
Chapter 3

A parameter uniform numerical method for the
singularly perturbed initial-interval boundary
value problems with unit space delay

3.1 Introduction

There are some articles that start to fill the numerics void have appeared in the lit-
erature (see Chapter 1), in which the finite differences on piecewise-uniform meshes
were used for the solution of SPDDEs. However, the main drawback of all these arti-
cles is the restriction of the study to the small shift arguments and so these articles are
based on Taylor series expansion approach. In fact, these methods work only when
the delay term is small and is of o(ε). Motivated by these works, in this chapter, we
initiate a numerical approach for the study of singularly perturbed time-dependent dif-
ferential equations which works for unit space delay and thus Taylor series expansion
is not required. One can see Chapter 1 for more real life applications of these type of
problems.

A parameter-uniform implicit scheme is constructed for a class of singularly per-
turbed parabolic reaction-diffusion initial-boundary value problems with unit space
delay. In general, the solution of these problems exhibit twin boundary layers and
an interior layer (due to the presence of the delay in the reaction term). Crank-
Nicolson difference formula (on a uniform mesh) is used in time to semi-discretize
the given PDE, and then the standard finite difference scheme (on a piecewise-uniform
mesh) is used for the system of ordinary differential equations obtained in the semi-
discretization. The convergence analysis shows that the method is ε-uniformly con-
vergent with order two in the temporal direction and almost first-order in the spatial
direction. Two test examples are encountered to show the efficiency of the method,
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validation of the computational results, and to confirm the predicted theory.
The chapter is designed as follows. Some preliminary and a priori estimates are

presented in Section 3.2 followed by the temporal semi-discretization in Section 3.3.
The full discretized scheme on a predefined Shishkin mesh is constructed in Section
3.4. The parameter-uniform convergence analysis of the proposed scheme is given in
Section 3.5. The applicability of the proposed method is demonstrated by considering
two test examples in Section 3.6. The last Section 3.7 is devoted to the concluding
remarks and the future scope.

3.2 The Continuous Problem: Preliminary and a Pri-
ori Estimates

Let T be a fixed positive real number. We consider the following SP-DDEs for PDEs
on D = Ω ×Λ = (0,2)× (0,T ]

Ly≡ yt(x, t)− εyxx(x, t)+ r(x)y(x, t)+ s(x)y(x−1, t) = ω(x, t), (3.1a)

with the initial condition

y(x,0) = y0(x), x ∈Ω , (3.1b)

and the interval-boundary conditions

y(x, t) = ϕ(x, t), (x, t) ∈DL, (3.1c)

y(2, t) = ψ(t), (x, t) ∈DR, (3.1d)

where 0 < ε � 1, DL = {(x, t) : −1 ≤ x ≤ 0; t ∈ Λ } and DR = {(2, t) : t ∈ Λ }. It
is assumed that the functions involved in (3.1) are smooth enough. Furthermore, it is
also assumed that for some positive constant α; r(x) and s(x) satisfy

r(x)+ s(x)≥ 2α > 0, and s(x)< 0, ∀x ∈Ω . (3.2)
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Since y is given on the interval [−1,0], so the equation (3.1a) is equivalent to the
following two equations

yt(x, t)− εyxx(x, t)+ r(x)y(x, t) = ω(x, t)− s(x)ϕ(x−1, t), (x, t) ∈ (0,1]×Λ ,

yt(x, t)− εyxx(x, t)+ r(x)y(x, t)+ s(x)y(x−1, t) = ω(x, t), (x, t) ∈ (1,2)×Λ .

If we let Ω1 = (0,1], Ω2 = (1,2), D1 = Ω1×Λ , D2 = Ω2×Λ and denote by y1

(respectively y2) the restriction of y to D1 (respectively D2), then the problem (3.1a)-
(3.1d) is equivalent to the following problem

(y1)t(x, t)− ε(y1)xx(x, t)+ r(x)y1(x, t) = ω(x, t)− s(x)ϕ(x−1, t), (x, t) ∈Ω1×Λ ,

(y2)t(x, t)− ε(y2)xx(x, t)+ r(x)y2(x, t)+ s(x)y2(x−1, t) = ω(x, t), (x, t) ∈Ω2×Λ ,

y1(x,0) = y0(x), x ∈Ω 1, y2(x,0) = y0(x), x ∈Ω 2,

y1(0, t) = ϕ(0, t), y2(2, t) = ψ(t),

y1(1, t) = y2(1, t), (y1)x(1, t) = (y2)x(1, t).

The limiting problem associated with above problem, as ε → 0, is

(y0
1)t(x, t)+ r(x)(y0

1)(x, t) = ω(x, t)− s(x)ϕ(x−1, t), (x, t) ∈Ω1×Λ ,

(y0
2)t(x, t)+ r(x)(y0

2)(x, t)+ s(x)(y0
2)(x−1, t) = ω(x, t), (x, t) ∈Ω2×Λ .

Since y0
1, y0

2 need not necessarily satisfy the following conditions

y0
1(0, t) = ϕ(0, t), y0

2(2, t) = ψ(t), y0
1(1, t) = y0

2(1, t), (y
0
1)x(1, t) = (y0

2)x(1, t),

so, in general, the solution y exhibits twin boundary layers (one at each end of the
interval) and an interior layer at x = 1. It is assumed that the initial function y0(x)

satisfies the compatibility conditions which together with the Hölder continuity of the
data confirm the existence and uniqueness of the solution of (3.1a)-(3.1d). Moreover,
the compatibility conditions ensure the existence of the following estimates

|y(x, t)− y(x,0)| ≤Ct,

whose proof can be seen in [26]. Let ∂D be the boundary of D consisting the left,
right and the bottom sides of D .
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Lemma 3.2.1. Let Φ ∈C2,1(D) be such that Φ(x, t) ≥ 0 on ∂D . Then LΦ(x, t) ≥ 0
in D implies Φ(x, t)≥ 0 in D .

Proof. Suppose Φ(x̂, t̂) = min
(x,t)∈D

Φ(x, t) < 0 for some (x̂, t̂) ∈ D . Then Φxx(x̂, t̂) ≥ 0

and Φt(x̂, t̂) = 0. Clearly by the given condition (x̂, t̂) does not lie on the boundary
∂D . Then, we consider the following two cases.
Case I. 0≤ x≤ 1.

LΦ(x̂, t̂) = Φt(x̂, t̂)− εΦxx(x̂, t̂)+ r(x̂)Φ(x̂, t̂)

=−εΦxx(x̂, t̂)+ r(x̂)Φ(x̂, t̂)< 0.

Case II. 1 < x≤ 2.

LΦ(x̂, t̂) = Φt(x̂, t̂)− εΦxx(x̂, t̂)+ r(x̂)Φ(x̂, t̂)+ s(x̂)Φ(x̂−1, t̂)

≤−εΦxx(x̂, t̂)+(r(x̂)+ s(x̂))Φ(x̂, t̂)< 0.

Thus, in both cases, we obtain a contradiction. Hence, the proof is completed.

The following result is an application of Lemma 3.2.1.

Lemma 3.2.2. The solution y of (3.1) satisfies the following stability estimate

‖y‖D ≤ ‖y‖∂D +
‖ω‖D

2α
.

Proof. The functions Π±(x, t)= ‖y‖∂D +
‖ω‖D

2α
±y(x, t) satisfy Π±(x,0)≥ 0, Π±(0, t)≥

0, and Π±(2, t)≥ 0. Also, for all (x, t) ∈D , we have

LΠ
±(x, t) = (r(x)+ s(x))

[
‖y‖∂D +

‖ω‖D
2α

]
±Ly(x, t)

≥ 2α

[
‖y‖∂D +

‖ω‖D
2α

]
±ω(x, t)

= 2α‖y‖∂D +‖ω‖D ±ω(x, t)

≥ 0.

Thus the result is obtained as a consequence of Lemma 3.2.1.

Under some assumptions, the solution of (3.1) and its first two time derivatives are
bounded and given by the following lemma.
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Lemma 3.2.3. Under the assumption y0(x) = ϕ(x, t) = ψ(t) = 0, the time derivatives

of the solution y of (3.1) are bounded i.e.,∣∣∣∣∂ iy
∂ t i

∣∣∣∣≤C, i = 0,1,2.

Proof. For the proof for i = 0 the readers are referred to [83]. The proof for i = 1 is as
follows. The assumption ϕ(x, t) = ψ(t) = 0 gives y = 0 along the left and right sides
of D and so yt = 0. Also, y0(x) = 0 gives y = 0 along the bottom line of D and so
yx = yxx = 0. Using (3.1a) which gives

yt(x,0)− εyxx(x,0)+ r(x)y(x,0)+ s(x)y(x−1,0) = ω(x,0),

and so

yt(x,0) = ω(x,0).

Thus,

|yt | ≤C on ∂D .

Now on differentiating (3.1a), we obtain

Lyt(x, t) = ωt(x, t),

which gives

|Lyt(x, t)| ≤C on D .

Finally, on applying Lemma 3.2.1, it yields

|yt(x, t)| ≤C on D .

Now for i = 2 along the left and right sides of D , we have ytt = 0 (as yt = 0 there).
Also, along the bottom side of D , we have y = yx = yxx = 0 (as y = 0 there). Now on
differentiating (3.1a), we get

ytt(x, t)− εyxxt(x, t)+ r(x)yt(x, t)+ s(x)yt(x−1, t) = ωt(x, t). (3.4)
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Since yt(x,0) = ω(x,0) (from i = 1 case), so yxxt(x,0) = ωxx(x,0). Also, by definition

yt(x−1,0) = lim
∆t→0

y(x−1,∆t)− y(x−1,0)
∆t

= 0.

Thus along t = 0, we get from (3.4)

ytt(x,0) = εωxx(x,0)− r(x)ω(x,0)+ωt(x,0),

which gives |ytt | ≤ C along t = 0. Therefore, |ytt | ≤ C on ∂D . Now differentiating
(3.1a) twice with respect to t to obtain

Lytt(x, t) = ωtt(x, t),

which yields

|Lytt(x, t)| ≤C on D .

Hence, the proof is completed by using Lemma 3.2.1.

3.3 Semi-discretization for time variable

Let M be a positive integer. The uniform mesh Ω M
t which is used in the time semi-

discretization is defined as

Ω
M
t = {t j = j∆t, j = 1,2, . . . ,M, ∆t = T/M}.

Using the Crank-Nicolson scheme on Ω M
t the discretized problem in the temporal

direction associated with the continuous problem (3.1) is given by

L u j+1(x) = g(x, t j+1), x ∈Ω , j = 0,1, . . . ,M−1, (3.5a)

with the initial and boundary conditions

u0(x) = y0(x), x ∈Ω , (3.5b)
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u j+1(x) = ϕ(x, t j+1), −1≤ x≤ 0, j = 0,1, . . . ,M−1, (3.5c)

u j+1(2) = ψ(t j+1), j = 0,1, . . . ,M−1, (3.5d)

where the discrete operator L is defined as

L u j+1(x) :≡−ε

2
(u j+1(x))xx +

p(x)
2

u j+1(x)+
s(x)

2
u j+1(x−1).

The functions p(x) and g(x, t j+1) are given by

p(x) =
r(x)∆t +2

∆t
,

g(x, t j+1) =
ε

2
(u j(x))xx +

q(x)
2

u j(x)− s(x)
2

u j(x−1)+
1
2
(ω(x, t j+1)+ω(x, t j)),

where q(x) = 2−r(x)∆t
∆t . Equation (3.5a) can be written as

Lku j+1(x) = gk(x, t j+1), k = 1,2, x ∈Ω , j = 0,1, . . . ,M−1,

where

L1u j+1(x) :≡− ε

2
(u j+1(x))xx +

p(x)
2

u j+1(x), x ∈Ω1,

L2u j+1(x) :≡− ε

2
(u j+1(x))xx +

p(x)
2

u j+1(x)+
s(x)

2
u j+1(x−1), x ∈Ω2,

and

g1(x, t j+1) =
ε

2
(u j(x))xx +

q(x)
2

u j(x)− s(x)
2

u j(x−1)+
1
2
(ω(x, t j+1)+ω(x, t j))

− s(x)
2

ϕ(x−1, t j+1), x ∈Ω1,

g2(x, t j+1) =
ε

2
(u j(x))xx +

q(x)
2

u j(x)− s(x)
2

u j(x−1)+
1
2
(ω(x, t j+1)+ω(x, t j)),

x ∈Ω2.

The operator L satisfies the following lemma which can be proved by splitting the
domain Ω in two parts Ω1 and Ω2.
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Lemma 3.3.1. For j = 0,1, . . . ,M− 1 assume Ψ j+1(0) ≥ 0 and Ψ j+1(2) ≥ 0. Then

L Ψ j+1(x)≥ 0∀x ∈Ω implies Ψ j+1(x)≥ 0∀x ∈Ω .

Proof. For contrary assume Ψ j+1(η) = min
x∈Ω

Ψ j+1(x) < 0 for some η ∈ Ω . Then

(Ψ j+1)xx(η)≥ 0 and (Ψ j+1)x(η) = 0. Now, consider the following two cases.

Case I. η ∈Ω1.

L Ψ
j+1(η) = L1Ψ

j+1(η) =−ε

2
(Ψ j+1)xx(η)+

p(η)

2
(Ψ j+1)(η)< 0.

Case II. η ∈Ω2.

L Ψ
j+1(η) = L2Ψ

j+1(η)

=−ε

2
(Ψ j+1)xx(η)+

p(η)

2
Ψ

j+1(η)+
s(η)

2
Ψ

j+1(η−1)

≤−ε

2
(Ψ j+1)xx(η)+

p(η)

2
Ψ

j+1(η)+
s(η)

2
Ψ

j+1(η)

=−ε

2
(Ψ j+1)xx(η)+

(
r(η)

2
+

1
∆t

)
Ψ

j+1(η)+
s(η)

2
Ψ

j+1(η)

=−ε

2
(Ψ j+1)xx(η)+

(
r(η)+ s(η)

2

)
Ψ

j+1(η)+
1
∆t

Ψ
j+1(η)

≤−ε

2
(Ψ j+1)xx(η)+αΨ

j+1(η)+
1
∆t

Ψ
j+1(η)

< 0.

It follows the required result.

An application of the above lemma is the following uniform stability estimate.

Lemma 3.3.2. The solution u j+1(x) of (3.5) satisfies

‖u j+1‖
Ω
≤max

{
|u j+1(0)|, |u j+1(2)|, ∆t

α∆t +1
‖g‖

Ω

}
.

Proof. The proof can be done by considering Ω1 and Ω2 separately.

Case I. x ∈Ω1. Define the comparison functions

ζ
±(x, t j+1) = max

{
|u j+1(0)|, ∆t

α∆t +1
‖g1‖Ω 1

}
±u j+1(x).
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Then it is easy to check ζ±(0, t j+1)≥ 0. Also,

L ζ
±(x, t j+1) = L1ζ

±(x, t j+1)

=
p(x)

2
max

{
|u j+1(0)|, ∆t

α∆t +1
‖g1‖Ω 1

}
±L1u j+1(x)

=
p(x)

2
max

{
|u j+1(0)|, ∆t

α∆t +1
‖g1‖Ω 1

}
±g1

≥ p(x)∆t
2(α∆t +1)

‖g1‖Ω 1
±g1

=
r∆t +2

∆t
.

∆t
2(α∆t +1)

‖g1‖Ω 1
±g1

≥ (r(x)+ s(x))∆t +2
2(α∆t +1)

‖g1‖Ω 1
±g1

≥ 2α∆t +2
2(α∆t +1)

‖g1‖Ω 1
±g1

= ‖g1‖Ω 1
±g1

≥ 0.

Case II. x ∈Ω2. Define the comparison functions

ζ
±(x, t j+1) = max

{
|u j+1(2)|, ∆t

α∆t +1
‖g2‖Ω 2

}
±u j+1(x).

Then it is easy to check ζ±(2, t j+1)≥ 0. Also,

L ζ
±(x, t j+1) = L2ζ

±(x, t j+1)

=
p(x)+ s(x)

2
max

{
|u j+1(2)|, ∆t

α∆t +1
‖g2‖Ω 2

}
±L2u j+1(x)

=

(
1
∆t

+
r(x)+ s(x)

2

)
max

{
|u j+1(2)|, ∆t

α∆t +1
‖g2‖Ω 2

}
±g2

≥
(

1
∆t

+α

)
max

{
|u j+1(2)|, ∆t

α∆t +1
‖g2‖Ω 2

}
±g2

≥ ‖g2‖Ω 2
±g2

≥ 0.

Therefore, the result follows by the maximum principle Lemma 3.3.1.

Let ũ(x) be the computed solution of (3.5). Then the local truncation error (LTE)
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e j+1 = u j+1(x)− ũ(x) for the temporal semi-discretization is estimated by the follow-
ing lemma.

Lemma 3.3.3. The LTE in the temporal direction at ( j+1)-th time level is estimated

as

‖e j+1‖ ≤C(∆t)3.

Proof. For the proof, the readers are referred to [119].

The global truncation error E j = y(x, t j)−u j(x) of the time semi-discretization is
the contribution of the local truncation error at each time step. The following estimate
for the global error can be easily deduced.

Lemma 3.3.4. The bound on E j is estimated as

‖E j‖ ≤C(∆t)2, j ≤ T/∆t.

The following theorem estimates the bounds on the derivatives of the solution
u j+1(x) of (3.5).

Theorem 3.3.1. The solution u j+1(x) and its first three derivatives satisfy the follow-

ing estimates∣∣∣∣dku j+1(x)
dxk

∣∣∣∣≤C
(

1+ ε
−k/2e1(x,α)

)
, x ∈Ω 1, k = 0,1,2,3,∣∣∣∣dku j+1(x)

dxk

∣∣∣∣≤C
(

1+ ε
−k/2e2(x,α)

)
, x ∈Ω 2, k = 0,1,2,3,

where

e1(x,α) = exp
(
−x
√

α/ε

)
+ exp

(
−(1− x)

√
α/ε

)
,

e2(x,α) = exp
(
−(x−1)

√
α/ε

)
+ exp

(
−(2− x)

√
α/ε

)
.

Proof. The proof can be done by following the approach given in [120].

As in the continuous case u j+1(x) can be written in its decomposition form as

u j+1(x) = v j+1(x)+w j+1(x),
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where v j+1(x) is the solution of the following differential equation in (0,1]

−ε

2
d2v j+1(x)

dx2 +
p(x)

2
v j+1(x) = g1(x, t j+1)−

s(x)
2

ϕ(x−1, t j+1),

v j+1(0) = v j+1
0 (0),

v j+1(1) = 2p(1)−1
(

g1(1, t j+1)−
s(1)

2
ϕ(0, t j+1)

)
,

while it is the solution of the following differential equation in (1,2)

−ε

2
d2v j+1(x)

dx2 +
p(x)

2
v j+1(x)+

s(x)
2

v j+1(x−1) = g2(x, t j+1),

v j+1(1) = 2p(1)−1
(

g2(1, t j+1)−
s(1)

2
v j+1

0 (0)
)
,

v j+1(2) = v j+1
0 (2),

where v j+1
0 (x) is the solution of associated reduced problem. On the other hand

w j+1(x) is the solution of

−ε

2
d2w j+1(x)

dx2 +
p(x)

2
w j+1(x) = 0, x ∈ (0,1],

−ε

2
d2w j+1(x)

dx2 +
p(x)

2
w j+1(x)+

s(x)
2

w j+1(x−1) = 0, x ∈ (1,2),

w j+1(0) = u j+1(0)− v j+1(0),

w j+1(2) = u j+1(2)− v j+1(2).

Lemma 3.3.5. The first three derivatives of v j+1(x) and w j+1(x) satisfy the following

estimates

∣∣∣∣dkv j+1(x)
dxk

∣∣∣∣≤C


(

1+ ε−(k−2)/2e1(x,α)
)
, x ∈Ω 1, k = 0,1,2,3,(

1+ ε−(k−2)/2e2(x,α)
)
, x ∈Ω 2, k = 0,1,2,3,

∣∣∣∣dkw j+1(x)
dxk

∣∣∣∣≤C


ε−k/2e1(x,α), x ∈Ω 1, k = 0,1,2,3,

ε−k/2e2(x,α), x ∈Ω 2, k = 0,1,2,3.

Proof. For the proof of the lemma, the readers are referred to [120–122].
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3.4 The Spatial Discretization

The piecewise-uniform mesh having N (≥ 8) mesh elements on [0,2] is generated by
dividing the first half interval [0,1] into three subintervals as

[0,1] = [0,τ]∪ (τ,1− τ]∪ (1− τ,1],

where the transition parameter τ separates the non-uniform mesh into uniform meshes
and is given by

τ = min
{

1/4,
√

ε/α ln(N/2)
}
.

To obtain a piecewise-uniform mesh, we place N/4 mesh elements in (τ,1− τ] and
N/8 mesh elements in each of the subintervals [0,τ] and (1− τ,1]. Hence, the
piecewise-uniform mesh is given by

xi =

0, i = 0

xi−1 +hi, i = 1, . . . ,N/2,

where hi’s are given by

hi = xi− xi−1 =


8τ/N, i = 1,2, . . . ,N/8,

4(1−2τ)/N, i = N/8+1, . . . ,3N/8,

8τ/N, i = 3N/8+1, . . . ,N/2.

Similarly, the second half interval (1,2] is also divided into three subintervals as

(1,2] = (1,1+ τ]∪ (1+ τ,2− τ]∪ (2− τ,2].

The nodal points are then given by

xi = xi−1 +hi, i = N/2+1, . . . ,N,
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where hi’s are given by

hi = xi− xi−1 =


8τ/N, i = N/2+1, . . . ,5N/8,

4(1−2τ)/N, i = 5N/8+1, . . . ,7N/8,

8τ/N, i = 7N/8+1, . . . ,N.

Thus, we obtain a piecewise-uniform mesh Ω N = {xi}N
i=0. We define Ω N

1 = {xi}N/2
i=0

and Ω N
2 = {xi}N

i=N/2+1 so that Ω N = Ω N
1 ∪Ω N

2 . Following difference formulae are
used to discretize the problem (3.5)

D+
x u j+1(x) =

u j+1
i+1 −u j+1

i

hi+1
,

D−x u j+1(x) =
u j+1

i −u j+1
i−1

hi
,

D+
x D−x u j+1(x) = 2

(D+
x −D−x )u

j+1
i

hi +hi+1
.

Then, the problem (3.5) is discretized as

L Nu j+1
i = g(xi, t j+1), i = 1,2, . . . ,N−1, (3.6a)

with the initial condition

u0
i = y0(xi), i = 0,1, . . . ,N, (3.6b)

and the interval-boundary conditions

u j+1
i =ϕ(xi, t j+1), u j+1

N =ψ(t j+1), i=−N/2,−N/2+1, . . . ,0, j = 0,1, . . . ,M−1.

(3.6c)

The discrete operator L N is defined as

L Nu j+1
i =


L N

1 u j+1
i :≡− ε

2D+
x D−x u j+1

i + pi
2 u j+1

i , i = 1,2 . . . ,N/2,

L N
2 u j+1

i :≡− ε

2D+
x D−x u j+1

i + pi
2 u j+1

i + si
2 u j+1

i−N/2, i = N/2+1, . . . ,N−1,

(3.7)
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and pi = p(xi), si = s(xi), etc. The operator L N satisfies the following discrete max-
imum principle.

Lemma 3.4.1. Assume Ψ
j+1
0 ≥ 0 and Ψ

j+1
N ≥ 0, j = 0,1, . . . ,M−1. Then L NΨ

j+1
i ≥

0, ∀ i = 1,2, . . . ,N−1 implies Ψ
j+1
i ≥ 0, ∀ i = 0,1, . . . ,N.

Proof. For contrary suppose Ψ
j+1
k = min

i=0,1,...,N
Ψ

j+1
i < 0 for some index k. We consider

the following two cases:
Case I. i = 1,2, . . . ,N/2.

L N
Ψ

j+1
k = L N

1 Ψ
j+1
k

=−ε

2
D+

x D−x Ψ
j+1
k +

pk

2
Ψ

j+1
k

=−ε
(D+

x −D−x )Ψ
j+1
k

hk +hk+1
+

pk

2
Ψ

j+1
k

=−ε

Ψ
j+1
k+1−Ψ

j+1
k

hk+1
− Ψ

j+1
k −Ψ

j+1
k−1

hk

hk +hk+1
+

pk

2
Ψ

j+1
k

< 0.

Case II. i = N/2+1,N/2+2, . . . ,N−1

L N
Ψ

j+1
k = L N

2 Ψ
j+1
k

=−ε

2
D+

x D−x Ψ
j+1
k +

pk

2
Ψ

j+1
k +

sk

2
Ψ

j+1
k−N/2

≤−ε

2
D+

x D−x Ψ
j+1
k +

pk

2
Ψ

j+1
k +

sk

2
Ψ

j+1
k

=−ε

2
D+

x D−x Ψ
j+1
k +

(
rk

2
+

1
∆t

)
Ψ

j+1
k +

sk

2
Ψ

j+1
k

=−ε

2
D+

x D−x Ψ
j+1
k +

(
rk + sk

2

)
Ψ

j+1
k +

1
∆t

Ψ
j+1
k

≤−ε
(D+

x −D−x )Ψ
j+1
k

hk +hk+1
+αΨ

j+1
k +

1
∆t

Ψ
j+1
k

< 0.

Hence the proof is completed.

The following stability estimate is an immediate consequence of the above maxi-
mum principle.
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Lemma 3.4.2. Let Ψ
j+1
i , i = 0,1, . . . ,N be any mesh function. Then

|Ψ j+1
i | ≤max

{
|Ψ j+1

0 |, |Ψ j+1
N |, ∆t

α∆t +1
‖L N

Ψ
j+1
i ‖

}
.

Proof. Consider two different cases.

Case I. i = 1, . . . ,N/2. Consider the barrier functions

(ξ
j+1

i )± = max
{
|Ψ j+1

0 |, ∆t
α∆t +1

‖L N
1 Ψ

j+1
i ‖

}
±Ψ

j+1
i .

Then, clearly (ξ
j+1

0 )± is non-negative. Also,

L N
1 (ξ

j+1
i )± =

pi

2
max

{
|Ψ j+1

0 |, ∆t
α∆t +1

‖L N
1 Ψ

j+1
i ‖

}
±L N

1 Ψ
j+1
i

=
pi

2
max

{
|Ψ j+1

0 |, ∆t
α∆t +1

‖g1‖
}
±g1

≥ pi∆t
2(α∆t +1)

‖g1‖±g1

=
ri∆t +2

∆t
.

∆t
2(α∆t +1)

‖g1‖±g1

≥ (ri + si)∆t +2
2(α∆t +1)

‖g1‖±g1

≥ 2α∆t +2
2(α∆t +1)

‖g1‖±g1

= ‖g1‖±g1

≥ 0.

Case II. i = N/2+1,N/2+2, . . . ,N−1. Consider the barrier functions

(ξ
j+1

i )± = max
{
|Ψ j+1

N |, ∆t
α∆t +1

‖L N
2 Ψ

j+1
i ‖

}
±Ψ

j+1
i .
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Then, clearly (ξ
j+1

N )± is non-negative. Also,

L N
2 (ξ

j+1
i )± =

pi + si

2
max

{
|Ψ j+1

N |, ∆t
α∆t +1

‖g2‖
}
±L N

2 Ψ
j+1
i

=

(
1
∆t

+
ri + si

2

)
max

{
|Ψ j+1

N |, ∆t
α∆t +1

‖g2‖
}
±g2

≥
(

1
∆t

+α

)
max

{
|Ψ j+1

N |, ∆t
α∆t +1

‖g2‖
}
±g2

≥ ‖g2‖±g2

≥ 0.

Thus the result is obtained by applying the discrete maximum principle.

3.5 Parameter Uniform Convergence Analysis

In this section, the parameter-uniform error will be estimated by decomposing the
solution u j+1

i into the smooth and singular components as

u j+1
i = v j+1

i +w j+1
i ,

where v j+1
i is the solution of

L Nv j+1
i = g1, i = 1,2, . . . ,N/2−1,

v j+1
0 = v j+1(0), v j+1

N/2−1 = v j+1(1−),

L Nv j+1
i = g2, i = N/2+1, . . . ,N−1,

v j+1
N/2+1 = v j+1(1+), v j+1

N = v j+1(2),

and w j+1
i is the solution of

L Nw j+1
i = 0, i = 1,2, . . . ,N−1,

w j+1
0 = w j+1(0), w j+1

N = w j+1(2).

The error estimate between the solution of the semi-discretized problem and the so-
lution of full discretized problem (at ( j + 1)th time level) is given by the following
theorem.
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Theorem 3.5.1. The maximum absolute error between u j+1(x), the solution of the

problem (3.5), and u j+1
i the solution of the problem (3.6) is given by

|u j+1(xi)−u j+1
i | ≤CN−1 ln(N/2), i = 0,1, . . . ,N.

Proof. The result is proved by dividing the interval into two parts. For the proof in
the interval (0,1], the readers are referred to [122]. For the interval (1,2) the proof is
as follows. The nodal error given by

νi, j+1 = u j+1(xi)−u j+1
i =

(
v j+1(xi)− v j+1

i

)
+
(

w j+1(xi)−w j+1
i

)
,

will be estimated by estimating the errors in the smooth and singular components
separately. For i = N

2 +1, . . . ,N−1, using the classical argument we have

L N(v j+1
i − v j+1(xi)) =−

ε

2

(
D+

x D−x −
d2

dx2

)
v j+1(xi).

By using the result given in [123] it gives

|L N(v j+1
i − v j+1(xi))| ≤Cε(xi+1− xi−1)|v j+1(xi)|3, i =

N
2
+1, . . . ,N−1.

Since xi+1− xi−1 ≤ 4N−1 for all i, so by using Lemma 3.3.5 to estimate the value of
|v j+1(xi)|3, we obtain

|L N(v j+1
i − v j+1(xi))| ≤CN−1, i =

N
2
+1, . . . ,N−1.

An application of the maximum principle to the mesh function v j+1
i − v j+1(xi) gives

the following estimate

|v j+1
i − v j+1(xi)| ≤CN−1, i =

N
2
+1, . . . ,N−1. (3.8)

The error in the singular component of the solution will be estimated for τ = 1/4 and
τ =

√
ε/α ln(N/2) separately. In the former case we have

√
ε/α ln(N/2) ≥ 1

4 (as
the mesh is uniform) and so the classical argument yields

|L N(w j+1
i −w j+1(xi))| ≤Cε(xi+1− xi−1)|w j+1(xi)|3, i =

N
2
+1, . . . ,N−1.
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Again, the estimate for |w j+1(xi)|3 obtained in Lemma 3.3.5 gives

|L N(w j+1
i −w j+1(xi))| ≤CN−1

ε
−1/2, i =

N
2
+1, . . . ,N−1.

Also, since ε−1/2 ≤ 4√
α

ln(N/2), so

|L N(w j+1
i −w j+1(xi))| ≤CN−1 ln(N/2), i =

N
2
+1, . . . ,N−1.

Thus it gives

|w j+1
i −w j+1(xi)| ≤CN−1 ln(N/2), i =

N
2
+1, . . . ,N−1. (3.9)

In the latter case, in the subinterval [1+ τ,2− τ] the mesh spacing is 4(1−2τ)
N while in

(1,1+ τ] and [2− τ,2) it is 8τ

N . Depending on the mesh spacing, a different argument
is used for the bound of |w j+1

i −w j+1(xi)|. For xi lying in the subintervals (1,1+ τ]

and [2− τ,2), the classical argument gives

|L N(w j+1
i −w j+1(xi))| ≤Cε(xi+1− xi−1)|w j+1(xi)|3.

Since |w j+1(xi)|3 is bounded by Cε−3/2, therefore

|L N(w j+1
i −w j+1(xi))| ≤CN−1

τ/
√

ε.

Replacing the value of τ , it yields

|L N(w j+1
i −w j+1(xi))| ≤CN−1 ln(N/2). (3.10)

On the other hand, for xi ∈ [1+ τ,2− τ], the local truncation error for the singular
component is estimated as follows.

|L N(w j+1
i −w j+1(xi))| ≤Cε

∣∣∣∣(D+
x D−x −

d2

dx2

)
w j+1(xi)

∣∣∣∣ .
But |D+

x D−x w j+1(xi)| ≤maxx∈[xi−1,xi+1] |w
j+1(xi)|2, and so

|L N(w j+1
i −w j+1(xi))| ≤Cε max

x∈[xi−1,xi+1]
|w j+1(xi)|2. (3.11)
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Now we have

|w j+1(xi)|2 ≤Cε
−1

e−
√

α(xi−1−1)/
√

ε , if xi ≤ 3
2 ,

e−
√

α(2−xi)/
√

ε , if xi ≥ 3
2 .

In the case xi ≤ 3/2 if xi > 1 + τ then e−
√

α(xi−1−1)/
√

ε ≤ e−
√

ατ/
√

ε = (N/2)−1,
and if xi = 1+ τ , then e−

√
α(xi−1−1)/

√
ε = e−

√
α(τ− 8τ

N )/
√

ε = e− ln(N/2)e8N−1 ln(N/2) =

(N/2)−1
(
(N/2)1/N

)8
≤CN−1. Thus, it follows from (3.11)

|L N(w j+1
i −w j+1(xi))| ≤CN−1. (3.12)

The same result is obtained for the case of xi ≥ 3/2. Combining (3.10) and (3.12)
gives

|L N(w j+1
i −w j+1(xi))| ≤CN−1 ln(N/2), xi ∈ (1,2).

Thus we obtained the following error estimate to the singular component

|w j+1
i −w j+1(xi)| ≤CN−1 ln(N/2), i =

N
2
+1, . . . ,N−1. (3.13)

The proof is thus completed by combining (3.8) and (3.13) and using triangle inequal-
ity.

The error estimate for the solution of the continuous problem and the solution of
the fully discretized scheme is given by the following theorem.

Theorem 3.5.2. Let y(x, t) and u j+1
i are the solutions of the problem (3.1a)-(3.1d)

and (3.6a)-(3.6c), respectively. Then the error estimate is given by

sup
0<ε�1

max
i=0,1,...,N

max
j=0,1,...,M

|y(xi, t j+1)−u j+1
i | ≤C((∆t)2 +N−1 lnN/2).

Proof. The proof follows from Lemma 3.3.4 and Theorem 3.5.1.



76 Chapter 3. Numerical treatment of singularly perturbed problems

3.6 Numerical Illustrations

Two test problems whose solutions exhibit interior and boundary layers are encoun-
tered to verify the theoretical results estimated in the previous section. Since the
analytical/exact solutions of the problems considered are unknown, for a fixed ε , the
maximum pointwise absolute error is calculated as

eε
N,∆t = max

1≤i≤N−1

(
max

1≤ j≤M−1

∣∣∣U j
i −Ũ2 j

2i

∣∣∣) ,

where Ũ2 j
2i is the solution obtained by keeping the transition parameter fixed (same

as in the original mesh obtained by taking N points in the spatial direction and the
spacing ∆t in the temporal direction) and doubling the points in the spatial direction
and half spacing in the temporal direction. The following formula estimates the order
of convergence of the scheme

ρ
ε
N,∆t = ln2(eε

N,∆t/eε

2N,∆t/2).

The ε-uniform absolute error eN,∆t is calculated by taking the maximum over the
specific range of ε as

eN,∆t = max
ε=2−4,2−8,...,2−32

eε
N,∆t ,

and the ε-uniform order of convergence is determined as

ρN,∆t = ln2(eN,∆t/e2N,∆t/2).

Example 3.6.1. r(x) = 3, s(x) =−1, ω(x, t) = 1, y0(x) = 0, ϕ(x, t) = 0, ψ(t) = 0.

Example 3.6.2. r(x)= x+6, s(x)=−(x2+1), ω(x, t)= 3, y0(x)= 0, ϕ(x, t)= 0, ψ(t)=

0.
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Table 3.1: eε
N,∆t , eN,∆t , ρε

N,∆t and ρN,∆t for Example 3.6.1.

N

ε 18 36 72 144 288

2−4 3.56e-03 2.09e-03 1.36e-03 7.68e-04 4.06e-04

0.7684 0.6199 0.8244 0.9196

2−8 1.12e-02 7.01e-03 2.97e-03 9.94e-04 2.52e-04

0.6760 1.2390 1.5791 1.9798

2−12 1.12e-02 6.98e-03 2.97e-03 1.14e-03 3.90e-04

0.6822 1.2328 1.3814 1.5475

2−16 1.12e-02 6.98e-03 2.96e-03 1.14e-03 3.89e-04

0.6822 1.2376 1.3766 1.5512

2−20 1.12e-02 6.98e-03 2.96e-03 1.14e-03 3.89e-04

0.6822 1.2376 1.3766 1.5512
...

...
...

...
...

...

2−32 1.12e-02 6.98e-03 2.96e-03 1.14e-03 3.89e-04

0.6822 1.2376 1.3766 1.5512

eN,∆t 1.12e-02 7.01e-03 2.97e-03 1.14e-03 4.06e-04

ρN,∆t 0.6760 1.239 1.3814 1.4895
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Figure 3.1: Surface plots for Example 3.6.1 for (a) ε = 1 (b) ε = 2−4 (c) ε = 2−8 and (d)
ε = 2−12.
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Figure 3.2: Numerical solution for Example 3.6.1 at different time levels for (a) ε = 1 (b)
ε = 0.1 (c) ε = 0.01 and (d) ε = 0.001.



80 Chapter 3. Numerical treatment of singularly perturbed problems

0
1

0.5

0.8

1

A
b

s
o

lu
te

 E
r
r
o

r
s

×10-3

0.6

1.5

Temporal Direction

21.80.4 1.6

2

1.4

Spatial Direction

1.210.2 0.80.60.40.20 0

Figure 3.3: Absolute errors profile for Example 3.6.1 for ε = 0.01.
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Table 3.2: eε
N,∆t , eN,∆t , ρε

N,∆t and ρN,∆t for Example 3.6.2.

N

ε 18 36 72 144 288

2−4 1.28e-02 4.79e-03 3.50e-03 2.28e-03 1.24e-03

1.4180 0.4527 0.6183 0.8787

2−8 1.38e-02 1.09e-02 5.56e-03 2.10e-03 7.26e-04

0.3403 0.9712 1.4047 1.5323

2−12 1.36e-02 1.07e-02 5.47e-03 2.05e-03 7.28e-04

0.3460 0.9680 1.4159 1.4936

2−16 1.36e-02 1.07e-02 5.44e-03 2.04e-03 7.24e-04

0.3460 0.9759 1.4150 1.4945

2−20 1.36e-02 1.07e-02 5.44e-03 2.04e-03 7.22e-04

0.3460 0.9759 1.4150 1.4985
...

...
...

...
...

...

2−32 1.36e-02 1.07e-02 5.43e-03 2.04e-03 7.22e-04

0.3460 0.9786 1.4124 1.4985

eN,∆t 1.36e-02 1.09e-02 5.56e-03 2.28e-03 1.24e-03

ρN,∆t 0.3193 0.9712 1.2861 0.8787
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Figure 3.4: Surface plots for Example 3.6.2 for (a) ε = 1 (b) ε = 2−4 (c) ε = 2−8 (d)
ε = 2−12.
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Figure 3.5: Numerical solution for Example 3.6.2 at different time levels for (a) ε = 1 (b)
ε = 0.1 (c) ε = 0.01 and (d) ε = 0.001.
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Figure 3.6: Absolute errors profile for Example 3.6.2 for ε = 0.01.

From Tables 3.1 and 3.2, it can be observed that after a certain value of ε (= 2−20

for both problems) the maximum pointwise errors stabilized, which clearly indicates
the parameter-uniform convergence of the method. Also, it can be noted that these
results are in good agreement with the theoretical bounds given in Theorem 3.5.2.
These results are obtained by using ∆t = 1/N and taking α = 1 and 1.5, respectively.
To plot all graphs (Figures 3.1-3.6) we have used N = 72 and ∆t = 1/N. To observe
the change in the boundary layer width with respect to ε , and to show the physical
phenomenon of the solution the surface plots (Figures 3.1 and 3.4) have been plotted.
From these figures for small ε close to zero, twin boundary layers and an interior layer
can be seen in the solution. Also, it can be observed that the boundary/interior layers
width decrease as the parameter ε decreases. The solution behavior for different time
levels is also plotted (refer to Figures 3.2 and 3.5). The plots of estimated pointwise
absolute errors in the solutions are also plotted (Figures 3.3 and 3.6). Due to the
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abrupt change in the mesh width, from these figures, it can be seen that the absolute
pointwise error is large near the transition points as compared to the other part of the
given domain.

3.7 Conclusion

A robust unconditionally stable first-order implicit numerical scheme for the time-
dependent parabolic SP-PDEs whose solution exhibits an interior layer and twin bound-
ary layers is developed. Since the width of the boundary/interior layers depends on ε ,
the transition parameter τ should be defined carefully. The physical behavior of the
solutions to the given problems is plotted in Figures 3.1 and 3.4. It can be seen from
the graphs that the boundary layer width continuously depends on ε and it decreases as
ε decreases. Also, the numerical results presented in the tables are in good agreement
with the theoretical results and the proposed method is convergent irrespective of ε

and the convergence is as per the Theorem 3.5.2. The proposed difference scheme can
be implemented for the solution of higher dimensional delay problems and the system
of equations involving the delay parameter. In particular, for future consideration, the
authors shall consider the problems in two-dimensions.


