
Chapter 5

A parameter uniform numerical method for class
of singularly perturbed parabolic partial dif-
ferential equations with multiple boundary turn-
ing point

5.1 Introduction

A numerical scheme for singularly perturbed parabolic boundary value problems in-
cluding multiple boundary turning points at left endpoint of the spatial direction is de-
veloped. The highest order derivative of these problems is multiplied by ε(0 < ε� 1)
and for small ε close to zero, the solution of these problems exhibits a boundary layer
of parabolic type near the left lateral surface of the domain of consideration. Thus,
the large oscillations appear when the problem is solved by classical/standard nu-
merical methods and the expected accuracy cannot be achieved i.e., the accuracy of
the methods depend continuously on ε . In this chapter, an attempt has been made
to resolve this difficulty by suggesting the Crank-Nicolson scheme on a uniform
mesh in the temporal direction and an upwind scheme on a piecewise-uniform mesh
(Shishkin-type mesh) in the spatial direction. Sharper bounds (which are used in the
parameter uniform convergence analysis) on the smooth and singular components and
their derivatives are established. Through a rigorous analysis theoretical results are
proved which show that the method converges irrespective of the size of ε and is of
O((∆t)2 +N−1 lnN). Two test examples are encountered to verify the computational
results with the theoretical results.

Let Ω = (0,1), Λ = (0,T ], D = Ω ×Λ , with boundary Γ = Γl ∪Γb ∪Γr, where
Γl = {(0, t) | 0≤ t ≤ T}, Γb = {(x,0) | 0≤ x≤ 1} and Γr = {(1, t) | 0≤ t ≤ T} are the
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left, bottom and the right boundaries of D . In this chapter, we consider the following
problem

Lψ(x, t)≡−ψt + εψxx +a(x, t)ψx−b(x, t)ψ = f (x, t), (x, t) ∈D , (5.1a)

ψ(x,0) = ψb(x), x ∈Ω , (5.1b)

ψ(0, t) = ψl(t) on Γl, (5.1c)

ψ(1, t) = ψr(t) on Γr, (5.1d)

where 0 < ε � 1 is diffusion parameter. The following assumptions are made which
ensure that the problem (5.1) has a unique solution.

• The functions a(x, t), b(x, t), f (x, t) in D and ψl(t), ψr(t), ψb(x) on Γ are
smooth enough and bounded.

• a(x, t) = a∗(x, t)xp, p≥ 1 where a∗(x, t) is smooth and satisfies a∗(x, t)≤ α <

0, (x, t) ∈D .

• b(x, t)≥ β > 0, (x, t) ∈D .

• The initial function satisfies the compatibility conditions.

The layer behavior of the SPBVPs is characterized in different categories by the
sign of a(x, t). If a(x, t) is positive throughout D , a regular/exponential boundary layer
appears near the left lateral surface of the domain while if a(x, t) is negative through-
out D , a regular/exponential boundary layer appear near the right lateral surface of
the domain. On the other hand for a(x, t) identically zero throughout D , there are
parabolic boundary layers at both ends. Although in our problem, the form of a(x, t)

is different from the above cases but a parabolic boundary layer appears in the solution
near the left lateral surface Γl . The boundary layer behavior of the SPBVPs leads to
the failure of the classical/standard numerical methods unless an unacceptably large
number of mesh elements is used, which is practically too tedious. Therefore, we
require a method, probably on a non-uniform mesh, which is convergent irrespective
of the size of ε in some discrete norm.

The summary of the chapter is as follows. Some a priori estimates are established
in Section 5.2. In particular, the bounds on the derivatives of the solution and the
minimum principle are established. Furthermore, the sharper bounds on the smooth
and singular components and their derivatives are also given. The temporal semi-
discretization and the local, as well as global error estimates in the temporal direction,
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are obtained in Section 5.3. Furthermore, the discretization of the system of ODEs
obtained in the temporal semi-discretization by using a finite difference scheme on a
Shishkin-type mesh is also constructed in this section. The main result of the con-
vergence is proved in Section 5.4 followed by some numerical experiments and the
discussion on the results in Section 5.5. Finally, in the end, some concluding remarks
and the future scope is included in the last Section 5.6.

5.2 Continuous Problem

In this section, we establish some a priori results like minimum principle, stability
estimate, bounds estimates on the derivatives, etc. The proof of the following mini-
mum principle is straightforward and can be proved by following the approach given
in [129].

Lemma 5.2.1. Let Φ ∈C2,1(D) be non-negative on Γ and LΦ is non-positive in the

interior of D . Then, Φ is non-negative throughout D .

The stability lemma given below can also be proved in a classical way.

Lemma 5.2.2. The ε-uniform bound on the solution ψ(x, t) of (5.1) is given by

‖ψ‖D ≤ ‖ψ‖Γ +
‖ f‖D

β
.

Proof. For the proof, one can see Chapter 4.

The proof of the next theorem is based on the following lemmas and the assump-
tion that the function a(x, t) in (5.1) is independent of t, i.e., a = a(x).

Lemma 5.2.3. (Bobisud [130]). The solution ψ(x, t) of (5.1) can be written as ψ(x, t)=

v1(x, t) + εv2(x, t) + p(x, t), where v1 and v2 satisfy parabolic equations similar to

(5.1) with zero initial-boundary conditions and p is independent of ε .

In the following lemma, we may assume without loss of generality that the initial-
boundary conditions are identically zero.

Lemma 5.2.4. If a(x, t) = a(x), then the solution ψ(x, t) of (5.1) satisfies∥∥∥∥∂ jψ

∂ t j

∥∥∥∥
D

≤C, j = 1,2.
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Proof. On the left (x= 0) and right (x= 1) sides of D , we have ψ ≡ 0 and thus ψt ≡ 0.
On the bottom side (t = 0), we have y≡ 0 and so ψx≡ψxx≡ 0 which from (5.1) yields

ψt(x,0) =− f (x,0), 0≤ x≤ 1.

Thus ψt is bounded on Γ. Now for (x, t) ∈D , we have

Lψt = εψtxx +aψtx−bψt−ψtt

= (εψxx +aψx−bψ−ψt)t +btψ

= ft +btψ,

so |Lψt | ≤C. Hence, by using minimum principle we have |ψt | ≤C, ∀(x, t)∈D . The
second derivative bound of ψ with respect to t can be estimated in the same way.

Lemma 5.2.5. The solution ψ(x, t) of the problem (5.1) and its derivatives with re-

spect to x satisfy the following bounds∥∥∥∥∂ iψ

∂xi

∥∥∥∥
D

≤C
(

1+ ε
−i/2e−x

√
β/ε

)
, 1≤ i≤ 4.

Proof. Fix a fixed t ∈ [0,T ], the result can be obtained by applying the argument of
Kellog and Tsan [116] (Lemmas 2.2 and 2.3) on the line segment {(x, t) : 0 ≤ x ≤
1}.

The following theorem can be proved by combining the results of Lemmas 5.2.4
and 5.2.5.

Theorem 5.2.1. The mixed derivatives of the solution ψ(x, t) of (5.1) satisfy the fol-

lowing bounds∥∥∥∥∂ i+ jψ

∂xi∂ t j

∥∥∥∥
D

≤C
(

1+ ε
−i/2e−x

√
β/ε

)
, 0≤ i+3 j ≤ 4.

5.3 Description of the Numerical Scheme

To discretize the problem in the temporal direction, we divide the interval [0,T ] in
M equally distributed parts each of width ∆t = T/M. Thus the mesh in the temporal
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direction is

Λ
M = {t j = j∆t : j = 0,1, . . . ,M}.

Then on Ω ×Λ M, problem (5.1) is discretized as follows

−D−t u j+1(x)+ ε(uxx)
j+1/2 +a j+1/2(x)(ux)

j+1/2−b j+1/2(x)u j+1/2 = f j+1/2(x),

x ∈Ω , 0≤ j ≤M−1,

u j+1(0) = ψl(t j+1), u j+1(1) = ψr(t j+1), 0≤ j ≤M−1,

u0(x) = ψb(x), x ∈Ω ,

where u j+1(x) is the approximation of ψ(x, t j+1), D−t z j(x)= z j(x)−z j−1(x)
∆t and z j+1/2(x)=

z j+1(x)+z j(x)
2 , etc. Rewrite the above equation as

L̂u j+1(x) = g(x, t j+1), x ∈Ω , 0≤ j ≤M−1,

u j+1(0) = ψl(t j+1), u j+1(1) = ψr(t j+1), 0≤ j ≤M−1,

u0(x) = ψb(x), x ∈Ω ,

(5.2)

where

L̂≡ ε

2
d2

dx2 +
a j+1/2(x)

2
d
dx
− c j+1/2(x)

2
I,

g(x, t j+1) = f j+1/2(x)− ε

2
(uxx)

j(x)− a j+1/2(x)
2

(ux)
j(x)+

d j+1/2(x)
2

u j(x),

d j+1/2(x) = b j+1/2(x)− 2
∆t

, c j+1/2(x) = b j+1/2(x)+
2
∆t

.

Lemma 5.3.1. If Φ j+1(0) and Φ j+1(1) are non-negative and L̂Φ j+1 ≤ 0 on Ω , then

Φ j+1(x)≥ 0 on Ω .

Proof. Suppose there exists s ∈ Ω , such that Φ j+1(s) = minx∈Ω Φ j+1(x) < 0. It fol-
lows that (Φ j+1)′(s) = 0 and (Φ j+1)′′(s)≥ 0. Then, we have

L̂Φ
j+1(s) =

ε

2
(Φ j+1)′′(s)+

a j+1/2(s)
2

(Φ j+1)′(s)− c j+1/2(s)
2

Φ
j+1(s)> 0,
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as c j+1/2(s) = b j+1/2(s)+ 2
∆t ≥ β + 2

∆t > 0. Thus, the proof is completed by contra-
diction.

The local truncation error e j+1 of the temporal semi-discretization defined as
e j+1 = u j+1(x)− ũ(x), where ũ(x) is the computed solution of (5.2) satisfies the fol-
lowing estimate

Lemma 5.3.2. The local truncation error estimate is given by

‖e j+1‖ ≤C(∆t)3, j = 0,1, . . . ,M−1.

Proof. Using Taylor theorem, we have

ψ(x, t j+1) = ψ(x, t j+1/2)+
∆t
2

ψt(x, t j+1/2)+
(∆t)2

8
ψtt(x, t j+1/2)+O((∆t)3),

ψ(x, t j) = ψ(x, t j+1/2)−
∆t
2

ψt(x, t j+1/2)+
(∆t)2

8
ψtt(x, t j+1/2)+O((∆t)3).

On subtracting, it gives

ψ(x, t j+1)−ψ(x, t j)

∆t
= ψt

(
x, t j +

∆t
2

)
+O((∆t)2)

= εψxx(x, t j+1/2)+a(x, t j+1/2)ψx(x, t j+1/2)

−b(x, t j+1/2)ψ(x, t j+1/2)− f (x, t j+1/2)+O((∆t)2),

where a(x, t j+1/2) =
a(x,t j+1)+a(x,t j)

2 , etc. So, we can see that the local error is the
solution of

L̂e j+1 = O((∆t)3),

e j+1(0) = e j+1(1) = 0.

Hence, by using the minimum principle we get the required result.

Furthermore, the following estimate for the global error E j of the time semi-
discretization can be proved by contributing to the local truncation errors and an ap-
plication of Lemma 5.3.2.

Theorem 5.3.1. The global error estimate satisfies

‖E j‖ ≤C(∆t)2, 0≤ j ≤M.
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The following estimates on u j+1(x) and its derivatives can be proved by following
the technique given in [116].

Theorem 5.3.2.∣∣∣∣ dk

dxk u j+1(x)
∣∣∣∣≤C(1+ ε

−k/2 exp(−x
√

β/ε)), k = 0,1,2,3.

We further decompose the solution u j+1(x) as

u j+1(x) = ψ
r(x, t j+1)+ψ

s(x, t j+1), x ∈Ω ,

where the regular and singular components ψr(x, t j+1) and ψs(x, t j+1) satisfy the fol-
lowing estimates.

Theorem 5.3.3.∣∣∣∣∣dkψr(x, t j+1)

dxk

∣∣∣∣∣≤C(1+ ε
(1−k)/2), k = 0,1,2,∣∣∣∣∣dkψs(x, t j+1)

dxk

∣∣∣∣∣≤Cε
−k/2 exp(−x

√
β/ε), k = 0,1,2,3.

The appearance of the boundary layer suggests us to increase the density of the
points in the neighborhood of the layer region. This type of mesh can be constructed
by taking Ω = Ω1∪Ω2, where Ω1 = [0,τ], Ω2 = (τ,1], and the transition parameter
τ is given by

τ = min{1/2,τ∗
√

ε lnN}.

Here N ≥ 2 is the mesh intervals used and τ∗ is a constant that depends on b(x, t) and
should be chosen as τ∗ ≥ 1√

β
. Clearly the mesh Ω N = {xi}N

i=0 generated in this way

is dense in the layer region and is given by

xi =

2τ

N i, i = 0,1, . . . ,N/2,

τ + 2(1−τ)
N

(
i− N

2

)
, i = N/2+1, . . . ,N,

and the mesh spacing is given by

hi = xi− xi−1 =

{
2τ

N , i = 1,2, . . . ,N/2,
2(1−τ)

N , i = N/2+1, . . . ,N.



116 Chapter 5. An ε-uniform method for the boundary turning point problems

Thus DN,M = Ω N ×Λ M is our fully discretized mesh and Γ N,M = D
N,M ∩Γ is the

boundary of the mesh. Introducing the operators

D−x µ
j

i =
µ

j
i −µ

j
i−1

hi
, D+

x µ
j

i =
µ

j
i+1−µ

j
i

hi+1
, δ

2
x µ

j
i =

(D+
x −D−x )µ

j
i

i
,

where i =
hi+hi+1

2 and the notation µ
j

i− 1
2
=

µ
j

i−1+µ
j

i
2 , the full discretization of (5.2) on

DN,M is given byL Nψ̃(xi) = g̃(xi− 1
2
), xi ∈Ω N ,

ψ̃(x0) = ψl(t j+1), ψ̃(xN) = ψr(t j+1), 0≤ j ≤M−1,
(5.3)

where ψ̃(xi)≈ u j+1(xi) and

g̃(xi− 1
2
) = f j+1/2(xi− 1

2
)− ε

2
δ

2
x u j(xi)−

a j+1/2(xi− 1
2
)

2
D−u j(xi)+

d j+1/2(xi− 1
2
)

2
u j(xi).

The midpoint upwind operator L N is given by

L N
ψ̃ :≡ ε

2
δ

2
x ψ̃ +

a j+1/2(xi− 1
2
)

2
D−ψ̃−

c j+1/2(xi− 1
2
)

2
ψ̃.

5.4 Parameter Uniform Convergence Analysis

The main theorem on the convergence is proved in this section. First, we prove the
lemmas which will be used in the proof of the main result.

Lemma 5.4.1. Assume that Φ̃(x0)≥ 0,Φ̃(xN)≥ 0 and L NΦ̃(xi)≤ 0 for all xi ∈Ω N

then Φ̃(xi)≥ 0 for all xi ∈Ω N .
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Proof. Suppose Φ̃(ξi) = minxi∈Ω N Φ̃(ξi)< 0 for some ξi ∈Ω N . Then, we have

L N
Φ̃(ξi) =

ε

2
δ

2
x Φ̃(ξi)+

a j+1/2(ξi− 1
2
)

2
D−Φ̃(ξi)−

c j+1/2(ξi− 1
2
)

2
Φ̃(ξi)

=
ε

2i

(
Φ̃(ξi+1)− Φ̃(ξi)

hi+1
− Φ̃(ξi)− Φ̃(ξi−1)

hi

)

+
a j+1/2(ξi− 1

2
)

2

(
Φ̃(ξi)− Φ̃(ξi−1)

hi

)
−

c j+1/2(ξi− 1
2
)

2
Φ̃(ξi)> 0.

Hence the proof is completed by contradiction.

Lemma 5.4.2. Let the function Φ̃(xi) vanishes at both end points of Ω N . Then

|Φ̃(xi)| ≤ max
xi∈Ω N

|L N
Φ̃(xi)|, xi ∈Ω

N .

Proof. For the barrier functions Ψ±(xi) = maxxi∈Ω N |L NΦ̃(xi)|± Φ̃(xi), we have

Ψ
±(x0) = max

xi∈Ω N
|L N

Φ̃(xi)|± Φ̃(x0) = max
xi∈Ω N

|L N
Φ̃(xi)| ≥ 0,

Ψ
±(xN) = max

xi∈Ω N
|L N

Φ̃(xi)|± Φ̃(xN) = max
xi∈Ω N

|L N
Φ̃(xi)| ≥ 0.

Also,

L N
Ψ
±(xi) = L N

[
max

xi∈Ω N
|L N

Φ̃(xi)|± Φ̃(xi)

]
=−

c j+1/2(xi−1/2)

2
max

xi∈Ω N
|L N

Φ̃(xi)|±L N
Φ̃(xi)

=−1
2

(
b j+1/2(xi−1/2)+

2
∆t

)
max

xi∈Ω N
|L N

Φ̃(xi)|±L N
Φ̃(xi)

≤
(
−β

2
− 1

∆t

)
max

xi∈Ω N
|L N

Φ̃(xi)|±L N
Φ̃(xi)

≤−|L N
Φ̃(xi)|±L N

Φ̃(xi)

≤ 0.

The proof is completed by applying Lemma 5.4.1.
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Theorem 5.4.1. The error estimate at ( j+1)-th time level is given by

|ψ(xi, t j+1)− ψ̃i| ≤CN−1 lnN, i = 0,1, . . . ,N.

Proof. We’ll prove the result by decomposing the solution ψ̃i as

ψ̃i = ψ̃
r
i + ψ̃

s
i ,

where ψ̃r
i and ψ̃s

i satisfy the following inhomogeneous and homogeneous problems
respectively

L N
ψ̃

r
i = g̃(xi−1/2) in DN,M, ψ̃

r
i = ψ

r(xi, t j+1) on Γ
N,M,

L N
ψ̃

s
i = 0 in DN,M, ψ̃

s
i = ψ

s(xi, t j+1) on Γ
N,M.

The nodal error is given by

νi, j+1 = ψ(xi, t j+1)− ψ̃i = (ψr(xi, t j+1)− ψ̃
r
i )+(ψs(xi, t j+1)− ψ̃

s
i ).

To estimate the error in ψ̃i, we’ll estimate the errors in ψ̃r
i and ψ̃s

i separately. From
the differential equation and the result given in [123], we obtain

|L N(ψr(xi, t j+1)− ψ̃
r
i )| ≤Cε(xi+1− xi−1)|ψr(xi, t j+1)|3, 0≤ i≤ N.

The value of |ψr(xi, t j+1)|3 can be estimated by using Theorem 5.3.3 and the fact
xi+1− xi−1 ≤ 2N−1, to obtain

|L N(ψr(xi, t j+1)− ψ̃
r
i )| ≤CN−1, 0≤ i≤ N.

An application of Lemma 5.4.2 gives the following estimate

|ψr(xi, t j+1)− ψ̃
r
i | ≤CN−1, 0≤ i≤ N. (5.4)

The error in the singular component is obtained by considering τ = 1/2 and τ =

τ∗
√

ε lnN separately. In the former case the mesh is uniform and τ∗
√

ε lnN ≥ 1
2 .

Then, using the classical argument, we obtain

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤Cε(xi+1− xi−1)|ψs(xi, t j+1)|3.
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Again the application of Theorem 5.3.3 and the fact xi+1− xi−1 = 2N−1, gives

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤CN−1

ε
−1/2,

which gives

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤CN−1 lnN.

A use of Lemma 5.4.2 yields

|ψs(xi, t j+1)− ψ̃
s
i | ≤CN−1 lnN. (5.5)

In the latter case depending on the mesh spacing, a different argument is used to
obtain an estimate on |ψs(xi, t j+1)− ψ̃s

i |. For xi in the subinterval [0,τ) the classical
argument as used above gives

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤Cε(xi+1− xi−1)|ψs(xi, t j+1)|3, 0≤ i≤ N

2
.

Since the mesh width is 2τ

N and |ψs(xi, t j+1)|3 ≤Cε−3/2, therefore

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤CN−1 τ√

ε
≤CN−1 lnN, 0≤ i≤ N

2
, as τ = τ

∗√
ε lnN.

(5.6)

On the other hand for xi ∈ [τ,1], we have

|L N(ψs(xi, t j+1)− ψ̃
s
i )|=Cε

(
δ

2− d2

dx2

)
ψ

s(xi, t j+1),
N
2
+1≤ i≤ N.

But |δ 2ψs(xi, t j+1)| ≤maxx∈[xi−1,xi+1] |(ψ
s)′′(xi, t j+1)|, and so

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤Cε max

x∈[xi−1,xi+1]
|(ψs)′′(xi, t j+1)|,

N
2
+1≤ i≤ N.

Using the estimates

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤C

e−
√

β (xi−1)/
√

ε , if xi ≤ 1
2 ,

e−
√

β (1−xi)/
√

ε , if xi ≥ 1
2 ,
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Now for xi ≤ 1/2, xi = τ or xi > τ . If xi > τ then xi−1 ≥ τ and so

e−
√

β (xi−1)/
√

ε ≤ e−
√

βτ/
√

ε = N−1.

Since xi−1 = τ− 2τ

N for xi = τ , so

e−
√

β (xi−1)/
√

ε = e−
√

β(τ− 2τ

N )/
√

ε

= e− lnN . e2N−1 lnN

= N−1
(

N1/N
)2
≤CN−1.

It follows that

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤CN−1,

N
2
+1≤ i≤ N. (5.7)

The same result is obtained for the case of xi ≥ 1/2. Combining (5.6) and (5.7) gives

|L N(ψs(xi, t j+1)− ψ̃
s
i )| ≤CN−1 lnN, 0≤ i≤ N.

Thus the discrete minimum principle gives

|ψs(xi, t j+1)− ψ̃
s
i | ≤CN−1 lnN, 0≤ i≤ N. (5.8)

The inequalities (5.4), (5.8) and the triangle inequality, give the required result.

Theorem 5.4.2 (Main Result). The solution ψ̃i of the fully discretized scheme (5.3)

converges uniformly to the solution ψ(x, t) of (5.1) and the error estimate is given by

|ψ(xi, t j)− ψ̃i| ≤C((∆t)2 +N−1 lnN), i = 0,1, . . . ,N, j = 0,1, . . . ,M.

Proof. The proof immediately follows from Theorem 5.3.1 and Theorem 5.4.1.

5.5 Numerical Illustrations

To verify the theoretical results computational results for two test problems are pre-
sented in the form of tables and graphs. To measure the accuracy of the method, for
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each ε , the maximum absolute error is obtained as

eN,M
ε = max

j

(
max

i
|ψ̃2N,2M

2i − ψ̃
N,M
i |

)
,

where ψ̃
N,M
i and ψ̃

2N,2M
2i are the numerical solutions obtained at j-th level on DN,M

and D2N,2M respectively. Note that the values of τ defined in Section 3 are different
when we take N and 2N partitions in the spatial direction which results in the mis-
matching at the nodal points. Thus the comparison of the solutions using the double
mesh principle will not work. To fix this issue, the mesh D2N,2M is obtained by the
mesh DN,M by inserting a new nodal point between two consecutive points (using the
collocation method). The ε-uniform point-wise error given below is calculated over
some range of ε

eN,M = max
ε=1,2−4,2−8,...,2−32

eN,M
ε .

Furthermore, the order of convergence qN,M
ε and the ε-uniform order of convergence

qN,M are computed as

qN,M
ε = log2

(
eN,M

ε

e2N,2M
ε

)
, and qN,M = log2

(
eN,M

e2N,2M

)
.

The following two test problems are encountered.

Example 5.5.1. First we consider

−∂ψ(x, t)
∂ t

+ ε
∂ 2ψ(x, t)

∂x2 − xp ∂ψ(x, t)
∂x

−ψ(x, t) = x2−1, (x, t) ∈D ,

ψ(x,0) = 0, 0≤ x≤ 1, ψ(0, t) = t, ψ(1, t) = 0, 0≤ t ≤ 1.

Example 5.5.2. Now we consider

−∂ψ(x, t)
∂ t

+ ε
∂ 2ψ(x, t)

∂x2 − (2− x2)xp ∂ψ(x, t)
∂x

− (1+ x)ψ(x, t)

= 10t2e−tx(x−1), (x, t) ∈D ,

ψ(x,0) = 1− x, 0≤ x≤ 1, ψ(0, t) = 1+ t2, ψ(1, t) = 0, 0≤ t ≤ 1.
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Table 5.1: eN,M
ε , eN,M, qN,M

ε and qN,M for Example 5.5.1 for p = 1.

ε ↓ N→ 32 64 128 256 512 1024

20 5.16e-04 2.69e-04 1.38e-04 6.95e-05 3.49e-05 1.75e-05

0.94 0.96 0.99 0.99 0.99

2−4 6.42e-03 2.56e-03 9.98e-04 4.09e-04 1.79e-04 6.20e-05

1.33 1.36 1.29 1.19 1.53

2−8 1.22e-02 5.68e-03 2.70e-03 1.31e-03 6.73e-04 3.41e-04

1.10 1.07 1.04 0.96 0.98

2−12 1.24e-02 5.98e-03 2.92e-03 1.58e-03 8.37e-04 4.36e-04

1.05 1.03 0.89 0.92 0.94

2−16 1.24e-02 5.99e-03 2.94e-03 1.60e-03 8.56e-04 4.49e-04

1.05 1.03 0.88 0.90 0.93

2−20 1.24e-02 5.99e-03 2.94e-03 1.60e-03 8.57e-04 4.50e-04

1.05 1.03 0.88 0.90 0.93
...

...
...

...
...

...

2−32 1.24e-02 5.99e-03 2.94e-03 1.60e-03 8.57e-04 4.50e-04

1.05 1.03 0.88 0.90 0.93

eN,M 1.24e-02 5.99e-03 2.94e-03 1.60e-03 8.57e-04 4.50e-04

qN,M 1.05 1.03 0.88 0.90 0.93
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Table 5.2: eN,M
ε and qN,M

ε for Example 5.5.1 for ε = 2−10 and different values of p.

p ↓ N→ 32 64 128 256 512 1024

2 1.11e-02 5.56e-03 3.07e-03 1.69e-03 8.96e-04 4.64e-04

1.00 0.86 0.86 0.92 0.95

4 1.11e-02 5.59e-03 3.26e-03 1.81e-03 9.60e-04 4.97e-04

0.99 0.78 0.85 0.91 0.95

6 1.11e-02 5.86e-03 3.30e-03 1.81e-03 9.53e-04 4.92e-04

0.92 0.83 0.87 0.93 0.95

8 1.11e-02 5.91e-03 3.29e-03 1.77e-03 9.29e-04 4.77e-04

0.91 0.85 0.89 0.93 0.96

10 1.13e-02 6.01e-03 3.23e-03 1.73e-03 9.00e-04 4.60e-04

0.91 0.89 0.90 0.94 0.97
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(a) (b)

(c) (d)

Figure 5.1: Numerical solution profiles for Example 5.5.1 for (a) ε = 1, p = 1 (b) ε =
2−6, p = 3 (c) ε = 2−12, p = 5 and (d) ε = 2−18, p = 7.
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Figure 5.2: Numerical solution profiles for p = 2 at different time levels for Example
5.5.1 for (a) ε = 1 (b) ε = 0.1 (c) ε = 0.01 and (d) ε = 0.001.
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Table 5.3: eN,M
ε , eN,M, qN,M

ε and qN,M for Example 5.5.2 for p = 1.

ε ↓ N→ 32 64 128 256 512 1024

20 2.16e-03 1.03e-03 4.94e-04 2.44e-04 1.21e-04 6.00e-05

1.07 1.06 1.02 1.01 1.01

2−4 5.48e-03 3.54e-03 1.80e-03 9.06e-04 4.55e-04 2.28e-04

0.63 0.97 0.99 0.99 1.00

2−8 5.13e-02 2.43e-02 1.14e-02 5.19e-03 2.33e-03 1.02e-03

1.08 1.09 1.13 1.15 1.19

2−12 7.45e-02 3.76e-02 1.80e-02 8.82e-03 4.41e-03 2.21e-03

0.99 1.06 1.03 1.00 1.00

2−16 7.78e-02 4.16e-02 2.12e-02 1.02e-02 4.69e-03 2.26e-03

0.90 0.97 1.05 1.12 1.05

2−20 7.81e-02 4.20e-02 2.18e-02 1.11e-02 5.47e-03 2.58e-03

0.89 0.95 0.97 1.02 1.08
...

...
...

...
...

...

2−32 7.81e-02 4.21e-02 2.19e-02 1.12e-02 5.63e-03 2.83e-03

0.89 0.94 0.97 0.99 0.99

eN,M 7.81e-02 4.21e-02 2.19e-02 1.12e-02 5.63e-03 2.83e-03

qN,M 0.89 0.94 0.97 0.99 0.99
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Table 5.4: eN,M
ε and qN,M

ε for Example 5.5.2 for ε = 2−10 and different values of p.

p ↓ N→ 32 64 128 256 512 1024

2 5.44e-02 2.75e-02 1.42e-02 7.26e-03 3.64e-03 1.81e-03

0.98 0.95 0.97 1.00 1.00

4 5.34e-02 2.72e-02 1.42e-02 7.23e-03 3.63e-03 1.81e-03

0.97 0.94 0.97 0.99 1.00

6 5.34e-02 2.72e-02 1.42e-02 7.23e-03 3.63e-03 1.81e-03

0.97 0.94 0.97 0.99 1.00

8 5.34e-02 2.72e-02 1.42e-02 7.23e-03 3.63e-03 1.81e-03

0.97 0.94 0.97 0.99 1.00

10 5.34e-02 2.72e-02 1.42e-02 7.23e-03 3.63e-03 1.81e-03

0.97 0.94 0.97 0.99 1.00
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(a) (b)

(c) (d)

Figure 5.3: Numerical solution profiles for Example 5.5.2 for (a) ε = 1, p = 1 (b) ε =
2−6, p = 3 (c) ε = 2−12, p = 5 and (d) ε = 2−18, p = 7.
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Figure 5.4: Numerical solution profiles for p = 2 at different time levels for Example
5.5.2 for (a) ε = 1 (b) ε = 0.1 (c) ε = 0.01 and (d) ε = 0.001.

The numerical results presented in the tables confirm the theoretical results proved
in Theorem 5.4.2 which clearly show the ε-uniform convergence of the method. All
the results presented in Tables 5.1-5.4 are obtained by taking M = N. Also, we have
used 64 points in both directions to plot all the graphs. To observe the change in the
boundary layer width with respect to the parameter and to show the physical phe-
nomenon of the solution, the surface plots (refer Fig. 5.1 and Fig. 5.3) have been
presented. From these figures, one can observe that the solution exhibits a boundary
layer at x = 0 for small ε , and the boundary layer width decreases as the parameter
decreases. To see the solution at some individual time steps, the solution behavior for
different time levels is also drawn (refer Figs. 5.2 and Figs. 5.4).
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5.6 Conclusion

We proposed parameter-uniform numerical scheme of O((∆t)2 +N−1 lnN) for SPB-
VPs with a boundary turning point. The presence of ε and the boundary turning point
make these problems more difficult to solve numerically. The uniform-convergence is
proved through a rigorous analysis. The method can also be extended to the reaction-
diffusion SPBVPs whose solution exhibits parabolic boundary layers on both sides
of the domain as ε approaches zero. The analysis is also valid for p = 0 when the
solution, in general, has a different kind of layer than the layer that appears in our
problem. Two test examples are encountered to check the accuracy and efficiency of
the method.


