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ABSTRACT 

 

The development of novel ways of investigating drug like properties of new chemical entities 

(NCEs) has been a topic of great interest for researchers. Identification of the ideal blend of 

properties that can result in druggability and efficacy, enabling a clinical proof concept (POC) is 

the most significant step in the translatability of discovery research programs. Besides the 

promising and/or differentiating biological dose-response relationship which is a must, the 

pharmacokinetic parameters play equally important role in influencing the therapeutic response 

or toxicity of an NCE. There are numerous techniques available to evaluate individual drug-like 

properties for a chemical entity. However, the profile of an NCE in a dynamic in vivo system, 

which influences its therapeutic or toxic effects, is a result of the composite functions of its 

various physicochemical and pharmacokinetic properties. This implies the need to understand the 

collective influence of various properties, and how variations can be made in them to alter the in 

vivo profile to enhance efficacy and reduce adverse effects. An early identification of these 

factors is vital to a successful and time efficient lead optimization process. Most of the efforts in 

this direction continue to rely on empirical quantitative structure activity relationship (QSAR) 

based approaches or focus on individual properties perceived to improve pharmacokinetic-

pharmacodynamic (PK-PD) relationships, without a mechanistic evaluation of their combined 

effect. Therefore, there exists a research gap in the development of a new methodology to 

effectively integrate various physicochemical as well as absorption, distribution, metabolism and 

excretion (ADME) properties of an NCE and rationally choose relevant properties for 

optimization. This methodology should be able to link various compound properties 

mechanistically with the in vivo PK profile and identify critical properties contributing to a 

favorable pharmacokinetic profile with a suitable analytical approach. Physiological based 

pharmacokinetic (PBPK) models are of great interest in this context as they involve a 

mechanistic approach of integrating the individual NCE properties with physiological parameters 

to predict human in vivo profile, enabling comparison with a desired Target Product Profile 

(TPP). Additionally, with the infleunce of various properties on the in vivo profile of an NCE, it 

would require a multivariate analytical approach to assess the interplay of these properties and to 

identify critical properties for lead optimization.  In the current research, described in this thesis, 

a retrospective analysis of 13 clinically proven drugs has been utilized to develop a methodology 
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and achieve these objectives. Various physicochemical and ADME screening data generated 

experimentally for these  compounds have been integrated using PBPK models to predict key PK 

parameters of absorption, distribution and clearance. These parameters were utilized to simulate 

human oral concentration-time profile using a one compartment PK model and were compared 

with clinical reports for their accuracy. Further, a multivariate approach has been applied using 

partial least square (PLS) regression to identify the trends in the prediction data and 

unambiguously evaluate the key physicochemical and ADME properties that influence PK 

parameters along with their relative contribution allowing their prioritization in lead 

optimization. The utility of this approach was illustrated with hypothetical examples indicating 

the changes in concentration-time profiles due to variations made on individual properties as 

well as their correlation with efficacy. As an outcome of the new methodology developed from 

of this research, key physicochemical or ADME properties influencing the in vivo profile of an 

NCE can be rationally identified and rank ordered, which further can be optimized by 

modification of the chemical scaffold.  The results of the various modifications on human PK 

profile can be prior assessed by generating ADME and physicochemical data of the modified 

series, which can be substituted in the PBPK models to simulate human PK profile. To improve 

the assessments, and understand variability that could be expected in clinic, evaluations of 

possible deviations from the predicted profile due to transporter interactions, induction, biliary 

secretion or entero-hepatic recycling, metabolic enzyme polymorphism etc. could also be 

performed. The improved profile can be correlated with; known PK-PD relationships or be used 

to extrapolate them from animal efficacy models, compared with other critical parameters of  

toxicity and chemistry manufacturing and control (CMC), to select the best candidate for clinical 

development.    
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1.1. Introduction 

Pharmacokinetic properties play an important role in the successful development of a clinical 

candidate and unfavorable PK attributes could contribute significantly to attrition of compounds 

in clinical development [1]. This has made the selection of an NCE having optimal PK properties 

as one of the key factors determining its success in development. Evaluation of PK properties in 

preclinical species as well as in vitro assays to predict human PK has thus become a very 

important area of research. Efforts have been made in developing various models like allometric 

scaling, compartmental models etc. Though these models are widely used, they lack integration 

of natural physiological characteristics into their framework and therefore are not representative 

of ideal in vivo conditions. Physiological based pharmacokinetic (PBPK) models relate the 

physicochemical and ADME properties of a test compound with physiological parameters like 

tissue and organ size and volumes, lipid partitioning, metabolic pathways, blood flow etc. and 

provide a mathematical model that can closely mimic the in vivo situation. PBPK models were 

also one of the earliest reported models in scientific literature with the work of Teorell [2] in 

1937, on an integrated approach to whole body physiologically based modeling of 

pharmacokinetics. PBPK models provide numerous advantages in terms of accommodating the 

variations in physiological factors with species, age, disease state etc, allowing a reliable 

prediction of in vivo data in humans. An added advantage of this technique is its potential for 

utilization in drug discovery, where there are limitations to conduct extensive in vivo 

experimentation considering compound availability, volume of effort, time and cost. The major 

drawbacks perceived with these models were the extensive computational steps, lack of reliable 

physiological data as well as numerous experimental data inputs required. With the advent of 

faster computing systems, standardized physiological parameters published in literature, newer 

high throughput in vitro screening assays as well as sensitive bioanalysis techniques, these 

requirements are no longer a limitation. The development of a physiological model requires the 

initial mathematical description of the relevant compartments that undertake the key processes 

determining the exposure, partitioning and biotransformation of the test compound. This is 

followed by a buildup of relationships using mass balance or differential equations. This can be 

followed by simulation or prediction of relevant PK parameters with the use of various measured 

input data. A combination approach is also feasible with physiological model derived human PK 
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parameters are employed in a compartmental model (for e.g. one compartment PK model with 

first order absorption) to simulate human oral or intravenous concentration-time profile [3]. In 

many cases the simulations could also be validated using an animal species [4], however due to 

species specific parameters, the human prediction may vary (for example with interspecies 

differences in metabolism) and therefore a retrospective analysis of clinically proven compounds 

as employed in the current research which allows verification of results with published data [3-

6], is a meaningful approach to assess their utility. Having a reliable method for prediction of 

human PK also opens up the possibility of methodically analyzing and identifying the relevant 

properties to be optimized to produce a lead candidate. This rationale forms the background of 

current research. 

1.2. Human Oral Drug Absorption 

The preferred route of administration for a pharmaceutical dosage form is oral due to the 

flexibility of administering wide range of doses with adaptability of various regimens as well as 

convenience of self-administration.  The absorption of a drug from the gastrointestinal (GI) route 

is affected by the physiological characteristics as well as the various properties of the drug. The 

key physiological factors that influence absorption are the absorptive surface area, local pH 

environment, pH gradient, volumes of fluids, gastric emptying and transit time. Additionally the 

diurnal variability, expression of transporters, metabolizing enzymes, secretion of bile and 

presence of food can also influence the drug absorption. The major drug related properties 

include its solubility in relation to dose, permeability, efflux liability, as well as stability in the 

GI tract.  Having numerous factors influencing absorption also points to the relevance of a 

physiological based approach to integrate them for reliable prediction of human absorption. 

Physiological Parameters Influencing Oral Absorption 

The major physiological factor influencing absorption is the absorptive surface area of GI tract. 

Small intestine with the largest absorptive surface area forms the major site of drug absorption 

[7]. The small intestine has an average length of about 280 cm with its anatomical segments of 

duodenum (21 cm), the jejunum (105 cm), and the ileum (156 cm). The diameter of the small 

intestine ranges from 3-6 cm in the proximal part to 1.5-2.5cm in the distal part [8].  
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The major modes of absorption are passive diffusion, active transport, and pinocytosis 

(especially in neonates) [9,10]. The absorption of drugs from GI tract is majorly influenced by 

absorptive surface area and transit time. The surface area of the human small intestine is greatly 

enhanced by the presence of fold, villi and microvilli. Large folds are more in duodenum and less 

in ileum and provide a surface amplification factor of 3 at some areas. The villi present in the 

intestine have an average height of 800µm and 500µm in the proximal and distal end of the 

intestine. However, the radius of the villi is constant (50µm) throughout the length of small 

intestine and density of about 25mm [11,12]. The apical surface of the enterocytes (columnar 

epithelial cells in intestine) contains numerous microvilli giving the appearance of brush border 

which greatly increases the absorptive surface area of the enterocyte which is approximated to 

around 25 fold [8,13]. The plasma exposure profile of orally administered drugs is greatly 

influenced by the dynamics of gastric emptying rate, and the intestinal transit time [14]. This 

may be specifically important for such drugs that have a narrow window of absorption from a 

particular gastrointestinal region. Gastric emptying refers to the time at which ingested food 

materials leave the stomach. The transit time is the amount of time taken for a bolus of chyme to 

pass through a region of the alimentary tract. The total transit time through the human pharynx 

and esophagus is about 6 seconds. The gastric emptying time largely depends on the nature of its 

contents. In a fasted condition the gastric transit time is about 4h [15]. Generally, meals 

comprising of various dietary constituents empty from the stomach at varying time with 

carbohydrate being the faster, protein at an intermediate and fats and lipids being the last to 

transit [15].The speed of chyme in the human small intestine is 1-4 cm per min [15]. The 

velocity of transport is faster in the proximal part of the small intestine i.e. duodenum and 

proximal part of jejunum and decrease as the chyme approaches the ileum. On an average the 

transit of a bolus of chyme for the small intestine is 3-4h. The transit of human large intestine is 

considerably slower and depending on the food intake, could range from 2-4 days [15,16]. 

The other major factor influencing drug absorption is the pH gradient of the GI tract. The mean 

gastric pH of small intestine is 1.8 [17]. The pH rises towards the distal direction from 5.0 at the 

pyloric sphincter to 6.0 at the distal end of the duodenum. The jejunum has a mean pH of 6.0 to 

7.0 with the pH further rising to about 7.5 at the ileum [8].  

The effect of bile is another key physiological factor that affects absorption due to its 

emulsification property. The average bile salt concentration in the jejunum is approximately 
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3mM in the fasted state and 5-15mM in the fed state and the bile salt/phospholipid ratio is 

approximately 4:1 [18-20]. 

Molecular Properties that Influence Oral Absorption 

Major molecular properties that influence absorption are the molecular weight, ionization, polar 

surface area and lipophilicity. The rule of 5 principle proposed by Lipinski evaluates the 

feasibility of a drug demonstrating pharmacological activity to be orally active (drug-likeness) 

based on these properties. According to Lipinski's rule, an orally active drug has no more than 

one violation of the following criteria [21]: 

a) Not more than five hydrogen bond donors (nitrogen or oxygen atoms with one or more 

hydrogen atoms) 

b) Not more than ten hydrogen bond acceptors (nitrogen or oxygen atoms) 

c) A molecular weight not greater than 500 Daltons 

d) An octanol-water partition coefficient (Log P) not greater than 5 

Daniel et al. evaluated the relative importance of molecular properties [22] and observed that the 

reduced molecular flexibility as measured by the number of rotatable bonds and low polar 

surface area or total hydrogen bond count were good predictors of oral drug bioavailability, 

independent of molecular weight. Development of a potent and selective drug molecule with 

high oral bioavailability thus involves a balance of the two aspects of freezing overall molecular 

shape and functional group presentation compatible with optimal target interaction and clearance 

mechanisms in the body as well as retaining properties compatible with membrane permeation.  

Physiochemical Properties Influencing Drug Absorption 

Major physicochemical properties that influence drug absorption are related to its solubility and 

permeability characteristics [17]. After oral administration, a solid dosage form needs to undergo 

the process of disintegration and dissolution to be finally available in soluble form. Dissolution is 

the kinetic process of dissolving a solute in a solvent, and dissolution rate (amount/time) is used 

to represent the speed of this process.  The first step in dissolution is the detachment of a 

molecule from the solid surface. The second step is the diffusion of the detached molecule across 
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the diffusion layer adjacent to the solid surface [23]. In most cases rapid saturation is achieved at 

the solid surface and therefore, the second step determines the dissolution rate (DR). The basic 

diffusion controlled model was first described by Noyes and Whitney [24] and was later 

modified by Nernst [25] and Brunner [26]. 

   
           

  
   

               

    
                    

   
               

    
         

        

     
  

Where           is the amount of undissolved solid at time t,           is the total solid surface 

area at time t,      is the thickness of the diffusion layer at time t,       is the diffusion 

coefficient of the drug,           is the concentration in the bulk medium at time t,          is the 

dissolved amount in the bulk solution at time t and       is the volume of bulk. 

For a drug substance to solubilize, it would require interaction of the solute molecules with the 

solvent with different, but well defined associations (ionic, hydrogen bonding Van der Waals 

forces etc.). Once a solid is dispersed in a liquid, it could exist as any of the following [23] 

a) Monomer (single molecule surrounded by solvent molecules) 

b) Dimer or higher self-aggregate 

c) Complexes with larger molecules 

d) The micelle included state  

e) Nano scale particles (usually termed as nano-suspensions) 

Solubility could be defined in quantitative terms as the concentration of solute in a saturated 

solution at a certain temperature. From a drug discovery perspective, solubility could also be 

defined as kinetic or equilibrium solubility. Kinetic solubility is the concentration attained after 

addition of a concentrated sample stock solution (like in DMSO) into an aqueous media. 

Equilibrium solubility can be defined as the concentration of the compound in a solution which 

is in contact with an excess amount of the solid compound when the concentration and the solid 

form do not change over time (in equilibrium) [23]. 
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Solubility may be viewed to be closely related to dissolution, which is a kinetic parameter. 

Absorption of an orally administered compound in a solid dosage form (tablet or capsule) 

involves the disintegration of the solid particles followed by the dissolution. Inside the 

gastrointestinal tract there would exist a dynamic interchange between the dissolved and 

precipitated stages of the solid drug based on the volume of intestinal fluid as well as the pH 

microclimate. Once dissolved, the ionization of the dissolved drug, the unstirred water layer, the 

concentration gradient as well as permeability influence the diffusion of the dissolved compound 

across the GI epithelium [17, 27]. For poorly soluble drugs the intestinal solubility (Sint) can limit 

the concentration of the compound in the intestinal lumen. If the drug concentration in the lumen 

is higher (especially compounds that are administered in solutions and/or highly soluble drugs) 

than the local intestinal solubility (at the particular pH and intestinal fluid volume), the 

compound may have a tendency to precipitate (if it was previously in dissolved state). This 

results in low effective concentrations of drug available in dissolved state.  

Drug Permeability 

Apart from the dissolution rate and solubility of the drug in the intestinal fluid, the absorption of 

the drug is also related to its permeability coefficient (P) which relates to the rate at which the 

dissolved drug will cross the intestinal wall to reach the portal blood circulation [28]. Applying 

Fick’s law to the intestinal membrane the flux (passive diffusion per unit area of intestinal wall) 

of a solute can be assessed as the product of the diffusivity and the concentration gradient of the 

solute inside the membrane. 

              

Where J denotes flux, P denotes the permeability coefficient and C denotes the maximum 

concentration in solution. The major driving force for passive permeability is the concentration 

gradient that exists between the intestinal lumen and the central compartment (blood) that drives 

the compound to get absorbed (based on Fick’s law). However, the main barrier to drug 

absorption is formed by the intestinal epithelium. Additional barriers include the mucosal layer 

and the unstirred water layer. Out of the many forms that a drug could exist as in a bio-relevant 

media, the free monomer state is the most effective for membrane permeation. Generally 

compounds with poor solubility tend to have high lipophilicity and high membrane permeability. 

In such cases the effective intestinal membrane permeability is limited by the unstirred water 
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layer [23]. Amidon et al. [29] demonstrated that when the membrane permeability is limited by 

unstirred water layer, free monomer drug molecules as well as micelle incorporated drug 

molecules are effective for permeation across the rate limiting layer.  

For effective passive diffusion of an ionizable drug, the molecule needs to be uncharged at the 

membrane surface. The unionized form of a compound partitions more into the lipids than the 

ionized form. The proportion of the compound in an unionized stage at any particular pH is 

described by the of Handerson-Hasselbalch equation (simplified for monoprotic acids or bases) 

which defines pKa [30, 31] as the pH at which both the ionized and unionized form exist in equal 

proportion for acids and bases 

                     
    

    
  

                     
     

   
  

For diprotic ampholytes 

             
     

    
  

             
    

    
  

For compounds that are ionized at physiologically relevant pH, the lipid partitioning of the 

ionized species Log D has a greater practical significance. Depending on the pH microclimate at 

the particular segment of intestine the compound (at a total concentration denoted as C) would 

thus exist in two distinct soluble forms (ionized and unionized, indicated by i and u, respectively) 

at various proportions that can be related to the location of the intestine (z) at a defined time (t) 

[8]. 
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f
0
(z) is the neutral fraction, dependent on the pKa of the compound at the pH at location z. The 

value of f
0
(z) of a compound for a known pH can be can be obtained from the Handerson-

Hasselbalch equation [8]. 

      
 

                
                           

Principal Routes of Passive Diffusion 

Paracellular and transcellular diffusion form the principle routes of passive diffusion. 

Paracellular transport include diffusion with aqueous solution through the pores in the tight 

junctions joining the intestinal cells (generally Mol. Wt. <200 Daltons). Transcellular diffusion 

involves permeation through the membrane and is dependent on the lipophilicity as well as 

charged state of the molecule. The neutral form of a molecule could have a 10
5
 fold greater 

permeability than the charged form across the epithelium [17]. 

Reasons for Poor Permeability 

The causes of poor absorption can be categorized into three types basing on the balance between 

solubility, dissolution rate and permeability of a drug [23]. 

a) Dissolution-rate limited oral absorption: The permeation rate is much larger than the 

dissolution rate, whereby the dissolution becomes the rate limiting step. In this case, the 

absorbed amount would increase dose proportionately. Absorption would also be 

enhanced with particle size reduction as it increases the surface area improving 

dissolution.  

b) Permeability limited oral absorption: The permeation is slow and dissolution is fast, 

resulting in accumulation of dissolved amount in the intestinal fluid. Until the 

concentration in intestinal fluid approaches the maximum soluble limit for the pH in the 

intestinal segment, the absorbed amount will increase proportionately with dose. There 

will be no effect of particle size reduction on absorption. 

c) Solubility limited oral absorption: The solubility of the administered drug reaches the 

maximum possible limit in the intestinal fluid and for increased absorption it would 

require more of the drug to come into solution. In this case absorption could also be 

limited due to lower effective permeability, unstirred water layer etc. and the high 
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dissolution rate has caused the drug to accumulate eventually approaching the maximum 

solubility limit.  

The Biopharmaceutical Classification System (BCS) 

The influences of solubility and permeability in drug absorption have been incorporated in the 

biopharmaceutics classification system proposed by the US Food and Drug Administration (US 

FDA) as a bioavailability-bioequivalence guideline. The following is a representation of the BCS 

class 

The Biopharmaceutical Classification System 

Class 1 

High permeability 

High solubility 

Class 2 

High permeability 

Low solubility 

Class 3 

Low permeability 

High solubility 

Class 4 

Low permeability 

Low solubility 

 

The drugs are classified in BCS [32] based on their solubility and permeability characteristics. 

The class boundaries of these properties are  

a) Solubility: A drug is considered highly soluble if the highest dose strength is soluble in 

250mL or less of aqueous media at a pH range of 1 to 7.5. 

b) Permeability: A drug is estimated as highly permeable when the extent of absorption in 

humans is 90% or more of the dose administered based on mass balance or comparison 

with an intravenous dose. Alternatively other techniques capable of predicting human 

absorption (like in vitro cell culture based methods) can be used. 

c) Dissolution: An immediate release dosage form is considered rapidly dissolving if no less 

than 85% of the drug substance dissolve in 30 minutes using USP dissolution apparatus 1 

at 100rpm or apparatus 2 at 50rpm in a volume of 900mL or less in 0.1N hydrochloric 

acid or simulated gastric fluid or pH 4.5 buffer and pH 6.5 buffer or simulated intestinal 

fluid. 
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Additional Factors Influencing Drug Absorption 

In addition to clearance mediated by the liver enzymes, the drug metabolizing enzymes and 

transporters present in the intestine could also regulate the extent of absorption of orally 

administered drugs [33]. The drug metabolizing enzymes include Cytochrome P-450 (CYP) 1A, 

2D, 3A as well as phase II enzymes like glucuronyltransferase, N-acetyltransferase (NAT), 

sulfotransferase, and glutathione S-transferase [34]. Efflux transporters include the P-

glycoprotein (or Multidrug resistance protein1-MDR1) and multidrug resistance-associated 

protein-2. Transporters involved in the absorption of various substrates include bile acid 

transporters, peptide transporter, monocarboxylic acid transporter organic anion transporter 

protein, nucleoside transporters etc [35]. 

Physiological Pharmacokinetic Model Based Prediction of Drug Absorption 

The development of a physiological prediction model requires the incorporation of a number of 

parameters. The physiological parameters such as intestinal length, surface area and volume have 

been studied and are available in reported literature. A simple absorption model is to define the 

small intestine as a long tube with a total absorptive surface area of 200m
2
 with an average pH of 

6.8 and a total intestinal transit time of 6 hours. The maximum absorbable dose (MAD) can be 

determined using this model equation with the estimation of absorption rate constant (Ka) using a 

suitable technique like Caco-2 permeability and assuming negligible first pass metabolism [36].  

                   

Where SIWV represents small intestinal water volume and SITT denotes small intestinal transit 

time. Ka is determined by the following relationship, where Pm is the Caco-2 permeability, A is 

the absorptive surface area and V is the volume of intestinal lumen [37]. 

      
 

 
 

Another approach to estimate human absorption rate constant for an NCE  is to extrapolate from 

estimated rate constant from rat using the  relationship proposed by Yuasa et al. accounting for 

the interspecies differences in surface area and luminal volume of small intestine between human 

and rats [38]. 
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Further enhancement of the above approach includes the incorporation of variability in solubility 

and ionization profiles of a compound at various segments of the GI tract due to the 

physiological pH gradient. This approach incorporates the variable proportion of ionized and 

unionized drug in solution as a function of position (segment of intestine) as well as time, 

considering the different transit times at various intestinal segments. Willmann et al. reported the 

continuous flow absorption model [8, 39] which represented the concentration of the compound 

administered orally (C, at an absolute dose D) in the intestinal lumen (at position z and at time t) 

as 

       
              

    
        

         

Where fabs(t) is the fraction of the administered drug that has reached the portal blood pool via 

the intestinal membrane, r is the radius of the intestinal lumen and t denotes the transit time. The 

subscript SI denotes small intestine. In the continuous flow model, the solubility and pH 

influenced dissolution or precipitation are assumed to occur at a significantly shorter span of 

time than intestinal transit or absorption and therefore are not rate limiting. As a consequence, 

this assumption is not suited for slowly dissolving/precipitating compounds or controlled release 

formulations [40].  

Further, the amount of drug (X) that is absorbed into the portal vein from a small intestinal 

segment (z+dz) at a small time interval (t+dt) is expressed as a product of permeability and 

effective concentration in the lumen corrected for the concentration that partitions into the portal 

circulation, as sum of the ionized and unionized species, derived separately [8]. 

          

     
     

        
        

       

      
  

        

  
     

        
        

       

      
 

 
        

  
 

Where     
   

 and        
   

 are the apparent permeability coefficients of the gut wall and the 

equilibrium partition coefficients between the portal blood and the gut content for the neutral and 

ionized species, Cpv is the concentration in the portal vein and          is the effective surface 

area element at intestinal position z.  The flow model also applies a realistic approach of having 

permeability and solubility of ionized and unionized species and uses a ratio (    
      

    and  

    
      

  ). Integration of the previous equation over the length of the intestinal segments yields 
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the amount absorbed in the respective region at a designated time, while integration with respect 

to time gives the amount of dose absorbed as a function of position within the small intestine. 

The continuous flow and absorption model thus derives the fraction dose absorbed (Fa) for a 

passively absorbed compound undergoing negligible metabolism in gut wall as 

     
          

    

    

   

 

   

                

Another approach proposed by Kimura and Higaki [41] categorized the GI tract to various 

segments of definite pH and transit times with separate determination of absorption parameters 

for each, considering the pH gradient and transition times. For any compound significantly 

ionized at physiologically relevant pH ranges, the ionized as well as unionized species could 

have different rates of permeation at a particular pH. Kimura and Higaki [41] developed the GI-

Transit Absorption Model (GITA) which divides the GI tract into eight segments (stomach, 

duodenum, upper jejunum, lower jejunum, upper ileum, lower ileum, ceacum and large intestine) 

with the transit of a non-absorbed drug from one segment to the other assumed to follow a first 

order kinetics. The availability of the drug (X) at every segment of the intestine and the fraction 

absorbed at each segment was estimated by Laplace transformation of the following differential 

functions derived.   

   
  

            

     
  

                       

        
       

            
 

                           
       

            
 

Where subscript s stands for stomach, i+1 denotes the next segment after intestine (i), Ki is the 

rate of intestinal transit and Ka is the rate absorption. The inverse Laplace of the above 

expressions transformed, provide the amount of compound, the absorption rate constants and the 

fraction absorbed at every segment of intestine.  
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Usansky et al. [6] proposed the absorption-disposition kinetic model linking gastric emptying, 

intestinal absorption and plasma disposition. The absorption parameters were predicted from 

Caco-2 permeability. Assuming that the drug dissolution is not a rate limiting step in drug 

absorption and absorption from stomach is negligible; differential equations were constructed 

relating drug concentrations in plasma with intestinal concentration 

    

  
                

Where Xpl represents the amount of drug in plasma, Xi the amount in intestine, Ka and Kel are the 

first order rates of absorption and elimination, respectively and FFP is the fraction of the drug that 

escapes first pass intestinal and hepatic metabolism. The model incorporates the influence of 

intestinal metabolism and derives the first-order rate constant of absorption Ka as 

   
   

  
   

     
   

 

Where Vc is the volume of distribution in well perfused organs assuming that the initial drug 

distribution is limited by drug diffusion [42], Pm is the drug permeability across intestinal 

mucosa, S is the absorptive surface area and C is the concentration (amount/mL) of drug in 

intestine (i) and plasma (pl). Assuming negligible first pass metabolism or an equilibrium 

condition (where FFP×Ci/Cpl=1), an equilibrium solution for Ka is assumed which is independent 

of drug concentration changes in the intestine or plasma  

   
   

  
 

Usansky et al. [6] also derived the analytical solution for fraction absorbed after oral 

administration as  

   
     

        
  

 

 

 



15 

 

Table 1: Summary of Various Physiological Absorption Model Parameters Used in the 

Research 

Segment of GI Stomach Duodenum Jejunum Ileum Colon 

pH 1.2 – 2.5 5.0 – 6.0 6.0 – 7.0 7.0 – 7.5 > 7.0 

Volume (mL)* 600 47 200 181 5770 

Effective Surface area (cm
2
)* 350 77674 331002 301324 3297 

Transit time (min) 15 14 71 114 2160 

* the total area of intestine based on Wilman et al,.the effective surface area are derived  by divided in proportion to the volume using 

amplification factors for villi and folds in the intestine as mentioned by Wilman et al. [8] 

Various Discovery Stage Screens on Drug Absorption 

Measurement of absorption potential is a major first line screen in drug discovery. As the in vivo 

PK profiling of an NCE in pre-clinical species is a time and labor-intensive process, numerous in 

vitro methods have been developed to assess the absorption potential [28]. Compared to the in 

vivo pharmacokinetic profiling which is influenced not just by absorption but also the clearance 

and entero-hepatic circulation, in vitro methods have the advantage of assessing a single 

parameter (absorption across a membrane or cell layer) thereby enabling the rank ordering of 

compounds based on a single parameter. Earlier methods of investigating the absorption 

potential of the compounds included everted gut sac, Ussing chamber or rat intestinal perfusion 

techniques [28]. With the advancement in combinatorial chemistry and parallel synthesis 

resulting in expanding compound libraries, newer high throughput methods were developed. 

Parallel artificial membrane permeability (PAMPA) technique is one such where an artificial 

immobilized lipid bilayer (e.g. lecithin in dodecane) is prepared on a filter membrane which 

when sandwiched between two aqueous layers would orient to a structure similar to the fluid 

mosaic description of the cell membrane [43]. Absorption across these membranes is through 

passive diffusion governed by the lipid solubility and ionization of the compound driven by the 

concentration gradient. PAMPA is also a cost effective method to perform and is ideally suitable 

as a first line high throughput screen. 

Madin-Darby Canine Kidney cell line (MDCK) permeability assay is a cell based assay method 

to estimate intestinal absorption [44]. This cell line is preferred due to the ease of culture and the 
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rapid doubling time. Once optimized in laboratory culture, MDCK forms monolayer with tight 

junctions within three days of seeding to a filter trans-well, and therefore could be used very 

efficiently to screen large number of compounds for passive permeability. Another advantage of 

using MDCK is the possibility to co-express various transporters (MDRI (P-gp), peptide 

transporters etc.) in them due to the relatively low constitutive expression and use these for 

mechanistic studies like assessing if the test compound is liable to active efflux, selective uptake 

etc.  

Colon adenocarcinoma (Caco-2) cell line is the most rugged and reliable cell based system to 

assess drug absorption [45]. Derived from colon adenocarcinoma cells, Caco-2 form stable 

monolayer with tight junctions (similar, but reportedly tighter than intestine) expressing 

polarization, transporter and alkaline phosphatase activity. Many of the common transporters in 

the intestine including P-gp are expressed in Caco-2 cell lines and they form an excellent assay 

system for estimation of drug permeability. Compared to other assays, Caco-2 permeability has 

been the most correlated with intestinal absorption.  

1.3. Human Tissue Distribution 

Tissue distribution refers to the reversible transfer of drug from the central compartment to the 

tissues [42].  Definitive information on distribution requires its measurement in various tissues 

which is practically impossible in humans. However, much useful information on rate and extent 

of tissue distribution can be made from observations in blood and plasma (especially after 

intravenous dose) and with the estimation of the PK parameter ‘volume of distribution’ (Vd).  

Distribution of drugs can be rate limited by either perfusion or permeability. The distribution 

may be perfusion rate limited when the tissue membranes present no barrier to distribution. The 

rate of presentation of drug to the tissue can be expressed as the product of blood flow to the 

tissue and arterial blood concentration [42] 

                           

The net rate of uptake by the tissue can be presented as the product of tissue blood flow to the 

difference in the arterial and venous concentration of the drug in the tissue. The maximal rate of 

input will be the rate of presentation after which, with no further impedance to movement into 

the tissue, the emergent venous concentration becomes in equilibrium with the levels in tissue 
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(Ct). Therefore assuming this equilibrium has established, the amount of drug in tissue [42] can 

be presented by  

                                    

Where Vt is the tissue volume, Ptp is the equilibrium tissue venous plasma distribution ratio and 

Cv is the concentration in venous blood/plasma. Cv is also expressed as Cp in the succeeding 

sections and equations as for pharmacokinetic measurements, the measurements of drug levels 

are made in venous blood [42]. Further the fractional rate of exit of drug from the tissue can be 

expressed as  

   
            

                
 

    

         
 

or 

   
      

   
 

Where Q/Vt is the perfusion rate of the tissue. The parameter kt is a distribution rate constant 

with units of reciprocal time, analogous to the elimination rate constant [42]. The tissue half-life 

of the drug could thus be expressed as  

           
     

  
  

          

      
 

Thus the drug leaves slowly from tissue that have high affinity for it (Ptp) and that are poorly 

perfused [42]. 

In a hypothetical case where the arterial concentration is maintained constant with time, the 

tissue uptake would increase and eventually reach a plateau. In this case the arterial and venous 

concentration reach similar levels. This mimics the situation of a constant rate infusion of drug 

[42]. 

                    

A permeability dependent rate limitation in tissue distribution arises for polar drugs diffusing 

across tightly knit lipoidal membranes. A permeability rate limitation simply decreases the rate 

of entry of the drug into tissues and hence increases the time to reach distribution equilibrium. 
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Apparent volume of distribution [42]: The volume of distribution (or being a hypothetical 

parameter, the apparent volume of distribution) can be defined as the ratio of the total amount of 

drug in the body to the amount of drug in plasma. For a large volume of distribution the fraction 

available in plasma is lesser indicating high tissue distribution. Volume of distribution (Vd) can 

be expressed as  

               

Therefore a higher tissue partitioning for drugs would contribute to the high volume of 

distribution.  Within a tissue, the common binding sites include neutral lipids and phospholipids. 

Additional binding sites for drugs in the body include partitioning to blood cells and plasma 

proteins. Plasma proteins include albumin (Mol. Wt. 67000, 35-50g/L), α1acid glycoprotein 

(Mol. Wt. of 42000, 0.4-1.0g/L), lipoproteins (Mol. Wt. 200,000 to 2,400,000 variable levels) 

and cortisol binding globulin (Mol. Wt. 53000, 0.03-0.07g/L) [42]. The unbound fraction is 

therapeutically important and becomes significant with very high protein binding (e.g. protein 

binding of 99.9% vs. 99.8% has 100% difference in free fraction). 

The fraction of drug present in plasma depends on both tissue and plasma binding and 

considering partition in tissue, the volume of distribution can also be expressed as  

           
   
 

 

Where Ctw/C denotes the apparent volume of tissue. C is the total concentration. 

Physiological Pharmacokinetic Model Based Prediction of Tissue Distribution 

Physiological PK model based prediction of tissue distribution is very advantageous tool in drug 

discovery as it can potentially avoid the tedious experimental determination of these parameters 

in animals and their extrapolation.  

Oie and Tozer [46] estimated the volume of distribution based on fraction unbound in plasma 

and other physiological parameters. An average value of the fraction unbound in tissues 

determined for various animal species (fut average) using experimentally determined values of 

volume of distribution and protein binding, was used for estimation of human volume of 

distribution .  
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The Vd values in humans at steady state (Vss) were estimated by rearranging the above equation 

[1]. 

                         
  
 
       

   
           

 

The parameters Vss,  Vp,  Ve,  fu,  Vr and Re/i denotes volume of distribution,  volume of plasma, 

extracellular fluid volume,  fraction unbound, remainder of fluid volume the ratio of binding 

proteins in extracellular fluid (except plasma) to binding proteins in plasma, respectively and 

subscript h stands for human. 

Poulin and Theil [4, 47, 48] proposed a tissue composition based technique for determination of 

organ plasma partitioning ratios and determination of volume of distribution. The theoretical 

background of the equation assumes that at steady state, the tissue plasma partitioning of the 

compounds can be calculated from the following classical equation 

    
  
  

 

Where C represents the total concentration in tissue (t) and plasma (p), respectively. Further the 

above equation is expanded as the ratio of the sum of unbound (u) and bound (b) drug in plasma 

(p) and tissue (t) 

    
       
       

 

Which is further simplified using the fraction unbound (f), as  

     
   
   

  
   

   
  

Further, on a physicochemical basis, the left term unbound concentration ratio in the above 

equation is considered to be equal to the ratio of drug solubility between tissues and plasma at 

steady state and independent of drug concentration  
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The solubility in tissues and plasma are estimated using the tissue composition based equations 

[49, 50], which consider tissues as a mixture of proteins, neutral lipids (n) and phospholipids (p). 

The polar lipids (phospholipids) in tissues have a lipo-hydrophilicity similar to a mixture of 70% 

(by volume) of water and 30% by volume of neutral lipids. The assumption is made on a rapid 

homogenous partitioning into the lipid and aqueous fraction of plasma as well as tissues. The 

ratio of the solubility in various tissues including plasma to the solubility in water brings in the 

partitioning ratio component. This is represented by the oil to water partitioning ratio (Pow) in 

case of non-adipose tissue and the vegetable oil to water partitioning ratio (Dvow) representing the 

non-ionized species in case of adipose tissue. The final tissue partitioning equation by Poulin–

Theil method [47] is expressed as: 

                
                                         

                                         
 

             
                                          

                                        
 

Where V indicates the fractional tissue (t) or plasma (p) volume content of neutral lipids (NL), 

phospholipids (PH) and water (W). The data on tissue volumes are obtained from published 

literature [4]. Log Pvow can be derived from experimental or predicted data on Log Pow using the 

following empirical relation [51].  

                          

The Log Pvow could then be converted to Log Dvow using the Handerson-Hasselbalch equations 

1) For monoprotic acids 

                               ) 

2) For monoprotic base 

                               ) 

3) For diprotic acids 

                                        ) 
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4) For diprotic base 

                                        ) 

 

5) For zwitterionic compounds 

                                         ) 

Where pKa1 is acidic and pKa2 is basic. 

6) For neutral compounds 

                          

The values of the fraction unbound in tissue (fut) used in the equations are commonly estimated 

from experimental data on fup as per the following relation assuming albumin as the main tissue 

component for binding [5] 

    
 

                
 

RA indicates the ratio of albumin concentration found in tissue over plasma. For adipose tissue, 

RA is set to 0, whereas for non-adipose tissue RA is set to 0.5 [4, 5]. 

Individual plasma tissue partitioning ratios estimated using the above method could be used to 

estimate the steady state volume distribution using the classical equation [42, 52]. 

             

 

   

 

The Poulin-Theil method [4, 47, 48] requires the blood plasma partitioning and vegetable oil 

water partitioning coefficients as input values. Physiological parameters used are the tissue 

volumes expressed as fraction of body weight (L/kg), volume of water in tissue, volume of 

neutral lipids and phospholipids in tissues and volume of extracellular space. Neutral lipids refer 

to sum of triglycerides, diglycerides, cholesterol and other types of non-polar lipids, 

Phospholipids represent lipids that contain phosphoric acid esterified at one position of the 

glycerol molecule (e.g. phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, 

sphingomyelin. The reported values of tissue fractions [6, 47] are presented in Table2.  
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Table 2: Human Tissue Composition Data Used for Prediction of Volume of Distribution in 

the Current Research 

Tissue 

Fraction of 

body weight 

(L/kg) 

Volume fraction of wet tissue weight 

(L/kg) 

Volume of 

water 

Volume of 

neutral lipids 

Volume of 

phospholipids 

Heart 0.005 0.758 0.012 0.017 

Kidney 0.004 0.783 0.021 0.016 

Liver 0.026 0.751 0.035 0.025 

Lung 0.008 0.811 0.003 0.009 

Spleen 0.003 0.788 0.020 0.020 

Muscle 0.400 0.760 0.024 0.007 

Plasma 0.042 0.945 0.004 0.002 

RBC* 0.035 0.603 0.002 0.003 

Adipose 0.120 0.180 0.790 0.002 

Bone 0.086 0.439 0.074 0.001 

Brain 0.020 0.770 0.051 0.057 

Gut 0.017 0.718 0.049 0.016 

Skin 0.037 0.718 0.028 0.011 

*red blood cells 

The tissue partitioning equations consider reversible binding of drugs to macromolecules in 

plasma, which include albumin, globulins and lipoproteins. Fraction unbound in plasma can be 

assessed experimentally; however in the absence of a direct method of assessment Poulin et al. 

[4] used the relative concentrations ratios of macromolecules between tissue interstitial fluid and 

plasma   at steady state (Cm tissue/Cm plasma). He postulated that, assuming the binding isotherm of 

fup = (1/1+nKa Cm plasma) and fut=1/ (1+nKa Cm tissue) to approximate by 1/nKa Cm plasma and 1/nKa 

Cm tissue, respectively (where n denotes the number of binding sites and Ka the affinity constant), 

the ratio of fup/fut approximates the ratio of macromolecules (Cm tissue/Cm plasma). This ratio was 

approximately found to range between 0.3 to 1 and a median value of 0.5 was proposed [4].  

Contrary to the assumptions of similar macromolecular binding in plasma and tissues, Rodgers et 

al. [53] pointed out that moderate to strong bases that are strongly ionized at physiological pH 
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preferably interact with tissue acidic phospholipids with electro static interactions. Binding of 

moderate to strong bases are preferential to α1acid glycoprotein which is largely restricted in 

plasma.  In comparison, acids and very weak bases preferentially bind to albumin and neutrals to 

lipoproteins present in appreciable quantities in tissue and extracellular water. 

Rodgers et al. [53] derived plasma tissue partitioning equations in rat. The equations were based 

on the assumption of complete solubility of drugs in the intra and extra cellular water and 

partitioning into the neutral lipids and neutral phospholipids within tissues. Further, in the 

absence of other specialized mechanisms like active transport or metabolism, for compounds that 

are sufficiently ionized within tissues (at least one basic pKa≥7, ionized bases and corresponding 

zwitter ions), electrostatic interactions with acidic phospholipids predominate.  For the other 

drug classes, the predominant association is with extra cellular components, with acids and 

weakly basic compounds assumed to bind to albumin and neutral drugs to lipoproteins.  Based 

on the above assumptions, Rodgers et al. [53] derived the tissue partitioning equation as  

         
            

           
      

           
        

           
  
                      

           
 

Where V denotes the fractional tissue volume content of extracellular water (EW), intracellular 

water (IW), neutral lipids (NL) and neutral phospholipids (NP). [AP]t denotes the concentration 

of acidic phospholipids in tissue. Values of pHp (pH of plasma) and pHIW are 7.4 and 7.0, 

respectively. pKa represents the dissociation constant of the monoprotic base where a cut off 

value of >6.8 was used by Buck et al. [5]. P is the vegetable oil: water partition coefficient, ka is 

the association constant of the compound with the acidic phospholipids. Rodgers et al. proposed 

an approach to determining ka by estimating it for blood cells (kaBC, BC indicating blood cells) 

based on blood to plasma concentration ratio, fraction unbound in plasma and the hematocrit and 

assuming it to be representative of all tissues.  

             
    

        

    
       

         
                          

    
       

     
    

       

          
        

   

Where 

       
   

   
                 

         

  
 and 
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E: P indicates erythrocyte to plasma ratio, Ht indicates hematocrit and RB indicates blood to 

plasma ratio.  

The above model predicts the plasma tissue partitioning of the unbound drug (Ptpu) with the 

assumption that only the unbound drug distributes to tissues. For determining the Ptp values, the 

bound and unbound drugs are related by the following expression [53]. 

    
  
  

           

Berezhkovskiy [52, 54] modified the Poulin-Theil equation by pointing out that the tissue plasma 

partitioning coefficient is not equal to the ratio of fraction unbound in plasma to tissue if the 

peripheral exit of drug occurs. The conventional assessment of steady state volume of 

distribution after and intravenous dose is based on the following relation, which assumes rapid 

equilibrium of protein and tissue (lipid) binding in plasma. 

    
 

   
     

Additionally, the equations apply well to a general linear model where drug elimination occurs 

exclusively from the central compartment, an assumption which is not realistic. To elaborate this 

fact and to estimate the tissue partitioning coefficients with the account of peripheral elimination, 

Berezhkovskiy [52] used a multi compartment open mammillary model (with the drug being 

reversibly transported from the central compartment (plasma) into peripheral compartments). kt
+
 

and kt
-
 indicate the rate constant of drug transport from plasma to tissue and tissue to plasma, 

respectively. The rates of possible reactions inside each compartment (binding and dissociation 

to a lipid or protein) are indicated by ktj
+
 and ktj

-
. atj is the quantity of drug either bound to protein 

or partitioned into lipid, j indicating a protein or lipid to which the drug binds. 

The fraction unbound in tissue and plasma were expressed as 
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Where u, p, t and ss denotes unbound, plasma, tissue and steady state, respectively.  The tissue to 

plasma partitioning ratio was derived to the following relationship. 

        
    

    
                        

Assuming steady state and no peripheral elimination (hypothetical case), the unbound drug 

concentration in plasma and tissue are equal and elimination from tissue would be zero. This 

simplifies the above equation to the following form which formed the basis for Poulin-Theil 

equation as well. 

   
          

Where the superscript ‘0’ denotes the assumption of steady state and lack of tissue elimination.  

However, in case of peripheral drug exit Berezhkovskiy derived the above given tissue 

partitioning equation as [52] 

        
    

    
    

                  
       

     
   

The above equation indicates that peripheral elimination leads to the decrease of tissue plasma 

partition coefficient reducing the steady state volume of distribution as the unbound drug 

concentration in tissue at steady state becomes less than that in plasma. Also basing on the below 

derived relation, it was proven that the unbound drug concentration in tissue at steady state 

becomes less than that in plasma 

        
        

   
     
  
  

  

In the above equation, the unbound concentration in tissue at steady state (Cu t ss) is related to the 

unbound concentration in plasma and the elimination rate constant from tissue (kel t) as well as 

the transit rate constant from tissue to the central compartment (k
-
t). Berezhkovskiy further 

derived the relationship between the organ tissue plasma partition coefficient (Ptp) and the 

partition coefficient of non-eliminating organ through the parameters of organ permeability, 

surface area of plasma tissue boundary and the elimination rate constant. Subsequently the 

equation for plasma tissue partitioning coefficient (Ptp) was developed by expressing fup and fut 

through protein binding parameters and drug partition coefficients between different phases in 

tissues and plasma and further incorporating the tissue partitioning equation [52] as 
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Various methods of estimating tissue distribution 

There are numerous methods of estimating tissue distribution. Most common include the 

conventional tissue excision and experimental estimation of drug levels in tissues by using a 

suitable sample clean up and analytical technique. This technique is however limited to animal 

species. Whole body auto radiography is another effective technique that could be used for a 

detailed tissue distribution profile. The most common procedure [55] is to intravenously 

administer as series of experimental animals with the labeled compound with each animal 

receiving a single dose. After various intervals the animals are rapidly deep frozen and sagittal 

microtome sections are taken at different levels through the whole frozen bodies. The sections 

are freeze dried and pressed against a photographic film. After exposure the section and film are 

separated and the pattern of the drug distribution will appear on the developed film. The sections 

may be stained and mounted under cover slips or they may be used in their unstained state as 

references for the interpretation of autoradiograms.  

Microdialysis [56] is a semi invasive focal sampling method based on the use of probes with a  

semipermeable membrane at the probe tip. The probe is constantly perfused with a physiological 

solution at a low flow rate of 1-10μL per minute, is implanted into the tissue and substances in 

the interstitial fluid is dialyzed into the perfusion medium inside the probe. Owing to the small 

sample volume, there is no substantial biological fluid loss. Sample analysis however requires 

sensitive methods such as LC-MS/MS. Microdialysis technique provides selective access to the 

unbound and thus the pharmacologically active drug fraction.  

Positron Emission Tomography (PET) [56] is a nuclear imaging technique based on the use of 

molecules labeled with positron emitting radioisotopes. The emitted positrons pass through tissue 

and are ultimately annihilated when combined with an electron, resulting in two 51 KeV photons 

emitted in opposite directions. Detectors are arranged in a ring around the tissue of interest and 

only triggering events that arrive near simultaneously at diametrically opposite detectors are 

recorded. The resulting PET images might yield three dimensional information on tissue 
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distribution of the positron emitting molecules with a spatial resolution of 1 to 5 mm and a 

maximum temporal resolution of approximately 30 seconds. The most commonly employed PET 

radionuclides are oxygen-15 (
15

O), nitrogen-13 (
13

N), carbon-11 (
11

C) and fluorine-18 (
18

F). 

18
Fluorine is favored as a radioisotope due to its long half-life (about 10 hours), however it 

would require the drug molecules to contain the fluorine atom in its native structure. Therefore 

despite the shorter half-life carbon -11 (20.4 minutes) is most widely used. 

Magnetic resonance imaging (MRI) [56] uses radiofrequency pulses and magnetic fields to 

obtain signals from changes in nuclear magnetic moments. Magnetic resonance spectroscopy 

(MRS), in addition provides a greater degree of molecular characterization. MRS can reveal the 

spectroscopic profiles of the chemical constituents as well as distinguish between parent drug 

and metabolites due to the differences in chemical shifts of the resonance signals. A major 

drawback of this technique is its low sensitivity. 

1.4. Human Drug Elimination 

Elimination of drugs occurs by excretion and metabolism. Excretion of drugs can be through bile 

or through the breath in case of volatile substances, but for many drugs, a major route of 

excretion is through kidneys. Metabolism is other major mechanism of elimination of drugs from 

the body. The most common routes of metabolism include oxidation, reduction, hydrolysis 

(phase I reactions) and conjugation (phase II reactions, e.g. glucuronidation, sulphation, amino-

acid conjugation, glutathione conjugation, acetyl conjugation etc.). Liver is the major target 

organ of metabolism; however drugs are extensively metabolized in other tissues such as 

kidneys, skin, lungs, blood and gastrointestinal wall.  

Cytochrome P450 enzyme system form the major class of enzymes responsible for drug 

metabolism. There are 57 human genes and more than 59 pseudo genes divided among 

cytochrome P450 genes and 43 subfamilies [57]. Prominent CYPs involved in phase I drug 

metabolism include CYP 1A2, 2B6, 2C9, 3C19, 2E, 2D6 and 3A4. Other enzymes involved in 

drug metabolism are flavin monooxygenases (FMO), alcohol dehydrogenase, esterases, epoxide 

hydrolase etc.  

Inhibition of CYP enzymes by co-administered drugs or food components that are substrates of 

the same enzyme is an important concept in drug discovery and development and prior 
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understanding of CYP inhibition by a lead drug candidate is an important requisite to avoid 

potentially fatal drug interaction in the clinic [58]. Inhibition could also involve mechanism 

based inhibition with covalent adducts formed by reactive metabolic species generated by CYP 

metabolism of the drug. Human liver microsomes based inhibition assays using known specific 

substrates of CYPs are used to assess the inhibition potential of a drug candidate. Ratio of 

predicted human levels (I) over inhibition constant (Ki) is used as major criteria for predicting 

the possibility and severity of drug interaction due to inhibition of CYP enzymes [58].   

The induction of CYP 450 enzymes by xenobiotics is a major concern in clinical use of a drug 

due to the enhanced metabolism of drugs and endogenous substrates reducing their plasma levels 

or elevating metabolites, some of which might be toxic or highly reactive [59]. Induction of CYP 

enzymes involves de novo RNA and protein synthesis. Most common mechanisms include 

ligand activation of key receptor transcription factors including pregnane X- receptor (PXR), 

constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR) and others, leading to 

increased transcription. Human hepatocyte based experiments are commonly used for 

investigating the CYP induction profiles. Induction of CYP enzymes are assessed using various 

techniques in cultured human hepatocytes including quantitative mRNA detection by real-time 

PCR (taqman probes), CYP activity by functional assays involving metabolism of specific 

chemical substrates and quantitation of CYP protein by western blotting [58]. 

Pharmacokinetic Parameters Signifying Drug Metabolism 

Clearance is an important parameter that describes the elimination of drug from the body. 

Clearance may be regarded as the volume of blood from which the drug would be removed per 

unit time. Clearance could also be related as the rate of drug extraction by an organ of 

elimination relating to the incoming concentration of blood. Clearance can be estimated as a 

product of volume of distribution and elimination rate constant 

                                    
    

   
 

Where AUC denotes the area under plasma concentration-time curve. Clearance is accurately 

estimated after an intravenous dose (avoiding interference of absorption) at low concentration of 

the substrate (test drug) to avoid saturation of metabolism. 
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Clearance can be described in terms of the eliminating organ (hepatic, renal and pulmonary).  

The anatomy of the human body dictates that the clearance of a drug by one organ adds to the 

clearance of another. This is the consequence of circulation. The plasma clearance estimated 

based on a concentration-time profile is an additive value including hepatic and renal clearance 

and also including clearance from other tissues.  

Renal Clearance 

The renal clearance of a drug excreted by glomerular filtration can be expressed as the product of 

fraction unbound (fu) and glomerular filtration rate (GFR) [60]. 

             

The PBPK model on renal clearance proposed by Janku [60] also predicts proportionality of 

renal drug clearance to glomerular filtration rate. Additionally compounds excreted by tubular 

secretion, in general exhibits a curvilinear relationship, with the curvature being less pronounced 

with increasing plasma protein binding of the drug. According to the model, distinct deviation 

from simple proportionality can be expected only for compounds for which efficient flow-

dependent secretion process is not counteracted by extensive binding of the drug to blood 

constituents. 

 Biliary excretion and re-absorption of drugs have profound influence on the pharmacokinetics of 

certain drugs. The threshold molecular weight for drugs to be excreted through bile ranges 500-

600 in humans [61]. Once inside the hepatocytes, the compounds can be transported into bile 

either unchanged or as more hydrophilic metabolites after phase I and/or phase II bio-

transformations, or can be excreted into blood by basolateral transport proteins. Modeling or 

influence of entero-hepatic circulation is not included as part of the current research however the 

methodology enables the integration of modeling of this phenomenon with future advancement 

in understanding (also as mentioned in the section on limitations of the current research). 

Physiological Pharmacokinetic Model Based Prediction of Metabolic Clearance  

A common method is the scale up from liver microsomal intrinsic clearance data to organ level, 

also known as the in vitro half-life approach.   The underlying principle bases on the derivation 

of the integrated Michaelis-Menten equation    
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Simplifying the above relation to derive intrinsic clearance (Vmax/Km) would require a substrate 

concentration significantly smaller than Km which would reduce the above equation neglecting 

the very low substrate concentration. A low substrate concentration also ensures linear non 

saturating metabolism and the hepatic intrinsic clearance for the unbound drug (CLu,int) per gram 

of liver is be expressed as [62].  

        
    

  
 
     

    
 

The intrinsic clearance can therefore be estimated at a single substrate concentration estimating 

the first order rate of decay of substrate or the half-life in presence of liver enzymes (microsomes 

or hepatocytes) which when normalized to the microsomal protein content in the metabolic 

reaction returns the numerical value of intrinsic clearance. 

Following the same principle, when the drug concentration is higher than Km, it would require 

the estimation of maximum metabolic rate (Vmax) and Michaelis-Menten constant (Km) using 

multiple incremental concentration of substrate until the rate of metabolism reaches a plateau.  

The intrinsic clearance can further be extrapolated to in vivo blood clearance using various 

models and are described in the subsequent section. The clearance relates to the extraction ratio 

and blood flow (Q) to the eliminating organ as per the following relation. The extraction ratio (E) 

is a measure of the efficiency of the eliminating organ in eliminating the drug from systemic 

circulation in a single pass. The extraction ratio could range from 0 to 1 with 1 indicating the 

complete removal in first pass. The hepatic clearance therefore can be related to extraction ratio 

(subscript ‘h’ indicating hepatic) as 

         

The venous equilibrium model (well stirred model) 

The well stirred model assumes rapid equilibrium inside the eliminating organ. The organ is 

considered to be of discrete volume and is perfused by homogenous medium (blood) and is 

connected to the central volume by flow. The hepatic clearance is described by the model as  
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Several important variables like binding to macromolecules, erythrocyte partitioning etc. affect 

the clearance [63]. Incorporation these parameters into the well stirred model give the following 

expression [5, 64].  

           

   
  

     
            
     

 

    
            
     

  
   
  

  

Where fuinc and fup indicates the unbound fraction in microsomal reaction and plasma, 

respectively and RB indicates the blood plasma partitioning. Austin et al. [64] reported the 

following empirical model to estimate fraction unbound in liver microsomes using octanol water 

partitioning data.  

               
 

                
        

 

Log Do/w at pH 7.4 can be estimated from Log P using the following relation [65] 

                                   ) 

Where A=1 and B= -1 for an acidic compound and A= -1 and B=1 for basic compound. 

Additional factors that are not currently under purview of the model include transporter 

activities, effect of enzyme induction etc. 

The Sinusoidal Perfusion Model (Parallel Tube Model) 

The parallel tube model assumes similar intrinsic clearance and blood flow in parallel for the 

liver sinusoids, considering them like parallel tubes. A concentration gradient is assumed from 

the periportal to the centrilobular side of the liver, but no diffusion or dispersion is assumed in 

the blood flow within the sinusoid. The hepatic clearance based on this model is derived as  
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Distributed Sinusoidal Perfusion Model 

This model extends the parallel tube model with the assumption of variability in the blood flow 

rate (q) as well as the intrinsic clearance (CLu, int) of each sinusoid. The sinusoids in intact liver 

are divided into ‘n’ groups with the same ratio of clearance to blood flow (CLu,int / q) . The total 

blood flow and intrinsic clearance are expressed as Q(n) and CLu,int(n), respectively and the 

hepatic clearance (CLh) is derived as 

         
    

       
 

  
 
  
    

       
 

 
 

 
  

Where    is the variance of CLu,int / q for each sinusoid in the whole liver expressed by the 

following equation.                                                
 

    
                    

 

    
 

   

Dispersion Model 

Roberts and Rowland [66] introduced the dispersion model with the assumption of drug 

dispersion along the flow path in the sinusoid. The extent of dispersion is denoted by the 

dispersion number (DN). Dispersion model incorporates the features of well stirred model and 

parallel tube model as indicated by the model reducing to well stirred model as the dispersion 

number approaches infinity and to the parallel tube model as the dispersion number approaches 

zero. Normal ranges of DN values reported are 17-0.5. Hepatic clearance is described by the 

dispersion model expressed as 

         
  

        
 
     
   

  
         

 
      
   

  
  

Where 

           
 
  

and 
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Methods of Estimating Human Drug Metabolic Clearance 

Conventional methods include the use of animal models to scale up or use an average estimate as 

predicted human clearance.  Allometric scaling is widely used in predicting human data based on 

information from preclinical species. Since prediction errors are commonly encountered, various 

correction factors are included to improve the fit and accuracy of predictions. These 

modifications include in vitro metabolic data, correction by maximum life-span potential or brain 

weight, bile flow and scaling of unbound clearance. 

The most recent approaches have been the use of liver microsomes and hepatocytes. There could 

be two approaches in the prediction of human metabolic clearance. One approach is to use 

varying amount of substrate and monitor the metabolite formation and to assess the enzyme 

kinetic parameters of Vmax (maximum velocity) and substrate concentration at half-maximal 

velocity (Michaelis Menten constant Km). Intrinsic clearance can then be assessed as the ratio of 

Vmax over Km. The alternate approach most commonly used in drug discovery is the substrate 

depletion approach. Basing on the Michaelis Menten equation when the substrate concentration 

becomes much smaller than the Km, the rate of reaction approaches the numerical value of 

intrinsic clearance (Vmax/Km). With the advent of sensitive bioanalytical techniques like LC-MS, 

and the convenience of estimating only the parent compound remaining in reaction, makes this 

approach widely acceptable in drug discovery screening. Estimated intrinsic clearance values can 

be normalized for protein and microsomal content and extrapolated to in vivo intrinsic clearance. 

In vivo intrinsic clearance therefore can be represented by the following equation [1]. 

              
     

            
 
                 

                
 
                  

                
 

            

                
 

Using the various models (well stirred parallel tube, sinusoidal perfusion model etc.) described 

above,  In vivo intrinsic clearance can be extrapolated to in vivo hepatic blood clearance with the 

incorporation of additional parameters like hepatic blood flow, fraction unbound in plasma and 

fraction unbound in microsomes. The various human scale up parameters used for in vitro 

scaling to in vivo clearance are provided in Table 3.  
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Table 3: In Vitro Scale Up Values for Estimating In Vivo Intrinsic Clearance in Humans 

Parameter Unit Value 

Microsomal protein per 

gram of liver 
mg 52.5 

Liver weight per kg of body 

weight 
g 25.7 

Hepatic blood flow mL/min/kg 20.6 

Hepatocellularity Million cells/g liver 120 

1.5. Partial Least Square Regression and its Role in Current Research 

The lead optimization step in drug discovery aims to identify a suitable clinical candidate from a 

large series of chemical compounds that fits the Target Product Profile (TPP). The initial efforts 

would be to run various screens and pick and choose a best that fits broadly within a defined 

individual screening parameter range and further evaluate the selected compounds for in vivo 

properties and a projected human profile in comparison with TPP. However the answer to this 

quest is not easy due to the multivariate nature of the problem. To illustrate, as well as to 

correlate with the current research objective; if the screening results of various physicochemical 

and ADME properties (solubility, permeability, Log P etc, n being the number of estimates) are 

plotted together to assess the trend in data, this would result in a highly complex n dimensional 

(n axes, one for each parameter) scatter plot indicating the above mentioned complexity. On the 

contrary if the compounds are made to rank order based on individual properties, it could provide 

a different rank order of compounds for each property, making the choice of a lead compound 

difficult. This multivariate nature of a combination of properties effecting a particular in vivo 

human pharmacokinetic profile makes it difficult to identify trends in the screening data and to 

further assess the influence of various  physicochemical and ADME  properties on an outcome or 

rationally modify the chemical series to develop a lead compound with good chances of clinical 

success. Additional complexity is added by the nature of the individual data itself. Some of the 

estimates (Y values) in the data set may be mutually exclusive or independent, whereas some 

may be interrelated. Multivariate analysis procedures and most importantly principal component 

analysis (PCA) and partial least square regression (PLS) are of great importance in this area.  
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Originally developed by the Swedish scientist Wold in 1966, mainly for social sciences, PLS 

became popular in chemometrics (through his son Svante Wold) and is very popular in areas of 

anthropology, genomics, digital imaging etc. In handling numerous and collinear X-variables, 

and response profiles (Y), PLS allows us to investigate more complex problems than before and 

analyze available data in a more realistic way. 

PLS regression [67] is a procedure that relates a set of predictors to multiple response variables 

(screening data and PK parameters, respectively as applied in the current research). PLS reduces 

the predictors to a set of uncorrelated components based on the covariance between X and Y and 

then performs a least square regression on these components. PLS generalizes and combines 

features for principal component analysis and multiple regression. It is particularly useful to 

predict a set of dependent variables (response variables) from a very large set of independent 

variables (predictors). The goal of PLS regression is to predict Y from X and to describe their 

common structure. When Y is a vector and X is full rank (implying a case where there are few 

parameters, which are mutually unrelated and explain each property fully), the goal could be 

accomplished by ordinary multiple regression. When the number of predictors is large compared 

to number of observations (as in the case of drug discovery where multiple properties of the 

compound estimated by screening, determines its final developability aspect as a clinical 

candidate), the regression approach will not be feasible due to collinearity (meaning that within a 

set of independent variables some are defined by totally different independent variables).  PLS 

regression finds components from X (physicochemical or ADME or biological attributes 

estimated by screening) that are also relevant for Y (list of desirable pharmacokinetic properties 

ensuring sufficient biological profile and favorable toxicity profile). PLS searches for a set of 

components called as latent vectors (underlying trends) that performs a simultaneous 

decomposition of X and Y with the constraint that these components explain as much possible of 

the covariance between X and Y. This step generalizes the popular method of principal 

component analysis (PCA) and this is followed by a regression step where the decomposition of 

X is used to predict Y. In the current research X variables are more restricted to physicochemical 

and ADME properties and Y values are key pharmacokinetic parameters that define its in vivo 

PK profile. 

Results of PLS depend on the scaling of the data. With appropriate scaling one can focus the 

model on more important Y variables and use experience to increase the weights of more 
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informative X variables (this is a high level interpretation of how knowledge of biology process 

explains an outcome and weights different causative factors in order of relevance for analysis, a 

process statistical methods might not achieve). In the absence of knowledge about relative 

importance of variables the standard approach in PLS is to scale and centre data. Scaling implies 

the reduction of each variable to unit variance by dividing them with their standard deviations 

(for example as in the current research, divide all solubility data at pH 6.8 by the mean of the 

entire data set of 13 compounds). The data can be centered by subtracting their averages, and is 

also called auto scaling. This corresponds to giving each variable the same weight, and the same 

prior importance to the analysis. This would make the centroid (point of intersection of medians) 

of the whole data set to zero and would thus provide new standardized axes with data points at 

the same relative locations in space. To further illustrate, In many cases with lower dimensions 

(<3) visual analysis of data rotating across the axis, trends (principal components) which may be 

in various directions can be visually observed. The first Principal component (PC) is chosen as 

the line that fits a trend in this space that goes through the centroid, but also minimizes the 

square of the distance of each point to that line, being as close to all the data as possible. 

Subsequently the second PC axis must also go through the centroid but with a certain constraint 

that it must be completely uncorrelated or in other words should be orthogonal to the first PCA 

axis. This rationality would also continue with subsequent components.  

Figure 1: Pictorial Depiction of (from Left to Right) 3 Dimensional Scatter Sets of Data, 

Scaled and Centered Showing the Principal Components 1 and 2 

 

Note: adopted from ordination.okstate.edu/PCA.htm.  
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As mentioned before, PLS involves a principal component analysis as its first step.  PCA works 

by decomposing the X matrix as the product of two smaller matrices which are the loading and 

score matrices. The loading matrix is composed of few (lesser than the original number of 

parameters in x) vectors which are obtained as linear combination of original X variables. These 

are what can be distinguished as trends in data (visually recognizable in lower dimensions of 3 or 

2) or latent vectors or principal components. 

The score matrix contains information about the objects (which mean hypothetical replacements 

of trending data). Each object is described in terms of projection into principal components 

(instead of original variables).  

General Overview of Computational Methodology of PLS [67-69] 

PLS regression decompose both X and Y as a product of a common set of orthogonal factors and 

a set of specific loadings.  The main purpose of PLS is to build a linear model  

       

Where Y is an n x m reponse matrix (n indicating the number of observations and m indicating 

the number of reponses), X is an n x p variable predictor matrix (p indicating the number of 

parametes eg. PK parameters in the current research), B is a p x m regression coefficient matrix 

and E is the noise term. As mentioned earlier as part of the latent factor extraction step in PLS 

the X and Y variables are scaled and centered followed by the computation of factor score matrix 

T such that 

      

Columns of W are weight vectors for the X matrix (screening data on various properties) which 

are computed such that each of them maximizes the covariance between responses and the 

corresponding factor scores. Finally ordinary least square procedures for the regression of Y on 

T are then performed to produce Q, the loadings for Y (coefficients, that indicate the relative 

weightage of parameters) such that   

       

This indicates  
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Which gives the linear form   Y=XB + E where B=WQ 

The matrix of coefficients (loadings) is of importance in the current research as it is used to 

identify the relative contribution of various properties (ADME or physicochemical in case of the 

current study) to a specific response variable (PK parameter).  

In general methods of multivariate analysis the latent vectors could be chosen in a lot of different 

ways, for PLS regression, this amounts to finding two sets of weights w and c in order to create a 

linear combination of the columns of X and Y such that these two linear combinations have 

maximum covariance. The first two vectors are found as follows 

t=Xw and u=Yc 

With the constraint that w
T
w=I (I stands for Identity matrix or unit matrix which returns the same 

matrix as product on multiplication) and t
T
t=I and t

T
u is maximal. When the first latent vector is 

found, it is subtracted from both X and Y and the procedure is reiterated until X becomes a null 

matrix. In other words the vectors are found in such a way that they explain most of the variance 

in the data.  

The iteration process in PLS is highly intensive and requires automated processing. The most 

common algorithm for PLS analysis is the NIPALS algorithm. A brief description of the 

algorithm is given below. The entire analysis in the current research was performed using 

Minitab software (version 6) which automates the whole procedure. 

Brief Description of NIPALS algorithm [67] 

The first step in PLS analysis is the creation of two matrices containing the data:  E = X variables 

and F = Y variables.  These matrices  are  then  column  centered  and  normalized  (i.e.,  

transformed  into  Z-scores).   The sums of squares of these matrices are denoted as SSX and 

SSY, respectively. Before starting the iteration process, a vector ‘u’ is initialized with random 

values.  The following steps denote the iteration process with the  symbol  ∝  meaning  “to  

normalize  the  result  of  the operation”.     

Step 1.  w ∝ E
T
  u    (estimate X weights).  

Step 2.  t ∝ E w     (estimate X factor scores).  

Step 3.  c ∝ F
T
 t    (estimate Y weights).  
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Step 4.  u = Fc    (estimate Y scores).  

If t has not converged, then go to Step 1, if t has converged, then compute the  value of b which 

is used to predict Y from t as b = t 
T
 u, and compute the factor  loadings for X as p = E

T
 t.  

Further, subtract (i.e., partial out) the effect of t from both E and F as follows E = E –tp
T
 and F = 

F – btc
T
.  The vectors t, u, w, c, and p are then stored in the corresponding matrices, and the 

scalar b is stored as a diagonal element of B.  Compute sum of squares of X and of Y are 

explained by the latent vector, as p
T
 p and b

2
, respectively. Obtain the proportion of variance by 

dividing the explained sum of squares by the corresponding total sum of squares (i.e., SSX and 

SSY).  If  E  is  a  null  matrix,  then  the  whole  set  of  latent  vectors  has  been  found, 

otherwise the procedure can be re-iterated from Step 1 onwards. 

Key Output Parameters of PLS Regression Analysis using Minitab* 

a) Analysis of variance tables: Minitab displays one analysis of variance table per response 

based on the selected model. The table shows the amount of variance in the response 

explained by the model and the amount of variation left unexplained. 

b) p-Value: The p-value can be used to analyze whether the regression coefficients are 

significantly different from zero. A p-value smaller than a pre-selected α-value (generally 

0.05, corresponding to 95% CI), it can be deduced that at least one coefficient is not zero.  

c) Number of components and X-variance: Minitab displays the models and constituting 

components identified for each response (Y parameter) in PLS analysis. The first model 

has one component, the second model has two components, and the third model has three 

components and so on. Minitab also estimates the X variance indicating the extent of 

variance in the predictors (X variables) that is explained by the model. 

d) Model selection and validation parameter R-Sq: The R-Sq value provides the 

proportion of variation in each response that is explained by the predictors, indicating 

how well each model fits your data. Minitab displays the R
2 

values for all the calculated 

models. The R
2
 for the selected model is based on the sum of squares in the analysis of 

variance table. 

e) Standardized coefficient plot: The coefficient plot is a projected scatter plot showing 

the standardized coefficients for each predictor. This plot can be used along with the 
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regression coefficients to compare the sign and magnitude of the coefficients for each 

predictor. The plot makes it easier to quickly identify predictors that are more or less 

important in the model. 

*adopted from Minitab statistical guide. 

1.6. Compounds Used in Current Research  

The compounds used in the current research belonged to various therapeutic categories of 

cardiac beta blockers, anti-retrovirals, chronic obstructive pulmonary disease (COPD) drugs, as 

well as anti-diabetic compounds. The details of the compounds are listed in Table 4. The 

compounds are representative in terms of exhibiting wide range of properties of Log P, 

solubility, protein binding as well as clearance which was the primary requirement for a study set 

for developing the research hypothesis. Additionally the selection of the compounds were based 

on the following criteria  

 Availability in the laboratory 

 Diversity of structure 

 Spread across therapeutic area 

 Lead compounds  that represent a huge volume of optimization effort  

 Extensively used with PK-PD information available 

 Categorization in terms of renal clearance 

 Applicable in Polypharmacy 

Table 4: Compounds Used in the Current Research 

Compound Structure Mol. wt Category 

Atenolol 

 

266.3 
Anti-

hypertensive 

O

NH2

OOH

NH

CH3

CH3
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Metoprolol 

 

267.4 
Anti-

hypertensive 

Propranolol 

 

259.3 
Anti-

hypertensive 

Nevirapine 

 

266.3 
Anti-

retroviral 

Nelfinavir 

 

567.8 
Anti-

retroviral 

Ritonavir 

 

720.9 
Anti-

retroviral 

Indinavir 

 

613.8 
Anti-

retroviral 

Efavirenz 

 

315.7 
Anti-

retroviral 

O

OOH

NH

CH3

CH3

CH3

O

NH

OH

CH3 CH3

N N

N
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OH
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Cilomilast 

 

343.4 COPD 

Roflumilast 

 
 

403.2 COPD 

Vildagliptin 

 

303.4 Anti-diabetic 

Tolbutamide 

 

270.3 Anti-diabetic 

Rosiglitazone 

 

357.4 Anti-diabetic 

1.7. Therapeutic Areas of Selected Compounds in the Current Research: Overview 

 Beta Blockers (β adrenergic receptor blockers) 

Beta blockers are an important class of drugs due to their high prevalence of use. Beta blockers 

are commonly used systemically in the treatment of conditions including hypertension, cardiac 

arrhythmia, angina pectoris, acute anxiety and topically for open angle glaucoma.  

Thus the main pharmacological action of beta blockers is the antagonism of cardiac                   

β-adrenoreceptor responses in the heart (mainly β1 adrenoreceptors) and the main side effect is 

arising due to the antagonism of β2 receptors in airways, resulting in bronchospasm. Therefore 

N

O

OH

O
CH3

O

O

NH

N

Cl

Cl

O

O

F F

N

O

NH

N

OH

CH3

S
O

O

NH

O

NH

CH3

S

N
H

O

O
O

N

N

CH3



43 

 

more β1 selective compounds have been developed [70] to overcome this side effect. Each of 

these drugs possesses at least one chiral centre and an inherent degree of enantioselectivity in 

binding to the β adrenergic receptor. Except for timolol, all of these drugs used systemically are 

administered as racemates (an equal mixture of two isomers).  The non-selective beta blockers 

include propranolol, oxeprenolol, pindolol, nadolol, timolol, carvedilol and labetolol. Selective 

agonists include metoprolol, atenolol, esmolol and acebutolol. As a class beta blockers are quite 

diverse in their pharmacokinetic properties as they display varying extent of protein binding, 

metabolic clearance and urinary excretion [71]. 

Pharmacokinetic-Pharmacodynamic Correlation of Beta Blockers 

The affinities of beta blockers to the β1 receptor and its relative binding affinity with β2 receptor 

provide a basic comparison of the compounds used in the current study. In the current study 

three beta blockers are compared namely, atenolol, metoprolol and propranolol. Atenolol and 

metoprolol are selective for β1, whereas propranolol is non-selective. Smith and Teitler [72] 

reported the equilibrium dissociation constants of these drugs and other beta blockers based on a 

radioligand binding assay performed with membrane preparations from recombinant cell lines 

expressing human beta receptors (Table 5).  

Table 5: Affinity of Various Beta Blockers Used in the Research with Beta Adrenergic 

Receptors 

Beta blocker 

Equilibrium dissociation constant Ki (nM) 

β1 β2 

Atenolol 1520 ± 110 8600 ± 1360 

Metoprolol 204 ± 24 1227  ± 270 

Propranolol 3.6 ± 0.3 1.1 ± 0.2 

Baek et al. [73] reported the PK-PD relation between the cardiovascular effects and plasma 

concentrations of beta blocker drugs carvedilol and atenolol. Nineteen subjects received 50 mg 

of atenolol and 32 subjects received 25 mg of carvedilol. The subject data was fitted to a two 

compartment pharmacokinetic model. A PK-PD model with a hypothetical effector compartment 



44 

 

(biophase) was utilized to describe the relationship between the plasma concentration and 

cardiovascular effects.  

Anti-retroviral 

At present six classes of anti-retroviral drugs have received FDA approval. These are 

nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase 

inhibitors, protease inhibitors, fusion inhibitors, entry inhibitors (CCR-5 co-receptor antagonist) 

as well as human immunodeficiency virus (HIV) integrase strand transfer inhibitors. The current 

compounds under consideration belong to the class of non-nucleoside reverse transcriptase 

inhibitor (nevirapine and efavirenz) and protease inhibitors (nelfinavir, ritonavir, indinavir and 

efavirenz) [74]. Non-nucleoside reverse transcriptase inhibitors bind directly and 

noncompetitively to the enzyme reverse transcriptase at a site that is distinct from the substrate, 

blocking DNA polymerase activity [74]. This mechanism inhibits the conversion of viral RNA to 

DNA. Protease inhibitors [74] inhibit the HIV protease blocking the function of this enzyme in 

creating functional proteins allowing maturation of HIV virion. Inhibition of HIV protease 

results in the release of structurally disorganized and noninfectious viral particles. 

With the introduction of highly active anti-retroviral therapy (HAART) regimen which uses 

combination of drugs (for e.g. commonly comprise two nucleoside-analogue RTIs and one non-

nucleoside-analogue RTI or protease inhibitor) the AIDS related mortality has declined 

tremendously. However the most important aspect that affects the effectiveness, improving life 

expectancy by turning HIV from a terminal infection to a chronic disease is adherence or 

compliance [75]. As explained below based on PK-PD models, it also has a pharmacokinetic 

aspect to it which implies the maintenance of sufficient drug level in the blood to ensure 

reduction in viral replication as indicated by CD4 cell count and copies of viral mRNA in blood 

stream. 

Pharmacokinetic-Pharmacodynamic correlations of anti-retroviral therapy 

There are two major categories for PK-PD models for anti-retroviral therapy 

a) Short term dynamics: fit only the early segment of viral load trajectory 

b) Modeling long term treatment: includes the dynamics of viral load trajectory 
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Legrand et al. [76] reported an in vivo PK-PD model for anti-retroviral combination. In the study, 

patients were given an anti-retroviral combination including two nucleotide reverse transcriptase 

inhibitors zidovudine (250 mg twice daily) and lamivudine (150 mg twice daily) and one 

protease inhibitor (indinavir, 800 mg thrice daily) for 28 days. The three drugs were discontinued 

for 28 days in patients which had reached a plasma viral load of 1000 copies/mL.  The same 

therapy was re-introduced at day 56. For evaluation of PK-PD relationship, only the first phase 

was studied, with patients being evaluated before and during therapy.  Four samples were drawn 

on first day, three on second day and third day and one sample collected daily during the rest of 

the first week and on days 8, 10, 12, 14, 21, 25 and 28. Time between drug and sample intake 

was also recorded. Apart from routine biochemical parameters, HIV-1 viral plasma load and 

CD4 and CD8 counts in blood were measured at each visit. Compliance was assessed by 

personal interviews. Isolation of virus from mononuclear cells was performed at days 0, 28, 56 

and 112 for complete sequencing of reverse transcriptase and protease. The drug levels were also 

quantitated by a validated LC-MS method. An indirect response model was utilized to describe 

the pharmacodynamic property of the drug as represented by the following equation  

   
       

       
 

Where E is the reduction of viral load, Emax is the maximum effect, C is the concentration of the 

drug and IC50 is the drug concentration that reduces viral load by half and γ is the slope factor.   

To incorporate the effect of combination the pharmacodynamic model was extended by 

weighting the concentration of each drug with the in vitro IC50 to reflect the relative potencies 

   
        

        
 

Where  C = 0.23 CZDV+ 0.67 CLMV + 0.046 CIDV   

EC50 determined by this model therefore represents the weighted concentrations sum of the three 

agents needed to decrease the viral load by 50%. 

Long term–model (mechanistic)  

The basic dynamic model describes the population dynamics of HIV and its target cells in 

plasma. The model considers target uninfected cells (T), infected cells (T*) that produce the 
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virus and the free virus (V). The model also has a time varying parameter γ(t) which quantifies 

the antiviral drug efficiency.  The differential equations that define the model are  

  

  
   –                  

   

  
                    

  

  
         

Where λ represents the rate at which new T cells are created, ρ is the death rate per T cell, k is 

the rate at which T cells become infected by the virus, δ is the rate of death for infected T cells, 

N is the number of virions produced from each of the infected cells and c is the clearance rate of 

the virions. The time variant parameter γ(t) is the time varying antiviral drug efficacy which is 

referred to as efficiency index.  

In case the drug is not 100% effective the system of ordinary differential equations will have to 

be solved numerically.  If  γ(t) >ec (threshold for drug efficacy)  for all ‘e’ where     

      
  

    
 

This would mean theoretically the entire virus would be eradicated. However if γ(t) <ec 

(treatment not potent enough), or if the potency falls below the threshold before virus eradication 

(e.g. due to resistance) , the viral load may rebound. Thus the efficacy threshold may reflect the 

immune response of the patient and is important parameter to be estimated based on clinical data. 

Modified Emax model for drug efficacy of two agents within a class (e.g. protease inhibitors)  

      
                       

                         
 

               

                 
 

Where 

       
    
 

    
    

 

and  

                             

denote the inhibitory quotient (IQ) and adherence-adjusted inhibitory quotient, respectively. IC50 

is the drug concentration required to inhibit viral replication by 50%.     
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     are the drug concentrations in plasma measured at 12 hours from doses taken and median 

inhibitor concentrations for the two agents, respectively.   is a parameter to be estimated. The 

concentration parameter C could be replaced with another suitable pharmacokinetic parameter 

like AUC or Cmax. 

Phosphodiesterase 4 (PDE4) inhibitors   

The PDE4 inhibitor classes of compounds included in the current research are cilomilast and 

roflumilast which are used in management of COPD. There are currently 11 recognized families 

of PDE which have differential regulation and expression. PDE4 is of major interest [77]. PDE4 

is predominant in neutrophils, CD4+, CD8+ cells, monocytes and is also present in macrophages. 

PDE4 is also present in airway smooth muscle and epithelial cells, indicating that PDE4 

inhibitors could also have effects on structural cells (Figure 2). Thus there is compelling 

scientific rationale for the use of PDE4 inhibitors in COPD, although their clinical development 

has been slow. Major PDE4 inhibitors in clinical trials include rolipram, cilomilast, roflumilast 

and oglimilast. 

Figure 2: Advantages of PDE4 Inhibition 

 

 

Phosphodiesterase-4 (PDE4) inhibitors have the potential to suppress inflammatory cells and 

structural cells in chronic obstructive pulmonary disease patients, giving a broad spectrum anti-
inflammatory profile. Adopted from P.J Barnes and R.A.Stockley, 2005 [77] 
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The major adverse effects of PDE4 inhibitors include nausea, diarrhoea and headaches, which 

have led to the discontinuation of several drugs in early development. The side effects being 

mechanism related require the development of more subtype selective drugs.   

Four human PDE4 isoenzymes have been identified and each has several splice variants. This 

raises the possibility that subtype-selective inhibitors may be developed that could preserve the 

anti-inflammatory effect, while having less propensity to side-effects. PDE4D (one of four genes 

encoding the PDE4 family) appears to be of particular importance in nausea and vomiting and is 

expressed in the chemo sensitive trigger zone in the brain stem. Targeted gene disruption studies 

in mice indicate that PDE4B is more important than PDE4D in inflammatory cells. PDE4B-

selective inhibitors may, therefore, have a greater therapeutic to side-effect ratio and theoretically 

might be effective anti-inflammatory drugs.  Cilomilast is selective for PDE4D and this would 

explain its propensity to cause emesis, whereas roflumilast, which is non-selective for PDE4 

isoenzymes, has a more favourable therapeutic ratio. Several other potent PDE4 inhibitors with a 

more favourable therapeutic ratio are now in clinical development for COPD. Other problems 

with PDE4 inhibitors include ischaemic colitis in animal models, although the mechanism 

remains unknown, and an increased susceptibility to Klebsiella pneumoniae infections, possibly 

related to decrease TNF-α production. 

Due to the side-effects of PDE4 inhibitors, other PDE isoenzymes that are expressed in 

inflammatory cells have also been investigated. PDE7A, like PDE4, is a cyclic AMP-selective 

PDE and has a widespread distribution in relevant inflammatory cells, including neutrophils, T-

cells, monocytes and macrophages. The PDE7-selective inhibitor BRL 50481 has minimal 

inhibitory effects on monocytes, macrophages and CD8+ T-cells, but potentiates the anti-

inflammatory effects of a PDE4 inhibitor on these cells, suggesting that combinations of PDE 

inhibitors may prove more effective in targeting causative mechanisms.  

Anti-diabetic insulin secretagogues and insulin sensitizers 

The anti-diabetic compounds used in the current research are tolbutamide (sulphonyl urea), 

vildagliptin (DPP IV inhibitor) and rosiglitazone (PPAR   agonist).  

The goals of therapy for type 2 diabetes mellitus (DM) are improved glycemic control with near 

normalization of the HbA1c. While glycemic control tends to dominate the management of type 
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1 diabetes mellitus, the care of individuals with type 2 DM must also include attention to the 

treatment of conditions associated with type 2 DM (obesity, hypertension, dyslipidemia, 

cardiovascular disease) and detection/management of DM-related complications. Diabetes 

mellitus-specific complications may be present in up to 20 to 50% of individuals with newly 

diagnosed type 2 DM. Reduction in cardiovascular risk is of paramount importance as this is the 

leading cause of mortality in these individuals. 

Recent advances in the therapy of type 2 DM have generated considerable enthusiasm for oral 

glucose-lowering agents that target various physiologic processes in type 2 DM. Based on their 

mechanisms of action, oral glucose-lowering agents are subdivided into agents that increase 

insulin secretion, reduce glucose production, or increase insulin sensitivity. Oral glucose-

lowering agents (with the exception of α-glucosidase inhibitors) are ineffective in type 1 DM and 

are not be used for glucose management of severely ill individuals with type 2 DM. Insulin is 

sometimes used as the initial glucose-lowering agent. 

Insulin secretagogues stimulate insulin secretion by interacting with the ATP-sensitive potassium 

channel on the beta cell. These drugs are most effective in individuals with type 2 DM of 

relatively recent onset (<5 years), who have endogenous insulin production and tend to be obese. 

At maximum doses, first-generation sulfonylureas are similar in potency to second-generation 

agents but have a longer half-life, a greater incidence of hypoglycemia, and more frequent drug 

interactions. Thus, second-generation sulfonylureas are generally preferred.  

Thiazolidinediones: Thiazolidinediones (TZD) represent a new class of agents that reduce 

insulin resistance. These drugs bind to a nuclear receptor (peroxisome proliferator-activated 

receptor, PPAR-γ) that regulates gene transcription. The PPAR-γ receptor is found at highest 

levels in adipocytes but is expressed at lower levels in many other insulin-sensitive tissues. 

Agonists of this receptor promote adipocyte differentiation and may reduce insulin resistance in 

skeletal muscle indirectly. TZDs reduce the fasting plasma glucose by improving peripheral 

glucose utilization and insulin sensitivity. Circulating insulin levels decrease with use of the 

TZDs, indicating a reduction in insulin resistance.  

Rosiglitazone is a selective PPAR-γ agonist. Activation of PPAR-γ by TZDs induces the 

expression of a set of genes involved in adipocyte differentiation and lipogenesis, and these 

mechanisms are thought to be responsible for the insulin-sensitizing actions of these drugs. 
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PPAR-γ activation results in increased uptake of free fatty acids (FFAs) into subcutaneous 

adipose tissue. This, in turn, lowers circulating  FFAs, thereby improving insulin resistance in 

liver and skeletal muscle (‘the fatty acid steal hypothesis’). In addition to the direct effects of 

TZDs on adipose tissue, there are several indirect effects that might contribute to improved 

insulin resistance. TZDs can decrease tumor necrosis factor (TNF) and 11-β-hydroxysteroid 

dehydrogenase 1 levels, both of which are known contributors to insulin resistance.  

TZD use is accompanied by weight gain and, in approximately 5% of patients, an increase in 

plasma volume which can lead to peripheral edema. Partial PPAR-γ agonists are being developed 

in an attempt to combine potent glycemic control with weaker adipogenic potential.  

Dipeptidyl peptidase (DPP) IV inhibitors: DPP IV is the founding member of a family of DPP IV 

activity and structure homologue (DPP IV activity and/or structural homologue (DASH) 

proteins, enzymes that are unified by their common post proline cleaving serine dipeptidyl 

peptidase mechanism. DPP IV inhibitors have been prepared since 1977. Their synthesis and the 

different structural classes have in the meantime been the subject of different reviews. Three 

substance classes stand out whose representatives are under investigation in man. 

a) Reversible product analogue inhibitors (e.g. pyrollidines, thiazolidines) 

b) Covalently modifying product analogue inhibitors (e.g. cyanopyrrolidines) 

c) Reversible non-peptidic heterocyclic inhibitors (e.g. xanthenes and aminomethylpyrimidines) 

DPP IV is a post proline cleaving serine protease, existing as soluble and membrane bound form. 

It catalyzes the release of N-terminal dipeptides from biologically active peptides with the 

preference of proline > hydroxyproline > alanine in the penultimate position. DPP IV has high 

affinity for GLP-1 and thereby inactivates GLP-1 which can be prevented by DPP IV inhibitors 

leading to potentiating its biological activity on the pancreas augmenting insulin response with 

food stimulus DPP IV inhibitors have been shown to reduce blood glucose, improve glucose 

tolerance and improve insulin responsiveness to oral glucose challenges in animal models.  
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2.1.  Parameter Integration in Drug Discovery: Research Gap  

In the process of new drug discovery, hundreds of compounds undergo high throughput 

screening against a specific target which could be a receptor, enzyme, intracellular protein etc. 

Once random hits are identified, there ensues a rigorous process of identifying the key 

pharmacophores that can be further optimized with structural modifications to generate 

compounds with improved potency and drug like attributes. Another approach is the rational 

design of a chemical series using known attributes already available and use of various molecular 

modeling tools or evidence based SAR development to design compounds. Regardless of the 

approach, these intense efforts are aimed to culminate in the optimization process to synthesize 

the best candidate for the target under consideration. This stage would involve assessment of 

critical physiochemical and ADME properties which could also become primary screening 

criteria along with potency. The selected set of compounds after primary screens would then 

progress into a more detailed evaluation of their activity with secondary pharmacological assays, 

in vivo PK as well as animal pharmacological models. At this level, the interplay of the 

physicochemical and ADME properties would start influencing the outcome of the efficacy 

assays. The hurdles thereon could be in terms of identifying the optimum range of characteristic 

for an ideal clinical candidate or to find the most appropriate properties that can be improved by 

modification of the series to achieve the clinical candidate. The screening process repeats with 

newer compounds synthesized with chemical modifications that are anticipated to improve 

various properties (solubility, lipophilicity, metabolic stability etc), which are evaluated again 

until a better candidate is identified.  Most often, the chemical modification results in a variation 

of multiple properties and the interplay of them influencing the modulation of biological target 

makes the lead optimization process complicated. In spite of these efforts, there exists a 

possibility of the lead compound behaving differently in humans due to interspecies differences.  

The development of a target product profile (TPP) becomes important in this context and it 

would involve a dynamic list of ideal properties that could be aimed to be achieved for a lead 

compound to be successful in clinic. TPP could also evolve with the understanding about the 

therapeutic target and competitive landscape which demands making it a best in class with 

improved properties than existing drugs or a first in class compound with a dosing strategy or 

regimen that ensures efficacy in clinic etc. The ultimate process in developing a clinical 
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candidate is to have an integrated comparison of efficacy, ADME and toxicological profiles with 

the risk factors clearly weighed against the positive attributes to choose a clinical candidate that 

provides a quantifiable benefit outweighing the known risks for the class. According to Curry 

and Brown [78] TPP provides a starting point from which the product planning can proceed from 

integration of planning tools to the development of screening sequence or testing cascade in 

conjunction with project specific objectives and activities.  

The current research, reported in the thesis, limits to the PK aspects of TPP. There is definitely a 

large role that PK plays in the selection of a drug candidate as both the efficacy as well as safety 

of any drug depends on the availability and disposition of the drug in the biological system. 

Many of the areas addressed by TPP invariably have an ADME or PK component. For example 

the half-life of the drug in humans will govern for a majority of cases, the duration of action of 

the compound. Penetration rates into site of action are assessed in both qualitative and 

quantitative terms using PK methods. The dosage forms are assessed by pharmacokinetic 

methods and the dosing regimen is directly linked to the PK and PD correlation for the drug. 

Finally adverse reaction, drug-drug interaction and the need for patient therapeutic drug 

monitoring and/or dosage adjustments in the clinic are all predominantly exposure related and 

therefore, the role of PK is of paramount importance. Early ADME studies are also often the first 

"drug-developability" assessments of a compound after initial primary efficacy screens.  Positive 

results allow a fast track entry into further developmental phases earlier without an iterative 

process of re-defining the clinical candidate. These initial developability studies may also 

uncover concerns regarding safety or efficacy that must be resolved before beginning the 

definitive nonclinical studies (e.g. regulatory toxicology evaluation) needed to support an 

investigational new drug (IND) application filing or before designing the clinical protocols, 

which will evaluate the candidate's safety and efficacy in humans. The identification and suitable 

remedial measures of these issues as early as possible allows for a more timely and efficient 

early development program. This in turn would pave the way for a program with fewer re-

confirmatory studies. Hence substantial savings in terms of both time involvement and cost may 

be achieved with a better chance of successfully completing clinical phases of development. 
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A successful clinical candidate is thus a result of knowledge and experience accumulated in 

discovery programs (more precisely at the lead optimization stage). Therefore, being able to 

simulate human PK early in the discovery process as well as knowing beforehand the key 

properties that influence it would enable the discovery program to focus on optimizing the series 

rationally, make early assessment of the success of the particular chemical series, identify 

obstacles or even make an early decision to discontinue a particular series and eventually make 

the choice of a better candidate from a set of lead optimized compounds that suits the TPP. This 

rationale forms the basis of current research. Achieving the above would allow the discovery 

program to move ahead in a faster pace. The savings could be phenomenal and multidimensional 

in terms of financial resources, resource allocation, manpower and decision for course correction 

and/or substitution. A robust process once put in place should also allow the program to realign 

itself in the wake of newer scientific developments  in  understanding of the target or disease 

indication (for example identification of a new downstream pathway, or off target activity or 

modulation of other targets in a beneficial or detrimental manner, new information from clinical 

trials etc.) 

The above mentioned need for an integrated approach brings certain important research 

questions that are addressed in the current research work. 

a) How to dynamically integrate various screening data to predict human PK and identify 

key properties that influence a desired in vivo profile? 

b) Once identified, how can they be put to use to develop or define a clinical candidate that 

has better chance of success? 

c) Of the numerous properties that influence human PK profile, which is/are the most 

relevant? 

d) How can the effect of structural modification be assessed before nomination of a clinical 

candidate (or initiating an expensive toxicology program)? 

e) How to assess and compare the potential clinical efficacy and safety for a set of closely 

related compounds with subtle differences in various ADME and physicochemical 

properties? 
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A literature review on the above aspects revealed the clear inadequacy in addressing many of the 

research questions. Most of the lead optimization processes in practice today lack an integrated 

holistic approach, but focus on identifying this research question in a random manner. This 

observation is based on personal experience as well as lack of available literature reports on 

efforts in this direction. In other words, the process being followed today appears to be SAR 

centric from a chemists view point or more of a potency and physicochemical or 

pharmacokinetic point of view in terms of a biologist as evident from the numerous reports 

available on developing SAR, improving PK properties by altered solubility, formulation 

approaches, pro-drug approaches etc.. There have been efforts to develop models to predict 

various PK parameters prior to any clinical study. Most notable of them are the models to assess 

the absorption potential of pharmaceutical compounds based on molecular, physicochemical and 

ADME properties [22, 27, 79], prediction of clinical PK properties based on in vitro metabolism 

studies and in vivo animal data [1, 80, 81], extrapolation of animal data to humans using 

allometry [82, 83] with numerous correction factors that account for species differences in 

parameters such as clearance, volume of distribution etc. Also important to note are the in silico 

QSAR based models for human bioavailability prediction [84-86]. 

All these efforts emphasize the need for reliable and quantifiable prediction of human responses 

from preclinical animal data or in vitro data. Obach et al. [1] described a comprehensive 

retrospective analysis on the reliability of several methods for predicting human PK properties 

from preclinical data.  An important observation in the analysis was the achievement of higher 

reliability with mixed approaches, where more than a single parameter was considered. For 

prediction of volume of distribution, the inclusion of plasma protein binding data resulted in a 

better prediction. Also an allometric (in vivo) volume prediction method was combined with in 

vitro clearance prediction method and the combination methods were generally found to be more 

successful in their ability to predict the human related parameter values. Parameter sensitivity 

analysis [87] was another technique used to address the outcomes of prediction across a 

parameter range. This method employs a series of simulations run over a range of different doses 

to examine how different parameters vs. time curve are affected.  In a review by Venkatesh et al. 

[88] on the role of development scientist in compound lead selection and optimization, the early 

consideration of development criteria along with receptor potency and specificity has also been 

highlighted.  
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While these approaches are definitely valuable and necessary, there is a need for development 

and implementation of a strategy that allows collating and mechanistically integrating inputs 

from various screening data. The primary focus of the strategy should be the integration of 

numerous screening data as building blocks to simulate human PK profile for compounds early 

in the discovery stage with inputs from commonly employed pre-clinical screening data. It is 

important to have a mechanistic integration incorporating physiological factors as well, which 

would enable the model to closely resemble a physiological system which can be used as a 

predictive analysis tool for lead optimization, which will not be feasible with empirical models. 

Further, to optimize the chemical series, it requires understanding of the key properties that 

influence a PK parameter. This can be achieved by a multivariate approach utilizing pooled 

screening data of all the compounds and identifying the trends in data and relatively analyze the 

contribution of various properties to a PK parameter under consideration for improvement. This 

approach should bring forth a novel concept of mechanistic integration as well as identification 

of key properties for rational lead optimization.  

2.2. Key Research Gaps Identified 

The following key research gaps are identified which form the basis for the current research 

a) How to integrate various screening information mechanistically that allows the prediction 

of human PK parameters in a way that could relate with its biological efficacy as well as 

physicochemical, chemistry and ADME properties? 

b) How can the relative contribution of various screening properties be assessed and how to 

prioritize them to give a feed back to medicinal chemist? 

c) How to assess the influence of changes made in these properties on the three basic PK 

parameters of absorption distribution and elimination that defines in vivo human PK 

profile? 

To summarize, the current research focuses on the research need for a broad methodology to 

relate various physicochemical and ADME properties to predict human PK parameters and 

analyze the relative influence of various properties on them allowing their selective optimization 

and permit rational choice of a candidate with most probable chance of success in the clinic.  
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3.1. Objectives of Current Research 

The current research utilizes a set of 13 clinically proven compounds belonging to the class of 

beta blockers, anti-retroviral, PDE4 inhibitors (for COPD) as well as anti-diabetics. The research 

aims to develop a new methodology to be used in drug discovery research for a rational lead 

optimization and selection of clinical candidate. Choice of clinically used compounds therefore 

would allow the verification of many of the outcomes of the new methodology like prediction of 

human PK parameters and plasma concentration profile in comparison with reported clinical 

data.  Based on the exhaustive literature review, PBPK models have been identified as an ideal 

method for integrating various screening data in the current research to predict key 

pharmacokinetic parameters of absorption tissue distribution and clearance. These parameters 

would then be applied for simulation of human oral concentration-time profile using one 

compartment kinetic equation, assuming first order absorption. Since there are few reports of 

PBPK based prediction of human PK profile after oral dose with most of the effort in prediction 

of absorption or volume of distribution or clearance, the current research would also add value in 

terms of utilizing them for prediction of oral concentration-time profiles. To analyze the effect of 

various trends in the data and to assess the contribution of individual properties to the final 

outcome, a multivariate analysis approach has been adopted using partial least square regression 

(PLS) analysis.  

The following are the broad objectives of the current research 

a) To develop a new methodology to assess the influence of various physicochemical and 

ADME screen data on the human pharmacokinetic profile with a retrospective study of 

few selected compounds belonging to different therapeutic areas, with known clinical 

outcome. 

b) The research involves experimental generation of various physicochemical and ADME 

screening data mimicking a discovery process (as well as avoiding variability of any 

reported data from various sources) followed by the mechanistic modeling (PBPK) to 

predict key pharmacokinetic parameters and simulate human pharmacokinetics with one 

compartment PK model equation. 
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c) Validate the mechanistic predictions with the reported clinical human pharmacokinetic 

data as the clinical information of the compounds is known. In the current research the 

predicted human PK parameters and in vivo PK profiles have been compared with 

reported literature values and the reliability of predictions have been assessed with 

precision and bias estimates.  

d) Using a multivariate approach (PLS), analyze the latent trends in screening data and 

estimate the relative contribution of various properties on the human pharmacokinetic 

profile. The result is a standardized PLS coefficient plot rank ordering the various 

properties in their order of relevance which can be taken up for optimization by chemical 

modification.  

e) Demonstrate the utility of above analysis in lead optimization : The utility of  focusing on 

identified parameters and optimizing them in a discovery program has been illustrated 

with the following two steps considering that current research has not included any  

experimental chemical synthesis or modification within its scope 

i. Illustrate the effect of chemical modifications on human in vivo profile by 

simulation using the same approach of PBPK modeling with one compartment 

model simulation, as used in this research. The modifications made are assumed 

as two fold variation (0.5 x and 2.0 x) of few individual basic ADME or 

physiochemical properties (microsomal clearance, solubility and Log P). In a 

discovery program this would reflect chemical modifications made on the 

pharmacophore resulting in a change of these properties (solubility, permeability, 

metabolic stability etc.). For ease of illustration only a single parameter is 

changed at a time though the PBPK methodology and simulation can incorporate 

multiple variations at a time which is a more practical scenario.  

ii. Correlation of the modified human PK profiles obtained as above with PK-PD 

information demonstrating effect on efficacy, dosing regimen etc. 

To summarize, the current research aims to develop a new methodology for application in drug 

discovery which integrates various screening data mechanistically and predicts in vivo human PK 

profile using PBPK, analyzes the relationships with PLS to prioritize key properties for 

optimization allowing efficient integration between medicinal chemistry pharmacokinetics and 
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biology by giving valuable inputs on optimization, permits evaluation of modified compounds 

with the same approach and doing so allows a rational selection of lead compound  basing on a 

TPP. 

3.2. Steps Involved in the Research  

a) Perform individual screens on various physicochemical and ADME properties for the 

selected 13 compounds: solubility (pH 1.8, 3.0, 4.5, 6.8 and 7.4), Caco-2 permeability 

liver microsomal clearance, plasma protein binding and blood plasma partitioning and 

collate all generated data. 

b) Incorporate the individual data to PBPK models for prediction of human PK parameters 

and simulate human PK assuming one compartment kinetics with first order absorption. 

c) Compare the simulated PK parameters with reported human values from literature.  

d) Assess the influence of various physicochemical and ADME properties on key 

pharmacokinetic parameters using partial least square (PLS) analysis of pooled data.  

e) Illustrate rational lead optimization by predicting the influence of two fold (0.5 x and 2.0 

x) change of key properties identified by PLS on the simulated human PK profiles. 

f) Using the results discuss on the application of the new methodology for a rational 

selection of clinical candidate by correlating with efficacy, with representative examples.  

3.3. Scope of Current Research 

a) The research aims to find a methodology that can be adopted in a research laboratory at 

the lead optimization stage for generation of a viable clinical candidate for early drug 

development.  

b) The different mathematical models used in the research are a result of extensive literature 

research with complete understanding of mechanistic models and as such, these models 

can be used for prediction of various human PK parameters as well as simulation of in 

vivo PK profile 
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c) The novel utility of the multivariate analysis technique PLS to critically analyze the role 

of various properties on a response pharmacokinetic parameter using a series of 

compounds has been demonstrated for implementation in lead optimization stage 

d) Application of this methodology would allow a research team to predict human PK 

profile well in advance. However the industry standard in vitro assays need to be 

employed for incorporation of the physicochemical and ADME properties of the 

compounds. 

e) The methodology would enable the discovery scientist working in pharmacokinetics to 

interface with chemistry and biology scientists by giving valuable feedback to achieve 

acceptable chemical and biopharmaceutical properties that can result in clinical efficacy 

and reduced adverse effects. 

f) The predicted human PK profile can then be used to extend the PK-PD correlation 

developed basing on animal model data with more reliability and would allow to choose 

clinical candidates that would exhibit a better human profile. 

g) The flexibility of mechanistic models would allow incorporating future advances in 

understanding and mathematical modeling of the processes (inclusion of transporter 

effects, induction effects, biliary excretion etc.) 

h) Overall the methodology would allow the discovery research team to make rational 

decisions, assess risks earlier in terms of critical properties to be modified and assess the 

feasibility beforehand and allocate material and human resources effectively, avoid 

redundancies and save time and cost. 

3.4. Limitations of Current Research 

a) The current research limits to the PK attributes of the compound in a manner that enables 

it to interface with other disciplines in drug discovery and for rational decisions in 

candidate selection. The methodology however can be extended to biological properties 

as well and many of the biological parameters like receptor affinity, association and 

dissociation rates, and fold selectivity over undesirable homologous targets (e.g. DASH 

members for DPP IV inhibition, PPAR α vs.  selectivity), threshold levels for 
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exaggerated pharmacological effects (e.g. emesis in PDE4 inhibition) etc. can also be 

included as part of the optimization. These are not included as part of the current research 

b) Effect of transporters, mechanism based inhibition of drug metabolism (reactive species 

generation), CYP induction, biliary excretion and entero-hepatic recirculation etc. are 

definitely additional biological phenomenon that influence the final outcome which are 

not part of the current research methodology. However the methodology (PBPK models) 

is chosen keeping these parameters in mind, so that they can be incorporated in future. 

There are research efforts reported in this direction with incorporation of fold change in 

AUC with induction and inhibition [89], effect of GI metabolism and transporters on 

absorption [90] etc. are being incorporated into these models and definitely need more 

computational and mathematical modeling. The ability to incorporate these properties 

with development of further understanding is an important advantage of using 

mechanistic models and has been thought about in its conception. 

c) The current research methodology is ideally meant for compounds within a series 

(homologous series) or comparison across sets of diverse chemical scaffolds. Since the 

current research aims to prove this hypothesis retrospectively with clinically proven 

compounds, the availability of multiple compounds for a single target is limited to few 

numbers. Being of different class has a bearing on the PLS analysis using pooled data as 

the correlations observed with properties and PK parameters are purely a demonstration 

and does not indicate for a specific chemical series. However this is not considered to 

have any bearing on the objective of research as the focus is on the methodology rather 

than any individual chemical series. Inclusion of different chemical series on the other 

hand enhances the reliability of simulation techniques in the study. 

d) An alternate approach to one compartment PK model based simulation could be the 

application of whole body physiological models incorporating a series of differential 

equation predicting the various tissue levels as well as the plasma concentration profiles 

directly. This effort though computational and mathematically intensive and practically 

impossible without software resources, could have had the advantage of predicting multi-

compartment kinetics, not limiting to a one compartment model. 
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e) There could be some effects that are likely to be masked in the current research as the test 

compounds used were clinically optimized and must have been devoid of many adverse 

characters that are not desirable clinically. Few aspects include the presence of impurities 

in the drug substance that influences its screening results, lack of optimized physical 

(amorphous crystalline, uniform particle size) and chemical (appropriate salt form or free 

base) forms of the drug etc. which would be common in the early discovery stages. 

However it is believed that a systematic assessment of these parameters would alert the 

scientist and the robust methodology (application of mechanistic models as well as PLS) 

would enable the scientist to differentiate the outcomes. 

f) The methodology applies to all types of small molecule based drug discovery in its 

principle and application (which is the objective and the expected utility of this research), 

however the results and observations (for e.g. relative influence of each parameter on the 

outcome) would definitely vary for each chemical series to which it is applied and also 

the complexity of overcoming it through efforts in chemistry would also vary. This could 

also depend on the expectation setting on the compound (TPP). For example, in the 

design of a better drug in terms of duration of action, clearance may be a major challenge 

identified and the scaffold due to its chemical characteristics may limit possibilities of 

overcoming it while simultaneously ensuring target activation.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0. MATERIALS AND METHODS 
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4.1. Test Compound Properties and Experimental Details  

The molecular weight, Log P as well as pKa estimates of the test compounds were taken from 

literarure . Log Pvow was derived from Log Pow using the following empirical relation [51].  

                          

Log Dvow as well as the neutral fraction at pH 6.8 and 7.4 was estimated basing on the 

Handerson-Hasselbalch equation [8, 51] . 

1) For monoprotic acids 

                               ) 

2) For monoprotic base 

                               ) 

3) For diprotic acids 

                                        ) 

4) For diprotic base 

                                        ) 

5) For zwitterionic compounds 

                                         ) 

Where pKa1 is acidic and pKa2 is basic. 

6) For neutral compounds 

                          

 The neutral fraction at pH 6.8 and 7.4 were estimated using the following relation 

      
 

                
                           

4.1.1. Determination of Solubility at Various pH 

Equilibrium solubility of the test compounds were measured at various pH (1.8, 3.0 4.5, 6.8 and 

7.4). The technique involved the preparation of various buffers.  

Buffer pH 1.5: 0.05M sodium chloride, pH adjusted to 1.8 with hydrochloric acid 

Buffer pH 3.0: 0.05M sodium chloride pH adjusted to 3.0 with hydrochloric acid 
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Buffer pH 4.5: 0.05M Sodium dihydrogen orthophosphate, adjusted to pH 4.5 with sodium                               

hydroxide 

Buffer pH 6.8: 0.05M Sodium dihydrogen orthophosphate, adjusted to pH 6.8 with sodium 

hydroxide 

Buffer pH 7.4: 0.05M Sodium dihydrogen orthophosphate, adjusted to pH4.5 with sodium 

hydroxide 

Methodology 

The assay was performed using a shake flask method. Around 1.5-2.0 mg of test compound was 

weighed into a flat bottom glass vial for each pH tested and mixed with buffer at the proportion 

of 500µL per mg. The glass vials were then placed in a shaker and was shaken for 24 hours at 

room temperature (22-25°C). The samples were the filtered using syringe filters (0.45 micron, 

Millipore, USA) and were analyzed by high performance liquid chromatography (HPLC) against 

a known standard. 

HPLC Analysis 

Two ternary gradient generic methods were developed for the compounds. A short run generic 

method of 15 minute duration was used for compounds atenolol, metoprolol, propranolol, 

nelfinavir, indinavir, efavirenz, cilomilast, vildagliptin and rosiglitazone and the extended run 

(40 minute duration) was used for the remaining compounds (nevirapine, ritonavir, roflumilast 

and tolbutamide). The standards consisted of DMSO stocks of the compounds (0.5mg/mL) 

which were correlated with their respective area for various quantities introduced on column (by 

varying the injection volumes 1.3, 2.5 and 5µL, respectively). The test solution was injected at 

an appropriate volume of 25, 50 or 100µL and compared with the closest standard or a three 

point calibration curve. From the back calculated value corrections were made for the injection 

volumes and the solubility was estimated per unit volume (mg/mL) of the buffer. 

HPLC Parameters 

Column    : Inertsil ODS 3V (250 x 4.6 mm, 5μm) 

Mobile Phase 

Component A (buffer) : Ammonium acetate 10mM, pH 6.8 

Component B   : Methanol: Buffer (95:5, v/v) 

Component C   : Acetonitrile: Buffer (95:5, v/v) 
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Gradient Program 

Time 

(minutes) 

%A %B %C 

0 100 - - 

1 100 - - 

3 30 30 40 

6 5 25 70 

11 5 25 70 

12 100 - - 

15 100 - - 

Gradient Program (extended run) 

Time %A %B %C 

0 100 - - 

2 100 - - 

3 90 - 10 

9 50 30 20 

12 50 25 25 

25 30 20 50 

28 5 10 85 

35 5 10 85 

36 100 - - 

40 100 - - 

4.1.2. Determination of Caco-2 Permeability 

Reagents and Equipment 

a) Dulbecco’s Modified Eagle Medium: Gibco BRL, Gaithersburg, MD (Catalog No.12430-

054) 

b) Fetal bovine serum: Gibco BRL, Gaithersburg, MD (Catalog No. 10082-147) 

c) L-glutamine: Sigma chemical Co. USA (Catalog No. G7513) 

d) Sodium bicarbonate: Sigma chemical Co. USA (Catalog No. S1554) 

e) D-glucose: Sigma chemical Co. USA (Catalog No G7528) 

f) HEPES: Sigma chemical Co. USA (Catalog No. H3375). 

g) Sodium chloride: Sigma chemical Co. USA (Catalog No.  S7653) 

h) HBSS (Hanks buffered salt saline): Sigma chemical Co. USA (Catalog No. H1387) 

i) PBS (Phosphate buffered saline): Gibco BRL, Gaithersburg, MD (Catalog No.10010-049) 
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j) Caco-2 cells: American Type Culture Collection, Rockville, MD (Catalog No. HTB 37) 

k) Tissue Culture plates and flasks: Nalge Nunc International, USA (Catalog Nos. 156472 and 

140685) 

l) Transwell tissue culture inserts: Nalge Nunc International, USA ( Catalog No.137435) 

m) Millicell- ERS voltameter and electrode: Millipore India Pvt. Ltd. 

n) Hot air incubator maintained at 37°C (New Brunswick Scientific). 

o) Refrigerated centrifuge (Eppendorf) 

Methodology 

Caco-2 cells (HTB 37) were procured from American Type Cell Culture (ATCC). The cells were 

cultured in T75 flasks using Dulbecco’s Modified Eagle Medium (DMEM; supplemented with 

10% FBS and 2mM L-glutamine), at 37°C in an atmosphere of 5% carbon dioxide and 95% 

relative humidity. For experiments, cells within a passage number of 30 to 60 were used. Passage 

of the cells was done within 70-90% confluence using trypsin EDTA. To prepare the cell 

monolayer, the cells were seeded in 6 well or 24 well polycarbonate inserts (Nunc, 3μm pore 

size, placed over plates) at a density of 52000 cells per insert. The media was changed after 3 

days of seeding and thereafter every alternate day until day 21. To assess the growth and 

integrity of cell monolayer the Trans Epithelial Electrical Resistance (TEER) was measured on 

day 21. The resistance measured is a direct function of intact monolayer formation with TEER 

values increasing with growth of cells and stabilizing after monolayer formation. Transwells 

expressing a TEER value of >400 ohms were used for the study. The TEER value of inserts 

without any monolayer ranged 150 ohms. The permeability experiments were conducted within 

day 21 to day 23 of seeding. On the day of the experiment the cell monolayer (in inserts) was 

washed with sterile phosphate buffered saline (PBS) pH 7.4, to remove traces of culture media. 

The inserts were subsequently added with 0.5mL of HBSS buffer (pH 7.4) to the basolateral 

compartment and 0.25mL of HBSS buffer (pH 6.5) to the apical compartment and incubated for 

at least 30 minutes at 37°C in the incubator, before initiating the experiment.    

A primary stock solution of the test compound was prepared in DMSO. The working solutions 

(preparation in buffer, used for the experiment) were prepared in HBSS buffer pH 6.5 (pH of the 

small intestine). The proportion of organic solvent was limited to 0.5%. An appropriate test 
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concentration in the range of 10 to 50μM was chosen based on the available solubility 

information at pH 6.8. 

The permeability experiment was performed outside the laminar hood. The buffer solutions 

added for conditioning the monolayer was removed and the study was initiated by the addition of 

250µL drug working stocks prepared in HBSS pH 6.5 to the donor (apical ) side and 500µL of 

HBSS buffer (pH 7.4) containing 0.5% DMSO, to the acceptor (basolateral) side. The plate was 

placed in a hot air incubator shaker maintained at 37°C. Periodic aliquots of 150µL was 

withdrawn from the basolateral compartment at 15, 30, 45, 60, 90 and 120 min time intervals and 

was stored for analysis at -20°C. After sampling an equal volume of media was replenished 

every time. At 120minutes, samples (150µL) were also withdrawn from apical side for mass 

balance studies. The concentration of test compound in study solution and samples were 

estimated by a suitable HPLC or LC-MS based analytical method and using a suitable calibration 

curve. Using the concentrations estimated the cumulative amount transported (Q) at each time 

point was estimated as follows. 

           

                  

                        

                            

Where  

VR is the volume in the receiver compartment (0.5mL for a 24 well plate). 

VS is the sampling volume from basolateral side (150uL). 

C is concentration in micromoles 

The cumulative amount (Q in μM) transported was plotted as a function of time and  the slope of 

the linear segment, which is the linear appearance rate of the test compound into the basolateral 

compartment (dQ/dt), was calculated. 

The apparent permeability was calculated using the equation 
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 Where  

dQ/dt is the slope of the best fit line of the function; cumulative rate of appearance vs. time  

A is the area of the cell monolayer (4.2 cm
2
 for 6 well plate and 0.78 cm

2
 for 24 well plate) 

C0 is the concentration of the test compound used (micromoles) 

4.1.3. Determination of Plasma Protein Binding  

Reagents and Equipments 

a) Phosphate buffer saline pH 7.4 (PBS): Gibco BRL, Gaithersburg, MD (Catalog No. 

10010-049). 

b) Human plasma 

c) Protein separation tubes and 96 well plates (Millipore, 10 KD) 

d) Test compound stock in DMSO (200 and 2000μg/mL) 

e) Refrigerated centrifuge (Eppendorf) 

Methodology 

An aliquot of 0.5mL human plasma added into test tubes was used in duplicates for each test 

concentration. After 5 minute incubation in a hot air incubator 2.5µL of the test compound (to 

provide a final concentration of 1µg/mL and 10µg/mL in plasma) was spiked into plasma and 

mixed well by vortexing. The plasma was then incubated at 37°C for 30 minutes in a hot air 

incubator shaker. 

After incubation, 300µL of plasma was transferred to 96 well protein separation plates 

(regenerated cellulose membrane filters with 10000 Daltons cut off, Millipore, USA). The 

protein filtration assembly consisted of a 96 well filter plate placed over a collection plate and a 

cover holding the plates together (Millipore, USA). After transferring plasma, the assembly was 

centrifuged in a swing rotor at 2000 rpm (1800 x g) for 30 min and the ultra-filtrate was 

collected. The test compound was estimated in both the whole plasma and the ultra-filtrate 

sample using an appropriate HPLC method and the % bound was calculated as per the following 

equation.  

% Bound to plasma         =     100 x (1 - Cuf /Cp)               
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Where,  

 Cp = Initial concentration of test compound in plasma  

 Cuf        = concentration of test compound in ultra-filtrate. 

Warfarin was used as the standard and was tested at a concentration of 0.25 μg/mL with the 

expected % plasma binding of > 99%. The unbound fraction of the compounds was estimated 

from % bound as fu=1-(%bound/100). 

4.1.4. Determination of Blood to Plasma Partitioning 

Reagents and Equipments 

a) Test compounds, accurately weighed and dissolved in DMSO (100 and  1000μg/mL) 

b) Human blood and plasma 

c) Hot air incubator maintained at 37°C. 

d) Centrifuge   

Methodology 

The blood-plasma ratio of compounds was estimated at 0.5 and 5µg/mL. An aliquot of 0.5 mL 

blood (heparinized) and plasma were added to plastic centrifuge tubes (Tarson) and were placed 

in a hot air incubator. After an incubation of 15 minutes, 2.5µL of test compound stock was 

spiked into blood and plasma for each concentration tested. The samples were then incubated for 

30 minutes at 37°C. At the end of incubation the blood samples were centrifuged at 5000 x g 

(Eppendorff, refrigerated centrifuge) for 5 minutes and the plasma was separated. The 

concentration of the test compound was estimated in all the plasma samples using a suitable 

analytical method and was read against a standard curve prepared in plasma. The test compound 

estimated in whole plasma samples was considered as the standard equivalent to whole blood 

concentration. The hematocrit of the blood samples was estimated and an average hematocrit of 

46.9 was used for human blood. The concentration of the test compound estimated from plasma 

separated from blood was corrected for the hematocrit and the blood plasma partitioning (RB) 

was estimated.   
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Where, 

CP: concentration of test compound in plasma separated from whole blood    

Ht: hematocrit (0.469 for human blood)     

CPB: Concentration of test compound in plasma separated from blood corrected to hematocrit  

CWP : Concentration of test compound spiked in whole plasma         

4.1.5. Determination of Intrinsic Clearance in Liver Microsomes 

Reagents and Equipments 

a) Test compound/NCE, diluted from a suitable stock solution to achieve 100 uM in DMSO 

b) Human liver microsomes (20mg/mL, BD Biosciences, USA) 

c) Phosphate buffer pH 7.4 (100mM) 

d) NADPH regenerating system consisting of 5mg/mL of magnesium chloride, nicotinamide 

adenine dinucleotide phosphate (sodium salt), glucose 6 phosphate and 40 IU of glucose 

6 phosphate dehydrogenase enzyme 

e) Quenching solvent [mixture of acetonitrile/methanol: ethanol: acetic acid (79:20:1, v/v)] 

containing internal standard to arrest the reaction. 

f) Hot air incubator maintained at 37°C 

g) Tecan automated liquid handling system (automated assay) 

h) Refrigerated centrifuge   

Intrinsic clearance was determined in human liver microsomes at a test compound concentration 

of 0.5µM. The metabolic reaction mixture was prepared by addition of 400μL of NADPH 

regenerating solution, 25μL of liver microsomes (0.5 mg/mL of protein in the final reaction 

mixture) and made up to volume of 995μL with phosphate buffer (100mM, pH 7.4).  The 

reaction mixture was prepared in glass vials and was placed in orbital shaker (Teshake, Tecan). 

The mixture was incubated for 10 minutes at 37°C and the metabolic reaction was initiated by 



73 

 

the addition of test compound (5µL of 100µM stock). Periodic aliquots of 70µL were withdrawn 

at 0, 3, 6, 9, 12, 15, 18, 21, 24 and 30 minutes. The aliquots were immediately transferred to a 

1mL deep well plate containing 570µL of quenching solvent [mixture of acetonitrile:ethanol: 

acetic acid (79:20:1, v/v)] containing internal standard (IS) and was mixed thoroughly using a 

multichannel pipette. After the last sample was collected the plate was centrifuged at 2500 x g in 

a swing rotor centrifuge and the supernatant was used for analysis. The parent compound 

remaining was estimated at each time point from the samples and was expressed as percentage of 

0 minute. The data was fit into a one-phase exponential decay function using GraphPad Prism 

(version 4.02, San Diego, USA) software and the first order degradation rate constant (k) was 

estimated based on the following relation 

              

Where Y is the percent remaining of test compound, span is the value of y-intercept at t=0 

(which is kept at value of 100), k is the first-order rate constant, t is the time and C is the 

constant to account for the plateau, determined by the software. The first order rate constant was 

normalized to unit protein content and was multiplied by the microsomal protein per gram of 

liver (52.5mg/g of human liver) to derive the intrinsic clearance.  The intrinsic clearance was 

expressed in units of mL/min/g liver. An internal synthetic compound with high clearance (> 50 

mL/min/kg) was used as control to ensure the functionality of microsomes in the reaction. 

The analysis of various study samples were performed by LC-MS/MS based method. An API-

4000 triple quadrupole system (Applied Biosystems) coupled with a HPLC or UPLC (Shimadzu) 

was used for analysis. For compounds in positive ion mode, rolipram was used as the internal 

standard and for cilomilast, which was ionized in negative ion mode, an in-house synthetic 

compound was used as an internal standard. The mobile phase consisted of a mixture of 10mM 

ammonium formate buffer and acetonitrile separated using a C18 column (Hypurity Advance, 50 

× 4.6 mm, 5μm).  The LC-MS parameters used in the detection of various compounds at the 

multiple reaction monitoring modes (MRM) are summarized in Table 6.  
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Table 6: Summary of LC-MS Method Parameters Used for Various Compounds 

Compound 
Ion 

mode 

Ion 

spray 

voltage 

Source 

temperature 

(°C) 

 

Parent/ 

daughter ion 

Declustering 

potential 

(DP) 

Entrance 

potential 

(EP) 

Collision 

energy 

(CE) 

Collision 

cell exit 

potential 

(CXP) 

Atenolol +ve 5500 500 267.2/145.1 80 10 25 9 

Metoprolol +ve 5500 500 267.9/116.1 80 10 25 9 

Propranolol +ve 5500 500 260.3/116.2 80 10 35 10 

Nevirapine +ve 5500 500 267.3/226.1 90 10 38 13 

Nelfinavir +ve 5500 500 568.4/330 130 10 46 20 

Ritonavir +ve 5500 500 721.4/296 42 5 11 13 

Indinavir +ve 5000 495 614.3/421.1 40 10 40 10 

Efavirenz +ve 4500 495 316.1/244.1 40 10 19 10 

Cilomilast -ve 5500 600 342.1/213.9 39 10 15 18 

Roflumilast +ve 5500 500 405.2/187 80 10 30 10 

Vildagliptin +ve 5500 500 304.5/154.0 80 10 35 10 

Tolbutamide +ve 5500 500 271.1/91.1 68 10 45 17 

Rosiglitazone +ve 5000 500 358/135 60 10 30 15 
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4.2. Prediction of Pharmacokinetic Parameters 

4.2.1. Prediction of Absorption Rate Constant and Fraction Absorbed  

Method 1:  Usansky et al. 

To derive the absorption rate constant (Ka) the experimentally determined Caco-2 permeability 

and the predicted volume of distribution of highly perfused tissues and reported surface area of 

intestine were used and was based on the relationship by Usansky et al. [6] 

   
   

  
 

Where Pm is the Caco-2 permeability (cm/sec) which was experimentally determined, S is the 

reported absorptive surface area of the intestine (200m
2
) [91] and Vc is the determined volume of 

distribution of highly perfused tissue (refer methods section on determination of volume of 

distribution) 

Based on the above computed value of absorption rate constant, the fraction absorbed was 

calculated from the following relation by Usansky et al. [6]. 

   
     

        
 

Where Ka,eq is the intestinal absorption rate constant at equilibrium, which is same as the Ka 

estimated using the above equation. Ki is the first order rate constant of intestinal transit 

(0.005025 /min) [6]. 

Method 2: Estimation of Fraction Absorbed Using Simplified GI Compartmental Modeling 

In the GI compartmental transit model the compartments of stomach, duodenum, jejunum, ileum 

and colon were considered. At every segment of the intestine (stomach, duodenum, jejunum, 

ileum and colon), the available drug was estimated based on the product of solubility of the 

compound at that particular pH (estimated from solubility studies) and the volume of segment. In 

case it was found that the amount of drug that was estimated to transit from the previous segment 

after absorption yielded a value lower than intrinsic solubility at that pH, then the soluble amount 

of the compound at that segment was considered limited by availability of the drug and the exact 
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value was used (amount of drug transited to the segment multiplied by volume of segment). The 

absorption rate constant at each segment (ka) was estimated as per the relation provided by 

Usansky et al. [6] 

   
   

  
 

In this case Pm denoted permeability (estimated from Caco-2 assays, no corrections were made 

for pH), s denotes effective surface area of the segment and Vc, the volume of distribution of the 

compound in rapidly perfused tissues.  

Further the maximum absorbable dose at segment was estimated by the following relation   

                

Where s denotes solubility at the compound at the pH of the segment ka, the absorption rate 

constant estimated for that segment, v, the luminal volume (assuming no limitation of fluid 

availability) and t, the transit time of the intestine. 

Thus for a fixed dose input in the model the absorption rate constant and the maximum 

absorbable dose were estimated and the total drug absorbed was estimated as the sum of MADseg 

estimates for stomach, duodenum, jejunum, ileum and colon. The fraction absorbed was 

estimated as the fraction of the MAD to the total dose administered. 

For simulation of human PK method 1 (Usansky et al.) which gives an equilibrium estimate of 

absorption rate constant was used, being representative of the average Ka in the GI tract. For 

assessing the effect of fold change (0.5 x and 2.0 x) in solubility, Method 2 was applied due to a 

higher sensitivity of GI compartmental approach in assessing changes in solubility and 

permeability. 

4.2.2. Prediction of Fraction Bioavailable 

For simulation of human PK, the fraction bioavailability was derived from the fraction absorbed 

(Fa) using the following relation [3] 
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4.2.3. Prediction of Volume of Distribution 

Volume of distribution was estimated as per the following relation [3, 42]  

              

 

   

            

Where Vt denotes the volume of tissue, Ptp the tissue plasma partitioning ratio, VE, the volume of 

erythrocytes. CE:CP denotes the ratio of concentration of drug in erythrocytes to plasma estimates 

as  

                     

Where RB stands for blood to plasma partitioning ratio (estimated experimentally) and Ht for 

hematocrit. The tissue plasma partitioning ratios were estimated based on the Poulin-Theil 

method [4, 47, 48]  and modified further by Berezhkovskiy [52]. 

    
                                    

                                    
 

Where Pvow is the vegetable oil-water partitioning coefficient (olive oil) estimated with the 

empirical relation from the octanol, water partition coefficient [51] 

                          

V is the fractional tissue (t) or plasma (p) volume content of neutral lipids (NL), phospholipids 

(PH) ad water (W). The various physiological constants of volume of tissue, volume fraction of 

neutral lipids and phospholipids in tissue and plasma (VNLT, VNLP, VPHT and VPHP) were 

used from the compilation by Poulin-Theil from literature. The values are presented in Table 2. 

For estimating the plasma tissue partitioning of adipose tissue using the above equation the 

vegetable oil-water partition coefficient  of the non-ionized compound (Dvow)was used instead of 

Pvow. 

4.2.4. Prediction of Fraction Unbound in Microsomes 

The unbound fraction in microsomes was estimated from octanol water partitioning data as per 

the relation reported by Austin et al. [64] 
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4.2.5. Prediction of Clearance 

In Vivo Hepatic Clearance 

For determination of in vivo hepatic blood clearance, experimentally determined microsomal 

intrinsic clearance, fraction unbound in plasma (fup), blood to plasma partitioning (RB) and 

derived values of fraction unbound in microsomes (fuinc ) were used. A well stirred model for 

predicting in vivo hepatic clearance was used as per the following relationship. 

           

   
  

     
             

     
 

    
            
     

  
   
  

  

Physiological constants of hepatic blood flow (Qh ) microsomal protein per gram of liver and 

liver weight per kg body weight were derived from literature reports [62]. CLint in vivo was 

derived from microsomal intrinsic clearance values (mL/min/g liver) multiplied by the 

physiological constant of liver weight per kg of body weight.  The various physiological 

constants used are presented in Appendix II. 

Renal Clearance 

To incorporate for the amount of compound excreted through urine, the renal clearance was 

predicted assuming insignificant metabolism and tubular secretion or re-absorption based on the 

following relationship 

                

Where GFR denotes glomerular filtration rate.  

Total Clearance and Elimination Rate Constant 

The total clearance (also mentioned as total body clearance) was estimated as the sum of renal 

and hepatic clearance. For the purpose of simulation of human concentration time profile, the 

elimination rate constant (Kel) was estimated as the ratio of clearance over volume of 

distribution. 
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4.3. Validation of Predictions 

The following steps were performed to assess the validity and prediction accuracy, prior to 

applying them in the optimization process.   

a) Correlation with literature reported values 

b) Precision and bias in predictions estimated as root mean square error (rmse) and average 

fold error (afe), respectively [1, 92]. 

Root mean square error was estimated using the following relationship [5] 

                        
 

 
                       

                                   

Average fold error (afe) was estimated as [5] 

      

    
         
        
  

Where N indicates the number of observations 

Qualifying criteria:  As a general qualifying criteria all individual predicted parameters a two-

fold error is considered acceptable and not less than 80% of compounds remaining within 2 fold 

root mean square error. For derived pharmacokinetic parameters (AUC, Cmax, half-life), an 

estimate with 3 fold of reported is considered as an acceptable prediction. For afe, an estimate ≤2 

is considered for a successful prediction. 

4.4. Simulation of Human PK Profile 

The pharmacokinetic profiles of the selected compounds anti-retroviral were simulated based on 

the model estimated parameters of absorption rate constant, volume of distribution of rapidly 

perfused tissues and predicted human clearance. The simulations were performed using Phoenix 

WinNonlin (version 6.2, Pharsight Corporation) using the following relation representing a first 

order absorption and elimination process for the lower clinically approved doses (therefore valid 

at dose ranges which do not saturate absorption or clearance mechanisms). 



80 

 

   
      
          

               

The simulation of human PK profile would thus require the prior knowledge of absorption rate 

constant (Ka), volume of distribution (for rapidly perfused tissues, as per the term Vc), clearance 

(denoted by the elimination rate constant Kel) and fraction bioavailable (F). As described earlier, 

the absorption rate constant was extrapolated from the Caco-2 permeability, pH dependent 

solubility and the physiological input data of small intestinal surface area. The volume of 

distribution was estimated using Berezhkovskiy method, which incorporates lipid partitioning 

equation with Log Pvow, Log Dvow pKa, and fraction unbound in plasma as the input data. 

Considering the observation from Rowland and Tozer [42] that the initial drug distribution 

(which is also a concentration gradient driving for absorption) is limited by perfusion, the 

volume of distribution of rapidly perfused tissues was considered for simulation. The total 

clearance was estimated as sum of renal and in vivo hepatic clearance. The elimination rate 

constant was estimated as the ratio of clearance over volume of distribution. 

4.5.  Identification of Key Properties for Optimization Using PLS Analysis 

Once the predictions were validated, a multivariate analysis was performed to assess the data 

relationships and to identify the key properties that could be prioritized for optimization to 

design a lead compound with optimum pharmacokinetic properties. 

The various experimentally determined or derived values of physicochemical and ADME 

properties as well as the derived PK parameters of all the test compounds were grouped together 

and summarized. The data was then categorized as predictors and dependent variables. Predictors 

consisted of the various experimentally determined properties that were used to predict various 

PK parameters (dependent variables). 

List of Predictors 

a) Solubility at pH 1.8, 3.0, 4.5, 6.8, 7.4 

b) Log P 

c) Log D7.4 

d) pKa 
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e) Neutral fraction at pH 6.8 

f) Neutral fraction at pH 7.4 

g) Caco-2 Permeability 

h) Fraction unbound in plasma 

i) Blood to plasma partitioning 

j) Microsomal clearance 

List of Dependent Variables (Response Variables) 

a) Absorption rate constant (Ka) 

b) Steady state volume of distribution (Vss) 

c) Total clearance (CL) 

d) Area under plasma concentration-time curve  (AUC) 

In case of dependent variables, the predicted values from PBPK models (using experimental 

data) were used. The trends in the sample data was identified using PLS analysis (latent vectors) 

with the objective of assessing the most relevant properties that influence the outcome and their 

relative degree of influence [67, 93]. PLS analysis involved mean centering and normalizing of 

both X and Y values and identifying latent vectors in X that have maximum covariance with Y 

values. The influence of each X variable on each Y variable was expressed graphically in terms 

of standardized coefficients derived by PLS. The PLS analysis was performed using Minitab 

statistical software (Minitab® version 16, Minitab Inc, 1829 Pine Hall Rd, State College PA 

16801-3008, USA).  

The coefficient plot was prepared for all the four response variables. The most important 

properties influencing the outcomes were identified based on the coefficients. 

4.6. Illustration of Utility of the New Methodology in Lead Optimization 

Subsequent to PLS analysis based identification of key properties influencing a particular 

pharmacokinetic parameter, the following steps were performed to illustrate the utility of the 

methodology in lead optimization. Since chemical modification of the test compounds and 

demonstration of favorable changes were not the intended scope of current research (and 
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additionally would require a clinical study to prove the advantage of modifications), the 

following two steps were undertaken to mimick the lead optimization process and to demonstrate 

the utility of the new methodology. 

 Step 1: Effect of Variation in Key Properties on In Vivo Pharmacokientic Profile 

The effect of 2 fold variation (0.5 x and 2.0 x) in key properties of microsomal clearance, 

solubility and Log P on the human predicted concentration time profile was assessed using 

PBPK modeling and 1 compartment model simulation. This step mimicks a scenario in lead 

optimization stage where careful modification of chemical structure, after identification of key 

properties that influence a vital PK parameter, has resulted in new compounds with altered 

physicochemical or ADME properties. For the sake of simplicity, only one property was changed 

at a time. In a real time discovery research, this could also be compared to evaluation of various 

analogues of a pharmacophore. 

Step 2: Utility of the Methodology: Correlation with Efficacy 

To demonstrate the utility of the research methodology, selected in vivo pharmacokinetic profiles 

after two fold variation (0.5 x and 2.0 x) in key properties were overlaid over a relevant efficacy 

parameters like PK-PD correlation estimates, receptor affinity or inhibition estimates. This step 

demonstrates the utility of the current methodology in selection of lead compound addressing the 

research gaps as envisaged in the current research. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0. RESULTS AND DISCUSSION 
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5.1. Experimental Results 

A compilation of various raw data is presented in Appendix I. Few representative HPLC and LC-

MS chromatograms are presented in Appendix II. 

5.1.1. Basic Molecular Properties 

Basic molecular properties such as molecular weight (Mol. Wt), Log P and pKa were obtained 

from literature. Log Pvo/w and Log Dvo/w were derived as explained in the methods section using 

Log P and pKa as input values. The properties are summarized in Table 7. 

Table 7: Basic Physicochemical Properties of Test Compounds* 

Category Compound Mol. wt Log Po/w Log Pvo/w Log Dvo/w pKa(1) pKa(2) 

Beta 

blocker 

Atenolol 266.3 0.34 -0.98 -0.98 9.4 13.9 

Metoprolol 267.4 1.632 0.47 0.47 9.4 13.9 

Propranolol 259.3 2.90 1.88 -6.66 9.5 13.84 

Anti-

retroviral 

Nevirapine 266.3 2.64 1.59 0.07 4.3 12.1 

Nelfinavir 567.8 7.28 6.76 1.22 6.2 14.1
#
 

Ritonavir 720.9 2.33 1.25 1.25 2.5 11.5 

Indinavir 613.8 3.44 2.48 0.27 5.2 14.2
#
 

Efavirenz 315.7 4.38 3.53 3.53 10.2 - 

COPD 

Cilomilast 343.4 2.11 1.00 -2.05 4.4 - 

Roflumilast 403.2 2.31 1.22 1.22 0.4 
 

9.9 

Anti- 

diabetic 

 

Vildagliptin 303.4 0.17 -1.16 -2.19 8.4 - 

Tolbutamide 270.3 2.36 1.28 -0.87 5.3 - 

Rosiglitazone 357.4 3.02 2.02 1.97 6.5 - 

* database C. ChEMBLdb. [Online]. [cited 2011 July 31. Available from: https://www.ebi.ac.uk/chembldb/ [94]  # taken from drug bank 
database (www.Drugbankca, accessed last on 7 October 2011). Estimated values of other properties including neutral fraction at pH 6.8 and 7.4, 

fraction unbound in tissue and microsomal unbound fraction are provided in appendix I. 
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5.1.2. pH Dependent Solubility 

 Equilibrium solubility was determined for the compounds at various pH buffers using shake 

flask method (Table 8) at room temperature.  

         Table 8: pH Dependent Solubility of Test Compounds 

Category Compound 
Solubility (mg/mL) 

pH 1.5 pH 3.0 pH 4.5 pH 6.8 pH 7.4 

Beta 

blocker 

Atenolol 1.32 1.26 1.26 1.37 1.33 

Metoprolol 5.01 4.91 5.65 4.99 5.44 

Propranolol 3.10 3.12 2.90 3.20 3.06 

Anti- 

retroviral 

Nevirapine 0.765 0.140 0.104 0.102 0.098 

Nelfinavir 0.201 0.241 0.713 0.008 0.008 

Ritonavir 0.008 0.001 0.001 0.001 0.001 

Indinavir 0.998 1.314 1.643 0.045 0.039 

Efavirenz 0.007 0.007 0.007 0.008 0.022 

COPD 
Cilomilast 0.012 0.392 0.014 0.593 1.348 

Roflumilast 0.005 0.005 0.005 0.005 0.005 

Anti- 

diabetic 

Vildagliptin 1.839 1.912 1.879 1.908 2.019 

Tolbutamide 0.094 0.096 0.111 2.497 1.467 

Rosiglitazone 1.246 1.314 1.084 0.047 0.048 

5.1.3. Caco-2 Permeability 

Permeability of the various compounds were assessed using 21 day Caco-2 culture method at a 

pH of 6.8 (donor side-apical) and 7.4 (acceptor side-basolateral) and are presented in Table 9. 

The apparent permeability rate was derived from the cumulative rate of appearance of drug to the 

receiver compartment (Figure 3) normalized to the surface area of the cell layer and the test 

concentration.  
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Figure 3: Cumulative Rate of Appearance of Test Compounds in Caco-2 Permeability 

Assay 
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Table 9: Permeability of Test Compounds Across Caco-2 Monolayer 

Category Compound 
Apparent permeability, Papp    

(nm/sec) 

Beta blocker 

Atenolol 3 

Metoprolol 89 

Propranolol 60 

Anti-retroviral 

Nevirapine 246 

Nelfinavir 14 

Ritonavir 98 

Indinavir 31 

Efavirenz 84 

COPD 
Cilomilast 301 

Roflumilast 232 

Anti-diabetic 

Vildagliptin 16 

Tolbutamide 304 

Rosiglitazone 154 

The acceptance criteria for Caco-2 permeability assay were based on permeability of propranolol 

and was observed in the expected range of 50-75 nm/sec. 

 

5.1.4. Fraction Unbound in Plasma 

The plasma protein binding of various compounds (Table 10) were estimated using ultra 

filtration method and the unbound fraction was estimated as ‘1-fraction bound.’ 
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Table 10: Plasma Unbound Fractions of Various Test Compounds 

Category Compound Unbound fraction in plasma( fu) 

Beta blocker 

Atenolol 0.854 

Metoprolol 0.254 

Propranolol 0.780 

Anti-retroviral 

Nevirapine 0.421 

Nelfinavir 0.117 

Ritonavir 0.020 

Indinavir 0.400 

Efavirenz 0.001 

COPD 
Cilomilast 0.006 

Roflumilast 0.004 

Anti-diabetic 

Vildagliptin 0.794 

Tolbutamide 0.022 

Rosiglitazone 0.002 

As an acceptance criteria for the assay warfarin was used as the positive control and was tested at 

0.25μg/mL and qualified the acceptance criteria of >99 % binding in human plasma. The protein 

binding observed for warfarin was 99.5%. 

5.1.5. Blood to Plasma Partitioning Ratio 

The blood to plasma ratio of various test compounds (Table 11) were estimated as the ratio of 

concentrations in whole plasma to the concentrations estimated in plasma separated from spiked 

blood.  
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Table 11: Blood to Plasma Partitioning Ratio of Test Compounds 

Category Compound 
Blood-plasma partitioning 

ratio (RB) 

Beta blocker 

Atenolol 3.5 

Metoprolol 2.4 

Propranolol 2.0 

Anti-retroviral 

Nevirapine 2.2 

Nelfinavir 1.0 

Ritonavir 0.6 

Indinavir 1.7 

Efavirenz 1.2 

COPD 
Cilomilast 0.8 

Roflumilast 1.4 

Anti-diabetic 

Vildagliptin 2.1 

Tolbutamide 0.7 

Rosiglitazone 1.4 

 

5.1.6. Intrinsic Clearance in Liver Microsomes 

The metabolic stability of various compounds was estimated as intrinsic clearance in liver 

microsomes. The rate of disappearance was estimated using single phase exponential decay 

model with GraphPad Prism software (Figure 4). 
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Figure 4: Metabolism of Test Compounds in Human Liver Microsomes  

(% Remaining vs. Time) 
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The rate constants were further normalized to unit protein content and scaled to microsomal 

protein per gram of liver to derive the intrinsic clearance (Table 12).  Intrinsic clearance values 

were further used for prediction of in vivo clearance. 

Table 12: Intrinsic Clearance (CLint ) of Test Compounds in Human Liver Microsomes 

Category Compound 
Intrinsic clearance CLint 

(mL/min/g liver) 

Beta blocker 

Atenolol 0.002 

Metoprolol 11.8 

Propranolol 1.91 

Anti-retroviral 

Nevirapine 0.08 

Nelfinavir 71.16 

Ritonavir 12.64 

Indinavir 3.37 

Efavirenz 11.58 

COPD 
Cilomilast 1.12 

Roflumilast 2.03 

Anti-diabetic 

Vildagliptin 0.96 

Tolbutamide 0.31 

Rosiglitazone 2.62 

Using an internal compound with a high intrinsic clearance of > 50 mL/min/kg, the functionality 

of microsomes was ensured in the assay. 
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5.2. Prediction of Pharmacokinetic Parameters with Physiological Pharmacokinetic 

Models 

5.2.1. Absorption Rate Constant 

The absorption rate constant was derived as per the method described by Usansky et al. [6] 

assuming steady state and are presented in Table 13. The estimates were derived using the    

Caco-2 permeability, effective surface area of intestine and predicted volume of distribution of 

rapidly perfused tissues. 

Table 13: Absorption Rate Constants (min
-1

) of Compounds in Humans:                 

Predicted vs. Reported Values 

Category Compound name Predicted Reported 

Beta blocker 

Atenolol 0.001 0.002
 [95]

 

Metoprolol 0.037 0.020
 [95]

 

Propranolol 0.010 0.025
 [96]

 

Anti-retroviral 

Nevirapine 0.070 0.060
 [97]

 

Nelfinavir 0.001 0.002
 [98]

 

Ritonavir 0.071 0.015
 [99]

 

Indinavir 0.005 0.043
 [100]

 

Efavirenz 0.044 0.005
 [101]

 

COPD 
Cilomilast 0.214 NA 

Roflumilast 0.138 NA 

Anti-diabetic 

Vildagliptin 0.006 0.007
 [102]

 

Tolbutamide 0.212 0.010
 [103]

 

Rosiglitazone 0.092 0.083
 [104]

 

NA: Not available from literature 

To assess the reliability of predictions the precision and bias estimates were made with reported 

data by estimating the root mean square error and average fold error (Table 14). 
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Table 14: Precision and Bias Estimates for Prediction of Absorption Rate Constant 

Compound 

 

Precision 

 

Bias 

 

Predicted-Observed 

 

Square 

 

Predicted/Observed 

Log 

Predicted/Observed 

Atenolol -0.001192 0.000001 0.403756 -0.393881 

Metoprolol 0.016695 0.000279 1.834767 0.263581 

Propranolol -0.014554 0.000212 0.417837 -0.378993 

Nevirapine 0.010922 0.000119 1.183560 0.073190 

Nelfinavir -0.001197 0.000001 0.401493 -0.396322 

Ritonavir 0.056166 0.003155 4.870834 0.687603 

Indinavir -0.038318 0.001468 0.108892 -0.963005 

Efavirenz 0.038868 0.001511 9.131339 0.960534 

Vildagliptin -0.001734 0.000003 0.760787 -0.118737 

Tolbutamide 0.202264 0.040911 21.226411 1.326877 

Rosiglitazone 0.008163 0.000067 1.097956 0.040585 

 
Sum 0.0477 sum 1.1014 

mean square error 0.0043 sum/n (11) 0.1001 

root mean square error (rmse) 0.0659 average fold error (afe) 1.2593 

two fold error 0.1317 
afe ≤ 2 indicates reliable parameter prediction 

% within 2 fold rmse 91% 

 

The comparison of the in vitro estimated absorption rate constant with the reported values 

indicate an average fold error of only 1.0068 indicating reliable predictions (less than 2 fold). 

Estimates for all the compounds were within two fold of root mean square error. Predictions for 

10 out of a total of 11 compounds (91%) were within 2 fold root mean square error. 
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5.2.2. Volume of Distribution 

The partitioning of compounds to various tissue (Figure 5) were estimated with tissue partitioning equation using Log P and ionization 

as well as protein binding data as input values.. These were further utilized to predict volume of distribution incorporating tissue 

volume data (Table 15) as explained in the methods section [47, 52].  

Figure 5: Predicted Tissue Plasma Partitioning Ratios of Various Test Compounds  
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Table 15: Predicted Volume of Distribution (L/kg) of Rapidly Perfused Tissue (Vc) and 

Comparison of Steady State Volume of Distribution (Vss) with Reported Values 

Category Compound name 
Vc 

Predicted 

Vss 

Predicted 

Vss 

Reported 

Beta blocker 

Atenolol 0.60 0.72 0.95
 [105]

 

Metoprolol 0.41 0.56 4.20
 [105]

 

Propranolol 0.99 1.57 4.30
 [105]

 

Anti-retroviral 

Nevirapine 0.60 0.88 2.15
 [97]

 

Nelfinavir 2.90 5.45 4.50
 [98]

 

Ritonavir 0.24 0.33 1.38
 [99]

 

Indinavir 1.13 1.91 1.18
 [100]

 

Efavirenz 0.33 0.79 3.60
 [101]

 

COPD 

Cilomilast 0.24 0.29 0.15
 [106]

 

Roflumilast 0.29 0.34 2.9
 [107]

 

Anti-diabetic 

Vildagliptin 0.48 0.59 1.01
 [108]

 

Tolbutamide 0.25 0.30 0.10
 [105]

 

Rosiglitazone 0.29 0.36 0.22
 [109]

 

 

Table 16 lists the precision and bias estimates for the predicted Vss parameters in comparison 

with reported data. 

 

 

 

 



96 

 

Table 16: Precision and Bias Estimates for Prediction of Human Volume of Distribution 

Compound 

 

Precision 

 

Bias 

 

Predicted-Observed 

 

Square 

 

Predicted/Observed 

Log 

Predicted/Observed 

Atenolol -0.23 0.05 0.76 -0.12 

Metoprolol -3.64 13.22 0.13 -0.87 

Propranolol -2.73 7.45 0.37 -0.44 

Nevirapine -1.27 1.61 0.41 -0.39 

Nelfinavir 0.95 0.90 1.21 0.08 

Ritonavir -1.06 1.11 0.24 -0.63 

Indinavir 0.73 0.54 1.62 0.21 

Efavirenz -2.81 7.88 0.22 -0.66 

Cilomilast 0.14 0.02 1.93 0.29 

Roflumilast -2.56 6.53 0.12 -0.93 

Vildagliptin -0.42 0.18 0.58 -0.23 

Tolbutamide 0.20 0.04 3.00 0.48 

Rosiglitazone 0.15 0.02 1.68 0.22 

 
sum 39.56 sum -2.98 

mean square error 3.04 sum/n (13) -0.23 

root mean square error (rmse) 1.74 Average fold error (afe) 0.59 

two fold rmse 3.49 
afe ≤ 2 indicates reliable parameter prediction 

% within 2 fold rmse 92.3 

 

The predicted values correlated well with reported values with 92.3% of predicted values lying 

within 2 fold of root mean square error. The average fold error was also observed to be less than 

2.  

5.2.3. Clearance 

The experimental values of intrinsic clearance in liver microsomes, blood plasma partitioning, 

fraction unbound in plasma and Log P based values of unbound fraction in microsomes were 
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applied to a well stirred model for hepatic clearance. For renal clearance, a product of glomerular 

filtration rate and fraction unbound in plasma was used assuming zero renal re-absorption. The 

total body clearance (total clearance) was derived as the sum of hepatic and renal clearances 

(Table 17). The precision and bias estimates for the predicted total clearance with reported 

values are listed in Table 18. 

Table 17: Total Body Clearance of Compounds in Humans (mL/min/kg): Predicted vs. 

Reported Values 

Category Compound name Predicted Reported 

Beta blocker 

Atenolol 1.5 2.0
 [105]

 

Metoprolol 15.2 15.0
 [105]

 

Propranolol 14.9 16.0
 [105]

 

Anti-retroviral 

Nevirapine 1.4 0.3
 [97]

 

Nelfinavir 20.6 4.8
 [110]

 

Ritonavir 9.8 2.5
 [99]

 

Indinavir 14.2 11.1
 [100]

 

Efavirenz 0.8 2.2
 [101]

 

COPD 
Cilomilast 0.4 0.3

 [106]
 

Roflumilast 0.3 2.5
 [111]

 

Anti-diabetic 

Vildagliptin 9.0 9.8
 [102]

 

Tolbutamide 0.5 0.2
 [105]

 

Rosiglitazone 0.2 0.7
 [109]

 

 The clearance of nelfinavir and ritonavir were notably higher than the reported values. The 

reason for the above variation has been found to be the over prediction of clearance for these 

compounds in liver microsomes. Nelfinavir and ritonavir are actively taken up into hepatocytes 

(based on rat hepatocyte data) and due to much higher levels inside the hepatocytes they saturate 

the metabolic clearance in vivo [112].  
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In contrast to nelfinavir or ritonavir, the predicted clearance of roflumilast appeared nearly 9 fold 

lower in comparison to reported values. Roflumilast undergoes extensive phase I (with 

involvement of CYP 1A1/2, 2C19 and 3A4) and phase II glucuronide conjugation [113]. The 

predictions of intrinsic clearance based on liver microsomal assays did not involve the 

contribution of phase II glucuronidation and this could be the major reason for the lower 

prediction of roflumilast clearance. 

Table 18: Precision and Bias Estimates for Prediction of Human Clearance 

Compound 

 

Precision 

 

Bias 

 

Predicted-Observed 

 

Square 

 

Predicted/Observed 

Log 

Predicted/Observed 

Atenolol -0.53 0.28 0.74 -0.13 

Metoprolol 0.20 0.04 1.01 0.01 

Propranolol -1.06 1.13 0.93 -0.03 

Nevirapine 1.10 1.22 4.31 0.63 

Nelfinavir 15.80 249.60 4.29 0.63 

Ritonavir 7.96 63.42 4.19 0.62 

Indinavir 3.07 9.42 1.28 0.11 

Efavirenz -1.62 2.62 0.26 -0.58 

Cilomilast 0.06 0.00 1.17 0.07 

Roflumilast -2.22 4.94 0.11 -0.96 

Vildagliptin -0.75 0.56 0.92 -0.03 

Tolbutamide 0.24 0.06 1.99 0.30 

Rosiglitazone -0.42 0.17 0.37 -0.43 

 
sum 333.5 sum 0.20 

mean square error 25.65 sum/n (13) 0.02 

root mean square error (rmse) 5.1 average fold error (afe) 1.04 

two fold rmse 10.1 
afe ≤ 2 indicates reliable parameter prediction 

% within 2 fold rmse 92.3 

Note: For nelfinavir there are multiple reported values in literature, mean estimate was used as observed (range from 2.6-7.1) 
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The predicted values correlated well with reported values with 92.3% of predicted values lying 

within 2 fold of root mean square error. The average fold error was also observed to be less than 

2.  

5.2.4. Fraction Bioavailable 

Based on the estimated fraction absorbed values the fraction of drug orally bioavailable was 

estimated (Table 19) as described in methods sections, considering the effect of first pass 

metabolism [3]. The precision and bias estimates of the predictions are listed in Table 20. 

Table 19: Predicted Fraction Absorbed and Comparison of Fraction Bioavailable with 

Reported Values 

S.No Compound 
Predicted 

fraction absorbed (Fa) 

Predicted fraction 

bioavailable (F) 

Reported fraction 

bioavailable 

1 Atenolol 0.14 0.14 0.56 [114] [105] 

2 Metoprolol 0.88 0.25 0.38 [105] 

3 Propranolol 0.68 0.23 0.26 [105] 

4 Nevirapine 0.93 0.90 0.91 [115] 

5 Nelfinavir 0.14 0.001 0.0088-0.0047 [116] 

6 Ritonavir 0.93 0.46 0.59 [99] 

7 Indinavir 0.48 0.16 0.23 [100] 

8 Efavirenz 0.90 0.86 0.45 [117] 

9 Cilomilast 0.98 0.96 1.0 [106] 

10 Roflumilast 0.96 0.95 0.79 [111] 

11 Vildagliptin 0.52 0.33 0.85 [108] 

12 Tolbutamide 0.98 0.96 0.93 [105] 

13 Rosiglitazone 0.95 0.94 0.99 [109] 

Significant differences are observed in the prediction of bioavailability of few compounds.  

Vildagliptin is taken up by organic cation transporter and therefore might undergo active uptake 

from the proximal renal tubules increasing its bioavailability.  Additionally, about one quarter of 

vildagliptin is excreted unchanged through the urine and most of the drug is metabolized by 

hydrolysis by the kidneys [118], mechanisms which are yet to be incorporated in the PBPK 
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models and could not be included in the current research.  Nelfinavir is a potent CYP inhibitor 

and undergoes active uptake into hepatocytes increasing the intracellular levels much higher than 

the plasma and thereby reducing its own clearance [112] due to saturation of clearance 

mechanism occurs at a lower threshold that the saturation of uptake to hepatocytes. As 

mentioned earlier the clearance of nelfinavir was over predicted in liver microsomes and with the 

inclusion of first pass metabolism in the estimation of fraction bio-available, it appears that it has 

a more pronounced effect on estimation of nelfinavir bioavailability. 

Table 20: Precision and Bias Estimates for Prediction of Fraction Bioavailable 

Compound 

 

Precision 

 

Bias 

 

Predicted-Observed 

 

Square 

 

Predicted/Observed 

Log 

Predicted/Observed 

Atenolol -0.421684 0.177818 0.246992 -0.607317 

Metoprolol -0.131077 0.017181 0.655060 -0.183719 

Propranolol -0.030892 0.000954 0.881185 -0.054933 

Nevirapine -0.009227 0.000085 0.989861 -0.004426 

Nelfinavir -0.007462 0.000056 0.152009 -0.818130 

Ritonavir 0.455018 0.207042 78.121754 1.892772 

Indinavir 0.160435 0.025739 70.754290 1.849753 

Efavirenz 0.450000 0.202500 2.000000 0.301030 

Cilomilast -0.041465 0.001719 0.958535 -0.018392 

Roflumilast 0.162171 0.026299 1.205280 0.081088 

Vildagliptin -0.521301 0.271755 0.386705 -0.412620 

Tolbutamide 0.026009 0.000676 1.027967 0.011979 

Rosiglitazone -0.053107 0.002820 0.946357 -0.023945 

 
sum 0.9346 sum 2.0131 

mean square error 0.0719 sum/n (13) 0.1549 

root mean square error (rmse) 0.2681 average fold error (afe) 1.4284 

two fold rmse 0.5363 

afe ≤ 2 indicates reliable parameter prediction 
% within 2 fold rmse 100% 
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The precision and bias estimates indicate a reliable prediction of fraction bioavailability with 

prediction for all the compounds in the series within two fold error and the average fold error 

lesser than 2. 

5.3. Simulation of Human Pharmacokinetics Using Model Predicted Parameters 

The derived values of absorption rate constant (Ka), volume of distribution of rapidly perfused 

tissues (Vc) and in vivo clearance (CLin vivo pred) were used for simulation of concentration-time 

profile after oral administration. The time to maximum concentration (Tmax), maximum 

concentration in plasma (Cmax) and area under the concentration-time graph (AUC) were 

estimated for the first dose and were compared with literature values. 

The compounds were simulated mostly for their human PK profile (Figures 6-9) at the respective 

clinically optimized lower doses as mentioned in Table 21. Tables 22 to 25 list the PK 

parameters of area under curve (AUC), Cmax and half-life in comparison with reported values.  

Table 21: Clinically Optimized Doses of Test Compounds Used for Simulation in the 

Current Study  

S. No Compound name Clinically optimized dose (mg) 

1 Atenolol 50 [119] 

2 Metoprolol 50 [120] 

3 Propranolol 80 [120] 

4 Nevirapine 200 [121] 

5 Nelfinavir 750 [121] 

6 Ritonavir 600 [121] 

7 Indinvair 800 [121] 

8 Efavirenz 600 [121] 

9 Cilomilast* 15 BID [122] 

10 Roflumilast* 0.25 [123] 

11 LAF (vildagliptin)* 100 [124] 

12 Tolbutamide 500 [105] 

13 Rosiglitazone 8 [125] 

*Phase III trials. 
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Figure 6: Simulated Steady State Pharmacokinetic Profiles of Beta Blockers after Repeated                 

Oral Dose 

                     
                      

 

Table 22: Comparison of Simulated vs. Reported PK Parameters of Beta Blockers at 

Steady State 

S. No Compound 
Dose 

(mg) 

AUC 

(ng.h/mL) 

Cmax 

(ng/mL) 

Half-life 

(h) 

simulated reported simulated reported simulated reported 

1 Atenolol
      

[120]
 

50 1118 2556 31.43 290 4.7 4.8 

2 Metoprolol
 

[120]
 

50 195 557 158 83 0.3 3.7 

3 Propranolol
 

[120]
 

80 292 376 80 77 0.9 3.0 

Atenolol Metoprolol 

Propranolol 
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The simulations show a good correlation with reported values in literature with regards to AUC, 

but with notable differences in Cmax for atenolol as well as differences observed with the half-

life estimates, however it should be noted that the predictions are based on properties estimated 

for  the powder form of drug with an assumption of immediate dissolution and does not take into 

consideration the significant difference that could be brought about by formulation approaches as 

well as with increased understanding of the chemistry manufacturing and control aspects during 

the clinical development.   

Figure 7: Simulated Steady State Pharmacokinetic Profiles of Anti-Retroviral Drugs after 

Repeated Oral Dose 

  

                           
 

 

      
                                   

Nevirapine Nelfinavir 

Ritonavir Ritonavir 
(Hepatocyte clearance based simulation) 
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Table 23: Comparison of Simulated vs. Reported PK Parameters of Anti-Retroviral Drugs 

at Steady State 

The predicted AUC of nelfinavir and ritonavir were much lower than reported due to the 

influence of high clearance estimates based on liver microsomal assays which are an over 

prediction due to factors as explained under section 5.2.3. Therefore substitution with human 

hepatocyte based clearance estimates [80] from literature showed a marked improvement in the 

prediction of ritonavir AUC and Cmax. This indicates the relative advantage of hepatocyte based 

estimations of clearance that takes into account the interplay of compound permeability and 

metabolic process including the complex interplay of transporters and saturation mechanisms. 

S. No Compound 
Dose 

(mg) 

AUC 

(ng.h/mL) 

Cmax 

(ng/mL) 

Half-life 

(h) 

simulated reported simulated reported simulated reported 

1 Nevirapine
 [121]

 200 29851 86000 3817 5000 4.8 25-30 

2 Nelfinavir 
[121]

 750 11.59 18000 0.4 4000 1.62 3.5-5 

3 Ritonavir 
[121]

 600 6719 61000 7828 11200 0.3 3-5 

4 Ritonavir
 [80]

  
(hepatocyte CL) 

600 14705 61000 12338 11200 0.5 3-5 

5 Indinavir 
[121]

 800 2182 17000 341 7000 0.9 1.5 

6 Efavirenz 
[121]

 600 153846 58000 19011 4100 4.7 40-55 

Indinavir Efavirenz 



105 

 

However literature report on nelfinavir hepatocyte clearance could not be obtained after an 

exhaustive search. 

The overall predictions for indinavir (Table 23) were also different as compared to the literature 

values.  Indinavir was predicted an 8 fold lower absorption rate constant as well as a 27% higher 

clearance than the reported clearance. A closer examination of the simulation parameters 

(absorption rate constant, volume of distribution and clearance) indicates the requirement of a 

near 6 fold difference in clearance to match the reported mean exposure estimate for indinavir. 

Although no direct evidence could be found from literature search, this again points to the over 

prediction of clearance using liver microsomes. Additionally there could also be the effect of 

polymorphism of metabolic pathways that could result in increased first pass clearance [126].  

Figure 8: Simulated Steady State Pharmacokinetic Profiles of PDE4 Inhibitors after 

Repeated Oral Dose 

    

Table 24: Comparison of Simulated vs. Reported PK Parameters of COPD Drugs at Steady 

State   

*single dose study, **BID 

S. No Compound 
Dose 

(mg) 

AUC 

(ng.h/mL) 

Cmax 

(ng/mL) 

Half-life 

(h) 

simulated reported simulated reported simulated reported 

1 
Cilomilast 

[127]* 
15** 8333 8470 819 1160 6.7 6.93 

2 
Roflumilast 

[128] 
0.250 208 17 11 3 12.2 15.99 

Cilomilast Roflumilast 
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The predicted parameters for cilomilast match the reported values, but in case of roflumilast the 

predicted AUC is much higher than the reported. One major reason for higher prediction is the 

10 fold low estimates of predicted clearance of roflumilast obtained from liver microsomal 

assays which were used for simulation. As explained under the section on prediction of clearance 

(section 5.2.3), the liver microsomal assays did not include the contribution from phase II 

glucuronidation and therefore could have under predicted clearance. 

 

Figure 9: Simulated Steady State Pharmacokinetic Profiles of Anti-Diabetic Drugs after  

Repeated Oral Dose 

 

 

                               
 

 

 
    

Vildagliptin Tolbutamide 

Rosiglitazone 
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Table 25: Comparison of Simulated vs. Reported PK Parameters of Anti-Diabetic Drugs at 

Steady State   

To assess the reliability of predictions in drug discovery set up the ratio of simulated to reported 

values were estimated and are presented in Table 26. 

Table 26: Comparison of PK Estimates: Ratio of Simulated to Reported Values 

Compound 
AUC 

fold 

Cmax 

fold 

Half-life 

fold 

Atenolol 0.44 0.1 0.98 

Metoprolol 0.35 1.9 0.08 

Propranolol 0.78 1.0 0.30 

Nevirapine 0.35 0.8 0.16 - 0.19 

Nelfinavir     6.4 E
-4 

     1.0 E
-4

 0.32 - 0.46 

Ritonavir 0.11 0.70 0.06 - 0.10 

Ritonavir 

(hepatocyte data) 
0.24 1.10 0.10 - 0.17 

Indinavir 0.13 0.05 0.60 

Efavirenz 2.65 4.6 0.09 - 0.12 

Cilomilast 0.98 0.7 0.97 

Roflumilast 12.24 3.5 0.76 

Vildagliptin 0.37 0.4 0.26 

Tolbutamide 0.33 0.4 0.65 

Rosiglitazone 0.26 0.6 4.04 

 

S. No Compound 
Dose 

(mg) 

AUC 

(ng.h/mL) 

Cmax 

(ng/mL) 

Half-life 

(h) 

simulated reported simulated reported simulated reported 

1 Vildagliptin [129] 100 868 2362 172 445 0.6 2.3 

2 Tolbutamide [130] 500 238095 721000 26598 63000 5.9 9.1 

3 Rosiglitazone [131]* 8 7272 2971 354 598 13.6 3.37 
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The fold estimates (within 3 fold of reported in most cases) indicate that the simulations can 

predict the AUC estimates with significant reliability in comparison to other parameters of Cmax 

and half-life. This also indicate that the utility of AUC or a derived parameter from AUC like the 

average plasma concentration (AUC/dosing interval) to be used as a reliable optimization 

parameter for the rank ordering of compound and for correlation with efficacy parameters. 

For compounds nelfinavir, ritonavir and roflumilast  whose prediction has deviated from 

reported estimates, the major underlying  reasons have been discussed under section 5.2.3 and 

majorly involve variation in prediction of clearance due to influences of active uptake to 

hepatocytes, saturation of clearance mechanisms as well as involvement of phase II 

glucuronidation.  Few additional in vivo biological processes that could alter the clearance from 

the predicted values include the following 

a) Significant biliary excretion and entero-hepatic re-circulation. 

b) Active uptake of efflux of the compound in the intestine and kidneys.  

c) Significant metabolism or degradation of the drug in the intestine before getting 

completely absorbed. 

d) General bioanalytical variability in various estimations. 

e) Polymorphism of metabolizing enzymes and/or excretory process. 

f) CYP induction and mechanism based inhibition (time dependent inhibition, effect of 

reactive metabolite species). 

g) Prominent renal metabolism and active re-absorption/secretion. 

Incorporation of measures to minimize variability in individual assessment of properties can be 

an appropriate step in enhancing the reliability of predictions. For example, liver microsomes 

from pooled subjects can minimize the variability of predictions since individual donors can 

sometimes produce misleading data. Utilization of better clearance estimation techniques like 

hepatocyte based intrinsic clearance assays can incorporate effects of active uptake mediated 

saturation of clearance, membrane permeability, phase II conjugations etc. and improve the 

prediction reliability. 
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Additionally, by incorporating experimental variability estimates (error estimates) as well as 

provision for pharmacogenetic variabilities (e.g. polymorphism), appropriate window of fold 

variability and confidence interval can be assessed for predictions and by doing so there could be 

a prior expectation set on the range of variability for predictions. 

5.4. Multivariate Analysis and Identification of Key Properties that Influence 

Pharmacokinetic Parameters  

After prediction of human PK using appropriate PBPK models, the assessment of relative 

influence of the various physicochemical and ADME properties on the predicted human PK 

parameters has been performed using partial least square regression (PLS regression). 

PLS analysis was performed for four pharmacokinetic parameters (termed as response variables 

in PLS analysis) namely absorption rate constant (Ka), steady state volume of distribution (Vss), 

total clearance (CL) and area under curve after oral dosing (AUC) using Minitab software 

(version 16, Minitab Inc., USA). Various screening data comprising of  physicochemical and 

ADME properties (termed as predictors in PLS analysis), were thus related with the PBPK 

model derived parameters (termed as dependent variables in PLS analysis) of absorption rate 

constant (Ka), steady state volume of distribution (Vss) and total clearance (CL) as well as area 

under curve after oral dosing (AUC). Various iterations were performed in PLS to finally arrive 

at a model consisting of the appropriate set of predictors (compound properties) that best explain 

the covariance between the properties and PK parameters, basing on the statistical criteria of the 

p value, x variance and regression coefficient R square. While a few predictors apparently do not 

exhibit a direct logical relation with the response variables (for eg. pH dependent solubility and 

volume of distribution), however they were included as part of the model set after iteration 

because their inclusion improved the co-variance between predictors and response variables 

allowing a reliable PLS analysis. This could be due to common underlying factors (latent 

vectors) that determine both properties though apparently they do not relate to each other. The 

list of response variables and corresponding predictors are presented in Table 27.  
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Table 27: List of Response Variables and Corresponding Predictors  

 

The reliability of the PLS model was estimated with the following statistical estimates performed 

as part of PLS analysis. Analysis of variance (ANOVA) was performed using Minitab software 

on each response variable showed a statistical significance (p<0.05) in all the analysis indicating 

that the regression coefficients are significantly different from zero and therefore the PLS 

estimates are meaningful. Secondly, the estimated values for X variance are closer to 1 indicating 

that the variance in the predictors is well explained by the PLS. Also a higher R square value 

indicated a good fit. The PLS model parameters are summarized in Table 28. 

Response variable (Y) Correlating properties (predictors X) 

Absorption rate constant (Ka) 

 

 

solubility pH 1.8 

solubility pH 3.0 

solubility pH 4.5 

solubility pH 6.8 

solubility pH 7.4 

pKa 

Log P 

Log D7.4 

Caco-2 permeability 

 

Steady state volume of 

distribution (Vss) 

solubility pH 1.8 

solubility pH 3.0 

solubility pH 4.5 

solubility pH 6.8 

solubility pH 7.4 

pKa 

Log P 

Log D7.4 

Caco-2 permeability 

neutral fraction at pH 7.4 

fraction unbound in plasma 

blood plasma partitioning 

Total clearance (CL) 

 

solubility pH 1.8 

solubility pH 3.0 

solubility pH 4.5 

solubility pH 6.8 

solubility pH 7.4 

pKa 

Log P 

Caco-2 permeability 

neutral fraction at pH 7.4 

microsomal clearance 

fraction unbound in plasma 

blood plasma partitioning 

Area under curve after oral 

dosing (AUC) 

solubility pH 1.8 

solubility pH 3.0 

solubility pH 4.5 

solubility pH 6.8 

solubility pH 7.4 

pKa 

Log P 

Log D7.4 

Caco-2 permeability 

neutral fraction at pH 6.8 

neutral fraction at pH 7.4 

fraction unbound in plasma 

blood plasma partitioning 

microsomal clearance 
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Table 28: PLS Model Statistical Parameters 

Parameter Analysis Estimate Significance 

p (ANOVA) 

PLS Ka 0.000* 
Regression coefficients are 

significantly different from zero. The 

model estimates are meaningful 

PLS Vss 0.011 

PLS CL 0.000* 

PLS AUC 0.006 

X variance 

PLS Ka 0.9788 
Fraction of variance in the predictors 

explained by the model 

(maximum of 1) 

PLS Vss 0.9996 

PLS CL 0.9020 

PLS AUC 0.9994 

R sq 

(coefficient) 

PLS Ka 0.9845 Proportion variation in each response 

explained by the predictors indicating 

how well each model fits the data 

(maximum of 1) 

PLS Vss 0.9980 

PLS CL 0.9901 

PLS AUC 0.9988 

 Indicates high significance (p<<<0.5) and limited by the Minitab software output of 4 significant digits 

 PLS analysis effectively reduced the predictors to a set of uncorrelated components (orthogonal 

latent vectors) which indicate the trends in data. This is followed by a least square regression on 

these components. The number of components (orthogonal trends) observed in the correlation 

are presented in Table 29.  

Table 29: Number of Principal Components Identified in the PLS Regression Model 

Analysis Number of principal components 

PLS Ka 4 

PLS Vss 10 

PLS CL 5 

PLS AUC 10 

A standardized PLS coefficient plot of various ‘X’ parameters that influence a desired ‘Y’ 

parameter was plotted using Minitab. The unit of coefficient denotes the change in the response 
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Y when the variable (X) changes from 0 to 1. The values could exceed 1 only in case of extreme 

covariance of various properties. Using these coefficients, the relative influence of various 

properties on the predicted parameters (Y) was assessed. The relative influences of these 

properties are denoted by the coefficient values with +ve or –ve sign indicating direct or indirect 

correlation. 

5.4.1.  Partial Least Square Regression Analysis of Absorption Rate Constant (Ka) 

Objective 

a) To develop a PLS model relating the selected set of physicochemical and ADME 

properties (screening data as shown in Table 27) with PBPK based estimates of 

absorption rate constant (Ka) for the  test compounds.   

b) Interpret the PLS analysis data and identify the relative influence of various properties on 

absorption rate constant based on standardized coefficients. 

c) Prioritize the various properties for lead optimization based on the interpreted results. 

PLS regression analysis identified a 4 component model (latent vectors) that best described the 

combined effect of nine ADME and physicochemical properties (Table 29). The relative 

contributions of all nine predictors are graphically presented in Figure 10 and the numerical 

values of standardized coefficients are presented in Table 30. 

Figure 10: Relative Influence of Various Properties on Absorption Rate Constant (Ka) 
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The predictors (properties) in numerical order (1- 9) are solubility pH1.8, solubility pH 3.0, 

solubility pH 4.5, solubility pH 6.8, solubility pH 7.4, pKa acidic, Log P, Log D7.4 and Caco-2 

permeability. 

The standardized PLS coefficients expresses the change in the response (Ka) when the variable 

(X) changes from 0 to 1 indicates the relative importance of each property with a positive or 

negative sign indicating a direct or inverse relationship. 

Table 30: Standardized PLS Coefficients of Various Properties with Absorption Rate 

Constant (Ka) 

Predictor no. Predictor name Coefficient magnitude 

1 solubility pH1.8 -0.25 

2 solubility pH 3.0 -0.09 

3 solubility pH4.5 -0.15 

4 solubility pH 6.8 0.21 

5 solubility pH 7.4 0.21 

6 pKa -0.05 

7 Log P -0.01 

8 Log D7.4 -0.01 

9 Caco-2 permeability 0.77 

Interpretation of PLS analysis 

PLS analysis indicates permeability of the compounds had a predominant influence in the current 

dataset, as indicated by a coefficient value of 0.77. The solubility of the compounds also 

influences especially at pH 6.8 and 7.4 for a higher absorption rate, whereas solubility at 

relatively acidic pH (1.8-4.5) seems to have an inverse relationship. Both lipid solubility and 

ionization data played a lesser role.  

Using above analysis, further optimization of lead could be rendered using permeability as a key 

driver with improving solubility at 6.8 and 7.4 while retaining the other attributes. As a future 

scope of this research, addition of more molecular descriptors (polar surface area, hydrogen 
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donors or acceptors etc.) to the above kinds of analysis can provide more meaningful 

interpretations to the chemist. Another important application could be the inclusion of 

dissolution rate in case of formulation development or optimization. 

5.4.2. Partial Least Square Regression Analysis of Volume Of Distribution at Steady State 

(Vss) 

Objective 

a) To develop a PLS model relating the selected set of physicochemical and ADME 

properties (screening data, as shown in Table 27) with PBPK based estimates of  steady 

state volume of distribution of the test compounds.   

b) Interpret the PLS analysis data and identify the relative influence of various properties on 

volume of distribution based on standardized coefficients. 

c)  Prioritize the various properties for lead optimization based on the interpreted results. 

PLS regression analysis identified a 10 component model (latent vectors) that best describes the 

combined effect of 12 ADME and physicochemical properties (Table 29). Based on the model 

the relative contributions of all 12 properties are graphically presented in Figure 11 and the 

numerical values of standardized coefficients are presented in Table 31. 

Figure 11: Relative Influence of Various Properties on Steady State Volume of Distribution 

(Vss) 
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The predictors in numerical order (1 to 12)  are solubility pH 1.8, solubility pH 3.0, solubility pH 

4.5, solubility pH 6.8, solubility pH 7.4, pKa acidic, Log P, Log D7.4, neutral fraction pH 7.4, 

fraction unbound in plasma, microsomal clearance and blood plasma partitioning. The 

standardized PLS coefficients presented in Table 31, expresses the change in the response (Vss) 

when the variable (X) changes from 0 to 1 indicates the relative importance of each property 

with a positive or negative sign indicating a direct or inverse relationship. 

Table 31: Standardized PLS Coefficients of Various Properties with Steady State Volume 

of Distribution (Vss) 

Predictor no. Predictor name Coefficient magnitude 

1 solubility pH 1.8 -1.52 

2 solubility pH 3.0 0.49 

3 solubility pH 4.5 0.40 

4 solubility pH 6.8 0.14 

5 solubility pH 7.4 0.72 

6 pKa -0.56 

7 Log P 0.67 

8 Log D7.4 0.61 

9 Caco-2 permeability -0.60 

10 neutral fraction pH 7.4 -0.38 

11 fraction unbound in plasma 0.24 

12 blood plasma partitioning 0.51 

 

Interpretation of PLS analysis 

The above analysis indicate the direct  influence of partitioning coefficients (Log P and Log 

D7.4), plasma protein binding and blood plasma  partitioning on volume of distribution. 

Additionally there is considerable reverse trend observed between the increased membrane 



116 

 

permeability and ionization profiles (pKa).  Although solubility may not have a direct influence 

on volume of distribution but, the inclusion of solubility data significantly improved the model 

fit for the compounds in the current set with a direct correlation for solubility at pH 3.0-7.4 and 

an inverse correlation for solubility at pH 1.8, indicating common underlying molecular 

properties.  A more direct relationship with pKa could be interpreted as an increase in acidic pKa 

of compounds resulting in higher ionization at physiological pH, resulting in lower tissue 

partitioning and hence reducing volume of distribution.   

Based on the above analysis the medicinal chemist can focus on Log P and pKa as major 

properties that can be optimized with the additional knowledge that, substitutions that alter 

ionization or solubility might also influence the apparent volume of distribution. 

5.4.3. Partial Least Square Regression Analysis of Total Clearance (CL) 

Objective 

a) To develop a PLS model relating the selected set of physicochemical and ADME 

properties (screening data as shown in Table 27) with PBPK based estimates of total 

clearance of the test compounds.   

b) Interpret the PLS analysis data and identify the relative influence of various properties on 

total clearance based on standardized coefficients. 

c) Prioritize the various properties for lead optimization based on the interpreted results. 

 

PLS regression analysis identified a 5 component model (latent vectors) that best describes the 

combined effect of 12 ADME and physicochemical properties (Table 29) on total clearance. 

Based on the model, the relative contributions of all 12 properties are graphically presented in 

Figure 12 and the standardized coefficients are presented in Table 32. 

 

 

 

 



117 

 

Figure 12: Relative Influence of Various Properties on Total Clearance (CL) 

 

The predictors in numerical order (1 to 12)  are solubility pH1.8, solubility pH 3.0, solubility pH 

4.5, solubility pH 6.8, solubility pH 7.4, pKa acidic, Log P, Caco-2 permeability,  neutral 

fraction at pH 7.4, microsomal clearance, fraction unbound in plasma and blood plasma 

partitioning. The standardized  PLS coefficients presented in Table 32, expresses the change in 

the response  (CL) when the variable (X) changes from 0 to 1,  indicates the relative importance 

of each property with a positive or negative sign indicating a direct or inverse relationship. 

Table 32: Standardized PLS Coefficients of Various Properties with Total Clearance (CL) 

Predictor no. Predictor name Coefficient magnitude 

1 solubility pH 1.8 0.14 

2 solubility pH 3.0 0.17 

3 solubility pH 4.5 0.23 

4 solubility pH 6.8 0.11 

5 solubility pH 7.4 0.10 

6 pKa -0.42 

7 Log P 0.24 

8 Caco-2 permeability -0.41 

9 neutral fraction pH 7.4 -0.01 

10 microsomal clearance 0.37 

11 fraction unbound in plasma 0.54 

12 Blood plasma partitioning -0.53 
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Interpretation of PLS analysis 

For the current data set, there is evidently a prominent influence of microsomal metabolism 

(metabolic clearance) on the total clearance of the drug. Apart from this, clearance was largely 

influenced by fraction unbound in plasma and inversely by blood to plasma partitioning. 

Contribution from permeability could be related to the intracellular permeation to access drug 

metabolism sites. Ionization (pKa) could be correlated with basicity and the proportion of 

ionized or unionized species exists in solution and their binding to macromolecules.  Influence of 

Log P can be interpreted with the association to lipid partitioning and ability to partition through 

lipid bilayers to reach drug metabolizing enzymes.  Based on the magnitude of coefficients the 

relative influence of each contributing factor can be assessed. 

Based on the above analysis, the medicinal chemist can plan further optimization by reducing or 

eliminating metabolic soft spots which reduces microsomal clearance (metabolic clearance). The 

interplay between the plasma binding and red blood cell (RBC) partitioning appear to be 

prominent, however the underlying property could be the charged state of the molecules at 

physiological pH or lipophilicity that might improve its protein binding.  

In a review on enhancing metabolic stability as a step to improving decision making process in 

structural modification of drug candidates, Nassar et al. [132] has reviewed the general strategies 

to improve metabolic stability. Major initiatives could include addition of stable functional 

groups (blocking groups) at the metabolically vulnerable sites or by decreasing the lipophilicity 

reducing its affinity to lipophilic drug metabolizing enzymes. Few specific structural 

modification strategies described include deactivation of aromatic rings through substitution with 

electron withdrawing groups (CF3, SO2NH2, SO3−), introduction of N-butyl group to prevent 

N-dealkylation, replacement of labile ester linkage with amide group, stearic shielding of labile 

groups, avoidance of phenolic group preventing glucuronidation etc.  

The current analysis does not include the structure based descriptors for assessing consequences 

of metabolic soft spots in the chemical structure or factors that improve protein binding. 

However in the future scope to expand this methodology, there is the flexibility to integrate them 

as well.  
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5.4.4. Partial Least Square Regression Analysis of Area Under Curve (AUC) After Oral 

Dosing 

Objective 

a) To develop a PLS model relating the selected set of physicochemical and ADME 

properties (screening data as shown in Table 27) with predicted plasma AUC of the test 

compounds.   

b) Interpret the PLS analysis data and identify the relative influence of various properties on 

plasma AUC based on standardized coefficients.  

c) Prioritize the various properties for lead optimization based on the interpreted results. 

 

PLS regression analysis identified a 10 component model (latent vectors) that best describes the 

combined effect of 14 ADME and physicochemical properties (Table 29). Based on the model 

the relative contributions of all 14 properties are graphically presented in Figure 13 and the 

numerical values of standardized coefficients are presented in Table 33. 

Figure 13: Relative Influence of Various Properties on Area Under Curve (AUC) 
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neutral fraction at pH 6.8, neutral fraction at pH 7.4, fraction unbound in plasma, blood plasma 

partitioning and microsomal clearance. The standardized  PLS coefficients presented in Table 33, 

expresses the change in the response  (CL) when the variable (X) changes from 0 to 1,  indicates 

the relative importance of each property with a positive or negative sign indicating a direct or 

inverse relationship. 

Table 33: Standardized PLS Coefficients of Various Properties with Area Under Curve 

(AUC) 

Predictor 

no. 
Predictor name Coefficient magnitude 

1 solubility pH 1.8 -0.49 

2 solubility pH 3.0 -2.02 

3 solubility pH 4.5 0.98 

4 solubility pH 6.8 2.12 

5 solubility pH 7.4 -0.66 

6 pKa 0.24 

7 Log P 0.37 

8 Log D7.4 0.43 

9 Caco-2 permeability -0.68 

10 neutral fraction pH 6.8 -0.90 

11 neutral fraction pH 7.4 0.52 

12 fraction unbound in plasma -0.74 

13 blood plasma partitioning 0.28 

14 microsomal clearance -1.02 

Interpretation of PLS analysis 

The PLS analysis of AUC could provide a very useful assessment of relative contribution by 

various properties to in vivo exposure especially after oral dosing, however there is an inherent 

complexity in this analysis with AUC being a composite parameter influenced by various 
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independent factors like absorption, tissue distribution, clearance, transporter effects, disease 

state etc. In the current analysis, pH dependent solubility seems to have the greatest influence 

followed by ionization potential and clearance. These observations provide options for chemical 

scaffold modification to achieve better in vivo profile also considering synthetic feasibility, cost 

and time.  

The above analysis is a good example indicating the multivariate nature of lead optimization 

efforts with numerous parameters contributing to human pharmacokinetics (parameter AUC, in 

this case). The complexity of the interplay between numerous properties that influence the AUC 

cannot be merely explained by simple visual observation of data or rank ordering of compounds. 

For example Caco-2 permeability in the current AUC analysis seems to influence exposure 

negatively whereas the expectation is that it should have contributed directly by its direct 

influence on absorption rate constant. This observation therefore needs a careful understanding 

in the context of the current data set that an increased permeability for many compounds has 

been associated with decreased exposure due to the extra dimension of metabolic liability or 

fraction bioavailability or solubility limiting absorption. For example metoprolol with a near 30 

fold higher Caco-2 permeability than atenolol (89 nm/sec vs. 3 nm/sec) had an exposure which is 

5 fold lower (195 ng.h/mL vs. 1118 ng.h/mL). In general it appears that for correlation with 

various properties for lead optimization, specific analysis of individual parameters of absorption 

rate, volume of distribution, and/or clearance may be better suited than using AUC due to 

reduced complexity. 

5.5. Optimization of Identified Properties: Illustration with Examples Mimicking 

Lead Optimization 

To demonstrate lead optimization exercise that can be undertaken based on the above PLS 

analysis, scenarios of changes in physicochemical or ADME properties and their impact on 

pharmacokinetic parameters as well as simulated human in vivo PK are investigated. Since a 

chemical modification of the test compounds was beyond the scope of current research, an 

illustration of the lead optimization by chemical modification has been made with a hypothetical 

scenario of changing a single property at a time by two fold, below and above its original value 

(0.5 x and 2.0 x), mimicking a scenario where the chemical modification has resulted in a two-

fold higher solubility or decreased it by half and so on. The properties chosen are liver 
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microsomal clearance, solubility and Log P. To generate the modified human oral concentration- 

time profile, the modified screening data (corresponding to 0.5 x and 2.0 x) were incorporated 

into PBPK models and the modified parameters of Ka, Vss and CL are derived which were used 

for simulating the human PK profile using the one compartment equation. Even though the 

current illustration changes only one parameter at a time, in reality the chemical modifications 

could result in the change of more than one property, and can be easily implemented using the 

current methodology.  Additionally, altering a single property could change multiple ADME 

parameters as well. Illustrations of varying a single property therefore have been undertaken for 

simplicity. 

In practice, this step could allow the discovery chemist to assess the result of various chemical 

modifications resulting in change of properties; for example, what if the chemical modifications 

result in increase of microsomal clearance by two fold or Vss is decreased, would the PK profile 

change favorably. Subjecting the modified compounds to physicochemical and ADME screening 

would provide assessment of the changed values for properties. These estimates can then be 

incorporated into the mechanistic PBPK models for final derivation of human PK parameters of 

absorption, volume of distribution and clearance which can be used to simulate human plasma 

concentration-time profile. These PK profiles of modified compounds can be compared with 

earlier set of compounds to understand the effect that these changes might have on the in vivo 

profile, as well as compared with efficacy parameters to evaluate the impact on efficacy and 

duration of action.  For example, in case of beta blockers the reported beta 1 blocking efficiency 

(Ki estimates [72]) after correction of protein binding or EC50 from PK-PD model can be used. 

The alteration in Cmax and Caverage can be used as a guide to assess the relative beta 1 and beta 

2 (undesirable) blocking when compared with the Ki estimates for beta 2 inhibition. This would 

allow choice of the right compound with the right set of pharmacokinetic properties (not crossing 

peak plasma threshold levels for beta 2 inhibition, while  ensuring  sufficient levels and duration 

for beta 1 inhibition)  as well as efficacy (relative fold selectivity for receptor binding that 

ensures good margin of safety avoiding adverse effects). 

5.5.1. Effect of Variation in Key Properties on In Vivo Pharmacokinetic Profile  

After assessing the key parameters that contribute to various PK parameters the effect of a two-

fold change in certain key properties namely microsomal clearance, solubility and Log P on in 
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vivo PK profile were assessed using simulation after incorporating the influence of changes in 

these properties on the various PK parameters using PBPK models.  

Influence of Liver Microsomal Clearance on In Vivo Pharmacokinetic profile 

Microsomal clearance is a direct indication of the metabolic phase I clearance of the molecule. 

This has two major consequences on the in vivo pharmacokinetic profile. Change in the 

microsomal clearance has the first effect on bioavailability where metabolism in the liver clears a 

portion of drug absorbed from the GI tract by first pass, reducing the fraction bioavailable. The 

second consequence is on the elimination of drug from the system where compounds with 

significant phase I clearance get reduced half-life due to increase in metabolic clearance and vice 

versa.  Depending on the rate of absorption, volume of distribution and plasma binding, the 

Cmax and half-life would also get affected.   From the perspective of a medicinal chemist the 

current exercise could mean the following  

a) Assessing the changes made in the metabolic soft spots in the chemical scaffold  

b) Consequence of masking the functional groups 

c) Effect of favorable substitutions for efficacy that might influence the metabolic clearance 

 

The effect of 2 fold variation in microsomal clearance was incorporated into the PBPK models as 

follows:  

a) The lower (0.5 x) and higher (2.0 x) microsomal clearance values were extrapolated to 

intrinsic clearance using the microsomal scaling factors and subsequently to in vivo 

hepatic clearance using well stirred model 

b) The hepatic clearance was used to assess the corresponding change in fraction 

bioavailable using the relation  

                               
   
  

  

c) The modified values  (lower and upper) of clearance as well as fraction bioavailable were 

used to simulate the in vivo concentration-time profile and compute AUC using the one 

compartment model equation (described in methods section) keeping all other parameters 
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(absorption rate constant and volume of distribution of rapidly perfused tissues) to their 

original value. 

A detailed explanation of each methodology has been provided in literature review as well as 

methods section. The change in simulated AUC due to two fold variation in microsomal 

clearance (0.5 x and 2.0 x) is presented in Table 34. 

Table 34: Effect of 2 Fold Variation in Microsomal Clearance (CLint) on AUC  

Compound 

CL int  

 

(mL/min/g 

liver) 

Lower 

fold           

(0.5 x) 

Higher 

fold           

(2.0 x) 

Simulated 

AUC * 

(ng.h/mL) 

 

Simulated AUC  

after modification  

(ng.h/mL) 

Lower Upper 

Atenolol 0.002 0.001 0.004 965 971 953 

Metoprolol 11.792 5.896 23.583 197 390 44 

Propranolol 1.907 0.953 3.814 293 574 75 

Nevirapine 0.077 0.039 0.155 30589 39861 19996 

Nelfinavir 71.159 35.579 142.317 13 25 0.1 

Ritonavir 5.500 2.750 11.000 16221 32671 6752 

Indinvair 3.368 1.684 6.737 2198 4337 559 

Efavirenz 11.582 5.791 23.163 115354 155832 70681 

Cilomilast 1.118 0.559 2.237 8347 16903 4017 

Roflumilast 2.027 1.013 4.053 124 151 87 

Vildagliptin 0.963 0.482 1.926 873 1593 354 

Tolbutamide 0.311 0.156 0.623 230792 444296 114587 

Rosiglitazone 2.617 1.309 5.234 8868 16216 4352 

*Estimated in Microsoft EXCEL therefore values would differ slightly with WinNonlin estimates  
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Figure 14: Plasma Concentration vs. Time Plot of Representative Compounds Indicating 

Effect of 2 Fold Variation (0.5 x and 2.0 x) of Microsomal Clearance          

                    

                 

The above simulations demonstrate a hypothetical scenario of the impact of chemical 

modifications aimed to alter microsomal clearance, on the plasma concentration profile. First two 

sets of compounds demonstrate marked increase in Cmax as well as AUC with a low clearance 

(0.5 x), and the reverse trend for 2 fold increase in microsomal clearance. This could be observed 

largely as a consequence of higher impact of clearance rates than absorption in influencing the 

plasma concentration-time profile (Kel of 0.45 and 0.33 per hour and Ka of 2.2 and 0.66 per hour 

for metoprolol and propranolol, respectively). Plasma levels approach to near zero at nearly 10 

hours post dose in case of a higher clearance whereas it gets extended well beyond 20 hours in 

case of a 2 fold reduction in clearance. The second set of compounds (corresponding to 

nevirapine and efavirenz and their modified clearance simulations) has markedly changed 

terminal levels with relatively lesser impact on Cmax. These compounds had higher predicted 

absorption rates (Ka of 3.6 and 2.7 per hour) and lower elimination rate constants (Kel of 0.09 and 

0.03 per hour) in comparison to the first set.  

The increased Cmax can have major impact on efficacy if the mechanism depends on a threshold 

level and toxicity as well, whereas elongated half-lives could impact the duration of action as 
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well as accumulation on repeated dosing. These correlations allow decision making on the 

modified compounds and selection of ideal candidate. 

Influence of Solubility on In Vivo Pharmacokinetic profile  

Changes in solubility affects the availability of soluble drug at various segments of the GI tract 

influencing the net available drug for absorption. In case of solubility limiting the absorption, the 

improvement of solubility has greater impact on the fraction absorbed. From the perspective of a 

medicinal chemist or formulation scientist this could mean the following 

a) Designing new compounds within the chemical series with improved/optimized solubility 

b) Improving compounds by introduction of polar functional groups 

c) Increasing surface area by micronization 

d) Formulation approaches to improve solubility (solid dispersion, solubility enhancers etc.)  

The lower (0.5 x) and higher (2.0 x) limits of solubility across pH that were used for simulation 

are presented in Table 35 and 36. To reduce the solubility subsets the highest acidic solubility 

below pH 3.0 was used. 

Table 35: Lower Solubility Limit for Assessment of Influence On AUC: 0.5 x of Observed  

Compounds 
Highest acidic 

solubility (µg/mL) 

Solubility at   

pH 4.5 (μg/mL) 

Solubility at      

pH 6.8 (μg/mL) 

Solubility at      

pH 7.4 (μg/mL) 

Atenolol 650 630 685 665 

Metoprolol 2454 2825 2493 2718 

Propranolol 1560 1450 1600 1531 

Nevirapine 383 52 51 49 

Nelfinavir 1207 356 4 4 

Ritonavir 4 1 1 1 

Indinvair 657 822 22 20 

Efavirenz 4 4 4 11 

Cilomilast 196 7 296 674 

Roflumilast 3 3 3 3 

Vildagliptin 955 940 954 1009 

Tolbutamide 48 56 1248 734 

Rosiglitazone 657 542 24 24 
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Table 36: Higher Solubility Limit for Assessment of Influence on AUC: 2.0 x of Observed 

Compounds 
Highest acidic 

solubility (µg/mL) 

Solubility at   

pH 4.5  (μg /mL) 

Solubility at     

pH 6.8 (μg /mL) 

Solubility at     

pH 7.4 (μg /mL) 

Atenolol 1950 1889 2054 1996 

Metoprolol 7361 8476 7478 8155 

Propranolol 4680 4349 4800 4592 

Nevirapine 1148 156 152 147 

Nelfinavir 3620 1069 12 12 

Ritonavir 12 2 2 2 

Indinvair 1971 2465 67 59 

Efavirenz 11 11 12 32 

Cilomilast 588 21 889 2021 

Roflumilast 8 8 8 8 

Vildagliptin 2865 2819 2862 3028 

Tolbutamide 144 167 3745 2201 

Rosiglitazone 1971 1626 71 72 

 

The effect of 2 fold variation in solubility across pH was incorporated into the PBPK models as 

follows. 

Assessment 

a) Using the compartmental absorption model (described in literature review) the fraction 

absorbed  from the GI tract and the fraction bioavailable were estimated corresponding to 

the lower and upper limits of solubility with the assumption of no change in the intrinsic 

permeability of the compounds.  

b) The plasma concentration-time profile was simulated using a one compartment PK 

equation keeping all other parameters to their original value.  
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The simulated AUC corresponding to two fold variation in solubility (0.5 x and 2.0 x across pH) 

is presented in Table 37. Few representative compounds with significant variation in AUC are 

presented in Figure 15. 

Table 37: Effect of 2 Fold Variation in Solubility (0.5 x and 2.0 x) on Predicted AUC 

Parameter 

Predicted exposure 

Method 2; compartmental 

transit model 

AUC (lower) 

0.5 x low solubility 

across pH 

AUC (upper) 

2.0 x higher 

solubility across pH 

Atenolol 8081 8081 8081 

Metoprolol 222 222 222 

Propranolol 433 433 433 

Nevirapine 32009 32009 32009 

Nelfinavir 1 1 2 

Ritonavir 3907 1953 5860 

Indinvair 1951 976 2927 

Efavirenz 238601 238601 238601 

Cilomilast 8755 8755 8755 

Roflumilast 212 212 212 

Vildagliptin 1660 1660 1660 

Tolbutamide 244040 244040 244040 

Rosiglitazone 7713 7713 7713 

 

The predicted AUC estimates vary from the WinNonlin estimates presented elsewhere since the 

compartmental absorption model was used here to incorporate changes in pH dependent 

solubility (method 2 under materials and methods) against the equilibrium model from Usansky 

et al. [6] applied in the all other assessments. Both the estimates are very comparable however 

with few notable differences in estimates for atenolol, nelfinavir and ritonavir. 
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Figure 15: Plasma Concentration vs. Time Plot of Representative Compounds Indicating 

effect of 2 Fold Variation (0.5 x and 2.0 x) of Solubility 

  
 

The enhancement of solubility has greater influence on compounds with absorption limited by 

solubility as influenced by a higher intrinsic permeability. Therefore during lead optimization, 

solid state characters as well as chemical modifications than enhance solubility but not altering 

the compound permeability would allow higher absorption and unless influenced by first pass 

clearance would enhance the Cmax as well as AUC. The careful chemical modifications coupled 

with above simulations using ADME and physicochemical data of modified compounds would 

enable a comparison of plasma concentration profiles to understand the effect of modifications 

and a possible correlation with efficacy and toxicity.  

Influence of Log P on In Vivo Pharmacokinetic profile 

Changes in Log P indicate alteration in lipid partitioning and therefore influence the volume of 

distribution of the compound in the system. Additionally Log P also affects clearance due to the 

influence of nonspecific binding (microsomal binding to in vitro assays). Log P indirectly 

influences the absorption rate constant as well as the fraction absorbed due to the effect on 

distribution to rapidly perfused tissues.  From the perspective of a medicinal chemist or 

formulation scientist this could mean some of the following scenarios 

 

a) Introduction of more lipophilic groups as part of modification of series where increased 

lipophilicity of the compounds seems to favor receptor binding or approach to target site, 

improving efficacy 
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b) Deliberate efforts to improve tissue penetrability or 

c) Efforts to reduce tissue distribution to avoid possible accumulation and toxicity by using 

Log P as a parameter. 

The effect of 2 fold variation in Log P across pH was incorporated into the PBPK models as 

follows. 

a) Corresponding changes in volume of distribution of rapidly perfused tissues were 

assessed using tissue partitioning equations. 

b) Clearance estimates were corrected corresponding to the variation in unbound 

microsomal fraction brought about by the changes in Log P (as per the well stirred 

equation) as per the following relation 

           

   
  

     
            
     

 

    
            
     

  
   
  

  

c) Absorption rate constants were changed as per the changes in volume of distribution of 

rapidly perfused tissues 

   
   

  
 

d) Corresponding changes in fraction bioavailable were made using the following relation 

                               
   
  

  

e) The plasma concentration profiles were simulated using the modified estimates keeping 

all other parameters to their original value using the one compartment PK model. 

 

The simulated AUC corresponding to 2 fold variation in Log P (0.5 x and 2.0 x across pH) is 

presented in Table 38. Few representative compounds with significant variation in AUC are 

presented in Figure 16. 
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Table 38: Effect of 2 Fold Variation in Log P (0.5 x and 2.0 x) on AUC  

Compounds 
Measured 

value 

Lower fold     

(0.5 x) 

Higher fold      

(2.0 x) 

AUC 

Predicted*  

(ng.h/mL)       

Simulated AUC 

(ng.h/mL) 

lower  higher 

Atenolol 0.335 0.168 0.670 919 934 930 

Metoprolol 1.632 0.816 3.264 195 206 127 

Propranolol 2.900 1.450 5.800 301 459 113 

Nevirapine 2.639 1.320 5.278 30665 35285 12417 

Nelfinavir 7.278 3.639 14.556 12 18 12 

Ritonavir 2.333 1.167 4.666 11449 13496 4175 

Indinvair 3.435 1.718 6.870 2201 3789 1007 

Efavirenz 4.380 2.190 8.760 118843 287153 7844 

Cilomilast 2.108 1.054 4.216 8185 10318 5351 

Roflumilast 2.305 1.153 4.610 123 230 101 

Vildagliptin 0.169 0.085 0.338 876 879 866 

Tolbutamide 2.362 1.181 4.724 227352 291208 107761 

Rosiglitazone 3.023 1.512 6.046 8776 9139 1487 

*Estimated with Microsoft EXCEL therefore differ slightly with WinNonlin estimates  

Figure 16: Plasma Concentration vs. Time Plot of Representative Compounds Indicating 

Effect of 2 Fold Variation (0.5 x and 2.0 x) of Log P 
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Considerable differences can be observed in Cmax, duration of exposure as well the area under 

curve for the above given plasma concentration profiles as a result of change in Log P. The 

primary influence of Log P is on the volume of distribution which indirectly affects the 

equilibrium rate of absorption due to reduced tissue perfusion. Additionally reduced lipophilicity 

could result in reduced binding to macromolecules affecting the distribution and clearance due to 

changes in non specific binding to microsomes. Change in lipophilicity could also influence the 

metabolism profile due to altered affinity and approachability to drug metabolizing enzymes. 

Careful evaluation (ADME and physicochemical) and simulation of profiles using the above 

technique would allow the medicinal chemist to analyze the impact of modifications resulting in 

changes in Log P.  

5.5.2. Correlation with Efficacy  

As demonstrated above, the mechanistic equations provide flexibility to assess the relative 

influence of various properties on the pharmacokinetic profile. This opens up the possibility for 

further extending the methodology to correlate with efficacy. In a preclinical setting an 

understanding on human efficacy can be obtained in most cases with the extrapolation of PK-PD 

correlation made in animal models. PK-PD estimates could include receptor binding or inhibition 

kinetics, modeled efficacy parameters based on a functional response etc correlated with plasma 

or tissue concentrations to give threshold efficacy levels. These estimates, after correction of 

receptor affinities or protein binding across preclinical species to human, can be used as target 

efficacy levels which in comparison with simulated human concentration-time profiles of lead 

compounds and can be used as a criterion for selection of lead candidate. A demonstration of this 

correlation is presented in Figure 17, which shows the overlay of various scenarios described 

with metoprolol and propranolol along with the IC50 values estimated from a simple Imax PK-

PD model for antihypertensive effect observed (50.6 and 18.1 ng/mL, respectively) in 

spontaneously hypertensive (SH) rats [133]. For the current illustration no interspecies correction 

for receptor affinity was made. 
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 Figure 17: Plasma Concentration vs. Time Plot of Two Representative Compounds Along 

With Various Scenarios, Overlaid Over IC50 Estimates from Preclinical PK-PD Model 

 

         

The correlations clearly demonstrate the effect of altering the various properties on human in 

vivo plasma levels in relation with predicted efficacy concentration. A desirable property for a 

beta blocker could be to have sustained levels above efficacy threshold (beta1 blockade) for a 
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does not allow achieving the therapeutic levels, whereas reducing the lipophilicity seems to have 

a beneficial effect on duration of plasma levels above effective concentrations. Additional 

evaluations feasible with this approach include the simulation of repeat dose administration and 

the effect of the peak and trough concentrations on efficacy parameters, correlation with 

threshold levels for beta 2 inhibition (Ki estimates with human β2 receptor inhibition) etc. More 

elaborate evaluations are also feasible with PBPK based simulated cardiac tissue levels which 

can provide better correlations with efficacy. 

 In the case of anti-retroviral drugs, there is more reliance on cell based assays (T cells, 

monocyte cell lines, human primary cells) and also the reliance on using various strains 

considering the rapid mutation of the human immunodeficiency (HIV) virus. Factors like 

increased intra cellular levels, efflux transport and protein binding has been considered as major 
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cell count, HIV ribonucleic acid (RNA) levels (Log copies/mL) etc [134] and these can be 

correlated with simulated profiles generated based on the current methodology.  

For PDE4 inhibitors PD markers like cytokines or PBMC (peripheral blood mononucleated cells) 

based measurements (etc. TNF α release) can form excellent correlation markers [135, 136].  

With regard to anti-diabetic compounds, there could be correlation of the simulated plasma 

levels with inhibition of plasma DPP IV enzyme (in case of DPP IV target), glucose excursion or 

glycosylated hemoglobin etc in case of other anti-diabetic targets [137, 138].  

The above methodology thus allows correlation with efficacy parameters or extrapolated human 

PK-PD prediction estimates from animal models early in the discovery program allowing the 

scientist to rationally choose the compound with a better probability to demonstrate efficacy and 

reduced toxicity in clinical trials. 

The various steps on TPP based optimization has been illustrated based on variation of one 

parameter at a time for the sake of simplicity. In reality, the modification of one parameter 

eventually influences few others which will be reflected as changes in various physicochemical 

and ADME parameters. These scenarios can be well assessed due to the application of 

mechanistic PBPK models in the current methodology bringing in adequate flexibility for 

simulating various scenarios. This flexibility can also be used as a tool to identify optimum 

ranges for each parameter that could be aimed to achieve by various chemical modifications of 

the pharmacophore. Further the modifications in chemical scaffold can be prioritized to improve 

properties that require more optimization with others maintained within the identified acceptable 

limits.  

While not undermining the various limitations described and possible variability in human 

prediction with the methodology, the current research demonstrates the utility of the new derived 

methodology to be employed in a drug discovery effort to mechanistically predict human 

pharmacokinetic profile, identify key parameters that influence the in vivo profile as well as 

simulate the changes in PK profile on modifying them and correlate with various efficacy 

parameters to enable rational lead optimization and selection of an ideal clinical candidate.  
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6.1. General Conclusions 

The primary goal of current research was to develop a new methodology for application in lead 

optimization for rational selection of a clinical candidate. The research involved mechanistic 

integration of various experimental physicochemical and ADME data using physiological 

pharmacokinetic models as well as simulation of human concentration-time profile as the initial 

objective. This was followed by a multivariate analysis of the predictors and response variables 

to assess the relative contribution of various screened data to enable prioritizing them for lead 

optimization. As the final step, the utility in lead optimization was demonstrated with few 

hypothetical examples of assessing the effect of two fold variation (0.5 x and 2.0 x) in some key 

properties on the concentration-time profile as well as its possible effect on efficacy.  

Prediction of human PK profile has been attempted with mechanistic human modeling 

(physiological based pharmacokinetic modeling). Reliable predictions of human 

pharmacokinetic parameters were obtained with >90% of compounds within 2 fold error. In the 

simulation of human concentration-time profiles, 8 compounds out of 13 remained within 3 fold 

of AUC and for compounds that deviated, critical causes of variability (active uptake, inhibition 

of metabolism, over prediction of clearance with microsomes) could be identified. 

The results presented in the current work represent one of the few works available in this area. 

The publication from Pfizer in May 2011 (Jones et al.) [3] utilized 21 in-house compounds with 

relevant preclinical and clinical data for which the intravenous and oral human PK simulations 

were performed.  The simulation results indicated that the predictions using PBPK were superior 

to those obtained via traditional methods. The other major development has been the 

Pharmaceutical Research and Manufacturers Association of America (PhRMA) initiative (May 

2011) on predictive models of human pharmacokinetics [139], which assessed the effectiveness 

of PBPK models for simulating human plasma concentration profiles. Many of the discussion 

points in the current study including the effect of formulations, transporter effects etc. has been 

acknowledged in the PhRMA study.  

The prediction of human pharmacokinetic parameters and in vivo PK profile would add value to 

lead optimization efforts or would accelerate drug development only if it is presented with a 

systematic and reliable methodology, enabling the scientist to integrate with compound 

chemistry, biopharmaceutical properties as well as its pharmacology and safety profile.  This 
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approach would enable the scientists to take informed decisions on clinical development of the 

molecule keeping in mind the resources, time and effort. The current research adds value in this 

aspect. 

To understand the various underlying properties that would influence a favorable PK profile, the 

application of partial least square regression in this research is the first such attempt in drug 

discovery to the best of our knowledge, even though it has been widely used in other areas like 

chemometrics [68, 140, 141]. The results and interpretation of PLS analysis would vary with 

respect to the chemical series under optimization in relation to the target profile, and the 

demonstration through the current work reveals the utility of this methodology in lead 

optimization. Also as demonstrated with simulation of concentration-time profile with two fold 

variation of properties (0.5 x and 2.0 x), the PBPK based approach would enable to assess the 

results of chemical modifications as well making it a useful approach in lead optimization for 

choice of a lead candidate. 

To summarize, the methodology developed comprise of carefully executed physicochemical and 

ADME screens, with careful collation of data and fitting them to mechanistic PBPK models for 

prediction of human PK parameters  and  simulate human PK profile. Further, with application 

of PLS regression, the relative importance of various properties on the in vivo PK profile can be 

assessed for optimization by chemical modification or formulation approaches. The modified 

compounds can be screened for their physicochemical and ADME properties again and their 

human in vivo profiles simulated to see the impact of chemical modifications on efficacy 

parameters (PK-PD correlations) allowing a rational approach to identify a lead candidate that 

fits a target product profile. The research thus provides a novel methodology enabling a faster 

selection of best candidate for clinical development. 

 

A general schematic of the developed research methodology is given in Figure 18. 
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Figure 18: Summary of Methodology Developed in the Current Research 
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6.2. Specific Contribution from Research  

a) The current research provides a new methodology for application in drug discovery and 

lead optimization using PBPK models and PLS regression. 

b) The current research demonstrates the utility of PBPK models to predict human PK early 

in discovery process with good degree of reliability. The current research is one of the 

few reports available on PBPK based prediction human oral PK profiles. 

c) The application of PLS regression analysis has been a novel approach to rationally 

choose the compound properties for optimization which has been applied for the first 

time to the best of knowledge.  

d) The current research also represents the best compilation of latest developments in PBPK 

modeling as well as a novel multivariate approach that could be applied for various TPP 

based discovery efforts. The various techniques elaborated in the current research 

inclusive of the in vitro assays and modeling techniques can be utilized for various 

research work in the area of  

i. Optimization of a newly identified chemical series 

ii. Correlation of efficacy with appropriate PK surrogates 

iii. Formulation optimization and clinical strategy 

iv. Choice of better clinical candidate 

e) By virtue of its prediction ability of human PK much earlier than other techniques like 

allometry, the current research opens up the possibility to start assessing human PK-PD 

relationship. The tissue partitioning equations used which can also provide individual 

tissue partitioning of drugs at steady state can be used to develop mechanistic PBPK-PD 

relationships which might provide a better correlation than any empirical model. 

f) Incorporation of all major ADME and physiochemical properties in this methodology 

would enhance the ability to differentiate and choose an ideal candidate from a list of 

closely related compounds in comparison with other assessments based on individual 

ADME or PK properties. The prediction model could be further improved with the 

inclusion of diverse and larger number of compounds.  
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g) Over all the current research provides an overarching strategy that effectively 

incorporates the techniques of screening and novel optimization approach for faster 

selection of ideal clinical candidate based on a Target Product Profile (TPP). 

6.3. Future Scope of Work 

The current methodology developed as part of the research forms a platform which can be 

further utilized at various aspects of research. 

a) Enhance the scope of structure activity relationships (SAR) by including other molecular 

descriptors with PLS analysis and identify key properties more specifically 

b) Development of PBPK-PD models where use of mechanistic models instead of 

compartmental models can give better prediction of target tissue concentrations and 

correlate with efficacy. Successful predictions in this effort could then directly correlate 

modifications in chemical structure to efficacy for many pharmacological interventions.  

c) Further improvements in PBPK models can improve the predictability and application of 

the current methodology. Incorporation of transporter effects, biliary excretion and 

entero-hepatic recirculation, effect of inactivation of drug metabolizing enzymes, effect 

of co-administration of drugs with competing metabolic pathways etc. are some areas 

where considerable research is underway and would need further advancement. 

d) More elaborate work on the current methodology if undertaken with large number of 

compounds within a series and involving multiple pharmacophores would further validate 

this approach and enable its effective utilization to accelerate the drug discovery process. 

The effort would definitely require considerable resources in terms of availability of large 

chemical series, infrastructure and technical expertise. A significant achievement of 

reduction in time with faster lead optimization and evolution of a rational decision 

making process incorporating the current methodology would be a significant 

contribution to research community. 
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APPENDIX I: COMPILATION OF DATA 

Estimated parameters Specifications Atenolol Metoprolol Propranolol Nevirapine Nelfinavir Ritonavir Indinavir 

Mol wt 
 

266.33 267.36 259.34 266.29 567.78 720.94 613.78 

pKa 
acidic pKa 9.43 9.43 9.5 12.054 14.13 11.467 14.21 

basic pKa 13.881 13.891 13.84 4.247 6.213 2.51 5.191 

Solubility at pH 

(mg/mL) 

1.8 1.318 5.013 3.104 0.765 0.201 0.0078 0.998 

3 1.257 4.907 3.120 0.140 0.241 0.0015 1.314 

4.5 1.259 5.651 2.899 0.104 0.713 0.0010 1.643 

6.8 1.369 4.986 3.200 0.102 0.008 0.0010 0.045 

7.4 1.331 5.437 3.061 0.098 0.008 0.0010 0.039 

Log Po/W 
 

0.335 1.632 2.90 2.639 7.278 2.333 3.435 

Log Pvo/w 
olive oil: 

water 
-0.98 0.47 1.88 1.59 6.76 1.25 2.48 

Log Dvo/w 
olive oil: 

water 
-0.98 0.47 -6.66 0.07 1.22 1.25 0.27 

Neutral fraction (pH 6.8) 
 1.000 1.000 1.000 0.003 0.206 1.000 1.000 

Neutral fraction (pH 7.4) 
 1.000 1.000 1.000 0.001 0.061 1.000 1.000 

Caco-2 permeability           

(cm/sec) 
pH6.8-7.4 0.00000028 0.00000888 0.00000605 0.00002459 0.00000136 0.00000978 0.00000308 

Fraction unbound in 

plasma 
Human 0.854 0.254 0.7799 0.421 0.1169 0.0198 0.332 

Fraction unbound in 

tissue            

 (fut) De Buck et.al 

Human non 

adipose 
0.921 0.405 0.876 0.593 0.209 0.039 0.498 

Human 

adipose 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Blood plasma 

partitioning (ratio) 
Human 3.54 2.4 2.0 2.24 1.03 0.64 1.7 

Microsomal binding 

(fraction unbond %) 
Human 0.739 0.614 0.476 0.504 0.117 0.538 0.418 

Microsomal clearance       

(mL/min/g liver) 
Human 0.002 11.79 1.9068 0.07749 71.2 12.6 3.4 
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Estimated parameters Specifications Efavirenz Cilomilast Roflumilast Vildagliptin Tolbutamide Rosiglitazone 

Mol wt 
 

315.67 343.42 403.21 303.4 270.34 357.42 

pKa 
aAcidic pKa 10.241 

 
9.887 8.391 

  
basic pKa 

 
4.349 0.407 

 
5.25 6.503 

Solubility at pH (mg/mL) 

1.8 0.00730 0.01202 0.005 1.839 0.094 1.246 

3 0.00730 0.39198 0.005 1.912 0.096 1.314 

4.5 0.00730 0.01373 0.005 1.879 0.111 1.084 

6.8 0.00766 0.59295 0.005 1.908 2.497 0.047 

7.4 0.02150 1.34752 0.005 2.019 1.467 0.048 

Log Po/W 
 

4.38 2.108 2.305 0.169 2.362 3.023 

Log Pvo/w olive oil: water 3.53 1.00 1.22 -1.16 1.28 2.02 

Log Dvo/w olive oil: water 3.53 -2.05 1.22 -2.19 -0.87 1.97 

Neutral fraction (pH 6.8) 
 1.000 0.000 0.999 0.000 0.000 0.335 

Neutral fraction (pH 7.4) 
 0.999 0.000 0.997 0.000 0.000 0.113 

Caco-2 permeability           

(cm/sec) 
pH6.8-7.4 0.00000844 0.00003010 0.00002320 0.00000156 0.00003039 0.00001540 

Fraction unbound in plasma Human 0.0011 0.006 0.004 0.794 0.022 0.0024 

Fraction unbound in tissue            

 (fut) De buck et al. 

Human non adipose 0.002 0.012 0.008 0.885 0.043 0.0048 

Human adipose 1.000 1.000 1.000 1.000 1.000 1.000 

Blood plasma partitioning 

(RB, ratio) 
Human 1.19 0.78 1.42 2.13 0.73 1.4 

Microsomal binding 

(fraction unbond %) 
Human 0.320 0.563 0.541 0.756 0.535 0.468 

Microsomal clearance       

(mL/min/g liver) 
Human 11.58 1.12 2.03 0.96 0.31 2.6 
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Estimated parameters Specifications Atenolol Metoprolol Propranolol Nevirapine Nelfinavir Ritonavir Indinavir 

Human Volume of 

distribution of rapidly 

perfused tissue Vc (L)70kg 

heart,kidney, liver, lung, 

spleen, muscles, RBC 
42.0 29.0 69.5 41.9 203.1 16.6 78.9 

Human Volume of 

distribution Vd (L)70 kg 

heart,kidney, liver, lung, 

spleen, muscles, RBC, 

Adipose, bone , brain, 

gut, skin 

50.5 39.5 110.00 61.8 381.4 22.8 133.5 

Absorption rate constant at 

equilibrium Kaeq           

(Usansky et al., /min)  

Human 0.0008 0.0367 0.0104 0.0704 0.0008 0.0707 0.0047 

Fraction absorbed              

(at equilibrium assuming 

FFP*Ci/Cpl=1, 

 Usansky et al.) 

Human 0.14 0.88 0.68 0.93 0.14 0.93 0.48 

Clearance hepatic  

(well stirred) mL/min/kg 
Human 0.02 14.77 13.61 0.7 20.4 9.80 13.7 

Renal clearance based on 

glomerular filtration rate 

(mL/min/kg)  

Human 1.4518 0.4318 1.32583 0.7157 0.19873 0.03366 0.5644 

Total clearance  

(mL/min/kg) 
Human 1.47 15.20 14.94 1.44 20.60 9.83 14.21 

Fraction bioavailable Human 0.14 0.25 0.23 0.90 0.001 0.49 0.16 

 



154 

 

Estimated parameters Specifications Efavirenz Cilomilast Roflumilast Vildagliptin Tolbutamide Rosiglitazone 

Human Volume of distribution 

of rapidly perfused tissue Vc 

(L)70kg 

heart,kidney, liver, 

lung, spleen, muscles, 

RBC 

23.2 16.9 20.2 33.9 17.18 20.2 

Human Volume of distribution 

Vd (L)70 kg 

heart,kidney, liver, 

lung, spleen, muscles, 

RBC, Adipose, bone , 

brain, gut, skin 

55.4 20.3 24.1 41.5 21 25.4 

Absorption rate constant at 

equilibrium Kaeq  

(Usansky et al., /min) 

Human 0.0436 0.2138 0.1378 0.0055 0.2123 0.0915 

Fraction absorbed                     

(at equilibrium assuming 

FFP*Ci/Cpl=1, 

Usansky et al.) 

Human 0.90 0.98 0.96 0.52 0.98 0.95 

Clearance hepatic (well stirred) 

(mL/min/kg) 
Human 0.83 0.39 0.27 7.66 0.44 0.24 

Renal clearance based on 

glomerular filtration rate 

(mL/min/kg) 

Human 0.00187 0.0102 0.0068 1.35 0.04 0.00 

Total clearance         

(mL/min/kg) 
Human 0.83 0.40 0.28 9.01 0.48 0.24 

Fraction bioavailable Human 0.86 0.96 0.95 0.33 0.96 0.94 

Note: As qualifying criteria for plasma protein binding assay, warfarin showed a human protein binding of 99.5%. For intrinsic clearance an internal compound was used with high clearance (> 50 

mL/min/kg) to ensure functioning of microsomes. For cacao2 permeability atenolol and propranolol permeability itself were regarded as control.  
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APPENDIX II: REPRESENTATIVE CHROMATOGRAMS 

LC-MS/MS Chromatograms 

Atenolol  

 
 

 

Metoprolol 
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Propranolol 

 

 
 

 

 

Nevirapine 

 

 

 
+ 
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Nelfinavir 

 

 
 

 

 

Ritonavir 
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Indinavir 

 

 
 

 

Efavirenz 

 

 
 

Sample Name: "INDINAVIR_HLM_1MIN"    Sample ID: ""  

Peak Name: "Indinavir"    Mass(es): "614.300/421.100 Da"
Comment: ""    Annotation: ""

Sample Index:       9     
Sample Type:     Unknown  

Concentration:      N/A            

Calculated Conc:    0.00       µM  
Acq. Date:       6/6/2012  
Acq. Time:       12:27:02 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     
Base. Sub. Window:    1.00   min

Peak-Split. Factor:   2      

Report Largest Peak:   Yes   
Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec

Smoothing Width:      11       points

RT Window:         30.0    sec
Expected RT:        1.57   min
Use Relative RT:    No    

Int. Type:        Valley  

Retention Time:     1.57   min
Area:         360000.   counts
Height:         2.31e+005  cps
Start Time:         1.55   min

End Time:           1.65   min

Sample Name: "INDINAVIR_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Rolipram(IS)"    Mass(es): "276.200/191.000 Da"
Comment: ""    Annotation: ""

Sample Index:       9     

Sample Type:     Unknown  

Concentration:      1.00       µM  
Calculated Conc:    N/A            
Acq. Date:       6/6/2012  
Acq. Time:       12:27:02 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     

Base. Sub. Window:    1.00   min

Peak-Split. Factor:   2      
Report Largest Peak:   Yes   
Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec

Smoothing Width:      11       points

RT Window:         30.0    sec
Expected RT:        1.34   min
Use Relative RT:    No    

Int. Type:        Valley  
Retention Time:     1.34   min
Area:          74300.   counts
Height:         4.96e+004  cps

Start Time:         1.32   min

End Time:           1.40   min

Sample Name: "EFAVIRENZ_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Effavirenz"    Mass(es): "316.100/244.100 Da"
Comment: ""    Annotation: ""

Sample Index:      10     
Sample Type:     Unknown  

Concentration:      N/A            

Calculated Conc:    0.00       µM  
Acq. Date:       6/6/2012  
Acq. Time:       12:30:07 PM  

Modified:           No    

Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     
Base. Sub. Window:    1.00   min
Peak-Split. Factor:   2      

Report Largest Peak:   Yes   

Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec
Smoothing Width:       9       points
RT Window:         30.0    sec

Expected RT:        1.86   min

Use Relative RT:    No    

Int. Type:       Base To Base  
Retention Time:     1.86   min

Area:           1010.   counts

Height:         8.27e+002  cps
Start Time:         1.84   min
End Time:           1.91   min

Sample Name: "EFAVIRENZ_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Rolipram(IS)"    Mass(es): "276.200/191.000 Da"
Comment: ""    Annotation: ""

Sample Index:      10     
Sample Type:     Unknown  

Concentration:      1.00       µM  

Calculated Conc:    N/A            
Acq. Date:       6/6/2012  
Acq. Time:       12:30:07 PM  

Modified:           No    

Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     
Base. Sub. Window:    1.00   min
Peak-Split. Factor:   2      

Report Largest Peak:   Yes   

Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec
Smoothing Width:       9       points
RT Window:         30.0    sec

Expected RT:        1.34   min

Use Relative RT:    No    

Int. Type:        Valley  
Retention Time:     1.34   min

Area:         101000.   counts

Height:         6.34e+004  cps
Start Time:         1.32   min
End Time:           1.42   min
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Cilomilast 

 

 
 

 

 

Roflumilast 

 

 
 

 

 

 

 

Sample Name: "ROFLUMILAST_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Roflumilast"    Mass(es): "405.200/187.000 Da"
Comment: ""    Annotation: ""

Sample Index:      12     

Sample Type:     Unknown  

Concentration:      N/A            
Calculated Conc:    0.00       µM  
Acq. Date:       6/6/2012  

Acq. Time:       12:36:19 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  

Noise Percentage:     50     

Base. Sub. Window:    1.00   min
Peak-Split. Factor:   2      
Report Largest Peak:   Yes   

Min. Peak Height:      0.00   cps

Min. Peak Width:       0.00   sec
Smoothing Width:       9       points
RT Window:         30.0    sec

Expected RT:        1.80   min

Use Relative RT:    No    

Int. Type:        Valley  

Retention Time:     1.80   min

Area:          33600.   counts
Height:         2.24e+004  cps
Start Time:         1.77   min

End Time:           1.89   min

Sample Name: "ROFLUMILAST_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Rolipram(IS)"    Mass(es): "276.200/191.000 Da"
Comment: ""    Annotation: ""

Sample Index:      12     

Sample Type:     Unknown  

Concentration:      1.00       µM  
Calculated Conc:    N/A            
Acq. Date:       6/6/2012  

Acq. Time:       12:36:19 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  

Noise Percentage:     50     

Base. Sub. Window:    1.00   min
Peak-Split. Factor:   2      
Report Largest Peak:   Yes   

Min. Peak Height:      0.00   cps

Min. Peak Width:       0.00   sec
Smoothing Width:       9       points
RT Window:         30.0    sec

Expected RT:        1.34   min

Use Relative RT:    No    

Int. Type:        Valley  

Retention Time:     1.34   min

Area:         106000.   counts
Height:         6.91e+004  cps
Start Time:         1.32   min

End Time:           1.41   min
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Vildagliptin (LAF237) 

 
 

Tolbutamide 

 

 
 

Sample Name: "LAF237_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Rolipram(IS)"    Mass(es): "276.200/191.000 Da"
Comment: ""    Annotation: ""

Sample Index:      11     

Sample Type:     Unknown  

Concentration:      1.00       µM  
Calculated Conc:    N/A            
Acq. Date:       6/6/2012  

Acq. Time:       12:33:11 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  

Noise Percentage:     50     

Base. Sub. Window:    1.00   min
Peak-Split. Factor:   2      
Report Largest Peak:   Yes   

Min. Peak Height:      0.00   cps

Min. Peak Width:       0.00   sec
Smoothing Width:       9       points
RT Window:         30.0    sec

Expected RT:        1.34   min

Use Relative RT:    No    

Int. Type:        Valley  

Retention Time:     1.34   min

Area:         106000.   counts
Height:         6.82e+004  cps
Start Time:         1.32   min

End Time:           1.44   min

Sample Name: "LAF237_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "efa"    Mass(es): "304.500/154.000 Da"
Comment: ""    Annotation: ""

Sample Index:      11     

Sample Type:     Unknown  

Concentration:      N/A            
Calculated Conc:    0.00       µM  
Acq. Date:       6/6/2012  

Acq. Time:       12:33:11 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  

Noise Percentage:     50     

Base. Sub. Window:    1.00   min
Peak-Split. Factor:   2      
Report Largest Peak:   Yes   

Min. Peak Height:      0.00   cps

Min. Peak Width:       0.00   sec
Smoothing Width:       9       points
RT Window:         30.0    sec

Expected RT:       0.680   min

Use Relative RT:    No    

Int. Type:        Valley  

Retention Time:    0.680   min

Area:         503000.   counts
Height:         3.70e+005  cps
Start Time:        0.662   min

End Time:          0.775   min

Sample Name: "TOLBUTAMIDE_HLM_1M IN"    Sample ID: ""    File: "DATA.

Peak Name: "Tolbutamide"    Mass(es): "271.100/91.100 Da"
Comment: ""    Annotation: ""

Sample Index:      17     

Sample Type:     Unknown  

Concentration:      N/A            
Calculated Conc:    0.00       µM  
Acq. Date:       6/6/2012  
Acq. Time:       1:07:03 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     

Base. Sub. Window:    1.00   min

Peak-Split. Factor:   2      
Report Largest Peak:   Yes   
Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec

Smoothing Width:       9       points
RT Window:         30.0    sec
Expected RT:        1.26   min
Use Relative RT:    No    

Int. Type:        Valley  
Retention Time:     1.26   min
Area:          63900.   counts

Height:         3.91e+004  cps

Start Time:         1.24   min
End Time:           1.33   min

Sample Name: "TOLBUTAMIDE_HLM_1M IN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Rolipram(IS)"    Mass(es): "276.200/191.000 Da"
Comment: ""    Annotation: ""

Sample Index:      17     

Sample Type:     Unknown  

Concentration:      1.00       µM  
Calculated Conc:    N/A            
Acq. Date:       6/6/2012  
Acq. Time:       1:07:03 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     

Base. Sub. Window:    1.00   min

Peak-Split. Factor:   2      
Report Largest Peak:   Yes   
Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec

Smoothing Width:       9       points
RT Window:         30.0    sec
Expected RT:        1.34   min
Use Relative RT:    No    

Int. Type:        Valley  
Retention Time:     1.34   min
Area:         103000.   counts

Height:         6.51e+004  cps

Start Time:         1.32   min
End Time:           1.42   min



161 

 

 

Rosiglitazone 

 

 
 

HPLC Chromatograms 

 

                       

Sample Name: "Rosiglitazone_HLM_1MIN"    Sample ID: ""    File: "DATA.wiff"

Peak Name: "Rolipram(IS)"    Mass(es): "276.200/191.000 Da"
Comment: ""    Annotation: ""

Sample Index:      19     

Sample Type:     Unknown  

Concentration:      1.00       µM  
Calculated Conc:    N/A            
Acq. Date:       6/6/2012  
Acq. Time:       1:40:23 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     

Base. Sub. Window:    1.00   min

Peak-Split. Factor:   2      
Report Largest Peak:   Yes   
Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec

Smoothing Width:       9       points

RT Window:         30.0    sec
Expected RT:        1.34   min
Use Relative RT:    No    

Int. Type:        Valley  
Retention Time:     1.34   min
Area:         1280000.   counts
Height:         6.97e+005  cps

Start Time:         1.30   min

End Time:           1.43   min

Sample Name: "Rosiglitazone_HLM_1MIN"    Sample ID: ""    File: " DATA.wiff"

Peak Name: "Rosiglitazone"    Mass(es): "358.000/135.000 Da"
Comment: ""    Annotation: ""

Sample Index:      19     

Sample Type:     Unknown  

Concentration:      N/A            
Calculated Conc:    0.00       µM  
Acq. Date:       6/6/2012  
Acq. Time:       1:40:23 PM  

Modified:           No    
Proc. Algorithm: Specify Parameters - MQ III  
Noise Percentage:     50     

Base. Sub. Window:    1.00   min

Peak-Split. Factor:   2      
Report Largest Peak:   Yes   
Min. Peak Height:      0.00   cps
Min. Peak Width:       0.00   sec

Smoothing Width:       9       points

RT Window:         30.0    sec
Expected RT:        1.54   min
Use Relative RT:    No    

Int. Type:        Valley  
Retention Time:     1.54   min
Area:         141000.   counts
Height:         4.43e+004  cps

Start Time:         1.48   min

End Time:           1.64   min
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10) Enhanced expression of recombinant proteins utilizing a modified baculovirus expression 

vector, Molecular Biotechnology 2010, 46: 80-89. 

11) HPLC method for determination of rosiglitazone in human plasma and its application in a 

clinical pharmacokinetic study, Drug Research 2002,  52: 560-564. 

12) Simple Method for the determination of Rosiglitazone in human plasma using a 
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Dr. Nuggehally R Srinivas, a trained pharmacist and clinical pharmacologist, is a drug 

development specialist with over two decades of pharmaceutical industry experience. Dr. 

Srinivas obtained his Ph.D in the field of stereoselective pharmacokinetics and 

pharmacodynamics from University of Saskatchewan, Canada. Dr. Srinivas spent over a decade 

working at Bristol Myers Squibb, USA engaged in leading a group in drug development across 

multi therapeutic areas. After his tenure in the USA, Dr Srinivas took a position at Dr. Reddy’s 

Laboratories (Hyderabad, India) to strategize and operationalize global drug development for the 

various key discovery programs for over seven years. At Dr. Reddy's, his group was responsible 

for not only clinical candidate selection but creating a target product profile needed for product 

differentiation and carrying out clinical development to confirm human proof of concept in 

relevant patient population. In his current position as the Chief Executive of Vanthys, he is 

leading a diverse group of drug development specialists whose mission is to enable the 

attainment of proof of concept for some important assets in the chosen disease areas such as 

diabetes, oncology, pain/inflammation, lipid disorders etc. Dr. Srinivas has published over 175 

research articles in international peer reviewed journals. He serves on the editorial boards of 

journals such as Journal of Clinical Pharmacology, Biomedical Chromatography, Bioanalysis 

and Current Pharmaceutical Analysis. His outstanding contribution in the field of clinical 

pharmacology has fetched him a nomination of Fellow of Clinical Pharmacology (FCP) from the 

prestigious American College of Clinical Pharmacology. 
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sample analysis as well as drug product analysis. Subsequently the exposure to drug discovery 

research was obtained in Dr. Reddy’s Research Laboratories. As part of M.Pharm program, Biju 

specialized in animal experimentation and preclinical models on diabetes, some areas of 

inflammation and CNS disorders, as well as statistical analytical techniques. Considerable 

experimental skills and theoretical background was developed during the tenure in Dr. Reddy’s 

in in vitro and in vivo pharmacokinetic studies and bioanalysis. Subsequently the role was 

broadened being part of the research team in Ranbaxy Research Laboratories with involvement 

with multidisciplinary discovery teams for seven years. Key focus areas included drug discovery 

screens with high end automation (robotic screening systems, automated sample clean up, 

centralized data integration and analysis)  specialized cell based assays including primary cells,  

integration with pharmacological data as well as interfacing with medicinal chemists. 

Additionally there was some focus on early developmental assessments and drug interaction 

studies. In his current position at Vanthys Pharmaceutical Development, Biju has further 

widened his research interests in developability assessments of clinical candidates, development 

of PK-PD models with preclinical pharmacology and pharmacokinetic data, prediction of human 

doses and PK profiles from preclinical data as well as clinical PK-PD analysis using phase I and 

phase II data. Biju has 8 international publications and 5 posters published during his tenure. 

Biju has received formal training in PK-PD modeling at the intermediate level (WinNonlin 

training, Pharsight Corporation). Major research interests include pharmacokinetic-

pharmacodynamic modeling, physiological based pharmacokinetic models and integrated 

approach to drug discovery and early drug development. 
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