
Chapter 6

A parameter-uniform implicit scheme for two-
parameter singularly perturbed parabolic prob-
lems

6.1 Introduction

A parameter-uniform implicit scheme for two-parameter singularly perturbed bound-
ary value problems is constructed. Sharp bounds on the solution derivatives are given.
The solution is also decomposed into the sum of regular and singular components
and the bounds on the derivatives of these components which are used in the conver-
gence analysis are also given. The finite difference scheme on a predefined Shishkin
mesh is used to discretize the system of ordinary differential equations in the spatial
direction obtained by means of the Crank-Nicolson scheme on an equidistant mesh
in the temporal direction. Through rigorous analysis, the theoretical results for two
different cases: Case I. ε1/ε2

2 → 0 as ε2 → 0, and Case II. ε2
2/ε1 → 0 as ε1 → 0

which show that the method is convergent irrespective of the size of the parameters
ε1,ε2 are provided. The order of accuracy in the first and second cases are shown as
O((∆t)2 +N−1(lnN)2) and O((∆t)2 +N−2(lnN)2) respectively. Two test problems
are encountered to verify the computational results with theoretical results.

6.2 The Continuous Problem: Preliminaries and a Pri-
ori Estimates

Consider the rectangular domain R=Ω×Λ where Ω= (0,1), Λ= (0,T ]. The bound-
ary of the domain is Γ=Γl∪Γb∪Γr, where Γl = {(0, t) | 0≤ t ≤T}, Γb = {(x,0) | 0≤
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x ≤ 1} and Γr = {(1, t) | 0 ≤ t ≤ T} are the left, bottom and the right boundaries of
R. In this chapter, our aim is to find ψ(x, t) ∈C4,2(R) of the following two-parameter
singularly perturbed parabolic problems on the rectangular domain R

Lψ(x, t)≡−∂ψ

∂ t
+ ε1

∂ 2ψ

∂x2 + ε2a(x, t)
∂ψ

∂x
−b(x, t)ψ(x, t) = f (x, t), (x, t) ∈ R,

(6.1a)

ψ(x,0) = ψb(x) on Γb, (6.1b)

ψ(0, t) = ψl(t) on Γl, (6.1c)

ψ(1, t) = ψr(t) on Γr, (6.1d)

where ε1, ε2 are two small parameters lying in (0,1]. To ensure the existence and
uniqueness of the solution of the problem (6.1) the following assumptions are made

• The functions a(x, t), b(x, t), f (x, t) in R and ψl(t), ψr(t), ψb(x) on Γ are bounded
and twice continuously differentiable.

• a(x, t)≥ a∗ > 0, b(x, t)≥ b∗ > 0, (x, t) ∈ R̄.

• The initial function satisfies the compatibility conditions at the corner points of
the domain.

The summary of the chapter is as follows. Some a priori estimates on the solu-
tion of the continuous problem are given in Section 6.2. In particular, the bounds of
the solution and the minimum principle are given. By decomposing the solution into
the smooth and singular components the sharper bounds for the layer components
are given for both the cases. In Section 6.3, the temporal discretization by means
of the Crank-Nicolson scheme with uniform step size ∆t is given and the global er-
ror estimate is obtained. Moreover, the system of ODEs obtained in this section is
discretized on Shishkin mesh. The main result on the convergence of the proposed
method is proved in Section 6.4 followed by the numerical experiments and the dis-
cussion on the results in Section 6.5. Finally, some concluding remarks and future
considerations are also mentioned in the last Section 6.6.

Some a priori estimates, like minimum principle, stability estimate, solution deriva-
tives bounds are established. The proof of the following lemma is standard and is
similar to the proof of the maximum principle given in [129].
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Lemma 6.2.1. Let Φ ∈C2(R)∩C0(R̄) be non-negative on Γ and LΦ is non-positive

in the interior of R. Then, Φ is non-negative throughout R̄.

Lemma 6.2.2. The parameter-uniform estimate on ψ(x, t) is given by

‖ψ‖R̄ ≤ ‖ψ‖Γ +
‖ f‖R̄

b∗
.

Proof. It is easy to verify that the barrier functions Π±(x, t) = ‖ψ‖Γ +
‖ f‖R̄

b∗ ±ψ(x, t)

are non-negative on Γ. Also, at an interior point (x, t) of R

LΠ
±(x, t)=−b

[
‖ψ‖Γ +

‖ f‖R̄
b∗

]
±Lψ(x, t)≤−b∗‖ψ‖Γ−‖ f‖R̄± f ≤−‖ f‖R̄± f ≤ 0.

The proof is completed by using the minimum principle.

Now we decompose the solution ψ of the problem (6.1) into the regular and sin-
gular components (in both cases), which will be used in the error analysis. Case I.
ε1/ε2

2 → 0 as ε2→ 0. In this case, the decomposition is as follows:

ψ =U +V +W,

where the regular component U and the left and right singular components V and W

satisfy the following BVP.

LU = f , U(0, t), U(1, t) chosen suitably, andU(x,0) = ψb(x),

LV = 0, V (0, t) = ψl(t)−U(0, t)−W (0, t), V (1, t)chosen suitably,

V (x,0) = 0,

LW = 0, W (0, t)chosen suitably,W (1, t) = ψr(t)−U(1, t)−V (1, t),

W (x,0) = 0.

Lemma 6.2.3. The layer components V,W satisfy the following bounds:

|V (x, t)| ≤C exp((−a∗ε2/ε1)x),

|W (x, t)| ≤C exp((−b∗/ε2)(1− x)).

Proof. The proof can be done by following the approach given in [105].
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The bounds for the smooth and singular components are given by the following
theorem.

Theorem 6.2.1. For the non-negative integers i, j satisfying 0≤ i+3 j ≤ 4, the com-

ponents in case I satisfy the following bounds.∥∥∥∥∂ i+ jU
∂xi∂ t j

∥∥∥∥
R
≤C

(
1+(ε1/ε2)

3−i
)
,∥∥∥∥ ∂ i+ jV

∂xi∂ t j

∥∥∥∥
R
≤C(ε2/ε1)

i,∥∥∥∥∂ i+ jW
∂xi∂ t j

∥∥∥∥
R
≤Cε

−i
2 .

Proof. The proof can be done by following the approach given in [131].

Case II. ε2
2/ε1→ 0 as ε1→ 0. In this case, the decomposition is as follows:

ψ = χ +Z,

where the regular and singular components χ and Z, respectively satisfy

Lχ = f , χ(0, t), χ(1, t)chosen suitably,

LZ = 0, Z(0, t) = ψl(t)−χ(0, t), Z(1, t) = ψr(t)−χ(1, t).

Lemma 6.2.4. For some 0 < δ ≤ 1/2, the layer component satisfies

|Z(x, t)| ≤C exp
(
(−
√

γb∗/ε1

)
x), x ∈ [0,δ ],

|Z(x, t)| ≤C exp
(
(−
√

γb∗/ε1

)
(1− x)), x ∈ [1−δ ,1],

where the constant γ is given by γ = min
(x,t)∈R

{
b(x, t)
a(x, t)

}
.

Proof. The proof can be done by following the approach given in [105].

The bounds on the derivatives of the smooth and singular components are given
by the following theorem.
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Theorem 6.2.2. For the non-negative integers i, j satisfying 0≤ i+3 j ≤ 4, the com-

ponents in Case II satisfy the following bounds.∥∥∥∥ ∂ i+ jχ

∂xi∂ t j

∥∥∥∥
R
≤C

(
1+ ε

−(i−3)/2
1

)
,∥∥∥∥ ∂ i+ jZ

∂xi∂ t j

∥∥∥∥
R
≤Cε

−i/2
1 .

Proof. The proof can be done by following the approach given in [131].

6.3 The Proposed Scheme

Based on the Crank-Nicolson method an implicit numerical scheme to solve (6.1) is
introduced in this section. The following uniform mesh ΛM in the temporal direction
is obtained by dividing the time interval [0,T ] into M partitions each of width ∆t

Λ
M =

{
tn = n∆t : n = 0,1, . . . ,M, ∆t = T

M

}
.

Then on Ω×ΛM problem (6.1) is semi-discretized as follows

−D−t Y n+1(x)+ ε1(Yxx)
n+1/2 + ε2an+1(x)(Yx)

n+1/2−bn+1(x)Y n+1/2 = f n+1(x),

x ∈Ω, 0≤ n≤M−1,

Y n+1(0) = ψl(tn+1), Y n+1(1) = ψr(tn+1), 0≤ n≤M−1,

Y 0(x) = ψb(x), x ∈Ω,

where Y n+1(x) is the approximation of ψ(x, tn+1) at (n+ 1)-th time level, D−t is the
backward difference operator, νn+1/2(x)= νn+1(x)+νn(x)

2 , and an+1(x)= a(x, tn+1), bn+1(x)=

b(x, tn+1), f n+1(x) = f (x, tn+1). Rewriting the above equation as
L̂Y n+1(x) = g(x, tn+1), x ∈Ω, 0≤ n≤M−1,

Y n+1(0) = ψl(tn+1), Y n+1(1) = ψr(tn+1), 0≤ n≤M−1,

Y 0(x) = ψb(x), x ∈Ω,

(6.2)
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where the operator L̂ is given by

L̂≡ ε1

2
d2

dx2 + ε2
an+1(x)

2
d
dx
− cn+1(x)

2
I,

and

g(x, tn+1) = f n+1(x)− ε1

2
(Yxx)

n(x)− ε2
an+1(x)

2
(Yx)

n(x)+
dn+1(x)

2
Y n(x),

cn+1(x) = bn+1(x)+
2
∆t

,

dn+1(x) = bn+1(x)− 2
∆t

.

Depending on the values of ε1 and ε2, in Case I i.e., ε1/ε2
2 → 0 as ε2→ 0, the solution

of (6.2) can be decomposed as

Y n+1(x)︸ ︷︷ ︸
Solution

= Un+1(x)︸ ︷︷ ︸
Regular component

+ V n+1(x)︸ ︷︷ ︸
Left singular component

+ W n+1(x)︸ ︷︷ ︸
Right singular component

,

while in Case II i.e., ε2
2/ε1 → 0 as ε1 → 0, the solution decomposition is as given

below

Y n+1(x)︸ ︷︷ ︸
Solution

= χ
n+1(x)︸ ︷︷ ︸

Regular component

+ Zn+1(x)︸ ︷︷ ︸
Singular component

.

The bounds for these smooth and singular components are given same as given in
Theorems 6.2.1 and 6.2.2. The operator L̂ in (6.2) satisfies the following minimum
principle.

Lemma 6.3.1 (Minimum Principle). Let Φn+1(0)≥ 0, Φn+1(1)≥ 0 and L̂Φn+1(x)≤
0 for all x ∈Ω then Φn+1(x)≥ 0 for all x ∈ Ω̄.

Proof. For contrary suppose for some ξ ∈Ω, Φn+1(ξ ) = minx∈Ω Φn+1(x)< 0. Then,

L̂Φ
n+1(ξ ) =

ε1

2
(Φn+1)xx(ξ )+ ε2

an+1(ξ )

2
(Φn+1)x(ξ )−

cn+1(ξ )

2
Φ

n+1(ξ )> 0,

as cn+1(ξ )> 0. Hence, the proof is completed.

The following lemma estimates the local truncation error Tn+1 in the temporal
semi-discretization (6.2).
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Lemma 6.3.2. The local error Tn+1 satisfy

‖Tn+1‖ ≤C(∆t)3.

Proof. Using Taylor’s theorem, we have

ψ(x, tn+1) = ψ(x, tn+1/2)+
∆t
2

ψt(x, tn+1/2)+
(∆t)2

8
ψtt(x, tn+1/2)+O((∆t)3),

ψ(x, tn) = ψ(x, tn+1/2)−
∆t
2

ψt(x, tn+1/2)+
(∆t)2

8
ψtt(x, tn+1/2)+O((∆t)3).

On subtracting, it gives

ψ(x, tn+1)−ψ(x, tn)
∆t

= ψt
(
x, tn+1/2

)
+O((∆t)2)

= ε1ψxx
(
x, tn+1/2

)
+ ε2a

(
x, tn+1/2

)
ψx
(
x, tn+1/2

)
−b
(
x, tn+1/2

)
ψ
(
x, tn+1/2

)
− f

(
x, tn+1/2

)
+O((∆t)2),

where a
(
x, tn+1/2

)
= a(x,tn+1)+a(x,tn)

2 +O((∆t)2), etc. So, we can see that the local error
is the solution of

L̂Tn+1 = O((∆t)3), Tn+1(0) = Tn+1(1) = 0.

Hence, by using the minimum principle we get the required result.

Lemma 6.3.3. The global error En is estimated as

‖En‖ ≤C(∆t)2, 0≤ n≤M.

Proof. The contribution of the truncation errors and using local error estimate given
in Lemma 6.3.2 gives the required estimate.

The solutions η0(x)< 0 and η1(x)> 0 of the characteristic equation

ε1λ
2(x)+ ε2a(x)λ (x)− c(x) = 0,

characterize the layer behavior of the solution. More precisely,

µ0 =− max
x∈[0,1]

η0(x), and µ1 = min
x∈[0,1]

η1(x),
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describe the boundary layer width and the rate at which the solution decay/rise in the
layer region. Due to the presence of the boundary layers, one can not achieve the
uniform convergence on an equidistant mesh. Therefore, the method is applied to a
mesh which is dense in layer regions. Let N ≥ 4 be the number of mesh intervals used.
To construct the mesh the interval [0,1] is divided into three sub-intervals Ω1 = [0,σ1],
Ω2 = (σ1,1−σ2], and Ω3 = (1−σ2,1] where the transition parameters σ1 and σ2 are
defined as

σ1 = min
{

1
4
,
lnN
µ0

}
, σ2 = min

{
1
4
,
lnN
µ1

}
.

In Case I, we have taken µ0 = a∗ε2/ε1, µ1 = γ/ε2, while in Case II, we have taken
µ0 =

√
a∗γ/ε1, and µ1 =

√
a∗γ/ε1. We define the fitted piecewise-uniform mesh

ΩN = {xi}N
i=0 as

xi =



4σ1

N
i, if i = 0,1, . . . ,

N
4
,

σ1 +
2(1−σ1−σ2)

N

(
i− N

4

)
, if i =

N
4
+1, . . . ,

3N
4
,

(1−σ2)+
4σ2

N

(
i− 3N

4

)
, if i =

3N
4

+1, . . . ,N,

and the mesh spacing is given by

hi = xi− xi−1 =



H1 =
4σ1

N
, if i = 1,2, . . . ,

N
4
,

H2 =
2(1−σ1−σ2)

N
, if i =

N
4
+1, . . . ,

3N
4
,

H3 =
4σ2

N
, if i =

3N
4

+1, . . . ,N.

Note that in Case I, the values of σ1 and σ2 are different while in Case II, the width
of both boundary layers are of same order and so we have σ1 = σ2. Also, the mesh is
uniform when σ1 =σ2 = 1/4 otherwise, the mesh is dense in layer regions. The fitted-
piecewise-uniform mesh RN,M on R is then defined as the tensor product ΩN ×ΛM.
The boundary points ΓN,M on RN,M are given by ΓN,M = R̄N,M ∩Γ. Introducing the
operators

D−x µ
n
i =

µn
i −µn

i−1

hi
, D+

x µ
n
i =

µn
i+1−µn

i

hi+1
, δ

2
x µ

n
i =

(D+
x −D−x )µ

n
i

i
,
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where i =
hi+hi+1

2 , the full discretization of (6.2) on RN,M is given byL Nψ̃(xi) = g̃(xi), xi ∈ΩN ,

ψ̃(x0) = ψl(tn+1), ψ̃(xN) = ψr(tn+1), 0≤ n≤M−1,
(6.3)

where ψ̃(xi) is the approximation of Y n+1(xi) and the operator L N is defined as

L N
ψ̃ :≡ ε1

2
δ

2
x ψ̃ + ε2

an+1

2
D−x ψ̃− cn+1

2
ψ̃.

Moreover, the function g̃(xi) is given by

g̃(xi) = f n+1(xi)−
ε1

2
δ

2
x Y n(xi)− ε2

an+1(xi)

2
D−x Y n(xi)+

dn+1(xi)

2
Y n(xi).

Lemma 6.3.4. The following are the bounds on an arbitrary mesh and uniform mesh

respectively

∣∣(L N− L̂
)

ψ
∣∣≤C(ε1hi|ψ|3 + ε2hi‖a‖|ψ|2),∣∣(L N− L̂

)
ψ
∣∣≤C(ε1h2|ψ|4 + ε2h‖a‖|ψ|2).

Proof. Taylor series expansion gives

ψ(xi+1, tn+1) = ψ(xi, tn+1)+hi+1ψ
′(xi, tn+1)+

h2
i+1

2
ψ
′′(xi, tn+1)+

h3
i+1

6
ψ
′′′(xi, tn+1)

+
h4

i+1

24
ψ

(4)(xi, tn+1)+ · · · , (6.4)

ψ(xi−1, tn+1) = ψ(xi, tn+1)−hiψ
′(xi, tn+1)+

h2
i

2
ψ
′′(xi, tn+1)−

h3
i

6
ψ
′′′(xi, tn+1)

+
h4

i
24

ψ
(4)(xi, tn+1)+ · · · . (6.5)

Equation (6.4) gives

D+
x ψ(xi, tn+1) =

ψ(xi+1, tn+1)−ψ(xi, tn+1)

hi+1

= ψ
′(xi, tn+1)+

hi+1

2
ψ
′′(xi, tn+1)+

h2
i+1

6
ψ
′′′(xi, tn+1)

+
h3

i+1

24
ψ

(4)(xi, tn+1)+ · · · , (6.6)
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and Equation (6.5) gives

D−x ψ(xi, tn+1) =
ψ(xi, tn+1)−ψ(xi−1, tn+1)

hi

= ψ
′(xi, tn+1)−

hi

2
ψ
′′(xi, tn+1)+

h2
i

6
ψ
′′′(xi, tn+1)−

h3
i

24
ψ

(4)(xi, tn+1)

+ · · · , (6.7)

or

D−x ψ(xi, tn+1)−ψ
′(xi, tn+1)=−

hi

2
ψ
′′(xi, tn+1)+

h2
i

6
ψ
′′′(xi, tn+1)−

h3
i

24
ψ

(4)(xi, tn+1)+· · · .

(6.8)

On subtracting (6.7) from (6.6),

D+
x ψ(xi, tn+1)−D−x ψ(xi, tn+1) =

hi+1 +hi

2
ψ
′′(xi, tn+1)+

h2
i+1−h2

i

6
ψ
′′′(xi, tn+1)

+
h3

i+1 +h3
i

24
ψ

(4)(xi, tn+1)+ · · ·

=i ψ
′′(xi, tn+1)+

hi+1−hi

3 i
ψ
′′′(xi, tn+1)

+
(h2

i+1 +h2
i −hihi+1)

12 i
ψ

(4)(xi, tn+1)+ · · · ,

and so,

δ
2
x ψ(xi, tn+1)−ψ

′′(xi, tn+1) =
hi+1−hi

3
ψ
′′′(xi, tn+1)

+
(h2

i+1 +h2
i −hihi+1)

12
ψ

(4)(xi, tn+1)+ · · · . (6.9)

Now

(LN− L̂)ψ(xi, tn+1) =
ε1

2
(
δ

2
x ψ(xi, tn+1)−ψ

′′(xi, tn+1)
)

+ ε2
an+1(x)

2
(
D−x ψ(xi, tn+1)−ψ

′(xi, tn+1)
)
. (6.10)

Use of (6.8) and (6.9) on arbitrary and uniform mesh gives the required result.
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6.4 Parameter Uniform Convergence Analysis

Before proving the main result on the convergence of the proposed method we give
some basic properties satisfy by the operator L N .

Lemma 6.4.1. Assume that Φ̃(x0)≥ 0,Φ̃(xN)≥ 0 and L NΦ̃(xi)≤ 0 for all xi ∈ΩN

then Φ̃(xi)≥ 0 for all xi ∈ΩN .

Proof. If Φ̃(qi) = minxi∈ΩN Φ̃(xi)< 0 for some qi ∈ΩN , then

L N
Φ̃(qi) =

ε1

2
δ

2
x Φ̃(qi)+ ε2

an+1(qi)

2
D−x Φ̃(qi)−

cn+1(qi)

2
Φ̃(qi)

=
ε1

2i

(
Φ̃(qi+1)− Φ̃(qi)

hi+1
− Φ̃(qi)− Φ̃(qi−1)

hi

)

+ ε2
an+1(qi)

2

(
Φ̃(qi)− Φ̃(qi−1)

hi

)
− cn+1(qi)

2
Φ̃(qi)

> 0,

which contradicts the hypothesis and hence the proof is completed.

Lemma 6.4.2. Any mesh function Φ̃(x) which vanishes at the boundary points satis-

fies ∣∣∣Φ̃(xi)
∣∣∣≤ max

xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣ , xi ∈Ω
N .

Proof. For the barrier functions Ψ±(xi) = maxxi∈ΩN

∣∣∣L NΦ̃(xi)
∣∣∣± Φ̃(xi), we have

Ψ
±(x0) = max

xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣± Φ̃(x0) = max
xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣≥ 0,

Ψ
±(xN) = max

xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣± Φ̃(xN) = max
xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣≥ 0.



142 Chapter 6. Implicit scheme for two-parameters singularly perturbed problems

Also, at the intermediate points

L N
Ψ
±(xi) = L N

[
max
xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣± Φ̃(xi)

]
=−cn+1(xi)

2
max
xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣±L N
Φ̃(xi)

=−1
2

(
bn+1(xi)+

2
∆t

)
max
xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣±L N
Φ̃(xi)

≤
(
−b∗

2
− 1

∆t

)
max
xi∈ΩN

∣∣∣L N
Φ̃(xi)

∣∣∣±L N
Φ̃(xi)

≤−
∣∣∣L N

Φ̃(xi)
∣∣∣±L N

Φ̃(xi)

≤ 0.

An application of Lemma 6.4.1 yields the required result.

We shall now prove the convergence of the proposed scheme for both cases sepa-
rately.

Analysis for Case I (ε1/ε2
2 → 0 as ε2 → 0). In this case, we decompose the

solution ψ̃i of (6.3) into the regular and singular components as

ψ̃i︸︷︷︸
Solution

= Ũi︸︷︷︸
Regular component

+ Ṽi︸︷︷︸
Left singular component

+ W̃i︸︷︷︸
Right singular component

,

where the regular component Ũi satisfies the following in-homogeneous problem

L NŨi = g̃(xi) in RN,M, Ũi =Un+1(xi) on Γ
N,M,

and the singular components Ṽi and W̃i satisfy the following homogeneous problem

L NṼi = 0 in RN,M, Ṽi =V n+1(xi) on Γ
N,M,

L NW̃i = 0 in RN,M, W̃i =W n+1(xi) on Γ
N,M.

Thus, the nodal error is given by

νi,n+1 = ψ(xi, tn+1)− ψ̃i = (Un+1(xi)−Ũi)+(V n+1(xi)−Ṽi)+(W n+1(xi)−W̃i).

Furthermore, the bounds for the singular components are given by the following the-
orem.
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Theorem 6.4.1. The bounds on the components are given as

∣∣∣Ṽi

∣∣∣≤C
i

∏
j=1

(
1+µ0h j

)−1
, |Ṽ0| ≤C,

∣∣∣W̃i

∣∣∣≤C
N

∏
j=i+1

(
1+µ1h j

)−1
, |W̃N | ≤C.

Proof. The proof can be done by following the approach given in [105].

Lemma 6.4.3. The error bound for the regular component is given by∥∥∥Un+1(xi)−Ũi

∥∥∥
ΩN
≤CN−2.

Proof. Using the classical argument, we obtain∣∣∣L N
(

Un+1(xi)−Ũi

)∣∣∣= ∣∣L NUn+1(xi)− g̃(xi)
∣∣

=
∣∣L NUn+1(xi)−g(xi, tn+1)+g(xi, tn+1)− g̃(xi)

∣∣
=
∣∣L NUn+1(xi)− L̂Un+1(xi)+g(xi, tn+1)− g̃(xi)

∣∣
≤
∣∣L NUn+1(xi)− L̂Un+1(xi)

∣∣+ |g(xi, tn+1)− g̃(xi)| .
(6.11)

Now, we have

g̃(xi)−g(xi, tn+1) =
ε1

2
(
δ

2
x Y n(xi)− (Y n)xx(xi)

)
+ ε2

an+1(x)
2

(
D−x Y n(xi)− (Y n)x(xi)

)
=
(
L N− L̂

)
Y n(xi), (using Eq. (6.10))

and so, (6.11) gives∣∣∣L N
(

Un+1(xi)−Ũi

)∣∣∣≤ ∣∣(L N− L̂
)

Un+1(xi)
∣∣+ ∣∣(L N− L̂

)
Y n(xi)

∣∣ .
Using Lemma 6.3.4 which gives∣∣∣L N

(
Un+1(xi)−Ũi

)∣∣∣≤C1
(
ε1N−2|Un+1|4 + ε2N−1‖a‖|Un+1|2

)
+C2

(
ε1N−2|Y n|4 + ε2N−1‖a‖|Y n|2

)
≤CN−2.
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Thus, an application of Lemma 6.4.2 gives∥∥∥Un+1(xi)−Ũi

∥∥∥
ΩN
≤CN−2.

Lemma 6.4.4. The error bound for the left singular component is given by∥∥∥V n+1(xi)−Ṽi

∥∥∥
ΩN
≤CN−1(lnN)2.

Proof. In the case σ1 = σ2 = 1/4, we have ε2/ε1 ≤C lnN and so using the classical
argument, we obtain∣∣∣L N

(
V n+1(xi)−Ṽi

)∣∣∣= ∣∣L NV n+1(xi)−0
∣∣

=
∣∣(L N− L̂

)
V n+1(xi)

∣∣
≤C

(
ε1h2 ∣∣V n+1(xi)

∣∣
4 + ε2h‖a‖

∣∣V n+1(xi)
∣∣
2

)
≤CN−2.

On the other hand, in the latter case σ1 = σ2 < 1/4, for xi ∈ [0,σ1) the classical
argument as used above gives∣∣∣L N

(
V n+1(xi)−Ṽi

)∣∣∣≤C
(
ε1H2

1
∣∣V n+1(xi)

∣∣
4 + ε2H1‖a‖

∣∣V n+1(xi)
∣∣
2

)
≤C

(
ε1σ

2
1 N−2 ∣∣V n+1(xi)

∣∣
4 + ε2σ1N−1‖a‖

∣∣V n+1(xi)
∣∣
2

)
≤

ε2
2

ε1
N−1 lnN.

Now consider Φ(x) =C
(
N−1 +N−1 lnN(σ1− x)(ε2/ε1)

)
. Then

L N
Φi =−

(
cn+1

Φi +Cε
2
2/ε1(N−1 lnN)

)
≤−

∣∣∣L N
(

V n+1(xi)−Ṽi

)∣∣∣ .
An application of the discrete minimum principle yields∣∣∣V n+1(xi)−Ṽi

∣∣∣=C
(
N−1 +(N−1 lnN)(σ1− xi)(ε2/ε1)

)
≤C

(
N−1 +(N−1 lnN)σ1(ε2/ε1)

)
≤CN−1(lnN)2. (6.12)
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Furthermore, for xi ∈ [σ1,1], we have∣∣∣V n+1(xi)−Ṽi

∣∣∣≤ ∣∣V n+1(xi)
∣∣+ ∣∣∣Ṽi

∣∣∣
Using Theorem 6.4.1, we get∣∣∣ṼN/4

∣∣∣≤C
(
1+4N−1 lnN

)−N/4
.

Now the inequality ln(1+x)> x(1−x/2) for x = 4N−1 lnN gives
∣∣∣Ṽi

∣∣∣≤CN−1, ∀xi ∈
[σ1,1]. Also,

∣∣V n+1(xi)
∣∣≤C exp(−(a∗ε2/ε1)xi)

≤C exp(−(a∗ε2/ε1)σ1)

≤CN−1.

Hence, for xi ∈ [σ1,1]∣∣∣V n+1(xi)−Ṽi

∣∣∣≤CN−1. (6.13)

Finally, on combining (6.12) and (6.13), we get∥∥∥V n+1(xi)−Ṽi

∥∥∥
ΩN
≤CN−1(lnN)2, ∀xi ∈Ω

N .

Lemma 6.4.5. The error bound for the right singular component is given by∥∥∥W n+1(xi)−W̃i

∥∥∥
ΩN
≤CN−1 lnN.

Proof. For the uniform mesh, the proof is similar as for the left singular component.
In the second case σ1,σ2 < 1/4 for xi ∈ [0,1−σ2), we have∣∣∣W n+1(xi)−W̃i

∣∣∣≤ ∣∣W n+1(xi)
∣∣+ ∣∣∣W̃i

∣∣∣ .
Using Theorem 6.4.1, we obtain∣∣∣W̃3N/4

∣∣∣≤C(1+4N−1 lnN)−N/4.
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Now for x= 4N−1 lnN the inequality ln(1+x)> x(1−x/2) gives
∣∣∣W̃i

∣∣∣≤CN−1, ∀xi ∈
[0,1−σ2). Also,

∣∣W n+1(xi)
∣∣≤C exp(−(b∗/ε2)(1− xi))

≤C exp(−(b∗/ε2)σ2)

≤CN−2.

Hence, for xi ∈ [0,1−σ2)∣∣∣W n+1(xi)−W̃i

∣∣∣≤CN−1. (6.14)

Now for xi ∈ [1−σ2,1], the classical argument gives∣∣∣L N
(

W n+1(xi)−W̃i

)∣∣∣≤C
(
ε1H2

3
∣∣W n+1(xi)

∣∣
4 + ε2H3‖a‖

∣∣W n+1(xi)
∣∣
2

)
≤C

(
ε1σ

2
2 N−2 ∣∣W n+1(xi)

∣∣
4 + ε2σ2N−1‖a‖

∣∣W n+1(xi)
∣∣
2

)
≤CN−1 lnN. (6.15)

Finally, on combining (6.14) and (6.15), we get∥∥∥W n+1(xi)−W̃i

∥∥∥
ΩN
≤CN−1 lnN.

Analysis for Case II (ε2
2/ε1 → 0 as ε1 → 0). In this case, we decompose the

solution ψ̃i of (6.3) as

ψ̃i = χ̃i + Z̃i,

where χ̃i and Z̃i (the regular and singular components respectively) satisfy the follow-
ing inhomogeneous and homogeneous problems respectively

L N
χ̃i = g̃(xi) in RN,M, χ̃i = χ

n+1(xi) on Γ
N,M,

L N Z̃i = 0 in RN,M, Z̃i = Zn+1(xi) on Γ
N,M.

The nodal error is given by

νi, j+1 = ψ
n+1(xi)− ψ̃i =

(
χ

n+1(xi)− χ̃i
)
+
(

Zn+1(xi)− Z̃i

)
.
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Theorem 6.4.2. The bounds on the singular component are given by

∣∣∣Z̃i

∣∣∣≤C
i

∏
j=1

(
1+µ1h j

)−1
,
∣∣∣Z̃0

∣∣∣≤C,
∣∣∣Z̃N

∣∣∣≤C.

Proof. The proof can be done by following the approach given in [105].

Lemma 6.4.6. The error bound for the regular component is given by

∥∥χ
n+1(xi)− χ̃i

∥∥
ΩN ≤CN−2.

Proof. Using the bounds for χn+1, the proof is similar as Lemma 6.4.3.

Lemma 6.4.7. The error bound for the singular component is given by∥∥∥Zn+1(xi)− Z̃i

∥∥∥
ΩN
≤CN−2(lnN)2.

Proof. We consider the uniform mesh and the non-uniform meshes separately. For
the uniform mesh i.e., in the case σ1 = σ2 = 1/4 the classical argument yields∣∣∣L N

(
Zn+1(xi)− Z̃i

)∣∣∣= ∣∣L NZn+1(xi)−0
∣∣

=
∣∣(L N− L̂

)
Zn+1(xi)

∣∣
≤C

(
ε1N−2 ∣∣Zn+1(xi)

∣∣
4 + ε2N−1‖a‖

∣∣Zn+1(xi)
∣∣
2

)
≤CN−2(lnN)2.

In the latter case depending on the mesh spacing, a different argument is used to obtain
the error estimate. For xi ∈ [σ1,1−σ1], we have∣∣∣Zn+1(xi)− Z̃i

∣∣∣≤ ∣∣Zn+1(xi)
∣∣+ ∣∣∣Z̃i

∣∣∣ .
Now using Theorem 6.4.2, we obtain∣∣∣Z̃N/4

∣∣∣≤C
((

1+4N−1 lnN
)−N/8

)2
.
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Now for x = 4N−1 lnN the inequality ln(1+x)> x(1−x/2) gives
∣∣∣Z̃i

∣∣∣≤CN−2, ∀xi ∈
[σ1,1−σ1]. Also,

∣∣Zn+1(xi)
∣∣≤C exp

(
(−
√

γb∗/ε1

)
)xi

≤C exp
(
(−
√

γb∗/ε1

)
σ1)

≤CN−2.

Hence for xi ∈ [σ1,1−σ1], we obtain∣∣∣Zn+1(xi)− Z̃i

∣∣∣≤CN−2. (6.16)

Now if xi ∈ [0,σ1), then∣∣∣L N
(

Zn+1(xi)− Z̃i

)∣∣∣≤C
(
ε1H2

1
∣∣Zn+1(xi)

∣∣
4 + ε2H1‖a‖

∣∣Zn+1(xi)
∣∣
2

)
≤C

(
ε1σ

2
1 N−2 ∣∣Zn+1(xi)

∣∣
4 + ε2σ1N−1‖a‖

∣∣Zn+1(xi)
∣∣
2

)
≤CN−2(lnN)2.

Thus using Lemma 6.4.2, we get the following estimate∣∣∣Zn+1(xi)− Z̃i

∣∣∣≤CN−2(lnN)2.

Similar bound can be obtained for the interval [1−σ1,1]. Hence,∥∥∥Zn+1(xi)− Z̃i

∥∥∥
ΩN
≤CN−2(lnN)2, ∀xi ∈Ω

N .

Theorem 6.4.3. The solution ψ(x, t) of the continuous problem and the solution ψ̃i of

the fully discretized scheme satisfy the following parameter-uniform error estimate

sup
0<ε1,ε2�1

‖ψ(xi, tn)− ψ̃i‖= sup
0<ε1,ε2�1

(
max

n

(
max

i
|ψ(xi, tn)− ψ̃i|

))

≤C


(
(∆t)2 +N−1(lnN)2) , Case I,(
(∆t)2 +N−2(lnN)2) , Case II.

Proof. The proof follows from the triangle inequality and Lemmas 6.3.3, 6.4.3, 6.4.4,
6.4.5, 6.4.6 and 6.4.7.
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6.5 Numerical Illustrations

The unavailability of the exact/analytical solution to the test problems suggest us to
use the double mesh principle [8] to check the accuracy of the method in terms of
the maximum absolute errors. For each ε1 and ε2, the maximum absolute error is
calculated as

eN,M
ε1,ε2 = max

n

(
max

i

∣∣∣ψ̃2N,2M
2i − ψ̃

N,M
i

∣∣∣) ,

where ψ̃
N,M
i and ψ̃

2N,2M
2i are the numerical solutions on RN,M and R2N,2M respectively.

Note that the value of σ1 and σ2 are different in the case of N and 2N mesh intervals
in the spatial direction, and so the comparison of the solutions using the double mesh
principle will not be accurate. To overcome this issue, a fine mesh R2N,2M is obtained
by the mesh RN,M by using the interpolation. The parameters uniform point-wise error
is estimated by taking the maximum of eN,M

ε1,ε2 over several values of ε1 and ε2 i.e.,

eN,M = max
ε1,ε2

eN,M
ε1,ε2.

Moreover, the order of convergence ρ
N,M
ε1,ε2 and the parameters-uniform order of con-

vergence ρN,M of the proposed method are calculated as

ρ
N,M
ε1,ε2 = log2

(
eN,M

ε1,ε2

e2N,2M
ε1,ε2

)
, and ρ

N,M = log2

(
eN,M

e2N,2M

)
.

Example 6.5.1.

−∂ψ(x, t)
∂ t

+ ε1
∂ 2ψ(x, t)

∂x2 + ε2(1+ x)
∂ψ(x, t)

∂x
−ψ(x, t) =−x2−1, (x, t) ∈ R,

ψ(x,0) = 1− x2, 0≤ x≤ 1,

ψ(0, t) = 1+ t, ψ(1, t) = 0, 0≤ t ≤ 1.
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Example 6.5.2.

−∂ψ(x, t)
∂ t

+ ε1
∂ 2ψ(x, t)

∂x2 + ε2(1+ xt)
∂ψ(x, t)

∂x
− (1+ t)ψ(x, t)

=−exp(−t)(x+1),(x, t) ∈ R,

ψ(x,0) = sin(πx), 0≤ x≤ 1,

ψ(0, t) = 0, ψ(1, t) = 0, 0≤ t ≤ 1.

Table 6.1: Computational results for Example 6.5.1 for ε1 = 2−10 and different values of
ε2.

Number of intervals N

ε2 32 64 128 256 512 1024

2−10 9.58e-03 6.85e-03 3.55e-03 1.44e-03 4.86e-04 1.28e-04

0.48 0.95 1.30 1.57 1.92

2−11 9.53e-03 6.81e-03 3.54e-03 1.44e-03 4.84e-04 1.28e-04

0.48 0.94 1.30 1.57 1.92

2−12 9.50e-03 6.79e-03 3.53e-03 1.44e-03 4.83e-04 1.27e-04

0.48 0.94 1.29 1.58 1.93

2−13 9.49e-03 6.78e-03 3.52e-03 1.43e-03 4.83e-04 1.27e-04

0.48 0.94 1.30 1.56 1.93

2−14 9.48e-03 6.78e-03 3.52e-03 1.43e-03 4.82e-04 1.27e-04

0.48 0.94 1.30 1.57 1.92

2−15 9.48e-03 6.78e-03 3.52e-03 1.43e-03 4.82e-04 1.27e-04

0.48 0.95 1.30 1.57 1.92
...

...
...

...
...

...

2−22 9.47e-03 6.77e-03 3.52e-03 1.43e-03 4.82e-04 1.27e-04

0.48 0.94 1.30 1.57 1.92

eN,M 9.58e-03 6.85e-03 3.55e-03 1.44e-03 4.86e-04 1.28e-04

ρN,M 0.48 0.95 1.30 1.57 1.92
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Table 6.2: Computational results for Example 6.5.1 for ε2 = 2−12 and different values of
ε1.

Number of intervals N

ε1 32 64 128 256 512 1024

2−26 2.21e01 8.27e-02 4.12e-02 2.14e-02 1.15e-02 6.36e-03
1.42 1.00 0.95 0.90 0.85

2−30 2.18e-01 1.21e-01 6.91e-02 3.87e-02 2.13e-02 1.16e-02
0.85 0.81 0.84 0.86 0.88

2−34 2.32e-01 1.29e-01 7.53e-02 4.30e-02 2.42e-02 1.34e-02
0.85 0.78 0.81 0.83 0.85

2−38 2.88e-01 1.30e-01 7.57e-02 4.33e-02 2.44e-02 1.35e-02
1.15 0.78 0.81 0.83 0.85

2−42 3.58e-01 1.37e-01 7.57e-02 4.33e-02 2.44e-02 1.35e-02
1.39 0.86 0.81 0.83 0.85

2−46 3.64e-01 1.49e-01 7.57e-02 4.33e-02 2.44e-02 1.35e-02
1.29 0.98 0.81 0.83 0.85

eN,M 3.64e-01 1.49e-01 7.57e-02 4.33e-02 2.44e-02 1.35e-02
ρN,M 1.29 0.98 0.81 0.83 0.85
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(a) (b)

(c) (d)

Figure 6.1: Numerical solution profiles for Example 6.5.1 for (a) ε1 = 2−15, ε2 = 2−6 (b)
ε1 = 2−10, ε2 = 2−8 (c) ε1 = 2−17, ε2 = 2−7 and (d) ε1 = 2−14, ε2 = 2−18.
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Figure 6.2: Numerical solution profiles for Example 6.5.1 for ε1 = 2−14, ε2 = 2−18.
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Table 6.3: Computational results for Example 6.5.2 for ε1 = 2−10 and different values of
ε2.

Number of intervals N

ε2 32 64 128 256 512 1024

2−10 1.29e-02 1.02e-02 5.49e-03 2.24e-03 7.44e-04 2.09e-04

0.34 0.89 1.29 1.59 1.83

2−11 1.29e-02 1.02e-02 5.47e-03 2.24e-03 7.42e-04 2.10e-04

0.34 0.89 1.29 1.59 1.82

2−12 1.28e-02 1.02e-02 5.46e-03 2.23e-03 7.41e-04 2.11e-04

0.33 0.90 1.29 1.59 1.81

2−13 1.28e-02 1.01e-02 5.45e-03 2.23e-03 7.41e-04 2.11e-04

0.34 0.89 1.29 1.59 1.81

2−14 1.28e-02 1.01e-02 5.45e-03 2.23e-03 7.40e-04 2.11e-04

0.34 0.89 1.29 1.59 1.81

2−15 1.28e-02 1.01e-02 5.45e-03 2.23e-03 7.40e-04 2.11e-04

0.34 0.89 1.29 1.59 1.81
...

...
...

...
...

...

2−22 1.28e-02 1.01e-02 5.44e-03 2.23e-03 7.40e-04 2.11e-04

0.34 0.89 1.29 1.59 1.81

eN,M 1.29e-02 1.02e-02 5.49e-03 2.24e-03 7.44e-04 2.11e-04

ρN,M 0.34 0.89 1.29 1.59 1.82
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Table 6.4: Computational results for Example 6.5.2 for ε2 = 2−12 and different values of
ε1.

Number of intervals N

ε1 32 64 128 256 512 1024

2−26 9.91e-02 3.60e-02 1.84e-02 1.13e-02 7.84e-03 5.06e-03
1.46 0.97 0.70 0.53 0.63

2−30 2.63e-01 1.36e-01 7.06e-02 3.70e-02 1.94e-02 1.01e-02
0.95 0.95 0.93 0.93 0.94

2−34 3.66e-01 1.86e-01 9.37e-02 4.70e-02 2.36e-02 1.18e-02
0.98 0.99 1.00 0.99 1.00

2−38 3.76e-01 1.92e-01 9.70e-02 4.87e-02 2.44e-02 1.22e-02
0.97 0.99 0.99 1.00 1.00

2−42 3.77e-01 1.93e-01 9.72e-02 4.88e-02 2.45e-02 1.22e-02
0.97 0.99 0.99 0.99 1.00

2−46 3.77e-01 1.93e-01 9.72e-02 4.88e-02 2.45e-02 1.22e-02
0.97 0.99 0.99 0.99 1.00

eN,M 3.77e-01 1.93e-01 9.72e-02 4.88e-02 2.45e-02 1.22e-02
ρN,M 0.97 0.99 0.99 0.99 1.00
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(a) (b)

(c) (d)

Figure 6.3: Numerical solution profiles for Example 6.5.2 (viewed from right) for (a) ε1 =
2−15, ε2 = 2−6 (b) ε1 = 2−10, ε2 = 2−8 (c) ε1 = 2−17, ε2 = 2−7 and (d) ε1 = 2−14, ε2 =
2−18.
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(a) (b)

(c) (d)

Figure 6.4: Numerical solution profiles for Example 6.5.2 (viewed from left) for (a) ε1 =
2−15, ε2 = 2−6 (b) ε1 = 2−10, ε2 = 2−8 (c) ε1 = 2−17, ε2 = 2−7 and (d) ε1 = 2−14, ε2 =
2−18.
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Figure 6.5: Numerical solution profiles for Example 6.5.2 for ε1 = 2−14, ε2 = 2−18.

To verify theoretical estimates, the numerical results are presented in this section.
For the test examples, the results are obtained on a wide range R(ε1,ε2) of perturba-
tion parameters satisfying Case I or Case II and the mesh is of Shishkin type. Note that
the case σ1, σ2 ≥ 1/4 occur for a small range R(ε1,ε2) of perturbation parameters,
and the uniform mesh is sufficient to obtain good accuracy. We performed our ex-
periments for both cases, in Case I, our problem is similar to the convection-diffusion
problem, while in Case II, it becomes similar to the reaction-diffusion problem. The
results presented in the Tables 6.1-6.4 confirm the error estimates when applied to
the Shishkin-type mesh. In Tables 6.1 and 6.3 for a fixed ε1, the maximum absolute
error becomes stable as ε2→ 0. This shows that the method is ε2-uniform convergent.
The ε1-uniform convergence is confirmed from Tables 6.2, 6.2 and 6.4 where for a
fixed ε2, the maximum absolute error becomes stable as ε1→ 0. The results presented
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in Tables 6.1, 6.2, 6.3 and 6.4 are obtained by taking M = N, while, to show that
the dominating error is in the spatial direction the results presented in Table 6.2 are
obtained by taking M = N/2.

For both test problems, for different values of ε1, ε2, the physical phenomenon
of the solution are presented in the form of the surface plots (refer Figs. 6.1-6.4).
These graphs clearly indicate that for small perturbation parameters close to zero, the
solution of the test problems exhibit parabolic boundary layers at both lateral surfaces,
and the boundary layer width continuously depends on these parameters. The layer
phenomenon and the effect of ε1, ε2 can also be observed from the graphs for different
time levels (refer Figs. 6.2 and 6.5). To plot all the graphs, we have used M = N = 64.

6.6 Conclusion

To approximate the solution of two-parameter singularly perturbed parabolic prob-
lems, we have proposed an implicit numerical scheme on a Shishkin-type mesh. Rig-
orous convergence analysis for both cases ε1/ε2

2 → 0 as ε2 → 0 and ε2
2/ε1 → 0 as

ε1→ 0 are given separately. It has been shown that the proposed scheme is second-
order accurate in time in both cases while it is first-order and second-order accurate in
space in Case I and Case II, respectively. The effect of the parameters ε1 and ε2 on the
solution behaviour is shown graphically. The very high gradients near both boundaries
x = 0 and x = 1 can be noticed for small ε1 and ε2. Also, we noticed that the numeri-
cal results presented in the tables meet the theoretical error bounds very well. For the
future reference, one can include the convergence analysis in the different norm like
energy norm, L1 norm, and L2 norm, etc (for the importance of the norms the readers
are referred to [132]). Moreover, depending on the method used, one may get dif-
ferent rate of convergence in different norms (see [104] for the reference, where it is
shown that the Galerkin method on a B-type mesh is first-order accurate in the energy
norm while it is second-order accurate in the maximum norm). One may also look
into the development of other types of layer-adapted meshes like Bakhvalov mesh,
Bakhvalov-Shishkin mesh, etc. An extension of the proposed scheme on the different
problems like higher-dimensional problems, the system of equations, etc. can also be
explored.


