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Abstract 

The reinforced concrete buildings are subjected to lateral loads due to wind and 

earthquake and these forces are predominant especially in tall and slender buildings. In 

order to resist these lateral loads, shear walls are provided in the building as a lateral load 

resisting element which inherently possesses sufficient strength and stiffness. The 

importance of shear wall in mitigating the damage to reinforced concrete structures is 

well documented in the literature. The shear walls are generally classified into three 

categories on the basis of aspect ratio of the shear wall (height/width ratio) viz., short, 

squat and slender shear walls.  The short shear wall, though not very common, has the 

aspect ratio less than unity. The shear walls with aspect ratio between 1 and 3 are 

generally considered to be of squat type and shear walls with aspect ratio greater than 3 

are considered to be of slender type. Due to functional as well as the architectural 

requirements, sometimes the shear walls are penetrated with openings to accommodate 

doors and windows.  In general, the structural response of shear wall strongly depends on 

the type of loading, aspect ratio of shear wall, size and location of the openings in the 

shear wall and ductile detailing (strengthening) around the openings of shear walls.   

Although it is implied that the behavior of shear wall is strongly influenced by the 

severity of loading, it is essential to understand the response characteristics of shear wall 

under different type of loading conditions, viz. static and dynamic, as well as at different 

regimes, i.e. linear as well as non-linear. Though the behavior of shear wall remains 

linearly elastic till certain level of loading, it may not be possible for a shear wall to 

behave in a same fashion throughout the loading history. As prevention of collapse is the 

fundamental requirement of any design, it is essential that the buildings comprising shear 

walls behave in a ductile way, allowing certain safe inelastic deformations.  Hence, in 

order to properly proportion and design the shear wall, it is of paramount importance to 

understand the behavior of shear wall, in linear as well as in non-linear regimes.  

The aspect ratio of the shear wall strongly influences the behavior of the shear wall. The 

squat shear walls generally fail in shear mode whereas the slender shear walls fail in a 

flexural mode. Although, the flexural mode of failure is desirable for both slender as well 

as squat shear wall, however, flexural failure mode has been found to be difficult to 

achieve in the case of squat shear wall.  
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The presence of openings in shear walls needs special attention. It has been observed 

from the literature that the strength and ductility of the shear wall is greatly influenced 

due to the presence of openings in shear wall. The magnitude of strength reduction 

depends on the size of the openings and its locations. Inevitably, the openings in shear 

wall result in severe stress concentration around openings and hence ductile detailing 

(strengthening) needs to be done around openings. The size as well as the location of 

openings in shear wall needs to be carefully designed not only to cater the functional 

requirements, but also to satisfy the overall structural performance of the shear wall.  

Though reasonable experimental investigations on shear walls with openings have been 

reported in the literature, there were only very few analytical investigations pertaining 

to the assessment of influence of openings on shear wall, primarily due to lack of 

sophisticated analytical technique, until the last decade. Though many simplified 

conventional methods evolved over the years to study the behavior of shear wall with 

openings, but its accuracy was always in doubt in predicting the non-linear behavior. 

The limit on the opening size has been imparted in certain design codes only to make 

conventional methods applicable for the analysis, and not from the structural 

viewpoint. With the advent of computing technology, finite element analysis has 

overcome these issues and is prominently being used for the analysis of shear wall with 

openings, even in design and consulting firms. Not many analytical investigations have 

been found in the literature, focusing exclusively on the correlation between opening 

size, opening location and ductility. Moreover, the influence of damping on the 

dynamic structural response of shear wall with openings has also not been thoroughly 

investigated. The present study aims to analyze the behavior of slender and squat shear 

wall with different opening sizes and locations for static and dynamic loading 

conditions using the finite element analysis.   

In order to carry out the above analyses, the finite element program has been developed 

in FORTRAN with state- of- the- art material and geometric modeling. The program is 

capable of performing static as well as dynamic analyses in linear and non-linear 

regimes. The modeling of the shear wall geometry has been the subject of great interest 

over the past few decades and several elements were used in the past such as beam 

element, plane stress element and plate element. Nevertheless, the performances were not 

found to be good due to the poor convergence of solution. On the other hand, shell 
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elements are being used predominantly in modeling the shear wall geometry and resulted 

in a better performance for both thick and thin shells. Since the formulation based on the 

classical shell theory has been found to be mathematically complex, the use of 

degenerated shell element came into picture and was found promising when it was first 

developed for the analysis of moderately thick plates and shells. Nevertheless the 

element suffered from locking phenomenon. Though several methods such as reduced 

integration, selective integration, assumed natural strain concept, and enhanced natural 

strain concept have been used in the past to alleviate locking phenomena, the present 

study uses the concept of assumed strain to avoid shear as well as membrane locking. 

Hence, to geometrically model the shear wall, the nine-noded locking free layered 

Lagrangian degenerated shell element with assumed strain approach has been adopted. 

The layered approach has been introduced, thus allowing the different material properties 

through the thickness direction, especially to facilitate the reinforcement modeling.  

The nonlinearities in the shear wall may be due to the large deformation (Geometrical 

Non-linearity) or due to degradation in material properties (Material Non-linearity). 

Since the shear wall is inherently very stiff, it is expected that even at the large loads, 

deformation may not be very large and therefore, in this study, only material non-

linearity is considered. The material nonlinearities considered in this study are due to 

cracking, yielding and crushing of concrete and steel yielding.  The modeling of 

concrete in compression has been formulated using plasticity theory with Willam-

Warnke five-parameter failure criterion to define the yield/failure surface. The 

isotropic hardening with associated flow rule has been adopted in defining the strain-

hardening behavior of the concrete.  The smeared crack modeling has been adopted in 

which cracks are assumed to be smeared over the element. To represent the capacity of 

the intact concrete between neighboring cracks, the linearly descending branch of 

tension stiffening has been adopted in the present investigation. The modeling of 

reinforcement has been done assuming steel reinforcement to be smeared in a particular 

layer. The bilinear stress-strain curve has been adopted in defining the steel in tension 

as well as in compression. 

For the dynamic analysis, the direct method of time integration has been adopted using 

unconditionally stable implicit Newmark Constant Acceleration Scheme. The formulation 

of mass matrix has been done using the consistent mass matrix approach and the Rayleigh 
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damping has been adopted with stiffness proportionality. The finite element program 

developed has been validated against the benchmark problems to test the sensitivity of the 

element, aspect ratio, with respect to monotonic static and dynamic analysis.  

In order to assess the influence of openings (sizes as well as location) on the squat and 

slender shear walls, five storeyed (squat) and ten storeyed (slender) shear walls, have 

been considered.  The influence of strengthening (ductile detailing) around the openings 

has also been investigated. In general, the presence of opening reduces the load carrying 

capacity significantly as the opening size increases. On the basis of non-linear static 

analysis, even with strengthening of shear wall around the openings, the 21% opening in 

shear wall resulted in the degradation in the load carrying capacity as well as in the 

ductility index and hence need to be avoided.  The ultimate displacement of slender shear 

wall with 21% opening has been considered to be too low as compared to solid shear 

wall. In the similar lines, when subjected to dynamic ground motion, the slender shear 

wall with 21% opening has been considered highly undesirable for both 5% damping and 

2% damping without strengthening, characterized by the heavy one-sided displacement 

response history. Also larger opening puts tremendous base shear demand which may be 

difficult to satisfy practically.  

However, upto 18% opening, slender shear wall shows very stable displacement time 

history response characterized by vibrations of high frequency for both 5% and 2% 

damping. However, for squat shear wall, the displacements are relatively high with 

respect to solid squat shear wall especially for 2% damping without strengthening around 

the opening. Hence, 18% opening has not been considered very safe opening size for 

squat shear wall. For shear wall upto 14% opening, the response of shear wall is not 

overly dependent on the strengthening around the openings and hence considered to be 

safe opening percentage in shear wall.  The displacement ductility index has been 

considered to be better in the case of shear wall with 14% opening. Moreover, for this 

opening, strengthening results in the increase in the load carrying capacity, ultimate 

displacement and ductility index. Hence, the optimum size of openings for both slender 

and squat shear walls have been fixed at 14%.  

The opening locations strongly affect the performance of shear wall. The single central 

opening results in less displacement response and base shear demand for both slender as 

well as squat shear wall. The shear wall with central opening resulted in the better load 
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carrying capacity as well as the ductility index in comparison to other opening locations. 

The aspect ratio of opening plays significant role on the response of shear wall in terms 

of load carrying capacity, ultimate displacement, and ductility index. The consistent 

performance of the shear wall with single central opening and four window opening is 

partly to the square openings. In all cases considered, the influence of damping has also 

been investigated and found that the damping has significant impact in reducing the 

displacement responses especially for large openings.  

The load carrying capacity gets severely affected for shear wall with openings located in 

the form of two windows or three windows. The two window staggered opening resulted 

in the decreased load carrying capacity for both slender as well as squat shear walls when 

the openings are provided. The strengthening of the walls provided for two windows 

(regular) and three window openings resulted in brittle failure with reduced ductility 

index and hence such openings are not recommended. These investigations may lead to 

the possibility of developing certain guidelines in terms of optimum size of the opening 

as well as in identifying the potential zones of vulnerability of shear wall when the 

openings are present in certain precarious locations.  

Keywords: Shear wall, openings, ductility, cracking, yielding, time integration, 

damping, degenerated, shell, locking, nonlinear, time history, 

strengthening. 
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Chapter 1 

Introduction 

1.1 Background 

In the 21
st
 century, there has been the tremendous growth in the infrastructure development 

in the developing countries, especially India, in terms of construction of buildings, bridges 

and industries etc. This infrastructure development is mainly due to the growing population 

and to fulfill their demands. Since the land is limited, there is a huge scarcity of land in 

urban cities. To overcome this problem tall and slender multi-storied buildings are 

constructed. There is a high possibility that such structures are subjected to huge lateral 

loads. These lateral loads are generated either due to wind blowing against the building or 

due to inertia forces induced by ground shaking (excitation) which tends to snap the 

building in shear and push it over in bending. In the framed buildings, the vertical loads are 

resisted by frames only, however, the lateral resistance is provided by the infill wall panels. 

For the framed buildings taller than 10-stories, frame action obtained by the interaction of 

slabs and columns is not adequate to give required lateral stiffness (Taranath, 2010) and 

hence the framed structures become an uneconomical solution for tall buildings. The 

lateral forces due to wind and earthquake are generally resisted by the use of shear wall 

system, which is one of the most efficient methods of maintaining the lateral stability of 

tall buildings. In practice, shear walls are provided in most of the commercial and 

residential buildings upto thirty storeys beyond which tubular structures are recommended. 

Shear walls may be provided in one plane or in both planes. The typical shear wall system 

with shear walls located in both the planes and subjected to lateral loads is shown in 

Fig. 1.1(a). In such cases, the columns are primarily designed to resist gravity loads. 

 

  

(a) Shear walls in both planes (b) In-plane shear capacity (c) Out-of-plane flexural capacity 

Fig. 1.1: Building plan configuration of shear wall 

 

 

 

Column 

Shear wall 
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The shear walls are expected to resist large lateral loads (due to earthquake or wind) 

that may strike “in-plane” [Fig. 1.1(b)] and “out-of-plane” [Fig. 1.1(c)] to the wall. 

The in-plane shear resistance of the shear wall can be estimated by subjecting the 

wall to the lateral loads as shown in Fig. 1.1(b). On the other hand, the flexural 

capacity can be estimated by subjecting the shear wall to the out-of-plane lateral 

loads as shown in Fig. 1.1(c). During extreme earthquake ground motions, the 

response of a structure is dependent upon the amount of seismic energy fed in and 

how this energy is consumed. Since the elastic capacity of the structure is limited by 

the material strength, survival generally relies on the ductility of the structure to 

dissipate energy. At higher loads, inelastic deformation arises which are permanent 

and imply some damage. The damages generally vary from minor cracks to major 

deterioration of structure, which may be beyond repair. It has been learnt from past 

experiences that the shear wall buildings exhibit excellent performance during the 

severe ground motion due to stiff behavior at service loads and ductile behavior at 

higher loads thus preventing the major damage to the RC buildings (Fintel, 1977). 

The behavior of shear wall can be ascertained well by observing the deflected shape. 

The deflected shape of the tall shear wall is dominated by flexure and that of short 

shear walls by shear as shown in Fig. 1.2. 

 

Fig. 1.2: In-plane deformation of shear wall 

Thus, in the case of tall shear wall, the deflected shape can be determined using the 

simple bending theory by ignoring shear deformation. However, it becomes necessary to 

include shear deformation in the case of short walls. The total deformation of a shear 

wall is the sum of the (i) flexural deformation, (ii) shear deformation, and  

(iii) slip deformation as shown in Fig. 1.3.  

W 

(a) Short wall 

H 

(b) Tall wall 

   H 

W 
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=               +          + 

 

Fig. 1.3: Deformation of shear wall 

Though tall shear wall is to be precisely defined as structural walls, however, for 

simplicity, it is denoted as shear wall only. Several experimental and analytical 

investigations have been performed in assessing the behavior of the shear walls (Rahimian 

2011; Klinger et al. 2012; Paulay and Priestley 1992; Atimtay and Kanit 2006; Elnashai et 

al. 1990; Taranath 2010; Lefas et al. 1990; Derecho et al. 1979; Mullapudi et al. 2009; 

Paknahad et al. 2007; Thomsen and Wallace (1995, 2004); Ghorbanirenani et.al. 2012). On 

the basis of above investigations, it was found that shear walls possess certain inherent 

characteristics if designed and detailed properly. 

The strength, stiffness and ductility are the essential requirements of shear wall and need 

to be assessed for its structural performance (Derecho et al. 1979; Farvashany et al. 

2008; IS 13920 1993; IS 4326 1993). Strength limits the damage and stiffness reduces 

the deformation in the shear wall. Ductility, defined as ability to sustain inelastic 

deformations without much strength and stiffness degradation, has been considered very 

essential requirement, especially under severe dynamic loading conditions. Hence, the 

basic criteria that the designer has to satisfy while designing shear walls in earthquake 

resistant structures are as follows: 

• To impart adequate stiffness to the building so that during moderate seismic 

disturbances, complete protection against damage, particularly to non-structural 

components, is guaranteed. 

• To provide adequate strength to building in order to ensure that an elastic seismic 

response does not result in more than superficial structural damage. 

Total deformation Flexural deformation Shear deformation Slip deformation 
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• To provide adequate structural ductility to building in order to dissipate energy 

for the situation when the largest disturbance to be expected in the region does 

occur. Even the extensive damage, perhaps beyond the possibility of repair, is 

accepted under extreme conditions, but prevention of sudden collapse must be 

ensured under any dire circumstances. 

Sometimes, shear walls are pierced with openings to fulfill the functional as well as 

architectural requirements of buildings. The structural response of shear wall may be 

influenced by the presence of openings, depending upon their sizes and their positions. 

The present study aims to accomplish this task by investigating the response of shear 

walls in the presence of openings. 

1.2 Classification of Shear Walls 

Based on several experimental and analytical investigations, the shear walls are mainly 

classified on the basis of (i) structural materials (ii) aspect ratio, and (iii) geometry. 

1.2.1 Based on structural materials 

Depending on the structural materials, shear walls are usually classified as (i) steel shear 

wall (ii) timber shear wall (iii) reinforced masonry shear wall, and (iv) RC shear wall. 

Though steel shear walls are considered to have excellent strength to weight ratio, its use 

is normally restricted to industrial structures due to high initial cost. The timber shear 

walls, light weight structure, are very advantageous in the cold region; its use is not 

advisable for high-rise structures due to its limited strength. Similarly, reinforced 

masonry shear walls are not permitted beyond four storeys because of inherent instability 

of tall buildings. The RC shear walls are very prominently used in common residential 

and commercial complexes and hence been the subject of intense research for many 

decades. 

1.2.2 Based on aspect ratio 

The ratio of height (H) to width (W) of the shear wall, generally referred as aspect ratio, 

is one of the most important parameters influencing the structural behavior of shear wall. 

The classification of shear walls based on aspect ratio is shown in Fig. 1.4. The shear 

wall is considered to be short if the aspect ratio is less than unity. The short shear walls 



Introduction 

5 

H 

W 

were extensively used in the early 1920's to provide the line of defense in military 

operations though not with the name ‘shear walls’. 

 

 

 

Short Shear wall 
( )1WH ≤  

Squat Shear wall 
( )3WH1 ≤<  

Slender Shear Wall 
( )3WH >  

Fig. 1.4: Classification of shear wall on the basis of aspect ratio 

The shear walls are considered squat if the aspect ratio lies between one and three. The 

squat and short shear walls generally fail in shear, which is often undesirable since they 

result in brittle failure (Paulay and Priestley, 1992). On the other hand, the shear wall 

with aspect ratio greater than three is considered slender shear wall. In case of slender 

shear walls, flexure mode predominates and, therefore, the shear deformation is generally 

neglected in the analysis. The analysis of squat shear walls becomes complex due to 

heavy coupling of flexural and shear modes. The cracks in the lower portion of the shear 

wall are common irrespective of their aspect ratio. These cracks usually originate at 

bottom portion of shear wall at an angle of 45° with respect to horizontal axis and 

referred as diagonal cracks. For slender and squat shear walls these cracks are extended 

up to full width of the shear wall, however, for short shear walls these cracks terminate 

somewhere within the width of the shear wall depending on the aspect ratio.  

 

Fig. 1.5: Orientation of diagonal cracks in the shear wall 

  

H
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W 
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(b) Squat shear wall 

(H/W =1)  

(c) Short shear wall  

(H/W <1) 

W 
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0
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H 

W 

W 

H 

(a) Slender shear wall 

(H/W >3) 



Introduction 

6 

Moreover, for the slender shear walls the cracks are concentrated near the bottom of the 

shear wall, however, for short and squat shear walls these cracks are found to be smeared 

throughout the height of shear wall. The orientation of diagonal cracks in typical slender, 

squat, and short shear walls is shown in Fig. 1.5. 

1.2.3 Geometry of shear wall 

Based on the geometry of shear wall, there may be many types of reinforced concrete 

shear walls such as (a) rectangular shear walls, (b) Bar bell shaped shear walls, 

(c) flanged shear walls, (d) coupled shear walls, (e) framed shear wall, (f) column 

supported shear wall, and (g) core shear wall. Out of all shear walls, rectangular shear 

walls, bar bell shaped shear walls and flanged shear walls are quite common and 

adopted in practice. Hence, the current section deals with these types of shear wall 

only. 

Rectangular shear wall without boundary elements 

The plane rectangular shear wall is the simplest form of shear wall in which only 

horizontal and vertical reinforcement are provided. The vertical and horizontal reinforcing 

bars are provided at a uniform spacing throughout the shear wall as shown in Fig. 1.6. The 

vertical reinforcement not only provides flexural as well as shear resistance, but also 

controls the shear cracking and improves the ductility. Horizontal reinforcement provides 

partial shear strength. Nevertheless, the edges experience high compressive and tensile 

stresses which necessitate the need to strengthen those portions. The strengthening of the 

edges can be accomplished by any one of the following means. 

Rectangular shear wall with boundary elements  

In order to strengthen the shear wall as well to prevent the overstressing of the ends, the 

rectangular shear wall is generally being provided with the extra reinforcement at the 

ends without any increase in thickness of shear wall. Such type of shear walls are 

commonly known as rectangular shear wall with boundary elements and these end 

regions of the walls with increased reinforcement are called boundary elements (Murthy, 

2004), which adds confinement to the concrete. To achieve this confinement in the 

boundary elements, vertical as well as horizontal bars are provided at much closer 

spacing as shown in Fig. 1.7. 
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Fig. 1.6: Section of rectangular shear wall 

without boundary elements 

Fig. 1.7: Section of rectangular shear wall 

with boundary elements 

The shear walls with boundary elements, enhances the shear resistance and ductility of 

the shear wall, however, no significant increase in flexural capacity is observed. 

Nevertheless, this confinement enables concrete to sustain the load reversals without 

losing strength. Shear walls with boundary elements are commonly used in shear wall 

buildings of shorter height (i.e. up to five storeys). 

Bar bell shaped shear wall 

Sometimes, the steel in boundary elements becomes very large to accommodate within 

normal thickness. Hence, there is a need to increase the thickness of the shear wall at the 

ends. Such shear walls are known as bar bell shaped shear walls, as shown in Fig. 1.8.  

 

 

Fig. 1.8: Bar bell shaped shear wall with 

boundary elements 

Fig. 1.9: Flanged shear walls 

 
 

The ends are known as boundary elements. The bar bell shaped shear walls are 

somewhat stronger and more ductile than the simple rectangular type of uniform section. 

These walls are generally designed to possess higher shear strength and hence failure is 

designed to take place by yielding of steel. Nevertheless, bar bell shear walls are very 

rigid during severe ground motion and hence attracts larger inertia forces and dissipate 

lot of energy by cracking, which is difficult to repair. Bar bell shaped shear walls are 

particularly strong in developing moment-capacity. These types of shear walls are 

frequently used for tall multi-storeyed buildings where both vertical load carrying 

capacity and lateral resistance are considered essential. 
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Flanged shear wall 

The flanged shear walls are widely used in nuclear power plants as well as in the elevator 

cores of high-rise buildings. Flanged shear walls are preferred over the rectangular shear 

walls when the aspect ratio of the shear wall exceeds unity. Though the flanges are out-of-

plane to the web as shown in Fig. 1.9, it has been observed that the performance of flanged 

shear walls has been found to be better in resisting bending stresses as compared to 

rectangular shear walls. However, flanged shear walls do not enhance shear capacity as 

much as the moment, because the flange does not increase the gross area as it does the 

moment of inertia. The flanged shear walls are mostly suitable for tall multi-storey 

buildings where vertical load carrying capacity as well as lateral load resistance is 

important. 

1.3 Failure Modes of RC Shear Wall 

In order to characterize the behavior of RC shear wall, it is essential to understand the 

failure modes of RC shear wall. The failure modes of the shear wall are greatly 

influenced by (i) aspect ratio, and (ii) cross-sectional geometry. Slender shear walls, 

designed for flexural strength, behave like a vertical slender cantilever beam, and 

therefore, primary mode of deformation of slender shear wall is bending. On the 

other hand, the design of short/squat shear walls is governed by shear strength and 

possesses significant amount of shear deformation in addition to bending 

deformation. In the short/squat shear walls, shear transfer takes place by the truss 

action which provides a stiffer system than that for slender walls. Unlike slender 

shear walls, squat shear walls do not show any significant difference in behavior 

under monotonic and reversed cyclic loading. Several experimental investigations 

have been conducted over the period of last five decades in order to assess the failure 

modes of the shear wall (Thomsen and Wallace 1995, 2004). The different failure 

modes namely, flexure, shear, crushing, sliding and rocking are discussed in the 

current section. 

1.3.1 Shear failure mode (diagonal tension failure) - A brittle failure mode 

Shear failure mode is generally not the desired failure mechanism and is considered 

unsafe. This type of failure is mainly due to the diagonal tension and hence shear failure 

is also known as diagonal tension failure. Due to shear failure, the vertical load carrying 
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capacity of the shear wall is lost even at relatively low strains. Shear failure is the 

common mode of failure of squat shear walls as shown in Fig. 1.10(a), where achieving 

ductility is a herculean task. Due to high shear stresses and relatively low flexural 

stresses, shear walls develop principal tensile stresses with approximately 45
°
 

inclinations. Since the tensile strength of concrete is considered very low in comparison 

to compressive strength, the cracks are formed during the early stages of loading itself. 

The diagonal cracks are effectively restrained by providing horizontal reinforcement. 

Nevertheless, if the horizontal reinforcement provided is less or insufficient to sustain 

diagonal tensile stresses then the diagonal tension failure occurs. The horizontal 

reinforcement improves the inelastic response of shear walls subjected to high nominal 

shear stress by reducing shear deformation. However, the horizontal reinforcement is 

ineffective in resisting sliding shear. 

1.3.2 Crushing failure mode - A brittle failure mode 

Crushing failure mode occurs due to the diagonal compression because of inadequate 

confinement of the compression zone. This mode of failure is the most unsafe of all 

mechanisms and such failures are considered very brittle as crushing of concrete takes 

place prior to yielding of steel. The diagonal compression failure becomes more severe 

under reversed cyclic loading conditions. The crack pattern due to diagonal compression 

failure mode is shown in Fig. 1.10(b). 

1.3.3 Flexural failure mode - A ductile failure mode 

Flexural failure mode, a ductile failure mode, is a very safe mechanism and is considered 

an ideal choice of failure modes. Flexural failure is generally observed in the case of 

slender shear walls as shown in Fig. 1.11(a), and such mode of failure is very difficult to 

attain in the case of squat and short shear walls. They develop a predominantly 

horizontal crack pattern in the lower hinging region after a few cycles of inelastic 

deformation. Nevertheless, under reversed cyclic loading, slender shear walls show less 

flexural strength and deformation in comparison to monotonic loading. Moreover, the 

actual flexural capacity of the wall is generally found to be significantly higher than the 

design flexural capacity, due to strain hardening of the vertical reinforcement. It has been 

observed that for the same amount of vertical reinforcement, shear walls having 

reinforcement concentrated in the boundary elements possess higher flexural capacity 

and higher ultimate curvature than the walls having uniformly distributed reinforcement 

(Paulay and Priestley, 1992). 
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(a) Diagonal tension failure (b) Diagonal compression failure 

 
 
 

 

(c) Sliding shear failure (d) Rocking failure 

Fig. 1.10: Failure modes of the short/squat shear wall 

 

 

(a) Flexural failure (b) Flexural shear failure 

 
 

(c) Sliding failure (d) Rocking failure 

Fig. 1.11: Failure modes of the slender shear wall 
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1.3.4 Sliding shear failure mode 

Sliding shear failure mode is caused primarily because of horizontal crack formation at 

the interface of wall and foundation. This mode of failure is responsible for significant 

degradation of stiffness and pinching of hysteresis loops. Sliding shear failure mode 

can be recognized by sliding of the wall along the construction joint at the base. The 

sliding shear failure for short/squat and slender shear walls are shown in Fig. 1.10(c) 

and Fig. 1.11(c) respectively. Sliding shear failure is especially more common in walls 

having considerably low aspect ratio. The sliding shear failure can be minimized by 

providing diagonal reinforcement. Moreover, diagonal reinforcement contributes to the 

flexural strength and improves the energy dissipation capacity. However, in practice, 

the diagonal reinforcement is replaced with horizontal and vertical reinforcement due 

to practical difficulties. Though sliding is not generally a desired failure mode, but 

appears to have happened widely, particularly at poorly formed and compacted 

construction joints. Since the gravity load carrying capacity is not altered in a sliding 

shear failure, it is not inherently an unsafe mechanism. The sliding shear failure can be 

minimized by maintaining high axial load to lateral load ratio. 

1.3.5 Rocking failure mode 

Rocking has probably saved many walls that would otherwise have failed if they had 

rigid foundations. The rocking failure for short/squat shear wall and slender shear wall 

are depicted in Fig. 1.10(d) and Fig. 1.11(d) respectively. Although inherently a simple 

mechanism, rocking is dynamically complex but considered a very safe mechanism of 

failure. 

1.4 Methods of Analysis of Shear Wall 

In the early days, several conventional analytical methods were developed and adopted 

for the elastic analysis, specifically to shear wall. The popular conventional methods 

may be enumerated as (i) Continuous Connection Method, (ii) Transfer Matrix 

Method, (iii) Wide Column Analogy or frame analysis, (iv) Discrete Force Method, 

etc. Nevertheless, these methods involve assumptions of linear elasticity and cannot be 

programmed to handle complex problems, especially under severe earthquake ground 

motion. The Finite Element Method (FEM) has been the most versatile and 
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successfully employed method of analysis to accurately predict the structural behavior 

of reinforced concrete shear walls in linear as well as in non-linear range under static 

and dynamic loading conditions. The analytical procedures of the shear wall may be 

broadly categorized into (i) Linear Elastic Procedure, (ii) Linear Dynamic Procedure, 

(iii) Non-linear Static Procedure, and (iv) Non-linear Dynamic Procedure. 

1.4.1 Linear elastic procedure 

In earlier days, the analysis of RC shear walls were based on the fact that the concrete 

remains uncracked and hence the linear elastic behavior was followed in predicting the 

response. Michael et al. (1970) used linear elastic finite element analysis with 

substructure approach to analyze the shear walls with and without openings and 

observed that the finite element results were in good agreement with experimental 

results in the linear elastic range (Michael et al. 1970). Petersson and Popov (1976) 

developed a special purpose finite element computer program for the analysis and 

design of structural walls with and without openings. This computer program was 

capable of predicting the behavior of structural walls with multiple openings. 

Nevertheless, several building codes including International Building Code (IBC 2000) 

considers the use of cracked section and recommends the use of reduced stiffness after 

the onset of cracking. Sometimes, the reduced stiffness is found to be 75 to 80% of the 

gross un-cracked cross section’s stiffness. This procedure of analysis is incapable of 

capturing the higher modes of deformation. 

1.4.2 Linear dynamic procedure 

The linear dynamic procedure incorporates the effect of higher modes of deformation 

and considers actual distribution of forces in the elastic range in a better way as 

compared to linear static procedure (Mothei, 2005; Su and Wong, 2007). The use of 

linear dynamic procedures such as mode superposition and response spectrum method 

has been found extremely popular for linear systems. Nevertheless, in reality, during 

strong earthquakes, buildings are generally subjected to large inertia forces, which 

cause members of buildings to behave in a non-linear manner. In such scenarios, 

linear analysis fails to capture the actual strength of the structural members, which is 

only possible with non-linear static or non-linear dynamic analysis procedure (Naeim, 

2001). 
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1.4.3 Non-linear static procedure 

The non-linear static procedure is an improvement over the linear static analysis in the 

sense that it allows the inelastic behavior of the structure. In this method, the magnitude 

of the structural loading is incrementally increased in accordance with a certain 

predefined pattern. The non-linear static procedure gives accurate results for structures 

whose response is dominated by a fundamental mode. This method of analysis neglects 

the variation of loading with time, the influence of higher modes and the effect of 

resonance. For structures that are more flexible, the response quantities are strongly 

influenced by higher modes and hence non-linear static procedure predicts highly 

inaccurate results for such cases (Mothei, 2005). The non-linear dynamic procedure is 

the only method to describe the actual behavior of the structure during strong 

earthquakes (Su and Wong, 2007). This method is based on the direct numerical 

integration of the differential equation of motion. 

1.4.4 Non-linear dynamic procedure 

According to D' Alembert's principle, the unbalanced force is proportional to the 

acceleration of the structure and the constant of proportionality being the mass. 

Considering the free body diagram of rigid block shown in Fig. 1.12, the equation of 

motion of rigid block of mass 'm' in the lateral direction is given by  

 )()( tRukucumumuckutR =++⇒=−− ɺɺɺɺɺɺ  [1.1] 

The above equation is the second order linear differential equation with constant 

coefficients. However for the non-linear case, the above equation is represented as 

 )(),( tRuufucum s =++ ɺɺɺɺ  [1.2] 

The constant coefficients m, c and k are the mass, damping and stiffness components 

respectively and )(tR is an external force, which varies with time 't'. The term sf  

represents the restoring force component which varies with time. 

 

Fig. 1.12: Dynamics of rigid block  

uc ɺ
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In order to define the motion of rigid block of mass m at various time intervals, it is normally 

suggested to use direct step-by-step time integration. The direct step-by-step time integration 

is computationally very demanding than response spectrum technique. Mothei (2005) 

observed that for RC structures, the inelastic time history method has been found to give 

displacements up to 10% higher than the spectral analysis (Mothei, 2005). The direct 

integration method is further classified into implicit and explicit methods. Both the methods 

are extensively used in determining the response of the structure at discrete time intervals. 

The various implicit and explicit direct integration methods are well described in the 

literature (Chopra, 2006; Clough and Penzien, 2003; Bathe, 1996). However, for 

completeness, the explicit and implicit time integration methods are discussed briefly. 

Explicit time integration 

In the explicit time integration methods the response at time '' tt ∆+  is calculated from 

the equilibrium at time 't'. The explicit method of integration is commonly used for 

determining the response of the structure subjected to blast or impact loads. Central 

difference method is the most popular explicit methods used in the time integration. The 

use of explicit central difference method in wave propagation problem is well 

documented in the literature (Bathe, 1996). The advantage of explicit time integration is 

that the stiffness matrix need not be assembled completely and hence diagonalization is 

completely avoided. This method is very advantageous provided mass matrix is diagonal. 

The diagonal mass matrix is obtained by lumping the masses at nodes. The major 

drawback of explicit time integration is that the time step '' t∆  used for calculation of 

response has to be smaller than the critical time step ( max2 ω=∆ crt ) to ensure the stable 

solution. Hence, the time step is bounded by the largest natural circular frequency of the 

structure. If the time step is not strictly followed, then the solution can be unstable with 

very large displacements even in the case of linear analysis. 

Implicit time integration 

In the implicit time integration, the solution at time '' tt ∆+  involves the equilibrium 

equation at '' tt ∆+  and hence results in an iterative solution. The Newmark Beta method, 

also popularly known as trapezoidal rule, is the most common of all implicit methods, 

and is unconditionally stable and allows larger time step to be used in the computation of 

the response (Bathe, 1996).  
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1.5 Damping Characteristics in Structures 

Damping can be defined as the characteristic in which certain energy is lost irrecoverably 

over the period of time, thus resulting in the decay of response. The free vibration 

response of the structure when subjected to initial displacement and velocity is depicted 

in Fig. 1.13(a) and Fig. 1.13(b) for undamped and damped cases respectively. For the 

undamped case, the response repeats after every cycle and continues forever, 

representing no energy loss [Fig. 1.13(a)]. Nevertheless, for damped case, some amount 

of energy loss is bound to occur and hence response decays with time [Fig. 1.13(b)]. 

 

 

(a) With damping neglected (b) With damping included 

Fig. 1.13: Vibration of a system 

The energy dissipation is a fundamental requirement of the structure subjected to 

severe earthquake. The greater energy is dissipated if a structure experiences stable 

inelastic response. The vibration amplitude, structural materials, fundamental natural 

period of vibration, mode shapes and structural configuration are some of the important 

factors affecting the damping of the structure. The structural damping is due to energy 

dissipation in materials of construction and structural components. The concrete, being 

a brittle material, is not a good source of energy dissipation. Sometimes, transfer of 

energy takes place from vibrating structure to the soil and such energy loss is known as 

foundation damping. The interaction of the structure with surrounding air and water are 

considered as aerodynamic and hydrodynamic damping, respectively. Charney 

considered the hydrodynamic dampers in the analysis of off-shore structures (Charney, 

2008). It has been reported that the shape of the building has a strong influence on the 

aerodynamic damping response of structures (Taranath, 2010). The various 

aerodynamic modifications to the basic cross section of shear walls are depicted in 

Fig. 1.14. 
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(a) Basic Rectangle (b) Slotted corners 

  

(c) Chamfered corners (d) Rounded corners 

Fig. 1.14: Various aerodynamic modifications to corner geometry 

It is suggested to have slotted corners, chamfered corners and rounded corners instead of 

regular basic shapes in order to mitigate the response of tall buildings especially in the 

case of wind effects. Rounding of a corner to a circular shape has resulted in a significant 

reduction in the response of structures. For very tall buildings, the inherent damping may 

not be sufficient in mitigation of structural response adequately. It has also been 

observed that the inherent damping of tall structures is less than 1% of critical damping. 

Hence such structures are extremely sensitive to lateral wind and earthquake vibrations. 

The use of supplemental or auxiliary dampers is vital in keeping the response of tall 

buildings to the desired level from safety and serviceability point of view. Damping 

helps in delaying the failure due to diagonal compression, diagonal tension and sliding 

shear and thus ensuring the full shear or flexural capacity before collapse. 

1.6 Ductility in Shear Wall 

The structures' response to ductility is one of the most important parameters in assessing 

the qualitative performance of building, especially from earthquake resistant point of 

view. The fundamental requirement of structural design is to prevent the sudden collapse 

of the structure. The sudden collapse of the structure due to high lateral loads may be 

avoided by allowing limited inelastic deformation before failure. A structure may 

achieve the required inelastic deformations provided it has inherent ductility. The 

ductility of the shear wall is majorly influenced by many parameters such as the aspect 
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ratio of the shear wall, reinforcing steel properties, quantity & location of reinforcing 

bars, openings in the shear wall etc. The aspect ratio's influence on ductility is well 

understood and relatively straight forward in the sense that the slender walls favor ductile 

behavior as compared to short/squat shear walls. The type of reinforcing steel has strong 

influence on the structural response of shear wall. It has been learnt from previous 

failures that mild steel possesses high ductility than the high strength steel. However, for 

a given quantity of steel, reinforcement location plays a crucial role on the structural 

response. In the shear walls with boundary elements, the degree of confinement has the 

strong effect on the strength and ductility of shear wall. However, it has been observed 

that beyond a certain extent, confinement may not necessarily result in increase in 

ductility (Paulay and Priestley, 1992). Ductility is usually expressed in terms of ductility 

ratio (µ), which is defined as the ratio of ultimate deformation to the deformation at 

yield. The ultimate deformation is the sum of the elastic deformation and the plastic 

deformation. The physical representation of displacements and rotations at yield, plastic 

and ultimate stages is shown in Fig. 1.15. The plastic hinge is expected to form at the 

bottom of the shear wall as shown in Fig. 1.15. 

 

Fig. 1.15: Displacements and rotations at yield, plastic and ultimate stage 
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The yield and failure/ultimate deformation of the structure are the two most difficult 

parameters to be captured analytically especially in the reinforced concrete structures. 

Researchers have suggested different ways to identify the yield and ultimate deformation 

(Park, 1988; Paulay and Priestley, 1992). Nevertheless, yield deformation is generally 

taken as the deformation corresponding to the first yield of vertical reinforcement in 
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tension. On the other hand, ultimate deformation is taken as the deformation 

corresponding to either (i) the significant load capacity after the peak, or (ii) the stage 

when reinforcing steel fractures or the longitudinal compression steel buckles. The 

typical models of ductility in terms of displacement, strain and curvature are shown in 

Fig. 1.16 (a), (b), (c) respectively. 

 

 

 

(a) Displacement ductility (b) Strain ductility (c) Curvature ductility 

Fig. 1.16: Ductility models 

The actual observed response through experimental/analytical investigations may not 

give clarity on the exact yield and ultimate point; hence, the actual observed responses 

are slightly modified and idealized as multi-linear model as shown in Fig. 1.16(a). The 

ductility ratio is expressed in terms of (i) displacement ductility ( ∆µ ), (ii) strain ductility 

( sµ ), and (iii) curvature ductility ( φµ ), defined as: 
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Ductility has a special concern in the reinforced concrete shear walls because concrete is 

a brittle material and may fail suddenly. It is essential to increase the ductility by 

providing proper reinforcement. It has been suggested that the ductility of the shear wall 

can be increased by (a) decreasing the tension steel content, (b) increasing compression 

steel content, (c) using low yield strength steel, and (d) increasing the transverse 

reinforcement (Helmut, 2007). It is also suggested that the structure can be designed for 

lower seismic shear forces in case if it possesses sufficient ductility.  
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1.7 Shear Wall with Openings 

Several experimental and analytical studies confirm that the structural behavior of the 

shear wall with opening is complex due to stress concentration near the openings 

(Neuenhofer, 2006), leading to reduction in stiffness and strength of the wall. Moreover, 

openings in the shear wall result in the reduction in the concrete area and may result in the 

tremendous shear deformation even in the case of tall slender shear walls. Moreover, the 

force transfer gets disturbed in the shear wall with openings. The shear strength of the wall 

with openings should be examined along critical planes that pass through openings. Hence 

it is necessary to provide proper reinforcement in horizontal as well as in vertical direction 

around the openings. This vertical and horizontal reinforcement constitutes a steel band 

around openings thus resulting in strengthening (ductile detailing) of the shear wall. The 

diagonal reinforcement may also be provided around the openings as a part of 

strengthening process. The American Building Code Requirements for Structural Concrete 

(ACI 318-11) specifies that for walls with openings, the influence of the openings on the 

flexural and shear strengths are to be examined. 

Depending upon the size, shape and location of openings, the response of the shear wall 

may get affected. The Architectural Institute of Japan (AIJ) specifies that the strength 

reduction factor of a shear wall due to the openings is limited to 0.6 by restricting the 

maximum ratio of opening dimensions to the corresponding wall dimensions. On the other 

hand, the seismic code of China specifies that the limiting value of the opening to be 15% 

of the area of wall. Nevertheless, these limits have been specified only to make the 

conventional methods applicable to wall structures as well. Most of the other codes are 

silent on the limiting percentage of openings in shear wall. This is partly due to lack of 

research on multiple openings in shear wall (AIJ, 2000; Kato, 1995). In order to determine 

the influence of openings on the structural response of reinforced concrete shear wall, many 

experimental and analytical investigations have been conducted in the past several decades 

as portrayed in the next chapter in detail. The research study on the shear wall panel by 

Tomii and Miyata (1963) revealed that the position of the openings in the shear wall did not 

greatly influence the response of the shear wall. Nevertheless, recent studies specify that the 

opening positions affect the performance of the shear wall (Neuenhofer, 2006). It is also 

suggested that the circular openings result in less severe stress concentration than 

rectangular openings. Nevertheless, due to practical difficulties as well as due to the 
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complexity in modeling circular shape openings, rectangular/square openings are generally 

provided and hence have been considered for the present analytical study. 

1.8 Scope of the Present Study 

The present research work involves the development and validation of finite element 

program for the static and dynamic analyses of squat and slender shear walls with and 

without openings. The non-linear finite element analysis has been employed with 

material non-linearity which includes the non-linearity due to concrete cracking, 

yielding of concrete and steel and crushing of concrete. To geometrically model the 

shear wall, the nine- noded locking free layered Lagrangian degenerated shell 

element with assumed strain approach has been adopted. The modeling of elasto-

plastic behavior concrete in compression is done using plasticity approach and 

Willam-Warnke five-parameter model is adopted to define the yielding/failure 

surface of concrete. For mathematical simplicity, only isotropic hardening with 

associated flow rule has been considered to define the strain hardening and plastic 

flow, respectively. The reinforcing steel bars are assumed to be in tension and 

modeled using bilinear stress-strain curve with elastic and strain hardening behavior. 

Since concrete is weak in tension, cracks form at early stages of loading and may 

result in non-linearity. In order to model the cracks, the fixed smeared crack approach 

has been adopted in the study. The tension stiffening effect has been incorporated by 

assuming the linear descending curve. 

1.9 Organization of the Thesis 

This thesis is divided into seven chapters. The Chapter 1 of thesis establishes the 

background along with scope and details of thesis organization. The Chapter 2 presents 

the various aspects of solid shear wall and shear wall with openings, as well as the 

influence of damping on the structural response of shear wall. The research gaps have 

been identified and objectives have been set in this chapter. The material modeling of RC 

structures is discussed in Chapter 3. The geometric modeling including element 

formulation and dynamic analysis are described in Chapter 4. The steps involved in the 

complete finite element formulation are also presented in Chapter 4. The validations of 

the developed finite element program with the standard analytical and experimental 

results are also presented in Chapter 4.  
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The Chapter 5 elaborates the response analysis of slender as well as squat shear walls 

with different opening sizes and locations for static monotonic loading conditions. The 

influence of ductile detailing (strengthening) around the openings and the displacement 

ductility index are discussed in this chapter. The Chapter 6 presents the time history 

response analysis of slender as well as squat shear walls with different opening sizes and 

locations for dynamic ground motions. The influence of damping on the structural 

response is also discussed in this chapter. In Chapter 7, findings, conclusions, and scope 

for further research are presented.  
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Chapter 2 

RC Shear Wall: A State-of-the-Art 

2.1 Background  

Shear walls have been usually adopted as the lateral load resisting elements in Reinforced 

Concrete (RC) buildings. Since 1940s, a significant number of experimental investigations 

have been conducted in many countries on RC shear walls. The first experimental 

investigation on shear walls appears to have been conducted by Ban (1943). Most of these 

investigations focused on the determination of ultimate strength of walls subjected to 

various loading conditions such as monotonic, cyclic, dynamic and blast (high-speed 

monotonic). Significant experimental investigations on shear wall subjected to monotonic 

loading were conducted at Massachusetts Institute of Technology (MIT), USA in 1949 to 

develop design procedures for shear-wall structures as well as to prepare a basis for the 

evaluation of existing shear wall structures. In continuation to the above experimental 

investigations conducted at MIT, Benjamin and Williams (1953,1954) studied the behavior 

of RC shear walls surrounded by RC frames under monotonic loading to develop the 

analytical procedures for the design of shear wall framed structures, The major design 

variables considered in their study were aspect ratio, reinforcement ratio, and openings etc. 

In order to simulate the dynamic loading, in the 1970s, the dynamic loading began to 

replace the monotonic tests. The first dynamic tests on shear wall were conducted in early 

1980s at the Los Alamos National Laboratory (LANL) in the United States using 

earthquake-simulator. Since then, many experimental and analytical investigations have 

been performed to determine the responses of shear walls under various loading conditions 

(Yanez, 1993; Kwak and He, 2001; Fragomeni, 2012). 

For the analysis of shear wall, several analytical methods have been proposed by various 

researchers which range from simplified conventional approach to the sophisticated finite 

element approach. Due to the complexity of numerous factors which influence the 

overall behavior of RC shear walls, the validity of modeling and analysis techniques 

could only be established by comparing the same with experimental results. In this 

chapter several experimental and analytical investigations are presented pertaining to the 

assessment of the shear walls of different aspect ratios with and without openings and 
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subjected to different loading conditions. Furthermore, various codal provisions have 

also been reviewed to make a comparative study on design guidelines of shear walls with 

and without openings. In the end, the damping characteristics and the mathematical 

models are also discussed in detail. 

2.2 Methods of Analysis of Shear Wall 

During the past few decades, efforts have been directed towards the development of 

effective analytical techniques that are able to model the behavior of shear walls 

adequately. Simplified methods have been proposed by various researchers in the past: 

the simplified methods such as equivalent column model, lumped plasticity models, 

equivalent frame model, Rosman- approach, method of relaxation etc are quite popular 

among the engineering fraternity. However, these simplified models are applicable only 

to shear wall with regular geometry and with linear elastic behavior. On the other hand, 

finite element method is capable of analyzing shear wall of irregular geometry subjected 

to loads varying with time in the linear as well as non-linear regimes. The current section 

explains the various simplified methods and the finite element methods.  

2.2.1 Simplified methods 

One of the simplest ways to analyze the shear wall, shown in Fig. 2.1(a), is by using 

equivalent column approach. In earlier days, equivalent column approach has been 

adopted in analyzing the solid shear wall structures and results in simplified computation 

owing to unidirectional dimensionality, as shown in Fig. 2.1(b). In the equivalent column 

approach, the shear wall is modeled as a column element of equivalent stiffness and is 

analyzed as a 1-D column (line) member. Moreover, for the analysis of shear wall with 

openings using equivalent column approach, openings band(s) in the shear wall are 

idealized as an interaction of walls and beams. Although equivalent column approach has 

widely contributed to the basic understanding of the shear walled structures, it suffers 

due to the inability in capturing the non-linear strain distribution over the wall length 

during loading. This drawback is more pronounced in the case of squat and short shear 

walls where aspect ratio is less. Hence the application of equivalent column model is 

mostly restricted to slender shear walls.  

Under severe seismic excitation of shear wall, the inelastic behavior of shear wall usually 

gets concentrated at certain locations, probably at the edges and at locations weakened by 
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openings. In order to simulate this behavior, Bolander and Wight (1991) used non-linear 

springs at those locations to represent plastic hinges of zero length as shown in 

Fig. 2.1(c). Since plastic hinges are concentrated at certain specified locations, this 

modeling technique is popularly known as lumped plasticity approach. The advantage of 

lumped plasticity modeling is that they reduce the computational degrees of freedom of a 

structure to a near minimum (Bolander and Wight, 1991). The lumped plasticity models 

have been found to be very efficient in predicting the load-deflection response of shear 

wall framed structures. It has also been observed that these models represent the behavior 

closer to experimental results. However, the lumped plasticity approach fails to simulate 

the behavior of real structures due to the uncertainties involved in choosing the adequate 

parameters. 
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Fig. 2.1: Simplified methods of analysis of shear wall 

To overcome the above drawbacks associated with the lumped plasticity model, Kunnath 

proposed a slightly complicated distributed plasticity approach in which the inelastic 

effects are distributed along a finite length (Kunnath, 1994) as shown in Fig. 2.1(d). The 

distributed plasticity models inherit uncertainty in the estimation of the length of the 

zone where inelastic effects are to be distributed. Invariably and justifiably, both lumped 

plasticity and distributed plasticity models possess certain inherent simplifying 
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assumptions, and cannot be applied to walls, plates and shells especially where shear 

deformation predominates (Bolander and Wight, 1991). 

The equivalent frame model is another simplified method popularly used in design 

offices for the analysis of multistory shear wall-frame structures because of its simplicity 

and efficiency (Schwaighofer and Microys, 1969). In the equivalent frame model, the 

two-dimensional shear wall is replaced by an idealized framed structure consisting of a 

column located at wall's centroidal axis and rigid beams located at floor levels 

[Fig. 2.1(e)]. This method is popularly known as wide column analogy approach. The 

popularity of this method is largely attributed to the fact that it can be applied to almost 

any shear wall configuration (Nayar and Coull, 1976; Mattacchione, 1991). 

Schwaighofer and Microys (1969) used the equivalent frame model to analyze the shear 

wall with openings and observed that the equivalent frame method overestimates the 

flexural and shear deformations due to discrete modeling of continuous vertical joints 

and becomes impractical when the width of the columns are significant compared with 

their centre to centre distances.  

To overcome the drawbacks posed by the equivalent frame model, smith et.al. (1981) 

proposed two methods based on analogous frame method, namely (i) braced wide 

column analogy and (ii) braced frame analogy. The braced wide column analogy method 

is similar to the conventional wide column analogy method with the addition of diagonal 

braces, as shown in Fig. 2.1(f). In this method, the three structural components columns, 

beams and braces are effectively used to model the shear wall geometry. The properties 

of columns, beams and braces are estimated in such a way that it inherits the properties 

of shear wall.  

In the braced frame analogy, the model consists of a column on the left hand side, rigid 

beams, a hinged link on the right hand side and diagonal braces as shown Fig. 2.1(g). In 

both braced wide column and braced frame analogies, it has been observed that there is a 

probability of obtaining negative stiffness values for the column and braces for certain 

aspect ratios of the shear wall. Considering the fact that most of the computer programs 

cannot perform analysis with negative stiffness values, these methods have been found to 

be ineffective.  

Rosman (1964) developed a simple approximate method for the analysis of shear walls 

with single and two bands of openings of width 'b' and height 'h' subjected to lateral 
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loads. He used the continuous system approach, wherein the vertical line of openings are 

replaced by a continuous laminar of width 'b' throughout the height as shown in Fig. 2.2. 

Rosman in his formulation neglected the axial deformations of the beams and assumed 

the point of contraflexure to occur at the centre of the beams. Schwaighofer extended the 

Rosman's approach for three bands of openings. Schwaighofer also conducted an 

experimental investigation on shear walls with three bands of openings and compared his 

experimental results with the Rosman's analytical approach and found the results to be in 

close agreement. However, it has been observed that if both shear wall and frame are 

present, this method results in the undesirable effects (MacLeod and Hosny, 1977). 

 
 

 

(a) Shear wall with  

          openings 

(b) Equivalent system of  

shear wall with openings 

Fig. 2.2: Continuous system approach 

Lindeburg and Baradar (2001) developed the simplified hand calculation method to 

analyze the shear walls with openings with varying assumptions (Lindeburg and 

Baradar, 2001). The accuracy of this simplified method was checked by Neuenhofer 

(2006) using the linear elastic finite element model of shear wall with conventional 

four-noded plane stress elements and observed that simplified method consistently 

underestimates the impact of the openings on the stiffness reduction, thus producing a 

lateral stiffness larger than that obtained using finite element analysis. Moreover, 

simplified methods have been found to produce remarkably poor results for shear walls 

with small aspect ratios where shear deformation controls the structural behavior 

(Neuenhofer, 2006). Hence, a more versatile method of analysis like finite element 

method is sought for the analysis of shear wall with varying geometry and subjected to 

different loading conditions.  

b 

h 

b 
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2.2.2 Finite element methods 

In order to circumvent the problems associated with simplified methods especially for 

shear walls, finite element analysis has been used to analyze the RC structures of any 

geometry and subjected to any loading conditions in linear as well as non-linear regimes 

since 1960. The earliest publication on the application of the finite element method for 

the analysis of RC structures was presented by Ngo and Scordelis (1967). They analyzed 

simple beams with a model in which the concrete and reinforcing steel were represented 

by constant strain triangular (CST) elements. This CST element is the simplest class of 

2-D elements and is also known as linear triangular element. Since the strain is constant 

inside the finite element, it is necessary to use more number of CST elements in a critical 

zones, e.g. zones in which openings are located in a shear wall, to obtain reasonable 

accuracy. Nilson (1972) analyzed the RC structure with non-linear material properties of 

concrete and steel using quadrilateral element formed by combining four constant strain 

triangular elements. On the other hand, linear strain triangular (LST) element results in 

the better accuracy with less number of elements. Subsequently, the use of linear 

quadrilateral element, and quadratic quadrilateral elements were also effectively 

employed to model the 2-D structures. Quadrilateral elements with quadratic functions 

using iso-parametric approach are considered superior to model the 2-D structures 

because of its high accuracy in analysis. Iso-parametric elements are the class of 

elements, which are more arbitrary in shape and effectively used to model the curved 

geometry of the structure (Ahmad et al. 1970). Moreover, the iso-parametric elements 

are widely used in many structural applications related to plates and shells. Franklin 

(1970) used special frame-type elements, quadrilateral plane stress elements, axial bar 

elements, two-dimensional bond links with advanced non-linear capabilities to analyze 

the behavior of RC frames coupled with shear walls. Due to its simplicity, the use of 

plane stress elements are popular and used by numerous investigators to study the 

behavior of RC frame and wall systems. Cervenka (1970) analyzed the shear walls using 

plane stress elements and proposed a constitutive relationship for the composite 

concrete-steel material for uncracked, cracked and plastic stages. Nayak and Zienkiewicz 

(1972) also conducted the investigation on the elasto-plastic behavior of concrete in 

compression using plane stress finite elements. Dotroppe et al. (1973) used a layered 

finite element procedure in which slab elements were divided into layers to account for 

the progressive cracking through the slab thickness. Scanlon and Murray (1974) used 
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layered rectangular slab elements to analyze the slab by incorporating both cracking and 

time-dependent effects of creep and shrinkage in slabs. Lin and Scordelis (1975) used 

layered triangular finite elements in RC shell analysis by incorporating the membrane 

and bending effects, as well as the tension stiffening effect of concrete between cracks in 

the model. 

The use of shell elements to model moderately thick structures like shear wall is well 

documented in the literature (Dvorkin and Bathe, 1984). Nevertheless, the general shell 

theory based on the classical approach has been found to be complex in the finite 

element formulation. In order to reduce the number of nodes, it was proposed to use 

degenerated shell element with nodes situated only at the mid plane of the element 

(Ahmad et al. 1970). The degenerated shell element derived from the three-dimensional 

element, has been quite successful in modeling moderately thick structures because of 

their simplicity and circumvents the use of classical shell theory. However, in the case of 

thin shells, the shear and membrane locking appeared to be disturbing the solutions 

(Zienkiewicz et al. 1971; Paswey and Clough, 1971) due to parasitic shear stresses (shear 

locking) and parasitic membrane stresses (membrane locking). In order to use these 

elements for thin walled structures such as shear walls, a locking free element is 

required. The assumed strain based degenerated shell element has been quite successfully 

adopted in modeling thin and moderately thick shear wall. 

2.3 Structural Response of Solid Shear Wall 

The structural response of RC shear wall has been investigated by several researchers in 

the past. Galletly (1952) conducted experimental investigations to determine the strength 

of RC shear walls under static monotonic loadings. Benjamin and Williams (1953; 1954) 

studied the behavior of squat RC shear walls surrounded by concrete frames under 

monotonic loading in which they tested ten different specimens of shear walls each 

having width 1.91 m (75.19 in) and thickness 102 mm (4 in). The first six specimens had 

aspect ratio of two and the seventh & eighth specimen had aspect ratio of four and six, 

respectively. The last two specimens had aspect ratio of two and subjected to load 

reversals while other specimens were subjected to monotonic loading. The boundary 

elements of size 610 mm (24 in) wide with 102 mm (4 in) thick are attached to each end 

of the shear wall to simulate cross walls or columns in a real structure. The amount of 

flexural reinforcement in boundary element was varied from 1.8% to 6.4% of the area of 
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the boundary element. Vertical and horizontal reinforcement used in the shear wall web 

area was varied from 0% to 5% of area of the shear wall. Each specimen was topped with 

a slab of 1.52 m (59.84 in) wide with 152 mm (5.98 in) thick simulating a floor or roof 

element. Based on the test results, it was observed that that the shear walls with low 

aspect ratio possess higher shear strength than taller shear walls. Moreover, they assessed 

that shear walls subjected to load reversals had shear strength about 10% less than 

similar specimens subjected to monotonic loading. For the specimens with aspect ratio of 

two or less, it was found that the horizontal wall reinforcement did not contribute much 

to shear strength. Nevertheless, the horizontal wall reinforcement was effective in 

producing a more distributed cracking pattern and in reducing crack widths. Hence, it 

was found necessary to provide minimum horizontal reinforcement in shear walls. 

Moreover, lateral force was observed to be transmitted from the top slab to the base 

through the formation of compressive “struts” in the wall between cracks. Antebi et al. 

(1960) also conducted the experimental investigation to evaluate the strength of low-rise 

shear walls with boundary elements. The above studies laid the platform for the 

development of design criteria for RC shear walls (Anderson et al. 1964). 

Portland Cement Association (1970) conducted the experimental investigations on 

thirteen shear walls out of which four were of rectangular type with cross-sectional size 

of width 1905 mm (75 in) and thickness 101.6 mm (4 in) and remaining nine were of bar 

bell type with increased thickness of 304.8 mm (12 in) at the ends to simulate the 

boundary elements. This investigation was conducted to determine the influence of 

cross-sectional shape as well as the amount of reinforcement on shear walls subjected to 

lateral load at the top of the shear wall (MacLeod, 1970). 

Barda (1972) tested eight squat RC flanged shear walls to determine the overall behavior 

of shear walls in terms of strength, stiffness, and energy absorption characteristics under 

monotonic as well as cyclic loading. Out of eight shear wall specimens, two specimens 

were subjected to monotonic loading and the remaining six shear walls were subjected to 

cyclic loading. The key parameters considered in their study were (i) the reinforcement 

in the flanges, (ii) reinforcement in the web, and (iii) aspect ratio of the shear wall. They 

observed that the strength of a shear wall under cyclic loading was approximately 10% 

less than the identical shear wall loaded monotonically. They also observed that the 

flange reinforcement ratio did not have a significant effect on shear strength of shear 
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wall. On the other hand, the vertical reinforcement ratio was found to be more effective 

than the horizontal reinforcement ratio in resisting the lateral load. The strength 

reduction in the case of shear walls with aspect ratio 1.0 was around 20% as compared to 

the shear walls with aspect ratio 0.5. It was observed that there was no significant 

reduction in strength when the aspect ratio was changed from 0.50 to 0.25. However, the 

vertical reinforcement was more effective for the shear walls with aspect ratio 0.5 than 

for shear walls with aspect ratio 1.0. Hence, it was concluded that the vertical 

reinforcement has been found mandatory in the case of squat shear walls. Based on their 

study they concluded that shear walls should possess higher shear strength in order to 

have better energy absorption characteristics. 

Iliya and Bertero (1980) studied the effects of amount and arrangement of reinforcement 

on hysteretic behavior of RC shear wall panels and observed that 45
0
 arrangement of the 

wall reinforcing bars is more effective in resisting the effect of load reversals. They also 

indicated that conventional reinforcement failed by diagonal cracking whereas shear wall 

with diagonal reinforcement failed by flexural cracking. Nevertheless, the construction 

cost of diagonally reinforced shear walls was higher as compared to shear walls with 

vertical and horizontal bars. 

Paulay et al. (1982) conducted a study on the shear walls with rectangular as well as 

flanged cross-sections without boundary elements and subjected to lateral static cyclic 

loading. In shear walls with rectangular and flanged cross-sections, the horizontal and 

vertical reinforcement ratios were kept at 1.6% and 0.8%, respectively. It was observed 

that the response of the shear wall was dominated by sliding shear and the shear wall 

performed better upto the displacement ductility of four beyond which the structural 

degradation occurred. 

Maier and Thurlimann (1985) tested ten RC squat shear walls with an aspect ratio of 1.0 

to investigate the effect of cross-section shape (flanged or rectangular), reinforcement 

ratio and arrangement, and loading (monotonic or cyclic) on the strength and 

deformation characteristics of shear wall. In their investigations, they considered two 

shear walls with different horizontal reinforcement ratios keeping the vertical 

reinforcement ratio constant. The first shear wall had a horizontal reinforcement ratio of 

1.1% and the second shear wall had no horizontal reinforcement. Though the horizontal 

reinforcement had little influence on the magnitude of peak load, it was observed that the 
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shear wall with horizontal reinforcement failed due to diagonal compression and the one 

without horizontal reinforcement failed due to the diagonal tension. It was concluded that 

horizontal reinforcement had a negligible effect on the ultimate shear strength but found 

to have influenced deformation characteristics of shear wall. Moreover, it was concluded 

that the cyclic loading was not significantly influencing the strength and deformation. 

A similar study was conducted by Lefas et al. (1990) to assess the effect of horizontal 

reinforcement on the behavior of shear wall with boundary elements having top and 

bottom slabs subjected to monotonic loading. The vertical reinforcement ratio in the 

web portion was around 2.4% and that of boundary element was 3.1%. The amount of 

horizontal reinforcement was varied from 0.37% to 1.1%. They observed that the shear 

wall specimens failed in diagonal compression mode and magnitude of horizontal 

reinforcement had little influence on the failure mode and peak load. 

Sittipunt and Wood (1995) conducted an experimental investigation to assess the 

influence of diagonal web reinforcement on the hysteresis response in which four 

specimens were considered, two containing the inclined web reinforcement and other 

the two containing the conventional horizontal as well as vertical reinforcement. 

During the test, it was observed that both the shear wall specimens with conventional 

web reinforcement failed due to web crushing and pinched hysteresis curves were 

observed for top displacement as well as for shear distortion near the base. On the other 

hand, the walls with diagonal reinforcement failed due to crushing of the boundary 

elements and displayed rounded hysteresis curves. Though the choice of diagonal 

reinforcement did not produce a significant influence on the maximum lateral load 

carrying capacity, but measured crack widths were found less with significant energy 

dissipation capacity. 

Palermo (1998) tested the 3-D RC flanged squat shear wall on high performance 

shaking table to experimentally investigate the dissipating capacity of shear wall. It 

was observed that the squat shear walls produced highly pinched hysteresis loops and 

hence the poor energy dissipating capacity. On the other hand, the ultimate lateral load 

resisting capacity has been found to be enhanced by increasing the axial load. 

Salonikos et al. (1999) conducted an experimental investigation on rectangular shear 

walls with aspect ratios of 1.0 and 1.5 to determine the influence of magnitude of 
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web reinforcement, magnitude of boundary reinforcement and the presence of 

diagonal reinforcement on the failure characteristics of shear wall. Their study 

revealed that the reduction of vertical and horizontal reinforcement ratios from 0.57% 

to 0.28% and boundary reinforcement from 1.7% to 1.3% neither significantly 

affected the failure mode nor the observed drift. Nevertheless, due to absence of 

diagonal reinforcement, the sliding shear failure was evident and resulted in poor 

energy dissipation capacity. 

Massone et al. (2004) conducted experimental investigations on four RC shear wall 

models, scaled approximately to 1/4
th

 of the size of the actual shear wall. Out of four 

shear wall models, two were of rectangular cross-sections and remaining two was of  

T-shaped. The shear walls were 3.66 m (12 ft) tall and 101.6 mm (4 in) thick with web 

and flange widths of 1.22 m (4 ft). The floor slabs were provided at 0.91 m (3 ft) 

intervals over the height of the shear walls. The special boundary elements were 

provided over the bottom 1.22 m (4 ft) of each shear wall. Based on their 

investigations, it was revealed that the coupling between the inelastic flexural and 

shear deformations exist despite the shear wall having the shear strength of 

approximately two times the demand. 

Su and Wong (2007) conducted the experimental investigation to assess the influence 

of Axial Load Ratio (ALR) on the behavior of slender shear walls with high aspect 

ratio and subjected to artificial earthquake loads. Three RC wall specimens of size 

400 mm (width) × 80 mm (thickness) × 1640 mm (height) with high concrete strength 

of 60 MPa and high vertical as well as horizontal steel ratio of 2% and 0.5%, 

respectively were fabricated and tested under combined axial load, shear and moment. 

They observed that ALR has significant influence on the ductility and failure mode of 

the shear wall. However, the maximum rotational ductility was found to be decreased 

with increase in ALR. Moreover, it was also observed that an increase in ALR has a 

detrimental effect on shear walls with significant reduction in the strength and energy 

dissipation capacity. 

Farvashany et al. (2008) conducted an experimental investigations on seven shear wall 

models each comprised two beams, one at the top and one at the bottom, and a shear 

wall panel bounded by two boundary elements to assess the influence of horizontal as 

well as vertical reinforcement on strength and deformation of high-strength RC shear 
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walls. The tested shear walls with the aspect ratio of 1.57 were scaled approximately to 

1/3
rd

 of those in a real building and had a thickness of 76.2 mm (3 in), with a width of 

701.04 mm (27.6 in) and a height of 1099.82 mm (43.3 in). The dimensions of edge 

columns (boundary elements) were 375.92 × 88.9 mm (14.8 in × 3.5 in) with the same 

height of 1099.82 mm (43 in). The purpose of the top beam of size 1300.42 mm × 

200.66 mm × 574.04 mm (51.2 in × 7.9 in × 22.6 in) and bottom beam of size 

1800.86 mm × 299.72 mm × 574.04 mm (70.9 in × 11.8 × 22.6 in) is to resist the 

stresses in the top and bottom portions, respectively. The two different amounts of 

horizontal reinforcement of 0.47% and 0.75% were used in conjunction with two 

different amounts of vertical reinforcement of 1.26% and 0.75%. The reinforcement 

ratio used for boundary elements in all specimens was kept at 4%. They observed that 

the increase in vertical reinforcement ratio increases the horizontal failure load. On the 

other hand, the effect of horizontal steel ratio was found to be not as significant as the 

vertical steel ratio. The shear strength of the shear wall was found to be increased only 

marginally with an increase in horizontal steel ratio.  

2.4 Structural Response of Shear Wall with Openings 

Many experimental and analytical investigations have been conducted in the last few 

decades to assess the performance of shear wall with openings under various loading 

conditions. The present section highlights few of the prominent experimental and 

analytical investigations that stimulated the research on shear wall with openings. 

2.4.1 Experimental investigation 

Benjamin and Williams (1953) conducted the experimental investigations on single story 

rectangular shear walls with boundary elements with different opening sizes and 

reinforcement ratios at Stanford University. A total of twenty one shear wall models, 

scaled approximately to 1/4
th

 of the real structure, having size 1727.2 mm × 1409.7 mm 

× 203.2 mm (68 in × 55.5 in × 8 in) with an aspect ratio of 0.816, were tested, out of 

which three models were of solid type and remaining were of shear walls with openings. 

Two different studies were conducted to assess the influence of openings on the response 

of shear wall, one with special reinforcement and other with conventional reinforcement. 

The reinforcement ratio in the case of conventional reinforcement pattern was around 

0.5% in vertical as well as in horizontal direction, while in the case of special 
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reinforcement, the reinforcement pattern consist of conventional reinforcement plus two 

additional bars around openings in horizontal as well as vertical direction. Their 

experimental investigations revealed that the openings resulted in the reduction in both 

strength and rigidity and high stress concentration around the openings in shear wall 

irrespective of reinforcement patterns. Nevertheless, with the help of special 

reinforcement around the openings, it was observed that shear walls demonstrated a more 

uniform crack patterns thus resulted in the ductile behavior. Hence, they suggested that 

the vertical and horizontal reinforcement interrupted by openings should be replaced in 

equal amounts at the sides of the openings. 

Yamada et al. (1974) tested a low-rise framed shear wall (aspect ratio 0.44) with 

openings subjected to monotonic loading. The strength and deformation characteristics 

of the RC shear wall were investigated at three stages of behavior, viz. cracked, peak 

and post-peak. Shiu et al. (1981) conducted an experimental investigation as a part of 

Portland Cement Association (PCA) research program on two 1/3
rd

 scaled rectangular 

six-storeyed slender shear walls of 5.4864 m (18 ft) tall, 1.905 m (6.25 ft) wide with a 

uniform thickness of 100 mm (4 in). They compared the behavior of solid shear wall 

with shear wall with window openings of size 317.5 mm × 457.2 mm (12.5 in x 18 in) 

in all six storeys. It was concluded that the solid shear wall possessed 14% more load 

carrying capacity than the shear wall with openings. This was attributed to the 

interruption of diagonal compression strut in the case of shear wall with openings. 

Moreover, they observed that the solid shear wall failed due to horizontal sliding, 

however, shear wall with openings failed due to shear compression failure of the 

boundary elements. Chiba et al. (1985) tested the low-rise heavily reinforced shear 

walls with openings subject to lateral and axial loads. These shear walls were also 

provided with girders at top and bottom. Sotomura et al. (1985) studied ultimate shear 

strength of low-rise shear walls with numerous small openings subject to horizontal 

cyclic loads for a nuclear power plant. From the above studies, it is observed that 

openings resulted in tremendous shear deformation depending on the size of the 

openings.  

Daniel et al. (1976) tested two 1/3
rd

 scaled six storeyed shear wall models of height 5.48 m 

(18 ft), a horizontal length of 1.91 m (6 ft 3 in), and a uniform thickness of 102 mm (4 in). 

The height of each storey was 1.22 m (4 ft). Floor slabs were simulated by 64 mm (2.5 in) 
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thick stubs running full length on both sides of the specimens and the specimens were 

attached to the laboratory test floor through a rigid foundation block. In order to investigate 

the influence of openings, shear walls were penetrated with openings at every floor of size 

304.8 mm × 457.2 mm (12 in × 18 in) and were located centrally. Kobayanshi et al. (1995) 

tested 26 wall specimens to study the effect of small openings on the strength and stiffness 

of shear walls in reactor buildings. Based on the test results, they proposed the method for 

predicting the shear strength of walls. Johnson (1997) tested different wall configurations 

containing various openings and one control wall with no openings to determine the 

ultimate capacity and stiffness of shear walls. 

On the basis of Chile earthquake in year 1960, which struck the city with a magnitude 

of 7.8, Wood et al. (1987) conducted a post-earthquake survey of 415 RC building 

structures, ranging in height from 5 to 23 storeys, and identified that only six buildings 

suffered massive substantial structural damage. Most of the buildings that withstood 

the damage were shear wall buildings and predominantly with openings. They 

concluded that the buildings with shear walls with staggered openings showed 

excellent performance in preventing the damage. Nevertheless, the special steel was 

provided adjacent to openings that resulted in a ductile performance along with special 

boundary elements.  

Lin and Kuo (1988) tested various shear wall panels to investigate the effect of 

openings, its shapes and boundary elements on the structural behavior of shear wall 

subjected to lateral loading, both monotonic and cyclic. Two different types of shear 

wall panels were tested, one with opening and one without opening. In order to assess 

the influence of openings and boundary elements on the crack patterns, tests were 

conducted on the scaled model of shear wall having dimensions (250 mm × 172 mm × 

20 mm) with opening size 300 mm × 400 mm as shown in Fig. 2.3. Based on the 

studies, it was concluded that in case of solid shear wall, the cracks initiated at bottom 

corner of the junction of wall and boundary element whereas for shear wall with 

openings, the crack initiated at the corner of the openings due to relatively low strength 

and propagated outward with an approximate 45° angle. Nevertheless, for shear wall 

with boundary elements, the crack remained almost horizontal until it failed, indicating 

that the cracks were primarily generated due to flexure. 
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Fig. 2.3: Shear wall with openings (Lin and Kuo, 1988) 

They also observed that not much significant difference was observed in the behavior 

of shear walls when subjected to cyclic loading and monotonic loading. For the same 

size of opening with two different reinforcement patterns, i.e. diagonal and 

combination of horizontal & vertical, it was observed that the reduction in the strength 

as compared to solid shear wall was found to be only 15% in the case of diagonal 

reinforcement and 25% in the case of horizontal & vertical pattern. The ductility and 

shear strength of the shear wall with opening was also found to be severely affected by 

the reinforcement around opening. Moreover, it was also observed that shear strength 

contributed by diagonal reinforcement around the opening reached 40% of its yield 

strength and that of rectangular arrangement is only of 20%. Hence, they suggested 

providing diagonal reinforcement around openings in the shear wall. Nevertheless, due 

to difficulty in construction, the rectangular arrangement is generally preferred. 

Ali and Wight (1991) conducted tests on lightly reinforced barbell shaped slender walls 

(3.56 m high and 1.22 m wide) with staggered openings for moderate axial and shear 

loads. The horizontal and vertical reinforcement in the web portion and boundary 

element portion in shear walls were 0.3% and 3% respectively. The total opening area in 

the shear walls they considered was 13.4% of the area of shear wall. The openings were 

located in a staggered manner as shown in Fig. 2.4. 

    ----      Strengthening  

Opening 
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Fig. 2.4: Shear wall with staggered opening (Ali and Wight, 1991) 

Based on the above study, it was observed that the staggered openings can be considered 

a feasible alternative to the straight openings. Nevertheless, door openings located too 

close to the edge of the boundary column results in the lack of confinement and can 

trigger an early shear-compression failure (Ali and Wight, 1991). 

Saheb and Desayi (1990) conducted experimental investigations on twelve RC wall 

panels of size 900 mm long (L), 600 mm high (h) and 50 mm thick (t) subjected to in-

plane vertical loads applied at an eccentricity to represent possible accidental eccentricity 

that occurs in practice due to constructional imperfections. They considered six different 

opening locations out of which three were three window openings two door openings and 

a window cum door opening as shown in Fig. 2.5. The typical sizes of window and door 

opening are 240 mm × 240 mm and 210 mm × 420 mm, respectively. The aspect ratio 

(H/W), slenderness ratio (H/T) and thickness ratio (W/T) for all the shear walls specimens 

were 0.67, 12, and 18, respectively. The percentage of horizontal and vertical 

reinforcement was kept same in all specimens. It was a well known fact that a 

rectangular wall panel hinged at top and bottom and carrying out-of plane vertical loads 

develop curvature in one direction (one-way action), while a wall panel supported on all 

four edges develop bi-axial curvatures (two-way action). It was concluded that the 

deflections of all panels in two-way action have been found smaller and about 40.5% to 

78.7% of those in one way action at 75% of ultimate load. 

  1.22 m 
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(a) Window located 

centrally 

(b) Window located  

      asymmetrically 

c) Two Windows located  

    symmetrically 

 

  

(d) Door located at Centre 

of the panel 

(e) Door located  

     asymmetrically 

(f) Door cum  

    window 

Fig. 2.5: Shear wall panel with different opening positions (Saheb and Desayi, 1990) 

The cracking loads of panels in two-way action were about 7.3% to 16.2% more than 

those in one-way action. Moreover, the ultimate loads of panels in two way action were 

about 2.96% to 7.29% more than those in one way action. They also observed that the 

presence of openings had a considerable effect on cracking & ultimate loads and there 

was no significant difference between one-way and two-way actions. Hence, it was 

concluded that the advantage of the potential increase in the load-carrying capacity due 

to two-way action has been offset by the presence of openings. 

Yanez (1993) conducted experiments on six three-story RC walls, scaled to about 1/3
rd

, 

under reversed cyclic lateral loading. The walls were 2000 mm wide, 2300 mm high and 

120 mm thick. He concluded that the size and arrangement of the openings did not have 

a significant effect on the structural behavior of walls under cyclic lateral loading. 

Nevertheless, in the current design code of Architectural Institute of Japan (AIJ, 1999), 

the strength reduction factor of a shear wall due to the openings is limited to 0.6 by 

restricting the maximum ratio of opening dimensions to the corresponding wall 

dimensions. 

Taylor et al. (1998) conducted the experimental investigations on the response of four 

storeyed slender shear wall of size (width × height × thickness) 1200 mm × 3600 mm × 

100 mm (48 in × 144 in × 4 in) with base opening of sizes 300 mm × 675 mm (12 in × 
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27 in) and 225 mm × 500 mm (9 in × 20 in). Experimental results show that properly 

reinforced slender shear walls with openings at the base exhibit stable hysteretic 

behavior and significant ductility. 

Kwan and He (2001) analyzed thirteen shear walls tested by Lefas (1990) to determine 

the strength, deformation characteristics and failure mechanism of shear walls under the 

combined action of a constant vertical load and a monotonically increasing horizontal 

load. Two different types of specimens were analyzed using finite element analysis, one 

with the size (width × height × thickness) 750 mm × 750 mm × 70 mm and other with 

the size 650 mm × 1300 mm × 65 mm. Fragomeni et al. (2012) tested seven RC shear 

walls with opening configurations in both one-way and two-way action. The RC panels 

of size 1200 mm × 1200 mm along with various opening configurations and sizes were 

similar to the one tested by Lee (2008). The vertical and horizontal reinforcement ratios 

were 0.31% for all the wall panels. On the basis of experimental study, it was observed 

that the failure loads and crack patterns depend on the opening configuration and support 

conditions. The failure loads of two-way panels with openings were observed to be about 

2 to 4 times those of similar one-way panels with openings. Furthermore, the test results 

indicate that failure loads decreased when the number of openings was increased from 

one to two. Recently, Fragomeni et al. (2012) pointed out that the design of shear walls 

with openings is being given little importance in International codes of practice despite 

several experimental and analytical investigations. 

Kabeyasawa et al. (2007) conducted the experimental investigations on six shear wall 

panels, scaled approximately to 1/5
th

 of real shear wall, of size (width × height × 

thickness) 2000 mm × 2200 mm × 80 mm to assess the effects of boundary elements and 

openings on the structural response of shear wall. The web reinforcement ratio in vertical 

as well as horizontal direction was kept at 0.25%, which corresponds to the minimum 

requirements specified in the Japanese code (BSL, 2007) The boundary elements of size 

(width × height × thickness) 250 mm × 2200 mm × 250 mm were provided at the edges 

of the shear wall with the reinforcement ratio of 0.52% to provide the confining effect to 

the shear wall. The shear strength of a wall without boundary elements was found to be 

slightly less than that of the wall with boundary elements. In order to determine the 

influence of openings on the response of shear wall, the opening sizes were chosen 

according to the maximum prescribed one (i.e. 360 mm × 680 mm) mentioned in the 
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Japanese codes of practice (BSL, 2007). It was also suggested in the Japanese code that 

shear wall with openings beyond this size should be analyzed as frame elements with 

two columns and the wing walls. It was observed that the openings reduced the strength; 

nevertheless the deformability (ductility) of the wall with openings was observed to be 

much higher than that of the wall without openings. 

Lee (2008) tested seven shear wall panels of size (width × height × thickness) 1200 mm × 

1200 mm × 40 mm to assess the strength and deformability of the shear wall in the 

presence of window and door openings. The reinforcement ratio in the vertical as well as 

horizontal direction was kept at 0.31% as per the Australian Standards for Concrete 

Structures (AS3600-2009). In order to prevent shrinkage cracking, reinforcing bar strip of 

small length were diagonally placed at the corners of the opening. He observed that the 

size of the openings significantly affects the structural response of the shear wall. The next 

section deals with the state-of-the-art analytical studies in the shear wall with openings. 

   
Case (i) Opening size  

(600 × 300) 

Case (ii) Opening size  

(300 × 300) 

Case (iii) Opening size  

(300 × 300) 

   
Case (iv) Opening size  

(240 × 240) 

Case (v) Opening size  

(240 × 240) 

Case (v) Opening size  

(300 × 750) 

 

 

 

 
Case (vi) Opening size  

(300 × 750) 
 

Fig. 2.6: Shear wall panels with openings of various sizes and locations (Lee, 2008) 
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2.4.2 Analytical investigation 

Prior to the early 1960's, very little attention was paid to the development of analytical 

techniques for the analysis and design of shear walls. In the early sixties, a series of 

analytical studies were conducted by famous researchers to indicate the importance of 

shear walls in those days and coincidently many of those analyses focus on the response 

of shear walls in the presence of openings (Schulz, 1961; Tomii and Miyata, 1963; 

Rosman, 1964; Magnus, 1965; Thadani, 1966; Kazimi, 1966; Girijavallabhan, 1969). 

Tomii (1961) determined the load-deformation characteristics of various shear wall 

panels with openings at Kyushu University. He formulated a relatively simple empirical 

relationship between parameters representing the load and the relative size of the 

openings. Though he found that the size of the openings affect the behavior of the shear 

wall, he also observed the surprising fact that the position of the openings did not greatly 

affect the performance of shear wall. In the same year, Stiller (1961) carried out the 

theoretical study on stresses in shear walls with openings. He analyzed the shear walls 

with circular and rectangular openings and found that circular openings resulted in less 

stress concentration than rectangular openings. Beck (1962) initiated the research work 

on wall panels and Vierendeel girders with openings in which the individual columns 

were replaced by an equivalent laminar system to allow for significant axial and shear 

deformations in shear walls. 

Rosman (1964) developed a linear elastic approach based on different assumptions to 

analyze the shear wall with single and double bands of openings in which he 

established the fundamental Eulerian differential equation of the problem. He 

chooses the solution in terms of the axial force in the shear walls and expressed this 

by trigonometric series. Nevertheless, he neither allowed for shear deformation nor 

considered the separation forces exerted by the spandrel beams. In 1969, 

Schwaighofer and Microys used this approach to analyze the shear wall with three 

rows of openings and observed that the Rosman’s theory predicts the behavior of 

shear wall with three rows of openings with sufficient accuracy. Neuenhofer studied 

the response of the shear wall with and without opening using finite element 

approach and observed that the position of opening affects the structural behavior of 

shear wall (Neuenhofer, 2006). He also observed that if the opening is near the 

middle of the wall, it does not decrease the moment capacity of the shear wall to the 
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great extent; however, the shear strength reduces significantly. In contrast, he found 

that an opening near a wall boundary impacts both shear and flexural strengths 

depending on the size of the opening. Nevertheless, there was a strong consensus that 

openings in shear wall are to be located centrally. However, Kato et al. (1995) carried 

out analytical investigations on shear wall with openings and objected the provision 

recommended by the then Architectural Institute of Japan (AIJ, 1999) for not limiting 

the size of single opening in shear wall for flexural failing mechanism. This was 

partly due to lack of research on multiple openings in shear wall (AIJ, 1999; Kato et 

al. 1995). 

Sittipunt and Wood (1995) conducted finite element analysis on slender reinforced 

concrete walls with and without openings subjected to lateral load reversals. 

 

 

Fig. 2.7: Effect of diagonal reinforcement on the structural response of shear wall 

Sittipunt and Wood (1995) 

They considered 5.49 m (18 ft) high shear wall with rectangular cross section and having 

six openings in the web over its height and the wall was subjected to single lateral load at 

the top. For the finite element analysis, they used iso-parametric plane-stress elements to 

model the shear wall. To perform the non-linear analysis, they used fixed smeared crack 

approach to simulate the concrete cracking and modeled the steel bars using the two-

a) Diagonal reinforcement 

added in first storey 
b) Diagonal reinforcement 

added in two storeys 
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node truss elements. Based on the study, it was concluded that the shear distortions 

concentrates in the first-story of the wall. In order to investigate further the influence of 

reinforcement pattern in controlling the shear distortion, two arrangements were 

considered, as shown in Fig. 2.7. On the basis of cyclic loading, it was observed that 

adding diagonal reinforcement at the first story did not change the overall force-

displacement response appreciably although it helped in controlling the shear distortion 

successfully. Moreover, when the diagonal reinforcement was placed in the lower two 

storeys, the hysteretic response improved considerably. It was also concluded that, the 

pinching was not observed in the overall force-displacement response or the story shear-

distortion curves. 

Qamaruddin (1998) proposed an approximate method to determine in-plane stiffness of 

shear walls with openings, in which spandrels are assumed flexible and can translate and 

rotate under lateral load. He concluded that the in-plane stiffness computed based on 

approximate method compares well with the stiffness computed by the elastic finite 

element method. 

In order to predict the above results analytically, Doh and Fragomeni (2006) developed 

prediction equation for normal strength concrete shear walls with openings and found 

that the failure loads were reasonably well predicted and later found agreeable to the 

experimental investigations performed by Lee (2008). 

Masood et al. (2012) conducted an finite element based analytical study using ANSYS 

(Version 5.4) to determine the response of shear wall with base opening and concluded 

that base opening beyond 60% resulted in tremendous decrease in strength and stiffness 

degradation. Even though base opening has always been a risky option considering its 

structural importance, because of the need to provide parking access, it has become an 

automatic functional requirement in the recent years. 

On the basis of literature review carried above, it can be concluded that limited 

experimental and analytical work has been performed to investigate the influence of 

openings, its sizes and shapes on ductile response of shear wall under severe loading 

conditions until collapse. In order to develop the design guidelines, there is a necessity to 

analyze in detail the shear walls with openings. 
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2.4.3 Shear walls - Codal provisions 

The design of any structure is bound by codal provisions. Since shear wall is a 

specialized component of the structure mainly meant to provide the lateral resistance of a 

structure, it is essential to review the various codal provisions evolved over the years and 

currently adopted in practice. 

ACI 318 building code 

Design criteria for the RC shear walls were first incorporated in the ACI Committee 318 

Building Code in 1971 (ACI Committee 381-1971). Prior to the publication of the ACI 

318-71, the only provisions for the design of shear walls in the United States were those 

contained in the Uniform Building Code (UBC) published in the year 1967 and 1970 

(UBC 1967, 1970). Before 1970s, limited studies were available on the shear walls and 

hence most of the provisions in the early versions of the ACI code were based on the 

experimental investigations undertaken by the Portland Cement Association (PCA) in the 

late 1960s and the subsequent recommendations by Cardenas et al. (1973). The early 

provisions advocated by the codes were basically intended to ensure that the walls 

possessed adequate shear strength and the emphasis was on the evaluation of flexure and 

shear strength under monotonic loading only. 

The ACI Code design requirements for shear walls located in regions of high seismicity 

suggests that the reinforcement in the shear walls typically contain distributed vertical 

and horizontal reinforcement spread uniformly over the width and the height of the wall, 

respectively. Well distributed reinforcement is generally preferred in the walls because it 

provides cracking control to the diagonal compression strut and improves the conditions 

for dowel action, which in turn enhances the sliding shear resistance at the base of the 

wall (Paulay et al. 1982). The minimum ratio of horizontal reinforcement area to the 

gross area of the wall is specified as 0.0025. Moreover, based on the research findings 

(Cardenas 1973; Wood 1990; Lefas et al. 1990), the ACI code recommends that for short 

shear walls, the amount of vertical reinforcement should not be less than the horizontal 

reinforcement because vertical reinforcement is more efficient than the horizontal 

reinforcement in controlling the width and growth of diagonal cracks. 
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Hong Kong code of practice for structural use of concrete 

The code of practice for structural use of concrete prepared by Buildings department, 

Hong Kong (2013) has suggested that reinforced concrete shear walls contribute to the 

lateral stability of the structure. It suggests that the combined effects of axial loading 

and shear should be taken into account. This code also suggests that effect of sway of 

shear walls on the occupants of the structure should also be considered. The minimum 

percentage of vertical reinforcement based on the concrete cross-sectional area of a 

wall is 0.4%. It is also suggested that this minimum area of reinforcement should be 

distributed at each face. The distance between two adjacent vertical bars should not 

exceed three times the wall thickness or 400 mm whichever is the lesser. The minimum 

horizontal reinforcement is 0.30% for mild steel and 0.25% for high strength steel. The 

diameter of the horizontal bar should not be less than 1/4
th

 of the diameter of the 

vertical bars. In any case, the diameter of horizontal reinforcing bar should not less 

than 6 mm. The code also suggests that the nominal reinforcement be provided around 

the openings. 

Indian standards 13920-1993 

The Indian Standard (IS 13920-1993) specifies the following requirements for shear wall. 

• The thickness of any part of the wall should not be less than 150 mm to avoid 

very thin sections. 

• The diameter of the bars to be used in any part of the wall should not exceed 

1/10
th

 of the thickness of that part. 

• The minimum reinforcement in horizontal and vertical direction is 0.25% of 

gross area in each direction. The maximum spacing of vertical and horizontal 

reinforcement should not be more than the minimum of the following; a) 1/5
 th

 of 

the width of the shear wall, b) Thickness of the shear wall; c) 450 mm. 

• Though the inherent characteristics of shear walls such as strength, stiffness and 

ductility are affected by many parameters such as aspect ratio, cross-sectional 

geometry and material type, the behavior alters significantly in the presence of 

openings, which may be unavoidable due to the functional requirement such as 

placement of windows, doors and ducts. In the case of shear wall with openings, 

reinforcements are provided along the edges of openings in walls. The area of the 

vertical and horizontal bars should be such as to equal that of the respective 
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interrupted bars. The vertical bars should extend for the full storey height. The 

horizontal bars should be provided with development length in tension beyond 

the sides of the opening. 

2.5 Damping in Structures  

The fundamental effect of damping is to reduce the peak amplitudes of the vibrating 

system with little alteration in natural frequency. In order to understand the 

phenomenon of damping, an energy dissipation capacity, various experimental 

investigations have been conducted over the period of years. The energy dissipation of 

a vibrating building cannot be quantified in terms of specific parameters. Numerous 

mechanisms such as hysteresis in the material and slip in connections may be present at 

any point of time contributing to damping and hence it is impossible to define it 

mathematically (Zareian and Medina, 2010). Moreover, these mechanisms are not well 

understood and, therefore, it is difficult to incorporate into the equations of structural 

dynamics. Hence, the damping has been modeled using single equivalent damping 

parameter including the effect of various complex sources. The treatment of damping 

in computational analyses can be categorized as (1) phenomenological damping 

methods, and (2) spectral damping methods. In the phenomenological damping 

methods, the actual physical dissipative mechanisms such as elastic-plastic hysteresis 

loss, structural joint friction, material micro-cracking etc. are considered. 

In the spectral damping method of analysis, viscous damping is introduced by means of 

specified fractions of critical damping. The minimum amount of damping necessary to 

prevent the oscillations completely is known as critical damping (Taranath, 2010). The 

damping of a structure is measured in terms of percentage of critical damping. The 

percentage of critical damping varies between 1% to 10% for non-base isolated 

buildings and 25-30% for base-isolated buildings. Chopra (2006) proposed the 

damping values as 3-5% for considerable cracking case and 7-10% near the yield point. 

Farrar and Baker (1995) conducted experiments to measure the damping ratio of low-

rise shear walls and found that for undamaged low-rise shear walls, the damping ratio 

was around 1-2%. However, as the damage level increased, the measured damping 

ratio shot up to 8%. Similar experimental studies have also been performed by Ile and 

Reynouard (2000) correlating the damping ratio with the increasing damage of shear 
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wall. It was found inevitable to use damping as a viable means of mitigating the 

structural damage. 

Based on the inherent damping, the structures can be categorized as under damped, 

critically damped or over damped. Critically damped and over-damped structures don't 

vibrate and hence does not pose any problems. Most of the civil engineering structures 

fall in under-damped category where the building actually vibrates. Moreover, it is 

important to note that the inherent damping present in civil engineering structures is of 

the order of maximum 10%. Satake et al. (2003) determined the damping ratios for 

different building types based on the vibration tests reported in AIJ and concluded that 

the tall buildings possess the smaller fundamental damping ratio. The damping ratios 

are reported to be affected depending on the functional use of building. The damping 

ratios were found to be larger in a building where more infill partitions are available. 

Very little information is available about variation of damping in linear and non-linear 

systems. However, the effect of damping is generally low as compared to inertial and 

stiffness effects in most of the practical situations. Therefore, it is reasonable to 

account for damping in the analysis using the simplified approximations. The 

following section describes the various damping models used in practice. 

2.6 Damping Models 

In order to represent damping analytically, various damping models have been in use to 

account for energy loss mechanism. These models are classified into four categories 

namely (i) viscous damping models, (ii) non-viscous damping models, (iii) active control 

damping models, and (iv) passive control damping models. The choice of damping 

model depends on the system behavior as well as on the computational expenses. These 

models are discussed briefly in the current section. 

2.6.1 Viscous damping models 

The representation of damping through viscous damping coefficient has been in use due 

to simplicity and accuracy. Viscous damping is a type of damping in which a system is 

said to be vibrating in a fluid. Hence, the viscous damping is a property of the computer 

model and is not a property of a real structure. 
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In viscous damping, the damping force, F is assumed to be proportional to velocity of the 

medium, uɺ ; i.e. 

 ucFuF ɺɺ =⇒∝  [2.1] 

where c is the constant of proportionality, commonly known as viscous damping 

coefficient. 

For the multi-degrees of freedom system, the c becomes a matrix, known as damping 

matrix. The damping matrix can be formulated analogous to mass and stiffness matrices 

(Chopra, 2006). Comparisons of theoretical and experimental results show that the above 

mentioned approach of simulating viscous damping is sufficiently accurate in most of the 

cases. The typical viscous damping response in free vibration tests is shown in Fig. 2.8. 

 

Fig. 2.8: Viscous damping response 

Modal damping ratios are also frequently used in a computer model to approximate the 

nonlinear energy dissipation of the structure. Amick and Monteiro (2006) determined the 

modal damping in concrete beams experimentally to identify the material damping 

properties of concrete beams. Damping matrices based on modal damping ratios are 

known as classical or proportional damping (Bernal, 1994). Many damping models have 

evolved based on the concept of viscous damping such as Cauchy damping (Caughey, 

1960), Rayleigh damping (a special case of Cauchy damping) and Wilson-Penzien 

damping (Wilson and Penzien, 1972). Both Cauchy and Wilson-Penzien damping 

models are computationally expensive and hence are not preferred for dynamic analysis 

(Carr, 2007). Thus, Rayleigh’s proportional damping has the specific advantage that the 

equation of motion can be uncoupled when it is proportional to mass and stiffness 

matrices. 
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The representation of damping using Cauchy series is given by  

 [ ] [ ] [ ] [ ]∑
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−=

=

−
=

pk

k

kk

k KMaMC  [2.2] 

where the coefficients ak (k = 1, 2… p-1) are obtained from (p-1) simultaneous 

equations. k = 0, 1 yields mass and stiffness proportional damping, respectively. 

Alternatively, k = 2 yields the well-known Rayleigh damping which is proportional to 

both mass and stiffness. From the above equation, it is clear that for higher values of k, 

the damping can also be controlled by as many modes as possible instead of two 

parameters, as used by Rayleigh damping. On the other hand, the use of Rayleigh’s 

proportional damping in the post yield stage may not be justified as the tangential 

stiffness properties are not the same as initial properties once the structure yields. Thus, 

the proportionality is lost after the onset of yielding (Bernal, 1994). Nevertheless, in the 

case of non-linear dynamic analysis, the dissipation of energy through inelastic 

deformation tends to supersede significantly the dissipation through viscous damping. 

Hence, the exact representation of damping is not as important in a non-linear system as 

in the linear system. 

2.6.2 Non-viscous damping models 

In viscous damping, it is assumed that damping force is dependent on the velocity of 

the structure and not on any other parameter. It has been mentioned in the literature 

that when the structure exhibits the property of non-viscosity, then the usage of viscous 

damping models results in the improper estimation of damping. In such cases, 

development of non-viscous damping becomes paramount importance. Adhikari and 

Woodhouse (2003) mentioned that the non-viscous damping models may be a better 

option in modeling the linear elastic behavior. Puthanpurayil et al. (2011) discussed the 

various issues related to modeling of in-structure damping and concluded that non-

viscous damping has resulted in the larger peak response than the viscous damping 

(Puthanpurayil et al. 2011). Many investigations have been carried out to determine the 

response of the structure with different damping models. The choice of damping 

models affects the structural response of the system. 
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2.6.3 Active control damping models 

For very tall buildings, the inherent damping may not be sufficient in mitigation of 

structural response adequately. Hence, the use of supplemental or auxiliary damping is 

vital in keeping the response of tall buildings to the desired level. Active control 

damping systems requires the power supply to activate such type of damping and hence 

cannot be considered a viable option especially in the seismically active zone. 

Nevertheless, the active damping system is being used as a method in dampening the 

response of tall buildings subjected to severe wind load effects. 

2.6.4 Passive control damping models 

On the other hand, passive damping control system can be incorporated in a structure to 

absorb a portion of seismic energy imparted and hence considered a potential candidate 

for the protection of buildings in a high seismic zone. The classification of active and 

passive system is mentioned in the form of flowchart in Fig. 2.9. Depending upon the 

type of dampers, the structural response differs significantly. Viscous dampers and 

viscoelastic dampers dampens the response essentially at all levels of deformation and 

cover broad frequency range. 

 

Fig. 2.9: Different types of auxiliary damping system 

Friction dampers will get triggered when the slip force exceeds and metallic yield 

dampers dissipate energy through inelastic deformation. Sometimes, it may be necessary 

to incorporate the effect of all dynamic characteristics in a building to mitigate the 
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damping. Hybrid damping incorporates the effect of all the dampers and may be 

specifically installed in a building to damp out both high frequency and low frequency 

content. 

Hence, it is concluded that the influence of damping can prove to be significant 

parameter in controlling the structural damage and may result in the desired structural 

response. 

2.7 Gaps in Existing Research 

Based on the literature review the following research gaps have been identified and 

intended to be performed in the current study. 

• The literature advocates and captures the different failure modes to be adopted for the 

design of slender and squat shear walls. Nevertheless, limited analytical study has 

been conducted on the structural response of shear wall with different aspect ratio. 

• Even though substantial experimental work has been done on the response of shear 

wall with openings, not much analytical study has been found in the literature 

pertaining to the structural response of shear wall with different opening sizes 

especially under severe dynamic ground motions. 

• Very limited study has been found in the literature pertaining to the structural 

response of shear wall with different opening locations. 

• The literature advocates the use of dampers in shear walls for better structural 

performance. However, limited analytical study has been found on the response of 

shear wall for different damping ratios. 

2.8 Objectives of the Present Study 

In order to assess the influence of aspect ratio of shear wall, sizes and locations of 

openings, and damping on the structural response of shear wall, the following objectives 

have been framed. 

• To develop and validate the finite element program capable of analyzing static 

and dynamic analysis of RC shear wall in non-linear regimes. 

• To assess the influence of opening size and opening location on the structural 

response of slender and squat shear walls. 
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• To assess the influence of strengthening around the openings on structural 

response of slender and squat shear walls. 

• To examine the influence of damping on the structural response of slender and 

squat shear walls. 
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Chapter 3 

Material Modeling of RC Structures 

3.1 Background 

Due to the advantage of its rigidity, RC shear walls which offer great resistance to lateral 

loads have been widely adopted in building structures as a lateral load resisting element. 

The material modeling of RC structures has been the subject of interest for many 

decades, because incorrect modeling results in poor characterization of its behavior. To 

cater to the increased demand for seismic design of RC structures, many experimental 

and analytical studies to capture the nonlinear response of RC structures under extreme 

loading conditions have been performed. Though the experimental investigation gives 

the required information close to reality, it is not always a viable alternative as 

experimental parametric studies incur huge cost and time. On the other hand, the design 

method envisaged in various codes based on many concepts often underestimates or 

over-estimates the structural response. Thus, there is a need for a reliable analytical 

model which predicts the behavior close to real behavior. Non-linear finite element 

analysis is an established analytical tool to evaluate response of RC structures. 

The non-linearity in the reinforced concrete may be due to change in structural and 

material characteristics and may result in structural cracking of concrete, yielding of 

concrete and steel and crushing of concrete. Nevertheless, these non-linearities are 

considered to be instantaneous and assumed to be time independent. Such time 

independent non-linearities are usually incorporated in the analytical modeling of 

reinforced concrete. On the other hand, the non-linearity may also be caused due to creep 

and shrinkage effects which are time dependent. Such time dependent non-linearities are 

difficult to be incorporated analytically and hence not considered in the present study. 

The time independent behavior of materials can be further idealized into elastic behavior 

and plastic behavior. For an elastic material, there exists a one-to-one coordination 

between stress and strain. An elastic material is the material which returns to the original 

shape when the loads are removed. This is the minimal requirement for the material to 

qualify as elastic. The material which satisfies this minimal requirement is also known as 

hypo-elastic material. In a more restricted sense, an elastic material must also satisfy the 
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energy equation of thermodynamics. The elastic material characterized by this additional 

requirement is known as hyper-elastic. 

On the other hand, the plastic material is the one in which the reversibility is not 

satisfied, i.e. the material undergoes some permanent deformation which cannot be 

retraced even after the removal of loads and stresses. Hence, the strain in the plastic 

material may be considered as the sum of the reversible elastic strain and the permanent 

irreversible plastic strain. The stress-strain law for a plastic material reduces, essentially, 

to a relation involving the current state of stress and strain and the incremental changes 

of stresses and plastic strains. This relation is generally assumed to be homogeneous and 

linear in the incremental changes of the components of stress and plastic strain. This 

assumption precludes viscosity effects, and thus contributes to the time-independent 

idealization. For the complete modeling of RC, constitutive laws representing elastic and 

plastic states are to be defined clearly. Elasticity based constitutive laws are required to 

define the behavior of the material in the elastic state while plasticity based constitutive 

laws are required to define the behavior of the material in the plastic state. Furthermore, 

the development of analytical models to determine the response of RC structures is 

complicated due to the following three factors: 

a) Reinforced concrete is a composite material made up of concrete and steel, which have 

very different physical and mechanical behavior, b) concrete exhibits non-linear behavior 

even under low level of loading due to cracking of concrete and c) reinforcing steel and 

concrete interact in a complex way through bond-slip and aggregate interlock. Thus, for the 

finite element analysis of RC structures such as panels and shear walls, the analytical model 

must include (i) a strength criterion for concrete subjected to various stress combinations, 

(ii) concrete cracking and crack propagation, (iii) steel yielding, (iv) concrete crushing, and 

(v) the tension-stiffening behavior of reinforced concrete through bond-slip. 

3.2 Experimental Behavior of Concrete 

The behavior of plain concrete has been found to be complex due to inherent 

characteristics of the material. Several experimental works have been performed to 

examine mechanisms that lead to the propagation of failure from initial stage to ultimate 

collapse. Brestler and Pister (1958) suggested that the conditions responsible for local 

failure are essentially the same for both plain and reinforced concrete, thus highlighting 
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the importance of examining the behavior for plain concrete. Keeping in view the above-

mentioned facts, a brief summary has been made on the various experimental 

investigations carried out on predicting the behavior of plain concrete under uni-axial, bi-

axial and tri-axial loadings for different combinations of tension and compression. 

3.2.1 Uni-axial behavior 

In order to plot stress-strain curve for uni-axially compressed concrete, strength tests on 

cylindrical or cubical concrete specimens were conducted at the age of 28 days (Hognestad 

et al. 1955; Kwak and Filippou, 1990; Fardis et al. 1983; Tsai, 1988). The various stages of 

stress-strain curve, which characterizes different behavior of concrete, namely uni-axial 

compressive strength, strain corresponding to uni-axial compressive strength, initial 

tangent modulus and ultimate strain at failure can be regarded as the characteristic values 

for the stress-strain curve of concrete under uni-axial compression (Carreira and Chu, 

1985). The direct tensile tests by various researchers (Hughes and Chapman, 1966, Ansari, 

1987, Gopalarathnam and Shah, 1985) show that the load-elongation curve presents a peak 

followed by a softening branch. Since the structures are not generally subjected only to 

uni-axial loading conditions, it is imperative to know the behavior of concrete under bi-

axial and tri-axial loading conditions. 

3.2.2 Bi-axial behavior 

Kupfer et al. (1969) conducted the test on concrete plate-type specimens 

(20 × 2 × 5 cms) under proportional monotonically increasing bi-axial compressive 

loading. Tasuji et al. (1978) conducted experimental investigations on thin plain concrete 

plates subjected to bi-axial loading, which includes all combinations of compressive and 

tensile loadings. It was reported that the concrete possesses higher compressive strength 

when subjected to biaxial compression as compared to uni-axial compression. On the 

other hand, when the concrete is subjected to combined compression and tension, the 

compressive strength has been reported to decrease linearly as the tensile stress increases 

(Tasuji et al. 1978; Kupfer et al. 1969; Kwak and Filippou, 1990). Nevertheless, concrete 

strength under bi-axial tension was found to be the approximately equal to the uni-axial 

tensile strength (Kupfer et al. 1969; Kwak and Filippou, 1990). Based on above-

mentioned uni-axial and bi-axial tests on concrete, it is emphasized that the inclusion of 

the three basic parameters in any analytical model namely uni-axial compressive 

strength, uni-axial tensile strength, and biaxial compressive strength is indispensable. 
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3.2.3 Tri-axial behavior 

To understand the behavior of concrete subjected to tri-axial loading, several 

experimental investigations have been done (Mills and Zimmerman, 1970; Imran and 

Pantazopoulou, 1991). Mills and Zimmerman (1970) reported that majority of 

investigations have been performed on cylindrical specimens where two principal 

stresses out of three retain the same value (Mills and Zimmerman 1970). They 

conducted the test on cubical specimens and concluded that cubical specimens provide 

a realistic estimation of failure strength as it incorporates the effect of intermediate 

stress component. It has been reported by Gardner (1969) that all mechanical properties 

can be improved with increase in the confinement. Gardner (1969) and Zhi et al. (1987) 

carried out the bi-axial and tri-axial experiments to investigate the influence of 

confinement on compressive strength of concrete and observed that confinement 

significantly enhances the compressive strength (Gardner 1969; Zhi et al. 1987). 

Linhua et al. (1991) found that strength of concrete under tri-axial compressive-

compressive-tensile loading is higher compared to strength of concrete subjected to bi-

axial Compression-tension loading. 

Brestler and Pister (1958) performed experimental tests on 65 tubular specimens of plain 

concrete subjected to combined stresses to predict the failure of the concrete specimens. 

Based on experimental results they suggested that strength of the concrete is a function 

of the state of stress and cannot be predicted without considering the interaction of 

stresses. Therefore, it is essential to predict the behavior of concrete under multi-axial 

stress state to obtain the more generalized response (Kupfer and Gerstle, 1973; Darwin 

and Pecknold, 1977; Cedolin and Mulas, 1984; Hussein and Marzouk, 2000; Tasuji et al. 

1978). 

3.2.4 Cyclic behavior 

On the other hand, cyclic loading occurs when there is a load reversal with several 

loading, un-loading and re-loading cycles. Loading, un-loading & re-loading constitutes 

a hysteresis loop. In order to understand the behavior of concrete under dynamic effects, 

it is essential to know the behavior of concrete under compressive and tensile cyclic 

loadings. The concrete, subjected to compressive loading of high amplitude and low 

cycle is predominantly significant from earthquake point of view. When the number of 
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cycles is large, the continuous growth of micro cracks can lead to the reduction in the 

strength of concrete (Sinha et al. 1964; Karsan and Jisra, 1969). Vecchio (1998) 

discussed the importance of cyclic load modeling of reinforced concrete and analyzed the 

shear wall using non-linear elasticity model. 

Several experimental investigations have been done on concrete subjected to uni-axial 

cyclic loading (Karsan and Jirsa, 1969; Sinha et al. 1964). Mlakar et al. (1985) 

examined the bi-axial tensile-compressive behavior of concrete under dynamic loading 

and concluded that the tensile stress at failure decreases while the compressive stress 

gets increased. This conclusion was similar to one observed under monotonic loading 

(Mlakar et al. 1985). It has been observed that strength envelope for cyclic and 

monotonic loading has not been found to show significant difference (Lan and Guo, 

1999). Based on the above experimental works, it has been concluded that confinement 

of a concrete has a very strong influence on compressive strength and hence should be 

sufficiently incorporated in any analytical model. Moreover, since conditions 

responsible for local failure are essentially the same regardless of randomness of 

loading, information available on the monotonic loading can be used effectively in 

developing failure model capable of capturing the responses under monotonic and 

cyclic loading. The next section briefly describes the characteristics of the failure 

surface of concrete. 

3.3 Characteristics of Failure Surface of Concrete 

For the non-linear analysis of concrete, various material models- plasticity models, 

damage models, damage-plasticity models, micro plane models, and so on- have been 

developed. Based on numerous theoretical studies and test results, these models have 

been used to accurately describe the behavioral characteristics of concrete in various 

compressive stress states. Concrete shows various behavioral characteristics depending 

on its stress states. In uni-axial compression, the initial response is almost linear, and as 

the compressive stress reaches its maximum, micro cracking causes concrete to behave 

non-linearly. In the post-peak behavior, the concrete volume increases because of the 

unstable propagation of the micro cracks. In the bi-axial compression test by 

Kupfer et al. (1969), it was observed that maximum strength of concrete increases upto 

125% of the uni-axial strength depending on the ratio of the two orthogonal stresses. 
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Comparable strength enhancement was also confirmed in other bi-axial compression 

tests (Liu et al. 1972; Tasuji et al. 1978). In the tri-axial compression tests conducted by 

various researchers (Kotsovos and Newman, 1978; Sfer et al. 2002), it was found that the 

strength and ductility of concrete increases significantly with the confinement effect. To 

describe these behavioral characteristics of concrete in compression, the plasticity model 

was frequently used because of its simple and direct representation of multi-axial stress. 

Many researchers have attempted to extend the application of the plasticity model to 

evaluate various stress states of concrete (Chen and Chen, 1975). The current section 

describes the overview of the development of yield/failure surface using plasticity 

approach. 

The choice of yield/failure criteria considerably affects the estimation of strength 

characteristics of the material (Chen (1982), Yu (2002, 2004)). At every point inside the 

stressed body, there exist at least three planes called principal planes. The directions 

normal to these planes are called principal directions and the stresses along these 

directions are called principal stresses. Most of the failure criteria are expressed in terms 

of the principal stress invariants since it is generally acceptable that the macroscopic 

fracture behavior can be assumed to be isotropic, that is, in the form of following 

equation. 

 0),,( 321 =IIIF  [3.1] 

where, ;;; 321313322123211 σσσσσσσσσσσσ =++=++= III iσ are the principal 

stresses. It has also been reported in the literature that the failure criteria expressed by 

using separate functions for separate failure regions, in general, are better to predict the 

failure of concrete than those expressed by a simple function. Moreover, the failure 

criteria expressed by a simple single function are also different to apply to the failure 

form. The failure surface can also be represented in terms of three stress invariants 

(Chen, 1982) as  and , 321 JJI  
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The typical yield surface in 3-dimensional principal stress space is shown in Fig. 3.1. 
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Fig. 3.1: Yield surface in 3-dimensional principal stress space 

Hydrostatic axis is the axis which is equidistant from three principal axes )( 321 σσσ == . 

Deviatoric plane is the plane perpendicular to the hydrostatic axis. Pie plane is the plane 

perpendicular to the hydrostatic axis, passes through the origin, and is considered as a 

special type of deviatoric plane. The meridians of the failure surface are the intersection 

curves between the failure surface and the plane containing the hydrostatic axis with 

constant θ .The meridian planes corresponding to �

0=θ  and �

60=θ  are called tensile 

and compressive meridians, respectively. The meridian plane corresponding to �30=θ  is 

known as shear meridian. The deviatoric plane and meridian planes are pictorially 

represented in Fig. 3.2. 

 

 

 

(a) Meridian Plane in octahedral stress (b) Deviatoric Plane in Principal stress 

Fig. 3.2: Characteristics of failure surface 

  

σ1 

σ2 σ3 

σ2 

σ3 

σ1 

Compression Meridian 

Tensile Meridian 

Pie plane 

(σ1+σ2+σ3)/3 

P 

ρt 

ρc 

ρθ 

θ 60
0 

Failure Surface 

(Hydrostatic axis) 

(Deviatoric Plane) 

oct
σ  

octτ
o60=θ

o0=θ



Material Modeling of RC Structures 

70 

Nevertheless, for better geometric representation, the failure criterion may also be 

expressed using Haigh-Westergaard coordinate system (Han and Chen, 1987), which is 

defined in terms of three parameters namely hydrostatic stress invariant ( ) 131 Is ×=ξ , 

deviatoric stress invariant 22J=ρ and deviatoric polar angle θ , which is also known 

as Lode angle. The Lode angle is expressed in terms of second and third deviatoric stress 

invariant (Nayak and Zeinkiewicz, 1972) as
3

2

3

2

33
3cos

J

J
=θ . The hydrostatic stress 

invariant sξ is an important index which determines the enhancement of strength and 

ductility in multi-axial compression. The failure surface is represented as 0),,( =θρξ sF  

. In the Haigh-Westergaard coordinate system, the cross-section of the failure surface is 

represented in deviatoric plane and the meridians are described in the meridian plane. At 

any point within the failure surface, the principal stresses may be expressed in terms of 

Haigh-Westergaard coordinates as  
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Based on the various experimental results, the following characteristics have been 

considered to be desirable and the same has to be reflected in any failure model. 

(i) Failure surface should be convex and should contain smooth edges, (ii) Cross-

section in the deviatoric plane changes from triangular to circular with the increase in 

confinement, and (iii) Compressive and tensile meridians in the meridian plane should 

be parabolic in nature. Failure models have been developed in the past based on (i) the 

empirical approach, (ii) physical approach, and (iii) phenomenological approach. In the 

empirical approach, the tensile and compressive meridians in the meridian plane were 

derived through curve fitting over a cluster of experimental data points obtained by 

various researchers. To represent the failure surface in the deviatoric plane, the smooth 

interpolation between the two meridians were obtained to get the shape functions. It 

has also been reported by Fan and Wang (2002) that the formulations based on 

empirical approach lacks theoretical background on its hypothetical smooth 

interpolation between the meridians in the deviatoric plane although it has been found 



Material Modeling of RC Structures 

71 

to give satisfactory results. On the other hand, failure models have also been developed 

using physical approach based on the material structure, which has been claimed as the 

only true property of a material. The above approach captures the pressure sensitivity 

of the material. Failure models are also based on phenomenological approach where 

criterion is based on experimental observations of the global shape of the failure 

contour. Many failure models have been developed based on the phenomenological 

approach in the past according to the number of parameters associated with the failure 

models. The next section describes the modeling of concrete in compression with 

emphasis on failure criteria of concrete. 

3.4 Modeling of Concrete in Compression 

The experimental behavior of concrete paved the way for the development of non-linear 

theories which are available in literature. The non-linear behavior of concrete material is 

usually modeled by one of the three non-linear theories: non-linear elasticity, plasticity, or 

endochronic theory. The theory of plasticity is the most widely used method to describe the 

behavior of concrete (Chen, 1982). When the concrete is subjected to compressive stresses, 

experimental results (Sinha et al. 1964) have indicated that non-linear deformations of 

concrete are basically inelastic because upon un-loading only a portion of those strains can 

be recovered from the total strains. Therefore, the stress-strain behavior of the concrete 

material may be separated into recoverable and non-recoverable components. The 

recoverable part can be treated within the field of elasticity theory, while the irrecoverable 

part can be treated by the theory of plasticity. In general, models based on the theory of 

plasticity describe concrete as an elastic-perfectly plastic material (Hand et al. 1972), or, to 

account for the hardening behavior upto the ultimate strength, as an elastic strain-hardening 

plastic material (Chen and Chen, 1975). Since the elastic strain-hardening plastic model is 

more general and more accurate than the earlier elastic-perfectly plastic models, it is used in 

the present investigation. In order to apply the incremental theory of elastic strain-hardening 

plasticity, several aspects must be specified beforehand. The three main aspects are: 

i The yield function that defines the initial and subsequent yield surface during 

continuous loading. 

ii The hardening rules that describe the motion of the subsequent yield surface 

during continuous loading. 

iii The flow rule that relates the plastic strain increments to stress increments. 
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The early efforts to develop a plasticity model for concrete have been centered in search 

of a suitable failure surface. Then, the initial and subsequent yield surfaces are assumed 

in accordance with the shape of the failure surface. Since the failure surface serves as the 

strength criterion for concrete, it is the key element in the constitutive modeling of 

concrete. The following section reviews various failure models and describes the 

development of tri-axial failure surface using five parameter model proposed by Willam 

and Warnke (1974). 

3.4.1 Failure models of concrete 

The von-Mises, Tresca and Rankine failure criteria depend on only one parameter and it 

has been reported in the literature that these failure models fail to capture the behavior of 

concrete adequately. Addition of Rankine criterion to von-Mises and Tresca to include 

tension-cutoff condition makes these criteria two-parameter models. Nevertheless, these 

failure models are insensitive to hydrostatic pressure and hence are not used for concrete. 

The Mohr-Coulomb criterion, widely used as a failure criterion for concrete because of 

its hydrostatic pressure dependence, has straight edges and sharp corners in the failure 

surface in the deviatoric plane. The straight edges essentially mean that the linear 

interpolation has been used between the tensile and compressive meridian. The Drucker-

Prager failure criterion gives better results than Mohr-Coulomb criterion because of the 

smoothness of the failure surface in the deviatoric section. The Mohr-Coulomb and 

Drucker-Prager criteria results to Tresca and von-Mises criteria respectively as special 

cases. Furthermore, the Rankine’s criterion can be added to either Mohr-Coulomb or 

Drucker-Prager criteria to extrapolate these two-parameter models into three-parameter 

model. Several investigations have been conducted on the behavior of concrete subjected 

to bi-axial stress state of concrete and concluded that the biaxial compressive strength of 

concrete is higher than uni-axial compressive strength of concrete. Nevertheless, most of 

the researchers have suggested that not much variation was observed between the bi-

axial tensile and uni-axial tensile strength of concrete. Thus, it has been reported that 

minimum three parameters, namely (i) uni-axial compressive strength, (ii) bi-axial 

compressive strength, and (iii) uni-axial tensile strength are required to predict the 

behavior of concrete. Thus, the use of Mohr-Coulomb, Drucker-Prager criteria have been 

found to be having limitations in predicting the response of concrete. On the basis of 

experimental investigations, various three-parameter models have been proposed. The 

Menetrey-Willam three-parameter model has been considered for the simplification of 
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Willam-Warnke five-parameter model and possesses the desired characteristics of a 

failure surface. Brestler and Pister (1958) have also proposed a three-parameter model. 

While Willam-Warnke failure model (Willam and Warnke, 1974) has the linear 

dependence between octahedral shear and normal stress, Brestler and Pister (1958) has 

the circular section in the deviatoric plane. 

The extensive investigations lead to the representation of the failure surface with the help 

of four parameters (Chen and Chen, 1975). Ottosen and Hseih-Ting-Chen model falls in 

this category. Hseih-Ting Chen model is considered a computationally simpler than the 

one proposed by Ottosen; nevertheless, the failure model has edges in the failure surface 

in the deviatoric plane and hence not been considered superior. The Willam-Warnke 

five-parameter model has been the best pick over all the above mentioned failure criteria 

because of its versatility in satisfying all the characteristics of the failure surface and also 

its performance in predicting the behavior of concrete (Willam and Warnke, 1974). 

Hence, in this study, it has been decided to use five-parameter failure model to model the 

concrete. 

3.4.2 Willam-Warnke five parameter failure model: mathematical formulation 

In the Willam-Warnke five parameter failure model, a three dimensional failure surface 

is developed in stress-space plasticity assuming isotropic behavior of concrete. As 

required and portrayed in the characteristics of failure surface, the present failure surface 

is basically a cone with curved meridians and a non-circular base section. The limited 

tension capacity is responsible for tetrahedral shape in the tensile regime, while in 

compression a cylindrical form is ultimately reached. For the mathematical model, only a 

sextant of the principal stress space has been considered, if the stress components are 

ordered according to 321 σσσ ≥≥ . The surface is conveniently represented by 

hydrostatic and deviatoric sections where the first one forms a meridian plane which 

contains equi-sectrix 321 σσσ ==  as an axis of revolution. The deviatoric section lies in 

a plane normal to the equi-sectrix, the deviatoric trace being described by the polar 

coordinates ( )θρ , . In addition, the convexity condition implies that the curve should 

have no inflection points in this interval, thus the approximation cannot be based on 

trigonometric functions or Hermitian interpolation. If the curve should also degenerate to 
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a circle for ct ρρ = , then an elliptic approximation has to be used for the functional 

variation of the deviatoric trace as shown in Fig. 3.3. 

 

(i) Deviatoric Section (ii) Elliptic Trace �� 600 ≤≤ θ  

Fig. 3.3: Trace of the deviatoric section of Willam-Warnke five parameter failure 

surface 

The ellipsoidal surface assures smoothness and convexity for all position vectors ρ

satisfying cc ρρρ <≤5.0 . The failure curve P1 -P -P2 with ( )ρθ  as polar co-ordinates 

is approximated by a quarter of an ellipse P1 -P -P2 -P3 in the deviatoric section. The 

elliptic trace is expressed in terms of the polar coordinates ( )θρ , by  
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The variations of the average shear stresses along tensile and compressive meridians are 

approximated by second-order parabolic expressions in terms of the average normal 

stresses, as follows: 
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In the above equation, ( )3/1Im =σ  is the mean stress, 
ct ρρ and
 
are the stress components 

perpendicular to the hydrostatic axis at �� 60θand0θ == , respectively. 

210210 bandb,b,a,a,a  are material constants. The evaluation of the above six constants 

is explained in Appendix-1. All stress components are normalized by compressive 

strength ( )
cf ′ . The mathematical model expresses the failure surface in terms of average 

or hydrostatic stress mσ  (Change in volume), the average shear stress mτ  and the angle 

θ  and the failure surface is defined as 

 ( )
( )
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The failure of the concrete is categorized into four domains: 

(a) n)compressioncompressioon(compressi0 321 −−≥≥≥ σσσ  

(b) n)compressioncompressio(tensile0 321 −−≥≥≥ σσσ  

(c) n)compressiotensile(tensile0 321 −−≥≥≥ σσσ  

(d) tensile)tensile(tensile0321 −−≥≥≥ σσσ  

Yielding of concrete occurs when the equation (3.7) is satisfied. Cracking occurs as soon 

the principal stress exceeds the allowable tensile strength. The crushing condition can at 

best be ascertained using strain rather than stress. Hence, for crushing, Willam-Warnke 

five parameter model in strain space plasticity is employed to determine the equivalent 

strain. Crushing is said to occur if the equivalent strain exceeds the ultimate crushing 

strain. 

3.4.3 Hardening rule 

The plasticity theory defines the yield limit as the limit below which the material 

property remains elastic and any further loading beyond this yield limit results in plastic 

flow. In the case of elastic-perfectly plastic, the initial yield surface becomes a 

failure/bounding surface, reflecting the increase in strain without further change in stress. 
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Nevertheless, for concrete having elasto-plastic behavior, strain hardening behavior 

needs to be included. Strain hardening is the region between the yield and peak stress 

reflecting the hardening nature of concrete with the increase in stress value. Thus initial 

loading surface/yield surface is allowed to expand on the application of load reflecting 

the strain-hardening behavior of concrete and thus defining the subsequent loading 

surface. 

Fig. 3.4: Isotropic hardening with expanding yield surfaces and the corresponding 

uni-axial stress-strain curve 

Hardening may be isotropic, kinematic or combination of both. Isotropic hardening 

assumes that the expansion of initial loading surface takes place uniformly thus 

completely neglecting Bauschinger effect. It essentially means that direction of strain and 

stress is assumed to progress in the same fashion. The typical isotropic hardening rule for 

the monotonic loading condition is shown in Fig. 3.4. On the other hand, the kinematic 

hardening assumes that the loading surface translates as a rigid body in stress space thus 

accounting for Bauschinger effect. At times, mixed hardening rule can be used which 

combines the isotropic and kinematic hardening. Nevertheless, isotropic hardening has 

yielded satisfactory results when used to model the hardening behavior of concrete with 

simplified mathematical approach (Smith et al. 1989) and hence is adopted in the present 

study. 

To define the hardening rule, the relationship between the accumulated plastic strain and 

the current 'loading surface' is assumed to be the conventional 'Madrid Parabola' 
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In the above equation, 0E  is the initial elasticity modulus, ε is the total strain and 0ε is 

the total strain at peak stress cf ′ .The total strain can be divided into elastic ( eε ) and 

plastic )( pε  components as: 

 pe εεε +=  [3.9]  

Substituting the value of ε in equation (3.8), we get 
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On expanding the equation (3.10) 
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Substituting the value of 
0E

e
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ε =  in equation (3.11) 
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On simplifying, 
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Equation (3.13) is quadratic equation, can be written in terms of 
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This the quadratic equation in terms ofσ ; on solving, 
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Taking the feasible solution and simplifying, we get 

 ( )ppE εεεσ 00 2+−=  [3.16] 

In the plasticity model adopted, the ductility increase due to the biaxial stress states 

cannot be represented. In order to overcome this drawback, the constant of 2.0 has been 

used as a strain multiplier to get the specified strain at the compressive strength. 
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Substituting the value of 0ε in Eq. (3.16), we get 
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The above equation is valid in the range (0.3 cf ′
cf ′≤< σ ) since the initial yield is 

assumed to begin when the stress exceeds 0.3 times compressive strength of concrete 
′

cf  

 pepe ddd εεεεεε +=⇒+=  [3.19] 

Dividing the above equation by incremental equivalent stress, 
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The material initially deforms according to the initial elasticity modulus 
0E until the 

stress level reaches a value yσ designated the uni-axial yield stress. On increasing the 

load further, the material is assumed to exhibit linear strain-hardening, characterized by 

the tangential modulus (ET). The strain hardening parameter (H) can be interpreted as the 

slope of the strain hardening portion of the stress-strain curve after removal of the elastic 

strain component. 

The total equivalent plastic strain is calculated by integrating the equivalent plastic strain as: 

 ∫=∫=
H

d
d pp

σ
εε  [3.21] 
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The hardening parameter (H) is given as 

 pd

d
H

ε

σ
==

strainplasticequivalentlIncrementa

stressequivalentlIncrementa
 [3.22] 

The hardening function is a function of the hardening parameter and its functional form 

is material dependent. The most common material test is performed under the uni-axial 

loading condition. The value of H is usually taken in the range 5.00 ≤≤ H  with zero 

represents the elastic-perfectly plastic behavior. As always, the parameters necessary to 

describe hardening behavior in general loading are determined from this experiment. On 

the other hand, various researchers have analyzed the post peak region of concrete, also 

called strain-softening portion in addition to strain-hardening. However, the post peak 

behavior is not a material property and is very much dependent on the element size. 

Hence, it is not possible to universalize the strain softening for all kinds of structures. 

The stress-strain relations cannot precisely capture the behavior of descending portion. 

Hence, the present study does not include the modeling of softening portion of stress-

strain curve. 

3.4.4 Flow rule 

During loading in the plastic range, the direction of the plastic deformation in the 

material (i.e., the unit normal vector in the direction of plastic flow) is defined 

mathematically through the plastic potential function. Though recent experimental 

evidence suggests that concrete demonstrates non-associativeness (Smith et al. 1989), 

only associated flow rule is employed in the present study because of mathematical 

simplicity. For small-strain elasto-plastic relation, the strain increments are decomposed 

into elastic component and a plastic component as 

 { } { } { }
pe ddd εεε +=  [3.23] 

Based on this decomposition of strain increments, the incremental elastic stress-strain 

constitutive relationship can be expressed as 

 { } [ ] { } { }( ) { } [ ]{ }eeepee dDdddDd εσεεσ =⇒−=  [3.24] 

The incremental plastic strain is assumed to follow the relationship 
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where F is the yield/plastic potential function. Since in this study, associated plasticity is 

adopted, the yield and potential function are same. λd  is the consistency parameter, 

which represents the magnitude of the plastic flow and 0≥λd , a positive scalar; { }a is 

the flow direction, which is obtained upon the differentiation of the yield function with 

respect to stress components, and is expressed as 

 { }
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The use of an associated flow rule ensures that the plastic strain-increments are vectors 

perpendicular to the potential surface. Loading-unloading conditions, known as Kuhn-

Tucker conditions (Chen, 1982) can be stated as 

 0,0,0 =≤≥ FdFd λλ  [3.27] 

The first of these indicates that the consistency parameter is non-negative while the 

second indicates that the stress states must lie on or within the yield surface as defined by 

hardening rule. The last condition assures that the stresses lie on the yield surface during 

plastic loading. From the loading-unloading conditions, the consistency condition can be 

rewritten as 

 0,0 ==∆ FifFd λ  [3.28] 
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The consistency parameter λd , expressed in terms of the flow direction, is as follows 
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Since { }a  is dependent on the stress state, which is dependent on consistency 

parameter. Hence, eq. (3.30) is a non-linear equation. Substituting eq. (3.30) in to first 

of eq. (3.25),  
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Substituting eq. (3.31) into eq. (3.24),  
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In eq. (3.33), [ ]epD is the continuum elasto-plastic constitutive matrix given by 

 [ ] [ ] [ ]{ }{ } [ ]
{ } [ ]{ }aDa

DaaD
DD

T

T

ep −=  [3.34] 

In the above equation, a = flow vector, defined by the stress gradient of the yield 

function; D = constitutive matrix in elastic range. The second term in eq. (3.34) 

represents the effect of degradation of material during the plastic loading.  

The elasto-plastic constitutive matrix with strain-hardening behavior is given by the 

following expression 

 [ ] [ ] [ ]{ }{ } [ ]
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In general, the stress increments ( )σσ dd e =  are given by the relationship  

 { } [ ] { }εσ dDd ep=  [3.36] 

The above equation represents the incremental elasto-plastic stress-strain curve 

considering the degradation in the stiffness due to yielding. The next section highlights 

the step-by-step procedure adopted in the compression modeling using incremental 

theory of plasticity.  

3.4.5 Incremental theory of plasticity: Step-by-step procedure 

The behavior of concrete may change during the course of loading from elastic to 

plastic frequently and vice-versa. It is essential to capture the state of stress and its 

behavior during the analysis. The incremental theory of plasticity relates stress 

increments to strain increments whereas the deformation theory relates total stress to 

total strain. In the present study, the incremental theory of plasticity has been adopted. 

The incremental theory of plasticity is capable of treating problems in which loading is 
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non-proportional whereas deformation theory cannot treat such problems. Stress 

integration represents calculation of stress change in an incremental step, 

corresponding to the strain increments. Not only should the integration algorithm 

reproduce accurately the mechanical response of the entire structure, but also should 

provide a computationally efficient algorithm because the stress integration is 

performed at all integration points.  

During the application of an increment of load, an element or part of an element may 

yield. All stress and strain quantities are monitored at each Gaussian integration point in 

order to determine whether plastic deformation has occurred at such points. 

Consequently, an element can behave partly elastically and partly elasto-plastically if 

some, but not all, Gauss points indicate plastic yielding. For any load increment it is 

necessary to determine what proportion is elastic and which part produces plastic 

deformation and then adjust the stress and strain terms until the yield criterion and the 

constitutive laws are satisfied. In general, the following can be assumed depending on 

the value of failure function and the effective stress. 

(a) If behaviorelastic0<F  

(b) If 0and0 <= σdF ; this indicates elastic unloading occurs (elastic behavior) 

and the stress point returns inside the yield surface. 

(c) If loadingplastic0and0 ⇒>= σdF ; this indicates the plastic behavior for a 

strain hardening material and the stress point remains on the expanding yield 

surface. 

(d) If 00and0 =⇒== pddF εσ ; this indicates the neutral loading (plastic 

behavior for a perfectly plastic material) and the stress point remains on the yield 

surface.  

(e) If surfaceyieldtobackGo0 ⇒>F  

The use of finite element discretization in a large class of non-linear problems results in a 

system of simultaneous equations of the form 0=+ fKϕ , in which ϕ is the vector of 

the basic unknowns, f is the vector of applied “loads” and K is the assembled “stiffness” 

matrix. For structural application, the terms 'load' and 'stiffness' are directly applicable, 

but for other situations the interpretation of these quantities varies according to the 

physical problem under consideration. If the coefficients of the matrix K depend on the 
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unknowns ϕ or their derivatives, the problem clearly becomes non-linear. In this case, 

direct solution of equation system is generally impossible and an iterative scheme must 

be adopted. Some of the most generally applicable methods are (i) Method of direct 

iteration (or successive approximation), (ii) The Newton-Raphson method, (iii) The 

tangential stiffness method, and (iv) The initial stiffness method. In the present study, 

Newton-Raphson method has been employed because of its versatility and simplicity. 

During any step of a Newton-Raphson iterative process of solution, A system of residual 

forces can be assumed to exist, so that 

 0≠+= fKϕψ  [3.37] 

These residual forces ψ  can be interpreted as a measure of the departure of the equation 

from equilibrium. Since K is a function of ϕ and a possibly its derivatives, then at any 

stage of process, ( )ϕψψ = .  

Consider the situation existing for the r
th

 iteration of any particular load increment. The 

solution algorithm employed is presented below: 

1) The applied loads for the r
th

 iteration are the residual forces 1−rψ  calculated at 

the end of the (r-1)
th

 iteration. These applied loads give rise to displacement 

increments rϕ∆ . Hence, calculate the corresponding increment of strain
rε∆ .  

2) Compute the incremental stress change assuming linear elastic behavior. This 

will introduce errors if the integration point has yielded and the material is 

behaving elasto-plastically. The stress change should be calculated according to 

rr

e εσ ∆=∆ D where the subscript e is used to denote that this stress is based on 

elastic behavior.  

3) The next step in the process depends on whether or not the integration point had 

previously yielded during the (r-1)
th

 iteration. This can be checked from the 

known value of the yield stress for the (r-1)
th

 iteration. The stress limit for this 

cycle is expressed as  
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+=
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py
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Since the plastic strain will differ from point to point, each integration point will 

generally have a different permissible stress level.  

a) If ⇒+>
−− 11 r

py

r

y H εσσ integration point had already yielded during the 

previous iteration.  

b) If ⇒+≤
−− 11 r

py

r

y H εσσ integration point had not previously yielded.  

4) For the integration point which was yielded during the previous iteration: If 

→>
−1r

y

r

e σσ the integration point had reached the threshold stress during the 

previous iteration and the stress is still increasing. Therefore, all the excess stress 

1−
−

r

y

r

e σσ must be reduced to the yield surface as indicated in Fig. 3.5. Therefore 

the factor, R, which defines the portion of the stress which must be modified to 

satisfy the yield condition, is equal to unity.  

If →≤
−1r

y

r

e σσ the integration point is unloading which according to plasticity theory 

must take place elastically, and no further action need be taken. For elastic elements, the 

correct current stress is expressed as 
r

e

rr σσσ ∆+= −1
 

5) For the integration point which was not yielded during the previous iteration: If 

→> y

r

e σσ  the integration point yielded during the application of load in the 

current iteration, as shown in Fig. 3.6. Therefore the portion of the stress greater 

than the yield surface must be brought back to the yield surface. The removed 

portion will be included in the residual force vector for further calculation in the 

next iteration. The reduction factor R needs to be determined and is given by the 

expression 
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e
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 [3.39] 

If →≤ y

r

e σσ the integration point is still elastic and no further action need be taken. 

For elastic elements, the correct current stress is expressed as 
r

e

rr σσσ ∆+= −1  

6) For the yielded integration points only: Compute the portion of the total stress 

which satisfies the yield criterion as ( ) r

e

r dR σσ −+− 11 . The remaining portion 

of stress 
r

edR σ must be effectively eliminated in some way. The point A must be 
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brought onto the yield surface by allowing plastic deformation to occur. 

Physically, this can be described as follows.  

On loading from point C, the stress point moves elastically until the yield surface is met 

at B. Elastic behavior beyond this point would result in a final stress state defined by 

point A. However, in order to satisfy the yield criterion, the stress point cannot move 

outside the yield surface and consequently the stress point can only traverse the surface 

until both equilibrium conditions and the constitutive relation are satisfied.  

 aDddaDλdεdDσd
r

e

rrr

er λσσσ −+=⇒−= −1
 [3.40] 

The above equation gives the total stresses rσ satisfying elasto-plastic conditions when 

the stresses are incremented from .1−rσ  The above equation is illustrated vectorially in 

Fig. 3.5 and Fig. 3.6. It is seen that if a finite sized stress increment is taken, the final 

stress point D, corresponding to rσ , may depart from the yield surface. This discrepancy 

can be partially eliminated by ensuring that the load increments considered in solution 

are sufficiently small. However, the point D can be reduced to the yield surface by 

simply scaling the vector 
rσ . 
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This represents a scaling of the vector rσ which implies that the individual stress 

components are proportionally reduced. The normality condition for the plastic strain 

increment is evident from Fig. 3.5 and Fig. 3.6 since pdDadD ελ =  

If relatively large load increment sizes are to be permitted the process described above 

can lead to an inaccurate prediction of the final point D on the yield surface if the stress 

point is in the vicinity of a region of large curvature of the yield surface. This is 

illustrated in Fig. 3.7 where the process of reducing the elastic stress to the yield surface 

is shown to end in the stress point D which is then scaled down to the yield surface to 

give point D'. Greater accuracy can be achieved by relaxing the excess stress to the yield 

surface in several stages. Fig. 3.7 shows the case where the excess stress is divided into 

three parts and each increment reduced to the yield surface in turn. After the three 

reduction cycles to the stress point E, the drift away from the yield surface can be 
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corrected by simple scaling to give the final stress point E'. It is seen that the final points 

D' and E' can be significantly different. An additional refinement which can be 

introduced is to scale the stress point to the yield surface after the reduction process for 

each cycle and not only after the final cycle as shown in Fig. 3.7. Obviously the greater 

the number of steps into which the excess stress AB is divided, the greater the accuracy. 

However, the computations for each step are relatively expensive since the vectors a and 

Dd  have to be calculated at each stage. Clearly a balance must be sought and in this text 

the following criterion is adopted. The excess stress 
r

edR σ is divided into m parts where 

m is given by the nearest integer which is less than 

 18
0

+
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y

y
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e

σ

σσ
 [3.42] 

where 
y

r

e σσ − gives a measure of the excess stress AB and 
0

yσ is the initial uni-axial 

yield stress. This criterion can be readily amended by the user. 

7) Finally, calculate the equivalent nodal forces from the element stresses 

according to  

 ( ) Ω∫= df
rTTe σB  [3.43] 

 

Fig. 3.5: Incremental stress changes in an already yielded point in an elasto-plastic 

continuum 
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Fig 3.6: Incremental stress changes in an already yielded point in an elasto-plastic 

continuum at initial yield 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7: Refined process for reducing a stress point to the yield surface 

3.5 Modeling of Concrete in Tension 
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usually found negligible in the analysis of concrete structures, much attention is being 

paid to the modeling of cracked concrete (Hinton and Owen, 1984) rather. In the 

analysis of reinforced concrete structures, the formation of cracks and their orientations 

play an important role. The methods of incorporating cracking mode of failure include 

the plasticity-based plastic fracture model (Bazant and Oh, 1983) and the simple 

tension cut-off model (Chen, 1982). The simple tension cut-off model is the most 

popular one and the basis for a cut -off may be strength, maximum strain, or energy. In 

most methods of analysis, a crack is formed when the major principal stress in the 

concrete exceeds the tensile strength assumed for the concrete. The crack direction is 

taken to be perpendicular to the direction of the major principal stress. In a finite 

element procedure, there are two distinct ways of representing cracks and are briefly 

discussed below. 

3.5.1 Discrete crack modeling 

This discrete crack model (Fig. 3.8) pioneered by Ngo and Scordelis (1967) represents 

cracks as inter-element discontinuities. Initially, this was implemented by letting a crack 

grow when the nodal force at the node ahead of the crack tip exceeded a tensile strength 

criterion. Then, the node is split into two nodes and the tip of the crack is assumed to 

propagate to the next node. When the tensile strength criterion is violated at this node, it 

is split and the procedure is repeated. This physically appealing representation of cracks 

has computational difficulties in that it requires node renumbering and there is restriction 

on the crack propagation direction depending on the mesh layout. Though this difficulty 

is tackled to certain extent through the use of automatic re-meshing, the continuous 

change in topology is inherent in the discrete crack approach and hence not being used in 

many finite element codes. 

3.5.2 Smeared crack modeling 

The alternative smeared crack approach (Fig 3.9), developed on the basis of equivalent 

theory of continuum mechanics, introduced by Rashid (1968), represents cracks as a 

change in the material property of the element over which the cracks are assumed to be 

smeared. It starts from the notion of stress and strain and permits a description in terms 

of stress-strain relations. It is sufficient to switch from the initial isotropic stress-strain 

law to an orthotropic law upon crack initiation. 
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Fig. 3.8: Discrete crack approach Fig. 3.9: Smeared crack approach 

The procedure is attractive not only because it preserves the topology of the original 

finite element mesh, but also because it does not impose restrictions with respect to the 

orientation of the crack planes, i.e. the axes of orthotropy. Besides allowing any 

orientation of crack propagation direction, this procedure fits the finite element 

computation scheme well in the sense that smeared crack approach of modeling the 

cracking behavior of concrete is more straightforward than that of the discrete crack 

model. In the smeared crack approach, the stresses and strains of concrete and steel are 

evaluated by average or smeared values crossing several cracks. Though smeared crack 

approach cannot resolve individual crack numerically, it captures the overall response 

accurately. Sometimes, smeared crack approach seems to suffer from stress-locking in 

the vicinity of dominant discrete cracks; however, the difficulty can be easily overcome 

by assuming zero shear retention factor (β ). In the context of the smeared crack model, 

two different representations of cracks, (i) the fixed smeared crack model, and (ii) the 

rotating smeared crack model, have emerged. 

Fixed smeared crack model 

In the fixed crack model proposed by Rashid (1968), a crack is formed perpendicular to 

the principal tensile stress direction when the principal stress exceeds the concrete tensile 

strength and the crack orientation does not change during subsequent loading and 

analysis. In some cases, a crack may close, and a new or secondary crack may be formed, 

but with restrictions relative to the initial crack direction. The ease of formulation and 

implementation of this model has led to its wide-spread used in early studies (Hand et al. 

1973; Lin and Scordelis, 1975). Subsequent studies, however, showed that the model is 

associated with numerical problems caused by the singularity of the material stiffness 

matrix. Moreover, the crack pattern predicted by the finite element analysis using fixed 
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crack approach often shows considerable deviations from that observed in experiments 

(Jain and Kennedy, 1974). Furthermore, fixed crack model produces a stiffer response 

and hence overestimates the ultimate load. 

The problem of the fixed crack model can be overcome by introducing a cracked shear 

modulus, which eliminates most numerical difficulties of the model and considerably 

improves the accuracy of the crack pattern predictions. It was also observed that results 

do not seem to be very sensitive to the value of the cracked shear modulus (Vebo and 

Ghali, 1977), as long as a value which is greater than zero is used, so as to eliminate the 

singularity of the material stiffness matrix and the associated numerical instability. 

Recent models use a variable cracked shear modulus to represent the change in shear 

stiffness, as the principal stresses in the concrete vary from tension to compression 

(Balakrishnan and Murray, 1988; Cervenka et al. 1990).  

Rotating smeared crack approach 

In the rotating crack model proposed by Cope et al. (1980), the crack direction is not 

fixed during the subsequent load history. Several tests by Vecchio and Collins (1982) 

have shown that the crack orientation changes with loading history and that the response 

of the specimen depends on the current crack direction rather than the original crack 

direction. The term “rotating crack” may also be taken in the abstract sense of the 

rotation of the anisotropy of the constitutive behavior. In the rotating crack model, the 

constitutive behavior of the complete load path may be reduced to a scalar relation with 

respect to the major principal stress. Due to the fact that the orientation of planes of 

degradation is aligned to the principal stress directions, only normal stresses occur on the 

crack surfaces, and the fictitious crack experiences pure Mode I (only tension). 

Therefore, no additional hypotheses are necessary to characterize the shear behavior. 

This model has been successfully used in analytical studies of RC structures whose 

purpose is to study the global structural behavior, rather than the local effects in the 

vicinity of a crack (Adeghe and Collins, 1986). 

Indeed, smeared crack analyses are known to exhibit quite a number of cracks that 

unload, even close and sometimes reopen again in a later stage of the loading process (de 

Borst and Nauta, 1985). The unloading and reloading phenomena have been modeled 

using a secant approach, which implies that upon unloading the stress follows a straight 
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line back to the origin (Rots and de Borst, 1987). Nevertheless, a disadvantage of 

smeared crack approach is the difficulty in correlating the analytical results with 

experimental fracture mechanics research, which is at odds with the rotating crack 

concept (Kwak and Filippou, 1990). Hence, the present analytical study adopts only 

fixed smeared crack approach. 

3.5.3 Tension stiffening in reinforced concrete 

For the rational and accurate analysis of concrete structures, it is often important to 

include post-cracking resistance of concrete. When loaded in tension, plain concrete 

exhibits softening behavior after attaining the peak stress and is often referred to as 

tensile softening. As cracks start to develop in plain concrete, the energy stored in the 

concrete eventually gets converted to fracture energy. This fractured energy increases the 

cracks and causes the concrete to soften at relatively high rates. On the other hand, the 

existence of reinforcement in the concrete stiffens and engages the concrete between the 

cracks through local bond stress transfer associated with local bond-slip. Essentially, the 

tensile softening response is relatively improved due to the presence of reinforcement 

and some kind of stiffening effect takes place. This stiffening effect on the softening 

response is known as tension stiffening effect (Vecchio and Collins, 1986). This 

stiffening effect of post-cracking tensile stresses in the concrete between cracks has been 

recognized for quite some time. Neglecting the contribution of this tension stiffening can 

cause a significant overestimation of post-cracking deformation in reinforced concrete 

structures (Hsu and Zhang, 1996). Since the tension stiffening is caused due to 

interaction between concrete and steel, its characteristics depend on the crack spacing, 

reinforcement ratio, and interface bond transfer mechanism between concrete and steel 

(Balakrishnan and Murray, 1988). 

The modeling of tension stiffening can be undertaken in one of the two ways: the first is 

to modify the stiffness of reinforcing bars; the second is to modify the concrete stiffness 

to carry the tension force after generation of cracks. Even though the first method seems 

to be beneficial to 1D problems, it has not been found satisfactory for 2D and 3D 

problems. The method, in which concrete stiffness gets modified, is assumed 

independent of the spacing of cracks, direction of reinforcing bars and reinforcement 

ratio. Hence the distribution of propagating cracks is assumed. 
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Fig. 3.10: Tension stiffening effect of cracked concrete 

This is one of the reasons why this method has been considered most versatile in the 

analysis of cracked reinforced concrete. Many experimental investigations have been 

performed to simulate the tension stiffening effect (Lin and Scordelis, 1975; Gilbert and 

Warner, 1978). A gradual release of the concrete stress is adopted in this present study as 

shown in Fig. 3.10. The reduction in the tensile stress is given by the following 

expression 

 
tsit

ts

i

ttsi f εεε
ε

ε
ασ ≤≤








−′= ;1  [3.44] 

Experimental studies on the tension stiffening behavior of concrete exhibit a large 

amount of scatter, and the stress-strain relationship for tension is not well defined 

(Daniel and Vecchio, 2004; Vecchio, 1999). Very few and scarce experimental data were 

available for the behavior of concrete under uni-axial tension (Gopalarathnam and Shah, 

1985). The values of tension stiffening coefficients tsα and tsε  are generally taken to be 

0.6 and 0.0020, respectively. It has also been reported that the influence of the tension 

stiffening on the response of the structures are generally small and hence the constant 

values are justified in the analysis (Hinton and Owen, 1984). 

3.5.4 Shear transfer 

It has been customary to consider the two constituents, concrete and steel reinforcement, 

as separate contributors to the overall stiffness and strength using the principle of 

superposition. It is normally assumed that full kinematic continuity between concrete and 

steel exists, at least at nodal points on element boundaries. Nevertheless, the two 
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materials are highly imbalanced in their behavior; Young's modulus for steel is one order 

higher than that of concrete, and unlike that for concrete, the stress-strain relation for 

steel is symmetric in tension and compression. This lack of material compatibility results 

in bond failure & sliding of reinforcement bars, and local deformations. Cracks in 

reinforced concrete are able to transmit large shear forces. Traditionally, this transfer has 

been neglected because of complexity and justified on the assumption that this would be 

a conservative simplification. Nevertheless, if a shear slip occurs along the crack, the 

crack will tend to dilate. If the crack dilatancy is prevented, forces normal to the crack 

faces will appear. These will have to be compensated by tensile forces on the 

reinforcement across the crack, increasing the potential for failure. Shear stresses can be 

transferred across the crack in three different ways: (i) by aggregate interlock as a result 

of the roughness of the crack faces, (ii) by dowel action or shear resistance of the 

reinforcement across the crack, and (iii) by the axial tensile force component in the 

reinforcement oblique to the plane of cracking. For members with low reinforcement and 

for small crack widths, aggregate interlock is the main mechanism of shear transfer. 

Tests carried out on beams without web reinforcement showed that aggregate interlock 

accounted for upto 75% of the shear transfer. 

In the early attempts at modeling shear transfer in finite element methods, the shear 

stiffness of a cracked element was taken as GGc β=  where G is the shear stiffness of the 

uncracked element and β is the shear stiffness reduction factor. This model does not 

reflect the decrease in shear transfer capability when the crack width increases. However, 

shear transfer eventually vanishes as the crack width approaches the aggregate size. The 

constant value of shear retention factor to model aggregate interlock has been considered 

as a coarse method by various researchers (Cedolin and Dei Poli 1977; Kolmar and 

Mehlhorn 1984). Even at large strains, the constant shear stress is being transmitted 

across the crack. In order to overcome this difficulty, β has been linked to the crack 

width and new expression has been suggested by Cedolin and Dei Poli as  

 ccc

c

c forGforGG εεεε
ε

ε
>=≤<








−= 0;01  [3.45] 

In the above equation, ε is the strain normal to the crack and cε is the value of ε after 

which there is no aggregate interlock.  
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3.5.5 Constitutive law of concrete 

The constitutive law is defined for three cases (i) concrete in uncracked state, 

(ii) concrete cracked in one direction, and (iii) concrete cracked in two directions. 

Concrete in uncracked state 

The stress-strain relationship for uncracked concrete is given by  
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In the above equation, k1 and k2 are shear correction factors in the 1-3 (x-z) plane and 

2-3 (y-z) planes respectively. For a homogeneous cross-section the shear correction 

factor is equal to 5/6; 

Cracked in one direction 

The stress-strain relationship for cracked concrete where cracking is assumed to take 

place in only one direction is given as 

6

5
;

004.00

004.0
004.0

1
125.0

0000

0000

0000

0000

00000

231213

112

112

23

13

12

2

1

23

13

12

23

13

12

2

1

G
GGG

ifG

ifGG

G

G

G

E

cc

c

c

c

c

==

≥=

<







−×=













































=























ε

ε

γ

γ

γ

ε

ε

τ

τ

τ

σ

σ

[3.47] 

  



Material Modeling of RC Structures 

95 

Cracked in two directions 

The stress-strain relationship for cracked concrete where cracking is assumed to take 

place in both directions is given as 
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It has also been mentioned by Hinton and Owen (1984) that the tensile strength of 

concrete is a relatively small and unreliable quantity which is not highly influential to the 

response of structures. In the above stress-strain relationship, the cracked shear modulus 

)( c
G  is assumed to be a function of the current tensile strain. In the above equation, G is 

the un-cracked concrete shear modulus. If the crack closes, the un-cracked shear modulus 

G is assumed in the corresponding direction. Even after the formation of initial cracks, 

the structure can often deform further without further collapse. In addition to the 

formation of new cracks, there may be a possibility of crack closing and opening of the 

existing cracks. If the normal strain across the existing crack becomes greater than that 

just prior to crack formation, the crack is said to have opened again; otherwise it is 

assumed to be closed. Nevertheless, if all cracks are closed, then the material is assumed 

to have gained the status equivalent to that of non-cracked concrete with linear elastic 

behavior. 

3.6 Modeling of Steel Reinforcement 

Reinforcing bars in structural concrete are generally assumed to be one-dimensional 

elements without transverse shear stiffness or flexural rigidity. The reinforcing bar can 

generally be treated as either discrete or smeared. The major advantage of discrete 

representation of reinforcing bar is existence of one-to-one correspondence between the 

real structure and model. In the smeared reinforcement, the average stress-strain 

relationship is calculated for an element area and incorporated directly as part of the 

overall concrete element stiffness matrix. In the present investigation, the smeared 

layered approach is adopted for simplicity. The bi-linear stress strain curve with linear 

elastic and strain hardening region is adopted in this study as shown in Fig. 3.11. 
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Typically, the hardening strain modulus is assumed to be 10% of initial elasticity 

modulus. The direction of steel (horizontal or vertical) can be set up by defining the 

angle with respect to local x-axis. There can only be two states of stress for the 

reinforcing bar, namely, elastic and linear strain hardening. 

 

Fig. 3.11: Stress-strain curve for steel 

3.7 Summary 

In this chapter, the material modeling of reinforced concrete is broadly described. The 

experimental behavior of concrete under uni-axial, bi-axial, tri-axial and cyclic loading 

conditions is discussed. The various failure models developed on the basis of plasticity 

theory along with the characteristics of failure surface are also emphasized in this 

chapter. The formulation of five parameter failure model proposed by Willam-Warnke to 

define the yield criteria of concrete in compression is also described. The complete 

process of elasto-plastic analysis of RC structures is outlined including the hardening 

rule and flow rule. The step-by-step procedure of incremental theory of plasticity is 

discussed. The modeling of concrete in tension with emphasis of tension stiffening effect 

is also elaborated. In the end, the modeling of steel reinforcement is briefly discussed in 

the chapter. 
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Chapter 4 

Finite Element Analysis of RC Structures: 

Programming & Validation 

4.1 Background 

The experimental results are generally considered highly accurate and reliable since they 

replicate the real behavior of the tested structure. It is a well known fact that the 

experimental testing of structures, if not impossible, is time consuming as well as costly 

and, therefore, it is desirable to rely on numerically simulated models which can 

substitute the experimental investigation in a fairly accurate manner. Finite Element 

Method (FEM) is a firmly well established good choice for the numerical simulation of 

complex structures which is increasingly used for investigating the behavior of complex 

structures and their designing (Meyer et al. 1985). One of the principal advantages of the 

FEM is the unifying approach which it offers the solution to a wide variety of 

engineering problems. The finite element method heavily relies on the physical 

interpretation in which the structure is assumed to be composed of non-overlapping 

regions known as elements over which the main variables are interpolated. These 

elements are connected at a discrete number of points along their periphery known as 

nodal points. The finite element method gives an approximate solution with an accuracy 

that depends mainly on the type of element and the fineness of the finite element mesh. 

In general there are several approaches to formulate the finite element problem namely, 

(i) Direct formulation, (ii) The minimum total potential energy formulation, and 

(iii) weighted residual formulations. It is important to note that the basic steps involved 

in the analysis using the above methods are similar. In general, the engineering problems 

that can be analyzed using FEM, can be classified into three categories: (i) equilibrium 

problems, (ii) Eigen value problems, and (iii) propagation problems. Equilibrium 

problems are the problems in which the response of the system does not vary with time, a 

classic example being the stress analysis of linear elastic systems. Eigen value problems 

are extensions of equilibrium problems in which specific or critical values of certain 

parameters are ascertained. The stability of structures and determination of the natural 
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frequencies of linear elastic systems are typical examples of such problems. Propagation 

problems include problems associated with the time-dependent phenomena. The 

dynamic transient analysis of shear wall, a present study, is a classic example of 

propagation problems. 

Reinforced concrete shows very complex behavior primarily due to material inelasticity, 

concrete cracking as well as due to interactions between cracked concrete and steel. The 

linear behavior of reinforced concrete structures is usually ceased even at service loads 

mainly due to cracking and the non-linearity becomes noticeable at higher loads due to 

subsequent yielding of concrete and steel. With the advent of computers it is now 

possible to carryout the non-linear behavior of RC structures simulating such non-linear 

behavior. Nonlinear finite element method is a unique tool for the analysis of reinforced 

concrete structures to include their deformational characteristics not only at service load 

conditions but near the failure stage also. The first application of FEM to analyze the RC 

structures dates back to late 1960s (Ngo and Scordelis, 1967). Since then rapid and great 

advances have been made to simulate the concrete behavior more precisely.  

In order to simulate the complex behavior of concrete, several commercial packages have 

been developed. These softwares provide good graphical representation of the results, 

however, the main drawbacks of these softwares are that they require huge input data and 

produce voluminous output data since they have been developed for general use. 

Moreover, the user cannot incorporate the recent developments in the material modeling 

and the user has to wait for the updated version of software. On the other hand, perhaps the 

biggest benefit of the developed computer programs is that they provide the full technical 

understanding to the developer/user and the input and output data may be customized in 

the desired format. Several computer programs have been developed in the past for the 

analysis of RC structures. Hinton and Owen (1984) developed a computer program in 

FORTRAN to the study the elasto-plastic behavior RC structures subjected to static loads. 

Huang (1989) modified this program to incorporate the dynamic analysis. These programs 

were developed primarily for the analysis of RC structures on no-crack basis using the 

Owen-Figurius yield/failure criterion. In the present study the Hinton-Owen-Huang 

program has been modified to incorporate the concrete cracking and the state of the art in 

yield/failure criterion to model the concrete in compression. To this end, several 

subroutines have been incorporated and modified to fulfill the above requirement. 



Finite Element Analysis of RC Structures: Programming & Validation 

103 

The non-linear finite element programming essentially consists of two major steps, viz. 

material modeling and geometrical modeling. The material modeling of concrete and 

steel has already been discussed in detail in Chapter three of the thesis. On the other 

hand, the geometric modeling deals with the identification of suitable finite element to 

model the structure to be analyzed. Since the present investigation deals with the 

response analysis of shear walls with and without openings subjected to static and 

dynamic loading conditions, the use of shell element has been found to be best suited to 

model the geometry of shear wall with moderate thickness. In the present study, the 

layered degenerated shell element with assumed strain approach has been adopted to 

discretize the shear wall. The assumed strain based degenerated shell element is capable 

of analyzing thin as well as moderately thick shear wall structures. In order to perform 

the time-history analysis of shear wall, different methods have evolved over the years. It 

is well documented in the literature that non-linear implicit direct integration time history 

analysis is more accurate and predicts the results closer to the experimental results. In the 

present study the Newmark-Beta method (Trapezoidal rule) of direct implicit time 

integration has been used to perform the time-history analysis of shear wall. In this study 

a code has been developed to perform the Non-Linear Dynamic Analysis of Shear wall 

and hereafter referred as NLDAS. The code NLDAS has been validated against the 

standard benchmark problems available in the literature. 

4.2 Finite Element Selection 

The choice of selecting suitable element to model a particular geometry is very crucial 

in attaining the desired results. Several finite elements have been developed so far and 

they are categorized on the basis of its dimensionality as well as it behavior. Bar and 

beam elements are considered 1-D elements. These elements are typically used to 

model the truss structures and the steel reinforcement in a RC structure. On the other 

hand, the beam element is primarily being used to model deflection and rotation of the 

beam. Except for the above cases, it is difficult to use 1-D elements for many practical 

problems. The 2-D elements such as Constant Strain Triangular (CST) element, Linear 

Strain Triangular (LST) element as well as rectangular elements (MacLeod 1969) are 

being used to model the structure with regular geometry. On the other hand, 3-D 

elements such as brick elements and solid elements are used to model the thick 

structures. However, analyst generally prefers the use of 2-D elements because of less 
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computational demand. Nevertheless, the structural problems may involve complex 

geometry, which may not be represented by simple elements such as triangular or 

rectangular elements. Since there is no single element which is universally best suited 

to model all geometry, the careful selection of element depending on the type of 

problem at hand is mandatory keeping in view the accuracy as well as the 

computational demand. In general, it is strongly believed that the elements must be 

allowed to take the general shapes in order to model the irregular geometry especially 

near openings. 

  

(a) 4 node plane element (b) 9 node plane element 

  

(c) 8 node solid element (d) 20 node solid element 

Fig. 4.1: Isoparametric class of finite elements 

In sequel to that, more generic finite elements came into picture in the recent years and 

have revolutionized the element technology to a greater level. Iso-parametric elements 

are the class of elements, which are more arbitrary in shape (Fig. 4.1) and thus can 

effectively be used to model the curved geometry of the structure (Zienkiewicz et al. 

2013). The concept of iso-parametric element is based on the transformation of the 

parent element from local or natural coordinate system to an arbitrary shape in Global 

coordinate system. The iso-parametric elements are widely used in many structural 

applications related to plates and shells. In the iso-parametric elements the variation of 

displacements and geometry within the element are defined using the similar shape 

functions. 
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The modeling of the shear wall geometry has been the subject of great interest over the 

past few decades. In the past, shear walls were modeled using beam elements or by plane 

stress elements. Nevertheless, the performances were not found to be good enough due to 

the poor convergence. On the other hand, shell elements are being used predominantly in 

modeling the shear wall geometry and resulted in a better performance. The use of shell 

element to model moderately thick structures like shear wall is well documented in the 

literature (Dvorkin and Bathe, 1984). A complete survey on the use of shell elements has 

been found in the literature (Yang et al. 2000). 

4.3 Evolution of Shell Elements 

In order to develop a simple, efficient and versatile shell element, several shell elements 

have been developed over the years and most of them can be put into three distinct 

classes namely flat elements, curved shell elements based on classical theories, and the 

degenerated shell elements (Liu and Teng, 2008) according to the basic mathematical 

principles involved and are explained below. 

4.3.1 Curved shell elements 

Curved elements based on exact or approximate shapes of shells began to appear in the 

late 1960s. In this approach, the actual surface is replaced by an assemblage of curved 

elements formulated on the basis of classical shell theories. The range of application of 

these elements is limited since the shell element formulation is dependent on the shell 

theory employed as well as on the geometrical description of shell surface. Gallagher 

(1969) observed that there are many difficulties in selecting a particular shell theory for a 

particular problem. Moreover, he observed that the many classical shell theory based 

finite element formulation are complex in terms of satisfying the continuity of 

displacements as well as in representing the rigid body modes. 

4.3.2 Flat shell elements 

In order to avoid the complex formulation of shell elements based on classical shell theory, 

the actual surface of the shell is replaced by an assemblage of flat faceted plate elements 

which are either triangular or quadrilateral in shape. Due to the simplicity of the 

formulation and easier implementation, the flat elements became more popular for the 

analysis of shell structures. The flat element matrices are constructed by adding plane 
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stress and plate bending element matrices. Assembly of these elements gives a geometry 

which only approximates the actual shell surface. This approach has been successfully 

applied for cylindrical shells by Hrennikoff (1966) and for general shells by Zienkiewicz 

and Cheung (1967). However, the difficulties and the shortcomings of the flat plate 

element used for the analysis of shells have been pointed out by Gallagher (1969) as 

mentioned below. 

• The behavior of the shells as represented by the differential equations is not 

approached in the limit of refinement of flat plate approximation. 

• The discontinuities of slope between adjacent plate elements may produce 

bending moments in the region of shells where they do not exist. 

• The coupling of membrane and bending effects due to curvature of the shell is 

absent in the interior of the individual elements and consequently a large number 

of elements must be used to achieve satisfying accuracy. 

Moreover, he mentioned the requirements which should be met in the development of a 

reliable and effective shell finite element as follows: 

• The element should satisfy the usual isotropy and convergence requirements. 

• The element should be formulated without the use of specific shell theory so that 

it is applicable to any plate/shell situation. 

• The element should be simple and inexpensive to use with. 

• The element should not be based on numerically adjusted factors. 

• The element should be relatively insensitive to distortions. 

4.3.3 Three-dimensional solid element for shell analysis 

In this approach, the actual three-dimensional (3-D) continuum is replaced by an 

assemblage of 3-D solid elements such as 4-noded tetrahedron elements, 8-noded 

hexahedron or 20 noded curved solid elements. Nevertheless, in such discretization, 

more than one layer of elements may be needed across the thickness to simulate the 

bending behavior of shell. The use of this technique for shell analysis results in many 

degrees of freedom and results in the huge computational demand and makes them 

inefficient. Moreover, this approach for shell analysis is found unsatisfactory especially 

in case of thin shells wherein the strain normal to mid-surface is associated with very 

large stiffness coefficients and as a result the equations become ill-conditioned. In order 
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to circumvent the shortcomings of curved, flat and 3-D solid elements, the conversion of 

3-D element into an equivalent 2-D element seemed to have gained momentum in the 

1970s through the concept of degeneration. 

4.3.4 Degenerated shell elements 

The degenerated shell element is derived from 3-D continuum theory by introducing 

the assumption that the original normals to the shell mid-surface are inextensible and 

essentially straight after deformation. The use of degenerated solid elements for the 

analysis of structures has become more and more popular due to the fact that they are 

not based on any particular shell theory and are therefore more versatile when 

compared with the other shell elements. The degenerated shell elements can be easily 

used to analyze shell structures with non-uniform thickness or with anisotropic material 

properties as well as with more than one material layer such as in reinforced concrete 

shear walls where the steel mesh may be modeled as a steel layer of uniform thickness. 

In addition, the solution obtained by using degenerated shell elements can be 

considered to be more realistic and closer to the solution obtained by using the true 3-D 

continuum approach. By using the iso-parametric mapping technique, degenerated 

shell elements are more accurate than flat shell elements. The implementation of the 

degenerated shell elements is relatively easy due to the iso-parametric and 

displacement-based formulation. 

The degenerated shell element is a �
C  shell element in which the assumed displacement 

function is continuous and need not satisfy the continuity of any derivatives and is the 

simplest class of finite elements. The nine noded Lagrangian displacement Interpolation 

has been used as a common type of degenerated shell elements. This element has been 

quite successful in modeling moderately thick structures because of their simplicity as 

well as in circumventing the use of classical shell theory. The popularity of these 

elements has grown enormously, as is obvious from the numerous publications devoted 

to them (Ahmad et al. 1970; Belytschko et al, 1985; Huang and Hinton 1986; Kant et al. 

1994) and from their implementation in most of the available commercial finite element 

codes. The detailed description of the element and its mathematical formulation is 

discussed in the next section. 
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4.4 Formulation of Degenerated Shell Element 

In this section, the underlying basic ideas in the formulation of the degenerated curved 

shell element are described. Two assumptions are made in the formulation of the curved 

shell element which is degenerated from three-dimensional solid. First, it is assumed 

that, even for thick shells, the normal to the middle surface of the element remains 

straight after deformation. Secondly, the strain energy corresponding to stresses 

perpendicular to the middle surface is disregarded, i.e. the stress component normal to 

the shell mid-surface is constrained to be zero. Five degrees of freedom are specified at 

each nodal point, corresponding to its three translations and two rotations of the normal 

at each node. The independent definition of the translational and rotational degrees of 

freedom permits the transverse shear deformation to be taken into account during the 

formulation of the element stiffness, since rotations are not necessarily normal to the 

slope of the mid-surface. 

 

Fig. 4.2: Geometry of 9-noded degenerated shell element 

Coordinate systems 

The geometry of the shell can be represented by the coordinates and normal vectors of 

its middle surface as Fig. 4.2. The geometry of the degenerated shell element and 

kinematics of deformation are described by using four different coordinate systems, 

i.e. global, natural, local, and nodal coordinate systems. The global coordinate system 
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(x, y, z) is used to define the shell geometry. The shape functions are expressed in 

natural curvilinear coordinates ( )ζηξ ,, . In order to easily deal with the thin shell 

assumption of zero normal stress in the z-direction, the strain components are defined 

in terms of local coordinate set of axes ( )zyx ′′′ ,, . At each node of shell element, the 

nodal coordinate set 
3k2k1k V,V,V with unit vectors ( kkk 321 ,, VVV ) is defined. The four 

coordinate sets employed in the present formulation are now described. 

Global coordinate set (x, y, z) 

This is a Cartesian coordinate system, freely chosen, in relation to which the geometry of 

the structure is defined in space. Nodal coordinates and displacements, as well as the 

global stiffness matrix and applied force vector are referred to this system. The 

displacements corresponding to x, y, z directions are u, v, w, respectively. 

 
Nodal coordinate Set ( kkk 321 ,, VVV ) 

A nodal coordinate system is defined at each nodal point with origin at the reference 

surface (mid-surface). The vector 
k3V  is constructed from the nodal coordinates at top 

and bottom surfaces at node k and is expressed as 
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k3V defines the direction of the normal at any node 'k', which is not necessarily 

perpendicular to the mid surface. The major advantage of the definition of 
k3V  with 

normal not necessary to be perpendicular to mid surface is that, there are no gaps or 

overlaps along element boundaries. 

The vector 
k1V  is constructed perpendicular to 

k3V and parallel to the global x-z plane. 

Hence 
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However, if the vector 
k3V is in the y-direction, i.e. ( )033 == z

k

x

k VV  , the vector 
k1V is defined as: 
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The superscripts refer to the vector components in the global coordinate system. 

The vector V2k is constructed perpendicular to the plane defined by V1k and V3k, i.e. 

V2k = V1k × V3k. The unit vectors in the directions of V1k, V2k, V3k are represented by 

kkk 321 ,, VVV respectively. The unit vectors kk 21 and VV  define the rotations of the 

kk 12 and ββ , respectively at node k. 

Natural coordinate set ( ζηξ ,, ) 

In this coordinate system, ηξ  and  are the two curvilinear coordinates in the middle 

plane of the shell element and ζ  is a linear coordinate in the thickness direction. It is 

assumed that ζηξ and,  vary between -1 and +1 on the respective faces of the 

elements. It should also be noted that the ζ  direction is only approximately perpendicular 

to the shell-surface, since ζ  is defined as a function of k3V . 

Local coordinate set ( zyx ′′′ ,, ) 

This is the Cartesian coordinate system defined at the sampling points wherein 

stresses and strains are to be calculated. The direction z ′  is taken perpendicular to the 

surface ζ = constant, being obtained by the cross product of the tangential vectors in 

the ξ  and η  directions. The direction of x′  can be taken along the tangent to the ξ  

direction at the sampling point and the direction y ′  is defined by the cross product of 

the z ′ and x′ -directions. 
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The local coordinate system varies throughout the shell and it is used to define the 

direction cosine matrix which enables transformation between the local and global 

coordinate system. The transformation matrix is now defined as 
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where li, mi and ni (i = 1,3) are the direction cosines of the unit vectors along the 

zyx ′′′ and,  , respectively.  
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Element geometry 

The global coordinates of pairs of points on the top and bottom surface at each node are 

usually input to define the element geometry. Alternatively, the mid-surface nodal 

coordinates and the corresponding directional thickness at each node can be furnished. In 

the iso-parametric formulation, the coordinates of a point within an element are obtained 

by interpolating the nodal coordinates through the element shape functions and are 

expressed as 
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where mid

k

mid

k

mid

k zyx and,  are the coordinates of the shell mid-surface and hk is the shell 

thickness at node k. In the above expression ( )ηξ ,kN are the element shape functions at 

the point considered within the element ),( ηξ  and ζ  tells the position of the point in 

the thickness direction. The unit vector in the directions of 
k3V is represented by k3V . 

The element shape functions are calculated in the natural coordinate system as 
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Based on the two assumptions of the degeneration process previously described, the 

element displacement field can then be expressed by the five degrees of freedom at each 

node. The global displacements are determined from mid surface nodal displacements 

mid

k

mid

k

mid

k wvu and,  and the relative displacements are caused by the two rotations of the 

normal as 
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where kk 21 and ββ  are the rotations of the normals which results in the relative 

displacements and k1V and k2V  are the unit vectors defined at each node. 
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4.4.1 Strain displacement relationship 

In order to easily deal with the thin shell assumption of zero stress in the z′ direction 

( )0=′
zσ , the strains need to be expressed in terms of local coordinate system zyx ′−′−′  

where z ′  is perpendicular to the material surface layer. For the small deformations, the 

in-plane and transverse shear strain components are defined as 
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In Eq. 4.8, 
fε ′  and 

sε ′  are the in-plane and transverse shear strains respectively and 

wvu ′′′ ,, are the displacement components in the local coordinate system zyx ′−′−′ . The 

derivatives of wvu ′′′ ,,  in local coordinate system are obtained from the derivatives of 

displacements, u, v, w in global coordinate system as 
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Where, transformation matrix [T] is given by 
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In the iso-parametric elements, the conversion of derivatives of displacements with 

respect to Cartesian coordinate system into derivatives of displacements with respect to 

natural coordinate system is attained through Jacobian matrix as 



Finite Element Analysis of RC Structures: Programming & Validation 

113 

 

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

−

ζζζ

ηηη

ξξξ

wvu

wvu

wvu

z

w

z

v

z

u

y

w

y

v

y

u
x

w

x

v

x

u

1
J  [4.11] 

where, [J] is the Jacobian matrix defined as 
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Now the relation between the strains and nodal displacements may be established as  

 δBε =′  [4.14] 

where, B is known as strain-displacement matrix and δδδδ is a vector of nodal displacements 

defined as 

 { } { }T
wvu 21 ββδ =  [4.15] 

It is convenient to write Eq. (4.14) in partitioned form as 
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The finite element analysis of RC shear wall can be carried out by adopting a layered 

element approach, which is very prominent for modeling of composite section. The 

layered approach divides the shell element into several concrete and steel layers through 

the thickness, and each layer has its own independent material properties. The layered 

element formulation (Teng et al. 2005) allows the numerical integration through the 

element thickness direction. For the numerical integration along the thickness direction, 

each layer is assumed to have one integration point at its mid surface. The steel layers are 

used to model the in-plane reinforcement only. The strain-displacement matrix B and the 

material constitutive matrix D are evaluated at the midpoint of each layer, and for all 

integration points in the plane of the layer. Using the principle of minimum potential 

energy, the element stiffness matrix K
e 
may be determined as: 

 ∫∫∫= dV
Te BDBK  [4.17] 
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In the above equation, the integration is made over the entire volume of the element. 

Since material non-linearity is only considered in the present study, the strain-

displacement matrix B remains constant throughout the analysis and the material 

constitutive matrix D changes due to non-linearity. 

In the Euclidean space, the volume of the element is given as the product of the 

differentials of the Cartesian coordinates and is expressed as dzdydxdV = . The 

transformation of integrals from the global coordinate system to the local coordinate 

system is performed with the use of determinant of the Jacobian matrix. 

ζηξ ddddzdydxdV J==  

For the numerical integration of the element stiffness matrix, the volume integration is 

converted into area integration using Jacobian and is expressed as 

 dAdK
Te ζJBDB∫∫=  [4.18] 

where ∫ ∫ ∫
+

−

+

−

=
1

1

1

1

ηξ dddA J  [4.19] 

With the help of Eq. (4.16), the stiffness matrix may be decomposed into in-plane and transverse 

shear strain stiffness matrices as 

 e
s

e
f

e
KKK +=  [4.20a] 

where,  dAdf

T

f ζJBDBK
e

f ∫∫=  [4.20b] 

 dAds

T

s ζJBDBK
e

s ∫∫=  [4.20c] 

Further, the in-plane stiffens matrix 
e

fK  may be decomposed into in-plane bending stiffness 

matrix 
e

bK  and in-plane membrane stiffness matrix 
e

mK  as 

 e

m

e

b

e

f KKK +=  [4.20d] 

where,   dAdζJBDBK b

T

b

e

b ∫∫=  [4.20e] 

 dAdζJBDBK m

T

m

e

m ∫∫=  [4.20f] 

The internal force vector e
f , may be expressed as 

 dAdζJσB∫∫= Te
f   (4.21) 



Finite Element Analysis of RC Structures: Programming & Validation 

115 

The stiffness matrix and force vector are evaluated by carrying out numerical integration 

using the Gauss- quadrature rule, which is one of the most widely used methods of 

numerical integration. The assembling of the element stiffness matrix and element load 

vector results in structural stiffness matrix K and structural load vector f respectively. 

The structural stiffness matrix K relates the structural force vector f with the global 

displacement vector δδδδ as 

 δKf =  [4.22] 

Once the displacements are determined, the strains and stresses may be calculated 

using strain-displacement matrix and material constitutive matrix respectively. The 

formulation of degenerated shell element is completely described in Huang (1987). 

The finite element programming sequence comprising the various modules is shown 

in Appendix-2. 

4.4.2 Element locking 

The degenerated shell element was found promising when it was first developed for the 

analysis of moderately thick plates and shells. Soon after the introduction of the 

degenerated concept, it was realized that the fully integrated stiffness matrix (3 × 3) 

overestimates the stiffness of the shell element as its thickness decreases. Thus, the 

degenerated formulations possess strong deficiencies in reproducing the behavior of thin 

structures, leading to locking phenomena. Though conventional shell elements with six 

degrees of freedom can be analyzed accurately either by full or reduced integration, it is 

an inherent disadvantage in the case of degenerated shell element with only five degrees 

of freedom, especially in thin shell conditions. For very thin elements, it is very difficult 

to avoid these locking phenomena theoretically. There are two drawbacks outlined below 

with respect to degenerated shell element. 

a) Transverse shear locking occurs when elements of lower interpolation order cannot 

reproduce pure bending states without an activation of transverse shear. Shear locking 

is a phenomenon associated with the development of spurious transverse shear strains 

and it is difficult to reproduce the thin shell conditions (zero transverse shear strains). 

Shear locking is essentially due to the inability of the assumed displacement fields to 

model the zero shear stress condition in the limit as the thickness of the shell tends to 

zero. 
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The transverse shear matrix 
ij

sK is of the order ( )2
Lh higher than the remaining terms. 

Thus, as span/depth ratio increases, the computed shear stiffness,
ij

sK  completely 

dominates and no effect of the bending stiffness remains with the finite length of the 

computer word. This actually causes the element stiffness ijK to over-stiff and leads to 

shear dominated solutions (shear locking). This defect can be overcome using 

selective/reduced integration and assumed transverse shear strain fields. 

b) Membrane locking occurs due to the same mechanism as transverse shear locking. 

Membrane locking is a phenomenon associated with the development of spurious 

membrane strains and it is difficult to reproduce pure bending strains. A distinguishing 

feature of the curved elements, as compared to the flat shell elements, is the presence of 

membrane-flexural coupling within each element. This coupling is achieved in the 

elements based on shell theory through the explicit presence of the curvature terms in the 

strain-displacement relationships, while for the degenerated element this is effected 

through the variation in the Jacobian. The presence of membrane-flexural coupling, 

although desirable, again leads to the phenomena of membrane locking, in which a 

bending-dominated response is replaced with a membrane-dominated response. This 

defect leads to additional stiffening of the solution. Elimination of membrane locking can 

be done via reduced integration of the membrane terms and also by using assumed 

membrane strain fields. 

Techniques to alleviate locking 

In order to alleviate locking problems, the reduced/selective integration techniques 

have been suggested and adopted by many authors (Zienkiewicz et al. 1971; Paswey 

and Clough, 1971; Malkus and Hughes 1978; Hughes et al. 1978). Zienkiewicz et al. 

(1971) used the reduced integration scheme in order to improve the degenerated shell 

element proposed by Ahmad et al. (1970) and found that the use of reduced integration 

results in spurious mechanisms or zero energy modes. Subsequently, in the same year, 

Paswey and Clough (1971) successfully employed the selective integration scheme to 

avoiding the locking by adopting different integration rule for calculating bending, 

shear and membrane stiffnesses e

s

e

m

e

b KKK and,  respectively. The order of integration 

is reduced for membrane and shear stiffness matrices to underestimate their effects in 

thin situations. Nevertheless, the selective integration schemes also suffer from the 
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mechanisms such as spurious mode/hourglass mode/zero energy mode. However, if 

these spurious modes are incompatible (or non-communicable) between adjacent 

elements, they do not cause any numerical instability. Moreover, it is not easy to find 

an appropriate reduced or selective integration rule which can eliminate both locking 

and undesirable kinematic modes at the same time. 

In order to suppress the spurious kinematic modes, a stabilization matrix may be added 

to the element stiffness matrix evaluated by a reduced integration rule (Belytschko et al. 

1984; Liu et al. 1985; Hughes 1987). In doing so, great care is needed to avoid 

reintroducing the effect of locking through excessive stabilization. Belytschko et al. 

(1985) described the implementation of a 9-noded Lagrangian element with uniform 

reduced integration with stabilization matrix (spurious mode control) for plates and 

shells. From their study, it was observed that the rate of convergence of this element is 

significantly superior and also the effectiveness of stabilization matrix in avoiding the 

zero energy modes. Nevertheless, such stabilization matrix, employed to alleviate 

locking, needs artificial damping or stiffness, both with user-determined coefficients. 

The default values are usually set in the commercial software after extensive studies with 

various examples, but the parameters are not able to work perfectly for all the 

applications that contain various meshes, loading conditions, and materials. Working 

along similar lines, some of the mixed/hybrid elements based on the first order shear 

deformation theory, such as shear-flexible element by Wilt et al. (1990) and the shear-

locking-free element by Auricchio and Sacco (1999), seem to be efficient in removing 

shear-locking. However, their complex formulation and high computational cost render 

their usage less attractive in practical applications. 

The assumed strain approach has been successfully adopted by many researchers (Huang 

and Hinton, 1986; Huang, 1987) as an alternative to avoid locking. Assumed Natural 

Strain (ANS) and the Enhanced Assumed Strain (EAS) are the two methods of assumed 

strain approach popularly used in the finite element application to avoid the locking 

phenomena. Though enhanced assumed strain approach (Simo & Rifai, 1990) has been 

successfully employed in removing shear and volumetric locking, it has not been used as 

prominently as assumed natural strain approach (MacNeal 1982). Huang and Hinton 

(1986) developed eight- and nine-noded Mindlin plate elements and degenerated shell 

elements with assumed natural strain approach in which the interpolation of the 



Finite Element Analysis of RC Structures: Programming & Validation 

118 

transverse shear strains is done in the natural coordinate system and the membrane 

strains in the local coordinate system at the assumed sampling points. Lee and Han 

(2001) presented an assumed strain based eight- noded shell element for the analysis of 

laminated plates and shells and found that the elements based on assumed natural strain 

approach are capable of removing the locking phenomenon (both shear & membrane 

locking) and performed well in the modeling of thin plates and shell structures. 

Teng et al. (2005) successfully analyzed the concrete slabs with assumed natural strain 

approach using Finite Element Analysis. 

4.4.3 Assumed natural strain formulation 

The key idea of the ANS method is the replacement of the selected displacement-related 

strains by independently assumed strain fields in element natural coordinates. In general, 

the application of the ANS method needs: (i) the positions of the sample points; (ii) the 

strain components at these points; and (iii) the interpolation functions to interpolate the 

strains from the sampling points to the Gaussian points. 

The appropriately chosen polynomial terms and sampling points ensure the elimination 

of risk of spurious zero energy modes. The location of the sampling points for shear 

strains ξζγ  and ηζγ  are shown in Fig. 4.3. The membrane and shear strains are 

interpolated from identical sampling points even though the membrane strains are 

expressed in orthogonal curvilinear coordinate system and transverse shear strains are 

expressed in natural coordinate system. 

  

Fig. 4.3: Sampling point locations for assumed shear/membrane strains 

If 
ij

ξςγ
 
and 

ij

ηζγ  are the shear strains at sampling points obtained from Lagrangian shape 

functions, the assumed shear strains at all nine Gaussian points (for 3 × 3 integration 

rule) may be interpolated as 
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where, the ( )zPi
and ( )zQ j

 are the interpolating functions along ξ direction (for z = ξ) 

and η direction (for z = η) respectively and they are defined as 
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The assumed strain may be considered a special case of integration scheme wherein, for 

function ξζγ  full integration is employed in η  direction and reduced integration is 

employed in ξ direction. On the other hand, for function, ηζγ  reduced integration is 

employed in η  direction and full integration is employed in ξ direction. Moreover, it 

may be observed that ξζγ is linear in ξ direction and quadratic in η direction, while ηζγ is 

linear in η direction and quadratic in ξ direction. The flexural membrane strains are 

evaluated in the local coordinate system zyx ′−′−′ using the following expressions as 
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4.5 Dynamic Analysis of RC Structures 

In the present section, the dynamic analysis of RC structures is discussed. In a dynamic 

analysis, the governing equation of motion can be expressed by the following equation 

which is a second order non-linear differential equation with constant coefficients. This 

equation is non-linear because the restoring force component varies with time. 

 )(),( tuuuu s RfCM =++ ɺɺɺɺ  [4.26] 
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The coefficients M, C and fs are the mass, damping and restoring force components 

respectively and R (t) is an external force, which varies with time 't'. The restoring force 

(stiffness component) varies depending on the non-linearity present in the structure and 

the formulation has been discussed in detail in chapter three (Material Modeling of RC 

Structures). The present section concentrates on the development of mass matrix and 

damping matrix. In the end, the complete formulation of the Newmark Beta method of 

direct integration is discussed in detailed followed by the validation of the developed 

finite element program NLDAS with the bench mark problems. 

4.5.1 Formulation of mass matrix 

In a dynamic analysis, a correct estimate of mass matrix is very important in predicting 

the dynamic response of RC structures. There are two different ways, namely (i) 

consistent approach and (ii) lumped approach, by which the element mass matrix can be 

developed. In the case of consistent approach, the masses are assumed to be distributed 

over the entire finite element mesh. In this approach, the shape functions (Ni) used for 

the computation of mass matrix is the same shape functions used for the development of 

stiffness matrix and hence the name “consistent' approach. The mass matrix developed 

using the consistent approach is known as consistent mass matrix. The consistent 

element mass matrix (Me) is given by 

 [ ] dVNN
T

iim

V

ρ∫=eM  [4.27] 

where 
mρ is the mass density, 'i' is the node number and the integration is performed over 

the entire volume of the element. The shape-functions for the nine-noded degenerated 

shell element have been mentioned in Eq. (4.6). The consistent mass matrix contains off-

diagonal terms and hence is computationally expensive. 

On the other hand, the lumped mass matrix is purely diagonal and hence computationally 

cheaper than the consistent mass matrix. Nevertheless, the diagonalization of the mass 

matrix from the full mass matrix results in the loss of information and accuracy (Huang 

1987). Nodal quadrature, row sum and special lumping are the three lumping procedures 

available to generate the lumped mass matrices. All the three methods of lumping lead to 

the same mass matrix for nine-node rectangular elements. Nevertheless, one of the most 

efficient means of lumping is to distribute the element mass in proportion to the diagonal 
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terms of consistent mass matrix (Archer and Whalen, 2006) and also discarding the off-

diagonal elements. This way of lumping has been successfully used in many finite 

element codes in practice. 

The advantage of this special lumping scheme is the assurance of positive definiteness of 

mass matrix. The use of lumped mass matrix is mostly employed in lower order 

elements. For higher order elements, the use of lumped mass matrix may not be an 

appropriate option and hence the present study uses only consistent mass matrix. 

Moreover, the lumped mass matrix may be an ideal option in the case RC framed 

structures in which the masses can be lumped at floor level. As RC shear wall is the 

concrete structure, it may be appropriate to use consistent mass matrix. The element 

mass matrix for consistent and lumped mass matrices are as mentioned below. 

 [ ]























−

−

=

32

32

1

21

21

000

000

0000

000

000

II

II

I

II

II

M
c

e
 [4.28] 

 [ ]























=

2

2

1

1

1

0000

0000

0000

0000

0000

L

L

L

L

L

L

e

I

I

I

I

I

M  [4.29] 

Eq. (4.27) is very general and can be used to develop the consistent mass matrix for any 

displacement-based finite element. In Eq. (4.28), 'I1' represents the contribution of mass 

in resisting the linear or translational motion and is defined as ∫= dzI mρ1
. Hence, 

masses corresponding to translational degrees of freedom are represented by 'I1'. On the 

other hand, 'I3' represents the contribution of mass in resisting the change in the rotatory 

motion and is expressed mathematically as ∫ ×= dzzzI mρ3
. ∫= dzzI mρ2

. The total 

mass matrix M is the sum of the element mass matrices
eM . The term z is the position of 

layer middle surface from shell middle surface. Eq. (4.29) represents the lumped mass 

matrix which is not used in the present analytical study. 

  



Finite Element Analysis of RC Structures: Programming & Validation 

122 

4.5.2 Formulation of damping matrix 

Mass and stiffness matrices can be represented systematically by overall geometry and 

material characteristics. However, damping can only be represented in a 

phenomenological manner and thus making the dynamic analysis of structures in a state 

of uncertainty. The quantification and representation of damping is certainly complicated 

by the relationship between its mathematical representation and the physical sources. 

The damping may be assumed to be contributed through friction, hysteretic and viscous 

characteristics. There is no single universally accepted methodology for representing 

damping because of the nature of the state variables, which control damping. 

Nevertheless, several investigations have been done in making the representation of 

damping in a simplistic yet logical manner (Charney, 2008). Only for the mathematical 

convenience, the damping has been modeled as equivalent viscous damping, represented 

as the percentage of critical damping. The governing equation of motion second order 

differential equation with constant coefficients is rewritten as 

 )(tuuu RKCM =++ ɺɺɺ  [4.30] 

The trial solution is given by  

 stceu =  [4.31] 

On substituting the trial solution and simplifying, the roots of quadratic equation are as 
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In Eq. (4.32), the damping ratio ξ  is given by 

 
crc
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m

c

m
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ω
ξ ;

22
 [4.33] 

Over damped system does not vibrate it all. The classical example is automatic door 

closing. Critical damping has the linear exploding function and hence the amplitude is 

higher than the over damped system, and then followed by exponentially exploding 

function resulting in the fast movement over the time. The bottom line is both over 

damped and critically damped does not vibrate at all. Nevertheless, in a building 

structure, critically damped and over damped situation may not arise. Damping matrix 

can be formulated analogous to mass and stiffness matrices (Duggal, 2007). It is also 

important to note that the damping matrix should be formulated from damping ratio and 

not from the member sizes. Rayleigh dissipation function assumes that the dissipation of 

energy takes place and can be idealized as the function of velocity. When Rayleigh 

Damping is used, the resultant damping matrix is of same size as stiffness matrix. 

Rayleigh damping is being used conveniently because of its versatility in segregating 

each mode independently. The damping can be defined as the linear combination of mass 

and stiffness matrices as 

 [ ] ][][ KMC βα +=   [4.34] 

 
22

i

i

i

βω
ω
α

ς +=   [4.35] 

It is to be noted that the damping is controlled by only two parameters [Fig. 4.4]. From 

Eq. (4.35), it is observed that if β  is zero, the higher modes of the structure will be 

assigned very little damping. When α alpha is zero, the higher modes will be heavily 

damped, as the damping ratio is directly proportional to circular frequency (ω ) (Clough 

and Penzein, 1993). Thus, the choice of damping is problem dependent. Hence, it is 

inevitable to perform modal analysis to determine the different frequencies for different 

modes. 
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Fig. 4.4: Variation of damping with circular frequency 

4.6 Formulation of Newmark Method 

For the dynamic time history analysis of RC structures, the Newmark Beta ( β ) method 

of direct time integration (Newmark, 1959), an implicit integration algorithm, has been 

used to solve the below mentioned equation of motion 

 tttttttt ∆+∆+∆+∆+ =++ RKuuCuM ɺɺɺ  [4.36] 

where M is the mass matrix; C is the damping matrix; K is the stiffness matrix. 

The truncated form of Taylor series is given below for the velocity and displacements. 
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The following assumptions are made in the linear acceleration method. 
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In the above equations, α  is the accuracy parameter and δ is the stability parameter. 
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Expanding Eq. (4.38), 
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Substituting the value of tt ∆+uɺɺ from Eq. (4.39) in tt ∆+uɺ of Eq. (4.38) 
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Using Eq. (4.38) and (4.39), the equation of motion in Eq. (4.36) is modified as 
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On expanding the above Eq. (4.41), we get 
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In order to simplify the above Eq. (4.42), the following constants are defined using 

accuracy parameter and stability parameter. 
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Using the constants defined in Eq. (4.43), the Eq. (4.42) is rewritten as 
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In Eq. (4.44), the effective stiffness matrix ( ∗K ) and the effective load vector ( R̂ ) is 

expressed as 

 KCMK ++=∗
1aao

 [4.45] 

 ( ) ( )[ ]tttttttttt
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The acceleration and velocities at time tt ∆+  
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The complete steps of Newmark β  direct time integration (Chopra, 2006) are outlined in 

Table 4.1. The parameters β  and γ  are chosen to arrive at a numerical approximation to 

the actual Taylor series expansion. It is also to be noted that any value of γ  less than 0.5 

results in a numerically unstable solution. On the other hand, the γ  value other than 0.5 

introduces spurious damping mechanism. The value of β  varies from 0 to 0.5 

representing the explicit and implicit conditions respectively. The implicit condition is 

numerically stable. 

Table 4.1: Step by step Newmark ββββ method of time integration 

Step Step description Equations 
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4.7 Solution Algorithms 

Direct methods and iterative methods are the two methods generally employed for the 

solution of non-linear finite element static equations. The direct method, typically based 

on the Gaussian elimination, is the best since the amount of computational effort 

required is known prior to the analysis. Various direct methods have evolved over the 

period of years for the static solution such as Cholesky, LDL
T
, Crout's method, Static 

Condensation etc., Nevertheless, all direct methods invariably depends on Gaussian 

elimination. On the other hand, iterative methods are more popular these days in 

nonlinear analysis. The solution algorithms namely (i) Euler-Cauchy forward integration 

and (ii) Newton-Raphson method have been the most successful of all techniques to 

solve the non-linear incremental equations. The Newton-Raphson method requires the 

non-zero and finite tangent stiffness function and its derivatives. 

4.7.1 Euler - Cauchy forward integration 

It is considered as the simplest of incremental methods for solving the non-linear 

problem. However, the response obtained using Euler-Cauchy forward integration 

generally appears to be stiffer than the actual one. Also, the solution may rapidly shift 

away from the true solution as no check is made to insure the structural equilibrium 

against external loading after each load increment. In order to estimate the accuracy of 

the procedure, analysis is repeated several times using successively smaller time 

increments. Nevertheless, the analysis becomes expensive. 

4.7.2 Newton - Raphson iterative procedure 

The Newton-Raphson procedure is a well-known method for the solution of nonlinear 

algebraic equation (Bathe, 2006). In the Newton’s method, the linearization of the 

discrete equations results in tangent moduli, which relates a stress rate to a strain rate. 

The resulting material tangent stiffness matrix is called the continuum tangent 

stiffness matrix (Owen and Hinton, 1980). The two main types of solution procedures 

that can be adapted to model material non-linearity are (i) constant stiffness 

iterations, and (ii) variable stiffness (tangent) iterations. In the case of constant 

stiffness iterations, the non-linearity is introduced by iteratively modifying the right 

hand side “loads” vector. The (usually elastic) global stiffness matrix in such an 

analysis is formed at the beginning of the solution. Convergence is said to occur if 

the stresses generated by the loads satisfy some stress-strain law in terms of yield or 
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failure criterion within the specified tolerances. Nevertheless, constant stiffness 

approach requires much iteration towards failure load as shown in Fig. 4.5(a). On the 

other hand, variable stiffness approach (modified Newton-Raphson method) takes 

care of material degradation as stiffness gets modified frequently and hence takes less 

iteration as shown in Fig. 4.5(b).  

Incremental displacements are computed and are added to the displacements at the end 

of the previous time step. The process is repeated till the desired convergence is 

reached. The Newton-Raphson method possesses excellent convergence characteristics 

(quadratic convergence rate). The tangent stiffness matrix is updated and triangularized 

for each iteration step. Prior to each solution, the Newton-Raphson approach assesses 

the out-of-balance load vector, which is the difference between the restoring forces (the 

loads corresponding to the element stresses) and the applied loads. The program carries 

out a linear solution, using the out-of-balance loads, and checks for convergence. If 

convergence criteria are not satisfied, the out-of-balance load vector is re-evaluated, 

the stiffness matrix is updated, and a new solution is attained. This iterative procedure 

continues until the problem converges. The constant stiffness approach (Newton 

Raphson method) and variable stiffness approach (Modified Newton Raphson method) 

are depicted in Fig. 4.5. 

 
(a) Newton- Raphson method  

(Constant stiffness approach) 

(b) Modified Newton- Raphson method 

(variable stiffness approach) 

Fig. 4.5: Iterative algorithm 
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The realistic criteria are to be used for termination of the iteration in order to attain 

appropriate solution and also to avoid unnecessary computational expenditure. At the 

end of iteration, the solution obtained should be checked to verify the convergence 

within the present tolerance limit. Inaccurate results may be resulted because of very 

relaxed tolerance limit. On the other hand, very tight tolerance limit may result in 

needless accuracy (Bathe 2006). 
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The global convergence check has been employed in order to check the convergence. In 

the above equation, r-1 and r denote successive iterations. The multiplication factor of 

100 on the left-hand side allows the specified tolerance factor to be considered as a 

percentage term. Equation (4.48) states that convergence is assumed to have occurred if 

the difference in the norm of the unknowns between the two successive iterations and the 

first iteration. Nevertheless, the size of the load increments is not a critical parameter in 

tracing out the deformational response provided that an appropriate solution algorithm is 

employed (Hinton and Owen, 1984). The norm can be defined in terms of (i) force, 

(ii) displacement, and (iii) energy Nevertheless, displacement based tolerance is usually 

adopted in practice due to its simplicity. 

4.8 Development of Computer Program 

In the present study an analysis module, NLDAS was developed using Fortran 77 and 

used to perform the non-linear dynamic finite element analysis of RC shear walls. The 

computer codes developed by Huang (1989) and Owen & Hinton (1984) for the static 

and dynamic elasto-plastic analysis of RC structures based on simple Owen-Figurious 

yield/failure criterion have been taken as the base programs in this study. 

These programs have been merged and modified to include state of the art five-parameter 

yield/failure model and concrete cracking. A modular approach has been adopted for the 

program development. To this end several new subroutines have been incorporated and 

few subroutines have been enhanced. 
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The program consists of 19 subroutines which are developed to perform various 

operations. In the program NLDAS, though the input files for static and dynamic 

analysis are different, all the data sets have to be read in at the beginning of the program. 

The program mainly consisted of the following subroutines: input, loading, incremental 

loading, stiffness, mass and damping matrices development and assembly, solution of 

equations, residual force calculations, convergence check and output results, in addition 

to modules for storage of global arrays such as nodal coordinates, element connectivity, 

material properties, and boundary conditions. Fig. 4.6 shows the program layout 

explaining the process of the program. 

 

Fig. 4.6: Program layout – NLDAS  
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4.9 Program Validation 

The finite element program developed is validated against standard experimental and 

analytical investigations and is divided into two parts. The first part deals with the 

validation of problems pertaining to static analysis, while the second part deals with the 

validation of problems related to dynamic analysis. 

4.9.1 Analysis of structures subjected to static loads 

In order to validate the program for analysis of RC structures, three problems have been 

identified for static analysis as mentioned below. 

� Linear static analysis of clamped square plate with uniform loading 

� Linear static analysis of cantilever beam subjected to concentrated load 

� Non-linear static analysis of shear wall subjected to concentrated load 

The analysis of first two problems aims at validating the efficiency of assumed strain 

based degenerated shell element used in the present analytical study with respect to two 

other elements. The third problem signifies the accuracy of the present analytical study 

in predicting the load-deformation response of RC shear wall with top and bottom beams 

subjected to static monotonic loading. It also validates the degenerated shell element, 

geometric modeling of shear wall, and material modeling of concrete and steel. 

Analysis of clamped square plate under uniform loading 

In order to validate the performance of assumed strain based degenerated shell element 

for thick as well as thin structures, a completely clamped square plate (Fig. 4.7) of size 

2 feet (a = 0.6096 m), subjected to uniform loading of 10 psi (0.0689 MPa), has been 

considered with different thicknesses. 

 

Fig. 4.7: Clamped square plate under uniform loading 
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The plate is analyzed for four different thicknesses, viz. (i) 5.08 mm, (ii) 0.508 mm, 

(iii) 0.0508 mm, and (iv) 0.00508 mm. The square plate is made out of material which 

has the elasticity modulus (E) as 68947.5 MPa and Poisson’s ratio (ν ) = 0.3. The 

deflection at the centre of the plate has been determined using linear elastic finite 

element analysis by discretizing the square plate into four equal elements and the 

solution is compared with (i) the exact solution and (ii) the analytical finite element 

solution using Lagrangian element. The exact solution for the deflection (w) at the 

center of the square plate is given by the following expression (Timoshenko and 

Krieger, 1959):  
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The solutions obtained using the finite element analyses are normalized with respect to 

the exact solution for an easy comparison. Table 4.2 shows the exact solution, the 

normalized finite element solutions based on (i) degenerated shell element with assumed 

strain approach and (ii) Lagrangian element. 

Table 4.2: Displacement of square plate under uniform loading 

Span/ 

depth ratio 

(a/t) 

Exact 

displacement 

(Timoshenko & 

Krieger, 1959) 

(inch) 

Normalized displacement (calculated/exact) based on 

Degenerated shell element 

(used in present Study) 
Lagrange element 

10 0.0000027518 1.2630 1.1361 

100 0.00275 1.1144 0.7640 

1000 2.75184 1.1130 0.2966 

10000 2751.84 1.1129 0.0048 
 

The displacement at the centre of the plate obtained using assumed strain based 

degenerated shell element has been found to be closer to the exact solution than other 

two elements. The performance of Lagrange element has not been found to be 

satisfactory especially for very thin plates. 
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Analysis of plain concrete cantilever beam 

In order to assess the performance of assumed strain based degenerated shell element 

with full and reduced integration, the concrete cantilever beam, shown in Fig. 4.8, of 

length 10 ft (3 m) subjected to concentrated load (30 N) at the free end has been analyzed 

by discretizing the cantilever beam into three finite elements. The cross-sectional size of 

a cantilever beam is 0.25 m × 0.25 m. The elasticity modulus (E) is taken as 

6.89 × 10
5
 kN/m

2
 and Poisson's ratio ( ν ) is taken as 0.3.  

 
Fig. 4.8: Cantilever beam subjected to point load at the free end 

The linear elastic analysis has been performed and the displacement at free end is 

calculated and normalized with respect to the exact solution, as predicted by Euler 

Bernoulli beam theory.  

 

Table 4.3: Normalized vertical displacement at the free-end of cantilever beam 

Degenerated shell element with layered approach Lagrange element 

Integration Rule 3 × 3 × 3 2 × 2 × 2 3 × 3 2 × 2 

Normalized Displacement 0.97279 1.0054 0.9467 0.9991 
 

Table 4.3 shows the normalized vertical displacement at the free end of the cantilever 

beam for two different finite elements, namely (i) assumed strain based degenerated shell 

element, (ii) Lagrange element. It has been observed from Table 4.3 that the normalized 

displacements predicted by degenerated shell element (proposed to be used in this study) 

with full integration and reduced integration schemes are better than the corresponding 

solutions obtained by Lagrangian element with full integration and reduced integration. 

This signifies that the degenerated shell element predicts the displacement response 

300 mm 
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reasonably accurately for both full and reduced integration and element is unaffected by 

locking phenomena and spurious mechanisms.  

Analysis of RC shear wall-nonlinear static analysis 

In order to validate the developed finite element program, the RC shear wall panel of size 

650 mm wide × 1300 mm high × 65 mm thick with aspect ratio of two has been analyzed by 

subjecting it to the monotonically increasing load. The shear wall panel is sandwiched 

between upper beam (to provide anchorage for vertical reinforcement) and bottom beam (to 

provide the base for shear wall panel), and the lateral load is applied at the middle of the 

upper beam as shown in Fig. 4.9.  The lower end of the shear wall is constrained in all 

degrees of freedom. The same problem was analyzed by Lefas et al. 1990 under same 

loading conditions and hence been considered as a bench mark problem for the present 

analytical study. The entire RC shear wall is discretized into 156 elements using assumed 

strain based degenerated shell element with layered approach. The material properties of 

concrete and steel are as follows: 

Elasticity modulus of concrete = 32710 MPa 

Poisson's ratio of concrete = 0.20 

Compressive strength of concrete = 42.8 MPa 

Tensile strength of concrete = 2.15 MPa 

Hardening modulus of concrete = 3271 MPa 

Ultimate crushing strain of concrete = 0.0035 

Elasticity modulus of steel = 2 × 10
5
 MPa 

Poisson's ratio of steel = 0.3 

Hardening modulus of steel = 20000 MPa 

Yield stress of steel in x-direction = 520 MPa (for both zone I and zone II) 

Yield stress of steel in y-direction = 470 MPa (for both zone I and zone II) 

Percentage of steel reinforcement in x-direction = 0.8 for zone I and 1.2 for zone II 

Percentage of steel reinforcement in y-direction = 2.1 for zone I and 3.3 for zone II 
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(a) Elevation (b) Section at A-A (c) Finite Element Discretization 

Fig. 4.9: Geometry of solid RC shear wall 

The material non-linearity has been considered which includes concrete cracking, 

yielding of concrete and steel, crushing of concrete. The modeling of concrete in 

compression has been formulated using plasticity theory with Willam-Warnke five-

parameter failure criterion to define the yield/failure surface. The isotropic hardening 

with associated flow rule has been adopted in defining the strain-hardening behavior of 

the concrete. The smeared crack modeling has been adopted in which cracks are assumed 

to be smeared over the element. To represent the capacity of the intact concrete between 

neighboring cracks, the linearly descending branch of tension stiffening has been 

adopted in the present investigation. The modeling of reinforcement has been done 

assuming steel reinforcement assumed to be smeared in a particular layer. The bilinear 

stress-strain curve has been adopted in defining the steel in tension as well as in 

compression. 

The load-displacement response at the top of the shear wall predicted using degenerated 

shell element by the present finite element analytical study is compared with 

experimental and analytical results reported by Lefas et al. (1990) and is shown in 

Fig. 4.10.  
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Fig. 4.10: Load deformation response of shear wall 

subjected to monotonically increasing load 

Fig. 4.11: Crack and yield 

patterns 

It is observed that the load-displacement response predicted by the present analytical study 

is much closer to the experimental results. In fact, for most part of the curve, the present 

analytical study is better than the analytical study reported at Lefas et al. 1990.  Moreover, 

the crack and yield patterns (Fig. 4.11) are also consistent with the experimental results 

reported by Lefas et al. (1990). The collapse load of the RC shear wall predicted by the 

present analytical study is 126.42 kN as against 127.37 kN determined experimentally. The 

error associated in predicting the collapse load is less than 1%. The collapse displacement 

has been characterized by heavy yielding of the steel reinforcement. Hence, it is concluded 

that the finite element program developed for the present analytical study using assumed 

strain based degenerated shell element with layered approach has been found to be 

predicting the results with acceptable accuracy. The part II of the validation with respect to 

dynamic analysis is discussed in the next section. 

4.9.2 Analysis of structures subjected to dynamic loads 

The finite element program developed is validated for dynamic analysis by taking two 

specific problems as mentioned below. 

� Non-linear dynamic analysis of flanged RC shear wall subjected to artificial 

ground motion 

� Non-linear dynamic analysis of rectangular RC shear wall subjected to 

earthquake ground motion. 
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Since the present investigation deals with the response analysis of RC shear wall, the 

validation of the developed finite element program has been done with RC shear walls, 

one of flanged type and other of rectangular type. The validation of program with respect 

to three problems is mentioned below. 

Analysis of flanged shear wall- non-linear dynamic analysis 

The international standard problem (ISP) reinforced concrete shear wall, shown in 

Figs. (4.12 - 4.15) has been analyzed using finite element analysis by discretizing the 

entire shear wall with assumed strain based degenerated layered shell element. The total 

number of elements used in the analysis is 316 and the number of nodes is 1349. In the 

2D Analysis, the total number of elements used is 168 and the number of nodes is 725. 

The base of the shear wall is completely fixed. In the experimental investigation, it has 

been mentioned that the top slab is also fitted with four lead blocks on upper and lower 

side of top slab in order to simulate appropriate gravity load on the wall. To incorporate 

that effect, the weight of top slab is increased from 29.1 tonf to 122.0 tonf by increasing 

the density of top slab by keeping the dimensions of top slab as it is. 

 

 
Fig. 4.12: Web side elevation of 

international standard problem 

Fig. 4.13: Flange side elevation of 

international standard problem 

The elasticity modulus and Poisson's ratio, of concrete are 2337.5 kg/mm
2
, and 0.155, 

respectively while that of steel are 18800 kg/mm
2
 and 0.300, respectively. The yield 

stress of steel is taken as 38.4 kg/cm
2
. The diameter of steel used is 6.35 mm and at a 

spacing of 170 mm for flange and at 70 mm for web. At junction, extra steel was 

provided to provide confinement effect. The thickness of steel layers was calculated 

based on amount of steel provided in the horizontal and vertical direction. The 

concrete cover has been assumed 18 mm. The damping is assumed 1% in all cases. 
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Rayleigh damping has been assumed by considering only stiffness proportional 

damping component in order to provide damping proportional to frequency. 

 

 

Fig. 4.14: Top view of shear wall 

 
Fig. 4.15: Reinforcement pattern for 

ISP shear wall 

In this study, an attempt has been made to verify the results of the finite element 

analysis with the actual experimental results and analytical results reported by Jagd 

(1996). The nonlinear dynamic analysis is performed RC flanged shear wall for two 

different earthquake ground motions [RUN1 & RUN2].  The duration of the ground 

motion for both runs (RUN1 and RUN 2) is 10 seconds. The waveforms used for both 

the runs are almost similar and hence the shape of the input ground acceleration has 

been shown only for RUN 2 (Fig. 4.16). The peak ground acceleration considered for 

RUN 1 and RUN 2 are 530 mm/s
2
 and 1120 mm/s

2 
shown in Table 4.4. The 

displacement time history response measured at the middle of the top slab of flanged 

shear wall has been computed using the Newmark Beta method of direct time 

integration and for brevity; only the maximum displacements have been shown in 

Table 4.4. The response has been computed at discrete time interval of 0.01 seconds. 

The total steps used for the computation of response are 1000. 

 

Fig. 4.16: Earthquake ground motion applied at the base of the structure 
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Table 4.4: Comparison of displacement response of present study with Jagd (1996) 

RUN 

Peak Ground 

Acceleration 

(mm/s
2
) 

Displacements at the middle of the top slab (mm) 

Jagd (1996) 

(Experimental) 

Jagd (1996) 

(Analytical) 

Present study (Analytical) 

3-D Analysis 2-D Analysis 

1 530 0.290 0.250 0.272 0.283 

2 1120 0.580 0.735 0.418 0.492 

Table 4.4 shows the comparison of the displacement response obtained via the present 

analytical study with the experimental and analytical investigations reported by Jagd 

(1996). It is observed that the present analytical study predicts the maximum 

displacement response closer to the experimental results than the analytical study 

reported by Jagd (1996). Hence, it is concluded that the assumed strain based 

degenerated shell element is capable of modeling the complex geometry such as flanged 

shear wall with reinforcements. It is also interesting to note that with 2D analysis, the 

results have been found to be much closer to the experimental results. On the other hand, 

the 2-D analysis can be considered a viable alternative to the time consuming 3-D 

analysis. Nevertheless, it remains to be seen whether 2-D analysis still possess same 

accuracy in predicting the displacement response of RC shear wall under non-linear 

dynamic loading conditions. 

Analysis of slender shear wall- non-linear dynamic analysis 

In order to perform the non-linear analysis of RC shear wall under dynamic loading 

conditions, the rectangular shear wall, shown in Fig. 4.19, has been discretized into 

120 finite elements using 9-noded 5-dof assumed strain based degenerated shell 

element with layered approach. The geometry of the shear wall, its elevation 

[Fig. 4.17(a)] and longitudinal section [Fig. 4.17(b)] are the same as analyzed by 

Agarwal et al. (1981). 

The material properties of RC shear wall are as mentioned in Table 4.5. The 

reinforcement is provided in two layers in horizontal direction and a single layer in 

vertical direction. The diameter of the reinforcing bar used as vertical and horizontal 

reinforcement is 4 mm diameter. In order to incorporate the effect of steel reinforcement, 

the layered approach is adopted in this study. 
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Fig. 4.17: Finite element idealization of rectangular shear wall 

Table 4.5: Material properties of concrete and steel 

Concrete Reinforcing Steel 

Units 
Elasticity 

Modulus 

Yield 

strength in 

compression 

Tensile 

strength 

Elasticity 

Modulus 

Strain 

hardening 

modulus 

Yield stress 

Vertical Horizontal 

psi 3.8 × 10
6
 4720 409 2.9 × 10

7 
7.03 × 10

4 53,500 53,500 

MPa 26200 32.54 2.82 199947.9 48.5 368.8 368.8 
 

The steel is modeled as a smeared layer of equivalent thickness. The properties of the 

steel are assumed constant in that layer. The bi-linear stress strain curve with linear 

elastic and strain hardening region is adopted in this study. The simulated EL Centro 

earthquake, shown in Fig. 4.18, is applied at the base of the shear wall with maximum 

amplitude or 1.05g. 
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Fig. 4.18: Input ground acceleration applied at the base of shear wall 

The response of the structure is traced for 1.5 seconds of duration. Several investigators 

have also adopted this way of response calculation by predicting the response only for 

the most intense earthquake period in order to simplify the computation. Fig. 4.19(a) and 

Fig. 4.19(b) show the experimental and analytical displacement time history responses, 

respectively, of RC shear wall subjected to scaled EI Centro ground motion as reported 

by Lefas et al. (1990). There is a considerable difference between the observed 

experimental response and analytical response reported by Agarwal et al. (1981). Though 

the maximum displacement response from both analytical and experimental approach is 

not much different, the shape of the displacement time history is different, especially for 

the duration from 0.4 seconds to 1.0 seconds.  Fig. 4.20 shows the displacement time 

history response of RC shear wall proposed in the present study. The proposed analytical 

study also matches more with their analytical study reported by Lefas et al. (1990) than 

the experimental results. 

 

Fig. 4.19(a): Experimental displacement time history of the shear wall (Hsu et al. 1981) 
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Fig. 4.19(b): Analytical displacement time history of the shear wall (Agrawal et al. 1981) 

 

Fig. 4.20: Displacement response history response of shear wall subjected to scaled  

EL Centro earthquake 1940 (Present study) 

It is concluded that the present proposed analytical study predicts the displacement time-

history response of RC shear wall reasonably well for most of the duration.  There is not 

much variation in the profile of the time-history as well. 

Table 4.6: Displacement responses at different times 

Time 
Displacement (mm) 

(Agarwal et al. 1981) 

Displacement (mm) 

(Present study) 

0.1 0 0 
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Time 
Displacement (mm) 

(Agarwal et al. 1981) 

Displacement (mm) 

(Present study) 

0.8 2 5 

0.9 13 12 

1.0 8 4 

1.1 2 6 

1.2 8 11 

1.3 0 1 

1.4 4 4 

1.5 1 0 

4.10 Element Sensitivity Analysis 

The sensitivity analysis has been performed by analyzing the 5-storeyed shear wall using 

9-noded 5-degree of freedom degenerated shell element for three different mesh sizes.  

The mesh sizes considered in the present study are 2 m × 0.5 m (140 elements), 

1 m × 0.5 m (280 elements), and 0.5 m × 0.5 m (560 elements). Fig. 4.21 shows the load-

displacement response of shear wall with three different mesh sizes. Table 4.7 shows the 

ultimate load carrying capacity and ultimate displacement of shear wall subjected to three 

different mesh sizes. 

 

Fig. 4.21: Load-displacement response of squat shear wall for different mesh sizes 
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Table 4.7: Comparison of responses for different mesh sizes 

Mesh size 
No. of 

elements 

Ultimate  Load 

carrying capacity (kN) 

Ultimate 

displacement (mm) 

2 m × 0.5 m 140 2083.5 124.2 

1 m × 0.5 m 280 2062.5 112.6 

0.5 m × 0.5 m 560 2053.5 112.6 

The ultimate load carrying capacity and ultimate displacement of shear wall discretized 

with 140 elements is 2083.5 kN. However, when the number of elements is doubled, the 

ultimate load carrying capacity is 2062.5 kN and ultimate displacement is 112.6 mm. The 

decrease in the ultimate load carrying capacity and ultimate displacement is 1% and 10% 

respectively when the number of elements is doubled (increased to 280 from 140).  It 

essentially means that as the number of elements is increased, the ultimate load carrying 

capacity gets decreased and so as ultimate displacement. Further increase in number of 

elements decreases the ultimate load carrying capacity further only by 0.5%, but there is 

no further change in the ultimate displacement. Hence, it suggested going either for 280 

elements or 560 elements. 

4.11 Summary 

In this chapter, the assumed strain based degenerated shell element formulation is 

discussed. The formulation of mass and damping matrices have been discussed. The 

step-by-step formulation of Newmark Beta method of direct time integration has also 

been discussed. The validation of finite element software is done for both static and 

dynamic analyses by comparing the response against standard bench mark problems. It 

has been concluded that the developed finite element program works well for linear and 

nonlinear static and dynamic analysis. At the end, the sensitivity analysis has been 

conducted to identify the mesh size to be adopted to discretize the shear wall. 
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Chapter 5 

Non-Linear Static Response of RC Shear Wall  

5.1 Background 

Reinforced Concrete (RC) Shear wall has been considered one of the most viable lateral 

load resisting elements in resisting wind and earthquake loads. The behavior of RC shear 

walls is influenced by many factors such as aspect ratio, opening size and its locations. It 

is generally perceived that the aspect ratio of shear wall plays a crucial role on its 

structural response, slender being more flexible and squat being more rigid. As outlined 

in Chapter 2, to meet the functional requirements, shear walls are penetrated with 

openings of different sizes and at different locations. Though there is a strong consensus 

that shear walls be penetrated only with smaller openings in order to get the desired 

structural response, but there is no clarity on the optimum size of openings in shear walls 

from strength and ductility point of view. Moreover, for a given size of opening in shear 

wall, it is also essential to investigate the influence of opening location on the strength 

and ductility responses of RC shear wall. Furthermore, the influence of ductile detailing 

(strengthening) around the openings on the structural response of RC shear walls is also 

needed to be investigated. In this chapter, an attempt has been made to determine the 

response of RC shear walls for its sensitivity to above mentioned parameters by static 

(pushover) non-linear finite element analysis considering only the material non-linearity. 

As discussed in Chapter 4, the assumed strain based locking free 9-noded layered 

degenerated shell element has been used for the discretization of RC shear wall. The mesh 

size has been kept uniform throughout the height of the shear wall. For the non-linear finite 

element analysis, the material non-linearities considered in the analysis are concrete 

cracking and yielding, yielding of steel and crushing of concrete. The plasticity based five 

parameter Willam-Warnke failure model with associated flow rule and isotropic hardening 

has been used to define the yield/failure criteria of concrete in compression. The tension 

modeling of concrete is augmented by the Rankine's tension cut-off criterion with tension 

stiffening. The modeling of cracks is considered using fixed smeared crack approach. The 

bi-linear modeling of steel reinforcement has been adopted in the present study to idealize 
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the steel behavior. To this end, the shear wall panel and five storeyed (squat) & ten 

storeyed (slender) RC shear walls have been considered and analyzed for different opening 

sizes and locations. In this chapter, the displacement responses of RC shear walls with and 

without openings have been predicted by plotting load-deformation response of shear walls 

without and with strengthening. The parameters viz., ultimate load carrying capacity, 

displacement at failure and displacement ductility index are considered to assess the 

performance of shear wall. 

5.2 Influence of Openings on the Static Response of Shear Wall Panel 

The reinforced concrete shear wall tested by Lefas et al. (1990) has been considered for the 

present study in order to assess the influence of opening location on the displacement 

response of shear wall panel with top and bottom beams. The geometry and section of shear 

wall specimen is as shown in Fig. 5.1(a) and (b). The wall panel is 650 mm wide × 1300 mm 

high × 65 mm thick. The height to width ratio of wall panel (aspect ratio) is two, thus 

representing the squat type of shear wall. While the upper beam provides anchorage for 

vertical reinforcement, lower beam provides the base for wall panel. The element size used 

to discretize the shear wall panel is 65 mm × 130 mm which is kept same for the entire 

structure. The number of degenerated shell elements used to discretize the shear wall panel 

and beams is 100 and 56 respectively.  

The bottom beam has been constrained in all degrees of freedom. The discretized finite 

element model is shown in Fig. 5.1(c). The elasticity modulus of concrete is 3.27 × 10
4
 MPa 

and Poisson's ratio is taken as 0.17. The concrete compressive and tensile strengths are as 

42.8 MPa and 2.15 MPa, respectively and the crushing strain of concrete is 0.0035. While in 

the central portion of the shear wall referred as zone I, the conventional reinforcement is 

provided, the edges of the shear wall are strengthened by providing the additional 

reinforcement and are identified as zone II. The percentages of reinforcement of steel in  

x-direction and y-direction are 0.8 & 2.1 in zone I and 1.2 & 3.3 in zone II. Irrespective of 

the zones, the yield stresses of steel in the x- and y-direction are 520 MPa and 470 MPa 

respectively. The hardening modulus of concrete and steel are assumed to be 3.27 × 10
3
 MPa 

and 2.00 × 10
4
 MPa, respectively. The vertical reinforcement (y-direction) is provided in 

two layers and horizontal reinforcement (x-direction) is concentrated in single layer. For 

the finite element modeling the reinforcement is considered to be smeared within the 
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element. The lateral load has been applied at the middle of top slab and has been 

incrementally increased till the failure of the shear wall panel. The displacement response 

has also been ascertained at the loaded point. For the non-linear analysis, the stiffness 

matrix is modified at the end of every load step.  

 

 

 

 

 

 

 

 

  

(a) Elevation (b) Section at A-A (c) Finite Element Discretization 

Fig. 5.1: Geometry of solid RC shear wall panel 

   

(i) Solid Shear wall (ii) Openings located centrally (iii) Opening near left edge 
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Fig. 5.2: Shear wall panel with different opening locations 
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As outlined in Chapter 3, the tension stiffening constants 
tsα  and 

tsε  are taken as 0.8 

and 0.0020 respectively. In order to determine the influence of opening locations on the 

structural response, the shear wall panel has been pierced with 12% opening. The 

number of openings considered for each shear wall panel is three and the size of each 

opening is 130 mm × 130 mm, thus resulting in aspect ratio of opening equal to unity. 

The openings are positioned at different locations of shear wall panel as shown in 

Fig. 5.2. Fig 5.2 (i) has been considered as the control specimen with respect to which 

the behavior of other specimens (Figs. ii - vi) has been ascertained. In present study the 

failure stage of shear wall has been arrived at when there is severe cracking and yielding 

and consequently, converged solution could not be achieved even after several iterations 

for a time step. 

The load-deformation response of shear wall with various opening locations has been 

plotted in Fig. 5.3. Fig. 5.4 shows the yield pattern predicted for shear wall with different 

opening locations. The complete summary in terms of ultimate load carrying capacity, 

collapse displacement and ductility index is given in Table 5.1. It is observed from Fig. 5.3 

when the openings are provided, the ultimate load carrying capacity decreases with respect 

to solid shear wall. Though cracking of shear wall started at early stages of loading, 

however, the failure of all shear wall panels took place due to the yielding of steel 

reinforcement followed by severe crushing of concrete regardless of the location of 

opening. 

 
Fig. 5.3: Load-displacement response of RC shear wall panel 
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Fig. 5.4: Yield pattern of shear wall panel with various opening locations 

Table 5.1: Ductility index and strength ratio of shear wall panel with various 

opening locations 

Opening 

locations 

Elements 

yielded in 

panel (out 

of 100) 

Load (kN) at 
Displacement 

(mm) at Ductility 

index

yu
∆∆µ∆ =  

Strength 

ratio, 

)( yu PP  
Yield 

( )
yP

 

Collapse 

( )uP  

Yield 

( )
y
∆  

Collapse 

( )
u
∆  

No opening 63 49.5 112.5 2.45 20.08 8.20 2.27 

Central opening 100 34.5 99.0 2.13 25.69 12.06 2.87 

Left opening 30 34.5 79.5 2.41 20.03 8.31 2.30 

Right opening 25 37.5 85.5 2.62 20.78 7.93 2.28 

Staggered 

opening pattern-I 
41 37.5 84.0 2.58 20.62 7.99 2.24 

Staggered 

opening pattern-II 
25 36.0 87.0 2.46 20.95 8.52 2.42 

From Table 5.1, it may be observed that the ultimate load carrying capacity and 

collapse displacement of solid shear wall are 112.5 kN and 20.08 mm respectively. On 

the other hand, when the shear wall is penetrated with central opening, the ultimate 

load carrying capacity is 88% of solid shear wall, while the collapse displacement is 

21% higher than that of solid shear wall. There is a significant increase in the ductility 

index of shear wall with central opening. Moreover, the number of yielded elements at 

the collapse stage is 100, which signifies the fact that the entire shear wall is effective 

in resisting the lateral loads and in producing the higher collapse displacement. This 

reflects upon the fact that the ductile failure dominates in the case of shear wall with 

central opening. 

When the shear wall is penetrated with openings located near left edge, the ultimate 

load carrying capacity is only 70% of the solid shear wall, while the collapse 

displacement is almost same as that of solid shear wall and hence, there is only a 

marginal increase in the ductility index of shear wall. In fact, the collapse load of shear 

Openings located 
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Solid Shear wall Opening near left 

edge 
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Opening pattern - II 
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wall with left opening has been found to be the lowest amongst all opening locations. 

This is partly due to the fact that openings are located on the tension side of shear wall 

and hence resulted in early collapse. Moreover, the number of elements yielded at 

collapse is only 30% and hence the complete shear wall is not utilized in resisting 

lateral loads and displacements.  

When the shear wall is penetrated with right opening, the load carrying capacity is 76% 

of solid shear wall. Nevertheless, only 25% elements yielded in comparison to central 

opening. Moreover, around 40% of total yielded elements have been concentrated on 

the compression zone and most of them are located near the bottom of the panel. The 

ductility index has also been found to be the lowest amongst all cases, signifying the 

sudden failure as compared to central opening.  

When the shear wall is penetrated with staggered openings I, yield displacement has 

been comparatively higher than that of central opening. But, the ultimate load carrying 

capacity is reduced substantially with respect to central opening. 41% of elements 

yielded at the collapse stage. On the other hand, in the case of staggered opening-II, 

only 25% elements yielded and the behavior is closer to that of right opening.  

Since the response of shear wall with central opening resulted in the maximum number 

of yielded elements apart from possessing higher ultimate load carrying capacity, 

higher ultimate displacement and higher ductility than other opening locations, it is 

suggested to provide central openings in the shear wall panel.  

5.3 Influence of Opening Size on Structural Response of Slender and 

Squat Shear Wall 

The behavior of the shear wall is strongly influenced by the presence of openings. It is 

essential to know the limiting size of openings in shear wall beyond which it becomes 

unserviceable or unsafe. Since the short shear walls have been found to possess very high 

load carrying capacity, the presence of openings in short shear wall may not alter the 

behavior significantly. Moreover, from the functional point of view, short shear walls 

with one or two storeys are not normally provided with openings and hence short shear 

walls with openings are not the part of this study. Since openings result in stress 

concentration, the portion of shear wall around the openings is generally strengthened by 
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providing reinforcements around the openings as per codal provisions (IS 13920-1993) 

and the same is shown in Fig. 5.5. 

 

 

 

 

Fig. 5.5: Ductile detailing (strengthening) around openings for a typical storey 

The present section investigates the influence of opening size and strengthening on the 

displacement structural response of squat shear walls (5 storeys) and slender shear walls 

(10 storeys) . In each storey, only one opening is provided and the size of the opening has 

been kept uniform throughout the height of shear wall. The width, thickness, and storey 

height of squat and slender shear walls are 8 m, 0.3 m, and 3.5m respectively. The total 

height of squat and slender shear walls considered in this study is 17.5 m and 35 m 

respectively as shown in Fig. 5.6 and Fig. 5.7. The aspect ratio of slender shear wall is 

4.4 while that of squat shear wall is 2.2. The shear walls have been analyzed for five 

different opening sizes at each storey viz, (i) 1 m × 1.5 m, (ii) 2 m × 1.5 m,  

(iii) 2 m × 2 m, (iv) 2 m × 2.5 m, (v) 2 m × 3 m, which correspond to approximately 5%, 

11%, 14%, 18% and 21% openings in each storey. 

Shear walls have been discretized using 9-noded 5 degree of freedom assumed strain 

based locking free degenerated shell elements. For the discretization of shear walls 

with openings; the mesh size is kept at 0.5 m × 0.5 m which has been kept uniform 

throughout the shear wall geometry due to computational effort involved in preparing 

customized input data. In order to model steel reinforcement, the layered approach is 

adopted in this study, wherein, the steel is modelled as a smeared layer of equivalent 

thickness and the material properties are assumed to be constant in that layer. The bi-

linear stress strain curve with linear elastic and strain hardening region is adopted for 

steel in compression and tension. The horizontal steel reinforcement is provided in 

two layers and vertical steel reinforcement is provided in single layer. As per the 

requirements of IS 13920-1993, shear walls are provided with minimum 

reinforcement ratio of 0.0025 of the gross area in both longitudinal (vertical) and 

transverse (horizontal) directions in the plane of the wall and the same has been 

adopted in the present study. For the strengthening of shear walls with openings, the 

Case 1 Case 2 Case 3 Case 4 Case 5 
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amount of vertical and horizontal reinforcement provided on the sides of openings is 

equal to that of the respective interrupted bars. For the pushover analysis, the 

triangular distribution of lateral loads has been considered and equivalent 

concentrated lateral loads are applied at the floor levels with maximum load at the 

top floor and zero at the ground level. The material properties adopted for the shear 

walls are as mentioned in Table 5.2. The details of geometry for a typical storey of 

shear wall such as the actual size & percentage of opening, number of elements, in 

slender as well as in squat shear wall is depicted in Table 5.3. 

Table 5.2: Material properties used for the analysis 

Material Property Magnitude 

Concrete 

Elasticity modulus  2.7 × 10
10

 N/m
2
 

Hardening modulus  2.7 × 10
9 

N/m
2
 

Poisson's ratio 0.17 

Uni-axial compressive strength of concrete 30 ×10
6
 N/m

2
 

Tensile Strength of Concrete 3 ×10
6 

N/m
2
 

Ultimate crushing strain of concrete 0.0035 

Tension stiffening coefficient ( )tsα  0.8 

Tension stiffening strain ( )tsε  0.0020 

Steel 

Elasticity modulus  2.0 × 10
11 

N/m
2
 

Hardening modulus 2.0 × 10
10 

N/m
2
 

Yield stress of steel 50 × 10
7
 N/m

2
 

 
 

Table 5.3: Summary of different opening sizes considered 

Case No. 1 2 3 4 5 

Opening Size 

(W ×××× H) 
1 m × 1.5 m 2 m × 1.5 m 2 m × 2 m

 
2 m × 2.5 m

 
2 m × 3 m

 

Opening % 
5.35% 

≈ 5% 

10.71% 

≈ 11%
 

14.28% 

≈ 14%
 

17.86% 

≈ 18%
 

21.43% 

≈ 21%
 

Number of 

elements per 

storey 

106 100 96 92 88 
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Fig. 5.7: Discretization of squat shear wall with various opening sizes 
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Fig. 5.6: Discretization of slender shear wall with various opening sizes 
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Fig. 5.8: Influence of opening size on the response of slender and squat 
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Fig. 5.8: Influence of opening size on the response of slender and squat RC shear wall
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5.3.1 Influence of opening size on the ultimate load carrying capacity 

Fig. 5.8 shows the load-displacement response of RC slender and squat shear walls for 

various opening sizes mentioned in Table 5.3. For each opening size, the response of 

shear wall with opening (with and without strengthening) is compared with solid shear 

wall. Table 5.5 and 5.6 shows the displacements and loads at yield and ultimate stages 

for slender and squat shear walls respectively. 

From Tables 5.4 and 5.5, it observed that the ultimate load carrying capacity of RC solid 

shear wall is 1001 kN and 2062 kN for slender and squat respectively It implies that load 

carrying capacity of the slender shear wall is around 50% of squat shear wall. It may be 

observed from the Table 5.4 & 5.5 that in general, when the shear walls are penetrated 

with openings, the load carrying capacity of shear wall gets decreased with the increase 

in the opening size. Moreover, when the shear walls are not strengthened around the 

openings, the ultimate load carrying capacity gets affected to the great extent especially 

in larger opening sizes, as explained in this section. 

Table 5.4: Response of slender shear wall with different opening sizes 

Opening 

size 

Not strengthened around openings Strengthened around openings 

Yield 

Disp. 

Ult. 

Disp. 

Duct. 

Index 

Ult. 

Load 

Yield 

Disp. 

Ult. 

Disp. 

Duct. 

Index 

Ult. 

Load 

Nil 120 324.7 2.71 1001.0 120 324.7 2.71 1001.0 

5% 132 329.1 2.49 907.5 132 330.8 2.51 932.3 

11% 129 320.4 2.48 808.5 130 319.9 2.46 858.0 

14% 132 327.8 2.48 797.5 140 343.8 2.46 863.5 

18% 145 355.1 2.45 786.5 158 358.3 2.27 858.0 

21% 80 159.0 1.99 440.0 185 387.9 2.10 781.0 

Table 5.5: Response of squat shear wall with different opening sizes 

Opening 

size 

Not strengthened around openings Strengthened around openings 

Yield 

Disp. 

Ult. 

Disp. 

Duct. 

Index 

Ult. 

Load 

Yield 

Disp. 

Ult. 

Disp. 

Duct. 

Index 

Ult. 

Load 

Nil 34 112.6 3.31 2062 34 112.6 3.31 2062 

5% 33 70.8 2.15 1755 44 127.7 2.90 1970 

11% 29 83.4 2.88 1665 46 112.3 2.44 1935 

14% 39 80.6 2.07 1635 42 108.7 2.59 1695 

18% 18 38.3 2.13 1125 49 102.6 2.09 1605 

21% 12 25.5 1.59 600 38 64.1 1.69 975 
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Slender shear wall: 

The ultimate load carrying capacity of slender shear wall with 5% opening is 907.5 kN 

(90% strength of solid shear wall) when not strengthened, but increased to 932.3 kN 

(93% strength of solid shear wall) when strengthened. As expected, the strengthening of 

shear wall around openings results in the increase in the ultimate load carrying capacity 

but only marginally. However for slender shear wall with 11% opening, the ultimate load 

carrying capacity of shear wall without and with strengthening is 808.5 kN (80% of solid 

shear wall) and 858 kN (86% of solid wall) respectively which shows that the load 

carrying capacity of slender shear gets reduced as the opening is increased from 5% to 

11%. For slender shear wall with 14% opening without strengthening, the ultimate load 

carrying capacity is close to 80% of solid shear wall, and strengthening results only in 

marginal increase of around 6% in the ultimate load carrying capacity. For slender shear 

wall with 18% opening, the ultimate load carrying capacity is close to 80% of the solid 

shear wall, but increased to 85% upon strengthening. It may be interpreted that the 

presence of additional steel provided around the openings is not significantly influencing 

the load carrying capacity of shear wall up to 18% opening. The load carrying capacity 

of slender shear wall with 21% opening is only 40% of the load carrying capacity of 

solid shear wall. However, the strengthening of shear wall around the openings resulted 

in increased load carrying capacity, 78% of solid shear wall which indicates that 

strengthening around opening is very essential in case of shear wall with 21% opening.  

Thus it may be concluded that even without strengthening, for a given shear wall 

geometry and material characteristics, the opening up to 18% can be considered to be 

safe from the point of view of ultimate load carrying capacity. 

Squat shear wall: 

For squat shear wall with small opening (5% opening), the ultimate load carrying 

capacity of shear wall without and with strengthening is 85% and 95% of solid wall, 

respectively. It may be noted that for the squat shear wall with 5% opening, 

strengthening around openings results in increased load carrying capacity. For squat 

shear wall with 11% opening, the ultimate load carrying capacity of shear wall without 

and with strengthening is 80% and 93% of solid wall. The stiffened response upon 

strengthening is clearly visible for squat shear wall for 11% opening. For squat shear 

wall with 14% opening, the ultimate load carrying capacity is close to 80% of solid shear 
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wall without strengthening, and strengthening results only in negligible increase of only 

2%. However for squat shear wall with 18% opening, the ultimate load carrying capacity 

is close to 55% of the solid shear wall, but increased to 78% upon strengthening. It may 

be interpreted that the presence of strengthening is influencing the load carrying capacity 

of squat shear wall significantly for 18% opening. Hence strengthening is considered 

essential and beneficial for squat shear walls for 18% opening for better load carrying 

capacity. The load carrying capacity of squat shear wall with 21% opening is only 29% 

of the load carrying capacity of solid shear wall. However, the strengthening of shear 

wall around the openings resulted in increased load carrying capacity, 47% of solid shear 

wall. That means, even by strengthening the shear wall around openings, 21% opening is 

not desirable for squat shear walls because of drastic reduction in the load carrying 

capacity of more than 50%.  

On the basis of above discussion, it may be concluded that even without strengthening, 

for a given shear wall geometry and material characteristics, the 14% opening can be 

considered to be safe for squat shear wall from the point of view of ultimate load 

carrying capacity. However, when strengthened around the openings, 18% opening may 

also be adopted. 

5.3.2 Influence of opening size on the displacement response of shear wall  

The influence of opening sizes on the ultimate displacement (deformability) and 

displacement ductility index have been discussed in this section. The displacement 

ductility index is calculated as the ratio of yield to ultimate displacement. Since the well 

defined yield point may be very difficult to identify, many researchers have suggested 

different methods of arriving at the yield displacement. The present study adopts the one 

based on reduced stiffness equivalent elasto-plastic yield as shown in Fig. 5.9 [Park, 

1988]. In this method, the yield displacement is found as the displacement where the 

secant line drawn at 75% of the ultimate load meets the horizontal line drawn at ultimate 

load as shown in Fig. 5.9. This way of representing the yield displacement has been 

considered the most realistic definition for reinforced concrete structures [Park, 1988]. 

The ultimate displacement and ductility index of slender and squat shear walls are shown 

in Table 5.4 and 5.5 respectively. For an easier comparison of the ultimate displacement 

and ductility index of shear wall with different opening sizes, the responses are 

normalized with respect to solid shear wall.  
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Slender shear wall: 

Figs. 5.10 & 5.11 show the ultimate load, ultimate displacement, and ductility index in 

normalized form for slender shear wall without and with strengthening, respectively. 

For slender shear wall with 5% opening, the yield displacement and ultimate 

displacement of slender shear wall are approximately same for both un-strengthened 

and strengthened cases and hence, there is not much variation in the displacement 

ductility index (Table 5.4). The ductility index is 2.49 when not strengthened, but 

increased slightly to 2.51, when strengthened. The normalized ultimate displacement 

and ductility index is only 1.01 and 0.92 when not strengthened, but remains at 1.02 

and 0.91 when strengthened. As expected, the strengthening does not increase in the 

ductile behavior. 

For slender shear wall with 11% opening, the ductility index is only 2.48 when not 

strengthened, but decreased slightly to 2.46, when strengthened. This is due to the fact 

that the ultimate displacement and yield displacement of slender shear wall are 

approximately same for both un-strengthened and strengthened. The normalized ultimate 

displacement and ductility index is only 0.99 and 0.92 when not strengthened, but 

remains at 0.99 and 0.91 when strengthened. It may be interpreted that the strengthening 

does not result in impacting the ductile behavior. 

From Table 5.4, it may be observed that for slender shear wall with 14% opening, the 

ductility index is only 2.48 when not strengthened, but decreased slightly to 2.46, when 

strengthened. The ultimate displacement of slender shear wall is 328 mm when un-

Fig. 5.9: Ductility based on reduced stiffness 

equivalent elasto-plastic yield 

Displacement  

Load 

Pu 

0.75Pu 

y∆  u∆  
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strengthened, but increased to 344 mm when strengthened. The normalized ultimate 

displacement and ductility index are 1.01 and 0.92 when not strengthened, but changed 

to 1.06 and 0.91 when strengthened. Hence, for shear wall with 14% opening, the 

increase in the ultimate displacement is offset by the corresponding increase in yield 

displacement, thus resulting in an unaltered displacement ductility index. However, it 

may be interpreted that the strengthening results in the ductile behavior for 14% 

opening. 

 

Fig. 5.10: Normalized ultimate load, ultimate displacement and ductility of slender shear 

wall with different openings without strengthening 

 

Fig. 5.11: Normalized ultimate load, ultimate displacement, ductility of RC slender shear 

wall with different openings with strengthening 
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For slender shear wall with 18% opening, the ductility index is 2.45 when not 

strengthened, but decreased to 2.27, when strengthened. The ultimate displacement of 

slender shear wall is 355 mm when un-strengthened, but only increased to 358 mm when 

strengthened. That means, not much change is observed in the ultimate displacement 

upon strengthening. The normalized ultimate displacement and ductility index are only 

1.09 and 0.90 when not strengthened, but changed to 1.10 and 0.84 when strengthened. 

The displacement ductility index when strengthened has been found to be reduced due to 

the higher yield displacement. It is clear that the strengthening results in stiffening effect 

but not enhancing the ductility as such. 

For slender shear wall with 21% opening, the ductility index is 1.99 when not 

strengthened, but slightly increased to 2.10, when strengthened. The ultimate 

displacement of slender shear wall is 159 mm when un-strengthened, but shot up to 

387.5 mm when strengthened. The normalized ultimate displacement and ductility index 

are only 0.49 and 0.73 when not strengthened, but rose to 1.19 and 0.77 when 

strengthened. It is clear that the strengthening has been considered very essential in 

enhancing significantly the ultimate displacement and marginally the displacement 

ductility index. 

Squat shear wall: 

Figs. 5.12 & 5.13 show the ultimate load, ultimate displacement, and ductility of squat 

shear wall in normalized form without and with strengthening, respectively. 

From Table 5.5, it may be observed that for squat shear wall with 5% opening, the 

ductility index is 2.15 when not strengthened, but increased to 2.90, when strengthened. 

The ultimate displacement of squat shear wall is 70 mm when un-strengthened, but shot 

upto 128 mm when strengthened. The normalized ultimate displacement and ductility 

index are only 0.63 and 0.65, respectively when not strengthened, but rose to 1.13 and 

0.88 when strengthened. It is clear that the strengthening has been considered very 

essential in enhancing the ultimate displacement apart from enhancing ductility index. It 

may be interpreted that with the help of strengthening around the openings, the ultimate 

displacement has been satisfactorily increased to some extent with the desired ductile 

response. 
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For squat shear wall with 11% opening, the ductility index is 2.88 when not 

strengthened, but decreased to 2.44, when strengthened. The ultimate displacement of 

squat shear wall is 83 mm when un-strengthened, but shot upto 112 mm when 

strengthened. The normalized ultimate displacement and ductility index are only 0.74 

and 0.87, respectively when not strengthened, but changed to 1.00 and 0.74 when 

strengthened. It is clear that the strengthening has been considered very essential in 

enhancing the ultimate displacement but not much useful to the ductility index. Since the 

yield displacement went several notches higher, there is a considerable decrease in the 

ductility index. It may be interpreted that with the help of strengthening around the 

openings, the ultimate displacement has been satisfactorily increased to some extent but 

has not helped in getting the desired ductile response. 

 

Fig. 5.12: Normalized ultimate load, ultimate displacement, ductility of RC squat shear wall 

with different openings without strengthening 

 

Fig. 5.13: Normalized ultimate load, ultimate displacement, ductility of RC squat shear wall 

with different openings with strengthening 
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For squat shear wall with 14% opening, the ductility index is 2.07 when not 

strengthened, but slightly decreased to 2.59, when strengthened. The ultimate 

displacement of squat shear wall is 80 mm when un-strengthened, but shot upto 109 mm 

when strengthened. The normalized ultimate displacement and ductility index are only 

0.72 and 0.62 when not strengthened, but rose to 0.97 and 0.78 when strengthened. It is 

clear that the strengthening has been considered very essential in enhancing the ultimate 

displacement as well as displacement ductility index. Though the yield displacement 

went few notches higher, it is the ultimate displacement which has gone multi-fold thus 

resulting in the significant increase in displacement ductility index. It may be interpreted 

that with the help of strengthening around the openings, the ductility and ultimate 

displacement have been significantly increased and thus idealizing the desired ductile 

response. 

For squat shear wall with 18% opening, the ductility index is 2.13 when not 

strengthened, but slightly decreased to 2.09, when strengthened. The ultimate 

displacement of squat shear wall is 38 mm when un-strengthened, but shot upto 102 mm 

when strengthened. The normalized ultimate displacement and ductility index are only 

0.34 and 0.64 when not strengthened, but rose to 0.91 and 0.63 when strengthened. It is 

clear that the strengthening has been considered very essential in enhancing the ultimate 

displacement but displacement ductility index remains unaltered primarily due to higher 

yield displacement due to strengthening. Nevertheless, it may be interpreted that only 

with strengthening around the openings; the ductility and ultimate displacement have 

been satisfactory, elongating the ultimate displacement.  

For squat shear wall with 21% opening, the ductility index is only 1.59 when not 

strengthened, but slightly increased to 1.69, when strengthened. The ultimate 

displacement of squat shear wall is 25 mm when un-strengthened, but shot upto 64 mm 

when strengthened. The normalized ultimate displacement and ductility index are only 

0.23 and 0.48 when not strengthened, but rose to 0.57 and 0.51 when strengthened. It is 

clear that the strengthening has been considered very essential in enhancing significantly 

the ultimate displacement and marginally the displacement ductility index. Nevertheless, 

it may be interpreted that even with strengthening around the openings, the ductility and 

ultimate displacement has not been considered satisfactory, characterized by the sudden 

failure. 
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Opening type 10 storeyed shear wall (Slender wall) 5 storeyed shear wall (Squat wall) 

 
Two windows 

(Regular) 

  

 
Three windows 

  

 
Four windows 

  

 
Two windows 

(Staggered) 

 

 

 

         Solid;             Strengthened around openings;              Not strengthened around openings 

Fig. 5.14: Influence of door window openings on the displacement response of slender and 

squat shear wall 
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Fig. 5.14 shows the displacement response of RC shear wall with different opening 

combinations of doors and windows. Table 5.6 and Table 5.7 show the ultimate load 

carrying capacity, ultimate displacement, and ductility index of slender shear wall and 

squat shear wall respectively 

Table 5.6: Response of slender shear wall with different door window opening combinations 

Opening type 

Not strengthened around openings Strengthened around openings 

Yield 

Disp. 

Ult. 

Disp. 

Ductility 

Index 

Ult. 

Load 

Yield 

Disp. 

Ult. 

Disp. 

Ductility 

Index 

Ult. 

Load 

No Opening 120.00 324.70 2.71 1001.00 120.00 324.70 2.71 1001.00 

Single Central 

opening 132.00 327.80 2.48 797.50 140.00 343.80 2.46 863.50 

Door cum 

window 102.00 270.50 2.65 682.00 115.00 245.40 2.13 764.50 

Two doors 95.00 249.90 2.63 753.50 115.00 277.90 2.42 841.50 

Two windows 

(Regular) 77.00 192.50 2.50 572.00 103.00 235.10 2.28 676.50 

Three 

windows 81.00 243.10 3.00 588.50 113.00 211.70 1.87 869.00 

Four windows 110.00 290.70 2.64 775.50 154.00 419.70 2.73 825.00 

Two windows 

(staggered) 78.00 185.00 2.37 583.00 90.00 211.20 2.35 643.50 

Table 5.7: Response of squat shear wall with different door window opening combinations 

{Opening 

type 

Not strengthened around openings Strengthened around the openings 

Yield 

Disp. 

Ult. 

Disp. 

Ductility 

Index 

Ult. 

Load 

Yield 

Disp. 

Ult. 

Disp. 

Ductility 

Index 

Ult. 

Load 
No opening 34.00 112.60 3.31 2062.00 34.00 112.60 3.31 2062.00 

Single Central 

opening 39.00 80.59 2.07 1635.00 42.00 108.70 2.59 1695.00 

Door cum 

window 23.00 54.42 2.37 1425.00 39.00 78.40 2.01 1725.00 

Two doors 23.00 53.10 2.31 1485.00 33.00 65.34 1.98 1725.00 

Two windows 

(Regular) 11.50 20.92 1.82 975.00 19.00 52.82 2.78 1215.00 

Three 

windows 12.50 30.59 2.45 1050.00 37.00 68.68 1.86 1845.00 

Four windows 37.00 85.38 2.31 1635.00 37.00 84.99 2.83 1725.00 

Two windows 

(staggered) 11.70 22.31 1.91 1050.00 15.50 27.58 1.78 1185.00 

It may be observed from Table 5.6 & 5.7, when the single square opening is provided in 

each storey, the load carrying capacity of both squat and slender shear wall is close to 

80% of the solid shear wall, increased to 86% when strengthened for slender and 

increased to 82% for squat as already elaborated in previous section. The following 

section highlights the behavioral performances of squat and slender shear wall in terms 

of ultimate load carrying capacity, ultimate displacement and ductility index for different 

opening combinations keeping the opening size constant.  
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5.4.1 Influence of door window openings on the load carrying capacity of shear wall 

Slender shear wall: 

When the openings are provided in the form of door cum window, the load carrying 

capacity of slender shear wall is around 68% of solid shear wall, when not strengthened, 

but shot upto 76% upon strengthening. In the door cum window opening, the 

strengthening significantly increases the load carrying capacity primarily due to the 

longitudinal steel provided on the sides of the openings. But, openings are not 

symmetrically located and hence such openings are not desirable in the shear wall. 

When openings are provided in the form of two doors without strengthening, the load 

carrying capacity of slender shear wall is close to 75% of solid wall but shot up to 84% 

when strengthened. Again, the presence of vertical steel around the openings is critical in 

enhancing the load carrying capacity. The load carrying capacity of shear wall in the 

presence of two door openings is significantly better due to the symmetric openings and 

also due to the vertical steel around the openings. The aspect ratio of opening is also 

influencing in restricting the damage caused to the shear wall. 

When the openings are provided in the form of two windows placed symmetrically 

without strengthening, the load carrying capacity of slender shear wall is only 57% of 

solid wall, but increased only to 67% when strengthened. This tremendous reduction in 

the load carrying capacity is partly due to the fact that the two openings are located at the 

same level and positioned near the edges of the shear wall. The strengthening of the 

shear wall around the openings increases the load carrying capacity, but only to some 

extent. Hence, shear wall with two windows are not desirable from the point of load 

carrying capacity. 

When the openings are provided in the form of two staggered openings without 

strengthening, the load carrying capacity of slender shear wall is only 58% of solid shear 

wall, increased only marginally to around 64% when strengthened and hence, the 

staggered opening suffers from severe degradation in load carrying capacity. The 

strength degradation is primarily due to the aspect ratio of the opening where the longer 

side of the opening is located in the direction of loading. 

When the openings are provided in the form of three windows without strengthening, the 

load carrying capacity of slender shear wall is only around 59% of solid wall, but rose to 
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86% when strengthened. The longer side of the openings is provided in the perpendicular 

direction of loading and hence the presence of additional vertical steel around the 

openings results in the significant increase in the load carrying capacity. Moreover, out 

of 14% opening, 7% is located in the middle portion of the shear wall and 3.5% opening 

is kept near the edges. Hence, the load carrying capacity is increased significantly upon 

strengthening, which was not the case in the case of two window openings. 

When the openings are provided in the form of four windows without strengthening, the 

load carrying capacity of slender shear wall is around 78% of solid wall, increased only 

marginally to 82% when strengthened. Even without strengthening, the load carrying 

capacity of shear wall is good enough in the presence of four window openings. Such 

types of openings are desirable in shear wall as the performance is not overly dependent 

on the strengthening around the openings and there is no weak storey effect on the shear 

wall due to position of openings. 

Squat shear wall: 

For squat shear wall with door cum window opening, the load carrying capacity of squat 

shear wall is close to 70% of solid shear wall, when not strengthened, but shot up to 84% 

when strengthened. For the two door openings, the load carrying capacity is close to 72% 

of solid wall but shot up to 84% when strengthened. However, the load carrying capacity 

of squat shear wall with two window opening is 47% of solid wall, but increased to 60% 

when strengthened. As envisaged earlier, the longer side of the opening is in the 

direction of the loading and hence the load carrying capacity is significantly reduced. 

Moreover, in the presence of two window openings, the severity in the degradation in 

load carrying capacity is more than that of slender shear wall. 

For squat shear wall with three window opening, the load carrying capacity is around 

50%, of solid wall, but rose to 90% when strengthened. The softening effect of shear 

wall observed when not-strengthened is turned significantly into stiffening effect due to 

strengthening. The strengthening of the openings near edges simulates the boundary 

elements and hence resulting in the increased load carrying capacity upon strengthening. 

Nevertheless, such openings are not desirable in shear walls especially without 

strengthening. 
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For squat shear wall with four window openings, the load carrying capacity is around 

80% of solid wall, increased only marginally to 84% when strengthened. Though the 

windows are located 1m away from the vertical sides of the shear wall, the aspect ratio of 

opening is unity and hence the performance of shear wall with four window opening is 

considered to be possessing good load carrying capacity, as was the case in shear wall 

with single square opening. Moreover, in this case openings are symmetrically located 

with respect to the centre line and hence the direction of loading becomes 

inconsequential on the load and displacement behavior. The openings are not located at 

one particular level, thus avoiding the storey mechanism of failure. 

For squat shear wall with two window openings (staggered), the load carrying capacity is 

only 51% of solid shear wall, increased only marginally to around 57% and hence, the 

staggered opening suffers from severe degradation in load carrying capacity even with 

strengthening and hence such openings are to be avoided. 

The behavior of shear wall with two window regular and staggered openings is not 

very different in terms of load carrying capacity. Since two window openings possess 

less load carrying capacity even with strengthening, it is suggested to avoid such 

openings. 

5.4.2 Influence of door window openings on the displacement response of shear wall 

Fig. 5.15 and Fig. 5.16 show the normalized ultimate load carrying capacity, ultimate 

displacement and displacement ductility index of squat shear wall without and with 

strengthening, respectively. 

Slender shear wall: 

The ultimate displacement of slender shear wall with door cum window when not 

strengthened is 270 mm, but reduced to 245 mm due to strengthening. Hence, 

strengthening results in slightly stiff behavior of the shear wall and hence there is a 

reduction in the ultimate displacement when strengthened. The normalized ultimate 

displacement of shear wall in the presence of door cum window opening is 0.83 when 

un-strengthened, and reduced to 0.76 when strengthened. Since vertical steel is provided 

around the door opening and the fact is that the door opening is located on the tension 

side of the shear wall, strengthening in a way provides the confining effect to some 

extent. The strengthening results in the reduced ductility (25% reduction) of 2.13 as 
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against 2.65 when not strengthened. The normalized ductility index for un-strengthened 

and strengthened is 0.98 and 0.79 respectively. This is consistent to the fact that the 

ductility decreases with increase in the amount of tension steel at the location. As far as 

possible, it may be better to keep the openings slightly towards the central region to 

avoid any undesirable effect. 

 

Fig. 5.15: Normalized ultimate load, ultimate displacement, ductility of RC slender shear 

wall with different door window opening combinations without strengthening 

 

Fig. 5.16: Normalized ultimate load, ultimate displacement, ductility of RC slender shear 

wall with different door window opening combinations with strengthening 
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The ultimate displacement of slender shear wall with two doors when not strengthened is 

249.9 mm, but increased to 277.9 mm due to strengthening. There is a good increase in 

the yield displacement (21%) and ultimate displacement (11%) when shear wall is 

strengthened around the openings. When strengthened, the ultimate displacement has not 

been as affected as the yield displacement and hence there is a reduction in the 

displacement ductility index of around 9%. The normalized ultimate displacement of 

shear wall in the presence of door cum window opening is 0.77 when un-strengthened, 

and increased to 0.86 when strengthened. The normalized ductility index of shear wall 

for un-strengthened and strengthened is 0.97 and 0.89 respectively. There is not much 

variation in the ultimate displacement and ductility index due to strengthening partly 

because the door openings are located symmetrically with respect to the centre line. The 

amount of tension steel provided on the left vertical edge is offset by the amount of 

compression steel provided on the right vertical edge. Nevertheless, it may be interpreted 

that the performance is reasonably satisfactory in terms of load carrying capacity as well 

as ductility. 

The ultimate displacement of slender shear wall with two window openings, when not 

strengthened is 192.5 mm, but increased to 235.1 mm due to strengthening. There is a 

good increase in the yield displacement (34%) and ultimate displacement (22%) when 

shear wall is strengthened around the openings. The normalized ultimate displacement of 

shear wall in the presence of two window opening is 0.59 when un-strengthened, and 

increased to 0.72 when strengthened. The normalized ductility index of shear wall for 

un-strengthened and strengthened is 0.92 and 0.84 respectively. When strengthened, the 

ultimate displacement has not been as affected as the yield displacement and hence there 

is a reduction in the displacement ductility index of around 9%. Nevertheless, the 

ultimate displacement of two window opening is way too low as compared to solid shear 

wall and hence not preferred from displacement point of view. 

The ultimate displacement of slender shear wall with three window openings, when not 

strengthened is 243.1 mm, but decreased to 211.7 mm due to strengthening. There is an 

increase in the yield displacement (40%) and decrease in the ultimate displacement 

(13%) when shear wall is strengthened around the openings. The normalized ultimate 
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displacement of shear wall in the presence of door cum window opening is 0.75 when 

un-strengthened, and decreased significantly to 0.65 when strengthened. Strengthening 

the shear wall around the openings actually resulted in the reduction of the displacement 

ductility index by a massive 38%. It is a matter of concern that the strengthening results 

in reduction in the ultimate displacement and ductility index. Out of three openings, two 

openings are of size 1m × 1m and are located at a distance of exactly 1m from the 

vertical edge of the shear wall. The independent strengthening of those zones around the 

openings results in the brittle behavior of the shear wall. Such openings are not 

recommended. 

The ultimate displacement of slender shear wall with four window openings, when not 

strengthened is 290.7 mm, but increased to 419.7 mm due to strengthening. There is a 

good increase in the yield displacement (40%) and ultimate displacement (44%) when 

shear wall is strengthened around the openings. The normalized ductility index of shear 

wall for un-strengthened and strengthened is 0.90 and 1.29 respectively. Strengthening 

the shear wall around the openings resulted in the increase in the ductility index only 

around by 3%. The good performance of this shear wall is attributed to the fact that the 

aspect ratio of openings is unity and the openings are symmetrically located with respect 

to the centre line and hence the direction of loading becomes inconsequential on the load 

and displacement behavior. As expected, the ductility index also has gone slightly higher 

upon strengthening. 

The ultimate displacement of slender shear wall with two windows (staggered), when not 

strengthened is 185 mm, but increased to 211.2 mm due to strengthening. There is an 

increase in the yield displacement (15%) and ultimate displacement (14%) when shear 

wall is strengthened around the openings. Nevertheless, strengthening the shear wall 

around the openings resulted in negligible change in the ductility index. The normalized 

ultimate displacement of shear wall in the presence of two window staggered type 

opening is 0.57 when un-strengthened, and increased to 0.65 when strengthened. Though 

there is an increase ultimate displacement, the direction of loading is conducive to create 

the diagonal cracks, and the fact that openings are also located diagonally, the possibility 

of cracks getting bridged together is inherently easier in the case of staggered openings. 

Hence, staggered openings are to be avoided in the shear walls. 
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Squat shear wall: 

Fig. 5.17 and Fig. 5.18 show the normalized responses of squat shear wall with and 

without strengthening with respect to solid shear wall. 

The ultimate displacement of squat shear wall with door cum window opening when not 

strengthened is 54.42 mm but increased to 78.4 mm. Upon strengthening, there is an 

increase of around 70% and 44 % in the yield displacement and ultimate displacement, 

respectively. Since, the yield displacement is magnified much higher than the ultimate 

displacement due to strengthening; there is a reduction in the ductility index to some 

extent. The normalized ductility index of shear wall for un-strengthened and 

strengthened is 0.71 and 0.61 respectively. 

The ultimate displacement of squat shear wall with two door opening when not 

strengthened is 53.1 mm but increased to 65.34 mm. Upon strengthening, there is an 

increase of around 43% and 23% in the yield displacement and ultimate displacement 

respectively. Since, the yield displacement is magnified much higher than the ultimate 

displacement due to strengthening; there is a reduction in the ductility index to 

significantly by around 17%. The normalized ductility index of shear wall for un-

strengthened and strengthened is 0.70 and 0.60 respectively. The presence of vertical 

steel around the openings is critical in enhancing the yield displacement more than 

the ultimate displacement. Essentially, not much difference in responses have been 

observed between shear wall with door cum window opening and shear wall with two 

door opening. The slight reduction in the ductility of shear wall with two door 

opening as against door cum window opening is probably due to the aspect ratio of 

the opening. 

The ultimate displacement of slender shear wall with two window opening, when not 

strengthened is 20.92 mm, but increased to 52.82 mm due to strengthening. There is a 

good increase in the yield displacement (65%) and ultimate displacement (152%) when 

shear wall is strengthened around the openings. When strengthened, the ultimate 

displacement has been increased significantly as compared to yield displacement and 

hence there is an increase in the displacement ductility index of around 53%. 
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The ultimate displacement of squat shear wall with three window opening, when not 

strengthened is 30.59 mm, but increased to 68.68 mm due to strengthening. There is a 

good increase in the yield displacement (196%) and ultimate displacement (124%) 

when shear wall is strengthened around the openings. The normalized ultimate 

displacement of shear wall in the presence of three window opening is 0.27 when un-

strengthened, and increased significantly to 0.61 when strengthened. Strengthening the 

shear wall around the openings resulted in the reduction of the ductility index by 25%. 

The normalized ductility index of shear wall for un-strengthened and strengthened is 

0.74 and 0.56 respectively. Since the openings are located at the same level, the aspect 

ratio of the opening is crucial in attaining better performance. In this case, the longer 

openings are provided perpendicular to the direction of loading and hence the 

strengthening results in significant increase in yield displacement due to provision of 

vertical steel, but ultimate displacement has not increased in the same proportion as 

yield displacement. 

The ultimate displacement of squat shear wall with four window opening, when not 

strengthened is 85.38 mm, but changed slightly to 84.99 mm due to strengthening. There 

is a negligible change in the yield displacement and ultimate displacement when shear 

wall is strengthened around the openings. In sequel to that, strengthening the shear wall 

around the openings has resulted in negligible change in the ductility index. 

Nevertheless, the normalized ductility index of shear wall for un-strengthened and 

strengthened is 0.70 and 0.69 respectively. 

The ultimate displacement of squat shear wall with two windows (staggered), when not 

strengthened is 22.31 mm, but increased to 27.58 mm due to strengthening. There is 

more increase in the yield displacement (32%) and less increase in the ultimate 

displacement (24%) when shear wall is strengthened around the openings. The 

normalized ultimate displacement of shear wall in the presence of staggered openings is 

0.20 when un-strengthened, and increased marginally to 0.24 when strengthened. The 

normalized ductility index for un-strengthened and strengthened is 0.58 and 0.54 

respectively. Strengthening the shear wall around the openings resulted in 7% decrease 

in ductility index. The performance of shear wall in the presence of staggered openings 

has not been considered satisfactory.  
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Fig. 5.17: Normalized ultimate load, ultimate displacement, ductility of RC squat shear wall 

with different door window opening combinations without strengthening 

 

Fig. 5.18: Normalized ultimate load, ultimate displacement, ductility of RC squat shear wall 

with different door window opening combinations with strengthening 

5.5 Summary 

On the basis of non-linear static analysis of slender and squat shear walls with different 

sizes and opening locations, the following concluding remarks have been made. 

• For the shear wall panel, the openings located away from the loading side 

(compression zone) resulted in better load carrying capacity compared to 

openings located near loaded side (tension zone). Hence, as far as possible, 

openings in the shear wall should be avoided in the tension zone. 
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• For a given cross-section of shear wall, the aspect ratio of shear wall significantly 

affects the load carrying capacity as well as the displacement response. The ten 

storey slender shear wall was found to possess around 50% of the load carrying 

capacity of five storey squat shear wall. 

• The load carrying capacity of slender as well as squat shear wall with openings 

gets significantly affected as compared to solid shear wall. In both the cases, 

strengthening around openings has been found beneficial in improving the load 

carrying capacity. 

• For the slender and squat shear walls, 14% opening was found safe even when 

shear wall is not strengthened around openings. The shear wall with 18% opening 

may be reasonably safe in the case of slender shear wall for both strengthen and 

not strengthen around the openings; however, the same is not true in the case of 

squat shear wall. For slender as well as squat shear walls, an increase in opening 

beyond 18% results in tremendous reduction in the load carrying capacity as well 

as ductility. 

• The opening locations play a significant role on the load-displacement response 

of both slender as well as squat RC shear walls. The shear wall with single central 

opening resulted in the better performance as compared to other locations. 

• The aspect ratio of opening plays significant role on the response of shear wall. 

The consistent performance of the shear wall with single central opening and four 

symmetrically placed window openings is partly to the square openings. 

• The load carrying capacity gets severely affected for shear wall with openings 

located in the form of two windows or three windows. The two window 

(staggered) opening resulted in the significantly decrease in load carrying 

capacity for both slender as well as squat shear walls even with strengthening. 

The strengthening of the walls provided for two windows (regular) and three 

window openings resulted in brittle failure with reduced ductility index. Such 

openings are not recommended. 

• The shear wall with two door openings resulted in the better load carrying 

capacity even without strengthening. Hence, it is beneficial to provide longer side 

of opening in the perpendicular to loading direction in order to minimize the 

degradation in the load carrying capacity. 
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Chapter 6 

Non-Linear Dynamic Response of RC Shear Wall 

6.1 Background 

Reinforced Concrete (RC) Shear wall has been considered one of the most viable lateral 

load resisting elements in resisting wind and earthquake loads. The behavior of RC shear 

wall is influenced by many factors such as aspect ratio, opening size and locations. It is 

generally perceived that the aspect ratio of shear wall plays a crucial role on its structural 

response, slender being more flexible and squat being more rigid. As outlined in the 

chapter two, to meet the functional requirements, shear walls are sometimes penetrated 

with openings of different sizes and at different locations. Though there is a strong 

consensus that shear walls be penetrated only with smaller openings in order to get the 

desired structural response, but there is no clarity on the optimum size of openings in 

shear walls from the strength and ductility point of view. Moreover, for a given size of 

opening in shear wall, it is also essential to investigate the influence of opening location 

on the strength and ductility of RC shear wall. Furthermore, the influence of 

strengthening (ductile detailing) around the openings on the structural response of RC 

shear walls has also been investigated. In this chapter, an attempt has been made to 

analyze RC shear walls for its sensitivity to above mentioned parameters by employing 

the non-linear time history analysis using Newmark-β direct method of time integration 

considering material non-linearities. 

As mentioned in the Chapter 4, the assumed strain based locking free 9-noded 

layered degenerated shell element has been used for the discretization of RC shear 

wall. The mesh size has been kept constant throughout the height of the shear wall. In 

the material modeling, the non-linearities considered in the analysis are concrete 

cracking and yielding, yielding of steel and crushing of concrete. The compression 

modeling of concrete has been formulated using plasticity based five parameter 

Willam-Warnke failure model to define the yield/failure criteria of concrete in 

compression with associated flow rule and isotropic hardening. The tension modeling 
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of concrete is augmented by the Rankine's tension cut-off criterion with tension 

stiffening. The modeling of cracks is considered using fixed smeared crack approach. 

The bi-linear modeling of steel reinforcement has been adopted in the present study 

to define the steel behavior. To this end, a five storeyed RC shear wall (squat shear 

wall) and ten storeyed RC shear wall (slender shear wall) have been considered and 

analyzed for different opening sizes and locations. The displacement time history 

response of RC shear wall with and without openings has been plotted and the 

analysis has been conducted for two different damping ratios with and without ductile 

detailing (strengthening). 

6.2 Influence of Openings on Dynamic Response of Shear Wall Panel 

The reinforced concrete shear wall tested by Lefas et al. (1990) has been considered for 

the present study in order to assess the influence of opening location on the displacement 

response of shear wall panel with top and bottom beams. In each shear wall, three 

openings are provided which amounts to 12% opening. The geometry and section of 

shear wall specimen is as shown in Fig. 6.1(a) and (b). The wall panel is 650 mm wide × 

1300 mm high × 65 mm thick. The height to width ratio of wall panel is two, thus 

representing the squat type of shear wall. While the upper beam provides anchorage for 

vertical reinforcement, lower beam provides the base for wall panel. The element size 

used to discretize the shear wall panel is 65 mm × 130 mm which is kept same for the 

entire structure. The number of degenerated shell elements used to discretize the shear 

wall panel and beams is 100 and 56 respectively. 

The bottom beam has been constrained in all degrees of freedom. The elasticity modulus 

of concrete is 3.27 × 10
4
 MPa and Poisson's ratio is taken as 0.17. The concrete 

compressive and tensile strengths are 42.8 MPa and 2.15 MPa respectively and the 

crushing strain of concrete is 0.0035. The central portion of the shear wall referred as 

zone I, where the conventional reinforcement is provided, the edges of the shear wall are 

strengthened by providing the additional reinforcement and are identified as zone II. The 

percentages of steel reinforcement in x-direction and y-direction are 0.8 & 2.1 in zone I 

and 1.2 & 3.3 in zone II. However, irrespective of the zones, the yield stresses of steel in 

the x- and y-direction are 520 MPa and 470 MPa respectively. The hardening modulus of 

concrete and steel are assumed to be 3.27 × 10
3
 MPa and 2.00 × 10

4
 MPa (1/10

th
 of 
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elasticity modulus) respectively. The vertical reinforcement (y-direction) is provided in 

two layers and horizontal reinforcement (x-direction) is concentrated in single layer. For 

the finite element modeling of steel, the reinforcement is considered to be smeared 

within the element. For the non-linear analysis, the stiffness matrix is modified at the end 

of every load step. 

  

 

 

 

 

 

 

 

  

(a) Elevation (b) Section at A-A (c) Finite Element Discretization 

Fig. 6.1: Geometry of solid RC shear wall panel 

The earthquake ground motion, which is applied at the base of the shear wall, is as 

shown in Fig. 6.2. The waveform considered here is the NS component of the well 

known EL Centro Earthquake occurred on May 18, 1940 (Pecknold version) for the 

duration of 31.18 seconds with the maximum acceleration of +0.29g. This is one of 

the first records of strong ground motion and has been widely used by structural 

engineers in assessing the seismic response of structures. 

 
 

 

Fig. 6.2: Input ground acceleration 
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Solid Shear wall 

 

 

Central band of openings 
 

 

Openings near edge 

 

 

Staggered Opening 

 

Fig. 6.3(a): Displacement time history response of shear wall panel for various 

opening locations (5% damping) 

-8

-6

-4

-2

0

2

4

6

8

0 3 6 9 12 15

D
is

p
la

ce
m

e
n

t 
(m

m
)

Time (s)

-12

-8

-4

0

4

8

12

0 3 6 9 12 15

D
is

p
la

ce
m

e
n

t 
(m

m
)

Time (s)

-12

-8

-4

0

4

8

12

0 3 6 9 12 15

D
is

p
la

ce
m

e
n

t 
(m

m
)

Time (s)

-12

-8

-4

0

4

8

12

0 3 6 9 12 15

D
is

p
la

ce
m

e
n

t 
(m

m
)

Time (s)



Non-Linear Dynamic Response of RC Shear Wall 

185 

 

Solid Shear wall 

 

 

Central band of openings 
 

 

Openings near edge 

 

 

Staggered Opening 

 

Fig. 6.3(b): Displacement time history response of shear wall panel for various 

opening locations (2% damping) 
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The entire ground acceleration data is discretized into a time interval of 0.02 seconds. 

The unconditionally stable Newmark β method of direct time integration has been 

employed to determine the displacement time history response. The time step for the 

analysis has been taken as 0.005 seconds. Since the peak load as well the displacement 

response occur in first 15 seconds, the response has been plotted only for 15 seconds and 

in total, 3000 time steps are required to complete the analysis. The maximum iterations 

have been kept at 50 and the displacement convergence norm has been kept at 0.0025. 

The analysis is conducted for 2% and 5% damping and damping is represented as 

Rayleigh damping with stiffness proportionality. The natural time period assumed for the 

shear wall is 10.73 seconds and the circular frequency is computed as 0.58 rad/sec. In 

order to simulate the actual dead loads present in the shear wall, dead load of 20 kN is 

assumed to be lumped at the top beam. The equivalent base shear is computed as 

max

2
um n ××ω .The displacement time histories of all cases have been presented in 

Fig. 6.3(a) and (b). Table 6.1 shows the maximum displacement response of RC shear wall 

panel with various opening locations. 

Table 6.1: Dynamic response of RC shear wall panel 

Opening locations 
Maximum displacement (mm) 

5% damping 2% damping 

No opening 8.18 16.21 

Central opening 10.54 26.95 

Left opening 11.20 19.60 

Staggered opening 10.33 30.09 

From Fig. 6.3(a) it may be observed that there is not much difference in the displacement time 

history response of shear wall with various opening locations and hence it may be concluded 

that 5% damping is sufficient enough to provide stable displacement time history irrespective 

of opening locations. Though solid shear wall results in least displacement, there is hardly any 

influence of opening locations on the maximum displacement response (Table 6.1). However, 

when the damping is reduced from 5% to 2%, the displacement time history of shear wall 

provided with central opening and staggered opening has resulted in one sided displacement 

response (Fig. 6.3(b)). For 2% damping, the shear wall with left opening resulted in less 
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displacement than central opening and staggered opening. Since edges of the shear walls are 

confined with heavy reinforcement, the response of shear wall with opening located near left 

edge resulted in less displacement. However, the staggered opening resulted in maximum 

displacement of 30.09 mm, 46% increase with respect to solid shear wall. However, the 

displacements are not alarming for this particular opening size & locations and hence there is 

a need to investigate further by subjecting the shear wall to different opening sizes and at 

different locations. The next section deals with the identification of safe opening sizes and 

opening locations. 
 

6.3 Influence of Opening Size on Displacement Time History 

Response of Slender and Squat Shear Wall 

The behaviour of the shear wall is strongly influenced by the presence of openings. It is 

essential to know the limiting size of openings in shear wall beyond which it becomes 

unserviceable or unsafe. Since the short shear walls have been found to possess very 

high load carrying capacity, the presence of openings in short shear wall may not alter 

the behaviour significantly. Moreover, from the functional point of view, short shear 

walls with one or two storeys are not normally provided with openings and hence short 

shear walls with openings are not the part of this study. Since openings result in stress 

concentration, the portion of shear wall around the openings is strengthened by 

providing reinforcements around the openings as per IS 13920-1993 as shown in 

Fig. 5.5. 

The present section investigates the influence of opening size and strengthening on the 

displacement structural response of squat shear walls (5 storeys) and slender shear walls (10 

storeys) for two different damping ratios 2% and 5% . In each storey, only one opening is 

provided and the size of the opening has been kept uniform throughout the height of shear 

wall. The width and thickness of shear walls are 8 m and 0.3 m, respectively. The height of 

each storey is 3.5 m which results in height of squat & slender shear walls as 17.5 m and 35 

m respectively as shown in Fig. 6.4 and Fig. 6.5. The shear walls have been analyzed for five 

different opening sizes at each storey viz, (i) 1 m × 1.5 m, (ii) 2 m × 1.5 m, (iii) 2 m × 2 m, 

(iv) 2 m × 2.5 m, (v) 2 m × 3 m, which correspond to approximately 5%, 11%, 14%, 18% 

and 21% openings in each storey. 
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For the finite element analysis, the Shear walls have been discretized into finite 

element mesh using 9-noded 5 degrees of freedom assumed strain based locking free 

degenerated shell elements. For the discretization of shear walls with openings; the 

mesh size is kept at 0.5 m × 0.5 m which has been kept uniform throughout the shear 

wall geometry to minimize the computational effort involved in preparing customized 

input data. In order to model steel reinforcement, the layered approach is adopted in 

this study, wherein, the steel is modelled as a smeared layer of equivalent thickness and 

the material properties are assumed to be constant in that layer. The bi-linear stress 

strain curve with linear elastic and strain hardening region is adopted for steel in 

compression and tension. 

The horizontal steel reinforcement is provided in two layers and vertical steel 

reinforcement is provided in single layer. As per the requirements of IS 13920-1993, 

shear walls are provided with minimum reinforcement ratio of 0.0025 of the gross area 

in both longitudinal (vertical) and transverse (horizontal) directions in the plane of the 

wall and the same has been adopted in the present study. For the strengthening of shear 

walls with openings, the amount of vertical and horizontal reinforcement provided on 

the sides of openings is equal to that of the respective interrupted bars. The opening 

may result in the large displacement and instability which necessitated the need to 

dampen the response appropriately. In general, all RC structures may possess some 

amount of damping (1-2%) inherently. Nevertheless, most of the codal provisions 

suggest that concrete structures can be analyzed assuming 5% damping. Hence, the 

present study also aims to assess the influence of 2% and 5% damping on the 

displacement time history response of shear wall in the presence of openings. Only 

stiffness proportional (Beta) damping has been adopted in the present investigation in 

order to keep the damping proportional to frequency. The fundamental natural period 

(T) has been calculated using the formula mentioned in IS: 1893-2002. The natural 

time period of the system is determined using the expression dhTn /09.0= . The 

equivalent base shear is computed as max

2
um n ×× ω . In order to simulate the dead loads 

present in the building, 70 kN load is assumed to be lumped at each storey as an 

additional mass. The shear walls are subjected to earthquake ground acceleration for 

first 15 seconds as shown in Fig. 6.2. The influence of strengthening around openings 

is also examined. The material properties are as mentioned in Table 6.2.   
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Table 6.2: Material properties used for the analysis 

Material Property Magnitude 

Concrete 

Elasticity modulus  2.7 × 10
10

 N/m
2
 

Hardening modulus  2.7 × 10
9
N/m

2
 

Poisson's ratio 0.17 

Uni-axial compressive strength of concrete 30 × 10
6
 N/m

2
 

Tensile Strength of Concrete 3 × 10
6 

N/m
2
 

Ultimate crushing strain of concrete 0.0035 

Tension stiffening coefficient ( )tsα  0.8 

Tension stiffening strain ( )tsε  0.0020 

Steel 

Elasticity modulus  2.0 × 10
11 

N/m
2
 

Hardening modulus 2.0 × 10
10 

N/m
2
 

Yield stress of steel 50 × 10
7
 N/m

2
 

Table 6.3: Dynamic characteristics of squat & slender shear wall 

Shear wall 

type 

No. of 

Storeys 

Fundamental 

Natural Period, 

T(s) 

Fundamental 

Natural 

Frequency, f (Hz) 

Stiffness proportional Beta (ββββ) 

damping 

2% of critical 5% of critical 

Squat 5 1.11 0.90 0.00707 0.017690 

Slender 10 2.23 0.45 0.01418 0.035461 
 

Table 6.4: Geometrical details of openings 

Case 1 2 3 4 5 

Opening Dimensions 

(W ×××× H) 
1m × 1.5m 2m × 1.5m 2m × 2m 2m × 2.5m 2m × 3m 

Percentage Openings (%) 
5.35% 

≈ 5% 

10.71% 

≈ 11% 

14.28% 

≈ 14% 

17.86% 

≈ 18% 

21.43% 

≈ 21% 

Number of elements/storey 116 100 96 92 88 
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Fig. 6.4: Discretization of slender shear wall with various opening sizes 

 

Fig. 6.5: Discretization of squat shear wall with various opening sizes 
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Opening size Not strengthened Strengthened 

 

Solid shear wall 

(No opening) 

  

 

5% opening 

(1m × 1.5m) 

  

 

11% opening 

(2m ×  1.5m) 

  

 

14% opening 

(2m ×  2m) 

  

 

18% opening 

(2m ×  2.5m) 
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Opening size Not strengthened Strengthened 

 

21% opening 

(2m ×  3m) 

  

Fig 6.6: Displacement time history response of RC slender shear wall for different 

opening sizes for 5% damping 
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Opening size Not strengthened Strengthened 

 

14% opening 

(2m ×  2m) 

  

 

18% opening 

(2m × 2.5m) 

  

 

21% opening 

(2m ×  3m) 

  

Fig 6.7: Displacement time history response of RC slender shear wall for different 

opening sizes for 2% damping 

Slender shear wall: 

Figs 6.6 and 6.7 depict the displacement time history responses of slender RC shear wall 

for 5% damping and 2% damping respectively subjected to the El Centro Earthquake. As 

already mentioned, the El Centro earthquake response of shear wall has been captured 

for first 15 seconds. Table 6.5 and Table 6.6 show the maximum displacement response 

of RC shear wall with and without strengthening for different opening sizes and for two 

different damping ratios 2% and 5%. As expected, the openings present in the shear wall 
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tend to weaken the shear wall and hence resulted in increase in the displacement with 

increase in opening size as shown in Table 6.5. In general, it is observed that the 

damping has significant impact in reducing the displacement response of RC shear wall. 

On decreasing the damping from 5% to 2%, the maximum displacement significantly 

increases. The detailed discussion on slender & squat shear walls subjected to earthquake 

ground motion is as follows.  

Table 6.5: Max. displacement response and base shear demand - Slender shear wall 

with different opening sizes 

Opening 

size 

5% damping 2% damping 

NS ST NS ST 

Umax Vb d Umax Vb d Umax Vb d Umax Vb d 

Nil 43.93 244.54 43.93 244.54 65.67 365.56 65.67 365.56 

5% 43.36 241.37 44.81 249.44 66.16 368.29 68.08 378.98 

11% 45.97 255.90 46.41 258.35 68.18 379.54 68.78 382.88 

14% 49.43 275.16 49.86 277.55 70.62 393.12 71.43 397.63 

18% 58.67 326.60 59.19 329.49 76.21 424.24 77.78 432.98 

21% 99.41 553.38 72.91 405.87 140.40 781.56 104.50 581.72 

For slender solid shear wall with 5% damping, the maximum displacement has been 

found to be 43.93 mm, and increased to 65.67 mm when the damping is decreased from 

5% to 2%. The base shear demand of slender shear wall has been computed as 

244.54 kN for 5% damping and 365.56 kN for 2% damping. Hence, there is an increase 

of around 50% in the maximum displacement and base shear demand when the damping 

is reduced from 5% to 2%. 

For 5% opening in shear wall assuming 5% damping, the maximum displacement has 

been found to be 43.36 mm when not strengthened, but slightly increased to 44.81 mm 

upon strengthening, which indicates that there is not much difference in the responses 

with respect to solid shear wall in the maximum displacement response. The base shear 

demand of slender shear wall with 5% damping is 241.37 kN when not strengthened, but 

slightly increased to 249.44 kN when strengthened. However, for 2% damping, the 

maximum displacement has been found to be 66.16 mm when not strengthened, but 
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increased to 68.08 mm when strengthened. The base shear demand is 368.29 kN when 

not strengthened and 378.98 kN when strengthened. Hence, the increase in the base shear 

demand is only by 3.5% when strengthened around the openings. It may also be 

interpreted that such opening size may not alter the structural behavior when sufficient 

damping is present in the shear wall and the influence of strengthening has also not been 

found to be significant. 

When the shear wall is provided with 11% opening assuming 5% damping, the maximum 

displacement has been found to be 45.97 mm when not strengthened, but slightly increased 

to 46.41 mm upon strengthening. The base shear demand is 255.90 kN when not 

strengthened, but went upto slightly 258.35 kN when strengthened. The base shear demand 

is certainly increasing with the increase in the opening size which is about 4.5% higher 

with respect to solid shear wall. However, for 2% damping, the maximum displacement 

has been found to be 68.18 mm when not strengthened, but almost remains unchanged 

when strengthened. The base shear demand is 379.54 kN when not strengthened and 

increased to 382.88 kN when strengthened which results in 4% increase in base shear 

demand with respect to solid shear wall. For 11% opening also, there is not much influence 

due to strengthening around the openings. 

For 14% opening, the maximum displacement has been found to be 49.43 mm when not 

strengthened, but slightly increased to 49.86 mm upon strengthening for 5% damping case. 

The base shear demand of slender shear wall with 5% damping is 275.16 kN when not 

strengthened, but went slightly upto 277.55 kN when strengthened. which results in 

approximately 12% increase in the base shear demand with respect to solid shear wall. 

However, for 2% damping, the maximum displacement has been found to be around 70 

mm irrespective of strengthening.. The base shear demand is 393.12 kN when not 

strengthened and 397.63 kN when strengthened thus resulting in the increase of 8% when 

strengthened. Influence of strengthening on the maximum displacement response has been 

found to be negligible for both 5% as well as 2% damping.  

When the shear wall is provided with 18% opening with 5% damping the maximum 

displacement has been found to be 58.67 mm when not strengthened, but slightly 

increased to 59.19 mm upon strengthening, which results in an increase in the maximum 

displacement of 37% with respect to solid shear wall. The base shear demand of slender 
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shear wall with 5% damping is 326.60 kN when not strengthened, but went upto 329.49 

kN when strengthened. But, with respect to solid shear wall, the base shear demand is 

increased by around 34%. However, the influence of strengthening is still not significant 

on maximum displacement response and base shear demand. However, for 2% damping, 

the maximum displacement has been found to be 76.21 mm when not strengthened, but 

increased to 77.78 mm when strengthened. The base shear demand is 424.24 kN when 

not strengthened and 432.98 kN when strengthened. The increase in the maximum 

displacement response and base shear demand is around 16% with respect to solid wall. 

From the above discussion, it may be observed that shear wall with 18% opening has 

resulted in reasonably accepted maximum displacement and base shear demand with 

respect to solid shear wall.  

For 21% opening with 5% damping, the maximum displacement has been found to be 

99.41 mm when not strengthened, but decreased significantly to 72.91 mm upon 

strengthening. In the similar lines, the base shear demand of slender shear wall with 5% 

damping is 553.38 kN when not strengthened, but went down to 405.87 kN when 

strengthened. With respect to solid shear wall, the increase in the maximum displacement 

response and the base shear demand for not strengthened and strengthened is 126% and 

66% respectively. Hence, it may be concluded that the strengthening results in the 

significant reduction in the maximum displacement as well as the base shear demand. In 

spite of this, the slender shear wall with opening 21% is not recommended from 

displacement and base shear point of view because of more than 50% increase with solid 

shear wall. For 2% damping, the maximum displacement has been found to be 140.4 mm 

when not strengthened, but decreased to 104.5 mm when strengthened. The base shear 

demand is 781.56 kN when not strengthened and 581.72 kN when strengthened. The base 

shear demand is increased by around 2.2 times when strengthened and 1.4 times when not 

strengthened. 

In general, upto 18% opening, the performance of shear wall has been found to be 

satisfactory for both 5% as well as 2% damping. However, for shear wall with 21% 

opening, the response has not been found to be satisfactory especially for 2% damping 

without strengthening.  
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Squat shear wall: 

Figs. 6.8 and 6.9 show the time history displacement response of squat RC shear wall 

with different opening sizes. Table 6.6 shows the maximum displacement response and 

base shear demand of RC squat shear wall for different opening sizes and for two 

different damping ratios. The maximum displacements of squat shear walls are 

significantly less than that of slender walls. 

Table 6.6: Max. displacement response and base shear demand- Squat shear wall 

with different opening sizes 

Opening 

size 

5% damping 2% damping 

NS ST NS ST 

Umax Vb d Umax Vb d Umax Vb d Umax Vb d 

Nil 4.44 49.64 4.44 49.64 8.81 98.42 8.81 98.42 

5% 4.80 53.57 4.80 53.61 9.14 102.11 9.10 101.66 

11% 5.31 59.35 5.32 59.46 9.24 103.27 9.23 103.08 

14% 6.18 68.99 6.16 68.79 9.91 110.73 9.98 111.54 

18% 8.44 94.28 8.50 94.91 57.32 640.43 13.66 152.62 

21% 29.09 325.02 16.80 187.70 92.86 1037.51 55.28 617.64 
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Opening size Not strengthened Strengthened 

 

11% opening 

(2m ×  1.5m) 

  

 

14% opening 

(2m ×  2m) 

  

 

18% opening 

(2m ×  2.5m) 

  

 

21% opening 

(2m ×  3m) 

  

Fig. 6.8: Displacement time history response of RC squat shear wall for different 

opening sizes for 5% damping 
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Opening size Not strengthened Strengthened 

 

Solid shear wall 

(No opening) 

  

 

5% opening 

(1m ×  1.5m) 

  

 

11% opening 

(2m ×  1.5m) 

 
 

 

14% opening 

(2m ×  2m) 

  

 

18% opening 

(2m ×  2.5m) 
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Opening size Not strengthened Strengthened 

 

21% opening 

(2m ×  3m) 

  

Fig. 6.9: Displacement time history response of RC squat shear wall for different 

opening sizes for 2% damping 

For squat solid shear wall with 5% damping, the maximum displacement has been found 

to be 4.4 mm and increased to 8.8 mm for 2% damping. The base shear demand of 

slender shear wall has been computed as 49.64 kN for 5% damping and 98.42 kN for 2% 

damping. Hence, there is an increase in the maximum displacement response and base 

shear demand by about 100% when the damping is reduced from 5% to 2%. 

When the squat shear wall is provided with 5% opening assuming 5% damping, the 

maximum displacement has been found to be 4.8 mm when not strengthened, but 

increased to 9.14 mm upon strengthening. However, there is not much difference in the 

responses with respect to solid shear wall in the maximum displacement response when 

the shear wall is penetrated with opening of size 5%. The influence of strengthening has 

also not been significant. The base shear demand of squat shear wall with 5% damping is 

approximately 53 kN for both strengthened and not strengthened. However, for with 2% 

damping, the maximum displacement has been found to be approximately 9 mm 

irrespective of strengthening. The base shear demand is 102 kN for both strengthened 

and not-strengthened. Hence, it may also be interpreted that such opening size may not 

alter the structural behavior when sufficient damping is present in the shear wall. 

For squat shear wall with 11% opening assuming 5% damping, the maximum 

displacement has been found to be 5.31 mm irrespective of strengthening. The base shear 

demand shear wall with 5% damping is approximately 59 kN for both not strengthened, 

and strengthened. However, for squat shear wall with 2% damping, the maximum 

displacement has been found to be 9.2 mm for strengthened and not-strengthened. The 

base shear demand is approximately 103 kN for both not strengthened and strengthened. 
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When the squat shear wall is provided with 14% opening assuming 5% damping, the 

maximum displacement has been found to be 6.18 mm when not strengthened, but slightly 

decreased to 6.16 mm upon strengthening. The base shear demand of slender shear wall 

with 5% damping is approximately 68 kN for both not strengthened and strengthened. The 

base shear demand is increased by around 39% with respect to solid shear wall. Again, not 

much influence of strengthening has been found. However, for squat shear wall with 2% 

damping with or without strengthening, the maximum displacement has been found to be 

approximately 9.9 mm. The base shear demand is approximately 110 kN for both not 

strengthened and strengthened. However, the base shear demand is slightly increased by 

12% for the slender shear wall. Nevertheless, the displacement time history responses of 

shear walls up to 14% opening have not been found to be different for both strengthened 

and not-strengthened. 

For squat shear wall with 18% opening assuming 5% damping, the maximum 

displacement has been found to be 8.4 mm irrespective of strengthening and there is an 

increase in the maximum displacement of 37% with respect to solid shear wall. The base 

shear demand of slender shear wall with 5% damping is 94 kN for both not strengthened 

and strengthened. The base shear demand is increased significantly by around 92% with 

respect to solid shear wall. However, for squat shear wall with 2% damping, the maximum 

displacement has been found to be 57 mm when not strengthened, but decreased to 13.66 

mm when strengthened. The base shear demand is approximately 640 kN when not 

strengthened and 152 kN when strengthened. When not strengthened, though the 

maximum displacement response and base shear demand is increased by around 6 times 

with respect to solid wall, but increased only by 55% upon strengthening. Hence, 2% 

damping is highly undesirable for squat shear wall with opening size 18% without 

strengthening the shear wall around the openings. When the shear wall is provided with 

18% opening, there is a little bit of flexible behavior when the damping is small (2%), 

characterized by less number of cyclic loops (Fig. 6.9). 

When the squat shear wall is provided with 21% opening with 5% damping, the 

maximum displacement has been found to be 29.09 mm when not strengthened, but 

decreased to 16.8 mm upon strengthening. Hence, there is the increase in the maximum 

displacement by around 6 times with respect to solid shear wall when not strengthened 

around the openings. However, the increase in the maximum displacement of slender 
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shear wall with 21% opening is only 2 times when strengthened around the openings. 

The base shear demand of slender shear wall with 5% damping is approximately 325.02 

kN when not strengthened, but went down to 187.70 kN when strengthened. The base 

shear demand is increased significantly by around 5 times with respect to solid shear 

wall without strengthening but only by 2.7 times with strengthening. The strengthening 

results in the significant reduction in the maximum displacement response as well as the 

base shear demand. Even with strengthening, the squat shear wall with opening size 21% 

is not recommended from displacement and base shear demand point of view. This is 

evident from the displacement time history response where the number of loops is found 

to be very less as compared to 18% opening (Fig. 6.9).  For squat shear wall with 2% 

damping, the maximum displacement has been found to be 92.86 mm when not 

strengthened, but decreased to 55.28 mm when strengthened.. The base shear demand is 

1037.51 kN when not strengthened and decreased to 617.64 kN when strengthened. The 

maximum displacement response as well as base shear demand is increased by around 

9.5 times when strengthened and 5.3 times when not strengthened. 

As observed in the case of slender shear wall, the maximum displacement response of 

squat RC shear wall with opening size 5%, 11% and 14% has been found to be negligible 

even for 2% damping, and hence the strengthening has not much role to play on 

displacement time history response and base shear demand. However, for shear wall with 

18% opening, though 5% damping has resulted in less displacement, the response of RC 

shear wall with 2% damping is 57 mm with a drastic increase of around 6 times over 5% 

damping. Nevertheless, even for 2% damping, the strengthening results in the significant 

reduction in the maximum displacement response by around 3 times. For shear wall with 

opening size 21%, the response of shear wall has not been found to be satisfactory for both 

5% damping and 2% damping even with strengthening. 

6.4 Influence of Door Window Openings on Displacement Time 

History Response of Shear Wall 

In order to identify the safe regions where the openings can be provided in a shear wall, 

two representative problems of ten storey (35 m high, 8 m wide and 0.3 m thick) and 

five storey (17.5 m high, 8 m wide, 0.3 m thick), behaviorally slender and squat type, 

are chosen and analyzed for dynamic loading condition for 2% and 5% damping 

subjected to Fig. 6.2, using the finite element analysis. The opening location is varied 
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keeping all practical positions. The optimum opening size is identified from the 

previous section and is found to be 14% for slender as well as squat shear wall. The 

material properties used for the material modeling are as mentioned in Table 6.2. In 

total, there are six cases considered as the possible opening locations prevailed in 

practice, viz. (i) door cum window, (ii) two doors (iii) two windows (regular), 

(iv) three windows, (v) four windows and (vi) two windows (staggered). However, it is 

to be noted that these openings are repeated in each storey of shear wall. 

Slender shear wall: 

Figs. 6.10 and 6.11 show the influence of different doors and/or window openings on the 

displacement time history response of RC slender shear wall. Table 6.8 shows the 

maximum displacement response and the base shear demand of RC shear wall with and 

without strengthening around the openings. As elaborated in the previous section, it has 

been identified that 14% opening has been the safe opening size for both slender as well 

as squat shear wall. The previous section dealt with the identification of safe opening 

size by keeping the openings in the middle portion of the shear wall. When the openings 

are located in the central portion of the shear wall, it was observed that the performance 

of shear wall has been considered satisfactory.  

Opening type Not strengthened Strengthened 

 

Door cum 

window 

  

 

Two doors 
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Opening type Not strengthened Strengthened 

 

Two windows 

(Regular) 

  

 

Two windows  

(Staggered) 

  

 

Three windows 

  

 

Four windows 

  

Fig. 6.10: Displacement time history response of RC slender shear wall for different 

door window opening combinations for 5% damping 
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Opening type Not strengthened Strengthened 

 

Door cum 

window 

  

 

Two doors 

  

 

Two windows 

  

 

Two windows 

(staggered) 

  

 

Three windows 
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Opening type Not strengthened Strengthened 

 

Four windows 

  

Fig. 6.11: Displacement time history response of RC slender shear wall for different 

door window opening combinations for 2% damping 

When the slender shear wall having 5% damping is provided with door cum window 

opening placed in each storey, the maximum displacement and base shear demand of 

RC shear wall without strengthening are 57.33 mm and 319.14 kN respectively. There 

is an increase of around 32% in the maximum displacement response and base shear 

demand, respectively with respect to solid shear wall. When the shear wall is 

strengthened around the openings, the maximum displacement and base shear demand 

are 62.56 mm and 348.25 kN respectively. There is an increase in the maximum 

displacement and base shear demand of over 42% with respect to solid shear wall. The 

strengthening results in the increase in the maximum displacement response and the 

base shear demand. For slender shear wall with 2% damping, the maximum 

displacement and base shear demand of RC shear wall with door cum window opening 

are 72.12 mm and 401 kN respectively. There is an increase of around 10% in the 

maximum displacement response and base shear demand with respect to solid shear 

wall. When the shear wall is strengthened around the openings, the maximum 

displacement and base shear demand are 84.28 mm and 469 kN, respectively. There is 

an increase in the maximum displacement and base shear demand of over 30% with 

respect to solid shear wall. The strengthening results in the increase in the maximum 

displacement response and the base shear demand. 
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Table 6.7 Max. displacement response (Umax) and base shear demand (Vb d) -Slender 

shear wall with different door window opening combinations  

Opening type 

5% damping 2% damping 

NS ST NS ST 

Umax Vb d Umax Vb d Umax Vb d Umax Vb d 

Solid shear wall 43.93 244.54 43.93 244.54 65.67 365.56 65.67 365.56 

Single Central 

opening 
49.43 275.16 49.86 277.55 70.62 393.12 71.43 397.63 

Door cum 

window 
57.33 319.14 62.56 348.25 72.12 401.47 84.28 469.16 

Two doors 64.94 361.50 64.63 359.77 86.88 483.63 86.49 481.46 

Two windows 

(Regular) 
70.29 391.28 70.23 390.95 165.30 920.17 89.93 500.61 

Two windows 

(staggered) 
75.24 418.84 74.41 414.22 129.10 718.66 146.70 816.63 

Three windows 58.27 324.37 58.42 325.21 174.40 970.83 81.33 452.74 

Four windows 66.06 367.73 64.53 359.22 87.79 488.70 65.70 365.73 
 

For shear wall with 5% damping provided with two door openings placed in each storey, 

the maximum displacement and base shear demand of slender shear wall without 

strengthening are 64.94 mm and 360 kN, but remains almost unchanged upon 

strengthening.  However, with respect to solid shear wall, there is an increase of around 

49% in the maximum displacement as well as base shear demand. In the similar lines,  

for 2% damping, the maximum displacement and base shear demand of RC shear wall 

without strengthening are 86.88 mm and 483.63 kN, but remains almost unchanged upon 

strengthening.  With respect to solid shear wall, there is an increase of around 32% in the 

maximum displacement and base shear demand. 

When the slender shear wall having 5% damping is provided with two window openings 

located in each storey, the maximum displacement and base shear demand of RC shear 

wall without strengthening are 70.29 mm and 391.28 kN, but remains almost unchanged 

upon strengthening.  However, with respect to solid shear wall, there is an increase of 

around 100% in the maximum displacement as well as in the base shear demand. 

However, for 2% damping, the maximum displacement and base shear demand of RC 

shear wall without strengthening are 165.3 mm and 920.17 kN, but reduced significantly 

to 89.93 mm and 500.61 kN upon strengthening. But, with respect to solid shear wall, 

there is an increase of around 150% in the maximum displacement as well as base shear 
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demand without strengthening and the increase is just over 37% in both maximum 

displacement as well as base shear demand when strengthened. The strengthening of 

shear wall around the openings is considered very essential in restricting the maximum 

displacement and base shear demand.  

In the present case of two window opening, the aspect ratio of each opening is 0.5, with 

longer side of opening is in the direction parallel to the direction of earthquake ground 

motion and hence, for low damping such as 2%, the response has just gone manifolds 

than solid shear wall especially without strengthening around the openings. Adequate 

damping of at least 5% needs to be provided in the case of such opening combinations. 

Thus, on the basis of this study it can be deduced that the aspect ratio of the opening is 

very critical in achieving the better displacement response as well as base shear demand. 

When each storey of the shear wall is provided with two staggered windows located 

diagonally assuming 5% damping, the maximum displacement and base shear demand of 

RC shear wall without strengthening are 75.24 mm and 418.84 kN, but almost remains 

unchanged upon strengthening.  However, with respect to solid shear wall, there is an 

increase of around 70% in the maximum displacement and base shear demand. For 2% 

damping, the maximum displacement and base shear demand of RC shear wall without 

strengthening are 129.1 mm and 718.66 kN, but increased to 146.7 mm and 816.63 kN 

upon strengthening. But, with respect to solid shear wall, there is an increase of around 

99% in the maximum displacement and base shear demand without strengthening. When 

strengthened, the increase is around 124% in both maximum displacement and base 

shear demand. 

For shear wall provided with three window openings in each storey with 5% damping, 

the maximum displacement and base shear demand of RC shear wall without 

strengthening are 58.27 mm and 324.37 kN, but remains almost unchanged upon 

strengthening.  But, with respect to solid shear wall, there is an increase of around 32% 

in the maximum displacement and base shear demand. However, for 2% damping, the 

maximum displacement and base shear demand of RC shear wall without strengthening 

are 174.4 mm and 970.83 kN, but reduced significantly to 81.33 mm and 452.74 kN 

upon strengthening. However, with respect to solid shear wall, there is an increase of 

around 167% in the maximum displacement and base shear demand without 

strengthening. When strengthened, the increase is just around 25% in both maximum 



Non-Linear Dynamic Response of RC Shear Wall 

209 

displacement and base shear demand. The strengthening of shear wall around the 

openings is considered very essential in restricting the maximum displacement and base 

shear when the damping is as low as 2%. 

When the each storey of slender shear wall is provided with four window openings with 

5% damping, the maximum displacement and base shear demand of RC shear wall 

without strengthening are 66.06 mm and 367.73 kN, but reduced slightly to 64.53 mm 

and 359.22 kN upon strengthening.  However, with respect to solid shear wall, there is an 

increase of around 50% in the maximum displacement and base shear demand. For 2% 

damping, the maximum displacement and base shear demand of RC shear wall without 

strengthening are 87.79 mm and 488.70 kN, but reduced significantly to 65.7 mm and 

365.7 kN upon strengthening. With respect to solid shear wall, there is an increase of 

around 35% in the maximum displacement and base shear demand without 

strengthening. When strengthened, the increase is just practically nil in both maximum 

displacement and base shear demand. The response of shear wall with four window 

opening has been considered satisfactory even for 2% damping. 

Squat shear wall: 

Figs. 6.12 and 6.13 show the displacement time history response of RC squat shear walls 

with various door window opening combinations. When the single central opening is 

provided in shear wall, the maximum displacement response as well as base shear 

demand has not been found to be varying very much with respect to solid shear wall, 

especially for 2% damping. In this section, the performance of shear wall with various 

door window opening combinations is assessed with respect to solid shear wall.  
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Opening type Not strengthened Strengthened 

 

Two doors 

  

 

Two windows 

(Regular) 

  

 

Two windows 

(staggered) 

  

 

Three windows 

  

 

Four windows 

  

Fig. 6.12: Displacement time history response of RC squat shear wall for different 

door window opening combinations for 5% damping 
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Opening type Not strengthened Strengthened 
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Opening type Not strengthened Strengthened 

 

Four windows 

  

Fig. 6.13: Displacement time history response of RC squat shear wall for different 

door window opening combinations for 2% damping 

When each storey of squat shear wall is provided with door cum window opening 

assuming 5% damping without strengthening, the maximum displacement and base shear 

demand of RC shear wall without strengthening are 5.85 mm and 65.34 kN, respectively. 

Not much change is observed in the displacement response and base shear demand due 

to strengthening and there is an increase of around 32% in the maximum displacement 

response as well as base shear demand with respect to solid shear wall. For same shear 

wall with 2% damping without strengthening, the maximum displacement and base shear 

demand of RC shear wall with door cum window opening are 32.91 mm and 367.70 kN, 

respectively and there is an increase of around 2.74 times in the maximum displacement 

response and base shear demand with respect to solid shear wall. When the shear wall is 

strengthened around the openings, the maximum displacement and base shear demand 

are 25.11 mm and 280.55 kN respectively and an increase in the maximum displacement 

and base shear demand of over 1.8 times with respect to solid shear wall. The 

strengthening results in the reduction in the maximum displacement response and the 

base shear demand. Due to non-symmetrical openings, the displacements are very severe 

for 2% damping, characterized by a couple of little bit of one sided cyclic displacements. 

Table 6.8:  Max. displacement response and base shear demand- Squat shear wall 

with different door window opening combinations 

Opening type 

5% damping 2% damping 

NS ST NS ST 

Umax Vb d Umax Vb d Umax Vb d Umax Vb d 

Solid shear 

wall 
4.44 49.64 4.44 49.64 8.81 98.42 8.81 98.42 
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Opening type 

5% damping 2% damping 

NS ST NS ST 

Umax Vb d Umax Vb d Umax Vb d Umax Vb d 

Single Central 

opening 
6.18 68.99 6.16 68.79 9.91 110.73 9.98 111.54 

Door cum 

window 
5.85 65.34 6.00 66.98 32.91 367.70 25.11 280.55 

Two doors 6.00 67.03 5.97 66.74 15.54 173.63 9.34 104.40 

Two windows 

(Regular) 
7.07 79.03 7.08 79.10 90.42 1010.25 33.00 368.70 

Two windows 

(staggered) 
7.72 86.30 7.69 85.87 89.76 1002.88 55.57 620.88 

Three 

windows 
6.12 68.42 6.15 68.71 325.50 3636.00 Collapse Collapse 

Four windows 6.44 71.90 6.33 70.70 9.79 109.38 9.49 106.06 

For squat shear wall having 5% damping provided with two symmetrically placed door 

opening in each storey, the maximum displacement and base shear demand of RC shear 

wall without strengthening are 5.9 mm and 67.03 kN, but remains almost unchanged 

upon strengthening. For 2% damping, the maximum displacement and base shear 

demand of RC shear wall without strengthening are 15.54 mm and 173.63 kN, but 

changed to 9.344 mm and 104.40 kN upon strengthening. Thus, even with 

strengthening, with respect to solid shear wall, there is an increase of only around 6% 

in the maximum displacement and base shear demand. Nevertheless, the performance 

has been satisfactory in terms of maximum displacement and the base shear demand. 

The positive things above the squat shear wall with two door openings are the aspect 

ratio and symmetry of openings. Though aspect ratio is not unity, the longer side of the 

opening is in the perpendicular direction of the loading. The fact that the openings are 

located symmetrically adds to those benefits. Because of the aspect ratio of openings, 

the vertical bars are provided on the sides of the openings and it controls the 

deformation to the great extent. Stiff behavior is reflected in the shape of the time 

history with more frequent vibrations [Fig. 6.13]. 

When the squat shear wall is provided with two window openings in each storey 

assuming 5% damping, the maximum displacement and base shear demand of RC 

shear wall without strengthening are 7.07 mm and 79.03 kN, but remains almost 

unchanged upon strengthening.  But, with respect to solid shear wall, there is an 
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increase of around 38% in the maximum displacement and the base shear demand. For 

2% damping, the maximum displacement and base shear demand of squat shear wall 

without strengthening are 90 mm and 1010.25 kN, but reduced significantly to 33 mm 

and 368.70 kN upon strengthening. However, with respect to solid shear wall, there is 

an increase of around 9 times in the maximum displacement and base shear demand 

without strengthening. However, when strengthened, the increase is just around 3 times 

in both maximum displacement and base shear demand. The strengthening of shear 

wall around the openings is considered very essential in restricting the maximum 

displacement and base shear demand. The aspect ratio of the opening is found to be 

very critical in achieving the better displacement response and base shear demand. In 

the present case of two window opening, the aspect ratio of each opening is 0.5, and 

longer side of opening is in the direction parallel to the direction of earthquake ground 

motion. Hence, for low damping such as 2%, the response has just gone manifolds than 

solid shear wall especially without strengthening around the openings. The increase in 

the displacements is very high after 10 seconds as evident from the time history 

response (Fig. 6.13). Adequate damping of at least 5% needs to be provided in the case 

of such opening combinations. 

For shear wall provided with two staggered window type opening placed diagonally in 

each storey assuming 5% damping, the maximum displacement and base shear demand 

of RC shear wall without strengthening are 7.72 mm and 86.30 kN respectively, but 

almost remains unchanged upon strengthening. With respect to solid shear wall, there 

is an increase of around 75% in the maximum displacement and base shear demand. 

Nevertheless, the displacements are still not alarming to make the shear wall 

unserviceable. Nevertheless for 2% damping, the maximum displacement and base 

shear demand of RC shear wall without strengthening are 89.76 mm and 1002.88 kN, 

but reduced significantly to 55.57 mm and 620.88 kN upon strengthening. But, with 

respect to solid shear wall, there is an increase of around 9.2 times in the maximum 

displacement and base shear demand without strengthening. When strengthened, the 

increase is around 5.3 times in both maximum displacement and base shear demand. 

The strengthening results in the significant reduction in the maximum displacement 

response and base shear demand. However, the performance of staggered openings has 

not been considered very satisfactory especially for 2% damping even with 

strengthening. This is signified by the fact that the number of cyclic loops appearing in 
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the displacement time history response (Fig. 6.13) is very less in the case of staggered 

openings as compared to solid shear wall. The aspect ratio of opening is such that the 

longer dimension is in the direction of excitation and hence there is a high 

displacement. Moreover, the openings are positioned towards the extremities of the 

walls and are located only at 1m from the edge of the shear wall. Since edges are 

vulnerable to severe ground shaking, it is essential to avoid the openings at the edges. 

For shear wall provided with three symmetrically window openings in each storey 

assuming 5% damping, the maximum displacement and base shear demand of RC 

shear wall without strengthening are 6.12 mm and 68.42 kN, respectively, but remains 

almost unchanged upon strengthening.  However, with respect to solid shear wall, there 

is an increase of around 39% in the maximum displacement and base shear demand. 

However, for squat shear wall with 2% damping, when the openings are provided in 

the form of three windows, the maximum displacement and base shear demand of RC 

shear wall without strengthening are 325 mm and 3636 kN, respectively, but collapsed 

before sustaining for 15 seconds upon strengthening. The brittle failure is partly due to 

the storey mechanism attributed to the presence of three openings at the same level, 

creating skewed distribution of stiffness at the different levels. But, with respect to 

solid shear wall, there is an increase of around 36 times in the maximum displacement 

and base shear demand without strengthening. When there are more openings situated 

at the same level, it is essential to rely on the damping mechanism than strengthening. 

The damping needs to be higher in order to safely dissipate energy without much 

degradation in strength and stiffness. The large displacement is characterized by the 

stray peak around 12 seconds and thus resulting in one sided cyclic displacements 

(Fig. 6.13). It essentially means that shear wall is too flexible to resist any deformation. 

When the squat shear wall is provided with four symmetrically placed window 

openings assuming 5% damping, the maximum displacement and base shear demand of 

RC shear wall without strengthening are 6.44 mm and 71.90 kN respectively. But, with 

respect to solid shear wall, there is an increase of around 45% in the maximum 

displacement and base shear demand. The strengthening of the shear wall around the 

openings is not impacting the response significantly. However, the maximum 

displacement response of squat RC shear wall with four window opening is not very 

large and mostly the response is observed to be linear. The linear response is 
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characterized by very frequent spikes with the stiff response (Fig. 6.3). For 2% 

damping, when the openings are provided in the form of four window openings, the 

maximum displacement and base shear demand of RC shear wall without strengthening 

are 9.79 mm and 109.38 kN, respectively, but almost remains unchanged upon 

strengthening. With respect to solid shear wall, there is an increase of around only 8% 

in the maximum displacement and base shear demand. The response of shear wall with 

four window opening has been considered satisfactory even for 2% damping. The 

response of RC shear wall with four window opening has been characterized by the 

stiff behavior of the shear wall with frequent spikes (Fig. 6.13). This is attributed to the 

fact that the aspect ratio of the opening is square and the openings are not concentrated 

at one particular level, thus avoiding the story mechanism. Moreover, the openings are 

symmetrically located. The performance of shear wall with four window opening has 

been considered to be superior in terms of maximum displacement and base shear point 

of view. 

6.5 Summary 

The following conclusions have been made on the basis of time history dynamic 

responses of slender and squat RC shear walls in the presence of openings of different 

sizes and at different locations.  

o The displacements are found to be less for squat shear walls than for slender 

shear walls. The stiff behavior is observed in the case of squat shear walls and 

flexible behavior is observed in the case of slender shear walls. The displacement 

time history has more peaks in the case of squat shear wall than that of slender 

shear wall. The strengthening results in the reduced displacement response for 

both slender and squat shear walls. 

o The presence of damping has significant effect on the displacement time history 

responses of both slender and squat shear walls. The displacements have been 

significantly reduced when the damping is increased from 2% to 5%. 

o The slender shear wall with 21% opening has been considered highly undesirable 

for both 5% damping and 2% damping without strengthening. This is 

characterized by the heavy one-sided displacement response history. However, it 

is to be noted that the 5% damped displacement response has been considered 

satisfactory with the help of strengthening around the openings. But with 2% 
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damping, the slender shear wall with 21% opening has suffered from very high 

displacement even with strengthening.  

o Similarly, the squat shear wall with 21% opening has resulted in huge 

displacement with respect to solid shear wall, especially for 2% damping. Though 

strengthening results in reduction in the maximum displacement response, the 

magnitude of the displacement still remains very high with respect to solid shear 

wall.  

o However, upto 18% opening, slender shear wall shows very stable displacement 

time history response characterized by vibrations of high frequency for both 5% 

and 2% damping. However, for squat shear wall, the displacements are relatively 

high with respect to solid squat shear wall especially for 2% damping without 

strengthening around the opening. Hence, 18% opening has not been considered 

very safe opening size for squat shear wall.  

o The opening locations strongly affect the performance of shear wall. The single 

central opening results in less displacement response and base shear demand for 

both slender as well as squat shear wall. The shear wall provided with door cum 

window opening/two door opening results in satisfactory time history response 

for both 5% and 2% damping.  

o For 2% damping, the performance of shear wall provided with three window 

openings have not been considered satisfactory for both slender as well as squat 

shear wall. However, for 5% damping, not much change is observed in the 

behavior of shear wall in the presence of openings of different opening locations.  

o In the presence of three window openings with 2% damping, both slender and 

squat shear walls suffer from huge one-sided cyclic displacement even with 

strengthening. The three windows located at the same level created the kind of 

storey mechanism and hence results in flexible behavior.  

o Similarly, the response of shear wall provided with diagonally placed openings 

has not been considered satisfactory, especially for 2% damping characterized by 

with heavy increase in the maximum displacement and base shear demand.  

o The shear walls with four window openings have been considered very safe from 

the displacement and base shear point of view even without strengthening and 

hence can be considered to be safe opening location.   
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Chapter 7 

Summary and Conclusions 

7.1 Summary 

The main objective of this study has been to investigate the effectiveness and 

applicability of size of openings and their locations on the static and dynamic response of 

the shear wall with different damping characteristics. To achieve this objective, an 

analytical finite element model to predict the static and dynamic behavior of Reinforced 

Concrete (RC) shear wall was developed. 

Since the behavior of RC shear walls is highly complex under the influence of severe 

lateral loads arising due to wind and earthquake, the response of shear wall no longer 

remains elastic and therefore, finite element method was needed to predict the behavior 

of shear wall in both linear and non-linear regimes under static and dynamic loading 

conditions. Though the non-linear static analysis (pushover analysis) of shear wall is 

performed to obtain the lateral force-displacement characteristics, it does not represent 

true dynamic characteristics of shear wall subjected to seismic loading, nor does it 

capture the effect of higher modes on its structural response. 

The finite element program developed in FORTRAN was capable of capturing the non-

linearity due to material characteristics (material non-linearity) that incorporates macro 

material model for concrete and steel. The non-linearity considered in the present study 

includes concrete cracking, yielding of steel & concrete and tension stiffening caused by 

bond slip between steel and concrete, aggregate interlock and the dowel action of 

reinforcement steel. Also, for the dynamic analysis, finite element model based on 

implicit solution algorithm was employed to study the nonlinear dynamic response of RC 

shear walls. It is well documented in literature that the nine-noded Lagrangian 

degenerated shell element with assumed strain approach does not suffer from spurious 

energy modes and locking and performs well in thin as well as thick situations with 

reasonable accuracy for static and dynamic analyses. The sensitivity analysis carried 
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out in this study revealed that the degenerated shell element in conjunction with 

assumed strain approach is not much sensitive to the finite element mesh size and the 

same has been used in the present study. The layered concept of the degenerated shell 

element has given the much-needed flexibility to allow different materials to be 

modeled through the thickness direction of the element. Moreover, the layered 

approach enabled to model the reinforcing steel in horizontal and vertical directions by 

defining appropriate properties pertaining to orientation of reinforcing steel. For the 

modeling of concrete in compression, the yield/failure surface has been predicted using 

Willam-Warnke five-parameter model with isotropic hardening and associated flow 

rule. The cracking in the concrete has been modeled using the smeared crack approach. 

The tension stiffening, incorporated in the material modeling has been found out to be 

essential in representing the realistic behavior of reinforced concrete. In order to 

perform the time-history analysis of shear wall, different methods have evolved over the 

years. It is well known fact that the non-linear implicit direct integration time history 

analysis is more accurate and predicts the results closer to the experimental results. In the 

present study the Newmark-β method (Trapezoidal rule) of direct implicit time 

integration has been used to perform the time-history analysis of shear wall. This method 

has been chosen since the computational time step is limited only from accuracy point 

of view and not from stability point of view. The consistent mass matrix approach has 

been adopted in the present study and the shape functions for determining the 

consistent mass matrix are considered the same as used for stiffness matrix. A study of 

literature shows that the exact formulation of damping is not mandatory for nonlinear 

dynamic analysis. Rayleigh damping, considered as simple and efficient way of 

modeling the damping, has been adopted in the present study. The input data 

preparation for the finite element analysis of structures is very cumbersome especially 

for the multi-storeyed shear wall with openings. To overcome this, a small program was 

developed in FORTRAN to generate the element nodal connectivity and co-ordinates of 

shear wall. This program was found very useful since it was a general program capable 

of generating the huge data file for shear wall with different size of the opening located 

at different positions. 
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In order to validate the program for both static and dynamic response of shear walls, 

three shear wall problems were selected. For the validation of program under static 

loading, the squat shear wall with top and bottom beams was considered. The 

displacement at the middle of the top slab was evaluated under monotonically 

increased lateral loading applied at the middle of the top beam. The load-displacement 

response as well as crack & yield patterns of shear wall have been found to be in close 

agreement with the experimental results published in literature. 

For the dynamic response of shear walls, the flanged shear walls and rectangular shear 

walls were considered under simulated earthquake ground motion applied at the base of 

shear wall. The flanged shear wall is squat in nature whereas the rectangular shear wall 

is of slender type. The time history responses have been plotted at the top level of shear 

wall. It was found that the maximum displacement response as well as the profile of 

time history response was found to be satisfactory. 

The focus of the present study is to investigate the influence of openings on the structural 

response of slender (10-storeyed) and squat (5-storeyed) RC shear walls under non-linear 

static and dynamic loading conditions. In order to determine the load carrying capacity 

and ductility, the non-linear static analysis of shear wall was carried out considering 

material non-linearity. Since the ductility is the important parameter in the earthquake 

resistant design, the present analyses focused on the comparison of ductile response of 

shear wall in the presence of openings. In this study, the ductility was evaluated in terms 

of displacement ductility index. The displacement ductility index was calculated as the 

ratio of yield to ultimate displacement. Since the well defined yield point was not easy to 

identify, the method based on the secant stiffness approach was adopted in the present 

study. In order to determine the displacement response of shear wall under dynamic 

ground motions, the shear walls were subjected to El Centro earthquake applied at the 

base of the shear wall. The displacement time history response, measured at the top of 

shear wall, was plotted for the period of first 15 seconds. The stiffness proportional 

Rayleigh damping was employed in the present study. The maximum displacement 

response and base shear demand were computed for shear wall with various opening 

sizes and locations. 
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On the basis of non-linear static and dynamic loading conditions, the following 

observations have been made on aspect ratio, opening size and opening locations. 

Effect of aspect ratio of shear wall: 

The aspect ratio of shear wall plays a crucial role on its structural response. For a given 

cross-section, the aspect ratio of shear wall significantly affects the load carrying capacity 

as well as the displacement response. The lateral load on the shear wall was linearly varied 

from maximum at top to zero at bottom representing the triangular distribution of loading. 

In general, the load carrying capacity of squat shear wall was found high as compared to 

slender shear wall. Nevertheless, the ultimate displacement of squat shear wall was found 

to be far less than that of slender shear wall. It was observed that the slender shear wall 

failed in ductile mode characterized by sufficient in-elastic deformation before failure. On 

the other hand, the squat shear wall failed by the shear mode and thus resulted in smaller 

ultimate displacement. Hence, it is concluded that the deformability of the slender shear 

wall was considered to be superior to the squat shear wall. Also, the displacement time 

history response demonstrated more peaks in the case of squat shear wall than that of 

slender shear wall which indicated that behavior of squat shear wall to be stiff compared to 

slender shear wall. 

Effect of opening size: 

Shear walls require openings to satisfy the functional requirement of the multi-storeyed 

building. However, the presence of openings in shear walls weakens the shear wall as 

envisaged by many researchers. A study of literature revealed that shear walls be 

penetrated only with smaller openings in order to get the desired structural response, but 

there is no clarity on the optimum size of openings in shear walls from strength, 

displacement and ductility point of view. Even though certain codes put limitation of 

15% as the limiting opening percentage in the shear wall only from the perspective of 

analysis, but there are no common consensus on the limiting percentage of openings in 

shear walls. The present investigation deals with the identification of safe opening 

percentages to be allowed in slender and squat shear walls from strength and 

displacement point of view. 
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In order to examine the effect of openings on the response of shear wall, the whole study 

was made in two phases. In the first phase of the study the slender and squat shear walls 

were analyzed for monotonically increasing lateral load till the failure of shear wall 

while in the second phase the displacement time history analysis of shear walls subjected 

to El Centro earthquake ground motion were carried out. The shear walls considered for 

the parametric study had the uniform thickness & width and contained minimum steel as 

recommended by Indian code. The openings were located centrally in each storey and the 

size of the opening considered for each storey were 2%, 5%, 11%, 14%, 18% and 21%. 

In order to examine the influence of strengthening around the openings, all the shear 

walls with openings were analyzed with- and with-out strengthening and results were 

compared with the shear wall with no opening (solid). The strengthening of shear wall 

around the openings was as per Indian code of practice.   

The load carrying capacity of shear wall was found to be reduced with the increase in the 

opening size. The reduction in the load carrying capacity with respect to solid shear wall 

was found to be severe for larger opening size without strengthening. However, the 

strengthening resulted in the better response of shear wall. Moreover, the displacement 

time history responses of slender and squat shear wall with larger opening sizes were 

found to be highly unstable characterized by one-sided cyclic displacements. The 

influence of damping was found to be very significant in restricting the maximum 

displacement response and base shear demand especially for large openings (21% 

opening). Invariably, the 5% damping has resulted in superior performance of shear wall 

in the presence of openings. Hence, damping (energy dissipating capacity) is very 

essential from the point of view of serviceability as well. 

After studying the responses, it was found that the opening percentages need to be 

limited to 14% from load and displacement point of view. Hence, 14% opening was 

considered to be safe in both slender as well as squat shear walls as performance was not 

overly dependent on strengthening and damping. 

Effect of opening location: 

The functional requirement generally necessitates the need for providing multiple 

openings at different locations of shear walls. The openings were provided in the form 

of doors and windows and were positioned at different locations. The total opening size 
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adopted was 14% as identified in the previous section. The present investigation 

accomplished the identification of the safe door and window opening locations for 

slender and squat shear walls under static and dynamic loading conditions. 

For static loading, it was observed that the opening locations strongly affect the 

performance of shear wall in terms of load carrying capacity and ultimate displacement. 

When the opening is provided in the form of single window located centrally in each 

storey, the reduction in the load carrying capacity of shear wall was not significantly 

reduced with respect to solid shear wall. Also, the influence of strengthening for this 

opening location was found to be insignificant. Moreover, the ultimate displacement was 

found to be higher with respect to solid shear wall which indicated the deformable 

behavior of shear wall. The shear wall in the presence of four window openings also 

resulted in the better structural response. On the other hand, the presence of openings in 

the form of two windows and three windows resulted in the severe degradation in 

strength especially without strengthening.  

In the similar lines, the dynamic response analysis of shear wall in the presence of 

single window opening located centrally resulted in the stable displacement time 

history. The response of shear wall in the presence of two windows and three windows 

was found to be severely affected especially for 2% damping. The severity was found 

to be more in the case of squat shear walls than for slender shear walls. However, for 

5% damping, the displacement response was found to be reasonably safer characterized 

by stable time history response. Hence, it was observed that the influence of damping 

was found to be significant on the displacement response. 

7.2 Conclusions 

On the basis of exhaustive numerical studies carried out to identify the limiting opening 

size and desirable locations of the openings at different floors of the multistoried shear 

wall, the following conclusions have been drawn. 

o For openings up to 14%, the load carrying capacity and ultimate displacement 

response were not found to be severely affected by openings.  However, for 

openings beyond 14%, the load carrying capacity of slender as well as squat 

shear wall gets affected due to the presence of openings. 
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o In general, strengthening of shear wall around openings was found beneficial in 

improving the load carrying capacity and ductility of the shear wall.  However, 

for shear wall up to 14% opening, the responses of both slender as well as squat 

shear walls were not overly dependent on the strengthening around the openings.  

On the other hand, beyond 14% opening, the performance of shear wall was 

found to be strongly influenced due to strengthening around the openings.  

o The shear wall with 18% opening was not considered very safe in case of squat 

shear wall. However, slender shear wall exhibited better performance than squat 

shear wall for the same opening size.  

o The squat shear wall with 21% opening suffered from severe degradation in the 

load carrying capacity of more than 50% and hence such large openings are to be 

strictly avoided. The performance of slender shear wall in the presence of 21% 

opening was slightly better than that of squat shear wall. In spite of improved 

performance of slender shear wall over squat shear wall, 21% opening is not 

considered safe. Hence the shear wall with 14% opening is identified as safe 

opening size.  

o The opening orientation in shear wall significantly affected the performance of 

shear wall. In case of rectangular openings, it is beneficial to provide the shorter 

side of the opening parallel to the loading direction in order to minimize the 

degradation in the load carrying capacity and ductility.  

o The shear wall with door cum window opening as well as with two door opening 

resulted in satisfactory time history displacement response for both 5% and 2% 

damping.  Moreover, for both opening combinations the reduction in the load 

carrying capacity was found to be less as compared to solid shear wall.  

o For shear walls with two/three windows aligned horizontally at the same level, 

the load carrying capacity and ultimate displacement were found to be severely 

affected and resulted in the kind of storey mechanism. Moreover, the maximum 

displacement response was found to be very high under severe dynamic ground 

motion. It is suggested to avoid such openings to avoid detrimental effect on 

shear wall. The degradation was more severe for squat shear walls than for 

slender shear walls especially for 2% damping. Even the strengthening was not 

found to be positively influencing the behavior of shear wall.  
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o The aspect ratio of opening plays the crucial role on the structural response of 

shear wall. The degradation in the strength and displacement was found to be 

minimal for shear wall with four windows placed symmetrically. The 

strengthening around the openings as well as damping was not impacting the 

behavior of the shear wall significantly.  

7.3 Further Scope of the Work 

While conducting the study, it was found that certain aspects of the investigation needs 

further examination and are presented as under. 

� Even though the optimum size and location of openings on the shear wall are 

determined in the present study analytically, it may be better to investigate 

experimentally especially for dynamic loading conditions. Moreover, the 

influence of opening shapes on the structural response can also be investigated. 

Since only 10 storeyed shear walls have been considered in the present study, 

there is a need to investigate further for taller and slender shear walls.  

� The core wall around the lift has become popular these days and hence there is 

a need to investigate the performance of the lift/core wall in the presence of 

openings.  

� Since shear walls in high-rise buildings are also used as the fire-resistant wall, it 

is essential to investigate the post-fire seismic behavior of RC shear walls. 

� The present study uses the assumed strain based degenerated shell element in 

conjunction with fixed smeared approach to model the RC shear wall. However, 

there are many recent advances in the element technology and crack simulating 

approach of RC structures. Hence, there is a need to capture the analytical 

response of shear wall by adopting state-of-the art analytical procedures. 

� The strain hardening has been modeled in the present study to capture the post-

cracking behavior of shear wall. In order to capture the realistic behavior of RC 

structures, there is a need to incorporate the softening behavior of Reinforced 

Concrete due to un-loading. 
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Appendix-1: Evaluation of Constants - Willam Warnke Five Parameter Model 

A1 Determination of model parameters 

These two meridians must intersect the hydrostatic axis at the same point 
0ξσ =′

cm f  

(corresponding to hydrostatic tension), the number of parameters need to be determined 

is reduced to five. The five parameters ( )212100 ,,,,or bbaaba  are to be determined 

from a set of experimental data (Fig. A.1), with which the failure surface can be 

constructed using second-order parabolic expressions. The five parameters in the present 

failure criterion are now determined such that the following five stress states are inbuilt 

in the criterion. This includes three simple tests and two arbitrary strength points in the 

high compression regime. 

• The uni-axial compressive strength cf ′  ( ) .0,60 >′= cf
�θ  

• The uni-axial tensile strength ( )�0=′ θtf  with the strength ratio ctt fff ′′=′ / . 

• The equal biaxial compressive strength ( )0,0 >′=′
bcbc ff

�θ  with the strength 

ratio cbcbc fff ′′=′ / . 

• The high compressive stress point ( ) ( )11,/,/ ρξτσ =′′
cmcm ff  on the tensile 

meridian ( )0,0 1 >= ξθ �

. 

• The high compressive stress point ( ) ( )22 ,/,/ ρξτσ =′′
cmcm ff  on the 

compressive meridian ( )0,60 2 >ξ=θ � . 

 

Fig. A.1: Experimental failure stress states for the determination of parameters in 

the five-parameter model 

�60=θ  

( )11, ρξ  

( )22 , ρξ  

bcf ′

cf ′  

0ξ

cm f ′/τ  

cm f ′/σ  
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In addition to the above points, the two parabolas must pass through a common apex at 

the hydrostatic axis; this imposes the condition 

 ( ) ( ) 00 >
′

===
c

mo

oocot
f

for
σ

ξξρξρ  [A.1] 

It has been mentioned in the literature that the five parameter failure model is very 

effective for compressive state of stress. Based on Kupfer's tests and other tri-axial tests, 

the test points to determine the material constants (five parameter model) are given in 

Table A1.  

A2 Determination of six parameters 

The various tests which are conducted to determine the six parameters are depicted in 

Table A1. The first three strength values are reserved for determination of parameters in 

the tensile meridian and other three strength values are reserved for compressive 

meridian. 

Table A1: Calculation of parameters for five parameter model 

Test cm f ′/σ  cm f ′/τ  θ  ( )θσρ ,m  
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3

1
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15

2
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2
ρ  

( )11,ρξ−  1ξ−  1ρ  �0  ct f ′= 15ρρ  

cf ′=3σ  
3

1
−  

15

2
 

�60  cc f ′=
3

2
ρ  

( )22 , ρξ−  2ξ−  2ρ  �60  cc f ′= 25ρρ  

Eq.3.41 0ξ  0 ��

60 ,0  0== ct ρρ  

Substituting the three strength values corresponding to tensile meridian 
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Solving these equations, the three parameters are found to possess the value as follows: 
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The apex of the failure surface is determined by using the condition 6, ( )00 =ξρ . 
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Substituting the three strength values corresponding to compressive meridian, the 

remaining three parameters can be determined as follows: 
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The experimental strength values used to determine the parameters of the model are  

tf ′ = 0.15; 
bcf ′ = 1.8; 

1ξ = 
2ξ = 3.67; 

1ρ = 1.5; 
2ρ = 1.94. 
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Appendix-2: Finite Element Software 

 

Fig. A.2: Sequence of finite element programming 
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CONTOL: In this subroutine, the variables required for dynamic dimensioning are read 

and a check is made on the maximum available dimensions. The maximum dimension of 

the variables, viz NELEM, NPOIN AND NMATS is specified in this subroutine. In case 

the variables specified in the program exceeds as mentioned in this subroutine, the 

program will be terminated. 

INPUTD: This subroutine reads and writes most of the control parameters viz. nodal 

point coordinates (COORD), thickness of elements (MEATK), nature of elements 

(INTGR), element connectivities (LNODS), boundary conditions (IFPRE), material 

properties (NPROP), number of concrete layers (NCLAY), number of steel layers 

(NSLAY), maximum concrete layers (MACON), maximum steel layers (MASTE) etc. 

However, the dynamic parameters will be dealt separately in INTIME subroutine. 

INTIME: This subroutine reads and writes all time integration data required for 

dynamic analysis. It reads and writes the information such as number of time steps 

specified for dynamic analysis (NSTEP), number of points at which the displacements 

(NOUTD) and stresses (NOUTS) are to be output, number of acceleration points 

(NACCE), nature of dynamic loading (IFUNC), direction of excitation (IFIXD), number 

of steps after which the stiffness matrix is to be updated (KSTEP), the type of algorithm 

(IPRED), maximum tolerance limit specified for convergence (TOLER) Also reads and 

writes initial displacement and velocities, time acceleration. 

LINKIN: This subroutine calculates the number of variables (NEVAB) associated with 

a finite element and also the total number of unknowns (NEQNS) in the entire structure. 

The equations numbers are assigned based on the constrained degrees of freedom 

(IFPRE). This subroutine links the rest of the program with the skyline solver. It also 

calculates the column height (MHIGH) for all elements and stores the addresses of the 

diagonal elements (MAXA). Here, the check is made to ensure the number of equations 

to be solved is less than the maximum dimension specified. Otherwise, the program will 

be terminated. Calculates column height above the diagonal in global matrix. Assigns 

location for diagonal elements in global matrix. 

ZEROAZ: Its function is to initialize to zero various vectors and matrices at the solution 

of the process. The strains (EPSTN) and (GRTST), stresses (STRAG), directions of steel 

reinforcement (DIREC), displacements (DISP), accelerations (ACCE), velocities 

(VELO), forces (FORCES) are set to zero. 
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WORKS: In this subroutine, the thickness of the nodes (THICK) in a particular element 

is calculated and stored with the help of top and bottom coordinates of the node. Also 

establishes the local orthogonal system of axes at each nodal point. Calculates the 

direction cosines (DICOS) and the vectors V1, V2 and V3k (normal vector) at each node. 

MODUL: Calculates the elasticity matrix (NSTAT = 1) and material constitutive matrix 

(DMATX) depending upon the state of stress in the local axes system using the 

transformation matrix. This subroutine is very importance as change in the stiffness of 

any element gets modified due to the variation in DMATX. The size of DMATX is 5 × 5 

as there are five degrees of freedom in the degenerated shell element. For Concrete 

yielding (NSTAT = 4), DMATX is calculated the same as for NSTAT = 1. 

BMATS: Calculates the strain displacement matrix at sampling points. The element 

shape functions and its derivatives are calculated in this subroutine. The sampling points 

and weighting factors are selected based on integration rule (NGAUS). Evaluates the 

membrane strain displacement matrix and transverse shear strain displacement matrix at 

the element middle surface. Here, the strain displacement matrix (BMATX) is replaced 

by the substitute transverse shear strain and membrane strain matrices.  The BMATX 

and DVOLU are stored in Tape 8 for further usage. 

PREVOS: It reads and stores the initial loads (RLOAD) and stresses (STRIN). This is 

indicated by the parameter (NPREV). If NPREV = 0, there are no initial loads and 

stresses. These initial stresses and loads are stored in Tape 2 for further usage. 

FORECEV: This subroutine calculates the nodal loads due to pressure and gravity. The 

pressure load can be applied on the top and bottom faces respectively. The gravity can be 

defined in any one of three directions. 

LOADPL: This subroutine generates applied force vector. 

Gravity forces are equivalent to a body force/unit volume acting within the solid in the 

direction of the gravity axis. The gravity axis need not be coincident with either of the 

coordinate axes and consequently gravity force components may act in x-, y-, and z-

directions. If g is the gravitational acceleration and 
mρ  is the material mass density, then 

the gravity force acting on an element volume dV is 

 dVgdG mρ=  
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The components acting in the x and y directions respectively are 

 θρθρ cos;sin dVgdGdVgdG mymx −==  

Using principle of virtual work, the equivalent nodal forces 
xiP  and yiP  are given by 

 ∫∫
∗∗∗∗ −==

ee V

miyi

V

mixi dVgvNvPdVguNuP θρθρ cos;sin  

In the above equations, ∗
u and ∗

v are virtual displacements, Ni are the shape functions 

and integration is taken over the entire volume of the element. The expression used to 

calculate the equivalent nodal forces due to gravitational acceleration g acting on a 

material of mass density 
mρ is 
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Using Numerical Gaussian integration, the above equation is practically replaced by 
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In the above equation, t is the element thickness, J is the Jacobian matrix. In the similar 

fashion, other loads can also be deduced. 

LUMASS: This subroutine generates the lumped mass vector. 

LINKFM: Calculates the data required for the storage of data. 

GSTIFF: This subroutine calculates the global stiffness matrix in compacted form. 

IMPEXP: This subroutine generates the partial effective load vector for direct time 

integration. Performs direct time integration using either (i) Implicit (ii) Explicit and 

Combined Implicit-Explicit schemes. 

RESEPL: This subroutine evaluates the internal force vector for elasto-plastic materials. 

ITRATE: This subroutine generates the total effective load vector and solves for the 

incremental displacements. It also checks for convergence. 

OUTDYN: This subroutine writes out most of the output on the various tapes for post 

processing. It outputs displacement and stresses every NOUTP steps. Displacement and 

stress histories of specified nodal and integration points are also captured in this routine. 

The complete state of displacements, stresses are written in separate tapes. 
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