
Chapter 4

An ε- uniform convergent scheme for the sin-
gularly perturbed parabolic partial differen-
tial equations with an interior turning point

4.1 Introduction

There are some articles in the literature (see Chapter 1), in which the methods for
the solution of singularly perturbed turning point problems (SPTPPs) in the context
of ODEs were considered. To the best of our knowledge, the development of the
numerical schemes for the solution of SPTPBVPs for PDEs is at initial stage.

In this chapter, a parameter-uniform scheme is proposed for singularly perturbed
parabolic partial differential equations with an interior turning point whose solution
exhibit twin boundary layers. To resolve the boundary, a fitted-mesh is constructed
and the cubic B-spline basis functions on this mesh are used to discretize the given
equation. Asymptotic bounds are given for the analytic solution and its derivatives.
Through a brief analysis, the method is shown uniformly convergent irrespective of
the parameter ε with first-order accuracy in t and the second-order accuracy (up to a
logarithm factor) in x. Two test problems are encountered to validate the theoretical
results.

Let Ω=(−1,1), Λ=(0,T ], D=Ω×Λ, Γb = {(x,0) :−1≤ x≤ 1}, Γl = {(−1, t) :
0≤ t ≤ T}, Γr = {(1, t) : 0≤ t ≤ T} and Γ = Γl ∪Γb∪Γr. We consider the following
SPTPBVP on the rectangular domain D

Lεy(x, t)≡−yt(x, t)+εyxx(x, t)+a(x, t)yx(x, t)−b(x, t)y(x, t) = f (x, t), (x, t)∈D,

(4.1a)
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y(x,0) = y0(x), x ∈Ω, (4.1b)

y(−1, t) = φl(t), on Γl, (4.1c)

y(1, t) = φr(t), on Γr, (4.1d)

where ε is a small parameter. The point x∈ (−1,1) at which a(x, t) vanishes is called a
turning point and the problem (4.1) is called a turning point problem. In this chapter,
we consider the case in which there is a unique x at which the coefficient of con-
vective term vanishes and it changes sign in the neighborhood of x. The location of
the boundary layer(s) or interior layer(s) depends upon the behavior of the functions
a(x, t) and b(x, t) near the turning point. All the functions involved in the problem
(4.1) are assumed to be bounded and sufficiently smooth. Furthermore, we consider
the following assumptions

A1 : a(0, t) = 0, ax(0, t)< 0, 0≤ t ≤ T. (4.2a)

A2 : |a(x, t)| ≥ α > 0, 0 < γ ≤ |x| ≤ 1, 0≤ t ≤ T (4.2b)

A3 : b(x, t)≥ β > 0, (x, t) ∈ D. (4.2c)

A4 : |ax(x, t)| ≥
|ax(0, t)|

2
, (x, t) ∈ D. (4.2d)

Assumptions A1 and A2 ensure the existence of twin boundary layers in the so-
lution of (4.1). The assumption A3 ensures that the operator Lε in (4.1a) satisfies the
maximum principle and the so called resonance phenomena [41] is excluded. Finally,
assumption A4 guarantees the uniqueness of the turning point. Furthermore, under the
assumptions (4.2), the SPTPBVP (4.1) has a unique solution exhibiting twin boundary
layers.

The remainder of the chapter is organized as follows. In Section 4.2, some a priori

estimates are given associated with the continuous problem (4.1). In Section 4.3,
the temporal semi-discretization on a uniform mesh by means of the Euler implicit
scheme is given and the global error estimate is obtained. In the same section, the
B spline functions on a piecewise-uniform mesh are used to discretize the system of
ODEs obtained in the temporal semi-discretization. The proposed method is shown as
parameter-uniform convergent in Section 4.4 followed by the numerical experiments
and the discussions on the results in Section 4.5. Finally, in the last section 4.6, some
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concluding remarks are drawn.

4.2 Some Analytical Results: A Priori Estimates

First, we show that the operator Lε satisfies the following lemma.

Lemma 4.2.1 (Minimum Principle). Let Φ ∈C2,1(D̄) be non-negative on Γ and LεΦ

is non-positive in D. Then, Φ is non-negative throughout D̄.

Proof. Our aim is to prove that Φ is non-negative in D. For contrary assume that the
minimum of Φ(x, t) is negative that occurs at (θ ,ζ )∈D. Then, it is easy to verify that
LεΦ(θ ,ζ )> 0 and thus we obtain the result.

Lemma 4.2.2 (Stability Estimate). The solution y(x, t) of (4.1) satisfies the following

parameter-uniform bound on D̄

‖y‖D̄ ≤ ‖y‖Γ +
‖ f‖D̄

β
.

Proof. The barrier functions Π±(x, t) = ‖y‖Γ +
‖ f‖D̄

β
± y(x, t) satisfy

Π
±(−1, t) = ‖y‖Γ +

‖ f‖D̄
β
± y(−1, t)≥ ‖y‖Γ± y(−1, t)≥ 0,

Π
±(1, t) = ‖y‖Γ +

‖ f‖D̄
β
± y(1, t)≥ ‖y‖Γ± y(1, t)≥ 0,

Π
±(x,0) = ‖y‖Γ +

‖ f‖D̄
β
± y(x,0)≥ ‖y‖Γ± y(x,0)≥ 0.

Also, at all (x, t) in D

LεΠ
±(x, t)=−b

[
‖y‖Γ +

‖ f‖D̄
β

]
±Lεy(x, t)≤−β‖y‖Γ−‖ f‖D̄± f ≤−‖ f‖D̄± f ≤ 0.

The proof is completed by using the minimum principle.

We split the interval Ω̄ as Ω̄ = Ω1∪Ω2∪Ω3, where Ω1 = [−1,−γ], Ω2 = [−γ,γ]

and Ω3 = [γ,1] and 0 < γ ≤ 1/2. The following theorem gives the bounds on the
mixed derivatives of the solution of (4.1) in the intervals which exclude the turning
point.
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Theorem 4.2.1. Suppose a(x, t), b(x, t), and f (x, t) are C2+r,1+r/2(D̄), 0 < r < 1
functions and the compatibility conditions are satisfied. Then for 0 ≤ l ≤ 3, 0 ≤
l +m≤ 3, we have

∣∣∣∣ ∂ l+my
∂xl∂ tm

∣∣∣∣≤


C

(
1+

e−
ξ (1+x)

ε

ε l

)
, x ∈Ω1,

C

(
1+

e−
ξ (1−x)

ε

ε l

)
, x ∈Ω3.

Here ξ and C are generic positive constants.

The following theorem shows that the mixed derivatives of the solution of problem
(4.1) near the turning point x = 0 (since b(0, t)/ax(0, t)< 0) are bounded.

Theorem 4.2.2. Under the assumptions of Theorem 4.2.1, we have∣∣∣∣ ∂ l+my
∂xl∂ tm

∣∣∣∣≤C, x ∈Ω2.

4.3 Numerical Scheme: The Discretization

4.3.1 Semi-discretization for time variable

In this section, the Euler implicit rule is used for time semi-discretization on the do-
main defined as:

Λ
M = {tk = kδ t : k = 0,1, . . . ,M, t0 = 0, tM = T},

Then the problem (4.1) on Ω×ΛM is discretized as:

−D−t Y k+1(x)+ε(Yxx)
k+1+ak+1(x)(Yx)

k+1−bk+1(x)Y k+1 = f k+1(x), 0≤ k≤M−1,

Y k+1(−1) = φl(tk+1), Y k+1(1) = φr(tk+1), 0≤ k ≤M−1,

Y k+1(x) = y0(x), x ∈Ω,
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where Y k+1(x) is the approximation of Y (x, tk+1). Now using D−t vk
i =

vk
i−vk−1

i
δ t , we

obtain
L̂εY k+1(x) = gk+1(x), x ∈Ω, 0≤ k ≤M−1,

Y k+1(−1) = φl(tk+1), Y k+1(1) = φr(tk+1), 0≤ k ≤M−1,

Y k+1(x) = y0(x), x ∈Ω,

(4.3)

where

gk+1(x) = f k+1(x)− Y k(x)
δ t

, dk+1(x) =−bk+1(x)− 1
δ t

,

and the operator L̂ε is defined as

L̂εY k+1(x)≡ ε(Yxx)
k+1(x)+ak+1(x)(Yx)

k+1(x)+dk+1(x)Y k+1(x).

Lemma 4.3.1 (Minimum Principle). Suppose that ϕk+1(−1) ≥ 0, ϕk+1(1) ≥ 0 and

L̂εϕk+1(x)≤ 0, ∀ x ∈Ω then ϕk+1(x)≥ 0, ∀ x ∈ Ω̄.

Proof. For contrary assume ϕk+1(s) = minx∈Ω ϕk+1(x)< 0. It can easily follows that
L̂εϕk+1(s)> 0, and thus the result is obtained.

The bound on the local truncation error ek+1 is given by the following lemma.

Lemma 4.3.2. The local error estimate in the temporal direction is given by

‖ek+1‖ ≤C(δ t)2.

Proof. For the proof, see [124].

The bound on the global error Ek which is the measure of the contribution of the
local error estimate at each time step is given by the following lemma.

Lemma 4.3.3. The global error estimate at tk is given by

‖Ek‖ ≤Cδ t, k ≤ T/δ t.
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Proof. We have

‖Ek‖=

∥∥∥∥∥ k

∑
i=1

ei

∥∥∥∥∥ , k ≤ T
δ t

≤ ‖e1‖+‖e2‖+ · · ·+‖ek‖

≤Ck(δ t)2

=C(δ t).

The following theorem estimates the bounds on the solution Y k+1(x) of (4.3) and
its derivatives.

Theorem 4.3.1. For l = 0,1,2,3 the solution Y k+1(x) of (4.3) and its derivatives

satisfy the following estimates

∣∣∣∣dlY k+1(x)
dxl

∣∣∣∣≤



C

(
1+

e−
ξ (1+x)

ε

ε l

)
, x ∈Ω1,

C, x ∈Ω2,

C

(
1+

e−
ξ (1−x)

ε

ε l

)
, x ∈Ω3,

where C and ξ are generic positive constants.

4.3.2 The spatial discretization

The system of ODEs (4.3) obtained in the previous section is further discretized to
obtain the fully discretized scheme on a piecewise-uniform mesh generated as fol-
lows: Divide the interval [−1,1] into three non-overlapping subintervals [−1,−1+κ],
(−1+κ,1−κ], and (1−κ,1], where κ is given by

κ = min
{

1
4
,κ0ε lnN

}
,
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where κ0 ≥ 1
α

is a constant and N = 2m (m ≥ 3). Then a fitted piecewise-uniform
mesh Ω̄N = {xl}N

l=0 is generated as

xl =


−1+ lhl, if l = 0,1, . . . , N

4 ,

(−1+κ)+
(
l− N

4

)
hl, if l = N

4 +1, . . . , 3N
4 ,

(1−κ)+
(
l− 3N

4

)
hl, if l = 3N

4 +1, . . . ,N,

with the mesh spacing

hl =



4κ

N , if l = 1,2, . . . , N
4 ,

4(1−κ)
N , if l = N

4 +1, . . . , 3N
4 ,

4κ

N if l = 3N
4 +1, . . . ,N.

Clearly, the mesh is uniform when κ = 1/4 otherwise it is dense in the boundary
layer region and coarse otherwise. The fitted piecewise-uniform mesh DN,M on D is
then defined as the tensor product DN,M = ΩN ×ΛM. In the proof of the ε-uniform
convergence, we need the following lemma.

Lemma 4.3.4. For a fixed mesh and for all positive integers k, we have

lim
ε→0

max
1≤l≤N−1

e−
ξ (1+xl )

ε

εk → 0.

Proof. For the proof the readers are referred to [125].

The interval [−1,1] is divided into the elements [xl,xl+1], l = 0, . . . ,N− 1 with
piecewise-uniform spacing defined in the previous section. The cubic B-splines Rl, l =

−1,0, . . . ,N + 1 at the nodes xl are defined to form a basis over the interval [−1,1]
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(see Ref. [126]) as follows

Rl(x)=
1
h3

l



(x− xl−2)
3, [xl−2,xl−1],

h3
l +3h2

l (x− xl−1)+3hl(x− xl−1)
2−3(x− xl−1)

3, [xl−1,xl],

h3
l +3h2

l (xl+1− x)+3hl(xl+1− x)2−3(xl+1− x)3, [xl,xl+1],

(xl+2− x)3, [xl+1,xl+2],

0, otherwise.

(4.4)

For simplicity we write ŷ(x) for Y k+1(x) (the solution at (k+ 1)-th time level). We
seek an approximation S(x) to ŷ(x) expressed as

S(x) =
N+1

∑
l=−1

βlRl(x), (4.5)

where βl are the parameters to be determined by the discretized form of the equation
and the boundary conditions. Two extra cubic splines R−1 and RN+1 are introduced
to satisfy the boundary conditions. The values of Rl(x), R′l(x) and R′′l (x) at the knots
calculated from (4.4) are given in the following Table.

x xl−1 xl xl+1 otherwise

Rl(x) 1 4 1 0

R′l(x) − 3
hl

0
3
hl

0

R′′l (x)
6
h2

l
−12

h2
l

6
h2

l
0

Using the approximation S(x) at the nodal points in (4.3), we get

q−l βl−1 +qc
l βl +q+l βl+1 = g̃l, 0≤ l ≤ N, (4.6a)

where

q−l =
6ε

h2
l
− 3

hl
ãl + d̃l,

qc
l =
−12ε

h2
l

+4d̃l,

q+l =
6ε

h2
l
+

3
hl

ãl + d̃l,
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and ãl = ak+1(xl), d̃l = dk+1(xl), g̃l = gk+1(xl). The given boundary conditions be-
come

β−1 +4β0 +β1 = φl(tk+1), (4.6b)

βN−1 +4βN +βN+1 = φr(tk+1). (4.6c)

Thus on eliminating β−1 and βN+1 from (4.6a)-(4.6c), we obtain the following (N +

1)× (N +1) linear system

AX = F,

where A is the tri-diagonal matrix given by

A=



−4q−0 +qc
0 −q−0 +q+0 0 . . . . . . . . . . . . 0

A1(x1) A2(x1) A3(x1) 0 0 . . . . . . 0
0 A1(x2) A2(x2) A3(x2) 0 . . . . . . 0
... . . . . . . . . . ...

...
...

...
. . . . . . . . . . . . 0 A1(xN−1) A2(xN−1) A3(xN−1)

0 . . . . . . . . . . . . 0 q−N −q+N qc
N−4q+N


.

The elements of A are given by

A1(xl) = q−l , 1≤ l ≤ N−1,

A2(xl) = qc
l , 1≤ l ≤ N−1,

A3(xl) = q+l , 1≤ l ≤ N−1.

The column vectors X and F are given as

X =


β0

β1
...

βN

 , F =



g̃0−φl(tk+1)q−0
g̃1

g̃2
...

g̃N−φr(tk+1)q+N


.
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4.4 Parameter Uniform Convergence Analysis

In this section, we will prove that the proposed method converges quadratically (up
to a logarithmic factor) and independent of ε in the spatial direction. The following
lemma which shows that the sum of absolute values of all spline functions are bounded
will be used in error analysis.

Lemma 4.4.1. The set {Rl(x)}N+1
l=−1 of B-splines satisfies

N+1

∑
l=−1
|Rl(x)| ≤ 10, x ∈ Ω̄.

Proof. Using the definition of cubic B-splines the proof is easy.

Theorem 4.4.1. Let S(x) be the approximation to ŷ(x) and g̃ ∈C2(Ω̄). Then

sup
0<ε≤1

max
0≤l≤N

|ŷ(xl)−S(xl)| ≤CN−2(lnN)3.

Proof. We estimate the error in [−1,0], similar estimates can be obtained in [0,1] by
using the similar approach. The unique spline interpolate UN(x) to the solution of
(4.3) is given by

UN(x) =
N+1

∑
l=−1

β̄lRl(x).

If g̃(x) ∈C2(Ω̄) then ŷ(x) ∈C4(Ω̄) and so the estimates given in [127] yields

‖(ŷ−UN)
( j)‖ ≤ λ j‖ŷ(4)‖h̄4− j, j = 0,1,2, (4.7)

where λ j are the constants. It helps us to estimate

|L̂ε ŷ(xl)− L̂εUN(xl)| ≤ ε|ŷ′′(xl)−U ′′N(xl)|+ |a(xl)||ŷ′(xl)−U ′N(xl)|

+ |d(xl)||ŷ(xl)−UN(xl)|

≤ (ελ2h̄2 +‖a‖λ1h̄3 +‖d‖λ0h̄4))|ŷ(4)(xl)|

≤C

ελ2h̄2 +‖a‖λ1h̄3 +‖d‖λ0h̄4

1+
e−

ξ (1+xl )
ε

ε4

 .

(4.8)
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Now depending on the magnitude of κ there arises the following two cases. In the
first case κ = 1/4, it is easy to get

|L̂ε ŷ(xl)− L̂εUN(xl)| ≤CN−2(lnN)3, 1≤ l ≤ N/2. (4.9)

On the other hand in the second case κ = κ0ε lnN, we have hl =
4κ

N for 1≤ l ≤ N/4
and hl =

4(1−κ)
N for N/4+ 1 ≤ l ≤ N/2. For N/4+ 1 ≤ l ≤ N/2 i.e., in the regular

region, using (4.3.1), we have immediately from (4.8)

|L̂ε ŷ(xl)− L̂εUN(xl)| ≤CN−2. (4.10)

Also, for 1≤ l ≤ N
4 , h̄ = 4τ/N = 4κ0εN−1 lnN, and so h̄/ε =CN−1 lnN. Then using

Lemma 4.3.4, we obtain

|L̂ε ŷ(xl)− L̂εUN(xl)| ≤CN−2(lnN)2. (4.11)

The inequality (4.10) together with (4.11) yields

|L̂ε ŷ(xl)− L̂εUN(xl)| ≤CN−2(lnN)2, 1≤ l ≤ N
2
. (4.12)

Therefore, on combining both cases, we obtain

|L̂εS(xl)− L̂εUN(xl)|= |g̃(xl)− L̂εUN(xl)| (4.13)

= |L̂ε ŷ(xl)− L̂εUN(xl)| ≤CN−2(lnN)3, 1≤ l ≤ N/2.
(4.14)

Now considering the linear system AX̄ = F̄ associated with L̂εUN(xl)= ḡ(xl), UN(x0)=

φl(tk+1), UN(xN) = φr(tk+1) yields

A(X− X̄) = F− F̄ , (4.15)

where

X− X̄ =


β0− β̄0

β1− β̄1
...

βN− β̄N

 , F− F̄ =


g̃(x0)− ḡ(x0)

g̃(x1)− ḡ(x1)
...

g̃(xN)− ḡ(xN)

 .
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Thus using (4.13), we obtain

‖F− F̄‖ ≤CN−2(lnN)3. (4.16)

It can be seen that for small hl , except the first and last row of A

|al,l|− (|al,l−1|+ |al,l+1|) =−6dl > 0.

Also, for the first and last row of A, we have

|a0,0|− |a0,1|=
36ε

h2
0
− 18a0

h0
,

and

|aN,N |− |aN,N−1|=
36ε

h2
N

+
6aN

hN
.

Therefore, from the estimate given in [128]

‖A−1‖ ≤C,

and thus (4.15) and (4.16) yield

‖X− X̄‖ ≤CN−2(lnN)3. (4.17)

Now it is easy to see from the boundary conditions (4.6b)-(4.6c)

|β−1− β̄−1| ≤CN−2(lnN)3, (4.18)

and

|βN+1− β̄N+1| ≤CN−2(lnN)3. (4.19)

Equations (4.17)-(4.19) together give

max
−1≤l≤N+1

|βl− β̄l| ≤CN−2(lnN)3.
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Thus, we are enable to estimate |S(x)−UN(x)| as

|S(x)−UN(x)| ≤ max
−1≤l≤N+1

|βl− β̄l|
N+1

∑
l=−1
|Rl(x)| ≤CN−2(lnN)3,

and so,

max
0≤l≤N

|S(xl)−UN(xl)| ≤CN−2(lnN)3.

Finally, the use of the triangle inequality yields

sup
0<ε≤1

max
0≤l≤N

|ŷ(xl)−S(xl)| ≤CN−2(lnN)3.

The following parameter-uniform convergence theorem is the consequence of the
Lemma 4.3.3 and Theorem 4.4.1

Theorem 4.4.2. Let S(xl) be the approximation to the solution ŷ(xl) of the problem

(4.1) at (k + 1)-th time level of the fully discretized scheme after the temporal dis-

cretization. Then,

|S(xl)− ŷ(xl)| ≤C(δ t +N−2(lnN)3), 0≤ l ≤ N.

4.5 Numerical Illustrations

Example 4.5.1. Consider the following test problem

−yt + εyxx− (t +1)xyx− (4+ t)y = e−tx(1− x), (x, t) ∈ D,

y(x,0) = 1, x ∈ Ω̄, y(−1, t) = y(1, t) = 1, t ∈ Λ̄ = [0,1].

Example 4.5.2. Consider the following test problem

−yt + εyxx− x(t2 +1)yx− (2+ t)y = 10t2e−tx(1− x), (x, t) ∈ D,

y(x,0) = 1+ x2, x ∈ Ω̄, y(−1, t) = y(1, t) = 2, t ∈ Λ̄ = [0,1].
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Since the analytical/exact solutions are unavailable so for a fixed ε , we compute

eN,M
ε = max

k

(
max

l
|S2N,2M(x2l, t2k)−SN,M(xl, tk)|

)
,

a variant of double mesh principle, to observe the accuracy (maximum absolute error)
of the proposed scheme. Here SN,M(xl, tk) and S2N,2M(x2l, t2k) are the numerical so-
lutions obtained on DN,M and D2N,2M respectively. The mesh DN,M is used to obtain
D2N,2M by using the interpolation. The computed order of convergence is estimated
as

pN,M
ε =

log(eN,M
ε )− log(e2N,2M

ε )

log2
.

The ε-uniform pointwise error pN,M is estimated by taking the maximum of eN,M
ε over

ε = 1,2−4,2−8, . . . ,2−32 i.e.,

eN,M = max
ε=1,2−4,2−8,...,2−32

eN,M
ε .

We also compute the parameter-uniform order of convergence pN,M as

pN,M =
log(eN,M)− log(e2N,2M)

log2
.
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Table 4.1: eN,M
ε ,eN,M, pN,M

ε and pN,M for Example 4.5.1.

N

ε 32 64 128 256 512 1024

20 1.55e-02 8.03e-03 4.09e-03 2.06e-03 1.04e-03 5.19e-04

0.95 0.97 0.99 0.99 1.00

2−4 2.86e-02 5.95e-03 2.95e-03 1.49e-03 7.48e-04 3.75e-04

2.26 1.01 0.99 0.99 1.00

2−8 4.74e-01 1.21e-01 4.12e-02 1.13e-02 3.50e-03 1.07e-03

1.97 1.55 1.87 1.69 1.71

2−12 2.74e-01 1.20e-01 4.10e-02 1.12e-02 3.50e-03 1.07e-03

1.19 1.55 1.87 1.68 1.71

2−16 2.70e-01 1.19e-01 4.09e-02 1.12e-02 3.50e-03 1.07e-03

1.18 1.54 1.87 1.68 1.71

2−20 2.84e-01 1.19e-01 4.09e-02 1.12e-02 3.50e-03 1.07e-03

1.25 1.54 1.87 1.68 1.71
...

...
...

...
...

...

2−32 2.85e-01 1.19e-01 4.09e-02 1.12e-02 3.51e-03 1.07e-03

1.26 1.54 1.87 1.67 1.71

eN,M 4.74e-01 1.21e-01 4.12e-02 1.13e-02 3.50e-03 1.07e-03

pN,M 1.97 1.55 1.87 1.69 1.71
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(a) (b)

(c) (d)

Figure 4.1: Numerical solution profiles for Example 4.5.1 (a) ε = 1 (b) ε = 2−4 (c)
ε = 2−8 and (d) ε = 2−12.
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Figure 4.2: Numerical solution profiles for Example 4.5.1 for different time levels (a)
ε = 1 (b) ε = 0.1 (c) ε = 0.01 and (d) ε = 0.001.
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Table 4.2: eN,M
ε ,eN,M, pN,M

ε and pN,M for Example 4.5.2.

N

ε 32 64 128 256 512 1024

20 2.44e-02 1.23e-02 6.84e-03 4.21e-03 2.69e-03 1.77e-03

0.99 0.85 0.70 0.65 0.60

2−4 5.49e-02 1.63e-02 8.21e-03 4.12e-03 2.06e-03 1.03e-03

1.75 0.99 0.99 1.00 1.00

2−8 9.55e-01 2.46e-01 8.40e-02 2.31e-02 7.23e-03 2.22e-03

1.97 1.55 1.86 1.67 1.70

2−12 5.42e-01 2.46e-01 8.44e-02 2.33e-02 7.43e-03 2.69e-03

1.14 1.54 1.86 1.65 1.47

2−16 5.61e-01 2.46e-01 8.45e-02 2.33e-02 7.44e-03 2.95e-03

1.19 1.54 1.86 1.65 1.33

2−20 5.90e-01 2.46e-01 8.45e-02 2.33e-02 7.44e-03 2.97e-03

1.26 1.54 1.86 1.65 1.32
...

...
...

...
...

...

2−32 5.92e-01 2.46e-01 8.45e-02 2.33e-02 7.44e-03 2.97e-03

1.27 1.54 1.86 1.65 1.32

eN,M 9.55e-01 2.46e-01 8.45e-02 2.33e-02 7.44e-03 2.97e-03

pN,M 1.96 1.54 1.86 1.65 1.32
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(a) (b)

(c) (d)

Figure 4.3: Numerical solution profiles for Example 4.5.2 (a) ε = 1 (b) ε = 2−4 (c)
ε = 2−8 and (d) ε = 2−12.
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Figure 4.4: Numerical solution profiles for Example 4.5.2 for different time levels (a)
ε = 1 (b) ε = 0.1 (c) ε = 0.01 and (d) ε = 0.001.

The numerical results presented in the Tables 4.1 and 4.2 clearly indicate that the
convergence is independent of ε and is in a very good agreement with the bounds
given in Theorem 4.4.2. All the results presented in Tables 4.1 and 4.2 are obtained
by taking κ0 = 4 and δ t = 1/N. Also, all the graphs have been plotted by taking
δ t = 1/N = 2−8. To observe the change in the boundary layer width with respect
to the parameter and to show the physical phenomenon of the solution, the surface
plots (refer Figs. 4.1 and 4.3) have been presented. These figures clearly indicate that
the solution of the test problems exhibit twin boundary layers at x = −1 and x = 1
for small ε close to zero, and the boundary layer width decreases as the parameter
decreases. To see the solution at some individual time steps, the solution behavior for
different time levels are plotted in Figs. 4.2 and 4.4 respectively.
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4.6 Conclusion

Due to the presence of the boundary/interior layers in their solutions the SPTPBVPs
especially for PDEs are difficult to solve using standard/classical methods. Usually,
when seeking for the numerical solutions of such problems (layer problems), layer
adapted meshes i.e., the meshes which are fine in the layer region and coarse oth-
erwise should be used. These meshes, especially when time is involved, make the
computation more complex with regards to the convergence analysis. In this chapter,
we have designed and analysed a collocation method on a fitted-mesh for the solu-
tion of a class of time dependent SPTPBVPs whose solution exhibits twin boundary
layers. We established sharp bounds (without proof) on the solution and its deriva-
tives which were used to prove the ε-uniform convergence of the proposed scheme.
Two test problems are encountered to confirm the order of ε-uniform convergence
numerically which is proved theoretically in Theorem 4.4.2.


