
Chapter 8

Conclusion and Future Scope

8.1 Summary of the Work Done

The present thesis contributes to the development of parameter-uniform layer resolv-
ing techniques, which are mainly concerned on the singularly perturbed parabolic
boundary value problems of following six important classes
Class 1: Singularly perturbed parabolic differential-difference model with large
delay in time

We consider the following class of second-order singularly perturbed delay parabolic
PDE with Dirichlet boundary conditions on the rectangle D = {(x, t) ∈ Ω×Λ =

(0,1)× (0,T ],where T is some fixed positive time} in the space-time plane:

Lεu(x, t)≡ ∂u
∂ t
−ε

∂ 2u
∂x2 +a(x)

∂u
∂x

+b(x, t)u = c(x, t)u(x, t−τ)+ f (x, t), (x, t)∈D.

(8.1a)

Equation (8.1a) is subject to the boundary conditions

u(x, t) = φl(t), (x, t) ∈ Γl = {0}×Λ = {(0, t) : 0 < t ≤ T}, (8.1b)

u(x, t) = φr(t), (x, t) ∈ Γr = {1}×Λ = {(1, t) : 0 < t ≤ T}, (8.1c)

and the interval condition

u(x, t) = φb(x, t), (x, t) ∈ Γb = [0,1]× [−τ,0]. (8.1d)

Here, ε ∈ (0,1] is a perturbation parameter, τ > 0 is a delay parameter, a(x), b(x, t),
c(x, t), f (x, t), φl(t), φr(t) and φb(x, t) are sufficiently smooth and bounded functions,
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and satisfying

a(x)≥ α > 0, b(x, t)≥ β > 0, c(x, t)≤ γ < 0, on D̄.

Class 2: Singularly perturbed parabolic differential-difference model with large
delay in space with twin boundary layers and one interior layer

Let D = Ω×Λ = (0,2)× (0,T ] be a rectangular domain in the space-time plane,
where T is some fixed positive time. Consider the following class of second-order
singularly perturbed parabolic PDEs on D:

Lu(x, t)≡ ut(x, t)−εuxx(x, t)+a(x)u(x, t)+b(x)u(x−1, t) = f (x, t), (x, t) ∈D,

(8.2a)

subject to the initial condition

u(x,0) = u0(x), x ∈ Ω̄, (8.2b)

and the interval and boundary conditions

u(x, t) = φ(x, t), (x, t) ∈ DL = {(x, t) : −1≤ x≤ 0; t ∈ Λ̄}, (8.2c)

u(2, t) = ψ(t), (x, t) ∈ DR = {(2, t) : t ∈ Λ̄}, (8.2d)

where ε ∈ (0,1] is a small perturbation parameter. Again it is assumed that the func-
tions a(x),b(x), f (x, t),φ(x, t),ψ(t) and u0(x) are sufficiently smooth, bounded, and
independent of ε .
Class 3: Time dependent turning point model exhibiting twin boundary layers

Let Ω=(−1,1), Λ=(0,T ], D=Ω×Λ, Γb = {(x,0) :−1≤ x≤ 1}, Γl = {(−1, t) :
0≤ t ≤ T}, Γr = {(1, t) : 0≤ t ≤ T} and Γ = Γl ∪Γb∪Γr. We consider the following
singularly perturbed turning point BVP on the rectangular domain D.

Lεy(x, t)≡−yt + εyxx +a(x, t)yx−b(x, t)y = f (x, t), (x, t) ∈ D, (8.3a)

y(x,0) = y0(x), x ∈Ω, (8.3b)

y(−1, t) = φl(t), on Γl, (8.3c)

y(1, t) = φr(t), on Γr. (8.3d)
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In order to ensure the existence of twin boundary layers in the solution, the prob-
lem (8.3) is considered under following assumptions

a(0, t) = 0, ax(0, t)< 0, 0≤ t ≤ T, (8.4a)

|a(x, t)| ≥ α > 0, 0 < γ ≤ |x| ≤ 1, 0≤ t ≤ T, (8.4b)

b(x, t)≥ β > 0, (x, t) ∈ D. (8.4c)

To ensure that there is no other turning point in the region [−1,1] it is assumed
that

|ax(x, t)| ≥
|ax(0, t)|

2
, (x, t) ∈ D. (8.4d)

Class 4: Time-dependent multiple turning point model exhibiting single parabolic
boundary layer

Let Ω = (0,1), Λ = (0,T ], D = Ω ×Λ , with boundary Γ = Γl ∪Γb∪Γr, where
Γl = {(0, t) | 0 ≤ t ≤ T}, Γb = {(x,0) | 0 ≤ x ≤ 1} and Γr = {(1, t) | 0 ≤ t ≤ T} are
the left, bottom, and the right boundaries of D . We consider the following problem

Lψ(x, t)≡−ψt + εψxx +a(x, t)ψx−b(x, t)ψ = f (x, t), (x, t) ∈D , (8.5a)

ψ(x,0) = ψb(x), x ∈ Ω̄ , (8.5b)

ψ(0, t) = ψl(t) on Γl, (8.5c)

ψ(1, t) = ψr(t) on Γr, (8.5d)

where 0 < ε� 1 is a diffusion parameter. The following assumptions are made which
ensure that the problem (8.5) has a unique solution.

• The functions a(x, t), b(x, t), f (x, t) in D̄ and ψl(t), ψr(t), ψb(x) on Γ are
smooth enough and bounded.

• a(x, t) = a∗(x, t)xp, p≥ 1 where a∗(x, t) is smooth and satisfies a∗(x, t)≤ α <

0, (x, t) ∈ D̄ .

• b(x, t)≥ β > 0, (x, t) ∈ D̄ .

• The initial function satisfies the compatibility conditions.
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Class 5: Two parameter singularly perturbed parabolic model with two bound-
ary layers

Consider the rectangular domain R = Ω×Λ where Ω = (0,1), Λ = (0,T ]. The
boundary of the domain is Γ = Γl ∪Γb ∪Γr, where Γl = {(0, t) | 0 ≤ t ≤ T}, Γb =

{(x,0) | 0 ≤ x ≤ 1} and Γr = {(1, t) | 0 ≤ t ≤ T} are the left, bottom, and the
right boundaries of R. We consider the following two-parameter singularly perturbed
parabolic boundary value problem on the rectangular domain R

Lψ(x, t)≡−∂ψ

∂ t
+ ε1

∂ 2ψ

∂x2 + ε2a(x, t)
∂ψ

∂x
−b(x, t)ψ = f (x, t), (x, t) ∈ R,

(8.6a)

ψ(x,0) = ψb(x) on Γb, (8.6b)

ψ(0, t) = ψl(t) on Γl, (8.6c)

ψ(1, t) = ψr(t) on Γr, (8.6d)

where ε1, ε2 are two small parameters lying in (0,1].
Class 6: Two parameter singularly perturbed parabolic problems with discon-
tinuous convection term coefficient and source term

Consider the following two-parameter parabolic singularly perturbed boundary
value problem defined on D = Ω×Λ = (0,1)× (0,T ]

Lψ(x, t)≡−ψt + ε1ψxx + ε2a(x, t)ψx−b(x, t)ψ = f (x, t), (x, t) ∈ D−∪D+,

(8.7a)

ψ(0, t) = ψl(t) on Γl, ψ(1, t) = ψr(t) on Γr, (8.7b)

ψ(x,0) = ψb(x) on Γb, (8.7c)

where D− = Ω−×Λ, D+ = Ω+×Λ, Ω− = (0,e), Ω+ = (e,1), and e ∈Ω is the point
of discontinuity of a(x, t) and f (x, t). The boundary of the domain D is defined as
Γ = Γb ∪ Γl ∪ Γr, where Γl = {(0, t) | 0 ≤ t ≤ T}, Γr = {(1, t) | 0 ≤ t ≤ T} and
Γb = {(x,0) | 0 ≤ x ≤ 1}. Here 0 < ε1, ε2 � 1 are the diffusion and convection
parameters respectively.

The model problem 2 is parabolic reaction-diffusion type and all other model
problems are parabolic convection-diffusion type. It is well known that the classi-
cal numerical methods are unstable and fail to give the accurate results for singular
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perturbation problems. These type of problems have a narrow region where the so-
lution of a differential equation changes rapidly, called boundary layer, and width of
boundary layer approaches 0 as ε → 0. Therefore, it is important to develop numer-
ical methods for these problems, whose accuracy is independent of the perturbation
parameter ε . In this thesis, we have used fitted-mesh methods which use classical
schemes on specially designed meshes.

The main results and some important observations of this thesis are highlighted
below.

In Chapter 2, a uniformly convergent numerical scheme for a class of singularly
perturbed parabolic partial differential equation with the time delay (Class 1) on a
rectangular domain in the x-t plane is proposed and analyzed which is applicable for
delay that is either o(ε) or O(ε). This scheme involves a numerical method com-
prising the finite difference method consisting of a midpoint upwind finite difference
scheme on a fitted piecewise-uniform mesh condensing in the boundary layer region.
It is shown that the discrete solution obtained by this scheme is second-order accurate
in the temporal direction and the first-order (up to a logarithmic factor) accurate in the
spatial direction.

Then, in Chapter 3, Crank-Nicolson difference formula (on a uniform mesh) is
used in time to semi-discretize the given PDE, and then the standard finite difference
scheme (on a piecewise-uniform mesh) is used for the system of ordinary differen-
tial equations obtained in the semi-discretization for the case when the delay of unit
length is present in the spatial direction (Class 2) which is more challenging because
in addition to boundary layers, an interior layer occurs due to the delay term. The
solution of these type of problems, in general, exhibits twin boundary layers (due to
the presence of the perturbation parameter) and an interior layer (due to the presence
of the large delay parameter in the reaction term). It is found that the method is ε-
uniformly convergent of order two in the temporal direction and almost first-order in
the spatial direction.

In Chapter 4, we considered a time-dependent singularly perturbed turning point
differential equation of convection diffusion type (Class 3). To resolve the boundary, a
fitted-mesh is constructed and the cubic B-spline basis functions on this mesh are used
to discretize the given equation. Theoretical error bounds are given for the analytic
solution and its derivatives. We proved first-order accuracy in the temporal direction
and the second-order accuracy (up to a logarithm factor) in the spatial direction. In
Chapter 5, we have considered the case of multiple boundary turning point (Class 4)
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at left end point of the spatial direction. We have proposed Crank-Nicolson differ-
ence formula (on a uniform mesh) in time to semi-discretize the given PDE, and then
the standard finite difference scheme (on a piecewise-uniform mesh) is used for the
system of ordinary differential equations obtained in the semi-discretization. The pro-
posed scheme is proved to be parameter-uniform convergent of O((∆t)2 +N−1 lnN).

We have considered an important class of time-dependent two-parameter singu-
larly perturbed boundary value problems (Class 5) in Chapter 6. A parameter-uniform
implicit scheme is developed for two different cases: Case I. ε1/ε2

2 → 0 as ε2→ 0, and
Case II. ε2

2/ε1→ 0 as ε1→ 0. The finite difference scheme on a predefined Shishkin
mesh is used to discretize the system of ordinary differential equations in the spatial
direction obtained by means of the Crank-Nicolson scheme on an equidistant mesh in
the temporal direction. Through rigorous analysis, the theoretical results for two dif-
ferent cases are proved which show that the method is convergent irrespective to the
size of the parameters ε1,ε2. The order of accuracy in the first and second cases are
shown O((∆t)2+N−1(lnN)2) and O((∆t)2+N−2(lnN)2) respectively and efficiency
of the method is proved by several numerical experiments. Then, we have general-
ized this numerical scheme on the time-dependent singularly perturbed two-parameter
boundary value problems having discontinuous convection coefficient (Class 6) and
source term whose solution exhibits dual boundary layers and an interior layer for
both the cases.

8.2 Future Scope

Based on these approaches, one can extend the work in the following directions:

1. Following the approach of chapters (2 and 3), one can extend these works for
higher dimensional singularly perturbed differential-difference equations.

2. The work can be extended for solving non-linear singularly perturbed boundary
value problems.

3. The work can be extended for solving the system of singularly perturbed prob-
lems.


