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Chapter V 

Analytical Framework 

 

 

 

 

 

5.0   Introduction 

 

In the last chapter we discussed the research methodology followed to conduct 

this research work. We also discussed the relevance of the variable selection and 

the questionnaire design. We discussed sample selection and how the 

experiment was conducted by administering the questionnaire personally. This 

chapter discusses those techniques and concepts that are applicable to this 

research study. In this chapter, analytical frameworks of two multivariate 

statistical techniques that are applied to analyze the data of the study and related 

hypotheses are discussed. In section 5.1 detailed discussions on exploratory 

factor analysis are presented.  

 

This is followed with discussions on multiple regression analysis in section 5.2. 

The theory and reasoning behind the hypotheses formulation between the 

relationships of organizational intelligence and causative factors are explained in 

the next chapter. Section 5.3 explains the conclusion of the analytical frameworks 

discussed in this chapter. The analytical frameworks of the above mentioned 

statistical techniques are discussed with their conceptual overviews and scientific 

context of the method. Interpretation of the findings and their significance are 

discussed in a theoretical perspective.  

 

In the first level of data analysis, Factor analysis, a multivariate technique, is used 

to identify the structure of interrelationships between the variables and reveal 

functional units, thus forming the base of the change of variables. The Factor 
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Analysis model building is described in a sequential manner. The purpose of the 

study demands us to determine how Organizational Intelligence affects the 

financial performance of firms. There are various variables that account for 

Organizational Intelligence, as mentioned in Chapter 3. The groups of 

independent variables of Organizational Intelligence might be affecting the 

variables of Organizational Performance in multiple manners. Variables of 

similar behavior could be grouped by the Explanatory Factor Analysis method 

and the total number of variables can be reduced. This would also fulfill the 

requirement of adherence to one of the classical assumptions, namely 

Multicollinearity, for our next model, i.e., Multiple Regression. As we group the 

independent variables which are highly correlated, we can get rid of the 

multicollinearity problem, while applying Multiple Regression Analysis 

Technique.  

 

In the next level, we shall estimate these grouped variables and certain unique 

variables (which could not be grouped under factors) as independent variables to 

predict Organizational Performance as captured by a single dependent variable.  

The equation will be a relationship model between OI (Organizational 

Intelligence) and OP (Organizational Performance). As mentioned earlier, 

Organizational Performance variables are represented by a single dependent 

variable and the factors of Organizational Intelligence are independent variables.  

Thus the second level of data analysis clearly demanded the application of 

Multiple Regression Analysis. Thus Organizational Performance factors are chosen 

to represent financial performance and other organic attributes of organizations 

are grouped suitably with factor analysis to represent organizational intelligence.  

 

Part I 

5.1   Exploratory Factor Analysis  

 

As discussed earlier, we will first present the theoretical framework of Factor 

Analysis, which we have applied to reduce the problem of multicollinearity 

amongst the independent variables during the application of Multiple 

Regression. It also gives us a fair amount of justification into the process of 
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clubbing similar variables, or variables that behave identically. As Factor 

Analysis provides us with the necessary credence, the formation of the factors 

with proper rationale is in itself considered to be a good finding in the literature 

of OI and OP. 

 

5.1.1   What is Factor analysis? 

 

Social science often involves primary data collection using the questionnaire 

method. As this is a time consuming and costly affair, researchers often avoid 

taking the risk of having exactly the same number of questions that are required 

to address the variables considered in the study. Hence, it often leads to a pool of 

large number of variables, though the exact number of variables required for the 

study could be much less. Here comes the requirement of the application of 

Factor Analysis.   

 

There are a large number of variables proposed, and hypotheses and theories are 

linked to each other to explain or describe the complex variety and 

interconnections of various relationships. Factor analysis can simultaneously 

manage more than a hundred variables, compensate for random error and 

invalidity, and disentangle complex interrelationships into their major and 

distinct regularities (Rummel, 1970)260. It is a good way of resolving the 

confusion of data complexity and identifying latent or underlying factors from 

an array of seemingly important variables (Nargundkar, 2004)261.   

 

Factor analysis techniques can achieve their objectives from either an exploratory 

or confirmatory perspective. Exploratory Factor Analysis (EFA) is useful in 

searching for structures among a set of variables or as a Data Reduction method. 

It is a widely utilized and broadly applied statistical technique in the social 

sciences (Osborne, 2005)262. Hair et al (Hair et al, 2006)263 mention that Factor 

Analysis provides the tools for analyzing the structure of the interrelationships 
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(correlations) among a large number of variables by defining sets of variables 

that are highly interrelated. Confirmatory factor analysis (Joreskog et al, 1993)264 

is used for analyzing the validity and reliability of actual structure of the data 

based on theoretical, latent constructs or prior research. In this study, EFA is 

discussed and termed as Factor Analysis. 

 

The essential purpose of factor analysis is to describe, if possible, the covariant 

relationships among many variables in terms of few underlying, but 

unobservable, random quantities called factors (Johnson et al, 1992)265 interpreted 

through weights of the variable called factor loadings, organized in a matrix of 

factor loadings.  

 

The factors, by definition, are highly inter-correlated and are assumed to 

represent dimensions within the data. By reducing the number of variables, the 

dimensions can guide in creating new composite measures (Hair et al, 2006)266.  

 

The Factor Analysis model is organized in such a way that all variables within a 

particular group are highly correlated among themselves, but have relatively 

small correlations with variables in another group. Typically, factors used for 

any further analysis should contain unique variables (Makhura et al., 1997)267.  

 

Flow chart depicting Exploratory Factor Analysis is given in Figure 5.1.  
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Figure 5.1 - Flow Diagram of Factor Analysis 
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5.1.2   Why Using Exploratory Factor Analysis for this 

Research Study?  

 

Appropriateness of Exploratory Factor Analysis: Exploratory Factor Analysis 

can be a highly useful and powerful multivariate statistical technique for 

effectively extracting information from large bodies of interrelated data. When 

variables are correlated, the researcher needs to manage these variables, by 

grouping highly correlated variables together, labeling or naming the groups, 

and by creating a new composite measure that can represent each group of 

variables. The primary purpose of Exploratory Factor Analysis is to define the 

underlying structure among the variables in the analysis. As an interdependence 

technique, factor analysis attempts to identify grouping among variables, based 

on the relationships represented in a correlation matrix. It is a powerful tool to 

understand the structure of the data better. It is used to simplify analyses of large 

set of variables by replacing them with composite variables. When it works well, 

it points to interesting relationships that might not have been possible from 

examination of the raw data alone, or even the correlation matrix. Factor analysis 

provides the basis for data reduction through either summated scales or factor 

scores. The researcher can combine the variables within each factor into a single 

score that can replace the original set of variables with four new composite 

variables.  

 

Difference between exploratory factor analysis and confirmatory factor 

analysis: Factor analysis used for this research work, which is primarily an 

exploratory technique, does not give enough control over the specification of the 

structure, such as number of factors and loadings on each variable etc. However 

an attempt to confirm the Factors will require Structural Equation Modeling. 

 

Seven stages of applying Factor Analysis include (i) Clarifying the objectives of 

factor analysis (ii) Designing a factor analysis, including selection of variables 

and sample size (iii) Assumptions of factor analysis (iv) Deriving factors and 

assessing overall fit, including which factor model to use and the number of 

factors (v) Rotating the interpreting factors (vi) Validation of factor analysis 
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solutions (vii) Additional uses of factor analysis results, such as, selecting 

surrogate variables, creating summated scales or computing factor scores (Hair et 

al, 2006)268 

 

Difference between R and Q Factor Analysis: The principal use of factor analysis 

is to develop a structure among variables, referred to as R factor analysis. Factor 

analysis can also be used to group cases, which is referred as Q factor analysis. Q 

factor analysis is similar to cluster analysis. The primary difference is that Q 

Factor analysis uses correlation as the measure of similarity whereas cluster 

analysis is based on a more distant measure. 

 

Difference between component analysis and common factor analysis: 3 types of 

variance are considered when applying factor analysis; Common Variance, 

Unique Variance and Error Variance. They sum up to give the Total Variance. 

Component Analysis (principal component analysis), considers the Total 

Variance and derives the factors that contain small proportions of Unique 

Variance and in some instances Error Variance. Component analysis is preferred 

when data reduction is the primary goal. Common Factor Analysis is based only 

on Common Variance (Shared Variance) and assumes no importance to Unique 

and Error Variances in defining the structure of variables. It is more useful in 

identifying latent constructs and there is little information about Error and 

Unique variances. The 2 methods achieve essentially the same results in many 

situations.  

 

Determining the number of factors to extract:  The total number of factors 

extracted from Factor Analysis is retained for interpretation and further analysis.  

This decision on the number of factors depends on the questions such as, how 

many factors to extract, how many factors to retain in the structure?, and how 

many factors can be reasonably supported with empirical evidence? The research 

begins with some predetermined criteria such as the general number of factors 

and some general thresholds of practical relevance. These criteria are combined 
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with empirical measures of factor structure. An exact quantitative basis for 

deciding the number of factors to extract has not been developed. Stopping 

criteria for the number of factors to extract include latent root or eigen value, a 

priori, percentage of variance and scree test. These empirical criteria must be 

balanced against any theoretical bases for establishing the number of factors 

(Hair et al, 2006)269 

 

Explaining the concept of rotation of factor:  The most important tool in 

interpreting factors is Factor Rotation. The term rotation indicates the turning of 

the reference axes of factors about the origin until some other position has been 

reached. There are 2 types of rotation – orthogonal and oblique. Unrotated factor 

solutions extract factors in the order of their importance, with the first factor 

being general factor with almost every variable loading significantly and 

accounting for the largest amount of variance. The second and the subsequent 

factors are based on the residual amount of variance, with each accounting for 

successively smaller portions of variance. The ultimate effect of rotating the 

factor matrix is to redistribute the variance from earlier factors to later ones to 

achieve a simpler, theoretically more meaningful factor pattern. Factor Rotation 

assists in the interpretation of factors by simplifying the structure through 

maximizing the significant loadings of a variable on a single factor. In this 

manner, the variables most useful in defining the character of each factor can be 

easily identified (Hair et al, 2006)270 

 

Naming the factor: Factors represent composite of many variables. When an 

acceptable factor solution had been obtained, all variables have a significant 

loading. The researcher attempts to find meaning out of the factor loadings. 

Variables with higher loadings are considered more important, for they have 

greater influence on the name or label selected to represent the factor. The 

significant variables for a particular factor are examined. Greater emphasis is on 

those variables with higher loadings. A name is assigned to a factor that reflects 

the variable loadings on that factor. The researcher identifies variables with the 
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greatest contribution to a factor and assigns a name to represent the factor’s 

conceptual meaning (Hair et al, 2006)271.  

 

Uses of Factor analysis:  The researcher can stop with the Factor Interpretation 

or further proceed to Data Reduction. If the objective is just to identify the logical 

grouping of variables through better understanding of the interrelationships 

among the variables, then the Factor Interpretation will suffice. If the objective is 

to identify appropriate variables for subsequent application of statistical 

techniques, then Data Reduction will be necessary. In the procedure of Data 

Reduction, the researcher would identify a single variable as the best 

representation of entire set of variables for further statistical analysis. Another 

option is to calculate the summation of the variables with highest factor loading. 

This is known as the summated scale. A single summated score represents a 

factor but only selected variables contribute to the composite score. A third 

option is to calculate the factor scores for each factor, where each factor 

contributes to the score based on its factor loading. This single measure is a 

composite variable that reflects the relative contributions of all the variables to 

the factor. If the summated scale is valid and reliable, it is probably the best of 

these 3 data reduction techniques. 

 

Limitations of factor analysis technique: There are 3 most frequently cited 

limitations.  (Hair et al, 2006)272 There are many techniques available for 

performing Factor Analysis, although controversy exists over which technique is 

the best. The subjective aspects of Factor Analysis such as number of factors to be 

extracted, technique to be used to rotate the factor axes, and significant factor 

loadings are all subjected to many differences in opinion. The problem of 

reliability is real, and like any other statistical procedure Factor Analysis starts 

with a set of imperfect data. Changes in sample, data gathering procedures, and 

measurement errors affect the results of the analysis. The results of a single 

analysis are therefore not completely dependable. Factor analysis technique is 
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complex and plausible, though the fact that plausible solutions do not guarantee 

complete validity or stability remains unruffled.  

 

5.1.3   Objectives of Factor Analysis  

 

There are four key issues attached to the objectives of Factor Analysis: specifying 

the unit of analysis, Data Summarization and Reduction, variable selection, and 

using Factor Analysis results with other multivariate techniques. Each is briefly 

explained below.  

 

There are several methods of factor analysis. However, the most commonly used 

are the R-Factor Analysis or Q-Factor Analysis (Thompson, 2000)273. These types 

refer to what is serving as variables and what is serving as the observations in 

the arrangement of data row and column wise. In R-Factor analysis, the variables 

are the columns of the data set and observations are the rows. In R-Factor 

analysis, we look for the latent factors that lie behind the variables, and the Q-

Factor analysis condenses large number of people in distinctly different groups 

within a large population. There are other possible combinations of groups and 

variable types (Stewart et al, 1981274, Thomson, 2000). The data analysis for the 

given study refers to R-Factor analysis. 

 

There are 2 distinct, but interrelated outcomes of factor analysis: Data 

Summarization and Data Reduction. The concept of Data Summarization is to 

evolve the definition of structure, through the structures of the variables from 

most detailed levels to more generalized levels can be viewed.  The goal is 

achieved by defining a small number of factors that adequately represent the 

original set of variables (Hair et al, 2006)275.  The purpose of Data Reduction is to 

retain the nature and character of the original variables, but reduce their 

numbers to simplify subsequent Multivariate Analysis. The objective of applying 
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Factor Analysis in the study was to condense or summarize the variables, the 

building blocks of relationships, into smaller sets of new, composite dimensions 

called factors, with a minimum loss of information. The factors then created in 

new composite measures were applied in further analysis.  

 

Factor Analysis is most efficient when conceptually defined dimensions can be 

represented by the derived factors. The quality and meaning of the derived 

factors reflect the conceptual underpinnings of the variables included in the 

analysis and judgment of the researcher. Factor Analysis still maintains the 

flavor of an art, and no single strategy should yet be ‘chiseled into stone’. Factor 

Analysis should not be used in most practical situations (Chatfield et al, 1980)276. 

Heir et al (Hair et al, 2006)277 mention that Factor Analysis provides a clear 

understanding of, which variables may act in concert and how many variables 

may actually be expected to have impact in the analysis. It is an excellent starting 

point for many other multivariate techniques. 

 

5.1.4   Research Design for Factor Analysis 

 

The research design of the Factor Analysis involves 3 decisions: (i) Calculation of 

a correlation matrix (input data); (ii) Design of the study in terms of number of 

variables, measurement properties of variables, and types of allowable variables 

and (iii) The necessary sample size. These decisions are discussed below. 

 

i) Correlations among variables or respondents:  The first decision focuses on 

calculating the input data for the analysis. Earlier we discussed R-type and Q-

Type factor analyses. Hair at el (Hair et al, 2006)278 posit in R-type factor analysis, 

the traditional correlation matrix specifying correlations among variables is used. 

In Q-Type factor analysis, the correlation matrix is derived from the correlations 

between the individual respondents. The resultant factor matrix identifies similar 
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individuals. R-Type factor analysis is used widespread and the discussion in this 

chapter continues on R-Type factor analysis.  

 

ii)      Variable Selection and Measurement:  In factor analysis, correlations 

among variables is the only means of determining appropriateness and therefore 

the observed patterns have to be conceptually valid and appropriate to study. 

The primary requirement of the Factor Analysis is that a correlation value can be 

calculated among all variables. If the metric variables are used in factor analysis, 

they can be measured by several types of correlations. But non-metric variables 

can not use the same type of correlation measures that of metric variables. 

Therefore to include a non-metric variable, an approach of dummy variable 

(coded 0-1) is taken. If all the variables are dummy variables, then specialized 

forms of Factor Analysis such as Boolean Factor Analysis can be used (Hair et al, 

2006)279. A rule of thumb for substantial correlation value is > 0.30. To find 

patterns among groups of variables, each proposed factor should include several 

variables (five or more). It is of little use in identifying factors composed of only a 

single variable (Hair et al, 2006)280. 

 

iii) Sample Size:  The best method for standardizing sample size data is subject 

to item ratio. Anna Costello and Osborne conclude that a large percentage of 

Factor Analyses are done using relatively small sample sizes. Their research 

indicates that 14.7 percent studies were done with a subject to item ratio of 2:1 or 

less, 25.8 percent studies had a ratio of > 2:1,  < 5:1; 22.7 percent studies had the 

ratio of >5:1,  < 10:1. About 37 percent studies had the subject to item ratio > 10:1. 

Past research has revealed that adequate sample size is partly determined by the 

nature of data.  In general, the stronger the data in terms of uniformly high 

communalities without cross-holdings, plus several variables loading strongly on 

each factor, smaller is the sample. However, in practice these conditions can be 

rare (Osborne et al, 2005)281.  
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As a thumb-rule, Factor Analysis requires minimum 50 observations as the 

sample size, and preferably 100 or larger sample. Another general rule is to have 

minimum ratio of observations to variable as 5:1. More acceptable ratio is 10:1. 

Stevens (Stevens et al, 2002)282 summarizes some specific results backed by 

simulations as follows. The number of observations required for factors to be 

reliable depends on the data, particularly how well the variables load on the 

different factors. A factor is reliable if it has: 

                  3 or more variables with loadings of 0.8 and any n* 

                  4 or more variables with loadings of 0.6 and any n 

                 10 or more variables with loadings of 0.4 and n > 150 

                  Factors with only a few loading require n > 300            

       * n is the number of observations 

 

5.1.5   Assumptions in Factor Analysis  

 

The critical assumptions underlying Factor Analysis are more conceptual than 

statistical. The character and composition of the variables included in the 

analysis require a strong theoretical foundation before meeting the statistical 

requirement of the multivariate technique.  Given below are the assumptions 

that have to be met with for conducting Factor Analysis. 

 

5.1.5.1 Conceptual and Statistical Aspects  

 

The basic assumption of Factor Analysis is that some underlying structure does 

exist in the set of selected variables (Hair et al, 2006)283. The appropriateness of 

the technique is determined only by the correlations among variables, and 

therefore it is imperative that the observed patterns are conceptually valid and 

appropriate from the aspect of variables selection. Another assumption is that the 

sample is homogeneous with respect to the underlying factor structure. In case of 

2 samples or sub-samples combined, the resulting correlations and factor 
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structure gives a poor representation of the unique structure of each group.  

From statistical standpoint, some degree of multicollinearity is desirable, because 

the objective is to identify interrelated sets of variables. 

 

5.1.5.2  Overall Measures of Intercorrelation 

 

Hair et al posit data matrix of correlations should reveal substantial number of 

correlations greater than 0.30 to make factor analysis appropriate. If all of the 

correlations are low, or all correlations are equal, it implies that no structure 

exists to group variables and the application of factor analysis is questionable. 

The correlations among variables can also be analyzed by computing the partial 

correlations among variables. Partial correlation is the unexplained correlation 

when effects of other variables are taken into account. It should be small, i.e. less 

than .7, if the “true” factors exist in the data (Hair et al, 2006)284.  

 

Another method of determining the appropriateness of Factor Analysis is to 

examine the entire correlation matrix. The Bartlett test of Sphericity checks the null 

hypothesis that the original correlation matrix is an identity matrix (Andy Field, 

2000)285. It provides the statistical significance that the correlation matrix has 

significant correlations among at least some of the variables. High significance (p 

< .001) of Bartlett’s test indicates appropriateness of Factor Analysis.   

 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy varies between 0 

and 1. A value close to 1 indicates that patterns of correlations are relatively 

compact and so the factor analysis should yield distinct and reliable factors. 

Andy Field recommends acceptable values greater than .5. the values between .5 

and .7 are mediocre, values between .7 and .8 are good, values between .8 and .9 

are great, and values above .9 are superb (Andy Field, 2000)286.  In Table 5.1, an 
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example of a SPSS output of the given study is depicted for KMO and Bartlett’s 

test.   

Table 5.1 - KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy. 
.906 

Bartlett's Test of 

Sphericity 

Approx. Chi-

Square 
1647.350 

 Df 351 

 Sig. .000 

 

KMO value is 0.906, slightly more than 0.9, and can be considered as a superb 

value, indicating that the patterns of correlations are compact and the factor 

analysis should yield distinct and reliable factors. Bartlett’s test shows 

significance P < 0.001, and therefore the Factor Analysis is appropriate.  The 

Measure of Sampling Adequacy (MSA) is the third measure to quantify the 

degree of interrelations among the variables and appropriateness of Factor 

Analysis. The measure can be interpreted with the following guidelines: 0.80 or 

above, meritorious; 0.70 or above, middling; 0.60 or above, mediocre; 0.50 or 

above, miserable; and below 0.50, unacceptable (Hair et al, 2006)287.  

 

5.1.6   Deriving Factors and Assessing Overall Fit 

   

There are 2 decisions in applying Factor Analysis are concerned with: (1) the 

method of extracting the factors, and (2) the number of factors selected to 

represent the underlying structure in the data. 

 

5.1.6.1  Criteria for Extracting the Factors 

 

Factors are produced by common Factor Analysis (FA), while components are 

produced by Principal Components Analysis (PCA). They both are essentially 

Data Reduction techniques, differing in the variance of the observed variables 
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that is analyzed. In PCA, all the variance in the observed variables is analyzed 

whereas in FA, only shared variance is analyzed. Statistical theorists have 

disagreement about the applicability of each method. Some researchers favor FA 

as a true analysis method and propose severely restricted use of PCA, whereas 

others disagree, and point out either that there is almost no difference between 

PCA and FA, or that PCA is preferable (Osborne et al, 2005)288. 

 

The total variance of any variable consists of 3 types of variances: common, 

unique, and error. A variable’s communality is the estimate of its shared or 

common variance among the variables as represented by the derived factors 

(Hair et al, 2006)289. The communalities represent the proportion of the variance for 

each of the variables included in the analysis that is explained or accounted for 

by the components in the factor solution. The derived components should 

explain at least half of each original variable’s variance, so the communality 

value for each variable should be 0.50 or higher. If one or more variables have a 

value for communality that is less than 0.50, the variable with the lowest 

communality should be excluded and the Principal Component Analysis should 

be computed again.  

 

Principal Components Analysis (PCA) considers the total variance and derives 

factors that contain small proportions of unique variance and, in some cases, 

error variance. The components are calculated using all of variance of the 

manifest variables, and all of that variance appears in the solution. As PCA does 

not discriminate between shared and unique variance, when the factors are 

uncorrelated and communalities are moderate, it can produce inflated values of 

variance accounted for by the components. However, researchers rarely collect 

and analyze data without an a priory idea about how the variables are related 

(Osborne et al, 2005)290. 

 

In Factor Analysis, only common or shared variance is considered with the 

assumption that both the unique and error variance are not of interest in defining 
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the structure of the variables. The aim of Factor Analysis is to reveal any latent 

variables that cause the manifest variables to co-vary. There are several factor 

extraction methods in Factor Analysis to choose from: unweighted least squares, 

generalized least squares, maximum likelihood, principal axis factoring, alpha 

factoring, and image factoring. However, information on their relative strengths 

and weaknesses is scare and often available in obscure references (Osborne et al, 

2005)291. Probably because of this, Principal Component Analysis is the most 

preferred technique. PCA is the default method of extraction in many popular 

statistical software packages such as SPSS and SAS. The data for the study has 

been analyzed using PCA in SPSS.  

 

5.1.6.2  Criteria for Selecting Number of Factors to be 

Retained 

 

After extraction, the decision is to be made on how many factors to retain for 

rotation. (Mardia et al, 1980)292 point out that there is a limit to the number of 

factors that can actually end up with a simpler model than the raw data. The 

minimum number of variables required to select the number of factors is given in 

Table 5.2. 

Table 5.2 - Minimum Variables required for Factors Selection 

Factors 2 3 4 5 6 

Variables 
Required 

5 7 8 9 11 

 
This is a guideline and factor loadings on each variable also have to be assessed 

before actually deciding the meaningfulness of the factor. The decision on the 

number of factors to be retained from the extraction process is based on the 

several stopping criteria for the number of factors to extract. Usually in practice, 

more than one criterion is used to select the factors. The criteria available in SPSS 

software are discussed below. 
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The latent root criterion is used with the rationale that any individual factor 

should account for the variance of at least a single variable if it is to be retained 

for interpretation. With component analysis each variable contributes a value of 

1 to the total eigenvalue. One of the least accurate methods is retaining the 

number of factors having eigen values greater than 1 (Osborne et al, 2005)293.  

 

All the factors having eigen values > 1 can be retained for the correlation matrix. 

However, Hair et al., (Hair et al, 2006)294 reports that establishing a cutoff is most 

reliable when the number of variables is between 20 and 50. Stevens (Stevens et 

al, 2002)295 reports that if variables are greater than 40 and their communalities 

are around 0.40, they are considered to be too many.  

 

A more accurate cutoff point is with 10-30 variables and their communalities are 

around 0.70. This criterion is also known as Kaiser’s recommendation, and 

appears in SPSS as an option under the Extract box. In the ‘a priory criterion’, the 

number of factors to extract is decided before undertaking the Factor Analysis. 

This approach is used in testing a theory or a hypothesis about the number of 

factors to be extracted, or in replicating another researcher’s work.  

 

Percentage of variance is another criterion used to decide the number of factors to 

extract. This approach is based on achieving a specified cumulative percentage of 

total variance extracted by successive factors, by ensuring that they explain at 

least a specified amount of variance. In social sciences, where the information is 

less precise, it is common to consider a solution that accounts for 60 percent of 

the total variance, as there is no absolute threshold adopted for all application.  

 

A variant of this criterion is to select the factors with communality of more than 

.50 for each of the variable. This approach is considered for not to neglect the 

degree of explanation for the individual variables (Hair et al, 2006)296. 
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The scree test criterion is an alternate method for factor retention, and is available 

in most frequently used statistical software including SPSS. It is the method to 

identify the optimum number of factors that can be extracted before the amount 

of unique variance begins to dominate the common variance structure.  

 

A graph is plotted for latent roots (eigen values) against the number of factors in 

their order of extraction. The graph is examined and at the point at which the 

curve first begins to straighten out or breaks from the natural bend, is considered 

the cutoff point. The number of data points above the “break” (not including the 

point at which the break occurs) is usually the number of factors to retain 

(Osborne et al, 2005)297. As a general rule, the scree test results in at least one or 

sometimes 2 or 3 more factors being considered for inclusion than does the latent 

root criterion (Hair et al, 2006)298. 

 

5.1.7   Interpretation of Factors 

 

A strong conceptual foundation for the anticipated factor structure and its 

rationale is important, as there are no specific processes or guidelines for 

interpreting factors. In the study, the theoretical concepts of conflict typology 

and causative factors were related with the analytical framework of factor 

analysis to interpret factors and the structure lying underneath.  

 

5.1.7.1  Factor Rotation  

 

Factor interpretation is circular in nature. First, the initial unrotated factor matrix 

is computed, containing the factor loadings for each variable on each factor. Hair 

et al (Hair et al, 2006)299 define factor loadings as the correlation of each variable 

and the factor. These are the means of interpreting the role each variable plays in 

defining each factor. 
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The next decision is of selecting the rotation method. The goal of rotation is to 

simplify and clarify the data structure. It can not improve the basic aspects of the 

analysis such as the amount of variance extracted from the items (Osborne et al, 

2005)300.  

 

The initial unrotated factor matrix does not provide enough information of the 

variables under observation. Ambiguities in the interpretation are found because 

the first factor tends to be a general factor with almost every variable loading 

significantly, accounting for the largest variance. Subsequent factors are based on 

the residual mount of variance. Therefore, factor rotation is used. Hair, et al (Hair 

et al, 2006) posit the ultimate effect of rotating the factor matrix is to redistribute 

the variance from earlier factors to later ones, to achieve a simpler, theoretically 

more meaningful factor pattern. 

 

Two methods of rotation are used, orthogonal and oblique. Orthogonal rotations 

produce factors that are uncorrelated and oblique methods allow the factors to 

correlate. Varimax, quartimax, and equimax are commonly available orthogonal 

methods of rotation, while direct oblimin, quartimin, and promax are oblique 

methods (Osborne et al, 2005)301.  

 

Orthogonal rotation produces more easily interpretable results, and is commonly 

used method in research. The SPSS program gives five options for rotation (Ajai 

Gaur, 2006)302. The rotated factor matrix output is interpreted after orthogonal 

rotation; pattern matrix is examined for factor/item loadings in oblique rotation, 

and factor correlation matrix reveals any correlation between the factors. The 

substantive interpretations are essentially the same (Osborne et al, 2005). 
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5.1.7.2  Significance of Factor Loadings 

 

In interpretation, it is essential to make the decision regarding the factor loadings 

that are worth considering. Practical significance of making a preliminary 

examination of factor loadings is important, as larger the absolute size of the 

factor loading, the more important the loading is in interpreting the factor 

matrix. Tabachnick and Fidell (Osborne et al, 2005)303 suggest 0.32 as a good rule 

of thumb for the minimum loading of an item, which equates to approximately 

10% overlapping variance with the other items in that factor.  

 

Using practical significance as the criteria, factor loadings are assessed as follows 

(Hair et al, 2006)304:  

• Factor loadings in the range of + 0.30 to + 0.40 are considered as the minimum 

level  for interpretation of the structure. 

• Loadings + 0.50 or greater are considered practically significant. 

• Loadings exceeding + 0.70 are indicative of well-defined structure. 

 

The significance level for the interpretation of loadings can be determined in the 

similar way of determining the statistical significance of correlation coefficients.  

However, researchers have demonstrated that factor loadings have substantially 

larger standard errors than typical correlations (Hair et al, 2006)305. Therefore 

factor loadings have to be evaluated at a considerably stricter level.  

 

Anna Costello et al (Osborne et al, 2005)306 caution that Factor Analysis is a large-

sample procedure in which generalizable or replicable results are unlikely if the 

sample is too small. Hair et al (Hair et al, 2006)307 present the guidelines for 

identifying significant factor loadings based on sample size, as follows in Table 

5.3. 
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Table 5.3 - Guidelines for Identifying Significant Factor Loadings 

Based on Sample Size 

 

Factor 

Loading 

Sample Size Needed for Significancea 

.30 350 

.35 250 

.40 200 

.45 150 

.50 120 

.55 100 

.60 85 

.65 70 

.70 60 

.75 50 

 

aSignificance is based on a .05 significance level ( ), a power level of 80 percent, and 

standard errors assumed to be twice those of conventional correlation coefficients. 

Source: Computations made with SOLO Power Analysis, BMDP Statistical Software, 

Inc., 1993. 

 

5.1.7.3  Factor Matrix 

 

To identify the most indicative factors of the underlying structure, all the factor 

loadings are sorted and a five step process is applied. In the first step, the factor 

matrix of loadings is examined. It contains factor loading on each variable. In the 

rotated factor loading analysis, the factors are arranged as columns, and each 

column of numbers represents the loadings of a single factor.  The factor pattern 

matrix had loadings that represent the unique combination of each variable to 

the factor. A factor with less than 3 variables is generally weak and unstable; five 

or more variables, with loadings >0.50 in a factor are desirable and indicate a 
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solid factor. It may be possible to reduce the number of variables and maintain a 

strong factor in large samples with further analysis (Osborne et al, 2005)308. 

 

The second step is of identifying the significant loading(s) for each variable. The 

interpretation starts with the first variable on the first factor, from left to right, 

looking at the highest loading for that variable on any factor. When the highest 

loading is identified and is significant as per the criteria discussed earlier, it is 

underlined. The process of selecting highest loading per variable continues till all 

the loadings are sorted.  When a variable is found to have more than one 

significant loading, it is known as cross-loading. Different rotation methods can be 

used to eliminate cross-loadings and simplify the data.  

 

Third step is to assess the communalities of the variables.  In case of any 

variables that are not adequately accounted for by the factor solution, one 

approach is to identify any variable(s) lacking at least one significant loading. 

Another approach is to examine communality of each variable, which represents 

the amount of variance accounted for by the factor solution for each variable. 

Variable communalities are considered ‘high’ if they are .80 or greater.  

 

However, it is unlikely to occur in real data. More common magnitudes in the 

social sciences are low to moderate communalities of 0.40 to 0.70. A variable 

having < 0.40 communality is either not related to other variables, or suggest an 

additional factor that should be explored (Osborne et al, 2005)309. As a general 

guideline, all the variables with communalities less than 0.50 are identified as 

variables not having sufficient explanation (Hair et al, 2006)310.  

 

The fourth step is to re-specify the factor model, if needed. In case of a variable 

having no significant loadings, or its communality is deemed too low, or a 

variable having cross-loading, several ways can be taken. These are either to 

ignore those problematic variables and interpret the solution as it is; or to 

                                                 
308

 Osborne., By Best Practices in Quantitative Methods, Sage Publications Inc Pb, 2005 
309

 Osborne., By Best Practices in Quantitative Methods, Sage Publications Inc Pb, 2005 
310

 Hair et al, Multivariate Data Analysis, 6
th

 Ed, Printice Hall Pb; 2006 



 134 

employ alternative rotation methods; or to increase/decrease the number of 

factors retained, or modify the type of factor model used.  

 

The fifth step is to label the factors. The labels have to be developed intuitively 

based on their appropriateness for representing the underlying dimensions of a 

particular factor. Each extracted factor is given a name or a label that represents 

each of the derived factors as accurately as possible.  

 

5.1.8   Creation of Factor Scores  

 

The objective of the study is not only Data Reduction, but also is to identify 

appropriate variables for subsequent application to other statistical techniques. 

Hair et al (Hair et al, 2006)311 elaborate 2 methods of data reduction and creation 

of new factors. In one method, the variable with the highest factor loading is 

selected as a surrogate representative for a particular factor dimension, and in 

another method the original set of variables are replaced with an entirely new, 

smaller sets of variables created from factor scores. Creation of factor scores is 

discussed in detail, as it is the technique used for the Factor Analysis of the data 

of the study. 

 

Factor scores are used for diagnostic purposes and also as inputs to the 

subsequent analysis. They are smaller sets of variables that replace original set. 

Conceptually factor score represents the degree to which each case (individual) 

scores high on the group of items with high loadings on a factor. Thus, higher 

values on the variables with high loadings on a factor will result in a higher 

factor score (Hair et al, 2006)312.  

 

 Factor score represents all variables loading on the factor, and is used for 

complete data reduction. By default, the factor scores are orthogonal and can 

avoid complications caused by multicollinearity. Factor scores are the scores of 
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each case (row) on each factor (column). To compute the factor score for a given 

case, for a given factor, the case's standardized score is taken on each variable, is 

multiplied by the corresponding factor loading of the variable for the given 

factor, and these products are summed up.  

 

The objectives of the study as mentioned earlier were: data reduction; identification of 

the variables that construct the factors; and replace the variables with the factors 

in the original data. This reduces number of independent variables in the 

statistical model and makes the process parsimonious. Of course, in the process 

of replacing the variables with factors a certain degree of explanatory power is 

lost, as the percentage of variance explained be the factors is generally not more 

than 70 percent.  

 

5.1.8.1 Methodology of Calculating Factor Scores 

 

The methodology of calculating factor scores which will replace the independent 

variables with new factors for further analysis is as follows. 

 

The process starts with the rotated factor loadings of the variables. For example, 

n1 variables construct factor 1. The rotated factor loadings of the variables have to 

be converted into relative loadings by dividing the factor loading of the variable 

by the sum of the factor loadings of all the n1 variables. As a result, all n1 variables 

that construct factor 1 lead to a sum-total of 1, when relative factor loadings are 

considered. These values are considered as the coefficient of the n1 variables that 

construct factor 1. If the relative factor loadings are represented as 

1
,...,, 21 nβββ and n1 variables are denoted as 

1
,..., 21 nXXX  then factor 1 can be 

represented as,  
11

...1 2211 nn XXXfactor βββ +++= .  Similarly, other factors are 

formed. In this context, it is crucial to check that that factors are not created 

mechanically just by observing at the rotated factor loadings. It is equally 

important to interpret and understand the relevance of the factor created. If the 

factor created does not make adequate sense, it is wise to drop it.  Factor score for 

each factor calculated in the above manner is transferred to SPSS data sheet. For 
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each individual respondent (row), a new data file of seven factor scores 

(columns) is created. The factor scores now become the starting point for the 

second multivariate technique of multiple regression.  

 

5.1.9   Software used for Factor Analysis Technique 

 

The most widely used statistical software package SPSS is used in the Data 

Analysis for the study. Although SPSS incorporates statistical and mathematical 

processes for Factor Analysis as described above, it has a specific terminology 

and commands to be applied for conducting the Data Analysis. Data Analysis 

with SPSS software is discussed in chapter 6.   SPSS 16.0 is selected for factor 

analysis for this research work as it incorporates Principal Component Analysis 

such as SAS. SPSS is preferred over SAS for the simplicity, usability and 

availability. 

 

 

Part II 

5.2 Multiple Regression Analysis  

 

After the completion of Factor Analysis, we start our discussion on linear 

multiple regression. Multiple regression analysis is a statistical technique that 

can be used to analyze the relationship between a single metric dependent 

variable and several independent variables which could be either metric or 

dichotomous.   It is a dependence technique. The objective of this technique is to 

form a regression variate – a linear combination of independent variables that 

predict the dependent variable the best. The regression variate is also known as 

regression equation or regression model. This technique is used when both 

dependent and independent variables are metric. Under special circumstances, it 

is possible to include non metric data either as independent variables (by 

transforming either ordinal or nominal data with dummy variable coding) or the 

dependent variable (by the use of a binary measure in logistic regression). To 

apply Multiple Regression Technique they must be transformed and before 
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formulating the regression equation, the dependent and independent variables 

have to be segregated.  

 

Sometimes the independent variables exhibit a quality of multicollinearity 

(correlation among 3 or more independent variables amongst themselves). The 

impact of multicollinearity is to reduce any single independent variable’s 

predictive power to the extent to which it is associated with the other 

independent variables. As collinearity increases, the unique variance explained 

by each independent variable decreases and the shared prediction percentage 

rises. Because the shared prediction can account only once, the overall prediction 

increases much more slowly as independent variables high multicollinearity are 

added. To maximize the prediction power of the model, from the given set of 

independent variables, the researcher should look for independent variables that 

have low multicollinearity with the other independent variables and have high 

correlation with the dependent variable. In this case, as discussed before, factor 

analysis has taken care of the multicollinearity problem. The figure below 

diagrammatically explains the flow of research design of Multiple Regression 

Analysis. 

 

Flow chart depicting Multiple Regression Analysis is given in Figure 5.2. 

 



 138 

Figure 5.2 - Flow Diagram of Multiple Regression 

Analysis

 

Research Design Issues: 

Obtain an Adequate Sample Size to ensure 

Statistical Power and Generizability 

Creating Additional Variables: 

Transformations to meet Assumptions 

Dummy Variables for the use of Non-Metric Variables 

Polynomials for Curvilinear Relationships 

Assumptions in Multiple Regression: 

Do the Individual Variables meet the 

Assumptions of Linearity, Normality, 

Homoscedasticity, Independence of Error 

Terms 

YES 

NO 

Select an Estimation Technique: 

(i) Specifying Regression model 

(ii) Specifying Procedure to Optimize 

Prediction 

1 2 

3 

4 

Research Problem: 

Select Objectives, Prediction, Explanation 

Select Dependent and Independent Variables 



 139 

 

 

1 2 

Does the Regression Variate 

Meet the Assumptions of 

Regression Analysis? 

Analyst Specification: Regression 

Model Specification 

Procedure Selects: Sequential 

Search Method / Combinatorial 

Approach 

NO 
YES 

3 
Examine Statistical and Practical Significance: 

Coefficient of Determination 

Adjusted Coefficient of Determination 

Standard Error of the Estimate 

Statistical Significance of Regression Coefficients 

Identify Influential Observations: 

Are any Observations determined to be Influential 

and require deletion from the Analysis? 

YES 

NO 

4 Interpret the regression Variate: Evaluate the 

Prediction Equation with the Regression 

Coefficients, Evaluate the Relative Importance 

of the Independent Variables with Beta 

Coefficients, Assess Multicollinearity and its 

Effects 
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5.2.1   Why  using Multiple Regression Analysis for this 

Research Study? 

 

Appropriateness of Multiple Regression Analysis: We decided to use Multiple 

Regression Analysis to predict and explain Financial Performances of small and 

medium business organizations.  Multiple Regression Analysis can describe the 

relationship among 2 or more intervally scaled variables and is much more 

powerful than simple regression with a single independent variable. Multiple 

Regression Analysis is used to analyze the relationship between a single 

dependent (criterion) variable and several independent (predictor) variables. The 

objective of Multiple Regression Analysis is to use several independent variables 

whose values are known to predict the single dependent variable. Multiple 

Regression Analysis is a dependence technique.  

 

To use this technique effectively, both dependent and independent variables 

must be distinct from each other and they must be metric. Under certain 

circumstances, it is possible to include non-metric data either as independent 

variables (by transforming either ordinal or nominal data with dummy variable 

coding) or the dependent variable (by the use of binary measure in the 

specialized technique of logistic regression). Thus to apply Multiple Regression 

Analysis, the data must be metric and appropriately transformed as well the 

depending and independent variables from the groups have to be decided. 

 

In this research work, the data collected is sorted and suitably transformed with 

5- level Likert scale and those questions varying from this 5-level Likert scale are 

with seeking ordinal answers and 3-level answers are suitably transformed to 

yield uniformity for regression analysis purposes.  

 

One of the objectives of the research is to establish the relationship between OP 

and OI. There are variables such as, Financial Returns, Market Share Growth, 

Business Valuation, Profit Growth and Rate of Business Expansion as the 

measures of Organizational Performance. They are variables capturing Financial 

Performance of the Firm. Financial Performance is a universally accepted 
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standard measure of high performing organizations (Jeffrey et al., 1997)313.  

‘Financial returns’ captures the perceptions of the Business owner on ‘Return on 

Equity, Return on Assets, Financial Growth’; Market share growth captures 

perceptions on ‘Growth rate of market share over a period of 1 year’; Economic 

Value Added captures ‘Business Value’; Profit Growth measures ‘Growth of 

profit before tax’; and Rate of Business expansion captures ‘Increase in business 

verticals and diversification’ (Jeffrey et al., 1997)314. These are variables that 

depend on other independent variables listed in Appendix 4 - Variable selection 

from the Literature. Each of these dependent variables can be predicted with a 

set of independent variables with the group of factors evolved from exploratory 

factor analysis and a few unique variables which could not be grouped.  

 

Ordinary Least Square Method and Accuracy: Before estimating the regression 

equation, we must calculate the baseline against which we will compare the 

predictive ability of our regression models. The baseline should represent our 

best prediction without the use of any independent variables. In regression, the 

baseline prediction is the simple mean of dependent variable. Because the mean 

will not predict each value of the dependent variable, we must have a way to 

assess predictive accuracy that can be used with both the baseline prediction and 

the regression models we create. The customary way to assess the accuracy of 

any prediction is to examine the errors in predicting the dependent variable. 

Although we might expect to obtain a useful measure of prediction accuracy by 

simply adding the errors, this approach is not possible, because the errors from 

using a mean value always sum to zero. To avoid this problem, we can sum up 

the squares of all the errors – known as sum of squared errors - provides a 

measure of prediction accuracy that will vary according to the amount of 

prediction errors. The objective is to obtain the smallest possible sum of squared 

errors as our measure of prediction accuracy. Hence the concept of least squares 
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helps us achieve highest accuracy possible. This method is also known as 

Ordinary Least Squares method (OLS) (Hair et al, 2006)315.  

 

Interpreting Dummy Variable: Usually researchers desire to utilize non-metric 

independent variables. Many multivariate techniques assume metric 

measurement of both independent and dependent variables. When dependent 

variable is measured as a dichotomous variable (0,1), either discriminant analysis 

or a specialized form of regression – logistic regression – is appropriate.  The 

‘Business Valuation’ variable captures dichotomous value and hence we have 

eliminated it from Multiple Regression Analysis. The other 4 variables are taken 

as dependent variables for the model equation. When the independent variables 

are non-metric, and have 2 or more categories, we can create dummy variables 

that act as replacement independent variables. Each dummy variable represent 

one category of non-metric independent variable, and any non metric variable 

with k categories can be represented as k-1 dummy variables. Thus non-metric 

variables can be converted to a metric format for use in most multivariate 

techniques (Hair et al, 2006)316. 

 

Assumptions in Multiple regression analysis: Improvements in predicting the 

dependent variable are possible by adding independent variables and 

transforming them to represent non linear relationships. To do so, we must make 

several assumptions about the relationships between the dependent and 

independent variables that affect the least square procedure used for multiple 

regressions. The basic issue is to know whether in the course of calculating the 

regression coefficients and predicting the dependent variable, the assumptions of 

regression analysis have been met. We must know whether the errors in 

predictions are the results of the absence of a relationship among the variables or 

caused by some characteristics of the data that are not accompanied by the 

regression model.  
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The assumptions to be examined include linearity of the phenomenon measured, 

constant variance of the error terms, and normality of the error term distribution. 

The assumptions underlying Multiple Regression Analysis apply both to the 

individual variables, (dependent and independent) and to the relationship as a 

whole. Once the variate has been derived, it acts collectively in predicting the 

dependent variable, which necessitates assessing the assumptions not only for 

individual variables but also for variate. The principal value of prediction error 

for the variate is the residual – the difference between the observed and 

predicted values for the dependent variable. Plotting the residuals versus the 

independent or predicted variables is a basic method of identifying assumption 

violations for the overall relationship (Hair et al, 2006)317.  

 

Usually, statistical inferences from classical linear regressions are based on 

several assumptions in addition to the above mentioned assumptions on 

interrelationships between independent variables error distributions of the 

predictors. These assumptions are listed below.   

(i) The regression model is linear in parameters. 

(ii) The values of regressors are fixed in repeated sampling. 

(iii) For a given set of independent variables, the mean value of the 

disturbances is zero. 

(iv) For a given set of independent variables, the variance is constant or 

homoscedastic. 

(v) For a given set of variables there is no autocorrelation in the disturbances. 

(vi) If the independent variables are stochastic, the disturbance term and the 

independent variables are uncorrelated. 

(vii) The number of observations must be greater than the number of 

independent variables. 

(viii) There must be sufficient variability in the values taken by the regressors. 

(ix) The regression model is correctly specified. 

(x) There is no exact linear relationship in the regressors. (presence of 

multicollinearity) . 

(xi) The stochastic disturbance term is normally distributed. 
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When a relationship between several independent variables and a dependent 

variable is turned into a multivariate model, it is known as a Multiple Regression 

Model.  Most theoretical results developed for the simple regression model 

naturally extend to Multiple Regression.  Such a model has the general form 

yi = β0 + β1 x1i + β2 x2i + β3 x3i + … + βk xki + ei   

In this model also the subscript t denotes sample number, there being i total 

number of samples available for parameter estimation and analysis.  As is the 

case with simple regression, to make the Multiple Regression Models complete 

and acceptable for forecasting and other applications, certain assumptions must 

hold for the errors or residuals {ei}.  They are; 

• E[ei] = 0, implying that each random error has a probability distribution with 

zero mean.   

• var(ei) = σ2.  Each random error has a variance equal to σ2.  Such errors that 

have equal variance are called homoscedastic.  

• cov(ei, ej) = 0 for i ≠ j, implying that the covariance between two random 

errors corresponding to any two different observations marked by i and j is zero. 

• Sometimes it is further assumed that errors { ei} are normally distributed.  

That implies ei ~ N(0, σ2)  

 

Since the general linear Multiple Regression Model is developed by following 

procedures similar to that for the simple regression model, the OLS parameter 

estimation procedure is again used here.  This is valid provided the above 

assumptions are met by the random errors {ei}.   

 

The goodness of fit of a regression model—simple or multiple—is given by a 

measure R2, which expresses the fraction of the variability in the endogenous 

variable y that may be “explained” by the exogenous terms (X1, X2, X3, etc.) of the 

regression model.  The “significance test” of a regression model tests the 

relevance of all the explanatory variables included in the model.  This test 

hypothesizes that all the model parameters {βi} are zero, except the intercept β0, 

and then checks the acceptability of this statistical hypothesis by performing an F 

test. 
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Regression models are built based on data collected in which each observation 

consists of the set values of the independent variables, and the corresponding 

observed value of the dependent variable y.  Parameter estimation in multiple 

regression analysis procedurally requires matrix algebra to manipulate the 

several simultaneous equations derived form the least squares criteria.  

  

When data are collected from uncontrolled experiments, many of the 

“independent” variables may move together in systematic ways.  Such variables 

are called collinear and when several such variables are involved, the system is 

said to have the problem of multicollinearity.  In this case even if several 

independent variables are involved, the data collected may not be “rich in 

information”.  In such cases it is not possible to isolate the relationship between 

the dependent and the independent variables reliably.  Such situations are 

handled by special analytical approaches.  We note again, that a key assumption 

of Multiple Regression Model building based on the least squares or OLS criteria 

is that the values of the explanatory variables are not random and are not exact 

linear functions of the other explanatory variables. 

 

Prediction problems with Multiple Regression Models are similar to the simple 

regression case: we first need to reliably estimate all model parameters 

(coefficients) β0, β1, β2, β3, etc. and also establish an acceptable goodness of fit for 

the model.  Then it is possible not only to estimate the dependent variable given 

certain specified values of the explanatory variables, but also the variance and 

the confidence interval of the prediction.  Note that even categorical or discrete 

variables (white, male, graduate, etc.) can be incorporated into regression 

models.  Also, nonlinear relationships can be modeled, with suitable 

mathematical transformations of the variables, such as taking log, to convert the 

relationships into linear relationships, so that the technique of regression may be 

applied to develop a model.  Interactions between the independent variables also 

can be used as contributing terms in a multiple regression model. Furthermore, 

polynomial terms may be used in a regression model.   
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We briefly mention some other problems in successfully developing Multiple 

Regression Models.  We have already mentioned the issue of collinearity.  This is 

detected by observing the covariance matrix, especially the co-variances 

estimated between the different explanatory variables.  The solution is to drop a 

few explanatory variables from the model in order for the OLS algorithm to 

work, which requires solving simultaneous and linearly independent equations 

to deliver the estimated model parameters b1, b2, b3, etc.  The other way to take 

care of the multicollinearity problem is applying factor analysis on the 

independent variables before going for Multiple Regression. This is what we are 

doing in this research.  

 

The other critical issue is that of autocorrelation (among errors over different 

time periods) when one is developing a multiple regression model using time 

series data.  As our data is cross-section data, free from any time series analysis, 

autocorrelation is absent. In this situation also the standard OLS procedure 

cannot be directly applied.  The solution requires one to use an extended 

procedure known as the generalized least squares procedure (Hill et al, 2001)318.  A 

similar problem that is faced by cross-section data is procedure is 

heteroscedasticity, which is applicable when error variances are not constant, i.e., 

is present among errors {ei}.   Hence, when we use Multiple Regression as a 

model we need to make sure that all the above classical assumptions regarding 

the behavior of the error term {ei} are met.   

 

Selection of an Estimation Technique: In a Multiple Regression, a researcher may 

chose from a number of possible independent variables for inclusion the 

regression equation. Sometimes the set of independent variables are exactly 

specified and the regression model is essentially used in a confirmatory 

approach. This approach referred to as a simultaneous regression, includes all 

variables at the same time. In other instances the researcher may use the 

estimation technique to pick and chose among the set of independent variables 

with either sequential search methods or combinatorial processes. The most 

popular sequential search method is stepwise estimation which enables the 
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researcher to examine the contribution of each independent variable to the 

regression model. The combinatorial approach is a generalized search process 

across all possible combinations of independent variables. The best known 

procedure is all possible subsets regression which is exactly as the name 

suggests. All possible combinations of independent variables are examined and 

the best fitting set of variables are identified. Each estimation technique is 

designed to assist the researcher in finding the best regression model using 

different approaches. In this research study, there were initially 165 variables 

which reduced to 153 by eliminating similar types of variables and finally 

reduced to 40 variables as found from the literature. So the estimation techniques 

were not used, instead the entire set of independent variables are used against 

each of the dependent variable prediction (Hair et al, 2006)319. 

 

Interpreting the Results of Regression:  The regression variate must be 

interpreted by evaluating the estimated regression coefficients for their 

explanation of the dependent variable. The researcher must evaluate not only the 

regression model that was estimated but also the potential independent variables 

that were omitted if a sequential search or a combinatorial approach was 

employed. In those approaches, multicollinearity may substantially affect the 

variables ultimately included in the regression variate. Thus, in addition to 

assessing the estimated coefficients, the researcher must also evaluate the 

potential impact of omitted variables to ensure that the managerial significance is 

evaluated along with statistical significance. The estimated regression 

coefficients, or beta coefficients represent both the type of relationship (positive 

or negative) and the strength of the relationship between independent and 

dependent variables in the regression variate. The sign of the coefficient denotes 

whether the relationship is positive or negative, while the value of the coefficient 

indicates the change in the dependent value each time the independent variable 

changes by one unit.  

 

Prediction is an integral element in regression analysis, both in the estimation 

process as well as forecasting situations. Regression involves the use of a variate 
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to estimate a single value for the dependent variable. This process is used not 

only to calculate the predicted values in the estimation procedure, but also with 

additional samples for validation or forecasting purposes. The researcher often is 

interested not only in prediction, but also explanation. Independent variables 

with larger regression coefficients make a greater contribution to the predicted 

value. Insight into the relationship between independent and dependent 

variables is gained by examining the relative contributions of each independent 

variable. Thus for explanatory purposes, the regression coefficients become 

indicators of relative impact and importance of independent variables in their 

relationship with the dependent variable (Hair et al, 2006)320. 

 

Assessing Influential Observations: Influential observations include all 

observations that have a disproportionate effect on the regression results. The 

three basic types of influentials are,  

(i) Outliers: Observations that have large residual values and can be identified 

only with respect to a specific regression model. 

(ii) Leverage Points: Observations that are distinct from the remaining 

observations based on their independent variable values. 

(iii) Influential Observations: all observations that have disproportionate effect on 

the regression results. 

These 3 aspects depend on 4 conditions;   

(a) An error in observations or in data entry: This can be corrected by correcting 

the data or deleting the data. 

(b) A valid but exceptional observation that is explainable by an extraordinary 

situation: This can be corrected by deleting the case unless variables reflecting 

the extraordinary situation are included in the regression equation. 

(c) An exceptional observation with no likely explanation: This is a special 

problem because the researcher has no reason for deleting the case, but its 

inclusion cannot justify either, suggesting analyses with and without 

observations to make a complete assessment. 
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(d) An ordinary observation in its individual characteristics but exceptional in 

its combination of characteristics: This indicates modifications to the conceptual 

basis of regression model and should be retained.   

The researcher should delete truly exceptional observations but avoid deleting 

observations that, although different, are representative of the population 

(Barnett et al, 1994)321.   

 

5.2.2   Objective of Multiple Regression Analysis  

 

The objective of Multiple Regression Analysis is to predict the dependent 

variable with the help of the independent variables.  While doing so, the analysis 

fulfills couple of objectives which are discussed as below. 

 

5.2.2.1 Research Problems Appropriate for Multiple 

Regression 

 

The first problem is due to those assumptions about the specification of the 

model and about the disturbances. The second issue is due to the assumptions 

about the data (Barrie et al, 1986)322.  

 

Under these assumptions listed earlier in this chapter, the variables are selected 

to be,  

BnXnXBXXCY ++++= ...332211 ββ  

In this specified model C represents the disturbance term, Y the dependent 

variable and Xi the independent variables and β - the regression coefficients.  

 

Multiple Regression Technique is used for prediction and explanation. Prediction 

involves the extent to which the regressors can predict the dependent variable. 

Explanation examines the regression coefficients for each independent variable. 

                                                 
321

 Barnett et al, Outliers in Statistical Data, 3
rd

 ed., NewYork: Wiley Pb; 1994 
322

 Barrie Wetherill, Regression Analysis with Applications, Chapman and Hall, NewYork; 1986, 

p 14-15 



 150 

Attempts are made to develop a theoretical reason to understand the behavior of 

the relationship between Xi and Y. 

 

Prediction with Multiple Regression has 2 key objectives. One is, to maximize the 

overall predictive power of the independent variables as represented in the 

variate. Predictive accuracy is always crucial to ensure the validity of the set of 

independent variables. Measures of predictive accuracy are developed and 

statistical tests are used to assess the significance of predictive power.  

 

While considering the applications of prediction alone, the interpretations from 

beta coefficients are relatively less important. Predictive accuracy is improved at 

the cost of beta coefficient interpretations. Next objective is, to compare 2 or more 

sets of independent variables to ascertain the predictive power of each variate. 

The predictive power of more models are studied and compared to judge about 

the dependent variables.  

 

Explanation with Multiple Regression provides a means of objectively assessing 

the degree and character of the relationship between dependent and 

independent variables by forming the variate of independent variables and then 

examining the magnitude and direction as well statistical significance of 

regression coefficient for each independent variable. The independent variables 

collectively as well individually predict dependent variable and their beta 

coefficients will explain their relationship with dependent variable individually.  

 

Interpretation of the variate will rely on 3 perspectives; the importance of the 

independent variables, the types of relationships found, the types of 

interrelationships among the independent variables.  (i) The most direct 

interpretation of the regression variate is a determination of relative importance 

of each independent variable in the prediction of dependent measure. (ii) In 

addition to assessing the importance of each variable, Multiple Regression 

Analysis also affords the researcher a means of assessing the nature of the 

relationships between the independent variables and the dependent variable. (iii) 

The multiple Regression Analysis also provides insight into the relationships 
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among the independent variables in their prediction of the dependent measure 

(Hair et al, 2006)323.  

 

These interrelationships are important for 2 reasons. First, the correlation among 

the independent variables may make some variables redundant in the predictive 

effort. In such instances, the independent variable having strong relationship 

with dependent variable which is diminished due to the presence of 

relationships of other independent variables with the dependent variable. Then 

the researcher must guard against determining the importance of independent 

variables based solely on the derived variate, because the relationships among 

the independent variables may mask or co found relationships that are not 

needed for predictive purposes but represent substantive findings nonetheless.  

 

The interrelationships among the variables can extend not only to their 

predictive power but also to the interrelationships among their estimated effects, 

which is best seen when the effect of one independent variable is contingent on 

another independent variable. Multiple Regression Analysis provides diagnostic 

analyses that can determine whether such effects exist based on empirical or 

theoretical rationale. Indications of high degree of interrelationships 

(multicollinearity) among the independent variables will suggest the use of 

summated scales (Hair et al, 2006)324.  

 

5.2.2.2  Selecting Dependent and Independent Variables & 

Specifying the Model.  

 

Functional relationship calculates the exact value whereas a statistical 

relationship estimates an average value. In predicting the dependent variable 

accurately, it is important to define the assumptions made while formulating the 

relationship model. Predictive power of Multiple Regression Analysis depends 

on the assumptions made and the validation of interpretations of the 

independent variable.  The success of a Multiple Regression Analysis depends on 
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the selection of dependent and independent variables and the specification of the 

model.  Strong Theory says that the selection of variables must be based on 

conceptual or theoretical grounds even when the objective is solely for 

prediction. The researcher must select variables indiscriminately or allow the 

selection of independent variables to be solely based on empirical bases.  

 

The other aspect of variable selection is measurement Error. Measurement error 

refers to the degree to which the variable is an accurate and consistent measure 

of the concept being studied. If the dependent variable has substantial 

measurement error, then the best set of independent variables will not be able to 

achieve higher levels of predictive accuracy.  

 

Measurement error can be addressed by the usage of summated scales of 

independent variables or by structural equation modeling. Summated scales can 

be directly incorporated into Multiple Regression by replacing either dependent 

or independent variables with the summated scale values, while structural 

equation modeling requires the use of an entirely different technique generally 

regarded as s difficult analysis to implement.  

 

Thus, summated scales are recommended as the first choice as a remedy for 

measurement error. Another error that occurs in variable selection is Specification 

error. Specification error is due to the inclusion of irrelevant variables or the 

omission of relevant variables from the set of independent variables. Inclusion of 

irrelevant variable impacts regression variate. It reduces model parsimony, 

which might be critical in the interpretation of results. It can mask and replace 

the effects of more important variables if some sequential form of model 

estimation is used. It can reduce the precision of the multiple regression models 

and reduce the significance of the entire analysis.  

 

Similarly, the exclusion of relevant variables can bias the results and misdirect 

the interpretation considerably. If there is no correlation between the excluded 

and the included variables then the model accuracy will be reduced. If there is a 

correlation between them, then the prediction will be biased t the extent of the 
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correlation between the excluded and included variables. Model interpretation 

will suffer from precision and accuracy (Hair et al, 2006)325. 

 

5.2.3   Research Design of Multiple Regression Analysis 

 

Research Design of Multiple Regression analysis primarily means the design of 

sample size as this technique maintains the necessary levels of statistical power 

and significance across broad range of sample sizes.  The design includes the 

decision of unique elements of the dependence relationship. It is assumed that 

dependent variable and the independent variables share a linear relationship. 

Additional variables can be added to this relationship to represent special 

aspects of the relationship. Multiple Regression accommodates metric 

independent variables that are assumed to be fixed in nature as well as those 

with the random component. Nature of Independent Variables also decides the 

research design.  

 

5.2.3.1 Sample Size  

 

In multiple regression power refers to the probability of detecting a significant R-

square. Sample size plays a role in assessing the power of current analysis as well 

proposed analysis (Mason et al, 1991)326.  

 

Table 5.4 illustrates the interplay among the sample size, the significance level 

(α) chosen, and the number of independent variables in detecting significant R-

square (Hair et al, 2006)327. The table values are minimum R-square that the 

specified sample size will detect as statistically significant at the specified alpha 

(α) level with the power (probability) of 0.80.  
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Table 5.4 – Minimum Significant R-Square 

 

(Minimum R-square that can be found statistically Significant with a Power of 

0.80 for Varying Numbers of Independent Variables and Sample Sizes)   

Source: (Hair, 2006)328 

 

The researcher must be aware of the anticipated power of any proposed Multiple 

Regression Analysis. The researcher can determine the sample size needed to 

detect effects for individual independent variables given the expected effect size 

(correlation), the α level, and the power desired (Cohen et al, 2002)329.  The 

general rule is, the ratio of independent variables and sample size should not fall 

below 1:5. The maximum can be 1:20. When this level of samples is obtained, the 

results are generalizable as the samples become representative of population. A 

stepwise procedure can be employed to increase the ratio to 1:50, however this 
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 Significance level (α) = 0.01 

Number of Independent 

Variables 

Significance level (α) = 0.05 

Number of Independent 

Variables 

Sample size 2 5 10 20 2 5 10 20 

20 45 56 71 NA 39 48 64 NA 

50 23 29 36 49 19 23 29 42 

100 13 16 20 26 10 12 15 21 

250 5 7 8 11 4 5 6 8 

500 3 3 4 6 3 4 5 9 

1000 1 2 2 3 1 1 2 2 

NA = Not applicable 
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ratio can lead to a tendency towards the results being sample specific (Wilkinson, 

1975)330. 

 

When the ratio falls below 1:5, there is a risk of over fitting the variate to the 

sample, making the results too specific to the sample and thus lacking 

generalizability. Each observation represents a separate and independent unit of 

information (i.e., one set of values for each independent variable). Ideally the 

researcher should dedicate a single variable to perfectly predicting only one 

observation, second variable to another observation and so forth. If the sample is 

relatively small, then predictive accuracy could be quite high and many of the 

observations could be perfectly predicted. The number of estimated parameters 

(regression coefficients and the constant) equals the sample size, perfect 

prediction will occur even if all the variable values are random numbers. This 

scenario is totally unacceptable and it is extreme over fitting as the stimated 

parameters relate only to the sample data and no generalizability is possible. 

Whenever a variable is added to the regression equation, R-square value will 

increase.   

 

The degree of generalizability is represented by the degrees of freedom.  

Degrees of Freedom (df) = sample size – Number of estimated Parameters 

 Or  

Degrees of freedom (df) = N – (Number of independent variables + 1) 

 

The larger the degree of freedom, the better is the generalizability. Degrees of 

freedom increases for a given sample if the number of independent variables 

reduces. The objective is to achieve highest predictive accuracy with large 

degrees of freedom. When there is perfect prediction, with the number of 

estimated parameters equaling the sample size, zero degrees of freedom appears. 

The researcher is advised to reduce the number of independent variables to 

improve predictive accuracy. Degrees of freedom indicate the generalizability of 

the results for a given size of samples. There thumb rules are,  (i) Simple 
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regression can be effective with the sample size of 20, but maintaining power at 

0.80 in Multiple Regression requires a minimum sample of 50 and preferably 100 

for most of the research situations. (ii) The minimum ratio of observations to 

variables is 5:1. Preferred ratio is 15:1 or 20: 1, which would increase further if 

stepwise estimation is used. (iii) Maximizing the degrees of freedom improves 

generizability and addresses both model parsimony and sample size concerns. 

  

5.2.3.2 Creating Additional Variables  

 

Problems appear when a non-metric data such as gender or occupation had to be 

incorporated into a regression equation. Regression is meant for metric data. This 

introduction of non-metric data will lead to non linear equations of regression. In 

such situations new variables are created by transformations. Variable 

transformation methods (Box et al, 1964)331 are used primarily to improve or 

modify relationship between dependent and independent variables and to 

enable the use of non-metric variables in the regression variate. Data 

transformations are achieved by trail and error, t make the analysis to best 

represent the actual data set. All these transformations are carried out by the 

statistical software used for regression analysis.  

 

When dependent variable is measured as a dichotomous (0, 1) variable, either 

discriminant analysis or logistic regression is appropriate. When independent 

variables are non-metric, dummy variables are introduced. If there are non-

metric variables in k categories k-1 dummy variables are introduced in multiple 

regression analysis.  The most common format of dummy variable coding is 

‘indicator coding’, where each category of the non-metric variable is represented 

by either 1 or 0. The regression coefficients of dummy variables represent 

differences on the dependent variable for each group of respondents from the 

reference category (the omitted group that received all zeros). These group 

differences can be assessed directly because the coefficients are in the same units 

as the dependent variable. This form of coding is most appropriate when a 
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logical reference group is present, as in the case of an experiment.  An alternative 

method of dummy variable coding is termed as ‘effects coding’. It is the same as 

indicator coding except that the comparison or omitted group (the group that got 

all zeros) is given a value of -1 instead of zero for the dummy variables. The 

coefficients represent differences for any group from the mean of all the groups 

rather than from the omitted group. Both the forms of coding give same 

predictive results, coefficient of determination and regression coefficients for the 

continuous variables. Interpretation of results will depend on the coding of 

dummy variables.  There are thumb rules for variable transformations. They are, (i) 

Non-metric can only be included in regression analysis by creating dummy 

variables. (ii) Dummy variables can only be interpreted in relation to their 

reference category (Hair et al, 2006)332.   

 

The estimation procedures for models using both types of independent variables 

are the same except for the error terms. In the random effects models, a portion 

of the random error comes from the sampling of the independent variables. The 

statistical procedures based on the fixed model are quite robust. Using the 

statistical analysis as if a fixed model is being dealt with will be appropriate as a 

reasonable approximation. 

 

5.2.4   Assumptions in Multiple Regression Analysis 

 

To improve the predictive accuracy of the model, the researcher needs to lay 

down a few assumptions about the relationship between the dependent and 

independent variables that affect the least square procedure used for Multiple 

Regression. There are 4 types of assumptions made. (i) Linearity of the 

phenomenon measured. (ii) Constant variance of the error terms. (iii) 

Independence of error terms. (iv) Normality of the error term distribution.  

 

In Multiple Regression once the variate is derived, it acts collectively in 

predicting the dependent variable, which necessitates assessing the assumptions 
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not only for individual variables but also for the variate itself. Testing 

assumptions occur before as well after predicting the model. The principal 

measure of prediction error is the residual – the difference between the observed 

and the predicted values of the dependent variable. Some form of 

standardizations is recommended to make the residuals comparable while 

predicting dependent variable. Studentized residual – the most widely used 

values that correspond to t-values. Plotting residuals Vs Independent variables is 

a basic method of identifying assumption violations for the overall relationship. 

They are also plotted against predicted dependent values. These plots are 

compared with null plot where all the assumptions are completely met. The 

patterns are compared to understand the error of the variate (Hair et al, 2006)333.  

 

5.2.4.1  Linearity of the Phenomenon 

 

The linearity of the relationship between dependent and independent variables 

represents the degree to which the change in the dependent variable is associated 

with the independent variable. The regression coefficient is constant across range 

of values for the independent variable. The concept of correlation is based on the 

linear relationship, thus making it a critical issue in regression analysis. Linearity 

of a bivariate relationship is examined through residual plots. Any consistent 

curvilinear pattern in the residuals indicates that the corrective action will 

increase both predictive accuracy of the model and the validity of the estimated 

coefficients. The corrective actions could be; transforming the data values 

(logarithm, square root etc.) of one or more independent variables to achieve 

linearity; Directly including non linear relationships in the regression model, 

such as creation of polynomial terms; Using specialized methods such as 

nonlinear regressions specifically designed to accommodate the curvilinear 

effects of independent variables or more complex nonlinear relationships (Hair et 

al, 2006)334. 
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The residual plot reveals the combined effects of all independent variables. 

Determining the independent variable for a corrective action from the pattern 

seen from such a plot could not help. So, partial regression plots are prepared 

where, relationship of individual independent variables with dependent variable 

are plotted separately controlling the other variables. So, the unique relationship 

between a specific independent variable and the dependent variable can be come 

obvious. These plots when superimposed on a residual plot reveal whether the 

variable violates the linearity assumption or not.  

 

5.2.4.2  Constant Variance of the Error Term 

 

The presence of heteroscedasticity (unequal variances) is one of the most 

common assumption violations. Diagnosis is made with residual plots or simple 

statistical tests. Plotting the residuals against the predicted dependent values and 

comparing them to a null plot shows a consistent pattern if the variance is not 

constant. Many a times a number of violations occur simultaneously such as non 

linearity and heteroscedasticity. All statistical softwares provide tests for 

homogeneity of variance which measures the equality of variances. If 

heteroscedasticity is present, two remedies are available. One is, if the violation 

can be attributed to a single independent variable through analysis of residual 

plots, then the procedure of weighted least squares can be employed; the other is 

to execute variance stabilizing transformations that allow transformed variables t 

exhibit homoscedasticity(equality of variance) (Hair et al, 2006)335.  

 

5.2.4.3  Independence of the Error Terms 

 

In regression, researchers assume that each predicted value is independent, 

which means that the predicted value is not related to any other prediction (i.e., 

they are not sequenced by any variable).  This occurrence can be identified by 

plotting the residuals against any possible sequencing variable. If the residuals 

are independent the pattern should appear random and similar to the null plot of 
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residuals. Violations will be identified by a consistent pattern in the residuals. 

They can be identified when there is a dependence of error term with time and 

when there is a dependence of error term with respect to the occurrence of events 

(Hair et al, 2006)336 

 

5.2.4.4  Normality of the Error Term Distribution 

 

The most frequently encountered assumption is the normality of the error term 

distribution or the violation of the non normality of the dependent or 

independent variables or both (Seber, G.A, 2004)337. Simplest diagnosis is to plot 

the independent variables against dependent variables and obtain a histogram 

ideally. For smaller samples this method is ill formed while plotting. A better 

method is the use of normal probability plots. They differ from residual plots in 

that the standardized residuals are compared with the normal distribution. The 

normal distribution makes a straight diagonal line, and the plotted residuals are 

compared with the diagonal. If a distribution is normal, the residual line closely 

follows the diagonal. The same procedure can compare the dependent and or 

independent variables separately to the normal distribution (Daniel et al, 

1999)338.  

 

The rules of Thumb for assessing statistical assumptions are,  

(i) Testing assumptions must be done not only for each dependent and 

independent variable, but for the variate as well.  

(ii) Graphical analyses (i.e., Partial regression plots, residual plots, normal 

probability plots) are the most widely used methods of assessing assumptions 

for the variate. 

(iii) Remedies for problems found in the variate must be accomplished by 

modifying one or more independent variables. 
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5.2.5   Estimating the Regression Model and Assessing the 

Overall Model Fit 

 

The researcher is expected accomplish 3 basis tasks; To select a method for 

specifying the regression model to be estimated; To assess the statistical 

significance of the overall model in predicting the dependent variable; and To 

determine whether any observations exert any undue influence on the results. In 

‘confirmatory specification’, the researcher chooses the exact set of independent 

variables. It should be noted that the selection should not be empirical but based 

on theoretical justification. The other approach is ‘sequential search’, which 

employs stepwise selection or forward addition and backward elimination 

techniques to select variables one after another to bargain for better predictive 

accuracy.  

 

Stepwise Estimation:  This method of estimation has a framework as given 

below (Hair et al, 2006)339.  

(i) Start with simple regression model by selecting the one independent 

variable that is the most highly corrected with the dependent variable. The 

equation would be, Y= b0 + b1X1. 

(ii) Examine the partial correlation coefficients to find an additional 

independent variable that explains the largest statistically significant portion of 

the unexplained – error – variance remaining in the first regression equation 

(iii) Recomputed the regression equation using the two independent variables 

and examine the partial F value for the original variable in the model to see 

whether it still makes a significant contribution, given the presence of new 

independent variable. If it does not, eliminate the variable. This ability to 

eliminate variables already in the model distinguishes the stepwise model form 

the forward addition/backward elimination models. If the original variable still 

makes a significant contribution, the equation would be, Y = b0 + b1X1 + b2X2.  

(iv) Continue this procedure by examining all independent variables not in the 

model to determine whether one would make a statistically significant addition 
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to the current equation and thus should be included in the revised equation. If a 

new independent variable is included, examine all the independent variables 

previously in the model to judge whether they should be kept. 

(v) Continue adding independent variables until none of the remaining 

candidates for inclusion would contribute a statistically significant improvement 

in the predictive accuracy. This point occurs when all the remaining partial 

regression coefficients are non-significant 

 

A potential bias in the stepwise procedure results from considering only one 

variable for selection at a time. Multicollinearity among the independent 

variables can substantially affect all sequential estimation methods. Examining 

ten different factors stepwise with five different dependent variables is 

cumbersome.  The factors are grouped from individual variables that may be 

collinear and due to multi collinearity issues this method does not suit our 

research purpose of finding the strongest fit to explore the linkage between the 

factors of Organizational Intelligence and five different variables of 

Organizational Performance. 

 

Forward Addition and Backward Elimination: The procedures of forward 

addition and backward elimination procedures are largely trial and error 

processes for finding the best regression estimates. The forward addition model 

is similar to the stepwise procedure in that it builds the regression equation 

starting with the single independent variable. The backward elimination 

procedure starts with the regression equation including all the independent 

variables and then deletes independent variables that do not contribute 

significantly. 

 

The primary distinction between stepwise procedure and the forward-addition 

and backward-elimination procedure is, in stepwise method, addition or deletion 

of a variable at each stage is possible where in, in forward-addition, backward 

elimination procedures addition of variables in a later stage is not possible. This 

flexibility makes stepwise procedure preferred method for researchers.  The 

procedures of  variables addition and elimination would not be suitable for our 
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analysis as we are interested in finding the strongest regression fit model to 

establish the linkage between Organizational Intelligence and Organizational 

Performance which is obtained by regressing the factors of Organizational 

Intelligence with the five dependent variables chosen to represent Organizational 

Performance.   

 

Caveats to the above Sequential Search Methods: there are three key caveats to 

the sequential search methods of estimations discussed above.  

(i) The multicollinearity among independent variables has substantial 

impact on model specification. Although the sequential search approaches will 

maximize the predictive ability of the regression model, the researcher must be 

careful in using these methods in establishing the impact of independent 

variables without considering multicollinearity among independent variables.  

(ii) All sequential search methods create a loss of control for the researcher. 

Though the researcher specifies the variables to be considered for the regression 

variate, it is the estimation technique, interpreting the empirical data specifies the 

final regression model.  

(iii) In stepwise procedure, multiple significance tests are carried out in the 

model estimation process. To ensure the overall error rate across all significance 

tests is reasonable, the researcher should employ more conservative thresholds 

(e.g., 0.01) in adding or deleting variables.  

 

Combinatorial Approach: This approach suggests regression of all possible 

subsets of independent variables and the best fitting set of variables is chosen. 

This procedure is not preferred as it does not consider multicollinearity, 

identification of outliers and influentials and the interpretability of results in this 

research.  The rules of the thumb of estimation techniques are; Irrespective of the 

estimation techniques, theory must be the guiding factor for evaluating the final 

regression model; Confirmatory specification method allows direct testing of 

pre-specified model. This is also the most complex from the perspective of 

specification error, model parsimony and predictive accuracy; Sequential search 

methods make the estimation fully automated leaving the researcher with out 

any control on the selection of variables; Combinatorial approach removes 
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control from the researcher, however gives an understanding of parallel models 

of predictive accuracy. Using more than one method in combination may 

provide a balanced perspective.  

 

Thus we proposed to regress all the ten independent factors collected from 

exploratory factor analysis with the five different dependent variables of 

financial performance and study the stronger fit of the models from R-Square 

value and chose the strongest fit as the best explaining model of IO-OP 

relationship. 

 

5.2.5.1  Testing the Regression Variate for Meeting the 

Regression Assumptions   

 

With independent variables selected and regression coefficients estimated, the 

researcher must now assess the estimated model for meeting the assumptions 

underlying multiple regression. The individual variables as well the variate must 

meet the assumptions of linearity, constant variance, independence and 

normality. If substantial violations are found the researcher must take corrective 

actions on independent variables and re-estimate the regression model. 

 

5.2.5.2  Examining the Statistical Significance of the Model 

 

If Researchers take random samples of respondents and estimate regression 

equation for the sample, the regression coefficient values will differ for each set 

of sample and the sampling error will cause this situation. Researchers usually 

chose only one sample set and estimate the regression model. This approach 

demands the tests of the random variation explained – coefficient of 

determination – and regression coefficient. 

 

Testing the Coefficients of Determination: To test the hypotheses that the 

amount of variation explained by the regression model is more than the baseline 

prediction (i.e., the R-square is significantly greater than zero). The F Ratio is 
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calculated as the ratio of the ratios of the sum of squares per degree of freedom 

for regression and residuals respectively.   

 

F ratio = E1/E2;  

 

where,  

E1 = Sum of squares / degrees of freedom:  (from regression model);  

E2 = sum of squares / degrees of freedom:  (from unexplained variance - the 

residual).  

 

Intuitively, if the ratio of the explained variance to the unexplained is high, the 

regression variate must be significant in explaining the dependent variable. 

Larger the R-square values, higher the F values. Statistical significance is the 

impact of sampling error. Statistically significant values are all practically 

significant. It is to be noted that for larger samples smaller R-square can be of 

high significance. 

 

Adjusting the Coefficients of Determination: Addition of a variable in the 

regression model will increase R-square value. Generalizability of the model 

should be depending on R-square value as R-square value may increase even if a 

non-significant predictor variable is introduced. This demands an adjustment 

based on the number of independent variables and sample size combination. 

Adding non significant variables in the regression model will change R-square 

and this is adjusted R-square – adjusted coefficient of determination. The 

adjusted R-square is useful in comparing across the regression equations 

involving different numbers of independent variables or different sample sizes 

because it makes allowances for the degree of freedom for each model (Hair et al 

2006)340.  

 

Significance Tests of Regression Coefficients:  Significance testing of a regression 

co-efficient is a statistically based probability estimate of whether the estimated 
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coefficients across a large number of samples of a certain size will be different 

from zero. To make this judgment, a confidence level must be established around 

the estimated co-efficient. If the confidence interval does not include the value of 

zero, then it can be said that the coefficient’s difference from zero is statistically 

significant. To make this judgment, the researcher relies on 3 concepts. (i) 

Establishing significance level (α) denotes the chance the researcher is willing to 

take of being wrong about whether the estimated coefficient is different from 

zero. A value typically used is 0.05. as the researcher desires a smaller chance of 

being wrong, and sets the significance level smaller (0.01 or 0.001), the statistical 

test becomes more demanding. Increasing the significance level to a higher value 

(0.1) allows for a larger chance of being wrong, but makes it easier to conclude 

that the coefficient is different from zero. (ii) The sampling error is being the 

cause for variation in the estimated regression coefficients for each sample drawn 

from a population. For small sample sizes, the sampling errors are larger and the 

estimated coefficients will most likely vary widely from sample to sample. As the 

size of the sample increases, the samples become more representative of the 

population (i.e., sampling error decreases), and the variation in the estimated 

coefficients for these large samples become smaller. This relationship holds true 

until the analysis is estimated using the population. Then the need for 

significance testing is eliminated as the sample size is equal to population and 

thus exact representative of the population (i.e., no sampling error). (iii) The 

standard error is the expected variation of the estimated coefficients (both the 

constant and regression coefficients) due to sampling error. The standard error 

acts like the standard deviation of a variable by representing the expected 

dispersion of the coefficients estimated from repeated samples of this size.  

 

With the significance level selected and the standard error calculated, we can 

establish a confidence interval for a regression coefficient based on the standard 

error. There are 3 key angles to be looked at while checking the confidence 

interval. They are; (i) the researcher sets the significance level from which the 

confidence interval is derived (e.g., a significance level of 5% for a large sample 

establishes the confidence interval at ±1.96×standard error). A coefficient is 

deemed statistically significant if the confidence interval does not include zero. 
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(ii) if the sample size is small, sampling error may cause the standard error to be 

so large that the confidence interval includes zero. However if the sample size is 

larger, the test has greater precision because the variation in the coefficients 

become less (i.e., the standard error is smaller). Larger samples do not guarantee 

that the coefficients will not equal zero, but instead make the test more precise. 

(iii) a coefficient being statistically significant does not guarantee the practical 

significance. Evaluating the sign of the coefficient is thus crucial (Hair et al, 

2006)341.  

 

A simple regression model implies hypotheses about 2 estimated parameters; the 

constant and regression coefficient. To assess the significance level, the 

appropriate test is t-test which is available in all regression analysis programs. 

The t value of the coefficient is the coefficient divided by the standard error. T 

value represents the number of standard errors that the coefficient is from zero. 

For example, a regression coefficient of 2.5 with the standard error of 0.5 would 

have a t value of 5.0 (i.e., the regression coefficient is 5 standard errors from 

zero).  To determine whether the coefficient is significantly different from zero 

the computed t value is compared with the table value for the sample size and 

the confidence interval selected. If our value is greater than the table value, we 

can be confident that the coefficient has a statistically significant effect in the 

regression variate for the selected confidence level.   

 

Most computer programs calculate the significance level for each regression 

coefficient’s t value, showing the significance level at which the confidence 

interval would include zero. The researcher can then assess whether this level 

meets the desired level of significance. For example, if the statistical significance 

of the coefficient is 0.02, then we can say that it was significant at the 0.05 level 

because it is less than 0.05, but not significant at 0.01 level. It is to be noted that 

the estimated parameters would be different from zero within specified level of 

acceptable error (Hair et al, 2006)342.  
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5.2.5.3  Identifying Influential Observations 

 

There are generally sets of observations that influence the model by staying 

outside the data set. They have disproportionate effect on the model. Outliers are 

the observations that have large residual values and can be identified only with 

respect to a specific regression model.  

 

Outliers were traditionally the only form of influential observation considered in 

regression models, and specialized regression methods (e.g., robust regression) 

were even developed to deal specifically with outlier’s impact on the regression 

results (Rousseeuw et al, 2003)343.  The key aberration in the observation is the 

presence of heteroscedasticity due to outliers. Leverage points are observations 

that are distinct from the remaining observations based on their independent 

variable values.  Their impact is particularly noticeable in the estimated 

coefficients for one or more independent variables. Influential observations are 

the broadest category, including all observations that have a disproportionate 

effect on the regression results. Influential observations potentially include 

outliers and leverage points but may include other observations as well. Also, 

not all outliers and leverage points influence observations (Batnett et al, 1994)344. 

Identifying Influential Observations are difficult many a time through traditional 

analysis of residuals for outliers. Their patterns of residuals go undetected 

because the residual for the influential points (the perpendicular distance from 

the line of regression) would not be as large as to be classified as an outlier. Thus, 

focusing only on large residuals would generally ignore these influential 

observations. Reinforcing, conflicting and shifting of the regression lines will 

occur due to influential observations.  Table 5.5 shows the aberrations and the 

remedy (Hair et al, 2006)345.  
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Table 5.5 - Influential Observations and Remedies 

Item No Influential Observation Remedy 

1 An error in the observations or 

in data entry 

Correcting the data or deletion of the 

case. 

2 A valid exceptional 

observation that is explained 

by an extraordinary situation 

Remedy by deletion of the case unless 

variables reflecting the extraordinary 

situation are included in the 

regression equation. 

3 An exceptional observation 

with no likely explanation 

Presents a special problem as it 

doesn’t permit the deletion of the 

case. Inclusion of it cannot be justified 

either. Analyzing the entire data set 

with and without the inclusion of this 

observation for assessment is 

suggested. 

4 An ordinary observation in its 

individual characteristics but 

exceptional in its combination 

of characteristics 

Indicates modifications to the 

conceptual basis of the regression 

model and should be retained. 

 

In all of the situations the observations are to be deleted. Each case should be 

individually studied by the researcher before the deletion as in some outliers 

cannot be deleted as well.  The thumb rules of statistical significance and 

influential observations are; (i) Always ensure practical significance while using 

large sample sizes, because the model results and regression coefficients could be 

deemed irrelevant even when statistically significant due just to the statistical 

power arising from large sample sizes; (ii) Use the adjusted R-square as an 

overall measure of model’s predictive accuracy; (iii) Statistical significance is 

required for a relationship to have validity, but statistical significance without 

theoretical support does not support validity; (iv) Although outliers may be 

easily identifiable, the other forms of influential observations requiring more 

specialized diagnostic methods can be equal to or even more impacting on the 

results.  
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It is to be noted that in this research study, the presence of outliers and leverage 

points are eliminated by closed end questionnaire measured with Likert scales.   

 

5.2.6   Interpreting the Regression Variate 

 

Prediction and Explanation are the integral parts of interpreting regression 

variate and independent variables. While explaining a regression model, the 

regression coefficients become indicators of the impact of the independent 

variables on the dependent variable. Most of the time, the regression coefficients 

do not explain the relationship completely. To avoid this issue of regression 

coefficients pretending to explain the variate with higher accuracy, it is necessary 

to make the independent variables in comparable scales and variability. The 

coefficient thus obtained after this is called beta coefficient by research arena.  

 

Standardizing Regression coefficients: the variation in the response scale and 

variability across variables makes direct interpretation problematic. 

Standardization converts variables to a common scale and variability – the most 

common being a mean of zero and standard deviation of one. Thus all variables 

become comparable. Multiple regression not only gives regression coefficients 

but also coefficients resulting from the analysis of standardized data termed beta 

(β) coefficients. The problems of dealing with different units are eliminated in 

these coefficients. The relative impact on the dependent variable by one standard 

deviation in either variable is reflected better. However beta coefficients are used 

with 2 cautions. They are; (i) beta coefficients are used as a guide to understand 

the relative importance of individual independent variable only when 

collinearity is minimal; (ii) beta values can be interpreted only in the context of 

other variables in the equation (Hair et al, 2006)346.   
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5.2.7   Assessing Multicollinearity  

 

The key issue in interpreting regression variate is the correlation among the 

independent variables. This problem is due to data and not because of the model 

specification. The ideal situation for a best model interpretation would be high 

collinearity between independent and independent variables and less correlation 

among independent variables. Use of factor scores from factor analysis fixes the 

problem of multicollinearity among the independent variables. There are 3 key 

tasks to be done by the researchers to handle the issue of multicollinearity. They 

are; (i) Assess the degree of multicollinearity; (ii) Determine the impact of results; 

(iii) Apply the necessary remedies if needed.  

 

Identifying Multicollinearity: The simplest and most obvious means of 

identifying collinearity is the examination of correlation matrix for the 

independent variables. The presence of high correlations (.90 and above) is the 

first indication of substantial collinearity. Lack of high correlation values, does 

not ensure lack of collinearity. Collinearity may be due to the combined effect of 

2 or more other independent variables. To assess multi collinearity, we need a 

measure expressing the degree to which each independent variable is explained 

by the set of other independent variables. In simple terms, each independent 

variable becomes dependent variable and regressed against the remaining 

independent variables. The 2 most common measures of assessing both pair-wise 

and multiple variable collinearity are tolerance and its inverse, the variance 

inflation factor (hair et al, 2006)347.  

 

A direct measure of multicollinearity is ‘Tolerance’ – the amount of variability of 

the selected independent variable not explained by the other independent 

variables. For any regression model with 2 or more independent variables, the 

tolerance can be simply defined in 2 steps. Step1: take each independent variable, 

one at a time, and calculate R-square. This is the amount that the independent 

variable is explained by all of the other independent variables in the regression 

model. In this process, the selected independent variable is made a dependent 
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variable predicted by all the other remaining independent variables.  Step2: 

tolerance is then calculated as (1 – ‘R-square’). For example, if the other 

independent variables explain 25% of the independent variable X1, (R-square = 

0.25), then the tolerance value of X1 is 0.75 ( i.e., 1.0 - 0.25 = 0.75) (hair et al, 

2006)348.  

 

Another measure of Multicollinearity is ‘Variance Inflation Factor’ (VIF) which is 

calculated simply as the inverse of the tolerance value. In the preceding example 

with a tolerance of 0.75, the VIF would be 1.33 (1.0 / 0.75 = 1.33). Thus instances 

of higher degrees of multicollinearity are reflected in lower tolerance values and 

higher VIF values. The VIF gets its name from the fact that the square root of the 

VIF is the degree to which standard error has been increased due to 

multicollinearity. VIF translates the tolerance value which directly expresses the 

degree of multicollinearity, into an impact of estimation process. As the standard 

error is increased, it makes the confidence intervals around the estimated 

coefficients larger, thus making it harder to demonstrate that the coefficient is 

significantly different from zero(Hair et al, 2006)349.  

 

The Effects of Multicollinearity: The effects of multicollinearity can be 

categorized from the point of view of estimation or explanation. In either case the 

underlying reason is the same. Multicollinearity creates ‘shared’ variance 

between variables, thus decreasing the ability to predict the dependent measure. 

The ability to ascertain the relative roles to the independent variables for 

predicting dependent variable is also reduced.  

 

Impacts of Estimation: Multicollinearity can have substantial effects not only on 

the predictive ability of the model but also on the estimation of the regression 

coefficients and their statistical significance tests. The extreme case 

multicollinearity is that, two or more variables are perfectly correlated, termed 

singularity, prevents the estimation of any coefficients. Although singularities 

may occur naturally among the independent variables, many times they are the 
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results of an error of including all the dummy variables used to represent a non 

metric variable, rather than omitting one as the reference category. Also actions 

such as including a summated scale along with the individual variables that 

created it will result in singularities. These singularities must be removed earlier 

than the estimation proceedings. As multicollinearity increases, the ability to 

demonstrate that the estimated regression coefficients are significantly different 

from zero can become markedly impacted due to increase in the standard error. 

This is a serious issue with smaller sample sizes, where the standard errors are 

larger due to sampling error (Hair et al, 2006)350.  

 

Apart from affecting statistical tests of the coefficients or the overall model, high 

degrees of multicollinearity can also result in regression coefficients being 

incorrectly estimated and even having the wrong signs. In some instances, the 

reversal of signs is expected and desirable. This is suppression effect. It denotes 

instances when the true relationship between the dependent and the 

independent variable has been hidden in the bivariate correlations (e.g., the 

expected relationships are non-significant or even reversed in sign). By adding 

more independent variables and including multicollinearity some unwanted 

shared variance is accounted for and remaining unique variance allows for the 

estimated coefficients to be in the expected direction (Cohen et al, 2002)351.  

 

Theoretically supported relationships are reversed due to multicollinearity 

demanding explanations from the researcher on the findings. In these instances, 

the researcher needs to revert to bivariate correlations to describe the 

relationship rather than the estimated coefficients that are impacted by 

multicollinearity. The reversal of signs may be encountered in all of the 

estimation procedures, but is seen more often in confirmatory estimation 

processes where a set of variables is entered into the regression model and the 

likelihood of weaker variables being affected by multicollinearity increased. 
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Impacts of Explanation: The effects of explanation are concerned primarily with 

the ability of regression procedure and the researcher to represent and 

understand the effects of each independent variable in the regression variate. As 

multicollinearity occurs (even at a relatively low levels of 0.30 or so), the process 

for identifying the unique effects of independent variables becomes increasingly 

difficult. Remember that the regression coefficients represent the amount of 

unique variance explained by each independent variable. As the 

multicollinearity results in larger portions of shared variance and lower levels of 

unique variance, the effects of the individual independent variables become less 

distinguishable. It is even possible to find those situations in which 

multicollinearity is so high that none of the independent regression coefficients 

are statistically significant, yet the overall regression model has a significant level 

of predictive accuracy (Hair et al, 2006)352. 

 

How much Collinearity is too much? – is a question addressed by all researchers 

who come across multicollinearity issue. Because the tolerance value is the 

amount of a variable unexplained by other independent variables, small 

tolerance values (high VIF values, VIF = 1 / Tolerance) denote high collinearity. 

A common cut off threshold is a tolerance value of 0.10 which corresponds to a 

VIF value of 10. Particularly when sample sizes are smaller, the researcher may 

wish to be more restrictive due to the increases in the standard errors from 

multicollinearity. With a VIF threshold of 10, this tolerance would correspond to 

standard errors being ‘inflated’ more than 3 times (square root of 10 = 3.16) what 

they would be without multicollinearity.  Each researcher must determine the 

degree of collinearity that is acceptable, because most defaults or recommended 

thresholds still allow for substantial collinearity. For example, the suggested cut 

off for the tolerance value of 0.1 corresponds to a multiple correlation of 0.95.  

Moreover, a multiple correlation of 0.9 between one independent variable and all 

others will result in a tolerance value of 0.19. Thus any variable with tolerance 

value below 0.19 (or above a VIF of 5.3) would have a correlation of more than 

0.9 
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5.2.8   Managing Heteroscedasticity 

 

In classical liner equations, there is an equal spread of the disturbance term 

throughout. This is Homoscedasticity. When the spread is unequal, it becomes 

Heteroscedasticity. A critical assumption of the classical linear regression model is 

that the disturbances ‘Ui’ have all the same variance ‘σ-square’. If this assumption 

is not satisfied, there is heteroscedasticity. Heteroscedasticity does not destroy 

the unbiasedness and consistency properties of OLS estimators. But these 

estimators are no longer minimum variance or efficient (i.e., they are not BLUE – 

best linear unbiased estimator).  The BLUE estimators are provided by the 

method of weighted least squares, provided the heteroscedastic error variances 

(σ-square) are known. In the presence of heteroscedasticity, the variances of OLS 

estimators are not provided by the usual OLS – ordinary least squares formulae. 

But if we persist in using the usual OLS formulae, the t and the F tests based on 

them can be highly misleading, resulting in erroneous conclusions. Documenting 

the consequences of heteroscedasticity is easier than detecting it. There are 

several diagnostic tests available, but one cannot tell for sure which will work in 

a given situation. Even if heteroscedasticity is suspected and detected, it is not 

easy to correct the problem. If the sample is large, one can obtain white’s 

heteroscedasticity corrected standard errors of OLS estimators and conduct 

statistical inference based on the standard errors. Otherwise, on the basis of OLS 

residuals, one can make educated guesses of the likely pattern of 

heteroscedasticity and transform the original data in such a way that in the 

transformed data there is no heteroscedasticity (Hair et al, 2006)353.  

 

5.2.9   Software for Multiple Regression Analysis 

Technique 

 

‘E-views’ is one of the most widely used statistical software package for Multiple 

Regression Analysis. Like every Multiple Regression Analysis Software, this also 

takes care of issues of data transformation and heteroscedasticity, we preferred 
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E-views. Availability, usability and the familiarity with E-views are the reasons 

of choosing this software.  Data analysis with ‘E-views’ software is discussed in 

chapter 6.    

 

5.2.10    Hypotheses  

 

Once the model is constructed, the hypotheses related to the factors that 

construct the model will be proposed. The null and the alternative hypotheses 

will be defined and validated from the model. This is discussed in chapter 6 in 

detail. 

 

5.2.11   Validity of Multiple Regression Analysis 

 

The Multiple Regression Models are usually validated with a new set of samples 

and the results are compared to establish the accuracy of the instrument. R-

square value of the model will reveal predictive power of the model and hence 

the accuracy.  The predictive power and the accuracy of the model are 

determined by the error term in the model equation. Error term or the Residual 

determines the model validity and the fit. Standard Error Estimate is also 

considered for determining the Accuracy of the Model.  

 

5.3   Conclusion   

 

In this chapter we discussed the selection of Factor Analysis and the dependence 

technique - Multiple Regression Analysis and the reason behind selecting them. 

We also discussed the thumb rules for decision making on factor selections, 

interpretations of results. Entire research design and execution plans of these 

analytical techniques are also conversed. In the next chapter we would discuss 

the Data Analysis and the Findings.  

 


