with discrete upper and lower solutions and discussed the existence results of
two point discrete boundary value problem.

In 1996, Zhuang et al. [166] derived existence result for two point discrete boundary
value problem

∆
2vk−1 + f (k,vk) = 0, k = 1,2, · · ·n, (1.111)

vk = 0 = vk+1, (1.112)

where f (k,v) is a real function for k = 1,2, · · · ,n and v ∈ R. They obtained existence results
by using monotone iterative method in the presence of upper and lower solution.

In 1998, Wang [156], considered the discrete boundary value problem

−δ
2u(t)+PN f

( t
N
,u(t)

)
= 0, t ∈ IN−1

1 , (1.113)

u(0) = α, u(N) = β , (1.114)

where f : IN
0 ×R→ R. He assumed that IN−1

1 = {1,2, · · · ,N − 1} and IN
0 = IN−1

1
⋃
{0,N}

and for u(t) : IN
0 → R, he defined

δ
2u(t) = u(t −1)−2u(t)+u(t +1), t ∈ IN−1

1 ,

PNu(t) =
1

12N2 (u(t −1)+10u(t)+u(t +1)) , t ∈ IN−1
1 .

Basically, the boundary value problem (1.113)–(1.114) originate from the discretization of
continuous boundary value problem y′′(x) = f (x,y(x)), 0 < x < 1, y(0) = α, y(1) = β by
using the fourth-order Numerov’s method (see [156] and references therein). The existence
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results of the solutions of discrete boundary value problem (1.113)–(1.114) is obtained with
the help of monotone iterative method in the presence of upper and lower solutions. In 1999,
Wang and Agarwal [155] extended the results of [156] and proposed a monotone iterative
method for a system of discrete boundary value problem.

In this thesis, we developed a monotone iterative method in the presence of upper and
lower solutions, for two point discrete boundary value problems and discussed the existence
results.

1.10 A survey of the contents of the thesis

A brief synopsis of the thesis is as fellows.

In chapter 2, we consider the following class of three point boundary value problem

y′′(t)+ f (t,y) = 0, 0 < t < 1,

y′(0) = 0, y(1) = δy(η),

where δ > 0, 0 < η < 1, the source term f (t,y) is Lipschitz and continuous. We use
monotone iterative technique in the presence of upper and lower solution for both well order
and reverse order case. Under some sufficient conditions we prove some existence results.
We use examples and figures to demonstrate that monotone iterative method can efficiently
be used for computation of solutions of nonlinear BVPs.

In chapter 3, we deal with derivative dependent nonlinear three point boundary value
problem

y′′+ f (t,y,y′) = 0, 0 < t < 1,

y′(0) = 0, y′(1) = δy(η),

where δ > 0, 0 < η < 1 and use monotone iterative technique to derive some sufficient
conditions of existence. Examples are included to illustrate the effectiveness of the proposed
results. We consider both well ordered and reverse ordered upper and lower solutions.

Chapter 4, deals with a class of nonlinear three point boundary value problems (BVPs)
with Neumann type boundary conditions

y′′(t)+ f (t,y,y′) = 0, 0 < t < 1,

y′(0) = 0, y′(1) = δy′(η),
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where f ∈C(I ×R,R), I = [0,1], 0 < η < 1, 0 < δ < 1. The source term (nonlinear term)
depends on the solutions of the derivative, it is also Lipschitz and continuous. We use
monotone iterative technique in the presence of upper and lower solutions for both well order
and reverse order case. Under some sufficient conditions we prove some existence results.
We also construct two examples to validate our results.

In chapter 5, we investigate the existence results for the following second order three
point boundary value problem with Dirichlet type boundary conditions

y′′(t)+ f (t,y,y′) = 0, 0 < t < 1,

y(0) = 0, y(1) = δy(η),

where f (I ×R,R), I = [0,1], 0 < η < 1, δ > 0. We consider simple iterative scheme and
develop a monotone iterative technique. Some examples are constructed to show the accuracy
of the present method.

In chapter 6, we consider the following class of nonlinear three point singular boundary
value problems (SBVPs)

− y′′(x)− 2
x

y′(x) = f (x,y), 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

where δ > 0 and 0 < η < 1. We establish some maximum principles. Further using these
maximum principles and monotone iterative technique in the presence of upper and lower
solution we prove existence of solutions for the above class of nonlinear three point SBVPs.
Here the nonlinear term is one sided Lipschitz continuous in its domain, also x = 0 is regular
singular point of the above differential equation.

In chapter 7, we prove maximum and anti-maximum principle for the following differen-
tial inequalities,

− (xy′(x))′−λxy(x)≥ 0, 0 < x < 1,

y′(0) = 0, y(1)−δy(η)≥ 0,

where δ > 0 and 0 < η < 1 and use it to examine the existence of solutions of the following
class of nonlinear three point singular boundary value problems (SBVPs)

− y′′(x)− 1
x

y′(x) = f (x,y), 0 < x < 1,

y′(0) = 0, y(1) = δy(η).
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We use monotone iterative technique in the presence of upper and lower solutions which can
be arranged in one way (well order) or the other (reverse order) and prove existence theorems.
The point x = 0 is again a regular singular point of the differential equation.

In chapter 8, we consider a more generalize form of nonlinear three point singular
boundary value problems (SBVPs). In this chapter, we analyze the existence of unique
solutions of the following class of nonlinear three point singular boundary value problems
(SBVPs),

− (xαy′(x))′ = xα f (x,y), 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

where δ > 0, 0 < η < 1 and α ≥ 1. This study shows some novel observations regarding
the nature of the solution of the nonlinear three point SBVPs. We observe that when
sup(∂ f/∂y) > 0 for α ∈ ∪n∈N (4n−1,4n+1) or α ∈ {1,5,9, · · ·} reverse ordered case
occur. When sup(∂ f/∂y)> 0 for α ∈ ∪n∈N (4n−3,4n−1) or α ∈ {3,7,11, · · ·} and when
sup(∂ f/∂y)< 0 for all α ≥ 1 well order case occur. The results of chapter 6 and chapter 7
are particular cases of this chapter.

In chapter 9, we examine a class of nonlinear three point singular boundary value
problems (SBVPs), when the nonlinearity depends upon derivative of the type

− y′′(x)− 1
x

y′(x) = f (x,y,xy′), 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

where δ > 0, 0 < η < 1. We establish the maximum and anti-maximum principles for linear
model and prove some inequalities based on Bessel and modified Bessel functions. Finally
by using the Monotone iterative technique, we obtain the existence results for both well order
and reverse order cases of upper and lower solutions. This chapter extends the results of
chapter 7.

In chapter 10, we propose a modification to Quasi-Newton method and use it to solve a
class of nonlinear two point singular boundary value problems (SBVPs)

−(xαy′)′ = xα f (x,y), x ∈ (0,1), y′(0) = 0, a1y(1)+b1y′(1) = c1,

where α ≥ 1 and a1,b1,c1 ∈ R. We compute the relaxation parameter as a function of
another variable and express it in terms of Bessel and modified Bessel functions. Since rate
of convergence of solutions to the iterative scheme depends on relaxation parameter, we can
have faster convergence. Some real life test examples validate our results very well.
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In chapter 11, we propose an effective numerical technique for a class of nonlinear
singular boundary value problems

−u′′− α

x
u′ = f (x,u), 0 < x < 1, ′ ≡ d

dx
, (1.115)

u′(0) = B, a1u(1)+b1u′(1) = c1, (1.116)

where α,B,a1,b1,c1 are real constants and α ≥ 1. We assume that f (x,u) is continuous and
Lipschitz continuous in a domain D= {(x,u)∈ [0,1]×R}. Such nonlinear singular boundary
value problems arise due to physical symmetry in chemistry and other branches. This
technique is the combination of variational iteration and homotopy perturbation. It produces
the approximate solution in the form of series, which is very handy from computational
point of view. The effectiveness and accuracy of proposed method are revealed by some test
examples.

In chapter 12, a monotone iterative method with the support of upper and lower solutions
is proposed to solve nonlinear discrete boundary value problems

−∆
2y(t −1) = f (t,y(t)), t ∈ [1,T ],

y(0) = 0, y(T +1) = 0,

where T is a positive integer, [1,T ] is the set {1,2, · · · ,T}, f : [0,T ]×R → R, and ∆ is the
forward difference operator. We establish existence results. Under some sufficient conditions,
we establish maximum principle for linear discrete boundary value problem, which relies on
Green’s function and its constant sign. We then use it to establish existence of solution for
the nonlinear discrete boundary value problem.



Chapter 2

Picard type iterative scheme for a class of
nonlinear three point BVPs

2.1 Introduction

Consider the following nonlinear three point boundary value problem

y′′(t)+ f (t,y) = 0, 0 < t < 1, (2.1)

y′(0) = 0, y(1) = δy(η), (2.2)

where f ∈C(I ×R,R), I = [0,1], 0 < η < 1, δ > 0.

Li et. al. [92] studied the existence and uniqueness of solutions of second order three
point BVP (2.1)–(2.2) with upper and lower solutions in the reversed order via the monotone
iterative method in Banach space.

In this chapter, we establish some existence results for a class of nonlinear three point
BVP (2.1)–(2.2). We allow sup

(
∂ f
∂y

)
to take both negative and positive values. Our technique

is based on Picard type iterative scheme given by

− y′′n+1(t)−λyn+1(t) = f (t,yn(t))−λyn(t),

y′n+1(0) = 0, yn+1(1) = δyn+1(η), 0 < η < 1, δ > 0,

where λ ∈ R \ {0}, n ∈ N. This scheme is quite simple and efficient from computational
point of view. We have considered both well order and reverse order cases.

This chapter is divided into four sections. In Section 2.2 and Section 2.3, we construct
Green’s function and establish maximum and anti-maximum principles, respectively. In
Section 2.4, we generate monotone sequences by using results of Sections 2.2 and 2.3 with
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upper and lower solutions as initial iterates ordered in one way or the other. We prove our
final results of existence. In Section 2.5, we show that the monotone iterative scheme is a
powerful technique. For that by using iterative scheme proposed in this chapter we have
computed the members of sequences in both cases (well order and non well order case).
Finally, conclusions are drawn in Section 2.6.

2.2 Construction of Green’s function

To investigate (2.1)–(2.2) we consider the following linear three point BVP

− y′′(t)−λy(t) = h(t), 0 < t < 1, (2.3)

y′(0) = 0, y(1) = δy(η)+b, (2.4)

where h ∈C(I) and b is any constant. In this section we construct the Green’s function. We
divide it into two cases.

2.2.1 Case I: λ > 0.

Let us assume

(H0) : 0 < λ < π2

4 , sin
√

λ −δ sin
√

λη ≥ 0, δ cos
√

λη − cos
√

λ > 0.

There exists a range of λ ∈ (0, π2

4 ), which supports (H0) (see fig. 2.1).

Lemma 2.1. The Green’s function for the following linear three point BVP

y′′(t)+λy(t) = 0, 0 < t < 1, (2.5)

y′(0) = 0, y(1) = δy(η), (2.6)

is given by

G(t,s) =
1

Dλ


[sin

√
λ (1− s)+δ sin

√
λ (s−η)]cos

√
λ t, 0 ≤ t ≤ s ≤ η ,

cos
√

λ s sin
√

λ (1− t)+δ cos
√

λ s sin
√

λ (t −η), s ≤ t,s ≤ η ,

sin
√

λ (1− s)cos
√

λ t, t ≤ s,η ≤ s,
cos

√
λ s sin

√
λ (1− t)+δ cos

√
λη sin

√
λ (t − s), η ≤ s ≤ t ≤ 1,

where Dλ =
√

λ (δ cos
√

λη − cos
√

λ ) and if H0 holds then G(t,s)≥ 0.
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Proof. We define the Green’s function as given below

G(t,s) =


a1 cos

√
λ t +a2 sin

√
λ t, 0 ≤ t ≤ s ≤ η ,

a3 cos
√

λ t +a4 sin
√

λ t, s ≤ t,s ≤ η ,

a5 cos
√

λ t +a6 sin
√

λ t, t ≤ s,η ≤ s,
a7 cos

√
λ t +a8 sin

√
λ t, η ≤ s ≤ t ≤ 1.

Making use of continuity and jump of the Green’s function, for any s ∈ [0,η ], we have the
following system of equations

a1 cos
√

λ s+a2 sin
√

λ s = a3 cos
√

λ s+a4 sin
√

λ s,

(−
√

λa1 sin
√

λ s+a2
√

λ cos
√

λ s)− (−
√

λa3 sin
√

λ s+a4
√

λ cos
√

λ s) =−1,

which gives

a1 −a3 =
1√
λ

sin
√

λ s,

a2 −a4 =− 1√
λ

cos
√

λ s.

Now, using the boundary conditions, we have

a2 = 0,

a3 cos
√

λ +a4 sin
√

λ = δ (a3 cos
√

λη +a4 sin
√

λη).

By solving above four equations, we get

a1 =
sin

√
λ (1− s)+δ sin

√
λ (s−η)√

λ (δ cos
√

λη − cos
√

λ )
,

a2 = 0,

a3 =
cos

√
λ s[sin

√
λ −δ sin

√
λη ]√

λ (δ cos
√

λη − cos
√

λ )
,

a4 =
1√
λ

cos
√

λ s.

Similarly, for any S ∈ [η ,1], we have

a5 cos
√

λ s+a6 sin
√

λ s = a7 cos
√

λ s+a8 sin
√

λ s,

(−
√

λa5 sin
√

λ s+a6
√

λ cos
√

λ s)− (−
√

λa7 sin
√

λ s+a8
√

λ cos
√

λ s) =−1,
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which gives

a5 −a7 =
1√
λ

sin
√

λ s,

a6 −a8 =− 1√
λ

cos
√

λ s.

By using the boundary conditions, we have

a6 = 0,

a7 cos
√

λ +a8 sin
√

λ = δ (a5 cos
√

λη +a6 sin
√

λη).

Hence, we get

a5 =
sin

√
λ (1− s)√

λ (δ cos
√

λη − cos
√

λ )
,

a6 = 0,

a7 =
sin

√
λ cos

√
λ s−δ sin

√
λ s cos

√
λη√

λ (δ cos
√

λη − cos
√

λ )
,

a8 =
1√
λ

cos
√

λ s.

This completes the construction of the Green’s function G(t,s).

When (H0) holds, by using properties of sine and cosine it is easy to show that G(t,s)≥ 0,
for any s, t ∈ [0,1]. �

Lemma 2.2. When λ > 0, let y ∈C2(I) be a solution of boundary value problem (2.3)–(2.4).
Then y(t) is defined as,

y(t) =
bcos

√
λ t

cos
√

λ −δ cos
√

λη
−
∫ 1

0
G(t,s)h(s)ds. (2.7)

Proof. Suppose G(t,s) is the Green’s function of the following homogeneous boundary
value problem

y′′(t)+λy(t) = 0, 0 < t < 1,

y′(0) = 0, y(1) = δy(η),
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and ȳ(t) satisfies the following linear boundary value problem

− y′′(t)−λy(t) = 0, 0 < t < 1,

y′(0) = 0, y(1) = δ (η)+b.

Then the linear boundary value problem (2.3)–(2.4) is equivalent to the integral equation

y(t) = ȳ(t)−
∫ 1

0
G(t,s)h(s)ds.

Suppose

ȳ(t) = c1 cos
√

λ t + c2 sin
√

λ t.

Making use of boundary conditions

ȳ′(0) = 0, and ȳ(1) = δ ȳ(η)+b,

we get

c1 =
b

cos
√

λ −δ cos
√

λη
,

c2 = 0.

Hence the linear three point boundary value problem (2.3)–(2.4) is equivalent to

y(t) =
bcos

√
λ t

cos
√

λ −δ cos
√

λη
−
∫ 1

0
G(t,s)h(s)ds.

�

Remark 2.1. Particularly, y ∈C2(I) is a solution of the linear three boundary value problem
(2.3)–(2.4) if and only if y ∈C(I) is a solution of the integral equation

y(t) =
bcos

√
λ t

cos
√

λ −δ cos
√

λη
−
∫ 1

0
G(t,s)h(s)ds.

2.2.2 Case II: λ < 0.

Assume that

(H ′
0) λ < 0, δ cosh

√
|λ |η − cosh

√
|λ |< 0, sinh

√
|λ |−δ sinh

√
|λ |η ≥ 0.
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There exists a range of λ < 0, which supports (H ′
0) (see fig. 2.3).

Lemma 2.3. The Green’s function for the following linear three point BVP

y′′(t)+λy(t) = 0, 0 < t < 1,

y′(0) = 0, y(1) = δy(η),

for λ < 0 is given by

G(t,s) =
1

D′
λ



[
sinh

√
|λ |(1− s)

+δ sinh
√
|λ |(s−η)

]
cosh

√
|λ |t, 0 ≤ t ≤ s ≤ η

cosh
√
|λ |s sinh

√
|λ |(1− t)

+δ cosh
√

|λ |s sinh
√
|λ |(t −η), s ≤ t,s ≤ η ,

sinh
√
|λ |(1− s)cosh

√
|λ |t, t ≤ s,η ≤ s,

cosh
√
|λ |s sinh

√
|λ |(1− t)

+δ cosh
√

|λ |η sin
√
|λ |(t − s), η ≤ s ≤ t ≤ 1,

where D′
λ
=
√
|λ |(δ cosh

√
|λ |η − cosh

√
|λ |) and if H ′

0 holds then G(t,s)≤ 0.

Proof. Proof is same as given in Lemma 2.1. �

Lemma 2.4. When λ < 0, y ∈C2(I) is a solution of boundary value problem (2.3)–(2.4) and
is given by

y(t) =
bcosh

√
|λ |t

cosh
√

|λ |−δ cosh
√

|λ |η
−
∫ 1

0
G(t,s)h(s)ds. (2.8)

Proof. Proof is same as given in Lemma 2.2. �

2.3 Maximum and anti-maximum principle

Proposition 2.1. Anti-maximum principle
Let b ≥ 0, h(t) ∈C[0,1] is such that h(t)≥ 0 and (H0) holds, then the solution of (2.3) and
(2.4) is non-positive on I.

Proposition 2.2. Maximum principle
Let b ≥ 0, h(t) ∈C[0,1] is such that h(t)≥ 0, and (H ′

0) hold, then the solution of (2.3) and
(2.4) is non-negative on I.
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2.4 Nonlinear three point BVP

By using maximum and anti-maximum principles we develop theory which solves the three
point nonlinear BVP (2.1)–(2.2). We divide it into the following two subsections.

2.4.1 Reverse ordered lower and upper solution

Theorem 2.1. Let there exist α0, β0 in C2[0,1] such that β0 ≤ α0 and satisfy

−β
′′
0 (t)≥ f (t,β0), 0 < t < 1, β

′
0(0) = 0, β0(1)≥ δβ0(η), (2.9)

and

−α
′′
0 (t)≤ f (t,α0), 0 < t < 1, α

′
0(0) = 0, α0(1)≤ δα0(η). (2.10)

If f : D →R is continuous on D := {(t,y) ∈ [0,1]×R : β0 ≤ y ≤ α0} and there exists M > 0
such that for all (t,y),(t,w) ∈ D,

y ≤ w =⇒ f (t,w)− f (t,y)≤ M(w− y),

then the nonlinear three point boundary value problem (2.1)–(2.2) has at least one solution
in the region D. Further if ∃ a constant λ such that M−λ ≤ 0 and (H0) is satisfied and then
the sequence (βn) generated by

−y′′n+1(t)−λyn+1 = F(t,yn), y′n+1(0) = 0, yn+1(1) = δyn+1(η), (2.11)

where F(t,yn) = f (t,yn)−λyn, with initial iterate β0 converges monotonically and uniformly
towards a solution u(t) of (2.1)–(2.2). Similarly α0 as an initial iterate leads to a non-
increasing sequence (αn) converging to a solution v(t). Any solution z(t) in D must satisfy

u(t)≤ z(t)≤ v(t).

Proof. From equation (2.9) and equation (2.11) (for n = 0)

− (β0 −β1)
′′−λ (β0 −β1)≥ 0,

(β0 −β1)
′(0) = 0, (β0 −β1)(1)≥ δ (β0 −β1)(η).

Since h(t)≥ 0 and b ≥ 0, by using Proposition 2.1 we have β0 ≤ β1.
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In view of λ ≥ M, from equation (2.11) we get

−β
′′
n+1(t)≥−(M−λ )(βn+1 −βn)+ f (t,βn+1)

and if βn+1 ≥ βn, then

−β
′′
n+1(t)≥ f (t,βn+1), β

′
n+1(0) = 0, βn+1(1) = δβn+1(η). (2.12)

Since β0 ≤ β1, then from equation (2.12) (for n = 0) and (2.11) (for n = 1) we get

− (β1 −β2)
′′−λ (β1 −β2)≥ 0,

(β1 −β2)
′(0) = 0, (β1 −β2)(1)≥ δ (β1 −β2)(η),

From Proposition 2.1 we have β1 ≤ β2.

Now from equations (2.10) and (2.11) (for n = 0)

− (β1 −α0)
′′−λ (β1 −α0)≥ 0,

(β1 −α0)
′(0) = 0 (β1 −α0)(1)≥ δ (β1 −α0)(η).

Thus β1 ≤ α0 follows from proposition 2.1.

Now assuming βn+1 ≥ βn, βn+1 ≤ α0, we show that βn+2 ≥ βn+1 and βn+2 ≤ α0 for all
n. From equation (2.11) (for n+1) and (2.12) we get

− (βn+1 −βn+2)
′′−λ (βn+1 −βn+2)≥ 0,

(βn+1 −βn+2)
′(0) = 0, (βn+1 −βn+2)(1)≥ δ (βn+1 −βn+2)(η),

and hence from Proposition 2.1 we have βn+1 ≤ βn+2.

From equation (2.11) (for n+1) and (2.10) we get,

− (βn+2 −α0)
′′−λ (βn+2 −α0)≥ 0,

(βn+2 −α0)
′(0) = 0, (βn+2 −α0)(1)≥ δ (βn+2 −α0)(η).

Then from proposition 2.1, βn+2 ≤ α0 and hence we have

β1 ≤ β2 ≤ ·· · ≤ βn ≤ βn+1 ≤ ·· · ≤ α0,
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and starting with α0 it is easy to get

α1 ≥ α2 ≥ . . .≥ αn ≥ αn+1 ≥ . . .≥ β0.

Finally we show that βn ≤ αn for all n. For this by assuming βn ≤ αn, we show that
βn+1 ≤ αn+1. From equation (2.11) it is easy to get

− (βn+1 −αn+1)
′′−λ (βn+1 −αn+1)≥ 0,

(βn+1 −αn+1)
′(0) = 0, (βn+1 −αn+1)(1)≥ δ (βn+1 −αn+1)(η).

Hence from Proposition 2.1, βn+1 ≤ αn+1. Thus we have

α0 ≥ α1 ≥ α2 ≥ ·· · ≥ αn ≥ αn+1 ≥ ·· · ≥ βn+1 ≥ βn ≥ ·· · ≥ β2 ≥ β1 ≥ β0.

So the sequences (βn) and (αn) are monotonically non-decreasing and non-increasing,
respectively and are bounded by β0 and α0. Hence by Dini’s theorem they converges
uniformly. Let u(t) = lim

n→∞
βn(t) and v(t) = lim

n→∞
αn(t).

Using Lemma 2.2, the solution βn+1 of equation (2.11) is given by

βn+1 =
bcos

√
λ t

cos
√

λ −δ cos
√

λη
−
∫ 1

0
G(t,s)( f (t,βn)−λβn)ds.

Then by Lebesgue’s dominated convergence theorem, taking the limit as n approaches to ∞,
we get

u(t) =
bcos

√
λ t

cos
√

λ −δ cos
√

λη
−
∫ 1

0
G(t,s)( f (t,u)−λu)ds.

Which is the solution of boundary value problem (2.1)–(2.2).

Any solution z(t) in D can play the role of β0(t), hence z(t) ≤ v(t) and similarly one
concludes that z(t)≥ u(t). �

2.4.2 Well ordered lower and upper solution

Theorem 2.2. Let there exist α0, β0 in C2[0,1] such that β0 ≥ α0 and satisfy

−β
′′
0 (t)≥ f (t,β0), 0 < t < 1, β

′
0(0) = 0, β0(1)≥ δβ0(η), (2.13)
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and

−α
′′
0 (t)≤ f (t,α0), 0 < t < 1, α

′
0(0) = 0, α0(1)≤ δα0(η). (2.14)

If f : D0 → R is continuous on D0 := {(t,y) ∈ [0,1]×R : α0 ≤ y ≤ β0} and there exists
M > 0 such that for all (t, ỹ),(t, w̃) ∈ D0

ỹ ≤ w̃ =⇒ f (t, w̃)− f (t, ỹ)≥−M(w̃− ỹ),

then the nonlinear three point boundary value problem (2.1)–(2.2) has at least one solution
in the region D0. If ∃ a constant λ < 0, such that λ +M ≤ 0 and (H ′

0) is satisfied then the
sequence (βn) generated by

−y′′n+1(t)−λyn+1 = F(t,yn), y′n+1(0) = 0, yn+1(1) = δyn+1(η), (2.15)

where F(t,yn)= f (t,yn)−λyn, with initial iterate β0 converges monotonically (non-increasing)
and uniformly towards a solution ũ(t) of (2.1)–(2.2). Similarly α0 as an initial iterate leads
to a non-decreasing sequence (αn) converging to a solution ṽ(t). Any solution z̃(t) in D0

must satisfy

ṽ(t)≤ z̃(t)≤ ũ(t).

Proof. Proof follows from the analysis of Theorem 2.1. �

2.5 Examples

To verify our results, we consider two examples and show that there exists at least one value
of λ ∈ R\{0} such that iterative scheme generates monotone sequences which converge to
solutions of nonlinear problem. Thus these examples validate sufficient conditions derived in
this chapter.

Example 2.1. Consider the nonlinear three point boundary value problem

− y′′(t) =
ey

32
− 1

64
, 0 < t < 1, (2.16)

y′(0) = 0, y(1) = 2y
(

1
3

)
. (2.17)
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Here f (t,y) = ey

32 −
1

64 , δ = 2,η = 1
3 . This problem has α0 = 1 and β0 = −1 as lower

and upper solution, i.e., it is non well ordered case. The nonlinear term is Lipschitz in y
and continuous for all values of y, and Lipschitz constant M is e

32 . For 0.0849463 ≤ λ < π2

4 ,
assumption (H0) is true. To verify (H0) in Figure 2.1 we plot inequalities assumed in (H0).
From Figure 2.3 to 2.7 we plot members of monotone sequences (βn), (αn) for different
values of λ . Thus existence of a solution for the problem (2.16)–(2.17) is guaranteed.

Example 2.2. Consider the nonlinear three point boundary value problem

− y′′(t) =
1

32

[
e2

4
− sin t

4
−2(y(t))3

]
, (2.18)

y′(0) = 0, y(1) =
1
3

y
(

1
2

)
. (2.19)

Here f (t,y) = 1
32

[
e2

4 − sin t
4 −2(y(t))3

]
, δ = 1

3 ,η = 1
2 . This problem has α0 =−1 and

β0 = 1 as lower and upper solution, i.e., it is well ordered case. The nonlinear term is
Lipschitz in y and continuous for all values of y, and Lipschitz constant M is 3

16 . For
λ ≤−0.1875, we can see that (H ′

0) is true. To verify (H ′
0) in Figure 2.2 we plot inequalities

assumed in (H ′
0). From Figure 2.4 to 2.8 we plot members of monotone sequences (βn), (αn)

for different values of λ . Thus the problem (2.18)–(2.19) satisfies all the conditions of the
Theorem 2.2, existence of a solution is guaranteed.

2.6 Conclusion

The monotone iterative technique coupled with upper and lower solutions is a powerful tool
for computation of solutions of nonlinear three point boundary value problems. It proves
existence of solutions analytically and gives us a tool so that numerical solutions can also be
computed and then some real life problems, e.g., bridge design problem, thermostat problem
etc can be solved. For λ > 0, we arrived at reverse order and λ < 0, we arrived well order
case. We have plotted sequences for both λ > 0 and λ < 0. The plots are quite encouraging
and will motivate researchers to explore further possibilities. Employing this technique
Mathematica/Maple/MATLAB user friendly packages can be developed (see [28]).
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Chapter 3

Nonlinear three point nonsingular BVPs
with upper and lower solutions in reverse
order : Derivative dependent case

3.1 Introduction

Consider the following class of nonlinear three point nonsingular BVP

y′′(t)+ f (t,y,y′) = 0, 0 < t < 1, (3.1)

y′(0) = 0, y′(1) = δy(η), (3.2)

where f ∈ C(I ×R×R,R), I = [0,1], 0 < η < 1, δ > 0. Here the source function f is
derivative dependent.

In this chapter, we study existence of solutions of the second order nonlinear three point
boundary value problem (3.1)–(3.2). We define the following iterative scheme

− y′′n+1(t)−λyn+1 = f (t,yn(t),y′n(t))−λyn(t),

y′n+1(0) = 0, y′n+1(1) = δyn+1(η),

where λ ∈ R\{0}, n ∈ N. Though source function is derivative dependent but to keep our
iterative scheme as simple as possible we have not considered the derivative term in the
iterative scheme. For λ > 0, we arrived at reverse order case and λ < 0 we arrived well order
case.

This chapter is divided in six sections. In Sections 3.2–3.4, we discuss construction and
positivity (negativity) of Green’s function and some important results to be used in later
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sections. Section 3.5, we explore the nonlinear BVP and derive sufficient conditions which
guarantee the existence of solutions of nonsingular nonlinear three point boundary value
problems. In Section 3.6, two examples are constructed to validate our results. Finally,
Conclusions are summarised in Section 3.7.

3.2 Construction of Green’s function

To investigate (3.1) and (3.2), we consider the corresponding linear boundary value problem
given by

− y′′(t)−λy(t) = h(t), 0 < t < 1, (3.3)

y′(0) = 0, y′(1) = δy(η)+b, (3.4)

where h ∈ C(I) and b is any constant. In this section we prove some maximum and anti-
maximum principles for the above linear problem and prove existence of some inequalities.
We divide it in the following cases:

3.2.1 Case I: λ > 0

Let us assume

(H0) : 0 < λ < π2

4 ,
√

λ cos
√

λ −δ sin
√

λη ≥ 0.

It is easy to see that (H0) is satisfied, for some sub interval of λ ∈ (0,π2/4) (see fig. 3.1).

Lemma 3.1. The Green’s function for the following linear three point boundary value
problem

y′′(t)+λy(t) = 0, 0 < t < 1, (3.5)

y′(0) = 0, y′(1) = δy(η), (3.6)

for λ > 0 is given by

G(t,s)=
1√

λ (DλT )


[
√

λ cos
√

λ (1− s)+δ sin
√

λ (s−η)]cos
√

λ t, 0 ≤ t ≤ s ≤ η ,√
λ cos

√
λ s cos

√
λ (1− t)+δ cos

√
λ s sin

√
λ (t −η), s ≤ t,s ≤ η ,√

λ cos
√

λ (1− s)cos
√

λ t, t ≤ s,η ≤ s,√
λ cos

√
λ s cos

√
λ (1− t)+δ cos

√
λη sin

√
λ (t − s), η ≤ s ≤ t ≤ 1.

where DλT = δ cos
√

λη +
√

λ sin
√

λ .
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Proof. Define the Green’s function as follows

G(t,s) =


a1 cos

√
λ t +a2 sin

√
λ t, 0 ≤ t ≤ s ≤ η ;

a3 cos
√

λ t +a4 sin
√

λ t, s ≤ t,s ≤ η ;
a5 cos

√
λ t +a6 sin

√
λ t, t ≤ s,η ≤ s;

a7 cos
√

λ t +a8 sin
√

λ t, η ≤ s ≤ t ≤ 1.

Using the properties of the Green’s function, for any s ∈ [0,η ], we have

a1 cos
√

λ s+a2 sin
√

λ s = a3 cos
√

λ s+a4 sin
√

λ s,

(−a1
√

λ sin
√

λ s+a2
√

λ cos
√

λ s)− (−a3
√

λ sin
√

λ s+a4
√

λ cos
√

λ s) =−1,

which gives

a1 −a3 =
1√
λ

sin
√

λ s,

a2 −a4 =− 1√
λ

cos
√

λ s.

Using the boundary conditions, we have

a2 = 0,

−a3
√

λ sin
√

λ +a4
√

λ cos
√

λ = δ

(
a3 cos

√
λη +a4 sin

√
λη

)
,

By solving above equations, we get

a1 =

√
λ cos

√
λ (1− s)+δ sin

√
λ (s−η)√

λ (δ cos
√

λη +
√

λ sin
√

λ )
,

a2 = 0,

a3 =
cos

√
λ s
(√

λ cos
√

λ −δ sin
√

λη

)
√

λ (δ cos
√

λη +
√

λ sin
√

λ )
,

a4 =
1√
λ

cos
√

λ s.

Similarly, for any s ∈ [η ,1], we have

a5 cos
√

λ s+a6 sin
√

λ s = a7 cos
√

λ s+a8 sin
√

λ s,(
−a5

√
λ sin

√
λ s+a6

√
λ cos

√
λ s
)
−
(
−a7

√
λ sin

√
λ s+a8

√
λ cos

√
λ s
)
=−1,
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which gives

a5 −a7 =
1√
λ

sin
√

λ s,

a6 −a8 =− 1√
λ

cos
√

λ s.

By using the boundary conditions, we have

a6 = 0,

−a7
√

λ sin
√

λ +a8
√

λ cos
√

λ = δ

(
a5 cos

√
λη +a6 sin

√
λη

)
.

This gives

a5 =

√
λ (cos

√
λ (1− s))√

λ (δ cos
√

λη +
√

λ sin
√

λ )
,

a6 = 0,

a7 =

√
λ cos

√
λ cos

√
λ s−δ cos

√
λη sin

√
λ s√

λ (δ cos
√

λη +
√

λ sin
√

λ )
,

a8 =
1√
λ

cos
√

λ s.

Consequently, this completes the construction of the Green’s functions. �

Lemma 3.2. Let y ∈C2(I) be a solution of the boundary value problem (3.3) and (3.4) then

y(t) =− bcos
√

λ t

δ cos
√

λη +
√

λ sin
√

λ
−
∫ 1

0
G(t,s)h(s)ds. (3.7)

Proof. Suppose G(t,s) is the Green’s function of

y′′(t)+λy(t) = 0, 0 < t < 1,

y′(0) = 0, y′(1) = δy(η),

and ȳ is solution of

− y′′(t)−λy(t) = 0, 0 < t < 1,

y′(0) = 0, y′(1) = δy(η)+b,
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then the boundary value problem (3.3) and (3.4) is equivalent to

y(t) = ȳ−
∫ 1

0
G(t,s)h(s)ds.

Suppose

ȳ = c1 cos
√

λ t + c2 sin
√

λ t.

Since

ȳ′(0) = (0), ȳ′(1) = δ ȳ(η)+b,

we get

c1 =− b

δ cos
√

λη +
√

λ sin
√

λ
, c2 = 0.

Hence the solution of this boundary value problem (3.3) and (3.4) is given by

y(t) =− bcos
√

λ t

δ cos
√

λη +
√

λ sin
√

λ
−
∫ 1

0
G(t,s)h(s)ds.

Namely y ∈C2(I) is a solution of the boundary value problem (3.3) and (3.4) if and only if
y ∈C(I) is a solution of the integral equation

y(t) =− bcos
√

λ t

δ cos
√

λη +
√

λ sin
√

λ
−
∫ 1

0
G(t,s)h(s)ds.

�
3.2.2 Case II: λ < 0

Assume

(H ′
0) : λ < 0,

√
|λ |cosh

√
|λ |−δ sinh

√
|λ |η ≥ 0, δ cosh

√
|λ |η −

√
|λ |sinh

√
|λ |< 0.

This condition (H ′
0) is satisfied, for some values of λ ∈ (−∞,0) (see fig. 3.2).

Lemma 3.3. The Green’s function for the following linear three point boundary value
problem

y′′(t)+λy(t) = 0, 0 < t < 1,
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y′(0) = 0, y′(1) = δy(η),

for λ < 0 is given by

G(t,s) =
1√

|λ |(DλH )



[√
|λ |cosh

√
|λ |(1− s)

−δ sinh
√
|λ |(η − s)

]
cosh

√
|λ |t, 0 ≤ t ≤ s ≤ η ,√

|λ |cosh
√
|λ |scosh

√
|λ |(1− t)

−δ cosh
√

|λ |ssinh
√
|λ |(η − t), s ≤ t,s ≤ η ,√

|λ |cosh
√
|λ |(1− s)cosh

√
|λ |t, t ≤ s,η ≤ s,√

|λ |cosh
√
|λ |scosh

√
|λ |(1− t)

+δ cosh
√

|λ |η sinh
√
|λ |(t − s), η ≤ s ≤ t ≤ 1.

where DλH = δ cosh
√
|λ |η −

√
|λ |sinh

√
|λ |.

Proof. The construction of Green’s function is same as given in Lemma 3.1. �

Lemma 3.4. For λ < 0, a solution y ∈C2(I) of the boundary value problem (3.3) and (3.4)
is given by

y(t) =−
bcosh

√
|λ |t

δ cosh
√
|λ |η −

√
|λ |sinh

√
|λ |

−
∫ 1

0
G(t,s)h(s)ds. (3.8)

Proof. Proof is same as Lemma 3.2. �

3.3 Maximum and anti-maximum principle

Proposition 3.1. (Anti-maximum principle)
Let (H0) holds, b ≥ 0 and h(t) ∈C[0,1] is such that h(t)≥ 0, then the solution of (3.3) and
(3.4) is non-positive for all t ∈ [0,1].

Proposition 3.2. (Maximum principle)
Let (H ′

0) holds, b ≥ 0 and h(t) ∈C[0,1] is such that h(t)≥ 0, then the solution of (3.3) and
(3.4) is non-negative for all t ∈ [0,1].
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3.4 Existence of some inequalities

Lemma 3.5. Let M, N ∈ R+. If λ ∈ (0, π2

4 ) is such that M−λ ≤ 0 and

(M−λ )cos
√

λ +N
√

λ sin
√

λ ≤ 0,

then for all t ∈ [0,1]
(M−λ )cos

√
λ t +N

√
λ sin

√
λ t ≤ 0.

Proof. Using the properties of sin and cos, in the interval (0, π2

4 ), we deduce that for all
t ∈ [0,1],

(M−λ )cos
√

λ t +N
√

λ sin
√

λ t ≤ (M−λ )cos
√

λ +N
√

λ sin
√

λ ≤ 0.

�

Lemma 3.6. Let M, N ∈ R+. If λ < 0 is such that M+λ ≤ 0, and

λ ≤−M− N2

2
− N

2

√
N2 +4M,

then for all t ∈ [0,1],

(M+λ )cosh
√
|λ |t +N

√
|λ |sinh

√
|λ |t ≤ 0.

Proof. We have

(M+λ )cosh
√

|λ |t +N
√

|λ |sinh
√
|λ |t ≤ [(M+λ )+N

√
|λ |]cosh

√
|λ |t.

The right hand side of above the inequality will be non-positive for all t ∈ [0,1] if

[(M+λ )+N
√

|λ |]≤ 0.

The above inequality is satisfied provided

λ ≤−M− N2

2
− N

2

√
N2 +4M.

This completes the lemma. �

Lemma 3.7. Suppose (H0) holds; then

(i) G(t,s)≥ 0,
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(ii) ∂G(t,s)
∂ t ≤ 0, and

(iii) (M−λ )G(t,s)−N (sign y′)∂G(t,s)
∂ t ≤ 0, whenever we have M−λ ≤ 0

for any t,s ∈ [0,1] and t ̸= s.

Proof. From (H0), we get that G ≥ 0. Using the fact that G(t,s) is the solution of (3.5) and
(3.6) it is easy to verify that, ∂G(t,s)

∂ t ≤ 0, for t ̸= s. Form (iii), we arrive at two inequalities
one of which is true. So it is sufficient to prove

(M−λ )G(t,s)−N
∂G(t,s)

∂ t
≤ 0. (3.9)

Substituting G(t,s) from Lemma 3.1 and by using (H0) and Lemma 3.5 it is easy to prove
that the inequality (3.9) holds, for t,s ∈ [0,1] and t ̸= s. �

Lemma 3.8. Suppose (H ′
0) holds; then for any t, s ∈ [0,1]

(i) G(t,s)≤ 0,

(ii) ∂G(t,s)
∂ t ≤ 0, and

(iii) (M+λ )G+N (sign y′)∂G(t,s)
∂ t ≥ 0 whenever we have M+λ −Nλ ≤ 0,

for any t,s ∈ [0,1] and t ̸= s.

Proof. The first two parts (i) and (ii) can be proved by similar to Lemma 3.7. For part (iii), it
is sufficient to prove that for all t, s ∈ [0,1] and t ̸= s,

(M+λ )G+N
∂G(t,s)

∂ t
≥ 0.

As G(t,s) is the Green’s function of (3.3) and (3.4), it is easy to see that ∂G(t,s)
∂ t ≥ (−λ G(t,s)),

for t ̸= s. Which along with condition M + λ −Nλ ≤ 0 gives (M + λ )G +N ∂G(t,s)
∂ t ≥

(M+λ )G−Nλ G ≥ 0. This completes the proof. �

Remark 3.1. The condition (iii) of Lemma 3.8 gives a bound on N. In fact, if N verifies
M+λ −Nλ ≤ 0, we have

N ≤ 1+
M
λ

< 1.
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3.5 Nonlinear BVP

3.5.1 Reverse ordered lower and upper solutions

We define upper and lower solutions by some suitable differential inequalities.

Definition 3.1. A function α0 ∈C2[0,1] is a lower solution of the boundary value problem
(3.1) and (3.2) if

−α
′′
0 (t)≤ f (t,α0,α

′
0), 0 < t < 1,

α
′
0(0) = 0, α

′
0(1)≤ δα0(η).

Definition 3.2. A function β0 ∈C2[0,1] is an upper solution of the boundary value problem
(3.1) and (3.2) if

−β
′′
0 (t)≥ f (t,β0,β

′
0), 0 < t < 1,

β
′
0(0) = 0, β

′
0(1)≥ δβ0(η).

In this chapter, we consider the sequences (αn)n and (βn)n defined by the following
equations

−α
′′
n+1(t)−λαn+1 = f (t,αn,α

′
n)−λαn, (3.10)

α
′
n+1(0) = 0, α

′
n+1(1) = δαn+1(η), (3.11)

−β
′′
n+1(t)−λβn+1 = f (t,βn,β

′
n)−λβn, (3.12)

β
′
n+1(0) = 0, β

′
n+1(1) = δβn+1(η), (3.13)

where λ ∈ R\{0}.

In this section we develop theory which proves existence of a range Rλ for the value
of λ and enables us to choose at least one value of λ ∈ Rλ such that the sequences (αn)n

and (βn)n converge monotonically to solutions of (3.1) and (3.2). We arrive at the following
result (Theorem 3.1).

Theorem 3.1. Let (H0) be true. Further assume that

(H1) there exist α0 and β0 ∈C2[0,1] as lower and upper solutions of (3.1) and (3.2) such
that α0 ≥ β0 for all t ∈ [0,1];
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(H2) the function f : D → R is continuous on

D := {(t,u,v) ∈ [0,1]×R2 : β0(t)≤ u ≤ α0(t)};

(H3) there exists M > 0 such that for all (t,u1,v),(t,u2,v) ∈ D

u1 ≤ u2 =⇒ f (t,u2,v)− f (t,u1,v)≤ M(u2 −u1);

(H4) there exists N > 0 such that for all (t,u,v1),(t,u,v2) ∈ D

| f (t,u,v2)− f (t,u,v1)| ≤ N|v2 − v1|;

(H5) for all (t,u,v) ∈ D, | f (t,u,v)| ≤ ϕ(|v|);

where ϕ : R+ → R+ is continuous and satisfies

max
t∈[0,1]

α0 − min
t∈[0,1]

β0 ≤
∫

∞

l0

s ds
ϕ(s)

,

where l0 = [2|Ω0|] and Ω0 = max{|α0(t)|∞, |β0(t)|∞}.

Let λ ∈ (0, π2

4 ) be such that M−λ ≤ 0, and

(M−λ )cos
√

λ +N
√

λ sin
√

λ ≤ 0,

and for all t ∈ [0,1]

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0.

Then the sequences (αn) and (βn) defined by (3.10), (3.11) and (3.12), (3.13) converges
uniformly in C1([0,1]) to solution v and u of nonlinear boundary value problem (3.1) and
(3.2), such that for all t ∈ [0,1],

β0(t)≤ u ≤ v ≤ α0(t).

The proof of above theorem requires several results given below.

Lemma 3.9. Let 0 < λ < π2

4 . If αn is a lower solution of (3.1) and (3.2), αn+1 is defined by
(3.10) and (3.11), then αn+1 ≤ αn.

Proof. Since y(t) = αn+1 −αn satisfies the linear boundary value problem (3.3) and (3.4)
with h(t)≥ 0, and b ≥ 0. Hence the result can be concluded by Proposition 3.1. �
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Proposition 3.3. Assume (H0),(H1),(H2),(H3),(H4) are valid and let 0 < λ < π2

4 be such
that M−λ ≤ 0 and (M−λ )cos

√
λ +N

√
λ sin

√
λ ≤ 0 then the function αn defined recur-

sively by (3.10) and (3.11) are such that for all n ∈N

(i) αn is a lower solution of equations (3.1) and (3.2);

(ii) αn+1 ≤ αn.

Proof. The proof relies on mathematical induction.
Step 1 : By using Lemma 3.9, we can prove that the claim holds for n = 0.
Step 2 : Suppose claims are true for n−1, then we will show that they are true for n. Let
αn−1 be a lower solution of (3.1) and (3.2) and αn ≤ αn−1. Let y = αn −αn−1. We have

−α
′′
n − f (t,αn,α

′
n) =− f (t,αn,α

′
n)+ f (t,αn−1,α

′
n−1)+λ (αn −αn−1),

≤ M(αn−1 −αn)+N|α ′
n −α

′
n−1|+λ (αn −αn−1)

= (λ −M)y+N (sign y′)y′.

Let (λ −M)y+N (sign y′)y′ = g. For proving the claim, we have to show that g ≤ 0. Since
y satisfies

− y′′−λy = α
′′
n−1 + f (t,αn−1,α

′
n−1)≥ 0

y′(0) = 0, y′(1)≥ δy(η),

we can write y as given in Lemma 3.2 with h(t) = α ′′
n−1 + f (t,αn−1,α

′
n−1) ≥ 0. Thus to

show g ≤ 0, it is sufficient to prove

(M−λ )cos
√

λ t +N
√

λ sin
√

λ t ≤ 0,

and (M−λ )G(t,s)−N
∂G(t,s)

∂ t
≤ 0, t ̸= s,

for all t ∈ [0,1]. Which is easily obtained by using the Lemma 3.5 and Lemma 3.7. Thus we
deduce that αn+1 ≤ αn �

In the same way, we can prove the following result.

Proposition 3.4. Assume (H0),(H1),(H2),(H3),(H4) are valid and let 0 < λ < π2

4 be such
that M−λ ≤ 0 and (M−λ )cos

√
λ +N

√
λ sin

√
λ ≤ 0, then the function βn defined recur-

sively by (3.12) and (3.13) are such that for all n ∈N

(i) βn is an upper solution of equations (3.1) and (3.2);
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(ii) βn+1 ≥ βn.

Proposition 3.5. Assume (H0),(H1),(H2),(H3),(H4) are valid and let 0 < λ < π2

4 be such
that M−λ ≤ 0 and (M−λ )cos

√
λ +N

√
λ sin

√
λ ≤ 0, and for all t ∈ [0,1]

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0,

then for all n ∈N, the functions αn and βn defined by (3.10), (3.11) and (3.12), (3.13) satisfy
αn ≥ βn.

Proof. We define

hi(t) = f (t,βi,β
′
i )− f (t,αi,α

′
i )−λ (βi −αi), for all i ∈N.

We analyze that, for all i ∈N, yi := βi −αi satisfies

−y′′i −λyi = f (t,βi−1,β
′
i−1)− f (t,αi−1,α

′
i−1)−λ (βi−1 −αi−1) = hi−1.

Claim 1. α1 ≥ β1.
As h0 ≥ 0, the function y1 = β1−α1 is a solution of (3.3) and (3.4) with h(t) = h0(t)≥ 0

and

(β1 −α1)
′(0) = β

′
1(0)−α

′
1(0) = 0, (β1 −α1)

′(1) = β1(1)−α1(1) = δ (β −α)(η).

As h0 ≥ 0 and b = 0, by Proposition 3.1, y1(t)≤ 0, i.e., α1 ≥ β1.
Claim 2. Let n ≥ 2. If hn−2 ≥ 0 and αn−1 ≥ βn−1, then hn−1 ≥ 0 and αn ≥ βn. First we will
prove that, for all t ∈ [0,1], the function hn−1 is non-negative, as we have

hn−1 = f (t,βn−1,β
′
n−1)− f (t,αn−1,α

′
n−1)−λ (βn−1 −αn−1)

≥−M(αn−1 −βn−1)−N|α ′
n−1 −β

′
n−1)|−λ (βn−1 −αn−1)

=−
[
(M−λ )yn−1 +N (sign y′n−1)y

′
n−1
]
.

Since, yn−1 is a solution of (3.3) and (3.4) with h(t) = hn−2(t)≥ 0, b = 0. Hence following
the analysis similar to the proof of Proposition 3.3, we show that hn−1 is nonnegative.
Since y′n(0) = 0 and y′n(1) = δy(η), i.e., b = 0, we deduce from Proposition 3.1 that yn is
non-positive, i.e., αn ≥ βn. �

Lemma 3.10. If f (t,y,y′) satisfies (H5) then there exists R > 0 such that any solution of

− y′′(t)≥ f (t,y,y′), 0 < t < 1, (3.14)
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y′(0) = 0, y′(1)≥ δy(η), (3.15)

with y ∈ [β0(t),α0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

Proof. We can divide the proof in three parts.

Case :(i) If solution is not monotone throughout the interval, then we consider the interval
(t0, t] ⊂ (0,1) such that y′(t0) = 0 and y′(t) > 0 for t > t0. Using | f | ≤ ϕ and integrating
(3.14) from t0 to t we get

∫ y′

0

s ds
ϕ(s)

≤ max
t∈[0,1]

α0 − min
t∈[0,1]

β0.

From (H5) we can choose R > 0 such that

∫ y′

0

s ds
ϕ(s)

≤ max
t∈[0,1]

α0 − min
t∈[0,1]

β0 ≤
∫ R

l0

s ds
ϕ(s)

≤
∫ R

0

s ds
ϕ(s)

.

Which gives
y′(t)≤ R.

Now consider the case in which y′(t) < 0 for t < t0, y′(t0) = 0, and proceeding in the
similar way we get

−y′(t)≤ R,

and the result follows.

Case :(ii) If y is monotonically decreasing in (0,1), that is y′(t)< 0 in t ∈ (0,1] then by
Mean value theorem there exists a point τ ∈ (0,1) such that

−y′(τ)≤ 2|Ω0|,

where Ω0 = max{|α0(t)|∞, |β0(t)|∞}. Now, using | f | ≤ ϕ and integrating (3.14) from t to τ

we get ∫ −y′

0

s ds
ϕ(s)

≤ max
t∈[0,1]

α0 − min
t∈[0,1]

β0.

From (H5) we can choose R, such that

∫ −y′

0

s ds
ϕ(s)

≤ max
t∈[0,1]

α0 − min
t∈[0,1]

β0 ≤
∫ R

0

s ds
ϕ(s)

.

Which gives −y′ ≤ R.
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Case :(iii) If y is monotonically increasing in (0,1), that is y′(t)> 0 in t ∈ (0,1]. Then
similar to case (ii) we conclude that y′ ≤ R. �

Lemma 3.11. If f (t,y,y′) satisfies (H5), then there exists R > 0 such that any solution of

− y′′(t)≤ f (t,y,y′), 0 < t < 1, (3.16)

y′(0) = 0, y′(1)≤ δy(η), (3.17)

with y ∈ [β0(t),α0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

Proof. Proof follows from the analysis of Lemma 3.10 �

Now we complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Proposition 3.3, 3.4 and 3.5 together give rise to the following

α0 ≥ α1 ≥ ·· · ≥ αn ≥ ·· · ≥ βn ≥ ·· · ≥ β1 ≥ β0, (3.18)

where the sequences (αn)n and (βn)n are defined, respectively by (3.10), (3.11) and (3.12),
(3.13).

It is clear that the sequences (αn)n and (βn)n are monotonic in nature and bounded. Hence
they converge pointwise to functions

v(t) = lim
n→∞

αn(t) and u(t) = lim
n→∞

βn(t)

which are such that for all n,αn ≥ v ≥ u ≥ βn.
Using iterative scheme (3.10)–(3.11) along with inequality (3.18) and Lemma 3.11, we

prove that the sequence (αn)n is equibounded and equicontinuous in C1([0,1]) i.e., any
subsequence (αnk)k of (αn)n is also equibounded and equicontinuous in C1([0,1]). Now, we
deduce from Arzela-Ascoli theorem that there exists a subsequence (αnk j) j of (αnk)k which
converges uniformly in C1([0,1]).

Making use of uniqueness of the limit and monotonicity of the sequence (αn)n, we have
αn → v in C1([0,1]). As any subsequence of (αn)n contains a subsequence (αnk j) j which
converge in C1([0,1]) to v it follows that αn → v in C1([0,1]). In the same manner, using
iterative scheme (3.12)–(3.13) along with inequality (3.18), and Lemma 3.10 we prove that
(βn)n converges uniformly to u in C1([0,1]).
Claim 2. The functions u and v are solution of (3.1) and (3.2).

As the derivative is a closed operator, going to the limit in (3.10), (3.11) and (3.12),
(3.13), it is straightforward to see that u and v are solution of (3.1) and (3.2). �
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3.5.2 Well ordered lower and upper solutions

In this section, we consider the case when λ < 0 and the upper and lower solutions are well
ordered. In that case, we have to consider the opposite one sided Lipschitz condition on
f (t, .,v). We state main result as Theorem 3.2 and then all the supporting results without
proof. Proof of all the results given below will follow similar to the case of upper and lower
solutions in reverse order.

Theorem 3.2. Let (H ′
0) be true. Further assume that

(H ′
1) there exist α0 and β0 ∈C2[0,1] as lower and upper solutions of (3.1) and (3.2) such

that α0 ≤ β0 for all t ∈ [0,1];

(H ′
2) the function f : D → R is continuous on

D := {(t,u,v) ∈ [0,1]×R2 : α0(t)≤ u ≤ β0(t)};

(H ′
3) there exists M > 0 such that for all (t,u1,v),(t,u2,v) ∈ D,

u1 ≤ u2 =⇒ f (t,u2,v)− f (t,u1,v)≥−M(u2 −u1);

(H ′
4) there exists N > 0 such that for all (t,u,v1),(t,u,v2) ∈ D,

| f (t,u,v2)− f (t,u,v1)| ≤ N|v2 − v1|;

(H ′
5) for all (t,u,v)∈ D, | f (t,u,v)| ≤ ϕ(|v|); where ϕ : R+ →R+ is continuous and satisfies

max
t∈[0,1]

β0 − min
t∈[0,1]

α0 ≤
∫

∞

l0

s ds
ϕ(s)

,

where l0 = [2|Ω0|] and Ω0 = max{|α0(t)|∞, |β0(t)|∞}.

Let λ < 0 be such that λ ≤min
{
−M,− M

1−N ,−M− N2

2 − N
2

√
N2 +4M

}
, and for all t ∈ [0,1]

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0.

Then the sequences (αn) and (βn) defined by (3.10), (3.11) and (3.12), (3.13) converges
uniformly in C1([0,1]) to solution v and u of (3.1) and (3.2), such that for all t ∈ [0,1],
α0(t)≤ v ≤ u ≤ β0(t).
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Lemma 3.12. Let λ < 0. If αn is a lower solution of (3.1) and (3.2), αn+1 is defined by
(3.10) and (3.11), then αn+1 ≥ αn.

Proposition 3.6. Assume (H ′
0),(H

′
1),(H

′
2),(H

′
3),(H

′
4) are valid and let λ < 0 be such that

λ ≤ min
{
−M,− M

1−N
,−M− N2

2
− N

2

√
N2 +4M

}
,

then the function αn defined recursively by (3.10) and (3.11) are such that for all n ∈N

(i) αn is a lower solution of equations (3.1) and (3.2);

(ii) αn+1 ≥ αn.

Lemma 3.13. Let λ < 0. If βn is an upper solution of (3.1) and (3.2) and βn+1 is defined by
(3.12) and (3.13), then βn+1 ≤ βn.

Proposition 3.7. Assume (H ′
0),(H

′
1),(H

′
2),(H

′
3),(H

′
4) are valid and let λ < 0 be such that

λ ≤ min
{
−M,− M

1−N
,−M− N2

2
− N

2

√
N2 +4M

}
,

then the function βn defined recursively by (3.12) and (3.13) are such that for all n ∈N

(i) βn is an upper solution of equations (3.1) and (3.2);

(ii) βn+1 ≤ βn.

Proposition 3.8. Assume (H ′
0),(H

′
1),(H

′
2),(H

′
3),(H

′
4) are valid and let λ < 0 be such that

λ ≤ min
{
−M,− M

1−N
,−M− N2

2
− N

2

√
N2 +4M

}
,

and for all t ∈ [0,1]

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0.

Then for all n ∈N, the functions αn and βn defined (3.10), (3.11) and (3.12), (3.13) satisfy
αn ≤ βn.

Lemma 3.14. If f (t,y,y′) satisfies (H ′
5) then there exists R > 0 such that any solution of

− y′′(t)≥ f (t,y,y′), 0 < t < 1, (3.19)
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y′(0) = 0, y′(1)≥ δy(η), (3.20)

with y ∈ [α0(t),β0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

Lemma 3.15. If f (t,y,y′) satisfies (H ′
5) then there exists R > 0 such that any solution of

− y′′(t)≤ f (t,y,y′), 0 < t < 1, (3.21)

y′(0) = 0, y′(1)≤ δy(η), (3.22)

with y ∈ [α0(t),β0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

3.6 Examples

To verify our results, we consider examples and show that it is possible to choose a value of
λ ∈ Rλ so that iterative scheme generates monotone sequences which converge to a solution
of nonlinear problem. Thus these examples validate sufficient conditions derived in this
chapter. It is also shown that it not difficult to validate the conditions used in the present
work, which guarantees the existence of solutions.

Example 3.1. Consider the nonlinear three point boundary value problem

− y′′(t) =
2ey − ey′

64
, 0 < t < 1, (3.23)

y′(0) = 0, y′(1) = 2y(0.2). (3.24)

Λ cos Λ - 2 sin I0.2 Λ M

H M - ΛL cos Λ + N Λ sin Λ

Λ
0.5 1.0 1.5 2.0

-0.4

-0.2

0.0

0.2

0.4

Fig. 3.1 Plots of (H0) and (M−λ )cos
√

λ +N
√

λ sin
√

λ ≤ 0 for example 3.1 .

Here f (t,y,y′) = 2ey−ey′

64 , δ = 2,η = 1
5 . This problem has α0 = 1 and β0 =−1 as lower

and upper solutions, i.e., it is non well ordered case. The nonlinear term is Lipschitz in both
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y and y′ and continuous for all values of y and y′. It is easy to see that Nagumo condition is
given by

| f (t,u,v)| ≤ 2e+ e|v|

64
,

i.e., ϕ = 2e+e|v|
64 . Using Lemma 3.10 we can compute bound for y′, i.e., |y′| ≤ 1

4
√

2
, i.e.,

R = 1
4
√

2
. The Lipschitz constants are calculated as M = 0.0849463 and N = 0.0186463.

Now we can find out a subinterval Rλ = (ξ1,ξ2) of
(

0, π2

4

)
such that for all λ ∈ (ξ1,ξ2)

the conditions λ ≥ M = 0.0849463, (M − λ )cos
√

λ + N
√

λ sin
√

λ ≤ 0,
√

λ cos
√

λ −
δ sin

√
λη ≥ 0 and f (t,β0,β

′
0)− f (t,α0,α

′
0)− λ (β0 −α0) ≥ 0 are true. The inequality

f (t,β0,β
′
0)− f (t,α0,α

′
0)−λ (β0 −α0)≥ 0 gives λ ≥ 0.036725.

Inequalities (M − λ )cos
√

λ +N
√

λ sin
√

λ ≤ 0 and
√

λ cos
√

λ − δ sin
√

λη ≥ 0 are
nonlinear in nature and not easy to compute the bound for λ . Using Mathematica we can
easily plot (see Fig. 3.1) both of them and see existence of the interval (ξ1,ξ2). It can be seen
that if value of δ is increased then the length of the interval (ξ1,ξ2) decreases. Thus from
the sufficient conditions derived for reversed order upper and lower solutions it is guaranteed
that solution of the nonlinear three point boundary value problem (3.23) and (3.24) exists.

Example 3.2. Consider the nonlinear three point boundary value problem

− y′′(t) =
[y′(t)]2

36
−5y(t)− sin t

4
, (3.25)

y′(0) = 0, y′(1) =
(

1
2

)
y
(

1
2

)
. (3.26)

Here f (t,y,y′) = [y′(t)]2
36 −5y(t)− sin t

4 , δ = 1
2 ,η = 1

2 .

0.5 CoshB0.5 Λ F - Λ SinhB Λ F

Λ CoshB Λ F - 0.5 Sinh B0.5 Λ F

Λ
-30 -25 -20 -15 -10 -5

-150

-100

-50
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100

150

Fig. 3.2 Plots of (H ′
0) for example 3.2.
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This problem has α0 =−(t2 + 1
2) and β0 = 0 as lower and upper solutions, i.e., it is well

ordered case. The nonlinear term is Lipschitz in both y and y′ and continuous for all values
of y and y′. It is easy to see that Nagumo condition is given by

| f (t,u,v)| ≤ 31
4
+

|v|2

36
,

i.e., ϕ = 31
4 + |v|2

36 . Using Lemma 3.14 we can compute easily that |y′| ≤ 3e
1

24 , i.e., R = 3e
1
24 .

The Lipschitz constants are calculated as M = 5 and N = 1
6e

1
24 . Now we can find out a range

for λ < 0 such that

λ ≤ min
{
−M,− M

1−N
,−M− N2

2
− N

2

√
N2 +4M

}
.

Which gives us λ ≤−6.05149. For λ <−6.05149, it is verified that the inequalities assumed
in H ′

0 is true (see Fig. 3.2).

Thus the sufficient conditions derived for well order upper and lower solutions guarantee
that solution of the nonlinear three point boundary value problem (3.25) and (3.26) exists.

3.7 Conclusion

This chapter is devoted to the study of nonlinear three point BVPs, in which source function
f is dependent on derivative. We have constructed Green’s function and proved that they are
of constant signs. Anti maximum and maximum principles are also established. Making use
of iterative scheme in the presence of upper and lower solutions, two monotone sequences
are generated. For λ > 0, we get reverse order case and we arrive well order case for λ < 0.
Under some sufficient conditions, we have established the existence results which are verified
with the help of two examples.





Chapter 4

Existence results for nonlinear three
point BVPs with Neumann type
boundary conditions

4.1 Introduction

This chapter also deals with existence of solutions for a class of nonlinear nonsingular
differential equation with derivative dependent source function. Here, we impose Neumann
type boundary conditions and focus on the following class of nonlinear three point nonsingular
BVP

y′′(t)+ f (t,y,y′) = 0, 0 < t < 1, (4.1)

y′(0) = 0, y′(1) = δy′(η), (4.2)

where f ∈C(I×R×R,R), I = [0,1], 0 < η < 1, 0 < δ < 1. Similar to chapter 3, here again
we consider an iterative scheme which is simple from computational point of view. We arrive
at both well order and reverse order cases.

This chapter is organized in seven sections. In Section 4.2, we discuss the corresponding
linear case and construct Green’s function. In Sections 4.3 and 4.4, we discuss some important
lemmas and maximum and anti-maximum principles. In Section 4.5, we derive sufficient
conditions which guarantee the existence of solutions of nonlinear three point nonsingular
BVP for both case; i.e., when upper and lower solutions are well ordered and also when
reverse ordered. In Section 4.6, two examples are constructed to validate our results. Finally,
conclusion are given in Section 4.7.
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4.2 Linear case and Green’s function

This section deals with linear three point BVPs with Neumann type boundary conditions.

4.2.1 Construction of the Green’s function

Consider the corresponding linear three point BVP given by

Ly ≡−y′′(t)−λy(t) = h(t), 0 < t < 1, (4.3)

y′(0) = 0, y′(1) = δy′(η)+b, (4.4)

where h ∈C(I) and b is any constant. Based on the sign of λ , we can divide the construction
of Green’s function into two cases. In one case λ > 0, we get Green’s function in terms of
trigonometric functions (cos and sin). In the case when λ < 0, we get Green’s function in
terms of hyperbolic functions (cosh and sinh).

4.2.1.1 Case I: λ > 0

Let us assume

(H0) : λ ∈ (0,π2/4), sin(
√

λ )−δ sin(η
√

λ )> 0 and cos(
√

λ )−δ cos(η
√

λ )≥ 0.

(H0) is satisfied for some sub interval of λ ∈ (0,π2/4) (see fig. 4.1)

Lemma 4.1. The Green’s function of the linear three point BVP

y′′(t)+λy(t) = 0, 0 < t < 1, (4.5)

y′(0) = 0, y′(1) = δy′(η), (4.6)

is

G(t,s) =



cos(
√

λ t)(cos(
√

λ (s−1))−δ cos(
√

λ (s−η)))√
λ (sin(

√
λ )−δ sin(η

√
λ ))

, 0 ≤ t ≤ s ≤ η ,

cos(
√

λ s)(cos(
√

λ (t−1))−δ cos(
√

λ (t−η)))√
λ (sin(

√
λ )−δ sin(η

√
λ ))

, s ≤ t, s ≤ η ,

cos(
√

λ (s−1))cos(
√

λ t)√
λ (sin(

√
λ )−δ sin(η

√
λ ))

, t ≤ s, η ≤ s,

δ sin(η
√

λ )sin(
√

λ (s−t))+cos(
√

λ s)cos(
√

λ (1−t))√
λ (sin(

√
λ )−δ sin(η

√
λ ))

, η ≤ s ≤ t ≤ 1.
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Proof. We define the Green’s function as given below

G(t,s) =


a1 cos

√
λ t +a2 sin

√
λ t, 0 ≤ t ≤ s ≤ η ;

a3 cos
√

λ t +a4 sin
√

λ t, s ≤ t, s ≤ η ;
a5 cos

√
λ t +a6 sin

√
λ t, t ≤ s, η ≤ s;

a7 cos
√

λ t +a8 sin
√

λ t, η ≤ s ≤ t ≤ 1.

Using the continuity and jump discontinuity of the Green’s function, for any s ∈ [0,η ], we
arrive at

a1 cos
√

λ s+a2 sin
√

λ s = a3 cos
√

λ s+a4 sin
√

λ s,(
−a1

√
λ sin

√
λ s+a2

√
λ cos

√
λ s
)
−
(
−a3

√
λ sin

√
λ s+a4

√
λ cos

√
λ s
)
=−1.

Thus

a1 −a3 =
1√
λ

sin
√

λ s,

a2 −a4 =− 1√
λ

cos
√

λ s.

Making use of the boundary conditions, we get

a2 = 0,

−a3
√

λ sin
√

λ +a4
√

λ cos
√

λ = δ

(
−a3

√
λ sin

√
λη +a4

√
λ cos

√
λη

)
.

This results into

a1 =
cos
(√

λ (s−1)
)
−δ cos

(√
λ (s−η)

)
√

λ

(
sin
(√

λ

)
−δ sin

(
η
√

λ

)) ,

a2 = 0,

a3 =
cos
(√

λ s
)(

cos
(√

λ

)
−δ cos

(
η
√

λ

))
√

λ

(
sin
(√

λ

)
−δ sin

(
η
√

λ

)) ,

a4 =
cos
(√

λ s
)

√
λ

.
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Similarly for any s ∈ [η ,1], we have

a5 cos
√

λ s+a6 sin
√

λ s = a7 cos
√

λ s+a8 sin
√

λ s,(
−a5

√
λ sin

√
λ s+a6

√
λ cos

√
λ s
)
−
(
−a7

√
λ sin

√
λ s+a8

√
λ cos

√
λ s
)
=−1,

which gives

a5 −a7 =
1√
λ

sin
√

λ s,

a6 −a8 =− 1√
λ

cos
√

λ s.

By using the boundary conditions, we get

a6 = 0,

−a7
√

λ sin
√

λ +a8
√

λ cos
√

λ = δ

(
−a5

√
λ sin

√
λη +a6

√
λ cos

√
λη

)
.

Hence,

a5 =
cos
(√

λ (s−1)
)

√
λ

(
sin
(√

λ

)
−δ sin

(
η
√

λ

)) ,
a6 = 0,

a7 =
δ sin

(
η
√

λ

)
sin
(√

λ s
)
+ cos

(√
λ

)
cos
(√

λ s
)

√
λ

(
sin
(√

λ

)
−δ sin

(
η
√

λ

)) ,

a8 =
cos
(√

λ s
)

√
λ

.

This completes the construction of Green’s function. �

Lemma 4.2. Let λ > 0. If y ∈C2(I) is the solution of the three point BVP (4.3) and (4.4),
then it can be expressed as

y(t) =
bcos

√
λ t√

λ (δ sin
√

λη − sin
√

λ )
−
∫ 1

0
G(t,s)h(s)ds. (4.7)

Proof. See the proof of Lemma 3.2 of chapter 3. �
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4.2.1.2 Case II : λ < 0

Let us assume

(H ′
0) λ < 0, sinh

√
|λ |−δ sinh

√
|λ |η > 0 and δ cosh

√
|λ |η − cosh

√
|λ | ≤ 0.

The assumption (H ′
0) is satisfied for some values of λ ∈ (−∞,0) (see fig. 4.2).

Lemma 4.3. The Green’s function of the linear three point BVP

y′′(t)+λy(t) = 0, 0 < t < 1,

y′(0) = 0, y′(1) = δy′(η),

is

G(t,s) =



cosh(
√

|λ |t)(δ cosh(
√

|λ |(s−η))−cosh(
√

|λ |(s−1)))√
|λ |(sinh(

√
|λ |)−δ sinh(η

√
|λ |))

, 0 ≤ t ≤ s ≤ η ,

cosh(
√

|λ |s)(δ cosh(
√

|λ |(t−η))−cosh(
√

|λ |(t−1)))√
|λ |(sinh(

√
|λ |)−δ sinh(η

√
|λ |))

, s ≤ t, s ≤ η ,

− cosh(
√

|λ |(s−1))cosh(
√

|λ |t)√
|λ |(sinh(

√
|λ |)−δ sinh(η

√
|λ |))

, t ≤ s, η ≤ s,

δ sinh(η
√

|λ |)sinh(
√

|λ |(s−t))−cosh(
√

|λ |s)cosh(
√

|λ |(1−t))√
|λ |(sinh(

√
|λ |)−δ sinh(η

√
|λ |))

, η ≤ s ≤ t ≤ 1.

Proof. The construction of Green’s function is same as given in Lemma 4.1. �

Lemma 4.4. Let λ < 0. If y ∈C2(I) is a solution of the three point BVP (4.3) and (4.4), then
it is given by

y(t) =
bcosh

√
|λ |t√

|λ |(sinh(
√

|λ |)−δ sinh(η
√

|λ |))
−
∫ 1

0
G(t,s)h(s)ds. (4.8)

Proof. Proof follows from the analysis of Lemma 3.2 of chapter 3. �

4.3 Some inequalities

Lemma 4.5. Let λ ∈ (0,π2/4) and λ −M ≥ 0. Further if

(λ −M)cos
√

λ −N
√

λ sin
√

λ ≥ 0,

then for all t ∈ [0,1]

(λ −M)cos
√

λ t −N
√

λ sin
√

λ t ≥ 0,
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where M,N ∈ R+.

Proof. Using monotonicity of sin and cos, we derive that for all t ∈ [0,1],

(λ −M)cos
√

λ t −N
√

λ sin
√

λ t ≥ (λ −M)cos
√

λ −N
√

λ sin
√

λ ≥ 0.

Which completes the proof. �

Lemma 4.6. If λ < 0 is such that M+λ ≤ 0, and

λ ≤−M− N2

2
− N

2

√
N2 +4M,

then for all t ∈ [0,1],

(M+λ )cosh
√

|λ |t +N
√
|λ |sinh

√
|λ |t ≤ 0,

where M,N ∈ R+.

Proof. As

(M+λ )cosh
√

|λ |t +N
√

|λ |sinh
√

|λ |t ≤
[
(M+λ )+N

√
|λ |
]

cosh
√

|λ |t.

We will have
[
(M+λ )+N

√
|λ |
]

cosh
√
|λ |t ≤ 0 for all t ∈ [0,1] if

[
(M+λ )+N

√
|λ |
]
≤ 0.

The above inequality will be satisfied if

λ ≤−M− N2

2
− N

2

√
N2 +4M.

This completes the proof. �

Lemma 4.7. Let (H0) be satisfied. Then

(i) G(t,s)≥ 0,

(ii) ∂G(t,s)
∂ t ≤ 0 and

(iii) (λ −M)G(t,s)+N(signy′)∂G(t,s)
∂ t ≥ 0

for any t,s ∈ [0,1] such that t ̸= s, and M, N ∈ R+.
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Proof. The conditions assumed in (H0) ensure that G(t,s)≥ 0. Since G(t,s) is the solution
of (4.5)–(4.6), we deduce that ∂G(t,s)

∂ t ≤ 0 for t ̸= s. For part (iii), it will be sufficient to prove

(λ −M)G+N
∂G(t,s)

∂ t
≥ 0, (4.9)

as
(λ −M)G−N

∂G(t,s)
∂ t

≥ 0,

is true. Putting the value of G(t,s) and ∂G(t,s)
∂ t ≤ 0 for t ̸= s in

(λ −M)G+N
∂G(t,s)

∂ t
,

and by Lemma 4.5, the inequality (4.9) is true. �

Lemma 4.8. Assume (H ′
0). Then for any t,s ∈ [0,1] and t ̸= s, we have

(i) G(t,s)≤ 0,

(ii) ∂G(t,s)
∂ t ≤ 0 and

(iii) (M+λ )G(t,s)+N(signy′)∂G(t,s)
∂ t ≥ 0 whenever we have M+λ −Nλ ≤ 0

where M,N ∈ R+.

Proof. Parts (i) and (ii) follow the analysis of Lemma 4.7. For part (iii), it will be sufficient
to prove that for all t,s ∈ [0,1] and t ̸= s

(M+λ )G(t,s)+N
∂G(t,s)

∂ t
≥ 0.

Since G(t,s) is the the Green function for (4.3)–(4.4), we have

∂G(t,s)
∂ t

≥−λG(t,s), t ̸= s.

The above inequality along with condition M+λ −Nλ ≤ 0 gives

(M+λ )G(t,s)+N
∂G(t,s)

∂ t
≥ (M+λ −Nλ )G(t,s)≥ 0.

�
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4.4 Anti-maximum and maximum principle

Proposition 4.1. Let b ≥ 0, h(t) ∈C[0,1] be such that h(t)≥ 0, and (H0) holds. Then the
solution of (4.3) and (4.4) is non-positive.

Proposition 4.2. Let b ≥ 0, h(t) ∈ C[0,1] be such that h(t) ≥ 0 and (H ′
0) holds. Then the

solution of (4.3) and (4.4) is non-negative.

4.5 Existence results for nonlinear three point BVP

In this section, we prove two existence results for the nonlinear three point BVP with
Neumann type boundary condition. On the basis of the order of upper and lower solutions,
we divide this section into the following subsections.

4.5.1 Reverse ordered case

Definition 4.1. The functions α0,β0 ∈C2[0,1] are called lower and upper solutions for the
class of three point BVP (4.1)–(4.2) if they satisfy the following inequalities:

−α
′′
0 (t)≤ f (t,α0,α

′
0), 0 < t < 1,

α
′
0(0) = 0, α

′
0(1)≤ δα

′
0(η),

and

−β
′′
0 (t)≥ f (t,β0,β

′
0), 0 < t < 1,

β
′
0(0) = 0, β

′
0(1)≥ δβ

′
0(η).

The sequences (αn)n and (βn)n are defined by the following iterative schemes

−α
′′
n+1(t)−λαn+1(t) = f (t,αn,α

′
n)−λαn, (4.10)

α
′
n+1(0) = 0, α

′
n+1(1) = δα

′
n+1(η), (4.11)

−β
′′
n+1(t)−λβn+1(t) = f (t,βn,β

′
n)−λβn, (4.12)

β
′
n+1(0) = 0, β

′
n+1(1) = δβ

′
n+1(η), (4.13)

where λ ∈ R\{0}.

Theorem 4.1. Assume that (H0) and following hypothesis holds :
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(H1) there exist α0 and β0 ∈C2[0,1] as lower and upper solutions of (4.1) and (4.2) such
that α0 ≥ β0 for all t ∈ [0,1];

(H2) the function f : D → R is continuous on D := {(t,u,v) ∈ [0,1]×R2 : β0(t) ≤ u ≤
α0(t)};

(H3) there exists M > 0 such that for all (t,u1,v),(t,u2,v) ∈ D,

u1 ≤ u2 → f (t,u2,v)− f (t,u1,v)≤ M(u2 −u1);

(H4) there exists N > 0 such that for all (t,u,v1),(t,u,v2) ∈ D,

| f (t,u,v2)− f (t,u,v1)| ≤ N|v2 − v1|;

(H5) for all (t,u,v) ∈ D, | f (t,u,v)| ≤ ϕ(|v|), such that ϕ : R+ → R+ is continuous and
satisfies

max
t∈[0,1]

α0 − min
t∈[0,1]

β0 ≤
∫

∞

l0

s ds
ϕ(s)

,

where l0 = [2|Ω0|] and Ω0 = max{|α0(t)|∞, |β0(t)|∞}.

Let λ > 0 such that λ −M ≥ 0,

(λ −M)cos
√

λ −N
√

λ sin
√

λ ≥ 0,

and for all t ∈ [0,1]

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0.

Then the sequences (αn) and (βn) defined by (4.10), (4.11) and (4.12), (4.13) converge
uniformly in C1([0,1]) to the solutions v and u of the nonlinear boundary-value problem
(4.1) and (4.2), such that for all t ∈ [0,1]

β0(t)≤ u ≤ v ≤ α0(t).

The proof of the above theorem can be divided into several small results stated as follows.

Lemma 4.9. If αn is a lower solution of (4.1) and (4.2), αn+1 is defined by (4.10) and (4.11)
where λ ∈ (0,π2/4), then αn+1 ≤ αn.

Proof. Since y(t) = αn+1−αn satisfies Ly ≥ 0, (4.4) with b ≥ 0, the result can be concluded
by Proposition 4.1. �



84 Nonlinear three point BVPs : Neumann case

Proposition 4.3. Let (H0)–(H4) hold and there exists λ ∈ (0,π2/4) such that λ −M ≥ 0
and (λ −M)cos

√
λ −N

√
λ sin

√
λ ≥ 0, then the function αn defined by (4.10) and (4.11)

are such that for all n ∈N,

(i) αn is a lower solution of (4.1)–(4.2); and

(ii) αn+1 ≤ αn.

Proof. We prove it by induction.
By Lemma 4.9, the claim holds for n = 0.
Let αn−1 is a lower solution of (4.1) and (4.2) and αn ≤ αn−1. Let y = αn −αn−1. Then

we have
−α

′′
n − f (t,αn,α

′
n)≤ (λ −M)y+N(signy′)y′.

Let (λ −M)y+N(signy′)y′ = g. Now to show αn is a lower solution we have to show that
g ≤ 0. Since y is given by Lemma 4.2 with h(t) = α ′′

n−1 + f (t,αn−1,α
′
n−1) ≥ 0. Thus to

show g ≤ 0, it is enough to prove that

(λ −M)cos
√

λ t −N
√

λ sin
√

λ t ≥ 0,

(λ −M)G(t,s)+N
∂G(t,s)

∂ t
≥ 0,

for all t,s ∈ [0,1] and t ̸= s. Lemma 4.5 and Lemma 4.7 verify the existence of above two
inequalities. Thus αn+1 ≥ αn. �

Similarly we can prove the following result.

Proposition 4.4. Let (H0)–(H4) be true and there exists λ ∈ (0,π2/4) such that λ −M ≥ 0
and (λ −M)cos

√
λ −N

√
λ sin

√
λ ≥ 0. Then the function βn defined by (4.12)–(4.13) are

such that for all n ∈N

(i) βn is an upper solution of (4.1)–(4.2);

(ii) βn+1 ≥ βn.

Proposition 4.5. Let (H0)–(H4) be true and there exists λ ∈ (0,π2/4) such that λ −M ≥ 0
and

(λ −M)cos
√

λ −N
√

λ sin
√

λ ≥ 0,

and for all t ∈ [0,1],

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0 .
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Then for all n ∈N, the functions αn and βn defined by (4.10)–(4.11) and (4.12)–(4.13) satisfy
αn ≥ βn.

Proof. We define

hi(t) = f (t,βi,β
′
i )− f (t,αi,α

′
i )−λ (βi −αi), for all i ∈N.

Now, for all i ∈N, yi := βi −αi satisfies

−y′′i −λyi = f (t,βi−1,β
′
i−1)− f (t,αi−1,α

′
i−1)−λ (βi−1 −αi−1) = hi−1.

Claim 1. α1 ≥ β1. The function y1 = β1−α1 is a solution of (4.3)–(4.4) with h(t) = h0(t)≥ 0
and b = 0, by Proposition 4.1, y1(t)≤ 0; i.e., α1 ≥ β1.

Claim 2. Let n ≥ 2. If hn−2 ≥ 0 and αn−1 ≥ βn−1, then hn−1 ≥ 0 and αn ≥ βn. First we will
prove that, for all t ∈ [0,1], the function hn−1 is non-negative, as we have

hn−1 ≥−[(λ −M)yn−1 +N(signy′n−1)y
′
n−1].

Since yn−1 is a solution of (4.3)–(4.4) with h(t) = hn−2(t) ≥ 0, b = 0. Hence we can
proceed similar to the proof of Proposition 4.3 to show that hn−1 ≥ 0. Now y′n(0) = 0 and
y′n(1) = δy′(η), i.e., b = 0, we deduce from Proposition 4.1 that yn ≤ 0, i.e., αn ≥ βn. �

Lemma 4.10. If f (t,y,y′) satisfies (H5), then there exists R > 0 such that any solution of the
differential inequality

− y′′(t)≥ f (t,y,y′), 0 < t < 1, (4.14)

y′(0) = 0, y′(1)≥ δy′(η), (4.15)

with y ∈ [β0(t),α0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

Lemma 4.11. If f (t,y,y′) satisfies (H5), then there exists R > 0 such that any solution of the
differential inequality

− y′′(t)≤ f (t,y,y′), 0 < t < 1, (4.16)

y′(0) = 0, y′(1)≤ δy′(η) (4.17)

with y ∈ [β0(t),α0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

The proof of above two Lemmas are similar to the proof of Lemma 3.10 of Chapter 3
(Priory bound). Now we complete the proof of Theorem 4.1.
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Proof of Theorem 4.1. The proof is same as proof of Theorem 3.1 of chapter 3. �

4.5.2 Well ordered case

We state our main result as Theorem 4.2. Proof here is similar to non well ordered case, so
we skip.

Theorem 4.2. Assume (H ′
0) and the following hypothesis hold:

(H ′
1) there exist α0,β0 ∈ C2[0,1] as lower and upper solutions of (4.1)–(4.2) such that

α0 ≤ β0 for all t ∈ [0,1];

(H ′
2) the function f : D̃ → R is continuous on D̃ := {(t,u,v) ∈ [0,1]×R2 : α0(t) ≤ u ≤

β0(t)};

(H ′
3) there exists M > 0 such that for all (t,u1,v),(t,u2,v) ∈ D̃,

u1 ≤ u2 → f (t,u2,v)− f (t,u1,v)≥−M(u2 −u1);

(H ′
4) there exists N > 0 such that for all (t,u,v1),(t,u,v2) ∈ D̃,

| f (t,u,v2)− f (t,u,v1)| ≤ N|v2 − v1|;

(H ′
5) for all (t,u,v)∈ D̃, | f (t,u,v)| ≤ ϕ(|v|); where ϕ :R+ →R+ is continuous and satisfies

max
t∈[0,1]

β0 − min
t∈[0,1]

α0 ≤
∫

∞

l0

s ds
ϕ(s)

,

where l0 = [2|Ω0|] and Ω0 = max{|α0(t)|∞, |β0(t)|∞}.

Let λ < 0 be such that λ ≤ min{−M,− M
1−N ,−M− N2

2 − N
2

√
N2 +4M}, and for all t ∈ [0,1],

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0

then the sequences (αn) and (βn) defined by (4.10)–(4.11) and (4.12)–(4.13) converge uni-
formly in C1([0,1]) to solution v and u of (4.1)–(4.2), such that for all t ∈ [0,1],

α0(t)≤ v ≤ u ≤ β0(t).
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4.6 Examples

In this section we consider two examples and verify that conditions derived in this chapter
can actually be verified and existence of solutions is guaranteed.

Example 4.1. Consider the nonlinear three point BVP given by

−y′′(t) =
10y3 −9ey′

90
, 0 < t < 1, (4.18)

y′(0) = 0, y′(1) = 0.6y′(0.9), (4.19)

where f (t,y,y′) = 10y3−9ey′

90 , δ = 0.6, η = 0.9. Here α0 = 1 and β0 = −1 are lower and
upper solutions, respectively. It is a non well ordered case.

The priory bound can be computed as follows. ϕ = (10+ 9e|v|)/90. |y′| ≤
√

1
5 ; i.e.,

R =
√

1/5. The Lipschitz constants are computed as M = 1/3 and N = eR/10 = 0.156395.
The inequality f (t,β0(t),β ′

0(t))− f (t,α0(t),α ′
0(t))−λ (β0 −α0) ≥ 0 is satisfied when

λ ≥ 0.11111. Now we can find out a subinterval (0.44,1.8)⊂ (0.11111,2.4674) (approx)
such that (λ −M)cos

√
λ −N

√
λ sin

√
λ ≥ 0 and inequalities in (H0) are satisfied (cf. Figure

4.1).
Thus it is guaranteed that ∃ at least one λ ∈ (0.44,1.8) such that sequences generated

by iterative scheme converge uniformly to a solution of the nonlinear three point boundary
value problem (4.18) and (4.19).

HΛ - 0.333333 L cosJ Λ N - 0.156395 Λ sinJ Λ N
sinJ Λ N - 0.6 sinJ0.9 Λ N
cosJ Λ N - 0.6 cosJ0.9 Λ N

0.5 1.0 1.5 2.0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 4.1 Plots of (H0) and (λ −M)cos
√

λ −N sin
√

λ ≥ 0 for example 4.1.

Example 4.2. Consider the nonlinear three point BVP

−y′′(t) =
[y′(t)]2

60
−5y(t)− e2

18
, (4.20)
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y′(0) = 0, y′(1) = 0.7y′(0.5), (4.21)

where f (t,y,y′) = [y′(t)]2
60 −5y(t)− e2

18 , δ = 7/10, η = 1
2 .

0.7 coshK  Λ¤
2

O - coshJ  Λ¤ N

sinhJ  Λ¤ N - 0.7 sinhK  Λ¤
2

O

-20 -15 -10 -5

-40

-20

20

40

Fig. 4.2 Plots of (H ′
0) for example 4.2.

This example has α0 =−(t2+ 1
2) and β0 = (t2+ 1

2) as lower and upper solutions, respec-
tively. It means, we are in well ordered case. The priory bound can be computed as follows.
ϕ = 15

2 + e2

18 +
|v|2
60 , |y′| ≤ 2e

3
32 ; i.e., R = 3e

1
20 . The Lipschitz constants are given by M = 5

and N = R/30 = 0.105127.
Now we can find out at least one λ < 0 such that when

λ ≤ min
{
−M,− M

1−N
,−M− N2

2
− N

2

√
N2 +4M

}
,

(H ′
0) is satisfied (cf. Figure 4.2), and we get two monotonic sequences.
Thus for any λ <−5.58739, the sequences of solutions of the iterative scheme converge

uniformly to the solutions of the nonlinear three point boundary value problem (4.20) and
(4.21).

4.7 Conclusion

In this chapter we have established some existence results for nonlinear nonsingular derivative
dependent differential equation subject to three point Neumann type boundary conditions.
We arrive at both reverse order case and well order case. We have also shown that for both
positive side and negative side of λ axis, there exists a range of λ for which the proposed
iterative scheme gives us uniformly convergent sequences which converges to a solution of
the nonlinear problem.



Chapter 5

Existence results for nonlinear three
point BVPs with Dirichlet type boundary
conditions

5.1 Introduction

In this chapter we present existence results for second order nonlinear three point boundary
value problem with derivative dependent source function subject to Dirichlet type boundary
conditions

y′′(t)+ f (t,y,y′) = 0, 0 < t < 1, (5.1)

y(0) = 0, y(1) = δy(η), (5.2)

where f ∈ C(I ×R×R,R), I = [0,1], 0 < η < 1, δ > 0. Bao et al. [19] discussed the
existence results for positive solutions of three point boundary value problem (5.1)–(5.2) for
0 < δ < 1. They used fixed point index method under a non-well-ordered upper and lower
solutions condition.

The result of this chapter is an improvement over a recent result due to Bao et al. [19].
They assume two conditions f (t,0,0) = 0 and y f (t,y,y′) ≥ 0 for y ≥ 0. Consider −y′′ =
h(t)+ y which is linear but f (t,0,0) ̸= 0. So f (t,0,0) = 0 fails. Another simple example is
−y′′ = siny. Here ysiny will change its sign for y ≥ 0, so the condition y f (t,y,y′)≥ 0 for
y ≥ 0 fails. But for both these problems the results of this chapter are applicable.

Here we are looking for a simple monotone iterative scheme and propose the following

− y′′n+1 −λyn+1 = f (t,yn,y′n)−λyn, (5.3)
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yn+1(0) = 0, yn+1(1) = δyn+1(η). (5.4)

We have considered “λ” as a constant.

Cherpion et al. [40, Section 5.4] stated that (5.3)–(5.4) with constant λ do not work.
Also they [40, Remark 5.4 ] stated that due to lack of uniform anti-maximum principle it
seems impossible to develop monotone iterative technique for reverse ordered upper and
lower solution.

Remark 5.1. In this chapter, we have shown that even with constant λ monotone sequences
can be generated. Though Remark by Cherpion et al. [40, Remark 5.4 ] appears to be true
for three point BVP and we also observe that uniform anti-maximum principle does not exist.

5.2 The linear case

Here we consider the corresponding linear three point BVP. We prove maximum principle
and also prove existence of some differential inequalities. Consider the corresponding
nonhomogeneous linear three point BVP

Ly ≡−y′′(t)−λy(t) = h(t), 0 < t < 1, (5.5)

y(0) = 0, y(1) = δy(η)+b, (5.6)

where h ∈C(I), & b any constant.
Case I: λ > 0. Let us assume

(H0) 0 < λ < π2

4 , cos
√

λ −δ cos
√

λη ≤ 0, δ sin
√

λη − sin
√

λ < 0.

There exists a range of λ , for which (H0) holds (see figure 5.1).

Lemma 5.1. The Green’s function for the three point BVP, Ly = 0, y(0) = 0, y(1) = δy(η)

for λ > 0, is

G(t,s) = k1


[sin

√
λ (1− s)−δ sin

√
λ (η − s)]sin

√
λ t, 0 ≤ t ≤ s ≤ η ,

sin
√

λ s [sin
√

λ (1− t)−δ sin
√

λ (η − t)], s ≤ t,s ≤ η ,

sin
√

λ (1− s)sin
√

λ t, t ≤ s,η ≤ s,
δ sin

√
λη sin

√
λ (t − s)+ sin

√
λ s sin

√
λ (1− t), η ≤ s ≤ t ≤ 1,

where k1 =
1√

λ (δ sin
√

λη−sin
√

λ )
. If (H0) is true then G(t,s)≤ 0.
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Proof. The Green’s function for the three point BVP, Ly = 0, y(0) = 0, y(1) = δy(η) for
λ > 0, is defined as

G(t,s) =


a1 cos

√
λ t +a2 sin

√
λ t, 0 ≤ t ≤ s ≤ η ,

a3 cos
√

λ t +a4 sin
√

λ t, s ≤ t,s ≤ η ,

a5 cos
√

λ t +a6 sin
√

λ t, t ≤ s,η ≤ s,
a7 cos

√
λ t +a8 sin

√
λ t, η ≤ s ≤ t ≤ 1.

The unknown variables a1,a2,a3 and a4 are computed with the help of the definition of
Green’s function. For any s ∈ [0,η ], from continuity and jump of G(t,s), we get

a1 cos
√

λ s+a2 sin
√

λ s = a3 cos
√

λ s+a4 sin
√

λ s,

(−
√

λa1 sin
√

λ s+a2
√

λ cos
√

λ s)− (−
√

λa3 sin
√

λ s+a4
√

λ cos
√

λ s) =−1.

Thus,

a1 −a3 =
1√
λ

sin
√

λ s,

a2 −a4 =− 1√
λ

cos
√

λ s.

Then by using the three point boundary value condition, we have

a1 = 0,

a3 cos
√

λ +a4 sin
√

λ = δ (a3 cos
√

λη +a4 sin
√

λη).

The values of a1,a2,a3 and a4 are given by

a1 = 0,

a2 =
sin

√
λ (1− s)−δ sin

√
λ (η − s)√

λ (δ sin
√

λη − sin
√

λ )
,

a3 =− 1√
λ

sin
√

λ s,

a4 =−sin
√

λ s(cos
√

λ −δ cos
√

λη)√
λ (δ sin

√
λη − sin

√
λ )

.

Similarly, for any s ∈ [η ,1], we have

a5 = 0,
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a6 =
sin

√
λ (1− s)√

λ (δ sin
√

λη − sin
√

λ )
,

a7 =− 1√
λ

sin
√

λ s,

a8 =
sin

√
λ (1− s)√

λ (δ sin
√

λη − sin
√

λ )
+

1√
λ

cos
√

λ s.

Thus the construction of G(t,s) is complete.

We can easily prove that the constant sign of Green’s function will be non-positive when
(H0) holds. �

Lemma 5.2. Let y ∈C2(I) be a solution of three point BVP (5.5)–(5.6), then

y(t) =
bsin

√
λ t

sin
√

λ −δ sin
√

λη
−
∫ 1

0
G(t,s)h(s)ds. (5.7)

Proof. The three point nonhomogeneous linear boundary value problem (5.5)–(5.6) is equiv-
alent to

y(t) = ȳ−
∫ 1

0
G(t,s)h(s)ds,

where ȳ is the solution of

Ly = 0, y(0) = 0, y(1) = δy(η)+b,

and G(t,s) is the solution of

Ly = 0, y(0) = 0, y(1) = δy(η).

Suppose
ȳ = c1 cos

√
λ t + c2 sin

√
λ t,

then by using the boundary value conditions

ȳ(0) = 0, ȳ(0) = δ ȳ(η)+b,

we get

ȳ =
bsin

√
λ t

sin
√

λ −δ sin
√

λη
.
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Hence the boundary value problem (5.5)–(5.6) is equivalent to

y(t) =
bsin

√
λ t

sin
√

λ −δ sin
√

λη
−
∫ 1

0
G(t,s)h(s)ds.

�

Case II: λ < 0. Let us assume

(H ′
0) λ < 0, cosh

√
|λ |−δ cosh

√
|λ |η ≥ 0 and δ sinh

√
|λ |η − sinh

√
|λ |< 0.

There exists a range of λ < 0, for which (H ′
0) holds (see figure 5.2).

Lemma 5.3. The Green’s function of the three point BVP, Ly = 0, y(0) = 0, y(1) = δy(η)

for λ < 0 is

G(t,s) = k2



[sinh
√

|λ |(1− s)−δ sinh
√
|λ |(η − s)]sinh

√
|λ |t, 0 ≤ t ≤ s ≤ η ,

sinh
√
|λ |s [sinh

√
|λ |(1− t)−δ sinh

√
|λ |(η − t)], s ≤ t,s ≤ η ,

sinh
√
|λ |(1− s)sinh

√
|λ |t, t ≤ s,η ≤ s,

δ sinh
√

|λ |η sinh
√

|λ |(t − s)
+sinh

√
|λ |ssinh

√
|λ |(1− t), η ≤ s ≤ t ≤ 1,

where k2 =
1√

|λ |(δ sinh
√

|λ |η−sinh
√

|λ |)
. If (H ′

0) is true then G(t,s)≤ 0.

Lemma 5.4. Let y ∈C2(I) be a solution of three point BVP (5.5)–(5.6). Then y(t) is given
by the following equation

y(t) =
bsinh

√
|λ |t

sinh
√

|λ |−δ sinh
√

|λ |η
−
∫ 1

0
G(t,s)h(s)ds. (5.8)

5.2.1 Existence of some differential inequalities

In this section we prove existence of some differential inequalities which govern the range of
λ and if these inequalities are true, the solutions generated by iterative scheme are monotonic.

Lemma 5.5. Let M ∈R+ and N : [0,1]→ [0,∞) such that N(0) = 0, N′(t)≥ 0. If 0< λ < π2

4
is such that λ −M ≤ 0 and

(i) if (λ −M)cos
√

λ +N(t)
√

λ sin
√

λ ≤ 0, then for all t ∈ [0,1]

(λ −M)cos
√

λ t +N(t)
√

λ sin
√

λ t ≤ 0.
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(ii) If λ + supN′(t)≤ M, then for all t ∈ [0,1]

(λ −M)sin
√

λ t +N(t)
√

λ cos
√

λ t ≤ 0.

Proof. The function
(λ −M)cos

√
λ t +N(t)

√
λ sin

√
λ t

is non-decreasing for all t ∈ [0,1] and satisfy the following inequality,

(λ −M)cos
√

λ t +N(t)
√

λ sin
√

λ t ≤ (λ −M)cos
√

λ +N(t)
√

λ sin
√

λ ≤ 0.

By using the assumptions (i) is easily verified.

Using the properties of sine, cosine and assumptions, we can easily see that for all
t ∈ [0,1],

(λ −M)sin
√

λ t +N(t)
√

λ cos
√

λ t ≤ 0.

Hence (ii) is verified. �

Lemma 5.6. Let M ∈ R+ and N : [0,1]→ [0,∞) such that N(0) = 0. If λ < 0 is such that
M+λ ≤ 0, and

(i) if [(M+λ )+N
√

|λ |]≤ 0, then for all t ∈ [0,1],

(M+λ )cosh
√
|λ |t +N(t)

√
|λ |sinh

√
|λ |t ≤ 0.

(ii) If (M+λ )+N′(t)+N(t)
√
|λ | ≤ 0, then for all t ∈ [0,1],

(M+λ )sinh
√

|λ |t +N(t)
√

|λ |cosh
√
|λ |t ≤ 0.

Proof. As

(M+λ )cosh
√
|λ |t +N(t)

√
|λ |sinh

√
|λ |t ≤ [(M+λ )+N(t)

√
|λ |]cosh

√
|λ |t.

The right hand side of the above inequality will be non-positive for all t ∈ [0,1] if[
(M+λ )+N(t)

√
|λ |
]
≤ 0.

This completes the part (i) of Lemma.
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Using the assumptions and the properties of sinh and cosh, we can easily see that for all
t ∈ [0,1]

(M+λ )sinh
√

|λ |t +N(t)
√

|λ |cosh
√
|λ |t

is a non-increasing function, which proves part (ii). �

Lemma 5.7. Let (H0) be true. If y(t) is the solution of (5.5)–(5.6) then we have

(i) G(t,s)≤ 0 and

(ii) (λ −M)G(t,s)+N(t)(sign y′)∂G(t,s)
∂ t ≥ 0

for any t,s ∈ [0,1] and t ̸= s.

Proof. The condition (H0) guarantees that G(t,s)≤ 0. Putting the value of G(t,s) and ∂G(t,s)
∂ t

for t ̸= s in

(λ −M)G(t,s)+N(t)(sign y′)
∂G(t,s)

∂ t
,

and using the Lemma 5.5, we can prove that

(λ −M)G(t,s)+N(t)(sign y′)
∂G(t,s)

∂ t
≥ 0, ∀ s, t ∈ [0,1] and s ̸= t.

�

Lemma 5.8. Let (H ′
0) be true. Let y(t) be the solution of (5.5)–(5.6) then we have

(i) G(t,s)≤ 0, for any t,s ∈ [0,1],

(ii) (M+λ )G(t,s)+N(t)(sign y′)∂G(t,s)
∂ t ≥ 0,

for any t,s ∈ [0,1] and t ̸= s.

Proof. By Lemma 5.6 and analysis similar to proof of Lemma 5.7, completes the proof of
this lemma. �

5.2.2 Maximum principle

By using the constant sign of Green’s function the following two results can be concluded
easily.

Proposition 5.1. Suppose that (H0) holds. Let y(t) be the solution of (5.5)–(5.6) and if b ≥ 0,
h(t) ∈C[0,1] be such that h(t)≥ 0, then y(t)≥ 0.

Proposition 5.2. Suppose that (H ′
0) holds. Let y(t) be the solution of (5.5)–(5.6) and if b ≥ 0,

h(t) ∈C[0,1] be such that h(t)≥ 0, then y(t)≥ 0.
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5.3 Nonlinear three point BVP

In this section we consider the nonlinear three point BVP. We show that it is possible to
find out a range of λ ∈ R\{0} on λ axis so that the iterative scheme (5.3)–(5.4) generates
monotone sequences. Which finally proves existence of solutions for nonlinear three point
BVP (5.1)–(5.2).

We define lower solution and upper solution represented by the functions α0(t) and β0(t),
respectively, such that α0 ≤ β0.

Definition 5.1. Let α0,β0 ∈ C2[0,1]. Then α0(t) and β0(t) are called lower solution and
upper solution of the nonlinear three point BVP (5.1)–(5.2), respectively if they satisfy

−α
′′
0 (t)≤ f (t,α0,α

′
0), 0 < t < 1,

α0(0) = 0, α0(1)≤ δα0(η),

and

−β
′′
0 (t)≥ f (t,β0,β

′
0), 0 < t < 1,

β0(0) = 0, β0(1)≥ δβ0(η).

Our proof is based on uniform convergence of the sequences and for that we use Arzela-
Ascoli theorem. To implement this we need equicontinuity and equiboundedness of (yn) and
(y′n). Equicontinuity and equiboundedness of yn and y′n can be proved by continuity of the
Green’s function and continuity of the solution on [0,1] and continuity of the nonlinear term
f (t,y,y′). Equiboundedness of (y′n) is established by the following two lemmas.

5.3.1 Priori bound

(HP) Let | f (t,u,v)| ≤ ϕ(|v|) for all (t,u,v) ∈ D. Assume that

ϕ : R+ → R+

is continuous and satisfies max
t∈[0,1]

β0 − min
t∈[0,1]

α0 ≤
∫

∞

l0

s ds
ϕ(s)

. Here l0 = |Ω0| and Ω0 =

max{|α0(t)|∞, |β0(t)|∞}.

Lemma 5.9. Assume that f (t,y,y′) satisfies (HP). Then there exists R > 0 such that any
solution of

− y′′(t)≥ f (t,y,y′), 0 < t < 1, (5.9)
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y(0) = 0, y(1)≥ δy(η), (5.10)

with y ∈ [α0(t),β0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.

Proof. The proof can be divided in two parts.
Case : (i) If solution is not monotone in [0,1], then consider the interval (t0, t]⊂ (0,1) such
that y′(t0) = 0 and y′(t)> 0 for t > t0. Integrating (5.9) from t0 to t we get

∫ y′

0

s ds
ϕ(s)

≤ max
t∈[0,1]

β0 − min
t∈[0,1]

α0.

From (HP) we can choose R > 0 such that

∫ y′

0

s ds
ϕ(s)

≤ max
t∈[0,1]

β0 − min
t∈[0,1]

α0 ≤
∫ R

l0

s ds
ϕ(s)

≤
∫ R

0

s ds
ϕ(s)

,

which gives
y′(t)≤ R.

Now we consider the case in which y′(t) < 0 for t < t0, y′(t0) = 0, and proceeding in the
similar way we get

− y′(t)≤ R,

and the result follows.
Case : (ii) If y is monotonically decreasing in (0,1), that is y′(t) < 0 in t ∈ (0,1] then by
mean value theorem there exists a point τ ∈ (0,1) such that

− y′(τ)≤ |Ω0|,

where Ω0 = max{|α0(t)|∞, |β0(t)|∞}.
Now, integrating (5.9) from t to τ , using (HP) we can choose R, such that −y′ ≤ R.
Similarly if y is monotonically increasing in (0,1), that is y′(t)> 0 in t ∈ (0,1] proof can

be completed as above. �

Lemma 5.10. If f (t,y,y′) satisfies (HP), then there exists R > 0 such that any solution of

− y′′(t)≤ f (t,y,y′), 0 < t < 1, (5.11)

y(0) = 0, y(1)≤ δy(η), (5.12)

with y ∈ [α0(t),β0(t)] for all t ∈ [0,1] satisfies ∥y′∥∞ ≤ R.



98 Nonlinear three point BVPs : Dirichlet Case

Proof. Proof follows from the analysis of Lemma 5.9. �

Now we state the existence Theorem 5.1 (for λ > 0) and Theorem 5.2 (for λ < 0) which
are the main results of this chapter.

Theorem 5.1. Let (H0) be true. Further assume that

(H1) there exist α0 and β0 ∈C2[0,1] as lower and upper solutions of (5.1)–(5.2) such that
α0 ≤ β0, for all t ∈ [0,1];

(H2) the function f : D → R is continuous on

D := {(t,u,v) ∈ [0,1]×R2 : α0(t)≤ u ≤ β0(t)};

(H3) there exists M > 0 such that for all (t,u1,v),(t,u2,v) ∈ D;

u1 ≤ u2 =⇒ f (t,u2,v)− f (t,u1,v)≥ M(u2 −u1);

(H4) there exists N : [0,1]→ [0,∞) such that N(0) = 0, N′(t)≥ 0 and for all
(t,u,v1),(t,u,v2) ∈ D

| f (t,u,v2)− f (t,u,v1)| ≤ N(t)|v2 − v1|.

(H5) Let λ > 0 be such that λ −M ≤ 0, (λ −M)cos
√

λ +N(t)
√

λ sin
√

λ ≤ 0 and λ +

supN′(t)≤ M, and for all t ∈ [0,1]

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0.

Then the sequences (αn) and (βn) defined by (5.3)–(5.4) converge uniformly in C1([0,1]) to
solution v and u of (5.1)–(5.2), such that for all t ∈ [0,1],

α0 ≤ v ≤ u ≤ β0.

Proof. With the help of assumptions (H1), (H2), (H3), (H4) and (H5), we conclude that

α0 ≤ α1 ≤ α2 ≤ ·· · ≤ αn ≤ ·· · ≤ βn ≤ ·· · ≤ β2 ≤ β1 ≤ β0. (5.13)

It is clear that the sequences (αn)n and (βn)n are monotonic and bounded. Hence they
converge to the functions u(t) and v(t) (say), respectively, which are such that for all n,
αn ≤ v ≤ u ≤ βn.
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By using the equations (5.3)–(5.4), inequality (5.13) and Lemma 5.9, 5.10, we prove
that the sequences (βn)n and (αn)n are equibounded and equicontinuous in C1([0,1]), i.e.,
any subsequence of (βn)n and (αn)n are also equibounded and equicontinuous in C1([0,1]).
Now by using Arzela-Ascoli theorem, we conclude that the subsequences of (βn)n and (αn)n

contain a subsequence which converge uniformly in C1([0,1]).
By uniqueness of the limit and monotonicity of the sequences (αn)n and (βn)n, we have

αn → v and βn → u.
We write the solution of iterative scheme (5.3)–(5.4) for both (αn) and (βn) by using

Lemma 5.2, where h(t) is in terms of nonlinear term f . Now by using uniform convergence,
one can easily conclude the existence of the solution of nonlinear three point BVP. This
completes the proof. �

Theorem 5.2. Let (H ′
0), (H1), (H2) and (H4) be true. Further assume that

(H ′
1) there exists M > 0 such that for all (t,u1,v),(t,u2,v) ∈ D,

u1 ≤ u2 =⇒ f (t,u2,v)− f (t,u1,v)≥−M(u2 −u1).

(H ′
2) Let λ < 0 be such that M + λ ≤ 0, (M + λ ) +N′(t) +N(t)

√
|λ | ≤ 0, [(M + λ ) +

N
√
|λ |]≤ 0 and for all t ∈ [0,1],

f (t,β0(t),β ′
0(t))− f (t,α0(t),α ′

0(t))−λ (β0 −α0)≥ 0.

Then the sequences (αn) and (βn) defined by (5.3)–(5.4) converge monotonically in C1([0,1])
to solution v and u of (5.1)–(5.2), such that for all t ∈ [0,1], α0 ≤ v ≤ u ≤ β0.

Proof. Proof is same as Theorem 5.1. �

5.4 Examples

To verify our results, we consider two examples for both λ > 0, λ < 0 and show that it is
possible to compute a range of λ so that iterative scheme generates monotone sequences
which converge to the solution of nonlinear problem.

Example 5.1. Consider the nonlinear three point BVP

− y′′(t) =

(
9ey + tey′

15

)
, 0 < t < 1, (5.14)

y(0) = 0, y(1) = 0.95y(0.2). (5.15)
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This problem has α0 = 0 and β0 = 3
(

t − t2

2

)
as lower and upper solutions, respectively.

The nonlinear term is Lipschitz in both y and y′ and continuous for all values of y and y′. It is
easy to see that Nagumo condition is given by

| f (t,u,v)| ≤ 9
15

e
3
2 +

1
15

ev,

i.e., ϕ = 9
15e

3
2 + 1

15ev. Using Lemma 5.9 we can compute easily that |y′| ≤
√

1
10 , i.e.,

R = 0.316228. The Lipschitz constants M and N(t) are computed as M = 3
5 and N(t) = t

15eR,
respectively. In Figures 5.1, 5.4, 5.6, 5.8, 5.10 we discuss constant sign of some inequalities
and describe monotonic behavior of solutions. In Figure 5.1 we have verified that it is
possible to get a range of λ such that (H0) is true. In Figures 5.4, 5.6, 5.8, 5.10 we have
shown that for different values of λ ∈ [0.15,0.49] monotonic sequences are obtained and both
converge to a solution of nonlinear problem (5.14)–(5.15). In this range all the inequalities
are also true which are required to generate monotonic sequences. The range [0.15,0.49]
is not sharp and is based on computations done in Mathematica 10. In Figure 5.3 we have
shown that if λ is not in the range [0.15,0.49] then monotonicity is lost.

Example 5.2. Consider the nonlinear three point BVP

− y′′(t) =
(et −1)

36

[
(y′(t))2 − y(t)− cos t

4

]
, 0 < t < 1, (5.16)

y(0) = 0, y(1) = 0.5y(0.5). (5.17)

Here f (t,y,y′) = (et−1)
36

[
(y′(t))2 − y(t)− cos t

4

]
, δ = 0.5,η = 0.5. This problem has

α0 = ( t2

4 − t) and β0 =
t
2 as lower and upper solutions, respectively. The nonlinear term is

Lipschitz in both y and y′ and continuous for all values of y and y′. It is easy to see that
Nagumo condition is given by

| f (t,u,v)| ≤ 0.0477301(|v|2 +1),

i.e., ϕ = 0.0477301(|v|2 +1). Using Lemma 5.10 we can compute bound for y′, i.e., |y′| ≤
3
4e

5
4 (0.0477301), i.e., R = 0.796109. The Lipschitz constants are M = 0.0477301 and N(t) =

(et−1)
36 (1.59222).

In Figure 5.2 we have verified that for λ <−1, (H ′
0) is true. In Figures 5.5, 5.7, 5.9, 5.11,

we describe monotonic behavior of the sequences. For λ <−1 all the inequalities required
are also valid. The upper bound for λ is not sharp and is based on computations done in
Mathematica 10. In Figures 5.5, 5.7, 5.9, 5.11 we have shown that for different values of
λ , monotonic sequences are obtained and both converge to a solution of nonlinear problem
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(5.16)–(5.17). Here it is also visible from the Figure 5.11 that sequence thus obtained are
uniformly convergent.

5.5 Conclusion

In this chapter we have considered an iterative scheme which is simple enough for computa-
tional point of view. We did not consider λ as function of t. The method developed in this
chapter can be coded to generate a user friendly package which can be efficiently used to
compute solutions of the nonlinear three point BVP whose close form solutions is not known.

We have constructed two examples one for each case λ > 0 and λ < 0 and show that
derived sufficient conditions can generate solutions for a class of nonlinear three point BVPs.
Mainly it is initial iterates (upper and lower solutions) choice of which matters and success
of the method depends on them. If initial iterates are chosen properly then it is guaranteed
that sequences will converge to the solutions of the nonlinear BVP. In Figure 5.3 we also
observe that if λ does not belong to the range sequences are not monotone.

We also observe that Remark 5.4 of Cherpion et al. [40] seems to be true even in case of
three point BVP with Dirichlet type boundary condition.
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0.95 SinA0.2 Λ E - SinA Λ E

Λ
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Fig. 5.1 Plot of (H0) for example 5.1.
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Fig. 5.2 Plot of (H ′
0) for example 5.2.
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Fig. 5.3 Non-Monotonicity for λ = 2.
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Fig. 5.4 Plot of upper (βn) & lower (αn)
solutions for λ = 0.4 and n = 1,2,3.
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Fig. 5.5 Plot of upper (βn) & lower (αn)
solutions for λ =−2 and n = 1,2,3.
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Fig. 5.6 Plot of upper (βn) & lower (αn)
solutions for λ = 0.3 and n = 1,2, · · · ,10.
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Fig. 5.7 Plot of upper (βn) & lower (αn)
solutions for λ =−10 and n = 1,2, · · · ,6.

 

 

 

 

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30    

   

Fig. 5.8 Plot of upper (βn) & lower (αn)
solutions for λ = 0.2 and n = 1,2, · · · ,20.
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Fig. 5.9 Plot of upper (βn) & lower
(αn) solutions for λ = −25 and n =
1,2, · · · ,15.
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Fig. 5.10 Plot of upper (βn) & lower
(αn) solutions for λ = 0.15 and n =
1,2, · · · ,30.
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Fig. 5.11 Plot of upper (βn) & lower
(αn) solutions for λ = −30 and n =
1,2, · · · ,25.



Chapter 6

Nonlinear three point singular boundary
value problems arising due to spherical
symmetry

6.1 Introduction

Singular differential equations arise in several real life problems [21, 31, 32, 44, 46, 82], and
the behavior of a physical system modeled by differential equation frequently is most inter-
esting in the neighborhood of a singular point [25]. Many problems in applied mathematics
and engineering lead to singular boundary value problems of the form

− y′′− α

x
y′ = f (x,y), 0 < x < 1, (6.1)

y′(0) = 0, y(1) = A, (6.2)

where A is a finite constant and α ≥ 1. Existence and uniqueness of solutions of (6.1)–(6.2)
has been studied by several researchers, e.g., [31, 38, 82, 135, 150, 152, 153].

Recently lot of activity is noted on the upper and lower solution techniques. Zhang [164]
in his work justified that this technique is most promising specially for singular boundary
value problems.

Three point variation of the two point SBVPs (6.1)–(6.2) in spherical symmetry can be
written as

− y′′(x)− 2
x

y′(x) = f (x,y), 0 < x < 1, (6.3)

y′(0) = 0, y(1) = δy(η), (6.4)
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where f (I ×R,R), I = [0,1], 0 < η < 1, δ > 0. The singular three point BVP (6.3)–(6.4)
are motivated by the mathematical model of heat generated in a chemical reaction ([31])
and equilibrium of charged gas in a spherical shaped container ([82]). Equations (6.3)–(6.4)
model the thermal balance ([31]) between the heat generated by the chemical reaction and
that conducted away in spherical vessel. The boundary condition y(1) = δy(η) represents
the relation between temperature on the outer surface and a surface of a sphere concentric
with the vessel and radius less than container. Similarly equilibrium of a charged gas in a
spherical container ([82]) can be extended for three point boundary value problems of the
type (6.3)–(6.4).

Lots of results are available based on different analytical techniques for nonlinear three
point BVPs [4, 17, 57, 62, 70, 92, 102, 108, 141, 142]. But when existing theory is applied
to nonlinear three point SBVPs lot of complications arise and in this thesis we have made
an honest effort to address some of these issues. In this chapter we consider nonlinear three
point SBVP (6.3)–(6.4) which represents some physical phenomenon occurring in spherical
geometry. We use monotone iterative technique which is analytical but computational in
nature. It is not easy to establish maximum principle for the corresponding linear case
for three point BVPs. As to achieve that we need to validate some inequalities which are
nonlinear in nature.

In this chapter we propose the following iterative scheme which is similar to the one
considered in [38] and [135]

− y′′n+1(x)−
2
x

y′n+1(x)−λyn+1(x) = f (x,yn)−λyn(x), λ ∈ R\{0},

y′n+1(0) = 0, yn+1(1) = δyn+1(η).

 (6.5)

We allow sup
(

∂ f
∂y

)
to take both negative and positive values.

Under quite general conditions we show that a range for values of λ on both side of
real line can be found so that the above iterative scheme produces convergent monotonic
sequences which are solutions of the iterative scheme. These sequences converge uniformly
to the solution of the nonlinear three point singular boundary value problem (6.3)–(6.4).
To start the iteration and to produce monotonic sequences we need some initial guess in
terms of the differential inequalities. These inequalities provide initial guess as well as upper
and lower bound for above discussed sequences of solutions. Due to lack of anti-maximum
principle we do not arrive at reverse order case, but we get well order case for both λ > 0
and λ < 0.

This chapter is organized in following sections. In Section 6.2, we use Lommel’s
transformation to find out two linearly independent solutions in terms of spherical Bessel
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functions. Using these two linearly independent solutions Green’s function is constructed
in Section 6.3 and Section 6.4 states maximum principle. Finally all these results are used
to establish existence theorems (See Section 6.5). The sufficient conditions derived in this
chapter are verified for 4 examples.

6.2 Lommel’s transformation

This section is devoted to the corresponding linear case of the nonlinear three point SBVP
(6.3)–(6.4). We consider the following class of three point linear SBVP,

− (x2y′(x))′−λx2y(x) = x2h(x), 0 < x < 1, (6.6)

y′(0) = 0, y(1) = δy(η)+b, (6.7)

where h ∈C(I) and b is any constant.

The corresponding homogeneous system is given by

− (x2y′(x))′−λx2y(x) = 0, 0 < x < 1, (6.8)

y′(0) = 0, y(1) = δy(η). (6.9)

Consider the differential equation (6.8) written in the form

x2y′′(x)+2xy′(x)+λx2y(x) = 0. (6.10)

Using Lommel’s transformation (§cf [38, 51])

z = x
√

λ , w = x
1
2 y(x), (6.11)

the standard Bessel’s equation

z2 d2w
dz2 + z

dw
dz

+(z2 −ν
2)w = 0, (6.12)

is transformed into (6.10). Now, if w1(z) and w2(z) are two linearly independent solutions of
Bessel’s equation (6.12), then the two linearly independent solutions of (6.10) are given by

y1(x) = x−
1
2 w1

(
x
√

λ

)
, y2(x) = x−

1
2 w2

(
x
√

λ

)
. (6.13)
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Hence the two linearly independent solutions of (6.10) can be obtained in terms of w1(z) and
w2(z). A solution of (6.12) which leads to say y1 bounded in the neighborhood of the origin
is w1 = J1

2
(z). Hence a solution of (6.10) which remains bounded in the neighborhood of the

origin (except for a multiplicative constant) denoted as y1(x,λ ) is given by

y1(x,λ ) =


x−

1
2 J1

2

(
x
√

λ

)
, if λ > 0;

(ix)−
1
2 J1

2

(
ix
√
|λ |
)
, if λ < 0.

(6.14)

6.3 Green’s function

In this section we construct Green’s function. We divide it into two cases.

6.3.1 Case I: λ > 0.

Let us assume

(H0) : 0 < λ ≤ j2
− 1

2 ,1
, 0 < δ < 1, η cos

√
λ −δ cosη

√
λ ≤ 0, η sin

√
λ −δ sinη

√
λ > 0

where j− 1
2 ,1

is the first positive zero of J− 1
2
(x).

There exists a range of λ > 0 such that (H0) is true (see figures 6.1 & 6.2).

Lemma 6.1. The Green’s function for the following linear three point SBVP

(x2y′(x))′+λx2y(x) = 0, 0 < x < 1, (6.15)

y′(0) = 0, y(1) = δy(η), (6.16)

is given by

G(x, t) =



sin(x
√

λ)(η sin(
√

λ (t−1))−δ sin(
√

λ (t−η)))
x t

√
λ (η sin(

√
λ)−δ sin(η

√
λ))

, 0 ≤ x ≤ t ≤ η ;

sin(t
√

λ)(η sin(
√

λ (x−1))−δ sin(
√

λ (x−η)))
x t

√
λ (η sin(

√
λ)−δ sin(η

√
λ))

, t ≤ x, t ≤ η ;

η sin(
√

λ (t−1))sin(x
√

λ)
x t

√
λ(η sin(

√
λ)−δ sin(η

√
λ))

, x ≤ t, η ≤ t;

(δ sin(η
√

λ)sin(
√

λ (t−x))+η sin(t
√

λ)sin(
√

λ (x−1)))
x t

√
λ (η sin(

√
λ)−δ sin(η

√
λ))

, η ≤ t ≤ x ≤ 1,

and if (H0) holds then G(x, t)≤ 0.
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Proof. Define the Green’s function by the following equations

G(x, t) =



a1
1√
xJ1

2

(
x
√

λ

)
+a2

1√
xJ− 1

2

(
x
√

λ

)
, 0 ≤ x ≤ t ≤ η ;

a3
1√
xJ1

2

(
x
√

λ

)
+a4

1√
xJ− 1

2

(
x
√

λ

)
, t ≤ x, t ≤ η ;

a5
1√
xJ1

2

(
x
√

λ

)
+a6

1√
xJ− 1

2

(
x
√

λ

)
, x ≤ t, η ≤ t;

a7
1√
xJ1

2

(
x
√

λ

)
+a8

1√
xJ− 1

2

(
x
√

λ

)
, η ≤ t ≤ x ≤ 1.

According to the definition and properties of the Green’s function, for any t ∈ [0,η ], we have

a1
1√
t
J1

2

(
t
√

λ

)
+a2

1√
t
J− 1

2

(
t
√

λ

)
= a3

1√
t
J1

2

(
t
√

λ

)
+a4

1√
t
J− 1

2

(
t
√

λ

)
,

(
−a1

√
λ

1√
t
J3

2

(
t
√

λ

)
+a2

√
λ

1√
t
J− 3

2

(
t
√

λ

))
−
(
−a3

√
λ

1√
t
J3

2

(
t
√

λ

)
+a4

√
λ

1√
t
J− 3

2

(
t
√

λ

))
=− 1

t2 ,

and thus

a1 −a3 =−
πJ− 1

2

(
t
√

λ

)
2
√

t
,

a2 −a4 =
πJ1

2

(
t
√

λ

)
2
√

t
.

Using the boundary conditions, we have

a2 = 0,

a3J1
2

(√
λ

)
+a4J− 1

2

(√
λ

)
= δ

(
a3

1
√

η
J1

2

(
η
√

λ

)
+a4

1
√

η
J− 1

2

(
η
√

λ

))
.

Therefore

a1 =

√
π

2

(
η sin

(
(t −1)

√
λ

)
−δ sin

(√
λ (t −η)

))
t 4
√

λ

(
η sin

(√
λ

)
−δ sin

(
η
√

λ

)) ,

a2 = 0,
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a3 =

√
π

2 sin
(

t
√

λ

)(
η cos

(√
λ

)
−δ cos

(
η
√

λ

))
t 4
√

λ

(
η sin

(√
λ

)
−δ sin

(
η
√

λ

)) ,

a4 =−

√
π

2 sin
(

t
√

λ

)
t 4
√

λ
.

For any t ∈ [η ,1], we have

a5
1√
t
J1

2

(
t
√

λ

)
+a6

1√
t
J− 1

2

(
t
√

λ

)
= a7

1√
t
J1

2

(
t
√

λ

)
+a8

1√
t
J− 1

2

(
t
√

λ

)
,

(
−a5

√
λ

1√
t
J3

2

(
t
√

λ

)
+a6

√
λ

1√
t
J− 3

2

(
t
√

λ

))
−
(
−a7

√
λ

1√
t
J3

2

(
t
√

λ

)
+a8

√
λ

1√
t
J− 3

2

(
t
√

λ

))
=− 1

t2 ,

and hence

a5 −a7 =−
πJ− 1

2

(
t
√

λ

)
2
√

t
,

a6 −a8 =
πJ1

2

(
t
√

λ

)
2
√

t
.

By using the boundary conditions, we have

a6 = 0,

a7J1
2

(√
λ

)
+a8J− 1

2

(√
λ

)
= δ

(
a5

1
√

η
J1

2

(
η
√

λ

)
+a6

1
√

η
J− 1

2

(
η
√

λ

))
.

Thus

a5 =

√
π

2 η sin
(√

λ (t −1)
)

t 4
√

λ

(
η sin

(√
λ

)
−δ sin

(
η
√

λ

)) ,
a6 = 0,

a7 =

√
π

2

(
η cos

(√
λ

)
sin
(√

λ t
)
−δ sin

(
η
√

λ

)
cos
(√

λ t
))

t 4
√

λ

(
η sin

(√
λ

)
−δ sin

(
η
√

λ

)) ,
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a8 =−

√
π

2 sin
(√

λ t
)

t 4
√

λ
,

which completes the construction of Green’s function. Using (H0), we get that
G(x, t)≤ 0. �

Lemma 6.2. Let y ∈C2(I) be a solution of nonhomogeneous linear three point SBVP (6.6)–
(6.7) then

y(x) =
b η sin

(
x
√

λ

)
x
(

η sin
(√

λ

)
−δ sin

(
η
√

λ

)) −
∫

0

1
t2G(x, t)h(t)dt. (6.17)

Proof. Suppose G(x, t) is the Green’s function of

(x2y′(x))′+λx2y(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

and ȳ is solution of

(x2y′(x))′+λx2y(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δ (η)+b,

then the boundary value problem (6.6)–(6.7) is equivalent to

y(t) = ȳ−
∫ 1

0
t2G(x, t)h(t)dt.

Suppose

ȳ = c1
1√
x

J1
2

(
x
√

λ

)
+ c2

1√
x

J− 1
2

(
x
√

λ

)
.

Since

ȳ′(0) = 0, and ȳ(1) = δ ȳ(η)+b,

we get

c1 =
b

J1
2

(√
λ

)
− δ√

η
J1

2

(
η
√

λ

) ,
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c2 = 0.

Namely y ∈ C2(I) is a solution of the boundary value problem (6.6)–(6.7) if and only if
y ∈C(I) is a solution of the integral equation

y(x) =
b η sin

(
x
√

λ

)
x
(

η sin
(√

λ

)
−δ sin

(
η
√

λ

)) −
∫

0

1
t2G(x, t)h(t)dt.

�

6.3.2 Case II: λ < 0.

Assume that

(H ′
0) : λ < 0, δ > 0, η cosh

(√
|λ |
)
−δ cosh

(
η
√

|λ |
)
≥ 0, and η sinh

(√
|λ |
)

−δ sinh
(

η
√
|λ |
)
> 0.

There exists a range of λ < 0 for which (H ′
0) is true (see figures 6.3 & 6.5).

Lemma 6.3. The Green’s function for the following linear three point SBVP

(x2y′(x))′+λx2y(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

for λ < 0 is given by

G(x, t) =



sinh
(√

|λ |x
)(

η sinh
(√

|λ |(t−1)
)
−δ sinh

(√
|λ |(t−η)

))
x t

√
|λ |
(

η sinh
(√

|λ |
)
−δ sinh

(
η
√

|λ |
)) , 0 ≤ x ≤ t ≤ η ;

sinh
(√

|λ | t
)(

η sinh
(√

|λ |(x−1)
)
−δ sinh

(√
|λ |(x−η)

))
x t

√
|λ |
(

η sinh
(√

|λ |
)
−δ sinh

(
η
√

|λ |
)) , t ≤ x, t ≤ η ;

η sinh
(√

|λ |(t−1)
)

sinh
(√

|λ |x
)

x t
√

|λ |
(

η sinh
(√

|λ |
)
−δ sinh

(
η
√

|λ |
)) , x ≤ t,η ≤ t;(

δ sinh
(

η
√

|λ |
)

sinh
(√

|λ |(t−x)
)
+η sinh

(
t
√

|λ |
)

sinh
(
(x−1)

√
|λ |
))

x t
√

|λ |
(

η sinh
(√

|λ |
)
−δ sinh

(
η
√

|λ |
)) , η ≤ t ≤ x ≤ 1.

and if
(
H ′

0
)

holds then G(x, t)≤ 0.

Proof. Proof is same as given in Lemma 6.1. �
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Lemma 6.4. Let y ∈C2(I) be a solution of nonhomogeneous linear three point SBVP (6.6)–
(6.7) then

y(x) =
b η sinh

(
x
√

|λ |
)

x
(

η sinh
(√

|λ |
)
−δ sinh

(
η
√

|λ |
)) −

∫ 1

0
t2G(x, t)h(t)dt. (6.18)

Proof. Proof is same as given in Lemma 6.2. �

6.4 Maximum principle

We require two results. They are as follows.

Proposition 6.1. Let (H0) holds, b ≥ 0 and h(x) ∈C[0,1] is such that h(x)≥ 0, then y(x) is
non-negative for all x ∈ [0,1].

Proposition 6.2. Let (H ′
0) holds, b ≥ 0 and h(x) ∈C[0,1] is such that h(x)≥ 0, then y(x) is

non-negative for all x ∈ [0,1].

6.5 Nonlinear three point SBVP

In this section, we develop the theory of monotone iterative method for nonlinear three point
SBVPs. We divide it into the following two subsections.

6.5.1 Case I: When λ > 0

Theorem 6.1. Let there exist α0, β0 in C2[0,1] such that β0 ≥ α0 and satisfy

−(x2
β
′
0(x))

′ ≥ x2 f (x,β0), 0 < x < 1, β
′
0(0) = 0, β0(1)≥ δβ0(η), (6.19)

and

−(x2
α
′
0(x))

′ ≤ x2 f (x,α0), 0 < x < 1, α
′
0(0) = 0, α0(1)≤ δα0(η). (6.20)

If f : D →R is continuous on D := {(x,y) ∈ [0,1]×R : α0 ≤ y ≤ β0} and there exists M > 0
such that for all (x,y),(x,w) ∈ D

y ≤ w =⇒ f (x,w)− f (x,y)≥ M(w− y),
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then the nonlinear three point SBVP (6.3)–(6.4) has at least one solution in the region D. If ∃
a constant λ such that M−λ ≥ 0 and (H0) is satisfied then the sequence (βn) generated by

−(x2y′n+1(x))
′−λx2yn+1 = x2F(x,yn), y′n+1(0) = 0, yn+1(1) = δyn+1(η), (6.21)

where F(x,y) = f (x,y)−λy, with initial iterate β0 converges monotonically (non-increasing)
and uniformly towards a solution β̃ (x) of (6.3)–(6.4). Similarly α0 as an initial iterate leads
to a non-decreasing sequence (αn) converging to a solution α̃(x). Any solution z(x) in D
must satisfy

α̃(x)≤ z(x)≤ β̃ (x).

Proof. From equation (6.19) and equation (6.21) (for n = 0)

− (x2(β0 −β1)
′(x))′−λx2(β0 −β1)≥ 0,

(β0 −β1)
′(0) = 0, (β0 −β1)(1)≥ δ (β0 −β1)(η).

Since h(x)≥ 0 and b ≥ 0, by using Proposition 6.1 we have β0 ≥ β1.

In view of M−λ ≥ 0, from equation (6.21) we get

− (x2
β
′
n+1(x))

′ ≥ x2 [(M−λ )(βn −βn+1)+ f (x,βn+1)]

and if (βn ≥ βn+1), then

− (x2
β
′
n+1(x))

′ ≥ x2 f (x,βn+1); β
′
n+1(0) = 0, βn+1(1) = δβn+1(η). (6.22)

Since β0 ≥ β1, then from equation (6.22) (for n = 0) and (6.21) (for n = 1) we get

− (x2(β1 −β2)
′(x))′−λx2(β1 −β2)≥ 0,

(β1 −β2)
′(0) = 0, (β1 −β2)(1)≥ δ (β1 −β2)(η).

From Proposition 6.1 we have β1 ≥ β2.

Now from equations (6.20) and (6.21) (for n = 0)

− (x2(β1 −α0)
′(x))′−λx2(β1 −α0)≥ 0,

(β1 −α0)
′(0) = 0 (β1 −α0)(1)≥ δ ((β1 −α0)(η).

Thus β1 ≥ α0 follows from proposition 6.1.
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Now assuming βn ≥ βn+1, βn+1 ≥ α0, we show that βn+1 ≥ βn+2 and βn+2 ≥ α0 for all
n. From equation (6.21) (for n+1) and (6.22) we get

− (x2(βn+1 −βn+2)
′(x))′−λx2(βn+1 −βn+2)≥ 0,

(βn+1 −βn+2)
′(0) = 0, (βn+1 −βn+2)(1)≥ δ (βn+1 −βn+2)(η),

and hence from Proposition 6.1 we have βn+1 ≥ βn+2.

From equation (6.21) (for n+1) and (6.20) we get,

− (x2(βn+2 −α0)
′(x))′− x2

λ (βn+2 −α0)≥ 0,

(βn+2 −α0)
′(0) = 0, (βn+2 −α0)(1)≥ δ (βn+2 −α0)(η).

Then from proposition 6.1, βn+2 ≥ α0 and hence we have

β1 ≥ β2 ≥ ·· · ≥ βn ≥ βn+1 ≥ ·· · ≥ α0

and starting with α0 it is easy to get

α1 ≤ α2 ≤ ·· · ≤ αn ≤ αn+1 ≤ ·· · ≤ β0.

Finally we show that βn ≥ αn for all n. For this by assuming βn ≥ αn, we show that
βn+1 ≥ αn+1. From equation (6.21) it is easy to get

− (x2(βn+1 −αn+1)
′(x))′−λx2(βn+1 −αn+1)≥ 0,

(βn+1 −αn+1)
′(0) = 0, (βn+1 −αn+1)(1)≥ δ (βn+1 −αn+1)(η).

Hence from Proposition 6.1, βn+1 ≥ αn+1. Thus we have

α0 ≤ α1 ≤ α2 ≤ ·· · ≤ αn ≤ αn+1 ≤ ·· · ≤ βn+1 ≤ βn ≤ ·· · ≤ β2 ≤ β1 ≤ β0.

So the sequences (βn) and (αn) are monotonically non-increasing and non-decreasing,
respectively and are bounded by β0 and α0. Hence by Dini’s theorem they converges
uniformly. Let β̃ (x) = lim

n→∞
βn(x) and α̃(x) = lim

n→∞
αn(x).

Using Lemma 6.2, the solution βn+1 of (6.21) is given by

βn+1 =
b η sin

(
x
√

λ

)
x
(

η sin
(√

λ

)
−δ sin

(
η
√

λ

)) −
∫

0

1
G(x, t)t2( f (t,βn)−λβn)dt.



114 Nonlinear three point SBVPs due to spherical symmetry

Then by Lebesgue’s dominated convergence theorem, taking the limit as n → ∞, we get

β̃ (x) =
b η sin

(
x
√

λ

)
x
(

η sin
(√

λ

)
−δ sin

(
η
√

λ

)) −
∫

0

1
G(x, t)t2( f (t, β̃ )−λβ̃ )dt.

Which is the solution of boundary value problem (6.3)–(6.4). The same is true for (αn).

Any solution z(x) in D can play the role of β0(x), hence z(x)≥ α̃(x) and similarly one
concludes that z(x)≤ β̃ (x). �

6.5.2 Case II: When λ < 0

Theorem 6.2. Let there exist α0, β0 in C2[0,1] such that β0 ≥ α0 and satisfy

−(x2
β
′
0(x))

′ ≥ x2 f (x,β0), 0 < x < 1, β
′
0(0) = 0, β0(1)≥ δβ0(η), (6.23)

and

−(x2
α
′
0(x))

′ ≤ x2 f (x,α0), 0 < x < 1, α
′
0(0) = 0, α0(1)≤ δα0(η). (6.24)

If f : D̃ →R is continuous on D̃ := {(x,y) ∈ [0,1]×R : α0 ≤ y ≤ β0} and there exists M > 0
such that for all (x, ỹ),(x, w̃) ∈ D̃

ỹ ≤ w̃ =⇒ f (x, w̃)− f (x, ỹ)≥−M(w̃− ỹ)

then the nonlinear three point SBVP (6.3)–(6.4) has at least one solution in the region D̃. If ∃
a constant λ such that M+λ ≤ 0 and (H ′

0) is satisfied then the sequence (βn) generated by

−(x2y′n+1(x))
′−λx2yn+1 = x2F(x,yn), y′n+1(0) = 0, yn+1(1) = δyn+1(η), (6.25)

where F(x,y) = f (x,y)−λy, with initial iterate β0 converges monotonically (non-increasing)
and uniformly towards a solution β (x) of (6.3)–(6.4). Similarly using α0 as an initial iterate
leads to a non-decreasing sequence (αn) converging to a solution α(x). Any solution Z(x) in
D̃ must satisfy

α(x)≤ Z(x)≤ β (x).

Proof. Proof follows from the analysis of Theorem 6.1. �
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6.6 Examples

With the help of following examples, we verify our results and show that it is possible to
choose a value of “λ” so that iterative scheme generates monotone sequences which converge
to solution of nonlinear singular problem. Thus these examples validate sufficient conditions
derived in the Theorem 6.1 and Theorem 6.2.

Example 6.1. Consider the nonlinear three point SBVP

− y′′(x)− 2
x

y′(x) =
3
4

ey(x), (6.26)

y′(0) = 0, y(1) =
2
5

y
(

1
2

)
. (6.27)

0.5 cosJ Λ N - 0.4 cosJ0.5 Λ N
0.5 sinJ Λ N - 0.4 sinJ0.5 Λ N

Λ
0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

-0.1

0.0

0.1

0.2

0.3

Fig. 6.1 Plot of (H0) for example 6.1.

Here f (x,y) = 3
4ey, δ = 2

5 , η = 1
2 . This problem has α0 = 0 and β0 =

2−x2

3 as lower
and upper solutions, and it is well ordered case. The nonlinear term is Lipschitz in y and
continuous for all value of y, and Lipschitz constant M is 3

4 . Now we find out a subinterval
Rλ = (ξ1,ξ2) of (0, j2

− 1
2 ,1

) such that the conditions M−λ ≥ 0 and (H0) (See Figure 6.1)
are true. Thus existence of at least one solution is guaranteed.

Example 6.2. Consider the nonlinear three point SBVP

− y′′(x)− 2
x

y′(x) = y(x)+1, (6.28)

y′(0) = 0, y(1) =
1
2

y
(

3
10

)
. (6.29)
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Here f (x,y) = y+1, δ = 1
2 , η = 3

10 . This problem has α0 = 0 and β0 = 2− x2 as lower
and upper solutions, and this is a well ordered case. The source term is linear, Lipschitz
in y and continuous for all value of y, and Lipschitz constant M is 1. Now we find out a
subinterval Rλ = (ξ1,ξ2) of (0, j2

− 1
2 ,1

) such that the conditions M−λ ≥ 0 and (H0) (See
Figure 6.2) are true. Thus existence of at least one solution is guaranteed.

0.3 cosJ Λ N - 0.5 cosJ0.3 Λ N

0.3 sinJ Λ N - 0.5 sinJ0.3 Λ N

Λ
0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Fig. 6.2 Plot of (H0) for example 6.2.

Λ

0.4 coshJ  Λ¤ N - 0.7 coshJ0.4  Λ¤ N
0.4 sinhJ  Λ¤ N - 0.7 sinhJ0.4  Λ¤ N

-5 -4 -3 -2 -1

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Fig. 6.3 Plot of (H ′
0) for example 6.3.

Example 6.3. Consider the nonlinear three point SBVP

− y′′(x)− 2
x

y′(x) =
1

36

[
e2

5
−2(y(x))3

]
, (6.30)

y′(0) = 0, y(1) =
7

10
y
(

2
5

)
. (6.31)

Here f (x,y) = 1
36

[
e2

5 −2(y(x))3
]
, δ = 7

10 ,η = 2
5 . This problem has α0 =−1 and β0 = 1

as lower and upper solutions, and this is a well ordered case. The nonlinear term is Lipschitz
in y and continuous for all value of y, and Lipschitz constant M is 1

6 . For some λ less than(
−1

6

)
, (H ′

0) (See Figure 6.3) will be true. Using Mathematica 10 and iterative scheme (6.5)
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we compute upper and lower solutions (See Figure 6.4). Thus existence of at least one
solution is guaranteed.

Βn

Αn

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Fig. 6.4 Plot of upper (βn) & lower (αn) solutions for n = 0(1)2 and λ =−10.

Example 6.4. Consider the nonlinear three point SBVP

− y′′(x)− 2
x

y′(x) = 1−2y(x), (6.32)

y′(0) = 0, y(1) =
1

10
y
(

2
5

)
. (6.33)

Here f (x,y) = 1−2y, δ = 1
10 , η = 2

5 . This problem has α0 =−1 and β0 = 1 as lower
and upper solutions, and this is a well ordered case. The nonlinear term is Lipschitz in y
and continuous for all value of y, and Lipschitz constant M is 2. For λ < −2 we can see
that (H ′

0) (See Figure 6.5) will be true. Using Mathematica 10 and iterative scheme (6.5) we
compute upper and lower solutions (See Figure 6.6). These sequences converge uniformly to
a solution of the problem (6.32)–(6.33).

Λ

0.4 coshJ  Λ¤ N - 0.1 coshJ0.4  Λ¤ N
0.4 sinhJ  Λ¤ N - 0.1 sinhJ0.4  Λ¤ N

-14 -12 -10 -8 -6 -4 -2

-2

2

4

6

8

10

Fig. 6.5 Plot of (H ′
0) for example 6.4.
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6.7 Conclusion

In this chapter we establish existence of solutions for a class of nonlinear singular three point
boundary value problems. The BVPs of this kind can be considered as generalizations of two
point SBVPs in spherical symmetry, e.g., [31], [82].We allow the Lipschitz constant to take
both positive and negative values. Due to lack of uniform anti-maximum principle reversed
ordered upper and lower solutions case is not observed. We have used Mathematica to plot
solutions for ∂ f

∂y < 0 but the same could not be achieved for ∂ f
∂y > 0. The work in this paper

can further be generalized to a class of singular nonlinear differential equations, e.g.,

−(py′)′ = q f (x,y, py′), 0 < x < 1, p(0) = 0,

subject to different kind of multi point boundary conditions, which depend on the nature of
p, q and f .

Β
n

Α
n

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Fig. 6.6 Plot of upper (βn) & lower (αn) solutions for n = 0(1)4 and λ =−24.



Chapter 7

Nonlinear three point singular boundary
value problems arising due to cylindrical
symmetry

7.1 Introduction

Consider the following nonlinear two point singular boundary value problems (SBVPs)

− y′′− α

x
y′ = f (x,y), 0 < x < 1, (7.1)

y′(0) = 0, y(1) = A, (7.2)

In chapter 6, we explored the three point variation of (7.1)–(7.2) for α = 2 and we could get
only well order case. In this chapter, we consider the case when α = 1. Three point variation
of the two point SBVP (7.1)–(7.2) for α = 1, can be written as

− y′′(x)− 1
x

y′(x) = f (x,y), 0 < x < 1, (7.3)

y′(0) = 0, y(1) = δy(η), (7.4)

where f : I × R→ R, I = [0,1], 0 < η < 1, δ > 0. Equations (7.3)–(7.4) model thermal
balance ([31]) between heat generated by the chemical reaction and that conducted away in
cylindrical vessel. In this case we consider cylindrical vessel and there is another concentric
cylinder inside the cylindrical vessel which we can use to monitor the temperature inside
the vessel. The boundary condition at x = 1 is the temperature at the walls of outer cylinder
which is related to the temperature at walls at x = η of an interior cylinder by y(1) = δy(η).
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This model can help us to maintain the required temperature interior to the vessel which is
otherwise not possible.

There are lot of results available when upper solution β0 and lower solution α0 are well
ordered, i.e., α0 ≤ β0. But situation is quite different when upper and lower solutions occur
in the reverse order, that is α0 ≥ β0, and lot of exploration is still needed. When upper and
lower solutions are in reverse order some results are available for regular three point BVPs
([92, 141, 142] and the references there in). There are lots of differences between regular
and singular differential equations and hence lot of complications arise when existing theory
is applied to three point SBVPs.

In this chapter we consider nonlinear three point SBVP (7.3)–(7.4) and use monotone
iterative technique in the the presence of upper and lower solutions. We establish maximum
and anti-maximum principles for the corresponding linear case for three point SBVPs.

We propose the following iterative scheme

− y′′n+1(x)−
1
x

y′n+1(x)−λyn+1(x) = f (x,yn)−λyn(x), λ ∈ R\{0},

y′n+1(0) = 0, yn+1(1) = δyn+1(η),

 (7.5)

where sup
(

∂ f
∂y

)
allowed to take both negative and positive values.

Under quite general conditions we show that a range for values of λ on both side of
real line can be found so that the above iterative scheme produces convergent monotonic
sequences which are solutions of the iterative scheme. These sequences converge uniformly
to the solution of the nonlinear three point SBVP (7.3)–(7.4). To start the iteration and to
produce monotonic sequences we need some initial guess in terms of differential inequalities.
These inequalities provide initial guess as well as upper and lower bound for above discussed
sequences of solutions. For λ > 0, we get reverse order case and for λ < 0, we arrive at well
order case.

This chapter is organized in the following sections. In Section 7.2, we use Lommel’s
transformation to find out two linearly independent solutions in terms of Bessel function
(J0, Y0) and modified Bessel functions (I0, K0). Using these two linearly independent
solutions Green’s function is constructed in Section 7.3 and Section 7.4 state maximum
and anti-maximum principles. Finally all these results are used to establish two existence
theorems for nonlinear three point SBVPs in Section 7.5. The sufficient conditions derived
in this chapter are verified for two examples (see Section 7.6). In Section 7.7, we summarize
the conclusions.
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7.2 The Linear case

This section is devoted to a corresponding linear case of the nonlinear three point SBVP
(7.3)–(7.4). We consider the following class of three point linear SBVP,

− (xy′(x))′−λxy(x) = xh(x), 0 < x < 1, (7.6)

y′(0) = 0, y(1) = δy(η)+b, (7.7)

where h ∈C(I) and b is any constant.

The corresponding homogeneous system is given by

− (xy′(x))′−λxy(x) = 0, 0 < x < 1, (7.8)

y′(0) = 0, y(1) = δy(η). (7.9)

The differential equation (7.8) can be written in the following form

xy′′(x)+ y′(x)+λxy(x) = 0. (7.10)

Using Lommel’s transformation (§cf [38, 51])

z = x
√

λ , w = y(x), (7.11)

the Bessel’s equation

z2 d2w
dz2 + z

dw
dz

+ z2 w = 0, (7.12)

is transformed into (7.10). Now, if w1(z) and w2(z) are two linearly independent solutions of
Bessel’s equation (7.12), then the two linearly independent solutions of (7.10) are given by

y1(x) = w1

(
x
√

λ

)
, y2(x) = w2

(
x
√

λ

)
. (7.13)

Hence the two linearly independent solutions of (7.10) can be obtained in terms of w1(z) and
w2(z).

A solution of (7.12) which is bounded in the neighborhood of the origin is w1 = J0(z) (for
λ > 0) and w1 = I0(z) (for λ < 0). Hence a solution of (7.10) which remains bounded in the
neighborhood of the origin (except for a multiplicative constant) denoted as y1(x,λ ) is given



122 Nonlinear three point SBVPs due to cylindrical symmetry

by

y1(x,λ ) =


J0

(
x
√

λ

)
, if λ > 0;

I0

(
x
√
|λ |
)
, if λ < 0.

(7.14)

J0HxL
J1HxL
Y0HxL
Y1HxL

1 2 3 4

-2

-1

0

1

2

Fig. 7.1 Plot of Bessel functions J0(x), J1(x), Y0(x), Y1(x).

Remark 7.1. Let y0,1, y1,1, j0,1 and j1,1 be the first positive zeros of Y0(x), Y1(x), J0(x) and
J1(x) respectively then y0,1 < y1,1 < j0,1 < j1,1.

7.3 Green’s function for linear three point SBVPs

In this section we construct Green’s function. We divide it into two cases.

7.3.1 Case I: λ > 0.

Let us assume

(H0) : 0 < λ < y2
0,1, δ Y0

(
η
√

λ

)
−Y0

(√
λ

)
≤ 0, J0

(√
λ

)
−δJ0

(
η
√

λ

)
< 0.

There exists a range of λ > 0 such that (H0) is true (See figure 7.2).

Lemma 7.1. For 0 < λ < y2
0,1,

J0

(
x
√

λ

)
Y0

(
t
√

λ

)
−Y0

(
x
√

λ

)
J0

(
t
√

λ

)
≤ 0, 0 ≤ t, x ≤ 1

such that t ≤ x and x is fixed.
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Proof. Let x = x0 ∈ [0,1] be fixed. Let

F̃(x0, t) = J0

(
x0
√

λ

)
Y0

(
t
√

λ

)
−Y0

(
x0
√

λ

)
J0

(
t
√

λ

)
.

Using the properties of J0

(
t
√

λ

)
, Y0

(
t
√

λ

)
for t ≤ x0 and 0 < λ < y2

0,1, we get that F̃(x0, t)

is an increasing function of t. At t = x0, F̃(x0,x0) = 0. Thus F̃(x0, t)≤ 0, ∀ t ≤ x0. But x0

can take any value in [0,1] therefore F̃(x, t)≤ 0 ∀ t ≤ x. �

Lemma 7.2. The Green’s function for the following linear three point SBVP

(xy′(x))′+λxy(x) = 0, 0 < x < 1, (7.15)

y′(0) = 0, y(1) = δy(η), (7.16)

is given by

G(x, t) =
1

Dλ



πJ0

(
x
√

λ

)(
J0

(
t
√

λ

)(
δY0

(
η
√

λ

)
−Y0

(√
λ

))
+Y0

(
t
√

λ

)(
J0

(√
λ

)
−δJ0

(
η
√

λ

)))
, 0 ≤ x ≤ t ≤ η ;

πJ0

(
t
√

λ

)(
J0

(
x
√

λ

)(
δY0

(
η
√

λ

)
−Y0

(√
λ

))
+Y0

(
x
√

λ

)(
J0

(√
λ

)
−δJ0

(
η
√

λ

)))
, t ≤ x, t ≤ η ;

πJ0

(
x
√

λ

)(
J0

(√
λ

)
Y0

(
t
√

λ

)
−Y0

(√
λ

)
J0

(
t
√

λ

))
, x ≤ t, η ≤ t;

π

(
J0

(
x
√

λ

)(
δJ0

(
η
√

λ

)
Y0

(
t
√

λ

)
−Y0

(√
λ

)
J0

(
t
√

λ

))
+
(

J0

(√
λ

)
−δJ0

(
η
√

λ

))(
J0

(
t
√

λ

)
Y0

(
x
√

λ

)))
, η ≤ t ≤ x ≤ 1,

where Dλ = 2
(

J0

(√
λ

)
−δJ0

(
η
√

λ

))
and if (H0) holds then G(x, t)≥ 0.

Proof. We define Green’s function as given below

G(x, t) =



a1 J0

(
x
√

λ

)
+a2 Y0

(
x
√

λ

)
, 0 ≤ x ≤ t ≤ η ;

a3 J0

(
x
√

λ

)
+a4 Y0

(
x
√

λ

)
, t ≤ x, t ≤ η ;

a5 J0

(
x
√

λ

)
+a6 Y0

(
x
√

λ

)
, x ≤ t, η ≤ t;

a7 J0

(
x
√

λ

)
+a8 Y0

(
x
√

λ

)
, η ≤ t ≤ x ≤ 1.

Using the properties of the Green’s function, for any t ∈ [0,η ], we have

a1J0

(
t
√

λ

)
+a2Y0

(
t
√

λ

)
= a3J0

(
t
√

λ

)
+a4Y0

(
t
√

λ

)
,(

−a1
√

λ J1

(
t
√

λ

)
−a2

√
λ Y1

(
t
√

λ

))
−
(
−a3

√
λ J1

(
t
√

λ

)
−a4

√
λ Y1

(
t
√

λ

))
=−1

t
,
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which gives

a1 −a3 =
1
2

πY0

(
t
√

λ

)
,

a2 −a4 =−1
2

πJ0

(
t
√

λ

)
.

Using the boundary conditions, we have

a2 = 0,

a3 J0

(√
λ

)
+a4 Y0

(√
λ

)
= δ

(
a3 J0

(
η
√

λ

)
+a4 Y0

(
η
√

λ

))
.

Using above four equation, we get

a1 =
π

(
J0

(
t
√

λ

)(
δY0

(
η
√

λ

)
−Y0

(√
λ

))
+Y0

(
t
√

λ

)(
J0

(√
λ

)
−δJ0

(
η
√

λ

)))
2
(

J0

(√
λ

)
−δJ0

(
η
√

λ

)) ,

a2 = 0,

a3 =
πJ0

(
t
√

λ

)(
δY0

(
η
√

λ

)
−Y0

(√
λ

))
2
(

J0

(√
λ

)
−δJ0

(
η
√

λ

)) ,

a4 =
1
2

πJ0

(
t
√

λ

)
.

Similarly for any t ∈ [η ,1], we have

a5J0

(
t
√

λ

)
+a6Y0

(
t
√

λ

)
= a7J0

(
t
√

λ

)
+a8Y0

(
t
√

λ

)
,(

−a5
√

λ J1

(
t
√

λ

)
−a6

√
λ Y1

(
t
√

λ

))
−
(
−a7

√
λ J1

(
t
√

λ

)
−a8

√
λ Y1

(
t
√

λ

))
=−1

t
,

which gives

a5 −a7 =
1
2

πY0

(
t
√

λ

)
,

a6 −a8 =−1
2

πJ0

(
t
√

λ

)
.

By using the boundary conditions in [η ,1] we have

a6 = 0,

a7 J0

(√
λ

)
+a8 Y0

(√
λ

)
= δ

(
a5 J0

(
η
√

λ

)
+a6 Y0

(
η
√

λ

))
.
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By above four equations, we get

a5 =
π

(
J0

(√
λ

)
Y0

(
t
√

λ

)
−Y0

(√
λ

)
J0

(
t
√

λ

))
2
(

J0

(√
λ

)
−δJ0

(
η
√

λ

)) ,

a6 = 0,

a7 =
π

(
δJ0

(
η
√

λ

)
Y0

(
t
√

λ

)
−Y0

(√
λ

)
J0

(
t
√

λ

))
2
(

J0

(√
λ

)
−δJ0

(
η
√

λ

)) ,

a8 =
1
2

πJ0

(
t
√

λ

)
.

This completes the construction of Green’s function.

Now by Lemma 7.1, G(x, t)≥ 0. �

Lemma 7.3. Let y ∈ C2(I) be a solution of nonhomogeneous linear three point SBVPs
(7.6)–(7.7) then

y(x) =
b J0

(
x
√

λ

)
J0

(√
λ

)
−δJ0

(
η
√

λ

) −
∫

0

1
t G(x, t)h(t)dt. (7.17)

Proof. Suppose G(x, t) is the Green’s function of

(xy′(x))′+λxy(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

and ȳ(x) is solution of

(xy′(x))′+λxy(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δ (η)+b,

then the boundary value problem (7.6)–(7.7) is equivalent to

y(x) = ȳ(x)−
∫ 1

0
t G(x, t)h(t)dt.

Suppose

ȳ(x) = c1 J0

(
x
√

λ

)
+ c2 Y0

(
x
√

λ

)
.
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Since

ȳ′(0) = 0, and ȳ(1) = δ ȳ(η)+b,

we get

c1 =
b

J0

(√
λ

)
−δJ0

(
η
√

λ

) ,
c2 = 0.

Hence the three point linear SBVP (7.6)–(7.7) is equivalent to

y(x) =
b J0

(
x
√

λ

)
J0

(√
λ

)
−δJ0

(
η
√

λ

) −
∫

0

1
t G(x, t)h(t)dt.

�

7.3.2 Case II: λ < 0.

Assume that

(H ′
0) : λ < 0, δ K0

(
η
√
|λ |
)
− K0

(√
|λ |
)
≥ 0, I0

(√
|λ |
)
−δ I0

(
η
√
|λ |
)
> 0.

There exists a range of λ < 0, such that (H ′
0) holds (See figure 7.3).

Lemma 7.4. For sufficiently small λ < 0

I0

(
t
√
|λ |
)

K0

(
x
√

|λ |
)
− I0

(
x
√

|λ |
)

K0

(
t
√
|λ |
)
≤ 0, 0 ≤ t, x ≤ 1,

such that t ≤ x and x is fixed.

Proof. Proof follows by arguments similar to Lemma 7.1. �

Lemma 7.5. The Green’s function for the following linear three point SBVP

(xy′(x))′+λxy(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

for λ < 0 is given by
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G(x, t) =
1

D′
λ

×



I0

(
x
√

|λ |
)(

K0

(
t
√
|λ |
)(

δ I0

(
η
√
|λ |
)
− I0

(√
|λ |
))

+I0

(
t
√

|λ |
)(

K0

(√
|λ |
)
−δK0

(
η
√
|λ |
)))

, 0 ≤ x ≤ t ≤ η ;

I0

(
t
√

|λ |
)(

I0

(
x
√

|λ |
)(

K0

(√
|λ |
)
−δK0

(
η
√
|λ |
))

−K0

(
x
√

|λ |
)(

I0

(√
|λ |
)
−δ I0

(
η
√

|λ |
)))

, t ≤ x, t ≤ η ;

I0

(
x
√

|λ |
)(

K0

(√
|λ |
)

I0

(
t
√

|λ |
)
− I0

(√
|λ |
)

K0

(
t
√

|λ |
))

, x ≤ t,η ≤ t;

I0

(
x
√
|λ |
)(

K0

(√
|λ |
)

I0

(
t
√

|λ |
)
−δ I0

(
η
√
|λ |
)

K0

(
t
√

|λ |
))

−
(

I0

(√
|λ |
)
−δ I0

(
η
√
|λ |
))(

I0

(
t
√

|λ |
)

K0

(
x
√

|λ |
))

, η ≤ t ≤ x ≤ 1.

where D′
λ
= I0

(√
|λ |
)
−δ I0

(
η
√

|λ |
)

and if
(
H ′

0
)

holds then G(x, t)≤ 0.

Proof. The construction of Green’s function is same as given in Lemma 7.2. Using Lemma
7.4 and (H ′

0) we get that G(x, t)≤ 0. �

Lemma 7.6. Let y ∈C2(I) be a solution of nonhomogeneous linear three point SBVP (7.6)–
(7.7) then

y(x) =
b I0

(
x
√

|λ |
)

I0

(√
|λ |
)
−δ I0

(
η
√
|λ |
) −

∫ 1

0
t G(x, t)h(t)dt. (7.18)

Proof. Proof is same as given in Lemma 7.3. �

7.4 Anti-maximum and maximum principles

Using the positivity and negativity of Green’s function, we established anti-maximum and
maximum principle. Which help us to prove the monotonicity of the sequences.

Proposition 7.1. (Anti-maximum principle)
Let b ≥ 0, h(x) ∈C[0,1] is such that h(x)≥ 0, and (H0) holds, then the solution of (7.6) and
(7.7) is non-positive.

Proposition 7.2. (Maximum principle)
Let b ≥ 0, h(x) ∈C[0,1] is such that h(x)≥ 0, and (H ′

0) holds, then the solution of (7.6) and
(7.7) is non-negative.
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7.5 The Nonlinear SBVP

Based on maximum and anti-maximum principle, we establish the existence of solution of
nonlinear three point SBVP and divide. We divide it into the two cases.

7.5.1 Reverse ordered lower and upper solutions

Theorem 7.1. Let there exist α0, β0 in C2[0,1], such that β0 ≤ α0 and satisfy

−(xβ
′
0(x))

′ ≥ x f (x,β0), 0 < x < 1; β
′
0(0) = 0, β0(1)≥ δβ0(η), (7.19)

and

−(xα
′
0(x))

′ ≤ x f (x,α0), 0 < x < 1; α
′
0(0) = 0, α0(1)≤ δα0(η). (7.20)

If f : D →R is continuous on D := {(x,y) ∈ [0,1]×R : β0 ≤ y ≤ α0} and there exists M > 0
such that for all (x,y),(x,w) ∈ D

y ≤ w =⇒ f (x,w)− f (x,y)≤ M(w− y), (7.21)

then the nonlinear three point SBVP (7.3)–(7.4) has at least one solution in the region D. If ∃
a constant λ such that M−λ ≤ 0 and (H0) is satisfied then the sequence (βn) generated by

− (xy′n+1(x))
′−λxyn+1 = xF(x,yn), y′n+1(0) = 0, yn+1(1) = δyn+1(η), (7.22)

where F(x,yn)= f (x,yn)−λyn, with initial iterate β0 converges monotonically (non-decreasing)
and uniformly towards a solution β̃ (x) of (7.3)–(7.4). Similarly α0 as an initial iterate leads
to a non-increasing sequence (αn) converging to a solution α̃(x). Any solution z(x) in D
must satisfy

β̃ (x)≤ z(x)≤ α̃(x).

Proof. From equation (7.19) and equation (7.22) (for n = 0)

− (x(β0 −β1)
′(x))′−λx(β0 −β1)≥ 0,

(β0 −β1)
′(0) = 0, (β0 −β1)(1)≥ δ (β0 −β1)(η).

Since h(x)≥ 0 and b ≥ 0, by using Proposition 7.1 we have β0 ≤ β1.
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In view of M−λ ≤ 0, from equations (7.22) and (7.21), we get

− (xβ
′
n+1(x))

′ ≥ x [−(M−λ )(βn+1 −βn)+ f (x,βn+1)]

and if (βn ≤ βn+1), then

−(xβ
′
n+1(x))

′ ≥ x f (t,βn+1); β
′
n+1(0) = 0, βn+1(1) = δβn+1(η). (7.23)

Since β0 ≤ β1, then from equation (7.23) (for n = 0) and (7.22) (for n = 1) we get

− (x(β1 −β2)
′(x))′−λx(β1 −β2)≥ 0,

(β1 −β2)
′(0) = 0, (β1 −β2)(1)≥ δ (β1 −β2)(η),

From Proposition 7.1 we have β1 ≤ β2.

Now from equations (7.20) and (7.22) (for n = 0)

− (x(β1 −α0)
′(x))′−λx(β1 −α0)≥ 0,

(β1 −α0)
′(0) = 0 (β1 −α0)(1)≥ δ ((β1 −α0)(η).

Thus β1 ≤ α0 follows from proposition 7.1.

Now assuming βn ≤ βn+1, βn+1 ≤ α0, we show that βn+1 ≤ βn+2 and βn+2 ≤ α0 for all
n. From equations (7.22) (for n+1) and (7.23) we get

− (x(βn+1 −βn+2)
′(x))′−λx(βn+1 −βn+2)≥ 0,

(βn+1 −βn+2)
′(0) = 0, (βn+1 −βn+2)(1)≥ δ (βn+1 −βn+2)(η),

and hence from Proposition 7.1 we have βn+1 ≤ βn+2.

From equation (7.22) (for n+1) and (7.20) we get,

− (x(βn+2 −α0)
′(x))′− xλ (βn+2 −α0)≥ 0,

(βn+2 −α0)
′(0) = 0, (βn+2 −α0)(1)≥ δ (βn+2 −α0)(η).

Then from proposition 7.1, βn+2 ≤ α0 and hence we have

β1 ≤ β2 ≤ ·· · ≤ βn ≤ βn+1 ≤ ·· · ≤ α0
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and starting with α0 it is easy to get

α1 ≥ α2 ≥ ·· · ≥ αn ≥ αn+1 ≥ ·· · ≥ β0.

Finally we show that βn ≤ αn for all n. For this by assuming βn ≤ αn, we show that
βn+1 ≤ αn+1. From equation (7.22) it is easy to get

− (x(βn+1 −αn+1)
′(x))′−λx(βn+1 −αn+1)≥ 0,

(βn+1 −αn+1)
′(0) = 0, (βn+1 −αn+1)(1)≥ δ (βn+1 −αn+1)(η).

Hence from Proposition 7.1, βn+1 ≤ αn+1. Thus we have

α0 ≥ α1 ≥ α2 ≥ ·· · ≥ αn ≥ αn+1 ≥ ·· · ≥ βn+1 ≥ βn ≥ ·· · ≥ β2 ≥ β1 ≥ β0.

So the sequences (βn) and (αn) are monotonically non-decreasing and non-increasing,
respectively and are bounded by β0 and α0. Hence by Dini’s theorem they converges
uniformly. Let β̃ (x) = lim

n→∞
βn(x) and α̃(x) = lim

n→∞
αn(x).

Using Lemma 7.3, the solution βn+1 of equation (7.22) is given by

βn+1 =
b J0

(
x
√

λ

)
J0

(√
λ

)
−δJ0

(
η
√

λ

) −
∫

0

1
t G(x, t)( f (t,βn)−λβn)dt.

Then by Lebesgue’s dominated convergence theorem, taking the limit as n → ∞, we get

β̃ (x) =
b J0

(
x
√

λ

)
J0

(√
λ

)
−δJ0

(
η
√

λ

) −
∫

0

1
t G(x, t)( f (t, β̃ )−λβ̃ )dt,

which is the solution of boundary value problem (7.3)–(7.4). Similar equation can be defined
for the sequence of lower solutions also.

Any solution z(x) in D can play the role of β0(x), hence z(x)≤ α̃(x) and similarly one
concludes that z(x)≥ β̃ (x). �

7.5.2 Well-ordered lower and upper solutions

Theorem 7.2. Let there exist α0, β0 in C2[0,1] such that β0 ≥ α0 and satisfy

−(xβ
′
0(x))

′ ≥ x f (x,β0), 0 < x < 1; β
′
0(0) = 0, β0(1)≥ δβ0(η), (7.24)
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and

− (xα
′
0(x))

′ ≤ x f (x,α0), 0 < x < 1; α
′
0(0) = 0, α0(1)≤ δα0(η). (7.25)

If f : D̃0 → R is continuous on D̃0 := {(x,y) ∈ [0,1]×R : α0 ≤ y ≤ β0} and there exists
M > 0 such that for all (x, ỹ),(x, w̃) ∈ D̃0

ỹ ≤ w̃ =⇒ f (x, w̃)− f (x, ỹ)≥−M(w̃− ỹ) (7.26)

then the nonlinear three point SBVP (7.3)–(7.4) has at least one solution in the region D̃.
If ∃ a constant λ such that λ < 0, M+λ ≤ 0 and (H ′

0) is satisfied then the sequence (βn)

generated by

− (xy′n+1(x))
′−λxyn+1 = xF(x,yn), y′n+1(0) = 0, yn+1(1) = δyn+1(η), (7.27)

where F(x,yn)= f (x,yn)−λyn, with initial iterate β0 converges monotonically (non-increasing)
and uniformly towards a solution β (x) of (7.3)–(7.4). Similarly α0 as an initial iterate leads
to a non-decreasing sequence (αn) converging to a solution α(x). Any solution Z(x) in D̃
must satisfy

α(x)≤ Z(x)≤ β (x).

Proof. Proof follows from the analysis of Theorem 7.1. �

7.6 Examples

In this section we apply our results to the following examples and show that there exists
at least one value of λ ∈ R\{0} such that iterative scheme generates monotone sequences
which converge to solutions of nonlinear problem.

Thus these examples validate sufficient conditions derived in Theorem 7.1 and Theorem
7.2.

Example 7.1. Consider the nonlinear three point SBVP

− y′′(x)− 1
x

y′(x) =
ey(x)−1

64
, (7.28)

y′(0) = 0, y(1) = 3y
(

1
2

)
. (7.29)
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Here f (x,y) = ey(x)−1
64 , δ = 3, η = 1

2 . This problem has α0 = 1 and β0 = −1 as lower
and upper solutions, i.e., it is non well ordered case. The nonlinear term is Lipschitz in
y, continuous for all value of y, and Lipschitz constant M is e

64 . Now we can find out a
subinterval Rλ = (ξ1,ξ2) of ( e

64 ,y
2
0,1) such that the conditions M−λ ≤ 0 and (H0) are true

(See Figure 7.2). Hence there exists a solution of the problem (7.28)–(7.29) in the region
D := {(x,y) ∈ [0,1]×R : β0 ≤ y ≤ α0}.

3 Y0J0.5 Λ N - Y0J Λ N
J0J Λ N - 3 J0J0.5 Λ N

Λ
0.2 0.4 0.6 0.8

-10

-8

-6

-4

-2

0

Fig. 7.2 Plot of (H0) for example 7.1.

Example 7.2. Consider the nonlinear three point SBVP

− y′′(x)− 1
x

y′(x) =
ex −3(y(x))3

96
, (7.30)

y′(0) = 0, y(1) =
1
2

y
(

1
3

)
. (7.31)

Here f (x,y) = ex−3(y(x))3

96 , δ = 1
2 ,η = 1

3 . This problem has α0 =−1 and β0 = 1 as lower
and upper solutions, respectively. This is a well ordered case. The nonlinear term is Lipschitz
in y, continuous for all value of y and Lipschitz constant M is 3

32 . For some λ less than(
− 3

32

)
, (H ′

0) will be true (See Figure 7.3). Hence there exists a solution of the problem
(7.30)–(7.31) in the region D̃0 := {(x,y) ∈ [0,1]×R : α0 ≤ y ≤ β0}.

7.7 Conclusion

In this chapter we deal with existence of solution for nonlinear singular differential equa-
tion −y′′(x)− 1

x y′(x) = f (x,y) on 0 < x < 1 subject to y′(0) = 0, y(1) = δy(η). We have
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Fig. 7.3 Plot of (H ′
0) for example 7.2

computed a range of λ ∈ R\{0} such that the iterative scheme gives uniformly convergent
sequence. The limit of this sequence is nothing but a solution of the nonlinear problem.
Region of multiple solutions is also determined.





Chapter 8

Nonlinear three point SBVPs : A
classification

8.1 Introduction

In this chapter we generalize the result of chapter 6 & 7 and classify well order and reverse
order cases for different values of α . For this, we consider the following nonlinear three
point SBVP

− (xαy′(x))′ = xα f (x,y), 0 < x < 1, (8.1)

y′(0) = 0, y(1) = δy(η), (8.2)

where f : I ×R→ R, I = [0,1], 0 < η < 1, δ > 0 and α ≥ 1.

Given that f (x,y) is continuous and Lipschitz continuous in its domain, we propose the
following monotone iterative scheme for the nonlinear three point SBVP (8.1)–(8.2),

− y′′n+1(x)−
α

x
y′n+1(x)−λyn+1(x) = f (x,yn)−λyn(x), λ ∈ R\{0},

y′n+1(0) = 0, yn+1(1) = δyn+1(η),

 (8.3)

and prove that solution exists and belongs to the class C[0,1]∩ C2[0,1].

Definition 8.1. If the functions u0,v0 ∈C2[0,1] are defined as

− (xαu′0(x))
′ ≥ xα f (x,u0), 0 < x < 1; (8.4)

u′0(0) = 0, u0(1)≥ δu0(η), (8.5)
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and

− (xαv′0(x))
′ ≤ xα f (x,v0), 0 < x < 1; (8.6)

v′0(0) = 0, v0(1)≤ δv0(η), (8.7)

then u0 and v0 are called upper and lower solutions of the nonlinear three point SBVP
(8.1)–(8.2), respectively. If v0 ≤ u0, we say it is well order case and if v0 ≥ u0, it is known as
reverse order case.

We observe that depending on the values of α , we can classify well ordered and reversed
order cases. The classification, we deduce does not exist in the literature to the best of our
knowledge. These results also generalize some existing result [92, 142, 143, 154]. Also the
purpose of this chapter is to prove existence of unique solution for a class of nonlinear three
point SBVP (8.1)–(8.2).

This chapter is organized in several sections. In Section 8.2, we use Lommel’s trans-
formation to find out two linearly independent solutions in the terms of Bessel functions.
Using these two linearly independent solutions Green’s functions are constructed for dif-
ferent classes of α (See figure 8.1) in Section 8.3 and Section 8.4 states maximum and
anti-maximum principles. Finally in Section 8.5 all these results are used to establish some
existence and uniqueness theorems. The sufficient conditions derived in this chapter are
verified for certain values of α which belongs to different classes of α in Section 8.6. Finally,
the conclusions based on the observation are given in Section 8.7

8.2 The linear three point SBVP

The linear SBVP corresponding to the nonlinear three point SBVP (8.1)–(8.2) is studied in
this section. We consider the following inhomogeneous class of three point linear SBVP,

− (xαy′(x))′−λxαy(x) = xαh(x), 0 < x < 1, (8.8)

y′(0) = 0, y(1) = δy(η)+b, (8.9)

where h ∈C(I) and b is any constant. To solve the inhomogeneous system (8.8)–(8.9), we
consider the corresponding homogeneous system

− (xαy′(x))′−λxαy(x) = 0, 0 < x < 1, (8.10)

y′(0) = 0, y(1) = δy(η). (8.11)
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Using Lommel’s transformation (§cf [38, 51]) z = βζ γ , w = ζ−av(ζ ), the standard Bessel’s
equation (8.12) is transformed into (8.13)

z2 d2w
dz2 + z

dw
dz

+(z2 −ν
2)w = 0, (8.12)

ζ
2 d2v

dζ 2 +ζ (1−2a)
dv
dζ

+
[
(βγζ

γ)2 +(a2 −ν
2
γ

2)
]

v = 0. (8.13)

Now, by Lommel’s Transformation the two linearly independent solutions of (8.13) are given
by

v1(x) = ζ
aw1 (βζ

γ) , v2(x) = ζ
aw2 (βζ

γ) , (8.14)

where w1(z) and w2(z) are two linearly independent solutions of Bessel’s equation (8.12).
Now, if we set ν = a= 1−α

2 , γ = 1, β 2 = λ , then (8.13) reduces to (8.10) and hence we obtain
the two linearly independent solutions of (8.10) in terms of w1(z) and w2(z). A solution
of (8.10) which is bounded in the neighborhood of the origin (except for a multiplicative
constant) given by xνJ−ν

(
x
√

λ

)
, if λ > 0 and xν I−ν

(
x
√
|λ |
)
, if λ < 0.

Note 8.1. Here J−ν , Yν are Bessel functions of first and second kind and I−ν and Kν are
Modified Bessel functions of first and second kind.

8.3 Green’s function

The Green’s function is constructed in terms of Bessel functions and sign of Bessel functions
and hence sign of Green’s function depend on values of λ and α . Hence we divide this
section into the following subsections.

8.3.1 Case I: When λ > 0 and α /∈ {1,3,5, · · ·}.

Suppose that

(H0) : 0 < λ < j2
ν ,1, 0 < δ < 1, δηνJν

(
η
√

λ

)
− Jν

(√
λ

)
≥ 0, and

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)
> 0, for α ∈

⋃
n∈N(4n−3,4n−1), and

(H1) : 0 < λ < j2
ν ,1, δ ≥ 1, δηνJν

(
η
√

λ

)
− Jν

(√
λ

)
≤ 0 and

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)
< 0, for α ∈

⋃
n∈N(4n−1,4n+1),
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−𝒚′′(𝒙) −
𝜶

𝒙
𝒚′(𝒙) − 𝝀𝒚 = 𝟎,    𝒚′(𝟎) = 𝟎, 𝒚(𝟏) = 𝜹𝒚(𝜼) + 𝒃. 

𝝂 =
𝟏 − 𝜶

𝟐
 

𝜶 ∈ [𝟏, ∞) , 

𝜶 ∉ {𝟏, 𝟑, 𝟓, 𝟕 … … … } 

i.e.,  𝝂 ∉ {−𝟏, −𝟐, −𝟑, … } 

or,  𝜶 ∈ ⋃ (𝟐𝒏 − 𝟏, 𝟐𝒏 + 𝟏)𝒏∈𝑵  

 

 

𝜶 ∈ {𝟏, 𝟑, 𝟓, 𝟕 … … … }, 

i.e.,  𝝂 ∈ {−𝟏, −𝟐, −𝟑, … } 

 

𝑱−𝝂 &  𝑱𝝂 are Linear Independent 

 

𝑱−𝝂 &  𝒀𝝂 are Linear Independent 

 

𝜶 ∈ ⋃ (𝟒𝒏 − 𝟏, 𝟒𝒏 + 𝟏)𝒏∈𝑵   

𝝂 ∈ ⋃ (−𝟐𝒏, −𝟐𝒏 + 𝟏)𝒏∈𝑵   

 

 

𝜶 ∈ ⋃ (𝟒𝒏 − 𝟑, 𝟒𝒏 − 𝟏)𝒏∈𝑵   

𝝂 ∈ ⋃ (−𝟐𝒏 + 𝟏, −𝟐𝒏 + 𝟐)𝒏∈𝑵   

 

Assumption  [𝑯𝟎] 

Well Order (𝒗𝟎 ≤ 𝒖𝟎) 

Assumption  [𝑯𝟏] 

Reverse Order (𝒗𝟎 ≥ 𝒖𝟎) 

            

       𝜶 ∈ {𝟑, 𝟕, 𝟏𝟏 … … … },  

       i.e.,  𝝂 ∈ {−𝟏, −𝟑, −𝟓, … } 

 

       𝜶 ∈ {𝟏, 𝟓, 𝟗 … … … },  

       i.e.,  𝝂 ∈ {𝟎, −𝟐, −𝟒, … } 

 

Assumption  [𝑯𝟐] 

Well Order  (𝒗𝟎 ≤ 𝒖𝟎) 

 

Assumption  [𝑯𝟑] 

Reverse Order (𝒗𝟎 ≥ 𝒖𝟎) 

 

Assumption  

[𝑯′𝟎] 

Well Order 

(𝒗𝟎 ≤ 𝒖𝟎) 

 

𝝀 > 0 𝝀 < 0 

𝑰−𝝂 &  𝑲𝝂 are 

Linear 

Independent 

 

Fig. 8.1 Classification of well order and reverse order cases for different values of α
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where j2
ν ,1 is the first zero of Jν(x).

For a range of λ > 0, (H0) and (H1) are true, where α ∈
⋃

n∈N(4n− 3,4n− 1) and
α ∈

⋃
n∈N(4n−1,4n+1), respectively.

Next two lemmas help us to fix the sign of Green’s function.

Lemma 8.1. For 0 < λ < j2
ν ,1, the Bessel functions of first kind (Jν and J−ν) satisfy the

following inequality

rν

(
J−ν

(
s
√

λ

)
Jν

(
r
√

λ

)
− Jν

(
s
√

λ

)
J−ν

(
r
√

λ

))
≥ 0, 0 < r ≤ s ≤ 1,

where ν = 1−α

2 and α ∈
⋃

n∈N(4n−3,4n−1).

Proof. Suppose

Φ̃(s,r) = rν

(
J−ν

(
s
√

λ

)
Jν

(
r
√

λ

)
− Jν

(
s
√

λ

)
J−ν

(
r
√

λ

))
,

and let s = s0 ∈ [0,1] be fixed. As

J−ν

(
s0
√

λ

)
J−1+ν

(
r
√

λ

)
+ Jν

(
s0
√

λ

)
J1−ν

(
r
√

λ

)
≤ J−ν

(
s0
√

λ

)
J−1+ν

(
s0
√

λ

)
+ Jν

(
s0
√

λ

)
J1−ν

(
x0
√

λ

)
=

2sinνπ

πs0
√

λ
≤ 0,

for r ≤ s0. Now making use of the above inequality, we deduce that Φ̃(s0, t) is a non-
increasing function of r. As Φ̃(s0,s0)= 0 at r = s0, which implies that Φ̃(s0,r)≥ 0, ∀ r ≤ s0.
But as s0 takes any value in [0,1] therefore Φ̃(s,r)≥ 0, ∀ 0 < r ≤ s ≤ 1. �

Lemma 8.2. For 0 < λ < j2
ν ,1, the Bessel functions of first kind (Jν and J−ν) satisfy the

following inequality

rν

(
J−ν

(
s
√

λ

)
Jν

(
r
√

λ

)
− Jν

(
s
√

λ

)
J−ν

(
r
√

λ

))
≤ 0, 0 < r ≤ s ≤ 1,

where ν = 1−α

2 and α ∈
⋃

n∈N(4n−1,4n+1).
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Proof. Proof follows from the analysis similar to Lemma 8.1, and the inequality

J−ν

(
s0
√

λ

)
J−1+ν

(
r
√

λ

)
+ Jν

(
s0
√

λ

)
J1−ν

(
r
√

λ

)
≥ J−ν

(
s0
√

λ

)
J−1+ν

(
s0
√

λ

)
+ Jν

(
s0
√

λ

)
J1−ν

(
s0
√

λ

)
=

2sinνπ

πs0
√

λ
≥ 0,

for r ≤ s0. �

Lemma 8.3. For the linear three point SBVPs (8.10)–(8.11), where α /∈ {1,3,5, · · ·}, the
Green’s function is given by

G(x, t) =


G1(x, t), 0 ≤ x ≤ t ≤ η ;
G2(x, t), t ≤ x, t ≤ η ;
G3(x, t), x ≤ t, η ≤ t;
G4(x, t), η ≤ t ≤ x ≤ 1,

where

G1(x, t) =
π csc(πν)tνxνJ−ν

(
x
√

λ

)
2
(

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)) [δη
ν

(
Jν

(
η
√

λ

)
J−ν

(
t
√

λ

)
−J−ν

(
η
√

λ

)
Jν

(
t
√

λ

))
+
(

J−ν

(√
λ

)
Jν

(
t
√

λ

)
− Jν

(√
λ

)
J−ν

(
t
√

λ

))]
,

G2(x, t) =
1
2

π csc(πν)tνxνJ−ν

(
t
√

λ

)
J−ν

(
x
√

λ

)(
δηνJν

(
η
√

λ

)
− Jν

(√
λ

))
J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

) + Jν

(
x
√

λ

) ,

G3(x, t) =
π csc(πν)tνxν

(
J−ν

(√
λ

)
Jν

(
t
√

λ

)
− Jν

(√
λ

)
J−ν

(
t
√

λ

))
J−ν

(
x
√

λ

)
2
(

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)) ,

G4(x, t) =
1
2

π csc(πν)tνxν

J−ν

(
x
√

λ

)(
δηνJ−ν

(
η
√

λ

)
Jν

(
t
√

λ

)
− Jν

(√
λ

)
J−ν

(
t
√

λ

))
J−ν

(√
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)
−δηνJ−ν

(
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λ

)
+J−ν

(
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)
Jν

(
x
√

λ

))
.

If H0 (or H1) holds then G(x, t)≤ 0 (or G(x, t)≥ 0).
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Proof. We define the Green’s function as follows

G(x, t) =



a1 xνJ−ν

(
x
√

λ

)
+a2 xνJν

(
x
√

λ

)
, 0 ≤ x ≤ t ≤ η ;

a3 xνJ−ν

(
x
√

λ

)
+a4 xνJν

(
x
√

λ

)
, t ≤ x, t ≤ η ;

a5 xνJ−ν

(
x
√

λ

)
+a6 xνJν

(
x
√

λ

)
, x ≤ t, η ≤ t;

a7 xνJ−ν

(
x
√

λ

)
+a8 xνJν

(
x
√

λ

)
, η ≤ t ≤ x ≤ 1.

Using the continuity and jump discontinuity of the Green’s function, for any t ∈ [0,η ], we
get

a1tνJ−ν

(
t
√

λ

)
+a2tνJν

(
t
√

λ

)
= a3tνJ−ν

(
t
√

λ

)
+a4tνJν

(
t
√

λ

)
,

−a1tν
√

λJ1−ν

(
t
√

λ

)
+a2tν

√
λJν−1

(
t
√

λ

)
+a3tν

√
λJ1−ν

(
t
√

λ

)
−a4tν

√
λJν−1

(
t
√

λ

)
=− 1

t1−2ν
,

and boundary conditions, we have the following system of equations

A0X0 = B0,

where

A0 =


1 0 −1 0
0 1 0 −1
0 1 0 0

0 0 J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)
Jν

(√
λ

)
−δηνJν

(
η
√

λ

)
 ,

X0 =


a1

a2

a3

a4

 , B0 =


πtν Jν(t

√
λ)

2sinνπ

−πtν J−ν(t
√

λ)
2sinνπ

0
0

 .

Solution of above system gives,

a1 =
π csc(πν)tν

2
(

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)) [J−ν

(
t
√

λ

)(
δη

νJν

(
η
√

λ

)
− Jν

(√
λ

))
+Jν

(
t
√

λ

)(
J−ν

(√
λ

)
−δη

νJ−ν

(
η
√

λ

))]
,
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a2 =0,

a3 =
π csc(πν)tνJ−ν

(
t
√

λ

)(
δηνJν

(
η
√

λ

)
− Jν

(√
λ

))
2
(

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)) ,

a4 =
1
2

π csc(πν)tνJ−ν

(
t
√

λ

)
.

Similarly for any t ∈ [η ,1], we have

a5tνJ−ν

(
t
√

λ

)
+a6tνJν

(
t
√

λ

)
= a7tνJ−ν

(
t
√

λ

)
+a8tνJν

(
t
√

λ

)
,

and

−a5tν
√

λJ1−ν

(
t
√

λ

)
+a6tν

√
λJν−1

(
t
√

λ

)
+a7tν

√
λJ1−ν

(
t
√

λ

)
−a8tν

√
λJν−1

(
t
√

λ

)
=− 1

t1−2ν
.

The above two equations and boundary conditions in [η ,1] gives

A1X1 = B1,

where

A1 =


1 0 −1 0
0 1 0 −1
0 1 0 0

δηνJ−ν

(
η
√

λ

)
δηνJν

(
η
√

λ

)
−J−ν

(√
λ

)
−Jν

(√
λ

)
 ,

X1 =


a5

a6

a7

a8

 , B1 =


πtν Jν(t

√
λ)

2sinνπ

−πtν J−ν(t
√

λ)
2sinνπ

0
0

 .

By above four equations we have

a5 =
π csc(πν)tν

(
J−ν

(√
λ

)
Jν

(
t
√

λ

)
− Jν

(√
λ

)
J−ν

(
t
√

λ

))
2
(

J−ν

(√
λ

)
−δηνJ−ν

(
η
√
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)) ,
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a6 = 0,

a7 =
π csc(πν)tν

(
δηνJ−ν

(
η
√

λ

)
Jν

(
t
√

λ

)
− Jν

(√
λ

)
J−ν

(
t
√

λ

))
2
(

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)) ,

a8 =
1
2

π csc(πν)tνJ−ν

(
t
√

λ

)
.

This completes the construction of Green’s function. Using (H0) (or H1) and Lemma 8.1 (or
Lemma 8.2) we get that G(x, t)≤ 0 (or G(x, t)≥ 0). �

8.3.2 Case II: When λ > 0 and α ∈ {1,3,5, · · ·}.

Suppose that

(H2) : 0 < λ < y2
ν ,1, 0 < δ < 1, δηνYν

(
η
√

λ

)
−Yν

(√
λ

)
≥ 0,

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)
> 0, for α ∈ {3,7,11, · · ·}, and

(H3) : 0 < λ < y2
ν ,1, δ ≥ 1, δηνYν

(
η
√

λ

)
−Yν

(√
λ

)
≤ 0,

J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)
< 0, for α ∈ {1,5,9, · · ·},

where y2
ν ,1 is the first zero of Yν(x). For a given range of λ , the assumptions (H2) and (H3)

hold, where α ∈ {3,7,11, · · ·} and α ∈ {1,5,9, · · ·}, respectively.

Lemma 8.4. For 0 < λ < y2
ν ,1, the Bessel functions of first and second kind (J−ν and Yν)

satisfy the following inequality

rν

(
J−ν

(
s
√

λ

)
Yν

(
r
√

λ

)
−Yν

(
s
√

λ

)
J−ν

(
r
√

λ

))
≥ 0, 0 < r ≤ s ≤ 1,

where ν = 1−α

2 and α ∈ {3,7,11, · · ·}.

Proof. Suppose

F̃(s,r) = rν

(
J−ν

(
s
√

λ

)
Yν

(
r
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λ

)
−Yν

(
s
√

λ

)
J−ν

(
r
√

λ

))
,

and let s = s0 ∈ [0,1] be fixed.
Now as J−ν

(
s0
√

λ

)
≥ J1−ν

(
r
√

λ

)
and −Yν

(
s0
√

λ

)
≥Y−1+ν

(
r
√

λ

)
for r ≤ s0, when

0 < λ ≤ y2
v,1, where α ∈ {3,7,11, · · ·}. So with the help of these inequalities we see that

F̃(s0,r) is an non-increasing function of r. As F̃(s0,s0) = 0 at r = s0, which implies that
F̃(s0,r)≥ 0, ∀ r ≤ s0. But as s0 takes any value in [0,1] therefore F̃(s,r)≥ 0, ∀ 0 < r ≤
s ≤ 1. �
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Lemma 8.5. For 0 < λ < y2
ν ,1, the Bessel functions of first and second kind (J−ν and Yν)

satisfy the following inequality

rν

(
J−ν

(
s
√

λ

)
Yν

(
r
√

λ

)
−Yν

(
s
√

λ

)
J−ν

(
r
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≤ 0, 0 < r ≤ s ≤ 1,

where ν = 1−α

2 and α ∈ {1,5,9, · · ·}.

Proof. By using the inequalities

J−ν

(
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√
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)
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(
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)
and Yν

(
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√

λ

)
≥−Y−1+ν

(
r
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)
for r ≤ s0, when 0 < λ ≤ y2

v,1, where α ∈ {1,5,9, · · ·}, we can prove this lemma as we did
in Lemma 8.4. �

Lemma 8.6. For the linear three point SBVPs (8.10)–(8.11), where α ∈ {1,3,5, · · ·}, the
Green’s function is given by

G(x, t) =


G1(x, t), 0 ≤ x ≤ t ≤ η ;
G2(x, t), t ≤ x, t ≤ η ;
G3(x, t), x ≤ t, η ≤ t;
G4(x, t), η ≤ t ≤ x ≤ 1,

where

G1(x, t) =
π sec(πν)tνxνJ−ν

(
x
√
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)
2
(
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(√
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)
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,

G2(x, t) =
1
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G3(x, t) =
π sec(πν)tνxνJ−ν
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)
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G4(x, t) =
1
2

π sec(πν)tνxν

J−ν

(
x
√

λ

)(
δηνJ−ν

(
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)
Yν

(
t
√

λ

)
−Yν

(√
λ

)
J−ν

(
t
√

λ

))
J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

)
+J−ν

(
t
√

λ

)
Yν

(
x
√

λ

))
.

If H2 (or H3) holds then G(x, t)≤ 0 (or G(x, t)≥ 0).

Proof. The construction of Green’s function follows the analysis similar to Lemma 8.3.
Using the assumption (H2) (or H3) and Lemma 8.4 (or Lemma 8.5) we get that G(x, t)≤ 0
(or G(x, t)≥ 0). �

Now we state Lemmas 8.7, 8.9 and 8.10 and we omit proof for brevity.

Lemma 8.7. If y∈C2(I) is a solution of inhomogeneous linear three point SBVPs (8.8)–(8.9),
then

y(x) =
b xνJ−ν

(
x
√

λ

)
J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

) −
∫

0

1
tα G(x, t)h(t)dt. (8.15)

8.3.3 Case III: When λ < 0.

Suppose that

(H ′
0) : δ > 0, Kν

(√
|λ |
)
−δηνKν

(
η
√
|λ |
)
≤ 0 and I−ν

(√
|λ |
)
−δην I−ν

(
η
√
|λ |
)
> 0

for α ∈ [1,∞).

Lemma 8.8. For λ < 0, the modified Bessel functions of first and second kind (I−ν and Kν)

satisfy the following inequality

rν

(
Kν

(
s
√

|λ |
)

I−ν
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)
− I−ν

(
s
√
|λ |
)
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(
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≤ 0, 0 < r ≤ s ≤ 1

where ν = 1−α

2 and α ∈ [1,∞).

Proof. Suppose

F̃1(s,r) = rν

(
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(
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√

|λ |
)

I−ν

(
r
√

|λ |
)
− I−ν

(
s
√
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)

Kν

(
r
√

|λ |
))

,

and further assume that s = s0 ∈ [0,1] be fixed. The function F̃1(s0,r) is non-decreasing in r
for all α ∈ [1,∞). At r = s0, F̃1(s0,s0) = 0, i.e., F̃1(s0,r)≤ 0, ∀ r ≤ s0. But as s0 takes any
value in [0,1] therefore F̃(s,r)≤ 0, ∀ 0 < r ≤ s ≤ 1. �
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Lemma 8.9. For the following linear three point SBVPs (8.10)–(8.11), where α ∈ [1,∞), the
Green’s function is given by

G(x, t) =


G1(x, t), 0 ≤ x ≤ t ≤ η ;
G2(x, t), t ≤ x, t ≤ η ;
G3(x, t), x ≤ t, η ≤ t;
G4(x, t), η ≤ t ≤ x ≤ 1,

where

G1(x, t) =
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,

G3(x, t) =
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tνxν

I−ν

(√
|λ |
)
−δην I−ν

(
η
√

|λ |
) [I−ν

(
x
√
|λ |
)(

Kν

(√
|λ |
)

I−ν

(
t
√
|λ |
)

−δη
ν I−ν

(
η
√
|λ |
)

Kν

(
t
√
|λ |
))

− I−ν

(
t
√
|λ |
)

Kν

(
x
√

|λ |
)(

I−ν

(√
|λ |
)

−δη
ν I−ν

(
η
√
|λ |
))]

,

and if (H ′
0) holds then G(x, t)≤ 0.

Lemma 8.10. If y ∈C2(I) is a solution of inhomogeneous linear three point SBVPs (8.8)–
(8.9) then

y(x) =
b xν I−ν

(
x
√
|λ |
)

I−ν

(√
|λ |
)
−δην I−ν

(
η
√

|λ |
) −

∫
0

1
tα G(x, t)h(t)dt.
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8.4 Maximum and anti-maximum principles

The constant sign of Green’s function produces the following anti-maximum and maximum
principles.

Proposition 8.1. (Anti-maximum principle)
Assume λ > 0 and (H1) or (H3) holds, and y ∈C2(I) satisfies

− (xαy′(x))′−λxαy(x)≥ 0, 0 < x < 1,

y′(0) = 0, y(1)≥ δy(η).

Then y(x)≤ 0, ∀x ∈ [0,1].

Proposition 8.2. (Maximum principle)

(Max1) Assume λ > 0 and (H0) or (H2) holds, and y ∈C2(I) satisfies

− (xαy′(x))′−λxαy(x)≥ 0, 0 < x < 1,

y′(0) = 0, y(1)≥ δy(η).

Then y(x)≥ 0, ∀x ∈ [0,1].

(Max2) Assume λ < 0, (H ′
0) holds and y ∈C2(I) satisfies

− (xαy′(x))′−λxαy(x)≥ 0, 0 < x < 1,

y′(0) = 0, y(1)≥ δy(η).

Then y(x)≥ 0, ∀x ∈ [0,1].

8.5 Existence results

On the basis of anti-maximum and maximum principles, we divide this section into the
following two subsections.

8.5.1 Reverse ordered case

Theorem 8.1. Assume that

(R1) there exist u0, v0 in C2[0,1] such that u0 ≤ v0, where u0 satisfies (8.4)–(8.5) and v0

satisfies (8.6)–(8.7);
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(R2) the function f : D → R is continuous on D := {(x,y) ∈ [0,1]×R : u0 ≤ y ≤ v0};

(R3) there exists M1 > 0 such that for all (x,y),(x,w) ∈ D,

y ≤ w =⇒ f (x,w)− f (x,y)≤ M1(w− y);

(R4) there exists a constant λ > 0 such that M1 −λ ≤ 0 and H1 or H3 holds.

Then the nonlinear three point SBVP (8.1)–(8.2) has at least one solution in the region D.
Sequence (un) generated by equation (8.3), with initial iterate u0 converges monotonically
(non-decreasing) and uniformly towards a solution u(x) of (8.1)–(8.2). Similarly v0 as an
initial iterate leads to a non-increasing sequences (vn) converging to a solution v(x). Any
solution z(x) in D satisfies

u(x)≤ z(x)≤ v(x).

Proof. By using analysis similar to the the proof of Theorem 7.1 of chapter 7, we have

u0 ≤ u1 ≤ u2 ≤ . . .≤ un ≤ un+1 ≤ . . .≤ vn+1 ≤ vn ≤ . . .≤ v2 ≤ v1 ≤ v0.

So the sequence (un) is monotonically non-decreasing and bounded above by v0, similarly
(vn) is non-increasing and bounded below by u0. Hence by Dini’s theorem they converge
uniformly. Let u(x) = lim

n→∞
un(x) and v(x) = lim

n→∞
vn(x).

Now by using Lemma 8.7, the solution un+1 of (8.3) is given by

un+1 =
b xνJ−ν

(
x
√

λ

)
J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

) −
∫

0

1
G(x, t)tα( f (t,un)−λun)dt.

Now by Lebesgue’s dominated convergence theorem, we get

u(x) =
b xνJ−ν

(
x
√

λ

)
J−ν

(√
λ

)
−δηνJ−ν

(
η
√

λ

) −
∫

0

1
G(x, t)tα( f (t,u)−λu)dt.

Which is the solution of nonlinear three point SBVP (8.1)–(8.2). The same is true for (αn).
It is easy to see that u(x)≤ z(x)≤ v(x). �

8.5.2 Well ordered case

Based on the sign of λ , we prove two Existence theorems; Theorem 8.2 and Theorem 8.3.
The proof of these theorems are similar to the proof of Theorem 8.1.
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Theorem 8.2. Assume that

(W1) there exist u0, v0 in C2[0,1] such that v0 ≤ u0, where u0 satisfies (8.4)–(8.5) and v0

satisfies (8.6)–(8.7);

(W2) the function f : D1 → R is continuous on D1 := {(x,y) ∈ [0,1]×R : v0 ≤ y ≤ u0};

(W3) there exists M2 > 0 such that for all (x,y),(x,w) ∈ D1,

y ≤ w =⇒ f (x,w)− f (x,y)≥ M2(w− y);

(W4) there exists a constant λ > 0 such that M2 −λ ≥ 0 and H0 or H2 holds.

Then the nonlinear three point SBVP (8.1)–(8.2) has at least one solution in the region D1.
Sequence (un) generated by equation (8.3), with initial iterate u0 converges monotonically
(non-increasing) and uniformly towards a solution u(x) of (8.1)–(8.2). Similarly v0 as an
initial iterate leads to a non-decreasing sequence (vn) converging to a solution v(x). Any
solution z(x) in D1 satisfies

v(x)≤ z(x)≤ u(x).

Theorem 8.3. Assume that

(W ′
1) there exist u0, v0 in C2[0,1] such that v0 ≤ u0, where u0 satisfies (8.4)–(8.5) and v0

satisfies (8.6)–(8.7);

(W ′
2) the function f : D2 → R is continuous on D2 := {(x,y) ∈ [0,1]×R : v0 ≤ y ≤ u0};

(W ′
3) there exists M3 > 0 such that for all (x, ỹ),(x, w̃) ∈ D2,

ỹ ≤ w̃ =⇒ f (x, w̃)− f (x, ỹ)≥−M3(w̃− ỹ);

(W ′
4) there exists a constant λ < 0 such that M3 +λ ≤ 0 and (H ′

0) holds.

Then the nonlinear three point SBVP (8.1)–(8.2) has at least one solution in the region D2.
Sequence (un) generated by equation (8.3), with initial iterate u0 converges monotonically
(non-increasing) and uniformly towards a solution u(x) of (8.1)–(8.2). Similarly v0 as an
initial iterate leads to a non-decreasing sequence (vn) converging to a solution v(x). Any
solution z(x) in D2 satisfies

v(x)≤ z(x)≤ u(x).
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8.5.3 Uniqueness

Theorem 8.4. Let f (x,y) be continuous on D (or D1 or D2) and there exists a constant
Mλ > 0 such that

f (x,u)− f (x,v)≤ Mλ (u− v),

and Mλ < λ1, where λ1 ≤ min
{

j2
ν ,1,y

2
ν ,1, i

2
−ν ,1,k

2
ν ,1

}
. Then the nonlinear three point SBVP

(8.1)–(8.2) has a unique solution.

Proof. Suppose u(x) and v(x) are any two solutions of (8.1)–(8.2) then we get

− (xα(u− v)′)′ = xα [ f (x,u)− f (x,v)] ,

(u− v)′(0) = 0, (u− v)(1) = δ (u− v)(η),

which gives

− (xα(u− v)′)′−Mλ xα(u− v)≤ 0,

(u− v)′(0) = 0, (u− v)(1) = δ (u− v)(η).

By the maximum and anti-maximum principles, whenever Mλ < λ1, we get u− v ≤ 0 or
u− v ≥ 0, (i.e., u ≤ v or u ≥ v) for different class of α . Similarly by changing the role
of u and v, we get u ≥ v or u ≤ v. Hence u ≡ v. Therefore the solution of (8.1)–(8.2) is
unique. �

8.6 Examples

We give some examples and validate the assumptions which guarantee the existence results
which is derived in the Theorem 8.1, Theorem 8.2 and Theorem 8.3.

8.6.1 Reverse ordered upper and lower solution

The following example validate the result of Theorem 8.1, and gives a range of λ for which
we can generate two monotone sequences which converge to the solution of nonlinear SBVP.

Example 8.1. Consider the nonlinear three point SBVP

− y′′(x)− α

x
y′(x) =

α (ey −1)− x
4

, (8.16)

y′(0) = 0, y(1) = 3y
(

1
7

)
, (8.17)
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where f (x,y) = α (ey−1)−x
4 , δ = 3, η = 1

7 and α satisfies (H1) or (H3). In this problem
we choose lower and upper solutions as v0 = 1 and u0 =−1, where v0 ≥ u0, i.e., it is reverse
ordered case. Here nonlinear term satisfies all assumptions for Theorem 8.1 and Lipschitz
constant M1 is eα

4 . Now we can find out a range for λ ∈ (eα

4 , j2
ν ,1) such that (H1) or

(H3) is true. Hence there exists a unique solution of the SBVP (8.16)–(8.17) in domain
D := {(x,y) ∈ [0,1]×R : u0 ≤ y ≤ v0}.

8.6.2 Well ordered upper and lower solutions

The following examples validate the results of Theorem 8.2 and Theorem 8.3. On the basis
of sign of “λ”, we divide this subsection into the following two parts.

8.6.2.1 When λ > 0

Example 8.2. Consider the nonlinear three point SBVP

− y′′(x)− α

x
y′(x) = dey, (8.18)

y′(0) = 0, y(1) =
1
2

y
(

1
3

)
, (8.19)

where f (x,y) = dey, d = 2(1+α)e−
2
3

3 δ = 1
2 , η = 1

3 and α satisfies (H0) or (H2). Here
we choose lower and upper solutions as v0 = 0 and u0 = 2−x2

3 , where v0 ≤ u0, i.e., it
is well ordered case. The nonlinear term satisfies all assumptions for Theorem 8.2 and
Lipschitz constant M2 is d. Now we can find out a range for λ > 0 such that the conditions
M2 −λ ≥ 0, (H0) or (H2) are true. Hence existence of a unique solution is guaranteed in
domain D1 := {(x,y) ∈ [0,1]×R : v0 ≤ y ≤ u0}.

8.6.2.2 When λ < 0

Example 8.3. Consider the nonlinear three point SBVP

− y′′(x)− α

x
y′(x) = 1−2y3, (8.20)

y′(0) = 0, y(1) =
1
3

y
(

1
4

)
. (8.21)

Here f (x,y) = 1−2y3, δ = 1
3 , η = 1

4 and α satisfies (H ′
0). In this problem we choose

lower and upper solutions as v0 =−1 and u0 = 1, where v0 ≤ u0, i.e., it is well ordered case.
The nonlinear term satisfies all assumptions of Theorem 8.3, and Lipschitz constant M3 is
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6. Now we can find out a range for λ < 0 such that the conditions M3 +λ ≤ 0 and (H ′
0) are

true. Hence a unique solution exists in domain D2 := {(x,y) ∈ [0,1]×R : v0 ≤ y ≤ u0}.

Example 8.4. Consider the nonlinear three point SBVP

− y′′(x)− 3
x

y′(x) = 1−7y2, (8.22)

y′(0) = 0, y(1) = 2.2y
(

1
5

)
. (8.23)

Here f (x,y) = 1−7y3, δ = 2.2, η = 1
5 and α satisfies (H ′

0). In this problem we choose
lower and upper solutions as v0 = 0 and u0 = 7

4 +
5
2x2 i.e., it is well ordered case. The

nonlinear term satisfies all assumptions for Theorem 8.3, and Lipschitz constant M3 is 119
2 .

Now we can find out a range for λ < 0 such that the conditions M3 +λ ≤ 0 and (H ′
0) are

true. Thus unique solution exists in domain D2 := {(x,y) ∈ [0,1]×R : v0 ≤ y ≤ u0}.

8.7 Conclusion

In this chapter we have established existence of a unique solution of nonlinear three point
SBVPs −(xαy′(x))′ = xα f (x,y), 0< x< 1, y′(0) = 0, y(1) = δy(η), where δ > 0, 0< η < 1
and α ≥ 1. We observe that when sup(∂ f/∂y) > 0 for α ∈ ∪n∈N (4n−1,4n+1) or α ∈
{1,5,9, · · ·} reverse ordered case occur. When sup(∂ f/∂y)> 0 for α ∈∪n∈N (4n−3,4n−1)
or α ∈ {3,7,11, · · ·} and when sup(∂ f/∂y)< 0 for all α ≥ 1 well order case occur. This
classification does not exist in the literature to the best of our knowledge.



Chapter 9

Nonlinear three point SBVPs with
derivative dependent source term

9.1 Introduction

The appropriate equation for the thermal balance between the heat generated by the chemical
reaction and that conducted away can be written as

∇
2 u(P) = f (P,u(P),du(P)/dP). (9.1)

Due to geometric similarity, we arrive at the following nonlinear singular differential equation

−y′′(x)− γ

x
y′(x) = f (x,y,xγy′), 0 < x < 1, (9.2)

where γ corresponds to geometry of the vessel under consideration. In this work we consider
the case when γ = 1, i.e., the reaction is taking place in cylindrical vessel whose length is
much larger than the radius. Thus we have the following singular differential equation

−y′′(x)− 1
x

y′(x) = f (x,y,xy′), 0 < x < 1. (9.3)

Chamber [31] considered the case when f (x,y,xy′) = ey. His model was based on Arrhenius
law.

The work in this chapter generalizes the results of chapter 7. We consider the following
three point boundary conditions,

y′(0) = 0, y(1) = δy(η), (9.4)
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where δ > 0 and 0 < η < 1. Similar to chapter 7 in this chapter also we arrive at both reverse
order and well order cases.

We prove some inequalities based on Bessel and modified Bessel functions and establish
the existence results for (9.3)–(9.4) in a region D := {(x,u,w) ∈ [0,1]×R2 : β0(x) ≤ u ≤
α0(x)} or D̃ := {(x,u,w) ∈ [0,1]×R2 : α0(x)≤ u ≤ β0(x)} by using the monotone iterative
method with upper and lower solutions that are reverse ordered and well ordered. The
functions β0(x) and α0(x) are called upper and lower solutions of nonlinear three point
SBVP, (9.3)–(9.4). The function β0(x) satisfies the differential inequalities

−(xβ
′
0(x))

′ ≥ x f (x,β0,xβ
′
0), β

′
0(0) = 0, β0(1)≥ δβ0(η),

and the function α0(x) satisfies the reverse differential inequalities. We further assume that

(F1) the function f : D (or D̃)→ R is continuous on D (or D̃);

(F2) for all (x,u1,w),(x,u2,w) ∈ D (or D̃),

(a) when λ > 0, there exists a constant M1 > 0 in the region D such that

u1 ≤ u2 =⇒ f (x,u2,w)− f (x,u1,w)≤ M1(u2 −u1);

(b) when λ < 0, there exists a constant M2 > 0 in the region D̃ such that

u1 ≤ u2 =⇒ f (x,u2,w)− f (x,u1,w)≥−M2(u2 −u1);

(F3) there exists N > 0 such that for all (x,u,w1),(x,u,w2) ∈ D (or D̃),

| f (x,u,w2)− f (x,u,w1)| ≤ N|w2 −w1|.

We consider the following monotone iterative scheme for nonlinear three point SBVP
(9.3)–(9.4),

− y′′n+1(x)−
1
x

y′n+1(x)−λyn+1(x) = f (x,yn,xy′n)−λyn(x),

y′n+1(0) = 0, yn+1(1) = δyn+1(η),

 (9.5)

where λ ∈ R\{0} and f (x,y,xy′) satisfies (F1), (F2) and (F3).
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9.2 Linear case and Green’s function

Corresponding linear case of (9.3)–(9.4) is same as linear case of chapter 7, where h(t) =
f (t,y,xy′)−λy and assumptions (H0) and (H ′

0) are chosen same as of chapter 7, so maximum
and anti-maximum principles of chapter 7 are directly applicable.

9.3 Some inequalities and existence results

We prove some inequalities based upon properties of Bessel and modified Bessel function
and establish the existence results for both cases, i.e., when upper and lower solutions are
well ordered or in reverse order. We divide this section into the following two subsections.

9.3.1 Reverse ordered lower and upper solutions (α0 ≥ β0)

Lemma 9.1. If 0 < λ < y2
0,1, then the Bessel functions J0 and J1 satisfy the following

inequality
(λ −M1)J0(x

√
λ )−Nx

√
λJ1(x

√
λ )≥ 0,

for all x ∈ [0,1], whenever

λ ≥ M1 +
N2

2
+

N
2

√
N2 +4M1 ,

such that M1,N ∈ R+.

Proof. When 0 < λ < y2
0,1, the Bessel functions satisfy the inequality J0(x

√
λ )≥ J1(x

√
λ ),

for all x ∈ [0,1], which gives us

(λ −M1)J0(x
√

λ )−Nx
√

λJ1(x
√

λ )≥
(
(λ −M1)−N

√
λ

)
J0(x

√
λ ).

Now right hand side will be positive provided
(
(λ −M1)−N

√
λ

)
≥ 0, which gives λ ≥

M1 +
N2

2 + N
2

√
N2 +4M1. Hence the lemma. �

Remark 9.1. It is clear that G(x, t) ≥ 0, for all x, t ∈ [0,1], when (H0) holds. As G(x, t)
satisfies

− (xG′(x))′−λxG(x) = 0, 0 < x < 1,

G′(0) = 0, G(1) = δG(η),
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we deduce that G′(x, t) ≤ 0 and xG′(x, t) ≥ λ

λ−1G(x, t) for λ < 1 and for all x, t ∈ [0,1],
such that x ̸= t.

Lemma 9.2. Suppose (H0) holds and such that 1 > λ ≥ M1 then for all x, t ∈ [0,1], we have
the inequality

(λ −M1)G(x, t)+N x (sign y′)
∂G(x, t)

∂x
≥ 0,

whenever (λ −M1)−N λ

1−λ
≥ 0 and M1,N ∈ R+ and x ̸= t.

Proof. From the above Remark 9.1, it is clear that to prove the above inequality, it is sufficient
to prove (λ −M1)G(x, t)+N x ∂G(x,t)

∂x ≥ 0, for all x, t ∈ [0,1] and x ̸= t. Now again by using
Remark 9.1, we write

(λ −M1)G(x, t)+N x
∂G(x, t)

∂x
≥
(
(λ −M1)−N

λ

1−λ

)
G(x, t).

Now if (λ −M1)−N λ

1−λ
≥ 0, then right hand side will be positive. This completes the proof

of lemma. �

Remark 9.2. If yn = αn+1 −αn, and f is defined in domain D, then we observe that

− (xy′n)
′−λxyn = x f (x,αn,xα

′
n)+(xα

′
n)

′, (9.6)

y′n(0) = 0, yn(1) = δyn(η), (9.7)

and if we assume that αn is lower solution of (9.3)–(9.4), then (9.6)–(9.7) are reduced to the
following SBVP

− (xy′n)
′−λxyn = x f (x,αn,xα

′
n)+(xα

′
n)

′ ≥ 0,

y′n(0) = 0, yn(1)≥ δyn(η).

Finally, by using the Proposition 7.1, we get yn ≤ 0, i.e., αn+1 ≤ αn. Similarly we can get
βn+1 ≥ βn, where βn is an upper solution of (9.3)–(9.4).

Proposition 9.1. Suppose (H0) holds, the source function f satisfies (F1), (F2) and (F3) and
there exists 0<max

{
M1,M1 +

N2

2 + N
2

√
N2 +4M1

}
≤ λ < 1, such that (λ −M1)−N λ

1−λ
≥

0 is valid. Then the functions αn and βn, satisfy the following relations

(a) αn+1 ≤ αn, for all n ∈N, where αn is a lower solution of (9.3)–(9.4),

(b) βn+1 ≥ βn, for all n ∈N, where βn is an upper solution of (9.3)–(9.4),
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and αn, βn are defined recursively by (9.5).

Proof. The above claim is proved by using the principle of Mathematical Induction. Claim
(a) holds for n = 0, i.e., α1 ≤ α0 (see Remark (9.2)). Now suppose that claim is true for
n−1, i.e., αn ≤ αn−1, where αn−1 is lower solution of (9.3)–(9.4), and we will show that the
claim is true for n.

Let y = αn −αn−1, then it is clear that y satisfies

− (xy′)′−λxy = (xα
′
n−1)

′+ x f (x,αn−1,xα
′
n−1)≥ 0,

y′(0) = 0, y(1)≥ δy(η).

To show that αn+1 ≤ αn, we have to prove that αn is a lower solution of (9.3)–(9.4), i.e.,

−(xα
′
n)

′− x f (x,αn,xα
′
n)≤ x

[
(λ −M1)y+N(sign y′)xy′

]
,

where right hand side should be negative. Now, by using equation (7.17) it is sufficient to
prove

(λ −M1)J0(x
√

λ )−Nx
√

λJ1(x
√

λ )≥ 0,

(λ −M1)G(x, t)+N x (sign y′)
∂G(x, t)

∂x
≥ 0, x ̸= t,

for all x, t ∈ [0,1]. Which are true by Lemma 9.1 and Lemma 9.2. Hence αn+1 ≤ αn. Using
similar analysis we can prove the claim (b). Hence βn+1 ≥ βn. �

Proposition 9.2. Suppose (H0) holds, the source term f satisfies (F1), (F2) and (F3) and
there exists 0<max

{
M1,M1 +

N2

2 + N
2

√
N2 +4M1

}
≤ λ < 1 such that (λ −M1)−N λ

1−λ
≥

0 and for all x ∈ [0,1]

f (x,β0(x),xβ
′
0(x))− f (x,α0(x),xα

′
0(x))−λ (β0 −α0)≥ 0,

is valid. Then for all n ∈N, the functions αn and βn defined by (9.5), satisfy αn ≥ βn.

Proof. Suppose yi = βi −αi, it is clear that yi satisfies the singular differential equation

−(xy′i)
′− xλyi = x

[
f (x,βi−1(x),xβ

′
i−1(x))

− f (x,αi−1(x),xα
′
i−1(x))−λ (βi−1 −αi−1)

]
,

= x[hi−1],

 (9.8)

where hi−1 = f (x,βi−1(x),xβ ′
i−1(x))− f (x,αi−1(x),xα ′

i−1(x))−λ (βi−1 −αi−1).
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To prove βi ≤ αi, for all i ∈ N, we have to show that hi−1 ≥ 0, for all i ∈ N. We use
Mathematical Induction. For i = 1, the equation (9.8) is reduced into

−(xy′1)
′− xλy1 = x

[
f (x,β0(x),xβ

′
0(x))− f (x,α0(x),xα

′
0(x))−λ (β0 −α0)

]
,

= x[h0],

by using the conditions (F2) and (F3), we can easily show that h0 ≥ 0, and y′1(0) = 0,
y1(1) = δy1(η). Using Proposition 7.1, we deduce that y1 ≤ 0, i.e., β1 ≤ α1. Now suppose
hn−2 ≥ 0 and βn−1 ≤ αn−1, and we have to prove that hn−1 ≥ 0 and βn ≤ αn.

As

hn−1 = f (x,βn−1(x),xβ
′
n−1(x))− f (x,αn−1(x),xα

′
n−1(x))−λ (βn−1 −αn−1),

= −
[
(λ −M1)yn−1 +N(sign y′n−1)xy′n−1

]
,

where yn−1 = βn−1 −αn−1 is the solutions of nonhomogeneous linear BVP (7.6)–(7.7), with
hn−2 ≥ 0 and y′n−1(0) = 0, yn−1(1) = δyn−1(η). We follow the same analysis as we did in
Proposition 9.1 and we have hn−1 ≥ 0, and y′n(0) = 0, yn(1) = δyn(η). By using Proposition
7.1, we deduce that yn ≤ 0, i.e., αn ≥ βn. �

9.3.1.1 Priori’s bound

Lemma 9.3. If f (x,y,xy′) satisfies

(FR) For all (x,y,xy′) ∈ D, | f (x,y,xy′)| ≤ ϕ(|xy′|); where ϕ : R+ → R+ is continuous and
satisfies

1
2
<
∫

∞

l0

ds
ϕ(s)

,

where l0 = 2sup |xΩ0(x)| and Ω0 = max{|α0(t)|∞, |β0(t)|∞}. Then there exists R > 0 such
that any solution of

− (xy′(x))′ ≥ x f (x,y,xy′), 0 < x < 1, (9.9)

y′(0) = 0, y(1)≥ δy(η), (9.10)

with y ∈ [β0(x),α0(x)] satisfies ∥xy′∥∞ ≤ R.

Proof. We can divide this proof into following three cases:

Case : (i) Suppose that the nature of the solution of nonlinear three point SBVP (9.3)–
(9.4) is non monotone throughout the interval. First we consider the interval (x0,x] ∈ [0,1],
and assume that the slope of the solution at point x0 is zero, and y′(x) > 0, for all x > x0.
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Integrating the equation (9.9) from x0 to x, we get

∫ xy′

0

ds
ϕ(s)

≤ 1
2
.

We choose R such that ∫ xy′

0

ds
ϕ(s)

≤ 1
2
<
∫ R

l0

ds
ϕ(s)

≤
∫ R

0

ds
ϕ(s)

.

This gives xy′(x)≤ R.
Now suppose that the slope of the solution at point x0 is zero, and y′(x)< 0, for all x < x0.

Following the same analysis (as we did above), we get −xy′(x)≤ R.
Case : (ii) Suppose the nature of the solution of nonlinear three point SBVP (9.3)–(9.4)

is monotonically increasing throughout the interval, i.e., y′(x)> 0 in (0,1), then (by using
Mean value Theorem) ∃ a τ ∈ (0,1), such that

y′(τ) =
y(1)− y(0)

1−0
≤ 2|Ω0|,

where Ω0 = max{|α0(t)|∞, |β0(t)|∞}.
Integrating equation (9.9) from τ to x and then using the assumption (FR) we get,

∫ xy′

0

ds
ϕ(s)

≤ 1
2
+
∫ l0

0

ds
ϕ(s)

<
∫ R

0

ds
ϕ(s)

,

which gives xy′(x)≤ R.
Similarly, when y, i.e., the solution of nonlinear three point SBVP (9.3)–(9.4) is mono-

tonically decreasing throughout the interval, then we get −xy′(x)≤ R. �

Similarly we can prove the following result.

Lemma 9.4. If f (x,y,xy′) satisfies (FR), then there exists R > 0 such that any solution of

− (xy′(x))′ ≤ x f (x,y,xy′), 0 < x < 1, (9.11)

y′(0) = 0, y(1)≤ δy(η), (9.12)

with y ∈ [β0(x),α0(x)] satisfies ∥xy′∥∞ ≤ R.

Theorem 9.1. Suppose (H0) holds, the source term f (x,y,xy′) satisfies (F1), (F2) and (F3)

and there exists λ > 0 such that 1 > λ ≥ max
{

M1,M1 +
N2

2 + N
2

√
N2 +4M1

}
and (λ −
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M1)−N λ

1−λ
≥ 0, and for all x ∈ [0,1]

f (x,β0(x),xβ
′
0(x))− f (x,α0(x),xα

′
0(x))−λ (β0 −α0)≥ 0,

is valid, then the sequences (αn) and (βn) defined by (9.5), starting with α0 and β0 as initial
guesses, converge uniformly in C1([0,1]) to solution v and u of nonlinear BVP (9.3)–(9.4),
such that for all x ∈ [0,1] β0 ≤ u ≤ v ≤ α0. Any solution z(x) of (9.3)–(9.4) in D satisfies
u(x)≤ z(x)≤ v(x).

Proof. We can easily show that

α0 ≥ α1 ≥ ·· · ≥ αn ≥ ·· · ≥ βn ≥ ·· · ≥ β1 ≥ β0, (9.13)

with the help of Proposition 9.1 and 9.2, it is clear that (αn) and (βn) are monotone and
bounded. Now by using Dini’s theorem these sequences converge uniformly. Suppose αn → v
and βn → u. By using Priori bound and (F1), we can find that the sequences (xα ′

n) and (xβ ′
n)

are equibounded and equicontinuous in C1([0,1]), i.e., there exist uniformly convergent
subsequences (xα ′

nk) and (xβ ′
nk) in C1([0,1]) (Arzela-Ascoli Theorem). It is easy to check

that xα ′
n −→ xv′ and xβ ′

n −→ xu′, whenever αn → v and βn −→ u.

As equation (7.17) represents the solution of (9.5) with h(x) = f (x,yn,xyn)−λyn. By
taking limit as n → ∞ on both sides of (7.17), we get that v and u are solutions of nonlinear
three point SBVPs (9.3)–(9.4). Any solution z(x) in D plays the role of α0, i.e., z(x)≤ v(x).
Similarly we get z(x)≥ u(x). �

9.3.2 Well ordered lower and upper solutions (α0 ≤ β0)

Lemma 9.5. Let λ < 0, then Modified Bessel functions I0 and I1 satisfy the following
inequality

(λ +M2)I0(x
√

|λ |)+Nx
√

|λ |I1(x
√

|λ |)≤ 0,

for all x ∈ [0,1] if λ satisfies

λ ≤−M2 −
N2

2
− N

2

√
N2 +4M2 ,

where M2,N ∈ R+.

Proof. When λ < 0, the Modified Bessel’s function I0 and I1 satisfy the inequality

I0(x
√
|λ |)≥ I1(x

√
|λ |),
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for all x ∈ [0,1], which gives

(λ +M2)I0(x
√

|λ |)+Nx
√

|λ |I1(x
√
|λ |)≤

(
(M2 +λ )+N

√
|λ |
)

I0(x
√

|λ |).

For the required inequality, we must have (M2 +λ )+N
√
|λ | ≤ 0, i.e.,

λ ≤−M2 −
N2

2
− N

2

√
N2 +4M2.

�

Remark 9.3. By argument, similar to Remark 9.1, we get G′(x, t) ≤ 0 and −xG′(x, t) ≤
λG(x, t) for x ̸= t.

Lemma 9.6. Suppose (H ′
0) holds and λ < 0 such that λ +M2 ≤ 0, then for all x, t ∈ [0,1],

we have the inequality

(λ +M2)G(x, t)+N x (sign y′)
∂G(x, t)

∂x
≥ 0, (x ̸= t),

whenever (λ +M2)−Nλ ≤ 0 such that M2,N ∈ R+.

Proof. See the proof of Lemma 9.2, with Remark 9.3. �

Remark 9.4. By argument, similar to Remark 9.2, we show that αn+1 ≥ αn and βn+1 ≤ βn,
in D̃.

Proposition 9.3. Suppose (H ′
0) holds, f satisfies (F1), (F2) and (F3) and there exists λ < 0

such that λ ≤ min
{
−M2,−M2 − N2

2 − N
2

√
N2 +4M2,− M2

1−N

}
, then the functions αn and βn,

satisfy the following relations

(a) αn+1 ≥ αn, for all n ∈N, where αn is lower solution of (9.3)–(9.4),

(b) βn+1 ≤ βn, for all n ∈N, where βn is an upper solution of (9.3)–(9.4),

where αn and βn are defined recursively by (9.5).

Proof. See the proof of Proposition 9.1 with Lemma 9.5, Lemma 9.6 and Remark 9.4. �

Proposition 9.4. Suppose (H ′
0) holds, the source term f satisfies (F1), (F2) and (F3) and

λ < 0 such that λ ≤ min{−M2,−M2 − N2

2 − N
2

√
N2 +4M2,− M2

1−N}, and for all x ∈ [0,1]

f (x,β0(x),xβ
′
0(x))− f (x,α0(x),xα

′
0(x))−λ (β0 −α0)≥ 0,

is valid. Then for all n ∈N, the functions αn and βn defined by (9.5), satisfy αn ≤ βn.
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Proof. Proof is similar to the proof of Proposition 9.2. �

Lemma 9.7. If f (x,y,xy′) satisfies

(FW ) For all (x,y,xy′) ∈ D̃, | f (x,y,xy′)| ≤ ϕ(|xy′|); where ϕ : R+ → R+ is continuous and
satisfies

1
2
<
∫

∞

l0

ds
ϕ(s)

,

where l0 = 2sup |xΩ0(x)| and Ω0 = max{|α0(t)|∞, |β0(t)|∞}. Then there exists R > 0 such
that any solution of

− (xy′(x))′ ≥ x f (x,y,xy′), 0 < x < 1, (9.14)

y′(0) = 0, y(1)≥ δy(η), (9.15)

with y ∈ [α0(x),β0(x)] satisfies ∥xy′∥∞ ≤ R.

Lemma 9.8. If f (x,y,xy′) satisfies (FW ), then there exists R > 0 such that any solution of

− (xy′(x))′ ≤ x f (x,y,xy′), 0 < x < 1, (9.16)

y′(0) = 0, y(1)≤ δy(η), (9.17)

with y ∈ [α0(x),β0(x)] satisfies ∥xy′∥∞ ≤ R.

Theorem 9.2. Suppose (H ′
0) holds, the source term f (x,y,xy′) satisfies (F1), (F2) and (F3)

and λ < 0 be such that λ ≤ min
{
−M2,−M2 − N2

2 − N
2

√
N2 +4M2,− M2

1−N

}
, and for all

x ∈ [0,1]
f (x,β0(x),xβ

′
0(x))− f (x,α0(x),xα

′
0(x))−λ (β0 −α0)≥ 0,

is valid, then the sequences (αn) and (βn) defined by (9.5), starting with α0 and β0 as initial
guesses, converge uniformly in C1([0,1]) to solution v and u of nonlinear BVP (9.3)–(9.4),
such that for all x ∈ [0,1] α0 ≤ v ≤ u ≤ β0. Any solution z(x) of (9.3)–(9.4) in D̃ satisfy
v(x)≤ z(x)≤ u(x).

Proof. The proof of this Theorem follows same analysis as we did in Theorem 9.1. �

9.4 Examples

Numerical Examples are discussed in this section which help us to validate our analytical
results, and show that ∃ a λ ∈ R\{0} which satisfies the sufficient conditions of Theorem
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9.1, and Theorem 9.2. For convenience let

χ =
f (x,β0(x),xβ ′

0(x))− f (x,α0(x),xα ′
0(x))

(β0 −α0)
.

Example 9.1. Consider the nonlinear three point SBVP

− y′′(x)− 1
x

y′(x) =
(y(x))3

80
+

xy′

7
+

sinx
160

, (9.18)

y′(0) = 0, y(1) = 3y
(

1
4

)
. (9.19)

Here solution of nonlinear three point SBVP (9.18)–(9.19) has α0 = 1 and β0 =−1 as
lower and upper bounds, respectively. This is a reverse ordered case. The nonlinear sources
term satisfies the conditions (F1), (F2) and (F3) in domain D. Here Lipschitz constants are
computed as M1 =

3
80 and N = 1

7 . From figure 9.1 it is clear that we can find out a range of
λ > 0 such that

max
{

M1, max{χ}, M1 +
N2

2
+

N
2

√
N2 +4M1

}
< λ < y2

0,1,

i.e., 0.0771902≤ λ < 1. So that (H0), and (λ −M1)−N λ

1−λ
≥ 0 are satisfied. Thus Theorem

9.1 is applicable here and there exists a solution of (9.18)–(9.19).

3 Y0

Λ

4

- Y0 J Λ N

J0 J Λ N - 3 J0

Λ

4

HΛ - 0.0375L -
0.142857 Λ

1-Λ

Λ

0.2 0.4 0.6 0.8

-10

-8

-6

-4

-2

0

Fig. 9.1 Plot of (H0) and (λ −M1)−N λ

1−λ
for example 9.1.

Example 9.2. Consider the nonlinear three point SBVP

− y′′(x)− 1
x

y′(x) =
(ex)

100
− y3

30
+

xy′

5
, (9.20)
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y′(0) = 0, y(1) = 0.6y
(

2
5

)
. (9.21)

0.6 K0 J0.4  Λ ¤ N - K0 J  Λ ¤ N
I0 J  Λ ¤ N - 0.6 I0 J0.4  Λ ¤ N

Λ

-20 -15 -10 -5

-1

1

2

3

4

5

Fig. 9.2 Plot of (H ′
0) for example 9.2.

Here solution of nonlinear three point SBVP (9.20)–(9.21) has α0 =−1 and β0 = 1 as
lower and upper bounds, respectively. This is a well ordered case. The nonlinear sources
term satisfies the conditions (F1), (F2) and (F3) in domain D̃. Here Lipschitz constants are
computed as M2 =

1
10 and N = 1

5 . From figure 9.2, it is clear that we can find out a range of
λ < 0 such that

λ ≤ min
{
−M2, −M2 −

N2

2
− N

2

√
N2 +4M2, − M2

1−N
, min{χ}

}
,

i.e., λ ≤ −0.186332. So that (H ′
0), is satisfied. Thus Theorem 9.2 is applicable here and

existence of solution of (9.20)–(9.21) is guaranteed.

9.5 Conclusion

In this chapter we generalize the result of chapter 7 and extend it for the case when source
function is derivative dependent, i.e., f (x,y,xy′). Two examples validate the results of this
chapter.



Chapter 10

Quasi-Newton iteration method and
numerical solution of nonlinear SBVPs

10.1 Introduction

In this chapter we compute relaxation parameter for Quasi-Newton’s method (see [65, 68,
69, 75, 79, 85, 86, 137, 145, 158, 167] ) and find the approximate solutions of the following
class of nonlinear SBVPs

− (xαy′)′ = xα f (x,y), 0 < x < 1, ′ ≡ d
dx

, (10.1)

y′(0) = A, a1y(1)+b1y′(1) = c1, (10.2)

where α,A,a1,b1,c1 are real constants and α ≥ 1. Here we assume that f (x,y) is continuous
and Lipschitz continuous in D = {(x,y) ∈ [0,1]×R}.

As far as analytical results are considered enormous literature are available for two point
SBVPs (see [38, 50, 125, 126, 135]). Russell and Shampine [135] showed that the above
class have unique solution for α = 1 if K < j2

0, where j0 is the first positive zero of Bessel
function J0(x), for α = 2, the problem has unique solution if K < π2, here K is Lipschitz
constant. Chawla and Shivakumar [38] have shown that the SBVP (10.1)–(10.2) has unique
solution for all α , if K = ∂ f

∂y < K2
1 , where K1 is the first zero of J(α−1

2 )(
√

K). El-Gebeily
and Boumenir [50] have shown that the problem has a unique solution for certain boundary
conditions under the assumption that the range of ∂ f

∂y has empty intersection with the closure
of the spectrum of the singular differential operator, where f denotes the nonlinearity. Pandey
and Verma [125, 126] generalized some of these results for a general class of SBVPs.
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The numerical solutions of these SBVP have been discussed by several methods such
as cubic spline and B-spline methods [39, 80, 132], mixed decomposition-spline method
(MDSM) [84], finite difference method [36, 116, 121, 124], which has been very popular
and have several advantages, but needed a lot of computational work.

Iterative methods are preferred over other numerical methods as less computational
work is needed and they provide highly accurate approximations or even exact solutions.
Recently, researchers have used Adomian decomposition method (ADM), modified Adomian
decomposition method (MDM) and Homotopy analysis method (HAM) [1, 2, 43, 48] for
non-linear SBVPs.

Literature shows that Quasi-Newton methods also referred as Varitional iteration methods
(VIMs) (see [65, 68, 69, 75, 79, 85, 86, 137, 145, 158, 167]) are very efficient for solving
nonlinear differential equations. Kanth and Aruna [79] and Wazwaz [158] considered class of
SBVPs (10.1)–(10.2) and discussed certain aspects of iterative scheme referred as variational
method [86].

In this chapter we propose a modification to Quasi-Newton method and use it to solve a
class of nonlinear two point SBVPs (10.1)–(10.2). We generalize the relaxation parameter (λ )
and compute it as a function of the variable (ω). The relaxation parameter (λ ) is expressed
in terms of Bessel and modified Bessel functions. When ω = 0 our results will coincide with
the results of Kanth and Aruna [79] and Wazwaz [158]. For positive values of ω our scheme
converges faster. We allow ∂ f

∂y to take both positive and negative values.

We have organized this chapter into the following sections. In Section 10.2 we discuss
the basic idea of Quasi-Newton iteration method and its convergence and in Section 10.3 we
verify our results with suitable test examples. Finally, conclusion are given in Section 10.4.

10.2 The basic idea of Quasi-Newton iteration method

Roots of nonlinear equation φ(x) = 0 can be computed by Newton’s method given by

xn+1 = xn −
φ(xn)

φ ′(xn)
.

If we replace 1
φ ′(xn)

by an approximation (say λ ) the resulting method

xn+1 = xn −λφ(xn)

is then referred as Quasi-Newton iteration method. This approximation λ is referred as
relaxation parameter. Since xn is an approximated root φ(xn) ̸= 0, so we look for an optimal
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value of λ so that the difference xn+1 − xn which is equal to = λφ(xn) is minimized. Using
this optimal value of λ we generate a sequence (xn) which converges to a root of the nonlinear
equation.

The solution of the differential equation (10.1) is a zero of (10.1). So the above ideas
can be used to compute the solution of the (10.1). In next paragraph we discuss some of the
preliminary results which uses the above concepts.

Schunk [137] used these concepts, to calculate the bending of cylindrical panels, but his
work went unnoticed. Zhukov [167] used this method for thin rectangular slabs. The method
was strengthened by Kirichenko and Krys’ko [86], they considered a class of equations
which were described by positive definite operators. Inokuti et al. [75] referred the relaxation
parameter as Lagrange’s parameter and solved the nonlinear equations, which may involve
algebraic, differential, integral, or finite difference operators. He [65, 68, 69] has popularized
this method and after this several author started referring this method as He’s variation
iteration method. In this chapter, we consider the following non-linear differential equation

L(y)+N(y) = g(x), (10.3)

where L, is linear operators and N is non-linear operator, respectively and g(x) is the source
term. Using a modified correction functional as suggested by Soltani and Shirzadi [145] for
(10.3), we can write the following iterative scheme for n ≥ 0

yn+1(x) = yn +
∫ x

0
λ [L(yn(t))−L1(yn(t))+N(ỹn(t))+L1(ỹn(t))−g(t)]dt, (10.4)

where L1 is a linear operator and λ is the relaxation parameter and it is identified optimally
with the help of variational theory, ỹn is treated as restricted variation, i.e., δ ỹn = 0.

10.2.1 Relaxation parameter in terms of Bessel functions

For the nonlinear SBVPs (10.1) we define the following iterative scheme

yn+1(x) = yn(x)+
∫ x

0
λ

(
−ÿn(t)−

α

t
ẏn(t)−ωyn(t)− f̃ (t,yn)+ω ỹn(t)

)
dt, (10.5)

where ˙≡ d
dt . When ω = 0 this scheme is same as considered in [79, 158]. By taking the

variation on both sides of (10.5),

δyn+1(x) = δyn(x)+δ

∫ x

0
λ

(
−ÿn(t)−

α

t
ẏn(t)−ωyn(t)− f̃ (t,yn)+ω ỹn(t)

)
dt,
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we get

δyn+1(x) = δyn(x)+δ

∫ x

0
λ

(
−ÿn(t)−

α

t
ẏn(t)−ωyn(t)

)
dt, where δ ỹn = 0.

Integrating by parts, we get

δyn+1(x) =
(

1+λx(x)−
αλ (x)

x

)
δyn(x)

−δλ (x)y′n(x)−
∫ x

0

(
λtt −α

(tλt −λ )

t2 +ωλ

)
δyn(t)dt = 0.

Hence, we get

1+λx(x)−
αλ (x)

x
= 0, (10.6)

λ (x) = 0, (10.7)

−λtt(t)+α
(tλt(t)−λ (t))

t2 −ωλ (t) = 0. (10.8)

We can write (10.8) as follows

t2
λtt − tαλt +(α + t2

ω)λ = 0. (10.9)

The standard Bessel’s equation

z2 d2w
dz2 + z

dw
dz

+(z2 −ν
2)w = 0, (10.10)

is transformed (Lommel’s transformations z = βζ γ , w = ζ−av(ζ )) into (10.11)

ζ
2 d2v

dζ 2 +ζ (1−2a)
dv
dζ

+
[
(βγζ

γ)2 +(a2 −ν
2
γ

2)
]

v = 0. (10.11)

Now, if we set ν = (1−α)
2 , a = (1+α)

2 , γ = 1, β 2 = ω , ζ = t then (10.11) is reduced into
(10.9). The transformed Bessel’s equation (10.11) has two linearly independent solutions,
which are defined as

v1(ζ ) = ζ
aw1 (βζ

γ) , v2(ζ ) = ζ
aw2 (βζ

γ) , (10.12)

where w1(z) and w2(z) are two linearly independent solutions of the Bessel’s equation (10.10).
Hence, we obtain two linearly independent solutions of (10.9) in terms of w1(z) and w2(z).
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The bounded solution of (10.9) is given by tν+αJ−ν

(
t
√

ω
)
, if ω > 0 and tν+α I−ν

(
t
√

ω
)
, if

ω < 0, where J−ν and Y−ν are Bessel functions of first and second kind, respectively, and
I−ν and Kν are modified Bessel functions of first and second kind, respectively.

By using the conditions (10.6) and (10.7), we obtain the optimal values of the relaxation
parameter. For ω > 0 we get

λ (t) =
πxtνtα

2xνxα

[
J−ν

(
t
√

ω
)

Y−ν

(
x
√

ω
)
− J−ν

(
x
√

ω
)

Y−ν

(
t
√

ω
)]
, (10.13)

and similarly for ω < 0, we get

λ =
tαtν x
xν xα

[
I−ν

(
x
√

|ω|
)

Kν

(
t
√

|ω|
)
− I−ν

(
t
√
|ω|
)

Kν

(
x
√

|ω|
)]

. (10.14)

The successive approximation yn+1, n ≥ 0 can be computed from the correctional functional
(10.5) and the sequence (yn(x)) converges uniformly (will be proved in the next section) to
the exact solution (say y(x)) of the nonlinear SBVP (10.1) where the initial approximation y0

may be chosen so that it satisfies at least the initial or boundary conditions.

10.2.2 Convergence analysis

To prove that the limit of the sequence (yn(x)) obtained from (10.5), will converge to the
solutions of (10.1)–(10.2), we have to prove that the sequence is convergent. It is clear that

y0(x)+
n

∑
i=1

(yi − yi−1) = yn(x) (10.15)

is nth partial sum of the infinite series

y0(x)+
∞

∑
i=1

(yi − yi−1). (10.16)

Therefore to prove that the sequence (yn(x)) converges (uniformly) it is enough to prove that
(10.16) converges (uniformly).

Theorem 10.1. If ω > 0, and for any n = 0,1,2, · · · , yn(x) ∈ C2[0,1], and further assume
that there exists N > 0 such that for all f (x,u), f (x,v) ∈ D

| f (x,u)− f (x,v)| ≤ N|u− v|, (10.17)
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where D = {(x,y) ∈ [0,1]×R}. Then the sequence defined by (10.15), will converge uni-
formly to the exact solution of nonlinear SBVP (10.1)–(10.2).

Proof. As from equation (10.5) (for n = 0),

y1(x) = y0(x)−
∫ x

0
λ

(
ÿ0(t)+

α

t
ẏ0(t)+ f̃ (t,y0)

)
dt, n ≥ 0.

Integrating by parts and by using equations (10.6)–(10.8) on the right hand side of above
equations, we get

|y1(x)− y0(x)| =

∣∣∣∣−∫ x

0

((
−λt(t)+

αλ (t)
t

)
ẏ0(t)+λ f̃ (t,y0)

)
dt
∣∣∣∣ (10.18)

≤
∫ x

0

(∣∣∣∣−λt(t)+
αλ (t)

t

∣∣∣∣ |ẏ0(t)|+
∣∣λ f̃ (t,y0)

∣∣)dt. (10.19)

Now, from equation (10.5) (for n = 1), and by similar analysis, we get

|y2(x)− y1(x)|=
∣∣∣∣∫ x

0

((
−λtt(t)+α

(tλt(t)−λ )

t2

)
(y1(t)− y0(t))

−λ
(

f̃ (t,y1)− f̃ (t,y0)
))

dt
∣∣ , (10.20)

|y2(x)− y1(x)| ≤
∣∣∣∣∫ x

0
λ
(
ω(y1(t)− y0(t))−

(
f̃ (t,y1)− f̃ (t,y0)

))
dt
∣∣∣∣ (10.21)

≤
∫ x

0
|λ |
(
|ω| |(y1(t)− y0(t))|+

∣∣( f̃ (t,y1)− f̃ (t,y0)
)∣∣)dt. (10.22)

Further, by using Lipschitz condition, we get

|y2(x)− y1(x)| ≤
∫ x

0
|λ |(|(ω +N)| |(y1(t)− y0(t))|)dt, (10.23)

where N is Lipschitz constant. In general, we have

|yn+1(x)− yn(x)| ≤
∫ x

0
|λ |(|(ω +N)| |(yn(t)− yn−1(t))|)dt. (10.24)

Using series expansion of J−ν , Y−ν , I−ν and Kν and Appendix A, we can easily conclude∣∣∣∣λt
∣∣∣∣ & λt

are bounded for all t ≤ x ≤ 1 and α ≥ 1. So we define
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(M1)∞ = sup
{∣∣∣∣−λt(t)+

αλ (t)
t

∣∣∣∣ |ẏ0(t)|+
∣∣λ f̃ (t,y0)

∣∣} , (10.25)

(M2)∞ = sup{|λ | |(ω +N)|} . (10.26)

Consider
M = max{(M1)∞,(M2)∞} . (10.27)

From equations (10.19), (10.25) and (10.27), we get

|y1(x)− y0(x)| ≤
∫ x

0
(M1)∞dt ≤

∫ x

0
Mdt = Mx. (10.28)

Similarly from equation (10.23), (10.26) and (10.27)

|y2(x)− y1(x)| ≤
∫ x

0
(M2)∞|y1(t)− y0(t)|dt ≤

∫ x

0
M×Mtdt =

M2x2

2!
. (10.29)

In general

|yn+1(x)− yn(x)| ≤
∫ x

0
(M2)∞|yn(t)− yn−1(t)|dt

≤
∫ x

0
M× Mntn

n!
dt =

Mn+1xn+1

(n+1)!
, ∀x ∈ [0,1]. (10.30)

As the series ∑
∞
n=0

Mn+1xn+1

(n+1)! is convergent, ∀x ∈ [0,1]. Therefore the series defined by (10.16)

|y0(x)|+
∞

∑
i=1

|(yi(x)− yi−1(x))| ≤ |y0(x)|+
∞

∑
n=0

Mnxn

(n)!
, (10.31)

is absolutely convergent, i.e., the sequence of partial sums is convergent for x ∈ [0,1]. Hence
by the Weierstrass M-Test

|y0(x)|+
∞

∑
i=1

|(yi(x)− yi−1(x))|,

converges uniformly ∀x ∈ [0,1]. �

Similarly, from the convergence analysis for ω < 0, we arrive at the following theorem.
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Theorem 10.2. If ω < 0, and for any n ∈ 0,1,2, · · · , yn(x) ∈C2[0,1]. Further let us assume
that there exists N > 0 such that for all f (x,u), f (x,v) ∈ D

| f (x,u)− f (x,v)| ≤ N|u− v|. (10.32)

Then the sequence defined by (10.15), will converge uniformly to the exact solutions of
nonlinear SBVP (10.1)–(10.2).

10.3 Examples

In this section we consider four examples and illustrate that our modified version of Quasi-
Newton’s method gives better results than that of [79, 158]. In the limiting case ω → 0 the
numerical and analytical results are exactly same as result of [79, 158].

Example 10.1. Consider the linear singular two point boundary value problem

− y′′(x)− 1
x

y′(x) = y(x)− 5
4
− x2

16
, 0 < x < 1, (10.33)

y′(0) = 0, y(1) =
17
16

. (10.34)

The exact solution of this problem is y(x) = 1+ x2

16 . Here ∂ f
∂y > 0. Now by using the

equation (10.5) we get

yn+1(x) = yn(x)−
∫ x

0
λ

(
ÿn(t)+

1
t

ẏn(t)+ yn(t)−
5
4
− t2

16

)
dt. (10.35)

Here λ is given by (10.13). Using the equation (10.35) with initial approximation y0(x) = a,
we get the following successive approximations

y0(x) =a,

y1(x) =
((4a−5)ω +1)J0

(√
ωx
)

4ω2 − 16a− x2 −20
16ω

+a− 1
4ω2 ,

y2(x) =a− ω −1
2ω3 − 1

4ω2 −
(ω −1)

(
16a− x2 −20

)
16ω2

− 16a− x2 −20
16ω

+
π(ω −1)x2(4aω −5ω +1)J1

(√
ωx
)2Y0

(√
ωx
)

16ω2

+ J0
(√

ωx
)(π(1−ω)x2(4aω −5ω +1)J1

(√
ωx
)

Y1
(√

ωx
)

16ω2
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+
4aω2 −2aω −5ω2 +4ω −1

2ω3

)
,

....

Table 10.1 Solution (y1) of example 10.1 for different values of ω .

x/y1 ω = 0 ([79]) ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.6 ω = 0.72 ω = 0.9 Exact
0 0.994792 0.995335 0.995874 0.996407 0.997976 0.998591 0.999501 1
0.1 0.99543 0.995972 0.996509 0.997041 0.998606 0.99922 1.00013 1.000625
0.2 0.99735 0.997887 0.99842 0.998947 1.0005 1.00111 1.00201 1.0025
0.3 1.00057 1.00109 1.00162 1.00213 1.00366 1.00426 1.00514 1.005625
0.4 1.0051 1.00561 1.00612 1.00662 1.0081 1.00868 1.00953 1.01
0.5 1.01099 1.01147 1.01195 1.01243 1.01382 1.01437 1.01518 1.015625
0.6 1.01827 1.01871 1.01915 1.01958 1.02086 1.02136 1.0221 1.0225
0.7 1.02699 1.02737 1.02775 1.02812 1.02922 1.02965 1.03028 1.030625
0.8 1.03723 1.03752 1.0378 1.03809 1.03893 1.03925 1.03974 1.04
0.9 1.04903 1.0492 1.04937 1.04953 1.05001 1.0502 1.05047 1.050625
1 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625

Table 10.2 Solution (y2) of example 10.1 for different values of ω .

x/y2 ω = 0 ([79]) ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.6 ω = 0.72 ω = 0.9 Exact
0 1.00014 1.00011 1.00009 1.00007 1.00002 1.00001 1 1
0.1 1.00077 1.00074 1.00071 1.00069 1.00065 1.00064 1.00063 1.000625
0.2 1.00264 1.00261 1.00259 1.00257 1.00252 1.00251 1.0025 1.0025
0.3 1.00576 1.00574 1.00571 1.00569 1.00565 1.00564 1.00563 1.005625
0.4 1.01014 1.01011 1.01009 1.01007 1.01002 1.01001 1.01 1.01
0.5 1.01576 1.01573 1.01571 1.01569 1.01565 1.01564 1.01563 1.015625
0.6 1.02262 1.0226 1.02258 1.02256 1.02252 1.02251 1.0225 1.0225
0.7 1.03074 1.03072 1.0307 1.03068 1.03064 1.03063 1.03063 1.030625
0.8 1.04009 1.04007 1.04006 1.04004 1.04001 1.04001 1.04 1.04
0.9 1.05068 1.05067 1.05066 1.05065 1.05063 1.05063 1.05063 1.050625
1 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625 1.0625

Now we find the values of a by imposing the boundary condition y(1) = 17
16 on the above

approximations for different values of ω . The solutions at different space points are displayed
in tables 10.1 and 10.2.
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Example 10.2. Consider the following nonlinear two-point SBVP (α = 2 and f (x,y) = yγ ),
derived by Chandrasekhar [32] where γ is a physical constant, in connection with the
equilibrium of isothermal gas spheres. We consider the case of γ = 5.

− y′′(x)− 2
x

y′(x) = y5, 0 < x < 1, (10.36)

y′(0) = 0, y(1) =

√
3
4
. (10.37)

The exact solution of this problem is y(x) = (1+ x2

3 )
− 1

2 . Here ∂ f
∂y > 0. Now by using the

equation (10.5), we get

yn+1(x) = yn(x)−
∫ x

0
λ

(
ÿn(t)+

1
t

ẏn(t)+(yn(t))5
)

dt, (10.38)

where λ is defined by (10.13). Using the equation (10.38) with initial approximation
y0(x) = a, we get the following successive approximations (to save some space we do not
write y2(x))

y0(x) =a,

y1(x) =a−
a5 (√ωx− sin

(√
ωx
))

ω3/2x
,

....

Now we find the values of a by imposing the boundary condition y(1) =
√

3
4 on the above

approximations for different values of ω . The solutions at different space points are displayed
in table 10.3.

Example 10.3. Consider the nonlinear two point SBVP [84],

− y′′(x)− 1
x

y′(x) = ey, 0 < x < 1, (10.39)

y′(0) = 0, y(1) = 0. (10.40)

The exact solution of this problem is y(x) = 2 ln
(

C+1
C x2+1

)
, where C = 3−2

√
2. Here

∂ f
∂y > 0. Now by using the equations (10.5), we get

yn+1(x) = yn(x)−
∫ x

0
λ

(
ÿn(t)+

1
t

ẏn(t)+ eyn(t)
)

dt. (10.41)
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Table 10.3 Solution (y2) of example 10.2 for different values of ω .

x/y2 ω = 0 ([79]) ω = 0.1 ω = 0.2 ω = 1 ω = 2 ω = 2.3 Exact
0 0.993678 0.993989 0.994293 0.996453 0.998454 0.9989 1
0.1 0.992067 0.992376 0.992677 0.994819 0.996804 0.997247 0.998337488
0.2 0.987282 0.987583 0.987878 0.989967 0.991904 0.992336 0.993399268
0.3 0.979461 0.97975 0.980032 0.982038 0.983896 0.98431 0.985329278
0.4 0.968827 0.969099 0.969366 0.971256 0.973006 0.973397 0.974354704
0.5 0.955679 0.95593 0.956176 0.95792 0.959533 0.959892 0.960768923
0.6 0.940377 0.940602 0.940822 0.942382 0.94382 0.94414 0.944911183
0.7 0.923325 0.923517 0.923704 0.925027 0.926243 0.926512 0.927145541
0.8 0.904958 0.905104 0.905248 0.906258 0.90718 0.907382 0.907841299
0.9 0.885714 0.885799 0.885883 0.886468 0.886997 0.887112 0.887356509
1 0.866025 0.866025 0.866025 0.866025 0.866025 0.866025 0.866025404

Table 10.4 Solution (y1) of example 10.3 for different values of ω .

x/y1 ω = 0 ω = 0.2 ω = 0.4 ω = 0.6 ω = 0.7 ω = 0.78 Exact
0 0.357403 0.350549 0.343887 0.337407 0.334233 0.331724 0.316694
0.1 0.353829 0.347 0.340362 0.333905 0.330742 0.328242 0.313266
0.2 0.343107 0.336358 0.329797 0.323415 0.320288 0.317817 0.303015
0.3 0.325237 0.318639 0.312224 0.305984 0.302927 0.30051 0.286047
0.4 0.300218 0.293869 0.287696 0.28169 0.278748 0.276422 0.262531
0.5 0.268052 0.262086 0.256285 0.250643 0.247879 0.245694 0.232697
0.6 0.228738 0.223337 0.218087 0.212982 0.210481 0.208504 0.196827
0.7 0.182276 0.177681 0.173216 0.168875 0.16675 0.16507 0.155248
0.8 0.128665 0.125185 0.121805 0.118521 0.116914 0.115645 0.108323
0.9 0.0679066 0.0659284 0.0640089 0.0621457 0.0612344 0.0605148 0.0564386
1 -5.55112E-17 -1.11022E-16 1.11022E-16 -5.55112E-17 5.55112E-17 0 0

Here λ is defined by (10.13). Using the equation (10.41) with initial approximation y0(x) = a,
we get the successive approximations. Since expressions are lengthy we are not mentioning
these here. We find the values of a by imposing the boundary condition y(1) = 0 on the
above approximations for different values of ω . The solutions at different space points are
displayed in table 10.4.
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Example 10.4. 1 Consider the following nonlinear two-point SBVP which occurs in diffusion
problems with Michaelis-Menten kinetics ([13]),

y′′(x)+
2
x

y′(x) =
ny

y+ k
, 0 < x < 1, (10.42)

y′(0) = 0, 5y(1)+ y′(1) = 5, (10.43)

where n = 0.76129 and k = 0.03119.

Here ∂ f
∂y < 0. Now by using the equations (10.5), we get

yn+1(x) = yn(x)−
∫ x

0
λ

(
ÿn(t)+

2
t

ẏn(t)−
0.76129 y

y+0.03119

)
dt, (10.44)

where λ is defined by (10.14). Using the equation (10.44) with initial approximation
y0(x) = a, we get the following successive approximations

y0(x) =a,

y1(x) =a−
0.76129ax

ω
− 0.76129a(sinh(

√
ωx))

ω3/2

ax+0.03119x
,

....

Now we compute the values of a by using the boundary condition y(1) = 0 on the above
approximations for different values of ω . The solutions at different space points are displayed
in table 10.5. The exact solution of this problem is not available, so making use of absolute
residual error, we show the efficiency of our technique and show how well the approximate
solution satisfies nonlinear SBVP (10.42)–(10.43)

Rω =

∣∣∣∣y′′(x)+ 2
x

y′(x)− ny
y+ k

∣∣∣∣ ,
where n = 0.76129 and k = 0.03119.

10.4 Conclusion

In this chapter we have shown that introduction of parameter ω (correction term) in iterative
scheme greatly influence the convergence of the solution. In Tables 10.1, 10.2, 10.3 and 10.4,

1Exact solution is not known.
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Table 10.5 Solution (y1) of example 10.4 for different values of ω .

x/y1 ω =−3 ω =−1 ω =−0.5 ω =−0.1 ω = 0 ω = 0 ([79])
0 0.793101 0.817568 0.823268 0.827713 0.828808 0.828808024
0.1 0.794324 0.818791 0.824491 0.828935 0.830031 0.830030824
0.2 0.798014 0.822467 0.828163 0.832605 0.833699 0.833699224
0.3 0.804238 0.828618 0.834295 0.838722 0.839813 0.839813223
0.4 0.813109 0.83728 0.842906 0.847292 0.848373 0.848372822
0.5 0.824787 0.848507 0.854022 0.858319 0.859378 0.85937802
0.6 0.839486 0.862366 0.867676 0.871811 0.872829 0.872828818
0.7 0.857475 0.87894 0.883909 0.887774 0.888725 0.888725216
0.8 0.879086 0.89833 0.902769 0.906219 0.907067 0.907067213
0.9 0.90472 0.920653 0.924315 0.927156 0.927855 0.92785481
1 0.934858 0.946046 0.948611 0.9506 0.951088 0.951088007

Table 10.6 Absolute residual errors of example 10.4 for different values of ω .

x/Rω R−3 R−1 R0.5 R0.1 R0
0 0 0 0 0 0
0.1 0.00362525 0.00118256 0.000571692 8.29781E-05 3.92021E-05
0.2 0.0145672 0.00473802 0.00228916 0.00033263 0.000156143
0.3 0.0330256 0.0106898 0.00515958 0.000751083 0.000348856
0.4 0.0593387 0.0190771 0.00919487 0.0013418 0.000614153
0.5 0.0939897 0.0299551 0.0144116 0.00210944 0.000947756
0.6 0.137618 0.0433951 0.020831 0.00305974 0.00134446
0.7 0.191033 0.0594853 0.0284788 0.0041993 0.00179834
0.8 0.255232 0.078331 0.0373853 0.00553538 0.00230293
0.9 0.331422 0.100055 0.0475849 0.00707574 0.00285147
1 0.421043 0.1248 0.0591165 0.00882843 0.00343707

we have shown that when ω = 0 our results are same as results in [79, 158] and for ω > 0
the results are improved and are getting closer and closer to exact solutions. In tables 10.1
and 10.2 we have taken values of ω up to 0.72 which is less than square of first positive
zeros of respective Bessel functions (see [135]) and we have also taken value of ω = 0.9
which is greater that square of first positive zeros of respective Bessel functions (see [50]).
In table 10.5 due the absence of exact results we compare the results with the results given
in [79]. This table also shows that when value of ω is increasing the results are better (see
Table 10.6).





Chapter 11

VIM coupled with HPM for a class of
nonlinear SBVPs

11.1 Introduction

We consider the following class of nonlinear two point singular boundary value problems
(SBVPs)

−u′′− α

x
u′ = f (x,u), 0 < x < 1, ′ ≡ d

dx
,

u′(0) = B, a1u(1)+b1u′(1) = c1,

 (11.1)

where α,B,a1,b1,c1 are real constants and α ≥ 1. We assume that f (x,u) is continuous and
Lipschitz in D = {(x,u) ∈ [0,1]×R}. Extensive literature is available for both analytical
([38, 125, 126, 135, 140] and the references therein) and numerical results ([1, 3, 36, 48, 116,
144, 148, 157] and the references therein).

The prime motive of this chapter is to derive an effective numerical technique for a class
of SBVP (11.1). The proposed technique is based on the concept of variational iteration
method (VIM) [65, 69, 79, 158, 159] coupled with homotopy perturbation method (HPM)
[66, 67]. It gives approximate solution in the form of a series. To increase the accuracy
of the solution obtained by our technique we can compute more number of terms which is
otherwise difficult. The convergence analysis and the error estimate of the proposed method
are also discussed.

In VIM [79], an iterative scheme for nonlinear SBVPs

L(u)+N(u) = g(x) (11.2)
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is defined as
un+1(x) = un(x)+

∫ x

0
λ (t) [Lun(t)+Nun(t)−g(t)]dt

where L is a linear differential operator, N is a nonlinear operator, and g(x) is an inhomoge-
neous term. It is easy to see that we will get the best solution if∫ x

0
λ (t) [Lun(t)+Nun(t)−g(t)]dt,

is minimized. For minimization we use homotopy perturbation method [67].

11.2 Homotopy perturbation method (HPM)

Actually, homotopy perturbation method (HPM) is combination of homotopy analysis and
perturbation method, which mainly removes the restrictions on small parameter for per-
turbation methods. Homotopy plays an important role in differential topology, which is
basically used to solve the nonlinear algebraic equations. In this analysis, a homotopy
H : [0,1]×R→ R (see [94] and the references there in)

H (x, p) = p f (x)+(1− p)(x−a) = 0, x ∈ R, p ∈ [0,1],

is constructed for nonlinear algebraic equation f (x) = 0, where p is an imbedding parameter
and x−a = 0 is a simple algebraic equation. It is clear that, when we vary p from 0 to 1,
the homotopy H (x, p) is varied from, (x−a) to f (x), i.e., at p = 1, we get the solution of
nonlinear algebraic equation f (x) = 0. This process is called deformation, and we say that
(x−a) & f (x) are homotopic.

By using the homotopy analysis [94] and elimination of small parameter ([67] and the
references there in), He [67] proposed a new perturbation method for nonlinear differential
equations

A(u)− f (r) = 0, r ∈ Ω, (11.3)

with boundary conditions

B
(

u,
∂u
∂n

)
= 0, r ∈ Γ,

here A ≡ L+N is a general differential operator, where L and N are linear and nonlinear
differential operators, respectively. B is a boundary operator, f (r) is a known analytic
function and Γ is the boundary of the domain Ω. So, equation (11.3) can be written as

L(u)+N(u)− f (r) = 0, r ∈ Ω.
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Now we employ the ideas of homotopy analysis and construct the homotopy ν(r, p) : Ω×
[0,1]→ R, which satisfies

H(ν ,r, p) = (1− p)[L(ν)−L(u0)]+ p[A(ν)− f (r)] = 0, p ∈ [0,1], r ∈ Ω,

which is equivalent to

H(ν ,r, p) = L(ν)−L(u0)+ pL(u0)+ p[N(ν)− f (r)] = 0, (11.4)

where p ∈ [0,1] is an embedding parameter, and u0 is an initial guess of (11.3), satisfying the
initial conditions. From (11.4), we have

H(ν ,r,0) = L(ν)−L(u0) = 0, (11.5)

H(ν ,r,1) = L(ν)+N(ν)− f (r) = 0. (11.6)

It is clear from (11.5) and (11.6), that L(ν)−L(u0) and L(ν)+N(ν)− f (r) are homotopic.

Now, we introduce perturbation and take p as a small parameter. We expand the solution
of equation (11.4) as a power series of p given by

ν = ν0 + pν1 + p2
ν2 + · · · , (11.7)

where νi, i = 0,1,2, · · · are unknowns to be determined. At p = 1, we obtain the approximate
solution of equation (11.3) given by

ν(r,1) = u(r) = ν0 +ν1 +ν2 + · · · .

Now, we write the nonlinear term in integral powers of parameter p given as

N(ν) =
∞

∑
i=0

piHi = H0 + pH1 + p2H2 + · · · , (11.8)

where Hn’s are defined as

Hn(ν0, · · · ,νn) =
1
n!

∂ n

∂ pn N

(
n

∑
i=0

pi
νi

)∣∣∣∣∣
p=0

, n = 0,1,2 · · · . (11.9)

In literature Hn’s are also known as He’s polynomial [54].
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Finally, we substitute (11.7) and (11.8) into equation (11.4), collect coefficients of
different powers of p and equating them to zero, we get

p0 : L(ν0)−L(u0) = 0,

p1 : L(ν1)+L(u0)+H0 − f (r) = 0,

p2 : L(ν2)+H1 = 0,

p3 : L(ν3)+H2 = 0,
...

pn+1 : L(νn+1)+Hn = 0,
....

Now, using the above system of equations we compute νi, i = 0,1,2, · · · and ∑
∞
i=0 νi to get

the solution ν(r,1) = u(r) of the nonlinear equation (11.3).

11.2.1 Variational iteration method (VIM)

The iterative scheme for nonlinear SBVP (11.1) is given by (see [65])

un+1(x) = un(x)+
∫ x

0
λ

(
−ün(t)−

α

t
u̇n(t)− f̃ (t,un)

)
dt, (11.10)

where˙≡ d
dt .

Following the analysis of [79], we arrive at stationary conditions given by

1+λx(x)−
αλ (x)

x
= 0, (11.11)

λ (x) = 0, (11.12)

−λtt(t)+α
(tλt(t)−λ (t))

t2 = 0. (11.13)

By using the stationary conditions, the value of the Lagrange multipliers can be easily
obtained. It is given as follows

λ (t) =


tα

xα−1(1−α)
− t

(1−α)
, ∀ α > 1,

lim
α→1

[
tα

xα−1(1−α)
− t

(1−α)

]
, for α = 1.
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11.3 HPM & VIM

In this section we combine the two techniques HPM and VIM together and solve a class of
nonlinear two point singular boundary value problems. Here we construct homotopy with
the help of VIM. We follow an intuitive route [72] for the construction of the homotopy.

To get the solution of the nonlinear SBVP (11.1), we couple the concept of HPM with
VIM, i.e., we consider the following homotopy (Appendix B) for equation (11.10)

H(x,ν , p) = (1− p)[u0 −ν ]+ p
∫ x

0
λ (t)[Lν(t)+Nν(t)−g(t)]dt = 0, (11.14)

where p ∈ [0,1] is the embedding parameter, and u0(x) is the initial guess satisfying the
initial conditions. It follows from (11.14) that

H(x,ν ,0) = ν −u0 = 0, (11.15)

H(x,ν ,1) =
∫ x

0
λ (t)[Lν(t)+Nν(t)−g(t)]dt = 0. (11.16)

As embedding parameter p is varied from 0 to 1, ν(p,x) changes from u0(x) to the best
approximation of equation (11.10).

We expand ν(p,x) in a power series of p, where we take p as a small parameter,

ν(p,x) =
∞

∑
i=0

pi
νi. (11.17)

At p = 1, we get the best solution of nonlinear differential equation (11.2),

ν(1,x) = u(x) =
∞

∑
i=0

νi. (11.18)

Now using He’s polynomials, we decompose the nonlinear term (see equation (11.8)), i.e.,

N(ν) =
∞

∑
i=0

piHi. (11.19)

Substituting (11.17) and (11.19) into (11.14), and comparing the coefficients of same powers
of p we get

p0 : ν0 = u0(x)

p1 : ν1 =
∫ x

0
λ (t)[Lν0 +H0 −g(t)]dt,
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p2 : ν2 = ν1 +
∫ x

0
λ (t)[Lν1 +H1]dt,

...

pn+1 : νn+1 = νn +
∫ x

0
λ (t)[Lνn +Hn]dt,

....

We solve these set of equations to obtain the series solution

u = lim
n→∞

un =
∞

∑
i=0

νi (11.20)

where

un =
n

∑
i=0

νi.

Additionally, for the nonlinear SBVP (11.1), we choose u0 = A, where A = ∑
∞
i=0 Ai pi,

where p is a small parameter. Making use of this initial approximation, we can write the
equation (11.14) as

(1− p)[A−ν ]+ p
∫ x

0
λ (t)[Lν(t)+Nν(t)−g(t)]dt = 0,

where A = ∑
∞
i=0 Ai pi and ν = ∑

∞
i=0 νi pi.

Now by collecting the coefficients of different powers of p and equate them to zero, we
get

p0 : ν0 = u0

p1 : ν1 = ν0 +(A1 −A0)+
∫ x

0
λ (t)[Lν0(t)+H0(t)−g(t)]dt,

p2 : ν2 = ν1 +(A2 −A1)+
∫ x

0
λ (t)[Lν1(t)+H1(t)]dt,

...

pn+1 : νn+1 = νn +(An+1 −An)+
∫ x

0
λ (t)[Lνn(t)+Hn(t)]dt,

....



(11.21)

We use equations labled as equation (11.21) to compute our solution.
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11.4 Accuracy and efficiency

The accuracy and efficiency of proposed technique are discussed in this section. Here,
we study the existence and uniqueness of the solution of SBVP (11.1) and examine the
convergence analysis and error estimate for the proposed technique.

We consider the norm
∥u∥= max

0≤x≤1
|u(x)|, u ∈ X,

where X=C[0,1] is a Banach space.
Further assume that there exists N0 > 0 such that for all f (x,y), f (x,z) ∈ D

| f (x,y)− f (x,z)| ≤ N0|y− z|, (11.22)

where D = {(x,y) ∈ [0,1]×R}.

11.4.1 Existence and uniqueness of solutions

Theorem 11.1. The nonlinear singular boundary value problem (11.1) where f (x,u) satisfies
the Lipschitz condition (11.22) and N0 < 2(1+α), has a unique solution.

Proof. Let y1 and y2 be two distinct solutions of nonlinear SBVP (11.1), so they will satisfy
the equation (11.16) , i.e.,∫ x

0
λ (t)[y′′1(t)+

α

t
y′1(t)+ f (t,y1)]dt = 0, (11.23)

where L =− d2

dt2 − α

t
d
dt , N =− f (t,_) and g(t) = 0. Similarly we can define it for y2.

Now, integration by part and stationary conditions (11.11)–(11.13), yield

y1(x) = ν0 −
∫ x

0
λ (t) f (t,y1)dt. (11.24)

Similarly,

y2(x) = ν0 −
∫ x

0
λ (t) f (t,y2)dt. (11.25)

Making use of equations (11.24)–(11.25), we get

|y1 − y2| =

∣∣∣∣∫ x

0
λ (t) [ f (t,y1)− f (t,y2)]dt

∣∣∣∣ ,
max

0≤x≤1
|y1 − y2| = max

0≤x≤1

∣∣∣∣∫ x

0
λ (t) [ f (t,y1)− f (t,y2)]dt

∣∣∣∣
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= max
0≤t≤1

| f (t,y1)− f (t,y2)| max
0≤x≤1

∣∣∣∣∫ x

0
λ (t)dt

∣∣∣∣ ,
∥y1 − y2∥ ≤ N0 ∥y1 − y2∥ max

0≤x≤1

∣∣∣∣ x2

2+2α

∣∣∣∣ .
Hence, we have

∥y1 − y2∥ ≤ γ ∥y1 − y2∥ ,

where γ = N0
2+2α

< 1. This gives that y1 = y2. Hence, the theorem is proved. �

11.4.2 Convergence analysis

Now, to show the convergence of proposed technique, we use equations (11.10) and stationary
conditions (11.11)–(11.13), and deduce,

un+1 = un −
∫ x

0

((
−λt(t)+

αλ (t)
t

)
u̇n(t)+λ f̃ (t,un)

)
dt. (11.26)

Similarly, we have

un = un−1 −
∫ x

0

((
−λt(t)+

αλ (t)
t

)
u̇n−1(t)+λ f̃ (t,un−1)

)
dt. (11.27)

Now,

|un+1 −un| =

∣∣∣∣∫ x

0

((
−λtt(t)+α

(tλt(t)−λ )

t2

)
(un −un−1)

+λ (t)
(

f̃ (t,un)− f̃ (t,un−1)
))

dt
∣∣

=

∣∣∣∣∫ x

0

(
λ (t)

(
f̃ (t,un)− f̃ (t,un−1)

))
dt
∣∣∣∣ ,

or

max
0≤x≤1

|un+1 −un)| = max
0≤x≤1

∣∣∣∣∫ x

0

(
λ (t)

(
f̃ (t,un)− f̃ (t,un−1)

))
dt
∣∣∣∣

≤ max
0≤t≤1

| f̃ (t,un)− f̃ (t,un−1)| max
0≤x≤1

∣∣∣∣∫ x

0
λ (t)dt

∣∣∣∣ .
As f satisfies the Lipschitz condition, so we get

∥un+1 −un∥ ≤ N0 max
0≤t≤1

|un −un−1| max
0≤x≤1

∣∣∣∣ x2

2+2α

∣∣∣∣



11.4 Accuracy and efficiency 187

≤ γ ∥un −un−1∥ .

Hence, we have
∥un+1 −un∥ ≤ γ ∥un −un−1∥ , (11.28)

where γ < 1.

Theorem 11.2. Let νn(x),un(x) ∈ X and further we assume that ∥ν0∥ is a finite, then we
have ∥νn+1∥ ≤ γ∥νn∥, γ < 1, for n = 0,1,2, · · · , and the sequence (un = ∑

n
i=0 νi) converges

to the solution of SBVP (11.1).

Proof. As (un) is the sequence of partial sum of the series (11.20), i.e.,

u1 = ν0 +ν1,

u2 = ν0 +ν1 +ν2,

...

un = ν0 +ν1 +ν2 + · · ·+νn,

...

which gives
νn+1 = un+1 −un, n = 1,2,3, · · · .

Now with the help of (11.28), we can write

∥νn+1∥= ∥un+1 −un∥ ≤ γ ∥un −un−1∥= γ ∥νn∥ .

Hence, we obtain

∥un+1 −un∥= ∥νn+1∥ ≤ γ ∥νn∥ ≤ γ
2 ∥νn−1∥ ≤ · · · ≤ γ

n+1 ∥ν0∥ .

To show the convergence of the sequence (un), we use Cauchy criterion

∥un −um∥= ∥(un −un−1)+(un−1 −un−2)+ · · ·+(um+1 −um)∥
≤ ∥(un −un−1)∥+∥(un−1 −un−2)∥+ · · ·+∥(um+1 −um)∥
≤ γ

n ∥ν0∥+ γ
n−1 ∥ν0∥+ · · ·+ γ

m+1 ∥ν0∥
≤ γ

m+1 [1+ γ + γ
2 + · · ·+ γ

n−m−1]∥ν0∥

≤ γm+1 (1− γn−m)

1− γ
∥ν0∥ .
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As 0 < γ < 1, we have

∥un −um∥ ≤
γm+1

1− γ
∥ν0∥ . (11.29)

Now taking limit m → ∞, we get
∥un −um∥→ 0.

Thus, the sequence (un) is a Cauchy sequence in Banach space X, so the series ∑
n
i=0 νi is

convergent. �

11.4.3 Error estimate

Theorem 11.3. The maximum absolute truncation error in the computation of the series
solution (11.20) of SBVP (11.1) is given by

max
0≤x≤1

∣∣∣∣∣u(x)− m

∑
i=0

νi

∣∣∣∣∣≤ γm+1

1− γ
∥ν0∥ .

Proof. From inequality (11.29), we have

∥un −um∥ ≤
γm+1

1− γ
∥ν0∥ ,

where n ≥ m. If we fix m and varies n → ∞, then we get

max
0≤x≤1

∣∣∣∣∣u(x)− m

∑
i=0

νi

∣∣∣∣∣≤ γm+1

1− γ
∥ν0∥ .

This completes the proof. �

11.5 Real life examples

11.5.1 Problem 1 : Equilibrium of isothermal gas sphere

Chandrashekhar [32] derived the following nonlinear two point SBVP (α = 2 and f (x,u) =
uγ ), where γ is a physical constant. Here we consider the case, when γ = 5.

−u′′(x)− 2
x

u′(x) = u5, 0 < x < 1, (11.30a)

u′(0) = 0, u(1) =

√
3
4
. (11.30b)
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The exact solution of this problem is u(x) = (1+ x2

3 )
− 1

2 .
Using (11.21) and (11.30), we obtain the values of ν1,ν2, · · · as

ν0 = A0,

ν1 = A1 −
1
6

A5
0x2,

ν2 =
1

24
A9

0x4 − 5
6

A1A4
0x2 +A2,

ν3 =− 5
432

A13
0 x6 +

3
8

A1A8
0x4 − 5

6
A2A4

0x2 − 5
3

A2
1A3

0x2 +A3,

ν4 =
35A17

0 x8

10368
− 65

432
A1A12

0 x6 +
3
8

A2A8
0x4 +

3
2

A2
1A7

0x4

− 5
6

A3A4
0x2 − 10

3
A1A2A3

0x2 − 5
3

A3
1A2

0x2 +A4,

ν5 =−
7A21

0 x10

6912
+

595A1A16
0 x8

10368
− 65

432
A2A12

0 x6 − 65
72

A2
1A11

0 x6

3
8

A3A8
0x4 +3A1A2A7

0x4 +
7
2

A3
1A6

0x4 − 5
6

A4A4
0x2 − 5

3
A2

2A3
0x2

− 10
3

A1A3A3
0x2 −5A2

1A2A2
0x2 − 5

6
A4

1A0x2 +A5,

....



(11.31)

We have also computed other components, but due to lack of space we have not listed.
Using boundary conditions of (11.30), we get the values of Ai (Table 11.1).

Table 11.1 Numerical values of Ai, where i = 0,1,2, · · ·

A0=0.866025, A5=0.00329187, A10=0.000291152
A1=0.0811899, A6=0.00191103, A11=0.000190205
A2=0.0266404, A7=0.00115173, A12=0.000125714
A3=0.0117741, A8=0.000713747, A13=0.00008391
A4=0.00597904, A9=0.000451962. A14=0.0000564804.

Hence, by using (11.31) and Table 11.1, we can write an approximate series solutions
containing 15-terms i.e., u = ∑

14
i=0 vi.

In Table 11.2, we show the efficiency of this numerical technique. Here, we have
discussed the approximated series solutions containing respectively 6, 10, 12 terms and their
corresponding absolute errors, which shows a systematical decline in absolute errors. In
Table 11.3 we compare our numerical results with the result of [79].
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Table 11.2 Numerical solutions and absolute errors for problem (11.30).

Approximations Exact Absolute Error
x u6 u10 u12 Solution a6 a10 a12
0 0.996812 0.99942 0.999736 1 0.003188 0.00058 0.000264

0.1 0.995216 0.997771 0.99808 0.998337 0.003121 0.000566 0.000257
0.2 0.990472 0.992869 0.993159 0.993399 0.002927 0.00053 0.00024
0.3 0.982703 0.984856 0.985115 0.985329 0.002626 0.000473 0.000214
0.4 0.972106 0.973952 0.974172 0.974355 0.002249 0.000403 0.000183
0.5 0.95894 0.960444 0.960622 0.960769 0.001829 0.000325 0.000147
0.6 0.943513 0.944664 0.9448 0.944911 0.001398 0.000247 0.000111
0.7 0.926161 0.926972 0.927067 0.927146 0.000985 0.000174 7.9E-05
0.8 0.907234 0.907735 0.907793 0.907841 0.000607 0.000106 4.8E-05
0.9 0.887079 0.887308 0.887335 0.887357 0.000278 4.9E-05 2.2E-05
1 0.866025 0.866025 0.866025 0.866025 0 0 0

Table 11.3 Numerical solutions and absolute errors for problem (11.30).

Approximations Exact Absolute Error
x Proposed method Solution (y2) Solution (y3) Solution u14 for y2 [79] for y3 [79]

(u14) in [79] in [79]
0 0.999877 0.993678 1.000392358 1 0.000123 0.006322 0.000392358

0.1 0.998217 0.992067 0.998726589 0.998337 0.00012 0.00627 0.000389589
0.2 0.993287 0.987282 0.993778768 0.993399 0.000112 0.006117 0.000379768
0.3 0.985229 0.979461 0.985693317 0.985329 1E-04 0.005868 0.000364317
0.4 0.97427 0.968827 0.97469805 0.974355 8.5E-05 0.005528 0.00034305
0.5 0.9607 0.955679 0.961086726 0.960769 6.9E-05 0.00509 0.000317726
0.6 0.944859 0.940377 0.945197991 0.944911 5.2E-05 0.004534 0.000286991
0.7 0.927109 0.923325 0.927393267 0.927146 3.7E-05 0.003821 0.000247267
0.8 0.907819 0.904958 0.908035953 0.907841 2.2E-05 0.002883 0.000194953
0.9 0.887346 0.885714 0.887473778 0.887357 1.1E-05 0.001643 0.000116778
1 0.866025 0.866025 0.866025404 0.866025 0 0 4.03784E-07

11.5.2 Problem 2 : Thermal explosion in cylindrical vessel

Chamber [31] derived the following nonlinear two point SBVP, which arises in the thermal
explosion

−u′′(x)− 1
x

u′(x) = eu, 0 < x < 1, (11.32a)

u′(0) = 0, u(1) = 0. (11.32b)

The exact solution of this SBVP is u(x) = 2 ln
(

C+1
C x2+1

)
, where C = 3−2

√
2.
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Table 11.4 Numerical values of Ai, where i = 0,1,2, · · ·

A0=0 A5=0.00153809
A1=0.25 A6=0.000587463
A2=0.046875 A7=0.000233786
A3=0.0130208 A8=0.000095889
A4=0.00427246

By employing the equations (11.21) and (11.32), we obtain the components {νi} of the
series solutions of SBVP as

ν0 = A0,

ν1 = A1 −
1
4

x2eA0,

ν2 =−1
4

x2eA0 +
1

64
x2
(

eA0
(

eA0x2 +16
)
−16eA0A1

)
+A2,

ν3 =−1
4

x2eA0 +
1

64
x2
(

eA0
(

eA0x2 +16
)
−16eA0A1

)
− eA0x2

2304

[(
x2eA0

(
x2
(

2eA0 + eA0
)
+36

)
+36A1

(
x2
(
−
(

eA0 + eA0
))

+8A1 −16
)
+576A2

)]
+A3,

ν4 =−1
4

x2eA0 +
1

64
x2
(

eA0
(

eA0x2 +16
)
−16eA0A1

)
− eA0x2

2304

[(
x2eA0

(
x2
(

2eA0 + eA0
)
+36

)
+36A1

(
x2
(
−
(

eA0 + eA0
))

+8A1 −16
)
+576A2

)]
− eA0x2

147456

(
−6x6e3A0 − x4e2A0

(
11eA0x2 −128A1 +128

)
−x2eA0

(
e2A0x4 −64eA0 (6A1 −1)x2 +1152((A1 −2)A1 +2A2)

)
+64

(
e2A0A1x4 −18eA0 (A1 (3A1 −2)+2A2)x2

+96(−6A2 +A1 ((A1 −3)A1 +6A2)+6A3)))+A4,

....



(11.33)

Making use of boundary conditions of (11.32), we obtain the values of A0,A1,A2, · · · (See
Table 11.4).

Hence, by using (11.33) and Table 11.4, we can write an approximate series solutions of
SBVP (11.32), containing 9-terms i.e., u = ∑

8
i=0 vi.
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In Table 11.5, we have discussed the approximated series solution (containing different
terms) for SBVP (11.32) and their corresponding absolute errors, which shows a systematical
decline in absolute errors.

11.5.3 Problem 3 : Thermal distribution in the human head

Duggan and Goodman [46] derived the following nonlinear two point SBVP which describes
the thermal distribution profile in the human head

−u′′(x)− 2
x

u′(x) = e−u, 0 < x < 1, (11.34a)

u′(0) = 0, 2u(1)+u′(1) = 0. (11.34b)

By employing the equations (11.21) and (11.34), we obtain the components {νi} of the series
solutions of SBVP as

Table 11.5 Numerical solutions and absolute errors for (11.32).

Approximations Exact Absolute Error
x u4 u6 u8 Solution a4 a6 a8
0 0.314168 0.316294 0.316624 0.316694 0.002526 0.0004 7E-05

0.1 0.310782 0.312872 0.313196 0.313266 0.002484 0.000394 7E-05
0.2 0.300656 0.302642 0.30295 0.303015 0.002359 0.000373 6.5E-05
0.3 0.283886 0.285707 0.285987 0.286047 0.002161 0.00034 6E-05
0.4 0.260628 0.262232 0.262479 0.262531 0.001903 0.000299 5.2E-05
0.5 0.231095 0.232446 0.232653 0.232697 0.001602 0.000251 4.4E-05
0.6 0.195552 0.196628 0.196792 0.196827 0.001275 0.000199 3.5E-05
0.7 0.15431 0.155103 0.155223 0.155248 0.000938 0.000145 2.5E-05
0.8 0.107716 0.108229 0.108306 0.108323 0.000607 9.4E-05 1.7E-05
0.9 0.0561473 0.0563936 0.0564308 0.0564386 0.0002913 4.5E-05 7.8E-06
1 -8.32667E-17 4.16334E-17 7.1205E-17 0 8.32667E-17 4.16334E-17 7.1205E-17.

ν0 = A0,

ν1 = A1 −
1
6

e−A0x2,

ν2 =− 1
120

e−2A0x4 +
1
6

e−A0A1x2 +A2,

ν3 =− 1
120

e−2A0x4 +
1
6

e−A0A1x2

−
e−3A0

(
−63eA0 (2A1 +1)x4 +630e2A0 (A1 (A1 +2)−2A2)x2 +4x6)

7560
+A3,


(11.35a)
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ν4 =− 1
120

e−2A0x4 +
1
6

e−A0A1x2

−
e−3A0

(
−63eA0 (2A1 +1)x4 +630e2A0 (A1 (A1 +2)−2A2)x2 +4x6)

7560

− e−4A0

22680x

(
−12eA0 (3A1 +1)x7 +378e2A0

(
A2

1 +A1 −A2
)

x5

−630e3A0 (−6A2 +A1 (A1 (A1 +3)−6A2)+6A3)x3 +
61x9

72

)
+A4,

....



(11.35b)

Making use of boundary conditions of (11.34), we obtain the values of A0,A1,A2, · · · (See
Table 11.6). Hence, by using (11.35) and Table 11.6, we can write an approximate series

Table 11.6 Numerical values of Ai, where i = 0,1,2, · · · .

A0= 0 A4= -0.0145847 A8= -0.0011053
A1= 0.333333 A5= 0.00712792 A9= 0.000627972
A2= -0.0861111 A6= -0.00369133 A10= -0.000363262
A3= 0.032672 A7= 0.00199019

solutions of SBVP (11.34), containing 11-terms, i.e., u = ∑
10
i=0 vi.

To check the efficiency of our technique for this problem we use absolute residual error
because exact solution is not available. The absolute residual error measures that how well
the approximate solution satisfies nonlinear SBVP (11.34).

Rn =

∣∣∣∣−u′′n(x)−
2
x

u′n(x)− e−un

∣∣∣∣ , 0 < x < 1.

Table 11.7 shows the numerical values of residual error Rn, n = 7,8,10 and their systematical
decay. We also compare our results with the results in [116] and [46].

11.5.4 Problem 4 : Rotationally symmetric shallow membrane cap

The following nonlinear two point SBVP arises in the study of radial stress on a rotationally
symmetric shallow membrane cap [20, 44]

−u′′(x)− 3
x

u′(x) =
1

8u2 −
1
2
, 0 < x < 1, (11.36a)

u′(0) = 0, u(1) = 1. (11.36b)



194 Numerical solutions for nonlinear SBVPs

Table 11.7 Numerical solutions and absolute residual errors for (11.34).

Approximations Solution Solution Absolute Residual Error
x u7 u8 u10 in [116] in [46] R7 R8 R10
0 0.270736 0.269631 0.269896 – 0.270350067 0.00419401 0.00239874 0.000822617

0.1 0.269457 0.268362 0.268624 0.268756903 0.269077693 0.0041414 0.00236739 0.000811194
0.2 0.265615 0.264548 0.264804 0.26493282 0.265254341 0.0039873 0.00227573 0.000777891
0.3 0.259194 0.258171 0.258416 0.258539792 0.25886127 0.0037425 0.00213063 0.000725465
0.4 0.250163 0.249202 0.249432 0.249548183 0.249867127 0.00342364 0.00194262 0.00065808
0.5 0.238484 0.237596 0.237809 0.237915891 0.238227763 0.00305148 0.00172462 0.000580749
0.6 0.224104 0.223298 0.223491 0.22358771 0.223885976 0.00264868 0.00149053 0.000498695
0.7 0.206954 0.206237 0.206408 0.206494486 0.20677117 0.00223761 0.0012537 0.000416765
0.8 0.186953 0.186327 0.186477 0.186552018 0.18679895 0.00183824 0.00102571 0.00033896
0.9 0.164001 0.163468 0.163596 0.163659686 0.163870628 0.00146662 0.000815495 0.000268165
1 0.137982 0.13754 0.137646 0.137698751 0.137872638 0.0011339 0.000628885 0.000206077

Table 11.8 Numerical solutions and absolute residual errors for (11.36).

Solution Absolute Residual Error
x u6 in [79] R6 R7 R8 R9
0 0.954135 0.952148432 1.70634E-09 2.13697E-10 1.90742E-11 3.86774E-13

0.1 0.954589 0.95263173 1.52099E-09 2.08909E-10 1.79321E-11 3.28515E-13
0.2 0.95595 0.954081048 1.02873E-09 1.93842E-10 1.48054E-11 1.81022E-13
0.3 0.95822 0.956494659 3.95944E-10 1.6746E-10 1.05031E-11 1.04916E-14
0.4 0.961403 0.959869678 1.74014E-10 1.30779E-10 6.09157E-12 1.14464E-13
0.5 0.965503 0.964202058 5.21019E-10 8.86357E-11 2.53958E-12 1.58318E-13
0.6 0.970526 0.969486581 5.89803E-10 4.90143E-11 3.81084E-13 1.3195E-13
0.7 0.976479 0.975716845 4.44409E-10 1.9698E-11 4.40037E-13 7.64944E-14
0.8 0.983369 0.982885249 2.24681E-10 4.11388E-12 4.29934E-13 2.99205E-14
0.9 0.991206 0.990982981 6.17023E-11 4.23439E-13 1.74638E-13 6.60583E-15
1 1 1 0 0 0 5.55112E-17

Table 11.9 Numerical values of Ai, where i = 0,1,2, · · ·

A0=1 A4=1.13249×10−7 A8=9.7943×10−12

A1=-0.046875 A5=-6.18833×10−8 A9=5.23386×10−13

A2=0.000976563 A6=-3.29419×10−9

A3=0.0000336965 A7=1.10069 ×10−12

By employing the equations (11.21) and (11.36), we obtain the components {νi} of the series
solutions of SBVP as

ν0 = A0,

ν1 =− x2

64A2
0
+A1 +

x2

16
,

 (11.37a)
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ν2 =
x4

1536A3
0
− x4

6144A5
0
+

A1x2

32A3
0
+A2,

ν3 =− x6

32768A4
0
+

11x6

589824A6
0
− 13x6

4718592A8
0
+

5A1x4

6144A6
0
− A1x4

512A4
0

+
A2x2

32A3
0
−

3A2
1x2

64A4
0
+A3,

ν4 =− x6

32768A4
0
+

11x6

589824A6
0
− 13x6

4718592A8
0
+

5A1x4

6144A6
0

− A1x4

512A4
0
+

A2x2

32A3
0
−

3A2
1x2

64A4
0
+

x2

1509949440A11
0

(
8A2

0
(
520A0x4 +4160A1x4

−320A3
0x2 (480A1 −480A2 +11x2)−6A2

0

(
320A1x2 (240A1 +11x2)+51x6

)
+5760A5

0
(
64A1

(
24A1 + x2)−64A2

(
48A1 + x2)+ x4)

+288A4
0

(
80A1

(
32A1

(
16A1 + x2)+ x4)+ x6

)
−5898240A6

0 (A2 −A3)+101x6
)
−85x6

)
+A4,

....


(11.37b)

Making use of boundary conditions of (11.36), we obtain the values of A0,A1,A2, · · · (See
Table 11.9).

Hence, by using (11.37) and Table 11.9, we can write an approximate series solutions
of SBVP (11.36), containing 10-terms, i.e., u = ∑

9
i=0 vi. Similar to above problem, exact

solution of this problem (11.36) is also not known. So, again we check the efficiency of our
technique with the use of absolute residual error.

Rn =

∣∣∣∣−u′′n(x)−
3
x

u′n(x)−
1

8u2
n
+

1
2

∣∣∣∣ , 0 < x < 1.

Table 11.8 shows the numerical values of residual error Rn, n= 6,7,8,9 and their systematical
decay. Also we compare our result with the result of [79].

11.6 Conclusion

In this chapter, we have applied proposed homotopy perturbation method coupled with
variational iteration method to nonlinear singular boundary value problems arising in science
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and engineering. The proposed method is convergent and provides us approximate solutions
which are very close to exact solution or best solution, known so far. This method can be
preferred over finite difference method as it does not require matrix inversion. Using absolute
and residual errors, we show the computational power of proposed method.



Chapter 12

Monotone iterative technique for
nonlinear discrete BVPs

12.1 Introduction

The main aspire of this chapter is to develop monotone iterative technique for the following
discrete boundary value problem

−∆
2y(t −1) = f (t,y(t)), t ∈ [1,T ], (12.1)

y(0) = 0, y(T +1) = 0, (12.2)

where T is a positive integer, [1,T ] is the discrete interval {1,2, · · · ,T}, f : [0,T ]×R→ R,
and ∆ is the forward difference operator. Here f (t,y) is defined for all t in [1,T ] and for all
real numbers y. Also f (t,y) satisfies growth conditions with respect to y known as one sided
Lipschitz condition given as

y ≤ w =⇒ f (t,w)− f (t,y)≥ M(w− y).

We assume that f (t,y) is continuous in y for each t ∈ [1,T ]. Agarwal et al. [8] used critical
point theory and discussed the existence result for the same nonlinear discrete boundary
value problem (12.1)–(12.2).

We introduce monotone iterative scheme for nonlinear discrete boundary value problem
(12.1)–(12.2) defined as,

−∆
2yn+1(t −1)−λyn+1(t) = f (t,yn(t))−λyn(t), yn+1(0) = 0, yn+1(T +1) = 0,

(12.3)
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where λ ∈ R\{0}. This technique is a discrete version of Picard type monotone iterative
technique [131], (see [41] and references therein). For discrete boundary value problems, we
could observe only few references [155, 156, 166].

We establish maximum principle for the corresponding linear discrete boundary value
problem. We construct Green’s function and prove that it is of constant sign for linear discrete
boundary value problems (see [83]).

We associate the concept of upper and lower solutions with monotone iterative technique
and establish a existence result for nonlinear discrete boundary value problem. This existence
result reveals that the upper and lower solutions are treated as initial values for monotone
iterative technique, which generate monotonically convergent sequences. Furthermore we
obtain the existence uniqueness result for nonlinear discrete boundary value problem (12.1)–
(12.2).

12.2 Linear discrete BVP

To explore the existence results for nonlinear discrete boundary value problem (12.1)–(12.2),
we consider the following non-homogeneous linear discrete boundary value problem

−Ly ≡−∆
2y(t −1)−λy(t) = h(t), t ∈ [1,T ], (12.4)

y(0) = 0, y(T +1) = B, (12.5)

where B is any arbitrary constant. The corresponding homogeneous discrete boundary value
problem will be

∆
2y(t −1)+λy(t) = 0, t ∈ [1,T ], (12.6)

y(0) = 0, y(T +1) = 0. (12.7)

Solving non-homogeneous discrete boundary value problem (12.4)–(12.5) is equivalently to
find a y, such that

y(t) = ȳ−
T

∑
s=1

G(t,s)h(s) (12.8)

where ȳ is the solution of homogeneous difference equations (12.6), with non-homogeneous
boundary conditions (12.5) and G(t,s) is the Green’s function of (12.6)–(12.7). Here, we
discuss the solution of nonhomogeneous discrete boundary value problem (12.4)–(12.5). We
divide it into the following cases.
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Remark 12.1. The characteristic equation for (12.6) is

m2 +(λ −2)m+1 = 0.

If |λ −2|< 2, and cosθ = (2−λ )
2 , then

m = cosθ ± isinθ = e±iθ .

Therefore a general solution of equation (12.6) is

y(t) = c1 cos(θ t)+ c2 sin(θ t) .

By using equation (12.7), we have

y(0) = c1 = 0, y(T +1) = c2 sin((T +1)θ) = 0,

which gives
θ =

nπ

T +1
.

Thus all the eigenvalues are given by,

λn = 2−2cos
(

nπ

T +1

)
, n = 1,2,3 · · ·T.

12.2.0.1 Case I: |λ −2|< 0

Lemma 12.1. The Green’s function G(t,s) of the discrete boundary value problem (12.6)–
(12.7), for 0 < λ < λ1, is given by

G(t,s) =


−sinθ(T+1−s)sinθ t

sinθ sinθ(T+1) , 0 ≤ t ≤ s;

−sinθ(T+1−s)sinθ t
sinθ sinθ(T+1) + sinθ(t−s)

sinθ
, s ≤ t ≤ T +1;

(12.9)

where θ = tan−1
(√

4−(λ−2)2

(2−λ )

)
, where λ1 (see Remark 12.1) is the first eigenvalue of (12.6)–

(12.7).

Proof. We define the Green’s function as given below

G(x, t) =

{
u(t,s), 0 ≤ t ≤ s ≤ T +1;
v(t,s), 0 ≤ s ≤ t ≤ T +1;
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where u(·,s) is the solution of the following discrete boundary value problem for each fixed
s ∈ [1,T ]

Lu = 0, (12.10)

u(0,s) = 0, (12.11)

u(T +1,s) =−y(T +1,s), (12.12)

and v(t,s) := u(t,s)+y(t,s), where y(·, ·) is the Cauchy function for Ly= 0, ∀ t,s∈ [1,T ]. For
each s∈ [1,T ], v(·,s) is a solution of Ly= 0 satisfying the boundary condition y(T +1,s) = 0.

The Cauchy function for Ly = 0 is given by

y(t,s) =
sinθ(t − s)

sinθ
, (12.13)

where θ = tan−1
(√

4−(λ−2)2

(2−λ )

)
. Now from equations (12.10)–(12.12), we get

u(t,s) =
−sinθ(T +1− s)sinθ t

sinθ sinθ(T +1)
, (12.14)

for each fixed s ∈ [1,T ].
Next

v(t,s) = u(t,s)+ y(t,s) (12.15)

=
−sinθ(T +1− s)sinθ t

sinθ sinθ(T +1)
+

sinθ(t − s)
sinθ

. (12.16)

This completes the construction of Green’s function. �

Lemma 12.2. Let y be a solution of non-homogeneous discrete boundary value problem
(12.4)–(12.5), then

y(t) =
Bsinθ t

sinθ(T +1)
−

T

∑
s=1

G(t,s)h(s). (12.17)

Proof. Suppose ȳ is the solution of Ly = 0, t ∈ [1,T ], subject to y(0) = 0, y(T +1) = B,
and G(t,s) is the solution of homogeneous discrete boundary value problem (12.6)–(12.7).
Then the discrete boundary value problem (12.4)–(12.5) is analogous to

y(t) = ȳ−
T

∑
s=1

G(t,s)h(s).
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The general solution of difference equation Ly = 0 is given by

ȳ(t) = c1 cosθ t + c2 sinθ t,

where θ = tan−1
(√

4−(λ−2)2

(2−λ )

)
.

Since
ȳ(0) = 0, and ȳ(T +1) = B,

we get

c1 = 0,

c2 =
B

sinθ(T +1)
.

Hence the discrete boundary value problem (12.4)–(12.5) is equivalent to

y(t) =
Bsinθ t

sinθ(T +1)
−

T

∑
s=1

G(t,s)h(s).

�

Here we state four Lemmas 12.3, 12.4, 12.5 and 12.6 without proof. Proof of these are
similar to the case I

12.2.0.2 Case II: λ < 0

Lemma 12.3. The Green’s function G(t,s) of the discrete boundary value problem (12.6)–
(12.7) for λ < 0, is given by

G(t,s) =


1

(α−β )

(
αT+1−s −β T+1−s) (β t−αt)

(αT+1−β T+1)
, 0 ≤ t ≤ s;

1
(α−β )

(
αT+1−s −β T+1−s) (β t−αt)

(αT+1−β T+1)
+ (αt−s−β t−s)

(α−β ) , s ≤ t ≤ T +1;

(12.18)

where α =
(2−λ )+

√
(λ−2)2−4

2 and β =
(2−λ )−

√
(λ−2)2−4

2 .

Lemma 12.4. Let y be the solution of non-homogeneous difference equation (12.4)–(12.5),
then

y(t) =
(α t −β t)B

(αT+1 −β T+1)
−

T

∑
s=1

G(t,s)h(s). (12.19)
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12.2.0.3 Case III: λ = 0

Lemma 12.5. The Green’s function G(t,s) of the discrete boundary value problem (12.6)–
(12.7) for λ = 0, is given by

G(t,s) =


t(s−(T+1))

T+1 , 0 ≤ t ≤ s;

s(t−(T+1))
T+1 , s ≤ t ≤ T +1.

(12.20)

Lemma 12.6. Let y be the solution of non-homogeneous difference equation (12.4)–(12.5),
then

y(t) =
B

T +1
−

T

∑
s=1

G(t,s)h(s). (12.21)

Remark 12.2. Using Lemma 12.2, Lemma 12.4 and Lemma 12.6 the solution of non-
homogeneous linear discrete boundary value problems (12.4)–(12.5) can be written as

y(t) = Bψ(t)−
T

∑
s=1

G(t,s)h(s). (12.22)

where ψ(t) is defined as sinθ t
sinθ(T+1) or (αt−β t)

(αT+1−β T+1)
or B

T+1 and G(t,s) is defined by (12.9) or
(12.18) or (12.20), respectively.

Remark 12.3. For each fixed value of s ∈ [1,T ], u(·,s) is the solution of (12.10) which
satisfies the discrete boundary conditions u(0,s) = 0 and u(T +1,s) =−y(T +1,s), where
y(·, ·) is a Cauchy function and satisfies y(s,s) = 0, y(s+1,s)> 0. As difference equation
(12.10) disconjugate on [0,T +1], i.e,

u(t,s)< 0,

for t ∈ [1,T ]. Also v(·,s) is a solution of Ly = 0 satisfying the boundary condition v(T +

1,s) = 0, and
v(s,s) = u(s,s)+ y(s,s) = u(s,s)< 0,

then
v(t,s)< 0,

for t ∈ [1,T ]. Therefore
G(t,s)< 0,

for t,s ∈ [1,T ].
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12.3 Maximum principle

Proposition 12.1. If y satisfies the non-homogeneous linear discrete boundary value problem

−∆
2y(t −1)−λy(t) = h(t), t ∈ [1,T ],

y(0) = 0, y(T +1) = B,

with h(t)≥ 0 and B ≥ 0, then y(t)≥ 0 for all t ∈ [1,T ] and λ < λ1.

Proof. The proof is an immediate consequences of Remarks 12.2, 12.3. �

12.4 Nonlinear discrete BVP

In this section, we examine the existence results for nonlinear discrete boundary value
problem, with the support of monotone iterative method and upper and lower solutions of the
nonlinear discrete boundary value problem.

Let us first define the bounds of the solution of the nonlinear discrete boundary value
problems

Definition 12.1. A function β0(t) is an upper solution of nonlinear discrete boundary value
problem (12.1)–(12.2) if it satisfies

−∆
2
β0(t −1)≥ f (t,β0(t)), t ∈ [1,T ], β0(0) = 0, β0(T +1)≥ 0. (12.23)

Definition 12.2. A function α0(t) is a lower solution of nonlinear discrete boundary value
problem (12.1)–(12.2) if it satisfies

−∆
2
α0(t −1)≤ f (t,α0(t)), t ∈ [1,T ], α0(0) = 0, α0(T +1)≤ 0. (12.24)

Theorem 12.1. If f : D0 → R is continuous on D0 := {(t,y) ∈ [0,T +1]×R : α0 ≤ y ≤ β0}
in y for each t and there exists a constant M > 0 such that for all (t,y),(t,w) ∈ D0

y ≤ w =⇒ f (t,w)− f (t,y)≥ M(w− y), (12.25)

then the region D0, contains at least one solution of the nonlinear discrete boundary value
problem (12.1)–(12.2). If a constant λ ≤ M is chosen such that λ < λ1 then the sequence
(βn) generated by

−∆
2yn+1(t −1)−λyn+1(t) = F(t,yn(t)), yn+1(0) = 0, yn+1(T +1) = 0, (12.26)
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where F(x,yn(t)) = f (t,yn(t))−λyn, converges monotonically (non-increasing) and uni-
formly towards a solution β̃ (t) of (12.1)–(12.2). Similarly α0 leads to a non-decreasing
sequence (αn) converging to a solution α̃(t). Any solution z(t) in D0 must satisfy

α̃(t)≤ z(t)≤ β̃ (t).

Proof. Making the use of equations (12.23) and (12.26) (for n = 0)

−∆
2(β0−β1)(t−1)−λ (β0−β1)(t)≥ 0, (β0−β1)= 0, (β0−β1)(T +1)≥ 0. (12.27)

As (β0 − β1) satisfies the above equation (12.27), with h(t) ≥ 0, and B ≥ 0, then by the
Proposition 12.1, we have β0 ≥ β1.

As M−λ ≥ 0, using the equations (12.25) and (12.26), we have

−∆
2
βn+1(t −1)≥ (M−λ )(βn −βn+1)(t)+ f (t,βn+1(t)),

and if βn −βn+1 ≥ 0, then

−∆
2
βn+1(t −1)≥ f (t,βn+1(t)), βn+1(0) = 0, βn+1(T +1) = 0. (12.28)

Since β0 ≥ β1, then by making the use of equations (12.28) (for n = 0) and (12.26) (for
n = 1) we get

−∆
2(β1 −β2)(t −1)−λ (β1 −β2)(t)≥ 0,

(β1 −β2)(0) = 0, (β1 −β2)(T +1)≥ 0.

In the view of Proposition 12.1, we have β1 ≥ β2.

Now with the support of equations (12.24) and (12.26) (for n = 0), we get

−∆
2(β1 −α0)(t −1)−λ (β1 −α0)(t)≥ 0,

(β1 −α0)(0) = 0, (β1 −α0)(T +1)≥ 0,

which gives β1 ≥ α0, (Proposition 12.1).

To use mathematical induction, we assume that βn+1 ≤ βn, α0 ≤ βn+1 and show that
βn+2 ≤ βn+1 and α0 ≤ βn+2 for all n. Now making the use of equations (12.26) (for n+1)
and (12.28)

−∆
2(βn+1 −βn+2)(t −1)−λ (βn+1 −βn+2)(t)≥ 0,



12.4 Nonlinear discrete BVP 205

(βn+1 −βn+2)(0) = 0, (βn+1 −βn+2)(T +1)≥ 0,

we have βn+1 ≤ βn (Propositions 12.1).

From equations (12.26) (for n+1) and (12.24)

−∆
2(βn+2 −α0)(t −1)−λ (βn+2 −α0)(t)≥ 0,

(βn+2 −α0)(0) = 0, (βn+2 −α0)(T +1)≥ 0.

Thus we have α0 ≤ βn+2 (Proposition 12.1) and hence we have

α0 ≤ . . .≤ βn+1 ≤ βn ≤ . . .≤ β2 ≤ β1 ≤ β0,

and if we choose α0 as an initial iterate, then we easily get

α0 ≤ α1 ≤ α2 ≤ . . .≤ αn ≤ αn+1 ≤ . . .≤ β0.

Finally we prove that αn ≤ βn for all n. For this by assuming αn ≤ βn, we show that
βn+1 ≥ αn+1. From equation (12.26) it is easy to get

−∆
2(βn+1 −αn+1)(t −1)−λ (βn+1 −αn+1)(t)≥ 0,

(βn+1 −αn+1)(0) = 0, (βn+1 −αn+1)(T +1)≥ 0.

Hence by Proposition 12.1, βn+1 ≥ αn+1. Thus we have

α0 ≤ α1 ≤ α2 ≤ . . .≤ αn ≤ αn+1 ≤ . . .≤ βn+1 ≤ βn ≤ . . .≤ β2 ≤ β1 ≤ β0.

So the sequences (βn) and (αn) are monotonically non-increasing and non-decreasing,
respectively and are bounded by β0 and α0. Hence they converge uniformly. Let β (t) =
lim
n→∞

βn(t) and α(t) = lim
n→∞

αn(t).

The solution βn+1 of equation (12.26) is given by (Remark 12.3).

βn+1 = Bψ(t)−
T

∑
s=1

G(t,s)( f (t,βn(t))−λβn).

Now as n → ∞, we get

β̃ (t) = Bψ(t)−
T

∑
s=1

G(t,s)( f (t, β̃ (t))−λβ̃ (t)).
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Which is the solution of boundary value problem (12.1)–(12.2).
It is clear that any arbitrary solution z(t) can be treated as upper solution β0(t), i.e., we

get z(t)≥ α0(t), similarly one concludes that z(t)≤ β0(t). �

Theorem 12.2. Let f (t,y) is continuous in y for each t in [1,T ] and there is a constant M > 0
such that

f (t,w)− f (t,y)≥ M(w− y), (12.29)

and M < λ1. Then the nonlinear discrete boundary value problem (12.1)–(12.2) has unique
solution.

Proof. Suppose u(t) and v(t) be any two solutions of (12.1)–(12.2) then we get

−∆
2(u− v)(t −1) = [ f (t,u(t))− f (t,v(t))] ,

(u− v)(0) = 0, (u− v)(T +1) = 0,

which gives

−∆
2(u− v)(t −1)−M(u− v)(t −1)≥ 0,

(u− v)(0) = 0, (u− v)(T +1) = 0.

By the maximum (for, B = 0), whenever M < λ1, we get u− v ≥ 0 (i.e., u ≥ v). Similarly
by changing the role of u and v, we get u ≤ v. Hence u ≡ v. Therefore the solution of the
(12.1)–(12.2) is unique. �

12.5 Examples

Example 12.1. Consider the nonlinear discrete boundary value problems

−∆
2y(t −1) =

ey(t)

e(T+1)2 , t ∈ [1,T ], (12.30)

y(0) = 0, y(T +1) = 0. (12.31)

Here, α0 = 0 and β0 = (T + 1)t − t2

2 are defined as lower and upper solutions of the
solution of nonlinear discrete boundary value problem (12.30)–(12.31), respectively. The
nonlinear source term is continuous for all values of y(t) and satisfies one sided Lipschitz
condition, with constant M = 1

e(T+1)2
. By Theorem 12.1 and Theorem 12.2, discrete BVP

(12.30)–(12.31) has a unique solution.
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Example 12.2. Consider the nonlinear discrete boundary value problems

−∆
2y(t −1) = et − ey(t), t ∈ [1,T ], (12.32)

y(0) = 0, y(T +1) = 0. (12.33)

Here, α0 = 0 and β0 = t are defined as lower and upper solutions of the solution of
nonlinear discrete boundary value problem (12.32)–(12.33), respectively. The nonlinear
source term is continuous for all values of y(t) and satisfies one sided Lipschitz condition,
with constant M = e(T+1). By Theorem 12.1 and Theorem 12.2, discrete BVP (12.32)–
(12.33) has a unique solution

12.6 Conclusion

In this chapter have established existence of a unique solution for a class of nonsingular
difference equation subject to Dirichlet type boundary conditions. Though the results are
simple but new and may lead some new development in near future, related to theory of
difference equations.





Conclusions and future scope of work

The present thesis is devoted to the study of nonlinear nonsingular / singular boundary value
problems. We have considered some continuous cases and a discrete case. In the continuous
case we consider nonlinear three point nonsingular / singular BVPs and two point SBVPs.
While, in the discrete case, we consider a nonlinear nonsingular discrete boundary value
problem.

We develop monotone iterative method for both well ordered and reverse ordered upper
and lower solutions for the following class of differential and difference equations, with
suitable boundary conditions.

• Nonlinear three point nonsingular boundary value problem when source function is
independent from derivative with mixed type boundary condition.

• Nonlinear three point nonsingular boundary value problem when source function
depends on derivative, with Dirichlet, Neumann and mixed type boundary conditions.

• Nonlinear three point singular boundary value problems of the form

− y′′− α

x
y′ = f (x,y), 0 < x < 1, (12.34)

with suitable boundary conditions, for α ≥ 1.

• Three point nonlinear singular boundary value problem (12.34) for α = 1, when source
function depends on derivative,

• Nonlinear two point discrete boundary value problem.

In all above cases under certain sufficient conditions we construct Green’s function,
establish maximum and anti maximum principles and hence establish existence results.

For the numerical solutions of nonlinear singular two point boundary value problems we
use variational iteration method and homotopy perturbation method. Convergence of both
the methods is established and results are validated by solving several real life problems.
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On the basis of work done in this thesis we can consider the following as future scope of
this work

• In this thesis we have developed monotone iterative method (MIT) associated with
upper and lower solutions for three point nonlinear boundary value problems, which
can be extended for four point or multi-point nonlinear nonsingular/singular BVPs.

• Monotone iterative method can be generalized for nonlinear discrete singular boundary
value problems.

• Some new numerical methods can be proposed for three point and multi point boundary
value problems.
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VIM : Lagrange multipliers

For ω > 0, the Lagrange multipliers is

λ (t) =
πxtνtα

2xνxα

[(
J−ν

(
t
√

ω
)

Y−ν

(
x
√

ω
)
− J−ν

(
x
√

ω
)

Y−ν

(
t
√

ω
))]

,

where

J−ν

(
t
√

ω
)
=

∞

∑
m=0

(−1)m
(

t
√

ω

2

)−ν+2m

m! Γ(m−ν +1)
,

Jν

(
t
√

ω
)
=

∞
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(−1)m
(

t
√

ω

2

)ν+2m

m! Γ(m+ν +1)
,

and

Y−ν

(
t
√

ω
)
=

2
π

J−ν

(
t
√

ω
)(

ln
t
√

ω

2
+ γ

)
− 1

π

−ν−1

∑
m=0

(−ν −m−1)!
m!

(
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√

ω

2

)2m+ν

+

1
π

∞

∑
m=0

(−1)m−1 [(1+ 1
2 + · · ·+ 1

m

)
+
(
1+ 1

2 + · · ·+ 1
m−ν

)]
m! (m−ν)!

(
t
√

ω

2

)2m−ν

.

We have also a relations

Y−ν

(
t
√

ω
)
=

Jν

(
t
√

ω
)
− cosνπJ−ν

(
t
√

ω
)

sinνπ
.
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i.e.,

λ (t) =
πxtα

2 xα


 2

π

 ∞

∑
m=0

(−1)mx−2ν+2m
(√

ω

2

)−ν+2m

m! Γ(m−ν +1)

(ln
(

x
√

ω

2

)
+ γ

)

− 1
π

−ν−1

∑
m=0

(−ν −m−1)!
m!

(x)2m
(√

ω

2

)2m+ν

+
1
π

∞

∑
m=0

(−1)m−1 [(1+ 1
2 + · · ·+ 1

m

)
+
(
1+ 1

2 + · · ·+ 1
m−ν

)]
m! (m−ν)!

(x)2m−2ν

(√
ω

2

)2m−ν

+
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m=0

(−1)mx−2ν+2m
(√

ω

2

)−ν+2m

m! Γ(m−ν +1)

cotνπ
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(−1)mt2m
(√

ω

2
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− πx
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2
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 .
Now for ω < 0, the Lagrange multipliers is

λ (t) =
tαtν x
xν xα

[
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(
x
√

|ω|
)
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(
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λ (t) =
π tα

2xα sinνπ
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VIM and HPM

Construction of homotopy for the nonlinear SBVP (11.1) is discussed in this section.

We define the (n+1)th approximate solution for SBVP (11.1) as (see Section 11.2.1)

un+1(x) = un(x)+
∫ x

0
λ (t)[Lun(t)+Nun(t)−g(t)]dt, (B.1)

where Lun =−u′′n − α

t u′n, Nun =− f (t,un) and g(t) = 0.

We introduce ν = ∑
∞
i=0 piνi, N(ν) = ∑

∞
i=0 piHi and the nth approximate solution un =

∑
n
i=0 νi. Also note that N(ν0) = H0,N(ν0 +ν1) = H0 +H1 and N (∑n

i=0 νi) = ∑
n
i=0 Hi.

Substituting these values into (B.1), we get(
n+1

∑
i=0

νi

)
=

(
n

∑
i=0

νi

)
+
∫ x

0
λ (t)

[
L

(
n

∑
i=0

νi

)
(t)+N

(
n

∑
i=0

νi

)
(t)−g(t)

]
dt.

Now, after solving the above equation for different values of n, we get

ν0 = u0

ν1 =
∫ x

0
λ (t)[Lν0(t)+H0(t)−g(t)]dt,

ν2 = ν1 +
∫ x

0
λ (t)[Lν1(t)+H1(t)]dt,

...

νn+1 = νn +
∫ x

0
λ (t)[Lνn(t)+Hn(t)]dt,

....
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Which yields

ν(x, p) =
∞

∑
i=0

pi
νi = ν0 + pν1 + p2

ν2 + · · ·+ pn
νn + · · ·

=ν0 +

[
p
∫ x

0
λ (t)[Lν0 +H0 −g(t)]dt

]
+

[
p2

ν1 + p
∫ x

0
λ (t)[Lν1(t)p+H1(t)p]dt

]
+

[
p3

ν2 + p
∫ x

0
λ (t)[Lν2(t)p2 +H2(t)p2]dt

]
+

· · ·+
[

pn+1
νn + p

∫ x

0
λ (t)[Lνn(t)pn +Hn(t)pn]dt

]
+ · · · .

That gives

(1− p)[u0 −ν ]+ p
∫ x

0
λ (t)[Lν(t)+Nν(t)−g(t)]dt = 0.

Hence, we get the following homotopy

H(x,ν , p) = (1− p)[u0 −ν ]+ p
∫ x

0
λ (t)[Lν(t)+Nν(t)−g(t)]dt = 0.
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