
Software Fault Trees and Software Failure Modes 

and Effects Approaches for Preliminary Phases of 

Object-Oriented Software Design 

THESIS 

 

Submitted in partial fulfilment of the requirements for the 

degree of 

 

DOCTOR OF PHILOSOPHY 

 

by 

 

PANKAJ VYAS 

(2003PHXF013P) 

 

Under the Supervision of 

Prof. R.K. MITTAL 

 

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE 

PILANI – 333 031 (RAJASTHAN), INDIA 

November 2014 



 

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE 

PILANI  - 333 031 (RAJASTHAN) INDIA 

 

 

CERTIFICATE 

 

This is to certify that the thesis entitled “Software Fault Trees and 

Software Failure Modes and Effects Approaches for Preliminary Phases 

of Object-Oriented Software Design” submitted by PANKAJ VYAS, 

ID.No. 2003PHXF013P for award of Ph.D. Degree of the institute, 

embodies original work done by him under my supervision. 

 

 

 

Date: _____________                               Signature: ___________________ 

Prof. R K MITTAL 

Senior Professor and Director (Special Projects) 

BITS, Pilani (Rajasthan) 

 

 



 

 

 

 

 

 

 

 

 

Dedicated 

to my  

Parents (Shri Ravi Dutt Sharma & Smt. Satya Rani)  

Wife Mrs. Radhna,  

Daughter Gayatri (Guddu) 

 & 

Son Ishaan (Kannu) 



i 

Acknowledgements 

Several people have made significant contributions in the completion of this thesis and 

who deserve special mention.  

First of all I would like to thank my supervisor Prof. R K Mittal (Director, Special 

Projects, BITS Pilani) for his valuable guidance, encouragement and moral support. It 

has been a nice experience and a great pleasure to be associated with such a dynamic 

multi-threaded personality. Besides providing me unflinching encouragement and 

support in various ways, he has helped me in a great way to improve the quality of the 

thesis and to enhance and nourish my intellectual growth. 

Special thanks are due to Prof. B N Jain (Vice-chancellor, BITS-Pilani, Pilani Campus) 

and Prof. G. Raghurama (Director, BITS-Pilani, Pilani Campus) for their constant support 

and encouragement. I am also grateful to Prof. S C Sivasubramanian (Dean, 

Administration & Chief, CAHU) and Prof. S K Verma (Dean, ARD) for their support. 

A special word of appreciation is owed to my DAC members Dr. Yashwardhan Sharma 

and Dr. N.L.Bhanu Murthy for providing the necessary aid and support on several 

occasions. 

I am greatly indebted to Prof. J P Misra (Chief, IPCU), Prof. S S Balahsubramaniam 

(Dean, Academics & Resource Planning), Prof. Sudeept Mohan, Prof. Navneet 

Goyal, Prof. Poonam Goyal, Prof. Mukesh Rohil and Dr. Virender Singh Shekhawat 

for their guidance, constructive comments, and motivation. I thank them for their 

willingness to share their knowledge with me, which was very fruitful in shaping my 

ideas and research. Collective and individual acknowledgements are due to all 

mycolleagues who have directly or indirectly helped me in my work. 

I would also like to thank Mr. Santosh Kumar Saini (Academic Registration & 

Counseling Division) BITS-Pilani, for his help in compilation of thesis. I also express 

my thanks to all the staff members of Computer Assisted & Housekeeping Unit (CAHU) 

and Academic Registration & Counseling Division (ARCD) for their kind support and 

cooperation towards the completion of my thesis. 



Acknowledgements 

ii 

Many thanks are due to all my friends for their continuous support and guidance. I thank 

everybody who was important to the successful realization of this thesis, as well as 

express my apology that I could not mention personally one by one. 

Words fail to express my gratitude to my parents, wife Radhna, daughter Gayatri and son 

Ishaan, who cheerfully sacrificed the time, which rightfully belonged to them to enable 

me to complete this study. Without their support, love, care and prayers, this thesis 

would not have taken this shape. 

Finally, I would like to thank God for always guiding me. 

 

 

 

PANKAJ VYAS 



iii 

Abstract 

Software plays a dominant role in safety-critical applications to control and monitor their 

critical activities. Software safety encapsulates the aspects of software engineering and 

software assurance that provide a systematic approach to identifying, analyzing, tracking, 

mitigating, and controlling hazards and hazardous functions of a system where software 

may contribute either to the hazard or to its mitigation or control, to ensure safe 

operation of the system (NASA-STD-8719.13C, 2013). The role of software safety is to 

make sure that software operates within the defined system context and may not cause 

any unacceptable risk. Software safety analysis is the process of first identifying the 

potential hazardous states of the system and then providing the mitigation means for the 

sources of the identified hazards. Two software safety approaches namely Software Fault 

Tree Analysis (SFTA) (Leveson, 1983a)and Software Failure Modes and Effects 

Analysis (SFMEA) (Reifer, 1979) are the recommended approaches (NASA-GB-

8719.13, 2004) for the analysis of software-induced hazards in the system. SFTA is 

adapted in software domain by borrowing the features of a hardware safety approach 

namely Fault Tree Analysis (FTA) (Vesely et al, 1981). Similarly, Software Failure 

Modes and Effects Analysis (SFMEA) approach is adapted for software by borrowing 

the features of one another hardware, safety approach, namely Failure Modes and Effects 

Analysis (FMEA) (MIL-STD-1629A, 1980). 

SFTA is a deductive, backward (or top-down) safety analysis approach to the analysis of 

software induced critical hazards in the system. SFTA approach is backward or top-down 

in nature because its application starts by first identifying the critical hazardous-state that 

a system can encounter and then identifying the erroneous events responsible for the 

occurrence of the identified hazard-state. On the other hand, SFMEA is inductive, 

forward (or bottom-up) software safety analysis approach and its application first 

identifies the basic software-related errors that can occur in the system and then 

investigates the critical effects of these identified errors on the system. 

Both SFTA and SFMEA approaches have been explored by researchers in three main 

software lifecycle phases namely (i) Implementation or Coding, (ii) Requirements 

Analysis and (iii) Software Design. The inception applications of SFTA and SFMEA 

approaches are mostly manual, tedious and time-consuming and are directed mainly at 
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coding phase. However, later on, researchers are successful in making the applications of 

both these approaches either as semi-automatic or automatic for certain select level of 

high level languages. For example, Friedmann (Friedmann, 1993) introduced a tool that 

automatically constructs a software fault-tree for a given Pascal program. Similarly, 

Ordonio (Ordonio, 1993) introduced an Automated Code Translation Tool (ACTT) to 

partially automate the software fault tree construction process for Ada programs. Reid 

(Reid, 1994) and Winter (Winter, 1995) enhanced the features of the ACTT tool by 

implementing the support for missing Ada structures especially concurrency and 

exception handling mechanisms. Similarly, the application of SFMEA approach has been 

automated for Java language (Snooke, 2004; Price and Snooke, 2008; Snooke and Price, 

2011). 

The current software development techniques are mostly object-oriented based. The 

Unified Modeling Language (UML) (Booch et al, 2005) is the modeling standard for the 

software systems developed using object-oriented techniques. The current focus of SFTA 

and SFMEA research efforts is also directed towards their applications in UML based 

object-oriented software development process. Various UML models are explored as 

potential inputs in these application efforts. The objective of these efforts is to make the 

applications of SFTA and SFMEA approaches as either automatic or semi-automatic. 

But, these efforts, especially in object-oriented based requirements analysis and design 

phases, are not successful. The applications of SFTA and SFMEA approaches are still 

manual and time-consuming in object-oriented based requirements analysis and design 

phases. This key research issue is addressed in this thesis. 

This thesis presents the developed automated and semi-automated SFTA and SFMEA 

approaches for object-oriented requirements analysis and design phases. The developed 

SFTA and SFMEA approaches for object-oriented based requirements analysis phase, 

take the Use-Case Models (UCM) and state diagrams as inputs. The developed SFTA 

approach for object-oriented requirements analysis phase is automatic whereas the 

SFMEA approach for object-oriented requirements analysis phase is semi-automatic. 

The UML sequence and state diagrams are used as inputs in the developed SFTA and 

SFMEA approaches in object-oriented design phase. The SFTA approach developed for 

object-oriented design phase is semi-automatic whereas the SFMEA approach developed 

for object-oriented design phase is automatic. Three software controlled safety-critical 

case study applications namely (i) Elevator Control System (ECS) (Gomaa, 2005), 
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(ii) Rail Track Door Control System (RTCS) (Medikonda and Ramaiah, 2010) and 

(iii) Insulin Delivery System (IDS) (Sommerville, 2005) are used to demonstrate the 

applications of the developed approaches. The assumptions, relative advantages and 

limitations of each developed approach are also discussed. 

In the final part of this thesis, a novel approach is presented to predict the software 

reliability of a given use-case functionality during the requirements analysis phase itself. 

The approach is based upon the applications of the developed SFMEA and SFTA 

approaches for object-oriented based requirements analysis and design phases.  
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CHAPTER 1 

Introduction 

Software is being used extensively these days in controlling and monitoring the 

functionalities of many safety-critical systems. Software has been employed in this role 

to control and monitor the working of these systems in an unambiguous, hazard-free 

and more reliable manner. However, the experience observed in the last three decades 

is not up to the expectations of the software developers. For example, software induced 

control errors have been found to be the main reasons behind the occurrence of two 

famous catastrophic events such as Threac25 (Leveson, 1993) and Ariane5 (Lann, 

1997) and more recent incidents are CryosatRocket failure (Cryosat_Rocket_Fault, 

2005) and QantasFlight failure (Qantas_Flight_72, 2008).Moreover, simple searches 

query ‘Software Related Failures’ on a search engine returns the links of many more 

similar examples. Hence, improving the quality of safety-critical software - particularly 

enhancing its software safety (Leveson and Harvey, 1984, 1986) aspect, has become a 

prime concern for software developers of safety-critical system. 

The role of software safety is to make sure that software will operate within the defined 

system context and will not cause any unacceptable risk. Software safety aspect of the 

system is generally improved and enhanced by employing two types of software failure 

analysis methods. The first method starts the software failure analysis process by first 

identifying the various software related errors that can occur in the system during 

operation and then investigating the catastrophic effects (hazardous-states) that may be 

caused because of those errors (if the errors go undetected and without any safeguards) 

on the system. On the other hand, the second method starts the analysis by first 

identifying the critical hazardous-states that a system can encounter and then finding 

out the software related errors responsible for the occurrence of these hazardous-states. 

The first form of safety analysis is known as a forward-safety analysis (bottom-up 

i.e. errors to hazard analysis) whereas the second form is known as backward-safety 

analysis (top-down i.e. hazard to error analysis). 

Over the years, researchers are applying traditional well-tested, well-documented and 

standardized hardware safety analysis and reliability estimation techniques to software. 
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Software Fault Tree Analysis (SFTA – a Top Down or backward safety analysis) 

(Taylor, 1982; Leveson and Harvey, 1983a,1983b) and Software Failure Modes and 

Effects Analysis (SFMEA- Bottom up or forward safety analysis) (Reifer,1979; 

Georgieva, 2010; Stadler and Seidl,2013) are such techniques adapted from the hardware 

domain for the analysis of software related erroneous events. SFTA is an extension of a 

hardware safety analysis technique named Fault Tree Analysis (FTA) (Vesely et al, 

1981) to software. Similarly, SFMEA is an extension of hardware safety analysis 

approach named Failure Modes Effects Analysis (FMEA) (MIL-STD-1629A,1980) to 

software. The applications of these approaches are complementary in nature because of 

their backward and forward analysis methods and when used together they generally 

augment the results obtained by the application of the other approach. For example, the 

application of SFMEA can help to identify the effects of the software related errors, 

which have been missed during the application of SFTA approach. Similarly, the 

application of SFTA can help to identify the basic software errors, which may have been 

missed during the application of SFMEA approach. National Aeronautics and Space 

Administration (NASA) recommend to apply both these approaches (NASA-GB-

8719.13, 2004), especially in three phases, namely requirements analysis, software 

design and coding/implementation phases of software life cycle in order to improve the 

overall robustness of the system. 

Over the years, the researchers have either explored the effective strengths of both SFTA 

and SFMEA approaches, via standalone or integrated applications, in almost every phase 

of software life cycle. The current focus of both, SFTA and SFMEA research efforts, have 

been directed towards their integrated application in the early phases of software 

development lifecycle namely requirements analysis and design phases of object-oriented 

software development process. Object-oriented techniques and their associated industry 

modeling standard Unified Modeling Language (UML) (Booch et al, 2005), have 

revolutionized the software development process and their use has even started for 

developing safety-critical applications as well. That is why, both SFTA and SFMEA 

approaches are being explored by the research community for their effectiveness in object-

oriented development process.UML provides the modeling support in every phase of 

object-oriented software development process. The UML models are used for the 

applications of SFTA and SFMEA approaches in various phases of object-oriented 

software development. For example, use-case models (UCM) (Jacobson et al, 1992; 
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Cockburn, 2000) are used as a standard requirement modeling tool and have been used for 

applying SFTA and SFMEA approaches in object-oriented requirements analysis phase 

(Balz and Goll, 2005; Douglass, 2009; Troubitsyna, 2011; Gupta et al, 2012). Similarly, 

sequence and state diagrams are used to depict the dynamic/functional/behavioral aspects 

of the system and have been used for the applications of both SFTA and SFMEA 

approaches in the object-oriented software design phase (Pai and Dugan, 2002; 

Towhidnejad, 2003; David et al, 2008; Kim et al, 2010). 

The inception applications of both SFTA and SFMEA approaches were manual, 

tedious and time-consuming and are directed mainly at coding phase (Reifer, 1979; 

Taylor, 1982; Leveson and Stolzy, 1983; Cha et al, 1988; Leveson et al, 1991).Later 

on, researchers have been successful in making the applications of both these 

approaches either semi-automatic or automatic for some high level languages. For 

example, Friedmann (Friedmann, 1993) described a tool that automatically constructs 

a software fault-tree for a given Pascal program. Ordonio (Ordonio, 1993) described 

an Automated Code Translation Tool (ACTT) to partially automate the software fault 

tree construction process for Ada programs. Reid (Reid, 1994) and Winter (Winter, 

1995) enhanced the features of the ACTT tool by implementing the support for 

missing Ada structures especially concurrency and exception handling mechanisms. 

Similarly, the application of SFMEA approach has been automated for Java language 

(Snooke, 2004; Price and Snooke, 2008; Snooke and Price, 2011). 

Currently, the available methodologies for applications of SFTA and SFMEA 

approaches in object-oriented requirements analysis and design phases are not only 

manual but also without any systematic method. Many researchers are making efforts 

either to semi-automate or fully automate the applications of these approaches.  

However, these efforts have not been reported as fully successful so far. Especially, in 

use-case based requirements analysis phase and in UML based modeling phase, the 

applications of both these approaches are still manual, time-consuming and hence error 

prone. A complete update of review of the literature is given in Chapter 2.  

This thesis is the documentation of the research efforts in applying SFTA and SFMEA 

approaches in the early phases of the software development for safety critical software 

systems and automating the processes to the extent possible for safety analysis and 

reliability estimation. The thesis presents the novel approaches developed to automate or 

semi-automate the applications of SFTA and SFMEA approaches in both object-oriented 
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requirements analysis and object-oriented design phases. The novel algorithms are 

developed using UML use-case models for the applications of both approaches in object-

oriented requirements analysis phase. Similarly, algorithms are developed using UML 

sequence and state diagrams for the applications of these approaches in object-oriented 

design phase. 

Software reliability is defined as the probability of failure-free operation of a software 

system for a specified time in a specified environment. Generally, the reliability of a 

software system is assessed during the testing phase or more specifically after the 

implementation phase. The review of the literature for software reliability indicates that there 

exist few approaches, which can be used to estimate the software reliability during the early 

software development phases, especially in requirements analysis and design phases. This 

thesis aims to use the applications of SFTA and SFMEA approaches for estimating the 

reliability of object-oriented software systems during requirements analysis and design 

phases and presents the use of results of both SFTA and SFMEA application approaches for 

early software reliability estimation. 

1.1 GAPSIN RESEARCH 

As mentioned earlier, that there are ongoing efforts among the researchers to automate or 

semi-automate the applications of SFTA and SFMEA approaches in object-oriented 

based requirements analysis and design phases. In order to address this key research 

issue, this thesis aims to achieve the following research objectives. 

1. Developing algorithms for automatic or semi-automatic application of SFTA and 

SFMEA approaches in Use-Case based requirements analysis phase. 

2. Developing algorithms for automatic or semi-automatic applications of SFTA and 

SFMEA approaches in UML based object-oriented design phase. 

3. Developing a SFTA and SFMEA based approach for early reliability prediction of 

use-case functionality. 

1.2 THESIS ORGANIZATION 

In order to achieve the above-mentioned research objective, the thesis is organized as 

follows. 

The rest of this first chapter gives a brief introduction of the fundamentals of SFTA and 

SFMEA approaches respectively. This is followed by the introduction of three UML 
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models named use case models, sequence diagrams and state diagrams in object-

oriented software development process. 

Chapter 2 presents the up to date review of the published literature on the use of SFTA 

and SFMEA approaches in the software requirement analysis and design phases. The 

research gaps in the applications of the SFTA and SFMEA approaches, especially in 

the requirements analysis and design phases, are presented at the end of the Chapter. 

Chapter 3 presents a new automated SFTA approach for use-case based requirement 

analysis phase. The formal description of a given use-case functionality and the state 

diagrams of the participating components are used as inputs. The approach is validated 

via its applications on the use-case functionalities selected from two software 

controlled safety-critical applications namely (i) Elevator Control System (ECS) and 

(ii) Rail Track Door Control System (RTCS). 

Chapter 4 presents a new semi-automated SFMEA approach for object-oriented 

requirements analysis phase. The approach is developed to overcome some of the 

limitations of the SFTA approach of Chapter 3. The strengths of the developed SFMEA 

approach are demonstrated by applying it on two safety-critical case study applications 

namely (i) Insulin Delivery System (IDS) and (ii) Rail Track Door Control System (RTCS). 

Chapter 5 describes the proposed semi-automated SFTA approach for UML based 

object-oriented design phase. The UML sequence diagram drawn for a given use-case 

functionality and the state diagrams of the collaborating objects are used as inputs. The 

hazardous-states, for which the fault trees are constructed, are selected from an ECS 

application. 

Chapter 6 describes the proposed automated SFMEA approach for object-oriented 

design phase. The approach is developed to overcome some of the limitations of the 

SFTA approach of Chapter 5. 

The relative merits and limitations of the proposed SFTA and SFMEA approaches are 

discussed at the end of Chapters 3 to Chapter 6. 

Chapter 7 describes a SFMEA and SFTA based early software reliability prediction 

approach for use-case based requirements analysis phase. The approach is applied on the 

use-cases selected from IDS and RTCS applications. The comparative analysis of the 

proposed approach with other similar approaches is presented at the end of the chapter. 
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A summary of the  work done for this thesis, namely the SFTA and SFMEA 

approaches developed for object-oriented based requirements analysis and design 

phases, is given in Chapter 8. The directions for carrying out further research, in order 

to overcome the shortcomings of the developed approaches, are also outlined. 

1.3 SOFTWARE FAULT TREE ANALYSIS 

SFTA is a deductive safety analysis approach for the analysis of software induced 

critical hazards in the system. The approach is backward or top-down in the sense that 

its application first selects a critical hazardous-state that a system can encounter and 

then recursively traces its causes in backward direction either in code or in design or in 

specified requirements, to identify all the logical combinations of software related 

errors that contribute towards the occurrence of the selected critical hazardous-state 

until the basic software related errors are reached. The root node event (hazard-state) 

and the basic error events are joined by suitable events and gate symbols. The 

application of SFTA approach results in a tree like graphical structure known as -

software fault tree whose root node represents the specified critical hazardous-state and 

the leaf nodes represent the identified basic software related errors. The symbols used 

for the events and gates, that are used to draw the software fault tree, are shown in 

Table 1.1 and a simple fault tree with four basic events and three logical gates is shown 

in Figure 1.1.  

The software fault tree can be analyzed either qualitatively way or quantitatively. These 

two analysis approaches for software fault trees are explained in following two sections 

by taking a sample fault tree of Figure 1.1, as an example. 

1.3.1 Qualitative Analysis 

The objective of qualitative analysis (also known as cut-set analysis) is to find out all the 

possible logical combinations of basic events that can cause the selected hazardous state 

(root node).A logical combination of basic events leading to hazardous state is known as 

a cut set.A cut setis known as a minimal cut set, if it contains a minimum number of 

logically related erroneous events that still can cause the root hazard.  



Table 1.1: Symbols used for 

Events Symbol

Basic Event 
 

Top Event / 

Intermediate 

Event 

Fault Tree Logic Gate Symbols

Logic Gates Symbol

AND 

OR 

Figure 1.1 A Sample 

Symbols used for Fault Tree Events and Logic Gates 

Fault Tree Event Symbols 

Symbol Description 

A basic initiating fault (or failure event). 

event does not need further resolution. 

 
An event to be analyzed (a root node). It can also 

be used for intermediate event. 

Fault Tree Logic Gate Symbols 

Symbol Description 

 

The output event occurs only if all input events 

occur 

 

The output event occurs if at least one of the input 

event occurs. 

A Sample Fault Tree for Hazardous-state X 
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ogic Gates  

A basic initiating fault (or failure event). A basic 

. It can also 

if all input events 

The output event occurs if at least one of the input 

 



Introduction 

8 

For example, in fault tree as shown in Figure 1.1, the minimal cut set events are (A,B,C) 

and (A,B,D) with Boolean expressions as A.B+C and A.B+D respectively. (Where dot 

(.) stands for AND operation and (+) stands for OR operation). 

1.3.2 Quantitative Analysis 

The quantitative analysis of fault tree is used to predict the reliability of the system. The 

quantitative analysis is used to calculate the probability of the occurrence of root node 

event using the probabilities of the basic events. For example, in fault tree as shown in 

Figure 1.1, if the probabilities for the occurrence of basic events ‘A’,’B’, ‘C’ and ‘D’ are 

0.2 ,0.2,0.1 and 0.3 respectively, then the probability value for the occurrence of root 

node ‘X’ is ( 0.2 × 0.2 ) × ( 0.1 + 0.3) i.e. 0.016.  

Performing quantitative analysis of any hardware fault tree is easy and feasible because 

the life expectancy and the expected failure modes of any hardware device/component 

are generally known in the public domain. However, the failure data about various 

software related errors is generally not easily available. The quantitative analysis can be 

used to predict the software reliability of the software system by (i) constructing a 

generalized software fault tree for a software failure and (ii) using the probabilities of the 

software related errors. Note that the software reliability is defined as the probability of 

failure-free operation of a software system for a specified time in a specified 

environment. If the root node of the software fault tree represents a generalized 

software failure then the probability of software failure can be computed using the 

probabilities of the software related errors. The software reliability can be predicted 

using this computed value of probability of software failure. 

1.4 SOFTWARE FAILURE MODES AND EFFECTS ANALYSIS 

SFMEA is a forward, inductive and tabular failure assessment approach in the sense 

that its application starts by first identifying the various failure modes of a software 

component and then investigating the effects of those failure modes on the whole 

system. Traditionally, two types of software FMEA approaches have been reported in 

the literature: System Software FMEA and Detailed Software FMEA (Goddard, 2000). 

The system level software FMEA approach covers only the top abstract level 

functionalities of the system (without any focus on implementation) and can be applied 

during the early/initial stages of software development such as in the software 
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requirements analysis and the preliminary design phases. The detailed software FMEA 

is applied in the later stages of software development when either the pseudo code 

description or implemented code of various functionalities is available for analysis. 

Bowles and Wan (Bowles and Wan, 2001) introduced a third SFMEA type named 

Interface Software FMEA to analyze interface related failures that can occur between 

software and hardware interface modules. 

The application of SFMEA approach results in the creation of one or more table known 

as SFMEA tables. For software systems, there is no universally accepted format or 

structure for these SFMEA tables. The contents, structure of these tables depend upon 

the software life-cycle phase in which the approach is applied. A typical SFMEA table 

generally contains the fields as shown in Table 1.2. 

Table1.2: SFMEA Worksheet 

Item 
Failure 

Modes 
Causes 

Effects on the 

System 

Probability of 

Occurrence 

<< Item to be 

explored for 

failure analysis>> 

<< Failure 

Mode of the 

Item>> 

<<Causes of 

the failure 

mode>> 

<< Effects of 

the failure on 

the System>> 

<< Probability 

of occurrence 

of the failure>> 

 

The ‘Item’ column can have various possible values such as a name of an individual 

variable (in code level analysis) or name of method/operation of a class (in design 

phase) etc or name of a use-case related software error (in requirements analysis 

phase). The focus of the qualitative application of the SFMEA approach is generally to 

find out the causes responsible for the selected failure modes of an item and to 

investigate the effects (‘Effects’ column entries) of these failures on the system. The 

analysis becomes quantitative in nature, if the probability value for every failure mode 

of each item is known in advance. Like SFTA, the quantitative application of SFMEA 

approach is also used to predict the reliability of systems. 

1.5 MODELS USED IN UNIFIED MODELING LANGUAGE (UML) 

Unified Modeling Language has emerged an industry-modeling standard for effectively 

representing the static and dynamic aspects of the software system. The UML supports 

nine types of diagrams that can be used in various phases of software development. 



The detailed information about these models can be found in th

(Booch et al, 2005). 

This section gives the overview of the three UML models 

(ii) sequence diagrams and 

thesis for developing the automated and 

SFMEA approaches. The use

SFMEA approaches developed for use in the object

whereas the sequence and state 

developed for the object-oriented design phase.

1.5.1 Use-Case Models 

Use-case models (UCM) are 

that are used to depict the abstract level functionalities offered by the system in the form 

of a graph of actors (users of the system) and 

by the system). A sample UCM 

four use-cases (Functionality1,

Figure

The detailed information about these models can be found in the work of Booch 

the overview of the three UML models namely (i)

sequence diagrams and (iii) state charts. These three UML models are used in this 

automated and semi-automated applications of SFTA and 

The use-case models and state diagrams are used for the SFTA and 

SFMEA approaches developed for use in the object-oriented requirements analysis phase 

and state diagrams are used for the SFTA and SFMEA approaches 

oriented design phase. 

case models (UCM) are introduced in UML as the main requirement analysis tools 

used to depict the abstract level functionalities offered by the system in the form 

(users of the system) and use-cases(functionalities/services offered 

UCM is as shown Figure1.2, with two actors (‘A’

Functionality1, Functionality2, Functionality3 and Functionality4

igure1.2: A Sample Use Case Model 
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e work of Booch 

namely (i) use-cases, 

are used in this 

of SFTA and 

case models and state diagrams are used for the SFTA and 

oriented requirements analysis phase 

and SFMEA approaches 

introduced in UML as the main requirement analysis tools 

used to depict the abstract level functionalities offered by the system in the form 

services offered 

’ and ‘B’) and 

Functionality3 and Functionality4).  
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The services or operations initiated by the actor ‘A’ are Functionality1 and 

Functionality2 whereas the services initiated by actor ‘B’ are Functionality3 and 

Functionality4. 

The formal functional description of each use-case is expressed by filling the details in a 

use-case realization template (UCRT) with sufficient details in English like natural 

language. There is no universally accepted structure and format for writing the UCRT, 

but a typical UCRT contains the items of information as shown in Table 1.3. 

Table 1.3: A Sample Use Case Realization Template 

Use Case 

Name 
<< Name of the use-case>> 

Actor <<Name of the actor who will initiate the use-case>> 

Pre-

condition 
<<The condition that must be true before initiating the use-case>> 

Post-

condition 
<<The condition that must be true after exiting the use-case>> 

Normal Flow of Actions (Main Scenario Action) 

⋮  

<< Actions to be carried out during normal scenario execution>> 

⋮  

Alternative 

Flow 1 
<< Actions to be carried out during alternative scenario-1>> 

Alternative 

Flow 2 
<< Actions to be carried out during alternative scenario-2>> 

⋮  ⋮  

Alternative 

Flow n 
<< Actions to be carried out during alternative scenario-n>> 

 

A given use-case functionality may have any number of alternative paths of execution 

and each such path of execution is known as a scenario. Each scenario has its associated 

list of actions that are executed during the invocation of that scenario. 

The whole object-oriented software development process is use-case driven (Jacobson 

et.al, 1992). The use-cases and the UCRTs developed in the object-oriented 

requirements phase are used as inputs in the succeeding phases of the object-oriented 

life cycle. 



1.5.2 Sequence Diagrams

Sequence diagrams are the main

(i) various objects that are 

execution of a particular use

these participating objects. The participating objects are shown on the horizontal 

dimension whereas the message(s) and the sequences in which they are exchanged are 

shown on the vertical dimension. The participating object

other by sending either synchronous or asynchronous type of message. The symbols 

along with their meaning, which

sample sequence diagram of Figure 

Figure 1.3

When a sender object sends a synchronous message to any other receiver 

sender object is blocked from further communication with any other object unless it does 

Sequence Diagrams 

are the main interaction models in UML which are drawn t

are participating and collaborating with each other in the 

use-case scenario and (ii) various messages exchanged among 

these participating objects. The participating objects are shown on the horizontal 

the message(s) and the sequences in which they are exchanged are 

shown on the vertical dimension. The participating objects can communicate with each 

other by sending either synchronous or asynchronous type of message. The symbols 

meaning, which are used to draw the sequence diagram, are 

sample sequence diagram of Figure 1.3. 

Figure 1.3: A Sample Sequence Diagram 

When a sender object sends a synchronous message to any other receiver object, then

sender object is blocked from further communication with any other object unless it does 
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are drawn to show 

participating and collaborating with each other in the 

various messages exchanged among 

these participating objects. The participating objects are shown on the horizontal 

the message(s) and the sequences in which they are exchanged are 

s can communicate with each 

other by sending either synchronous or asynchronous type of message. The symbols 

are shown via 

 

object, then the 

sender object is blocked from further communication with any other object unless it does 



not get the reply of the previously sent message whe

message the sender object is not blocked. How much time an object will take to respond 

to a received message, is indicated via an activation box (rectangle type symbol) on the 

lifeline of the receiver object.

Software developers generally use various types of stereotypes such as 

<<interface>>, <<device>>

type of the object participating in the interaction

for a software controller object. The 

device type object. Software controller type objects manage the working/functionality of 

the device type of objects. The 

object which acts as a communication medium between a software controller and a 

hardware/device types of objects. Apart from these three stereotypes, the developers can 

introduce any other stereotype also for any other type of obje

requirements. Depending upon the requirement, 

in the sequence diagram and 

(i) The ‘alt’ operator 

The ‘alt’ word stands for alternative set of messages. In 

‘Message 1’ is sent only if condition x=0 is true otherwise message ‘Message 2’ is sent.

The ‘alt’ represents a ‘if then else’ type construct.

number of ‘alt’ block and these ‘alt’ blocks 

Figure 1.4: Sequence Diagram 

not get the reply of the previously sent message whereas in case of asynchronous 

sender object is not blocked. How much time an object will take to respond 

to a received message, is indicated via an activation box (rectangle type symbol) on the 

ifeline of the receiver object. 

s generally use various types of stereotypes such as <<controller>>

<<device>>, <<controller>>along with object names to represent the 

type of the object participating in the interaction. The <<controller>> stereotype is used 

for a software controller object. The <<device>> stereotype is used for a hardware or 

Software controller type objects manage the working/functionality of 

objects. The <<interface>> stereotype is used for a interface type 

object which acts as a communication medium between a software controller and a 

hardware/device types of objects. Apart from these three stereotypes, the developers can 

introduce any other stereotype also for any other type of object depending upon the 

upon the requirement, some interaction operators are also used 

and five of these interaction operators are explained below

The ‘alt’ word stands for alternative set of messages. In Figure 1.4, 

‘Message 1’ is sent only if condition x=0 is true otherwise message ‘Message 2’ is sent.

The ‘alt’ represents a ‘if then else’ type construct. A sequence diagram can have any

number of ‘alt’ block and these ‘alt’ blocks can be in nested form too. 

 

Figure 1.4: Sequence Diagram Example representing an ‘alt’ block
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reas in case of asynchronous 

sender object is not blocked. How much time an object will take to respond 

to a received message, is indicated via an activation box (rectangle type symbol) on the 

<<controller>>, 

along with object names to represent the 

stereotype is used 

stereotype is used for a hardware or 

Software controller type objects manage the working/functionality of 

sed for a interface type 

object which acts as a communication medium between a software controller and a 

hardware/device types of objects. Apart from these three stereotypes, the developers can 

ct depending upon the 

ome interaction operators are also used 

ese interaction operators are explained below. 

 the message 

‘Message 1’ is sent only if condition x=0 is true otherwise message ‘Message 2’ is sent. 

A sequence diagram can have any 

an ‘alt’ block 



(ii) The ‘opt’ operator 

The ‘opt’ operator stands for optional

only if the condition associated with the block is satisfied otherwise the messages in the 

block are skipped. An example of ‘opt’ block is shown in the sequence diagram of 

Figure 1.5. The ‘opt’ represents a ‘if then’ type construct without an else option

Figure 1.5

(iii) The ‘break’ operator

The ‘break’ operator is similar to ‘opt’ block but represents an exceptional scenario 

where either the messages from the ‘break’ block are sent or the messages after the break 

block are sent. A sequence diagram with a ‘break

Figure 1.6

The ‘opt’ operator stands for optional message block. The messages in the block are sent 

the condition associated with the block is satisfied otherwise the messages in the 

An example of ‘opt’ block is shown in the sequence diagram of 

’ represents a ‘if then’ type construct without an else option

 

5: Sequence Diagram with an ‘opt’ block 

The ‘break’ operator 

The ‘break’ operator is similar to ‘opt’ block but represents an exceptional scenario 

from the ‘break’ block are sent or the messages after the break 

block are sent. A sequence diagram with a ‘break’ block is shown in Figure 1.6.

 

6: Sequence Diagram with a ‘break’ block 
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. The messages in the block are sent 

the condition associated with the block is satisfied otherwise the messages in the 

An example of ‘opt’ block is shown in the sequence diagram of 

’ represents a ‘if then’ type construct without an else option. 

 

The ‘break’ operator is similar to ‘opt’ block but represents an exceptional scenario 

from the ‘break’ block are sent or the messages after the break 

’ block is shown in Figure 1.6. 

 



If the condition ‘x=0’ is satisfied then only the messages 

‘Message 1’ and ‘Message 2’ are sent and after that the execution stops (i.e. the message 

‘Message 3’ which is after the ‘break’ block is skipped). However, if the condition is 

false then the messages in the ‘break’ block are skip

outside the block i.e. message ‘Message 3’ is sent only.

(iv) The ‘loop’ operator 

The ‘loop’ interaction operator is used to repeat message sequence either for a fixed 

number of times or until a condition is satisfied. A sequence

interaction operator is shown in Figure 1.7 and according to this figure the messages 

‘Message 1’ and ‘Message 2’ are sent 5 times.

Figure 1.7

(v) The ‘par’ operator 

The ‘par’ operator stands for 

in parallel. The send events 

sequence diagram with ‘par’ block is shown in Figure 1.8

1.5.3 State Charts 

State diagram is also a dynamic interaction model of 

states an object that it transits in its lifetime in response to an outside 

Some of the symbols used to draw the state diagrams are shown in Figure 

can make the transition from one state to 

other object or by receiving a 

If the condition ‘x=0’ is satisfied then only the messages in the ‘break’ block i.e. 

‘Message 1’ and ‘Message 2’ are sent and after that the execution stops (i.e. the message 

‘Message 3’ which is after the ‘break’ block is skipped). However, if the condition is 

false then the messages in the ‘break’ block are skipped (not sent) and the messages 

outside the block i.e. message ‘Message 3’ is sent only. 

The ‘loop’ interaction operator is used to repeat message sequence either for a fixed 

number of times or until a condition is satisfied. A sequence diagram with a ‘loop’ 

interaction operator is shown in Figure 1.7 and according to this figure the messages 

d ‘Message 2’ are sent 5 times. 

 

7: Sequence Diagram with a ‘loop’ block 

 

The ‘par’ operator stands for parallel messages. The messages in the ‘par’ block are sent 

 of the messages that are sent in parallel can be interleaved. A 

sequence diagram with ‘par’ block is shown in Figure 1.8. 

State diagram is also a dynamic interaction model of UML used to depict 

transits in its lifetime in response to an outside stimulus

symbols used to draw the state diagrams are shown in Figure 1.9

from one state to another, either by sending a message to some 

other object or by receiving a message from some other object. 
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in the ‘break’ block i.e. 

‘Message 1’ and ‘Message 2’ are sent and after that the execution stops (i.e. the message 

‘Message 3’ which is after the ‘break’ block is skipped). However, if the condition is 

ped (not sent) and the messages 

The ‘loop’ interaction operator is used to repeat message sequence either for a fixed 

diagram with a ‘loop’ 

interaction operator is shown in Figure 1.7 and according to this figure the messages 

 

parallel messages. The messages in the ‘par’ block are sent 

can be interleaved. A 
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CHAPTER 2 

Literature Review 

This chapter presents the critical review of the published work about the applications of 

SFTA and SFMEA approaches in two phases, namely requirements analysis and 

software design, of software development process.  

2.1 APPLICATIONS OF SFTA APPROACH 

2.1.1 In Software Requirements Analysis Phase 

SFTA application approach for requirements analysis is used either to identify the 

safety related faults in the given requirement specification or to elicit the required 

safety requirements needed to mitigate the considered hazardous state by fault tree 

construction.  

Mojdehbakhsh et al (1994) described a four step approach to identify the safety faults in the 

software requirements specified using the Statemate Case tool (Harel et al., 1990). The first 

step of the approach constructs a software requirement, fault tree (SRFT) automatically from 

the specified requirements and identifies the safety faults. The second step verifies and 

validates the SRFT constructed in the first step. The requirements are generated in the third 

step, which are verified and validated in the fourth step. 

Melhart (1995) used an augmented form state model known as an external interaction 

model (EIM) (Melhart, 1990) for specifying the software requirements and provided 

templates to construct software fault trees directly from an input EIM. The results of the 

analysis can be used for requirements modification and correction. 

Ratan et al (1996) developed a fault tree generator tool to generate fault trees 

automatically from the requirements specified in state-based requirements specification 

language known as Requirements State Machine Language (RSML) but the tool 

generates a fault tree only for one-step backward at a time. However, the main strength 

of the tool is that it also checks for the consistency and completeness of the specified 

requirements during fault tree construction. 
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Gorski and Wardzinski (1996) presented a four step manual approach to derive the safety 

requirements using fault trees defined in a formal model named Common Safety 

Description Model (CSDM). In the first step a fault tree is constructed manually by an 

analyst using domain expertise. The second step defines the constructed fault tree in a 

formal way using CSDM. The third step computes the minimal cut-set events, which are 

used to derive the necessary requirements in the fourth step. 

Tsuchiya et al (1997) proposed an FTA-based technique to derive the necessary safety 

features from the requirement specifications expressed in English like natural language 

for object-oriented systems. 

Lutz and Woodhouse (1997) integrated the application of the SFTA approach with a 

SFMEA approach to analyze the requirements of two spacecraft systems named Cassini 

and Galileo. The integrated application of SFTA and SFMEA approaches enhances the 

consistency, completeness and robustness of the derived safety features. 

Hansen et al (1998) used the features of fault trees and the duration calculus approaches 

to derive the necessary software safety requirements. Helmer et al (2002) has used SFTA 

approach to model the intrusions to determine and verify the security requirements for an 

intrusion detection system (IDS). 

The works reported by Dehlinger & Lutz (2004) and Feng & Lutz (2005), used the 

applications of SFTA and SFMEA approaches for the safety analysis of the product-line 

requirements. The product-line requirements have been specified using a technique 

known as Commonality and Variability Analysis (CVA). CVA is a well-known approach 

used especially in product-line software engineering for identifying the mandatory 

requirements (commonalties) or optional requirements (Variabilities or Variations) for a 

particular product-line member. However, the addition of new variation poses a variation 

management difficulty because they may introduce new dependencies, which make it 

difficult to provide assurance for safety. To overcome this problem, Liu et al (2007) 

introduced a SFTA assisted technique to perform safety analysis on the variations in a 

product line using state-based modeling. 

Lutz et al (2007) used SFTA and SFMEA approaches during the application of ‘Obstacle 

Identification’ step of an approach named obstacle analysis to identify the contingency 

requirements for an unpiloted aerial vehicle (UAV). 
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Balz and Goll (2005) introduced the FTA technique in use-case based system 

development process. The approach is manual in nature and is applied to each use-case 

separately. Use cases (Jacobson et al, 1992; Cockburn, 2000) have been introduced in 

UML based software development process as the standard requirements analysis tool. 

Douglass’s (2009) work stressed upon first drawing the fault tree using the domain 

expertise and then linking the leaf nodes (basic events) of the constructed fault tree with 

the respective use-case functionalities. 

Gupta et al (Gupta et al, 2012) presented an eight-step approach for the integrated 

applications of SFMEA and SFTA approaches in the textual description of the given use 

case functionality. 

The work reported by Tiwari et al (Tiwari et al, 2012) also presented an integrated SFTA 

and SFMEA application approach that takes formal use-case description as the primary 

input.  However, the integrated approach first converts the formal use-case specification 

into a tree known as software success tree (SST) and then constructs a fault tree by 

complementing the nodes of SST. The results of SFTA approach have been further 

analyzed using SFMEA approach. 

Summary of Applications 

To identify safety related faults/errors, SFTA approach has been applied mostly to the 

requirements specified using any state-based representation, either by using a tool 

(Mojdehbakhsh et al, 1994) or a model (Melhart, 95) or a language (Rattan et al, 1996). 

In some published works, the safety requirements are derived by constructing fault 

trees by taking some form of requirements specifications as the primary inputs where 

input requirements are specified either using English like natural language (Tsuchiya et 

al, 1997; Lutz and Woodhouse, 1997) or use-cases (Balz and Goll, 2005;Douglass, 

2009; Gupta et al, 2012) or CVA approach (for product-line requirements) (Dehlinger 

and Lutz, 2004; Feng and Lutz, 2005 and Liu et al, 2007).In some cases, safety 

requirements are derived directly by constructing a fault tree without taking any 

requirement specification as an input (Gorski and Wardzinki, 1996; Hansen et al, 1998, 

Helmer et al, 2002). A comparative summary of the SFTA applications at requirements 

analysis phase is shown in Table 2.1. 
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Table 2.1: Summary of SFTA Applications at Requirements Analysis Phase 

Authors 
Requirements 

Representation 

Approach

es Used 

Application 

Method 

(Manual/ 

Automated) 

Objective 

Mojdehbakh

sh et al 

(1994) 

STATEMATE - a 
state based tool 

SFTA Automated 
To find the safety faults in 
the given requirements 

Melhart 

(1995) 

EIM (External 

Interaction Model- a 

state based model) 

SFTA 

Template-

Based/ 

Manual 

To analyze the specified 

requirements  

Ratan et al 

(1996) 

RSML (-state based 

language) 
SFTA 

Partially 

Automated 

To check the consistency 

and completeness of 

requirements  

Gorski & 

Wardzinski 

(1996) 

- SFTA Manual 
To derive the real time 
requirements 

Tsuchiya et 

al (1997) 

Natural Language 

(English) 
SFTA Manual 

To derive the safety 

requirements 

Lutz & 

Woodhouse 

(1997) 

Natural Language 

(English) 

SFMEA + 

SFTA 
Manual 

To identify the ambiguity, 

inconsistency and missing 

requirements  

Hansen et al 
(1998) 

- 

SFTA + 

Duration 

Calculus 

Manual 
To derive the safety 
requirements 

Helmer et al 

(2002) 
- SFTA Manual 

To derive the security 

requirements 

Balz & Goll 

(2005) 
Use-cases  SFTA Manual 

To derive the safety 

features for a selected use-

case functionality 

Dehlinger & 

Lutz (2004) 

and Feng & 

Lutz (2005) 

Commonality and 

Variability Analysis 
(CVA) 

SFTA + 

SFMEA 
Manual 

To identify the missing 

and new safety 

requirements in product-

line requirements 

Liu et al 

(2007) 

Commonality and 

Variability Analysis 

(CVA) 

SFTA + 

SFMEA 
Manual 

To perform the safety 

analysis of software 

product lines using state-

based modeling and SFTA 

approaches 

Lutz et al 

(2007) 
- 

Obstacle 

Analysis + 

SFTA + 

SFMEA 

Manual 

To aid the application of 

the Obstacle Analysis 

approach to derive the 

contingency requirements 

Douglass 

(2009) 
Use-cases SFTA Manual 

To perform the safety 

analysis of the given use-

case functionality  

Gupta et al. 

(2012) & 

Tiwari et al 

(2012) 

Textual use-case 

description 

SFTA + 

SFMEA 
Manual 

To analyze the use-case 

based requirements  

 

  



Literature Review 

21 

2.1.2 In Software Design Phase 

UML has emerged as a de facto industry-modeling standard for modeling the static as 

well as dynamic aspects of software systems. That is why, the SFTA applications at 

software design phase are applied mostly on UML models. The objectives of applying 

SFTA approach at software design phase are to identify the flaws in the design of a 

software module/component and to identify the modules that are critical from a safety 

point of view. 

Pai and Dugan (2002) presented an algorithm to automatically synthesize dynamic fault 

trees (DFTs) from UML system models for reliability analysis. DFTs are extensions of 

static fault trees, especially to model fault tolerant features such as redundancy etc. The 

reliability related information has been embedded in the UML models. It is to be noted 

that Pai and Dugan (2002) have used UML models for modeling certain hardware 

features such as redundancy, spares and reconfiguration. 

Towhidnejad et al (2002, 2003) provided a partial paradigm in the form of guidelines for 

converting UML activity, state and sequence charts/diagrams to fault trees. The approach 

is manual and time-consuming. 

Hawkins and McDermid (2002) and Hawkins (2006) used UML collaboration diagrams 

to identify unsafe elements in the form objects and also to construct fault trees. The 

unsafe behaviors of the selected unsafe elements are further identified from state charts 

using a technique known as Function Failure Analysis (FFA).  

Lu et al (2005) embedded the fault tree related information in UML component-based 

UML model (CBUM) so that hazard analysis and safety analysis can be performed at the 

same time. Lu, Halang and Zalewski (2005) embedded the information about the 

elements of two approaches named Hazard and Operability (HazOp) and Fault Tree 

Analyses (FTA) into UML component models. 

Kim et al (2010) presented rules and algorithms to automatically transform a hazard 

represented by fault trees to state machine diagram. The objective is to bridge the gap 

between the desired behavior (represented in the form of an original state machine 

diagram) and undesired behavior of the system (represented via fault trees). 

Lauer and German (2011) presented an approach to automatically synthesize fault tree 

from UML component architecture model for reliability analysis during the design stage. 
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The UML models used in the approach as such do not depict any functional aspect of the 

system. Rather, UML has been used to model certain reliability related attributes such as 

fault propagation and fault containment. The objective of the work is reliability analysis 

not safety analysis. 

Table 2.2: Summary of SFTA Applications at Design Phase 

Authors 

Application 

Method (Manual/ 

Automated) 

Purpose (Safety 

Analysis/Reliability 

Analysis)  

Objective 

Pai & Dugan 

(2002) 
Automated Reliability Analysis 

Presented an algorithm to 

construct dynamic fault 

tree from UML models  

Towhidnejad et 

al (2002,2003) 
Manual Safety Analysis 

Provided guidelines to 

construct software fault 

trees from UML activity, 

sequence and state 

diagrams 

Hawkins (2006) 

Hawkins and 

McDermid 

(2002) 

Manual Safety Analysis 

Recommended  to 

construct fault tree from 

collaboration diagram and 

integrated the application 

of Fault Trees and 

Functional Failure Analysis 

(FFA) approaches 

Lu et al (2005) Manual Safety Analysis 

Embedded the fault tree 

related information in 

UML component-based 

UML model (CBUM) 

Lu, Halang & 

Zalewski (2005) 
Manual Safety Analysis 

Embedded the information 

about the elements of two 

approaches named Hazard 

and Operability (HazOp) 

and Fault Tree Analyses 

(FTA) into UML 
component models 

Kim et al (2010) Manual Safety Analysis 

Presented rules and 

algorithms to automatically 

transform fault trees to 

state diagrams 

Lauer & 

German(2011) 
Automated Reliability Analysis 

Presented an approach to 

automatically synthesize 

fault tree from UML 

component architecture 

model for reliability 
analysis during the design 

stage 
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Summary of Applications 

SFTA applications on UML models are applied either for the reliability analysis of 

system or for the safety analysis. For reliability analysis purpose, the approach is 

automated and the reliability related information is embedded in the models itself. For 

the safety analysis purpose, the application of the approach is either manual or semi-

automated. A summary of applications of the SFTA approach on the design phase is 

given in Table 2.2. 

2.2 APPLICATIONS OF SFMEA APPROACH 

2.2.1 In Software Requirements Analysis Phase 

Lutz and Woodhouse (1996) applied SFMEA approach to the requirements analysis of 

critical spacecraft software and the application was found to be successful not only in 

identifying the ambiguities and inconsistencies in the specified requirements but also to 

identify various missing requirements. 

Lutz and Woodhouse (1997) described a two step approach named Bi-Directional Safety 

Analysis (BDSA) that integrates the applications of SFMEA and SFTA approaches. The 

SFMEA approach is applied to the specified requirements in the first step and SFTA has 

been applied in the next step on the results obtained in the first step. The requirements 

are expressed in English text. 

The same BDSA approach was extended for analyzing the product-line requirements 

(Lutz, 1998; Feng and Lutz, 2005) with the two differences.  Firstly, the requirements 

have been specified using a CVA approach (for product-line members). Secondly, both 

approaches are applied separately to the requirements and the results of both approaches 

are compared at the end to find out any mismatch. 

Wentao and Hong (2009) presented a manual SFMEA approach that can be used to use-

case based requirements analysis phase and demonstrated its merits by applying it to the 

use-case model of a typical bank Automated Teller Machine (ATM). The input for the 

approach is the formal description of a given use-case functionality. 

Troubitsyna (2011) used manual SFMEA approach to augment a given use-case model 

with a fault tolerance mechanism. She has recommended creating and defining an 

auxiliary use case (for each actual use-case) to model error recovery. The approach has 

been applied to a use case model of an autonomous robot.  
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Nggada’s work (2012) demonstrated the manual application of the SFMEA approach on 

the use-case model of a Brake by Wire (BBS) System. The works reported by Gupta et al 

(2012) and Tiwari et al (2012) demonstrates the integrated use of SFTA and SFMEA 

approaches in use-cases which have been discussed in Section 4.1 also. 

Summary of Applications 

There exists very little literature work about the application of SFMEA approaches for 

requirements analysis. The SFMEA approach has been used mostly in conjunction with 

SFTA approach for requirements analysis. In some cases (where SFTA and SFMEA are 

used together) the results of SFMEA approach have been used as an input for the 

application of the SFTA approach (Lutz and Woodhouse 1996, 1997; Gupta et al, 2012). 

In some cases the results of SFTA approach have been used as an input for the 

application of SFMEA approaches (Tiwari et al, 2012). A summary of SFMEA 

applications either alone or in conjunction with SFTA approach is shown in Table 2.3. 

Table 2.3: Summary of SFMEA Applications at Requirements Analysis Phase 

Authors 
Requirements 

Representation 

Approaches 

Used 

Application 

Method 

(Manual/ 

Automated) 

Objective 

Lutz & 

Woodhouse 
(1996,1997) 

English Text 
SFMEA + 

SFTA 
Manual 

To identify ambiguity, 

inconsistency in the 

requirements as well as 
to identify missing 

requirements  

Lutz (1998) 

and Feng & 

Lutz (2005) 

Commonality and 

Variability 

Analysis (CVA) 

SFMEA + 

SFTA 
Manual 

To identify the missing 

and new safety 

requirements in product-
line requirements 

Wentao & 

Hong (2009) 

Textual 

Description of Use 

Case 

SFMEA Manual 
Safety Analysis of Use 

Case Models  

Troubitsyna 

(2011) 
Use Case Model  SFMEA Manual 

Augmenting Use case 

Model with Fault 

Tolerant Features 

Nggada(2012) Use Case Model  SFMEA Manual 

To perform the failure 

analysis at use-case 
based requirements 

analysis phase 

Gupta et al. 

(2012) & 

Tiwari et al 

(2012) 

Textual use-case 

description 

SFTA + 

SFMEA 
Manual 

To analyze the use-case 

based requirements  
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2.2.2 In Software Design Phase 

Guiochet and Baron (2003) identified eleven types of message error models for the 

application of a FMECA technique on UML sequence diagrams and used these error 

models for the risk analysis of medical robot (Guiochet and Baron, 2004).     

Hecht and Hecht (Hecht and Hecht, 2004) described a computer-aided SFMEA approach 

that can be used in two stages of software development: concept phase and 

design/implementation phase. The use case diagram can be a potential input for the 

application of the concept phase SFMEA approach, whereas for design/implementation 

phase SFMEA approach, the inputs can be the methods/operations (equivalent to a 

subroutine of assembly languages) of various classes.  

The work presented by Ozarin (Ozarin, 2004) stressed upon the application of the Software 

FMEA approach during the whole software design phase by taking various UML diagrams 

and software grouping constructs as primary inputs. The information about which UML 

diagram should be taken as a possible input, for the application of SFMEA approaches at 

various stages of a software development, can be found in the works of Ozarin (Ozarin, 

2004).  

Hassan et al (Hassan et al, 2005) proposed a five step UML based severity assessment 

methodology based upon the integrated applications of three approaches named Functional 

Failure Analysis (FFA), FMEA and FTA. The FFA is applied during the first step by taking 

use-case diagram and system scenario diagrams as potential inputs. The FMEA approach is 

applied in the second step by taking scenario sequence diagrams and component interaction 

diagrams as inputs. The third step applies an FTA approach on the outputs of the first two 

steps.    

David et al (David et al, 2008) described an approach for generating an FMEA table from a 

sequence diagram, but requires that a database of dysfunctional behaviors of various classes 

(involved in the sequence diagram) should be known in advance. The dysfunctional behavior 

database for various classes provides the basis for identifying the failure modes for each 

class.  

Summary of Applications 

The objective of applying SFMEA during the UML design stage is to do the failure 

analysis of the given UML model. The application process is manual, labor-intensive and 



Literature Review 

26 

costly. We are not able to trace any research paper describing the automation of the 

approach for any UML model. A summary of the published work about SFMEA 

applications on the UML models is given in Table 2.4. 

Table 2.4: Summary of SFMEA Applications at Software Design Phase 

Authors 
Application Method 

(Manual/Automated) 
Objective 

Guiochet and 

Baron 

(2003,2004) 

Manual 

Identified Eleven types of message 

errors and used them for the risk 

analysis of a medical robot 

Hecht and 

Hecht (2004) 
Manual 

Introduced Concept Phase SFMEA 

and Design/Implementation Phase 

SFMEA  

Ozarin(2004) Manual 

Gives the information about which 

UML model should be used as 

input for the application of the 

SFMEA approach during various 

phases of software development 

Hassan et al 

(2005) 
Manual 

Integrates three approaches named 

FFA,FMEA & FTA for the 

severity assessment of UML 

models  

David et al 

(2008) 
Manual 

Described an approach to generate 

an FMEA table from sequence 

diagrams 

 

2.3 RESEARCH GAPS 

Since the inception of both these approaches in the software domain, there are ongoing 

efforts in the research community to automate or semi-automate the applications these 

approaches in almost every phase of software development process. These efforts are 

found to be successful to some extent, so far, only at coding phase (Friedman, 1993; 

Reid, 1994; Winter and Shimeall, 1995; Snooke and Price, 2011).  

As per the analysis given in Table 2.1, the application of SFTA has been applied broadly 

to four categories of requirements specifications as (i) requirements specified using state-

based representation, (ii) requirements specified in English like natural language, 

(iii) requirements specified using CVA approach for product-line engineering and 

(iv) requirements specified using use-cases. So far, SFTA application has been 

automated and semi-automated only for the requirements specified using state-based 

representation. Whereas, for other types of requirements specifications, especially for the 

requirements specified using use-cases, the application of SFTA is still manual. 
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Similarly, as per the analysis shown in Table 2.2, the application of SFTA has been 

automated for reliability analysis but not for safety analysis.   The application of SFMEA 

approach is also still manual in both requirements analysis and software design phases.   

Based upon the analytical review of the applications of both SFTA and SFMEA 

approaches in the requirements analysis and software phases, the following research gaps 

have been identified.  

Research Gap I: In use-case based requirements analysis process the application of 

both SFTA and SFMEA approaches is still manual.   

Research Gap II: The application of both SFTA and SFMEA approaches in UML based 

software design phase is still manual from safety analysis point of 

view. 
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CHAPTER 3 

Software Fault Tree Analysis Approach in Use-Case 

based Requirements Analysis Phase 

This chapter presents the automated SFTA technique in use-case based requirements 

analysis phase. The application of the SFTA approach is automatic where a fault tree 

for a given hazardous-state for a safety-critical system is constructed automatically. 

The formal textual description of a given use-case functionality, the UML state 

diagrams of the participating components and the hazardous-state (for which a fault 

tree is to be constructed) of the system are required as inputs in the proposed SFTA 

approach. The proposed technique has been validated by applying it to the use-case 

functionalities of two safety-critical applications, namely Elevator Control System 

(ECS) (Gomaa, 2000) and Rail Track-Door Control System (RTCS) (Medikonda and 

Ramaiah, 2010). 

3.1 PURPOSE OF THE PROPOSED SFTA APPROACH 

The use-case based FTA approach introduced by Balz and Goll (Balz and Goll, 2005) 

is manual in nature and fault trees are constructed manually for the selected use-case 

functionalities. Douglass (Douglass, 2009) stressed upon first constructing fault trees 

using domain expertise and then linking the nodes of the fault tree with respective use-

cases. The works reported by Gupta (Gupta et al, 2012) and Tiwari (Tiwari et al, 

2012) applied SFTA to a textual description of the selected use-case functionality.  In 

all these cases, the fault trees were constructed manually either to elicit the safety 

requirements or to verify the already derived safety requirements and the application 

of the SFTA approach in use-case based requirements analysis phase is manual and 

time-consuming. The objective of the proposed approach is to integrate and automate 

the application of the SFTA approach in use-case based requirements analysis process 

so that the necessary safety requirements are derived right in the requirements analysis 

phase. The approach does a backward analysis to identify the errors responsible for 

the occurrence of the selected hazardous state. 
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3.2 ASSUMPTIONS FOR THE PROPOSED SFTA APPROACH 

The following two assumptions are made for the proposed approach and a brief 

explanation for each assumption is given in the following sections. 

(i) The given use-case functionality and the UML state diagrams for various 

participating components are complete and correct. 

The approach operates with the assumption that the supplied formal functional 

description of the selected use-case functionality is correct and complete. The 

completeness of the use-case functionality means that ‘no event has been missed-out in 

the description’. The correctness of the use-case functionality means ‘the sequence in 

which the various events of the selected use-case functionality will execute, are specified 

correctly’. In the same way, it is also assumed that the supplied UML state diagrams are 

correct (state transition events have been correctly specified) and complete (no state for 

any component has been missed-out).Any error either in the use-case description file or 

in the states of the participating components affects the correctness and completeness of 

the constructed software fault trees. 

(ii) No participating component experience concurrent state transitions 

The approach also operates with the assumption that corresponding to any state transition 

event (an event where any component is changing its state) there is a single state 

transition experienced by the component. The approach first maps the events of the 

selected use-case functionality against the states of the participating components and 

then records the state transition errors corresponding to each state transition event. If a 

component experiences concurrent state transitions (means minimum two state 

transitions corresponding to a single state transition event) then the recording of state 

transition errors will be a challenging if not impossible task. The presented approach 

does not handle this situation. 

3.3 HAZARDOUS-STATE DEFINITION 

In the proposed SFTA approach, the hazardous-state of the system is expressed using 

the states of the participating components, either in atomic form, (a hazardous-state 

involving the state of a single component) or in composite form (a hazardous-state 

involving the states of more than one component). 
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A hazardous-state in atomic form is used to indicate the situation where a participating 

component fails to make its expected/desired state transition and is represented using a 

negation and equality symbols as ‘!=’. The general syntax for an atomic hazardous-state 

is ‘c!= s’ where ‘c’ is the name of a component and ‘s’ is one of the state(s) of ‘c’.  

The composite hazardous-state can involve states from multiple components and can use 

both negation (‘!=’) and true (=) type symbols. The use of negation (‘!=’)  symbol 

indicates that a component has failed to change its state, whereas a true (=) symbol 

indicates that a component has successfully changed its state. The states from multiple 

components are joined by an ‘AND’ operator. 

Some examples of both atomic and composite hazardous-states are illustrated in Table 3.1. 

These hazardous-states are selected from two safety-critical applications mentioned in the 

beginning of this chapter. The participating components in the ECS application are Door (with 

valid states as ‘opened’ or ‘closed’) and Motor (with valid states as ‘moving’ or ‘stopped’). 

Whereas, in the RTCS application the participating components are Track_Door (with valid 

states as ‘opened’ or ‘closed’) and Track_Signal (with valid states as ‘red’ or ‘green’). 

Table 3.1:Hazardous-State Examples 

Hazardous-State State Description 

Door != closed Atomic The door has not closed (ECS 

Application) 

Motor!=moving Atomic The motor has not moved (ECS 

Application) 

Door !=closed AND  

Motor = moving 

Composite The door has not closed, but Motor 

has moved (ECS Application) 

Track_Door !=closed AND 

Signal = green 

Composite The Track_Door is not closed but 

Signal has gone green (RTCS 

Application) 

Door = opened AND  

Motor = moving 

or 

Motor = moving AND  

Door = opened 

Composite At any point of time, the system 

should not have both Door and Motor 

components are in ‘opened’ and 

‘moving’ states respectively (ECS 

Application) 

Track_Door = opened AND 

Track_Signal = green 

or 

Track_Signal = green AND 

Track_Door = opened 

Composite At any point of time, the system 

should not have both Track-door and 

Signal components are in ‘opened’ 

and ‘green’ states respectively (RTCS 

Application) 
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The composite hazardous-state can be used to represent two different types of hazardous 

situations and the detailed information about the syntax and validity conditions of both 

these types of the composite hazardous-state are discussed in more detail in Section 3.5. 

3.4 OVERVIEW OF THE PROPOSED SFTA APPROACH  

The proposed SFTA approach is a five step approach and takes the formal use-case 

description file and the UML state diagrams of the participating components as inputs. 

The UML state diagrams are accepted as inputs in machine readable form i.e. XMI 

(XML Metadata Interchange) format. The Altova UML (Altova-UModel, 2014) is used 

to draw the required state diagrams and each one of them is exported to XMI format 

using the same tool. 

The description of a given use-case functionality can have any number of uniquely 

executable paths known as scenarios and each such scenario is represented by a unique 

event-sequence. The ‘Event-Sequence’ of a particular scenario gives the information 

about the sequential order in which the events of that scenario will execute. In the first 

step, the objective is to extract the event-sequence for each possible scenario by taking 

the use-case description file as an input. The successful execution of the first step results 

in the instantiation of one or more instances of ‘Event-Sequence’. The extracted event 

sequences are saved in a tabular structure. The definition of various fields/columns of 

this are shown Table 3.2. Each such ‘Event-Sequence’ table created represents the event 

sequence of a particular scenario of the given use-case functionality. 

Table 3.2: Structure of Event-Sequence Table 

Event# Precondition Event-Name Logical-Time 

<<A Unique 

Event Number 

Assigned to 

each executable 

event>> 

<< Precondition 

that must be true 

before the 

execution of the 

event>> 

<< Name of the 

event as used in 

use-case 

description 

file>> 

<< An integer value 

that represents the 

sequence number of the 

event in the event 

sequence>> 

The second step determines the correct functional state of the system by mapping the 

events of various scenarios against the states of the participating components. The 

state diagrams for the participant components are drawn in the second step and each 

state diagram is exported to XMI format using the above mentioned Altova UML 

tool. The ‘Event-Sequences’ and the state diagram XMI files are used as inputs in 

this step. The application of the second step results in the creation of one or more 
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instances of a table named ‘Event-Sequence-State-Transition’ and all these tables 

collectively represent the correct functional state of the system. The structure of the 

‘Event-Sequence-State-Transition’ depends upon the number of components for 

which state diagrams are supplied as inputs. If the state diagrams are drawn for two 

components, namely ‘X’ and ‘Y’ then the structure of the ‘Event-Sequence-State-

Transition’ will have three fields as shown in Table 3.3. 

Table 3.3: Structure of Event-Sequence-State-Transition 

Event# X Y 

<<A Unique Event 

Number Assigned to each 

executable event>> 

<<State of X component 

during the execution of 

the event>> 

<<State of Y component 

during the execution of 

the event>> 

In the third step, the erroneous states of the system are identified. The state transition 

events (events where any component is making a state transition) are filtered from various 

‘Event-Sequence-State-Transition’ tables and then the state related errors (the errors which 

prevent the component from making its desired/required state transition) are recorded 

against the filtered state transition events. This information is stored in a table named 

‘State-Transition-Error’. The structure of this table has four fields as shown in Table 3.4. 

Table 3.4: Structure of State-Transition-Error Table 

Error# Error-Name Event# Effect 

<<A Unique Error 

Number Assigned to 

each Error>> 

<<Description 

of Each Error>> 

<< Event# where the 

error has occurred>> 

<< Effect of 

the Error>> 

The fourth step generates a software fault tree for the specified hazardous-state of the system. 

The ‘Event-Sequences’ (extracted in the first step), ‘Event-Sequence-State-Transitions’ 

(determined in the second step) and a ‘State-Transition-Errors’ (identified in the third step) 

are used as inputs. Recall that the ‘Event-Sequences’ and ‘Event-Sequence-State-Transitions’ 

collectively represent the correct functional state of the system, whereas the ‘State-Transition-

Error’ represents the erroneous state of the system. The fourth step generates one or more 

XML files and each such XML file represents a software fault tree for a particular hazardous-

state. The graphical fault tree is constructed by using these XML files as an input to the fault 

tree creator and analysis tool named ‘FaultCAT’ (FaultCAT, 2003) in the last step.  

The overview of the first four steps of the proposed SFTA algorithm is shown in 

Figure 3.3 and the SFTA algorithm is explained in the next section. 



Fig
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Figure 3.1: Overview of the Proposed SFTA Algorithm
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3.5 SFTA ALGORITHM

In order to explain proposed SFTA algorithm in detail in the following sections

use-case model as shown in Figure 3.

case named ‘doOperation’. The 

consisting a loop condition 

this section to illustrate the various steps of the proposed SFTA 

Figure3.

Figure 3.3:Use Case Description File 

3.5.1 Step 1: Extracting Event

In the first step all executable paths of a given use

This creates an instance of a table named ‘

of the given use-case functionality. 

The following tasks are carried 

� Each executable event mentioned in the 

unique identifier in the form of event number (

every line of use-case description file represents an executable event

‘ENDWHILE’ line in the use

executable event and hence is not assigned any event number.  

� The precondition value is computed for each executable event.

information about the event sequence that is executed before the event. 

Tree Analysis Approach in Use-Case based Requirements Analysis Phase

SFTA ALGORITHM 

proposed SFTA algorithm in detail in the following sections

case model as shown in Figure 3.2is used. Assume an actor named ‘A’ and a use

The formal textual description of the ‘doOperation’ use

 is shown in Figure 3.3.This description is used 

various steps of the proposed SFTA algorithm. 

 

Figure3.2: An Example Use-Case Model 

A 

B 

WHILE  condition 

    C 

    D 

ENDWHILE 

E 

F 

Use Case Description File For the ‘doOperation’ Use-Case of Figure 

Extracting Event-Sequences for Various Scenarios 

In the first step all executable paths of a given use-case, known as scenarios, are identified. 

an instance of a table named ‘Event-Sequence’ corresponding to each scenario 

case functionality.  

s are carried out in sequence to complete the task. 

Each executable event mentioned in the use-case description file is assigned a 

unique identifier in the form of event number (Event#). It should be noted that not 

case description file represents an executable event. For example, 

‘ENDWHILE’ line in the use-case description file of Figure 3.3 is 

executable event and hence is not assigned any event number.   

condition value is computed for each executable event. This value gives the 

information about the event sequence that is executed before the event. 

Case based Requirements Analysis Phase 
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proposed SFTA algorithm in detail in the following sections, a simple 

actor named ‘A’ and a use-

description of the ‘doOperation’ use-case 

is used throughout 

Case of Figure 3.2 

case, known as scenarios, are identified. 

’ corresponding to each scenario 

file is assigned a 

It should be noted that not 

. For example, 

case description file of Figure 3.3 is a non-

This value gives the 

information about the event sequence that is executed before the event.  
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� A logical time value is assigned to each executable event which represents its 

sequence of execution in the scenario event-sequence. 

The scenario extraction process is carried out in two sub steps. 

Step I (a) Creating a table with Event-Details 

This sub-step creates a table named ‘Event-Details’ whose structure has three fields as 

(i) ‘Event#’, (ii) ‘Event-Name’ and (iii)‘Event-Label’. In this step, each executable event is 

assigned a unique event number (‘Event#’). The ‘Event-Name’ is assigned for each event 

from the use-case description file. 

The ‘Event-Label’ field is assigned as follows: 

Suppose an event ‘EK’(Event#) is assigned an ‘Event-Label’ value as ‘EL’, where ‘EL’ has 

a form: E1,E2,…..EK-1,EK and it indicates that the event sequence (E1, E2…..EK-1) has been 

executed before EK. The first event in any scenario is assigned an ‘Event-Label’ value 

equal to its own event number (Event#). If there exists an executable event ‘EN’ such that 

the execution control can reach ‘EN’ via various possible paths, then the ‘Event-Label’ 

value of ‘EN’ contains the event sequences of all such paths concatenated by an ‘OR’ 

operator. Apart from the executable events, the ‘Event-Label’ value is also computed for 

two non-executable events namely ‘ENDWHILE’ and ‘ENDIF’ also. It is to be noted that 

no ‘‘Event-Label’ value is computed for ‘ELSE’. 

The process of assigning values to ‘Event-Label’ fields of various executable events is 

illustrated in Figure 3.4 for the use-case description as shown in Figure 3.3. 

The executable events namely A, B, WHILE condition, C, D, E and F are assigned unique 

event numbers from E1 to E7. The ‘Event-Label’ value is computed for ‘ENDWHILE’ event 

also but no event number is assigned to ‘ENDWHILE’ because it is a non-executable event. 

Event labels are assigned as unique sequence numbers in the form E1, E2,….EK.. The event 

E3 (WHILE condition) is a loop event and leads to two paths. The first path represents the 

case when the result of E3 is true (represented by E3(T)). The second path represents the case 

when the result of E3 is false (represented by E3(F)). The value assigned to ‘Event-Label’ 

field of event E6 contains two event sequences concatenated via an ‘OR’ operator 

as‘{E1,E2,E3(F),E6} OR {E1,E2,E3(T),E4,E5,E5,E6}’. It indicates that there exist two 

execution paths/routes via which a control can reach event E6. Similarly, the value assigned 

to ‘Event-Label’ field of event E7 also contains an ‘OR’ operator. 
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The pseudo code for executing sub-step I(a) is given below in the form of a procedure 

named assignLabels(). 

Procedure assignLabels() 

Input Use-Case Description  File 

Output Event-Details 

Variable(s) Used 

String ifLabel, startLabel, whilestartLabel, currentLabel=null, 

/* ifLabel� Label assigned to IF*/ 

/*starteLabel� label assigned to start of IF*/ 

/*whilestartLabel�label assigned to start of while loop*/ 

/*currentLabel� label assigned to current executable event*/    

Stack ifStack, whileStack 

/* Stack is a last-in first-out (LIFO) type data structure in which element added in last will be deleted 

first */ 

/* ifStack � stack for IF block */ 

/* whileStack � stack for while block */ 

Boolean ElseFlag   /* elseFlag is a Boolean type flag which represents whether IF has an associated ELSE or not 

*/ 

/* Pseudo Code Description */ 

1. Create’Event-Details’ table with a structure as shown in Figure 3.2 

2. FOR each executable event in the input  file;   

(i) Assign Event# (Unique Event number for the event); 

(ii) Append the values of Event#, event-name in the Event-Details table; 

ENDFOR 

3. FOR each row of the Event-Details table created above 

 Case:row contains an ‘IF’ 

 set elseFlag = false;  

 set startLabel = currentLabel;  

 set currentLabel = currentLabel+event +’(T)’;  

 push startLabel onto ifStack; /* push is the name of add operation for Stack */ 

Case:row contains an ‘ELSE’ 

pop top element from ifStack; /* pop is the name of delete operation for Stack */ 

set elseFlag = true;  /* IF has an associated ELSE option */ 

set ifLabel = currentLabel;  

set currentLabel = startLabel; 

set currentLabel = currentLabel+’(F)’;  /*‘(F)’ represents false condition */ 

Case: row contains an ‘ENDIF’  

 pop top element from stack; 

 IF elseFlag = true THEN 

  set currentLabel = ifLabel +currentLabel; 

 ELSE 

set currentLabel = currentLabel+startLabel+’(F)’; 

 ENDIF 

 set elseFlag = false; 

Case: ‘event’ is WHILE type 

 set    whilestartLabel = currentLabel; 

 set currentLabel = currentLabel+event+’(T)’; 

push  whileStartLabel on to whileStack; 

Case: ‘event’ is ENDWHILE type 

 pop top element from whileStack; 

 set currentLabel =  currentLabel + whilestartLabel + event +”(F)”;  

Default: 

 IF currentLabel = null  THEN 

  currentLabel = event; 

 ELSE 

  currentLabel = currentLabel + event; 

 ENDIF 

ENDFOR 
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Step I (b) Extracting the Event-Sequence for each Scenario 

The event sequence of a particular scenario is extracted from the event label values 

assigned to various executable events in the previous sub-step. An event label value 

‘EL’ assigned to an event ‘EK’ represents a potential scenario event sequence, if no 

other event’s event label value contains EL. If EL contains an ‘OR’ operator then each 

event sequence concatenated via an ‘OR’ operator represents the scenario event 

sequence. 

The details of this step are illustrated in Figure 3.5 for the example use-case. The ‘Event-

Details’ table as shown in Figure 3.4is the input in this sub-step. The ‘Event-Label’ value 

of event E7 is ‘{E1, E2, E3(F), E6, E7} OR {E1, E2, E3(T), E4, E5, E6,E7}’ and this 

value is not contained in the ‘Event-Label’ value of any other event. So, the ‘Event-

Label’ value of event E7 represents a scenario event sequence. As this value contains 

only one ‘OR’ operator, it represents two scenario event sequences and these are event 

sequences are {E1, E2, E3, E4, E5, E6, E7} and {E1, E2, E3, E6, E7}. The values of the 

‘Logical_Time’ fields of the events in an event sequence, are assigned sequentially as 

1,2,3..and so on. 

Similarly, for another use-case as shown in Figure 3.6, three scenarios with event 

sequences as {E1, E2, E3, E4, E5, E6, E8}, {E1, E2, E3, E4, E7, E8} and {E1, E2, E3, 

E8} are identified and logical time values are assigned as per above mentioned criteria. 

The pseudo code description of this sub-step is given below in the form of a procedure 

named createEventSequenceTables()as follows: 

Procedure createEventSequenceTables() 

Input Event-Details table of Step I(a) 

Output Event-Sequence table(s) for each scenario 

/* Pseudo Code Description */ 

1. Identify the number of possible scenarios from the Event-Details table of Step I(a) 

2. Create and Populate Event-Sequence table for each such scenario 

 



Figure 3.5: Scenario 
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Scenario Extraction (Step I(b)) for Use-Case Description of Figure 3.3
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of Figure 3.3 



Figure 3.6: Scenario Extraction Process 
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: Scenario Extraction Process Illustration for Use-Case Description Shown in (a)  
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Case Description Shown in (a)  
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3.5.2 Step II: Identifying Event-Sequence-State-Transitions for each Scenario 

Using various ‘Event-Sequence’ tables created in Step I and the state diagram XMI files of 

the participating components as inputs, events of various scenarios are mapped against the 

states of the participating components to identify ‘Event-Sequence-State-Transitions’ for 

each scenario. The following two conditions should be satisfied before the start of this step.  

(i) The state diagrams are drawn by using the event numbers (assigned to various 

executable events in Step I) as state transition events.   

(ii) If the state transition pattern of a component is uniform across all the scenarios, then 

only one state diagram is drawn for that component. But, if a state transition pattern 

for a component is different in different scenarios, then a separate state diagram for 

that component is drawn for each scenario. 

This step creates an instance of a table named ‘Event-Sequence-State-Transition’ 

table corresponding to each instance of ‘Event-Sequence’ table created and populated 

in Step I. The structure of the ‘Event-Sequence-State-Transition’ table depends upon 

the number of components (not the number of state diagrams) for which the state 

diagrams are supplied as inputs in this step. The first field of this table is 

Event#(Event Number) and every other field represents the name of the component 

for which a state diagram is drawn.  

Suppose two components, namely ‘X’ and ‘Y’ are participating in the use-case 

functionality of Figure 3.3. Recall that the same use-case functionality is used as an input 

in Step I. Assume that the valid states of components ‘X’ and ‘Y’ are {x1 and x2} and {y1 

andy2}, respectively. The UML state diagrams drawn for both these components are 

shown in Figure 3.7. The initial state of ‘X’ component is ‘x1’ whereas the initial state of 

‘Y’ component is ‘y1’. The execution of event E4 (event C as shown in Figure 3.4) 

changes the state of ‘X’ component to ‘x2’. Similarly, the execution of event E6 (event E 

of Figure 3.4) changes the state of ‘Y’ component to ‘y2’. 

Taking the ‘Event-Sequence’ tables as shown in Figure 3.5 and the UML state 

diagrams of components ‘X’ and ‘Y’ as shown in Figure 3.7 as inputs, ‘Event-

Sequence-State-Transitions’ are identified for two scenarios as shown in Figure 3.8. 

These are saved in ‘Event-Sequence-State-Transition’ table in Figure 3.8(b)with the 

structure of three fields as (i) Event#, (ii) X and (iii) Y because the state diagrams are 

drawn for two components namely ‘X’ and ‘Y’. 
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Figure 3.7: State Diagrams for two Components

Figure 3.8: Event-Sequence
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Two Scenarios 
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It is to be noted that corresponding to event E4 of ‘Event-Sequence-State-Transition’ 

table for Scenario I, as shown in Figure 3.8(b), the execution of event E4 causes the 

state of X changed to x2 from x1and similarly the execution of event E5 causes the 

state of Y changed to y2 from y1. 

The pseudo code for identifying all ‘Event-Sequence-State-Transitions’, in the form of a 

procedure named ‘createStateTransitionTables()’ is given below. 

Procedure createStateTransitionTables() 

Input State Chart XMI file(s) and Event-Sequence tables of Step I 

Output Event-Sequence-State-Transition table corresponding to each Event-Sequence 

table 

/* Pseudo Code Description*/ 

1. FOR each Event-Sequence table created in Step I of the approach 

Create a corresponding instance of Event- Sequence-State-Transition table; 

 ENDFOR 

2. FOR each Event-Sequence-State-Transition table created  

FOR each component-name column of the Event-Sequence-State-Transition table  

select the associated state diagram XMI file for the component; 

read the initial_state for the component from XMI file; 

 FOR each event number ‘E’ of the selected Event-Sequence-State-Transition table  

scan the selected XMI file for state transition corresponding to ‘E’; 

IF‘E’ is responsible for any state transition for the component THEN 

read next_state_transition for component-name from the XMI file; 

set the new value of initial_state as next_state_transition; 

update component-name column with next_state_transition; 

 ELSE 

update component-_name column with initial_state; 

   ENDIF 

 ENDFOR 

ENDFOR 

ENDFOR 

3.5.3 Step III: Identifying State-Transition-Errors for all scenarios 

The objective of this step is to identify state-transition-error and each one is saved in a 

single instance of a table named ‘State-Transition-Error’. This step uses the ‘Event-

Sequence-State-Transition’ tables instantiated in Step II as inputs and records those 

errors which, if allowed to occur can prevent the component from making its desired 

state transition leading to a faulty operation. In order to carry out this task, every 

component column of every ‘Event-Sequence-State-Transition’ table is scanned to locate 

various events where the selected component is changing its state. For example, ‘Event-

Sequence-State-Transition’ table of scenario I, as shown in Figure 3.8(b), indicates that 
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the component ‘X’ is changing its state from ‘x1’ to ‘x2’ during the execution of event 

‘E4’. The errors that can occur during the execution of event ‘E4’ and can prevent the 

component ‘X’ from making its desired state change (i.e. Component ‘X’ remains in the 

state ‘x1’ and does not successfully change its state to ‘x2’) are identified as state-

transition-errors and are recorded in a ‘State-Transition-Error’ table. Each such state 

related error is identified by a unique error number (Error#), error name (Error-name), 

event number where it occurs (Event#) and its final effect (Effect).There are two types of 

state related errors that can prevent a component from making its required state change. 

Recall that each state transition event is an executable event. The first type of error 

belongs to the ‘software-control’ category where the state transition event fails to 

execute at all. The second type of error represents the situation where a fault occurs in 

the component itself. For example, consider the execution of event ‘E4’ that causes a 

change in the state of ‘X’ component from initial state ‘x1’ to state ‘x2’ (Figure 3.8(b)). 

The first type of error is the situation where the event ‘E4’fails to execute at all and the 

second type of error is the situation where the error occurred in the component ‘X’ itself. 

The pseudo code for identifying various state transition errors is given below. 

Procedure identifyStateTranistionErrors() 

Input(s) Event-Sequence-State-Transitions of Various Scenarios 

Output  State-Transition-Errors 

FOR each Event-Sequence-State-Transitions 

FOR each event in the Event-Sequence-State-Transitions 

IF event is changing the state of a component THEN 

record two state related errors corresponding to the event and assign a 

uniue error number to each error; 

ENDIF 

ENDFOR 

ENDFOR 

For the‘Event-Sequence-State-Transitions’ as shown in Figure 3.8, the execution of this 

step results in the instantiation of ‘State-Transitions-Errors’ as shown in Figure 3.9(b). 

The ‘State-Transitions-Errors’ table, as shown in Figure 3.9, has two state transition 

events (‘E4’ and ‘E5’) and four states related errors with error numbers as ER1, ER2, 

ER3 & ER4. The number of ‘State-Transitions-Errors’ is twice the number of state 

transition events since two state-related errors are identified corresponding to each state 

transition event. 

 



Figure 3.9: Populating State
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3.5.4 Step IV: Generating Fault Tree XML File 

The software fault tree for a given hazardous-state of the system is constructed in this 

step. The output of this step is in the form of one or more fault tree XML files. The 

actual fault trees can be constructed from these XML file(s) by using an available fault 

tree creation tool named FaultCAT (FaultCAT, 2003) in the next step. The outputs of 

Steps I, II and III and the hazardous-state are required inputs to this step. 

The first task is to define the syntax of the hazardous-state. Consider some components 

{X1, X2, .. Xn} and their respective states {x1, x2, .. xn }. The hazardous-state of the system 

is expressed either in atomic form or in composite form as defined in Section 

3.3.Assume the components {X1, X2, .. ,Xn} make the state transitions as {x1, x2, .. xn} at 

logical time values {t1,t2,..,tn} respectively. 

The composite hazardous-state can be categorized in two types as explained below. 

(i) Type I composite hazardous-state  

If a component is not able to change its state, then it is represented by a negation state 

symbol (!=) and alternatively if a component is able to change its state successfully, then 

it is represented by a true state symbol (=). The state of the first component (i.e. X1) of 

this hazard type should have a negation type symbol (‘!=’) whereas the states of other 

components can use either a negation (‘!=’) or a true (=) type symbol. This type of 

hazard will be considered as valid if the condition ‘t1< t2…<tn’ holds true. This type of 

hazardous-state indicates the situation where the first component X1 (to state ‘x1’) fails to 

change its expected state whereas the other components (X2 .., Xn) either failed or 

succeeded in making their respective state transitions. 

The generalized form for Type I composite hazardous-state is as follows: 

Type 1: nn x]or[!Xx]or[!XxX    AND  AND ! 2211 ===== ………  

(ii) Type II composite hazardous-state 

This type of hazard is used to represent the situation where it is considered dangerous 

from the system perspective, to have the components nXXX …21 ,  in states nxxx …21 ,

respectively. 
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For example, in an elevator control application, at any point of time, it is dangerous to 

have the component ‘door’ in ‘opened’ and the component ‘motor’ in ‘moving’ states  

(door=opened AND motor=moving OR alternatively motor=moving AND 

door=opened). Similarly, in a rail track door controller application,  it is dangerous to 

have  the component ‘track_door’ in ‘opened’ and the component ‘track_signal’ in 

‘green’ states  respectively (track_door=opened AND track_signal = green). 

A system encounters Type II hazardous situations only when some of the components 

involved in the hazardous-state fail to make their required state transitions and remain in 

their previous state. For ECS example, consider at time ‘t1’ the state(s) of the 

components ‘door’ and ‘motor’ are ‘opened’ and ‘stopped’ respectively. If at time ‘t2’, 

the component ‘motor’ is changing its state to ‘moving’ and ‘t1’ is less than ‘t2’,then, 

there exists an event ‘Ex’ at time ‘t3’ such that t1< t3< t2 where the component ‘door’ is 

supposed to make a change in its state from ‘opened’ to ‘closed’. If this expected state 

change in ‘door’ component fails to occur, then the ‘door’ component will remain in the 

‘opened’ state. Hence, the system will encounter a hazardous-state ‘door=opened AND 

motor = moving’ at time ‘t2’ when the state transition for the ‘motor’ component to 

‘moving’ state will occur successfully. 

The elevator control system can encounter the same hazardous-state via an alternative 

scenario also. Consider an alternative scenario, where at time t1 the states of the 

components ‘motor’ and ‘door’ are ‘moving’ and ‘closed’ respectively. If at time ‘t2’,the 

component ‘door’ is changing its state to ‘opened’ and t1is less than t2, then, there exists 

an event Ex at time t3 such that t1< t3< t2 where the ‘motor’ component is supposed to 

make a change in its state from ‘moving’ to ‘stopped’. If this expected state change for 

the ‘motor’ component fails to occur, then the ‘motor’ component will remain in the 

‘moving’ state. Hence, the system will encounter hazardous-state ‘door=opened AND 

motor = moving’ at time t2 when the state transition for the ‘door’ component to 

‘opened’ state will occur successfully. From the above discussion, it can be concluded 

that a type 2 hazardous-state door=opened AND motor = moving can be interpreted as 

type 1 hazardous-state either as ‘door! =closed AND motor = moving’ [provided 

logical_time(door=closed) <logical_time(motor=moving)] or as ‘motor!=stopped AND 

door = opened’ [provided logical_time(motor=stopped) < logical_time(door=opened)]. 

The generalized form for Type II composite hazardous-state is as follows: 
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Type 2: X

The validity condition for this type of hazardous

The fault tree for an atomic hazardous

Transition-Errors’ of Step III as an input. But the fault trees 

states are constructed by using the outputs of Step(s) I, II and III along with the 

hazardous-state as inputs. 

The fault tree constructed for

Figure 3.10. The ‘Event-Sequence

(Figure 3.8) and ‘State-Transition

construction of this fault tree.

Figure 3.10: Illustration of 

The algorithm for constructing 

four steps. 

(i) Selecting of scenarios where the 

erroneous states of the participating components such as 

(ii) Constructing the fault tree for the first erroneous state 

(iii)Constructing a fault tree for each of the successive erroneous states recursively 

(iv) Combining all the constructed fault trees via AND gate
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The validity condition for this type of hazardous-state is: nttt ≠≠ …21 . 

The fault tree for an atomic hazardous-state can be drawn by taking the ‘

’ of Step III as an input. But the fault trees for composite hazardous

are constructed by using the outputs of Step(s) I, II and III along with the 

The fault tree constructed for the hazardous-state ‘X!=x2 AND Y = y2’ is 

Sequences’ (Figure 3.5), the ‘Event-Sequence-State

Transition-Errors’ (Figure 3.9) are used as the inputs in the 

construction of this fault tree. 

Illustration of Software Fault Tree Construction Process

constructing the fault tree for Type 1hazardous-state has 

Selecting of scenarios where the given hazardous-state can occur and parsing of the 

erroneous states of the participating components such as X1 != x1, X2 =x2

Constructing the fault tree for the first erroneous state X1 != x1.  

Constructing a fault tree for each of the successive erroneous states recursively 

Combining all the constructed fault trees via AND gates as required. 

Case based Requirements Analysis Phase 

48 

drawn by taking the ‘State-

for composite hazardous-

are constructed by using the outputs of Step(s) I, II and III along with the 

’ is illustrated in 

State-Transitions’ 

are used as the inputs in the 

 

Process 

state has the following 

state can occur and parsing of the 

2, X3 = x3, etc.  

Constructing a fault tree for each of the successive erroneous states recursively  

.  
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If the selected composite hazardous-state can occur in more than one scenario, then the 

same steps are applied recursively for each scenario. The output faulttree.xml file is 

generated separately for each scenario. 

The pseudo code of the fault tree construction process for Type I hazardous-state in the 

form of a procedure named ‘cretaeFaultTree_Type1()’ is given below. 

Procedure createFaultTree_Type1() 

Input(s) Event-Sequence Tables (Step I output), Event-Sequence-State-Transition Tables (Step II 

output),  

State-Transition-Error Table (Step III output) and  hazardous-state 

Output Fault Tree XML (faulttree.xml) files 

Variable(s) used in the pseudocode description 

root_node The hazardous-state (for which the software fault tree is to be constructed) 

state-errorList The list of erroneous states for various components mentioned in the hazardous-state, 

e.g. if the hazardous-state is X1!= x1 AND X2 != x2 AND X3 = x3 then the state-errorList 

will contain the values as {X1 != x1, X2 != x2, X3 = x3} 

hazard_scenarioList This represents the list of all ‘Event-Sequence-State-Transition’ tables where the 

selected hazardous-state can occur 

previous_change_event The event involved in state change of the previous erroneous state 

current_change_event The event involved in state change of the current selected erroneous state 

/* Pseudocode Description */ 

1. Initialize the data structures 

1.1 Set root_node = hazardous-state 

1.2 Parse and extract  various erroneous states from the given hazardous-state and initialize state-

errorList 

1.3 Select the ‘Event-Sequence-State-Transition’ tables where the hazardous-state can occur & 

initialize hazard_ scenarioList    

2. FOR each ‘Event-Sequence-State-Transition’ table in hazard_scenarioList (constructed in step 1.3)  

2.1 Create an associated faulttree.xml file 

/* Create Fault Tree for the First Erroneous State X1!=x1 */ 
2.2 Create Fault Tree for the erroneous state X1!= x1 using errors from State-Transition-Error table 

and write it in the xml file and set  previous_change_event = {event where an  effect X1 != x1 has 

occurred} 

/* Create Fault Tree for each of the remaining Erroneous States  */ 
2.3 FOR each remaining erroneous state in the ’state-errorList’  

Case: if erroneous state is Negation Type (! =) 

Create Fault Tree for the erroneous state using errors from State-Transition-Error table and 

write it in the xml file and set  previous_change_event = {event where the current erroneous 

state has occurred} 

Case: if erroneous state is True Type (=) 

a. Set the value of current_change_event  = {event where the current erroneous state has 

occurred} 

b. Select the event sequence that is executed after the previous_change_event to the 

current_change_event 

c. Create a basic error event for each event selected in the previous step and write it in the 

xml file   

ENDFOR /*End of Step 2.3*/ 

/* Join the Created Fault Trees via an AND gate  */ 
2.4 Join the trees  created at step(s) 2.2 and 2.3 as via an AND gate with root_node as the output of 

this AND gate 

ENDFOR /*End of Step 2*/ 
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To construct a fault tree for Type 2 hazardous-state, firstly, the given Type 2 hazardous-

state is converted into Type 1 hazardous-state and then the Type 1 fault tree construction 

procedure is applied on the converted hazardous-state. 

The procedure for drawing the fault tree for Type 2 hazardous-state has followed four steps. 

(i) Selecting the scenarios where the given hazardous-state can occur.  

(ii) Converting Type II hazardous state into Type I hazardous state, according to the 

selected scenario as follows 

(a) Sort the component states (involved in the hazardous-state) on the logical 

time value of their occurrence 

(b) Identify the state (say ‘x’) which the first component (as per sorted list) fails 

to experience 

(c) Construct the converted hazardous-state by using ‘!=’ symbol for the state of 

the first component and ‘=’ symbol for the states of other components.   

(iii) Using Type I procedure to constructing the fault tree for the converted hazardous 

state 

(iv) If number of scenarios selected in step (i) above are more than one, then combining 

all the constructed fault trees via OR gates, as required.  

The pseudo code of the fault tree construction process for Type II hazardous-state in the 

form of a procedure named ‘cretaeFaultTree_Type2()’ is given below. 

Procedure createFaultTree_Type2() 

Input(s) Event-Sequence Tables (Step I output), Event-Sequence-State-Transition Tables (Step II 

output), 

State-Transition-Error Table (Step III output) and  hazardous-state 

Output Fault Tree XML (faulttree.xml) files 

Additional variable(s) used in the pseudo code description of this type 

component_event_List Every element of this list is of the form {a,b,c,d} where ‘a’ is the name of the 

component  ,’b’ represents the selected state of the component ‘a’, ‘c’ represents the 

event when the component ‘a’ is in  the selected state ‘b’ and ‘d’ represents the 

logical time of event ‘c’ 

component_change_last Component whose state is changed in the last (as per logical time value) 

state_change_last State of the component_change_last i.e. the state changed by the last component 

event_change_last Event responsible for the state of  the component_change_last 

time_change_last Logical time  when event_change_last has occurred 

converted_hazardous_state Represents the transformed hazardous state and its current value is null 

/* Pseudocode Description */ 

1. Initialize the data structures  /*Same as for Type 1pseudocode description*/ 

/* Convert the given Type 2 hazardous-state into Type 1 hazardous-state */ 
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2. FOR each ‘Event-Sequence-State-Transition’ table in  hazard_scenarioList [populated in Step 1] 

2.1. FOR  I = 1 to ‘n’ /* where ‘n’ is the number or erroneous states in the given hazardous-state  */ 

Search for entry X[I] = x[I] and add the component X[I] , the state x[I] , an event ‘E’where X[I] = x [I] 

has occurred and logical_time of E into component_event_List; 

ENDFOR 

2.2. Sort the component_event_List on logical time value and initialize the values for variables 

component_change_last, event_change_last, state_change_last and time_change_last 

2.3. For each element in component_event_List except the last component i.e. component_change_last 

2.3.1. Find the  state transition (say a) for the  current component (say X)  that has  occurred 

between the current event (given by the current element of  component_event_List ) and 

the event_change_last 

2.3.2.  Negate the state as X != a    /* Component X fails to make its desired state change and 

remains in previous state*/ 

2.3.3. IF converted_hazardous_state is null THEN 

Set  converted_hazardous_state =  (X !=a ); 

ELSE 

Set  converted_hazardous_state =  converted_hazardous_state + AND + (X !=a ); 

/* ‘+’ is string concatenation operator*/ 

ENDIF 

ENDFOR /*  End of Step 2.3*/ 

2.4. Set  converted_hazardous_state = converted_hazardous_state + AND + 

component_change_last+ state_change_last 

/* Invoke Type1 Procedure for theconverted_hazardous_state  */ 
2.5. Use Type 1 Procedure to construct the fault tree for  the converted_hazardous_state 

ENDFOR /*End of Step 2*/ 

3. IF  the number of  ‘Event-Sequence-State-Transition’ tables selected  in Step 2 is more than  one   

THEN 

 Merge the software fault trees created in Step 2 via an OR gate and set the hazardous-state as the 

root node of the merged tree; 

ELSE 

 Create a wire gate with fault tree of step 2 as input and the hazardous-state X1 =x1 AND X2 = x2  .. 

AND Xn = xn as an output; 

ENDIF /*End of Step 3*/ 

3.5.5 Step V: Drawing Fault Tree From XML File 

This step constructs the fault tree by giving the XML file (created in Step IV above) as 

an input to a fault tree creation tool named FaultCAT (FaultCAT, 2003) as shown in 

Figure 3.10. 

3.5.6 Salient Features and Time Complexity of the SFTA Algorithm 

The software fault tree construction process is easily scalable to any number of state 

variables for both types of hazardous-states. The algorithmic time complexity i.e. the 

running time of the first four steps of the SFTA algorithm is given in the following 

sections. Note that the fifth step simply constructs the fault tree in graphical form and no 

computation is done in this step. 
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(a) Time Complexity of Step I 

The running time, i.e. the algorithmic time complexity of the Step I (a) is of the order of 

‘O(N1)’ where ‘N1’ is the number of executable events in the given use-case description 

file. 

The algorithmic complexity of the Step I(b), is approximately of the order of ‘O(N2)’ 

where ‘N2’ is the number of event sequence tables created.  

Hence, the total execution time for Step I is ‘O(N1) + O(N2)’. 

(b) Time Complexity of Step II 

The running time (i.e. Algorithmic time complexity) of Step II is ‘O(N3 × N4 × N5)’ 

where ‘N3’ is the number of ‘Event-Sequence-State-Transitions’, ‘N4’ is the number of 

components for which a state diagrams are drawn and ‘N5’ is the average number of 

executable events in each ‘Event-Sequence’. 

(c) Time Complexity of Step III 

The algorithmic time complexity of Step III is of the order of ‘O(N4×N5)’where the 

meaning of ‘N4’ and ‘N5’ are already explained in part 3.5.5 (b) above. 

(d) Time Complexity of Step IV 

The algorithmic time complexity of Step IV is of the order of ‘O(N6×N7)’ where ‘N6’ is 

the number of scenarios where selected hazardous-state can occur and ‘N7’ is the 

number of erroneous states present in the selected hazardous-state. 

The overall algorithmic time complexity of all the four steps of the SFTA algorithm is as 

follows: 

[O(N1) + O(N2)] + [O(N3 × N4 × N5)] +[ O(N4 × N5)] + [O(N6 × N7)] 

3.5.7 Formatting of Inputs 

The proposed SFTA algorithm as described in Section 3.5 assumes that the three inputs 

namely (i) use-case description file, (ii) UML state diagrams of the participating 

components and (iii) the hazardous-state of the system, are supplied in some specific 

representations and these representation for each input is explained in the following sub-

sections. 
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(a) Use-Case Description File Representation 

The whole description of the selected use-case functionality is to be supplied as a single 

text file. The text within this file is to be expressed in the pseudo code form using 

structured English as follows: 

• Every line mentioned under event_ details part should represent a single event 

and this event can belong to any one of three categories (i) normal event, (ii) 

conditional event (IF-THEN-ENDIF, IF-THEN-ELSE-ENDIF) or (iii) a loop 

event (WHILE - ENDWHILE, DO WHILE - ENDDO). It should be noted that 

the description of each alternative flow is to be expressed using structured 

English constructs such as IF-THEN-ELSE-ENDIF etc. 

• The basic-details part is inserted at the beginning of the file as comments using/* 

<text> */. Comments can be inserted/ added anywhere in the file to improve the 

clarity of the written text. 

• An IF condition can exist without an ELSE option also but an ENDIF is 

mandatory for each IF block. Similarly, ENDWHILE and ENDDO are 

mandatory for each WHILE and DO WHILE blocks respectively. 

• The words ELSE, ENDIF and ENDWHILE should appear on separate lines and 

should not be mixed with other events. These words are not considered as 

executable events. 

There is no restriction on the size (i.e. the number of lines) of the use-case description 

file. 

(b) State Diagram Representation 

The proposed SFTA approach operates with the assumption that the state diagrams of the 

participating components are supplied in machine readable format i.e. XMI (XML 

Metadata Interchange).The Altova UML (Altova-UModel, 2014) tool has been used to 

draw the required state diagrams and each state diagram is exported to XMI (XML 

Metadata Interchange) format using the same tool. The main requirement is that the 

UML state diagrams drawn for the participating components should use the unique event 

numbers assigned to various executable events as state transition events. 
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(c) Hazardous-State Representation 

The hazardous-state, for which a fault tree is to be constructed, is to be expressed in 

terms of the states of the participating components either in atomic form or in composite 

form as discussed in Section 3.3. 

The next section demonstrates the step-by-step application of the algorithm on the use-

case functionalities of two safety-critical applications. 

3.6 MOTIVATING EXAMPLE 1:REQUEST ELEVATOR USE-CASE 

OF AN ELEVATOR CONTROL SYSTEM (ECS) APPLICATION 

The use-case selected from an Elevator Controller System (ECS) application is ‘Request 

Elevator’. This use-case gets realized when any user from any floor presses the button to 

request an elevator to visit the requested floor number. Each floor button is assigned a 

unique number so that the pressing of the floor button also gives the information about 

the floor number of the building from where the button is pressed. The system has a 

device named ‘Arrival Sensor’ installed on each floor of the building. The role of this 

‘Arrival Sensor’ component is to interrupt the system whenever an elevator is about to 

reach the respective floor number. 

The formal textual description of the ‘Request Elevator’ use-case is shown in 

Figure 3.11. 

Step I: Extracting ‘Event-Sequence’ for Each Scenario 

The application of the Step I(a) results in the extraction of ‘Event-Details’ as shown in 

Table 3.5. The ‘Event-Label’ value of ENDWHILE (last row of Table 3.5) is not a part 

of any other event label value and hence represents a potential Event-Sequence. There 

are seven event sequences joined by six ‘OR’ words in the ‘Event-Label’ value of this 

‘ENDWHILE’. So the application of Step I(b) results in seven ‘Event-Sequences’ and 

these event-sequences for Scenario 1 to Scenario 7 are shown in Table 3.6 to Table 3.12 

respectively. [Note: The Event-Name column is not shown in the Event-Sequence tables 

to avoid replication of data]. 
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/*******************Basic  Details****************/  

/*               Use Case           :    Request Elevator              */ 

/*               Initiating Actor :    Elevator User                    */ 

/*               Precondition     :                                              */ 

/**********************************************/ 

/*                Event Details                                                   */    

user press elevator button   

elevator button sensor reads the destination floor request and notifies it to system 

system update the request 

WHILE request queue is not empty  

IF elevator is idle THEN 

 Determine direction 

 system commands the door to close 

 IF door = closed  THEN 

 System commands to start the motor to move to the determined direction 

 ENDIF 

ELSE 

As the elevator is approaching the floors, floor sensor detects the floor # and notifies the 

system   

IF elevator has to stop at that floor THEN 

 System commands the motor to stop 

IF motor= stopped THEN 

 System commands the elevator door to open 

IF door=opened  THEN 

 system updates the request queue 

ENDIF 

ENDIF 

ENDIF 

ENDIF 

ENDWHILE 

Figure 3.11:Use Case Description File for ‘Request Elevator’ Use-Case of  

an ECS Application 
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Table 3.5: Event-Details of ECS Application 

Event# Event-Name Event-Label 

E1 user press elevator button E1 

E2 
elevator button sensor reads the destination floor request and 

notifies it to system 

E1,E2 

E3 system update the request E1,E2,E3 

E4 WHILE request queue is not empty E1,E2,E3,E4 

E5 IF elevator is idle THEN E1,E2,E3,E4(T),E5 

E6 Determine direction E1,E2,E3,E4(T),E5(T),E6 

E7 system commands the door to close E1,E2,E3,E4(T),E5(T),E6,E7 

E8 IF door = closed  THEN E1,E2,E3,E4(T),E5(T),E6,E7,E8 

E9 
System commands to start the motor to move to the 

determined direction 

E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9 

 
ENDIF {E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9} OR 

{E1,E2,E3,E4(T),E5(T),E6,E7,E8(F)} 

E10 
As the elevator is approaching the floors, floor sensor 

detects the floor # and notifies the system   

E1,E2,E3,E4(T),E5(F),E10 

 

E11 IF elevator has to stop at that floor THEN E1,E2,E3,E4(T),E5(F),E10,E11 

E12 System commands the motor to stop E1,E2,E3,E4(T),E5(F),E10,E11(T),E12 

E13 IF motor= stopped THEN E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13 

E14 System commands the elevator door to open E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14 

E15 IF door=opened  THEN E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15 

E16 system updates the request queue E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16 
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Event# Event-Name Event-Label 

 
ENDIF {E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} 

 

ENDIF {E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} 

 

ENDIF {E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} OR 

E1,E2,E3,E4(T),E5(F),E10,E11(F) 

 

ENDIF {E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9} OR 

{E1,E2,E3,E4(T),E5(T),E6,E7,E8(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(F)} 

 

ENDWHILE {E1,E2,E3,E4(T),E5(T),E6,E7,E8(T),E9} OR 

{E1,E2,E3,E4(T),E5(T),E6,E7,E8(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T),E16} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(F)} OR 

{E1,E2,E3,E4(T),E5(F),E10,E11(F)} OR  

{E1,E2,E3,E4(F)} 
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Table 3.6: Event-Sequence Table for Scenario 1 of Elevator Control System Application 

Event # Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3 4 

E5 E1,E2,E3,E4(T) 5 

E10 E1,E2,E3,E4(T),E5(F)  6 

E11 E1,E2,E3,E4(T),E5(F),E10  7 

E12 E1,E2,E3,E4(T),E5(F),E10,E11(T)  8 

E13 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12  9 

E14 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T)  10 

E15 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14  11 

E16 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14,E15(T)  12 

Table 3.7: Event-Sequence Table for Scenario 2 of Elevator Control System Application 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3 4 

E5 E1,E2,E3,E4(T) 5 

E10 E1,E2,E3,E4(T),E5(F)  6 

E11 E1,E2,E3,E4(T),E5(F),E10  7 

E12 E1,E2,E3,E4(T),E5(F),E10,E11(T)  8 

E13 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12  9 

E14 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T)  10 

E15 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12,E13(T),E14  11 
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Table 3.8: Event-Sequence Table for Scenario 3 of Elevator Control System Application 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3 4 

E5 E1,E2,E3,E4(T) 5 

E10 E1,E2,E3,E4(T),E5(F)  6 

E11 E1,E2,E3,E4(T),E5(F),E10  7 

E12 E1,E2,E3,E4(T),E5(F),E10,E11(T)  8 

E13 E1,E2,E3,E4(T),E5(F),E10,E11(T),E12  9 

Table 3.9: Event-Sequence Table for Scenario 4 of Elevator Control System Application 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3 4 

E5 E1,E2,E3,E4(T) 5 

E6 E1,E2,E3,E4(T),E5(T)  6 

E7 E1,E2,E3,E4(T),E5(T),E6  7 

E8 E1,E2,E3,E4(T), E5(T),E6,E7  8 

E9 E1,E2,E3,E4(T), E5(T),E6,E7  9 

Table 3.10: Event-Sequence Table for Scenario 5 of Elevator Control System Application 

Event# Precondition Logical Time 

E1  1 

E2 E1  2 

E3 E1,E2  3 

E4 E1,E2,E3  4 

E5 E1,E2,E3,E4(T)  5 

E6 E1,E2,E3,E4(T), E5(T)  6 

E7 E1,E2,E3,E4(T), E5(T),E6  7 

E8 E1,E2,E3,E4(T), E5(T),E6,E7  8 
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Table 3.11: Event-Sequence Table for Scenario 6 of Elevator Control System Application 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3 4 

E5 E1,E2,E3,E4(T) 5 

E10 E1,E2,E3,E4(T),E5(F) 6 

E11 E1,E2,E3,E4(T),E5(F),E10 7 

Table 3.12: Event-Sequence Table for Scenario 7 of Elevator Control System Application 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3 4 

Step II: Identifying ‘Event-Sequence-State-Transitions’ for each Scenario 

The participating components in the ‘Request-Elevator’ use-case functionality are 

‘Motor’ and ‘Door’.  The valid states of ‘Motor’ component are ‘stopped’ and ‘moving’. 

Similarly, the valid states of ‘Door’ component are ‘opened’ and ‘closed’. At the time of 

pressing of the floor button, the elevator is either in a stationary mode (i.e. positioned at 

some floor other than the requested floor) or in a servicing mode (i.e. serving any other 

user’s request). If the elevator is in stationary mode, then the states of both ‘Motor’ and 

‘Door’ components are ‘stopped’ and ‘opened’ respectively. Otherwise, (if the elevator is in 

servicing mode) the states of ‘Motor’ and ‘Door’ components are ‘moving’ and ‘closed’ 

respectively. In all the scenarios where the execution of the conditional event E5 (‘IF 

elevator is idle THEN’) returns true, the states of components ‘Motor’ and ‘Door’ 

components are ‘stopped’ and ‘opened’ respectively. Otherwise, the state of the components 

‘Motor’ and ‘Door’ are ‘moving’ and ‘closed’ respectively. So, two sets of state diagrams, 

each for Motor and Door components are drawn in this case study application. The drawn 

state diagrams for both the ‘Door’ and ‘Motor’ components are shown in Figure 3.12 and 

Figure 3.13 respectively. There are drawn two state diagrams for ‘Motor’ and ‘Door’ 

components. 
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(a) Door State Diagram when the initial 

state is ‘closed’ 

Event E14 (‘System commands the 

elevator door to open’) causes the state 

of the Door component be changed to 

‘opened’ 

 

(b) Door State Diagram when the initial 

state is ‘opened’ 

Event E7 (System commands the 

elevator door to close) causes the state 

of the Door component be changed to 

‘closed’ 

Figure 3.12: Door State Diagrams for Elevator Control System Application 

 

(a) Motor state Diagram when the initial 

state is ‘moving’ 

Event E12 (System commands the motor 

to stop) causes Motor state to be 

changed to ‘stopped’ 

 

(b) Motor state Diagram when the initial 

state is ‘stopped’ 

Event E9 (System commands to start the 

motor to move to the determined 

direction) causes Motor state to be 

changed to ‘moving’ 

Figure 3.13: Motor State Diagrams for Elevator Control System Application 
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The output of Step II results in seven ‘Event-Sequence-State-Transition’ tables (one table 

for each scenario) and these tables for are shown in Table 3.13 to Table 3.19. The 

‘Event-Sequence’ tables as shown in Tables 3.6 to Table 3.12 and UML state diagrams 

as shown in Figure 3.12 and Figure 3.13 are supplied as inputs to this step.  

Table 3.13: Event-Sequence-State-Transition Table for Scenario 1 

Event# Door Motor 

E1 closed moving 

E2 closed moving 

E3 closed moving 

E4 closed moving 

E5 closed moving 

E10 closed moving 

E11 closed moving 

E12 closed stopped 

E13 closed stopped 

E14 opened stopped 

E15 opened stopped 

E16 opened stopped 

Table 3.14: Event-Sequence-State-Transition Table for Scenario 2 

Event# Door Motor 

E1 closed moving 

E2 closed moving 

E3 closed moving 

E4 closed moving 

E5 closed moving 

E10 closed moving 

E11 closed moving 

E12 closed stopped 

E13 closed stopped 

E14 opened stopped 

E15 opened stopped 
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Table 3.15: Event-Sequence-State-Transition Table for Scenario 3 

Event# Door Motor 

E1 closed moving 

E2 closed moving 

E3 closed moving 

E4 closed moving 

E5 closed moving 

E10 closed moving 

E11 closed moving 

E12 closed stopped 

E13 closed stopped 

Table 3.16: Event-Sequence-State-Transition Table for Scenario 4 

Event# Door Motor 

E1 opened stopped 

E2 opened stopped 

E3 opened stopped 

E4 opened stopped 

E5 opened stopped 

E6 opened stopped 

E7 closed stopped 

E8 closed stopped 

Table 3.17: Event-Sequence-State-Transition Table for Scenario 5 

Event# Door Motor 

E1 opened stopped 

E2 opened stopped 

E3 opened stopped 

E4 opened stopped 

E5 opened stopped 

E6 opened stopped 

E7 closed stopped 

E8 closed stopped 

E9 closed moving 
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Table 3.18: Event-Sequence-State-Transition Table for Scenario 6 

Event# Door Motor 

E1 closed moving 

E2 closed moving 

E3 closed moving 

E4 closed moving 

E5 closed moving 

E10 closed moving 

E11 closed moving 

Table 3.19: Event-Sequence-State-Transition Table for Scenario 7 

Event# Door Motor 

E1 closed moving 

E2 closed moving 

E3 closed moving 

E4 closed moving 

Step III: Identifying ‘State-Transition-Errors’ 

The execution of Step III results in the instantiation of ‘State-Transition-Errors’ as 

tabulated in Table 3.20.  

Table 3.20: State-Transition-Error Table for Elevator Control Application 

Error# Error_Name Event# Effect 

ER1 Motor Fails to Stop E12 Motor != stopped 

ER2 System Fails to Give Stop Motor Command E12 Motor != stopped 

ER3 Door Fails to Open  E14 Door != opened 

ER4 System Fails to Give Door Open Command E14 Door != opened 

ER5 Door Fails to Close  E7 Door != closed 

ER6 System Fails to Give Door Close Command E7 Door != closed 

ER7 Motor Fails to Move E9 Motor != moving 

ER8 System Fails to Give Move Motor Command E9 Motor != moving 
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Step IV: Construct Fault Trees

Two Type 1 and one Type 2 

study application. The Type 1 composite 

Motor = moving’ and (ii) 

composite hazardous-state is

The fault tree XML file generated for 

closed AND Motor = moving

this XML file is shown in Figure

<?xml version="1.0" encoding="UTF

<Fault-Tree><Intermediate-Event><Title>Door!=closed.AND.Motor=moving<

<And-Gate><Intermediate-Event><Title>Door!=closed</Title><And

Event><Title>ER5</Title></Basic

Event></And-Gate></Intermediate

Event><Title>Motor=moving</Title><And

Event><Basic-Event><Title>^(E8(T))</Title></Basic

Event></And-Gate></Intermediate

Figure 3.14: faulttree.xml file for 

Figure 3.15: Fault Tree for Hazardous State Door

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

: Construct Fault Trees 

wo Type 1 and one Type 2 composite hazardous-states are considered 

. The Type 1 composite hazardous-state(s)are: (i) ‘Door!= closed AND 

and (ii) ‘Motor!= stopped AND Door = opened’. 

is: ‘Door = opened AND Motor = moving’. 

file generated for the Type 1 composite hazardous-state

closed AND Motor = moving’ is shown in Figure 3.14 and fault tree constructed from 

his XML file is shown in Figure 3.15. 

<?xml version="1.0" encoding="UTF-8"?> 

Event><Title>Door!=closed.AND.Motor=moving</Title>

Event><Title>Door!=closed</Title><And-Gate><Basic-

Event><Title>ER5</Title></Basic-Event><Basic-Event><Title>ER6</Title></Basic-

Gate></Intermediate-Event><Intermediate-

Event><Title>Motor=moving</Title><And-Gate><Basic-Event><Title>E9</Title></Basic

Event><Title>^(E8(T))</Title></Basic-Event></And-Gate></Intermediate

Gate></Intermediate-Event></Fault-Tree> 

: faulttree.xml file for Hazardous-State: Door!=closed AND

Motor=moving 

t Tree for Hazardous State Door!=closed AND Motor = moving
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are considered for this case 

Door!= closed AND 

 The Type 2 

state ‘Door!= 

is shown in Figure 3.14 and fault tree constructed from 

/Title> 

Event><Title>E9</Title></Basic-

Gate></Intermediate-

AND 

 

!=closed AND Motor = moving 
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The basic error events corresponding to the conditional events 

represented using the form ‘

the error situation where ‘C

the error event ‘^(E8(T)) indicates that 

wrongly evaluated as true. 

The generated fault tree XML file for 

stopped AND Door = opened

this file is shown in Figure 3.17.

<?xml version="1.0" encoding="UTF

<Fault-Tree><Intermediate-Event><Title>Motor!=stopped.A

<And-Gate><Intermediate-Event><Title>Motor!=stopped</Title>

<And-Gate><Basic-Event><Title>ER1</Title></Basic

Event><Title>ER2</Title></Basic

Event><Intermediate-Event><Title>Door=opened</T

Event><Title>E14</Title></Basic

Event></And-Gate></Intermediate

Tree> 

Figure 3.16: faulttree.xml file 

Figure 3.17: Fault Tree for Hazardous

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

The basic error events corresponding to the conditional events in a fault tree are 

the form ‘^(C(T))’ where ‘C’ is a conditional type event. It represents 

C’ is wrongly evaluated as true. For example, in Figure 3.15, 

the error event ‘^(E8(T)) indicates that the event ‘E8’ is a conditional event an

he generated fault tree XML file for Type I composite hazardous-state 

stopped AND Door = opened’ is shown in Figure 3.16 and a fault tree constructed from 

this file is shown in Figure 3.17. 

<?xml version="1.0" encoding="UTF-8"?> 

Event><Title>Motor!=stopped.AND.Door=opened</Title>

Event><Title>Motor!=stopped</Title> 

Event><Title>ER1</Title></Basic-Event><Basic-

Event><Title>ER2</Title></Basic-Event></And-Gate></Intermediate-

Event><Title>Door=opened</Title><And-Gate><Basic-

Event><Title>E14</Title></Basic-Event><Basic-Event><Title>^(E13(T))</Title></Basic

Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault

: faulttree.xml file for Hazardous-State: Motor !=stopped

Door = opened 

Tree for Hazardous-State: Motor!=stopped AND Door = opened
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in a fault tree are 

. It represents 

is wrongly evaluated as true. For example, in Figure 3.15, 

is a conditional event and is 

state ‘Motor!= 

is shown in Figure 3.16 and a fault tree constructed from 

ND.Door=opened</Title> 

Event><Title>^(E13(T))</Title></Basic-

Event></Fault-

!=stopped AND  

 

!=stopped AND Door = opened 
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The fault tree XML file generated for 

= opened AND Motor = moving’ 

from this XML file is shown in Figure 3.

<?xml version="1.0" encoding="UTF

<Fault-Tree><Intermediate-Event><Title>Motor!=stopped.AND.Door=opened</Title>

<And-Gate><Intermediate-Event><Title>Motor!=stopped</Title>

<And-Gate><Basic-Event><Title>ER1</Title></Basic

Event><Title>ER2</Title></Basic

Event><Title>Door=opened</Title><And

Event><Basic-Event><Title>^(E13(T))</T

Event></And-Gate></Intermediate

Figure 3.18: faulttree.xml file for 

Figure 3.19: Fault Tree for

3.7 MOTIVATING EXAMPLE

CONTROL SYSTEM APPLICATION

The second example is about

avoiding the accidents at the railway crossing. 

executed whenever the rail track door is to be closed in response to an interrupt 

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

fault tree XML file generated for Type 2 Composite hazardous-state selected ‘

otor = moving’ is shown in Figure 3.18. The constructed fault tree 

is shown in Figure 3.19. 

<?xml version="1.0" encoding="UTF-8"?> 

Event><Title>Motor!=stopped.AND.Door=opened</Title>

Event><Title>Motor!=stopped</Title> 

Event><Title>ER1</Title></Basic-Event><Basic-

Event><Title>ER2</Title></Basic-Event></And-Gate></Intermediate-Event><Intermediate

Event><Title>Door=opened</Title><And-Gate><Basic-Event><Title>E14</Title></Basic

Event><Title>^(E13(T))</Title></Basic-Event></And-Gate></Intermediate

Gate></Intermediate-Event></Fault-Tree> 

: faulttree.xml file for Hazardous-State: Door=opened AND 

Motor = moving 

for Hazardous-State Door=opened AND Motor = moving

MOTIVATING EXAMPLE 2:RAILWAY TRACK DOOR 

CONTROL SYSTEM APPLICATION 

about safety-critical Railway Track Door Control system for 

avoiding the accidents at the railway crossing. The events of this use

executed whenever the rail track door is to be closed in response to an interrupt 
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state selected ‘Door 

he constructed fault tree 

Event><Title>Motor!=stopped.AND.Door=opened</Title> 

Event><Intermediate-

Event><Title>E14</Title></Basic-

Gate></Intermediate-

State: Door=opened AND  

 

State Door=opened AND Motor = moving 

2:RAILWAY TRACK DOOR 

critical Railway Track Door Control system for 

The events of this use-case are 

executed whenever the rail track door is to be closed in response to an interrupt 
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received from the track sensors attached to the rail tracks. The interrupt from the rail 

track sensors informs the arrival of the train. The use-case description file for this 

case study is shown in Figure 3.20. 

/*******************Basic  Details***********************/  

/*               Use Case            :    Opening of Railway Track_Door */ 

/*                Initiating Actor :    Rail Track Controller                    */ 

/****************************************************/ 

/*                Event Details                                                              */    

rail track sensors detect the arrival of train and interrupts the rail track control system 

upon interruption by track sensors, rail track control system instructs track_door to be 

closed   

IF track_door = closed THEN 

rail track control system instructs  track_signal to go green 

rail track control system waits for the next interrupt from the track sensor 

ELSE 

report track_door_failure 

ENDIF 

Figure 3.20: Use Case Description File for ‘Open Rail Track Door’ Use-Case of 

RTCS Application 

Step I: Extract ‘Event-Sequence’ for Each Scenario 

The use-case description file of Figure 3.20 is used as an input in this step. The 

description of various ‘Event-Details’ is shown in Table 3.21. 

Table 3.21: Event-Details of RTCS Application 

Event# Event-Name Event-Label 

E1 rail track sensors detect the arrival of train and 

interrupts the rail track control system 

E1 

E2 upon interruption by track sensors, rail track 

control system instructs track_door to be closed   

E1,E2 

E3 IF track_door = closed THEN E1,E2,E3 

E4 rail track control system instructs  track_signal 

to go green 

E1,E2,E3(T),E4 

E5 rail track control system waits for the next 

interrupt from the track sensor 

E1,E2,E3(T),E4,E5 

E6 report track_door_failure E1,E2,E3(F),E6 

 ENDIF {E1,E2,E3(T),E4,E5} OR 

E1,E2,E3(F),E6 
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As per the ‘Event-Label’ value of the ‘ENDIF’, there are two possible scenarios in this 

example. The Event-Sequence tables generated for the Scenario 1 and Scenario 2 of this 

application are shown in Table 3.22and Table 3.23 respectively. 

Table 3.22: Event-Sequence table for Scenario 1 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E4 E1,E2,E3(T) 4 

E5 E1,E2,E3(T),E4 5 

Table 3.23:Event-Sequence table for Scenario 2 

Event# Precondition Logical Time 

E1  1 

E2 E1 2 

E3 E1,E2 3 

E6 E1,E2,E3(F) 4 

Step II:Identify ‘Event-Sequence-State-Transitions’ for Each Scenario 

The participating components in this case study are ‘Track_Door’ and ‘Track_Signal’. The 

valid states of the ‘Track_Door’ component are ‘opened’ and ‘closed’. The valid states of 

the ‘Track_Signal’component are ‘red’ and ‘green’. The state diagrams of the 

‘Track_Door’ and ‘Track_Signal’ components are shown in Figure 3.21. The initial state 

of the ‘Track_Door’ component is ‘opened’ whereas the initial state of the ‘Track_Signal’ 

component is ‘red’. The ‘Track_Door’ component changes its state from ‘opened’ to 

‘closed’ during the execution of event E2 (rail track control system instructs track_door to 

be closed). Similarly, the ‘Track_Signal’ component changes its state from ‘red’ to ‘green’ 

during the execution of event E4 (rail track control system instructs track_signal to go 

green).The state transition pattern of both ‘Track_Door’ and ‘Track_Signal’ components is 

same for both the scenarios. That is why only one UML state diagram is drawn for both 

‘Track_Door’ and ‘Track_Signal’ components. 
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Event E2 � rail track control system 

instructs track_door to be closed 

(a) Track_Door State Diagram 

 

Event E4 � rail track control system 

instructs track_signal to go green 

(b) Track_Signal State Diagram 

Figure 3.21: Input State Diagrams for Rail Track Door Control System Application 

The ‘Event-Sequence-State-Transition’ tables for Scenario 1 and Scenario 2are shown in 

Table 3.24and Table 3.25 respectively. 

Table 3.24:Event-Sequence-State-Transition table for Scenario 1 

Event Track_Door Track_Signal 

E1 opened red 

E2 closed red 

E3 closed red 

E4 closed green 

E5 closed green 

Table 3.25: Event-Sequence-State-Transition table for Scenario 2 

Event Track_Door Track_Signal 

E1 opened red 

E2 closed red 

E3 closed red 

E6 closed red 



Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase 

71 

Step III: Identify ‘State-Transition-Errors’ 

The ‘State-Transition-Error’ table created for this example is shown in Table 3.26.There 

are two state transition events E2 and E4 and that’s why there are four state errors with 

error numbers as ER1, ER2, ER3 and ER4. 

Table 3.26: State-Transition-Error Table 

Error# Error_Name Event# Effect 

ER1 RTCS System Fails to Give Door 

Close Command 

E2 Track_Door != closed 

ER2 Track_Door Failure E2 Track_Door != closed 

ER3 RTCS System Fails to Give Green 

Signal Command 

E4 Track_Signal != green 

ER4 Track_Signal Failure E4 Track_Signal != green 

Step IV: Construct Fault Trees 

There is considered only one Type 1 composite hazardous-state which is 

‘Track_Door!= closed AND Track_Signal =green’ (i.e. The truck door has not 

closed, but the track signal has gone green).The generated fault tree XML file for 

this hazardous-state is shown in Figure 3.22. The fault tree generated from this input 

file is shown in Figure 3.23. 

<?xml version="1.0 "encoding="utf-8"?><Fault-Tree><Intermediate-

Event><Title>Track_Door!=closed.AND.Track_Signal=green</Title><And-

Gate><Intermediate-Event><Title>Track_Door!=closed</Title><And-Gate><Basic-

Event><Title>ER1</Title></Basic-Event><Basic-Event><Title>ER2</Title></Basic-

Event></And-Gate></Intermediate-Event><Intermediate-

Event><Title>Track_Signal=green</Title><And-Gate><Basic-

Event><Title>E4</Title></Basic-Event><Basic-Event><Title>^(E3(T))</Title></Basic-

Event></And-Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault-

Tree> 

Figure 3.22: faulttree.xml file for Hazardous-State: Track_Door !=closed 

AND Track_Signal = green 
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Figure 3.23: Fault Tree Generated For Haza

The snapshots of the fault trees

faulttree.xml files as shown in 

also shown in Appendix-I, Appendix

3.8 VALIDATION OF THE ALGORITHM

The fault trees constructed by the presented approach for the hazardous

Elevator Control System (ECS)application are compared against the manually 

constructed fault trees for the same 

results are found to be of similar quality.

Are the Fault Trees Constructed by the Presented

Software Fault Tree Analysis Approach in Use-Case based Requirements Analysis Phase

 

: Fault Tree Generated For Hazardous-State Track_Door 

AND Track_Signal = green 

The snapshots of the fault trees constructed using a FaultCAT tool,

faulttree.xml files as shown in Figure 3.12, Figure 3.14, Figure 3.18 and Figure 3.2

Appendix-II, Appendix-III and Appendix-IV, respectively.

VALIDATION OF THE ALGORITHM 

The fault trees constructed by the presented approach for the hazardous-

Elevator Control System (ECS)application are compared against the manually 

constructed fault trees for the same hazardous-states (Vyas and Mittal, 2012) and the 

results are found to be of similar quality. 

ult Trees Constructed by the Presented SFTA Approach are Correct?
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State Track_Door !=closed 

a FaultCAT tool, from the 

and Figure 3.22, are 

IV, respectively. 

-state(s) of an 

Elevator Control System (ECS)application are compared against the manually 

2012) and the 

SFTA Approach are Correct? 
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Schellhorn et al. (Schellhorn et al,2002) states that the correctness condition of fault 

trees guarantees that if the cause happens, the consequence must happen too and the 

consequence must not happen without the cause. This correctness condition can be 

interpreted as follows: 

A fault tree (‘FT’) constructed for a hazardous-state (‘X’) is considered as correct if 

‘FT’ does not contain a single basic erroneous event ‘E’ that actually does not 

contribute to the occurrence of hazardous-state ‘X’.  

The presented approach constructs a software fault tree only for state level hazards. 

Each state level term in the hazardous-state either uses a negation (such as X!=x) or 

true (such as Y=y) symbol with the restriction that the first component should use a 

negation symbol. If the constructed fault tree for a hazardous-state (‘X’) contains a 

basic erroneous event ‘E’ that actually does not contribute towards the occurrence 

of ‘X’ then ‘E’ is either an invalid state level error selected from the ‘State-

Transition-Error’ table of Step III (for negation!= symbol) or an invalid event from 

‘Event-Sequence’ tables of Step I (for true = symbol). This can only happen because 

of any one of the following reasons. 

(i) The supplied use-case description file may be incorrect, or 

(ii) An erroneous state transition event is selected in Step III. It can happen if and only 

if the state diagrams supplied as inputs in Step II are incorrect.  

But, the proposed approach operates with the assumption that use-case description file 

and UML state diagrams are correctness of the basic inputs.  

Are the Fault Trees Constructed by the Proposed SFTA Approach are Complete? 

The completeness issue deals with the coverage of errors. Schellhorn et al. (Schellhorn, 

2002) states that the completeness condition of fault trees guarantees that all causes 

have been listed. This completeness condition can be interpreted as follows: 

A fault tree (‘FT’) constructed for a hazardous-state (‘X’) is considered to be complete if 

it contains every basic erroneous event ‘E’ that contributes to the occurrence of the 

hazardous-state ‘X’.  

The presented approach guarantees the coverage of software-related errors provided the 

pseudo code description of the use-case functionality is complete. But the approach 

considered only one error for the components (‘Door’, ‘Motor’). But in actual situations, 

there can be multiple reasons for the failure of any device/component. For example, the 
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door failure may happen either because of ‘Electrical short Circuit’ or because of 

‘DoorSensor Failure’ etc. So the events that specifically belong to a device-failure 

category are to be expanded further in order to complete the fault tree. 

3.9 COMPARATIVE ANALYSIS 

The past applications of the SFTA approach in use-case based requirements analysis 

phase are mostly manual and time-consuming (Balz and Goll 2005, Douglass 2009, 

Gupta et al 2012, Tiwari et al 2012). SFTA approach for use-cases as reported by 

Tiwari (Tiwari et al, 2012) first converts the given formal use case realization template 

(UCRT) into a tree known as success tree and then converts the success tree into its 

corresponding fault tree by complementing the nodes of the success tree and the fault 

tree construction process is manual. The whole use-case functionality is converted into 

a single success tree. In general, a fault tree construction process is hazard specific and 

multiple hazards can occur during the realization of single use-case functionality. 

Moreover, the selected hazard-state can occur in multiple scenarios of the same use-

case functionality also.  

The presented SFTA approach is automatic and is algorithmically very simple. It has 

following advantages. 

(i) The technique is automated but only for constructing fault trees for state level 

hazards. 

(ii) The approach can handle the use-case description file of any size.   

(iii) The approach is easily scalable to any number of state variables. 

The main shortcoming(s) of the proposed approach are as follows. 

(i) The software fault tree is constructed only for state level hazards. There are some 

hazardous situations that cannot be fully expressed via state level hazards such as 

speed of elevator increases suddenly (for ECS application), incorrect result of some 

computation etc.  

(ii) The proposed approach in the present form cannot handle the case where the 

participating components are experiencing concurrent state transitions. 

(iii) The approach takes into account only state related errors (i.e. the errors that occur 

only during state transition events). The effects of the errors that occur at events 

other than the state transition events (i.e. the events where no component is 

changing its state) have not been analyzed by the approach. 
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CHAPTER 4 

Software Failure Modes and Effects Analysis Approach 

in Use-Case Based Requirements Analysis Phase 

The efforts to automate or semi-automate the application of the Software Failure 

Modes and Effects Analysis (SFMEA) approach in use-case based requirements 

analysis phase have not been successful so far. This chapter describes the developed 

semi-automated SFMEA technique in use-case based requirements analysis phase. The 

main weakness of the SFTA approach as discussed in Chapter 3 is that it only 

considers the event-related errors occurring at the state transition events (events that 

cause changes in the state of a component). The developed SFMEA approach 

overcomes this drawback by considering all the event-related errors. The approach is 

applied on two safety-critical case study applications, namely Rail Track Door Control 

System (RTCS) application discussed in Chapter 3 and Insulin Delivery System (IDS) 

(Sommerville, 2005). The formal textual description of a given use-case functionality 

and the UML state diagrams drawn for the participating components are used as the 

inputs in this proposed approach. The approach first identifies all the event-related 

errors that can occur in the system and then investigates the critical effects of these 

errors on the system. 

4.1 PURPOSE OF THE PROPOSED SFMEA APPROACH 

Like SFTA, the available literature about the application of the SFMEA approach in 

use-case based requirements analysis phase is also manual and time-consuming. 

Wentao and Hong (Wentao and Hong, 2009) used manual SFMEA approach on the 

use-case model of an Automated Teller Machine (ATM). Troubitsyna (Troubitsyna, 

2011) applied manual application of the SFMEA approach on the use-case model of an 

autonomous robot by defining an auxiliary use-case corresponding to each use-case 

functionality. Nggada (Nggada, 2012) applied SFMEA approach on the use-case model 

of brake by wire system (BBS). Gupta (Gupta el al, 2012) and Tiwari (Tiwari et al, 

2012) applied the manual application of SFMEA approaches in use-case based 

requirements analysis phase by taking the formal textual descriptions of a use-case as 

an input.  
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The proposed approach integrates and semi-automates the application of the SFMEA 

approaches in use-case based requirements analysis process. The approach is forward in 

nature in the sense that it investigates the state level effects caused by various event-

related errors in the system. 

4.2 ASSUMPTIONS FOR THE PROPOSED SFMEA APPROACH 

The assumptions of the proposed SFMEA approach are identical to the assumptions 

made in the SFTA approach Chapter 3 (Section 3.2). In addition, while investigating the 

effects of any event-related error, the approach also assumes that no error has occurred 

in the system before the execution of the selected event, i.e. the effects are analyzed only 

for one event-related error at a time. 

4.3 OVERVIEW OF THE PROPOSED SFMEA APPROACH 

There are four steps in the proposed approach and an overview of each step is given 

below. 

The working logic of the first and second step of the proposed SFMEA approach is 

identical to Step I and Step II of the SFTA approach discussed in Chapter 3. The 

structures of both ‘Event-Details’ and ‘Event-Sequences’ and the ‘Event-Sequence-

State-transitions used in the approach are also identical to the SFTA approach 

discussed in Chapter 3. Like SFTA approach of Chapter 3, the state diagrams in the 

proposed SFMEA approach are also accepted in machine readable format i.e. XMI 

(XML Metadata Interchange) format. The Altova UML (Altova-UModel, 2014) tool is 

used to draw the required state diagrams and each state diagram is exported to XMI 

format using the same tool. 

The third step takes the ‘Event-Details’ of various events extracted in the first step  and 

the ‘Event-Sequence-State-Transitions’ of various scenarios identified in the second step  

and identifies the various event-related errors corresponding to each executable event. 

The attributes of the identified errors are stored in a tabular form that has the structure as 

shown in Table 4.1. 
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Table 4.1: Structure of Event-Errors 

Event# Error# 
Error-

Description 
Type 

<<Event# 

where an error 

can occur>> 

<<A unique Error 

Number assigned 

to each error>> 

<<description 

of the error>> 

<<The type is 1 for stop-

type error and 2 for 

propagating-type 

error>> 

The fourth step investigates the effects of various event-related errors identified in 

the third step. The ‘Event-Details’ extracted in the first step, the ‘Event-Sequence-

State-Transition’ identified in the second step and the ‘Events-Errors’ identified in 

the third step are used as the inputs. The effects of the event-related errors are stored 

separately for each scenario in a tabular form known as ‘Events-Errors-Effects-

Analysis’. The structure of the  ‘Events-Errors-Effects-Analysis’ has three main 

fields, namely (i) Event#, (ii) Error# and (iii) Effects as shown in Table 4.2. The 

‘Effects’ column is further sub-divided into various event sub-columns and the 

number of these event sub-columns depend upon the number of events in the 

associated scenario. 

Table 4.2: Structure of ‘Event-Errors-Effects-Analysis’ 

Event# Error# 
Effects 

E1 E2 … En 

<<Event Number 

where an error has 

occurred>> 

<<Error number 

that has occurred 

at the event>> 

<<Effects of the errors on various 

executable events>> 

An overview of the four steps of the proposed SFMEA approach is shown in Figure 4.1. 



Software Failure Modes and Effects Analysis Approach in Use

Figure 4.1: Overview of the Proposed SFMEA approach
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4.4.2 Step II: Identifying Event-Sequence-State-Transitions For Each Scenario 

This step is identical to the Step II of the SFTA approach discussed in Chapter 3.The 

output of this step on the selected example is shown in Figure 3.8 in Chapter 3. 

4.4.3 Step III: Identifying ‘Event-Errors’ for all Scenarios 

This step identifies the event-related errors that can occur during the execution of the 

events and records these errors in a tabular form as shown in Table 4.1. Two types of 

event-related errors are considered for the SFMEA approach and these are explained 

below. 

(i) Propagating Errors: These types of errors affect the execution of all the successive 

events in the scenario. These errors do not prevent or stop the execution of successive 

events. 

How to identify Propagating Errors? 

The system can experience these types of errors during the execution of both normal 

and conditional types of events. For conditional types (True/False) of events, the 

system can experience two types of propagating errors and these types are explained 

below with an example. 

Suppose the ‘C’ is a conditional type of event. The first type of propagating error 

‘Er’ occurs when the actual value of ‘C’ is ‘false’, but during execution, it is 

evaluated as ‘true’. The second type of propagating error ‘Es’ occurs when the actual 

value of ‘C’ is ‘true’, but during execution, it is evaluated as ‘false’. 

The propagating errors that occur during the execution of the normal events are to 

be identified manually. 

(ii) Stop Errors: These types of event-related errors prevent the successive events from 

execution, i.e. successive events are not executed at all and the execution stops at the 

selected event. 

How to Identify Stop Errors? 

For a conditional type of events there is considered only one type of stop error and it 

represents the situation where the conditional events fail to execute at all and the 

execution of all the successive events is suspended. 

For normal types of events, the system can experience different types of stop errors 

and these are explained below with an example. 
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Suppose ‘N’ is a normal event. If the execution of ‘N’ results in the state transition of 

any component, then two states-related errors (both are considered stop type errors), 

identical to the state-related errors considered in the Step III of the SFTA approach of 

Chapter 3, are identified corresponding to event ‘N’. If the execution of ‘N’ does not 

change the state of any component, then there is considered only one stop type error  

which  represents the situation where the events ‘N’ fails to execute at all and the 

execution of all the successive events is suspended. 

The pseudo code of this step in the form of a procedure named ‘identify-Event-Related-

Errors()’ is given below. 

Procedure Identify-Event-Related-Errors() 

Input(s) Event-Details Table of Step I and Event-Sequence-State-Transitions 

Output Event-Errors 

FOR each executable event in Event-Details   

IF event is a conditional type event THEN 

define one stop-type error for the event; 

define two propagating-type errors for the event; 

ENDIF 

IF event is a normal type event THEN 

IF event is a changing the state of any component THEN  

 define two stop-type state-related errors for the event; 

ELSE 

 define one stop-type error for the event; 

ENDIF 

ENDIF 

ENDFOR 

 

If the ‘Event-Details’ as shown Figure 3.4 in Chapter 3 and the ‘Event-Sequence-

State-Transitions’ as shown in Figure 3.8 in Chapter 3 are used as inputs in this step, 

then the output of this step results in the identification of ‘Event-Errors’ as shown in 

Table 4.3. 

  



Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase 

81 

Table 4.3: Event-Errors for Scenario 1 and Scenario 2 

Event# Error# Type Error-Description 

E1 ER1 1 Event E1 fails to execute  

E2 ER2 1 Event E2 fails to execute 

ER3 2 Event E2 does a wrong computation 

E3 ER4 1 Event E3 fails to execute at all 

ER5 2 Event E3 is True, but evaluated as False 

ER6 2 Event E3 is false, but evaluated as True 

E4 ER7 1 Event E4 fails to execute at all 

ER8 1 State Error in component X 

E5 ER9 1 Event E5 fails to execute at all 

ER10 1 State Error in component Y 

E6 ER11 1 Event E6 fails to execute at all 

E7 ER12 1 Event E7 fails to execute at all 

 

All event-related errors in Table 4.3 are identified automatically, except the error ‘ER3’ 

at event ‘E2’. A stop type error where an event fails to execute and stops the execution of 

successive events is automatically identified for each event ( for example the errors ER1, 

ER2, ER4, ER7, ER9, ER11 and ER12). The error ‘ER3’ is a propagating type error that 

occurs at normal type event ‘E2’ (Figure 3.4 in Chapter 3) and that is why it is identified 

manually. The event ‘E3’ is a conditional type event (Figure 3.4 in Chapter 3) and that is 

why two propagating type errors ‘ER5’ and ‘ER6’ and one stop type error ‘ER4’ are 

automatically identified for event ‘E3’. The execution of the event ‘E4’ results in the 

state transition of component ‘X’ (Figure 3.8 in Chapter 3) and that is why two stop type 

errors (‘ER7’ and ‘ER8’) are identified for this event. Similarly, the execution of the 

event ‘E5’ results in the state transition of component ‘Y’ (Figure 3.8 in Chapter 3) and 

that is why two stop type errors (‘ER9’ and ‘ER10’) are automatically identified for this 

event.  
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4.4.4 Step IV: Performing ‘Event-Errors-Effects-Analysis’ of each Scenario 

This step performs the ‘Event-Errors-Effects-Analysis’ of each scenario. The algorithm 

investigates the effects of the propagating and stop types of errors as follows. 

(a) Investigating the effects of Stop-type errors 

All the state transitions that are supposed to occur during the successive executable 

events do not occur in the system. For example, consider the error ‘ER1’ of Table 4.3. 

This error prevents the execution of all the successive events E2,E3,E4,E5,E6,E7 in 

scenario 1 (see Figure 3.5 in Chapter 3). Hence all the expected state transitions such as 

X=x2 at event ‘E4’ and Y=y2 at event ‘E5’ are not observed in the system (see 

Figure 3.8 in Chapter 3). These effects are indicated using ‘!=’ symbol as X != x2 and Y 

!= y2 under the respective event sub-columns in ‘Event-Errors-Effects-Analysis’ of the 

scenario. 

(b) Investigating the effects of Propagating-type errors 

These types of errors do not prevent the execution of the successive events and hence their 

effects are transmitted in the state transitions occurring during successive executable events. 

Consider error ‘ER3’ at event ‘E2’ in Table 4.3. In this situation, the state transitions that are 

occurring  at events ‘E4’ and ‘E5’ are known as erroneous state transitions because these 

transitions are taking place under error conditions and are represented using the upper caret 

(‘^=’) symbol  as X ^= x2 (i.e. The component X is erroneously changing its state) under the 

respective event sub-columns. 

The pseudo code of this step in the form of a procedure named ‘perform-Event-Errors-

Effects-Analysis’ is given below. 

Procedure perform-Event-Errors-Effects-Analysis() 

Input(s) The outputs of the previous steps 

Output(s) Event-Errors-Effects-Analysis of Each Scenario 

FOR each Event-Sequence-State-Transition  

create a associated Event-Errors-Effects-Analysis;  

  FOR each event of Event-Sequence-State-Transition  

Case: event is Normal event 

FOR each error corresponding to the event 

IF error is a stop-type THEN 
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Mark all the successive state transitions using ‘!=’; 

ELSE 

Mark the successive state transitions using ‘^=’; 

ENDIF 

ENDFOR 

Case: event is Conditional event 

Select the error which affects the Event-Sequence-State-Transition; 

Mark the successive state transitions using ‘^=’; 

ENDFOR 

ENDFOR 

The effects of all the event-related errors for scenario 1, as shown in Table 4.3, are shown in 

Table 4.4. 

The error ‘ER1’ (stop type error) prevents the state transitions from occurring at events 

‘E4’ and ‘E5’. Because no state transition is taking place during the early events E1, E2 

and E3, the effects of the error ‘ER1’ are shown only under event sub-columns ‘E4’ and 

‘E5’ respectively. 

The error ‘ER3’ is a propagating type error and that’s why the state transitions at events 

‘E4’ and ‘E5’ are indicated as erroneous state transitions using ‘^=’ symbol. 

The error ‘ER5’ prevents the execution of scenario 1 (i.e. scenario 2 gets erroneously 

executed because of this error) and that’s why the row corresponding to error ‘ER5’ does 

not show any effect in Table 4.4. The error ‘ER6’ results in the erroneous execution of 

scenario 1 (i.e. scenario 2 is to be executed in place of scenario 1) and that’s why the 

state transitions are treated as erroneous state transitions. 

The rows corresponding to errors ‘ER11’ (event ‘E6’) and ‘ER12’ (event ‘E7’), in 

Table 4.4, do not show any state level effects under any event-sub columns because no 

component is changing its state during the events ‘E6’ and ‘E7’. 

It is to be noted that the ‘Event-Errors-Effects-Analysis’ for scenario 2 is not shown 

because there is no state transition occurring in scenario 2 (Figure 3.8 in Chapter 3). 
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Table 4.4: Event-Errors-Effects-Analysis Scenario 1  

Event# Error# 
Effects 

E1 E2 E3 E4 E5 E6 E7 

E1 ER1    X!=x2 Y!=y2   

E2 ER2    X!=x2 Y!=y2   

E2 ER3    X^=x2 Y^=y2   

E3 ER4    X!=x2 Y!=y2   

E3 ER5        

E3 ER6    X^=x2 Y^=y2   

E4 ER7    X!=x2 Y!=y2   

E4 ER8    X!=x2 Y!=y2   

E5 ER9     Y!=y2   

E5 ER10     Y!=y2   

E6 ER11        

E7 ER12        

 

4.4.5 Time Complexity of the SFMEA Algorithm 

(a) Time Complexity of Step I 

The algorithmic time complexity of Step I is of the order of ‘O(N1) + O(N2)’, where 

‘N1’ is the number of executable events in a given use-case description file and ‘N2’ is 

the number of ‘Event-Sequences’  extracted. 

(b) Time Complexity of Step II 

The running time (i.e. Algorithmic time complexity) of Step II is ‘O(N3 × N4 × N5)’ 

where ‘N3’ is the number of ‘Event-Sequence-State-Transitions’, ‘N4’ is the number of 

components for which a state diagrams are drawn and ‘N5’ is the average number of 

executable events in each ‘Event-Sequence’. 
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(c) Time Complexity of Step III 

The running time of the Step III is of the order of ‘O(X) + n×T’ where ‘X’ is number of 

executable events in the ‘Event-Details’ and ‘n’ is the number of propagating-types of 

errors identified manually and ‘T’ is the approximate time required first to identify and 

then to record each such error in the Event-Errors. 

(d) Time Complexity of Step IV 

The running time of the Step IV is of the order of ‘O(N6× N7×N8)’ where ‘N6’ is the 

number of ‘Event-Sequence-State-Transitions’ and ‘N7’ is the average number of events 

in each scenario and ‘N8’ is the average number of errors for each executable event. 

4.5 APPLICATION OF SFMEA ALGORITHM TO SAFETY-

CRITICAL SOFTWARE SYSTEMS 

The proposed algorithm is applied for two safety-critical applications, namely Insulin 

Delivery System (IDS) and Rail Track Door Control System (RTCS). The detailed 

description of these systems and the step-by-step application of the algorithm is given in 

the following sub-sections. 

4.5.1 Motivating Example 1: Insulin Delivery System 

The safety-critical insulin delivery system (IDS) case study is selected from the work by 

Sommerville (Sommerville, 2005). It is an embedded system that is used by diabetes 

patients to automatically inject the required amount of insulin in the body. The system 

has a timer which interrupts the system to deliver the required amount of insulin after a 

fixed time interval. The system has three main components, namely ‘Insulin_Controller’, 

‘Sugar_Sensor’ and ‘Insulin_Pump’. The role of the ‘Insulin_Controller’ component is to 

control the operations of the other two components. Whenever instructed by the 

‘Insulin_Controller’, the ‘Sugar_Sensor’ component measures the current sugar level in 

the patient’s body. The ‘Insulin_Pump’ component delivers/injects the required amount 

of insulin in the patient’s body. 

When an interrupt is received by the IDS the clock timer, the following two tasks are 

carried-out in sequence. 

(i) The system first measures the current sugar level in the body. 
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(ii) If the sugar level is high, then the system computes the amount of insulin to be 

delivered and instructs the insulin-pump to inject the required amount of insulin in 

the patient’s body. Otherwise, if the sugar level is low or within acceptable limits, 

then system displays the same message on the system’s display device. 

The use-case description file for this functionality is shown in Figure 4.2. 

/*******************Basic  Details****************/  

/*               Use Case           :    Deliver Insulin                  */ 

/*               Initiating Actor :    Clock Timer                      */ 

/*               Precondition     :    Sytem is Running              */ 

/**********************************************/ 

/*                Event Details                                                   */    

clock timer interrupts the system to deliver insulin 

The system instructs the sensor to read the current sugar level in blood 

IF sugar level in blood is high THEN 

       The system computes the amount of insulin dose to be delivered 

       System commands the Insulin Pump to deliver the computed amount of insulin 

ELSE 

       The system displays sugar level ok message on the system display 

ENDIF 

Figure 4.2: Use Case Description File for ‘Deliver Insulin’ Use-Case of IDS 

Step I: Extracting Event-Sequence for each Scenario 

The ‘Event-Details’ extracted from the input file of Figure 4.2 is shown in Table 4.5.   

Table 4.5: Event-Details Table for Insulin Delivery System 

Event# Event-Description Event-Label Type 

E0 clock interrupts the system to deliver 

insulin 

E0 1 

E1 system instructs the sensor to read current 

sugar level in blood 

E0,E1 1 

E2 IF sugar level in blood is high THEN E0,E1,E2 2 

E3 system computes the amount of insulin 

dose to be delivered 

E0,E1,E2(T),E3 1 

E4 system commands the Insulin Pump to 

deliver the computed amount of insulin 

E0,E1,E2(T),E3,E4 1 

E5 system displays sugar level ok on display E0,E1,E2(F),E5 1 
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The ‘Event-Label’ value of event ‘E4’ is ‘E0,E1,E2(T),E3,E4’ and it is not a part of any 

other event’s ‘Event-Label’ value (Table 4.5). So the events included in this represent a 

scenario ‘Event-Sequence’ which is {E0,E1,E2,E3,E4}. Similarly, ‘Event-Label’ value 

of event ‘E5’ is also not part of any other event’s ‘Event-Label’ value. So the another 

‘Event-Sequence’ is {E0,E1,E2,E5}. These ‘Event-Sequences’ are shown in Table 4.6 

and Table 4.7. The ‘Event-Name’ column is not shown in the respective ‘‘Event-

Sequence’ tables. 

Table 4.6: Event-Sequence Table for Scenario 1 of Insulin Delivery System 

Event# Precondition Logical Time 

E0  1 

E1 E0 2 

E2 E0,E1 3 

E3 E0,E1,E2(T) 4 

E4 E0,E1,E2(T),E3 5 

Table 4.7: Event-Sequence Table for Scenario 2 of Insulin Delivery System 

Event# Precondition Logical Time 

E0  1 

E1 E0 2 

E2 E0,E1 3 

E5 E0,E1,E2(F) 4 

 

Step II: Identifying Event-Sequence-State-Transitions for each Scenario 

The participating components in the IDS system are ‘Insulin-Controller’, ‘Sugar-Sensor’ 

and ‘Insulin-Pump’. The state diagrams for these components are shown in Figure 4.3. 

The state transition pattern of the ‘Insulin_Controller’ component is different for two 

scenarios and that is why two state diagrams are supplied for this component. The state 

diagram of Figure 4.3(a) for ‘Insulin_Controller’ represents the situation when an insulin 

is delivered to the patient. Similarly, the state diagram of Figure 4.3(b) for 

‘Insulin_Controller’ represents the situation when an insulin is not delivered to the 

patient. The initial state of the ‘Insulin_Controller’ component is ‘waiting’ whereas the 

initial states of both the ‘Sugar_Sensor’ and ‘Insulin_Pump’ components are ‘idle’. The 
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execution of event ‘E1’ (system instructs the sensor to read the current sugar level in 

blood, Table 4.5) changes the state of the ‘Sugar_Sensor’ component from ‘idle’ to 

‘ReadingSugarLevel’. Similarly, the execution of event E4 (system commands the 

Insulin Pump to deliver the computed amount of insulin, Table 4.5) changes the state of 

the ‘Insulin_Pump’ component from ‘idle’ to ‘DeliveringInsulin’. 

 

(a) Insulin_Controller State Diagram (When Insulin Delivered) 

 

(b) Insulin_Controller State Diagram (When Insulin Not Delivered) 

 

(c) Sugar_Sensor State Diagram 

 

(d) Insulin_Pump State Diagram 

Figure 4.3: State Diagrams for Insulin Delivery System  



Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase 

89 

The application of the second step results in the identification of two ‘Event-Sequence-

State-Transitions’ for two scenarios as shown in Table 4.8 and Table 4.9, respectively. 

Table 4.8: Event-Sequence-State-Transition Table for Scenario 1 

Event# Insulin-Controller Sugar-Sensor Insulin-Pump 

E0 servicing idle idle 

E1 ReadingSugarLevel ReadingSugarLevel idle 

E2 ReadingSugarLevel idle idle 

E3 ComputingInsulinDose idle idle 

E4 DeliveringInsulin idle DeliveringInsulin 

Table 4.9: Event-Sequence-State-Transition Table for Scenario 2 

Event# Insulin-Controller Sugar-Sensor Insulin-Pump 

E0 Servicing idle idle 

E1 ReadingSugarLevel ReadingSugarLevel idle 

E2 ReadingSugarLevel idle idle 

E5 InsulinNotDelivered idle idle 

 

Step III: Identify Event-Errors for all Scenarios 

The application of Step III results in the identification of ‘Event-Errors’ as shown in 

Table 4.10. The ‘Event-Sequences’ in Table 4.6 and Table 4.7 and UML state diagrams 

in Figure 4.3 are used as inputs in this step. The following propagating-types of errors 

are identified manually: 

(i) Error number ER4 at event E1 is a propagating-type error. There is a possibility 

that because of the fault in the sensor, the sensor reads the wrong current sugar 

level value. 

(ii) Error number ER9 at event E3. This error can occur because of wrong computation 

of the value of insulin dose. 
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Table 4.10: Event-Errors for Insulin Delivery System 

Event# Error# Type Error Description 

E0 ER1 1 Event E0 fails to execute  

E1 ER2 1 Event E1 fails to execute 

ER3 1 sensor failure  

ER4 2 The sensor reads the wrong sugar value 

E2 ER5 1 Event E2 fails to execute 

ER6 2 Event E2 is true, but evaluated as false 

ER7 2 Event E2 is false, but evaluated as true 

E3 ER8 1 Event E3 fails to execute 

ER9 2 The system computes wrong insulin dose 

E4 ER10 1 Event E4 fails to execute 

ER11 1 Insulin pump fails to deliver Insulin 

E5 ER12 1 Event E5 fails to execute  

Step IV: Performing Event-Errors-Effects-Analysis of each Scenario 

The ‘Event-Details’ in Table 4.5, the ‘Event-Sequences’ in Table 4.6 and Table 4.7, the 

‘Event-Sequence-State-Transitions’ in Table 4.8 and Table 4.9 and the ‘Event-Errors’ in 

Table 4.10 are used as inputs to the ‘Event-Errors-Effects-Analysis’ generated for scenario 

1 and scenario 2. The results are as shown in Table 4.11 and Table 4.12, respectively. The 

‘Effects’ column of Table 4.11 is divided into five event sub-columns labeled  as E0, E1, 

E2, E3, E4 because there are the five events of Scenario 1 (see Table 4.6). Similarly, The 

‘Effects’ column of Table 4.12 is divided into four event sub-columns labeled  as E0, E1, 

E2, E5 because these are the four events of Scenario 2 (see Table 4.7). 
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If more than one component changes their state during the execution of a single event 

(for example execution of event E1 in Table 4.8 causes a state change in the ‘Insulin-

Controller’ and the ‘Sugar-Sensor’ components) then their state level effects in case of a 

‘stop-type’ error are joined by an AND operator. 

The event E2 (as shown in Table 4.5) is a conditional event and there are two 

‘propagating-type’ errors, namely ER6 and ER7 associated with it  (as shown in 

Table 4.10). The error ER6 represents the case when the actual value of the event E2 is 

true, but it has been evaluated as false. The effects of this error ER6 are observed in the 

scenario where E2 is false (because the scenario where E2 is true is skipped). That’s 

why, the row corresponding to event E2 and error ER6 in Table 4.11 does not show 

any state level effects. On the other hand, the Table 4.12 shows the state level effects 

of error ER6. 

Similarly, ER7 represents the case when the actual value of the event E2 is false, but it 

has been evaluated as true. The effects of this error ER7 are observed in the scenario 

where E2 is true. The row corresponding to event E2 and error ER7 in Table 4.11 shows 

the corresponding state level effects of the error ER7 but does not show any state level 

effects of the same event and error in Table 4.12. 

There is no row corresponding to event E5 in Table 4.11 because event E5 only appears 

in Scenario 2 and the errors occurring at event E5 can only affect Scenario 2 not 

Scenario 1. Similarly, there is no row corresponding to event E4 in Table 4.12 because 

event E4 only appears in Scenario 1 and the errors occurring at event E4 can only affect 

Scenario 1 not Scenario 2. 
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Table 4.11: Event-Errors-Effects-Analysis Table for Scenario 1 

Event# Error# 
Effects 

E0 E1 E2 E3 E4 

E0 ER1 
Insulin-Controller != 

servicing 

Insulin-Controller != 

ReadingSugarLevel 

AND 

Sugar-Sensor != 

ReadingSugarLevel 

 
Insulin-Controller != 

ComputingInsulinDose 

Insulin-Controller != 

DeliveringInsulin 

AND 

Insulin-Pump!= DeliveringInsulin 

E1 

ER2  

Insulin-Controller != 

ReadingsugarLevel 

AND 

Sugar-Sensor != 

ReadingSugarLevel 

 
Insulin-Controller != 

ComputingInsulinDose 

Insulin-Controller != 

DeliveringInsulin 

AND 

Insulin-Pump!= DeliveringInsulin 

ER3  
Sugar-Sensor != 

ReadingSugarLevel 
 

Insulin- Controller != 

ComputingInsulinDose 

Insulin-Controller != 

DeliveringInsulin 

AND 

Insulin-Pump!= DeliveringInsulin 

ER4    
Insulin-Controller ^= 

ComputingInsulinDose 

Insulin-Controller ^= 

DeliveringInsulin 

AND 

Insulin-Pump^= DeliveringInsulin 

E2 ER5    
Insulin-Controller != 

ComputingInsulinDose 

Insulin-Controller != 

DeliveringInsulin 

AND 

Insulin-Pump!= DeliveringInsulin 
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Event# Error# 
Effects 

E0 E1 E2 E3 E4 

ER6      

ER7    
Insulin-Controller ^= 

ComputingInsulinDose 

Insulin-Controller ^= 

DeliveringInsulin 

AND 

Insulin-Pump^= DeliveringInsulin 

E3 

ER8    
Insulin-Controller != 

ComputingInsulinDose 

Insulin-Controller != 

DeliveringInsulin  

AND 

Insulin-Pump!= DeliveringInsulin 

ER9    
Insuline-Controller ^= 

ComputingInsulinDose 

Insulin-Controller ^= 

DeliveringInsulin 

AND 

Insulin-Pump^= DeliveringInsulin 

E4 
ER10     

Insulin-Controller != 

DeliveringInsulin 

AND 

Insulin-Pump!= DeliveringInsulin 

ER11     Insulin-Pump!= DeliveringInsulin 
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Table 4.12: Event-Errors-Effects-Analysis Table for Scenario 2 

Event# Error# Effects 

E0 E1 E2 E5 

E0 ER1 Insulin-Controller!= servicing Insulin-Controller != ReadingSugarLevel 

AND 

Sugar-Sensor != ReadingSugarLevel 

 Insulin-Controller!= InsulinNotdelivered 

E1 ER2  Insulin-Controller != ReadingSugarLevel 

AND 

Sugar-Sensor != ReadingSugarLevel 

 Insulin-Controller!= InsulinNotdelivered  

ER3  Sugar-Sensor != ReadingSugarLevel  
Insulin-Controller!= InsulinNotdelivered 

ER4    
Insulin-Controller^= InsulinNotdelivered 

E2 ER5    
Insulin-Controller!= InsulinNotdelivered 

ER6    
Insulin-Controller^= InsulinNotdelivered 

ER7     

E5 E12    Insulin-Controller!= InsulinNotdelivered 
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4.5.2 Motivating Example 2: Railway Track Door Control System (RTCS) 

This example is described in Chapter 3 for SFTA application. The use-case description 

of this case study is given in Section 3.8 in Chapter 3. There are two participating 

components namely ‘Track_Door’ and ‘Track_Signal’ are considered in the current 

approach. The state diagrams for these two components are shown in Figure 3.21 in 

Chapter 3. 

The ‘Event-Sequences’ of this application are shown in Table 3.22 and Table 3.23 and 

the ‘Event-Sequence-State-Transitions’ for two scenarios are shown in Table 3.24 and 

Table 3.25 in Chapter3. 

The ‘Event-Errors’ identified for this application are shown in Table 4.13. 

Table 4.13: Event-Errors Identified For RTCS Application 

Event# Error# Type Error Description 

E1 ER1 1 Event E1 fails to execute 

E2 ER2 1 Event E2 fails to execute 

ER3 1 Error in Track Door Component  

E3 ER4 1 Event E3 fails to execute 

ER5 2 Event E3 is False but evaluated as True 

ER6 2 Event E3 is true but evaluated as False 

E4 ER7 1 Event E4 fails to execute 

ER8 1 Error in Track_signal Component 

E5 ER9 1 Event E5 fails to execute 

E6 ER10 1 Event E6 fails to execute 

 

The ‘Event-Errors-Effects-Analysis’ of two scenarios are shown in Table 4.14 and 

Table 4.15. 
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Table 4.14: Event-Errors-Effects-Analysis For Scenario 1 

Event# Error# Effects 

E1 E2 E3 E4 E5 

E1 ER1  Track_Door!=closed  Track_Signal != green  

E2 ER2  Track_Door!=closed  Track_Signal != green  

ER3  Track_Door!=closed  Track_Signal != green  

E3 ER4    Track_Signal != green  

ER5    Track_Signal ^= green  

ER6      

E4 ER7    Track_Signal != green  

ER8    Track_Signal != green  

E5 ER9      

 

Table 4.15: Event-Errors-Effects-Analysis For Scenario 2 

Event# Error# Effects 

E1 E2 E3 E6 

E1 ER1  Track_Door!=closed   

E2 ER2  Track_Door!=closed   

ER3  Track_Door!=closed   

E3 ER4     

ER5     

ER6     

E6 ER10     

  



Software Failure Modes and Effects Analysis Approach in Use-Case Based Requirements Analysis Phase 

97 

4.5.3 Analysis of Results 

The results of the SFMEA algorithm help the analyst in forecasting beforehand the 

erroneous state level effects caused by various event-related errors. A stop type of 

event-related error prevents the components from changing their expected state 

transitions whereas a propagating type of event-related error erroneously changes the 

states of the components. There exists many-to-many mapping between event-related 

errors and erroneous state level effects. A single event-related error can cause 

multiple state level effects and in the same way, a single erroneous state level effect 

can be caused by multiple errors. Any type of event-related error occurring at the 

earlier events causes more erroneous state level effects than the event-related error 

occurring at the later events. For example, in Table 4.11, the event-related error 

‘ER1’ at event ‘E0’ causes state level effects under the event sub-columns ‘E0’, ‘E1’, 

‘E3’ and ‘E4’. But, the event-related error ‘ER10’ at event ‘E4’ causes state level 

effect only at event ‘E4’. Similar is the case for errors ‘ER1’ and ‘ER7’ in 

Table 4.11. 

Consider the Table 4.14. The erroneous state level effect ‘Track_Door! =closed’ is 

caused by three event-related errors, namely ER1, ER2 and ER3. The erroneous state 

level effect ‘Track_Signal!= green’, in Table 4.14, is caused by six event-related errors 

namely ER1, ER2, ER3, ER4, ER7 and ER8. Similar cases can be found in Table 4.11 

and Table 4.12 also. 

The results of the ‘Event-Errors-Effects-Analysis’ can be used by the analyst to 

determine the overall mapping between the event-related errors and their erroneous state 

level effects. For example, consider the Table 4.14 and Table 4.12. There exist three 

distinct erroneous state level effects (as ‘Track_Door! =closed’, ‘Track_Signal != green’ 

and ‘Track_Signal ^= green’) which are caused by nine event-related errors 

(ER1,ER2,..,ER9). The mapping between these effects and event-related errors are 

shown in Figure 4.4. When all the erroneous state level effects are known, the analyst 

assigns a severity rating to each effect manually. The knowledge and domain expertise of 

the analysts plays an important role in it. National Aeronautics Space Administration 

(NASA) recommends four types of severity ratings as Catastrophic, Critical, Moderate 

and Negligible (NASA-GB-8719.13, 2004). The event-related errors responsible for 

‘Catastrophic’ and ‘Critical’ effects are considered more serious than the event-related 

errors responsible for ‘Moderate’ and ‘Negligible’ effects. 
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the same error state can occur because of three errors namely ‘ER1’,’ER2’ and ‘ER3’. 

Recall that in the fault tree for the hazardous-state ‘Track_Door !=closed AND 

Track_Signal’ as shown in Figure 3.23, only two state-related errors are considered for 

the erroneous state ‘Track_Door !=closed’ and these are ‘ER1’ and ‘ER2’. However, the 

application of the SFMEA approach has identified an extra error in the form of ‘ER3’ 

also. Therefore, the application of the SFMEA approach actually helps in the 

completeness of fault trees constructed using SFTA approach. 

(ii) The presented SFMEA approach is used to construct fault trees for computational 

types of hazardous-states also which is not possible by the application of the SFTA 

approach of Chapter 3. An example in support of this is given below. 

For example, consider the hazardous-state for the Insulin Delivery System (IDS) where a 

wrong amount of insulin is delivered in the patient’s body. The construction of the fault 

tree for this hazardous-state is not possible by the SFTA approach of Chapter 3. 

However, the fault tree for hazardous-state can be constructed using the results of the 

presented SFMEA approach as follows. 

The effect entry ‘InsulinPump^= DeliveringInsulin’ in Table 4.11(row of error 

‘ER4’) indicates that the state of the insulin pump component is erroneous changed to 

‘DeliveringInsulin’. It actually represents a situation where an insulin is delivered in 

a erroneous fashion. There are three errors namely ‘ER4’, ‘ER7’ and ‘ER9’ that cause 

this type of effect. So the fault tree for the hazardous-state ‘InsulinPump^= 

DeliveringInsulin’ contains three errors that are joined via an ‘OR’ gate. 

The main strength(s) of the approach are as follows: 

(i) The approach investigates the erroneous effects of every event-related error. Recall 

that in the SFTA approach of Section 3.1, the event-related of only state transition 

events are considered. 

(ii) The approach augments the application of the SFTA approach presented and 

discussed in Section 3.1. 

(iii) The proposed SFMEA approach is semi-automatic and the whole error analysis 

process takes a considerable less amount of time as compared to other available 

non-automatic methods (Wentao and Hong 2009, Gupta et al 2012, Tiwari et al 

2012). 
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The main weaknesses of the approach are as follows: 

(i) It investigates the state level effects of only one event-related error at a time. 

(ii) The propagating-type of errors for normal events are to be identified manually and 

because of that, the application process is semi-automatic. 

(iii) The approach in the present form does not handle concurrent state transitions of the 

participating components. 
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CHAPTER 5 

Software Fault Tree Analysis Approach for Object-

Oriented Design Phase 

It was noted in Chapter 2 that the existing analysis tools for object-oriented design 

(OOD) phase do not provide the support for either the automated or semi-automated 

application of the SFTA approach. This chapter presents a SFTA approach for the hazard 

analysis of the object-oriented design models. In the proposed approach, the events 

corresponding to the messages of a given sequence diagram are mapped against the 

states of the participating objects and using these the software fault tree (SFT) for the 

selected hazardous-state of the OOD model is constructed. The proposed SFTA approach 

is semi-automated and the algorithm is divided into four steps where the software fault 

tree construction step is automated. The UML sequence diagram for a selected use-case 

scenario and the UML state diagrams of the participating objects are required as the 

inputs. It requires proper tagging of both the sequence and state diagrams. The approach 

has been validated by applying it on the UML design models of two use-cases, namely 

‘Request Elevator’ and ‘Stop Elevator’ of an Elevator Control System (ECS) application, 

used earlier in Chapter 3. 

5.1 OBJECT-ORIENTED DESIGN PROCESS 

Object-oriented design is a common approach to software design where a particular 

software problem is divided into a system of collaborating/interacting objects. The use-

case models are developed during the object-oriented requirements analysis phase. The 

use-case realization template written for each use-case functionality is translated into a 

sequence diagram. The outputs of the object-oriented design phase include the following: 

(i) A set of classes, their attributes and the responsibilities/operations. 

(ii) A sequence diagrams for each use-case functionality. Each sequence diagram gives 

the information about the objects, which are collaborating with each other in order 

to realize the selected use-case functionality. 

(iii) A set of state diagrams, where each state diagram depicts the state transition pattern 

of a single object. It is to be noted that a state diagram focuses on the state 

transition pattern of a single object, whereas the sequence diagram focuses on all 

the objects that are required to realize the selected use-case functionality. 
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5.2 OBJECTIVE OF THE PROPOSED SFTA APPROACH  

The focus of SFTA research efforts in the object-oriented software design phase is either 

the automatic or semi-automatic construction of a software fault tree for a selected 

hazardous-state of the system directly from the given object-oriented design models. 

However, the efforts have not reported as success so far. 

The work of Pai and Dugan (Pai and Dugan, 2002) presents an approach to automatically 

construct the dynamic fault trees (DFTs) from UML class, activity and deployment 

diagram(s). However, the models used by Pai and Dugan do not represent any functional 

aspect of the system. Rather, UML has been used to model certain fault tolerant features 

of hardware systems such as redundancy and error-propagation. The objective of their 

work was reliability assessment and not the hazard analysis. Similarly, an approach to 

synthesize fault tree(s) for reliability analysis from architectural model has been 

proposed by Lauer and German (Lauer and German, 2011).The work described by 

Massood (Massood et al., 2002, 2003) provided a partial paradigm in the form of 

guidelines for mapping sequence, state and activity charts to corresponding fault trees, 

but the application process was manual as the possible message type errors have to be 

identified manually. The application of the SFTA approach on the UML sequence and 

state diagrams is manual, error-prone and time-consuming. The proposed algorithm 

integrates and semi-automates the application of the SFTA approach in object-oriented 

software design phase and overcomes all these limitations. 

5.3 ASSUMPTIONS FOR THE PROPOSED APPROACH 

The assumptions made for the proposed approach are explained below. 

(i) The sequence and state diagrams are complete and correct and are drawn for a 

single scenario 

The algorithm is based on the assumption that the supplied sequence and state diagrams 

are correct and complete and represents the functionality of a single scenario of a given 

use-case functionality. The completeness of the sequence diagram means that ‘no 

message and class has been missed-out’. The correctness of the sequence diagram means 

‘the sequence in which the various messages are exchanged among the 

collaborating/interacting objects, is specified correctly. It is also assumed that the UML 

state diagrams are correct (state transition events are correctly specified) and complete 
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(no state transition for any object is missed-out). The correctness and completeness of 

the inputs are required for the correctness and completeness of the constructed software 

fault trees. The presence of a wrong message in the sequence diagram or a wrong state 

transition in the state diagram will result in erroneous SFT.   

(ii) No participating object experience concurrent state transitions 

It is assumed that corresponding to any state transition event there is a single state 

transition experienced by any participating object. This assumption is same as in 

Chapter 3. 

(iii) The information about the type of object participating in the interaction is 

embedded in the object name. 

The proposed SFTA algorithm assumes that the information about three categories of 

objects, namely Controller, Device and Interface types, is embedded in the name of the 

object itself. The controller type of objects control the functionalities of device type 

objects. The interface type objects act as a communication channel to transfer the 

messages between controller and device types of objects. The algorithm uses three 

special tags, namely ((Controller)),((Device)),((Interface)) along with object name to 

represent the controller, device and interface types of objects. For example, 

Elevator((Controller)) is a controller type object, Door((Device)) is a device type object 

and Motor((Interface)) is an interface type object. 

(iv) Hazardous-state is expressed using states of only two device types of objects only 

It is also assumed that the hazardous-state, for which a software fault tree (SFT) is to be 

constructed, is expressed using the states of two device type objects only. 

5.4 OVERVIEW OF THE PROPOSED SFTA ALGORITHM 

The proposed SFTA algorithm is divided into four steps to construct the software fault 

tree (SFT) from the scenario sequence and its associated state diagrams. 

The first step extracts the attributes of each message from the scenario sequence diagram. 

The attributes that are extracted and computed for each message are shown in 

Table 5.1.The algorithm takes the scenario sequence diagram and associated state 

diagrams as inputs in machine readable format i.e. XMI (XML Metadata Interchange) 

format. The Altova UML(Altova-UModel, 2014) tool is used to draw the required 
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sequence and state diagrams and each of them is exported to XMI format using the same 

tool. 

Table 5.1: Attributes Extracted From Messages 

Message# Name 
Preconditi

on 
Type From To 

Send/ 

Receive 

Event 

Pair 

<<Unique 

Message 

Number>> 

<<Name of 

the 

Message as 

used in the 

sequence 

diagram>> 

<<Precondi

tion of the 

Message as 

used in the 

sequence 

diagram>> 

<<Type of the 

Message is 1 for 

Asynchronous 

Send, 2 for 

Synchronous 

Send, 3 For 

Asynchronous 

Reply, 4 for 

Synchronous 

Reply >> 

<<Name 

of the 

Sender 

Object>> 

<<Name 

of the 

Receiver 

Object>> 

<<Send 

event 

and 

Receive 

event 

pairs>> 

 

The second step takes the ‘Message-Sequence’ extracted in the first step and the UML 

state diagram XMI files as the inputs and identifies the ‘Event-Sequence-State-

Transitions’ of a scenario. The structure of the ‘Event-Sequence-State-Transition’ 

depends upon the number of objects for which the state diagrams are supplied as inputs. 

If the state diagrams for two arbitrary objects, namely ‘X’ and ‘Y’ are supplied as inputs 

in this step, then the structure of the ‘Event-Sequence-State-Transition’ is as shown in 

Table 5.2. 

Table 5.2: Structure of ‘Event-Sequence-State-Transition’ Table 

Event Type Timestamp X Y 

<<Event of a 

message>> 

<<Type of 

event >> 

<<Time of 

occurrence of the 

event>> 

<<State of X 

during the of 

event>> 

<<State of Y 

during 

theevent>> 

 

In the third step, for a given ‘hazardous-state’ of the system, the ‘Message-Sequence’ 

and the ‘Event-Sequence-State-Transitions’ are analyzed to generate the software fault 

tree (SFT) as an XML file. The actual SFT is drawn from this file by the fault tree 

creation tool named FaultCAT (FaultCAT,2003) in the next step. 

An overview of the steps of the SFTA approach is shown in Figure 5.1 and the SFTA 

algorithm is explained in the next section. 
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5.5 THE PROPOSED SFTA ALGORITHM 

5.5.1 Step I: Extracting Attributes of each Message from a Scenario Sequence 

Diagram 

This step extracts the information for each message from the sequence diagram XMI file. 

The extracted information is stored in tabular form as shown in Table 5.1. Each message 

is associated with two types of events, namely send-event and receive-event. The send 

event occurs on the lifeline of the sender object, whereas the receive event occurs on the 

lifeline of the receiver object. So, for each type of message (send type or reply type), a 

unique event pair named ‘Send/Receive Event Pair’ is generated in this step. 

The pseudo code of this step is given below. 

Procedure  populateMessageSequence() 

Input  Sequence Diagrams XMI File 

1. Create Message-Sequence Table with Structure as shown in Table 5.1 

2. FOR each message tag in the Sequence Diagrams XMI File 

(i) Extract the attributes for the message  

(ii) Generate a unique ‘‘Send/Receive Event Pair’ for the message 

ENDFOR 

 

5.5.2 Step II: Identifying ‘Event-Sequence-State-Transitions’ for a Scenario  

This step identifies ‘Event-Sequence-State-Transition’ of the scenario by using the 

‘Message-Sequence’ (of Step I) and the state diagram XMI files of the participating 

objects as inputs. The structure of the ‘Event-Sequence-State-Transition’ table is divided 

in two parts, namely ‘Event-Sequence’ part and ‘State-Transition’ part. The ‘Event-

Sequence’ part has three fields/columns, namely ‘Event’ (name of the event), ‘Type’ 

(type of the event) and ‘Logical Time’ (time when the event occurred) and this part is 

identified from the information given in ‘Message-Sequence’ of Step I. The ‘State-

Transition’ part is identified from the information given in the state diagram XMI files.  

The ‘Message-Sequence’ and ‘State-Transition’ parts are identified in two sub-steps as 

follows. 
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Step II(a) Identifying ‘Event-Sequence’ of a Scenario 

The ‘Message-Sequence’ table of Step I is sorted on a unique sequence number value 

assigned to every message and for every message a unique send/receive event pair has 

been created. This step first appends the values for each send/receive event pair for every 

message in the ‘Event’ column of the ‘Event-Sequence-State-Transition’. After that the 

values for ‘Type’ and ‘Logical Time’ fields are assigned. The ‘Type’ field value of any 

event is either 1 (if the event is a send event of sending type message) or 2 (if the event is 

a receive event of a send type message) or 3 (if the event is a send event of a reply type 

message) or 4 (if the event is a receive event of a reply type message). 

Every event is assigned a unique integer value known as its logical time (initialized to 0 

at the start of this step) and it is incremented by 1 between the occurrences of two 

successive events.  

The pseudo code for this step is given below 

Procedure  populateEventSequence() 

Input  Event-Sequence table and State Diagrams XMI (seq.xmi) Files 

logical_time = 0; 

FOR each message ’msg’ of the Message-Sequence table 

(i) Read the send event ‘es’ for the message ‘msg’ and append it in the Event-Sequence-

State-Transition table; 

(ii) Assign type for ‘es’ as per above mentioned description; 

(iii) Assign the logical time value for ‘es’ as logical_time+1; increment logical_time by 1; 

(iv) Repeat the above steps (1)–(3) for receive event (er) 

ENDFOR 

 

Step II(b) Identifying ‘State-Transitions’ of a Scenario 

This sub-step identifies the ‘State-Transition’ part of the ‘Event-Sequence-State-

Transition’ from the information given in the state diagram XMI files. The state 

transition of any participating object takes place either during the send event or during 

the receive event of a message as follows: 

Suppose, an object ‘O’ is making a state transition to a new state ‘S’ upon the occurrence 

of the message ‘M’. If object ‘O’ is not the sender of the message ‘M’ in the given 

sequence diagram, then object ‘O’ will make a transition to state ‘S’ at the occurrence of 

the receive event of message ‘M’ otherwise (if object ‘O’ is the sender of the message 
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‘M’) object ‘O’ will make a transition to state ‘S’ at the occurrence of the send event of 

message ‘M’.  

The pseudo code for this step is given below. 

Procedure  populateState-Transition() 

FOR each state chart XMI file of step 2 

 read current_object; /* name of the object represented by state chart XMI file */ 

 read initial_state of current_object; /* initial state of the object */ 

 FOR each message ‘msg’of Message-Sequence table  

  IF message ’msg’ is responsible for any state transition in the XMI file THEN 

   read next_state of the current_object; 

    IF current_object is not the sender of message‘msg’ THEN 

update the state column of current_object in Event-

Sequence-State-Transition table with next_state 

corresponding to receive event of message ‘msg’; 

    ELSE 

update the state column of current_object in Event-

Sequence-State-Transition table with next_state 

corresponding to send event of message ‘msg’; 

    ENDIF 

  ENDIF 

 ENDFOR 

ENDFOR 

FOR each event of Event-Sequence-State-Transition table 

 IF current_object state column is empty THEN 

  update the current_object column with initial_state; 

 ELSE 

  read the state stored under into current_object column initial_state 

 ENDIF 

ENDFOR 

 

5.5.3 Step III: Generating Fault Tree XML File for Selected Hazardous-State 

This step generates an XML file which represents the software fault tree for the selected 

hazardous-state. The hazardous-state of the system, the ‘Message-Sequence’ extracted in 

Step I and the ‘Event-Sequence-State-Transition’ identified in Step II are used as input(s) 

in this step. 

As mentioned earlier, the proposed approach constructs the software fault tree for the 

hazardous-state involving the states of two device type objects only. Assume ‘a’ and ‘b’ 
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are the valid states of two device type objects, namely A((Device)) and B((Device)) 

respectively. There can be four possible ways of expressing the hazardous-state of the 

system. 

Case 1 A((Device)) != a AND B((Device)) = b 

Suppose at time ‘T1’ the state of the A((Device)) object is changed to ‘a’ and at time ‘T2’ 

the state of the B((Device)) object is changed to ‘b’ and ‘T1’ is less than ‘T2’.This case 

represents a hazardous situation where the required state transition of the A((Device)) 

object to state ‘a’ (which is supposed to occur earlier) has not occurred at all, whereas the 

state transition of B((Device)) object to state ‘b’ (which is supposed to occur later) has 

occurred. The ‘AND’ operator is used here to join the states from various objects. 

The pseudo code of the fault tree construction for Case 1 hazardous-state is given below: 

Procedure createFaultTree() 

Input(s) Message-Sequence Table, Event-Sequence-State-Transition Table and 

Hazardous-State 

Output faultree.xml File 

(a) Create Fault Tree For A((Device)) != a 

1 Identify messages responsible for A((device)) = a from message-sequence table using 

event-sequence-state-transition table as input. 

2 Create a basic error event named !(M) for each such message where M is the message 

number of the message. /* the error event !(M) indicates that the message M has not 

been sent whereas it is to be sent */. 

3 If a message has a mentioned precondition, then create a basic error event named 

^(preC) where preC is the precondition of the message. /* error event ^(preC) represents 

a situation where precondition preC has been wrongly evaluated as false whereas it is 

true */. 

4 If number of basic error events created in steps (2) and (3) above are more than 1 then join all 

the error events by an AND gate and feed the output of this AND gate to an intermediate error 

event named A((device)) ! = a else use wire gate and feed the output of this gate to an 

intermediate event named A((device)) ! = a. 

(b) Create Fault Tree For B((Device)) = b 

1 Identify messages responsible for B((device)) = b from message-sequence table using 

event-sequence-state-transition table as input. 
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2 Create a basic error event named (M) for each such message where M is the message 

number of the message. /* the error event (M) indicates that the message M has been 

wrongly sent, whereas it is not to be sent */. 

3 If a message has a mentioned precondition, then create a basic error event named (preC) where 

preC is the precondition of the message. /* error event (preC) represents a situation where 

precondition preC has been wrongly evaluated as true whereas it is false */. 

4 If the number of basic error events created in steps (2) and (3) above are more than 1 then join 

all the error events by an AND gate and feed the output of this gate to an intermediate event 

named B((device)) = b else use wire gate and feed the output of this gate to an intermediate event 

named B(device)) ! = b. 

(c) Join the fault trees created in steps (a) and (b) above by an AND gate and feed the output of 

this gate to a hazardous state named A((device)) ! = a and B((device)) = b. 

Case 2 A((Device)) = a ANDB((Device)) != b 

The fault tree construction process for this type of hazardous-state is similar to Case 1 

hazardous-state, but in this case the state transition of A((Device)) object to state ‘a’ has 

occurred, but the required state transition of B((Device)) object to state ‘b’ has not occurred. 

The pseudo code of the fault tree construction for Case 2 hazardous-state is given below: 

(a) Construct fault tree for A((Device)) = a 

Use the fault tree construction steps of B((Device)) = b of Case 1. 

(b) Construct fault tree for B((Device)) != b 

Use the fault tree construction steps of A((Device)) != a of Case 1. 

(c) Join the fault trees created in steps (a) and (b) above by an AND gate and feed the output of 

this gate to a hazardous state named A((Device))= a and B((Device)) != b 

Case 3 A((Device)) != a ANDB((Device)) != b 

This case is similar to Case 1, but in this case, both the required state transitions of 

A((device)) and B((device)) objects to states ‘a’ and ‘b’ respectively have not occurred. 

The pseudo code of the fault tree construction for Case 3 hazardous-state is given below: 

(a) Construct fault tree for A((Device)) !=a using the fault tree construction steps of A((Device)) 

!=a of Case 1 

(b) Construct fault tree for B((Device)) !=b using the fault tree construction steps of A((Device)) 

!=a of Case 1 

(c) Join the fault trees created in steps (a) and (b) above by an AND gate and feed the output of 

this gate to a hazardous state named A((Device)) != a and B((Device)) != b.  
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Case 4 A((Device)) = a ANDB((Device)) = b 

This case is different from the previous three cases. According to this case, for the 

correct operation of the system, at any point of time the system should not have both 

A((Device)) and B((Device)) objects in states ‘a’ and ‘b’ respectively. As long as the 

object A((Device)) is in the state ‘a’, the B((Device) object should not be allowed to 

change its state to ‘b’ state and vice versa. 

The pseudo code of the fault tree construction for Case 4 hazardous-state is given below: 

(a) Select time ‘t1’ such that A((Device)) = a for the first time 

(b) Select time ‘t2’ such that B((Device)) = b for the first time 

(c) IFt1 is less than t2 THEN 

 Select the first time t3 (t1 <t3 <t2) such that A((Device)) ! = a; 

 Read the state (say ‘x’) of A((Device)) at time t3; 

 Use Case 1 procedure for the hazardous state A((Device)) ! = x and B((Device))=b;  

ELSE 

Select the first time t3 (t2 <t3 <t1) such that B((Device)) ! =b; 

 Read the state (say ‘x’) of B((Device)) at time t3; 

Use Case 1 procedure for the hazardous state B((Device)) ! = x and A((Device)) = a; 

 ENDIF 

5.5.4 Step IV: Constructing Fault Tree  

In this step, the software fault tree is drawn in graphical form by using the fault tree 

XML file created in Step III as an input to the FaultCAT tool. 

5.5.5 Time Complexity of the SFTA Algorithm 

(a) Time Complexity of Step I 

The running time, i.e. the algorithmic time complexity of Step I is of the order of ‘O(N1)’, 

where ‘N1’ is the number of messages in the sequence diagram. 

(b) Time Complexity of Step II 

The running time, i.e. the algorithmic time complexity of Step II(a) is of the order of O(N1), 

where ‘N1’ is the number of messages in the ‘Message-Sequence’ table. 

The running time, i.e. the algorithmic time complexity of Step II(b) is of the order of ‘O(N1 

× N2)’, where ‘N1’ is the number of messages in the ‘Message-Sequence’ table and ‘N2’ is 

the number of components for which the state diagrams are drawn in this step. 
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(c) Time Complexity of Step III 

The running time, i.e. the algorithmic time complexity of Step III is of the order of O(N3), 

where ‘N3’ is the number of events in the ‘Event-Sequence-State-Transitions’ of a scenario. 

5.5.6 Formatting of Inputs  

In the SFTA algorithm described above, it is assumed that the three inputs required in the 

algorithm requires are supplied in some specific representations as explained in the 

following sub-sections. 

(a) Sequence Diagram Representation 

The sequence diagram of the selected functionality should satisfy the following: 

(i) The name of any send-type message should have the following format: 

[ preC] {M} name-of-message( parameter-list) 

where ‘preC’ is the precondition that must be true before the message is sent and 

‘M’ is a unique message number assigned to that message. Message number ‘M’ 

has a structure of the form ‘Ad’ where ‘A’ is any capital alphabet and ‘d’ is a 

unique message sequence number. The Altova UModel tool provides a feature to 

automatically assign a unique integer sequence number to every message. This 

sequence number assigned by the tool should be used for assigning a unique 

message number to each message of the sequence diagram by inserting this 

sequence number after any capital alphabet letter and this alphabet letter should be 

same across the whole sequence diagram e.g., A1, B9 etc. 

(ii) Similarly, the name of the reply-type message (either synchronous or 

asynchronous) should have the format: {M} name-of-message, where M is a unique 

message number assigned to the reply message. 

(iii) The sequence diagram should be drawn without using an ‘alt’ block feature as 

shown in sequence diagram of Figure 5.2. In the Figure 5.2, the message M1 is sent 

only if the condition a = 0 is true, otherwise the message M2 will be sent. The 

presence of each ‘alt’ block indicates the presence of an alternate flow of actions of 

the selected functionality. But, while drawing a sequence diagram for any use-case 

functionality, only one of the two possible paths should be selected so that it 

represents the functionality of a single scenario, i.e., sequence diagram should be 

drawn either for true condition scenario or for false condition scenario. 

(iv) The object type information is to be included in the object name itself by appending 

special tag(s) such as ((Controller)), ((Interface)) and ((Device)) after the object 
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name. For example,Elevator((Controller)) indicates a controller type object, 

Door((Device))indicates device type object and Motor((Interface))indicates an 

interface type object. The controller type objects are responsible for controlling the 

state transitions of both the device type objects and the interface type objects. The 

interface type objects are used as a message exchange medium between controller 

and device type objects. 

 

Figure 5.2: A Sample Sequence Diagram using ‘alt’ block 

(b) State Diagram Representation 

The state diagrams drawn for the participating objects should satisfy the following: 

(i) The state diagrams drawn for the selected collaborating objects should use the 

unique message numbers assigned to various messages as state transition events. 

(ii) For every state of a device type object, there are to be defined two states for the 

controller type object and the names of these states should be as per the guidelines 

mentioned below. 

Consider a controller type object named C((Controller)) and device type object named 

D((Device)). Suppose C((Controller)) object issues a command to D((Device)) object 

to change its state to a new state named ‘s’. The D((Device)) object will make a state 

transition to state ‘s’ after receiving the command. After successful state transition, 

the D((Device)) object will send the reply back to C((Controller)) object. In this case, 

there are to be defined two states for C ((Controller)) object. The name of the first 

state of the C((Controller)) object is to be named as ‘prepare(D((Device))) = s’ and it 

should occur when C((Controller)) object issues the command. The name of the 

second state transition is to be named as ‘D((Device)) = s’ and it should occur when 

C((Controller)) object receives the reply message back from D((Device)) object. 
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(c) Hazardous-State Representation 

The hazardous-state for which a software fault tree is to be constructed is to be expressed 

in terms of the states of two device types objects only. The hazardous-state involving the 

states of device type objects can have four forms as discussed in Section 5.5.3. 

5.6 APPLICATION OF THE ALGORITHM IN SAFETY-

CRITICAL APPLICATION: ELEVATOR CONTROL SYSTEM 

The proposed SFTA application approach is applied on two use-cases, namely dispatch 

elevator and stop elevator and these scenarios are part of the design of an elevator 

control system application described by Gomaa (Gomaa, 2000). 

5.6.1 Dispatch Elevator Scenario 

The ‘Dispatch Elevator’ use-case functionality is required in the ECS application to 

dispatch an elevator to a particular floor in response to a user request. The sequence 

diagram drawn for the ‘Dispatch Elevator’ use-case is shown in Figure 5.3.Theobjects 

that are participating in this scenario are: ‘:ElevatorStatusPlan’, ‘:Elevator((Controller))’, 

‘:Motor((Interface))’,‘:Motor((Device))’, ‘:Door((Interface))’ and ‘ : Door((Device))’.The 

format used to represent the name of the object is ‘object-name:class-name’, where 

object-name is the name of the object and is optional and ‘class-name’ represents the 

name of the class to which the object belongs. 

The information about the floors where an elevator has to visit is maintained by the 

‘ElevatorStatusPlan’ object. The ‘ElevatorStatusPlan’ object instructs the 

‘Elevator((Controller))’ object to move the elevator to a particular floor number. The 

‘:Elevator((Controller))’ object is used to control the operations of the ‘:Door((Device))’ 

and the ‘:Motor((Device))’ objects. The ‘:Motor((Interface))’ object is used as an 

interface to communicate with the ‘:Motor((Device))’ object. The ‘:Door((Interface))’ 

object is used as an interface to communicate with ‘:Door((Device))’ object. The 

‘Door((Device))’ and ‘Motor((Device))’ objects simulates the operations of the actual 

door and motor hardware devices. 

Step I: Extract Message-Sequence from the Sequence Diagram 

The execution of Step I results in the instantiation of the ‘Message-Sequence’ table as 

shown Table 5.3. The XMI file of the sequence diagram as shown in Figure 5.3 is used 

as an input in this step. 
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Figure 5.3: Elevator Controller Sequence Diagram (Dispatch Elevator Scenario) 
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Table 5.3: Message-Sequence Table Generated for Dispatch Elevator Scenario 

Message# Name Type Pre-condition From To 
Send/Receive

Event Pair 

D1 movetoFloor(Floor#) 1  ElevatorStatusPlan Elevator((Controller)) {E1,E2} 

D2 doorClose() 2  Elevator((Controller)) Door((Interface)) {E3,E4} 

D3 close() 2  Door((Interface)) Door((Device)) {E5,E6} 

D4 door=close 3  Door((Device)) Door((Interface)) {E7,E8} 

D5 door=closed 3  Door((Interface)) Elevator((Controller)) {E9,E10} 

D6 moveMotor() 2 {D5}door=closed Elevator((Controller)) Motor((Interface)) {E11,E12} 

D7 move() 2  Motor((Interface)) Motor((Device)) {E13,E14} 

D8 motor=moved 3  Motor((Device)) Motor((Interface)) {E15,E16} 

D9 motor=moving 3  Motor((Interface)) Elevator((Controller)) {E17,E18} 

D10 departed() 1  Elevator((Controller)) ElevatorStatusPlan {E19,E20} 
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Step II: Identify ‘Event-Sequence-State-Transition’ 

There are three objects, namely Motor((Device)), Door((Device)) and 

Elevator((Controller)) that change their state during the scenario realization and their 

state transitions are shown in Figure 5.4(a), Figure 5.4(b)and Figure 5.4(c) respectively. 

 

(a) Motor State Diagram (Dispatch Elevator Scenario) 

 

(b) Door State Diagrams (Dispatch Elevator Scenario) 

 

(c) Elevator Controller State Diagram 

Figure 5.4: State Diagrams For Dispatch Elevator Scenario of ECS Application 

The initial state of Elevator((Controller)) object is ‘at_floor’ (i.e., elevator is stationed 

at floor) and similarly initial state(s) of Motor((Device)) and Door((Device)) objects are 

‘stopped’ and ‘opened’ respectively. 
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ThemessageD1 (Figure 5.6) has been sent from the ‘:ElevatorStatusPlan’ object to an 

‘:Elevator((Controller))’ object and upon receive of this message the state of the 

‘:Elevator((Controller))’ object is changed to ‘servicing’ i.e., state transition occurs 

during the receive event (event E2 as shown in Table 5.4) of message D1. 

The message D2 has been sent from ‘:Elevator((Controller))’ object to 

‘:Door((Interface))’ object, but in this case the state of Elevator((Controller)) object is 

changed to ‘prepare(Door((Device)) = closed)’ immediately after the sending of message 

D2 i.e. state transition occurs on the send event of message D2 (event E3 of Table 5.6). 

The state of ‘:Elevator((Controller))’ object is changed to ‘Door((Device)) = closed’ after 

receiving the reply message D5 (state transition occurs at the receive event of message 

D5 i.e., at event E10 of Table 5.4). The ‘:Motor((Device))’ object makes a transition from 

‘stopped’ to ‘moving’ state after receiving the message D7 and since the sender of 

message D7 is not ‘:Motor((Device))’, so ‘:Motor((Device))’ object makes its required 

state transition at the receive event of message D7. Similarly, ‘:Door((Device))’ 

objectmakesitsrequiredstatetransitionfrom‘opened’to‘closed’stateafter receiving the 

message D3 i.e., actual state transition occurs at the receive event of message D3. 

The ‘Event-Sequence-State-Transition’ table populated after the application of Step II, by 

taking Table 5.3 and the state diagram XMI files of Figure 5.4as inputs, is shown in 

Table 5.4. 

Step III and Step IV: Generate Fault Tree XML File and Construct Software Fault Tree 

The Case 1 hazardous-state considered for this application is ‘Door((Device))!=closed 

and Motor((Device))= moving’. The fault tree XML file generated for this Case 1 

hazardous-state is shown in Figure 5.5 and the corresponding fault tree generated from 

this file is shown in Figure 5.6. 

Thenames of basic and intermediate events are to be interpreted as follows: 

1. !(msg#){where msg# is the message number} i.e., a corresponding message is not 

sent whereas it has to be sent 

2. (msg#){where msg# is the message number}i.e., a corresponding message is sent, 

whereas it has not to be sent 

3. ^(PreC){where PreC is the precondition of the message} i.e., precondition has been 

wrongly evaluated as true. 
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Table 5.4: Event-Sequence-State-Transition Table Generated for  

Dispatch Elevator Scenario 

Event Type Timestamp Elevator((Controller)) Motor((Device)) Door((Device)) 

E1 1 1 at_floor stopped opened 

E2 2 2 servicing stopped opened 

E3 1 3 prepare(Door((Device))=closed) stopped opened 

E4 2 4 prepare(Door((Device))=closed) stopped opened 

E5 1 5 prepare(Door((Device))=closed) stopped opened 

E6 2 6 prepare(Door((Device))=closed) stopped closed 

E7 3 7 prepare(Door((Device))=closed) stopped closed 

E8 4 8 prepare(Door((Device))=closed) stopped closed 

E9 3 9 prepare(Door((Device))=closed) stopped closed 

E10 4 10 Door((Device))=closed stopped closed 

E11 1 11 prepare(Motor((Device))=moving) stopped closed 

E12 2 12 prepare(Motor((Device))=moving) stopped closed 

E13 1 13 prepare(Motor((Device))=moving) stopped closed 

E14 2 14 prepare(Motor((Device))=moving) moving closed 

E15 3 15 prepare(Motor((Device))=moving) moving closed 

E16 4 16 prepare(Motor((Device))=moving) moving closed 

E17 3 17 prepare(Motor((Device))=moving) moving closed 

E18 4 18 Motor((Device))=moving moving closed 

E19 1 19 Motor((Device))=moving moving closed 

E20 2 20 Motor((Device))=moving moving closed 
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<?xml version="1

Event><Title>Door((Device))!

Gate><Intermediate- 

Event><Title>!(D2)</Title></

Event></Or-Gate></Intermedi

Event><Title>Motor((Device))

Event><Title>^({D5}door=clos

Event><Title>(D6)</Title></Ba

Event></And-Gate></Intermedi

Figure 5.5: faultree.xml File for Case 1 Hazardous

Figure 5.6: Fault Tree Generated 

closed and Motor((Device)) = moving
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"1.0" encoding="UTF-8"?><Fault-Tree>

!=closed ANDMotor((Device))=moving

Event><Title>Door((Device))!=closed</Title><Or

></Basic- Event><Basic-Event><Title>!(D3)</

iate-Event><Intermediate- 

))=moving</Title><And-Gate><Basic- 

osed)</Title></Basic-Event><Basic-

Basic- Event><Basic-Event><Title>(D7)</

ediate-Event></And- Gate></Intermediate-Event></

: faultree.xml File for Case 1 Hazardous-State Door((Device))!=

Motor((Device))= moving 

Fault Tree Generated for Case 1 Hazardous-State Door((Device))

closed and Motor((Device)) = moving 
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><Intermediate-

g</Title><And-

le><Or-Gate><Basic-

/Title></Basic-

/Title></Basic-

/Fault-Tree> 

))!=closed and 

 

State Door((Device))! = 
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Similarly, the faulttree.xmlfi

Door((Device))!=closedand 

isshowninFigure5.7anditscor

as an input is shown in Figu

<?xml     version="1.0"     encoding="UTF

Event><Title>Door((Device))!=closed AND                                                                               

Motor((Device))!=moving</Title><And

Event><Title>Door((Device))!=closed</Title><Or

Event><Title>!(D2)</Title></Basic

Event></Or-Gate></Intermediate

Event><Title>Motor((Device))!=moving</Title><Or

Event><Title>^({D5}door=closed)</Title></Basic

Event><Title>!(D6)</Title></Basic

Event></Or-Gate></Intermediate

Figure 5.7: faultree.xml File for Case 

Figure 5.8: Fault Tree generated 

closed and Motor((Device)) 
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ilegeneratedforCase3hazardousstate 

and Motor((Device))!=moving, 

rresponding fault tree drawn by FaultCAT tool us

gure5.8. 

<?xml     version="1.0"     encoding="UTF-8"?><Fault-Tree><Intermediate

Event><Title>Door((Device))!=closed AND                                                                               

Motor((Device))!=moving</Title><And-Gate><Intermediate- 

Event><Title>Door((Device))!=closed</Title><Or-Gate><Basic-

Event><Title>!(D2)</Title></Basic- Event><Basic-Event><Title>!(D3)</Title></Basic

Gate></Intermediate-Event><Intermediate- 

Event><Title>Motor((Device))!=moving</Title><Or-Gate><Basic- 

Event><Title>^({D5}door=closed)</Title></Basic-Event><Basic-

Event><Title>!(D6)</Title></Basic- Event><Basic-Event><Title>!(D7)</Title></Basic

Gate></Intermediate-Event></And- Gate></Intermediate-Event></Fault

ree.xml File for Case 3 Hazardous-State Door((Device))!=

Motor((Device))!= moving 

Fault Tree generated for Case 3 Hazardous-State Door((Device)) ! = 

closed and Motor((Device)) != moving 
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tool using this file 

Tree><Intermediate-

Event><Title>Door((Device))!=closed AND                                                                               

Event><Title>!(D3)</Title></Basic-

Event><Title>!(D7)</Title></Basic-

Event></Fault-Tree> 

))!=closed and 

 

State Door((Device)) ! = 
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5.6.2 Stop Elevator Scenario 

The ‘Stop Elevator’ use-case functionality is required in the ECS application to stop an 

elevator at a particular floor number. The sequence diagram drawn for this use-case 

scenario is shown in Figure 5.9. 

The participating objects are ‘:ArrivalSensor((Interface))’,‘:Elevator((Controller))’, 

‘:ElevatorStatusPlan’, ‘:Motor((Interface))’, ‘:Motor((Device))’, ‘:Door((Interface))’, 

‘:Door((Device))’ and ‘:DoorTimer’. 

The role of the ‘:ArrivalSensor((Interface))’ object is to detect the arrival of the elevator 

whenever it is approaching a particular floor number and generates an interrupt for the 

‘:Elevator((Controller))’ object. 

The roles of the ‘:Elevator((Controller))’, ‘:ElevatorStatusPlan’, ‘:Motor((Interface))’, 

‘:Motor((Device))’, ‘:Door((Interface))’ and ‘:Door((Device))’objects are similar to the 

roles of the same in ‘Dispatch Elevator’ scenario. The role of the ‘DoorTimer’ object is to 

maintain the time during which the elevator door has to remain open. 

The whole functionality gets executed when a ‘floorReach()’ interrupt message is 

received by the ‘:Elevator((Controller))’ object from an ‘:ArrivalSensor((Interface))’ 

object.Upon the receipt of the message, the ‘:Elevator((Controller))’ object performs the 

following tasks in sequence 

(i) It checks with the ‘:ElevatorStatusPlan’ object to know whether an elevator has to 

stop at that floor number or not. 

(ii) If elevator has to stop at the floor, then following actions are carried out 

sequentially 

a. The ‘:Elevator((Controller))’ object commands to stop the motor 

b. When motor is stopped, the ‘:Elevator((Controller))’ object commands to open 

the door 

c. When door is opened, the ‘:Elevator((Controller))’ starts the door timer 

d. When timer stops, the ‘:Elevator((Controller))’ object checks with the 

‘:ElevatorStatusPlan’ object to know about the next floor destination. 

e. If the elevator is not to visit any other floor then it remains on the last visited 

floor. 

The ‘Message-Sequence’ table populated by taking the sequence diagram of Figure 5.9 as 

an input is shown in Table 5.5. 



Software Fault Tree Analysis Approach for Object-Oriented Design Phase 

123 

 

Figure 5.9: Sequence Diagram for Stop Elevator Scenario 
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Table 5.5: Message-Sequence Table Generated for Stop Elevator Scenario 

Message# Name Type Precondition From To 
Send/Receive 

Event-Pair 

A1 floorReach(Floor#) 1  ArrivalSensor((Interface)) Elevator((Controller)) {E1,E2} 

A2 checkDestination(Floor#) 2  Elevator((Controller)) ElevatorStatusPlan {E3,E4} 

A3 Reply=YES 3  ElevatorStatusPlan Elevator((Controller)) {E5,E6} 

A4 stopMotor() 2 {A3}Reply=YES Elevator((Controller)) Motor((Interface)) {E7,E8} 

A5 stop() 2  Motor((Interface)) Motor((Device)) {E9,E10} 

A6 motor=stop 3  Motor((Device)) Motor((Interface)) {E11,E12} 

A7 motor=stopped 3  Motor((Interface)) Elevator((Controller)) {E13,E14} 

A8 doorOpen() 2 {A7}motor=stopped Elevator((Controller)) Door((Interface)) {E15,E16} 

A9 open() 2  Door((Interface)) Door((Device)) {E17,E18} 

A10 door=open 3  Door((Device)) Door((Interface)) {E19,E20} 

A11 door=opened 3  Door((Interface)) Elevator((Controller)) {E21,E22} 

A12 startTimer() 2 {A11}door=opened Elevator((Controller)) DoorTimer {E23,E24} 

A13 timeOut 3  DoorTimer Elevator((Controller)) {E25,E26} 

A14 checkNextdestination() 2  Elevator((Controller)) ElevatorStatusPlan {E27,E28} 

A15 destination=nil 3  ElevatorStatusPlan Elevator((Controller)) {E29,E30} 
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The state diagrams for ‘:Door((Device))’, ‘:Motor((Device))’ and ‘:Elevator((Controller))’ 

objects are shown in Figure 5.10. 

 

(a) Door State Diagram 

 

(b) Motor State Diagram 

 

(c) Elevator Controller State Diagram 

Figure 5.10: State Diagrams for Stop Elevator Scenario 
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The ‘Event-Sequence-State-Transition’ table populated after the application of Step II of the 

proposed approach is shown in Table 5.6. The ‘Message-Sequence’ table as shown in 

Table 5.5 and the XMI files of the state diagrams of Figure 5.10 are used as inputs in this 

step. 

Table 5.6: Event-Sequence-State-Transition Table Generated for  

Stop Elevator Scenario 

Event Type Timestamp Elevator((Controller)) 
Motor 

((Device)) 

Door 

((Device)) 

E1 1 1 motor=moving moving closed 

E2 2 2 motor=moving moving closed 

E3 1 3 motor=moving moving closed 

E4 2 4 motor=moving moving closed 

E5 3 5 motor=moving moving closed 

E6 4 6 motor=moving moving closed 

E7 1 7 prepare(Motor((Device))=stopped) moving closed 

E8 2 8 prepare(Motor((Device))=stopped) moving closed 

E9 1 9 prepare(Motor((Device))=stopped) moving closed 

E10 2 10 prepare(Motor((Device))=stopped) stopped closed 

E11 3 11 prepare(Motor((Device))=stopped) stopped closed 

E12 4 12 prepare(Motor((Device))=stopped) stopped closed 

E13 3 13 prepare(Motor((Device))=stopped) stopped closed 

E14 4 14 Motor((Device))=stopped stopped closed 

E15 1 15 prepare(Door((Deice))=opened) stopped closed 

E16 2 16 prepare(Door((Deice))=opened) stopped closed 

E17 1 17 prepare(Door((Deice))=opened) stopped closed 

E18 2 18 prepare(Door((Deice))=opened) stopped opened 

E19 3 19 prepare(Door((Deice))=opened) stopped opened 
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Event Type Timestamp Elevator((Controller)) 
Motor 

((Device)) 

Door 

((Device)) 

E20 4 20 prepare(Door((Deice))=opened) stopped opened 

E21 3 21 prepare(Door((Deice))=opened) stopped opened 

E22 4 22 Door((Device))=opened stopped opened 

E23 1 23 startingTimer stopped opened 

E24 2 24 startingTimer stopped opened 

E25 3 25 startingTimer stopped opened 

E26 4 26 timeout stopped opened 

E27 1 27 checkingNextDestination stopped opened 

E28 2 28 checkingNextDestination stopped opened 

E29 3 29 checkingNextDestination stopped opened 

E30 4 30 at_floor stopped opened 

 

The faulttree.xml file generated for Case 1 hazardous state Motor((Device)) != stopped 

and Door((Device)) = opened, is shown in Figure 5.11. The corresponding fault tree 

drawn by FaultCAT tool using this faulttree.xml file as an input is shown in 

Figure 5.12. 

<?xml version="1.0" encoding="UTF-8"?><Fault-Tree><Intermediate-

Event><Title>Motor((Device))!=stopped AND Door((Device))=opened</Title><And-

Gate><Intermediate-Event><Title>Motor((Device))!=stopped</Title><Or-Gate><Basic-

Event><Title>^({A3}Reply=YES)</Title></Basic-Event><Basic-

vent><Title>!(A4)</Title></Basic-Event><Basic-Event><Title>!(A5)</Title></Basic-

Event></Or-Gate></Intermediate-Event><Intermediate-

Event><Title>Door((Device))=opened</Title><And-Gate><Basic-

Event><Title>^({A7}motor=stopped )</Title></Basic-Event><Basic-

Event><Title>(A8)</Title></Basic-Event><Basic-Event><Title>(A9)</Title></Basic-

Event></And-Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault-Tree> 

Figure 5.11: Fault Tree XML File for Case 1 Hazardous-State ‘Motor((Device))!= 

stopped and Door((Device))=opened’ 
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Figure 5.12: Fault Tree Generated for 

stopped

Similarly, thefaulttree.xml 

Motor((Device))=stopped 

5.13.Thecorrespondingfault tree

input is shown in Figure 5.14

<?xml version="1.0" encoding="UTF

Event><Title>Motor((Device))=stopped AND Door((Device))!=opened</Title><And

Gate><Intermediate-Event><Title>Motor((Device))=stopped</Title><And

Event><Title>({A3}Reply=YES)</Title></Basic

Event><Title>(A4)</Title></Basic

Event><Basic-Event><Title>(A6)</Title></Basic

Event><Title>(A7)</Title></Basic

Event><Title>Door((Device))!=opened</Title><Or

Event><Title>^({A7}motor=stopped )</Title></Basic

Event><Title>!(A8)</Title></Basic

Event></Or-Gate></Intermediate

Figure 5.13: faultree.xml File for Case 

stopped

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

Fault Tree Generated for Case 1 Hazardous-State ‘Motor

stopped and Door((Device))=closed’ 

lttree.xml file generated for Case2 haza

 and Door((Device))!= opened, is shown

t tree drawn by FaultCATtool using thisfaulttree.xml

4. 

<?xml version="1.0" encoding="UTF-8"?><Fault-Tree><Intermediate

Event><Title>Motor((Device))=stopped AND Door((Device))!=opened</Title><And

Event><Title>Motor((Device))=stopped</Title><And-Gate><Basic

Event><Title>({A3}Reply=YES)</Title></Basic-Event><Basic-

Event><Title>(A4)</Title></Basic-Event><Basic-Event><Title>(A5)</Title></Basic

Event><Title>(A6)</Title></Basic-Event><Basic-

Event><Title>(A7)</Title></Basic-Event></And-Gate></Intermediate-Event><Intermediate

Event><Title>Door((Device))!=opened</Title><Or-Gate><Basic-

Event><Title>^({A7}motor=stopped )</Title></Basic-

Event><Title>!(A8)</Title></Basic-Event><Basic-Event><Title>!(A9)</Title></Basic

Gate></Intermediate-Event></And-Gate></Intermediate-Event></Fault

: faultree.xml File for Case 2 Hazardous-State Motor((Device)) = 

stopped and Door((Device)) != opened 
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Motor((Device))!= 

ardous state 

wn in Figure 

lttree.xml file as an 

Tree><Intermediate-

Event><Title>Motor((Device))=stopped AND Door((Device))!=opened</Title><And-

Gate><Basic-

Event><Title>(A5)</Title></Basic-

Event><Intermediate-

-Event><Basic-

Event><Title>!(A9)</Title></Basic-

Event></Fault-Tree> 

((Device)) = 
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Figure 5.14: Fault Tree Generated for 

stopped

The snapshots of the fault trees constructed using 

files as shown in Figure 5.5, Figure 

Appendix-V, Appendix-VI, Appendix

5.6.3 Analysis of Results 

The aim of the SFTA algorithm is to construct the fault trees for the selected haz

state of the system. The analyst has to incorporate the necessary safety features in the 

system to avoid the occurrence of the hazardous state. The 

results of the fault tree for this purpose. The c

message-related errors that cause 

none of the events from a cutset 

Software Fault Tree Analysis Approach for Object-Oriented Design Phase

Fault Tree Generated for Case 1 Hazardous-State Motor

stopped and Door((Device)) != closed 

The snapshots of the fault trees constructed using a FaultCAT tool, from the faulttree.xml 

, Figure 5.7, Figure 5.11 and Figure 5.13, are also 

, Appendix-VII and Appendix-VIII, respectively.

The aim of the SFTA algorithm is to construct the fault trees for the selected haz

state of the system. The analyst has to incorporate the necessary safety features in the 

system to avoid the occurrence of the hazardous state. The analyst uses the cutset analysis 

for this purpose. The cut sets are the logical combinations of 

related errors that cause the hazardous-state. A cut set is a minimal cutset if 

none of the events from a cutset can be removed and a hazardous-state can still occur.
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Motor((Device)) = 

from the faulttree.xml 

also shown in 

, respectively. 

The aim of the SFTA algorithm is to construct the fault trees for the selected hazardous-

state of the system. The analyst has to incorporate the necessary safety features in the 

analyst uses the cutset analysis 

ical combinations of 

state. A cut set is a minimal cutset if 

state can still occur. A 
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hazardous-state can be avoided by providing safeguards against the selected erroneous 

events from the minimal cut sets. If the events in the minimal cut sets are joined by an 

‘AND’ gate, then the hazardous state can be avoided by providing the safety features for 

any one erroneous event selected from the list. The experience and the domain 

knowledge of the analyst plays an important role in the selection of the erroneous event 

in this situation. 

Consider the fault tree for the hazardous-state ‘Door((Device))!=closed AND 

Motor((Device))=moving’ as shown in Figure 5.6. There are two minimal cut sets for this 

fault tree and these are {‘!(D2)’,‘(D6)’,‘^({D5}door=closed)’,‘(D7)’} and 

{‘!(D3)’,‘(D6)’,‘^({D5}door=closed)’,‘(D7)’}. In the both these minimal cut sets, the 

erroneous events {‘(D6)’,‘^({D5}door=closed)’,‘(D7)’} are joined by an ‘AND’ gate.   

So any one of these can be selected for the avoidance of the hazardous-state. If the 

erroneous event ‘^({D5}door=closed)’ is selected from these events, then to avoid the 

hazardous-state ‘Door((Device))!=closed AND Motor((Device))=moving’ from 

occurring, the analysts has to provide the necessary safeguards against the three 

erroneous events namely ‘!(D2)’, ‘!(D3)’ and ‘^({D5}door=closed)’. 

Similarly, consider the fault tree for the hazardous-state ‘Motor ((Device))!= stopped and 

Door((Device)) = opened’ as shown in Figure 5.12. There are three minimal cut sets for 

this fault tree and these are {‘!(A4)’,‘(A8)’,‘^({A7}Motor=stopped)’,(A9)}, 

{‘({A3}Reply=YES)’,‘^({A7}Motor=stopped)’,‘(A8)’,‘^({A7}Motor=stopped)’,(A9)} 

and {‘!(A5)’,‘(A8)’,‘^({A7}Motor=stopped)’,(A9)}.The erroneous 

events{‘(A8)’,‘^({A7}Motor=stopped)’,(A9)} in all the three minimal cut sets are joined 

via an ‘AND’ gate. If an erroneous event ‘^({A7}Motor=stopped)’ is selected from this 

list then to avoid the hazardous-state ‘Motor((Device)) != stopped and Door((Device)) = 

opened’ from occurring the safeguards have to be provided against four erroneous events 

and these are ‘!(A4)’, ‘({A3}Reply=YES)’, ‘!(A5)’ and ‘^({A7}Motor=stopped)’. 

5.7 COMPARATIVE ANALYSIS 

The presented SFTA approach can be considered as an extension of the manual SFTA 

application work described by Massood et al. (2002, 2003) where only the basic 

guidelines, to convert a given sequence and state diagram to its corresponding software 

fault tree, have been described. The message type errors such as ‘message not sent’ or 

‘message sent at a wrong time’ have to be identified manually whereas in our approach, 
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the message errors are identified by software and fed during construction of the 

software fault tree. The focus of the work presented by Pai and Dugan (2002) is 

reliability assessment and the reliability related information such as redundancy; 

reconfiguration and dependencies among components have been embedded in the 

architectural model itself. The UML class has been used to model the redundancy, 

whereas UML activity chart is used to model the failure behavior. In UML, class 

diagrams are generally used to represent the static structure/components of the system, 

whereas our approach is based upon sequence and state diagram(s) which are actually 

used to express the dynamic behavior of the system. Lauer and German’s work (2011) 

also focused upon reliability assessment. The focus of the presented semi-automated 

SFTA approach is the hazard analysis so that the analyst could analyze how a particular 

hazard can occur in the system. The procedure for embedding the features of FTA and 

one other hazard analysis technique named hazard and operability (HazOp) into UML 

component models has been described by Lu et al. (2005) and in this case also the 

application process is manual. The fault tree construction step of the presented SFTA 

approach is automated and error-free. 

The shortcomings of the proposed approach are: 

1 It can be applied to a hazardous-state that can be expressed in terms of an 

incompatible state(s) of the collaborating objects. In actual real time applications 

hazard may occur because of many other factors such as wrong computation, 

incorrect response received etc. 

2 The sequence diagram is drawn for a single scenario without the use of ‘alt’ blocks. 

But, a given use case functionality can have many different scenarios as discussed in 

Chapter 3 

3 The proposed approach requires that the tagging of sequence diagram should be 

proper and correct. If any message’s precondition tag is specified wrongly, then the 

precondition basic error event and the constructed fault tree will also be wrong. If any 

message’s precondition tag is missing, then there will not be any basic event 

representing the precondition of that message in the final constructed fault tree. 

Another type of errors such as ‘wrong assignment of the message numbers’ or ‘not 

assigning the message numbers’ for various messages in the sequence diagram, will 

affect the final generated fault tree. 

Work on these shortcomings is carried on as further work. 
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CHAPTER 6 

Software Failure Modes and Effects Analysis in Object-

Oriented Design Phase 

This chapter presents a new automated SFMEA approach for object-oriented design 

phase. The proposed approach is of a forward analysis type, which investigates the effects 

of various message-related errors on the system. The message-related errors are selected 

from the sequence diagram whereas the effects of these errors are traced to the erroneous 

states of the participating objects. The approach has been validated by applying it on two 

safety-critical applications, namely Insulin Delivery System (IDS) and Railway Track 

Door Control System (RTCS) discussed in previous chapters. The UML sequence 

diagram and state diagrams are required as inputs in XMI (XML Metadata Interchange) 

format. The Altova UML (Altova-UModel, 2014) tool is used first to draw the required 

sequence and state diagrams and then export the drawn diagrams to XMI format. 

6.1 MOTIVATION FOR SFMEA IN OBJECT-ORIENTED DESIGN 

PHASE 

Guiochet and Baron (Guiochet and Baron, 2003) have applied Failure Modes Effects and 

Criticality Analysis (FMECA) technique on UML sequence diagrams by identifying 

eleven types of message-related errors that can occur in the system. The work of Hecht 

and Hecht (Hecht and Hecht, 2004) described a computer-aided SFMEA approach for 

two stages of software development namely concept phase and design/implementation 

phase. Ozarin (Ozarin, 2004) recommended applying Software FMEA approach during 

the full software life cycle by exploiting various UML diagrams as inputs. The SFMEA 

approach described by David (David et el, 2008) generates a FMEA table from a 

sequence diagram, but requires that dysfunctional behaviors of various classes in the form 

of a database are to be known in advance. It is to be noted that none of the researchers 

have proposed a solution for SFMEA in object-oriented design phase. The proposed 

SFMEA approach is an attempt to integrate and automate the application of the SFMEA 

in object-oriented design phase. The proposed approach also overcomes the following 

two limitations of the SFTA approach developed and discussed in Chapter 5. 

(i) The sequence diagram can have ‘alt’ block and can have many scenarios. 

(ii) There is no restriction on naming the states of the participating components. 
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6.2 OVERVIEW OF THE APPROACH 

The proposed SFMEA approach is divided into four steps to investigate the critical 

effects of various message-related errors on the system. The UML sequence diagram 

(drawn for the selected use-case functionality) and the UML state diagrams (drawn for 

the selected collaborating objects) are the required inputs and each of these inputs are 

accepted in a machine-readable format. The proposed SFMEA approach does a forward 

analysis of various message-related errors to find out the hazardous-state level effects 

caused because of these errors. 

The first step performs the following two tasks 

(i) It converts a sequence diagram to its pseudo code form, and 

(ii) It extracts the attributes of each message and stores the results as ‘Message-Details’.  

The attributes that are extracted for each message and the meaning of each attribute are 

shown in Table 6.1. 

Table 6.1: Various Attributes of a Message 

Message Attribute Meaning 

Message# Unique Message Number assigned to each Message 

Message-Name Name of the message as used in the Sequence 

Diagram 

Label Label assigned to each message 

From Name of the Sender Object 

To Name of the Receiver Object 

Type Type of Message: 1 for synchronous type and 2 for 

other type 

isReply Is the message a reply type or not: 1 for reply type 

and 0 otherwise 

Reply-Message Name of the reply message of a send type message, if 

any 

Send Event Send Event of the Message 

Receive Event Receive Event of the Message 

Message-Send-Dependency-List List of messages that are dependent upon the message  

Message-Send-Independent-List List of messages that are not dependent upon the 

message 
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A typical sequence diagram can have any number of uniquely executable paths known as 

scenarios and each such scenario has its own associated message-sequence. The second 

step extracts the message-sequence for each scenario. The message-sequence of any 

scenario has the structure as shown in Table 6.2. 

Table 6.2: Structure of Message-Sequence  

Message# Label Precondition Sequence-No 

<<Unique 

Message Number 

assigned to each 

message>> 

<<Label of each 

message >> 

<<Precondition 

that must be true 

before sending the 

message>> 

<<Sequence number 

of the message in 

the scenario>> 

 

The third step maps the events of various messages against the states of the collaborating 

objects. The results are stored in the form of ‘Event-Sequence-State-Transitions’. The 

structure of ‘Event-Sequence-State-Transition ‘for any scenario depends upon the number 

of objects for which state diagrams are supplied as inputs. If the state diagrams are 

supplied for two objects, namely ‘X’ and ‘Y’ then the structure of ‘Event-Sequence-State-

Transition’ will have four fields as shown in Table 6.3. 

Table 6.3: Structure of Event-Sequence-State-Transition 

Event# Logical-Time X Y 

<<Unique Event 

Number assigned 

to each event>> 

<<Time of occurrence 

of the event in a 

scenario>> 

<<State of object 

X during the 

event>> 

<<State of object Y 

during the event>> 

 

The ‘Message-Errors-Effects-Analysis’ of each scenario is carried-out in the last step. 

The fourth step first identifies the various ‘Message-Related’ errors that a system can 

experience and then investigates the state level effects of these errors on the system.  

The results of this step, for each scenario, are stored in a tabular form known as 

‘Message-Errors-Effects-Analysis’. The structure of the ‘Message-Errors-Effects-

Analysis’ table has three fields, namely (i) Message#, (ii) Message-Error and (iii) 

Effects as shown in Table 6.4. The ‘Effects’ column of Table 6.4 is further sub-divided 

into various events sub-columns and the number of these events sub-columns depend 

upon the number of events in the associated scenario. 
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Table 6.4: Structure of Message

Message# Message

<<Message 

number assigned 

to each 

message>> 

<<An error that 

can occur in the 

message

 

An overview of all the four steps of the approach is shown in Figure 

Figure 6.1: Overview of 
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Table 6.4: Structure of Message-Errors-Effects-Analysis  

Message-Error 
Effects 

Event-1 … Event

An error that 

can occur in the 

message>> 

<<Effects of the error observed during 

various events>> 

overview of all the four steps of the approach is shown in Figure 6.1. 

: Overview of the Proposed SFMEA Approach 
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Event-N 

Effects of the error observed during 
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6.3 THE PROPOSED SFMEA ALGORITHM 

In order to explain proposed SFMEA algorithm in the following sections, a simple 

sequence diagram showing the interaction among four objects, namely ‘A’, ‘B’, ‘C’ and 

‘D’, as shown in Figure 6.2, is used as an example. This sequence diagram is drawn using 

the Altova UML (Altova-UModel, 2014) tool. This tool provides a feature where each 

message is assigned a number known as a sequence number. This sequence number is 

extracted as the value of ‘Label’ field (see Table 6.1). The Altova UModel tool provides 

the support for two types of numbering schemes, namely (i) nested numbering scheme 

and (ii) simple numbering scheme. In the nested numbering scheme, the sequence number 

is assigned only to send type of messages, whereas no sequence number is assigned to 

reply type messages. Each send type message is assigned a sequence number by 

embedding the sequence number of the message which has activated the current 

interaction. This numbering scheme is shown in Figure 6.2. The message ‘M1(){1}’ is 

assigned a sequence number as ‘1’, the message ‘M2(){1.1}’ is assigned a sequence 

number as ‘1.1’ because the interaction is started by a message ‘M1()’ with sequence 

number as ‘1’. In the nested numbering scheme, no sequence number is assigned to reply 

type messages. 

 

Figure 6.2: A Simple Sequence Diagram with Nested Numbering Scheme 
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The proposed approach requires that the sequence diagram is to be drawn using the nested 

numbering scheme because it helps in the identification of the dependent messages. The 

proposed approach also requires that the sequence number assigned by the tool is to be 

embedded at the end of the name of a send type message using the syntax ‘{‘x’}’where 

‘x’ is the sequence number assigned by the tool. For example, the message ‘M2(){1.1}’ is 

embedded with sequence number 1.1. The sequence numbers assigned by the tool are 

used as ‘Label’ in the proposed approach. 

6.3.1 Step I: Generating Pseudo Code Form of Sequence Diagram and Extracting 

Message-Details 

Two tasks are carried out in this step, namely (i) Generating a pseudo code equivalent of 

the sequence diagram XMI file and (ii) Extracting the attributes of each message. These 

tasks are described in detail in the following sections. 

Step I(a) Generating pseudo code equivalent of the sequence diagram XMI file 

A pseudo code form of a sequence diagram contains the names of various messages and 

the sequence in which these messages are sent. The pseudo code equivalent forms of 

three UML interaction operators are shown in the Table 6.5. The meaning of the ‘alt’, 

‘opt’ and ‘break’ interaction operators is discussed in Chapter 1 and more information 

about these interaction operators can be found in the work by Booch (Booch et al, 2005). 

Table 6.5: Pseudo Code Forms of Various Interaction Operators 

Interaction 

Operator 
Pseudo code Equivalent Form Meaning 

‘alt’ block 

IF condition THEN  

<Messages-List-1 is to be sent> 

ELSE 

<Message-List-2 is to be sent> 

ENDIF 

‘alt’ stands for alternative flow 

of actions. 

There are two paths and any one 

is to be followed at runtime.  

IF condition with an ELSE 

option. 

‘opt’ block 

IF condition THEN  

<<Messages-List is to be sent> 

ENDIF 

‘opt’ block stands for optional 

block i.e.an IF option without an 

ELSE part. If condition is true 

then this optional block is 

executed otherwise it will be 

skipped. 

‘break’ block 

IF condition THEN  

<Messages-List is to be sent> 

EXIT 

ENDIF 

If condition is true, then break 

sequence is followed and after 

that, the functionality is exited. 

‘EXIT’ means exit from the 

functionality and all successive 

messages are skipped 
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The execution of the step results in a single text file, which represents the pseudo code 

equivalent of the given sequence, diagram.  

The pseudo code description of this step is given below 

Procedure generatePseudocode() 

Input  Sequence Diagram XMI File 

Output  Pseudo Code Form Text File 

 

1. Create a pseudo code form Text File 

2. FOR each message tag in the sequence diagram XMI file 

Case:‘alt’ block 

(i) Write the pseudo code equivalent form into the Text File as per 

Table 6.5  

(ii) Identify messages in the true block and write message names in the Text 

file 

(iii) Write ‘ELSE’ in the Text File 

(iv) Identify messages in the false block write message names in the Text file 

(v) Write ‘ENDIF’ in the Text File 

Case:‘opt’ block 

(i) Write the pseudo code equivalent in to the Text File as per Table 6.5 

(ii) Identify messages in the block and write message names in the Text file 

(iii) Write ‘ENDIF’ in the Text File 

Case:’break’ block 

(i) Write the pseudo code equivalent in to the Text File as per Table 6.5 

(ii) Identify messages in the block and write message names in the Text file 

(iii) Write ‘EXIT’ and then ‘ENDIF’ in the Text File 

Case: a normal message tag 

Write the name of the message in the Text File 

ENDFOR 

 

The algorithm applied to the sequence diagram of Figure 6.3(a) generates the pseudo 

code form as shown in Figure 6.3(b). It can be observed that the message ‘M3()’ with 

sequence number value as ‘2’ and the message ‘R3(value)’ are sent only if the 

condition ‘R1=TRUE’ is satisfied otherwise the messages ‘M4()’ and ‘R5(value)’ are 

sent. These two alternative sequences of messages are represented by using 

IF..THEN..ELSE..ENDIF construct in the corresponding pseudo code form in 

Figure 6.3(b). 



Figure 6.3
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3: Generating Pseudo Code Form from Sequence Diagram
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Sequence Diagram
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Step I(b) Extracting ‘Message-Details’ 

The objective of this step is to extract the attributes of the messages by taking a sequence 

diagram XMI file as an input. The extracted attributes are stored as a table named 

‘Message-Details’ with a structure as shown in Table 6.1. Three main tasks are carried 

out in this step and these are as follows. 

(i) A unique message number (Message#) is assigned to each message  

(ii) A unique send and receive event pair is generated for each message  

(iii) Two separate lists, namely ‘Message-Send-Dependency-List’ and ‘Message-Send-

Independent-List’ are computed for each send type message. 

The ‘Message-Details’ extracted by taking a sequence diagram of Figure 6.2 as an input 

is shown in Table 6.6. The ‘Message-Details’ as shown in Table 6.6 are extracted as 

follows: 

The name of the message used in the sequence diagram embeds the values of the 

‘Message-Name’ and the ‘Label’ fields. The information about ‘From’, ‘To’ and ‘Reply-

Message’ fields is contained in the sequence diagram XMI file and is extracted 

accordingly. The values of the ‘Type’ and the ‘isReply’ fields are assigned as mentioned 

in Table 6.1. A unique message number (‘Message#) is assigned for each message. Each 

message is associated with two events, namely ‘Send Event’ and ‘Receive Event’. The 

‘Send Event’ is associated with the sender object of the message, whereas the ‘Receive 

Event’ is associated with the receiver object of the message. A unique ‘Send Event’ and a 

‘Receive Event’ is generated for each message. The procedure for assigning the message 

numbers and generating the event numbers is identical to the procedure used in the SFTA 

approach discussed in Chapter 5. The value for the ‘Send-Message-Dependency-List’ and 

the ‘Send-Message-Independent-List’ fields are computed as follows: 

A message ‘M1’ is in the ‘Send-Message-Dependency-List’ of message ‘M2’ if the 

‘Label’ field value of the message ‘M1’ contains the ‘Label’ field value of the message 

‘M2’. A message ‘M1’ is in the ‘Send-Message-Independent-List’ of message ‘M2’ if the 

‘Label’ field value of the message ‘M1’ does not contain the ‘Label’ field value of the 

message ‘M2’ and the message ‘M1’ is sent after the message ‘M2’ by the same sender 

object. It is to be noted that only the values of the ‘Label’ fields are included in both the 

lists. 
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Consider the sequence diagram as shown in Figure 6.3(a). The message ‘M2()’ is 

dependent upon the message ‘M1()’ because the ‘Label’ field value of the message 

’M2()’ is ‘1.1’ and it contains the  ‘Label’ field value of the message’M1()’ which is ‘1’. 

The messages ‘M3()’ and ‘M4()’ are not dependent upon the message ‘M1()’ because of 

the following reasons:  

(i) The ‘Label’ field values of the messages ‘M3()’ and ‘M4()’ are ‘2’ and ‘3’ 

respectively, and these values do not contain the ‘Label’ field value of the message 

‘M1()’ which is ‘1’, and 

(ii) The messages ‘M3()’ and ‘M4()’ are sent after the message ‘M1()’ by the same 

sender object named ‘a:A’.  

The ‘Label’ field value of the message ‘M2()’ is ‘1.1’ and this value is not contained in 

any other message’s ‘Label’ field value and no message is sent after ‘M2()’ by the sender 

of ‘M2()’ i.e. the object ‘b:B’. That’s why the values of ‘Send-Message-Dependency-

List’ and the ‘Send-Message-Independent-List’ fields for the message ‘M2()’ are blank. 

Similarly, consider the message ‘M3()’ with ‘Label’ value as ‘2’. There exists no message 

in the sequence diagram of Figure 6.3(a) whose ‘Label’ field value starts with ‘2’. So, the 

‘Send-Message-Dependency-List’ of the message ‘M3()’ does not have any message. But 

the message ‘M4()’ with ‘Label’ value as ‘2’ appears in the ‘Send-Message-Independent-

List’ of this message because the message ‘M4()’ is sent after the message ‘M3()’ by the 

same sender object ‘a:A’.     
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Table 6.6: Message-Details Extracted from Sequence Diagram of Figure 6.2 

Message# 
Message-

Name 
Label From To Type isReply 

Reply-

Message 

Send 

Event 

Receive 

Event 

Message-

Send-

Dependency-

List 

Message-

Send-

Independent-

List 

A1 M1() 1 A B 1 0 R1(boolean) e1 e2 1.1 2,3 

A2 M2() 1.1 B C 1 0 R2(boolean) e3 e4   

A3 R2(boolean) M2() C B 1 1  e5 e6   

A4 R1(boolean) M1() B A 1 1  e7 e8   

A5 M3() 2 A C 1 0 R3(value) e9 e10  5 

A6 R3(value) M3() C A 1 1  e11 e12   

A7 M4() 3 A D 1 0 R5(value) e13 e14   

A8 R5(value) M4() D A 1 1  e15 e16   
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The pseudo code of algorithm for this step is given below 

Procedure ExtractMessageDetails() 

Input  Sequence Diagram XMI File 

Output  Message-Details 

FOR each message tag in the sequence diagram XMI file 

(i) Extract values of Message-Name,Label,From,To,isReply,Reply-Message Fields 

from the XMI file 

(ii) Compute the values of the ‘Type’ and the ‘isReply’ fields as per Table 6.1 

(iii) Assign a Unique Message# to each message 

(iv) Generate a unique send event and receive event for each message  

(v) Compute the values for the Message-Send-Dependency-List and the Message-

Send-Independent-List for each send type of message 

ENDFOR 

6.3.2 Step II: Extracting Message-Sequence for each Scenario 

The presence of each ‘alt’, ’opt’ or ‘break’ block in the sequence diagram represents the 

existence of two possible scenarios and each such scenario has its own message 

sequence. For example, the sequence diagram of Figure 6.3(a) has two scenarios with 

message-sequences as: (i) {M1(), M2(), R2(boolean), R1(boolean), M3(), R3(value)} 

and (ii){M1(), M2(), R2(boolean), R1(boolean), M4(), R5(value)}. The objective of this 

step is to extract message-sequence for each scenario. 

This step takes the pseudo code form of the sequence diagram and the ‘Message-Details’ 

generated in the first step as inputs and constructs a graph named ‘Message-Sequence-

Control-Flow-Graph’ (MSCFG) using only the message numbers. The MSCFG is a 

collection of nodes where a node belongs to either a normal node or a conditional node. 

The normal node contains two parts, namely node-details and next-pointer. The node-

details part gives the information about the name of the message as used in the pseudo 

code text file. The next-pointer field contains the address of the node where a control is 

transferred from the current node. The conditional node has a conditional expression 

associated with it and contains three fields, namely (i) node-details, (ii) true-next-pointer 

and (iii) false-next-pointer. The node-details part gives the information about the name of 

the message and a conditional expression associated with the node. The true-next-pointer 

field points to the node where the control is transferred in case the result of the 

conditional expression associated with the node is true. Similarly, the false-next-pointer 

field points to the node where the control is transferred in case the result of the 

conditional expression associated with the node is false. The MSCFG is actually 
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constructed from the pseudo

replace the corresponding message number from the ‘Message

The MSCFG constructed by taking 

6.3(b) and the ‘Message-Details’ 

The nodes A1,A2,A3 are normal nodes

control from the A4 is shifted to node A5 only if the condition R1=

otherwise the control is shifted to node A7.

 

Figure 6.4: Message-Sequence

 

The pseudo code for the construction of the ‘MSCFG’ is given below:

 

Procedure constructMSCFG()

Input  Pseudo code Text File and "Message

output  Message-sequence Control Flow Graph

 

Node  startT=null /* start node */

Node last=null /* terminal node */

Stack  messageStack  /* message stack of the messages */

Stack ifStack  /* messages in the true part of IF block */

Stack elseStack /* messages in the false part of If block */

   

FOR each message-line of the input file

 read message-line from the input file;

 create Node temp=null,curr=null,next=null;

 IF messgae-line is not null 
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pseudo code text file and later on each individual message is 

esponding message number from the ‘Message-Details’ table. 

by taking the pseudo code description as shown 

Details’ as shown in Table 6.6 as inputs, is shown 

normal nodes, whereas the node A4 is a conditional node. The 

control from the A4 is shifted to node A5 only if the condition R1=TRUE is satisfied 

otherwise the control is shifted to node A7. 

Sequence-Control-Flow-Graph Constructed For Pseudo 

Description of Figure 6.3(b) 

The pseudo code for the construction of the ‘MSCFG’ is given below: 

constructMSCFG() 

Pseudo code Text File and "Message-Details' 

sequence Control Flow Graph 

/* start node */ 

/* terminal node */ 

/* message stack of the messages */ 

/* messages in the true part of IF block */ 

/* messages in the false part of If block */ 

the input file 

line from the input file; 

create Node temp=null,curr=null,next=null; 

line is not null THEN 

Oriented Design Phase 
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code text file and later on each individual message is 

Details’ table.  

as shown in Figure 

 in Figure 6.4. 

whereas the node A4 is a conditional node. The 

TRUE is satisfied 

 

Pseudo Code 
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  create new Node 'n1' with description as message-line; 

  set  next = n1; 

  IF start is null  THEN 

   set start = next; 

  ENDIF 
  switch(next) 

  { 

   case: next is "IF"   

   { 

(i) set true part of the CURR node to NEXT; 

(ii) set latest event as CURR in eventStack; 

(iii)set latest IF event as CURR in ifStack; 

   }// End of case 

   case: next is "ELSE" 

   { 

(i) set next event of curr as next; 

(ii) IF latest event in messageStack is IF type  THEN 

     set false part of latest IF event as curr 

 ELSE 

     set false part of latest ELSE event as curr 

       ENDIF 

(iii) pop out the latest element from messageStack; 

(iv) pop out latest element from elseStack;  

   }// End of case 

   case: next is "ENDIF" 

   { 

(i) pop out elements from messageStack as there are ‘ELSE’ type 

events since the last ‘IF’ type event; 

(ii) remove the last ‘IF’ type event from messageStack; 

(iii) IF ‘ENDIF’ type event occurs right after ‘IF’ type THEN 

      set false part of IF type to curr 

     ELSE 

      remove latest IF type event from ifStack 

       ENDIF 
      IF next is 'ENDIF' or 'ELSE' type THEN 

      push curr into messageStack 

      ENDIF 
   }// End of case     

   case: next is normal message 

   { 

     IF next is 'ENDIF' type or 'ELSE' THEN 

       push curr into messageStack 

     ELSE 
      set next event of curr as next  

     ENDIF 
   }// End of case 

  }// End of switch 

  IF curr is not null THEN 

   set last=curr 

  ELSE 
   set next to null 

  ENDIF  

 ENDIF 

ENDFOR 
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The traversal of the MSCFG identifies the number of scenarios that a sequence diagram 

has and the message-sequence of each scenario. The value of the ‘Precondition’ field of a 

message represents the message-sequence that has been sent before the current message. 

The first message of a scenario has no value for the ‘Precondition’ field. The value of 

‘Sequence-No’ field of a message is assigned an integer number ‘n’ such that it 

represents the sequence of that message in the scenario. 

The pseudo code for identifying the scenarios from the ‘MSCFG’ is given below: 

Procedure  traverseMSCFG() 

Input  Message-Sequence control Flow Graph 

Output  scenarioList 

 

Node start;   /* start node of the graph */ 

String seq  /* current scenario */ 

String  scenarioList /* list of scenarios */ 

 

1. set curr = start; 

2. IF curr is not null  THEN 

 add  details represented by start 'seq' 

 IF seq does not exist in scenarioList THEN 

  add 'seq' to 'senarioList' 

 ENDIF 

ELSE 
 IF curr is not conditional event THEN 

(i) add 'curr' to 'seq' 

(ii) recursively apply traverse procedure by setting the next event of curr as 

the new start 

 ELSE 

(i) add 'curr' to 'seq' 

(ii) recursively apply traverse procedure by seeting the true part of curr as 

the new start 

(iii) recursively apply traverse procedure by seeting the false part of curr as 

the new start  

 ENDIF 

ENDIF 

 

The ‘Message-Sequences’ extracted for scenario 1 and scenario 2 for the MSCFG 

(Figure 6.4) are shown in Table 6.7 and Table 6.8 respectively. In Table 6.7, the value 

for the ‘Precondition’ field of the message ‘A5’ is ‘A1,A2,A3,A4,{(R1=TRUE)(T)}’ 

where the term ‘{(R1=TRUE)(T)}’ means that the result of the condition expression 

‘(R1=TRUE)’ evaluates as “True”. Similarly, the value for the ‘Precondition’ field  of 

the message ‘A7’ in Table 6.8 is ‘A1,A2,A3,A4,{(R1=TRUE)(F)}’ where the term 

‘{(R1=TRUE)(F)}’ means that the result of the condition expression ‘(R1=TRUE)’ 

evaluates as “False”.  
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Table 6.7: Message-Sequence For Scenario 1 

Message# Label Precondition Sequence-No 

A1 1  1 

A2 1.1 A1 2 

A3 M2() A1,A2 3 

A4 M1() A1,A2,A3 4 

A5 2 A1,A2,A3,A4{(R1=TRUE)(T}} 5 

A6 M3() A1,A2,A3,A4{(R1=TRUE)(T}},A5 6 

Table 6.8: Message-Sequence For Scenario 2 

Message# Label Precondition Sequence-No 

A1 1  1 

A2 1.1 A1 2 

A3 M2() A1,A2 3 

A4 M1() A1,A2,A3 4 

A7 3 A1,A2,A3,A4{(R1=TRUE)(F}} 5 

A8 M4() A1,A2,A3,A4{(R1=TRUE)(F}},A7 6 

 

The value of the ‘Sequence-No’ field of any message is assigned based upon its 

sequential order in a scenario and it is possible that a same ‘Sequence-No’ value is 

assigned to two different messages in two different scenarios. For example, in Table 6.7, 

the ‘Sequence-No’ value ‘6’ is assigned to the message ‘A6’ whereas the same 

‘Sequence-No’ value is assigned to the message ‘A8’ in Table 6.8. 

6.3.3 Step III: Identifying ‘Event-Sequence-State-Transitions’ for each Scenario 

This step takes the state diagrams of the participating objects and ‘Message-Sequences’ 

of various scenarios as the inputs and identifies the ‘Event-Sequence-State-Transitions’ 

for each scenario. 

The following conditions should be fulfilled before the execution of this step. 

(i) The state transition events of the state diagrams are to be indicated by the 

‘Message#’ (message number) value of the message. 

(ii) If the state transition pattern of a participating object is different during the 

execution of a scenario, then a separate state diagram of that object for each 

scenario is drawn. 
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The pseudocode for this step is given below 

The pseudo code for identifying all ‘Event-Sequence-State-Transitions’ is given below. 

Procedure identifyEvent-Sequence-State-TransitionTables() 

Input 
State Chart XMI file(s) and ‘Message-Sequences’ of Each Scenario 

Output 
Event-Sequence-State-Transition table corresponding to each Event-Sequence 

table 

/* Pseudo Code Description*/ 

1. FOR each ‘Message-Sequence’ extracted in Step I of the approach  

create an associated ‘Event- Sequence-State-Transition’; 

 ENDFOR 

2. FOR each Event-Sequence-State-Transition created 

(i) Use procedure populateEventSequence() of Chapter 5 to identify event sequence of 

the scenario 

(ii) FOR each component-name column of the Event-Sequence-State-Transition   

 select the associated state diagram XMI file; 

 read the initial_state for the component-name from XMI file; 

  FOR each event number ‘E’ of the selected Event-Sequence-State-Transition   

 scan the selected XMI file for state transition corresponding to ‘E’; 

  IF ‘E’ is responsible for any state transition for the component 

THEN 

read next_state_transition for component-name from the 

XMI file; 

 set the new value of initial_state as next_state_transition; 

update component-name column with next_state_transition; 

   ELSE 

update component-_name column with initial_state; 

      ENDIF 

  ENDFOR 

ENDFOR 

ENDFOR 

 

The working of this step is in the following sections by taking the objects as shown in the 

sequence diagram of Figure 6.3(a) as an example. 

The arbitrary states of the participating objects ‘A’,‘B’,’C’ and ‘D’ as {a1, a2, a3}, 

{b1, b2, b3}, {c1, c2, c3} and {d1, d2} respectively are used as examples. The initial 

states of the objects ‘A’, ‘B’, ’C’ and ‘D’ are arbitrarily assumed as ‘a1’, ‘b1’, ‘c1’ and 

‘d1’ respectively, and it is also arbitrarily assumed that the state transition pattern of 

object ‘A’ is different for two scenarios. The state transition pattern of other objects, 

namely ‘B’,’C’ and ‘D’ are assumed as same for both scenarios. 

The state diagrams of object ‘A’ for scenario 1 and scenario 2 are shown in Figure 6.5(a) 

and Figure 6.5(b) respectively. Similarly, the state diagrams for objects ‘B’, ‘C’ and ‘D’ 
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are drawn as shown in Figure 6.5(c), Figure 6.5(d) and Figure 6.5(e), respectively. It is to 

be noted that the state transition patterns for all the objects as shown in Figure 6.5 are 

assumed arbitrarily to demonstrate the working logic of this step. 

The ‘Event-Sequence-State-Transitions’ identified for scenario 1 is shown in 

Figure 6.6(b). The ‘Message-Sequence’ for scenario 1 as shown in Table 6.7 and the 

state diagrams of objects ‘A’,’B’,’C’ and ‘D’ as shown in Figure 6.5(a), Figure 6.5(c), 

Figure 6.5(d) and Figure 6.5(e) are used as inputs in the identification of these ‘Event-

Sequence-State-Transitions’. 

Similarly, the ‘Event-Sequence-State-Transitions’ identified for scenario 2 is shown in 

Figure 6.7(b). The ‘Message-Sequence’ for scenario 2 as shown in Table 6.8 and the state 

diagrams of objects ‘A’,’B’,’C’ and ‘D’ as shown in  Figure 6.5(b), Figure 6.5(c), 

Figure 6.5(d) and Figure 6.5(e) are used as inputs in the identification of these ‘Event-

Sequence-State-Transitions’. 

 

(a) State Diagram for Object A for Scenario 1 

 

(b) State Diagram for Object A for Scenario II 

 

(c) State Diagram for Object B 

 

(d) State Diagram for Object C 

 

(e) State Diagram for Object D 

Figure 6.5: State Diagrams for the Participating Objects 



Figure 6.6: Execution of 
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Scenario 1 



Figure 6.7: Execution of 
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Scenario 2 
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6.3.4 Perform Message-Errors-Effects-Analysis For Each ‘Event-Sequence-State-

Transitions’ 

The objective of this step is to do the failure analysis of various messages-related errors 

for a scenario. Two tasks are carried out in this step, namely (i) Identification of Various 

Message-Related Errors and (ii) Investigating the effects of these errors on the system. 

There can be any number of errors associated with a particular message. The messages-

related errors that are only considered in the proposed approach and these are categorized 

into five types. The meaning and syntax of these types are shown in Table 6.9. 

Table 6.9: Classification of Message-Related Error Categories 

Message-Error 

Type 
Purpose Syntax Example 

Type I 

This type of error represents the 

error situation where a sender 

object fails to send the required 

message. This type of error is only 

for send type of messages 

‘!(M)’ where ‘M’ is 

a message-number 

and ‘!(M)’ means 

‘M’ is not sent  

!(A1) i.e. 

Message A1 is 

not sent 

Type II 

The sender object sends the 

message when its associated 

condition is not satisfied .This type 

of error is for those messages 

which either have a precondition 

explicitly assigned or have a 

condition in their computed 

precondition field 

‘^(C) AND (M)’ 

where ‘M’ is a 

message-number 

and ‘C’ is the pre-

condition for 

message ‘M’. 

‘^(C)’ represents 

that C is wrongly 

evaluated as 

satisfied 

^(door=closed) 

AND (A3) i.e. 

door is wrongly 

evaluated as 

closed and 

message A3 is 

sent. 

Type III 

The reply type, message carries 

‘true’ response ‘whereas the 

response should be ‘false’. This 

type of error is only for reply type 

message whose response type is 

boolean. 

‘(M)FT’ Where ‘M’ 

is a reply type 

message and it 

should carry a false 

value, but it is 

carrying a true value 

(A4)FT 

Type IV 

The reply type, message carries 

‘false’ response ‘whereas the 

response should be ‘true’. This 

type of error is also for reply type 

message only whose response type 

is boolean. 

‘(M)TF’ Where ‘M’ 

is a reply type 

message and it 

should carry a true 

value, but it is 

carrying a false 

value 

(A4)TF 

Type V 

The reply to message carries the 

incorrect result or computation 

‘value’. This type of error is only 

for reply type message whose 

response type is not boolean. 

(M)’� Where M is 

a reply message, 

which carries wrong 

numeric value. 

(A6)’ i.e. A6 

carries a wrong 

numeric value 
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The ‘Message-Errors-Effects-Analysis’ for a scenario has three main fields as shown in 

Table 6.4. The ‘Effects’ column is a matrix of size n × n where ‘n’ is the number of 

events in the corresponding ‘Event-Sequence-State-Transitions’ of a scenario. 

The proposed SFMEA algorithm investigates the effects of various types of message-

related errors as per the description given in the following subsections. 

(i) Investigating The Effects of Type I Message-Related Errors 

If an object fails to send a message, then it can be concluded reliably that all the 

messages that are in the ‘Message-Send-Dependency-List’ (‘Message-Details’ extracted 

in Step I(b)) of that message are also not sent. But, the messages that are in the 

‘Message-Send-Independent-List’ (‘Message-Details’ extracted in Step I(b)) of the 

message may be sent. Therefore, a system can experience two types of state level error 

effects in this case. The first types of effects are felt because of not sending the messages 

and the second types of effects are observed because of wrong sending of the messages. 

If any message is not sent then all the required state transitions that are occurring because 

of that message, will not occur (‘!’ sign is used to represent this effect such as A!=a 

which indicates that the required state transition in the state of the object ’A’ has not 

occurred). 

But if the messages in the ‘Message-Send-Independent-List’ of the message are sent by 

the object when its predecessor message  is not sent during the same interaction by the 

same sender object, then it results in the wrong/erroneous state transition either for the 

same or for some other object. For example, the state level effect ‘A^=a2’ indicates the 

situation where object ‘A’ has wrongly or erroneously changed its state to ‘a2’. 

However, in this case the effects are conditional which means that the stated effects are 

observed only if the messages the ‘Message-Send-Independent-List’ of the message are 

sent. This fact is represented by inserting a message number at the end of the ‘Effects’ 

entry. For example, an ‘Effects’ entry such as ‘A^=a2 (A5)’ represents that the state of 

an object ‘A’ will be changed erroneously to ‘a2’ if the message ‘A5’ is sent. 

(ii) Investigating the Effects of Type II Message-Related Errors 

The effects of these types of errors are to be identified under the assumption that the 

receiver object of the message does not properly check for the precondition violation and 

erroneously starts the treatment of the message. It results in the wrong or erroneous state 

transitions, which are occurring after the send event of the message. 



Software Failure Modes and Effects Analysis in Object-Oriented Design Phase 

154 

(iii) Investigating the Effects of Type III and Type IV Message-Related Errors 

These types of errors are associated with the errors in the reply types of messages. The 

effects of these types of errors are observed in the following two ways. 

(a) Firstly, their effect is observed on the response value of the reply message that is 

sent immediately after the selected reply message. The value of the successive 

reply message is also erroneously changed. 

(b) Secondly, these errors affect the result of a conditional decision, especially when 

the same reply message is used in some conditional evaluation. It results in the 

wrong execution of the scenario, which further results in the wrong/erroneous state 

transitions for the objects whose states are changed in the executed scenario. 

It should be noted that the effects of these types of errors are scenario specific and it is 

possible that a selected error of this type is shown as having no effect in one scenario, 

but the same error may be shown as having some state level effect in some other 

scenario. 

(iv) Investigating the effects of Type V Message-Related Errors 

These types of errors are associated with reply messages that return the result of some 

computation. In this case, it is assumed that the value of the result that a reply message 

carries is wrong. The effects of this type of error are felt in three ways.  The first two 

types of effects are same as discussed in the case (iii) discussed above. The third type of 

impact is felt when the reply message is used as a parameter for some other send type 

message. If a wrong value has been sent as a parameter, then it results in the erroneous 

state transitions in the states of the objects that are affected by the message. 

The pseudo code of the algorithm for this step is given below: 

Procedure   Perform-Message-Errors-Effects-Analysis() 

Input(s)  Output(s) of Step I, Step II and Step III 

Output(s)  Message-Errors-Effects-Analysis For Each Scenario 
 

1. Create a Message-Error-Effects-Analysis for each Event-Sequence-State-Transitions  with 

Message# 

2. FOR each  Message-Error-Effects-Analysis table 

/* Define Message Errors for various messages */ 

FOR each message ‘m’ in the Message-Error-Effects-Analysis table  

 Identify the message errors corresponding to message ‘m’;  

/* Finding out the Effects of Errors */ 

FOR each message error ‘msgErr’ identified 

Case: ‘msgErr’ is Type I 
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{ 

Case: message ‘m’ is a send type message with a reply message ‘r’  

(a) Find the objects whose state are changed between the 

send event ‘x’ of message ‘m’ and the receive event ‘y’ of 

reply message ‘r’ 

(b) Mark the states for all the objects as not not changed, i.e. 

those objects will not be able to change their respective 

states 

(c) FOR each message in the send-independent-list of 

message ‘m’ 

(i) Find out the objects whose state are changed during 

the sending of the message  

(ii)Mark the states for each such object as erroneously 

changed 

ENDFOR 

Case : message ‘m’ is a send type, message without a reply message  

(a) FOR each message in the dependency-list of message ‘m’ 

(i) Find out the objects whose state are changed during 

the sending of the message 

(ii) Mark the states for each such object as not changed 

ENDFOR 

(b) FOR each message in the send-independent-list of 

message ‘m’ 

(i) Find out the objects whose state are changed during 

the sending of the message 

(ii) Mark the states for each such object as erroneously 

changed 

ENDFOR 

}// End of Type I 

Case : ‘msgErr’ is Type II 

{ 

(i) Identify the state transitions that are occurring after the send 

event of the message ‘m’ 

(ii) Mark all states as erroneous state transitions using the symbol 

‘^=’ 

}// End of Type II 

Case : ‘msgErr’ is Type III or IV or V 

{ 

(i) Identify the reply message (if any) that is sent after this reply 

message. 

(ii)  Record its effect corresponding to the send event of that reply 

message. 

(iii)  IF message is associated with conditional evaluation THEN 

(a) Identify the scenario that is affected by the error. 
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(b)  Identify the objects whose states are changed after 

the send of this reply message  

(c) Mark the states of all those objects as changed 

erroneously using symbol ‘^=’ 

ENDIF 

}// End of Type III 

ENDFOR 

ENDFOR 

ENDFOR 

 

The ‘Message-Errors-Effects-Analysis’ results for scenario 1 is shown in Table 6.10. 

The ‘Effects’ column of the ‘Message-Errors-Effects-Analysis’ for scenario 1 as shown in 

Table 6.10 is divided into 12 event sub-columns with titles as ‘e1’, ‘e2’, ‘e3’, ‘e4’, ‘e5’, 

‘e6’, ‘e7’, ‘e8’, ‘e9’, ‘e10’, ‘e11’ and ‘e12’. These events are selected from the ‘Event-

Sequence-State-Transitions’ for scenario 1 as shown in Figure 6.6(b). 

The ‘Message-Errors-Effects-Analysis’ of scenario 2 is shown in Table 6.11. The ‘Effects’ 

column of the ‘Message-Errors-Effects-Analysis’ for scenario 2 as shown in Table 6.11 is 

divided into 12 event sub-columns with titles as ‘e1’, ‘e2’, ‘e3’, ‘e4’, ‘e5’, ‘e6’, ‘e7’, ‘e8’, 

‘e13’, ‘e14’, ‘e15’ and ‘e16’. These events are selected from the ‘Event-Sequence-State-

Transitions’ for scenario 2 as shown in Figure 6.7(b). 

The message-related errors are identified by taking ‘Message-Details’ as shown in 

Table 6.6 as an input. The message number (Message#) ‘A1’ (Table 6.6) is a send type 

message so only one message-error as ‘!(A1)’ is identified for it in Table 6.10. Similarly, 

one error ‘!(A2)’ is defined for message ‘A2’ in Table 6.10 for a similar reason. The 

messages ‘A3’ and ‘A4’ in Table 6.6 are a reply type messages with a ‘boolean’ response 

type and that’s why two message-errors for messages ‘A3’ and ‘A4’ namely 

{‘(A3)FT’,‘(A3)TF’} and {‘(A4)FT’, ‘(A4)TF’} respectively, are identified in Table 6.10. 

The message ‘A6’ in Table 6.6 is reply type message with a ‘value’ type response and that 

is why only one message-error namely ‘(A6)’’ is identified for it in Table 6.10 only 

because the message ‘A6’ only appears in scenario 1. 

It is to be noted that if a message appears in the ‘Message-Sequence’ of both scenarios, 

then the message-errors associated with that message also appear in  the ‘Message-Errors-

Effects-Analysis’ of both scenarios. 
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Table 6.10: Message-Errors-Effects-Analysis for Scenario 1 

Message# 
Message-

Errors 

Effects 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 

A1 !(A1) A!=a1 B!=b2 B!=b3 C!=c2     A^=a2(A5) C^=c3(A5)   

A2 !(A2)   B!=b3 C!=c2         

A3 

(A3)FT       (A4)FT (A4)FT A^=a2 C^=c3   

(A3)TF       (A4)TF (A4)TF     

A4 

(A4)FT             

(A4)TF         A^=a2 C^=c3   

A5 !(A5)         A!=a2 C!=c3   

A6 (A6)’           (A6)’ (A6)’ 
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Table 6.11: Message-Errors-Effects-Analysis for Scenario 2 

Message# 
Message-

Errors 

Effects 

e1 e2 e3 e4 e5 e6 e7 e8 e13 e14 e15 e16 

A1 !(A1) A!=a1 B!=b2 B!=b3 C!=c2     A^=a3(A7) D^=d2(A7)   

A2 !(A2)   B!=b3 C!=c2         

A3 

(A3)FT       (A4)FT (A4)FT A^=a3 D^=d2   

(A3)TF       (A4)FT (A4)FT     

A4 

(A4)FT             

(A4)TF         A^=a3 D^=d2   

A7 !(A7)         A!=a3 D!=d2   

A8 (A8)’           (A8)’ (A8)’ 
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For example, the message-errors ‘!(A1)’ and ‘!(A2)’ appears in both Table 6.10 and 

Table 6.11 because  the messages ‘A1’ and ‘A2’ appear in the ‘Message-Sequences’ of 

both the scenarios as shown in Table  6.7 and Table 6.8. On the other hand, the message-

error ‘(A6)’’ appears only in Table 6.10 because the message ‘A6’ appears only in the 

‘Message-Sequence’ of scenario 1 (Table 6.7). Similarly, the message-error ‘(A8)’’ 

appears only in Table 6.11 because the message ‘A8’ appears only in the ‘Message-

Sequence’ of scenario 2 (Table 6.8). 

The ‘Message-Details’ Table 6.6 and ‘Message-Errors-Effects-Analysis’ for scenario 1 

and scenario 2 in Table 6.10 and Table 6.11 are used to explain the effects of various 

types of message-related errors in the following sections. 

(a) Investigating the Effects of the Message  Error !(A1) i.e. message A1 is not sent 

If message ‘A1’ is not sent (i.e.!(A1)) then the message ‘A2’ will not be sent too, 

because the message ‘A2’ is in the ‘Message-Send-Dependency-List’ of the message 

‘A1’ (see Table 6.6). The message ‘A1’ has an associated reply message ‘A4’ with 

message name as ‘R1(boolean)’ (Table 6.6). So, all the state transitions that are 

occurring between the send-event of message ‘A1’ (i.e. event ‘e1’ in Table 6.6) and the 

receive-event of message ‘A4’ (i.e. event ‘e8’ in Table 6.6) will not occur. As per the 

‘Event-Sequence-State-Transitions’ of scenario 1 as shown in Figure 6.6(b), the 

following state transitions are occurring between events ‘e1’ and ‘e8’. 

(i) The state of an object ‘A’ is changed to state ‘a1’ during event e1 

(ii) The state of an object ‘B’ is changed to state ‘b2’ during event e2 

(iii) The state of an object ‘B’ is changed to state ‘b3’ during event e3 

(iv) The state of an object ‘C’ is changed to state ‘c2’ during event e4 

Therefore, all the above-mentioned state transitions will not occur in the system if the 

message ‘A1’ is not sent. These effects are shown in Table 6.10 as 

‘A!=a1’,’B!=b2’,’B!=b3’ and ‘C!=c2’ under the respective event columns, e1, e2, e3 and 

e4.  

The ‘Message-Send-Independent-List’ of the message ‘A1’ in Table 6.6 has two 

messages as ‘A5’ (with ‘Label’ value as 2) and ‘A7’ (with ‘Label value as 3). If the 

message ‘A5’ is sent then its effect is observed in scenario 1 only because the message 

‘A5’ is not included in scenario 2 (Table 6.8). The events of the message ‘A5’ result in 

the state transitions of two objects, namely ‘A’ and ‘C’ (Figure 6.6(b)). The object ‘A’ is 
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changing its state to ‘a2’ at event ‘e9’ and the object ‘C’ is changing its state to state ‘c3’ 

at event ‘e10’(Figure 6.6(b)). These transitions are known as erroneous state transitions 

and are indicated as ‘A^=a2(A5)’ and ‘C^=c3(A5)’ under the respective event columns 

(events ‘e9’ and ‘e10’) in Table 6.10. It indicates that the state of the object ‘A’ is 

erroneously changed to ‘a2’ if the message ‘A5’ is sent when the message ‘A1’ is not 

sent. 

The sending of the message ‘A7’ affects only the events of scenario 2 (because the 

message ‘A7’ is not included in scenario 1). The sending of the message ‘A7’ changes 

the state of the ‘A’ object to ‘a3’ and the state of the ‘D’ object to ‘d2’. These effects are 

indicated ‘A^=a3(A7)’ and ‘D^=d2(A7)’ and are shown in Table 6.11 under the 

respective event columns (event ‘e13’ and ‘e14’).  

(b) Investigating the Effects of the Message  Error !(A2) i.e. message A2 is not sent 

If the message ‘A2’ is not sent then its effects are observed in events ‘e3’ (send event of 

‘A2) and ‘e4’ (receive event of ‘A2’) only because there is no message in the ‘Message-

Send-Dependency-List’ and the ‘Message-Send-Independent-List’ of the message 

‘A2’(Table 6.6). The effects of this error are same in both the scenarios and are shown in 

Table 6.10 and Table 6.11 respectively. 

(c) Investigating the Effects of the Message  Errors associated with the message ‘A3’ 

The message ‘A3’ is a reply type message with a boolean (True/False) type response. 

Two types of message-related errors are associated with reply messages as shown in 

Table 6.9 and these are explained in following two sub-sections. 

(d) Investigating the Effects of the ‘(A3)FT’ 

The first message-related error for message ‘A3’ is ‘(A3) FT’. It means that the message 

‘A3’ should return a ‘False’ value, but it carries a ‘True’ value. This error impacts the 

following: 

• The value of the reply message which is sent immediately after the current reply 

message 

• Execution of the scenarios if the current reply message is used as a conditional 

expression 

So, the first of this error is observed in the value of the response of the message 

‘A4’because it is sent immediately after ‘A3’. The value of ‘A4’ is also changed to True. 
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The effect ‘(A4)FT’ is shown under events e7 and e8 of Table 6.10 and table 6.11. The 

wrong response value of ‘A3’ is also transmitted in ‘A4’. 

The changed value of ‘A4’ results in the execution of scenario 1 because ‘A4’ is used in  

the conditional evaluation(Figure 6.2). [Note that the actual name of ‘A4’ is R1 

(boolean) in Table 6.6].  So, all the state transitions occurring in scenario 1 after the 

message ‘A3’ are marked as erroneous state transitions (under events ‘e9’ and ‘e10’ in 

Table 6.10). The effects of this error are not observed in scenario 2. 

(i) Investigating the Effects of the ‘(A3)TF’ 

The second message-related error in the message ‘A3’ is ‘(A3)TF’. It means that the 

message ‘A3’ should return a ‘True’ value, but it carries a ‘False’ value. The effects of 

this error are observed in scenario 2 because it results in the execution of scenario 2. 

6.3.5 Time complexity of the Algorithm 

(a) Time Complexity of Step I 

The running time, i.e. the algorithmic time complexity of the Step I(a) is of the order 

of ‘O(N1)’ where ‘N1’ is the number of messages in the sequence diagram. 

The running time, i.e. the algorithmic time complexity of the Step I(b) is also of the 

order of ‘O(N1)’ where ‘N1’ is the number of messages in the sequence diagram. 

So the overall algorithmic time complexity of Step I is of the order of ‘O(N1)’. 

(b) Time Complexity of Step II 

The algorithmic time complexity of the Step II (a) is of the order of ‘O (N1)’ where ‘N1’ 

is the number of messages in the sequence diagram. The algorithmic time complexity of 

Step II (b) is of the order of ‘O (N2)’ where ‘N2’ is the number of nodes in the MSCFG 

because the algorithm is recursively applied to each node. 

So the overall algorithmic time complexity of Step I is of the order of 

‘O(N1)+O(N2)’. 

(c) Time Complexity of Step III 

The running time, i.e. the algorithmic time complexity of the Step I(a) is of the order 

of ‘O(N3 × N4 × N5)’ where ‘N3’ is the number of ‘Event-Sequence-State-

Transitions’, ‘N4’ is the number of components for which a state diagram is drawn 

and ‘N5’ is the average number of events in each ‘Event-Sequence-State-

Transitions’.  
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(d) Time Complexity of Step IV 

The running time of Step IV is of the order of ‘O(N3 × N6 × N7)’ where ‘N3’ is the 

number of ‘Event-Sequence-State-Transitions’, ‘N6’ is the average number of messages 

in each scenario and ‘N7’ is the average number of message-related errors corresponding 

to each message of the scenario. 

Therefore, the whole algorithmic time complexity of all the four steps of SFMEA 

algorithm is given below: 

[O(N1)] + [O(N1)+O(N2)] + [O(N3 × N4 × N5)] + [O(N3 × N6 × N7)] 

6.3.6 Sequence and State Diagram Representations 

In the SFMEA algorithm discussed above, it is assumed that the sequence and state diagrams 

are supplied in some specific representation form as follows: 

(i) The sequence diagram is drawn using nested message numbering as discussed in 

Section 6.3. 

(ii) Any send type message (synchronous or asynchronous) in the sequence diagram 

should have the following form  

messageName(parameterList){messageLabel} 

where  

(a) MessageName represents the name of the message,  

(b) parameterList  represents the list of parameters that are passed along with the 

message. The parameterList has the form  

(param1:type, param2:type , ….., para-n:type) 

(c) messageLabel is the message number assigned by the Altova UML tool and it 

is mandatory to embed this number in the messageName. 

(iii) Reply type of message in the sequence diagram should have the form: 

replyMessage-Name(type). Where ‘type’ indicates the type of response carried by 

the reply message. Two types of responses are considered in the approach for a 

reply type message and these are : boolean (True/False) or value (any type of 

numeric value).  

(iv) The state diagrams should be drawn using the unique message numbers (Message#) 

assigned to various messages as state transition events. 
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6.4 APPLICATION OF SFMEA ALGORITHM TO SAFETY-

CRITICAL SOFTWARE SYSTEMS  

The proposed algorithm is applied on two safety-critical applications, namely Rail Track 

Door Control System (RTCS) and Insulin Delivery System (IDS) as discussed in Chapter 

4. The step-by-step application of the algorithm on the sequence and state diagrams of 

these systems is given in the following sub-sections. 

6.4.1 Motivating Example I: Railway Track Door Control System (RTCS) 

This case study has been selected from the works of Medikonda and Swarup (Medikonda 

and Swarup, 2011) to demonstrate the application of the presented SFMEA approach. 

This system is used to automatically close the rail track door in case of arrival of the 

train. The message sequence diagram for the RTCS study is shown in Figure 6.8. 

 

Figure 6.8: Message Sequence Diagram For Rail Track Door Controller System 

There are five objects, namely ‘:Train’, ‘:SensorIn’, ‘:Signal’, ‘:CrossController’, and 

‘:Gate’ that are participating in this use-case functionality. The functionality gets 

activated when the ‘:SensorIn’ object detects the arrival of a train and generates an 

interrupt for the ‘:CrossController’ object. Upon receiving of this interrupt message, the 

‘:CrossController’ object first issues a command to close the door. When the door is 

closed, then it issues the turn green signal command. If a door failure is detected during 

operation, then an emergency train stop signal is issued by the ‘:CrossController’ object. 
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Step I: Generate Pseudo Code and Extract Message-Details 

The pseudo code generated by applying Step I(a) to an XMI file of the sequence diagram of 

Figure 6.8 is shown in Figure 6.9 along with the numbering of messages and the  ‘Message-

Details’ extracted from the same input file by applying Step I(b) is shown in Table 6.12. 

enter(){1} 

TrainArrived(){1.1} 

closeGate(){1.1.1} 

gate_closed(Boolean) 

IF gate_closed == FALSE THEN 

EmergencyTrainStopSignal(){1.1.3} 

ELSE 

TrainSignalGreen(){1.1.3} 

signal_green(Boolean) 

ENDIF 

Figure 6.9: Pseudo Code Form of the Sequence Diagram of Figure 6.13 

The messages ‘M1’ and ‘M2’ are of asynchronous type and that is why their ‘Type’ value is 

2. All other messages are of synchronous type and their ‘Type’ value is 1. The ‘Label’ value 

of the message ‘M1’ is ‘1’ and it is contained inside the ‘Label’ values of  the messages 

‘M2’( with ‘Label value ‘1.1’), ‘M3’ (with ‘Label value ‘1.1.1’), M5(with ‘Label value 

‘1.1.2’) and ‘M7’ (with ‘Label value ‘1.1.3’). Therefore, the ‘Message-Send-Dependency-

List’ of ‘M1’ contains the “Label’ values {1.1, 1.1.1, 1.1.2, 1.1.3}. Since, no message is sent 

after the message ‘M1’ by its sender object (‘:Train’), the ‘Message-Send-Independent-List’ 

of the message ‘M1’ contains no message.  

Similarly, The ‘Label’ value of the message ‘M2’ is ‘1.1’ and it is contained inside the 

‘Label’ values of the ‘M3’ (with ‘Label value ‘1.1.1’), M5(with ‘Label value ‘1.1.2’) and 

‘M7’ (with ‘Label value ‘1.1.3’). So, the ‘Message-Send-Dependency-List’ of ‘M2’ contains 

the “Label’ values {1.1.1, 1.1.2, 1.1.3}. Since, no message is sent after the message ‘M2’ by 

its sender object (‘:SensorIn’), the ‘Message-Send-Independent-List’ of the message ‘M2’ 

contains no message. 

The ‘Label’ value of the message ‘M3’ is ‘1.1.1’ and it is contained in no other message’s 

‘Label’ value. That’s why, the ‘Message-Send-Dependency-List’ of ‘M3’ contains no 

message. But there are two messages, namely ‘M5’ and ‘M7’ are sent after the message 

‘M3’ by the sender object of ‘M3’ (‘: CrossController’). So the ‘Message-Send-Independent-

List’ of the message ‘M3’ contains the labels of message ‘M5’ (‘Label’ value ‘1.1.2’) and 

‘M7’(‘Label’ value ‘1.1.3’).  
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Table 6.12 : Message-Details Created For Rail Track Door Controller Application 

Message# Message-Name Label From To Type isReply 
Reply-

Message 

Send 

Event 

Receive 

Event 

Message-Send-

Dependency-List 

Message-Send-

Independent-List 

M1 enter() 1 Train SensorIn 2 0  e1 e2 
1.1, 1.1.1, 1.1.2, 

1.1.3 
 

M2 TrainArrived() 1.1 SensorIn 
CrossCo

ntroller 
2 0  e3 e4 1.1.1, 1.1.2, 1.1.3  

M3 closeGate() 1.1.1 
CrossCo

ntroller 
Gate 1 0 

gate_close

d(boolean) 
e5 e6  1.1.2, 1.1.3 

M4 
gate_closed(boo

lean) 

closeG

ate() 
Gate 

CrossCo

ntroller 
1 1  e7 e8   

M5 
EmergencyTrai

nStopSignal() 
1.1.2 

CrossCo

ntroller 

CrossCo

ntroller 
1 0  e9 e10   

M6 
TrainSignalgree

n() 
1.1.3 

CrossCo

ntroller 
signal 1 0 

signal_gree

n(boolean) 
e11 e12   

M7 
Signal_green(bo

olean) 

TrainS

ignalgr

een() 

Signal 
CrossCo

ntroller 
1 1  e13 e14   
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Step II: Extract Message-Sequence for Each Scenario 

The sequence diagram as shown in Figure 6.8 has two scenarios because of an ‘alt’ block 

involving the condition ‘gate-closed = FALSE’. The ‘Message-Sequence’ of the 

scenario 1 and scenario 2 are shown in Table 6.13 and Table 6.14 respectively. 

Table 6.13: Message-Sequence for Scenario 1 of RTCS Application 

Message# Label Precondition  
Sequence-

No 

M1  1  
 

1 

M2  1.1  M1  2 

M3  1.1.1  M1,M2  3 

M4  closeGate()  M1,M2,M3  4 

M5  1.1.2  M1,M2,M3,M4,(gate_closed=FALSE)(T)  5 

 

Table 6.14: Message-Sequence for Scenario 2 of RTCS Application 

Message#  Label  Precondition  
Sequence-

No 

M1  1   1 

M2  1.1  M1  2 

M3  1.1.1  M1,M2  3 

M4  closeGate()  M1,M2,M3  4 

M6  1.1.2  M1,M2,M3,M4,(gate_closed=FALSE)(F)  5 

M7  signal_green 

(boolean)  

M1,M2,M3,M4,(gate_closed=FALSE)(F),M6  6 
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Step III : Identify ‘Event-Sequence-State-Transitions’ For Each Scenario 

The state diagrams drawn for three objects, namely ‘: CrossController’, ‘:Gate’ and 

‘:Signal’ are shown in Figure 6.10.  

 

(a) CrossController State Diagram for Normal Scenario 

 

(b) CrossController State Diagram for Emergency Scenario 

 

(c) Gate State Diagram 

 

(d) Signal State diagram 

Figure 6.10: State Diagrams for Rail Track Door Controller Application 

Two state diagrams are drawn for the ‘:CrossController’ object (one for normal scenario 

and one for emergency scenario) whereas only one state diagram is drawn for the 

‘:Signal’ and ‘:Gate’ objects. The initial states of the ‘: CrossController’, ‘:Gate’ and 

‘:Signal’ objects are assumed as ‘waiting’, ‘open’ and ‘red’ respectively. 
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The ‘Event-Sequence-State-Transitions’ for scenario 1 and scenario 2 generated by the 

application of Step II are shown in Table 6.15 and Table 6.16 respectively. 

Table 6.15: ‘Event-Sequence-State-Transitions’ for Scenario 1 of RTCS Application 

Event 
Logical-

Time 
:CrossController :Gate :Signal 

e1 1 waiting open red 

e2 2 waiting open red 

e3 3 waiting open red 

e4 4 servicing open red 

e5 5 gate_closing open red 

e6 6 gate_closing open red 

e7 7 gate_closing open red 

e8 8 gate_closing open red 

e9 9 emergency_trainstopping open red 

e10 10 emergency_trainstopping open red 

Table 6.16: ‘Event-Sequence-State-Transitions’ for Scenario 2 of RTCS Application 

Event 
Logical-

Time 
:CrossController :Gate :Signal 

e1 1 waiting open red 

e2 2 waiting open red 

e3 3 waiting open red 

e4 4 servicing open red 

e5 5 gate_closing open red 

e6 6 gate_closing closed red 

e7 7 gate_closing closed red 

e8 8 gate_closing closed red 

e11 9 green_signaling closed red 

e12 10 green_signaling closed green 

e13 11 green_signaling closed green 

e14 12 green_signaling closed green 

 

Step IV: Perform ‘Message-Errors-Effects-Analysis’ of Each Scenario 

The ‘Message-Errors-Effects-Analysis’ for scenario 1 and scenario 2 is performed by 

applying Step IV and the results are shown in Table 6.17 and Table 6.18 respectively. 
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Table 6.17: Message-Errors-Effects-Analysis for Scenario 1 of RTCS Application 

Message# 
Message-

Errors 

Effects 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

M1 !(M1)    
crossController 

!=servicing 

crossController 

!=gate_closing 
gate!=closed   

crossController 

!=emergency_trainstopping 
 

M2 !(M2)    
crossController 

!=servicing 

crossController 

!=gate_closing 
gate!=closed   

crossController 

!=emergency_trainstopping 
 

M3 !(M3)     
crossController 

!=gate_closing 
gate!=closed   

crossController 

^=emergency_trainstopping 

(M5) 

 

M4 

(M4)FT           

(M4)TF         

crossController 

^=emergency_trainstopping 

(M5) 

 

M5 !(M5)         
crossController 

!=emergency_trainstopping 
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Table 6.18: Message-Errors-Effects-Analysis for Scenario 2 of RTCS Application 

Message# 
Message-

Errors 

Effects 

e1 e2 e3 e4 e5 e6 e7 e8 e11 e12 e13 e14 

M1 !(M1)    
crossController 

!=servicing 

crossController 

!=gate_closing 
gate!=closed   

crossController 

!=green_signalling 
signal!=green   

M2 !(M2)    
crossController 

!=servicing 

crossController 

!=gate_closing 
gate!=closed   

crossController 

!=green_signalling 
signal!=green   

M3 !(M3)     
crossController 

!=gate_closing 
gate!=closed   

crossController 

^=green_signalling 

(M6) 

signal^=green 

(M6) 
  

M4 
(M4)FT         

crossController 

^=green_signalling 

(M6) 

   

(M4)TF             

M6 !(M6)         
crossController 

!=green_signalling 
signal!=green   

M7 
(M7)TF             

(M7)FT             
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6.4.2 Motivation Example II: Insulin Delivery System (IDS) 

This case study has been discussed in Chapter 4 while applying the SFMEA approach in 

use-case based requirements analysis phase. The objects required to implement the 

‘Deliver Insulin’ use-case functionality are shown in the sequence diagram of 

Figure 6.11. There are six objects participating in this functionality and these are 

‘:Clock’, ‘:Controller’, ‘:Sensor’, ‘:InsulinCompute’, ‘:InsulinPump’ and ‘:Display’. 

The whole interaction starts when an interrupt message ‘changeState (RUN)’ is 

received by the ‘: Controller’ object from the ‘:Clock’ object. Upon the receipt of this 

interrupt message, the following actions are carried out by the ‘:Controller’ object in 

sequence. 

(i) The ‘:Controller’ first measures the current sugar level in the body 

(ii) If the sugar level is in the acceptable range, then the functionality gets exited and 

no insulin is injected in the body. 

(iii) If the sugar level is high, then the ‘: controller’ computes the amount of insulin to 

be injected so as to bring the sugar level  under control. 

(iv) After computing the value for the required amount of insulin, the ‘:Controller’ 

object instructs the insulin pump to inject the computed amount of insulin in the 

patient’s body.  

(v) If the sugar level is within acceptable limits, then the ‘: controller’ flashes the 

suitable message on the display of the system 

The role of the ‘: InsulinCompute’ class is to compute the amount of insulin required to 

be injected into the patient’s body. The role of the ‘:InsulinPump’ class is to inject the 

requested amount of insulin in the body. The ‘:Display’ class is required to flash the 

failure message on the display when insulin is not injected in the body. 

Step I: Generate Pseudo Code and Extract Message-Details 

The pseudo code form generated for the sequence diagram of Figure 6.11 is shown in 

Figure 6.12. 

The ‘Message-Details’ generated for this application is shown in Table 6.19. The 

messages ‘M1’,’M8’ and ‘M9’ are of asynchronous type and that’s why their ‘Type’ 

field value is ‘2’. All other messages are of synchronous type and that’s why their ‘Type’ 

field value is ‘1’. 
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Figure 6.11: Sequence Diagram for Insulin Delivery Pump System 

 



Software Failure Modes and Effects Analysis in Object-Oriented Design Phase 

173 

Table 6.19: Message-Details Extracted For Insulin Delivery System 

Message# Message-Name Label From To Type isReply 
Reply-

Message 

Send 

Event 

Receive 

Event 

Message-Send-

Dependency-List 

Message-Send-

Independent-List 

M1 changeState(RUN) 1 Clock Controller 2 0  e1 e2 
1.1, 1.2, 1.3, 1.4, 

1.4.1 
 

M2 
readCurrentSugar

Level 
1.1 Controller Sensor 2 0 

sugarLevel

(value) 
e3 e4  1.2, 1.3, 1.4 

M3 sugarLevel(value) 
readCurrent

SugarLevel 
Sensor Controller 1 1  e5 e6   

M4 
computeInsulin(su

garLevel:value) 
1.2 Controller 

InsulinCo

mpute 
1 0 

insulintoDe

liver(value) 
e7 e8  1.3, 1.4 

M5 
insulintoDeliver(v

alue) 

computeIns

ulin(sugarLe

vel:value) 

InsulinCompute Controller 1 1  e9 e10   

M6 
deliverInsulin(insu

lintoDeliver:valve) 
1.3 Controller InsulinPump 1 0 

insulindeli

vered(bool

ean) 

e11 e12  1.4 

M7 
Insulindelivered(b

oolean) 

deliverInsuli

n(insulintoD

eliver:value) 

InsulinPump Controller 1 1  e13 e14   

M8 displayOutput() 1.4 Controller Clock 2 0  e15 e16 1.4.1  

M9 displayOutput() 1.4.1 Clock Display 2 0  e17 e18   
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changeState(RUN) 

readCurrentSugarLevel(){1,1} 

sugarLevel(value) 

IF sugar level is High THEN 

computeInsulin(sugarLevel:value){1.2} 

insulintodeliver(value) 

deliverInsulin(insulintoDeliver:value){1.1} 

insulindelivered(Boolean) 

ELSE 

displayOutput(){1.4} 

displayOutput(){1.4.1} 

ENDIF 

Figure 6.12: Pseudo Code Form of the Sequence Diagram of Figure 6.13 

Step II: Extract Message-Sequence For Each Scenario 

The pseudo code description as shown in Figure 6.12 has two scenarios because of the 

presence of an ‘IF’ statement. The ‘Message-Sequence’ generated for scenario 1 and 

scenario 2 of this application are shown in Table 6.20 and Table 6.21 respectively. 

Table 6.20: Message-Sequence For Scenario 1 of IDS Application 

Message#  Label  Precondition  Sequence-No  

M1 1  1 

M2 1.1 M1 2 

M3 readCurrentsugarLevel M1,M2 3 

M4 1.2 M1,M2,M3,(sugarLevel is High)(T) 4 

M5 computeInsulin(sugar

Level:value) 

M1,M2,M3,(sugarLevel is 

High)(T),M4 

5 

M6 1.3 M1,M2,M3,(sugarLevel is 

High)(T),M4,M5 

6 

M7 deliverInsulin(insulint

oDeliver:value) 

M1,M2,M3,(sugarLevel is 

High)(T),M4,M5,M6 

7 
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Table 6.21: Message-Sequence For Scenario 2 of IDS Application 

Message#  Label  Precondition  Sequence-No  

M1 1  1 

M2 1.1 M1 2 

M3 readCurrentsugarLevel M1,M2 3 

M8 1.4 M1,M2,M3,(sugarLevel is High)(F) 4 

M9 1.4.1 M1,M2,M3,(sugarLevel is 

High)(F),M8 

5 

 

Step III: Identify ‘Event-Sequence-State-Transitions’ For Each Scenario 

The state diagrams are supplied for three objects in this application and these are 

(i) ‘:Controller’, (ii) ‘:Sensor’ and (iii) ‘:InsulinPump’. The initial states of the 

‘:Controller’, ‘:Sensor’ and ‘:InsulinPump’ objects are ‘waiting’ ‘idle’ and ‘idle’ 

respectively.  

The state transition pattern of the ‘:Controller’ object is different in both scenarios and 

that’s why two state diagrams are supplied for this object and these are shown in 

Figure 6.13(a) and Figure 6.13(b).  

The state diagrams for objects ‘:Sensor’ and ‘:InsulinPump’ are shown in 

Figure 6.13(c) and Figure 6.13(d) respectively. 

The ‘Event-Sequence-State-Transitions’ for scenario 1 is shown in Table 6.22. The 

‘Event-Sequence’ for scenario 1 as shown in Table 6.20 and the state state diagrams for 

the objects ‘:Controller’, ‘:Sensor’ and ‘:InsulinPump’ as shown in Figure 6.13(a), 

Figure 6.13(c) and Figure 6.13(d) respectively, are used as inputs in the identification 

of the  ‘Event-Sequence-State-Transitions’ for scenario 1. 

The ‘Event-Sequence-State-Transitions’ for scenario 2 is shown in Table 6.23. The 

‘Event-Sequence’ for scenario 2 as shown in Table 6.21 and the state state diagrams for 

the objects ‘:Controller’, ‘:Sensor’ and ‘:InsulinPump’ as shown in Figure 6.13(b), 

Figure 6.13(c) and Figure 6.13(d) respectively, are used as inputs in the identification of 

the  ‘Event-Sequence-State-Transitions’ for scenario 2. 
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(a) State Diagram of the ‘Controller’ Object For Scenario 1 

 

(b) State Diagram of The ‘Controller’ Object For Scenario 2 

 

(c) State Diagram of the ‘Sensor’ Object 

 

(d) State Diagram of the ‘InsulinPump’ Object 

Figure 6.13: State Diagrams For The Participating Object of IDS System 
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Table 6.22: ‘Event-Sequence-State-Transitions’ for Scenario 1 of IDS Application 

Event 
Logical-

Time 
:Controller :Sensor :InsulinPump 

e1 1 waiting idle idle 

e2 2 servicing idle idle 

e3 3 readingSugarLevel idle idle 

e4 4 readingSugarLevel readingSugarLevel idle 

e5 5 readingSugarLevel idle idle 

e6 6 readingSugarLevel idle idle 

e7 7 computingInsulin idle idle 

e8 8 computingInsulin idle idle 

e9 9 computingInsulin idle idle 

e10 10 computingInsulin idle idle 

e11 11 deliveringInsulin idle idle 

e12 12 deliveringInsulin idle deliveringInsulin 

e13 13 deliveringInsulin idle idle 

e14 14 deliveringInsulin idle idle 

 

Table 6.23: ‘Event-Sequence-State-Transitions’ for Scenario 2 of IDS Application 

Event 
Logical-

Time 
:Controller :Sensor :InsulinPump 

e1 1 waiting idle idle 

e2 2 servicing idle idle 

e3 3 readingSugarLevel idle idle 

e4 4 readingSugarLevel readingSugarLevel idle 

e5 5 readingSugarLevel idle idle 

e6 6 readingSugarLevel idle idle 

e15 7 displayingOutput idle idle 

e16 8 displayingOutput idle idle 

e17 9 displayingOutput idle idle 

e18 10 displayingOutput idle idle 

 

Step IV: Perform ‘Message-Errors-Effects-Analysis’ For Each Scenario 

The ‘Message-Errors-Effects-Analysis’ for scenario 1 and scenario 2 are shown in 

Table 6.24 and Table 6.25 respectively. 
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Table 6.24: Message-Errors-Effects-Analysis for Scenario 1 of IDS Application 

Message# 
Message-

Errors 

Effects 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 

M1 !(M1)  

controller 

!= 

servicing 

controller 

!= 

readingSugarLevel 

sensor 

!= 

readingSugarLevel 

sensor 

!=idle 
 

controller 

!= 

computingInsulin 

   

controller 

!= 

deliveringInsulin 

InsulinPump 

!= 

deliveringInsulin 

InsulinPunp 

!=idle 
 

M2 !(M2)   

controller 

!= 

readingSugarLevel 

sensor 

!= 

readingSugarLevel 

sensor 

!=idle 
 

controller 

^= 

computingInsulin 

(M4) 

   

controller 

^= 

deliveringInsulin 

(M4,M6) 

InsulinPump 

^= 

deliveringInsulin 

(M4,M6) 

InsulinPunp 

!=idle 

(M4,M6) 

 

M3 (M3)’       

controller 

^= 

computingInsulin 

   

controller 

^= 

deliveringInsulin 

InsulinPump 

^= 

deliveringInsulin 

InsulinPunp 

^=idle 
 

M4 !(M4)       

controller 

!= 

computingInsulin 

   

controller 

^= 

deliveringInsulin 

(M6) 

InsulinPump 

^= 

deliveringInsulin 

(M6) 

InsulinPunp 

^=idle 

(M6) 

 

M5 (M5)’           

controller 

^= 

deliveringInsulin 

InsulinPump 

^= 

deliveringInsulin 

InsulinPunp 

^=idle 
 

M6 !(M6)           

controller 

!= 

deliveringInsulin 

InsulinPump 

!= 

deliveringInsulin 

InsulinPunp 

!=idle 
 

M7 

(M7)TF               

(M7)FT               
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Table 6.25: Message-Errors-Effects-Analysis For Scenario 2 of IDS Application 

Message# 
Message-

Errors 

Effects 

e1 e2 e3 e4 e5 e6 e15 e16 e17 e18 

M1 !(M1)  

controller 

!= 

servicing 

controller 

!= 

readingSugarLevel 

sensor 

!= 

readingSugarLevel 

sensor 

!=idle 
 

controller 

!= 

displayingOutput 

   

M2 !(M2)   

controller 

!= 

readingSugarLevel 

sensor 

!= 

readingSugarLevel 

sensor 

!=idle 
 

controller 

^= 

displayingOutput 

(M8) 

   

M3 (M3)’       

controller 

^= 

displayingOutput 

(M8) 

   

M8 !(M8)       

controller 

!= 

displayingOutput 

   

M9 !(M9)           
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6.4.3 Analysis of Results 

The application of the proposed SFMEA approach enhances the results of the SFTA 

approach discussed and presented in Chapter 5. The proposed SFMEA approach helps 

the analyst in the following two ways  

(i) To investigate the effects of the errors associated with not only the state-transition 

messages (messages, which result in the state change of a component) but with 

other messages, also where no component is changing its state. Recall that in the 

SFTA approach of Chapter 5, only the errors associated with the state-transition 

messages are considered. 

(ii) To construct the software fault tree for the hazardous-state where a state of a 

component is changed erroneously. 

Consider the ‘Message-Errors-Effects-Analysis’ for RTCS application scenarios as 

shown in Table 6.17 and Table 6.18. The message ‘M1’ is not changing the state of any 

of the components as shown in Figure 6.10. But the effects of the error associated with it 

i.e. ‘!(M1)’ (message ‘M1’ is not sent) is  shown in Table 6.17 and Table 6.18. In the 

same way, the message ‘M4’ is also is not changing the state of any of the components 

as shown in Figure 6.10. The errors associated with this message are ‘(M4)FT’ and 

‘(M4)TF’ and their effects are shown in Table 6.17 and Table 6.18. Similarly, the 

‘Message-Errors-Effects-Analysis’ for IDS application scenarios, as shown in Table 6.24 

and Table  6.25, record the effects of the errors associated with the messages ‘M3’,’M5’ 

and ‘M7’ and no component is changing its state during the sending of these messages 

(see Figure 6.13). 

Consider the ‘Message-Errors-Effects-Analysis’ for scenario 2 of the RTCS application 

as shown in Table 6.18. The error ‘!(M3)’ erroneously changes the state of the signal 

component to green provided the message M6 is sent in case of this error (i.e. 

‘signal^=green(M6)’). The effect entry ‘signal^=green(M6)’ also appears for the error 

‘(M4)FT’. The fault tree for the hazardous-state ‘signal^=green’ is drawn by ORing the 

message-related errors and the messages represented in these rows. In a similar manner, 

the fault tree for the hazardous-state ‘InsulinPump^=deliveringInsulin’ for an IDS 

application can be drawn from the ‘Message-Errors-Effects-Analysis’ as shown in 

Table 6.24.   
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6.5 COMPARATIVE ANALYSIS 

The presented SFMEA approach is an attempt towards developing a fully automated 

tool. There are other approaches also that have been explored for UML such as HazOp 

(Hazard and Operability Study) (Lu et al, 2005) but its application is manual. The main 

strength of the presented approach is that it is automated and can be applied even if the 

dysfunctional behavior of the participating objects is not known (David et al, 2008). The 

message-related errors are identified automatically in the presented approach. 

The developed approach has scope for several improvements. Some of the situations that 

need to be further improved and are considered as scope for further work are enumerated 

below. 

(i) Support for ‘par’ and ‘loop’ interaction operators: The presence of ‘par’ operator 

may complicate the building of MSCFG in Step II. Similarly, presence of loops 

complicates the scenario extraction process because in a loop a message sequence 

may repeat any number of times.  

(ii) Number of Message-Related Errors Addressed: Currently the algorithm can handle 

only a limited number of message-related errors. Especially, the timing related 

message errors where a message arrives either too late or too early, will require 

time as another parameter in the SFMEA approach. 

(iii) Only one message-related error is considered as active at any given point of time.  

The approach in the present form can be applied only to sequential systems and not 

for concurrent systems where multiple errors may occur at the same time. 
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CHAPTER 7 

Software Reliability Prediction for Use-Cases 

This chapter presents the use of the SFMEA and SFTA approaches, developed for 

object-oriented use-cases, to predict the software reliability of a given use-case 

functionality during the requirements analysis phase. The reliability of each scenario of 

the given use-case is predicted from the constructed generalized fault tree for scenario 

failures using the probability of occurrence value of each basic erroneous event. 

Software reliability is defined as ‘the probability of failure-free operation for a specified 

period of time in a specified environment’ (IEEE-STD-729-1991, 1991). Software 

reliability is one the four key dependability attributes, namely Availability, Reliability, 

Safety and Security for safety-critical systems. The software failure is defined as, 

‘deviation of the delivered service from compliance with the specification’. Correct 

prediction of the probability of occurrence of various software-related errors is the key to 

the estimation of the reliability of a software system and to estimate and predict the 

failure rates of software systems.  

Currently, the software reliability is generally estimated after the implementation phase 

by subjecting the software code to reliability evaluation. This is too late for safety critical 

software systems. The current research efforts are therefore focused towards the 

prediction of the reliability of software systems during the early phases such as in 

requirements analysis and design phases. An overview of the early software estimation 

approaches is given in the next section. 

7.1 EARLY SOFTWARE RELIABILITY ESTIMATION APPROACHES 

Meng (Meng et al, 2000) proposed petri-net based method for early-stage software 

reliability estimation. The limitation of their work is that it requires the hierarchical view 

of the software system and cannot work with large systems. 

Singh (Singh et al, 2001) and Cortellessa (Cortellessa et al, 2002) proposed a Bayesian 

approach based reliability prediction method for component based software systems. The 

method requires the annotation of Unified Modeling Language (UML) models for 

reliability prediction. The problem with the approach is that it requires models from two 
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phases namely requirements analysis (use-cases), design (sequence and deployment 

diagrams) phases. 

The Scenario Based Reliability Analysis (SBRA) method proposed by Yacoub (Yacoub 

et al, 2004) estimates the reliability of a software system from the reliabilities of its 

components. It is assumed that the reliability of each component is known in advance. 

Tripathi and Mall (Tripathi and Mall, 2005) proposed an early reliability estimation 

technique (ERAT) for use-cases based on reliability block diagrams (RBD). The RBD is 

used to model the relationship between use-case and its scenarios. 

Kong (Kong et al, 2007) proposed a binary decision diagram (BDD) based early 

reliability prediction method using a cause-effect graphing analysis (CEGA) technique.  

The CEGA technique is used to identify the defects in a software requirements 

specification document and the impacts of these defects in the system are assessed using 

BDD. 

Kundu and Samanta (Kundu and Samanta, 2007) proposed a three step approach to 

assess reliability of a system using the use-case model. In the first step, a given use-

case model is converted into a system sequence diagram. The second step converts a 

sequence diagram into a use case graph (UCG). The reliability metric of each use-case 

scenario is determined in the third step. 

Mohanta’s work (Mohanta et al, 2010) takes into account the information about the 

operational profile and usage frequency of each use-case functionality to estimate the 

reliability of the individual use-case as well as its associated scenarios. 

The above four reliability prediction approaches for use-cases require the results of 

design phase for reliability prediction. None of the above-mentioned approaches puts 

emphasis on forecasting the errors that can occur during the realization of the use-case. 

The proposed SFTA and SFMEA analysis of use-cases provide a simple solution for 

early reliability estimation. The results of SFTA/SFMEA approaches build a fault tree 

or database of event-related errors that can be experienced by the system during the 

use-case execution. Coupled with occurrence rate to each identified event-related error, 

this error database can be used to predict the reliabilities of various use-cases and their 

associated scenarios. This is explained in the following sections of this chapter and is 

illustrated with examples. 
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7.2 PROPOSED SOFTWARE RELIABILITY ESTIMATION 

APPROACH FOR USE-CASES 

7.2.1 Assumptions 

 (i) The operational profile(OP) (usage frequency of each use-case) of each use-case 

functionality and its each scenario is available  

 (ii) The error occurrence rates of various event-related errors are also known. 

7.2.2 Operational Profile of a Use-Case 

The operational profile (OP) of a software system is a quantitative characterization of 

how the software will be used and is, therefore, essential in any Software Reliability 

Engineering (SRE) application (Musa, 1993). The concept of operational profile is 

explained below by taking an arbitrary use-case model as shown in Figure 7.1with three 

use-cases, namely ‘doA’, ‘doB’ and ‘doC’ and one actor, namely ‘X’. 

 

Figure 7.1: An Example Use-Case Model 

The usage frequencies of the various use-cases constitute the operation profile of the 

system. Some use-cases are executed more frequently than the others. The failure 

occurrence rate is more in more frequently used operations (use-cases) than the 

operations that are less frequently used. Assume P1, P2 andP3 are the execution 

probabilities of use-cases ‘doA’, ‘doB’ and ‘docC’ respectively. The summation of these 

probabilities i.e. ∑ Pi (where i = 1,2,3) is 1. 

Suppose the actor ‘X’ uses or accesses the system100 times and ‘doA’ operation is 

accessed 70 times,‘doB’ is accessed 20 times and ‘doC’ operations is accessed 10 times. 

Then the usage frequency for ‘doA’, ‘doB’ and ‘doC’ use-cases are 70%, 20% and 10%, 

respectively. These usage frequency values are used to compute the execution 

doA 

doB 

doC 

X 
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probability values for the use-cases. The execution probability of ‘doA’, ‘doB’ and ‘doC’ 

use-cases are ‘0.70’, 0.20’ and ‘0.10’, respectively.  

7.2.3 The Proposed Reliability Estimation Approach for Use Cases 

As discussed in previous chapters that a use-case represents a functionality offered by the 

software system and it can have any number of unique execution paths known as 

scenarios. In order to estimate the reliability of a safety critical software system, it is 

important and mandatory to predict the reliabilities of the use-cases and their scenarios. 

The reliability of a given use-case functionality and its various scenarios depend upon 

the operational profile of the system. 

The textual description of a given use-case functionality and the state diagrams of the 

participating components are used as inputs in the proposed approach and is divided into 

five steps to predict the reliability of a given use-case functionality. These steps are 

explained below: 

Step I Applying SFMEA Approach 

The application of SFMEA approach as presented in Chapter 4 gives the information 

about (i) the number of scenarios in a given use-case, (iii) the event-related errors that 

can occur in each scenario and (iii) the effects of each event-related error in the system. 

Step II Predicting the Usage Frequency of Each Scenario of the Use-case 

The second step is to predict the value of the usage-frequency (i.e. The execution 

probability) for each scenario of the use-case. Out of the number of scenarios of a 

use-case, one of the scenarios is considered as main-scenario and other scenarios are 

characterized as exceptional or alternative scenarios. The main-scenario represents 

the execution path of the use-case that is executed more frequently than the other 

execution paths. Hence, the usage frequency of the main-scenario is generally 

assigned higher than the other scenarios. The analyst’s domain expertise, experience 

and knowledge of the system play an important role in determining the values of 

these usage frequencies. 

Step III Predicting the ‘Probability of Occurrence’ Value to each Event-Related Error 

In the third step, the ‘probability of occurrence’ value for each event-related error of the 

use-case functionality is predicted. The application of SFMEA approach, in Step I, 
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identifies all the event-related errors and their effects. It is assumed that the occurrence 

of event-related errors is independent of each other. A failure in a scenario is said to have 

occurred if any one of its associated event-related error occurs. If an event-related error 

‘E’ has a probability of occurrence value as ‘0.002’ then it means the error ‘E’ can occur 

2 times in 1000 executions of the event. The experience and domain expertise of the 

analyst plays an important role in the prediction of this value. 

Recall that in the application of SFMEA approach in the use-case based requirement 

analysis phase (Chapter 4), two types of event-related errors, namely (i) stop type and 

(ii) propagating type, are considered. A stop type event-related error is a software 

control error and can occur during the execution any event. It is assumed in the 

approach that the error occurrence rate (‘probability of occurrence’) of the stop-type 

errors is uniform for all events. For propagating type of event-related errors, the 

‘probability of occurrence’ values are assigned by taking the past experience into 

consideration. 

Step IV Computing the Reliability for Each Scenario   

The fourth step computes the reliability of each scenario by constructing a generalized 

fault tree for the scenario failure by taking ‘Event-Errors-Effects-Analysis’ (results of the 

SFMEA approach in Step I) of the scenario as an input. The event-related errors are 

mapped against their erroneous state level effects. The fault tree construction process is 

as follows: 

 (i) If an erroneous state level effect ‘X’ is caused by more than one event-related error 

then all the event-related errors responsible for ‘X’ are joined by an ‘OR’ gate. 

 (ii) If an event-related error ‘E’ causes more than one erroneous state level effect then 

‘E’ is used as basic erroneous event only for the erroneous state level effect that 

occurs earlier. The output of the first effect is used as an input for the next level 

erroneous state level effect and so on. 

The fault tree is constructed using a FaultCAT tool (FaultCAT, 2003). Using the fault 

tree for scenario failure, the probability of scenario failure is computed by using the 

‘probability of occurrence’ values of the basic erroneous events. If the basic erroneous 

events are joined via an ‘OR’ gate then their ‘probability of occurrence’ values are added 

to get the failure probability value of the next intermediate event of the fault tree. If the 
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basic erroneous events are joined via an ‘AND’ gate then their ‘probability of 

occurrence’ values are multiplied to get the failure probability value of the next 

intermediate event of the fault tree. This process is recursively applied till the probability 

of a scenario failure (top event) is obtained. 

The reliability of the scenario is computed using the formula: ‘1 – fail(S)’ where ‘fail(S)’ 

is the probability of the scenario failure. 

Step V Computing the Reliability of the Use-Case 

The reliability of a given use-case functionality ‘U’ is computed by using the formula proposed 

by Mohanta (Mohanta et al, 2010): 

( )∏
=

×−−=
M

i

ii pSUR
1

)(rel11)(  

Where R(U) is the reliability of the use-case ‘U’ 

rel(Si) is the reliability of the i
th
 scenario of the use-case 

M is the number of the scenarios in the use-case 

pi is the usage frequency of the i
th
 scenario 

The application of the approach is illustrated for two case study applications, namely ‘Insulin 

Delivery System’ (IDS) and ‘Rail Track Door Control System’ (RTCS) discussed in the 

previous chapters is given in the next sections. 

7.3 MOTIVATING EXAMPLE 1: INSULIN DELIVERY SYSTEM 

The detailed description of the Insulin Delivery System (IDS) case study is given in 

Chapter 4. The application of five steps of the reliability computation approach is given 

below: 

Step I: Applying SFMEA approach 

The application of the SFMEA analysis of IDS (Chapter 4) for use-case ‘Deliver Insulin’ 

results in two scenarios and the event sequences of these two scenarios are shown in 

Table 4.6 and Table 4.7, respectively. The ‘Event-Errors-Effects-Analysis’ of the two 

scenarios are shown in Table 4.11 and Table 4.12. 
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Step II: Predicting the usage frequency to each scenario of the use-case 

The purpose of the system is to deliver an insulin to the patient as and when required. 

There is only one use-case, namely ‘Deliver-Insulin’ in this case study. Only this use-

case gets executed as long as the system is in operation. Therefore, the execution 

probability of this use-case is 1. However, there are two scenarios in this use-case. The 

scenario 1 (Table 4.6) represents the situation when an insulin is delivered and the 

second scenario (Table 4.7) represents the situation when an insulin is not delivered 

because the sugar level in the patient’s body is within acceptable level. The scenario 2 is 

the main-scenario and scenario 1 is an exceptional or an alternative scenario. It is 

assumed that the ‘Deliver Insulin’ insulin use-case is executed 24 times a day (from 9:00 

AM to 9:00 PM after every 30 minutes duration) and scenario 2 is executed 18 times 

(with usage frequency of 75%) and scenario 1 is executed 6 times (with usage frequency 

of 25%). So, the execution probability for scenario 2 is arbitrarily assigned as ‘0.75’ 

where as the execution probability for scenario 1 is assigned as ‘0.25’.[Note that the sum 

of execution probabilities of the scenarios of a use-case is equal to the execution 

probability of the use-case]. 

Step III: Predicting the ‘probability of occurrence’ value for each event-related 

error 

The event-errors for IDS system are shown in Table 4.10. The probability of occurrence 

values assigned for each event-related error are assumed as shown in Table 7.1. The 

system is safety-critical and it is assumed that the software used to control the system 

should be highly reliable. Therefore, the software related errors are assigned lower 

‘probability of occurrence’ value than the hardware related errors. Each stop type error 

(ER1, ER2, ER5, ER8, ER10 and ER12) is basically a software related error and 

assigned a ‘probability of occurrence’, say ‘0.005’ (i.e. occurrence rate of only 0.5%). 

The errors ‘ER3’, ‘ER4’, ‘ER11’ belongs to hardware related errors and are assigned a 

‘probability of occurrence’, say ‘0.010’ (i.e. 1% occurrence rate) which is higher than the 

software related errors. The system is considered highly reliable from computational 

dimension and there is very less chance of any computational type error. That’s why the 

‘probability of occurrence’ value assigned to errors‘ER6’, ‘ER7’ and ‘ER9’ is ‘0.001’ 

(i.e. occurrence rate of 0.1%). 
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Table 7.1: Assumed Probability of Occurrence of Event-Related Errors of IDS 

Application 

Event# Error# Type Error Description 
Probability of 

Occurrence 

E0 ER1 1 Event E0 fails to execute 0.005 

E1 

ER2 1 Event E1 fails to execute 0.005 

ER3 1 sensor failure 0.010 

ER4 2 
The sensor reads the wrong sugar 

value 
0.010 

E2 

ER5 1 Event E2 fails to execute 0.005 

ER6 2 
Event E2 is true, but evaluated as 

false 
0.001 

ER7 2 
Event E2 is false, but evaluated as 

true 
0.001 

E3 

ER8 1 Event E3 fails to execute 0.005 

ER9 2 
The system computes wrong insulin 

dose 
0.001 

E4 
ER10 1 Event E4 fails to execute 0.005 

ER11 1 Insulin pump fails to deliver Insulin 0.010 

E5 ER12 1 Event E5 fails to execute 0.005 

 

Step IV: Constructing fault tree and predicting reliability of each scenario 

Using the ‘Event-Errors-Effects-Analysis’ as shown in Table 4.11 and Table 4.12, the 

fault trees for two scenarios are constructed. The errors that can occur in scenario 1 are 

ER1, ER2, .., ER11. The errors that can occur in scenario 2 are ER1, ER2, ER3, ER4, 

ER5, ER6, ER7 and ER12. 

(i) Reliability prediction of scenario 1 

The fault tree constructed for scenario is shown in Figure 7.2. The probability of failure 

of scenario 1 is computed from the fault tree by computing the ‘probability of 

occurrence’ values for the various events as follows: 
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P(X) = probability of occurrence of ‘X’ where ‘X’ is either a basic erroneous event or an 

intermediate state level effect  or root node of the fault tree. Using this, various 

probabilities are obtained as follows: 

P(Insulin-Controller != servicing) = P(ER1)  = 0.005 

P(Insulin-Controller != ReadingSugarLevel AND Sugar-Sensor != ReadingSugarLevel)  

= P(Insulin-Controller != servicing) + P(ER2) + P(ER3)  

=  0.005 + 0.005 + 0.010  

=  0.020. 

P(Insulin-Controller != ComputingInsulinDose)  

=  P(Insulin-Controller!=ReadingSugarLevel AND Sugar-Sensor != ReadingSugarLevel) 

 + P(ER5) + P(ER8) 

=  0.020 + 0.005 + 0.05 = 0.030. 

P(Insulin-Controller != DeliveringInsulin AND Insulin-Pump != DeliveringInsulin)  

=  P(Insulin-Controller != ComputingInsulinDose) + P(ER10) + P(ER11)  

=  0.030 + 0.005 + 0.010  

=  0.045 

P(Insulin-Controller ^= ComputingInsulinDose)  

=  P(ER4) + P(ER7) + P(ER9)  

=  0.010 + 0.001 + 0.001  

=  0.012 

P(Insulin-Controller ^= DeliveringInsulin AND Insulin-Pump ^= DeliveringInsulin)  

=  P(Insulin-Controller ^= ComputingInsulinDose)  

=  0.012. 

P(Failure in Scenario 1)  

=  P(Insulin-Controller!=DeliveringInsulinAND Insulin-Pump!= DeliveringInsulin) 

 +P(Insulin-Controller^=DeliveringInsulinANDInsulin-Pump^=DeliveringInsulin) 

=  0.045 + 0.012  

=  0.057 

Thus, the computed reliability of the scenario 1 = ‘1 – 0.057’ = ‘0.943’. 

  



(ii) Reliability prediction of scenario 2

The fault tree constructed for scenario 

above, the computed reliability of scenario 2 is ‘0.959’.

Figure 7.2: Fault Tree for 

 

Software Reliability Prediction Approach for Use

Reliability prediction of scenario 2 

The fault tree constructed for scenario 2 is shown in Figure 7.3. Following the steps as 

computed reliability of scenario 2 is ‘0.959’. 

Fault Tree for Failure ofScenario 1 of IDS Application
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Following the steps as 

 

Scenario 1 of IDS Application 



Figure 7.3: Fault Tree for Failure 

Step V: Computing the reliability of the 

The reliability of ‘Deliver Insulin’ use

Reliability of Scenario 1 = 0.943

Execution Probability of Scenario 1 = 0.

Reliability of Scenario 2 = 0.959

Execution Probability of Scenario 

R (‘Deliver Insulin’)  = ‘1- {(1 –

   = 0.9995 

Therefore, the reliability of the ‘Deliver Insulin’ use

Software Reliability Prediction Approach for Use

Fault Tree for Failure of Scenario 2 of IDS Application 

Computing the reliability of the ‘Deliver-Insulin’ use-case 

reliability of ‘Deliver Insulin’ use-case is calculated using the following values  

43 

Execution Probability of Scenario 1 = 0.25 

9 

Execution Probability of Scenario 2 = 0.75 

– 0.943) × 0.25} × {(1 – 0.959) × 0.75}’ 

, the reliability of the ‘Deliver Insulin’ use-case is ‘0.9995’. 
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case is calculated using the following values   
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7.4 MOTIVATING EXAMPLE 2: RAIL TRACK DOOR CONTROL SYSTEM 

The detailed description of the Rail Track Door Control System (RTCS) case study is given in 

Chapter 3. The applications of five steps of the approach is given below. 

Step I: Applying SFMEA approach on the inputs 

There are two scenarios in this application and the ‘Event-Sequences’ for scenario 1 and 

for scenario 2 are shown in Table 3.22 and Table 3.23 respectively. 

The ‘Event-Errors-Effects-Analysis’ for scenario 1 and scenario 2 are shown in 

Table 4.14 and table 4.15 respectively.  

Step II: Predicting the usage frequency of each scenario of the use-case 

The purpose of the system is to close/open the track door whenever the train is to 

arrive/depart. There is only one use-case in this functionality namely ‘close track door’. 

The probability of execution of ‘close-track-door’ is 1 because it is executed whenever 

an interrupt is generated by the track sensors. However, there are two scenarios in this 

use-case functionality. The main-scenario of this case study application represents the 

situation when the track door is closed successfully. The exceptional or alternative 

scenario is executed when the system detects an error in the track door and issues track 

door failure. The execution probability for scenario 1 is assumed as ‘0.95’ where as the 

execution probability for scenario 2 is assumed as ‘0.05’. 

Step III: Predicting the probability of occurrence value for each event-related error 

The ‘Event-Errors’ identified for this application are shown in Table 4.13. The 

probability of occurrence values assigned to each event-related error is shown in 

Table 7.2. The rule for selecting the ‘probability of occurrence’ values is same as 

followed in the previous case study application. 

Step IV: Constructing fault tree and predicting the reliability of each scenario 

Consider the ‘Event-Errors-Effects-Analysis’ for scenario 1 and scenario 2 as shown in 

Table 4.14 and table 4.15. 

The fault tree constructed for scenario 1 by taking the ‘Event-Errors-Effects-Analysis’ as 

shown in Table 4.14 as an input is shown in Figure 7.4. The fault tree constructed for 
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scenario 2 by taking the ‘Event-Errors-Effects-Analysis’ as shown in Table 4.15 as an 

input, is shown in Figure 7.5. The probability values to each event–related error is 

assigned as per  Table 7.2. 

The reliability of scenario 1 of the RTCS application  = ‘1 – 0.044’  

        = ‘0.956’. 

The reliability of scenario 2 of the RTCS applications  = ‘1 – 0.020’  

        =  ‘0.98’. 

Table 7.2: Probability of Occurrence of Event-Related Errors of RTCS Application 

Event# Error# Type Error Description 
Probability of 

Occurrence 

E1 ER1 1 Event E1 fails to execute 0.005 

E2 

ER2 1 Event E2 fails to execute 0.005 

ER3 1 
Error in Track Door 

Component 
0.010 

E3 

ER4 1 Event E3 fails to execute 0.005 

ER5 2 
Event E3 is False but evaluated 

as True 
0.001 

ER6 2 
Event E3 is true but evaluated 

as False 
0.001 

E4 

ER7 1 Event E4 fails to execute 0.005 

ER8 1 
Error in Track_signal 

Component 
0.010 

E5 ER9 1 Event E5 fails to execute 0.005 

E6 ER10 1 Event E6 fails to execute 0.005 

 

Step V: Computing the reliability of the ‘close-track-door’ use-case 

The reliability of scenario 1    =  0.956 

The execution probability of scenario 1 =  0.95  

The reliability of scenario 2    =  0.98 

The execution probability of scenario 2  =  0.05 

Thus, the reliability of close-track-door use-case is ‘0.9999’. 
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7.5 ANALYSIS OF RESULTS
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and Cortellessa (Cortellessa et al, 2002), require the conversion of a given use
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functionality into a set of sequence diagrams and it is assumed that the failure

of each component (i.e. class) involved in the use-case is known in advance. The 

approach cannot be used if only use-cases are used as inputs because the sequence 

diagrams are generally drawn during object-oriented design phase. Similarly, t
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2007) and Yacoub (Yacoub et al, 2004) also require the conversion of a given use-case 

into a sequence diagram. 

The proposed approach is developed for use-case based requirements analysis phase and 

there is no need to convert a use-case into its corresponding sequence diagram or 

reliability block diagram. 

The method as reported by Tripathi and Mall (Tripathi and Mall, 2005) considers the 

failure only in the main scenario to predict the reliability of a use-case. However, a use-

case functionality can have any number of scenarios and an error can occur in each 

scenario. The proposed approach considers failures in every scenario to predict the 

reliability of a given use-case. 

The proposed approach computes the reliability of a scenario using the simple FTA 

approach whereas Mohanta (Mohanta et al, 2010) computes the reliability of a scenario 

‘R(S); by using the the number of classes required to implement and execute the scenario 

and the reliability of the each class. The reliability of each class is to be known in order 

to compute the reliability of the scenario. In object-oriented design process, the classes 

and their attributes and methods are identified only in design phase. Therefore, 

Mohanta’s method cannot be used until the design phase when all the classes required to 

execute the scenario and their reliabilities are known. 

On the other hand, the proposed approach computes the reliability of a scenario by 

constructing a generalized fault tree for the scenario in Step IV. The approach can be used even 

if the required classes to implement the scenario are not known. 

7.6 SOFTWARE RELIABILITY PREDICTION AT OBJECT-

ORIENTED DESIGN PHASE 

The SFMEA approach for object-oriented design phase presented and discussed in Chapter 6 

can be used to predict the software reliability of a particular use-case in design phase by 

improving it so that it can investigate the erroneous effects of every message-related error. The 

SFMEA approach for use-cases presented in Chapter 4 investigates the effect of every event-

related error. On the other hand, only five types of message-related errors are considered in the 

SFMEA approach for object-oriented design phase. Therefore, in order to estimate the 

reliability of a given use-case in design phase, the developed SFMEA approach for design 

phase should consider the effects of every message-related error. 
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CHAPTER 8 

Conclusion and Future Research Directions 

This chapter concludes the thesis with a summary of the proposed SFTA and SFMEA 

approaches for the object-oriented requirements analysis phase and design phase and 

then outlines the directions for carrying out further research in the area. As introduced in 

Chapter 1 and analyzed in Chapter 2, the existing SFTA and SFMEA approaches, in the 

object-oriented based requirements analysis and design phases, are manual, time-

consuming and error-prone. The thesis has made key contributions by developing 

automated and semi-automated SFTA and SFMEA approaches for application in the 

early phases of object-oriented based requirements analysis and design. The developed 

algorithms use formal textual use-case description and the state diagrams in the SFTA 

and SFMEA approaches for object-oriented requirements analysis phase and sequence 

and state diagrams for the SFTA and SFMEA approaches for object-oriented design 

phase. 

A summary of the developed SFTA and SFMEA approaches is given in the next section 

8.1 PROPOSED SFTA AND SFMEA APPROACHES - SUMMARY 

A review of the current literature on early software reliability estimation for safety 

critical software systems clearly demonstrates that the available methods are only for 

very late stages in the software development cycle and are manual (heavily dependent on 

expertise), cumbersome, time-consuming and error-prone. This thesis is a minimal 

attempt to provide a methodology for software reliability estimation at an early stage of 

software development cycle and automating the process by using only the information on 

use-cases available at the stage of requirements analysis and design. 

The introduction about the basics of the SFTA and SFMEA approaches and various 

UML models such as use-cases, sequence and state diagrams is presented in Chapter 1. 

The research objectives of the thesis are established based upon the problems faced 

during the applications of the SFTA and SFMEA approaches in object-oriented based 

requirements analysis and design phases. 
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The critical review of literature on use of the SFTA and SFMEA applications is done in 

two software life-cycle phases, namely requirements analysis and design phases and the 

summary of the findings is presented in Chapter 2. Based upon the findings, the current 

research gaps especially in the applications of the SFTA and SFMEA approaches in 

object-oriented based requirements analysis and design phases are identified. These 

research gaps are addressed in subsequent chapters. 

In the early prediction of software reliability for safety critical systems, the existing 

approaches have limitations. The first approach proposed in this thesis for modeling the 

system is using a software fault tree approach. In chapter 3, an approach is presented to 

address the first research gap (automating/semi-automating the application of the SFTA 

approach in use-case based requirements analysis phase). The approach is applicable as 

early as in use-case based requirements analysis. The developed SFTA approach is based 

on integrating the features of use-cases and state diagrams to automatically generate a 

software fault tree for a hazardous state of the system. The approach first builds the 

correct state of the system by mapping the events of the given use-case description 

against the states of the participating components and then constructs the software fault 

tree for the selected hazardous state of the system. The approach is automated, efficient 

and scalable. The limitation of the approach is that it requires the hazardous-state 

representation in terms of states of the participating components. 

The second approach proposed in this thesis for the failure analysis of safety critical 

systems is using a software failure modes and effects analysis approach. The SFMEA 

approach developed for use-case based requirements analysis process is discussed in 

Chapter 4. The SFTA approach of Chapter 3 only considers state transition errors i.e. the 

errors, which prevent a component from making their expected state transitions. The 

errors occurring during the execution of other events (where no component is changing 

its state) are not considered in the SFTA approach of Chapter 3. In order to overcome 

this limitation, a semi-automated SFMEA approach is developed and introduced in use-

case based requirements analysis process. The developed SFMEA approach is discussed 

in Chapter 4. The approach is semi-automatic because of the propagating type errors for 

normal events are to be identified manually. 

The SFTA approach developed for object-oriented design phase is semi-automatic and is 

presented and discussed in Chapter 5.The approach takes a sequence diagram and the 

state diagrams of the participating objects as inputs. The approach maps the events of 
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various messages of the sequence diagram against the state of the participating objects. 

The approach is semi-automatic because (i) the approach requires the proper tagging of 

the sequence diagram and sequence diagram represents the functionality of only one use-

case scenario and (ii) a specific naming pattern for naming the states of the participating 

objects is to be used. 

The SFMEA approach developed for object-oriented design phase and presented in 

Chapter 6, is automated. This approach is developed to overcome the limitations of the 

SFTA approach of Chapter 5. In the developed SFMEA approach, the sequence diagram 

can represent multiple scenarios of a given use-case functionality and there is no 

restriction on the naming the states of the participating objects. The limitation of the 

approach is that only select categories of message errors are supported in the approach. 

The existing software reliability prediction approaches for use-cases has a limitation that 

these approaches require the results of the successive phases in order to estimate the 

reliability of a given use-case functionality. In order to overcome this limitation, a novel 

SFMEA and SFTA based approach is developed to predict the software reliability of a 

given use-case functionality. The approach does not require any results from the 

successive phases and can be used during the use-case based requirements analysis phase 

itself. In the proposed approach, the SFMEA technique is first applied on the given use-

case functionality and then software reliability of a use-case is predicted by constructing 

a generalized software fault tree for the use-case failure. The advantage of the approach 

is that it can be applied either in object-oriented based requirements analysis or in design 

phase. 

8.2 FUTURE RESEARCH DIRECTIONS AND RECOMMENDATIONS 

The developed SFTA and SFMEA approaches have some limitations and these are 

discussed at the end of Chapter 3,4,5 and 6.The developed SFTA and SFMEA 

approaches, as discussed and presented in Chapter 3 and Chapter 4 respectively, suffer 

from the following limitations. 

(i) The approaches in the present form does not handle the case where the 

participating components are experiencing concurrent state transitions. 

(ii) The timing related errors are not addressed neither in the SFTA nor in the 

SFMEA approach. 
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The SFTA and SFMEA approaches developed for object-oriented design phase, 

presented, and discussed in Chapter 5 and Chapter 6 respectively also suffer from the 

above-mentioned limitations. Moreover, all the developed approaches depend heavily 

on the correctness and completeness of the required inputs. 

In order to overcome the above-mentioned limitations, the developed approaches are to 

be made more versatile to provide for the following features 

(a) Checking the correctness and completeness of the inputs before applying 

the algorithms 

The developed SFTA and SFMEA approaches for object-oriented based requirements 

analysis and design phases are developed under the assumption that the inputs supplied 

in the approaches are correct and complete. The approaches do not check the 

consistency of the inputs before the application of the approach. The support for this 

feature requires the development of correctness and completeness criteria for a given 

use-case functionality. 

(b) Handling of Concurrent State Transitions 

The proposed SFTA and SFMEA approaches for object-oriented requirements analysis 

and design phases do not provide the support to handle concurrency. The approaches 

are used or applied on the sequential applications where it is possible to know the order 

(i) of various messages (in sequence diagrams), (ii) of state transitions (in case of state 

diagrams) and (iii) of the occurrence of various events. In concurrent systems, the 

individual messages or message sequences may be sent in parallel, the state transitions 

may occur in parallel (known as orthogonal states) and in such situations, it is difficult 

to know the above-mentioned three facts. 

(c) Development of SFTA and SFMA Assisted UML tool 

The developed approaches are tested by using a UML tool namely Altova UModeler 

(UModel, 2013) tool and a fault tree creation and analysis tool namely FaultCAT 

(FaultCAT, 2003). The sequence and state diagrams are drawn using Altova tool and 

fault trees are constructed using FaultCAT tool. There does not exist a single UML tool 

that supports the features similar to the FaultCAT tool. 
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(d) Handling of Timing Related Errors 

The timing related errors are not considered in any of the SFTA and SFMEA 

approaches discussed in Chapter 3 to Chapter 6. The concept of ‘logical time’, 

employed in all the approaches, merely tells which event occurs earlier than the others. 

It does not give any information about how much physical time an event actually takes 

to execute or respond. 

(e) Using SFMEA and SFTA approaches for Software Reliability Prediction in 

Object-Oriented Design Phase 

An automated SFMEA approach developed for object-oriented design phase and 

presented in Chapter 6 only considers a limited number of message-related errors. 

However, to predict the software reliability in object-oriented design phase, every 

message-related error is to be accounted for and their effects have to be analyzed. So, 

in future efforts should be made to include the effects of every message-related error in 

the developed SFMEA approach ( of Chapter 6) so that the new augmented approach 

can be used to predict the software reliability in object-oriented design phase in a 

similar way as used in object-oriented requirements analysis phase (Chapter 7). 
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Appendix-I 

Fault Tree Constructed from the faulttree.xml file of Figure 3.14 Using FaultCAT Tool 

 

  



Appendix-II 

Fault Tree Constructed from the faulttree.xml file of Figure 3.16 Using FaultCAT Tool 

 

  



Appendix-III 

Fault Tree Constructed from the faulttree.xml file of Figure 3.18 Using FaultCAT Tool 

  



Appendix-IV 

Fault Tree Constructed from the faulttree.xml file of Figure 3.22 Using FaultCAT Tool 

  



Fault Tree Constructed from the faulttree.xml file of Figure 5.5 Using FaultCAT
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Fault Tree Constructed from the faulttree.xml file of Figure 5.5 Using FaultCAT

Appendix-V 

Fault Tree Constructed from the faulttree.xml file of Figure 5.5 Using FaultCAT Tool 

 



Fault Tree Constructed from the faulttree.xml file of Figure 5.7 Using FaultCAT Tool
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Fault Tree Constructed from the faulttree.xml file of Figure 5.7 Using FaultCAT Tool

 

Appendix-VI 

Fault Tree Constructed from the faulttree.xml file of Figure 5.7 Using FaultCAT Tool 

 



Fault Tree Constructed from the faulttree.xml file of Figure 5.11 Using FaultCAT Tool
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Fault Tree Constructed from the faulttree.xml file of Figure 5.11 Using FaultCAT Tool

 

Appendix-VII 

Fault Tree Constructed from the faulttree.xml file of Figure 5.11 Using FaultCAT Tool 

 



Fault Tree Constructed from the faulttree.xml file of Figure 5.13 Using FaultCAT Tool
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Fault Tree Constructed from the faulttree.xml file of Figure 5.13 Using FaultCAT Tool

Appendix-VIII 

Fault Tree Constructed from the faulttree.xml file of Figure 5.13 Using FaultCAT Tool 
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