
Software Fault Trees and Software Failure Modes

and Effects Approaches for Preliminary Phases of

Object-Oriented Software Design

THESIS

Submitted in partial fulfilment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

by

PANKAJ VYAS

(2003PHXF013P)

Under the Supervision of

Prof. R.K. MITTAL

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI – 333 031 (RAJASTHAN), INDIA

November 2014

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI - 333 031 (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Software Fault Trees and

Software Failure Modes and Effects Approaches for Preliminary Phases

of Object-Oriented Software Design” submitted by PANKAJ VYAS,

ID.No. 2003PHXF013P for award of Ph.D. Degree of the institute,

embodies original work done by him under my supervision.

Date: _____________ Signature: ___________________

Prof. R K MITTAL

Senior Professor and Director (Special Projects)

BITS, Pilani (Rajasthan)

Dedicated

to my

Parents (Shri Ravi Dutt Sharma & Smt. Satya Rani)

Wife Mrs. Radhna,

Daughter Gayatri (Guddu)

 &

Son Ishaan (Kannu)

i

Acknowledgements

Several people have made significant contributions in the completion of this thesis and

who deserve special mention.

First of all I would like to thank my supervisor Prof. R K Mittal (Director, Special

Projects, BITS Pilani) for his valuable guidance, encouragement and moral support. It

has been a nice experience and a great pleasure to be associated with such a dynamic

multi-threaded personality. Besides providing me unflinching encouragement and

support in various ways, he has helped me in a great way to improve the quality of the

thesis and to enhance and nourish my intellectual growth.

Special thanks are due to Prof. B N Jain (Vice-chancellor, BITS-Pilani, Pilani Campus)

and Prof. G. Raghurama (Director, BITS-Pilani, Pilani Campus) for their constant support

and encouragement. I am also grateful to Prof. S C Sivasubramanian (Dean,

Administration & Chief, CAHU) and Prof. S K Verma (Dean, ARD) for their support.

A special word of appreciation is owed to my DAC members Dr. Yashwardhan Sharma

and Dr. N.L.Bhanu Murthy for providing the necessary aid and support on several

occasions.

I am greatly indebted to Prof. J P Misra (Chief, IPCU), Prof. S S Balahsubramaniam

(Dean, Academics & Resource Planning), Prof. Sudeept Mohan, Prof. Navneet

Goyal, Prof. Poonam Goyal, Prof. Mukesh Rohil and Dr. Virender Singh Shekhawat

for their guidance, constructive comments, and motivation. I thank them for their

willingness to share their knowledge with me, which was very fruitful in shaping my

ideas and research. Collective and individual acknowledgements are due to all

mycolleagues who have directly or indirectly helped me in my work.

I would also like to thank Mr. Santosh Kumar Saini (Academic Registration &

Counseling Division) BITS-Pilani, for his help in compilation of thesis. I also express

my thanks to all the staff members of Computer Assisted & Housekeeping Unit (CAHU)

and Academic Registration & Counseling Division (ARCD) for their kind support and

cooperation towards the completion of my thesis.

Acknowledgements

ii

Many thanks are due to all my friends for their continuous support and guidance. I thank

everybody who was important to the successful realization of this thesis, as well as

express my apology that I could not mention personally one by one.

Words fail to express my gratitude to my parents, wife Radhna, daughter Gayatri and son

Ishaan, who cheerfully sacrificed the time, which rightfully belonged to them to enable

me to complete this study. Without their support, love, care and prayers, this thesis

would not have taken this shape.

Finally, I would like to thank God for always guiding me.

PANKAJ VYAS

iii

Abstract

Software plays a dominant role in safety-critical applications to control and monitor their

critical activities. Software safety encapsulates the aspects of software engineering and

software assurance that provide a systematic approach to identifying, analyzing, tracking,

mitigating, and controlling hazards and hazardous functions of a system where software

may contribute either to the hazard or to its mitigation or control, to ensure safe

operation of the system (NASA-STD-8719.13C, 2013). The role of software safety is to

make sure that software operates within the defined system context and may not cause

any unacceptable risk. Software safety analysis is the process of first identifying the

potential hazardous states of the system and then providing the mitigation means for the

sources of the identified hazards. Two software safety approaches namely Software Fault

Tree Analysis (SFTA) (Leveson, 1983a)and Software Failure Modes and Effects

Analysis (SFMEA) (Reifer, 1979) are the recommended approaches (NASA-GB-

8719.13, 2004) for the analysis of software-induced hazards in the system. SFTA is

adapted in software domain by borrowing the features of a hardware safety approach

namely Fault Tree Analysis (FTA) (Vesely et al, 1981). Similarly, Software Failure

Modes and Effects Analysis (SFMEA) approach is adapted for software by borrowing

the features of one another hardware, safety approach, namely Failure Modes and Effects

Analysis (FMEA) (MIL-STD-1629A, 1980).

SFTA is a deductive, backward (or top-down) safety analysis approach to the analysis of

software induced critical hazards in the system. SFTA approach is backward or top-down

in nature because its application starts by first identifying the critical hazardous-state that

a system can encounter and then identifying the erroneous events responsible for the

occurrence of the identified hazard-state. On the other hand, SFMEA is inductive,

forward (or bottom-up) software safety analysis approach and its application first

identifies the basic software-related errors that can occur in the system and then

investigates the critical effects of these identified errors on the system.

Both SFTA and SFMEA approaches have been explored by researchers in three main

software lifecycle phases namely (i) Implementation or Coding, (ii) Requirements

Analysis and (iii) Software Design. The inception applications of SFTA and SFMEA

approaches are mostly manual, tedious and time-consuming and are directed mainly at

Abstract

iv

coding phase. However, later on, researchers are successful in making the applications of

both these approaches either as semi-automatic or automatic for certain select level of

high level languages. For example, Friedmann (Friedmann, 1993) introduced a tool that

automatically constructs a software fault-tree for a given Pascal program. Similarly,

Ordonio (Ordonio, 1993) introduced an Automated Code Translation Tool (ACTT) to

partially automate the software fault tree construction process for Ada programs. Reid

(Reid, 1994) and Winter (Winter, 1995) enhanced the features of the ACTT tool by

implementing the support for missing Ada structures especially concurrency and

exception handling mechanisms. Similarly, the application of SFMEA approach has been

automated for Java language (Snooke, 2004; Price and Snooke, 2008; Snooke and Price,

2011).

The current software development techniques are mostly object-oriented based. The

Unified Modeling Language (UML) (Booch et al, 2005) is the modeling standard for the

software systems developed using object-oriented techniques. The current focus of SFTA

and SFMEA research efforts is also directed towards their applications in UML based

object-oriented software development process. Various UML models are explored as

potential inputs in these application efforts. The objective of these efforts is to make the

applications of SFTA and SFMEA approaches as either automatic or semi-automatic.

But, these efforts, especially in object-oriented based requirements analysis and design

phases, are not successful. The applications of SFTA and SFMEA approaches are still

manual and time-consuming in object-oriented based requirements analysis and design

phases. This key research issue is addressed in this thesis.

This thesis presents the developed automated and semi-automated SFTA and SFMEA

approaches for object-oriented requirements analysis and design phases. The developed

SFTA and SFMEA approaches for object-oriented based requirements analysis phase,

take the Use-Case Models (UCM) and state diagrams as inputs. The developed SFTA

approach for object-oriented requirements analysis phase is automatic whereas the

SFMEA approach for object-oriented requirements analysis phase is semi-automatic.

The UML sequence and state diagrams are used as inputs in the developed SFTA and

SFMEA approaches in object-oriented design phase. The SFTA approach developed for

object-oriented design phase is semi-automatic whereas the SFMEA approach developed

for object-oriented design phase is automatic. Three software controlled safety-critical

case study applications namely (i) Elevator Control System (ECS) (Gomaa, 2005),

Abstract

v

(ii) Rail Track Door Control System (RTCS) (Medikonda and Ramaiah, 2010) and

(iii) Insulin Delivery System (IDS) (Sommerville, 2005) are used to demonstrate the

applications of the developed approaches. The assumptions, relative advantages and

limitations of each developed approach are also discussed.

In the final part of this thesis, a novel approach is presented to predict the software

reliability of a given use-case functionality during the requirements analysis phase itself.

The approach is based upon the applications of the developed SFMEA and SFTA

approaches for object-oriented based requirements analysis and design phases.

vi

Table of Contents

S.N. Description Page No.

Acknowledgements i-ii

Abstract iii-v

Table of contents vi-x

List of tables xi-xiii

List of figures xiv-xvi

List of abbreviations/symbols xvii

Chapter-1 Introduction 1-16

1.1 GAPS IN RESEARCH 4

1.2 THESIS ORGANIZATION 4

1.3 SOFTWARE FAULT TREE ANALYSIS 6

1.3.1 Qualitative Analysis 6

1.3.2 Quantitative Analysis 8

1.4 SOFTWARE FAILURE MODES AND EFFECTS ANALYSIS 8

1.5 MODELS USED IN UNIFIED MODELING LANGUAGE

(UML)
9

1.5.1 Use-Case Models 10

1.5.2 Sequence Diagrams 12

1.5.3 State Charts 15

Chapter-2 Literature Review 17-27

2.1 APPLICATIONS OF SFTA APPROACH 17

2.1.1 In Software Requirements Analysis Phase 17

2.1.2 In Software Design Phase 21

2.2 APPLICATIONS OF SFMEA APPROACH 23

2.2.1 In Software Requirements Analysis Phase 23

2.2.2 In Software Design Phase 25

2.3 RESEARCH GAPS 26

Table of Contents

vii

S.N. Description Page No.

Chapter-3 Software Fault Tree Analysis Approach in Use-

Case based Requirements Analysis Phase

28-74

3.1 PURPOSE OF THE PROPOSED SFTA APPROACH 28

3.2 ASSUMPTIONS FOR THE PROPOSED SFTA APPROACH 29

3.3 HAZARDOUS-STATE DEFINITION 29

3.4 OVERVIEW OF THE PROPOSED SFTA APPROACH 31

3.5 SFTA ALGORITHM 34

3.5.1 Step 1: Extracting Event Sequences for Various Scenarios 34

3.5.2 Step II: Identifying Event-Sequence-State-Transitions for

each Scenario

41

3.5.3 Step III: Identifying State-Transition-Errors for all

scenarios

43

3.5.4 Step IV: Generating Fault Tree XML File 46

3.5.5 Step V: Drawing Fault Tree From XML File 51

3.5.6 Salient Features and Time Complexity of the SFTA

Algorithm

51

3.5.7 Formatting of Inputs 52

3.6 MOTIVATING EXAMPLE 1:REQUEST ELEVATOR USE-

CASE OF AN ELEVATOR CONTROL SYSTEM (ECS)

APPLICATION

54

3.7 MOTIVATING EXAMPLE 2: RAILWAY TRACK DOOR

CONTROL SYSTEM APPLICATION

67

3.8 VALIDATION OF THE ALGORITHM 72

3.9 COMPARATIVE ANALYSIS 74

Chapter-4 Software Failure Modes and Effects Analysis

Approach in Use-Case Based Requirements

Analysis Phase

75-100

4.1 PURPOSE OF THE PROPOSED SFMEA APPROACH 75

4.2 ASSUMPTIONS FOR THE PROPOSED SFMEA

APPROACH

76

4.3 OVERVIEW OF THE PROPOSED SFMEA APPROACH 76

4.4 SFMEA ALGORITHM 78

 4.4.1 Step I: Extracting Event-Sequences for each Scenario 78

 4.4.2 Step II: Identifying Event-Sequence-State-Transitions

For Each Scenario

79

Table of Contents

viii

S.N. Description Page No.

 4.4.3 Step III: Identifying ‘Event-Errors’ for all Scenarios 79

 4.4.4 Step IV: Performing ‘Event-Errors-Effects-Analysis’ of

each Scenario

82

 4.4.5 Time Complexity of the SFMEA Algorithm 84

4.5 APPLICATION OF SFMEA ALGORITHM TO SAFETY-

CRITICAL SOFTWARE SYSTEMS

85

 4.5.1 Motivating Example 1: Insulin Delivery System 85

 4.5.2 Motivating Example 2: Railway Track Door Control

System (RTCS)

95

 4.5.3 Analysis of Results 97

4.6 COMPARISON OF SFTA AND SFMEA APPROACHES 98

Chapter-5 Software Fault Tree Analysis Approach for

Object-Oriented Design Phase

101-131

 5.1 OBJECT-ORIENTED DESIGN PROCESS 101

 5.2 OBJECTIVE OF THE PROPOSED SFTA APPROACH 102

 5.3 ASSUMPTIONS FOR THE PROPOSED APPROACH 102

 5.4 OVERVIEW OF THE PROPOSED SFTA ALGORITHM 103

 5.5 THE PROPOSED SFTA ALGORITHM 106

 5.5.1 Step I: Extracting Attributes of each Message from a

Scenario Sequence Diagram

106

 5.5.2 Step III: Generating Fault Tree XML File for Selected

Hazardous-State

106

 5.5.3 Step III: Generating Fault Tree XML File for Selected

Hazardous-State

108

 5.5.4 Step IV: Constructing Fault Tree 111

 5.5.5 Time Complexity of the SFTA Algorithm 111

 5.5.6 Formatting of Inputs 112

5.6 APPLICATION OF THE ALGORITHM IN SAFETY-

CRITICAL APPLICATION: ELEVATOR CONTROL SYSTEM

114

 5.6.1 Dispatch Elevator Scenario 114

 5.6.2 Stop Elevator Scenario 122

 5.6.3 Analysis of Results 129

5.7 COMPARATIVE ANALYSIS 130

Table of Contents

ix

S.N. Description Page No.

Chapter-6 Software Failure Modes and Effects Analysis in

Object-Oriented Design Phase

132-181

 6.1 MOTIVATION FOR SFMEA IN OBJECT-ORIENTED

DESIGN PHASE

132

 6.2 OVERVIEW OF THE APPROACH 133

 6.3 THE PROPOSED SFMEA ALGORITHM 136

 6.3.1 Step I: Generating Pseudo Code Form of Sequence

Diagram and Extracting Message-Details

137

 6.3.2 Step II: Extracting Message-Sequence for each Scenario 143

 6.3.3 Step III: Identifying ‘Event-Sequence-State-Transitions’

for each Scenario

147

 6.3.4 Perform Message-Errors-Effects-Analysis For Each

‘Event-Sequence-State-Transitions’

152

 6.3.5 Time complexity of the Algorithm 161

 6.3.6 Sequence and State Diagram Representations 162

 6.4 APPLICATION OF SFMEA ALGORITHM TO SAFETY-

CRITICAL SOFTWARE SYSTEMS

163

 6.4.1 Motivating Example I: Railway Track Door Control

System (RTCS)

163

 6.4.2 Motivation Example II: Insulin Delivery System (IDS) 171

 6.4.3 Analysis of Results 180

 6.5 COMPARATIVE ANALYSIS 181

Chapter-7 Software Reliability Prediction for Use-Cases 182-196

7.1 EARLY SOFTWARE RELIABILITY ESTIMATION

APPROACHES

182

7.2 PROPOSED SOFTWARE RELIABILITY ESTIMATION

APPROACH FOR USE-CASES

184

 7.2.1 Assumptions 184

 7.2.2 Operational Profile of a Use-Case 184

 7.2.3 The Proposed Reliability Estimation Approach for Use Cases 185

7.3 MOTIVATING EXAMPLE 1: INSULIN DELIVERY SYSTEM 187

7.4 MOTIVATING EXAMPLE 2: RAIL TRACK DOOR CONTROL

SYSTEM

193

7.5 ANALYSIS OF RESULTS 195

7.6 SOFTWARE RELIABILITY PREDICTION AT OBJECT-

ORIENTED DESIGN PHASE

196

Table of Contents

x

S.N. Description Page No.

Chapter-8 Conclusion and Future Research Directions 197-201

8.1 PROPOSED SFTA AND SFMEA APPROACHES -

SUMMARY

197

8.2 FUTURE RESEARCH DIRECTIONS AND

RECOMMENDATIONS

199

References

Appendices (Appendix I to Appendix VIII)

List of publications

Brief biography of the candidate

Brief biography of the supervisor

xi

 List of Tables

Table

No.
TITLE

Page

No.

1.1 Symbols used for Fault Tree Events and Logic Gates 7

1.2 SFMEA Worksheet 9

1.3 A Sample Use Case Realization Template 11

2.1 Summary of SFTA Applications at Requirements Analysis Phase 20

2.2 Summary of SFTA Applications at Design Phase 22

2.3 Summary of SFMEA Applications at Requirements Analysis Phase 24

2.4 Summary of SFMEA Applications at Software Design Phase 26

3.1 Hazardous-State Examples 30

3.2 Structure of Event-Sequence Table 31

3.3 Structure of Event-Sequence-State-Transition 32

3.4 Structure of State-Transition-Error Table 32

3.5 Event-Details of ECS Application 56

3.6 Event-Sequence Table for Scenario 1 of Elevator Control System Application 58

3.7 Event-Sequence Table for Scenario 2 of Elevator Control System Application 58

3.8 Event-Sequence Table for Scenario 3 of Elevator Control System Application 59

3.9 Event-Sequence Table for Scenario 4 of Elevator Control System Application 59

3.10 Event-Sequence Table for Scenario 5 of Elevator Control System Application 59

3.11 Event-Sequence Table for Scenario 6 of Elevator Control System Application 60

3.12 Event-Sequence Table for Scenario 7 of Elevator Control System Application 60

3.13 Event-Sequence-State-Transition Table for Scenario 1 62

3.14 Event-Sequence-State-Transition Table for Scenario 62

3.15 Event-Sequence-State-Transition Table for Scenario 3 63

3.16 Event-Sequence-State-Transition Table for Scenario 4 63

3.17 Event-Sequence-State-Transition Table for Scenario 5 63

3.18 Event-Sequence-State-Transition Table for Scenario 6 64

3.19 Event-Sequence-State-Transition Table for Scenario 7 64

3.20 State-Transition-Error Table for Elevator Control Application 64

3.21 Event-Details of RTCS Application 68

3.22 Event-Sequence table for Scenario 1 69

3.23 Event-Sequence table for Scenario 2 69

3.24 Event-Sequence-State-Transition table for Scenario 1 70

3.25 Event-Sequence-State-Transition table for Scenario 2 70

3.26 State-Transition-Error Table 71

List of Tables

xii

Table

No.
TITLE

Page

No.

4.1 Structure of Event-Errors 77

4.2 Structure of ‘Event-Errors-Effects-Analysis’ 77

4.3 Event-Errors For Scenario 1 and Scenario 2 81

4.4 Event-Errors-Effects-Analysis Scenario 1 84

4.5 Event-Details Table For Insulin Delivery System 86

4.6 Event-Sequence Table for Scenario 1 of Insulin Delivery System 87

4.7 Event-Sequence Table for Scenario 2 of Insulin Delivery System 87

4.8 Event-Sequence-State-Transition Table for Scenario 1 89

4.9 Event-Sequence-State-Transition Table for Scenario 2 89

4.10 Event-Errors for Insulin Delivery System 90

4.11 Event-Errors-Effects-Analysis Table for Scenario 1 91

4.12 Event-Errors-Effects-Analysis Table for Scenario 2 94

4.13 Event-Errors Identified For RTCS Application 95

4.14 Event-Errors-Effects-Analysis For Scenario 1 96

4.15 Event-Errors-Effects-Analysis For Scenario 2 96

5.1 Attributes Extracted From Messages 104

5.2 Structure of ‘Event-Sequence-State-Transition’ Table 104

5.3 Message-Sequence Table Generated for Dispatch Elevator Scenario 116

5.4 Event-Sequence-State-Transition Table Generated for

Dispatch Elevator Scenario

119

5.5 Message-Sequence Table Generated for Stop Elevator Scenario 124

5.6 Event-Sequence-State-Transition Table Generated for

Stop Elevator Scenario

126

6.1 Various Attributes of a Message 133

6.2 Structure of Message-Sequence 134

6.3 Structure of Event-Sequence-State-Transition 134

6.4 Structure of Message-Errors-Effects-Analysis 135

6.5 Pseudo Code Forms of Various Interaction Operators 137

6.6 Message-Details Extracted from Sequence Diagram of Figure 6.2 142

List of Tables

xiii

Table

No.
TITLE

Page

No.

6.7 Message-Sequence For Scenario 1 147

6.8 Message-Sequence For Scenario 2 147

6.9 Classification of Message-Related Error Categories 152

6.10 Message-Errors-Effects-Analysis For Scenario 1 157

6.11 Message-Errors-Effects-Analysis For Scenario 2 158

6.12 Message-Details Created For Rail Track Door Controller Application 165

6.13 Message-Sequence For Scenario 1 of RTCS Application 166

6.14 Message-Sequence For Scenario 2 of RTCS Application 166

6.15 ‘Event-Sequence-State-Transitions’ for Scenario 1 of RTCS Application 168

6.16 ‘Event-Sequence-State-Transitions’ for Scenario 2 of RTCS Application 168

6.17 Message-Errors-Effects-Analysis For Scenario 1 of RTCS Application 169

6.18 Message-Errors-Effects-Analysis For Scenario 2 of RTCS Application 170

6.19 Message-Details Extracted For Insulin Delivery System 173

6.20 Message-Sequence For Scenario 1 of IDS Application 174

6.21 Message-Sequence For Scenario 2 of IDS Application 175

6.22 ‘Event-Sequence-State-Transitions’ for Scenario 1 of IDS Application 177

6.23 ‘Event-Sequence-State-Transitions’ for Scenario 2 of IDS Application 177

6.24 Message-Errors-Effects-Analysis For Scenario 1 of IDS Application 178

6.25 Message-Errors-Effects-Analysis For Scenario 2 of IDS Application 179

7.1 Assumed Probability of Occurrence of Event-Related Errors of IDS

Application

189

7.2 Probability of Occurrence of Event-Related Errors of RTCS Application 194

xiv

List of Figures

Figure

No.
TITLE

Page

No.

1.1 A Sample Fault Tree for Hazardous-state X 7

1.2 A Sample Use Case Model 10

1.3 A Sample Sequence Diagram 12

1.4 Sequence Diagram Example representing an ‘alt’ block 13

1.5 Sequence Diagram with an ‘opt’ block 14

1.6 Sequence Diagram with a ‘break’ block 14

1.7 Sequence Diagram with a ‘loop’ block 15

1.8 Sequence Diagram with a ‘loop’ block 16

1.9 A Simple UML State Diagram 16

1.10 UML State Diagram with Concurrent Sub-states 16

3.1 Overview of the Proposed SFTA Algorithm 33

3.2 An Example Use-Case Model 34

3.3 Use Case Description File For the ‘doOperation’ Use-Case of Figure 3.2 34

3.4 Operational Details of Step I(a) 36

3.5 Scenario Extraction (Step I(b)) for Use-Case Description of Figure 3.3 39

3.6 Scenario Extraction Process Illustration for Use-Case Description

Shown in (a)

40

3.7 State Diagrams for two Components X and Y 42

3.8 Event-Sequence-State-Transition Tables for Two Scenarios 42

3.9 Populating State-Transition-Error Table Generated From Tables of

Figure 3.8

45

3.10 Illustration of Software Fault Tree Construction Process 48

3.11 Use Case Description File for ‘Request Elevator’ Use-Case of

an ECS Application

55

3.12 Door State Diagrams for Elevator Control System Application 61

3.13 Motor State Diagrams for Elevator Control System Application 61

3.14 faulttree.xml file for Hazardous-State: Door!=closed AND

Motor=moving

65

List of Figures

xv

Figure

No.
TITLE

Page

No.

3.15 Fault Tree for Hazardous State Door! = closed AND Motor = moving 65

3.16 faulttree.xml file for Hazardous-State: Motor !=stopped AND

Door = opened

66

3.18 faulttree.xml file for Hazardous-State: Door=opened AND

Motor = moving

67

3.19 Fault Tree for Hazardous-State Door = opened AND Motor = moving 67

3.20 Use Case Description File for ‘Open Rail Track Door’ Use-Case of

RTCS Application

68

3.21 Input State Diagrams for Rail Track Door Control System Application 70

3.22 faulttree.xml file for Hazardous-State: Track_Door !=closed

AND Track_Signal = green

71

3.23 Fault Tree Generated For Hazardous-State Track_Door = closed

AND Track_Signal = green

72

4.1 Overview of the Proposed SFMEA approach 78

4.2 Use Case Description File for ‘Deliver Insulin’ Use-Case of IDS 86

4.3 State Diagrams for Insulin Delivery System 88

4.4 Mapping of Event-Related Errors and Erroneous State Level Effects

of RTCS

98

5.1 Overview of the Proposed SFTA Algorithm for Object-Oriented

Design Phase

105

5.2 A Sample Sequence Diagram using ‘alt’ block 113

5.3 Elevator Controller Sequence Diagram (Dispatch Elevator Scenario) 115

5.4 State Diagrams For Dispatch Elevator Scenario of ECS Application 117

5.5 faultree.xml File for Case 1 Hazardous-State Door((Device)) ! = closed

and Motor((Device)) = moving

120

5.6 Fault Tree Generated for Case 1 Hazardous-State Door((Device))! =

closed and Motor((Device)) = moving

120

5.7 faultree.xml File for Case 3 Hazardous-State Door((Device)) ! = closed

and Motor((Device)) != moving

121

5.8 Fault Tree generated for Case 3 Hazardous-State Door((Device)) ! =

closed and Motor((Device)) != moving

121

5.9 Sequence Diagram for Stop Elevator Scenario 123

List of Figures

xvi

Figure

No.
TITLE

Page

No.

5.10 State Diagrams for Stop Elevator Scenario 125

5.11 Fault Tree XML File for Case 1 Hazardous-State ‘Motor((Device))!=

stopped and Door((Device))=opened’

127

5.12 Fault Tree Generated for Case 1 Hazardous-State ‘Motor((Device))!=

stopped and Door((Device))=closed’

128

5.13 faultree.xml File for Case 2 Hazardous-State Motor((Device)) = stopped

and Door((Device)) != opened

128

5.14 Fault Tree Generated for Case 1 Hazardous-State Motor((Device)) =

stopped and Door((Device)) != closed

129

6.1 Overview of the Proposed SFMEA Approach 135

6.2 A Simple Sequence Diagram With Nested Numbering Scheme 136

6.3 Generating Pseudo Code Form From Sequence Diagram 139

6.4 Message-Sequence-Control-Flow-Graph Constructed For Pseudo Code

Description of Figure 6.3(b)

144

6.5 State Diagrams for the Participating Objects 149

6.6 Execution of Step III of The Proposed Approach For Scenario 1 150

6.7 Execution of Step III of The Proposed Approach For Scenario 2 151

6.8 Message Sequence Diagram For Rail Track Door Controller System 163

6.9 Pseudo Code Form of the Sequence Diagram of Figure 6.13 164

6.10 State Diagrams for Rail Track Door Controller Application 167

6.11 Sequence Diagram for Insulin Delivery Pump System 172

6.12 Pseudo Code Form of the Sequence Diagram of Figure 6.13 174

6.13 State Diagrams For The Participating Object of IDS System 176

7.1 An Example Use-Case Model 184

7.2 Fault Tree for Failure of Scenario 1 of IDS Application 191

7.3 Fault Tree for Failure of Scenario 2 of IDS Application 192

7.4 Fault Tree for Failure in Scenario 1 of RTCS Application 195

7.5 Fault Tree for Failure in Scenario 2 of RTCS Application 195

xvii

List of Abbreviations/Symbols

TERM DEFINITION

ACTT Automated Code Translation Tool

ATM Automated Teller Machine

BBS Brake-by Wire System

BDSA Bi-Directional Safety Analysis

CBUM Component-Based UML Model

CSDM Common Safety Description Model

CVA Commonality and Variability Analysis

DFTs Dynamic Fault Trees

ECS Elevator Control System

FFA Function Failure Analysis

FMEA Failure Modes and Effects Analysis

FTA Fault Tree Analysis

HazOp Hazard and Operability

IDS Insulin Delivery System

RTCS Rail Track Door Control System

SFMEA Software Failure Modes and Effects Analysis

SFTA Software Fault Tree Analysis

SRFT Software Requirement Fault Tree

SST Software Success Tree

UAV Unpiloted Aerial Vehicle

UCM Use Case Model

UCRT Use Case Realization Template

UML Unified Modeling Language

1

CHAPTER 1

Introduction

Software is being used extensively these days in controlling and monitoring the

functionalities of many safety-critical systems. Software has been employed in this role

to control and monitor the working of these systems in an unambiguous, hazard-free

and more reliable manner. However, the experience observed in the last three decades

is not up to the expectations of the software developers. For example, software induced

control errors have been found to be the main reasons behind the occurrence of two

famous catastrophic events such as Threac25 (Leveson, 1993) and Ariane5 (Lann,

1997) and more recent incidents are CryosatRocket failure (Cryosat_Rocket_Fault,

2005) and QantasFlight failure (Qantas_Flight_72, 2008).Moreover, simple searches

query ‘Software Related Failures’ on a search engine returns the links of many more

similar examples. Hence, improving the quality of safety-critical software - particularly

enhancing its software safety (Leveson and Harvey, 1984, 1986) aspect, has become a

prime concern for software developers of safety-critical system.

The role of software safety is to make sure that software will operate within the defined

system context and will not cause any unacceptable risk. Software safety aspect of the

system is generally improved and enhanced by employing two types of software failure

analysis methods. The first method starts the software failure analysis process by first

identifying the various software related errors that can occur in the system during

operation and then investigating the catastrophic effects (hazardous-states) that may be

caused because of those errors (if the errors go undetected and without any safeguards)

on the system. On the other hand, the second method starts the analysis by first

identifying the critical hazardous-states that a system can encounter and then finding

out the software related errors responsible for the occurrence of these hazardous-states.

The first form of safety analysis is known as a forward-safety analysis (bottom-up

i.e. errors to hazard analysis) whereas the second form is known as backward-safety

analysis (top-down i.e. hazard to error analysis).

Over the years, researchers are applying traditional well-tested, well-documented and

standardized hardware safety analysis and reliability estimation techniques to software.

Introduction

2

Software Fault Tree Analysis (SFTA – a Top Down or backward safety analysis)

(Taylor, 1982; Leveson and Harvey, 1983a,1983b) and Software Failure Modes and

Effects Analysis (SFMEA- Bottom up or forward safety analysis) (Reifer,1979;

Georgieva, 2010; Stadler and Seidl,2013) are such techniques adapted from the hardware

domain for the analysis of software related erroneous events. SFTA is an extension of a

hardware safety analysis technique named Fault Tree Analysis (FTA) (Vesely et al,

1981) to software. Similarly, SFMEA is an extension of hardware safety analysis

approach named Failure Modes Effects Analysis (FMEA) (MIL-STD-1629A,1980) to

software. The applications of these approaches are complementary in nature because of

their backward and forward analysis methods and when used together they generally

augment the results obtained by the application of the other approach. For example, the

application of SFMEA can help to identify the effects of the software related errors,

which have been missed during the application of SFTA approach. Similarly, the

application of SFTA can help to identify the basic software errors, which may have been

missed during the application of SFMEA approach. National Aeronautics and Space

Administration (NASA) recommend to apply both these approaches (NASA-GB-

8719.13, 2004), especially in three phases, namely requirements analysis, software

design and coding/implementation phases of software life cycle in order to improve the

overall robustness of the system.

Over the years, the researchers have either explored the effective strengths of both SFTA

and SFMEA approaches, via standalone or integrated applications, in almost every phase

of software life cycle. The current focus of both, SFTA and SFMEA research efforts, have

been directed towards their integrated application in the early phases of software

development lifecycle namely requirements analysis and design phases of object-oriented

software development process. Object-oriented techniques and their associated industry

modeling standard Unified Modeling Language (UML) (Booch et al, 2005), have

revolutionized the software development process and their use has even started for

developing safety-critical applications as well. That is why, both SFTA and SFMEA

approaches are being explored by the research community for their effectiveness in object-

oriented development process.UML provides the modeling support in every phase of

object-oriented software development process. The UML models are used for the

applications of SFTA and SFMEA approaches in various phases of object-oriented

software development. For example, use-case models (UCM) (Jacobson et al, 1992;

Introduction

3

Cockburn, 2000) are used as a standard requirement modeling tool and have been used for

applying SFTA and SFMEA approaches in object-oriented requirements analysis phase

(Balz and Goll, 2005; Douglass, 2009; Troubitsyna, 2011; Gupta et al, 2012). Similarly,

sequence and state diagrams are used to depict the dynamic/functional/behavioral aspects

of the system and have been used for the applications of both SFTA and SFMEA

approaches in the object-oriented software design phase (Pai and Dugan, 2002;

Towhidnejad, 2003; David et al, 2008; Kim et al, 2010).

The inception applications of both SFTA and SFMEA approaches were manual,

tedious and time-consuming and are directed mainly at coding phase (Reifer, 1979;

Taylor, 1982; Leveson and Stolzy, 1983; Cha et al, 1988; Leveson et al, 1991).Later

on, researchers have been successful in making the applications of both these

approaches either semi-automatic or automatic for some high level languages. For

example, Friedmann (Friedmann, 1993) described a tool that automatically constructs

a software fault-tree for a given Pascal program. Ordonio (Ordonio, 1993) described

an Automated Code Translation Tool (ACTT) to partially automate the software fault

tree construction process for Ada programs. Reid (Reid, 1994) and Winter (Winter,

1995) enhanced the features of the ACTT tool by implementing the support for

missing Ada structures especially concurrency and exception handling mechanisms.

Similarly, the application of SFMEA approach has been automated for Java language

(Snooke, 2004; Price and Snooke, 2008; Snooke and Price, 2011).

Currently, the available methodologies for applications of SFTA and SFMEA

approaches in object-oriented requirements analysis and design phases are not only

manual but also without any systematic method. Many researchers are making efforts

either to semi-automate or fully automate the applications of these approaches.

However, these efforts have not been reported as fully successful so far. Especially, in

use-case based requirements analysis phase and in UML based modeling phase, the

applications of both these approaches are still manual, time-consuming and hence error

prone. A complete update of review of the literature is given in Chapter 2.

This thesis is the documentation of the research efforts in applying SFTA and SFMEA

approaches in the early phases of the software development for safety critical software

systems and automating the processes to the extent possible for safety analysis and

reliability estimation. The thesis presents the novel approaches developed to automate or

semi-automate the applications of SFTA and SFMEA approaches in both object-oriented

Introduction

4

requirements analysis and object-oriented design phases. The novel algorithms are

developed using UML use-case models for the applications of both approaches in object-

oriented requirements analysis phase. Similarly, algorithms are developed using UML

sequence and state diagrams for the applications of these approaches in object-oriented

design phase.

Software reliability is defined as the probability of failure-free operation of a software

system for a specified time in a specified environment. Generally, the reliability of a

software system is assessed during the testing phase or more specifically after the

implementation phase. The review of the literature for software reliability indicates that there

exist few approaches, which can be used to estimate the software reliability during the early

software development phases, especially in requirements analysis and design phases. This

thesis aims to use the applications of SFTA and SFMEA approaches for estimating the

reliability of object-oriented software systems during requirements analysis and design

phases and presents the use of results of both SFTA and SFMEA application approaches for

early software reliability estimation.

1.1 GAPSIN RESEARCH

As mentioned earlier, that there are ongoing efforts among the researchers to automate or

semi-automate the applications of SFTA and SFMEA approaches in object-oriented

based requirements analysis and design phases. In order to address this key research

issue, this thesis aims to achieve the following research objectives.

1. Developing algorithms for automatic or semi-automatic application of SFTA and

SFMEA approaches in Use-Case based requirements analysis phase.

2. Developing algorithms for automatic or semi-automatic applications of SFTA and

SFMEA approaches in UML based object-oriented design phase.

3. Developing a SFTA and SFMEA based approach for early reliability prediction of

use-case functionality.

1.2 THESIS ORGANIZATION

In order to achieve the above-mentioned research objective, the thesis is organized as

follows.

The rest of this first chapter gives a brief introduction of the fundamentals of SFTA and

SFMEA approaches respectively. This is followed by the introduction of three UML

Introduction

5

models named use case models, sequence diagrams and state diagrams in object-

oriented software development process.

Chapter 2 presents the up to date review of the published literature on the use of SFTA

and SFMEA approaches in the software requirement analysis and design phases. The

research gaps in the applications of the SFTA and SFMEA approaches, especially in

the requirements analysis and design phases, are presented at the end of the Chapter.

Chapter 3 presents a new automated SFTA approach for use-case based requirement

analysis phase. The formal description of a given use-case functionality and the state

diagrams of the participating components are used as inputs. The approach is validated

via its applications on the use-case functionalities selected from two software

controlled safety-critical applications namely (i) Elevator Control System (ECS) and

(ii) Rail Track Door Control System (RTCS).

Chapter 4 presents a new semi-automated SFMEA approach for object-oriented

requirements analysis phase. The approach is developed to overcome some of the

limitations of the SFTA approach of Chapter 3. The strengths of the developed SFMEA

approach are demonstrated by applying it on two safety-critical case study applications

namely (i) Insulin Delivery System (IDS) and (ii) Rail Track Door Control System (RTCS).

Chapter 5 describes the proposed semi-automated SFTA approach for UML based

object-oriented design phase. The UML sequence diagram drawn for a given use-case

functionality and the state diagrams of the collaborating objects are used as inputs. The

hazardous-states, for which the fault trees are constructed, are selected from an ECS

application.

Chapter 6 describes the proposed automated SFMEA approach for object-oriented

design phase. The approach is developed to overcome some of the limitations of the

SFTA approach of Chapter 5.

The relative merits and limitations of the proposed SFTA and SFMEA approaches are

discussed at the end of Chapters 3 to Chapter 6.

Chapter 7 describes a SFMEA and SFTA based early software reliability prediction

approach for use-case based requirements analysis phase. The approach is applied on the

use-cases selected from IDS and RTCS applications. The comparative analysis of the

proposed approach with other similar approaches is presented at the end of the chapter.

Introduction

6

A summary of the work done for this thesis, namely the SFTA and SFMEA

approaches developed for object-oriented based requirements analysis and design

phases, is given in Chapter 8. The directions for carrying out further research, in order

to overcome the shortcomings of the developed approaches, are also outlined.

1.3 SOFTWARE FAULT TREE ANALYSIS

SFTA is a deductive safety analysis approach for the analysis of software induced

critical hazards in the system. The approach is backward or top-down in the sense that

its application first selects a critical hazardous-state that a system can encounter and

then recursively traces its causes in backward direction either in code or in design or in

specified requirements, to identify all the logical combinations of software related

errors that contribute towards the occurrence of the selected critical hazardous-state

until the basic software related errors are reached. The root node event (hazard-state)

and the basic error events are joined by suitable events and gate symbols. The

application of SFTA approach results in a tree like graphical structure known as -

software fault tree whose root node represents the specified critical hazardous-state and

the leaf nodes represent the identified basic software related errors. The symbols used

for the events and gates, that are used to draw the software fault tree, are shown in

Table 1.1 and a simple fault tree with four basic events and three logical gates is shown

in Figure 1.1.

The software fault tree can be analyzed either qualitatively way or quantitatively. These

two analysis approaches for software fault trees are explained in following two sections

by taking a sample fault tree of Figure 1.1, as an example.

1.3.1 Qualitative Analysis

The objective of qualitative analysis (also known as cut-set analysis) is to find out all the

possible logical combinations of basic events that can cause the selected hazardous state

(root node).A logical combination of basic events leading to hazardous state is known as

a cut set.A cut setis known as a minimal cut set, if it contains a minimum number of

logically related erroneous events that still can cause the root hazard.

Table 1.1: Symbols used for

Events Symbol

Basic Event

Top Event /

Intermediate

Event

Fault Tree Logic Gate Symbols

Logic Gates Symbol

AND

OR

Figure 1.1 A Sample

Symbols used for Fault Tree Events and Logic Gates

Fault Tree Event Symbols

Symbol Description

A basic initiating fault (or failure event).

event does not need further resolution.

An event to be analyzed (a root node). It can also

be used for intermediate event.

Fault Tree Logic Gate Symbols

Symbol Description

The output event occurs only if all input events

occur

The output event occurs if at least one of the input

event occurs.

A Sample Fault Tree for Hazardous-state X

Introduction

7

ogic Gates

A basic initiating fault (or failure event). A basic

. It can also

if all input events

The output event occurs if at least one of the input

Introduction

8

For example, in fault tree as shown in Figure 1.1, the minimal cut set events are (A,B,C)

and (A,B,D) with Boolean expressions as A.B+C and A.B+D respectively. (Where dot

(.) stands for AND operation and (+) stands for OR operation).

1.3.2 Quantitative Analysis

The quantitative analysis of fault tree is used to predict the reliability of the system. The

quantitative analysis is used to calculate the probability of the occurrence of root node

event using the probabilities of the basic events. For example, in fault tree as shown in

Figure 1.1, if the probabilities for the occurrence of basic events ‘A’,’B’, ‘C’ and ‘D’ are

0.2 ,0.2,0.1 and 0.3 respectively, then the probability value for the occurrence of root

node ‘X’ is (0.2 × 0.2) × (0.1 + 0.3) i.e. 0.016.

Performing quantitative analysis of any hardware fault tree is easy and feasible because

the life expectancy and the expected failure modes of any hardware device/component

are generally known in the public domain. However, the failure data about various

software related errors is generally not easily available. The quantitative analysis can be

used to predict the software reliability of the software system by (i) constructing a

generalized software fault tree for a software failure and (ii) using the probabilities of the

software related errors. Note that the software reliability is defined as the probability of

failure-free operation of a software system for a specified time in a specified

environment. If the root node of the software fault tree represents a generalized

software failure then the probability of software failure can be computed using the

probabilities of the software related errors. The software reliability can be predicted

using this computed value of probability of software failure.

1.4 SOFTWARE FAILURE MODES AND EFFECTS ANALYSIS

SFMEA is a forward, inductive and tabular failure assessment approach in the sense

that its application starts by first identifying the various failure modes of a software

component and then investigating the effects of those failure modes on the whole

system. Traditionally, two types of software FMEA approaches have been reported in

the literature: System Software FMEA and Detailed Software FMEA (Goddard, 2000).

The system level software FMEA approach covers only the top abstract level

functionalities of the system (without any focus on implementation) and can be applied

during the early/initial stages of software development such as in the software

Introduction

9

requirements analysis and the preliminary design phases. The detailed software FMEA

is applied in the later stages of software development when either the pseudo code

description or implemented code of various functionalities is available for analysis.

Bowles and Wan (Bowles and Wan, 2001) introduced a third SFMEA type named

Interface Software FMEA to analyze interface related failures that can occur between

software and hardware interface modules.

The application of SFMEA approach results in the creation of one or more table known

as SFMEA tables. For software systems, there is no universally accepted format or

structure for these SFMEA tables. The contents, structure of these tables depend upon

the software life-cycle phase in which the approach is applied. A typical SFMEA table

generally contains the fields as shown in Table 1.2.

Table1.2: SFMEA Worksheet

Item
Failure

Modes
Causes

Effects on the

System

Probability of

Occurrence

<< Item to be

explored for

failure analysis>>

<< Failure

Mode of the

Item>>

<<Causes of

the failure

mode>>

<< Effects of

the failure on

the System>>

<< Probability

of occurrence

of the failure>>

The ‘Item’ column can have various possible values such as a name of an individual

variable (in code level analysis) or name of method/operation of a class (in design

phase) etc or name of a use-case related software error (in requirements analysis

phase). The focus of the qualitative application of the SFMEA approach is generally to

find out the causes responsible for the selected failure modes of an item and to

investigate the effects (‘Effects’ column entries) of these failures on the system. The

analysis becomes quantitative in nature, if the probability value for every failure mode

of each item is known in advance. Like SFTA, the quantitative application of SFMEA

approach is also used to predict the reliability of systems.

1.5 MODELS USED IN UNIFIED MODELING LANGUAGE (UML)

Unified Modeling Language has emerged an industry-modeling standard for effectively

representing the static and dynamic aspects of the software system. The UML supports

nine types of diagrams that can be used in various phases of software development.

The detailed information about these models can be found in th

(Booch et al, 2005).

This section gives the overview of the three UML models

(ii) sequence diagrams and

thesis for developing the automated and

SFMEA approaches. The use

SFMEA approaches developed for use in the object

whereas the sequence and state

developed for the object-oriented design phase.

1.5.1 Use-Case Models

Use-case models (UCM) are

that are used to depict the abstract level functionalities offered by the system in the form

of a graph of actors (users of the system) and

by the system). A sample UCM

four use-cases (Functionality1,

Figure

The detailed information about these models can be found in the work of Booch

the overview of the three UML models namely (i)

sequence diagrams and (iii) state charts. These three UML models are used in this

automated and semi-automated applications of SFTA and

The use-case models and state diagrams are used for the SFTA and

SFMEA approaches developed for use in the object-oriented requirements analysis phase

and state diagrams are used for the SFTA and SFMEA approaches

oriented design phase.

case models (UCM) are introduced in UML as the main requirement analysis tools

used to depict the abstract level functionalities offered by the system in the form

(users of the system) and use-cases(functionalities/services offered

UCM is as shown Figure1.2, with two actors (‘A’

Functionality1, Functionality2, Functionality3 and Functionality4

igure1.2: A Sample Use Case Model

Introduction

10

e work of Booch

namely (i) use-cases,

are used in this

of SFTA and

case models and state diagrams are used for the SFTA and

oriented requirements analysis phase

and SFMEA approaches

introduced in UML as the main requirement analysis tools

used to depict the abstract level functionalities offered by the system in the form

services offered

’ and ‘B’) and

Functionality3 and Functionality4).

Introduction

11

The services or operations initiated by the actor ‘A’ are Functionality1 and

Functionality2 whereas the services initiated by actor ‘B’ are Functionality3 and

Functionality4.

The formal functional description of each use-case is expressed by filling the details in a

use-case realization template (UCRT) with sufficient details in English like natural

language. There is no universally accepted structure and format for writing the UCRT,

but a typical UCRT contains the items of information as shown in Table 1.3.

Table 1.3: A Sample Use Case Realization Template

Use Case

Name
<< Name of the use-case>>

Actor <<Name of the actor who will initiate the use-case>>

Pre-

condition
<<The condition that must be true before initiating the use-case>>

Post-

condition
<<The condition that must be true after exiting the use-case>>

Normal Flow of Actions (Main Scenario Action)

⋮

<< Actions to be carried out during normal scenario execution>>

⋮

Alternative

Flow 1
<< Actions to be carried out during alternative scenario-1>>

Alternative

Flow 2
<< Actions to be carried out during alternative scenario-2>>

⋮ ⋮

Alternative

Flow n
<< Actions to be carried out during alternative scenario-n>>

A given use-case functionality may have any number of alternative paths of execution

and each such path of execution is known as a scenario. Each scenario has its associated

list of actions that are executed during the invocation of that scenario.

The whole object-oriented software development process is use-case driven (Jacobson

et.al, 1992). The use-cases and the UCRTs developed in the object-oriented

requirements phase are used as inputs in the succeeding phases of the object-oriented

life cycle.

1.5.2 Sequence Diagrams

Sequence diagrams are the main

(i) various objects that are

execution of a particular use

these participating objects. The participating objects are shown on the horizontal

dimension whereas the message(s) and the sequences in which they are exchanged are

shown on the vertical dimension. The participating object

other by sending either synchronous or asynchronous type of message. The symbols

along with their meaning, which

sample sequence diagram of Figure

Figure 1.3

When a sender object sends a synchronous message to any other receiver

sender object is blocked from further communication with any other object unless it does

Sequence Diagrams

are the main interaction models in UML which are drawn t

are participating and collaborating with each other in the

use-case scenario and (ii) various messages exchanged among

these participating objects. The participating objects are shown on the horizontal

the message(s) and the sequences in which they are exchanged are

shown on the vertical dimension. The participating objects can communicate with each

other by sending either synchronous or asynchronous type of message. The symbols

meaning, which are used to draw the sequence diagram, are

sample sequence diagram of Figure 1.3.

Figure 1.3: A Sample Sequence Diagram

When a sender object sends a synchronous message to any other receiver object, then

sender object is blocked from further communication with any other object unless it does

Introduction

12

are drawn to show

participating and collaborating with each other in the

various messages exchanged among

these participating objects. The participating objects are shown on the horizontal

the message(s) and the sequences in which they are exchanged are

s can communicate with each

other by sending either synchronous or asynchronous type of message. The symbols

are shown via

object, then the

sender object is blocked from further communication with any other object unless it does

not get the reply of the previously sent message whe

message the sender object is not blocked. How much time an object will take to respond

to a received message, is indicated via an activation box (rectangle type symbol) on the

lifeline of the receiver object.

Software developers generally use various types of stereotypes such as

<<interface>>, <<device>>

type of the object participating in the interaction

for a software controller object. The

device type object. Software controller type objects manage the working/functionality of

the device type of objects. The

object which acts as a communication medium between a software controller and a

hardware/device types of objects. Apart from these three stereotypes, the developers can

introduce any other stereotype also for any other type of obje

requirements. Depending upon the requirement,

in the sequence diagram and

(i) The ‘alt’ operator

The ‘alt’ word stands for alternative set of messages. In

‘Message 1’ is sent only if condition x=0 is true otherwise message ‘Message 2’ is sent.

The ‘alt’ represents a ‘if then else’ type construct.

number of ‘alt’ block and these ‘alt’ blocks

Figure 1.4: Sequence Diagram

not get the reply of the previously sent message whereas in case of asynchronous

sender object is not blocked. How much time an object will take to respond

to a received message, is indicated via an activation box (rectangle type symbol) on the

ifeline of the receiver object.

s generally use various types of stereotypes such as <<controller>>

<<device>>, <<controller>>along with object names to represent the

type of the object participating in the interaction. The <<controller>> stereotype is used

for a software controller object. The <<device>> stereotype is used for a hardware or

Software controller type objects manage the working/functionality of

objects. The <<interface>> stereotype is used for a interface type

object which acts as a communication medium between a software controller and a

hardware/device types of objects. Apart from these three stereotypes, the developers can

introduce any other stereotype also for any other type of object depending upon the

upon the requirement, some interaction operators are also used

and five of these interaction operators are explained below

The ‘alt’ word stands for alternative set of messages. In Figure 1.4,

‘Message 1’ is sent only if condition x=0 is true otherwise message ‘Message 2’ is sent.

The ‘alt’ represents a ‘if then else’ type construct. A sequence diagram can have any

number of ‘alt’ block and these ‘alt’ blocks can be in nested form too.

Figure 1.4: Sequence Diagram Example representing an ‘alt’ block

Introduction

13

reas in case of asynchronous

sender object is not blocked. How much time an object will take to respond

to a received message, is indicated via an activation box (rectangle type symbol) on the

<<controller>>,

along with object names to represent the

stereotype is used

stereotype is used for a hardware or

Software controller type objects manage the working/functionality of

sed for a interface type

object which acts as a communication medium between a software controller and a

hardware/device types of objects. Apart from these three stereotypes, the developers can

ct depending upon the

ome interaction operators are also used

ese interaction operators are explained below.

 the message

‘Message 1’ is sent only if condition x=0 is true otherwise message ‘Message 2’ is sent.

A sequence diagram can have any

an ‘alt’ block

(ii) The ‘opt’ operator

The ‘opt’ operator stands for optional

only if the condition associated with the block is satisfied otherwise the messages in the

block are skipped. An example of ‘opt’ block is shown in the sequence diagram of

Figure 1.5. The ‘opt’ represents a ‘if then’ type construct without an else option

Figure 1.5

(iii) The ‘break’ operator

The ‘break’ operator is similar to ‘opt’ block but represents an exceptional scenario

where either the messages from the ‘break’ block are sent or the messages after the break

block are sent. A sequence diagram with a ‘break

Figure 1.6

The ‘opt’ operator stands for optional message block. The messages in the block are sent

the condition associated with the block is satisfied otherwise the messages in the

An example of ‘opt’ block is shown in the sequence diagram of

’ represents a ‘if then’ type construct without an else option

5: Sequence Diagram with an ‘opt’ block

The ‘break’ operator

The ‘break’ operator is similar to ‘opt’ block but represents an exceptional scenario

from the ‘break’ block are sent or the messages after the break

block are sent. A sequence diagram with a ‘break’ block is shown in Figure 1.6.

6: Sequence Diagram with a ‘break’ block

Introduction

14

. The messages in the block are sent

the condition associated with the block is satisfied otherwise the messages in the

An example of ‘opt’ block is shown in the sequence diagram of

’ represents a ‘if then’ type construct without an else option.

The ‘break’ operator is similar to ‘opt’ block but represents an exceptional scenario

from the ‘break’ block are sent or the messages after the break

’ block is shown in Figure 1.6.

If the condition ‘x=0’ is satisfied then only the messages

‘Message 1’ and ‘Message 2’ are sent and after that the execution stops (i.e. the message

‘Message 3’ which is after the ‘break’ block is skipped). However, if the condition is

false then the messages in the ‘break’ block are skip

outside the block i.e. message ‘Message 3’ is sent only.

(iv) The ‘loop’ operator

The ‘loop’ interaction operator is used to repeat message sequence either for a fixed

number of times or until a condition is satisfied. A sequence

interaction operator is shown in Figure 1.7 and according to this figure the messages

‘Message 1’ and ‘Message 2’ are sent 5 times.

Figure 1.7

(v) The ‘par’ operator

The ‘par’ operator stands for

in parallel. The send events

sequence diagram with ‘par’ block is shown in Figure 1.8

1.5.3 State Charts

State diagram is also a dynamic interaction model of

states an object that it transits in its lifetime in response to an outside

Some of the symbols used to draw the state diagrams are shown in Figure

can make the transition from one state to

other object or by receiving a

If the condition ‘x=0’ is satisfied then only the messages in the ‘break’ block i.e.

‘Message 1’ and ‘Message 2’ are sent and after that the execution stops (i.e. the message

‘Message 3’ which is after the ‘break’ block is skipped). However, if the condition is

false then the messages in the ‘break’ block are skipped (not sent) and the messages

outside the block i.e. message ‘Message 3’ is sent only.

The ‘loop’ interaction operator is used to repeat message sequence either for a fixed

number of times or until a condition is satisfied. A sequence diagram with a ‘loop’

interaction operator is shown in Figure 1.7 and according to this figure the messages

d ‘Message 2’ are sent 5 times.

7: Sequence Diagram with a ‘loop’ block

The ‘par’ operator stands for parallel messages. The messages in the ‘par’ block are sent

 of the messages that are sent in parallel can be interleaved. A

sequence diagram with ‘par’ block is shown in Figure 1.8.

State diagram is also a dynamic interaction model of UML used to depict

transits in its lifetime in response to an outside stimulus

symbols used to draw the state diagrams are shown in Figure 1.9

from one state to another, either by sending a message to some

other object or by receiving a message from some other object.

Introduction

15

in the ‘break’ block i.e.

‘Message 1’ and ‘Message 2’ are sent and after that the execution stops (i.e. the message

‘Message 3’ which is after the ‘break’ block is skipped). However, if the condition is

ped (not sent) and the messages

The ‘loop’ interaction operator is used to repeat message sequence either for a fixed

diagram with a ‘loop’

interaction operator is shown in Figure 1.7 and according to this figure the messages

parallel messages. The messages in the ‘par’ block are sent

can be interleaved. A

used to depict the various

stimulus or event.

1.9. An object

by sending a message to some

Figure 1.

Figure

The objects participating in an interaction can experience either a simple state

as shown in Figure 1.9 or concurrent sub

Figure 1.10, the object experience concurrent state transitions in states ‘

the occurrence of the same event ‘

Figure 1.10: UML State

x1
E1

Initial State

Symbol

State Transition

Figure 1.8: Sequence Diagram with a ‘par’ block

Figure 1.9: A Simple UML State Diagram

The objects participating in an interaction can experience either a simple state

as shown in Figure 1.9 or concurrent sub-state transitions as shown in Figure 1.10.

Figure 1.10, the object experience concurrent state transitions in states ‘x2’ and ‘

the occurrence of the same event ‘M2’.

Figure 1.10: UML State Diagram with Concurrent Sub-states

x2
E1

x3
E6

State Transition

Symbol

Introduction

16

The objects participating in an interaction can experience either a simple state transitions

state transitions as shown in Figure 1.10. In

2’ and ‘x4’ on

states

End State

Symbol

17

CHAPTER 2

Literature Review

This chapter presents the critical review of the published work about the applications of

SFTA and SFMEA approaches in two phases, namely requirements analysis and

software design, of software development process.

2.1 APPLICATIONS OF SFTA APPROACH

2.1.1 In Software Requirements Analysis Phase

SFTA application approach for requirements analysis is used either to identify the

safety related faults in the given requirement specification or to elicit the required

safety requirements needed to mitigate the considered hazardous state by fault tree

construction.

Mojdehbakhsh et al (1994) described a four step approach to identify the safety faults in the

software requirements specified using the Statemate Case tool (Harel et al., 1990). The first

step of the approach constructs a software requirement, fault tree (SRFT) automatically from

the specified requirements and identifies the safety faults. The second step verifies and

validates the SRFT constructed in the first step. The requirements are generated in the third

step, which are verified and validated in the fourth step.

Melhart (1995) used an augmented form state model known as an external interaction

model (EIM) (Melhart, 1990) for specifying the software requirements and provided

templates to construct software fault trees directly from an input EIM. The results of the

analysis can be used for requirements modification and correction.

Ratan et al (1996) developed a fault tree generator tool to generate fault trees

automatically from the requirements specified in state-based requirements specification

language known as Requirements State Machine Language (RSML) but the tool

generates a fault tree only for one-step backward at a time. However, the main strength

of the tool is that it also checks for the consistency and completeness of the specified

requirements during fault tree construction.

Literature Review

18

Gorski and Wardzinski (1996) presented a four step manual approach to derive the safety

requirements using fault trees defined in a formal model named Common Safety

Description Model (CSDM). In the first step a fault tree is constructed manually by an

analyst using domain expertise. The second step defines the constructed fault tree in a

formal way using CSDM. The third step computes the minimal cut-set events, which are

used to derive the necessary requirements in the fourth step.

Tsuchiya et al (1997) proposed an FTA-based technique to derive the necessary safety

features from the requirement specifications expressed in English like natural language

for object-oriented systems.

Lutz and Woodhouse (1997) integrated the application of the SFTA approach with a

SFMEA approach to analyze the requirements of two spacecraft systems named Cassini

and Galileo. The integrated application of SFTA and SFMEA approaches enhances the

consistency, completeness and robustness of the derived safety features.

Hansen et al (1998) used the features of fault trees and the duration calculus approaches

to derive the necessary software safety requirements. Helmer et al (2002) has used SFTA

approach to model the intrusions to determine and verify the security requirements for an

intrusion detection system (IDS).

The works reported by Dehlinger & Lutz (2004) and Feng & Lutz (2005), used the

applications of SFTA and SFMEA approaches for the safety analysis of the product-line

requirements. The product-line requirements have been specified using a technique

known as Commonality and Variability Analysis (CVA). CVA is a well-known approach

used especially in product-line software engineering for identifying the mandatory

requirements (commonalties) or optional requirements (Variabilities or Variations) for a

particular product-line member. However, the addition of new variation poses a variation

management difficulty because they may introduce new dependencies, which make it

difficult to provide assurance for safety. To overcome this problem, Liu et al (2007)

introduced a SFTA assisted technique to perform safety analysis on the variations in a

product line using state-based modeling.

Lutz et al (2007) used SFTA and SFMEA approaches during the application of ‘Obstacle

Identification’ step of an approach named obstacle analysis to identify the contingency

requirements for an unpiloted aerial vehicle (UAV).

Literature Review

19

Balz and Goll (2005) introduced the FTA technique in use-case based system

development process. The approach is manual in nature and is applied to each use-case

separately. Use cases (Jacobson et al, 1992; Cockburn, 2000) have been introduced in

UML based software development process as the standard requirements analysis tool.

Douglass’s (2009) work stressed upon first drawing the fault tree using the domain

expertise and then linking the leaf nodes (basic events) of the constructed fault tree with

the respective use-case functionalities.

Gupta et al (Gupta et al, 2012) presented an eight-step approach for the integrated

applications of SFMEA and SFTA approaches in the textual description of the given use

case functionality.

The work reported by Tiwari et al (Tiwari et al, 2012) also presented an integrated SFTA

and SFMEA application approach that takes formal use-case description as the primary

input. However, the integrated approach first converts the formal use-case specification

into a tree known as software success tree (SST) and then constructs a fault tree by

complementing the nodes of SST. The results of SFTA approach have been further

analyzed using SFMEA approach.

Summary of Applications

To identify safety related faults/errors, SFTA approach has been applied mostly to the

requirements specified using any state-based representation, either by using a tool

(Mojdehbakhsh et al, 1994) or a model (Melhart, 95) or a language (Rattan et al, 1996).

In some published works, the safety requirements are derived by constructing fault

trees by taking some form of requirements specifications as the primary inputs where

input requirements are specified either using English like natural language (Tsuchiya et

al, 1997; Lutz and Woodhouse, 1997) or use-cases (Balz and Goll, 2005;Douglass,

2009; Gupta et al, 2012) or CVA approach (for product-line requirements) (Dehlinger

and Lutz, 2004; Feng and Lutz, 2005 and Liu et al, 2007).In some cases, safety

requirements are derived directly by constructing a fault tree without taking any

requirement specification as an input (Gorski and Wardzinki, 1996; Hansen et al, 1998,

Helmer et al, 2002). A comparative summary of the SFTA applications at requirements

analysis phase is shown in Table 2.1.

Literature Review

20

Table 2.1: Summary of SFTA Applications at Requirements Analysis Phase

Authors
Requirements

Representation

Approach

es Used

Application

Method

(Manual/

Automated)

Objective

Mojdehbakh

sh et al

(1994)

STATEMATE - a
state based tool

SFTA Automated
To find the safety faults in
the given requirements

Melhart

(1995)

EIM (External

Interaction Model- a

state based model)

SFTA

Template-

Based/

Manual

To analyze the specified

requirements

Ratan et al

(1996)

RSML (-state based

language)
SFTA

Partially

Automated

To check the consistency

and completeness of

requirements

Gorski &

Wardzinski

(1996)

- SFTA Manual
To derive the real time
requirements

Tsuchiya et

al (1997)

Natural Language

(English)
SFTA Manual

To derive the safety

requirements

Lutz &

Woodhouse

(1997)

Natural Language

(English)

SFMEA +

SFTA
Manual

To identify the ambiguity,

inconsistency and missing

requirements

Hansen et al
(1998)

-

SFTA +

Duration

Calculus

Manual
To derive the safety
requirements

Helmer et al

(2002)
- SFTA Manual

To derive the security

requirements

Balz & Goll

(2005)
Use-cases SFTA Manual

To derive the safety

features for a selected use-

case functionality

Dehlinger &

Lutz (2004)

and Feng &

Lutz (2005)

Commonality and

Variability Analysis
(CVA)

SFTA +

SFMEA
Manual

To identify the missing

and new safety

requirements in product-

line requirements

Liu et al

(2007)

Commonality and

Variability Analysis

(CVA)

SFTA +

SFMEA
Manual

To perform the safety

analysis of software

product lines using state-

based modeling and SFTA

approaches

Lutz et al

(2007)
-

Obstacle

Analysis +

SFTA +

SFMEA

Manual

To aid the application of

the Obstacle Analysis

approach to derive the

contingency requirements

Douglass

(2009)
Use-cases SFTA Manual

To perform the safety

analysis of the given use-

case functionality

Gupta et al.

(2012) &

Tiwari et al

(2012)

Textual use-case

description

SFTA +

SFMEA
Manual

To analyze the use-case

based requirements

Literature Review

21

2.1.2 In Software Design Phase

UML has emerged as a de facto industry-modeling standard for modeling the static as

well as dynamic aspects of software systems. That is why, the SFTA applications at

software design phase are applied mostly on UML models. The objectives of applying

SFTA approach at software design phase are to identify the flaws in the design of a

software module/component and to identify the modules that are critical from a safety

point of view.

Pai and Dugan (2002) presented an algorithm to automatically synthesize dynamic fault

trees (DFTs) from UML system models for reliability analysis. DFTs are extensions of

static fault trees, especially to model fault tolerant features such as redundancy etc. The

reliability related information has been embedded in the UML models. It is to be noted

that Pai and Dugan (2002) have used UML models for modeling certain hardware

features such as redundancy, spares and reconfiguration.

Towhidnejad et al (2002, 2003) provided a partial paradigm in the form of guidelines for

converting UML activity, state and sequence charts/diagrams to fault trees. The approach

is manual and time-consuming.

Hawkins and McDermid (2002) and Hawkins (2006) used UML collaboration diagrams

to identify unsafe elements in the form objects and also to construct fault trees. The

unsafe behaviors of the selected unsafe elements are further identified from state charts

using a technique known as Function Failure Analysis (FFA).

Lu et al (2005) embedded the fault tree related information in UML component-based

UML model (CBUM) so that hazard analysis and safety analysis can be performed at the

same time. Lu, Halang and Zalewski (2005) embedded the information about the

elements of two approaches named Hazard and Operability (HazOp) and Fault Tree

Analyses (FTA) into UML component models.

Kim et al (2010) presented rules and algorithms to automatically transform a hazard

represented by fault trees to state machine diagram. The objective is to bridge the gap

between the desired behavior (represented in the form of an original state machine

diagram) and undesired behavior of the system (represented via fault trees).

Lauer and German (2011) presented an approach to automatically synthesize fault tree

from UML component architecture model for reliability analysis during the design stage.

Literature Review

22

The UML models used in the approach as such do not depict any functional aspect of the

system. Rather, UML has been used to model certain reliability related attributes such as

fault propagation and fault containment. The objective of the work is reliability analysis

not safety analysis.

Table 2.2: Summary of SFTA Applications at Design Phase

Authors

Application

Method (Manual/

Automated)

Purpose (Safety

Analysis/Reliability

Analysis)

Objective

Pai & Dugan

(2002)
Automated Reliability Analysis

Presented an algorithm to

construct dynamic fault

tree from UML models

Towhidnejad et

al (2002,2003)
Manual Safety Analysis

Provided guidelines to

construct software fault

trees from UML activity,

sequence and state

diagrams

Hawkins (2006)

Hawkins and

McDermid

(2002)

Manual Safety Analysis

Recommended to

construct fault tree from

collaboration diagram and

integrated the application

of Fault Trees and

Functional Failure Analysis

(FFA) approaches

Lu et al (2005) Manual Safety Analysis

Embedded the fault tree

related information in

UML component-based

UML model (CBUM)

Lu, Halang &

Zalewski (2005)
Manual Safety Analysis

Embedded the information

about the elements of two

approaches named Hazard

and Operability (HazOp)

and Fault Tree Analyses

(FTA) into UML
component models

Kim et al (2010) Manual Safety Analysis

Presented rules and

algorithms to automatically

transform fault trees to

state diagrams

Lauer &

German(2011)
Automated Reliability Analysis

Presented an approach to

automatically synthesize

fault tree from UML

component architecture

model for reliability
analysis during the design

stage

Literature Review

23

Summary of Applications

SFTA applications on UML models are applied either for the reliability analysis of

system or for the safety analysis. For reliability analysis purpose, the approach is

automated and the reliability related information is embedded in the models itself. For

the safety analysis purpose, the application of the approach is either manual or semi-

automated. A summary of applications of the SFTA approach on the design phase is

given in Table 2.2.

2.2 APPLICATIONS OF SFMEA APPROACH

2.2.1 In Software Requirements Analysis Phase

Lutz and Woodhouse (1996) applied SFMEA approach to the requirements analysis of

critical spacecraft software and the application was found to be successful not only in

identifying the ambiguities and inconsistencies in the specified requirements but also to

identify various missing requirements.

Lutz and Woodhouse (1997) described a two step approach named Bi-Directional Safety

Analysis (BDSA) that integrates the applications of SFMEA and SFTA approaches. The

SFMEA approach is applied to the specified requirements in the first step and SFTA has

been applied in the next step on the results obtained in the first step. The requirements

are expressed in English text.

The same BDSA approach was extended for analyzing the product-line requirements

(Lutz, 1998; Feng and Lutz, 2005) with the two differences. Firstly, the requirements

have been specified using a CVA approach (for product-line members). Secondly, both

approaches are applied separately to the requirements and the results of both approaches

are compared at the end to find out any mismatch.

Wentao and Hong (2009) presented a manual SFMEA approach that can be used to use-

case based requirements analysis phase and demonstrated its merits by applying it to the

use-case model of a typical bank Automated Teller Machine (ATM). The input for the

approach is the formal description of a given use-case functionality.

Troubitsyna (2011) used manual SFMEA approach to augment a given use-case model

with a fault tolerance mechanism. She has recommended creating and defining an

auxiliary use case (for each actual use-case) to model error recovery. The approach has

been applied to a use case model of an autonomous robot.

Literature Review

24

Nggada’s work (2012) demonstrated the manual application of the SFMEA approach on

the use-case model of a Brake by Wire (BBS) System. The works reported by Gupta et al

(2012) and Tiwari et al (2012) demonstrates the integrated use of SFTA and SFMEA

approaches in use-cases which have been discussed in Section 4.1 also.

Summary of Applications

There exists very little literature work about the application of SFMEA approaches for

requirements analysis. The SFMEA approach has been used mostly in conjunction with

SFTA approach for requirements analysis. In some cases (where SFTA and SFMEA are

used together) the results of SFMEA approach have been used as an input for the

application of the SFTA approach (Lutz and Woodhouse 1996, 1997; Gupta et al, 2012).

In some cases the results of SFTA approach have been used as an input for the

application of SFMEA approaches (Tiwari et al, 2012). A summary of SFMEA

applications either alone or in conjunction with SFTA approach is shown in Table 2.3.

Table 2.3: Summary of SFMEA Applications at Requirements Analysis Phase

Authors
Requirements

Representation

Approaches

Used

Application

Method

(Manual/

Automated)

Objective

Lutz &

Woodhouse
(1996,1997)

English Text
SFMEA +

SFTA
Manual

To identify ambiguity,

inconsistency in the

requirements as well as
to identify missing

requirements

Lutz (1998)

and Feng &

Lutz (2005)

Commonality and

Variability

Analysis (CVA)

SFMEA +

SFTA
Manual

To identify the missing

and new safety

requirements in product-
line requirements

Wentao &

Hong (2009)

Textual

Description of Use

Case

SFMEA Manual
Safety Analysis of Use

Case Models

Troubitsyna

(2011)
Use Case Model SFMEA Manual

Augmenting Use case

Model with Fault

Tolerant Features

Nggada(2012) Use Case Model SFMEA Manual

To perform the failure

analysis at use-case
based requirements

analysis phase

Gupta et al.

(2012) &

Tiwari et al

(2012)

Textual use-case

description

SFTA +

SFMEA
Manual

To analyze the use-case

based requirements

Literature Review

25

2.2.2 In Software Design Phase

Guiochet and Baron (2003) identified eleven types of message error models for the

application of a FMECA technique on UML sequence diagrams and used these error

models for the risk analysis of medical robot (Guiochet and Baron, 2004).

Hecht and Hecht (Hecht and Hecht, 2004) described a computer-aided SFMEA approach

that can be used in two stages of software development: concept phase and

design/implementation phase. The use case diagram can be a potential input for the

application of the concept phase SFMEA approach, whereas for design/implementation

phase SFMEA approach, the inputs can be the methods/operations (equivalent to a

subroutine of assembly languages) of various classes.

The work presented by Ozarin (Ozarin, 2004) stressed upon the application of the Software

FMEA approach during the whole software design phase by taking various UML diagrams

and software grouping constructs as primary inputs. The information about which UML

diagram should be taken as a possible input, for the application of SFMEA approaches at

various stages of a software development, can be found in the works of Ozarin (Ozarin,

2004).

Hassan et al (Hassan et al, 2005) proposed a five step UML based severity assessment

methodology based upon the integrated applications of three approaches named Functional

Failure Analysis (FFA), FMEA and FTA. The FFA is applied during the first step by taking

use-case diagram and system scenario diagrams as potential inputs. The FMEA approach is

applied in the second step by taking scenario sequence diagrams and component interaction

diagrams as inputs. The third step applies an FTA approach on the outputs of the first two

steps.

David et al (David et al, 2008) described an approach for generating an FMEA table from a

sequence diagram, but requires that a database of dysfunctional behaviors of various classes

(involved in the sequence diagram) should be known in advance. The dysfunctional behavior

database for various classes provides the basis for identifying the failure modes for each

class.

Summary of Applications

The objective of applying SFMEA during the UML design stage is to do the failure

analysis of the given UML model. The application process is manual, labor-intensive and

Literature Review

26

costly. We are not able to trace any research paper describing the automation of the

approach for any UML model. A summary of the published work about SFMEA

applications on the UML models is given in Table 2.4.

Table 2.4: Summary of SFMEA Applications at Software Design Phase

Authors
Application Method

(Manual/Automated)
Objective

Guiochet and

Baron

(2003,2004)

Manual

Identified Eleven types of message

errors and used them for the risk

analysis of a medical robot

Hecht and

Hecht (2004)
Manual

Introduced Concept Phase SFMEA

and Design/Implementation Phase

SFMEA

Ozarin(2004) Manual

Gives the information about which

UML model should be used as

input for the application of the

SFMEA approach during various

phases of software development

Hassan et al

(2005)
Manual

Integrates three approaches named

FFA,FMEA & FTA for the

severity assessment of UML

models

David et al

(2008)
Manual

Described an approach to generate

an FMEA table from sequence

diagrams

2.3 RESEARCH GAPS

Since the inception of both these approaches in the software domain, there are ongoing

efforts in the research community to automate or semi-automate the applications these

approaches in almost every phase of software development process. These efforts are

found to be successful to some extent, so far, only at coding phase (Friedman, 1993;

Reid, 1994; Winter and Shimeall, 1995; Snooke and Price, 2011).

As per the analysis given in Table 2.1, the application of SFTA has been applied broadly

to four categories of requirements specifications as (i) requirements specified using state-

based representation, (ii) requirements specified in English like natural language,

(iii) requirements specified using CVA approach for product-line engineering and

(iv) requirements specified using use-cases. So far, SFTA application has been

automated and semi-automated only for the requirements specified using state-based

representation. Whereas, for other types of requirements specifications, especially for the

requirements specified using use-cases, the application of SFTA is still manual.

Literature Review

27

Similarly, as per the analysis shown in Table 2.2, the application of SFTA has been

automated for reliability analysis but not for safety analysis. The application of SFMEA

approach is also still manual in both requirements analysis and software design phases.

Based upon the analytical review of the applications of both SFTA and SFMEA

approaches in the requirements analysis and software phases, the following research gaps

have been identified.

Research Gap I: In use-case based requirements analysis process the application of

both SFTA and SFMEA approaches is still manual.

Research Gap II: The application of both SFTA and SFMEA approaches in UML based

software design phase is still manual from safety analysis point of

view.

28

CHAPTER 3

Software Fault Tree Analysis Approach in Use-Case

based Requirements Analysis Phase

This chapter presents the automated SFTA technique in use-case based requirements

analysis phase. The application of the SFTA approach is automatic where a fault tree

for a given hazardous-state for a safety-critical system is constructed automatically.

The formal textual description of a given use-case functionality, the UML state

diagrams of the participating components and the hazardous-state (for which a fault

tree is to be constructed) of the system are required as inputs in the proposed SFTA

approach. The proposed technique has been validated by applying it to the use-case

functionalities of two safety-critical applications, namely Elevator Control System

(ECS) (Gomaa, 2000) and Rail Track-Door Control System (RTCS) (Medikonda and

Ramaiah, 2010).

3.1 PURPOSE OF THE PROPOSED SFTA APPROACH

The use-case based FTA approach introduced by Balz and Goll (Balz and Goll, 2005)

is manual in nature and fault trees are constructed manually for the selected use-case

functionalities. Douglass (Douglass, 2009) stressed upon first constructing fault trees

using domain expertise and then linking the nodes of the fault tree with respective use-

cases. The works reported by Gupta (Gupta et al, 2012) and Tiwari (Tiwari et al,

2012) applied SFTA to a textual description of the selected use-case functionality. In

all these cases, the fault trees were constructed manually either to elicit the safety

requirements or to verify the already derived safety requirements and the application

of the SFTA approach in use-case based requirements analysis phase is manual and

time-consuming. The objective of the proposed approach is to integrate and automate

the application of the SFTA approach in use-case based requirements analysis process

so that the necessary safety requirements are derived right in the requirements analysis

phase. The approach does a backward analysis to identify the errors responsible for

the occurrence of the selected hazardous state.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

29

3.2 ASSUMPTIONS FOR THE PROPOSED SFTA APPROACH

The following two assumptions are made for the proposed approach and a brief

explanation for each assumption is given in the following sections.

(i) The given use-case functionality and the UML state diagrams for various

participating components are complete and correct.

The approach operates with the assumption that the supplied formal functional

description of the selected use-case functionality is correct and complete. The

completeness of the use-case functionality means that ‘no event has been missed-out in

the description’. The correctness of the use-case functionality means ‘the sequence in

which the various events of the selected use-case functionality will execute, are specified

correctly’. In the same way, it is also assumed that the supplied UML state diagrams are

correct (state transition events have been correctly specified) and complete (no state for

any component has been missed-out).Any error either in the use-case description file or

in the states of the participating components affects the correctness and completeness of

the constructed software fault trees.

(ii) No participating component experience concurrent state transitions

The approach also operates with the assumption that corresponding to any state transition

event (an event where any component is changing its state) there is a single state

transition experienced by the component. The approach first maps the events of the

selected use-case functionality against the states of the participating components and

then records the state transition errors corresponding to each state transition event. If a

component experiences concurrent state transitions (means minimum two state

transitions corresponding to a single state transition event) then the recording of state

transition errors will be a challenging if not impossible task. The presented approach

does not handle this situation.

3.3 HAZARDOUS-STATE DEFINITION

In the proposed SFTA approach, the hazardous-state of the system is expressed using

the states of the participating components, either in atomic form, (a hazardous-state

involving the state of a single component) or in composite form (a hazardous-state

involving the states of more than one component).

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

30

A hazardous-state in atomic form is used to indicate the situation where a participating

component fails to make its expected/desired state transition and is represented using a

negation and equality symbols as ‘!=’. The general syntax for an atomic hazardous-state

is ‘c!= s’ where ‘c’ is the name of a component and ‘s’ is one of the state(s) of ‘c’.

The composite hazardous-state can involve states from multiple components and can use

both negation (‘!=’) and true (=) type symbols. The use of negation (‘!=’) symbol

indicates that a component has failed to change its state, whereas a true (=) symbol

indicates that a component has successfully changed its state. The states from multiple

components are joined by an ‘AND’ operator.

Some examples of both atomic and composite hazardous-states are illustrated in Table 3.1.

These hazardous-states are selected from two safety-critical applications mentioned in the

beginning of this chapter. The participating components in the ECS application are Door (with

valid states as ‘opened’ or ‘closed’) and Motor (with valid states as ‘moving’ or ‘stopped’).

Whereas, in the RTCS application the participating components are Track_Door (with valid

states as ‘opened’ or ‘closed’) and Track_Signal (with valid states as ‘red’ or ‘green’).

Table 3.1:Hazardous-State Examples

Hazardous-State State Description

Door != closed Atomic The door has not closed (ECS

Application)

Motor!=moving Atomic The motor has not moved (ECS

Application)

Door !=closed AND

Motor = moving

Composite The door has not closed, but Motor

has moved (ECS Application)

Track_Door !=closed AND

Signal = green

Composite The Track_Door is not closed but

Signal has gone green (RTCS

Application)

Door = opened AND

Motor = moving

or

Motor = moving AND

Door = opened

Composite At any point of time, the system

should not have both Door and Motor

components are in ‘opened’ and

‘moving’ states respectively (ECS

Application)

Track_Door = opened AND

Track_Signal = green

or

Track_Signal = green AND

Track_Door = opened

Composite At any point of time, the system

should not have both Track-door and

Signal components are in ‘opened’

and ‘green’ states respectively (RTCS

Application)

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

31

The composite hazardous-state can be used to represent two different types of hazardous

situations and the detailed information about the syntax and validity conditions of both

these types of the composite hazardous-state are discussed in more detail in Section 3.5.

3.4 OVERVIEW OF THE PROPOSED SFTA APPROACH

The proposed SFTA approach is a five step approach and takes the formal use-case

description file and the UML state diagrams of the participating components as inputs.

The UML state diagrams are accepted as inputs in machine readable form i.e. XMI

(XML Metadata Interchange) format. The Altova UML (Altova-UModel, 2014) is used

to draw the required state diagrams and each one of them is exported to XMI format

using the same tool.

The description of a given use-case functionality can have any number of uniquely

executable paths known as scenarios and each such scenario is represented by a unique

event-sequence. The ‘Event-Sequence’ of a particular scenario gives the information

about the sequential order in which the events of that scenario will execute. In the first

step, the objective is to extract the event-sequence for each possible scenario by taking

the use-case description file as an input. The successful execution of the first step results

in the instantiation of one or more instances of ‘Event-Sequence’. The extracted event

sequences are saved in a tabular structure. The definition of various fields/columns of

this are shown Table 3.2. Each such ‘Event-Sequence’ table created represents the event

sequence of a particular scenario of the given use-case functionality.

Table 3.2: Structure of Event-Sequence Table

Event# Precondition Event-Name Logical-Time

<<A Unique

Event Number

Assigned to

each executable

event>>

<< Precondition

that must be true

before the

execution of the

event>>

<< Name of the

event as used in

use-case

description

file>>

<< An integer value

that represents the

sequence number of the

event in the event

sequence>>

The second step determines the correct functional state of the system by mapping the

events of various scenarios against the states of the participating components. The

state diagrams for the participant components are drawn in the second step and each

state diagram is exported to XMI format using the above mentioned Altova UML

tool. The ‘Event-Sequences’ and the state diagram XMI files are used as inputs in

this step. The application of the second step results in the creation of one or more

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

32

instances of a table named ‘Event-Sequence-State-Transition’ and all these tables

collectively represent the correct functional state of the system. The structure of the

‘Event-Sequence-State-Transition’ depends upon the number of components for

which state diagrams are supplied as inputs. If the state diagrams are drawn for two

components, namely ‘X’ and ‘Y’ then the structure of the ‘Event-Sequence-State-

Transition’ will have three fields as shown in Table 3.3.

Table 3.3: Structure of Event-Sequence-State-Transition

Event# X Y

<<A Unique Event

Number Assigned to each

executable event>>

<<State of X component

during the execution of

the event>>

<<State of Y component

during the execution of

the event>>

In the third step, the erroneous states of the system are identified. The state transition

events (events where any component is making a state transition) are filtered from various

‘Event-Sequence-State-Transition’ tables and then the state related errors (the errors which

prevent the component from making its desired/required state transition) are recorded

against the filtered state transition events. This information is stored in a table named

‘State-Transition-Error’. The structure of this table has four fields as shown in Table 3.4.

Table 3.4: Structure of State-Transition-Error Table

Error# Error-Name Event# Effect

<<A Unique Error

Number Assigned to

each Error>>

<<Description

of Each Error>>

<< Event# where the

error has occurred>>

<< Effect of

the Error>>

The fourth step generates a software fault tree for the specified hazardous-state of the system.

The ‘Event-Sequences’ (extracted in the first step), ‘Event-Sequence-State-Transitions’

(determined in the second step) and a ‘State-Transition-Errors’ (identified in the third step)

are used as inputs. Recall that the ‘Event-Sequences’ and ‘Event-Sequence-State-Transitions’

collectively represent the correct functional state of the system, whereas the ‘State-Transition-

Error’ represents the erroneous state of the system. The fourth step generates one or more

XML files and each such XML file represents a software fault tree for a particular hazardous-

state. The graphical fault tree is constructed by using these XML files as an input to the fault

tree creator and analysis tool named ‘FaultCAT’ (FaultCAT, 2003) in the last step.

The overview of the first four steps of the proposed SFTA algorithm is shown in

Figure 3.3 and the SFTA algorithm is explained in the next section.

Fig

Software Fault Tree Analysis Approach in Use

Figure 3.1: Overview of the Proposed SFTA Algorithm

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

33

Software Fault Tree Analysis Approach in Use

3.5 SFTA ALGORITHM

In order to explain proposed SFTA algorithm in detail in the following sections

use-case model as shown in Figure 3.

case named ‘doOperation’. The

consisting a loop condition

this section to illustrate the various steps of the proposed SFTA

Figure3.

Figure 3.3:Use Case Description File

3.5.1 Step 1: Extracting Event

In the first step all executable paths of a given use

This creates an instance of a table named ‘

of the given use-case functionality.

The following tasks are carried

� Each executable event mentioned in the

unique identifier in the form of event number (

every line of use-case description file represents an executable event

‘ENDWHILE’ line in the use

executable event and hence is not assigned any event number.

� The precondition value is computed for each executable event.

information about the event sequence that is executed before the event.

Tree Analysis Approach in Use-Case based Requirements Analysis Phase

SFTA ALGORITHM

proposed SFTA algorithm in detail in the following sections

case model as shown in Figure 3.2is used. Assume an actor named ‘A’ and a use

The formal textual description of the ‘doOperation’ use

 is shown in Figure 3.3.This description is used

various steps of the proposed SFTA algorithm.

Figure3.2: An Example Use-Case Model

A

B

WHILE condition

 C

 D

ENDWHILE

E

F

Use Case Description File For the ‘doOperation’ Use-Case of Figure

Extracting Event-Sequences for Various Scenarios

In the first step all executable paths of a given use-case, known as scenarios, are identified.

an instance of a table named ‘Event-Sequence’ corresponding to each scenario

case functionality.

s are carried out in sequence to complete the task.

Each executable event mentioned in the use-case description file is assigned a

unique identifier in the form of event number (Event#). It should be noted that not

case description file represents an executable event. For example,

‘ENDWHILE’ line in the use-case description file of Figure 3.3 is

executable event and hence is not assigned any event number.

condition value is computed for each executable event. This value gives the

information about the event sequence that is executed before the event.

Case based Requirements Analysis Phase

34

proposed SFTA algorithm in detail in the following sections, a simple

actor named ‘A’ and a use-

description of the ‘doOperation’ use-case

is used throughout

Case of Figure 3.2

case, known as scenarios, are identified.

’ corresponding to each scenario

file is assigned a

It should be noted that not

. For example,

case description file of Figure 3.3 is a non-

This value gives the

information about the event sequence that is executed before the event.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

35

� A logical time value is assigned to each executable event which represents its

sequence of execution in the scenario event-sequence.

The scenario extraction process is carried out in two sub steps.

Step I (a) Creating a table with Event-Details

This sub-step creates a table named ‘Event-Details’ whose structure has three fields as

(i) ‘Event#’, (ii) ‘Event-Name’ and (iii)‘Event-Label’. In this step, each executable event is

assigned a unique event number (‘Event#’). The ‘Event-Name’ is assigned for each event

from the use-case description file.

The ‘Event-Label’ field is assigned as follows:

Suppose an event ‘EK’(Event#) is assigned an ‘Event-Label’ value as ‘EL’, where ‘EL’ has

a form: E1,E2,…..EK-1,EK and it indicates that the event sequence (E1, E2…..EK-1) has been

executed before EK. The first event in any scenario is assigned an ‘Event-Label’ value

equal to its own event number (Event#). If there exists an executable event ‘EN’ such that

the execution control can reach ‘EN’ via various possible paths, then the ‘Event-Label’

value of ‘EN’ contains the event sequences of all such paths concatenated by an ‘OR’

operator. Apart from the executable events, the ‘Event-Label’ value is also computed for

two non-executable events namely ‘ENDWHILE’ and ‘ENDIF’ also. It is to be noted that

no ‘‘Event-Label’ value is computed for ‘ELSE’.

The process of assigning values to ‘Event-Label’ fields of various executable events is

illustrated in Figure 3.4 for the use-case description as shown in Figure 3.3.

The executable events namely A, B, WHILE condition, C, D, E and F are assigned unique

event numbers from E1 to E7. The ‘Event-Label’ value is computed for ‘ENDWHILE’ event

also but no event number is assigned to ‘ENDWHILE’ because it is a non-executable event.

Event labels are assigned as unique sequence numbers in the form E1, E2,….EK.. The event

E3 (WHILE condition) is a loop event and leads to two paths. The first path represents the

case when the result of E3 is true (represented by E3(T)). The second path represents the case

when the result of E3 is false (represented by E3(F)). The value assigned to ‘Event-Label’

field of event E6 contains two event sequences concatenated via an ‘OR’ operator

as‘{E1,E2,E3(F),E6} OR {E1,E2,E3(T),E4,E5,E5,E6}’. It indicates that there exist two

execution paths/routes via which a control can reach event E6. Similarly, the value assigned

to ‘Event-Label’ field of event E7 also contains an ‘OR’ operator.

Software Fault Tree Analysis Approach in Use

Figure 3.4: Operational Details of Step I(a)

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

36

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

37

The pseudo code for executing sub-step I(a) is given below in the form of a procedure

named assignLabels().

Procedure assignLabels()

Input Use-Case Description File

Output Event-Details

Variable(s) Used

String ifLabel, startLabel, whilestartLabel, currentLabel=null,

/* ifLabel� Label assigned to IF*/

/*starteLabel� label assigned to start of IF*/

/*whilestartLabel�label assigned to start of while loop*/

/*currentLabel� label assigned to current executable event*/

Stack ifStack, whileStack

/* Stack is a last-in first-out (LIFO) type data structure in which element added in last will be deleted

first */

/* ifStack � stack for IF block */

/* whileStack � stack for while block */

Boolean ElseFlag /* elseFlag is a Boolean type flag which represents whether IF has an associated ELSE or not

*/

/* Pseudo Code Description */

1. Create’Event-Details’ table with a structure as shown in Figure 3.2

2. FOR each executable event in the input file;

(i) Assign Event# (Unique Event number for the event);

(ii) Append the values of Event#, event-name in the Event-Details table;

ENDFOR

3. FOR each row of the Event-Details table created above

 Case:row contains an ‘IF’

 set elseFlag = false;

 set startLabel = currentLabel;

 set currentLabel = currentLabel+event +’(T)’;

 push startLabel onto ifStack; /* push is the name of add operation for Stack */

Case:row contains an ‘ELSE’

pop top element from ifStack; /* pop is the name of delete operation for Stack */

set elseFlag = true; /* IF has an associated ELSE option */

set ifLabel = currentLabel;

set currentLabel = startLabel;

set currentLabel = currentLabel+’(F)’; /*‘(F)’ represents false condition */

Case: row contains an ‘ENDIF’

 pop top element from stack;

 IF elseFlag = true THEN

 set currentLabel = ifLabel +currentLabel;

 ELSE

set currentLabel = currentLabel+startLabel+’(F)’;

 ENDIF

 set elseFlag = false;

Case: ‘event’ is WHILE type

 set whilestartLabel = currentLabel;

 set currentLabel = currentLabel+event+’(T)’;

push whileStartLabel on to whileStack;

Case: ‘event’ is ENDWHILE type

 pop top element from whileStack;

 set currentLabel = currentLabel + whilestartLabel + event +”(F)”;

Default:

 IF currentLabel = null THEN

 currentLabel = event;

 ELSE

 currentLabel = currentLabel + event;

 ENDIF

ENDFOR

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

38

Step I (b) Extracting the Event-Sequence for each Scenario

The event sequence of a particular scenario is extracted from the event label values

assigned to various executable events in the previous sub-step. An event label value

‘EL’ assigned to an event ‘EK’ represents a potential scenario event sequence, if no

other event’s event label value contains EL. If EL contains an ‘OR’ operator then each

event sequence concatenated via an ‘OR’ operator represents the scenario event

sequence.

The details of this step are illustrated in Figure 3.5 for the example use-case. The ‘Event-

Details’ table as shown in Figure 3.4is the input in this sub-step. The ‘Event-Label’ value

of event E7 is ‘{E1, E2, E3(F), E6, E7} OR {E1, E2, E3(T), E4, E5, E6,E7}’ and this

value is not contained in the ‘Event-Label’ value of any other event. So, the ‘Event-

Label’ value of event E7 represents a scenario event sequence. As this value contains

only one ‘OR’ operator, it represents two scenario event sequences and these are event

sequences are {E1, E2, E3, E4, E5, E6, E7} and {E1, E2, E3, E6, E7}. The values of the

‘Logical_Time’ fields of the events in an event sequence, are assigned sequentially as

1,2,3..and so on.

Similarly, for another use-case as shown in Figure 3.6, three scenarios with event

sequences as {E1, E2, E3, E4, E5, E6, E8}, {E1, E2, E3, E4, E7, E8} and {E1, E2, E3,

E8} are identified and logical time values are assigned as per above mentioned criteria.

The pseudo code description of this sub-step is given below in the form of a procedure

named createEventSequenceTables()as follows:

Procedure createEventSequenceTables()

Input Event-Details table of Step I(a)

Output Event-Sequence table(s) for each scenario

/* Pseudo Code Description */

1. Identify the number of possible scenarios from the Event-Details table of Step I(a)

2. Create and Populate Event-Sequence table for each such scenario

Figure 3.5: Scenario

Software Fault Tree Analysis Approach in Use

Scenario Extraction (Step I(b)) for Use-Case Description of Figure 3.3

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

39

of Figure 3.3

Figure 3.6: Scenario Extraction Process

Software Fault Tree Analysis Approach in Use

: Scenario Extraction Process Illustration for Use-Case Description Shown in (a)

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

40

Case Description Shown in (a)

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

41

3.5.2 Step II: Identifying Event-Sequence-State-Transitions for each Scenario

Using various ‘Event-Sequence’ tables created in Step I and the state diagram XMI files of

the participating components as inputs, events of various scenarios are mapped against the

states of the participating components to identify ‘Event-Sequence-State-Transitions’ for

each scenario. The following two conditions should be satisfied before the start of this step.

(i) The state diagrams are drawn by using the event numbers (assigned to various

executable events in Step I) as state transition events.

(ii) If the state transition pattern of a component is uniform across all the scenarios, then

only one state diagram is drawn for that component. But, if a state transition pattern

for a component is different in different scenarios, then a separate state diagram for

that component is drawn for each scenario.

This step creates an instance of a table named ‘Event-Sequence-State-Transition’

table corresponding to each instance of ‘Event-Sequence’ table created and populated

in Step I. The structure of the ‘Event-Sequence-State-Transition’ table depends upon

the number of components (not the number of state diagrams) for which the state

diagrams are supplied as inputs in this step. The first field of this table is

Event#(Event Number) and every other field represents the name of the component

for which a state diagram is drawn.

Suppose two components, namely ‘X’ and ‘Y’ are participating in the use-case

functionality of Figure 3.3. Recall that the same use-case functionality is used as an input

in Step I. Assume that the valid states of components ‘X’ and ‘Y’ are {x1 and x2} and {y1

andy2}, respectively. The UML state diagrams drawn for both these components are

shown in Figure 3.7. The initial state of ‘X’ component is ‘x1’ whereas the initial state of

‘Y’ component is ‘y1’. The execution of event E4 (event C as shown in Figure 3.4)

changes the state of ‘X’ component to ‘x2’. Similarly, the execution of event E6 (event E

of Figure 3.4) changes the state of ‘Y’ component to ‘y2’.

Taking the ‘Event-Sequence’ tables as shown in Figure 3.5 and the UML state

diagrams of components ‘X’ and ‘Y’ as shown in Figure 3.7 as inputs, ‘Event-

Sequence-State-Transitions’ are identified for two scenarios as shown in Figure 3.8.

These are saved in ‘Event-Sequence-State-Transition’ table in Figure 3.8(b)with the

structure of three fields as (i) Event#, (ii) X and (iii) Y because the state diagrams are

drawn for two components namely ‘X’ and ‘Y’.

Software Fault Tree Analysis Approach in Use

Figure 3.7: State Diagrams for two Components

Figure 3.8: Event-Sequence

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

: State Diagrams for two Components X and Y

Sequence-State-Transition Tables for Two Scenarios

Case based Requirements Analysis Phase

42

Two Scenarios

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

43

It is to be noted that corresponding to event E4 of ‘Event-Sequence-State-Transition’

table for Scenario I, as shown in Figure 3.8(b), the execution of event E4 causes the

state of X changed to x2 from x1and similarly the execution of event E5 causes the

state of Y changed to y2 from y1.

The pseudo code for identifying all ‘Event-Sequence-State-Transitions’, in the form of a

procedure named ‘createStateTransitionTables()’ is given below.

Procedure createStateTransitionTables()

Input State Chart XMI file(s) and Event-Sequence tables of Step I

Output Event-Sequence-State-Transition table corresponding to each Event-Sequence

table

/* Pseudo Code Description*/

1. FOR each Event-Sequence table created in Step I of the approach

Create a corresponding instance of Event- Sequence-State-Transition table;

 ENDFOR

2. FOR each Event-Sequence-State-Transition table created

FOR each component-name column of the Event-Sequence-State-Transition table

select the associated state diagram XMI file for the component;

read the initial_state for the component from XMI file;

 FOR each event number ‘E’ of the selected Event-Sequence-State-Transition table

scan the selected XMI file for state transition corresponding to ‘E’;

IF‘E’ is responsible for any state transition for the component THEN

read next_state_transition for component-name from the XMI file;

set the new value of initial_state as next_state_transition;

update component-name column with next_state_transition;

 ELSE

update component-_name column with initial_state;

 ENDIF

 ENDFOR

ENDFOR

ENDFOR

3.5.3 Step III: Identifying State-Transition-Errors for all scenarios

The objective of this step is to identify state-transition-error and each one is saved in a

single instance of a table named ‘State-Transition-Error’. This step uses the ‘Event-

Sequence-State-Transition’ tables instantiated in Step II as inputs and records those

errors which, if allowed to occur can prevent the component from making its desired

state transition leading to a faulty operation. In order to carry out this task, every

component column of every ‘Event-Sequence-State-Transition’ table is scanned to locate

various events where the selected component is changing its state. For example, ‘Event-

Sequence-State-Transition’ table of scenario I, as shown in Figure 3.8(b), indicates that

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

44

the component ‘X’ is changing its state from ‘x1’ to ‘x2’ during the execution of event

‘E4’. The errors that can occur during the execution of event ‘E4’ and can prevent the

component ‘X’ from making its desired state change (i.e. Component ‘X’ remains in the

state ‘x1’ and does not successfully change its state to ‘x2’) are identified as state-

transition-errors and are recorded in a ‘State-Transition-Error’ table. Each such state

related error is identified by a unique error number (Error#), error name (Error-name),

event number where it occurs (Event#) and its final effect (Effect).There are two types of

state related errors that can prevent a component from making its required state change.

Recall that each state transition event is an executable event. The first type of error

belongs to the ‘software-control’ category where the state transition event fails to

execute at all. The second type of error represents the situation where a fault occurs in

the component itself. For example, consider the execution of event ‘E4’ that causes a

change in the state of ‘X’ component from initial state ‘x1’ to state ‘x2’ (Figure 3.8(b)).

The first type of error is the situation where the event ‘E4’fails to execute at all and the

second type of error is the situation where the error occurred in the component ‘X’ itself.

The pseudo code for identifying various state transition errors is given below.

Procedure identifyStateTranistionErrors()

Input(s) Event-Sequence-State-Transitions of Various Scenarios

Output State-Transition-Errors

FOR each Event-Sequence-State-Transitions

FOR each event in the Event-Sequence-State-Transitions

IF event is changing the state of a component THEN

record two state related errors corresponding to the event and assign a

uniue error number to each error;

ENDIF

ENDFOR

ENDFOR

For the‘Event-Sequence-State-Transitions’ as shown in Figure 3.8, the execution of this

step results in the instantiation of ‘State-Transitions-Errors’ as shown in Figure 3.9(b).

The ‘State-Transitions-Errors’ table, as shown in Figure 3.9, has two state transition

events (‘E4’ and ‘E5’) and four states related errors with error numbers as ER1, ER2,

ER3 & ER4. The number of ‘State-Transitions-Errors’ is twice the number of state

transition events since two state-related errors are identified corresponding to each state

transition event.

Figure 3.9: Populating State

Software Fault Tree Analysis Approach in Use

: Populating State-Transition-Error Table Generated From Tables of Figure 3.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

45

From Tables of Figure 3.8

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

46

3.5.4 Step IV: Generating Fault Tree XML File

The software fault tree for a given hazardous-state of the system is constructed in this

step. The output of this step is in the form of one or more fault tree XML files. The

actual fault trees can be constructed from these XML file(s) by using an available fault

tree creation tool named FaultCAT (FaultCAT, 2003) in the next step. The outputs of

Steps I, II and III and the hazardous-state are required inputs to this step.

The first task is to define the syntax of the hazardous-state. Consider some components

{X1, X2, .. Xn} and their respective states {x1, x2, .. xn }. The hazardous-state of the system

is expressed either in atomic form or in composite form as defined in Section

3.3.Assume the components {X1, X2, .. ,Xn} make the state transitions as {x1, x2, .. xn} at

logical time values {t1,t2,..,tn} respectively.

The composite hazardous-state can be categorized in two types as explained below.

(i) Type I composite hazardous-state

If a component is not able to change its state, then it is represented by a negation state

symbol (!=) and alternatively if a component is able to change its state successfully, then

it is represented by a true state symbol (=). The state of the first component (i.e. X1) of

this hazard type should have a negation type symbol (‘!=’) whereas the states of other

components can use either a negation (‘!=’) or a true (=) type symbol. This type of

hazard will be considered as valid if the condition ‘t1< t2…<tn’ holds true. This type of

hazardous-state indicates the situation where the first component X1 (to state ‘x1’) fails to

change its expected state whereas the other components (X2 .., Xn) either failed or

succeeded in making their respective state transitions.

The generalized form for Type I composite hazardous-state is as follows:

Type 1: nn x]or[!Xx]or[!XxX AND AND ! 2211 ===== ………

(ii) Type II composite hazardous-state

This type of hazard is used to represent the situation where it is considered dangerous

from the system perspective, to have the components nXXX …21 , in states nxxx …21 ,

respectively.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

47

For example, in an elevator control application, at any point of time, it is dangerous to

have the component ‘door’ in ‘opened’ and the component ‘motor’ in ‘moving’ states

(door=opened AND motor=moving OR alternatively motor=moving AND

door=opened). Similarly, in a rail track door controller application, it is dangerous to

have the component ‘track_door’ in ‘opened’ and the component ‘track_signal’ in

‘green’ states respectively (track_door=opened AND track_signal = green).

A system encounters Type II hazardous situations only when some of the components

involved in the hazardous-state fail to make their required state transitions and remain in

their previous state. For ECS example, consider at time ‘t1’ the state(s) of the

components ‘door’ and ‘motor’ are ‘opened’ and ‘stopped’ respectively. If at time ‘t2’,

the component ‘motor’ is changing its state to ‘moving’ and ‘t1’ is less than ‘t2’,then,

there exists an event ‘Ex’ at time ‘t3’ such that t1< t3< t2 where the component ‘door’ is

supposed to make a change in its state from ‘opened’ to ‘closed’. If this expected state

change in ‘door’ component fails to occur, then the ‘door’ component will remain in the

‘opened’ state. Hence, the system will encounter a hazardous-state ‘door=opened AND

motor = moving’ at time ‘t2’ when the state transition for the ‘motor’ component to

‘moving’ state will occur successfully.

The elevator control system can encounter the same hazardous-state via an alternative

scenario also. Consider an alternative scenario, where at time t1 the states of the

components ‘motor’ and ‘door’ are ‘moving’ and ‘closed’ respectively. If at time ‘t2’,the

component ‘door’ is changing its state to ‘opened’ and t1is less than t2, then, there exists

an event Ex at time t3 such that t1< t3< t2 where the ‘motor’ component is supposed to

make a change in its state from ‘moving’ to ‘stopped’. If this expected state change for

the ‘motor’ component fails to occur, then the ‘motor’ component will remain in the

‘moving’ state. Hence, the system will encounter hazardous-state ‘door=opened AND

motor = moving’ at time t2 when the state transition for the ‘door’ component to

‘opened’ state will occur successfully. From the above discussion, it can be concluded

that a type 2 hazardous-state door=opened AND motor = moving can be interpreted as

type 1 hazardous-state either as ‘door! =closed AND motor = moving’ [provided

logical_time(door=closed) <logical_time(motor=moving)] or as ‘motor!=stopped AND

door = opened’ [provided logical_time(motor=stopped) < logical_time(door=opened)].

The generalized form for Type II composite hazardous-state is as follows:

Software Fault Tree Analysis Approach in Use

Type 2: X

The validity condition for this type of hazardous

The fault tree for an atomic hazardous

Transition-Errors’ of Step III as an input. But the fault trees

states are constructed by using the outputs of Step(s) I, II and III along with the

hazardous-state as inputs.

The fault tree constructed for

Figure 3.10. The ‘Event-Sequence

(Figure 3.8) and ‘State-Transition

construction of this fault tree.

Figure 3.10: Illustration of

The algorithm for constructing

four steps.

(i) Selecting of scenarios where the

erroneous states of the participating components such as

(ii) Constructing the fault tree for the first erroneous state

(iii)Constructing a fault tree for each of the successive erroneous states recursively

(iv) Combining all the constructed fault trees via AND gate

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

nn xXxXxX === AND AND 2211 ………

The validity condition for this type of hazardous-state is: nttt ≠≠ …21 .

The fault tree for an atomic hazardous-state can be drawn by taking the ‘

’ of Step III as an input. But the fault trees for composite hazardous

are constructed by using the outputs of Step(s) I, II and III along with the

The fault tree constructed for the hazardous-state ‘X!=x2 AND Y = y2’ is

Sequences’ (Figure 3.5), the ‘Event-Sequence-State

Transition-Errors’ (Figure 3.9) are used as the inputs in the

construction of this fault tree.

Illustration of Software Fault Tree Construction Process

constructing the fault tree for Type 1hazardous-state has

Selecting of scenarios where the given hazardous-state can occur and parsing of the

erroneous states of the participating components such as X1 != x1, X2 =x2

Constructing the fault tree for the first erroneous state X1 != x1.

Constructing a fault tree for each of the successive erroneous states recursively

Combining all the constructed fault trees via AND gates as required.

Case based Requirements Analysis Phase

48

drawn by taking the ‘State-

for composite hazardous-

are constructed by using the outputs of Step(s) I, II and III along with the

’ is illustrated in

State-Transitions’

are used as the inputs in the

Process

state has the following

state can occur and parsing of the

2, X3 = x3, etc.

Constructing a fault tree for each of the successive erroneous states recursively

.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

49

If the selected composite hazardous-state can occur in more than one scenario, then the

same steps are applied recursively for each scenario. The output faulttree.xml file is

generated separately for each scenario.

The pseudo code of the fault tree construction process for Type I hazardous-state in the

form of a procedure named ‘cretaeFaultTree_Type1()’ is given below.

Procedure createFaultTree_Type1()

Input(s) Event-Sequence Tables (Step I output), Event-Sequence-State-Transition Tables (Step II

output),

State-Transition-Error Table (Step III output) and hazardous-state

Output Fault Tree XML (faulttree.xml) files

Variable(s) used in the pseudocode description

root_node The hazardous-state (for which the software fault tree is to be constructed)

state-errorList The list of erroneous states for various components mentioned in the hazardous-state,

e.g. if the hazardous-state is X1!= x1 AND X2 != x2 AND X3 = x3 then the state-errorList

will contain the values as {X1 != x1, X2 != x2, X3 = x3}

hazard_scenarioList This represents the list of all ‘Event-Sequence-State-Transition’ tables where the

selected hazardous-state can occur

previous_change_event The event involved in state change of the previous erroneous state

current_change_event The event involved in state change of the current selected erroneous state

/* Pseudocode Description */

1. Initialize the data structures

1.1 Set root_node = hazardous-state

1.2 Parse and extract various erroneous states from the given hazardous-state and initialize state-

errorList

1.3 Select the ‘Event-Sequence-State-Transition’ tables where the hazardous-state can occur &

initialize hazard_ scenarioList

2. FOR each ‘Event-Sequence-State-Transition’ table in hazard_scenarioList (constructed in step 1.3)

2.1 Create an associated faulttree.xml file

/* Create Fault Tree for the First Erroneous State X1!=x1 */
2.2 Create Fault Tree for the erroneous state X1!= x1 using errors from State-Transition-Error table

and write it in the xml file and set previous_change_event = {event where an effect X1 != x1 has

occurred}

/* Create Fault Tree for each of the remaining Erroneous States */
2.3 FOR each remaining erroneous state in the ’state-errorList’

Case: if erroneous state is Negation Type (! =)

Create Fault Tree for the erroneous state using errors from State-Transition-Error table and

write it in the xml file and set previous_change_event = {event where the current erroneous

state has occurred}

Case: if erroneous state is True Type (=)

a. Set the value of current_change_event = {event where the current erroneous state has

occurred}

b. Select the event sequence that is executed after the previous_change_event to the

current_change_event

c. Create a basic error event for each event selected in the previous step and write it in the

xml file

ENDFOR /*End of Step 2.3*/

/* Join the Created Fault Trees via an AND gate */
2.4 Join the trees created at step(s) 2.2 and 2.3 as via an AND gate with root_node as the output of

this AND gate

ENDFOR /*End of Step 2*/

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

50

To construct a fault tree for Type 2 hazardous-state, firstly, the given Type 2 hazardous-

state is converted into Type 1 hazardous-state and then the Type 1 fault tree construction

procedure is applied on the converted hazardous-state.

The procedure for drawing the fault tree for Type 2 hazardous-state has followed four steps.

(i) Selecting the scenarios where the given hazardous-state can occur.

(ii) Converting Type II hazardous state into Type I hazardous state, according to the

selected scenario as follows

(a) Sort the component states (involved in the hazardous-state) on the logical

time value of their occurrence

(b) Identify the state (say ‘x’) which the first component (as per sorted list) fails

to experience

(c) Construct the converted hazardous-state by using ‘!=’ symbol for the state of

the first component and ‘=’ symbol for the states of other components.

(iii) Using Type I procedure to constructing the fault tree for the converted hazardous

state

(iv) If number of scenarios selected in step (i) above are more than one, then combining

all the constructed fault trees via OR gates, as required.

The pseudo code of the fault tree construction process for Type II hazardous-state in the

form of a procedure named ‘cretaeFaultTree_Type2()’ is given below.

Procedure createFaultTree_Type2()

Input(s) Event-Sequence Tables (Step I output), Event-Sequence-State-Transition Tables (Step II

output),

State-Transition-Error Table (Step III output) and hazardous-state

Output Fault Tree XML (faulttree.xml) files

Additional variable(s) used in the pseudo code description of this type

component_event_List Every element of this list is of the form {a,b,c,d} where ‘a’ is the name of the

component ,’b’ represents the selected state of the component ‘a’, ‘c’ represents the

event when the component ‘a’ is in the selected state ‘b’ and ‘d’ represents the

logical time of event ‘c’

component_change_last Component whose state is changed in the last (as per logical time value)

state_change_last State of the component_change_last i.e. the state changed by the last component

event_change_last Event responsible for the state of the component_change_last

time_change_last Logical time when event_change_last has occurred

converted_hazardous_state Represents the transformed hazardous state and its current value is null

/* Pseudocode Description */

1. Initialize the data structures /*Same as for Type 1pseudocode description*/

/* Convert the given Type 2 hazardous-state into Type 1 hazardous-state */

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

51

2. FOR each ‘Event-Sequence-State-Transition’ table in hazard_scenarioList [populated in Step 1]

2.1. FOR I = 1 to ‘n’ /* where ‘n’ is the number or erroneous states in the given hazardous-state */

Search for entry X[I] = x[I] and add the component X[I] , the state x[I] , an event ‘E’where X[I] = x [I]

has occurred and logical_time of E into component_event_List;

ENDFOR

2.2. Sort the component_event_List on logical time value and initialize the values for variables

component_change_last, event_change_last, state_change_last and time_change_last

2.3. For each element in component_event_List except the last component i.e. component_change_last

2.3.1. Find the state transition (say a) for the current component (say X) that has occurred

between the current event (given by the current element of component_event_List) and

the event_change_last

2.3.2. Negate the state as X != a /* Component X fails to make its desired state change and

remains in previous state*/

2.3.3. IF converted_hazardous_state is null THEN

Set converted_hazardous_state = (X !=a);

ELSE

Set converted_hazardous_state = converted_hazardous_state + AND + (X !=a);

/* ‘+’ is string concatenation operator*/

ENDIF

ENDFOR /* End of Step 2.3*/

2.4. Set converted_hazardous_state = converted_hazardous_state + AND +

component_change_last+ state_change_last

/* Invoke Type1 Procedure for theconverted_hazardous_state */
2.5. Use Type 1 Procedure to construct the fault tree for the converted_hazardous_state

ENDFOR /*End of Step 2*/

3. IF the number of ‘Event-Sequence-State-Transition’ tables selected in Step 2 is more than one

THEN

 Merge the software fault trees created in Step 2 via an OR gate and set the hazardous-state as the

root node of the merged tree;

ELSE

 Create a wire gate with fault tree of step 2 as input and the hazardous-state X1 =x1 AND X2 = x2 ..

AND Xn = xn as an output;

ENDIF /*End of Step 3*/

3.5.5 Step V: Drawing Fault Tree From XML File

This step constructs the fault tree by giving the XML file (created in Step IV above) as

an input to a fault tree creation tool named FaultCAT (FaultCAT, 2003) as shown in

Figure 3.10.

3.5.6 Salient Features and Time Complexity of the SFTA Algorithm

The software fault tree construction process is easily scalable to any number of state

variables for both types of hazardous-states. The algorithmic time complexity i.e. the

running time of the first four steps of the SFTA algorithm is given in the following

sections. Note that the fifth step simply constructs the fault tree in graphical form and no

computation is done in this step.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

52

(a) Time Complexity of Step I

The running time, i.e. the algorithmic time complexity of the Step I (a) is of the order of

‘O(N1)’ where ‘N1’ is the number of executable events in the given use-case description

file.

The algorithmic complexity of the Step I(b), is approximately of the order of ‘O(N2)’

where ‘N2’ is the number of event sequence tables created.

Hence, the total execution time for Step I is ‘O(N1) + O(N2)’.

(b) Time Complexity of Step II

The running time (i.e. Algorithmic time complexity) of Step II is ‘O(N3 × N4 × N5)’

where ‘N3’ is the number of ‘Event-Sequence-State-Transitions’, ‘N4’ is the number of

components for which a state diagrams are drawn and ‘N5’ is the average number of

executable events in each ‘Event-Sequence’.

(c) Time Complexity of Step III

The algorithmic time complexity of Step III is of the order of ‘O(N4×N5)’where the

meaning of ‘N4’ and ‘N5’ are already explained in part 3.5.5 (b) above.

(d) Time Complexity of Step IV

The algorithmic time complexity of Step IV is of the order of ‘O(N6×N7)’ where ‘N6’ is

the number of scenarios where selected hazardous-state can occur and ‘N7’ is the

number of erroneous states present in the selected hazardous-state.

The overall algorithmic time complexity of all the four steps of the SFTA algorithm is as

follows:

[O(N1) + O(N2)] + [O(N3 × N4 × N5)] +[O(N4 × N5)] + [O(N6 × N7)]

3.5.7 Formatting of Inputs

The proposed SFTA algorithm as described in Section 3.5 assumes that the three inputs

namely (i) use-case description file, (ii) UML state diagrams of the participating

components and (iii) the hazardous-state of the system, are supplied in some specific

representations and these representation for each input is explained in the following sub-

sections.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

53

(a) Use-Case Description File Representation

The whole description of the selected use-case functionality is to be supplied as a single

text file. The text within this file is to be expressed in the pseudo code form using

structured English as follows:

• Every line mentioned under event_ details part should represent a single event

and this event can belong to any one of three categories (i) normal event, (ii)

conditional event (IF-THEN-ENDIF, IF-THEN-ELSE-ENDIF) or (iii) a loop

event (WHILE - ENDWHILE, DO WHILE - ENDDO). It should be noted that

the description of each alternative flow is to be expressed using structured

English constructs such as IF-THEN-ELSE-ENDIF etc.

• The basic-details part is inserted at the beginning of the file as comments using/*

<text> */. Comments can be inserted/ added anywhere in the file to improve the

clarity of the written text.

• An IF condition can exist without an ELSE option also but an ENDIF is

mandatory for each IF block. Similarly, ENDWHILE and ENDDO are

mandatory for each WHILE and DO WHILE blocks respectively.

• The words ELSE, ENDIF and ENDWHILE should appear on separate lines and

should not be mixed with other events. These words are not considered as

executable events.

There is no restriction on the size (i.e. the number of lines) of the use-case description

file.

(b) State Diagram Representation

The proposed SFTA approach operates with the assumption that the state diagrams of the

participating components are supplied in machine readable format i.e. XMI (XML

Metadata Interchange).The Altova UML (Altova-UModel, 2014) tool has been used to

draw the required state diagrams and each state diagram is exported to XMI (XML

Metadata Interchange) format using the same tool. The main requirement is that the

UML state diagrams drawn for the participating components should use the unique event

numbers assigned to various executable events as state transition events.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

54

(c) Hazardous-State Representation

The hazardous-state, for which a fault tree is to be constructed, is to be expressed in

terms of the states of the participating components either in atomic form or in composite

form as discussed in Section 3.3.

The next section demonstrates the step-by-step application of the algorithm on the use-

case functionalities of two safety-critical applications.

3.6 MOTIVATING EXAMPLE 1:REQUEST ELEVATOR USE-CASE

OF AN ELEVATOR CONTROL SYSTEM (ECS) APPLICATION

The use-case selected from an Elevator Controller System (ECS) application is ‘Request

Elevator’. This use-case gets realized when any user from any floor presses the button to

request an elevator to visit the requested floor number. Each floor button is assigned a

unique number so that the pressing of the floor button also gives the information about

the floor number of the building from where the button is pressed. The system has a

device named ‘Arrival Sensor’ installed on each floor of the building. The role of this

‘Arrival Sensor’ component is to interrupt the system whenever an elevator is about to

reach the respective floor number.

The formal textual description of the ‘Request Elevator’ use-case is shown in

Figure 3.11.

Step I: Extracting ‘Event-Sequence’ for Each Scenario

The application of the Step I(a) results in the extraction of ‘Event-Details’ as shown in

Table 3.5. The ‘Event-Label’ value of ENDWHILE (last row of Table 3.5) is not a part

of any other event label value and hence represents a potential Event-Sequence. There

are seven event sequences joined by six ‘OR’ words in the ‘Event-Label’ value of this

‘ENDWHILE’. So the application of Step I(b) results in seven ‘Event-Sequences’ and

these event-sequences for Scenario 1 to Scenario 7 are shown in Table 3.6 to Table 3.12

respectively. [Note: The Event-Name column is not shown in the Event-Sequence tables

to avoid replication of data].

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

55

/*******************Basic Details****************/

/* Use Case : Request Elevator */

/* Initiating Actor : Elevator User */

/* Precondition : */

/**/

/* Event Details */

user press elevator button

elevator button sensor reads the destination floor request and notifies it to system

system update the request

WHILE request queue is not empty

IF elevator is idle THEN

 Determine direction

 system commands the door to close

 IF door = closed THEN

 System commands to start the motor to move to the determined direction

 ENDIF

ELSE

As the elevator is approaching the floors, floor sensor detects the floor # and notifies the

system

IF elevator has to stop at that floor THEN

 System commands the motor to stop

IF motor= stopped THEN

 System commands the elevator door to open

IF door=opened THEN

 system updates the request queue

ENDIF

ENDIF

ENDIF

ENDIF

ENDWHILE

Figure 3.11:Use Case Description File for ‘Request Elevator’ Use-Case of

an ECS Application

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

56

Table 3.5: Event-Details of ECS Application

Event# Event-Name Event-Label

E1 user press elevator button E1

E2
elevator button sensor reads the destination floor request and

notifies it to system

E1,E2

E3 system update the request E1,E2,E3

E4 WHILE request queue is not empty E1,E2,E3,E4

E5 IF elevator is idle THEN E1,E2,E3,E4(T),E5

E6 Determine direction E1,E2,E3,E4(T),E5(T),E6

E7 system commands the door to close E1,E2,E3,E4(T),E5(T),E6,E7

E8 IF door = closed THEN E1,E2,E3,E4(T),E5(T),E6,E7,E8

E9
System commands to start the motor to move to the

determined direction

E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9

ENDIF {E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9} OR

{E1,E2,E3,E4(T),E5(T),E6,E7,E8(F)}

E10
As the elevator is approaching the floors, floor sensor

detects the floor # and notifies the system

E1,E2,E3,E4(T),E5(F),E10

E11 IF elevator has to stop at that floor THEN E1,E2,E3,E4(T),E5(F),E10,E11

E12 System commands the motor to stop E1,E2,E3,E4(T),E5(F),E10,E11(T),E12

E13 IF motor= stopped THEN E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13

E14 System commands the elevator door to open E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14

E15 IF door=opened THEN E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15

E16 system updates the request queue E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

57

Event# Event-Name Event-Label

ENDIF {E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)}

ENDIF {E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)}

ENDIF {E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} OR

E1,E2,E3,E4(T),E5(F),E10,E11(F)

ENDIF {E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9} OR

{E1,E2,E3,E4(T),E5(T),E6,E7,E8(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(F)}

ENDWHILE {E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9} OR

{E1,E2,E3,E4(T),E5(T),E6,E7,E8(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} OR

{E1,E2,E3,E4(T),E5(F),E10,E11(F)} OR

{E1,E2,E3,E4(F)}

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

58

Table 3.6: Event-Sequence Table for Scenario 1 of Elevator Control System Application

Event # Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

E5 E1,E2,E3,E4(T) 5

E10 E1,E2,E3,E4(T),E5(F) 6

E11 E1,E2,E3,E4(T),E5(F),E10 7

E12 E1,E2,E3,E4(T),E5(F),E10,E11(T) 8

E13 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12 9

E14 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T) 10

E15 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14 11

E16 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T) 12

Table 3.7: Event-Sequence Table for Scenario 2 of Elevator Control System Application

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

E5 E1,E2,E3,E4(T) 5

E10 E1,E2,E3,E4(T),E5(F) 6

E11 E1,E2,E3,E4(T),E5(F),E10 7

E12 E1,E2,E3,E4(T),E5(F),E10,E11(T) 8

E13 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12 9

E14 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T) 10

E15 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14 11

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

59

Table 3.8: Event-Sequence Table for Scenario 3 of Elevator Control System Application

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

E5 E1,E2,E3,E4(T) 5

E10 E1,E2,E3,E4(T),E5(F) 6

E11 E1,E2,E3,E4(T),E5(F),E10 7

E12 E1,E2,E3,E4(T),E5(F),E10,E11(T) 8

E13 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12 9

Table 3.9: Event-Sequence Table for Scenario 4 of Elevator Control System Application

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

E5 E1,E2,E3,E4(T) 5

E6 E1,E2,E3,E4(T),E5(T) 6

E7 E1,E2,E3,E4(T),E5(T),E6 7

E8 E1,E2,E3,E4(T), E5(T),E6,E7 8

E9 E1,E2,E3,E4(T), E5(T),E6,E7 9

Table 3.10: Event-Sequence Table for Scenario 5 of Elevator Control System Application

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

E5 E1,E2,E3,E4(T) 5

E6 E1,E2,E3,E4(T), E5(T) 6

E7 E1,E2,E3,E4(T), E5(T),E6 7

E8 E1,E2,E3,E4(T), E5(T),E6,E7 8

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

60

Table 3.11: Event-Sequence Table for Scenario 6 of Elevator Control System Application

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

E5 E1,E2,E3,E4(T) 5

E10 E1,E2,E3,E4(T),E5(F) 6

E11 E1,E2,E3,E4(T),E5(F),E10 7

Table 3.12: Event-Sequence Table for Scenario 7 of Elevator Control System Application

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3 4

Step II: Identifying ‘Event-Sequence-State-Transitions’ for each Scenario

The participating components in the ‘Request-Elevator’ use-case functionality are

‘Motor’ and ‘Door’. The valid states of ‘Motor’ component are ‘stopped’ and ‘moving’.

Similarly, the valid states of ‘Door’ component are ‘opened’ and ‘closed’. At the time of

pressing of the floor button, the elevator is either in a stationary mode (i.e. positioned at

some floor other than the requested floor) or in a servicing mode (i.e. serving any other

user’s request). If the elevator is in stationary mode, then the states of both ‘Motor’ and

‘Door’ components are ‘stopped’ and ‘opened’ respectively. Otherwise, (if the elevator is in

servicing mode) the states of ‘Motor’ and ‘Door’ components are ‘moving’ and ‘closed’

respectively. In all the scenarios where the execution of the conditional event E5 (‘IF

elevator is idle THEN’) returns true, the states of components ‘Motor’ and ‘Door’

components are ‘stopped’ and ‘opened’ respectively. Otherwise, the state of the components

‘Motor’ and ‘Door’ are ‘moving’ and ‘closed’ respectively. So, two sets of state diagrams,

each for Motor and Door components are drawn in this case study application. The drawn

state diagrams for both the ‘Door’ and ‘Motor’ components are shown in Figure 3.12 and

Figure 3.13 respectively. There are drawn two state diagrams for ‘Motor’ and ‘Door’

components.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

61

(a) Door State Diagram when the initial

state is ‘closed’

Event E14 (‘System commands the

elevator door to open’) causes the state

of the Door component be changed to

‘opened’

(b) Door State Diagram when the initial

state is ‘opened’

Event E7 (System commands the

elevator door to close) causes the state

of the Door component be changed to

‘closed’

Figure 3.12: Door State Diagrams for Elevator Control System Application

(a) Motor state Diagram when the initial

state is ‘moving’

Event E12 (System commands the motor

to stop) causes Motor state to be

changed to ‘stopped’

(b) Motor state Diagram when the initial

state is ‘stopped’

Event E9 (System commands to start the

motor to move to the determined

direction) causes Motor state to be

changed to ‘moving’

Figure 3.13: Motor State Diagrams for Elevator Control System Application

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

62

The output of Step II results in seven ‘Event-Sequence-State-Transition’ tables (one table

for each scenario) and these tables for are shown in Table 3.13 to Table 3.19. The

‘Event-Sequence’ tables as shown in Tables 3.6 to Table 3.12 and UML state diagrams

as shown in Figure 3.12 and Figure 3.13 are supplied as inputs to this step.

Table 3.13: Event-Sequence-State-Transition Table for Scenario 1

Event# Door Motor

E1 closed moving

E2 closed moving

E3 closed moving

E4 closed moving

E5 closed moving

E10 closed moving

E11 closed moving

E12 closed stopped

E13 closed stopped

E14 opened stopped

E15 opened stopped

E16 opened stopped

Table 3.14: Event-Sequence-State-Transition Table for Scenario 2

Event# Door Motor

E1 closed moving

E2 closed moving

E3 closed moving

E4 closed moving

E5 closed moving

E10 closed moving

E11 closed moving

E12 closed stopped

E13 closed stopped

E14 opened stopped

E15 opened stopped

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

63

Table 3.15: Event-Sequence-State-Transition Table for Scenario 3

Event# Door Motor

E1 closed moving

E2 closed moving

E3 closed moving

E4 closed moving

E5 closed moving

E10 closed moving

E11 closed moving

E12 closed stopped

E13 closed stopped

Table 3.16: Event-Sequence-State-Transition Table for Scenario 4

Event# Door Motor

E1 opened stopped

E2 opened stopped

E3 opened stopped

E4 opened stopped

E5 opened stopped

E6 opened stopped

E7 closed stopped

E8 closed stopped

Table 3.17: Event-Sequence-State-Transition Table for Scenario 5

Event# Door Motor

E1 opened stopped

E2 opened stopped

E3 opened stopped

E4 opened stopped

E5 opened stopped

E6 opened stopped

E7 closed stopped

E8 closed stopped

E9 closed moving

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

64

Table 3.18: Event-Sequence-State-Transition Table for Scenario 6

Event# Door Motor

E1 closed moving

E2 closed moving

E3 closed moving

E4 closed moving

E5 closed moving

E10 closed moving

E11 closed moving

Table 3.19: Event-Sequence-State-Transition Table for Scenario 7

Event# Door Motor

E1 closed moving

E2 closed moving

E3 closed moving

E4 closed moving

Step III: Identifying ‘State-Transition-Errors’

The execution of Step III results in the instantiation of ‘State-Transition-Errors’ as

tabulated in Table 3.20.

Table 3.20: State-Transition-Error Table for Elevator Control Application

Error# Error_Name Event# Effect

ER1 Motor Fails to Stop E12 Motor != stopped

ER2 System Fails to Give Stop Motor Command E12 Motor != stopped

ER3 Door Fails to Open E14 Door != opened

ER4 System Fails to Give Door Open Command E14 Door != opened

ER5 Door Fails to Close E7 Door != closed

ER6 System Fails to Give Door Close Command E7 Door != closed

ER7 Motor Fails to Move E9 Motor != moving

ER8 System Fails to Give Move Motor Command E9 Motor != moving

Software Fault Tree Analysis Approach in Use

Step IV: Construct Fault Trees

Two Type 1 and one Type 2

study application. The Type 1 composite

Motor = moving’ and (ii)

composite hazardous-state is

The fault tree XML file generated for

closed AND Motor = moving

this XML file is shown in Figure

<?xml version="1.0" encoding="UTF

<Fault-Tree><Intermediate-Event><Title>Door!=closed.AND.Motor=moving<

<And-Gate><Intermediate-Event><Title>Door!=closed</Title><And

Event><Title>ER5</Title></Basic

Event></And-Gate></Intermediate

Event><Title>Motor=moving</Title><And

Event><Basic-Event><Title>^(E8(T))</Title></Basic

Event></And-Gate></Intermediate

Figure 3.14: faulttree.xml file for

Figure 3.15: Fault Tree for Hazardous State Door

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

: Construct Fault Trees

wo Type 1 and one Type 2 composite hazardous-states are considered

. The Type 1 composite hazardous-state(s)are: (i) ‘Door!= closed AND

and (ii) ‘Motor!= stopped AND Door = opened’.

is: ‘Door = opened AND Motor = moving’.

file generated for the Type 1 composite hazardous-state

closed AND Motor = moving’ is shown in Figure 3.14 and fault tree constructed from

his XML file is shown in Figure 3.15.

<?xml version="1.0" encoding="UTF-8"?>

Event><Title>Door!=closed.AND.Motor=moving</Title>

Event><Title>Door!=closed</Title><And-Gate><Basic-

Event><Title>ER5</Title></Basic-Event><Basic-Event><Title>ER6</Title></Basic-

Gate></Intermediate-Event><Intermediate-

Event><Title>Motor=moving</Title><And-Gate><Basic-Event><Title>E9</Title></Basic

Event><Title>^(E8(T))</Title></Basic-Event></And-Gate></Intermediate

Gate></Intermediate-Event></Fault-Tree>

: faulttree.xml file for Hazardous-State: Door!=closed AND

Motor=moving

t Tree for Hazardous State Door!=closed AND Motor = moving

Case based Requirements Analysis Phase

65

are considered for this case

Door!= closed AND

 The Type 2

state ‘Door!=

is shown in Figure 3.14 and fault tree constructed from

/Title>

Event><Title>E9</Title></Basic-

Gate></Intermediate-

AND

!=closed AND Motor = moving

Software Fault Tree Analysis Approach in Use

The basic error events corresponding to the conditional events

represented using the form ‘

the error situation where ‘C

the error event ‘^(E8(T)) indicates that

wrongly evaluated as true.

The generated fault tree XML file for

stopped AND Door = opened

this file is shown in Figure 3.17.

<?xml version="1.0" encoding="UTF

<Fault-Tree><Intermediate-Event><Title>Motor!=stopped.A

<And-Gate><Intermediate-Event><Title>Motor!=stopped</Title>

<And-Gate><Basic-Event><Title>ER1</Title></Basic

Event><Title>ER2</Title></Basic

Event><Intermediate-Event><Title>Door=opened</T

Event><Title>E14</Title></Basic

Event></And-Gate></Intermediate

Tree>

Figure 3.16: faulttree.xml file

Figure 3.17: Fault Tree for Hazardous

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

The basic error events corresponding to the conditional events in a fault tree are

the form ‘^(C(T))’ where ‘C’ is a conditional type event. It represents

C’ is wrongly evaluated as true. For example, in Figure 3.15,

the error event ‘^(E8(T)) indicates that the event ‘E8’ is a conditional event an

he generated fault tree XML file for Type I composite hazardous-state

stopped AND Door = opened’ is shown in Figure 3.16 and a fault tree constructed from

this file is shown in Figure 3.17.

<?xml version="1.0" encoding="UTF-8"?>

Event><Title>Motor!=stopped.AND.Door=opened</Title>

Event><Title>Motor!=stopped</Title>

Event><Title>ER1</Title></Basic-Event><Basic-

Event><Title>ER2</Title></Basic-Event></And-Gate></Intermediate-

Event><Title>Door=opened</Title><And-Gate><Basic-

Event><Title>E14</Title></Basic-Event><Basic-Event><Title>^(E13(T))</Title></Basic

Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault

: faulttree.xml file for Hazardous-State: Motor !=stopped

Door = opened

Tree for Hazardous-State: Motor!=stopped AND Door = opened

Case based Requirements Analysis Phase

66

in a fault tree are

. It represents

is wrongly evaluated as true. For example, in Figure 3.15,

is a conditional event and is

state ‘Motor!=

is shown in Figure 3.16 and a fault tree constructed from

ND.Door=opened</Title>

Event><Title>^(E13(T))</Title></Basic-

Event></Fault-

!=stopped AND

!=stopped AND Door = opened

Software Fault Tree Analysis Approach in Use

The fault tree XML file generated for

= opened AND Motor = moving’

from this XML file is shown in Figure 3.

<?xml version="1.0" encoding="UTF

<Fault-Tree><Intermediate-Event><Title>Motor!=stopped.AND.Door=opened</Title>

<And-Gate><Intermediate-Event><Title>Motor!=stopped</Title>

<And-Gate><Basic-Event><Title>ER1</Title></Basic

Event><Title>ER2</Title></Basic

Event><Title>Door=opened</Title><And

Event><Basic-Event><Title>^(E13(T))</T

Event></And-Gate></Intermediate

Figure 3.18: faulttree.xml file for

Figure 3.19: Fault Tree for

3.7 MOTIVATING EXAMPLE

CONTROL SYSTEM APPLICATION

The second example is about

avoiding the accidents at the railway crossing.

executed whenever the rail track door is to be closed in response to an interrupt

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

fault tree XML file generated for Type 2 Composite hazardous-state selected ‘

otor = moving’ is shown in Figure 3.18. The constructed fault tree

is shown in Figure 3.19.

<?xml version="1.0" encoding="UTF-8"?>

Event><Title>Motor!=stopped.AND.Door=opened</Title>

Event><Title>Motor!=stopped</Title>

Event><Title>ER1</Title></Basic-Event><Basic-

Event><Title>ER2</Title></Basic-Event></And-Gate></Intermediate-Event><Intermediate

Event><Title>Door=opened</Title><And-Gate><Basic-Event><Title>E14</Title></Basic

Event><Title>^(E13(T))</Title></Basic-Event></And-Gate></Intermediate

Gate></Intermediate-Event></Fault-Tree>

: faulttree.xml file for Hazardous-State: Door=opened AND

Motor = moving

for Hazardous-State Door=opened AND Motor = moving

MOTIVATING EXAMPLE 2:RAILWAY TRACK DOOR

CONTROL SYSTEM APPLICATION

about safety-critical Railway Track Door Control system for

avoiding the accidents at the railway crossing. The events of this use

executed whenever the rail track door is to be closed in response to an interrupt

Case based Requirements Analysis Phase

67

state selected ‘Door

he constructed fault tree

Event><Title>Motor!=stopped.AND.Door=opened</Title>

Event><Intermediate-

Event><Title>E14</Title></Basic-

Gate></Intermediate-

State: Door=opened AND

State Door=opened AND Motor = moving

2:RAILWAY TRACK DOOR

critical Railway Track Door Control system for

The events of this use-case are

executed whenever the rail track door is to be closed in response to an interrupt

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

68

received from the track sensors attached to the rail tracks. The interrupt from the rail

track sensors informs the arrival of the train. The use-case description file for this

case study is shown in Figure 3.20.

/*******************Basic Details***********************/

/* Use Case : Opening of Railway Track_Door */

/* Initiating Actor : Rail Track Controller */

/**/

/* Event Details */

rail track sensors detect the arrival of train and interrupts the rail track control system

upon interruption by track sensors, rail track control system instructs track_door to be

closed

IF track_door = closed THEN

rail track control system instructs track_signal to go green

rail track control system waits for the next interrupt from the track sensor

ELSE

report track_door_failure

ENDIF

Figure 3.20: Use Case Description File for ‘Open Rail Track Door’ Use-Case of

RTCS Application

Step I: Extract ‘Event-Sequence’ for Each Scenario

The use-case description file of Figure 3.20 is used as an input in this step. The

description of various ‘Event-Details’ is shown in Table 3.21.

Table 3.21: Event-Details of RTCS Application

Event# Event-Name Event-Label

E1 rail track sensors detect the arrival of train and

interrupts the rail track control system

E1

E2 upon interruption by track sensors, rail track

control system instructs track_door to be closed

E1,E2

E3 IF track_door = closed THEN E1,E2,E3

E4 rail track control system instructs track_signal

to go green

E1,E2,E3(T),E4

E5 rail track control system waits for the next

interrupt from the track sensor

E1,E2,E3(T),E4,E5

E6 report track_door_failure E1,E2,E3(F),E6

 ENDIF {E1,E2,E3(T),E4,E5} OR

E1,E2,E3(F),E6

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

69

As per the ‘Event-Label’ value of the ‘ENDIF’, there are two possible scenarios in this

example. The Event-Sequence tables generated for the Scenario 1 and Scenario 2 of this

application are shown in Table 3.22and Table 3.23 respectively.

Table 3.22: Event-Sequence table for Scenario 1

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E4 E1,E2,E3(T) 4

E5 E1,E2,E3(T),E4 5

Table 3.23:Event-Sequence table for Scenario 2

Event# Precondition Logical Time

E1 1

E2 E1 2

E3 E1,E2 3

E6 E1,E2,E3(F) 4

Step II:Identify ‘Event-Sequence-State-Transitions’ for Each Scenario

The participating components in this case study are ‘Track_Door’ and ‘Track_Signal’. The

valid states of the ‘Track_Door’ component are ‘opened’ and ‘closed’. The valid states of

the ‘Track_Signal’component are ‘red’ and ‘green’. The state diagrams of the

‘Track_Door’ and ‘Track_Signal’ components are shown in Figure 3.21. The initial state

of the ‘Track_Door’ component is ‘opened’ whereas the initial state of the ‘Track_Signal’

component is ‘red’. The ‘Track_Door’ component changes its state from ‘opened’ to

‘closed’ during the execution of event E2 (rail track control system instructs track_door to

be closed). Similarly, the ‘Track_Signal’ component changes its state from ‘red’ to ‘green’

during the execution of event E4 (rail track control system instructs track_signal to go

green).The state transition pattern of both ‘Track_Door’ and ‘Track_Signal’ components is

same for both the scenarios. That is why only one UML state diagram is drawn for both

‘Track_Door’ and ‘Track_Signal’ components.

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

70

Event E2 � rail track control system

instructs track_door to be closed

(a) Track_Door State Diagram

Event E4 � rail track control system

instructs track_signal to go green

(b) Track_Signal State Diagram

Figure 3.21: Input State Diagrams for Rail Track Door Control System Application

The ‘Event-Sequence-State-Transition’ tables for Scenario 1 and Scenario 2are shown in

Table 3.24and Table 3.25 respectively.

Table 3.24:Event-Sequence-State-Transition table for Scenario 1

Event Track_Door Track_Signal

E1 opened red

E2 closed red

E3 closed red

E4 closed green

E5 closed green

Table 3.25: Event-Sequence-State-Transition table for Scenario 2

Event Track_Door Track_Signal

E1 opened red

E2 closed red

E3 closed red

E6 closed red

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

71

Step III: Identify ‘State-Transition-Errors’

The ‘State-Transition-Error’ table created for this example is shown in Table 3.26.There

are two state transition events E2 and E4 and that’s why there are four state errors with

error numbers as ER1, ER2, ER3 and ER4.

Table 3.26: State-Transition-Error Table

Error# Error_Name Event# Effect

ER1 RTCS System Fails to Give Door

Close Command

E2 Track_Door != closed

ER2 Track_Door Failure E2 Track_Door != closed

ER3 RTCS System Fails to Give Green

Signal Command

E4 Track_Signal != green

ER4 Track_Signal Failure E4 Track_Signal != green

Step IV: Construct Fault Trees

There is considered only one Type 1 composite hazardous-state which is

‘Track_Door!= closed AND Track_Signal =green’ (i.e. The truck door has not

closed, but the track signal has gone green).The generated fault tree XML file for

this hazardous-state is shown in Figure 3.22. The fault tree generated from this input

file is shown in Figure 3.23.

<?xml version="1.0 "encoding="utf-8"?><Fault-Tree><Intermediate-

Event><Title>Track_Door!=closed.AND.Track_Signal=green</Title><And-

Gate><Intermediate-Event><Title>Track_Door!=closed</Title><And-Gate><Basic-

Event><Title>ER1</Title></Basic-Event><Basic-Event><Title>ER2</Title></Basic-

Event></And-Gate></Intermediate-Event><Intermediate-

Event><Title>Track_Signal=green</Title><And-Gate><Basic-

Event><Title>E4</Title></Basic-Event><Basic-Event><Title>^(E3(T))</Title></Basic-

Event></And-Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault-

Tree>

Figure 3.22: faulttree.xml file for Hazardous-State: Track_Door !=closed

AND Track_Signal = green

Software Fault Tree Analysis Approach in Use

Figure 3.23: Fault Tree Generated For Haza

The snapshots of the fault trees

faulttree.xml files as shown in

also shown in Appendix-I, Appendix

3.8 VALIDATION OF THE ALGORITHM

The fault trees constructed by the presented approach for the hazardous

Elevator Control System (ECS)application are compared against the manually

constructed fault trees for the same

results are found to be of similar quality.

Are the Fault Trees Constructed by the Presented

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

: Fault Tree Generated For Hazardous-State Track_Door

AND Track_Signal = green

The snapshots of the fault trees constructed using a FaultCAT tool,

faulttree.xml files as shown in Figure 3.12, Figure 3.14, Figure 3.18 and Figure 3.2

Appendix-II, Appendix-III and Appendix-IV, respectively.

VALIDATION OF THE ALGORITHM

The fault trees constructed by the presented approach for the hazardous-

Elevator Control System (ECS)application are compared against the manually

constructed fault trees for the same hazardous-states (Vyas and Mittal, 2012) and the

results are found to be of similar quality.

ult Trees Constructed by the Presented SFTA Approach are Correct?

Case based Requirements Analysis Phase

72

State Track_Door !=closed

a FaultCAT tool, from the

and Figure 3.22, are

IV, respectively.

-state(s) of an

Elevator Control System (ECS)application are compared against the manually

2012) and the

SFTA Approach are Correct?

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

73

Schellhorn et al. (Schellhorn et al,2002) states that the correctness condition of fault

trees guarantees that if the cause happens, the consequence must happen too and the

consequence must not happen without the cause. This correctness condition can be

interpreted as follows:

A fault tree (‘FT’) constructed for a hazardous-state (‘X’) is considered as correct if

‘FT’ does not contain a single basic erroneous event ‘E’ that actually does not

contribute to the occurrence of hazardous-state ‘X’.

The presented approach constructs a software fault tree only for state level hazards.

Each state level term in the hazardous-state either uses a negation (such as X!=x) or

true (such as Y=y) symbol with the restriction that the first component should use a

negation symbol. If the constructed fault tree for a hazardous-state (‘X’) contains a

basic erroneous event ‘E’ that actually does not contribute towards the occurrence

of ‘X’ then ‘E’ is either an invalid state level error selected from the ‘State-

Transition-Error’ table of Step III (for negation!= symbol) or an invalid event from

‘Event-Sequence’ tables of Step I (for true = symbol). This can only happen because

of any one of the following reasons.

(i) The supplied use-case description file may be incorrect, or

(ii) An erroneous state transition event is selected in Step III. It can happen if and only

if the state diagrams supplied as inputs in Step II are incorrect.

But, the proposed approach operates with the assumption that use-case description file

and UML state diagrams are correctness of the basic inputs.

Are the Fault Trees Constructed by the Proposed SFTA Approach are Complete?

The completeness issue deals with the coverage of errors. Schellhorn et al. (Schellhorn,

2002) states that the completeness condition of fault trees guarantees that all causes

have been listed. This completeness condition can be interpreted as follows:

A fault tree (‘FT’) constructed for a hazardous-state (‘X’) is considered to be complete if

it contains every basic erroneous event ‘E’ that contributes to the occurrence of the

hazardous-state ‘X’.

The presented approach guarantees the coverage of software-related errors provided the

pseudo code description of the use-case functionality is complete. But the approach

considered only one error for the components (‘Door’, ‘Motor’). But in actual situations,

there can be multiple reasons for the failure of any device/component. For example, the

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

74

door failure may happen either because of ‘Electrical short Circuit’ or because of

‘DoorSensor Failure’ etc. So the events that specifically belong to a device-failure

category are to be expanded further in order to complete the fault tree.

3.9 COMPARATIVE ANALYSIS

The past applications of the SFTA approach in use-case based requirements analysis

phase are mostly manual and time-consuming (Balz and Goll 2005, Douglass 2009,

Gupta et al 2012, Tiwari et al 2012). SFTA approach for use-cases as reported by

Tiwari (Tiwari et al, 2012) first converts the given formal use case realization template

(UCRT) into a tree known as success tree and then converts the success tree into its

corresponding fault tree by complementing the nodes of the success tree and the fault

tree construction process is manual. The whole use-case functionality is converted into

a single success tree. In general, a fault tree construction process is hazard specific and

multiple hazards can occur during the realization of single use-case functionality.

Moreover, the selected hazard-state can occur in multiple scenarios of the same use-

case functionality also.

The presented SFTA approach is automatic and is algorithmically very simple. It has

following advantages.

(i) The technique is automated but only for constructing fault trees for state level

hazards.

(ii) The approach can handle the use-case description file of any size.

(iii) The approach is easily scalable to any number of state variables.

The main shortcoming(s) of the proposed approach are as follows.

(i) The software fault tree is constructed only for state level hazards. There are some

hazardous situations that cannot be fully expressed via state level hazards such as

speed of elevator increases suddenly (for ECS application), incorrect result of some

computation etc.

(ii) The proposed approach in the present form cannot handle the case where the

participating components are experiencing concurrent state transitions.

(iii) The approach takes into account only state related errors (i.e. the errors that occur

only during state transition events). The effects of the errors that occur at events

other than the state transition events (i.e. the events where no component is

changing its state) have not been analyzed by the approach.

75

CHAPTER 4

Software Failure Modes and Effects Analysis Approach

in Use-Case Based Requirements Analysis Phase

The efforts to automate or semi-automate the application of the Software Failure

Modes and Effects Analysis (SFMEA) approach in use-case based requirements

analysis phase have not been successful so far. This chapter describes the developed

semi-automated SFMEA technique in use-case based requirements analysis phase. The

main weakness of the SFTA approach as discussed in Chapter 3 is that it only

considers the event-related errors occurring at the state transition events (events that

cause changes in the state of a component). The developed SFMEA approach

overcomes this drawback by considering all the event-related errors. The approach is

applied on two safety-critical case study applications, namely Rail Track Door Control

System (RTCS) application discussed in Chapter 3 and Insulin Delivery System (IDS)

(Sommerville, 2005). The formal textual description of a given use-case functionality

and the UML state diagrams drawn for the participating components are used as the

inputs in this proposed approach. The approach first identifies all the event-related

errors that can occur in the system and then investigates the critical effects of these

errors on the system.

4.1 PURPOSE OF THE PROPOSED SFMEA APPROACH

Like SFTA, the available literature about the application of the SFMEA approach in

use-case based requirements analysis phase is also manual and time-consuming.

Wentao and Hong (Wentao and Hong, 2009) used manual SFMEA approach on the

use-case model of an Automated Teller Machine (ATM). Troubitsyna (Troubitsyna,

2011) applied manual application of the SFMEA approach on the use-case model of an

autonomous robot by defining an auxiliary use-case corresponding to each use-case

functionality. Nggada (Nggada, 2012) applied SFMEA approach on the use-case model

of brake by wire system (BBS). Gupta (Gupta el al, 2012) and Tiwari (Tiwari et al,

2012) applied the manual application of SFMEA approaches in use-case based

requirements analysis phase by taking the formal textual descriptions of a use-case as

an input.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

76

The proposed approach integrates and semi-automates the application of the SFMEA

approaches in use-case based requirements analysis process. The approach is forward in

nature in the sense that it investigates the state level effects caused by various event-

related errors in the system.

4.2 ASSUMPTIONS FOR THE PROPOSED SFMEA APPROACH

The assumptions of the proposed SFMEA approach are identical to the assumptions

made in the SFTA approach Chapter 3 (Section 3.2). In addition, while investigating the

effects of any event-related error, the approach also assumes that no error has occurred

in the system before the execution of the selected event, i.e. the effects are analyzed only

for one event-related error at a time.

4.3 OVERVIEW OF THE PROPOSED SFMEA APPROACH

There are four steps in the proposed approach and an overview of each step is given

below.

The working logic of the first and second step of the proposed SFMEA approach is

identical to Step I and Step II of the SFTA approach discussed in Chapter 3. The

structures of both ‘Event-Details’ and ‘Event-Sequences’ and the ‘Event-Sequence-

State-transitions used in the approach are also identical to the SFTA approach

discussed in Chapter 3. Like SFTA approach of Chapter 3, the state diagrams in the

proposed SFMEA approach are also accepted in machine readable format i.e. XMI

(XML Metadata Interchange) format. The Altova UML (Altova-UModel, 2014) tool is

used to draw the required state diagrams and each state diagram is exported to XMI

format using the same tool.

The third step takes the ‘Event-Details’ of various events extracted in the first step and

the ‘Event-Sequence-State-Transitions’ of various scenarios identified in the second step

and identifies the various event-related errors corresponding to each executable event.

The attributes of the identified errors are stored in a tabular form that has the structure as

shown in Table 4.1.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

77

Table 4.1: Structure of Event-Errors

Event# Error#
Error-

Description
Type

<<Event#

where an error

can occur>>

<<A unique Error

Number assigned

to each error>>

<<description

of the error>>

<<The type is 1 for stop-

type error and 2 for

propagating-type

error>>

The fourth step investigates the effects of various event-related errors identified in

the third step. The ‘Event-Details’ extracted in the first step, the ‘Event-Sequence-

State-Transition’ identified in the second step and the ‘Events-Errors’ identified in

the third step are used as the inputs. The effects of the event-related errors are stored

separately for each scenario in a tabular form known as ‘Events-Errors-Effects-

Analysis’. The structure of the ‘Events-Errors-Effects-Analysis’ has three main

fields, namely (i) Event#, (ii) Error# and (iii) Effects as shown in Table 4.2. The

‘Effects’ column is further sub-divided into various event sub-columns and the

number of these event sub-columns depend upon the number of events in the

associated scenario.

Table 4.2: Structure of ‘Event-Errors-Effects-Analysis’

Event# Error#
Effects

E1 E2 … En

<<Event Number

where an error has

occurred>>

<<Error number

that has occurred

at the event>>

<<Effects of the errors on various

executable events>>

An overview of the four steps of the proposed SFMEA approach is shown in Figure 4.1.

Software Failure Modes and Effects Analysis Approach in Use

Figure 4.1: Overview of the Proposed SFMEA approach

4.4 SFMEA ALGORITHM

The proposed SFMEA algorithm

model and use-case description file

Chapter 3, are used to explain the logic

4.4.1 Step I: Extracting Event

This step is identical to the Step I of the SFTA approach discussed in

outputs of this step on the selected use

Figure 3.5 in Chapter 3.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

: Overview of the Proposed SFMEA approach

SFMEA ALGORITHM

SFMEA algorithm is explained in detail in the following sections

case description file, as shown in Figure 3.2 and Figure 3.3 in Section

used to explain the logic.

Event-Sequences for each Scenario

step is identical to the Step I of the SFTA approach discussed in Chapter 3.

of this step on the selected use-case description file are shown in Figure 3

Case Based Requirements Analysis Phase

78

explained in detail in the following sections. The use-case

nd Figure 3.3 in Section 3.5 of

Chapter 3. The

shown in Figure 3.4 and

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

79

4.4.2 Step II: Identifying Event-Sequence-State-Transitions For Each Scenario

This step is identical to the Step II of the SFTA approach discussed in Chapter 3.The

output of this step on the selected example is shown in Figure 3.8 in Chapter 3.

4.4.3 Step III: Identifying ‘Event-Errors’ for all Scenarios

This step identifies the event-related errors that can occur during the execution of the

events and records these errors in a tabular form as shown in Table 4.1. Two types of

event-related errors are considered for the SFMEA approach and these are explained

below.

(i) Propagating Errors: These types of errors affect the execution of all the successive

events in the scenario. These errors do not prevent or stop the execution of successive

events.

How to identify Propagating Errors?

The system can experience these types of errors during the execution of both normal

and conditional types of events. For conditional types (True/False) of events, the

system can experience two types of propagating errors and these types are explained

below with an example.

Suppose the ‘C’ is a conditional type of event. The first type of propagating error

‘Er’ occurs when the actual value of ‘C’ is ‘false’, but during execution, it is

evaluated as ‘true’. The second type of propagating error ‘Es’ occurs when the actual

value of ‘C’ is ‘true’, but during execution, it is evaluated as ‘false’.

The propagating errors that occur during the execution of the normal events are to

be identified manually.

(ii) Stop Errors: These types of event-related errors prevent the successive events from

execution, i.e. successive events are not executed at all and the execution stops at the

selected event.

How to Identify Stop Errors?

For a conditional type of events there is considered only one type of stop error and it

represents the situation where the conditional events fail to execute at all and the

execution of all the successive events is suspended.

For normal types of events, the system can experience different types of stop errors

and these are explained below with an example.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

80

Suppose ‘N’ is a normal event. If the execution of ‘N’ results in the state transition of

any component, then two states-related errors (both are considered stop type errors),

identical to the state-related errors considered in the Step III of the SFTA approach of

Chapter 3, are identified corresponding to event ‘N’. If the execution of ‘N’ does not

change the state of any component, then there is considered only one stop type error

which represents the situation where the events ‘N’ fails to execute at all and the

execution of all the successive events is suspended.

The pseudo code of this step in the form of a procedure named ‘identify-Event-Related-

Errors()’ is given below.

Procedure Identify-Event-Related-Errors()

Input(s) Event-Details Table of Step I and Event-Sequence-State-Transitions

Output Event-Errors

FOR each executable event in Event-Details

IF event is a conditional type event THEN

define one stop-type error for the event;

define two propagating-type errors for the event;

ENDIF

IF event is a normal type event THEN

IF event is a changing the state of any component THEN

 define two stop-type state-related errors for the event;

ELSE

 define one stop-type error for the event;

ENDIF

ENDIF

ENDFOR

If the ‘Event-Details’ as shown Figure 3.4 in Chapter 3 and the ‘Event-Sequence-

State-Transitions’ as shown in Figure 3.8 in Chapter 3 are used as inputs in this step,

then the output of this step results in the identification of ‘Event-Errors’ as shown in

Table 4.3.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

81

Table 4.3: Event-Errors for Scenario 1 and Scenario 2

Event# Error# Type Error-Description

E1 ER1 1 Event E1 fails to execute

E2 ER2 1 Event E2 fails to execute

ER3 2 Event E2 does a wrong computation

E3 ER4 1 Event E3 fails to execute at all

ER5 2 Event E3 is True, but evaluated as False

ER6 2 Event E3 is false, but evaluated as True

E4 ER7 1 Event E4 fails to execute at all

ER8 1 State Error in component X

E5 ER9 1 Event E5 fails to execute at all

ER10 1 State Error in component Y

E6 ER11 1 Event E6 fails to execute at all

E7 ER12 1 Event E7 fails to execute at all

All event-related errors in Table 4.3 are identified automatically, except the error ‘ER3’

at event ‘E2’. A stop type error where an event fails to execute and stops the execution of

successive events is automatically identified for each event (for example the errors ER1,

ER2, ER4, ER7, ER9, ER11 and ER12). The error ‘ER3’ is a propagating type error that

occurs at normal type event ‘E2’ (Figure 3.4 in Chapter 3) and that is why it is identified

manually. The event ‘E3’ is a conditional type event (Figure 3.4 in Chapter 3) and that is

why two propagating type errors ‘ER5’ and ‘ER6’ and one stop type error ‘ER4’ are

automatically identified for event ‘E3’. The execution of the event ‘E4’ results in the

state transition of component ‘X’ (Figure 3.8 in Chapter 3) and that is why two stop type

errors (‘ER7’ and ‘ER8’) are identified for this event. Similarly, the execution of the

event ‘E5’ results in the state transition of component ‘Y’ (Figure 3.8 in Chapter 3) and

that is why two stop type errors (‘ER9’ and ‘ER10’) are automatically identified for this

event.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

82

4.4.4 Step IV: Performing ‘Event-Errors-Effects-Analysis’ of each Scenario

This step performs the ‘Event-Errors-Effects-Analysis’ of each scenario. The algorithm

investigates the effects of the propagating and stop types of errors as follows.

(a) Investigating the effects of Stop-type errors

All the state transitions that are supposed to occur during the successive executable

events do not occur in the system. For example, consider the error ‘ER1’ of Table 4.3.

This error prevents the execution of all the successive events E2,E3,E4,E5,E6,E7 in

scenario 1 (see Figure 3.5 in Chapter 3). Hence all the expected state transitions such as

X=x2 at event ‘E4’ and Y=y2 at event ‘E5’ are not observed in the system (see

Figure 3.8 in Chapter 3). These effects are indicated using ‘!=’ symbol as X != x2 and Y

!= y2 under the respective event sub-columns in ‘Event-Errors-Effects-Analysis’ of the

scenario.

(b) Investigating the effects of Propagating-type errors

These types of errors do not prevent the execution of the successive events and hence their

effects are transmitted in the state transitions occurring during successive executable events.

Consider error ‘ER3’ at event ‘E2’ in Table 4.3. In this situation, the state transitions that are

occurring at events ‘E4’ and ‘E5’ are known as erroneous state transitions because these

transitions are taking place under error conditions and are represented using the upper caret

(‘^=’) symbol as X ^= x2 (i.e. The component X is erroneously changing its state) under the

respective event sub-columns.

The pseudo code of this step in the form of a procedure named ‘perform-Event-Errors-

Effects-Analysis’ is given below.

Procedure perform-Event-Errors-Effects-Analysis()

Input(s) The outputs of the previous steps

Output(s) Event-Errors-Effects-Analysis of Each Scenario

FOR each Event-Sequence-State-Transition

create a associated Event-Errors-Effects-Analysis;

 FOR each event of Event-Sequence-State-Transition

Case: event is Normal event

FOR each error corresponding to the event

IF error is a stop-type THEN

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

83

Mark all the successive state transitions using ‘!=’;

ELSE

Mark the successive state transitions using ‘^=’;

ENDIF

ENDFOR

Case: event is Conditional event

Select the error which affects the Event-Sequence-State-Transition;

Mark the successive state transitions using ‘^=’;

ENDFOR

ENDFOR

The effects of all the event-related errors for scenario 1, as shown in Table 4.3, are shown in

Table 4.4.

The error ‘ER1’ (stop type error) prevents the state transitions from occurring at events

‘E4’ and ‘E5’. Because no state transition is taking place during the early events E1, E2

and E3, the effects of the error ‘ER1’ are shown only under event sub-columns ‘E4’ and

‘E5’ respectively.

The error ‘ER3’ is a propagating type error and that’s why the state transitions at events

‘E4’ and ‘E5’ are indicated as erroneous state transitions using ‘^=’ symbol.

The error ‘ER5’ prevents the execution of scenario 1 (i.e. scenario 2 gets erroneously

executed because of this error) and that’s why the row corresponding to error ‘ER5’ does

not show any effect in Table 4.4. The error ‘ER6’ results in the erroneous execution of

scenario 1 (i.e. scenario 2 is to be executed in place of scenario 1) and that’s why the

state transitions are treated as erroneous state transitions.

The rows corresponding to errors ‘ER11’ (event ‘E6’) and ‘ER12’ (event ‘E7’), in

Table 4.4, do not show any state level effects under any event-sub columns because no

component is changing its state during the events ‘E6’ and ‘E7’.

It is to be noted that the ‘Event-Errors-Effects-Analysis’ for scenario 2 is not shown

because there is no state transition occurring in scenario 2 (Figure 3.8 in Chapter 3).

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

84

Table 4.4: Event-Errors-Effects-Analysis Scenario 1

Event# Error#
Effects

E1 E2 E3 E4 E5 E6 E7

E1 ER1 X!=x2 Y!=y2

E2 ER2 X!=x2 Y!=y2

E2 ER3 X^=x2 Y^=y2

E3 ER4 X!=x2 Y!=y2

E3 ER5

E3 ER6 X^=x2 Y^=y2

E4 ER7 X!=x2 Y!=y2

E4 ER8 X!=x2 Y!=y2

E5 ER9 Y!=y2

E5 ER10 Y!=y2

E6 ER11

E7 ER12

4.4.5 Time Complexity of the SFMEA Algorithm

(a) Time Complexity of Step I

The algorithmic time complexity of Step I is of the order of ‘O(N1) + O(N2)’, where

‘N1’ is the number of executable events in a given use-case description file and ‘N2’ is

the number of ‘Event-Sequences’ extracted.

(b) Time Complexity of Step II

The running time (i.e. Algorithmic time complexity) of Step II is ‘O(N3 × N4 × N5)’

where ‘N3’ is the number of ‘Event-Sequence-State-Transitions’, ‘N4’ is the number of

components for which a state diagrams are drawn and ‘N5’ is the average number of

executable events in each ‘Event-Sequence’.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

85

(c) Time Complexity of Step III

The running time of the Step III is of the order of ‘O(X) + n×T’ where ‘X’ is number of

executable events in the ‘Event-Details’ and ‘n’ is the number of propagating-types of

errors identified manually and ‘T’ is the approximate time required first to identify and

then to record each such error in the Event-Errors.

(d) Time Complexity of Step IV

The running time of the Step IV is of the order of ‘O(N6× N7×N8)’ where ‘N6’ is the

number of ‘Event-Sequence-State-Transitions’ and ‘N7’ is the average number of events

in each scenario and ‘N8’ is the average number of errors for each executable event.

4.5 APPLICATION OF SFMEA ALGORITHM TO SAFETY-

CRITICAL SOFTWARE SYSTEMS

The proposed algorithm is applied for two safety-critical applications, namely Insulin

Delivery System (IDS) and Rail Track Door Control System (RTCS). The detailed

description of these systems and the step-by-step application of the algorithm is given in

the following sub-sections.

4.5.1 Motivating Example 1: Insulin Delivery System

The safety-critical insulin delivery system (IDS) case study is selected from the work by

Sommerville (Sommerville, 2005). It is an embedded system that is used by diabetes

patients to automatically inject the required amount of insulin in the body. The system

has a timer which interrupts the system to deliver the required amount of insulin after a

fixed time interval. The system has three main components, namely ‘Insulin_Controller’,

‘Sugar_Sensor’ and ‘Insulin_Pump’. The role of the ‘Insulin_Controller’ component is to

control the operations of the other two components. Whenever instructed by the

‘Insulin_Controller’, the ‘Sugar_Sensor’ component measures the current sugar level in

the patient’s body. The ‘Insulin_Pump’ component delivers/injects the required amount

of insulin in the patient’s body.

When an interrupt is received by the IDS the clock timer, the following two tasks are

carried-out in sequence.

(i) The system first measures the current sugar level in the body.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

86

(ii) If the sugar level is high, then the system computes the amount of insulin to be

delivered and instructs the insulin-pump to inject the required amount of insulin in

the patient’s body. Otherwise, if the sugar level is low or within acceptable limits,

then system displays the same message on the system’s display device.

The use-case description file for this functionality is shown in Figure 4.2.

/*******************Basic Details****************/

/* Use Case : Deliver Insulin */

/* Initiating Actor : Clock Timer */

/* Precondition : Sytem is Running */

/**/

/* Event Details */

clock timer interrupts the system to deliver insulin

The system instructs the sensor to read the current sugar level in blood

IF sugar level in blood is high THEN

 The system computes the amount of insulin dose to be delivered

 System commands the Insulin Pump to deliver the computed amount of insulin

ELSE

 The system displays sugar level ok message on the system display

ENDIF

Figure 4.2: Use Case Description File for ‘Deliver Insulin’ Use-Case of IDS

Step I: Extracting Event-Sequence for each Scenario

The ‘Event-Details’ extracted from the input file of Figure 4.2 is shown in Table 4.5.

Table 4.5: Event-Details Table for Insulin Delivery System

Event# Event-Description Event-Label Type

E0 clock interrupts the system to deliver

insulin

E0 1

E1 system instructs the sensor to read current

sugar level in blood

E0,E1 1

E2 IF sugar level in blood is high THEN E0,E1,E2 2

E3 system computes the amount of insulin

dose to be delivered

E0,E1,E2(T),E3 1

E4 system commands the Insulin Pump to

deliver the computed amount of insulin

E0,E1,E2(T),E3,E4 1

E5 system displays sugar level ok on display E0,E1,E2(F),E5 1

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

87

The ‘Event-Label’ value of event ‘E4’ is ‘E0,E1,E2(T),E3,E4’ and it is not a part of any

other event’s ‘Event-Label’ value (Table 4.5). So the events included in this represent a

scenario ‘Event-Sequence’ which is {E0,E1,E2,E3,E4}. Similarly, ‘Event-Label’ value

of event ‘E5’ is also not part of any other event’s ‘Event-Label’ value. So the another

‘Event-Sequence’ is {E0,E1,E2,E5}. These ‘Event-Sequences’ are shown in Table 4.6

and Table 4.7. The ‘Event-Name’ column is not shown in the respective ‘‘Event-

Sequence’ tables.

Table 4.6: Event-Sequence Table for Scenario 1 of Insulin Delivery System

Event# Precondition Logical Time

E0 1

E1 E0 2

E2 E0,E1 3

E3 E0,E1,E2(T) 4

E4 E0,E1,E2(T),E3 5

Table 4.7: Event-Sequence Table for Scenario 2 of Insulin Delivery System

Event# Precondition Logical Time

E0 1

E1 E0 2

E2 E0,E1 3

E5 E0,E1,E2(F) 4

Step II: Identifying Event-Sequence-State-Transitions for each Scenario

The participating components in the IDS system are ‘Insulin-Controller’, ‘Sugar-Sensor’

and ‘Insulin-Pump’. The state diagrams for these components are shown in Figure 4.3.

The state transition pattern of the ‘Insulin_Controller’ component is different for two

scenarios and that is why two state diagrams are supplied for this component. The state

diagram of Figure 4.3(a) for ‘Insulin_Controller’ represents the situation when an insulin

is delivered to the patient. Similarly, the state diagram of Figure 4.3(b) for

‘Insulin_Controller’ represents the situation when an insulin is not delivered to the

patient. The initial state of the ‘Insulin_Controller’ component is ‘waiting’ whereas the

initial states of both the ‘Sugar_Sensor’ and ‘Insulin_Pump’ components are ‘idle’. The

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

88

execution of event ‘E1’ (system instructs the sensor to read the current sugar level in

blood, Table 4.5) changes the state of the ‘Sugar_Sensor’ component from ‘idle’ to

‘ReadingSugarLevel’. Similarly, the execution of event E4 (system commands the

Insulin Pump to deliver the computed amount of insulin, Table 4.5) changes the state of

the ‘Insulin_Pump’ component from ‘idle’ to ‘DeliveringInsulin’.

(a) Insulin_Controller State Diagram (When Insulin Delivered)

(b) Insulin_Controller State Diagram (When Insulin Not Delivered)

(c) Sugar_Sensor State Diagram

(d) Insulin_Pump State Diagram

Figure 4.3: State Diagrams for Insulin Delivery System

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

89

The application of the second step results in the identification of two ‘Event-Sequence-

State-Transitions’ for two scenarios as shown in Table 4.8 and Table 4.9, respectively.

Table 4.8: Event-Sequence-State-Transition Table for Scenario 1

Event# Insulin-Controller Sugar-Sensor Insulin-Pump

E0 servicing idle idle

E1 ReadingSugarLevel ReadingSugarLevel idle

E2 ReadingSugarLevel idle idle

E3 ComputingInsulinDose idle idle

E4 DeliveringInsulin idle DeliveringInsulin

Table 4.9: Event-Sequence-State-Transition Table for Scenario 2

Event# Insulin-Controller Sugar-Sensor Insulin-Pump

E0 Servicing idle idle

E1 ReadingSugarLevel ReadingSugarLevel idle

E2 ReadingSugarLevel idle idle

E5 InsulinNotDelivered idle idle

Step III: Identify Event-Errors for all Scenarios

The application of Step III results in the identification of ‘Event-Errors’ as shown in

Table 4.10. The ‘Event-Sequences’ in Table 4.6 and Table 4.7 and UML state diagrams

in Figure 4.3 are used as inputs in this step. The following propagating-types of errors

are identified manually:

(i) Error number ER4 at event E1 is a propagating-type error. There is a possibility

that because of the fault in the sensor, the sensor reads the wrong current sugar

level value.

(ii) Error number ER9 at event E3. This error can occur because of wrong computation

of the value of insulin dose.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

90

Table 4.10: Event-Errors for Insulin Delivery System

Event# Error# Type Error Description

E0 ER1 1 Event E0 fails to execute

E1 ER2 1 Event E1 fails to execute

ER3 1 sensor failure

ER4 2 The sensor reads the wrong sugar value

E2 ER5 1 Event E2 fails to execute

ER6 2 Event E2 is true, but evaluated as false

ER7 2 Event E2 is false, but evaluated as true

E3 ER8 1 Event E3 fails to execute

ER9 2 The system computes wrong insulin dose

E4 ER10 1 Event E4 fails to execute

ER11 1 Insulin pump fails to deliver Insulin

E5 ER12 1 Event E5 fails to execute

Step IV: Performing Event-Errors-Effects-Analysis of each Scenario

The ‘Event-Details’ in Table 4.5, the ‘Event-Sequences’ in Table 4.6 and Table 4.7, the

‘Event-Sequence-State-Transitions’ in Table 4.8 and Table 4.9 and the ‘Event-Errors’ in

Table 4.10 are used as inputs to the ‘Event-Errors-Effects-Analysis’ generated for scenario

1 and scenario 2. The results are as shown in Table 4.11 and Table 4.12, respectively. The

‘Effects’ column of Table 4.11 is divided into five event sub-columns labeled as E0, E1,

E2, E3, E4 because there are the five events of Scenario 1 (see Table 4.6). Similarly, The

‘Effects’ column of Table 4.12 is divided into four event sub-columns labeled as E0, E1,

E2, E5 because these are the four events of Scenario 2 (see Table 4.7).

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

91

If more than one component changes their state during the execution of a single event

(for example execution of event E1 in Table 4.8 causes a state change in the ‘Insulin-

Controller’ and the ‘Sugar-Sensor’ components) then their state level effects in case of a

‘stop-type’ error are joined by an AND operator.

The event E2 (as shown in Table 4.5) is a conditional event and there are two

‘propagating-type’ errors, namely ER6 and ER7 associated with it (as shown in

Table 4.10). The error ER6 represents the case when the actual value of the event E2 is

true, but it has been evaluated as false. The effects of this error ER6 are observed in the

scenario where E2 is false (because the scenario where E2 is true is skipped). That’s

why, the row corresponding to event E2 and error ER6 in Table 4.11 does not show

any state level effects. On the other hand, the Table 4.12 shows the state level effects

of error ER6.

Similarly, ER7 represents the case when the actual value of the event E2 is false, but it

has been evaluated as true. The effects of this error ER7 are observed in the scenario

where E2 is true. The row corresponding to event E2 and error ER7 in Table 4.11 shows

the corresponding state level effects of the error ER7 but does not show any state level

effects of the same event and error in Table 4.12.

There is no row corresponding to event E5 in Table 4.11 because event E5 only appears

in Scenario 2 and the errors occurring at event E5 can only affect Scenario 2 not

Scenario 1. Similarly, there is no row corresponding to event E4 in Table 4.12 because

event E4 only appears in Scenario 1 and the errors occurring at event E4 can only affect

Scenario 1 not Scenario 2.

Applying software failure modes and effects analysis approach in use-case based requirements analysis phase

92

Table 4.11: Event-Errors-Effects-Analysis Table for Scenario 1

Event# Error#
Effects

E0 E1 E2 E3 E4

E0 ER1
Insulin-Controller !=

servicing

Insulin-Controller !=

ReadingSugarLevel

AND

Sugar-Sensor !=

ReadingSugarLevel

Insulin-Controller !=

ComputingInsulinDose

Insulin-Controller !=

DeliveringInsulin

AND

Insulin-Pump!= DeliveringInsulin

E1

ER2

Insulin-Controller !=

ReadingsugarLevel

AND

Sugar-Sensor !=

ReadingSugarLevel

Insulin-Controller !=

ComputingInsulinDose

Insulin-Controller !=

DeliveringInsulin

AND

Insulin-Pump!= DeliveringInsulin

ER3
Sugar-Sensor !=

ReadingSugarLevel

Insulin- Controller !=

ComputingInsulinDose

Insulin-Controller !=

DeliveringInsulin

AND

Insulin-Pump!= DeliveringInsulin

ER4
Insulin-Controller ^=

ComputingInsulinDose

Insulin-Controller ^=

DeliveringInsulin

AND

Insulin-Pump^= DeliveringInsulin

E2 ER5
Insulin-Controller !=

ComputingInsulinDose

Insulin-Controller !=

DeliveringInsulin

AND

Insulin-Pump!= DeliveringInsulin

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

93

Event# Error#
Effects

E0 E1 E2 E3 E4

ER6

ER7
Insulin-Controller ^=

ComputingInsulinDose

Insulin-Controller ^=

DeliveringInsulin

AND

Insulin-Pump^= DeliveringInsulin

E3

ER8
Insulin-Controller !=

ComputingInsulinDose

Insulin-Controller !=

DeliveringInsulin

AND

Insulin-Pump!= DeliveringInsulin

ER9
Insuline-Controller ^=

ComputingInsulinDose

Insulin-Controller ^=

DeliveringInsulin

AND

Insulin-Pump^= DeliveringInsulin

E4
ER10

Insulin-Controller !=

DeliveringInsulin

AND

Insulin-Pump!= DeliveringInsulin

ER11 Insulin-Pump!= DeliveringInsulin

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

94

Table 4.12: Event-Errors-Effects-Analysis Table for Scenario 2

Event# Error# Effects

E0 E1 E2 E5

E0 ER1 Insulin-Controller!= servicing Insulin-Controller != ReadingSugarLevel

AND

Sugar-Sensor != ReadingSugarLevel

 Insulin-Controller!= InsulinNotdelivered

E1 ER2 Insulin-Controller != ReadingSugarLevel

AND

Sugar-Sensor != ReadingSugarLevel

 Insulin-Controller!= InsulinNotdelivered

ER3 Sugar-Sensor != ReadingSugarLevel
Insulin-Controller!= InsulinNotdelivered

ER4
Insulin-Controller^= InsulinNotdelivered

E2 ER5
Insulin-Controller!= InsulinNotdelivered

ER6
Insulin-Controller^= InsulinNotdelivered

ER7

E5 E12 Insulin-Controller!= InsulinNotdelivered

Applying software failure modes and effects analysis approach in use-case based requirements analysis phase

95

4.5.2 Motivating Example 2: Railway Track Door Control System (RTCS)

This example is described in Chapter 3 for SFTA application. The use-case description

of this case study is given in Section 3.8 in Chapter 3. There are two participating

components namely ‘Track_Door’ and ‘Track_Signal’ are considered in the current

approach. The state diagrams for these two components are shown in Figure 3.21 in

Chapter 3.

The ‘Event-Sequences’ of this application are shown in Table 3.22 and Table 3.23 and

the ‘Event-Sequence-State-Transitions’ for two scenarios are shown in Table 3.24 and

Table 3.25 in Chapter3.

The ‘Event-Errors’ identified for this application are shown in Table 4.13.

Table 4.13: Event-Errors Identified For RTCS Application

Event# Error# Type Error Description

E1 ER1 1 Event E1 fails to execute

E2 ER2 1 Event E2 fails to execute

ER3 1 Error in Track Door Component

E3 ER4 1 Event E3 fails to execute

ER5 2 Event E3 is False but evaluated as True

ER6 2 Event E3 is true but evaluated as False

E4 ER7 1 Event E4 fails to execute

ER8 1 Error in Track_signal Component

E5 ER9 1 Event E5 fails to execute

E6 ER10 1 Event E6 fails to execute

The ‘Event-Errors-Effects-Analysis’ of two scenarios are shown in Table 4.14 and

Table 4.15.

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

96

Table 4.14: Event-Errors-Effects-Analysis For Scenario 1

Event# Error# Effects

E1 E2 E3 E4 E5

E1 ER1 Track_Door!=closed Track_Signal != green

E2 ER2 Track_Door!=closed Track_Signal != green

ER3 Track_Door!=closed Track_Signal != green

E3 ER4 Track_Signal != green

ER5 Track_Signal ^= green

ER6

E4 ER7 Track_Signal != green

ER8 Track_Signal != green

E5 ER9

Table 4.15: Event-Errors-Effects-Analysis For Scenario 2

Event# Error# Effects

E1 E2 E3 E6

E1 ER1 Track_Door!=closed

E2 ER2 Track_Door!=closed

ER3 Track_Door!=closed

E3 ER4

ER5

ER6

E6 ER10

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

97

4.5.3 Analysis of Results

The results of the SFMEA algorithm help the analyst in forecasting beforehand the

erroneous state level effects caused by various event-related errors. A stop type of

event-related error prevents the components from changing their expected state

transitions whereas a propagating type of event-related error erroneously changes the

states of the components. There exists many-to-many mapping between event-related

errors and erroneous state level effects. A single event-related error can cause

multiple state level effects and in the same way, a single erroneous state level effect

can be caused by multiple errors. Any type of event-related error occurring at the

earlier events causes more erroneous state level effects than the event-related error

occurring at the later events. For example, in Table 4.11, the event-related error

‘ER1’ at event ‘E0’ causes state level effects under the event sub-columns ‘E0’, ‘E1’,

‘E3’ and ‘E4’. But, the event-related error ‘ER10’ at event ‘E4’ causes state level

effect only at event ‘E4’. Similar is the case for errors ‘ER1’ and ‘ER7’ in

Table 4.11.

Consider the Table 4.14. The erroneous state level effect ‘Track_Door! =closed’ is

caused by three event-related errors, namely ER1, ER2 and ER3. The erroneous state

level effect ‘Track_Signal!= green’, in Table 4.14, is caused by six event-related errors

namely ER1, ER2, ER3, ER4, ER7 and ER8. Similar cases can be found in Table 4.11

and Table 4.12 also.

The results of the ‘Event-Errors-Effects-Analysis’ can be used by the analyst to

determine the overall mapping between the event-related errors and their erroneous state

level effects. For example, consider the Table 4.14 and Table 4.12. There exist three

distinct erroneous state level effects (as ‘Track_Door! =closed’, ‘Track_Signal != green’

and ‘Track_Signal ^= green’) which are caused by nine event-related errors

(ER1,ER2,..,ER9). The mapping between these effects and event-related errors are

shown in Figure 4.4. When all the erroneous state level effects are known, the analyst

assigns a severity rating to each effect manually. The knowledge and domain expertise of

the analysts plays an important role in it. National Aeronautics Space Administration

(NASA) recommends four types of severity ratings as Catastrophic, Critical, Moderate

and Negligible (NASA-GB-8719.13, 2004). The event-related errors responsible for

‘Catastrophic’ and ‘Critical’ effects are considered more serious than the event-related

errors responsible for ‘Moderate’ and ‘Negligible’ effects.

Software Failure Modes and Effects Analysis Approach in Use

Figure 4.4: Mapping of Event

4.6 COMPARISON OF SFTA AND SFMEA

Gupta (Gupta et al, 2012) introduced an eight step integrated SFMEA and SFTA

approach by taking the formal description of the given use

However, the application of the approach is manual. Similarly, t

Tiwari (Tiwari et al, 2012) also described an integrated SFTA and SFMEA application

approach that takes formal use

The application of the presented SF

SFTA approach discussed in Chapter 3

(i) The presented SFMEA approach

drawn using the SFTA approach

For example, consider the results of the

on Rail Track Door Control System (RT

fault tree for the hazardous state ‘

shown in Figure 3.23. The fault tree of Figure 3.23 has only two errors responsible for

error state ‘Track_Door!=closed’. But as per the SFMEA analysis results of Table 4.14,

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

Figure 4.4: Mapping of Event-Related Errors and Erroneous State Level Effects

of RTCS

COMPARISON OF SFTA AND SFMEA APPROACHES

2012) introduced an eight step integrated SFMEA and SFTA

approach by taking the formal description of the given use-case functionality as an input.

the application of the approach is manual. Similarly, the work repor

2012) also described an integrated SFTA and SFMEA application

approach that takes formal use-case description as the input.

The application of the presented SFMEA approach actually augments the results of the

ussed in Chapter 3 in two ways.

The presented SFMEA approach assists in the completeness of the

SFTA approach of Chapter 3 as follows

results of the application of the presented SFMEA

Track Door Control System (RTCS) applications as shown in Table 4.14

fault tree for the hazardous state ‘Track_Door!=closed AND Track_Signal=green’ as

shown in Figure 3.23. The fault tree of Figure 3.23 has only two errors responsible for

ate ‘Track_Door!=closed’. But as per the SFMEA analysis results of Table 4.14,

Case Based Requirements Analysis Phase

98

Related Errors and Erroneous State Level Effects

2012) introduced an eight step integrated SFMEA and SFTA

case functionality as an input.

he work reported by

2012) also described an integrated SFTA and SFMEA application

approach actually augments the results of the

of the fault trees

application of the presented SFMEA approach

CS) applications as shown in Table 4.14 and the

Track_Door!=closed AND Track_Signal=green’ as

shown in Figure 3.23. The fault tree of Figure 3.23 has only two errors responsible for

ate ‘Track_Door!=closed’. But as per the SFMEA analysis results of Table 4.14,

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

99

the same error state can occur because of three errors namely ‘ER1’,’ER2’ and ‘ER3’.

Recall that in the fault tree for the hazardous-state ‘Track_Door !=closed AND

Track_Signal’ as shown in Figure 3.23, only two state-related errors are considered for

the erroneous state ‘Track_Door !=closed’ and these are ‘ER1’ and ‘ER2’. However, the

application of the SFMEA approach has identified an extra error in the form of ‘ER3’

also. Therefore, the application of the SFMEA approach actually helps in the

completeness of fault trees constructed using SFTA approach.

(ii) The presented SFMEA approach is used to construct fault trees for computational

types of hazardous-states also which is not possible by the application of the SFTA

approach of Chapter 3. An example in support of this is given below.

For example, consider the hazardous-state for the Insulin Delivery System (IDS) where a

wrong amount of insulin is delivered in the patient’s body. The construction of the fault

tree for this hazardous-state is not possible by the SFTA approach of Chapter 3.

However, the fault tree for hazardous-state can be constructed using the results of the

presented SFMEA approach as follows.

The effect entry ‘InsulinPump^= DeliveringInsulin’ in Table 4.11(row of error

‘ER4’) indicates that the state of the insulin pump component is erroneous changed to

‘DeliveringInsulin’. It actually represents a situation where an insulin is delivered in

a erroneous fashion. There are three errors namely ‘ER4’, ‘ER7’ and ‘ER9’ that cause

this type of effect. So the fault tree for the hazardous-state ‘InsulinPump^=

DeliveringInsulin’ contains three errors that are joined via an ‘OR’ gate.

The main strength(s) of the approach are as follows:

(i) The approach investigates the erroneous effects of every event-related error. Recall

that in the SFTA approach of Section 3.1, the event-related of only state transition

events are considered.

(ii) The approach augments the application of the SFTA approach presented and

discussed in Section 3.1.

(iii) The proposed SFMEA approach is semi-automatic and the whole error analysis

process takes a considerable less amount of time as compared to other available

non-automatic methods (Wentao and Hong 2009, Gupta et al 2012, Tiwari et al

2012).

Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase

100

The main weaknesses of the approach are as follows:

(i) It investigates the state level effects of only one event-related error at a time.

(ii) The propagating-type of errors for normal events are to be identified manually and

because of that, the application process is semi-automatic.

(iii) The approach in the present form does not handle concurrent state transitions of the

participating components.

101

CHAPTER 5

Software Fault Tree Analysis Approach for Object-

Oriented Design Phase

It was noted in Chapter 2 that the existing analysis tools for object-oriented design

(OOD) phase do not provide the support for either the automated or semi-automated

application of the SFTA approach. This chapter presents a SFTA approach for the hazard

analysis of the object-oriented design models. In the proposed approach, the events

corresponding to the messages of a given sequence diagram are mapped against the

states of the participating objects and using these the software fault tree (SFT) for the

selected hazardous-state of the OOD model is constructed. The proposed SFTA approach

is semi-automated and the algorithm is divided into four steps where the software fault

tree construction step is automated. The UML sequence diagram for a selected use-case

scenario and the UML state diagrams of the participating objects are required as the

inputs. It requires proper tagging of both the sequence and state diagrams. The approach

has been validated by applying it on the UML design models of two use-cases, namely

‘Request Elevator’ and ‘Stop Elevator’ of an Elevator Control System (ECS) application,

used earlier in Chapter 3.

5.1 OBJECT-ORIENTED DESIGN PROCESS

Object-oriented design is a common approach to software design where a particular

software problem is divided into a system of collaborating/interacting objects. The use-

case models are developed during the object-oriented requirements analysis phase. The

use-case realization template written for each use-case functionality is translated into a

sequence diagram. The outputs of the object-oriented design phase include the following:

(i) A set of classes, their attributes and the responsibilities/operations.

(ii) A sequence diagrams for each use-case functionality. Each sequence diagram gives

the information about the objects, which are collaborating with each other in order

to realize the selected use-case functionality.

(iii) A set of state diagrams, where each state diagram depicts the state transition pattern

of a single object. It is to be noted that a state diagram focuses on the state

transition pattern of a single object, whereas the sequence diagram focuses on all

the objects that are required to realize the selected use-case functionality.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

102

5.2 OBJECTIVE OF THE PROPOSED SFTA APPROACH

The focus of SFTA research efforts in the object-oriented software design phase is either

the automatic or semi-automatic construction of a software fault tree for a selected

hazardous-state of the system directly from the given object-oriented design models.

However, the efforts have not reported as success so far.

The work of Pai and Dugan (Pai and Dugan, 2002) presents an approach to automatically

construct the dynamic fault trees (DFTs) from UML class, activity and deployment

diagram(s). However, the models used by Pai and Dugan do not represent any functional

aspect of the system. Rather, UML has been used to model certain fault tolerant features

of hardware systems such as redundancy and error-propagation. The objective of their

work was reliability assessment and not the hazard analysis. Similarly, an approach to

synthesize fault tree(s) for reliability analysis from architectural model has been

proposed by Lauer and German (Lauer and German, 2011).The work described by

Massood (Massood et al., 2002, 2003) provided a partial paradigm in the form of

guidelines for mapping sequence, state and activity charts to corresponding fault trees,

but the application process was manual as the possible message type errors have to be

identified manually. The application of the SFTA approach on the UML sequence and

state diagrams is manual, error-prone and time-consuming. The proposed algorithm

integrates and semi-automates the application of the SFTA approach in object-oriented

software design phase and overcomes all these limitations.

5.3 ASSUMPTIONS FOR THE PROPOSED APPROACH

The assumptions made for the proposed approach are explained below.

(i) The sequence and state diagrams are complete and correct and are drawn for a

single scenario

The algorithm is based on the assumption that the supplied sequence and state diagrams

are correct and complete and represents the functionality of a single scenario of a given

use-case functionality. The completeness of the sequence diagram means that ‘no

message and class has been missed-out’. The correctness of the sequence diagram means

‘the sequence in which the various messages are exchanged among the

collaborating/interacting objects, is specified correctly. It is also assumed that the UML

state diagrams are correct (state transition events are correctly specified) and complete

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

103

(no state transition for any object is missed-out). The correctness and completeness of

the inputs are required for the correctness and completeness of the constructed software

fault trees. The presence of a wrong message in the sequence diagram or a wrong state

transition in the state diagram will result in erroneous SFT.

(ii) No participating object experience concurrent state transitions

It is assumed that corresponding to any state transition event there is a single state

transition experienced by any participating object. This assumption is same as in

Chapter 3.

(iii) The information about the type of object participating in the interaction is

embedded in the object name.

The proposed SFTA algorithm assumes that the information about three categories of

objects, namely Controller, Device and Interface types, is embedded in the name of the

object itself. The controller type of objects control the functionalities of device type

objects. The interface type objects act as a communication channel to transfer the

messages between controller and device types of objects. The algorithm uses three

special tags, namely ((Controller)),((Device)),((Interface)) along with object name to

represent the controller, device and interface types of objects. For example,

Elevator((Controller)) is a controller type object, Door((Device)) is a device type object

and Motor((Interface)) is an interface type object.

(iv) Hazardous-state is expressed using states of only two device types of objects only

It is also assumed that the hazardous-state, for which a software fault tree (SFT) is to be

constructed, is expressed using the states of two device type objects only.

5.4 OVERVIEW OF THE PROPOSED SFTA ALGORITHM

The proposed SFTA algorithm is divided into four steps to construct the software fault

tree (SFT) from the scenario sequence and its associated state diagrams.

The first step extracts the attributes of each message from the scenario sequence diagram.

The attributes that are extracted and computed for each message are shown in

Table 5.1.The algorithm takes the scenario sequence diagram and associated state

diagrams as inputs in machine readable format i.e. XMI (XML Metadata Interchange)

format. The Altova UML(Altova-UModel, 2014) tool is used to draw the required

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

104

sequence and state diagrams and each of them is exported to XMI format using the same

tool.

Table 5.1: Attributes Extracted From Messages

Message# Name
Preconditi

on
Type From To

Send/

Receive

Event

Pair

<<Unique

Message

Number>>

<<Name of

the

Message as

used in the

sequence

diagram>>

<<Precondi

tion of the

Message as

used in the

sequence

diagram>>

<<Type of the

Message is 1 for

Asynchronous

Send, 2 for

Synchronous

Send, 3 For

Asynchronous

Reply, 4 for

Synchronous

Reply >>

<<Name

of the

Sender

Object>>

<<Name

of the

Receiver

Object>>

<<Send

event

and

Receive

event

pairs>>

The second step takes the ‘Message-Sequence’ extracted in the first step and the UML

state diagram XMI files as the inputs and identifies the ‘Event-Sequence-State-

Transitions’ of a scenario. The structure of the ‘Event-Sequence-State-Transition’

depends upon the number of objects for which the state diagrams are supplied as inputs.

If the state diagrams for two arbitrary objects, namely ‘X’ and ‘Y’ are supplied as inputs

in this step, then the structure of the ‘Event-Sequence-State-Transition’ is as shown in

Table 5.2.

Table 5.2: Structure of ‘Event-Sequence-State-Transition’ Table

Event Type Timestamp X Y

<<Event of a

message>>

<<Type of

event >>

<<Time of

occurrence of the

event>>

<<State of X

during the of

event>>

<<State of Y

during

theevent>>

In the third step, for a given ‘hazardous-state’ of the system, the ‘Message-Sequence’

and the ‘Event-Sequence-State-Transitions’ are analyzed to generate the software fault

tree (SFT) as an XML file. The actual SFT is drawn from this file by the fault tree

creation tool named FaultCAT (FaultCAT,2003) in the next step.

An overview of the steps of the SFTA approach is shown in Figure 5.1 and the SFTA

algorithm is explained in the next section.

Software Fault Tree Analysis Approach for Object

Figure 5.1: Overview of the Proposed SFTA

Software Fault Tree Analysis Approach for Object-Oriented

: Overview of the Proposed SFTA Algorithm for Object-Oriented

Design Phase

Oriented Design Phase

105

Oriented

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

106

5.5 THE PROPOSED SFTA ALGORITHM

5.5.1 Step I: Extracting Attributes of each Message from a Scenario Sequence

Diagram

This step extracts the information for each message from the sequence diagram XMI file.

The extracted information is stored in tabular form as shown in Table 5.1. Each message

is associated with two types of events, namely send-event and receive-event. The send

event occurs on the lifeline of the sender object, whereas the receive event occurs on the

lifeline of the receiver object. So, for each type of message (send type or reply type), a

unique event pair named ‘Send/Receive Event Pair’ is generated in this step.

The pseudo code of this step is given below.

Procedure populateMessageSequence()

Input Sequence Diagrams XMI File

1. Create Message-Sequence Table with Structure as shown in Table 5.1

2. FOR each message tag in the Sequence Diagrams XMI File

(i) Extract the attributes for the message

(ii) Generate a unique ‘‘Send/Receive Event Pair’ for the message

ENDFOR

5.5.2 Step II: Identifying ‘Event-Sequence-State-Transitions’ for a Scenario

This step identifies ‘Event-Sequence-State-Transition’ of the scenario by using the

‘Message-Sequence’ (of Step I) and the state diagram XMI files of the participating

objects as inputs. The structure of the ‘Event-Sequence-State-Transition’ table is divided

in two parts, namely ‘Event-Sequence’ part and ‘State-Transition’ part. The ‘Event-

Sequence’ part has three fields/columns, namely ‘Event’ (name of the event), ‘Type’

(type of the event) and ‘Logical Time’ (time when the event occurred) and this part is

identified from the information given in ‘Message-Sequence’ of Step I. The ‘State-

Transition’ part is identified from the information given in the state diagram XMI files.

The ‘Message-Sequence’ and ‘State-Transition’ parts are identified in two sub-steps as

follows.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

107

Step II(a) Identifying ‘Event-Sequence’ of a Scenario

The ‘Message-Sequence’ table of Step I is sorted on a unique sequence number value

assigned to every message and for every message a unique send/receive event pair has

been created. This step first appends the values for each send/receive event pair for every

message in the ‘Event’ column of the ‘Event-Sequence-State-Transition’. After that the

values for ‘Type’ and ‘Logical Time’ fields are assigned. The ‘Type’ field value of any

event is either 1 (if the event is a send event of sending type message) or 2 (if the event is

a receive event of a send type message) or 3 (if the event is a send event of a reply type

message) or 4 (if the event is a receive event of a reply type message).

Every event is assigned a unique integer value known as its logical time (initialized to 0

at the start of this step) and it is incremented by 1 between the occurrences of two

successive events.

The pseudo code for this step is given below

Procedure populateEventSequence()

Input Event-Sequence table and State Diagrams XMI (seq.xmi) Files

logical_time = 0;

FOR each message ’msg’ of the Message-Sequence table

(i) Read the send event ‘es’ for the message ‘msg’ and append it in the Event-Sequence-

State-Transition table;

(ii) Assign type for ‘es’ as per above mentioned description;

(iii) Assign the logical time value for ‘es’ as logical_time+1; increment logical_time by 1;

(iv) Repeat the above steps (1)–(3) for receive event (er)

ENDFOR

Step II(b) Identifying ‘State-Transitions’ of a Scenario

This sub-step identifies the ‘State-Transition’ part of the ‘Event-Sequence-State-

Transition’ from the information given in the state diagram XMI files. The state

transition of any participating object takes place either during the send event or during

the receive event of a message as follows:

Suppose, an object ‘O’ is making a state transition to a new state ‘S’ upon the occurrence

of the message ‘M’. If object ‘O’ is not the sender of the message ‘M’ in the given

sequence diagram, then object ‘O’ will make a transition to state ‘S’ at the occurrence of

the receive event of message ‘M’ otherwise (if object ‘O’ is the sender of the message

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

108

‘M’) object ‘O’ will make a transition to state ‘S’ at the occurrence of the send event of

message ‘M’.

The pseudo code for this step is given below.

Procedure populateState-Transition()

FOR each state chart XMI file of step 2

 read current_object; /* name of the object represented by state chart XMI file */

 read initial_state of current_object; /* initial state of the object */

 FOR each message ‘msg’of Message-Sequence table

 IF message ’msg’ is responsible for any state transition in the XMI file THEN

 read next_state of the current_object;

 IF current_object is not the sender of message‘msg’ THEN

update the state column of current_object in Event-

Sequence-State-Transition table with next_state

corresponding to receive event of message ‘msg’;

 ELSE

update the state column of current_object in Event-

Sequence-State-Transition table with next_state

corresponding to send event of message ‘msg’;

 ENDIF

 ENDIF

 ENDFOR

ENDFOR

FOR each event of Event-Sequence-State-Transition table

 IF current_object state column is empty THEN

 update the current_object column with initial_state;

 ELSE

 read the state stored under into current_object column initial_state

 ENDIF

ENDFOR

5.5.3 Step III: Generating Fault Tree XML File for Selected Hazardous-State

This step generates an XML file which represents the software fault tree for the selected

hazardous-state. The hazardous-state of the system, the ‘Message-Sequence’ extracted in

Step I and the ‘Event-Sequence-State-Transition’ identified in Step II are used as input(s)

in this step.

As mentioned earlier, the proposed approach constructs the software fault tree for the

hazardous-state involving the states of two device type objects only. Assume ‘a’ and ‘b’

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

109

are the valid states of two device type objects, namely A((Device)) and B((Device))

respectively. There can be four possible ways of expressing the hazardous-state of the

system.

Case 1 A((Device)) != a AND B((Device)) = b

Suppose at time ‘T1’ the state of the A((Device)) object is changed to ‘a’ and at time ‘T2’

the state of the B((Device)) object is changed to ‘b’ and ‘T1’ is less than ‘T2’.This case

represents a hazardous situation where the required state transition of the A((Device))

object to state ‘a’ (which is supposed to occur earlier) has not occurred at all, whereas the

state transition of B((Device)) object to state ‘b’ (which is supposed to occur later) has

occurred. The ‘AND’ operator is used here to join the states from various objects.

The pseudo code of the fault tree construction for Case 1 hazardous-state is given below:

Procedure createFaultTree()

Input(s) Message-Sequence Table, Event-Sequence-State-Transition Table and

Hazardous-State

Output faultree.xml File

(a) Create Fault Tree For A((Device)) != a

1 Identify messages responsible for A((device)) = a from message-sequence table using

event-sequence-state-transition table as input.

2 Create a basic error event named !(M) for each such message where M is the message

number of the message. /* the error event !(M) indicates that the message M has not

been sent whereas it is to be sent */.

3 If a message has a mentioned precondition, then create a basic error event named

^(preC) where preC is the precondition of the message. /* error event ^(preC) represents

a situation where precondition preC has been wrongly evaluated as false whereas it is

true */.

4 If number of basic error events created in steps (2) and (3) above are more than 1 then join all

the error events by an AND gate and feed the output of this AND gate to an intermediate error

event named A((device)) ! = a else use wire gate and feed the output of this gate to an

intermediate event named A((device)) ! = a.

(b) Create Fault Tree For B((Device)) = b

1 Identify messages responsible for B((device)) = b from message-sequence table using

event-sequence-state-transition table as input.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

110

2 Create a basic error event named (M) for each such message where M is the message

number of the message. /* the error event (M) indicates that the message M has been

wrongly sent, whereas it is not to be sent */.

3 If a message has a mentioned precondition, then create a basic error event named (preC) where

preC is the precondition of the message. /* error event (preC) represents a situation where

precondition preC has been wrongly evaluated as true whereas it is false */.

4 If the number of basic error events created in steps (2) and (3) above are more than 1 then join

all the error events by an AND gate and feed the output of this gate to an intermediate event

named B((device)) = b else use wire gate and feed the output of this gate to an intermediate event

named B(device)) ! = b.

(c) Join the fault trees created in steps (a) and (b) above by an AND gate and feed the output of

this gate to a hazardous state named A((device)) ! = a and B((device)) = b.

Case 2 A((Device)) = a ANDB((Device)) != b

The fault tree construction process for this type of hazardous-state is similar to Case 1

hazardous-state, but in this case the state transition of A((Device)) object to state ‘a’ has

occurred, but the required state transition of B((Device)) object to state ‘b’ has not occurred.

The pseudo code of the fault tree construction for Case 2 hazardous-state is given below:

(a) Construct fault tree for A((Device)) = a

Use the fault tree construction steps of B((Device)) = b of Case 1.

(b) Construct fault tree for B((Device)) != b

Use the fault tree construction steps of A((Device)) != a of Case 1.

(c) Join the fault trees created in steps (a) and (b) above by an AND gate and feed the output of

this gate to a hazardous state named A((Device))= a and B((Device)) != b

Case 3 A((Device)) != a ANDB((Device)) != b

This case is similar to Case 1, but in this case, both the required state transitions of

A((device)) and B((device)) objects to states ‘a’ and ‘b’ respectively have not occurred.

The pseudo code of the fault tree construction for Case 3 hazardous-state is given below:

(a) Construct fault tree for A((Device)) !=a using the fault tree construction steps of A((Device))

!=a of Case 1

(b) Construct fault tree for B((Device)) !=b using the fault tree construction steps of A((Device))

!=a of Case 1

(c) Join the fault trees created in steps (a) and (b) above by an AND gate and feed the output of

this gate to a hazardous state named A((Device)) != a and B((Device)) != b.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

111

Case 4 A((Device)) = a ANDB((Device)) = b

This case is different from the previous three cases. According to this case, for the

correct operation of the system, at any point of time the system should not have both

A((Device)) and B((Device)) objects in states ‘a’ and ‘b’ respectively. As long as the

object A((Device)) is in the state ‘a’, the B((Device) object should not be allowed to

change its state to ‘b’ state and vice versa.

The pseudo code of the fault tree construction for Case 4 hazardous-state is given below:

(a) Select time ‘t1’ such that A((Device)) = a for the first time

(b) Select time ‘t2’ such that B((Device)) = b for the first time

(c) IFt1 is less than t2 THEN

 Select the first time t3 (t1 <t3 <t2) such that A((Device)) ! = a;

 Read the state (say ‘x’) of A((Device)) at time t3;

 Use Case 1 procedure for the hazardous state A((Device)) ! = x and B((Device))=b;

ELSE

Select the first time t3 (t2 <t3 <t1) such that B((Device)) ! =b;

 Read the state (say ‘x’) of B((Device)) at time t3;

Use Case 1 procedure for the hazardous state B((Device)) ! = x and A((Device)) = a;

 ENDIF

5.5.4 Step IV: Constructing Fault Tree

In this step, the software fault tree is drawn in graphical form by using the fault tree

XML file created in Step III as an input to the FaultCAT tool.

5.5.5 Time Complexity of the SFTA Algorithm

(a) Time Complexity of Step I

The running time, i.e. the algorithmic time complexity of Step I is of the order of ‘O(N1)’,

where ‘N1’ is the number of messages in the sequence diagram.

(b) Time Complexity of Step II

The running time, i.e. the algorithmic time complexity of Step II(a) is of the order of O(N1),

where ‘N1’ is the number of messages in the ‘Message-Sequence’ table.

The running time, i.e. the algorithmic time complexity of Step II(b) is of the order of ‘O(N1

× N2)’, where ‘N1’ is the number of messages in the ‘Message-Sequence’ table and ‘N2’ is

the number of components for which the state diagrams are drawn in this step.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

112

(c) Time Complexity of Step III

The running time, i.e. the algorithmic time complexity of Step III is of the order of O(N3),

where ‘N3’ is the number of events in the ‘Event-Sequence-State-Transitions’ of a scenario.

5.5.6 Formatting of Inputs

In the SFTA algorithm described above, it is assumed that the three inputs required in the

algorithm requires are supplied in some specific representations as explained in the

following sub-sections.

(a) Sequence Diagram Representation

The sequence diagram of the selected functionality should satisfy the following:

(i) The name of any send-type message should have the following format:

[preC] {M} name-of-message(parameter-list)

where ‘preC’ is the precondition that must be true before the message is sent and

‘M’ is a unique message number assigned to that message. Message number ‘M’

has a structure of the form ‘Ad’ where ‘A’ is any capital alphabet and ‘d’ is a

unique message sequence number. The Altova UModel tool provides a feature to

automatically assign a unique integer sequence number to every message. This

sequence number assigned by the tool should be used for assigning a unique

message number to each message of the sequence diagram by inserting this

sequence number after any capital alphabet letter and this alphabet letter should be

same across the whole sequence diagram e.g., A1, B9 etc.

(ii) Similarly, the name of the reply-type message (either synchronous or

asynchronous) should have the format: {M} name-of-message, where M is a unique

message number assigned to the reply message.

(iii) The sequence diagram should be drawn without using an ‘alt’ block feature as

shown in sequence diagram of Figure 5.2. In the Figure 5.2, the message M1 is sent

only if the condition a = 0 is true, otherwise the message M2 will be sent. The

presence of each ‘alt’ block indicates the presence of an alternate flow of actions of

the selected functionality. But, while drawing a sequence diagram for any use-case

functionality, only one of the two possible paths should be selected so that it

represents the functionality of a single scenario, i.e., sequence diagram should be

drawn either for true condition scenario or for false condition scenario.

(iv) The object type information is to be included in the object name itself by appending

special tag(s) such as ((Controller)), ((Interface)) and ((Device)) after the object

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

113

name. For example,Elevator((Controller)) indicates a controller type object,

Door((Device))indicates device type object and Motor((Interface))indicates an

interface type object. The controller type objects are responsible for controlling the

state transitions of both the device type objects and the interface type objects. The

interface type objects are used as a message exchange medium between controller

and device type objects.

Figure 5.2: A Sample Sequence Diagram using ‘alt’ block

(b) State Diagram Representation

The state diagrams drawn for the participating objects should satisfy the following:

(i) The state diagrams drawn for the selected collaborating objects should use the

unique message numbers assigned to various messages as state transition events.

(ii) For every state of a device type object, there are to be defined two states for the

controller type object and the names of these states should be as per the guidelines

mentioned below.

Consider a controller type object named C((Controller)) and device type object named

D((Device)). Suppose C((Controller)) object issues a command to D((Device)) object

to change its state to a new state named ‘s’. The D((Device)) object will make a state

transition to state ‘s’ after receiving the command. After successful state transition,

the D((Device)) object will send the reply back to C((Controller)) object. In this case,

there are to be defined two states for C ((Controller)) object. The name of the first

state of the C((Controller)) object is to be named as ‘prepare(D((Device))) = s’ and it

should occur when C((Controller)) object issues the command. The name of the

second state transition is to be named as ‘D((Device)) = s’ and it should occur when

C((Controller)) object receives the reply message back from D((Device)) object.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

114

(c) Hazardous-State Representation

The hazardous-state for which a software fault tree is to be constructed is to be expressed

in terms of the states of two device types objects only. The hazardous-state involving the

states of device type objects can have four forms as discussed in Section 5.5.3.

5.6 APPLICATION OF THE ALGORITHM IN SAFETY-

CRITICAL APPLICATION: ELEVATOR CONTROL SYSTEM

The proposed SFTA application approach is applied on two use-cases, namely dispatch

elevator and stop elevator and these scenarios are part of the design of an elevator

control system application described by Gomaa (Gomaa, 2000).

5.6.1 Dispatch Elevator Scenario

The ‘Dispatch Elevator’ use-case functionality is required in the ECS application to

dispatch an elevator to a particular floor in response to a user request. The sequence

diagram drawn for the ‘Dispatch Elevator’ use-case is shown in Figure 5.3.Theobjects

that are participating in this scenario are: ‘:ElevatorStatusPlan’, ‘:Elevator((Controller))’,

‘:Motor((Interface))’,‘:Motor((Device))’, ‘:Door((Interface))’ and ‘ : Door((Device))’.The

format used to represent the name of the object is ‘object-name:class-name’, where

object-name is the name of the object and is optional and ‘class-name’ represents the

name of the class to which the object belongs.

The information about the floors where an elevator has to visit is maintained by the

‘ElevatorStatusPlan’ object. The ‘ElevatorStatusPlan’ object instructs the

‘Elevator((Controller))’ object to move the elevator to a particular floor number. The

‘:Elevator((Controller))’ object is used to control the operations of the ‘:Door((Device))’

and the ‘:Motor((Device))’ objects. The ‘:Motor((Interface))’ object is used as an

interface to communicate with the ‘:Motor((Device))’ object. The ‘:Door((Interface))’

object is used as an interface to communicate with ‘:Door((Device))’ object. The

‘Door((Device))’ and ‘Motor((Device))’ objects simulates the operations of the actual

door and motor hardware devices.

Step I: Extract Message-Sequence from the Sequence Diagram

The execution of Step I results in the instantiation of the ‘Message-Sequence’ table as

shown Table 5.3. The XMI file of the sequence diagram as shown in Figure 5.3 is used

as an input in this step.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

115

Figure 5.3: Elevator Controller Sequence Diagram (Dispatch Elevator Scenario)

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

116

Table 5.3: Message-Sequence Table Generated for Dispatch Elevator Scenario

Message# Name Type Pre-condition From To
Send/Receive

Event Pair

D1 movetoFloor(Floor#) 1 ElevatorStatusPlan Elevator((Controller)) {E1,E2}

D2 doorClose() 2 Elevator((Controller)) Door((Interface)) {E3,E4}

D3 close() 2 Door((Interface)) Door((Device)) {E5,E6}

D4 door=close 3 Door((Device)) Door((Interface)) {E7,E8}

D5 door=closed 3 Door((Interface)) Elevator((Controller)) {E9,E10}

D6 moveMotor() 2 {D5}door=closed Elevator((Controller)) Motor((Interface)) {E11,E12}

D7 move() 2 Motor((Interface)) Motor((Device)) {E13,E14}

D8 motor=moved 3 Motor((Device)) Motor((Interface)) {E15,E16}

D9 motor=moving 3 Motor((Interface)) Elevator((Controller)) {E17,E18}

D10 departed() 1 Elevator((Controller)) ElevatorStatusPlan {E19,E20}

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

117

Step II: Identify ‘Event-Sequence-State-Transition’

There are three objects, namely Motor((Device)), Door((Device)) and

Elevator((Controller)) that change their state during the scenario realization and their

state transitions are shown in Figure 5.4(a), Figure 5.4(b)and Figure 5.4(c) respectively.

(a) Motor State Diagram (Dispatch Elevator Scenario)

(b) Door State Diagrams (Dispatch Elevator Scenario)

(c) Elevator Controller State Diagram

Figure 5.4: State Diagrams For Dispatch Elevator Scenario of ECS Application

The initial state of Elevator((Controller)) object is ‘at_floor’ (i.e., elevator is stationed

at floor) and similarly initial state(s) of Motor((Device)) and Door((Device)) objects are

‘stopped’ and ‘opened’ respectively.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

118

ThemessageD1 (Figure 5.6) has been sent from the ‘:ElevatorStatusPlan’ object to an

‘:Elevator((Controller))’ object and upon receive of this message the state of the

‘:Elevator((Controller))’ object is changed to ‘servicing’ i.e., state transition occurs

during the receive event (event E2 as shown in Table 5.4) of message D1.

The message D2 has been sent from ‘:Elevator((Controller))’ object to

‘:Door((Interface))’ object, but in this case the state of Elevator((Controller)) object is

changed to ‘prepare(Door((Device)) = closed)’ immediately after the sending of message

D2 i.e. state transition occurs on the send event of message D2 (event E3 of Table 5.6).

The state of ‘:Elevator((Controller))’ object is changed to ‘Door((Device)) = closed’ after

receiving the reply message D5 (state transition occurs at the receive event of message

D5 i.e., at event E10 of Table 5.4). The ‘:Motor((Device))’ object makes a transition from

‘stopped’ to ‘moving’ state after receiving the message D7 and since the sender of

message D7 is not ‘:Motor((Device))’, so ‘:Motor((Device))’ object makes its required

state transition at the receive event of message D7. Similarly, ‘:Door((Device))’

objectmakesitsrequiredstatetransitionfrom‘opened’to‘closed’stateafter receiving the

message D3 i.e., actual state transition occurs at the receive event of message D3.

The ‘Event-Sequence-State-Transition’ table populated after the application of Step II, by

taking Table 5.3 and the state diagram XMI files of Figure 5.4as inputs, is shown in

Table 5.4.

Step III and Step IV: Generate Fault Tree XML File and Construct Software Fault Tree

The Case 1 hazardous-state considered for this application is ‘Door((Device))!=closed

and Motor((Device))= moving’. The fault tree XML file generated for this Case 1

hazardous-state is shown in Figure 5.5 and the corresponding fault tree generated from

this file is shown in Figure 5.6.

Thenames of basic and intermediate events are to be interpreted as follows:

1. !(msg#){where msg# is the message number} i.e., a corresponding message is not

sent whereas it has to be sent

2. (msg#){where msg# is the message number}i.e., a corresponding message is sent,

whereas it has not to be sent

3. ^(PreC){where PreC is the precondition of the message} i.e., precondition has been

wrongly evaluated as true.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

119

Table 5.4: Event-Sequence-State-Transition Table Generated for

Dispatch Elevator Scenario

Event Type Timestamp Elevator((Controller)) Motor((Device)) Door((Device))

E1 1 1 at_floor stopped opened

E2 2 2 servicing stopped opened

E3 1 3 prepare(Door((Device))=closed) stopped opened

E4 2 4 prepare(Door((Device))=closed) stopped opened

E5 1 5 prepare(Door((Device))=closed) stopped opened

E6 2 6 prepare(Door((Device))=closed) stopped closed

E7 3 7 prepare(Door((Device))=closed) stopped closed

E8 4 8 prepare(Door((Device))=closed) stopped closed

E9 3 9 prepare(Door((Device))=closed) stopped closed

E10 4 10 Door((Device))=closed stopped closed

E11 1 11 prepare(Motor((Device))=moving) stopped closed

E12 2 12 prepare(Motor((Device))=moving) stopped closed

E13 1 13 prepare(Motor((Device))=moving) stopped closed

E14 2 14 prepare(Motor((Device))=moving) moving closed

E15 3 15 prepare(Motor((Device))=moving) moving closed

E16 4 16 prepare(Motor((Device))=moving) moving closed

E17 3 17 prepare(Motor((Device))=moving) moving closed

E18 4 18 Motor((Device))=moving moving closed

E19 1 19 Motor((Device))=moving moving closed

E20 2 20 Motor((Device))=moving moving closed

Software Fault Tree Analysis Approach for Object

<?xml version="1

Event><Title>Door((Device))!

Gate><Intermediate-

Event><Title>!(D2)</Title></

Event></Or-Gate></Intermedi

Event><Title>Motor((Device))

Event><Title>^({D5}door=clos

Event><Title>(D6)</Title></Ba

Event></And-Gate></Intermedi

Figure 5.5: faultree.xml File for Case 1 Hazardous

Figure 5.6: Fault Tree Generated

closed and Motor((Device)) = moving

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

"1.0" encoding="UTF-8"?><Fault-Tree>

!=closed ANDMotor((Device))=moving

Event><Title>Door((Device))!=closed</Title><Or

></Basic- Event><Basic-Event><Title>!(D3)</

iate-Event><Intermediate-

))=moving</Title><And-Gate><Basic-

osed)</Title></Basic-Event><Basic-

Basic- Event><Basic-Event><Title>(D7)</

ediate-Event></And- Gate></Intermediate-Event></

: faultree.xml File for Case 1 Hazardous-State Door((Device))!=

Motor((Device))= moving

Fault Tree Generated for Case 1 Hazardous-State Door((Device))

closed and Motor((Device)) = moving

Oriented Design Phase

120

><Intermediate-

g</Title><And-

le><Or-Gate><Basic-

/Title></Basic-

/Title></Basic-

/Fault-Tree>

))!=closed and

State Door((Device))! =

Software Fault Tree Analysis Approach for Object

Similarly, the faulttree.xmlfi

Door((Device))!=closedand

isshowninFigure5.7anditscor

as an input is shown in Figu

<?xml version="1.0" encoding="UTF

Event><Title>Door((Device))!=closed AND

Motor((Device))!=moving</Title><And

Event><Title>Door((Device))!=closed</Title><Or

Event><Title>!(D2)</Title></Basic

Event></Or-Gate></Intermediate

Event><Title>Motor((Device))!=moving</Title><Or

Event><Title>^({D5}door=closed)</Title></Basic

Event><Title>!(D6)</Title></Basic

Event></Or-Gate></Intermediate

Figure 5.7: faultree.xml File for Case

Figure 5.8: Fault Tree generated

closed and Motor((Device))

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

ilegeneratedforCase3hazardousstate

and Motor((Device))!=moving,

rresponding fault tree drawn by FaultCAT tool us

gure5.8.

<?xml version="1.0" encoding="UTF-8"?><Fault-Tree><Intermediate

Event><Title>Door((Device))!=closed AND

Motor((Device))!=moving</Title><And-Gate><Intermediate-

Event><Title>Door((Device))!=closed</Title><Or-Gate><Basic-

Event><Title>!(D2)</Title></Basic- Event><Basic-Event><Title>!(D3)</Title></Basic

Gate></Intermediate-Event><Intermediate-

Event><Title>Motor((Device))!=moving</Title><Or-Gate><Basic-

Event><Title>^({D5}door=closed)</Title></Basic-Event><Basic-

Event><Title>!(D6)</Title></Basic- Event><Basic-Event><Title>!(D7)</Title></Basic

Gate></Intermediate-Event></And- Gate></Intermediate-Event></Fault

ree.xml File for Case 3 Hazardous-State Door((Device))!=

Motor((Device))!= moving

Fault Tree generated for Case 3 Hazardous-State Door((Device)) ! =

closed and Motor((Device)) != moving

Oriented Design Phase

121

tool using this file

Tree><Intermediate-

Event><Title>Door((Device))!=closed AND

Event><Title>!(D3)</Title></Basic-

Event><Title>!(D7)</Title></Basic-

Event></Fault-Tree>

))!=closed and

State Door((Device)) ! =

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

122

5.6.2 Stop Elevator Scenario

The ‘Stop Elevator’ use-case functionality is required in the ECS application to stop an

elevator at a particular floor number. The sequence diagram drawn for this use-case

scenario is shown in Figure 5.9.

The participating objects are ‘:ArrivalSensor((Interface))’,‘:Elevator((Controller))’,

‘:ElevatorStatusPlan’, ‘:Motor((Interface))’, ‘:Motor((Device))’, ‘:Door((Interface))’,

‘:Door((Device))’ and ‘:DoorTimer’.

The role of the ‘:ArrivalSensor((Interface))’ object is to detect the arrival of the elevator

whenever it is approaching a particular floor number and generates an interrupt for the

‘:Elevator((Controller))’ object.

The roles of the ‘:Elevator((Controller))’, ‘:ElevatorStatusPlan’, ‘:Motor((Interface))’,

‘:Motor((Device))’, ‘:Door((Interface))’ and ‘:Door((Device))’objects are similar to the

roles of the same in ‘Dispatch Elevator’ scenario. The role of the ‘DoorTimer’ object is to

maintain the time during which the elevator door has to remain open.

The whole functionality gets executed when a ‘floorReach()’ interrupt message is

received by the ‘:Elevator((Controller))’ object from an ‘:ArrivalSensor((Interface))’

object.Upon the receipt of the message, the ‘:Elevator((Controller))’ object performs the

following tasks in sequence

(i) It checks with the ‘:ElevatorStatusPlan’ object to know whether an elevator has to

stop at that floor number or not.

(ii) If elevator has to stop at the floor, then following actions are carried out

sequentially

a. The ‘:Elevator((Controller))’ object commands to stop the motor

b. When motor is stopped, the ‘:Elevator((Controller))’ object commands to open

the door

c. When door is opened, the ‘:Elevator((Controller))’ starts the door timer

d. When timer stops, the ‘:Elevator((Controller))’ object checks with the

‘:ElevatorStatusPlan’ object to know about the next floor destination.

e. If the elevator is not to visit any other floor then it remains on the last visited

floor.

The ‘Message-Sequence’ table populated by taking the sequence diagram of Figure 5.9 as

an input is shown in Table 5.5.

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

123

Figure 5.9: Sequence Diagram for Stop Elevator Scenario

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

124

Table 5.5: Message-Sequence Table Generated for Stop Elevator Scenario

Message# Name Type Precondition From To
Send/Receive

Event-Pair

A1 floorReach(Floor#) 1 ArrivalSensor((Interface)) Elevator((Controller)) {E1,E2}

A2 checkDestination(Floor#) 2 Elevator((Controller)) ElevatorStatusPlan {E3,E4}

A3 Reply=YES 3 ElevatorStatusPlan Elevator((Controller)) {E5,E6}

A4 stopMotor() 2 {A3}Reply=YES Elevator((Controller)) Motor((Interface)) {E7,E8}

A5 stop() 2 Motor((Interface)) Motor((Device)) {E9,E10}

A6 motor=stop 3 Motor((Device)) Motor((Interface)) {E11,E12}

A7 motor=stopped 3 Motor((Interface)) Elevator((Controller)) {E13,E14}

A8 doorOpen() 2 {A7}motor=stopped Elevator((Controller)) Door((Interface)) {E15,E16}

A9 open() 2 Door((Interface)) Door((Device)) {E17,E18}

A10 door=open 3 Door((Device)) Door((Interface)) {E19,E20}

A11 door=opened 3 Door((Interface)) Elevator((Controller)) {E21,E22}

A12 startTimer() 2 {A11}door=opened Elevator((Controller)) DoorTimer {E23,E24}

A13 timeOut 3 DoorTimer Elevator((Controller)) {E25,E26}

A14 checkNextdestination() 2 Elevator((Controller)) ElevatorStatusPlan {E27,E28}

A15 destination=nil 3 ElevatorStatusPlan Elevator((Controller)) {E29,E30}

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

125

The state diagrams for ‘:Door((Device))’, ‘:Motor((Device))’ and ‘:Elevator((Controller))’

objects are shown in Figure 5.10.

(a) Door State Diagram

(b) Motor State Diagram

(c) Elevator Controller State Diagram

Figure 5.10: State Diagrams for Stop Elevator Scenario

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

126

The ‘Event-Sequence-State-Transition’ table populated after the application of Step II of the

proposed approach is shown in Table 5.6. The ‘Message-Sequence’ table as shown in

Table 5.5 and the XMI files of the state diagrams of Figure 5.10 are used as inputs in this

step.

Table 5.6: Event-Sequence-State-Transition Table Generated for

Stop Elevator Scenario

Event Type Timestamp Elevator((Controller))
Motor

((Device))

Door

((Device))

E1 1 1 motor=moving moving closed

E2 2 2 motor=moving moving closed

E3 1 3 motor=moving moving closed

E4 2 4 motor=moving moving closed

E5 3 5 motor=moving moving closed

E6 4 6 motor=moving moving closed

E7 1 7 prepare(Motor((Device))=stopped) moving closed

E8 2 8 prepare(Motor((Device))=stopped) moving closed

E9 1 9 prepare(Motor((Device))=stopped) moving closed

E10 2 10 prepare(Motor((Device))=stopped) stopped closed

E11 3 11 prepare(Motor((Device))=stopped) stopped closed

E12 4 12 prepare(Motor((Device))=stopped) stopped closed

E13 3 13 prepare(Motor((Device))=stopped) stopped closed

E14 4 14 Motor((Device))=stopped stopped closed

E15 1 15 prepare(Door((Deice))=opened) stopped closed

E16 2 16 prepare(Door((Deice))=opened) stopped closed

E17 1 17 prepare(Door((Deice))=opened) stopped closed

E18 2 18 prepare(Door((Deice))=opened) stopped opened

E19 3 19 prepare(Door((Deice))=opened) stopped opened

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

127

Event Type Timestamp Elevator((Controller))
Motor

((Device))

Door

((Device))

E20 4 20 prepare(Door((Deice))=opened) stopped opened

E21 3 21 prepare(Door((Deice))=opened) stopped opened

E22 4 22 Door((Device))=opened stopped opened

E23 1 23 startingTimer stopped opened

E24 2 24 startingTimer stopped opened

E25 3 25 startingTimer stopped opened

E26 4 26 timeout stopped opened

E27 1 27 checkingNextDestination stopped opened

E28 2 28 checkingNextDestination stopped opened

E29 3 29 checkingNextDestination stopped opened

E30 4 30 at_floor stopped opened

The faulttree.xml file generated for Case 1 hazardous state Motor((Device)) != stopped

and Door((Device)) = opened, is shown in Figure 5.11. The corresponding fault tree

drawn by FaultCAT tool using this faulttree.xml file as an input is shown in

Figure 5.12.

<?xml version="1.0" encoding="UTF-8"?><Fault-Tree><Intermediate-

Event><Title>Motor((Device))!=stopped AND Door((Device))=opened</Title><And-

Gate><Intermediate-Event><Title>Motor((Device))!=stopped</Title><Or-Gate><Basic-

Event><Title>^({A3}Reply=YES)</Title></Basic-Event><Basic-

vent><Title>!(A4)</Title></Basic-Event><Basic-Event><Title>!(A5)</Title></Basic-

Event></Or-Gate></Intermediate-Event><Intermediate-

Event><Title>Door((Device))=opened</Title><And-Gate><Basic-

Event><Title>^({A7}motor=stopped)</Title></Basic-Event><Basic-

Event><Title>(A8)</Title></Basic-Event><Basic-Event><Title>(A9)</Title></Basic-

Event></And-Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault-Tree>

Figure 5.11: Fault Tree XML File for Case 1 Hazardous-State ‘Motor((Device))!=

stopped and Door((Device))=opened’

Software Fault Tree Analysis Approach for Object

Figure 5.12: Fault Tree Generated for

stopped

Similarly, thefaulttree.xml

Motor((Device))=stopped

5.13.Thecorrespondingfault tree

input is shown in Figure 5.14

<?xml version="1.0" encoding="UTF

Event><Title>Motor((Device))=stopped AND Door((Device))!=opened</Title><And

Gate><Intermediate-Event><Title>Motor((Device))=stopped</Title><And

Event><Title>({A3}Reply=YES)</Title></Basic

Event><Title>(A4)</Title></Basic

Event><Basic-Event><Title>(A6)</Title></Basic

Event><Title>(A7)</Title></Basic

Event><Title>Door((Device))!=opened</Title><Or

Event><Title>^({A7}motor=stopped)</Title></Basic

Event><Title>!(A8)</Title></Basic

Event></Or-Gate></Intermediate

Figure 5.13: faultree.xml File for Case

stopped

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

Fault Tree Generated for Case 1 Hazardous-State ‘Motor

stopped and Door((Device))=closed’

lttree.xml file generated for Case2 haza

 and Door((Device))!= opened, is shown

t tree drawn by FaultCATtool using thisfaulttree.xml

4.

<?xml version="1.0" encoding="UTF-8"?><Fault-Tree><Intermediate

Event><Title>Motor((Device))=stopped AND Door((Device))!=opened</Title><And

Event><Title>Motor((Device))=stopped</Title><And-Gate><Basic

Event><Title>({A3}Reply=YES)</Title></Basic-Event><Basic-

Event><Title>(A4)</Title></Basic-Event><Basic-Event><Title>(A5)</Title></Basic

Event><Title>(A6)</Title></Basic-Event><Basic-

Event><Title>(A7)</Title></Basic-Event></And-Gate></Intermediate-Event><Intermediate

Event><Title>Door((Device))!=opened</Title><Or-Gate><Basic-

Event><Title>^({A7}motor=stopped)</Title></Basic-

Event><Title>!(A8)</Title></Basic-Event><Basic-Event><Title>!(A9)</Title></Basic

Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault

: faultree.xml File for Case 2 Hazardous-State Motor((Device)) =

stopped and Door((Device)) != opened

Oriented Design Phase

128

Motor((Device))!=

ardous state

wn in Figure

lttree.xml file as an

Tree><Intermediate-

Event><Title>Motor((Device))=stopped AND Door((Device))!=opened</Title><And-

Gate><Basic-

Event><Title>(A5)</Title></Basic-

Event><Intermediate-

-Event><Basic-

Event><Title>!(A9)</Title></Basic-

Event></Fault-Tree>

((Device)) =

Software Fault Tree Analysis Approach for Object

Figure 5.14: Fault Tree Generated for

stopped

The snapshots of the fault trees constructed using

files as shown in Figure 5.5, Figure

Appendix-V, Appendix-VI, Appendix

5.6.3 Analysis of Results

The aim of the SFTA algorithm is to construct the fault trees for the selected haz

state of the system. The analyst has to incorporate the necessary safety features in the

system to avoid the occurrence of the hazardous state. The

results of the fault tree for this purpose. The c

message-related errors that cause

none of the events from a cutset

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

Fault Tree Generated for Case 1 Hazardous-State Motor

stopped and Door((Device)) != closed

The snapshots of the fault trees constructed using a FaultCAT tool, from the faulttree.xml

, Figure 5.7, Figure 5.11 and Figure 5.13, are also

, Appendix-VII and Appendix-VIII, respectively.

The aim of the SFTA algorithm is to construct the fault trees for the selected haz

state of the system. The analyst has to incorporate the necessary safety features in the

system to avoid the occurrence of the hazardous state. The analyst uses the cutset analysis

for this purpose. The cut sets are the logical combinations of

related errors that cause the hazardous-state. A cut set is a minimal cutset if

none of the events from a cutset can be removed and a hazardous-state can still occur.

Oriented Design Phase

129

Motor((Device)) =

from the faulttree.xml

also shown in

, respectively.

The aim of the SFTA algorithm is to construct the fault trees for the selected hazardous-

state of the system. The analyst has to incorporate the necessary safety features in the

analyst uses the cutset analysis

ical combinations of

state. A cut set is a minimal cutset if

state can still occur. A

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

130

hazardous-state can be avoided by providing safeguards against the selected erroneous

events from the minimal cut sets. If the events in the minimal cut sets are joined by an

‘AND’ gate, then the hazardous state can be avoided by providing the safety features for

any one erroneous event selected from the list. The experience and the domain

knowledge of the analyst plays an important role in the selection of the erroneous event

in this situation.

Consider the fault tree for the hazardous-state ‘Door((Device))!=closed AND

Motor((Device))=moving’ as shown in Figure 5.6. There are two minimal cut sets for this

fault tree and these are {‘!(D2)’,‘(D6)’,‘^({D5}door=closed)’,‘(D7)’} and

{‘!(D3)’,‘(D6)’,‘^({D5}door=closed)’,‘(D7)’}. In the both these minimal cut sets, the

erroneous events {‘(D6)’,‘^({D5}door=closed)’,‘(D7)’} are joined by an ‘AND’ gate.

So any one of these can be selected for the avoidance of the hazardous-state. If the

erroneous event ‘^({D5}door=closed)’ is selected from these events, then to avoid the

hazardous-state ‘Door((Device))!=closed AND Motor((Device))=moving’ from

occurring, the analysts has to provide the necessary safeguards against the three

erroneous events namely ‘!(D2)’, ‘!(D3)’ and ‘^({D5}door=closed)’.

Similarly, consider the fault tree for the hazardous-state ‘Motor ((Device))!= stopped and

Door((Device)) = opened’ as shown in Figure 5.12. There are three minimal cut sets for

this fault tree and these are {‘!(A4)’,‘(A8)’,‘^({A7}Motor=stopped)’,(A9)},

{‘({A3}Reply=YES)’,‘^({A7}Motor=stopped)’,‘(A8)’,‘^({A7}Motor=stopped)’,(A9)}

and {‘!(A5)’,‘(A8)’,‘^({A7}Motor=stopped)’,(A9)}.The erroneous

events{‘(A8)’,‘^({A7}Motor=stopped)’,(A9)} in all the three minimal cut sets are joined

via an ‘AND’ gate. If an erroneous event ‘^({A7}Motor=stopped)’ is selected from this

list then to avoid the hazardous-state ‘Motor((Device)) != stopped and Door((Device)) =

opened’ from occurring the safeguards have to be provided against four erroneous events

and these are ‘!(A4)’, ‘({A3}Reply=YES)’, ‘!(A5)’ and ‘^({A7}Motor=stopped)’.

5.7 COMPARATIVE ANALYSIS

The presented SFTA approach can be considered as an extension of the manual SFTA

application work described by Massood et al. (2002, 2003) where only the basic

guidelines, to convert a given sequence and state diagram to its corresponding software

fault tree, have been described. The message type errors such as ‘message not sent’ or

‘message sent at a wrong time’ have to be identified manually whereas in our approach,

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

131

the message errors are identified by software and fed during construction of the

software fault tree. The focus of the work presented by Pai and Dugan (2002) is

reliability assessment and the reliability related information such as redundancy;

reconfiguration and dependencies among components have been embedded in the

architectural model itself. The UML class has been used to model the redundancy,

whereas UML activity chart is used to model the failure behavior. In UML, class

diagrams are generally used to represent the static structure/components of the system,

whereas our approach is based upon sequence and state diagram(s) which are actually

used to express the dynamic behavior of the system. Lauer and German’s work (2011)

also focused upon reliability assessment. The focus of the presented semi-automated

SFTA approach is the hazard analysis so that the analyst could analyze how a particular

hazard can occur in the system. The procedure for embedding the features of FTA and

one other hazard analysis technique named hazard and operability (HazOp) into UML

component models has been described by Lu et al. (2005) and in this case also the

application process is manual. The fault tree construction step of the presented SFTA

approach is automated and error-free.

The shortcomings of the proposed approach are:

1 It can be applied to a hazardous-state that can be expressed in terms of an

incompatible state(s) of the collaborating objects. In actual real time applications

hazard may occur because of many other factors such as wrong computation,

incorrect response received etc.

2 The sequence diagram is drawn for a single scenario without the use of ‘alt’ blocks.

But, a given use case functionality can have many different scenarios as discussed in

Chapter 3

3 The proposed approach requires that the tagging of sequence diagram should be

proper and correct. If any message’s precondition tag is specified wrongly, then the

precondition basic error event and the constructed fault tree will also be wrong. If any

message’s precondition tag is missing, then there will not be any basic event

representing the precondition of that message in the final constructed fault tree.

Another type of errors such as ‘wrong assignment of the message numbers’ or ‘not

assigning the message numbers’ for various messages in the sequence diagram, will

affect the final generated fault tree.

Work on these shortcomings is carried on as further work.

132

CHAPTER 6

Software Failure Modes and Effects Analysis in Object-

Oriented Design Phase

This chapter presents a new automated SFMEA approach for object-oriented design

phase. The proposed approach is of a forward analysis type, which investigates the effects

of various message-related errors on the system. The message-related errors are selected

from the sequence diagram whereas the effects of these errors are traced to the erroneous

states of the participating objects. The approach has been validated by applying it on two

safety-critical applications, namely Insulin Delivery System (IDS) and Railway Track

Door Control System (RTCS) discussed in previous chapters. The UML sequence

diagram and state diagrams are required as inputs in XMI (XML Metadata Interchange)

format. The Altova UML (Altova-UModel, 2014) tool is used first to draw the required

sequence and state diagrams and then export the drawn diagrams to XMI format.

6.1 MOTIVATION FOR SFMEA IN OBJECT-ORIENTED DESIGN

PHASE

Guiochet and Baron (Guiochet and Baron, 2003) have applied Failure Modes Effects and

Criticality Analysis (FMECA) technique on UML sequence diagrams by identifying

eleven types of message-related errors that can occur in the system. The work of Hecht

and Hecht (Hecht and Hecht, 2004) described a computer-aided SFMEA approach for

two stages of software development namely concept phase and design/implementation

phase. Ozarin (Ozarin, 2004) recommended applying Software FMEA approach during

the full software life cycle by exploiting various UML diagrams as inputs. The SFMEA

approach described by David (David et el, 2008) generates a FMEA table from a

sequence diagram, but requires that dysfunctional behaviors of various classes in the form

of a database are to be known in advance. It is to be noted that none of the researchers

have proposed a solution for SFMEA in object-oriented design phase. The proposed

SFMEA approach is an attempt to integrate and automate the application of the SFMEA

in object-oriented design phase. The proposed approach also overcomes the following

two limitations of the SFTA approach developed and discussed in Chapter 5.

(i) The sequence diagram can have ‘alt’ block and can have many scenarios.

(ii) There is no restriction on naming the states of the participating components.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

133

6.2 OVERVIEW OF THE APPROACH

The proposed SFMEA approach is divided into four steps to investigate the critical

effects of various message-related errors on the system. The UML sequence diagram

(drawn for the selected use-case functionality) and the UML state diagrams (drawn for

the selected collaborating objects) are the required inputs and each of these inputs are

accepted in a machine-readable format. The proposed SFMEA approach does a forward

analysis of various message-related errors to find out the hazardous-state level effects

caused because of these errors.

The first step performs the following two tasks

(i) It converts a sequence diagram to its pseudo code form, and

(ii) It extracts the attributes of each message and stores the results as ‘Message-Details’.

The attributes that are extracted for each message and the meaning of each attribute are

shown in Table 6.1.

Table 6.1: Various Attributes of a Message

Message Attribute Meaning

Message# Unique Message Number assigned to each Message

Message-Name Name of the message as used in the Sequence

Diagram

Label Label assigned to each message

From Name of the Sender Object

To Name of the Receiver Object

Type Type of Message: 1 for synchronous type and 2 for

other type

isReply Is the message a reply type or not: 1 for reply type

and 0 otherwise

Reply-Message Name of the reply message of a send type message, if

any

Send Event Send Event of the Message

Receive Event Receive Event of the Message

Message-Send-Dependency-List List of messages that are dependent upon the message

Message-Send-Independent-List List of messages that are not dependent upon the

message

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

134

A typical sequence diagram can have any number of uniquely executable paths known as

scenarios and each such scenario has its own associated message-sequence. The second

step extracts the message-sequence for each scenario. The message-sequence of any

scenario has the structure as shown in Table 6.2.

Table 6.2: Structure of Message-Sequence

Message# Label Precondition Sequence-No

<<Unique

Message Number

assigned to each

message>>

<<Label of each

message >>

<<Precondition

that must be true

before sending the

message>>

<<Sequence number

of the message in

the scenario>>

The third step maps the events of various messages against the states of the collaborating

objects. The results are stored in the form of ‘Event-Sequence-State-Transitions’. The

structure of ‘Event-Sequence-State-Transition ‘for any scenario depends upon the number

of objects for which state diagrams are supplied as inputs. If the state diagrams are

supplied for two objects, namely ‘X’ and ‘Y’ then the structure of ‘Event-Sequence-State-

Transition’ will have four fields as shown in Table 6.3.

Table 6.3: Structure of Event-Sequence-State-Transition

Event# Logical-Time X Y

<<Unique Event

Number assigned

to each event>>

<<Time of occurrence

of the event in a

scenario>>

<<State of object

X during the

event>>

<<State of object Y

during the event>>

The ‘Message-Errors-Effects-Analysis’ of each scenario is carried-out in the last step.

The fourth step first identifies the various ‘Message-Related’ errors that a system can

experience and then investigates the state level effects of these errors on the system.

The results of this step, for each scenario, are stored in a tabular form known as

‘Message-Errors-Effects-Analysis’. The structure of the ‘Message-Errors-Effects-

Analysis’ table has three fields, namely (i) Message#, (ii) Message-Error and (iii)

Effects as shown in Table 6.4. The ‘Effects’ column of Table 6.4 is further sub-divided

into various events sub-columns and the number of these events sub-columns depend

upon the number of events in the associated scenario.

Software Failure Mo

Table 6.4: Structure of Message

Message# Message

<<Message

number assigned

to each

message>>

<<An error that

can occur in the

message

An overview of all the four steps of the approach is shown in Figure

Figure 6.1: Overview of

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

Table 6.4: Structure of Message-Errors-Effects-Analysis

Message-Error
Effects

Event-1 … Event

An error that

can occur in the

message>>

<<Effects of the error observed during

various events>>

overview of all the four steps of the approach is shown in Figure 6.1.

: Overview of the Proposed SFMEA Approach

Oriented Design Phase

135

Event-N

Effects of the error observed during

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

136

6.3 THE PROPOSED SFMEA ALGORITHM

In order to explain proposed SFMEA algorithm in the following sections, a simple

sequence diagram showing the interaction among four objects, namely ‘A’, ‘B’, ‘C’ and

‘D’, as shown in Figure 6.2, is used as an example. This sequence diagram is drawn using

the Altova UML (Altova-UModel, 2014) tool. This tool provides a feature where each

message is assigned a number known as a sequence number. This sequence number is

extracted as the value of ‘Label’ field (see Table 6.1). The Altova UModel tool provides

the support for two types of numbering schemes, namely (i) nested numbering scheme

and (ii) simple numbering scheme. In the nested numbering scheme, the sequence number

is assigned only to send type of messages, whereas no sequence number is assigned to

reply type messages. Each send type message is assigned a sequence number by

embedding the sequence number of the message which has activated the current

interaction. This numbering scheme is shown in Figure 6.2. The message ‘M1(){1}’ is

assigned a sequence number as ‘1’, the message ‘M2(){1.1}’ is assigned a sequence

number as ‘1.1’ because the interaction is started by a message ‘M1()’ with sequence

number as ‘1’. In the nested numbering scheme, no sequence number is assigned to reply

type messages.

Figure 6.2: A Simple Sequence Diagram with Nested Numbering Scheme

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

137

The proposed approach requires that the sequence diagram is to be drawn using the nested

numbering scheme because it helps in the identification of the dependent messages. The

proposed approach also requires that the sequence number assigned by the tool is to be

embedded at the end of the name of a send type message using the syntax ‘{‘x’}’where

‘x’ is the sequence number assigned by the tool. For example, the message ‘M2(){1.1}’ is

embedded with sequence number 1.1. The sequence numbers assigned by the tool are

used as ‘Label’ in the proposed approach.

6.3.1 Step I: Generating Pseudo Code Form of Sequence Diagram and Extracting

Message-Details

Two tasks are carried out in this step, namely (i) Generating a pseudo code equivalent of

the sequence diagram XMI file and (ii) Extracting the attributes of each message. These

tasks are described in detail in the following sections.

Step I(a) Generating pseudo code equivalent of the sequence diagram XMI file

A pseudo code form of a sequence diagram contains the names of various messages and

the sequence in which these messages are sent. The pseudo code equivalent forms of

three UML interaction operators are shown in the Table 6.5. The meaning of the ‘alt’,

‘opt’ and ‘break’ interaction operators is discussed in Chapter 1 and more information

about these interaction operators can be found in the work by Booch (Booch et al, 2005).

Table 6.5: Pseudo Code Forms of Various Interaction Operators

Interaction

Operator
Pseudo code Equivalent Form Meaning

‘alt’ block

IF condition THEN

<Messages-List-1 is to be sent>

ELSE

<Message-List-2 is to be sent>

ENDIF

‘alt’ stands for alternative flow

of actions.

There are two paths and any one

is to be followed at runtime.

IF condition with an ELSE

option.

‘opt’ block

IF condition THEN

<<Messages-List is to be sent>

ENDIF

‘opt’ block stands for optional

block i.e.an IF option without an

ELSE part. If condition is true

then this optional block is

executed otherwise it will be

skipped.

‘break’ block

IF condition THEN

<Messages-List is to be sent>

EXIT

ENDIF

If condition is true, then break

sequence is followed and after

that, the functionality is exited.

‘EXIT’ means exit from the

functionality and all successive

messages are skipped

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

138

The execution of the step results in a single text file, which represents the pseudo code

equivalent of the given sequence, diagram.

The pseudo code description of this step is given below

Procedure generatePseudocode()

Input Sequence Diagram XMI File

Output Pseudo Code Form Text File

1. Create a pseudo code form Text File

2. FOR each message tag in the sequence diagram XMI file

Case:‘alt’ block

(i) Write the pseudo code equivalent form into the Text File as per

Table 6.5

(ii) Identify messages in the true block and write message names in the Text

file

(iii) Write ‘ELSE’ in the Text File

(iv) Identify messages in the false block write message names in the Text file

(v) Write ‘ENDIF’ in the Text File

Case:‘opt’ block

(i) Write the pseudo code equivalent in to the Text File as per Table 6.5

(ii) Identify messages in the block and write message names in the Text file

(iii) Write ‘ENDIF’ in the Text File

Case:’break’ block

(i) Write the pseudo code equivalent in to the Text File as per Table 6.5

(ii) Identify messages in the block and write message names in the Text file

(iii) Write ‘EXIT’ and then ‘ENDIF’ in the Text File

Case: a normal message tag

Write the name of the message in the Text File

ENDFOR

The algorithm applied to the sequence diagram of Figure 6.3(a) generates the pseudo

code form as shown in Figure 6.3(b). It can be observed that the message ‘M3()’ with

sequence number value as ‘2’ and the message ‘R3(value)’ are sent only if the

condition ‘R1=TRUE’ is satisfied otherwise the messages ‘M4()’ and ‘R5(value)’ are

sent. These two alternative sequences of messages are represented by using

IF..THEN..ELSE..ENDIF construct in the corresponding pseudo code form in

Figure 6.3(b).

Figure 6.3

Software Failure Modes and Effects

3: Generating Pseudo Code Form from Sequence Diagram

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

139

Sequence Diagram

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

140

Step I(b) Extracting ‘Message-Details’

The objective of this step is to extract the attributes of the messages by taking a sequence

diagram XMI file as an input. The extracted attributes are stored as a table named

‘Message-Details’ with a structure as shown in Table 6.1. Three main tasks are carried

out in this step and these are as follows.

(i) A unique message number (Message#) is assigned to each message

(ii) A unique send and receive event pair is generated for each message

(iii) Two separate lists, namely ‘Message-Send-Dependency-List’ and ‘Message-Send-

Independent-List’ are computed for each send type message.

The ‘Message-Details’ extracted by taking a sequence diagram of Figure 6.2 as an input

is shown in Table 6.6. The ‘Message-Details’ as shown in Table 6.6 are extracted as

follows:

The name of the message used in the sequence diagram embeds the values of the

‘Message-Name’ and the ‘Label’ fields. The information about ‘From’, ‘To’ and ‘Reply-

Message’ fields is contained in the sequence diagram XMI file and is extracted

accordingly. The values of the ‘Type’ and the ‘isReply’ fields are assigned as mentioned

in Table 6.1. A unique message number (‘Message#) is assigned for each message. Each

message is associated with two events, namely ‘Send Event’ and ‘Receive Event’. The

‘Send Event’ is associated with the sender object of the message, whereas the ‘Receive

Event’ is associated with the receiver object of the message. A unique ‘Send Event’ and a

‘Receive Event’ is generated for each message. The procedure for assigning the message

numbers and generating the event numbers is identical to the procedure used in the SFTA

approach discussed in Chapter 5. The value for the ‘Send-Message-Dependency-List’ and

the ‘Send-Message-Independent-List’ fields are computed as follows:

A message ‘M1’ is in the ‘Send-Message-Dependency-List’ of message ‘M2’ if the

‘Label’ field value of the message ‘M1’ contains the ‘Label’ field value of the message

‘M2’. A message ‘M1’ is in the ‘Send-Message-Independent-List’ of message ‘M2’ if the

‘Label’ field value of the message ‘M1’ does not contain the ‘Label’ field value of the

message ‘M2’ and the message ‘M1’ is sent after the message ‘M2’ by the same sender

object. It is to be noted that only the values of the ‘Label’ fields are included in both the

lists.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

141

Consider the sequence diagram as shown in Figure 6.3(a). The message ‘M2()’ is

dependent upon the message ‘M1()’ because the ‘Label’ field value of the message

’M2()’ is ‘1.1’ and it contains the ‘Label’ field value of the message’M1()’ which is ‘1’.

The messages ‘M3()’ and ‘M4()’ are not dependent upon the message ‘M1()’ because of

the following reasons:

(i) The ‘Label’ field values of the messages ‘M3()’ and ‘M4()’ are ‘2’ and ‘3’

respectively, and these values do not contain the ‘Label’ field value of the message

‘M1()’ which is ‘1’, and

(ii) The messages ‘M3()’ and ‘M4()’ are sent after the message ‘M1()’ by the same

sender object named ‘a:A’.

The ‘Label’ field value of the message ‘M2()’ is ‘1.1’ and this value is not contained in

any other message’s ‘Label’ field value and no message is sent after ‘M2()’ by the sender

of ‘M2()’ i.e. the object ‘b:B’. That’s why the values of ‘Send-Message-Dependency-

List’ and the ‘Send-Message-Independent-List’ fields for the message ‘M2()’ are blank.

Similarly, consider the message ‘M3()’ with ‘Label’ value as ‘2’. There exists no message

in the sequence diagram of Figure 6.3(a) whose ‘Label’ field value starts with ‘2’. So, the

‘Send-Message-Dependency-List’ of the message ‘M3()’ does not have any message. But

the message ‘M4()’ with ‘Label’ value as ‘2’ appears in the ‘Send-Message-Independent-

List’ of this message because the message ‘M4()’ is sent after the message ‘M3()’ by the

same sender object ‘a:A’.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

142

Table 6.6: Message-Details Extracted from Sequence Diagram of Figure 6.2

Message#
Message-

Name
Label From To Type isReply

Reply-

Message

Send

Event

Receive

Event

Message-

Send-

Dependency-

List

Message-

Send-

Independent-

List

A1 M1() 1 A B 1 0 R1(boolean) e1 e2 1.1 2,3

A2 M2() 1.1 B C 1 0 R2(boolean) e3 e4

A3 R2(boolean) M2() C B 1 1 e5 e6

A4 R1(boolean) M1() B A 1 1 e7 e8

A5 M3() 2 A C 1 0 R3(value) e9 e10 5

A6 R3(value) M3() C A 1 1 e11 e12

A7 M4() 3 A D 1 0 R5(value) e13 e14

A8 R5(value) M4() D A 1 1 e15 e16

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

143

The pseudo code of algorithm for this step is given below

Procedure ExtractMessageDetails()

Input Sequence Diagram XMI File

Output Message-Details

FOR each message tag in the sequence diagram XMI file

(i) Extract values of Message-Name,Label,From,To,isReply,Reply-Message Fields

from the XMI file

(ii) Compute the values of the ‘Type’ and the ‘isReply’ fields as per Table 6.1

(iii) Assign a Unique Message# to each message

(iv) Generate a unique send event and receive event for each message

(v) Compute the values for the Message-Send-Dependency-List and the Message-

Send-Independent-List for each send type of message

ENDFOR

6.3.2 Step II: Extracting Message-Sequence for each Scenario

The presence of each ‘alt’, ’opt’ or ‘break’ block in the sequence diagram represents the

existence of two possible scenarios and each such scenario has its own message

sequence. For example, the sequence diagram of Figure 6.3(a) has two scenarios with

message-sequences as: (i) {M1(), M2(), R2(boolean), R1(boolean), M3(), R3(value)}

and (ii){M1(), M2(), R2(boolean), R1(boolean), M4(), R5(value)}. The objective of this

step is to extract message-sequence for each scenario.

This step takes the pseudo code form of the sequence diagram and the ‘Message-Details’

generated in the first step as inputs and constructs a graph named ‘Message-Sequence-

Control-Flow-Graph’ (MSCFG) using only the message numbers. The MSCFG is a

collection of nodes where a node belongs to either a normal node or a conditional node.

The normal node contains two parts, namely node-details and next-pointer. The node-

details part gives the information about the name of the message as used in the pseudo

code text file. The next-pointer field contains the address of the node where a control is

transferred from the current node. The conditional node has a conditional expression

associated with it and contains three fields, namely (i) node-details, (ii) true-next-pointer

and (iii) false-next-pointer. The node-details part gives the information about the name of

the message and a conditional expression associated with the node. The true-next-pointer

field points to the node where the control is transferred in case the result of the

conditional expression associated with the node is true. Similarly, the false-next-pointer

field points to the node where the control is transferred in case the result of the

conditional expression associated with the node is false. The MSCFG is actually

Software Failure Mo

constructed from the pseudo

replace the corresponding message number from the ‘Message

The MSCFG constructed by taking

6.3(b) and the ‘Message-Details’

The nodes A1,A2,A3 are normal nodes

control from the A4 is shifted to node A5 only if the condition R1=

otherwise the control is shifted to node A7.

Figure 6.4: Message-Sequence

The pseudo code for the construction of the ‘MSCFG’ is given below:

Procedure constructMSCFG()

Input Pseudo code Text File and "Message

output Message-sequence Control Flow Graph

Node startT=null /* start node */

Node last=null /* terminal node */

Stack messageStack /* message stack of the messages */

Stack ifStack /* messages in the true part of IF block */

Stack elseStack /* messages in the false part of If block */

FOR each message-line of the input file

 read message-line from the input file;

 create Node temp=null,curr=null,next=null;

 IF messgae-line is not null

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

pseudo code text file and later on each individual message is

esponding message number from the ‘Message-Details’ table.

by taking the pseudo code description as shown

Details’ as shown in Table 6.6 as inputs, is shown

normal nodes, whereas the node A4 is a conditional node. The

control from the A4 is shifted to node A5 only if the condition R1=TRUE is satisfied

otherwise the control is shifted to node A7.

Sequence-Control-Flow-Graph Constructed For Pseudo

Description of Figure 6.3(b)

The pseudo code for the construction of the ‘MSCFG’ is given below:

constructMSCFG()

Pseudo code Text File and "Message-Details'

sequence Control Flow Graph

/* start node */

/* terminal node */

/* message stack of the messages */

/* messages in the true part of IF block */

/* messages in the false part of If block */

the input file

line from the input file;

create Node temp=null,curr=null,next=null;

line is not null THEN

Oriented Design Phase

144

code text file and later on each individual message is

Details’ table.

as shown in Figure

 in Figure 6.4.

whereas the node A4 is a conditional node. The

TRUE is satisfied

Pseudo Code

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

145

 create new Node 'n1' with description as message-line;

 set next = n1;

 IF start is null THEN

 set start = next;

 ENDIF
 switch(next)

 {

 case: next is "IF"

 {

(i) set true part of the CURR node to NEXT;

(ii) set latest event as CURR in eventStack;

(iii)set latest IF event as CURR in ifStack;

 }// End of case

 case: next is "ELSE"

 {

(i) set next event of curr as next;

(ii) IF latest event in messageStack is IF type THEN

 set false part of latest IF event as curr

 ELSE

 set false part of latest ELSE event as curr

 ENDIF

(iii) pop out the latest element from messageStack;

(iv) pop out latest element from elseStack;

 }// End of case

 case: next is "ENDIF"

 {

(i) pop out elements from messageStack as there are ‘ELSE’ type

events since the last ‘IF’ type event;

(ii) remove the last ‘IF’ type event from messageStack;

(iii) IF ‘ENDIF’ type event occurs right after ‘IF’ type THEN

 set false part of IF type to curr

 ELSE

 remove latest IF type event from ifStack

 ENDIF
 IF next is 'ENDIF' or 'ELSE' type THEN

 push curr into messageStack

 ENDIF
 }// End of case

 case: next is normal message

 {

 IF next is 'ENDIF' type or 'ELSE' THEN

 push curr into messageStack

 ELSE
 set next event of curr as next

 ENDIF
 }// End of case

 }// End of switch

 IF curr is not null THEN

 set last=curr

 ELSE
 set next to null

 ENDIF

 ENDIF

ENDFOR

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

146

The traversal of the MSCFG identifies the number of scenarios that a sequence diagram

has and the message-sequence of each scenario. The value of the ‘Precondition’ field of a

message represents the message-sequence that has been sent before the current message.

The first message of a scenario has no value for the ‘Precondition’ field. The value of

‘Sequence-No’ field of a message is assigned an integer number ‘n’ such that it

represents the sequence of that message in the scenario.

The pseudo code for identifying the scenarios from the ‘MSCFG’ is given below:

Procedure traverseMSCFG()

Input Message-Sequence control Flow Graph

Output scenarioList

Node start; /* start node of the graph */

String seq /* current scenario */

String scenarioList /* list of scenarios */

1. set curr = start;

2. IF curr is not null THEN

 add details represented by start 'seq'

 IF seq does not exist in scenarioList THEN

 add 'seq' to 'senarioList'

 ENDIF

ELSE
 IF curr is not conditional event THEN

(i) add 'curr' to 'seq'

(ii) recursively apply traverse procedure by setting the next event of curr as

the new start

 ELSE

(i) add 'curr' to 'seq'

(ii) recursively apply traverse procedure by seeting the true part of curr as

the new start

(iii) recursively apply traverse procedure by seeting the false part of curr as

the new start

 ENDIF

ENDIF

The ‘Message-Sequences’ extracted for scenario 1 and scenario 2 for the MSCFG

(Figure 6.4) are shown in Table 6.7 and Table 6.8 respectively. In Table 6.7, the value

for the ‘Precondition’ field of the message ‘A5’ is ‘A1,A2,A3,A4,{(R1=TRUE)(T)}’

where the term ‘{(R1=TRUE)(T)}’ means that the result of the condition expression

‘(R1=TRUE)’ evaluates as “True”. Similarly, the value for the ‘Precondition’ field of

the message ‘A7’ in Table 6.8 is ‘A1,A2,A3,A4,{(R1=TRUE)(F)}’ where the term

‘{(R1=TRUE)(F)}’ means that the result of the condition expression ‘(R1=TRUE)’

evaluates as “False”.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

147

Table 6.7: Message-Sequence For Scenario 1

Message# Label Precondition Sequence-No

A1 1 1

A2 1.1 A1 2

A3 M2() A1,A2 3

A4 M1() A1,A2,A3 4

A5 2 A1,A2,A3,A4{(R1=TRUE)(T}} 5

A6 M3() A1,A2,A3,A4{(R1=TRUE)(T}},A5 6

Table 6.8: Message-Sequence For Scenario 2

Message# Label Precondition Sequence-No

A1 1 1

A2 1.1 A1 2

A3 M2() A1,A2 3

A4 M1() A1,A2,A3 4

A7 3 A1,A2,A3,A4{(R1=TRUE)(F}} 5

A8 M4() A1,A2,A3,A4{(R1=TRUE)(F}},A7 6

The value of the ‘Sequence-No’ field of any message is assigned based upon its

sequential order in a scenario and it is possible that a same ‘Sequence-No’ value is

assigned to two different messages in two different scenarios. For example, in Table 6.7,

the ‘Sequence-No’ value ‘6’ is assigned to the message ‘A6’ whereas the same

‘Sequence-No’ value is assigned to the message ‘A8’ in Table 6.8.

6.3.3 Step III: Identifying ‘Event-Sequence-State-Transitions’ for each Scenario

This step takes the state diagrams of the participating objects and ‘Message-Sequences’

of various scenarios as the inputs and identifies the ‘Event-Sequence-State-Transitions’

for each scenario.

The following conditions should be fulfilled before the execution of this step.

(i) The state transition events of the state diagrams are to be indicated by the

‘Message#’ (message number) value of the message.

(ii) If the state transition pattern of a participating object is different during the

execution of a scenario, then a separate state diagram of that object for each

scenario is drawn.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

148

The pseudocode for this step is given below

The pseudo code for identifying all ‘Event-Sequence-State-Transitions’ is given below.

Procedure identifyEvent-Sequence-State-TransitionTables()

Input
State Chart XMI file(s) and ‘Message-Sequences’ of Each Scenario

Output
Event-Sequence-State-Transition table corresponding to each Event-Sequence

table

/* Pseudo Code Description*/

1. FOR each ‘Message-Sequence’ extracted in Step I of the approach

create an associated ‘Event- Sequence-State-Transition’;

 ENDFOR

2. FOR each Event-Sequence-State-Transition created

(i) Use procedure populateEventSequence() of Chapter 5 to identify event sequence of

the scenario

(ii) FOR each component-name column of the Event-Sequence-State-Transition

 select the associated state diagram XMI file;

 read the initial_state for the component-name from XMI file;

 FOR each event number ‘E’ of the selected Event-Sequence-State-Transition

 scan the selected XMI file for state transition corresponding to ‘E’;

 IF ‘E’ is responsible for any state transition for the component

THEN

read next_state_transition for component-name from the

XMI file;

 set the new value of initial_state as next_state_transition;

update component-name column with next_state_transition;

 ELSE

update component-_name column with initial_state;

 ENDIF

 ENDFOR

ENDFOR

ENDFOR

The working of this step is in the following sections by taking the objects as shown in the

sequence diagram of Figure 6.3(a) as an example.

The arbitrary states of the participating objects ‘A’,‘B’,’C’ and ‘D’ as {a1, a2, a3},

{b1, b2, b3}, {c1, c2, c3} and {d1, d2} respectively are used as examples. The initial

states of the objects ‘A’, ‘B’, ’C’ and ‘D’ are arbitrarily assumed as ‘a1’, ‘b1’, ‘c1’ and

‘d1’ respectively, and it is also arbitrarily assumed that the state transition pattern of

object ‘A’ is different for two scenarios. The state transition pattern of other objects,

namely ‘B’,’C’ and ‘D’ are assumed as same for both scenarios.

The state diagrams of object ‘A’ for scenario 1 and scenario 2 are shown in Figure 6.5(a)

and Figure 6.5(b) respectively. Similarly, the state diagrams for objects ‘B’, ‘C’ and ‘D’

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

149

are drawn as shown in Figure 6.5(c), Figure 6.5(d) and Figure 6.5(e), respectively. It is to

be noted that the state transition patterns for all the objects as shown in Figure 6.5 are

assumed arbitrarily to demonstrate the working logic of this step.

The ‘Event-Sequence-State-Transitions’ identified for scenario 1 is shown in

Figure 6.6(b). The ‘Message-Sequence’ for scenario 1 as shown in Table 6.7 and the

state diagrams of objects ‘A’,’B’,’C’ and ‘D’ as shown in Figure 6.5(a), Figure 6.5(c),

Figure 6.5(d) and Figure 6.5(e) are used as inputs in the identification of these ‘Event-

Sequence-State-Transitions’.

Similarly, the ‘Event-Sequence-State-Transitions’ identified for scenario 2 is shown in

Figure 6.7(b). The ‘Message-Sequence’ for scenario 2 as shown in Table 6.8 and the state

diagrams of objects ‘A’,’B’,’C’ and ‘D’ as shown in Figure 6.5(b), Figure 6.5(c),

Figure 6.5(d) and Figure 6.5(e) are used as inputs in the identification of these ‘Event-

Sequence-State-Transitions’.

(a) State Diagram for Object A for Scenario 1

(b) State Diagram for Object A for Scenario II

(c) State Diagram for Object B

(d) State Diagram for Object C

(e) State Diagram for Object D

Figure 6.5: State Diagrams for the Participating Objects

Figure 6.6: Execution of

Software Failure Modes and Effects

Execution of Step III of the Proposed Approach for Scenario 1

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

150

Scenario 1

Figure 6.7: Execution of

Software Failure Modes and Effects Analysis in Object

Execution of Step III of the Proposed Approach for Scenario 2

des and Effects Analysis in Object-Oriented Design Phase

151

Scenario 2

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

152

6.3.4 Perform Message-Errors-Effects-Analysis For Each ‘Event-Sequence-State-

Transitions’

The objective of this step is to do the failure analysis of various messages-related errors

for a scenario. Two tasks are carried out in this step, namely (i) Identification of Various

Message-Related Errors and (ii) Investigating the effects of these errors on the system.

There can be any number of errors associated with a particular message. The messages-

related errors that are only considered in the proposed approach and these are categorized

into five types. The meaning and syntax of these types are shown in Table 6.9.

Table 6.9: Classification of Message-Related Error Categories

Message-Error

Type
Purpose Syntax Example

Type I

This type of error represents the

error situation where a sender

object fails to send the required

message. This type of error is only

for send type of messages

‘!(M)’ where ‘M’ is

a message-number

and ‘!(M)’ means

‘M’ is not sent

!(A1) i.e.

Message A1 is

not sent

Type II

The sender object sends the

message when its associated

condition is not satisfied .This type

of error is for those messages

which either have a precondition

explicitly assigned or have a

condition in their computed

precondition field

‘^(C) AND (M)’

where ‘M’ is a

message-number

and ‘C’ is the pre-

condition for

message ‘M’.

‘^(C)’ represents

that C is wrongly

evaluated as

satisfied

^(door=closed)

AND (A3) i.e.

door is wrongly

evaluated as

closed and

message A3 is

sent.

Type III

The reply type, message carries

‘true’ response ‘whereas the

response should be ‘false’. This

type of error is only for reply type

message whose response type is

boolean.

‘(M)FT’ Where ‘M’

is a reply type

message and it

should carry a false

value, but it is

carrying a true value

(A4)FT

Type IV

The reply type, message carries

‘false’ response ‘whereas the

response should be ‘true’. This

type of error is also for reply type

message only whose response type

is boolean.

‘(M)TF’ Where ‘M’

is a reply type

message and it

should carry a true

value, but it is

carrying a false

value

(A4)TF

Type V

The reply to message carries the

incorrect result or computation

‘value’. This type of error is only

for reply type message whose

response type is not boolean.

(M)’� Where M is

a reply message,

which carries wrong

numeric value.

(A6)’ i.e. A6

carries a wrong

numeric value

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

153

The ‘Message-Errors-Effects-Analysis’ for a scenario has three main fields as shown in

Table 6.4. The ‘Effects’ column is a matrix of size n × n where ‘n’ is the number of

events in the corresponding ‘Event-Sequence-State-Transitions’ of a scenario.

The proposed SFMEA algorithm investigates the effects of various types of message-

related errors as per the description given in the following subsections.

(i) Investigating The Effects of Type I Message-Related Errors

If an object fails to send a message, then it can be concluded reliably that all the

messages that are in the ‘Message-Send-Dependency-List’ (‘Message-Details’ extracted

in Step I(b)) of that message are also not sent. But, the messages that are in the

‘Message-Send-Independent-List’ (‘Message-Details’ extracted in Step I(b)) of the

message may be sent. Therefore, a system can experience two types of state level error

effects in this case. The first types of effects are felt because of not sending the messages

and the second types of effects are observed because of wrong sending of the messages.

If any message is not sent then all the required state transitions that are occurring because

of that message, will not occur (‘!’ sign is used to represent this effect such as A!=a

which indicates that the required state transition in the state of the object ’A’ has not

occurred).

But if the messages in the ‘Message-Send-Independent-List’ of the message are sent by

the object when its predecessor message is not sent during the same interaction by the

same sender object, then it results in the wrong/erroneous state transition either for the

same or for some other object. For example, the state level effect ‘A^=a2’ indicates the

situation where object ‘A’ has wrongly or erroneously changed its state to ‘a2’.

However, in this case the effects are conditional which means that the stated effects are

observed only if the messages the ‘Message-Send-Independent-List’ of the message are

sent. This fact is represented by inserting a message number at the end of the ‘Effects’

entry. For example, an ‘Effects’ entry such as ‘A^=a2 (A5)’ represents that the state of

an object ‘A’ will be changed erroneously to ‘a2’ if the message ‘A5’ is sent.

(ii) Investigating the Effects of Type II Message-Related Errors

The effects of these types of errors are to be identified under the assumption that the

receiver object of the message does not properly check for the precondition violation and

erroneously starts the treatment of the message. It results in the wrong or erroneous state

transitions, which are occurring after the send event of the message.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

154

(iii) Investigating the Effects of Type III and Type IV Message-Related Errors

These types of errors are associated with the errors in the reply types of messages. The

effects of these types of errors are observed in the following two ways.

(a) Firstly, their effect is observed on the response value of the reply message that is

sent immediately after the selected reply message. The value of the successive

reply message is also erroneously changed.

(b) Secondly, these errors affect the result of a conditional decision, especially when

the same reply message is used in some conditional evaluation. It results in the

wrong execution of the scenario, which further results in the wrong/erroneous state

transitions for the objects whose states are changed in the executed scenario.

It should be noted that the effects of these types of errors are scenario specific and it is

possible that a selected error of this type is shown as having no effect in one scenario,

but the same error may be shown as having some state level effect in some other

scenario.

(iv) Investigating the effects of Type V Message-Related Errors

These types of errors are associated with reply messages that return the result of some

computation. In this case, it is assumed that the value of the result that a reply message

carries is wrong. The effects of this type of error are felt in three ways. The first two

types of effects are same as discussed in the case (iii) discussed above. The third type of

impact is felt when the reply message is used as a parameter for some other send type

message. If a wrong value has been sent as a parameter, then it results in the erroneous

state transitions in the states of the objects that are affected by the message.

The pseudo code of the algorithm for this step is given below:

Procedure Perform-Message-Errors-Effects-Analysis()

Input(s) Output(s) of Step I, Step II and Step III

Output(s) Message-Errors-Effects-Analysis For Each Scenario

1. Create a Message-Error-Effects-Analysis for each Event-Sequence-State-Transitions with

Message#

2. FOR each Message-Error-Effects-Analysis table

/* Define Message Errors for various messages */

FOR each message ‘m’ in the Message-Error-Effects-Analysis table

 Identify the message errors corresponding to message ‘m’;

/* Finding out the Effects of Errors */

FOR each message error ‘msgErr’ identified

Case: ‘msgErr’ is Type I

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

155

{

Case: message ‘m’ is a send type message with a reply message ‘r’

(a) Find the objects whose state are changed between the

send event ‘x’ of message ‘m’ and the receive event ‘y’ of

reply message ‘r’

(b) Mark the states for all the objects as not not changed, i.e.

those objects will not be able to change their respective

states

(c) FOR each message in the send-independent-list of

message ‘m’

(i) Find out the objects whose state are changed during

the sending of the message

(ii)Mark the states for each such object as erroneously

changed

ENDFOR

Case : message ‘m’ is a send type, message without a reply message

(a) FOR each message in the dependency-list of message ‘m’

(i) Find out the objects whose state are changed during

the sending of the message

(ii) Mark the states for each such object as not changed

ENDFOR

(b) FOR each message in the send-independent-list of

message ‘m’

(i) Find out the objects whose state are changed during

the sending of the message

(ii) Mark the states for each such object as erroneously

changed

ENDFOR

}// End of Type I

Case : ‘msgErr’ is Type II

{

(i) Identify the state transitions that are occurring after the send

event of the message ‘m’

(ii) Mark all states as erroneous state transitions using the symbol

‘^=’

}// End of Type II

Case : ‘msgErr’ is Type III or IV or V

{

(i) Identify the reply message (if any) that is sent after this reply

message.

(ii) Record its effect corresponding to the send event of that reply

message.

(iii) IF message is associated with conditional evaluation THEN

(a) Identify the scenario that is affected by the error.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

156

(b) Identify the objects whose states are changed after

the send of this reply message

(c) Mark the states of all those objects as changed

erroneously using symbol ‘^=’

ENDIF

}// End of Type III

ENDFOR

ENDFOR

ENDFOR

The ‘Message-Errors-Effects-Analysis’ results for scenario 1 is shown in Table 6.10.

The ‘Effects’ column of the ‘Message-Errors-Effects-Analysis’ for scenario 1 as shown in

Table 6.10 is divided into 12 event sub-columns with titles as ‘e1’, ‘e2’, ‘e3’, ‘e4’, ‘e5’,

‘e6’, ‘e7’, ‘e8’, ‘e9’, ‘e10’, ‘e11’ and ‘e12’. These events are selected from the ‘Event-

Sequence-State-Transitions’ for scenario 1 as shown in Figure 6.6(b).

The ‘Message-Errors-Effects-Analysis’ of scenario 2 is shown in Table 6.11. The ‘Effects’

column of the ‘Message-Errors-Effects-Analysis’ for scenario 2 as shown in Table 6.11 is

divided into 12 event sub-columns with titles as ‘e1’, ‘e2’, ‘e3’, ‘e4’, ‘e5’, ‘e6’, ‘e7’, ‘e8’,

‘e13’, ‘e14’, ‘e15’ and ‘e16’. These events are selected from the ‘Event-Sequence-State-

Transitions’ for scenario 2 as shown in Figure 6.7(b).

The message-related errors are identified by taking ‘Message-Details’ as shown in

Table 6.6 as an input. The message number (Message#) ‘A1’ (Table 6.6) is a send type

message so only one message-error as ‘!(A1)’ is identified for it in Table 6.10. Similarly,

one error ‘!(A2)’ is defined for message ‘A2’ in Table 6.10 for a similar reason. The

messages ‘A3’ and ‘A4’ in Table 6.6 are a reply type messages with a ‘boolean’ response

type and that’s why two message-errors for messages ‘A3’ and ‘A4’ namely

{‘(A3)FT’,‘(A3)TF’} and {‘(A4)FT’, ‘(A4)TF’} respectively, are identified in Table 6.10.

The message ‘A6’ in Table 6.6 is reply type message with a ‘value’ type response and that

is why only one message-error namely ‘(A6)’’ is identified for it in Table 6.10 only

because the message ‘A6’ only appears in scenario 1.

It is to be noted that if a message appears in the ‘Message-Sequence’ of both scenarios,

then the message-errors associated with that message also appear in the ‘Message-Errors-

Effects-Analysis’ of both scenarios.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

157

Table 6.10: Message-Errors-Effects-Analysis for Scenario 1

Message#
Message-

Errors

Effects

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

A1 !(A1) A!=a1 B!=b2 B!=b3 C!=c2 A^=a2(A5) C^=c3(A5)

A2 !(A2) B!=b3 C!=c2

A3

(A3)FT (A4)FT (A4)FT A^=a2 C^=c3

(A3)TF (A4)TF (A4)TF

A4

(A4)FT

(A4)TF A^=a2 C^=c3

A5 !(A5) A!=a2 C!=c3

A6 (A6)’ (A6)’ (A6)’

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

158

Table 6.11: Message-Errors-Effects-Analysis for Scenario 2

Message#
Message-

Errors

Effects

e1 e2 e3 e4 e5 e6 e7 e8 e13 e14 e15 e16

A1 !(A1) A!=a1 B!=b2 B!=b3 C!=c2 A^=a3(A7) D^=d2(A7)

A2 !(A2) B!=b3 C!=c2

A3

(A3)FT (A4)FT (A4)FT A^=a3 D^=d2

(A3)TF (A4)FT (A4)FT

A4

(A4)FT

(A4)TF A^=a3 D^=d2

A7 !(A7) A!=a3 D!=d2

A8 (A8)’ (A8)’ (A8)’

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

159

For example, the message-errors ‘!(A1)’ and ‘!(A2)’ appears in both Table 6.10 and

Table 6.11 because the messages ‘A1’ and ‘A2’ appear in the ‘Message-Sequences’ of

both the scenarios as shown in Table 6.7 and Table 6.8. On the other hand, the message-

error ‘(A6)’’ appears only in Table 6.10 because the message ‘A6’ appears only in the

‘Message-Sequence’ of scenario 1 (Table 6.7). Similarly, the message-error ‘(A8)’’

appears only in Table 6.11 because the message ‘A8’ appears only in the ‘Message-

Sequence’ of scenario 2 (Table 6.8).

The ‘Message-Details’ Table 6.6 and ‘Message-Errors-Effects-Analysis’ for scenario 1

and scenario 2 in Table 6.10 and Table 6.11 are used to explain the effects of various

types of message-related errors in the following sections.

(a) Investigating the Effects of the Message Error !(A1) i.e. message A1 is not sent

If message ‘A1’ is not sent (i.e.!(A1)) then the message ‘A2’ will not be sent too,

because the message ‘A2’ is in the ‘Message-Send-Dependency-List’ of the message

‘A1’ (see Table 6.6). The message ‘A1’ has an associated reply message ‘A4’ with

message name as ‘R1(boolean)’ (Table 6.6). So, all the state transitions that are

occurring between the send-event of message ‘A1’ (i.e. event ‘e1’ in Table 6.6) and the

receive-event of message ‘A4’ (i.e. event ‘e8’ in Table 6.6) will not occur. As per the

‘Event-Sequence-State-Transitions’ of scenario 1 as shown in Figure 6.6(b), the

following state transitions are occurring between events ‘e1’ and ‘e8’.

(i) The state of an object ‘A’ is changed to state ‘a1’ during event e1

(ii) The state of an object ‘B’ is changed to state ‘b2’ during event e2

(iii) The state of an object ‘B’ is changed to state ‘b3’ during event e3

(iv) The state of an object ‘C’ is changed to state ‘c2’ during event e4

Therefore, all the above-mentioned state transitions will not occur in the system if the

message ‘A1’ is not sent. These effects are shown in Table 6.10 as

‘A!=a1’,’B!=b2’,’B!=b3’ and ‘C!=c2’ under the respective event columns, e1, e2, e3 and

e4.

The ‘Message-Send-Independent-List’ of the message ‘A1’ in Table 6.6 has two

messages as ‘A5’ (with ‘Label’ value as 2) and ‘A7’ (with ‘Label value as 3). If the

message ‘A5’ is sent then its effect is observed in scenario 1 only because the message

‘A5’ is not included in scenario 2 (Table 6.8). The events of the message ‘A5’ result in

the state transitions of two objects, namely ‘A’ and ‘C’ (Figure 6.6(b)). The object ‘A’ is

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

160

changing its state to ‘a2’ at event ‘e9’ and the object ‘C’ is changing its state to state ‘c3’

at event ‘e10’(Figure 6.6(b)). These transitions are known as erroneous state transitions

and are indicated as ‘A^=a2(A5)’ and ‘C^=c3(A5)’ under the respective event columns

(events ‘e9’ and ‘e10’) in Table 6.10. It indicates that the state of the object ‘A’ is

erroneously changed to ‘a2’ if the message ‘A5’ is sent when the message ‘A1’ is not

sent.

The sending of the message ‘A7’ affects only the events of scenario 2 (because the

message ‘A7’ is not included in scenario 1). The sending of the message ‘A7’ changes

the state of the ‘A’ object to ‘a3’ and the state of the ‘D’ object to ‘d2’. These effects are

indicated ‘A^=a3(A7)’ and ‘D^=d2(A7)’ and are shown in Table 6.11 under the

respective event columns (event ‘e13’ and ‘e14’).

(b) Investigating the Effects of the Message Error !(A2) i.e. message A2 is not sent

If the message ‘A2’ is not sent then its effects are observed in events ‘e3’ (send event of

‘A2) and ‘e4’ (receive event of ‘A2’) only because there is no message in the ‘Message-

Send-Dependency-List’ and the ‘Message-Send-Independent-List’ of the message

‘A2’(Table 6.6). The effects of this error are same in both the scenarios and are shown in

Table 6.10 and Table 6.11 respectively.

(c) Investigating the Effects of the Message Errors associated with the message ‘A3’

The message ‘A3’ is a reply type message with a boolean (True/False) type response.

Two types of message-related errors are associated with reply messages as shown in

Table 6.9 and these are explained in following two sub-sections.

(d) Investigating the Effects of the ‘(A3)FT’

The first message-related error for message ‘A3’ is ‘(A3) FT’. It means that the message

‘A3’ should return a ‘False’ value, but it carries a ‘True’ value. This error impacts the

following:

• The value of the reply message which is sent immediately after the current reply

message

• Execution of the scenarios if the current reply message is used as a conditional

expression

So, the first of this error is observed in the value of the response of the message

‘A4’because it is sent immediately after ‘A3’. The value of ‘A4’ is also changed to True.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

161

The effect ‘(A4)FT’ is shown under events e7 and e8 of Table 6.10 and table 6.11. The

wrong response value of ‘A3’ is also transmitted in ‘A4’.

The changed value of ‘A4’ results in the execution of scenario 1 because ‘A4’ is used in

the conditional evaluation(Figure 6.2). [Note that the actual name of ‘A4’ is R1

(boolean) in Table 6.6]. So, all the state transitions occurring in scenario 1 after the

message ‘A3’ are marked as erroneous state transitions (under events ‘e9’ and ‘e10’ in

Table 6.10). The effects of this error are not observed in scenario 2.

(i) Investigating the Effects of the ‘(A3)TF’

The second message-related error in the message ‘A3’ is ‘(A3)TF’. It means that the

message ‘A3’ should return a ‘True’ value, but it carries a ‘False’ value. The effects of

this error are observed in scenario 2 because it results in the execution of scenario 2.

6.3.5 Time complexity of the Algorithm

(a) Time Complexity of Step I

The running time, i.e. the algorithmic time complexity of the Step I(a) is of the order

of ‘O(N1)’ where ‘N1’ is the number of messages in the sequence diagram.

The running time, i.e. the algorithmic time complexity of the Step I(b) is also of the

order of ‘O(N1)’ where ‘N1’ is the number of messages in the sequence diagram.

So the overall algorithmic time complexity of Step I is of the order of ‘O(N1)’.

(b) Time Complexity of Step II

The algorithmic time complexity of the Step II (a) is of the order of ‘O (N1)’ where ‘N1’

is the number of messages in the sequence diagram. The algorithmic time complexity of

Step II (b) is of the order of ‘O (N2)’ where ‘N2’ is the number of nodes in the MSCFG

because the algorithm is recursively applied to each node.

So the overall algorithmic time complexity of Step I is of the order of

‘O(N1)+O(N2)’.

(c) Time Complexity of Step III

The running time, i.e. the algorithmic time complexity of the Step I(a) is of the order

of ‘O(N3 × N4 × N5)’ where ‘N3’ is the number of ‘Event-Sequence-State-

Transitions’, ‘N4’ is the number of components for which a state diagram is drawn

and ‘N5’ is the average number of events in each ‘Event-Sequence-State-

Transitions’.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

162

(d) Time Complexity of Step IV

The running time of Step IV is of the order of ‘O(N3 × N6 × N7)’ where ‘N3’ is the

number of ‘Event-Sequence-State-Transitions’, ‘N6’ is the average number of messages

in each scenario and ‘N7’ is the average number of message-related errors corresponding

to each message of the scenario.

Therefore, the whole algorithmic time complexity of all the four steps of SFMEA

algorithm is given below:

[O(N1)] + [O(N1)+O(N2)] + [O(N3 × N4 × N5)] + [O(N3 × N6 × N7)]

6.3.6 Sequence and State Diagram Representations

In the SFMEA algorithm discussed above, it is assumed that the sequence and state diagrams

are supplied in some specific representation form as follows:

(i) The sequence diagram is drawn using nested message numbering as discussed in

Section 6.3.

(ii) Any send type message (synchronous or asynchronous) in the sequence diagram

should have the following form

messageName(parameterList){messageLabel}

where

(a) MessageName represents the name of the message,

(b) parameterList represents the list of parameters that are passed along with the

message. The parameterList has the form

(param1:type, param2:type , ….., para-n:type)

(c) messageLabel is the message number assigned by the Altova UML tool and it

is mandatory to embed this number in the messageName.

(iii) Reply type of message in the sequence diagram should have the form:

replyMessage-Name(type). Where ‘type’ indicates the type of response carried by

the reply message. Two types of responses are considered in the approach for a

reply type message and these are : boolean (True/False) or value (any type of

numeric value).

(iv) The state diagrams should be drawn using the unique message numbers (Message#)

assigned to various messages as state transition events.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

163

6.4 APPLICATION OF SFMEA ALGORITHM TO SAFETY-

CRITICAL SOFTWARE SYSTEMS

The proposed algorithm is applied on two safety-critical applications, namely Rail Track

Door Control System (RTCS) and Insulin Delivery System (IDS) as discussed in Chapter

4. The step-by-step application of the algorithm on the sequence and state diagrams of

these systems is given in the following sub-sections.

6.4.1 Motivating Example I: Railway Track Door Control System (RTCS)

This case study has been selected from the works of Medikonda and Swarup (Medikonda

and Swarup, 2011) to demonstrate the application of the presented SFMEA approach.

This system is used to automatically close the rail track door in case of arrival of the

train. The message sequence diagram for the RTCS study is shown in Figure 6.8.

Figure 6.8: Message Sequence Diagram For Rail Track Door Controller System

There are five objects, namely ‘:Train’, ‘:SensorIn’, ‘:Signal’, ‘:CrossController’, and

‘:Gate’ that are participating in this use-case functionality. The functionality gets

activated when the ‘:SensorIn’ object detects the arrival of a train and generates an

interrupt for the ‘:CrossController’ object. Upon receiving of this interrupt message, the

‘:CrossController’ object first issues a command to close the door. When the door is

closed, then it issues the turn green signal command. If a door failure is detected during

operation, then an emergency train stop signal is issued by the ‘:CrossController’ object.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

164

Step I: Generate Pseudo Code and Extract Message-Details

The pseudo code generated by applying Step I(a) to an XMI file of the sequence diagram of

Figure 6.8 is shown in Figure 6.9 along with the numbering of messages and the ‘Message-

Details’ extracted from the same input file by applying Step I(b) is shown in Table 6.12.

enter(){1}

TrainArrived(){1.1}

closeGate(){1.1.1}

gate_closed(Boolean)

IF gate_closed == FALSE THEN

EmergencyTrainStopSignal(){1.1.3}

ELSE

TrainSignalGreen(){1.1.3}

signal_green(Boolean)

ENDIF

Figure 6.9: Pseudo Code Form of the Sequence Diagram of Figure 6.13

The messages ‘M1’ and ‘M2’ are of asynchronous type and that is why their ‘Type’ value is

2. All other messages are of synchronous type and their ‘Type’ value is 1. The ‘Label’ value

of the message ‘M1’ is ‘1’ and it is contained inside the ‘Label’ values of the messages

‘M2’(with ‘Label value ‘1.1’), ‘M3’ (with ‘Label value ‘1.1.1’), M5(with ‘Label value

‘1.1.2’) and ‘M7’ (with ‘Label value ‘1.1.3’). Therefore, the ‘Message-Send-Dependency-

List’ of ‘M1’ contains the “Label’ values {1.1, 1.1.1, 1.1.2, 1.1.3}. Since, no message is sent

after the message ‘M1’ by its sender object (‘:Train’), the ‘Message-Send-Independent-List’

of the message ‘M1’ contains no message.

Similarly, The ‘Label’ value of the message ‘M2’ is ‘1.1’ and it is contained inside the

‘Label’ values of the ‘M3’ (with ‘Label value ‘1.1.1’), M5(with ‘Label value ‘1.1.2’) and

‘M7’ (with ‘Label value ‘1.1.3’). So, the ‘Message-Send-Dependency-List’ of ‘M2’ contains

the “Label’ values {1.1.1, 1.1.2, 1.1.3}. Since, no message is sent after the message ‘M2’ by

its sender object (‘:SensorIn’), the ‘Message-Send-Independent-List’ of the message ‘M2’

contains no message.

The ‘Label’ value of the message ‘M3’ is ‘1.1.1’ and it is contained in no other message’s

‘Label’ value. That’s why, the ‘Message-Send-Dependency-List’ of ‘M3’ contains no

message. But there are two messages, namely ‘M5’ and ‘M7’ are sent after the message

‘M3’ by the sender object of ‘M3’ (‘: CrossController’). So the ‘Message-Send-Independent-

List’ of the message ‘M3’ contains the labels of message ‘M5’ (‘Label’ value ‘1.1.2’) and

‘M7’(‘Label’ value ‘1.1.3’).

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

165

Table 6.12 : Message-Details Created For Rail Track Door Controller Application

Message# Message-Name Label From To Type isReply
Reply-

Message

Send

Event

Receive

Event

Message-Send-

Dependency-List

Message-Send-

Independent-List

M1 enter() 1 Train SensorIn 2 0 e1 e2
1.1, 1.1.1, 1.1.2,

1.1.3

M2 TrainArrived() 1.1 SensorIn
CrossCo

ntroller
2 0 e3 e4 1.1.1, 1.1.2, 1.1.3

M3 closeGate() 1.1.1
CrossCo

ntroller
Gate 1 0

gate_close

d(boolean)
e5 e6 1.1.2, 1.1.3

M4
gate_closed(boo

lean)

closeG

ate()
Gate

CrossCo

ntroller
1 1 e7 e8

M5
EmergencyTrai

nStopSignal()
1.1.2

CrossCo

ntroller

CrossCo

ntroller
1 0 e9 e10

M6
TrainSignalgree

n()
1.1.3

CrossCo

ntroller
signal 1 0

signal_gree

n(boolean)
e11 e12

M7
Signal_green(bo

olean)

TrainS

ignalgr

een()

Signal
CrossCo

ntroller
1 1 e13 e14

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

166

Step II: Extract Message-Sequence for Each Scenario

The sequence diagram as shown in Figure 6.8 has two scenarios because of an ‘alt’ block

involving the condition ‘gate-closed = FALSE’. The ‘Message-Sequence’ of the

scenario 1 and scenario 2 are shown in Table 6.13 and Table 6.14 respectively.

Table 6.13: Message-Sequence for Scenario 1 of RTCS Application

Message# Label Precondition
Sequence-

No

M1 1

1

M2 1.1 M1 2

M3 1.1.1 M1,M2 3

M4 closeGate() M1,M2,M3 4

M5 1.1.2 M1,M2,M3,M4,(gate_closed=FALSE)(T) 5

Table 6.14: Message-Sequence for Scenario 2 of RTCS Application

Message# Label Precondition
Sequence-

No

M1 1 1

M2 1.1 M1 2

M3 1.1.1 M1,M2 3

M4 closeGate() M1,M2,M3 4

M6 1.1.2 M1,M2,M3,M4,(gate_closed=FALSE)(F) 5

M7 signal_green

(boolean)

M1,M2,M3,M4,(gate_closed=FALSE)(F),M6 6

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

167

Step III : Identify ‘Event-Sequence-State-Transitions’ For Each Scenario

The state diagrams drawn for three objects, namely ‘: CrossController’, ‘:Gate’ and

‘:Signal’ are shown in Figure 6.10.

(a) CrossController State Diagram for Normal Scenario

(b) CrossController State Diagram for Emergency Scenario

(c) Gate State Diagram

(d) Signal State diagram

Figure 6.10: State Diagrams for Rail Track Door Controller Application

Two state diagrams are drawn for the ‘:CrossController’ object (one for normal scenario

and one for emergency scenario) whereas only one state diagram is drawn for the

‘:Signal’ and ‘:Gate’ objects. The initial states of the ‘: CrossController’, ‘:Gate’ and

‘:Signal’ objects are assumed as ‘waiting’, ‘open’ and ‘red’ respectively.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

168

The ‘Event-Sequence-State-Transitions’ for scenario 1 and scenario 2 generated by the

application of Step II are shown in Table 6.15 and Table 6.16 respectively.

Table 6.15: ‘Event-Sequence-State-Transitions’ for Scenario 1 of RTCS Application

Event
Logical-

Time
:CrossController :Gate :Signal

e1 1 waiting open red

e2 2 waiting open red

e3 3 waiting open red

e4 4 servicing open red

e5 5 gate_closing open red

e6 6 gate_closing open red

e7 7 gate_closing open red

e8 8 gate_closing open red

e9 9 emergency_trainstopping open red

e10 10 emergency_trainstopping open red

Table 6.16: ‘Event-Sequence-State-Transitions’ for Scenario 2 of RTCS Application

Event
Logical-

Time
:CrossController :Gate :Signal

e1 1 waiting open red

e2 2 waiting open red

e3 3 waiting open red

e4 4 servicing open red

e5 5 gate_closing open red

e6 6 gate_closing closed red

e7 7 gate_closing closed red

e8 8 gate_closing closed red

e11 9 green_signaling closed red

e12 10 green_signaling closed green

e13 11 green_signaling closed green

e14 12 green_signaling closed green

Step IV: Perform ‘Message-Errors-Effects-Analysis’ of Each Scenario

The ‘Message-Errors-Effects-Analysis’ for scenario 1 and scenario 2 is performed by

applying Step IV and the results are shown in Table 6.17 and Table 6.18 respectively.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

169

Table 6.17: Message-Errors-Effects-Analysis for Scenario 1 of RTCS Application

Message#
Message-

Errors

Effects

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

M1 !(M1)
crossController

!=servicing

crossController

!=gate_closing
gate!=closed

crossController

!=emergency_trainstopping

M2 !(M2)
crossController

!=servicing

crossController

!=gate_closing
gate!=closed

crossController

!=emergency_trainstopping

M3 !(M3)
crossController

!=gate_closing
gate!=closed

crossController

^=emergency_trainstopping

(M5)

M4

(M4)FT

(M4)TF

crossController

^=emergency_trainstopping

(M5)

M5 !(M5)
crossController

!=emergency_trainstopping

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

170

Table 6.18: Message-Errors-Effects-Analysis for Scenario 2 of RTCS Application

Message#
Message-

Errors

Effects

e1 e2 e3 e4 e5 e6 e7 e8 e11 e12 e13 e14

M1 !(M1)
crossController

!=servicing

crossController

!=gate_closing
gate!=closed

crossController

!=green_signalling
signal!=green

M2 !(M2)
crossController

!=servicing

crossController

!=gate_closing
gate!=closed

crossController

!=green_signalling
signal!=green

M3 !(M3)
crossController

!=gate_closing
gate!=closed

crossController

^=green_signalling

(M6)

signal^=green

(M6)

M4
(M4)FT

crossController

^=green_signalling

(M6)

(M4)TF

M6 !(M6)
crossController

!=green_signalling
signal!=green

M7
(M7)TF

(M7)FT

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

171

6.4.2 Motivation Example II: Insulin Delivery System (IDS)

This case study has been discussed in Chapter 4 while applying the SFMEA approach in

use-case based requirements analysis phase. The objects required to implement the

‘Deliver Insulin’ use-case functionality are shown in the sequence diagram of

Figure 6.11. There are six objects participating in this functionality and these are

‘:Clock’, ‘:Controller’, ‘:Sensor’, ‘:InsulinCompute’, ‘:InsulinPump’ and ‘:Display’.

The whole interaction starts when an interrupt message ‘changeState (RUN)’ is

received by the ‘: Controller’ object from the ‘:Clock’ object. Upon the receipt of this

interrupt message, the following actions are carried out by the ‘:Controller’ object in

sequence.

(i) The ‘:Controller’ first measures the current sugar level in the body

(ii) If the sugar level is in the acceptable range, then the functionality gets exited and

no insulin is injected in the body.

(iii) If the sugar level is high, then the ‘: controller’ computes the amount of insulin to

be injected so as to bring the sugar level under control.

(iv) After computing the value for the required amount of insulin, the ‘:Controller’

object instructs the insulin pump to inject the computed amount of insulin in the

patient’s body.

(v) If the sugar level is within acceptable limits, then the ‘: controller’ flashes the

suitable message on the display of the system

The role of the ‘: InsulinCompute’ class is to compute the amount of insulin required to

be injected into the patient’s body. The role of the ‘:InsulinPump’ class is to inject the

requested amount of insulin in the body. The ‘:Display’ class is required to flash the

failure message on the display when insulin is not injected in the body.

Step I: Generate Pseudo Code and Extract Message-Details

The pseudo code form generated for the sequence diagram of Figure 6.11 is shown in

Figure 6.12.

The ‘Message-Details’ generated for this application is shown in Table 6.19. The

messages ‘M1’,’M8’ and ‘M9’ are of asynchronous type and that’s why their ‘Type’

field value is ‘2’. All other messages are of synchronous type and that’s why their ‘Type’

field value is ‘1’.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

172

Figure 6.11: Sequence Diagram for Insulin Delivery Pump System

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

173

Table 6.19: Message-Details Extracted For Insulin Delivery System

Message# Message-Name Label From To Type isReply
Reply-

Message

Send

Event

Receive

Event

Message-Send-

Dependency-List

Message-Send-

Independent-List

M1 changeState(RUN) 1 Clock Controller 2 0 e1 e2
1.1, 1.2, 1.3, 1.4,

1.4.1

M2
readCurrentSugar

Level
1.1 Controller Sensor 2 0

sugarLevel

(value)
e3 e4 1.2, 1.3, 1.4

M3 sugarLevel(value)
readCurrent

SugarLevel
Sensor Controller 1 1 e5 e6

M4
computeInsulin(su

garLevel:value)
1.2 Controller

InsulinCo

mpute
1 0

insulintoDe

liver(value)
e7 e8 1.3, 1.4

M5
insulintoDeliver(v

alue)

computeIns

ulin(sugarLe

vel:value)

InsulinCompute Controller 1 1 e9 e10

M6
deliverInsulin(insu

lintoDeliver:valve)
1.3 Controller InsulinPump 1 0

insulindeli

vered(bool

ean)

e11 e12 1.4

M7
Insulindelivered(b

oolean)

deliverInsuli

n(insulintoD

eliver:value)

InsulinPump Controller 1 1 e13 e14

M8 displayOutput() 1.4 Controller Clock 2 0 e15 e16 1.4.1

M9 displayOutput() 1.4.1 Clock Display 2 0 e17 e18

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

174

changeState(RUN)

readCurrentSugarLevel(){1,1}

sugarLevel(value)

IF sugar level is High THEN

computeInsulin(sugarLevel:value){1.2}

insulintodeliver(value)

deliverInsulin(insulintoDeliver:value){1.1}

insulindelivered(Boolean)

ELSE

displayOutput(){1.4}

displayOutput(){1.4.1}

ENDIF

Figure 6.12: Pseudo Code Form of the Sequence Diagram of Figure 6.13

Step II: Extract Message-Sequence For Each Scenario

The pseudo code description as shown in Figure 6.12 has two scenarios because of the

presence of an ‘IF’ statement. The ‘Message-Sequence’ generated for scenario 1 and

scenario 2 of this application are shown in Table 6.20 and Table 6.21 respectively.

Table 6.20: Message-Sequence For Scenario 1 of IDS Application

Message# Label Precondition Sequence-No

M1 1 1

M2 1.1 M1 2

M3 readCurrentsugarLevel M1,M2 3

M4 1.2 M1,M2,M3,(sugarLevel is High)(T) 4

M5 computeInsulin(sugar

Level:value)

M1,M2,M3,(sugarLevel is

High)(T),M4

5

M6 1.3 M1,M2,M3,(sugarLevel is

High)(T),M4,M5

6

M7 deliverInsulin(insulint

oDeliver:value)

M1,M2,M3,(sugarLevel is

High)(T),M4,M5,M6

7

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

175

Table 6.21: Message-Sequence For Scenario 2 of IDS Application

Message# Label Precondition Sequence-No

M1 1 1

M2 1.1 M1 2

M3 readCurrentsugarLevel M1,M2 3

M8 1.4 M1,M2,M3,(sugarLevel is High)(F) 4

M9 1.4.1 M1,M2,M3,(sugarLevel is

High)(F),M8

5

Step III: Identify ‘Event-Sequence-State-Transitions’ For Each Scenario

The state diagrams are supplied for three objects in this application and these are

(i) ‘:Controller’, (ii) ‘:Sensor’ and (iii) ‘:InsulinPump’. The initial states of the

‘:Controller’, ‘:Sensor’ and ‘:InsulinPump’ objects are ‘waiting’ ‘idle’ and ‘idle’

respectively.

The state transition pattern of the ‘:Controller’ object is different in both scenarios and

that’s why two state diagrams are supplied for this object and these are shown in

Figure 6.13(a) and Figure 6.13(b).

The state diagrams for objects ‘:Sensor’ and ‘:InsulinPump’ are shown in

Figure 6.13(c) and Figure 6.13(d) respectively.

The ‘Event-Sequence-State-Transitions’ for scenario 1 is shown in Table 6.22. The

‘Event-Sequence’ for scenario 1 as shown in Table 6.20 and the state state diagrams for

the objects ‘:Controller’, ‘:Sensor’ and ‘:InsulinPump’ as shown in Figure 6.13(a),

Figure 6.13(c) and Figure 6.13(d) respectively, are used as inputs in the identification

of the ‘Event-Sequence-State-Transitions’ for scenario 1.

The ‘Event-Sequence-State-Transitions’ for scenario 2 is shown in Table 6.23. The

‘Event-Sequence’ for scenario 2 as shown in Table 6.21 and the state state diagrams for

the objects ‘:Controller’, ‘:Sensor’ and ‘:InsulinPump’ as shown in Figure 6.13(b),

Figure 6.13(c) and Figure 6.13(d) respectively, are used as inputs in the identification of

the ‘Event-Sequence-State-Transitions’ for scenario 2.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

176

(a) State Diagram of the ‘Controller’ Object For Scenario 1

(b) State Diagram of The ‘Controller’ Object For Scenario 2

(c) State Diagram of the ‘Sensor’ Object

(d) State Diagram of the ‘InsulinPump’ Object

Figure 6.13: State Diagrams For The Participating Object of IDS System

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

177

Table 6.22: ‘Event-Sequence-State-Transitions’ for Scenario 1 of IDS Application

Event
Logical-

Time
:Controller :Sensor :InsulinPump

e1 1 waiting idle idle

e2 2 servicing idle idle

e3 3 readingSugarLevel idle idle

e4 4 readingSugarLevel readingSugarLevel idle

e5 5 readingSugarLevel idle idle

e6 6 readingSugarLevel idle idle

e7 7 computingInsulin idle idle

e8 8 computingInsulin idle idle

e9 9 computingInsulin idle idle

e10 10 computingInsulin idle idle

e11 11 deliveringInsulin idle idle

e12 12 deliveringInsulin idle deliveringInsulin

e13 13 deliveringInsulin idle idle

e14 14 deliveringInsulin idle idle

Table 6.23: ‘Event-Sequence-State-Transitions’ for Scenario 2 of IDS Application

Event
Logical-

Time
:Controller :Sensor :InsulinPump

e1 1 waiting idle idle

e2 2 servicing idle idle

e3 3 readingSugarLevel idle idle

e4 4 readingSugarLevel readingSugarLevel idle

e5 5 readingSugarLevel idle idle

e6 6 readingSugarLevel idle idle

e15 7 displayingOutput idle idle

e16 8 displayingOutput idle idle

e17 9 displayingOutput idle idle

e18 10 displayingOutput idle idle

Step IV: Perform ‘Message-Errors-Effects-Analysis’ For Each Scenario

The ‘Message-Errors-Effects-Analysis’ for scenario 1 and scenario 2 are shown in

Table 6.24 and Table 6.25 respectively.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

178

Table 6.24: Message-Errors-Effects-Analysis for Scenario 1 of IDS Application

Message#
Message-

Errors

Effects

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

M1 !(M1)

controller

!=

servicing

controller

!=

readingSugarLevel

sensor

!=

readingSugarLevel

sensor

!=idle

controller

!=

computingInsulin

controller

!=

deliveringInsulin

InsulinPump

!=

deliveringInsulin

InsulinPunp

!=idle

M2 !(M2)

controller

!=

readingSugarLevel

sensor

!=

readingSugarLevel

sensor

!=idle

controller

^=

computingInsulin

(M4)

controller

^=

deliveringInsulin

(M4,M6)

InsulinPump

^=

deliveringInsulin

(M4,M6)

InsulinPunp

!=idle

(M4,M6)

M3 (M3)’

controller

^=

computingInsulin

controller

^=

deliveringInsulin

InsulinPump

^=

deliveringInsulin

InsulinPunp

^=idle

M4 !(M4)

controller

!=

computingInsulin

controller

^=

deliveringInsulin

(M6)

InsulinPump

^=

deliveringInsulin

(M6)

InsulinPunp

^=idle

(M6)

M5 (M5)’

controller

^=

deliveringInsulin

InsulinPump

^=

deliveringInsulin

InsulinPunp

^=idle

M6 !(M6)

controller

!=

deliveringInsulin

InsulinPump

!=

deliveringInsulin

InsulinPunp

!=idle

M7

(M7)TF

(M7)FT

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

179

Table 6.25: Message-Errors-Effects-Analysis For Scenario 2 of IDS Application

Message#
Message-

Errors

Effects

e1 e2 e3 e4 e5 e6 e15 e16 e17 e18

M1 !(M1)

controller

!=

servicing

controller

!=

readingSugarLevel

sensor

!=

readingSugarLevel

sensor

!=idle

controller

!=

displayingOutput

M2 !(M2)

controller

!=

readingSugarLevel

sensor

!=

readingSugarLevel

sensor

!=idle

controller

^=

displayingOutput

(M8)

M3 (M3)’

controller

^=

displayingOutput

(M8)

M8 !(M8)

controller

!=

displayingOutput

M9 !(M9)

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

180

6.4.3 Analysis of Results

The application of the proposed SFMEA approach enhances the results of the SFTA

approach discussed and presented in Chapter 5. The proposed SFMEA approach helps

the analyst in the following two ways

(i) To investigate the effects of the errors associated with not only the state-transition

messages (messages, which result in the state change of a component) but with

other messages, also where no component is changing its state. Recall that in the

SFTA approach of Chapter 5, only the errors associated with the state-transition

messages are considered.

(ii) To construct the software fault tree for the hazardous-state where a state of a

component is changed erroneously.

Consider the ‘Message-Errors-Effects-Analysis’ for RTCS application scenarios as

shown in Table 6.17 and Table 6.18. The message ‘M1’ is not changing the state of any

of the components as shown in Figure 6.10. But the effects of the error associated with it

i.e. ‘!(M1)’ (message ‘M1’ is not sent) is shown in Table 6.17 and Table 6.18. In the

same way, the message ‘M4’ is also is not changing the state of any of the components

as shown in Figure 6.10. The errors associated with this message are ‘(M4)FT’ and

‘(M4)TF’ and their effects are shown in Table 6.17 and Table 6.18. Similarly, the

‘Message-Errors-Effects-Analysis’ for IDS application scenarios, as shown in Table 6.24

and Table 6.25, record the effects of the errors associated with the messages ‘M3’,’M5’

and ‘M7’ and no component is changing its state during the sending of these messages

(see Figure 6.13).

Consider the ‘Message-Errors-Effects-Analysis’ for scenario 2 of the RTCS application

as shown in Table 6.18. The error ‘!(M3)’ erroneously changes the state of the signal

component to green provided the message M6 is sent in case of this error (i.e.

‘signal^=green(M6)’). The effect entry ‘signal^=green(M6)’ also appears for the error

‘(M4)FT’. The fault tree for the hazardous-state ‘signal^=green’ is drawn by ORing the

message-related errors and the messages represented in these rows. In a similar manner,

the fault tree for the hazardous-state ‘InsulinPump^=deliveringInsulin’ for an IDS

application can be drawn from the ‘Message-Errors-Effects-Analysis’ as shown in

Table 6.24.

Software Failure Modes and Effects Analysis in Object-Oriented Design Phase

181

6.5 COMPARATIVE ANALYSIS

The presented SFMEA approach is an attempt towards developing a fully automated

tool. There are other approaches also that have been explored for UML such as HazOp

(Hazard and Operability Study) (Lu et al, 2005) but its application is manual. The main

strength of the presented approach is that it is automated and can be applied even if the

dysfunctional behavior of the participating objects is not known (David et al, 2008). The

message-related errors are identified automatically in the presented approach.

The developed approach has scope for several improvements. Some of the situations that

need to be further improved and are considered as scope for further work are enumerated

below.

(i) Support for ‘par’ and ‘loop’ interaction operators: The presence of ‘par’ operator

may complicate the building of MSCFG in Step II. Similarly, presence of loops

complicates the scenario extraction process because in a loop a message sequence

may repeat any number of times.

(ii) Number of Message-Related Errors Addressed: Currently the algorithm can handle

only a limited number of message-related errors. Especially, the timing related

message errors where a message arrives either too late or too early, will require

time as another parameter in the SFMEA approach.

(iii) Only one message-related error is considered as active at any given point of time.

The approach in the present form can be applied only to sequential systems and not

for concurrent systems where multiple errors may occur at the same time.

182

CHAPTER 7

Software Reliability Prediction for Use-Cases

This chapter presents the use of the SFMEA and SFTA approaches, developed for

object-oriented use-cases, to predict the software reliability of a given use-case

functionality during the requirements analysis phase. The reliability of each scenario of

the given use-case is predicted from the constructed generalized fault tree for scenario

failures using the probability of occurrence value of each basic erroneous event.

Software reliability is defined as ‘the probability of failure-free operation for a specified

period of time in a specified environment’ (IEEE-STD-729-1991, 1991). Software

reliability is one the four key dependability attributes, namely Availability, Reliability,

Safety and Security for safety-critical systems. The software failure is defined as,

‘deviation of the delivered service from compliance with the specification’. Correct

prediction of the probability of occurrence of various software-related errors is the key to

the estimation of the reliability of a software system and to estimate and predict the

failure rates of software systems.

Currently, the software reliability is generally estimated after the implementation phase

by subjecting the software code to reliability evaluation. This is too late for safety critical

software systems. The current research efforts are therefore focused towards the

prediction of the reliability of software systems during the early phases such as in

requirements analysis and design phases. An overview of the early software estimation

approaches is given in the next section.

7.1 EARLY SOFTWARE RELIABILITY ESTIMATION APPROACHES

Meng (Meng et al, 2000) proposed petri-net based method for early-stage software

reliability estimation. The limitation of their work is that it requires the hierarchical view

of the software system and cannot work with large systems.

Singh (Singh et al, 2001) and Cortellessa (Cortellessa et al, 2002) proposed a Bayesian

approach based reliability prediction method for component based software systems. The

method requires the annotation of Unified Modeling Language (UML) models for

reliability prediction. The problem with the approach is that it requires models from two

Software Reliability Prediction Approach for Use-Cases

183

phases namely requirements analysis (use-cases), design (sequence and deployment

diagrams) phases.

The Scenario Based Reliability Analysis (SBRA) method proposed by Yacoub (Yacoub

et al, 2004) estimates the reliability of a software system from the reliabilities of its

components. It is assumed that the reliability of each component is known in advance.

Tripathi and Mall (Tripathi and Mall, 2005) proposed an early reliability estimation

technique (ERAT) for use-cases based on reliability block diagrams (RBD). The RBD is

used to model the relationship between use-case and its scenarios.

Kong (Kong et al, 2007) proposed a binary decision diagram (BDD) based early

reliability prediction method using a cause-effect graphing analysis (CEGA) technique.

The CEGA technique is used to identify the defects in a software requirements

specification document and the impacts of these defects in the system are assessed using

BDD.

Kundu and Samanta (Kundu and Samanta, 2007) proposed a three step approach to

assess reliability of a system using the use-case model. In the first step, a given use-

case model is converted into a system sequence diagram. The second step converts a

sequence diagram into a use case graph (UCG). The reliability metric of each use-case

scenario is determined in the third step.

Mohanta’s work (Mohanta et al, 2010) takes into account the information about the

operational profile and usage frequency of each use-case functionality to estimate the

reliability of the individual use-case as well as its associated scenarios.

The above four reliability prediction approaches for use-cases require the results of

design phase for reliability prediction. None of the above-mentioned approaches puts

emphasis on forecasting the errors that can occur during the realization of the use-case.

The proposed SFTA and SFMEA analysis of use-cases provide a simple solution for

early reliability estimation. The results of SFTA/SFMEA approaches build a fault tree

or database of event-related errors that can be experienced by the system during the

use-case execution. Coupled with occurrence rate to each identified event-related error,

this error database can be used to predict the reliabilities of various use-cases and their

associated scenarios. This is explained in the following sections of this chapter and is

illustrated with examples.

Software Reliability Prediction Approach for Use-Cases

184

7.2 PROPOSED SOFTWARE RELIABILITY ESTIMATION

APPROACH FOR USE-CASES

7.2.1 Assumptions

 (i) The operational profile(OP) (usage frequency of each use-case) of each use-case

functionality and its each scenario is available

 (ii) The error occurrence rates of various event-related errors are also known.

7.2.2 Operational Profile of a Use-Case

The operational profile (OP) of a software system is a quantitative characterization of

how the software will be used and is, therefore, essential in any Software Reliability

Engineering (SRE) application (Musa, 1993). The concept of operational profile is

explained below by taking an arbitrary use-case model as shown in Figure 7.1with three

use-cases, namely ‘doA’, ‘doB’ and ‘doC’ and one actor, namely ‘X’.

Figure 7.1: An Example Use-Case Model

The usage frequencies of the various use-cases constitute the operation profile of the

system. Some use-cases are executed more frequently than the others. The failure

occurrence rate is more in more frequently used operations (use-cases) than the

operations that are less frequently used. Assume P1, P2 andP3 are the execution

probabilities of use-cases ‘doA’, ‘doB’ and ‘docC’ respectively. The summation of these

probabilities i.e. ∑ Pi (where i = 1,2,3) is 1.

Suppose the actor ‘X’ uses or accesses the system100 times and ‘doA’ operation is

accessed 70 times,‘doB’ is accessed 20 times and ‘doC’ operations is accessed 10 times.

Then the usage frequency for ‘doA’, ‘doB’ and ‘doC’ use-cases are 70%, 20% and 10%,

respectively. These usage frequency values are used to compute the execution

doA

doB

doC

X

Software Reliability Prediction Approach for Use-Cases

185

probability values for the use-cases. The execution probability of ‘doA’, ‘doB’ and ‘doC’

use-cases are ‘0.70’, 0.20’ and ‘0.10’, respectively.

7.2.3 The Proposed Reliability Estimation Approach for Use Cases

As discussed in previous chapters that a use-case represents a functionality offered by the

software system and it can have any number of unique execution paths known as

scenarios. In order to estimate the reliability of a safety critical software system, it is

important and mandatory to predict the reliabilities of the use-cases and their scenarios.

The reliability of a given use-case functionality and its various scenarios depend upon

the operational profile of the system.

The textual description of a given use-case functionality and the state diagrams of the

participating components are used as inputs in the proposed approach and is divided into

five steps to predict the reliability of a given use-case functionality. These steps are

explained below:

Step I Applying SFMEA Approach

The application of SFMEA approach as presented in Chapter 4 gives the information

about (i) the number of scenarios in a given use-case, (iii) the event-related errors that

can occur in each scenario and (iii) the effects of each event-related error in the system.

Step II Predicting the Usage Frequency of Each Scenario of the Use-case

The second step is to predict the value of the usage-frequency (i.e. The execution

probability) for each scenario of the use-case. Out of the number of scenarios of a

use-case, one of the scenarios is considered as main-scenario and other scenarios are

characterized as exceptional or alternative scenarios. The main-scenario represents

the execution path of the use-case that is executed more frequently than the other

execution paths. Hence, the usage frequency of the main-scenario is generally

assigned higher than the other scenarios. The analyst’s domain expertise, experience

and knowledge of the system play an important role in determining the values of

these usage frequencies.

Step III Predicting the ‘Probability of Occurrence’ Value to each Event-Related Error

In the third step, the ‘probability of occurrence’ value for each event-related error of the

use-case functionality is predicted. The application of SFMEA approach, in Step I,

Software Reliability Prediction Approach for Use-Cases

186

identifies all the event-related errors and their effects. It is assumed that the occurrence

of event-related errors is independent of each other. A failure in a scenario is said to have

occurred if any one of its associated event-related error occurs. If an event-related error

‘E’ has a probability of occurrence value as ‘0.002’ then it means the error ‘E’ can occur

2 times in 1000 executions of the event. The experience and domain expertise of the

analyst plays an important role in the prediction of this value.

Recall that in the application of SFMEA approach in the use-case based requirement

analysis phase (Chapter 4), two types of event-related errors, namely (i) stop type and

(ii) propagating type, are considered. A stop type event-related error is a software

control error and can occur during the execution any event. It is assumed in the

approach that the error occurrence rate (‘probability of occurrence’) of the stop-type

errors is uniform for all events. For propagating type of event-related errors, the

‘probability of occurrence’ values are assigned by taking the past experience into

consideration.

Step IV Computing the Reliability for Each Scenario

The fourth step computes the reliability of each scenario by constructing a generalized

fault tree for the scenario failure by taking ‘Event-Errors-Effects-Analysis’ (results of the

SFMEA approach in Step I) of the scenario as an input. The event-related errors are

mapped against their erroneous state level effects. The fault tree construction process is

as follows:

 (i) If an erroneous state level effect ‘X’ is caused by more than one event-related error

then all the event-related errors responsible for ‘X’ are joined by an ‘OR’ gate.

 (ii) If an event-related error ‘E’ causes more than one erroneous state level effect then

‘E’ is used as basic erroneous event only for the erroneous state level effect that

occurs earlier. The output of the first effect is used as an input for the next level

erroneous state level effect and so on.

The fault tree is constructed using a FaultCAT tool (FaultCAT, 2003). Using the fault

tree for scenario failure, the probability of scenario failure is computed by using the

‘probability of occurrence’ values of the basic erroneous events. If the basic erroneous

events are joined via an ‘OR’ gate then their ‘probability of occurrence’ values are added

to get the failure probability value of the next intermediate event of the fault tree. If the

Software Reliability Prediction Approach for Use-Cases

187

basic erroneous events are joined via an ‘AND’ gate then their ‘probability of

occurrence’ values are multiplied to get the failure probability value of the next

intermediate event of the fault tree. This process is recursively applied till the probability

of a scenario failure (top event) is obtained.

The reliability of the scenario is computed using the formula: ‘1 – fail(S)’ where ‘fail(S)’

is the probability of the scenario failure.

Step V Computing the Reliability of the Use-Case

The reliability of a given use-case functionality ‘U’ is computed by using the formula proposed

by Mohanta (Mohanta et al, 2010):

()∏
=

×−−=
M

i

ii pSUR
1

)(rel11)(

Where R(U) is the reliability of the use-case ‘U’

rel(Si) is the reliability of the i
th
 scenario of the use-case

M is the number of the scenarios in the use-case

pi is the usage frequency of the i
th
 scenario

The application of the approach is illustrated for two case study applications, namely ‘Insulin

Delivery System’ (IDS) and ‘Rail Track Door Control System’ (RTCS) discussed in the

previous chapters is given in the next sections.

7.3 MOTIVATING EXAMPLE 1: INSULIN DELIVERY SYSTEM

The detailed description of the Insulin Delivery System (IDS) case study is given in

Chapter 4. The application of five steps of the reliability computation approach is given

below:

Step I: Applying SFMEA approach

The application of the SFMEA analysis of IDS (Chapter 4) for use-case ‘Deliver Insulin’

results in two scenarios and the event sequences of these two scenarios are shown in

Table 4.6 and Table 4.7, respectively. The ‘Event-Errors-Effects-Analysis’ of the two

scenarios are shown in Table 4.11 and Table 4.12.

Software Reliability Prediction Approach for Use-Cases

188

Step II: Predicting the usage frequency to each scenario of the use-case

The purpose of the system is to deliver an insulin to the patient as and when required.

There is only one use-case, namely ‘Deliver-Insulin’ in this case study. Only this use-

case gets executed as long as the system is in operation. Therefore, the execution

probability of this use-case is 1. However, there are two scenarios in this use-case. The

scenario 1 (Table 4.6) represents the situation when an insulin is delivered and the

second scenario (Table 4.7) represents the situation when an insulin is not delivered

because the sugar level in the patient’s body is within acceptable level. The scenario 2 is

the main-scenario and scenario 1 is an exceptional or an alternative scenario. It is

assumed that the ‘Deliver Insulin’ insulin use-case is executed 24 times a day (from 9:00

AM to 9:00 PM after every 30 minutes duration) and scenario 2 is executed 18 times

(with usage frequency of 75%) and scenario 1 is executed 6 times (with usage frequency

of 25%). So, the execution probability for scenario 2 is arbitrarily assigned as ‘0.75’

where as the execution probability for scenario 1 is assigned as ‘0.25’.[Note that the sum

of execution probabilities of the scenarios of a use-case is equal to the execution

probability of the use-case].

Step III: Predicting the ‘probability of occurrence’ value for each event-related

error

The event-errors for IDS system are shown in Table 4.10. The probability of occurrence

values assigned for each event-related error are assumed as shown in Table 7.1. The

system is safety-critical and it is assumed that the software used to control the system

should be highly reliable. Therefore, the software related errors are assigned lower

‘probability of occurrence’ value than the hardware related errors. Each stop type error

(ER1, ER2, ER5, ER8, ER10 and ER12) is basically a software related error and

assigned a ‘probability of occurrence’, say ‘0.005’ (i.e. occurrence rate of only 0.5%).

The errors ‘ER3’, ‘ER4’, ‘ER11’ belongs to hardware related errors and are assigned a

‘probability of occurrence’, say ‘0.010’ (i.e. 1% occurrence rate) which is higher than the

software related errors. The system is considered highly reliable from computational

dimension and there is very less chance of any computational type error. That’s why the

‘probability of occurrence’ value assigned to errors‘ER6’, ‘ER7’ and ‘ER9’ is ‘0.001’

(i.e. occurrence rate of 0.1%).

Software Reliability Prediction Approach for Use-Cases

189

Table 7.1: Assumed Probability of Occurrence of Event-Related Errors of IDS

Application

Event# Error# Type Error Description
Probability of

Occurrence

E0 ER1 1 Event E0 fails to execute 0.005

E1

ER2 1 Event E1 fails to execute 0.005

ER3 1 sensor failure 0.010

ER4 2
The sensor reads the wrong sugar

value
0.010

E2

ER5 1 Event E2 fails to execute 0.005

ER6 2
Event E2 is true, but evaluated as

false
0.001

ER7 2
Event E2 is false, but evaluated as

true
0.001

E3

ER8 1 Event E3 fails to execute 0.005

ER9 2
The system computes wrong insulin

dose
0.001

E4
ER10 1 Event E4 fails to execute 0.005

ER11 1 Insulin pump fails to deliver Insulin 0.010

E5 ER12 1 Event E5 fails to execute 0.005

Step IV: Constructing fault tree and predicting reliability of each scenario

Using the ‘Event-Errors-Effects-Analysis’ as shown in Table 4.11 and Table 4.12, the

fault trees for two scenarios are constructed. The errors that can occur in scenario 1 are

ER1, ER2, .., ER11. The errors that can occur in scenario 2 are ER1, ER2, ER3, ER4,

ER5, ER6, ER7 and ER12.

(i) Reliability prediction of scenario 1

The fault tree constructed for scenario is shown in Figure 7.2. The probability of failure

of scenario 1 is computed from the fault tree by computing the ‘probability of

occurrence’ values for the various events as follows:

Software Reliability Prediction Approach for Use-Cases

190

P(X) = probability of occurrence of ‘X’ where ‘X’ is either a basic erroneous event or an

intermediate state level effect or root node of the fault tree. Using this, various

probabilities are obtained as follows:

P(Insulin-Controller != servicing) = P(ER1) = 0.005

P(Insulin-Controller != ReadingSugarLevel AND Sugar-Sensor != ReadingSugarLevel)

= P(Insulin-Controller != servicing) + P(ER2) + P(ER3)

= 0.005 + 0.005 + 0.010

= 0.020.

P(Insulin-Controller != ComputingInsulinDose)

= P(Insulin-Controller!=ReadingSugarLevel AND Sugar-Sensor != ReadingSugarLevel)

 + P(ER5) + P(ER8)

= 0.020 + 0.005 + 0.05 = 0.030.

P(Insulin-Controller != DeliveringInsulin AND Insulin-Pump != DeliveringInsulin)

= P(Insulin-Controller != ComputingInsulinDose) + P(ER10) + P(ER11)

= 0.030 + 0.005 + 0.010

= 0.045

P(Insulin-Controller ^= ComputingInsulinDose)

= P(ER4) + P(ER7) + P(ER9)

= 0.010 + 0.001 + 0.001

= 0.012

P(Insulin-Controller ^= DeliveringInsulin AND Insulin-Pump ^= DeliveringInsulin)

= P(Insulin-Controller ^= ComputingInsulinDose)

= 0.012.

P(Failure in Scenario 1)

= P(Insulin-Controller!=DeliveringInsulinAND Insulin-Pump!= DeliveringInsulin)

 +P(Insulin-Controller^=DeliveringInsulinANDInsulin-Pump^=DeliveringInsulin)

= 0.045 + 0.012

= 0.057

Thus, the computed reliability of the scenario 1 = ‘1 – 0.057’ = ‘0.943’.

(ii) Reliability prediction of scenario 2

The fault tree constructed for scenario

above, the computed reliability of scenario 2 is ‘0.959’.

Figure 7.2: Fault Tree for

Software Reliability Prediction Approach for Use

Reliability prediction of scenario 2

The fault tree constructed for scenario 2 is shown in Figure 7.3. Following the steps as

computed reliability of scenario 2 is ‘0.959’.

Fault Tree for Failure ofScenario 1 of IDS Application

Software Reliability Prediction Approach for Use-Cases

191

Following the steps as

Scenario 1 of IDS Application

Figure 7.3: Fault Tree for Failure

Step V: Computing the reliability of the

The reliability of ‘Deliver Insulin’ use

Reliability of Scenario 1 = 0.943

Execution Probability of Scenario 1 = 0.

Reliability of Scenario 2 = 0.959

Execution Probability of Scenario

R (‘Deliver Insulin’) = ‘1- {(1 –

 = 0.9995

Therefore, the reliability of the ‘Deliver Insulin’ use

Software Reliability Prediction Approach for Use

Fault Tree for Failure of Scenario 2 of IDS Application

Computing the reliability of the ‘Deliver-Insulin’ use-case

reliability of ‘Deliver Insulin’ use-case is calculated using the following values

43

Execution Probability of Scenario 1 = 0.25

9

Execution Probability of Scenario 2 = 0.75

– 0.943) × 0.25} × {(1 – 0.959) × 0.75}’

, the reliability of the ‘Deliver Insulin’ use-case is ‘0.9995’.

Software Reliability Prediction Approach for Use-Cases

192

case is calculated using the following values

Software Reliability Prediction Approach for Use-Cases

193

7.4 MOTIVATING EXAMPLE 2: RAIL TRACK DOOR CONTROL SYSTEM

The detailed description of the Rail Track Door Control System (RTCS) case study is given in

Chapter 3. The applications of five steps of the approach is given below.

Step I: Applying SFMEA approach on the inputs

There are two scenarios in this application and the ‘Event-Sequences’ for scenario 1 and

for scenario 2 are shown in Table 3.22 and Table 3.23 respectively.

The ‘Event-Errors-Effects-Analysis’ for scenario 1 and scenario 2 are shown in

Table 4.14 and table 4.15 respectively.

Step II: Predicting the usage frequency of each scenario of the use-case

The purpose of the system is to close/open the track door whenever the train is to

arrive/depart. There is only one use-case in this functionality namely ‘close track door’.

The probability of execution of ‘close-track-door’ is 1 because it is executed whenever

an interrupt is generated by the track sensors. However, there are two scenarios in this

use-case functionality. The main-scenario of this case study application represents the

situation when the track door is closed successfully. The exceptional or alternative

scenario is executed when the system detects an error in the track door and issues track

door failure. The execution probability for scenario 1 is assumed as ‘0.95’ where as the

execution probability for scenario 2 is assumed as ‘0.05’.

Step III: Predicting the probability of occurrence value for each event-related error

The ‘Event-Errors’ identified for this application are shown in Table 4.13. The

probability of occurrence values assigned to each event-related error is shown in

Table 7.2. The rule for selecting the ‘probability of occurrence’ values is same as

followed in the previous case study application.

Step IV: Constructing fault tree and predicting the reliability of each scenario

Consider the ‘Event-Errors-Effects-Analysis’ for scenario 1 and scenario 2 as shown in

Table 4.14 and table 4.15.

The fault tree constructed for scenario 1 by taking the ‘Event-Errors-Effects-Analysis’ as

shown in Table 4.14 as an input is shown in Figure 7.4. The fault tree constructed for

Software Reliability Prediction Approach for Use-Cases

194

scenario 2 by taking the ‘Event-Errors-Effects-Analysis’ as shown in Table 4.15 as an

input, is shown in Figure 7.5. The probability values to each event–related error is

assigned as per Table 7.2.

The reliability of scenario 1 of the RTCS application = ‘1 – 0.044’

 = ‘0.956’.

The reliability of scenario 2 of the RTCS applications = ‘1 – 0.020’

 = ‘0.98’.

Table 7.2: Probability of Occurrence of Event-Related Errors of RTCS Application

Event# Error# Type Error Description
Probability of

Occurrence

E1 ER1 1 Event E1 fails to execute 0.005

E2

ER2 1 Event E2 fails to execute 0.005

ER3 1
Error in Track Door

Component
0.010

E3

ER4 1 Event E3 fails to execute 0.005

ER5 2
Event E3 is False but evaluated

as True
0.001

ER6 2
Event E3 is true but evaluated

as False
0.001

E4

ER7 1 Event E4 fails to execute 0.005

ER8 1
Error in Track_signal

Component
0.010

E5 ER9 1 Event E5 fails to execute 0.005

E6 ER10 1 Event E6 fails to execute 0.005

Step V: Computing the reliability of the ‘close-track-door’ use-case

The reliability of scenario 1 = 0.956

The execution probability of scenario 1 = 0.95

The reliability of scenario 2 = 0.98

The execution probability of scenario 2 = 0.05

Thus, the reliability of close-track-door use-case is ‘0.9999’.

Figure 7.4: Fault Tree for

Figure 7.5: Fault Tree for

7.5 ANALYSIS OF RESULTS

The reliability prediction methods, as reported in the works of Singh (Singh et al, 2001)

and Cortellessa (Cortellessa et al, 2002), require the conversion of a given use

functionality into a set of sequence diagrams and it is assumed that

of each component (i.e. class) involved in the use

approach cannot be used if only use

diagrams are generally drawn during object

reliability assessment method

Software Reliability Prediction Approach for Use

: Fault Tree for Failure in Scenario 1 of RTCS Application

: Fault Tree for Failure in Scenario 2 of RTCS Application

OF RESULTS

The reliability prediction methods, as reported in the works of Singh (Singh et al, 2001)

and Cortellessa (Cortellessa et al, 2002), require the conversion of a given use

functionality into a set of sequence diagrams and it is assumed that the failure

of each component (i.e. class) involved in the use-case is known in advance. The

approach cannot be used if only use-cases are used as inputs because the sequence

diagrams are generally drawn during object-oriented design phase. Similarly, t

reliability assessment methods proposed by Kundu and Samanta (Kundu and Samanta,

Software Reliability Prediction Approach for Use-Cases

195

Application

Application

The reliability prediction methods, as reported in the works of Singh (Singh et al, 2001)

and Cortellessa (Cortellessa et al, 2002), require the conversion of a given use-case

the failure probability

case is known in advance. The

cases are used as inputs because the sequence

Similarly, the

proposed by Kundu and Samanta (Kundu and Samanta,

Software Reliability Prediction Approach for Use-Cases

196

2007) and Yacoub (Yacoub et al, 2004) also require the conversion of a given use-case

into a sequence diagram.

The proposed approach is developed for use-case based requirements analysis phase and

there is no need to convert a use-case into its corresponding sequence diagram or

reliability block diagram.

The method as reported by Tripathi and Mall (Tripathi and Mall, 2005) considers the

failure only in the main scenario to predict the reliability of a use-case. However, a use-

case functionality can have any number of scenarios and an error can occur in each

scenario. The proposed approach considers failures in every scenario to predict the

reliability of a given use-case.

The proposed approach computes the reliability of a scenario using the simple FTA

approach whereas Mohanta (Mohanta et al, 2010) computes the reliability of a scenario

‘R(S); by using the the number of classes required to implement and execute the scenario

and the reliability of the each class. The reliability of each class is to be known in order

to compute the reliability of the scenario. In object-oriented design process, the classes

and their attributes and methods are identified only in design phase. Therefore,

Mohanta’s method cannot be used until the design phase when all the classes required to

execute the scenario and their reliabilities are known.

On the other hand, the proposed approach computes the reliability of a scenario by

constructing a generalized fault tree for the scenario in Step IV. The approach can be used even

if the required classes to implement the scenario are not known.

7.6 SOFTWARE RELIABILITY PREDICTION AT OBJECT-

ORIENTED DESIGN PHASE

The SFMEA approach for object-oriented design phase presented and discussed in Chapter 6

can be used to predict the software reliability of a particular use-case in design phase by

improving it so that it can investigate the erroneous effects of every message-related error. The

SFMEA approach for use-cases presented in Chapter 4 investigates the effect of every event-

related error. On the other hand, only five types of message-related errors are considered in the

SFMEA approach for object-oriented design phase. Therefore, in order to estimate the

reliability of a given use-case in design phase, the developed SFMEA approach for design

phase should consider the effects of every message-related error.

197

CHAPTER 8

Conclusion and Future Research Directions

This chapter concludes the thesis with a summary of the proposed SFTA and SFMEA

approaches for the object-oriented requirements analysis phase and design phase and

then outlines the directions for carrying out further research in the area. As introduced in

Chapter 1 and analyzed in Chapter 2, the existing SFTA and SFMEA approaches, in the

object-oriented based requirements analysis and design phases, are manual, time-

consuming and error-prone. The thesis has made key contributions by developing

automated and semi-automated SFTA and SFMEA approaches for application in the

early phases of object-oriented based requirements analysis and design. The developed

algorithms use formal textual use-case description and the state diagrams in the SFTA

and SFMEA approaches for object-oriented requirements analysis phase and sequence

and state diagrams for the SFTA and SFMEA approaches for object-oriented design

phase.

A summary of the developed SFTA and SFMEA approaches is given in the next section

8.1 PROPOSED SFTA AND SFMEA APPROACHES - SUMMARY

A review of the current literature on early software reliability estimation for safety

critical software systems clearly demonstrates that the available methods are only for

very late stages in the software development cycle and are manual (heavily dependent on

expertise), cumbersome, time-consuming and error-prone. This thesis is a minimal

attempt to provide a methodology for software reliability estimation at an early stage of

software development cycle and automating the process by using only the information on

use-cases available at the stage of requirements analysis and design.

The introduction about the basics of the SFTA and SFMEA approaches and various

UML models such as use-cases, sequence and state diagrams is presented in Chapter 1.

The research objectives of the thesis are established based upon the problems faced

during the applications of the SFTA and SFMEA approaches in object-oriented based

requirements analysis and design phases.

Conclusion and Future Research Directions

198

The critical review of literature on use of the SFTA and SFMEA applications is done in

two software life-cycle phases, namely requirements analysis and design phases and the

summary of the findings is presented in Chapter 2. Based upon the findings, the current

research gaps especially in the applications of the SFTA and SFMEA approaches in

object-oriented based requirements analysis and design phases are identified. These

research gaps are addressed in subsequent chapters.

In the early prediction of software reliability for safety critical systems, the existing

approaches have limitations. The first approach proposed in this thesis for modeling the

system is using a software fault tree approach. In chapter 3, an approach is presented to

address the first research gap (automating/semi-automating the application of the SFTA

approach in use-case based requirements analysis phase). The approach is applicable as

early as in use-case based requirements analysis. The developed SFTA approach is based

on integrating the features of use-cases and state diagrams to automatically generate a

software fault tree for a hazardous state of the system. The approach first builds the

correct state of the system by mapping the events of the given use-case description

against the states of the participating components and then constructs the software fault

tree for the selected hazardous state of the system. The approach is automated, efficient

and scalable. The limitation of the approach is that it requires the hazardous-state

representation in terms of states of the participating components.

The second approach proposed in this thesis for the failure analysis of safety critical

systems is using a software failure modes and effects analysis approach. The SFMEA

approach developed for use-case based requirements analysis process is discussed in

Chapter 4. The SFTA approach of Chapter 3 only considers state transition errors i.e. the

errors, which prevent a component from making their expected state transitions. The

errors occurring during the execution of other events (where no component is changing

its state) are not considered in the SFTA approach of Chapter 3. In order to overcome

this limitation, a semi-automated SFMEA approach is developed and introduced in use-

case based requirements analysis process. The developed SFMEA approach is discussed

in Chapter 4. The approach is semi-automatic because of the propagating type errors for

normal events are to be identified manually.

The SFTA approach developed for object-oriented design phase is semi-automatic and is

presented and discussed in Chapter 5.The approach takes a sequence diagram and the

state diagrams of the participating objects as inputs. The approach maps the events of

Conclusion and Future Research Directions

199

various messages of the sequence diagram against the state of the participating objects.

The approach is semi-automatic because (i) the approach requires the proper tagging of

the sequence diagram and sequence diagram represents the functionality of only one use-

case scenario and (ii) a specific naming pattern for naming the states of the participating

objects is to be used.

The SFMEA approach developed for object-oriented design phase and presented in

Chapter 6, is automated. This approach is developed to overcome the limitations of the

SFTA approach of Chapter 5. In the developed SFMEA approach, the sequence diagram

can represent multiple scenarios of a given use-case functionality and there is no

restriction on the naming the states of the participating objects. The limitation of the

approach is that only select categories of message errors are supported in the approach.

The existing software reliability prediction approaches for use-cases has a limitation that

these approaches require the results of the successive phases in order to estimate the

reliability of a given use-case functionality. In order to overcome this limitation, a novel

SFMEA and SFTA based approach is developed to predict the software reliability of a

given use-case functionality. The approach does not require any results from the

successive phases and can be used during the use-case based requirements analysis phase

itself. In the proposed approach, the SFMEA technique is first applied on the given use-

case functionality and then software reliability of a use-case is predicted by constructing

a generalized software fault tree for the use-case failure. The advantage of the approach

is that it can be applied either in object-oriented based requirements analysis or in design

phase.

8.2 FUTURE RESEARCH DIRECTIONS AND RECOMMENDATIONS

The developed SFTA and SFMEA approaches have some limitations and these are

discussed at the end of Chapter 3,4,5 and 6.The developed SFTA and SFMEA

approaches, as discussed and presented in Chapter 3 and Chapter 4 respectively, suffer

from the following limitations.

(i) The approaches in the present form does not handle the case where the

participating components are experiencing concurrent state transitions.

(ii) The timing related errors are not addressed neither in the SFTA nor in the

SFMEA approach.

Conclusion and Future Research Directions

200

The SFTA and SFMEA approaches developed for object-oriented design phase,

presented, and discussed in Chapter 5 and Chapter 6 respectively also suffer from the

above-mentioned limitations. Moreover, all the developed approaches depend heavily

on the correctness and completeness of the required inputs.

In order to overcome the above-mentioned limitations, the developed approaches are to

be made more versatile to provide for the following features

(a) Checking the correctness and completeness of the inputs before applying

the algorithms

The developed SFTA and SFMEA approaches for object-oriented based requirements

analysis and design phases are developed under the assumption that the inputs supplied

in the approaches are correct and complete. The approaches do not check the

consistency of the inputs before the application of the approach. The support for this

feature requires the development of correctness and completeness criteria for a given

use-case functionality.

(b) Handling of Concurrent State Transitions

The proposed SFTA and SFMEA approaches for object-oriented requirements analysis

and design phases do not provide the support to handle concurrency. The approaches

are used or applied on the sequential applications where it is possible to know the order

(i) of various messages (in sequence diagrams), (ii) of state transitions (in case of state

diagrams) and (iii) of the occurrence of various events. In concurrent systems, the

individual messages or message sequences may be sent in parallel, the state transitions

may occur in parallel (known as orthogonal states) and in such situations, it is difficult

to know the above-mentioned three facts.

(c) Development of SFTA and SFMA Assisted UML tool

The developed approaches are tested by using a UML tool namely Altova UModeler

(UModel, 2013) tool and a fault tree creation and analysis tool namely FaultCAT

(FaultCAT, 2003). The sequence and state diagrams are drawn using Altova tool and

fault trees are constructed using FaultCAT tool. There does not exist a single UML tool

that supports the features similar to the FaultCAT tool.

Conclusion and Future Research Directions

201

(d) Handling of Timing Related Errors

The timing related errors are not considered in any of the SFTA and SFMEA

approaches discussed in Chapter 3 to Chapter 6. The concept of ‘logical time’,

employed in all the approaches, merely tells which event occurs earlier than the others.

It does not give any information about how much physical time an event actually takes

to execute or respond.

(e) Using SFMEA and SFTA approaches for Software Reliability Prediction in

Object-Oriented Design Phase

An automated SFMEA approach developed for object-oriented design phase and

presented in Chapter 6 only considers a limited number of message-related errors.

However, to predict the software reliability in object-oriented design phase, every

message-related error is to be accounted for and their effects have to be analyzed. So,

in future efforts should be made to include the effects of every message-related error in

the developed SFMEA approach (of Chapter 6) so that the new augmented approach

can be used to predict the software reliability in object-oriented design phase in a

similar way as used in object-oriented requirements analysis phase (Chapter 7).

R-1

References

Allenby, K. and Kelly, T. (2001) ‘Deriving Safety Requirements Using Scenarios’, in

Proceedings of 5th International Symposium on Requirement Engineering (RE

2001) , Toronto, Canada, Aug 27-31, pp.228-235.

Altova-UModel (2014) Commercial UML Tool Trial Version Available at [Online]

http://www.altova.com/umodel.html [Last Accessed 25 October, 2014]

Balz, E. and Goll, J. (2005) ‘Use Case-Based Fault Tree Analysis of Safety-Related

Embedded Systems’, in Proceedings of International Conference on Software

Engineering and Applications, Phoenix, AZ, USA, Nov 14-16, pp.322-330.

Booch, G., Rumbaugh, J. and Jacobson, I. (2005) The Unified Modeling Language User

Guide, Addison Wesley, Second Edition.

Bowles, J. B. and Wan, C., (2001) ‘Software Failure Modes and Effects Analysis for a Small

Embedded Control System’, in Proceeding of Annual Reliability and Maintainability

Symposium (RAMS 2001), Philadelphia, Pennsylvania, USA, Jan 22-25, pp.1-6.

Cepin, M. and Mavko, B. (1999) ‘Fault tree developed by an object-oriented method

improves requirements specification for safety related systems’, Journal of

Reliability Engineering and System Safety, Vol. 63, No. 2, pp.111-125.

Cha, S.S., Leveson, N.G. and Shimeall, T.J. (1988) ‘Safety Verification in Murphy

Using Fault Tree Analysis’, in Proceedings of the 10th International Conference

on Software Engineering (ICSE’88), Singapore, Apr 11-15, pp. 377-386.

Chunping, H., Peiqiong, L. and Yiping, Y. (1997) ‘The Application of Failure Mode and

Effects Analysis for Software in Digital Fly Control System’, in Proceedings of

16th AIAA/IEEE Digital Avionics Systems Conference (DASC), Irvine, CA, USA,

Oct 26-30, pp.8-13.

Cichocki,T. and Górski, J. (2000) ‘Failure Mode and Effect Analysis for Safety-Critical

Systems with Software Components’, in Proceedings of 19
th

 International

Conference on Computer Safety, Reliability and Security (SAFECOMP 2000),

Rotterdam, Netherland, Oct 24-27, pp.382-394.

Cockburn, A. (2000) Writing Effective Use Cases, Addison-Wesley, 2000.

References

R-2

Cortellessa, V, Singh, H. and Cukic, B. (2002) ‘Early reliability assessment of UML

based software models’, in Proceeding of 3rd International workshop on

Software and performance (WOSP’ 02), Rome, Italy, Jul 24-26, pp.302-309.

Cryosat_Rocket_Fault (2005) http://news.bbc.co.uk/2/hi/science/nature/4381840.stm(Last

Accessed on 20th August, 2014).

David, P., Idasiak, V. and Kratz, F. (2008) ‘Towards a better interaction between design

and dependability analysis:FMEA derived from UML/SysML models’, in

Proceedings of 17th European Safety and Reliability Conference (ESREL 2008)

and SRA-Europe, Valencia, Spain, Sep 22-25.

Dehlinger, J. and Lutz, R. R.(2004) ‘Software Fault Tree Analysis for Product Lines’, in

Proceedings of 8
th

 IEEE International Symposium on High Assurance Systems

Engineering (HASE’04), Tampa, FL, USA, Mar 25-26, pp.12-21.

Dehlinger, J. and Lutz, R. R. (2006) ‘PLFaultCAT: A Product-Line Software Fault Tree

Analysis Tool’, Journal of Automated Software Engineering, Vol. 13, No. 1,

pp.169-193.

Douglass, B. P. (2009) ‘Analyze system safety using UML within Telelogic Rhapsody

environment’, White Paper, Rational Software, IBM Software Group, April 2009.

Ern, B, Nguyen, V.Y. and Noll, T. (2013) ‘Characterization of Failure Effects on AADL

Models’, in Proceedings of 32nd International Conference on Computer Safety,

Reliability and Security (SAFECOMP’13), Toulouse, France, Sep 24-27, pp. 241-

252.

FaultCAT (2003) Open Source Fault Tree Creation Project [online]

http://www.iu.hio.no/FaultCat [Last Accessed on 25th October, 2014]

Federal Aviation Administration (FAA) (2004) Handbook for Object-Oriented Technology

in aviation (OOTi) http://www.faa.gov/aircraft/air_cert/design_approvals/

air_software/oot/ [Accessed on April 24, 2014]

Feng, Q. and Lutz, R. R. (2005) ‘Bi-directional safety analysis of product lines’, Journal

of Systems and Software, Vol. 78, No. 2, pp.111-127.

Friedman, M. A. (1993) ‘Automated Software Fault Tree Analysis of Pascal Programs’,

in Proceedings of Annual Reliability and Maintainability Symposium (RAMS’93),

Atlanta, GA, USA, Jan 26-28, pp.458-461.

References

R-3

Georgieva, K. (2010) ‘Conducting FMEA over Software Development Process’, ACM

SIGSOFT Software Engineering Notes, Vol. 35, No. 3, pp.1-5.

Goddard, P. L. (2000) ‘Software FMEA Techniques’, in Proceedings of Annual

Reliability and Maintainability Symposium (RAMS 2000), LA, USA, Jan 24-27,

pp.118-123.

Gomaa H. (2000) Designing Concurrent, Distributed, and Real-Time Applications with

UML, Addison Wesley Object Technology Series, Reading MA, 2000.

Gorski, J. and Wardzinski, A. (1996) ‘Deriving Real-Time Requirements for Software

from Safety Analysis’, in Proceedings of 8th Euromicro Workshop on Real-Time

Systems, L’Aquila, Italy, Jun 12-14, pp.9-14.

Guiochet, J. and Baron, C. (2003) ‘UML based FMECA in risk analysis’, in Proceedings

of European Simulation and Modeling Conference (ESMc2003), Naples, Italy,

Oct 27-29, pp.99-106.

Guichet, J. and Baron, C. (2004) ‘UML based risk analysis - Application to a medical

robot’, in Proceedings of 5th International Conference on Quality Reliability and

Maintenance (QRM’04), Oxford, UK, Apr 1-2, pp.213-216.

Gupta, S., Vinayak, G. V. and Gupta, A. (2012) ‘Software Failure Analysis in

Requirement Phase’, in Proceedings of 5
th

 India Software Engineering

Conference (ISEC 2012), Kanpur, UP, India, Feb 22-25, pp.101-104.

Haapanen, P., and Helmunen, A. (2002) ‘Failure Mode and Effects Analysis of

Software-Based Automation Systems’, STUK-YTO-TR, Aug 2002.

Hansen, K.M., Ravn, A.P. and Starvridou, V. (1998) ‘From Safety Analysis to Software

Requirements’, IEEE Transactions on Software Engineering, Vol. 24, No. 7,

pp.573-584.

Harel, D. et al.(1990) ‘STATEMATE: A Working Environment for the Development of

Complex Reactive Systems’, IEEE Transactions on Software Engineering, Vol.

16, No. 4, pp.403-414.

Harvey, P. (1982) ‘Fault-tree analysis of software’, Master's Thesis, University of

California, Irvine, Jan. 1982.

References

R-4

Hassan, A., Goseva-Popstojanova, K. and Ammar, H. (2005) ‘UML Based Severity

Analysis Methodology’, in Proceedings of Annual Reliability and Maintainability

Symposium (RAMS’05), Alexandria, VA USA, Jan 24-27, pp.158-164.

Hawkins, R. D. (2006) ‘Using Safety Contracts in the Development of Safety-Critical

Object-Oriented Systems’ PhD Thesis, University of York, York, United

Kingdom.

Hawkins, R. D. and McDermid, J. A. (2002) ‘Performing hazard and safety analysis of

object oriented systems’, in Proceedings of 20
th

 International System Safety

Conference (ISSC 2002), Denver, CO, USA, Aug 5-9.

Hecht, H., and Hecht, M. (2004) ‘Computer Aided Software FMEA for Unified

Modeling Language Based Software’, in Proceedings of Annual Reliability and

Maintainability Symposium (RAMS’04), LA, USA, Jan 26-29, pp.243-248.

Heimdahl, M.P. and Leveson, N.G. (1996) ‘Completeness and Consistency checking of

software requirements’, IEEE Transactions on Software Engineering, Vol. 22,

No. 6, pp.363-377.

Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L. and Lutz, R. R. (2002) ‘A

Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection

System’, Journal of Requirement Engineering, Vol. 7, No. 4, pp.207-220.

IEEE-STD-729-1991 (1991) ANSI/IEEE Standard Glossary of Software Engineering

Terminology

Jacobson, I., Christerson, M., Jonsson, P. and Oevergaard, G. (1992) Object Oriented

Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

Johannessen, P., Grante, C. and Torin, J. (2001) ‘Hazard Analysis in Object Oriented

Design of Dependable Systems’, in Proceedings of International Conference on

Dependable Systems and Networks (DSN 2001), Goteborg, Sweden, Jul 1-4, pp.

507-512.

Kim, H., Wong, W.E., Debroy, V. and Bae, D. (2010) ‘Bridging the Gap Between Fault

Trees and UML State Machine Diagrams for Safety Analysis’, in Proceedings of

17
th

 Asia Pacific Software Engineering Conference (APSEC’10), Sydney, NSW,

Australia, Nov 30 – Dec 03, pp. 196-205.

References

R-5

Kong, W., Shi, Y. and Smidts, C.S. (2007) ‘Early Software Reliability Prediction Using

Cause-effect Graphing Analysis’, in Proceedings of Annual Reliability and

Maintainability Symposium (RAMS 2007), Orlando, FL, USA, Jan. 22-25,

pp. 173-178.

Kundu, D. and Samanta, D. (2007) ‘An Approach for Assessment of Reliability of the

System Using Use Case Model’, in Proceedings of 10th International conference

on Information Technology (ICIT 2007), Orissa, India, Dec 17-20, pp.243-245.

Lann, GE (1997) 'An Analysis of the Ariane 5 Flight 501 Failure - A System

Engineering Perspective' in Proceedings of the International Conference and

Workshop on Engineering of Computer-Based Systems, Monterey, CA, USA,

Mar 24-28, pp. 339 - 346.

Lauer, C. and German, R. (2011) ‘Fault Tree Synthesis from UML Models for

Reliability Analysis at early Design Stage’, ACM SIGSOFT Software

Engineering Notes, Vol. 36, No. 1, pp.1-8.

Lauritsen, T. and Stalhane, T. (2005) ‘Safety Methods in Software Process

Improvement’, in Proceedings of 12th European Conference on Software

Process Improvement, EuroSPI 2005, Budapest, Hungary, Nov 9-11, pp.95-105.

Leveson, N. G. and Harvey, P.R. (1983a) ‘Software Fault Tree Analysis’, Journal of

Systems and Software, Vol. 3, No. 2, pp.173-181.

Leveson, N. G. and Harvey, P.R (1983b) ‘Analyzing Software Safety’, IEEE

Transactions on Software Engineering, Vol. 9, No. 5, pp.569-579.

Leveson, N. G. and Stolzy, J. L. (1983) ‘Safety Analysis of Ada Programs Using Fault

Trees’, IEEE Transactions on Reliability, Vol. R-32, No. 5, pp.479-484.

Leveson, N. G. (1984) ‘Software Safety in Computer-Controlled Systems’, IEEE

Transactions on Computers, Vol. 17, No. 2, pp.48-55.

Leveson, N. G. (1986) ‘Software Safety: Why, What and How’, ACM Computing

Surveys, Vol. 18, No. 2, pp.125-163.

Leveson, N.G., Cha, S.S. and Shimeall, T.J. (1991) ‘Safety verification of Ada programs

using software fault trees’, IEEE Transactions on Software, Vol. 8, No.4, pp.48-59.

References

R-6

Leveson, N.G., Heimdahl, M.P., Hildreth, H. and Reese, J.D. (1994) ‘Requirements

specification of process-control systems’ IEEE Transactions on Software

Engineering, Vol. 20, No. 9, pp.48-59

Liu, J., Dehlinger, J. and Lutz, R.R. (2007) ‘Safety Analysis of Software Product Lines

Using State-Based Modeling’, Journal of Systems and Software, Vol. 80, No. 11,

pp.1879-1892.

Lu, S., Halang, W. A., Schmidt, H.W. and Gumzej, R. (2005) ‘A Component-based

Approach to Specify Hazards in the Design of Safety-Critical Systems’, in

Proceedings of 3
rd

 IEEE International Conference on Industrial Informatics

(INDIN’05), Perth, Australia, Aug 10-12, pp.680-685.

Lu, S., Halang, W. A. and Zaleski, J. (2005) ‘Component-based HazOp and Fault Tree

Analysis in Developing Embedded Real-Time Systems with UML’, in

Proceedings of 4th WSEAS International Conference on ELECTRONICS,

CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, Nov 17-19,

pp.150-155.

Lutz, R. R. and Woodhouse, R. M. (1996) ‘Experience Report: Contributions of SFMEA to

Requirement Analysis’, in Proceedings of 2nd International Conference on

Requirements Engineering (ICRE’96), Colorado Springs, Colorado, USA, Apr 15-

18, pp.44-51.

Lutz, R.R. and Woodhouse, R. M. (1997) ‘Requirements analysis using forward and

backward search’, Annals of Software Engineering, Vol. 3, No. 1, pp.459-475.

Lutz, R.R. (1998) ‘Safety Analysis of Requirements for a Product Family’, in

Proceedings of 3
rd

 International Conference on Requirements Engineering

(ICRE'98), Colorado Springs, CO, USA, Apr 6-10, pp.24-31.

Lutz, R., Patterson-Hine, A., Nelson, S., Frost, C. R., Tal, D. and Harris, R. (2007)

‘Using obstacle analysis to identify contingency requirements on an unpiloted

aerial vehicle’, Journal of Requirements Engineering, Vol. 12, No. 1, pp.41-54.

Medikonda BS, Ramaiah PS (2010)‘Integrated Safety Analysis of Software-Controlled

Critical Systems’, ACM SIGSOFT Software Engineering Notes, vol. 35, no. 1, pp

1-7.

References

R-7

Meeson, R. (1996) ‘Object-oriented-no panacea for safety’, in Proceedings of 11
th

Annual Conference on Systems Integrity, Software Safety and Process Security

(COMPASS’96), Gaithersburg, MD, USA, Jun 17-21, pp.171-175.

Melhart, B. E. (1990) ‘Specification and Analysis of the Requiremenis for Embedded

Software with an External Interaction Model’, PhD Thesis, University of

California, Irvine, 1990.

Melhart, B. E. (1995) ‘Software Fault Tree Analysis for a Requirement System Model’,

in Proceedings of Intl. Symposium and Workshop on Systems Engineering of

Computer Based Systems, Tucson, AZ, USA, Mar 6-9, pp.133-140.

Meng-Lai, Y. Hyde, C. L. and James, L.E. (2000) ‘A petri-net approach for early-

stage system-level software reliability estimation’ In Proceedings of Annual

Reliability and Maintainability Symposium (RAMS’ 2000), Los Angeles, CA,

USA, Jan 24-27, pp.100-105.

MIL-STD-1629A (1980) ‘Procedures for Performing A Failure Mode, Effects and

Criticality Analysis’, Military Standard, Department of Defense, USA.

Mohanta, S., Vinod, G., Ghosh, A.K. and Mall, R. (2010) ‘An Approach for early

Prediction of Software Reliability’, ACM SIGSOFT Software Engineering Notes,

Vol. 35, No. 6, pp.1-9.

Mojdehbakhsh, R., Subramanian, S., Vishnuvajjala, R., Tsai, W. and Elliott, L. (1994)

‘A Process for Software Requirements Safety Analysis’, in Proceedings of 5th

Intl. Symposium on Software Reliability Engineering (ISSRE’94), CA, USA; Nov

6-9, pp.45-54.

Musa, J. D. (2002) ‘Operational Profiles in Software-Reliability Engineering’, IEEE

Transactions on Software, Vol. 10, No. 2, pp. 14-32.

Nggada, S. H. (2012) ‘Software Failure Analysis at Architecture Level Using FMEA’

International Journal of Software Engineering and Its Applications, Vol.6, No.1,

pp.61-74.

NASA-GB-8719.13 (2004) NASA Software Safety Guidebook, NASA Technical

Standard [http://www.hq.nasa.gov/office/codeq/doctree/871913.pd]

NASA-STD-8719.13C (2013) NASA Software Safety Standard, NASA Technical Standard

[http://www.hq.nasa.gov/office/codeq/doctree/NS871913C.pdf]

References

R-8

Ordonio, R.R. (1993) ‘An Automated Tool to Facilitate Code Translation for Software

Fault Tree Analysis’, M.S. Thesis, Naval Postgraduate School, Monterey, CA,

USA.

Ozarin, N. and Siracusa, M. (2003) ‘A Process for Failure Modes and Effects Analysis of

Computer Software’, in Proceedings of Annual Reliability and Maintainability

Symposium (RAMS’03), Tampa, Florida, USA, Jan 27-30, pp.365-370.

Ozarin, N. (2004) ‘Failure Mode and Effects Analysis during Design of Computer

Software’, in Proceedings of Annual Reliability and Maintainability Symposium

(RAMS’04), LA, USA, Jan 26-29, pp.201-206.

Pai, G. J. and Dugan, J.B. (2002) ‘Automatic Synthesis of Dynamic Fault Trees from

UML System Model’, in Proceedings of 13th International Symposium on

Software Reliability Engineering (ISSRE’02), Maryland, USA, Nov 12-15,

pp.243-256.

Price, C. and Snooke, N. (2008) ‘An Automated Software FMEA’, in Proceedings of

International System Safety Regional Conference (ISSRC 2008), Singapore, Apr

23-25.

Qantas_Flight_72 (2008) http://en.wikipedia.org/wiki/Qantas_Flight_72 (Last Accessed

on 20th August, 2014)

Ratan, V., Partridge, K., Reese, J. and Leveson, N. (1996) ‘Safety Analysis Tools for

Requirements Specifications’, in Proceedings of the 11th Annual Conference on

Computer Assurance Systems Integrity Software Safety Process Security

(COMPASS '96), Gaithersburg, MD, USA, Jun 17-21, pp.149-160.

Reifer, D. J. (1979) ‘Software Failure Modes and Effects Analysis’, IEEE Transactions

on Reliability, Vol. R-28, No. 3, pp.247-249.

Reid, W.S. (1994) ‘Software Fault Tree Analysis of Concurrent Ada Processes’, MS

Thesis, Naval Postgraduate School, Monterey, California, USA.

Reinhardt,D. W. (2004) ‘Use of the C++ Programming Language in Safety Critical

Systems’, Master Thesis, University of York, USA.

Schellhorn,G., Thums,A. and Reif,W. (2002) 'Formal Fault Tree Semantics', in

Proceedings of the 6th World Conference on Integrated Design and Process

Technology (IDPT’ 2002), Pasadena, CA, USA, Jun 23-28.

References

R-9

Singh, H., Cortellessa, V, Cukic, B, Gunel, E. and Bharadwaj, V. (2001) ‘A bayesian

approach to reliability prediction and assessment of component based system’,

in Proceedings of 12
th

 International Symposium on Software Reliability

Engineering (ISSRE’92), Hong Kong, China, Nov. 27-30, pp.12-21.

Snooke, N. (2004) ‘Model-based Failure Modes and Effects Analysis of Software’, in

Proceedings of 15th International Workshop on Principles of Diagnosis (DX-

2004), Carcassonne, France, Jun 23-25, pp.221-226.

Snooke, N. and Price, C. (2011) ‘Model-driven Automated Software FMEA’, in

Proceedings of Annual Reliability and Maintainability Symposium (RAMS’11),

Lake Buena Vista, FL, USA, Jan 24-27, pp.1-6.

Sommerville, I. (2005) Software Engineering, Seventh Edition, Pearson Addison

Wesley, 2005.

Stadler, J.J and Seidl, N.J. (2013) ‘Software Failure Modes and Effects Analysis’, in

Proceedings of Annual Reliability and Maintainability Symposium (RAMS’13),

Orlando,FL,USA, Jan 28-31, pp. 201-206.

Taylor, J. R. (1982) ‘Fault Tree and Cause Consequence Analysis for Control Software

Validation’, Technical Report, RISO-M-2326, Risd National Laboratory,

Denmark.

Tiwari, S., Rathore, S. S., Gupta, S., Gogate, V. and Gupta, A. (2012) ‘Analysis of Use

Case Requirements Using SFTA and SFMEA Techniques’, in Proceedings of

17th International Conference on Engineering of complex Computer Systems

(ICECCS, 2012), Paris, France, Jul 18-20, pp. 29-38.

Towhidnejad, M, Wallace, D. R. and Gallo, A. M. (2002) ‘Fault Tree Analysis for Software

Design’, in Proceedings of 27th Annual NASA Goddard/IEEE Software Engineering

Workshop (SEW’02), Greenbelt, Maryland, USA, Dec 5-6, pp.24-30.

Towhidnejad, M., Wallace, D.R. and Gallo, A. M. (2003) ‘Validation of Object Oriented

Software Design with Fault Tree Analysis’, in Proceedings of 28th Annual NASA

Goddard/IEEE Software Engineering Workshop (SEW’03), Greenbelt, Maryland,

USA, Dec 3-4, pp.209-215.

References

R-10

Tripathi, R. and Mall, R. (2005) ‘Early Stage Software Reliability and Design

Assessment’, in Proceedings of 12
th

 Asia-Pacific Software Engineering

Conference (APSEC 2005), Taipei, Taiwan, Dec 15-17, pp.341-348.

Troubitsyna, E. (2011) ‘Failure Modes and Effects Analysis of Use Cases: A Structured

Approach to Engineering Fault Tolerant Requirements’, in Proceedings of 4
th

International Conference of Dependability (DEPEND 2011), French Riviera,

Nice/Saint Laurent du Var, France, Aug 21-27, pp.82-87.

Tsuchiya, T., Terada, H., Kusumoto, S., Kikuno, T. and Kim, E. M. (1997) ‘Derivation

of Safety Requirements for Safety Analysis of Object-Oriented Design

Documents’,in Proceedings of 21st Annual International Conference on

Computer Software and Applications (COMPSAC 1997), Washington, DC, USA,

Aug 11-15, pp.252-255.

Vesely, W.E., Goldberg, F.F., Roberts, N.H. and Haasl, D.F. (1981) Fault Tree

Handbook, NUREG-0492, U.S. Nuclear Regulatory Commission, Washington

DC, USA.

Vyas, P. and Mittal, R. K. (2009) ‘Operation Level Safety Analysis for Object Oriented

Software Design Using SFMEA’, in Proceedings of International Advance

Computing Conference (IACC’2009), Patiala, India, Mar 6-7, pp.1675-1679.

Vyas, P. and Mittal, R. K. (2012) ‘Eliciting Additional Safety Requirements from Use

Cases using SFTA’, in Proceedings of 1st International Conference on Recent

Advances in Information Technology(RAIT 2012), Dhanbad, India, Mar 15-17,

pp.163-169.

Vyas, P. and Mittal, R. K. (2013) ‘Hazard analysis of Unified Modelling Language

sequence and state charts using software fault tree analysis’, International

Journal of Critical Computer-Based Systems (IJCCBS), Vol. 4, No. 2, pp.173-

197.

Vyas, P. and Mittal, R. K. (2015) ‘The applications of SFTA and SFMEA

approachesduring software development process:an analytical review’,

International Journal of Critical Computer-Based Systems (IJCCBS), Vol. 6, No.

1, pp. 29-49.

References

R-11

Wentao, W. and Hong, Z. (2009) ‘FMEA for UML-based Software’, World Congress on

Software Engineering (WCSE’09), Xianmen, China, May 19-21, pp.456-460.

Weber,W., Tondok,H. and Bachmayer, M. (2005) ‘Enhancing software safety by fault

trees: experiences from an application to flight critical software’, Journal of

Reliability Engineering and System Safety, Vol. 89, No. 1, pp.57-70.

Winter, M. W. and Shimeall, T. J. (1995) ‘Software Fault Tree Analysis of an

Automated Control System Device Written in Ada’, M.S Thesis, Naval

Postgraduate School, Monterey, California.

Yacoub, S, Cukic, B. and Ammar, H. H. (2004) ‘A scenario-based reliability analysis

approach for component-based software’,IEEE Transactions on Reliability,

Vol.53, No. 4, pp. 465-480.

Appendix-I

Fault Tree Constructed from the faulttree.xml file of Figure 3.14 Using FaultCAT Tool

Appendix-II

Fault Tree Constructed from the faulttree.xml file of Figure 3.16 Using FaultCAT Tool

Appendix-III

Fault Tree Constructed from the faulttree.xml file of Figure 3.18 Using FaultCAT Tool

Appendix-IV

Fault Tree Constructed from the faulttree.xml file of Figure 3.22 Using FaultCAT Tool

Fault Tree Constructed from the faulttree.xml file of Figure 5.5 Using FaultCAT

Appendix

Fault Tree Constructed from the faulttree.xml file of Figure 5.5 Using FaultCAT

Appendix-V

Fault Tree Constructed from the faulttree.xml file of Figure 5.5 Using FaultCAT Tool

Fault Tree Constructed from the faulttree.xml file of Figure 5.7 Using FaultCAT Tool

Appendix

Fault Tree Constructed from the faulttree.xml file of Figure 5.7 Using FaultCAT Tool

Appendix-VI

Fault Tree Constructed from the faulttree.xml file of Figure 5.7 Using FaultCAT Tool

Fault Tree Constructed from the faulttree.xml file of Figure 5.11 Using FaultCAT Tool

Appendix

Fault Tree Constructed from the faulttree.xml file of Figure 5.11 Using FaultCAT Tool

Appendix-VII

Fault Tree Constructed from the faulttree.xml file of Figure 5.11 Using FaultCAT Tool

Fault Tree Constructed from the faulttree.xml file of Figure 5.13 Using FaultCAT Tool

Appendix

Fault Tree Constructed from the faulttree.xml file of Figure 5.13 Using FaultCAT Tool

Appendix-VIII

Fault Tree Constructed from the faulttree.xml file of Figure 5.13 Using FaultCAT Tool

List of Publications

JOURNALS

[1] Vyas, P. and Mittal, R.K. (2013) ‘Hazard analysis of Unified Modelling Language

sequence and state charts using software fault tree analysis’, International. Journal

of Critical Computer-Based Systems (IJCCBS), Vol.4, No.2, pp.173-197.

[2] Vyas, P. and Mittal, R.K. (2015) “The Applications of SFTA and SFMEA

Approaches During Software Development Process: An Analytical Review”,

International. Journal of Critical Computer-Based Systems (IJCCBS), Vol.6, No.1,

pp.29-48.

CONFERENCES

[1] Vyas, P. and Mittal, R.K. (2006) ‘Application of Safety Analysis Techniques in

Object Oriented in Software Design’,in 3rd International Conference On Quality,

Reliability AND Infocomm Technology (ICQRIT’ 2006), New Delhi, Dec 2-4.

[2] Vyas, P. and Mittal, R.K. (2009) ‘Operation Level Safety Analysis for Object

Oriented Software Design Using SFMEA”, in Proceedings of International Advance

Computing Conference (IACC’2009), Patiala, India, Mar 6-7, pp.1675-1679.

[3] Vyas, P. and Mittal, R.K. (2012) “Eliciting Additional Safety Requirements from

Use Cases using SFTA”, in Proceedings International Conference on Recent

Advances in Information Technology(RAIT 2012), Dhanbad, India, Mar 15-17,

pp.163-169.

COMMUNICATED

[1] Vyas, P. and Mittal, R.K. (2014) “Automated SFTA Approach for Use-case

based Requirements Analysis Process”, International Journal of Automated

SoftwareEngineering, Springer-Verlag

[2] Vyas, P. and Mittal, R.K. (2014) “A Novel Approach for Early Prediction of

Software Reliability of Use-Cases”, International Journal of Reliability and

Safety (IJRE), Inderscience Publishers.

[3] Vyas, P. and Mittal, R.K. (2014) “Safety Analysis of UML Dynamic Models

Using Automated Software FMEA Approach”, in Proceedings of 8
th

 India

Software Engineering Conference (ISEC 2015).

Brief Biography of the Candidate

PANKAJ VYAS received the B.E. (Computer Science) degree from Amravati

University, Amravati (INDIA) in 1993 and the M.E. degree in Computer Science from

Birla Institute of Technology and Science (BITS), Pilani (INDIA) in 2002. He had

taught at SRPA AB College Pathankot for eight years from 1994 to 2002. Since 2002,

he is working as a Lecturer in the Department of Computer Science and Information

System at BITS-Pilani, Pilani Campus and since then he has taught several courses

namely ‘Object Oriented Programming’, ‘Advanced Operating Systems’, ‘Software

Engineering’ etc. His research interests include software quality improvement, safety

enhancement of object-oriented systems, software safety analysis techniques and early

software reliability estimation of object-oriented software systems.

Brief Biography of the Supervisor

R K MITTAL is currently Senior Professor and Director (Special Projects) at Birla

Institute of Technology & Science, Pilani. Before that he was a Director of BITS-Pilani,

Dubai Campus, Dubai from July 2010 to March 2014, where he introduced several

reforms and brought the changes to align with BITS, Pilani.

He obtained his B.E, M.E and Ph.D Degrees from BITS-Pilani, Pilani Campus. He was

awarded Institute’s Gold Medal for standing First in M.E. program. Prof. Mittal was

leading the Academic Registration and Counselling Division as the Dean until he was

appointed as Deputy Director Administration of BITS Pilani, Pilani Campus in 2009. He

is credited and acknowledged for computerizing the student registration process and

student records, accounts and other processes of the university and spearheading the

BITS Alumni Association (BITSAA). He was also instrumental in establishing and

developing the state-of-the-art Centre for Robotics at BITS-Pilani. Under his leadership,

the institute received achieved the rare distinction of developing the first ever Indian

prototype of a humanoid, “ACYUT”, widely acclaimed in several competitions and the

press alike. He is the co-author of two bestselling books, “Elements of Manufacturing

Processes” (PHI) and “Robotics & Control” (TMH). His research interests include

software reliability, MEMS/NEMS, nanotechnology, robotics, robust robot motion

planning, vision based robot guidance, mechatronics, modelling and environmental

policy.

He has published extensively in various peer-reviewed, SCI indexed and high impact

national and international journals. Under his able guidance, the Mechanical Engineering

department conducted its first international conference in 2007 “Emerging Mechanical

Technologies: Macro to Nano” (EMTM2N-2007). He was also instrumental in the

successful conduct of the first International Conference on Cloud Computing in the

Middle East region ICCTAM-12 at BITS-Pilani, Dubai Campus. He has delivered

keynotes, invited talks and chaired numerous sessions in International Conferences in

India and abroad. He has guided four Ph.D. students and is currently guiding four Ph.D.

students.

