

Techniques to Improve the Performance of Cache

Memory for Multi-Core Processors

THESIS

Submitted in partial fulfillment

 of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Nitin Chaturvedi

Under the Supervision of

Prof. S. Gurunarayanan

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2015

Techniques to Improve the Performance of Cache

Memory for Multi-Core Processors

THESIS

Submitted in partial fulfillment

 of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Nitin Chaturvedi

Under the Supervision of

Prof. S. Gurunarayanan

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2015

i

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Techniques to Improve the

Performance of Cache Memory for Multi-Core Processors” and submitted

by Mr. Nitin Chaturvedi ID No. 2007PHX401P for award of Ph.D. degree of

the institute embodies original work done by him under my supervision.

Signature of the Supervisor

Date: (Dr. S. GURUNARAYANAN)

Professor, (Electronics & Instrumentation)
Dean, Work Integrated Learning Programme Division (WILPD), BITS, Pilani

ii

Dedicated

To God

For gifting me with the best

One can have…………….

iii

ACKNOWLEDGEMENTS

This thesis arose in part out of years of research that has been done. During this period, I have

met several people who have made a significant contribution in assorted ways to the research

and the making of this thesis and who deserve special mention. I am glad to take the

opportunity to convey my gratitude to them in my humble acknowledgement.

In the first place, I deem it a great pleasure to express my gratitude whole-heartedly to Prof.

S. Gurunarayanan Dean, WILPD, for his supervision, valuable advice, suggestions and

guidance from the very early stage of this research as well as giving me extra ordinary

experiences throughout the work. Besides providing me unflinching encouragement and

support in various ways, he has also allowed me the freedom to experiment with my

innovation which has in a major proportion enhanced and nourished my intellectual growth.

I am greatly indebted to Prof. Sudeept Mohan, Prof. Sundar Balasubramaniam and Prof.

Abhijit Asati for their crucial contribution, constructive comments and motivation. I thank

them for their willingness to share their knowledge with me, which was very fruitful in

shaping my ideas and research. Collective and individual acknowledgements are due to all

my colleagues who have directly helped me in my work.

Thanks are due to Prof. B. N. Jain, Vice-chancellor and Prof. A. K. Sarkar, Director, BITS,

Pilani for the constant support and concern. I would like to gratefully acknowledge Prof. S.

K. Verma, Dean, RCD and many others for their indispensable help and for creating a

pleasant working atmosphere. I am also indebted to all of my project students at the bits

pilani: Arun Subharamanian, Pradeep harinderan, Jithin Thomas, Pranav Gaur, Chirag

Aggarwal, Ishan, Kapil, Prashant Gupta.

Words fail me to express my gratitude to my family and friends who were always ready to

lend a hand. I thank everybody who was important to the successful realization of this thesis,

as well as express my apology that I could not mention personally one by one. Finally, I

would like to thank God for always guiding me.

iv

ABSTRACT

Performance gap between the speed of Processor and memory is continuously increasing with

advent of every new technology. Compared to traditional super-scalars, Chip Multi-

processors (CMP) deliver higher performance at lower power for thread-parallel workloads.

However, CMP have further increased the demand for higher on-chip cache capacity as well

as off-chip bandwidth due to coherence and capacity-related misses, so there is always a need

to judiciously utilize on chip cache memory. This thesis addresses the issues of on-chip

shared L2 cache management in the Multi-Core Processors. Now onwards, the last level

cache is referred as L2 cache (level 2 cache).

In this thesis, we consider CMP, a class of processors where multiple cores are integrated on

to the same chip and each core compete for the total on-chip L2 cache. Two basic schemes

are currently used to manage L2 cache. First, a separate cache slice is used as a private L2

cache for each core on CMP. Private L2 caches provide the lowest hit latency but reduce the

total effective cache capacity because each core creates a local copy of any block it touches.

Second, all cache slices are aggregated to form a single large L2 cache, shared by all the

cores. A shared L2 cache increases the effective cache capacity for shared data, but it

presents several challenges in the design of an on-chip cache that is shared among multiple

cores in CMPs. Our efforts in this work have focused on addressing some of these key

challenges.

First, we present a comparative understanding of cache misses in the context of CMPs with

shared L2 cache by analyzing the interactions between cache references made by different

cores. Then, we propose a novel cache management scheme called adaptive block pinning to

mitigate the effect of dominated ownership of blocks within a set by few cores.

Secondly, we focus on one of the most important issues in designing large shared L2 cache in

a CMP system which is the increasing dominance of wire delays, which affects the access

time and impacts the system performance. In this context, non-uniform cache architectures

(NUCA) have proved to be able to tolerate wire delay effect while maintaining a huge on-

chip storage capacity. However, the fixed location of data block in NUCA imposes serious

limitations with this architecture. In order to overcome this limitation, we propose selective

block replication scheme which improve upon the conventional large shared uniform cache

and over various NUCA schemes proposed so far, such as Static-NUCA (S-NUCA).

v

Third, we present solutions for the challenges introduced by dynamic features provided by

Dynamic NUCA (DNUCA), like multiple locations for data placement, migration movements

and data access policy. To address these challenges we have proposed an adaptive migration-

replication (AMR) scheme to overcome the above challenges and reduce miss latency in the

NUCA cache along with an efficient data access policy to reduce network traffic.

Finally, we have observed that different applications requires different working set sizes and

having varying spatial and temporal localities. Therefore, the performance benefits that can

be obtained from fixed configuration caches are limited. Moreover many applications exhibit

low spatial locality with few cache words utilized before eviction. This effectively increases

miss rate and wastes on-chip network bandwidth. Unused word transfers also consume a

large fraction of the on-chip energy. To address these issues, we propose an efficient variable

granularity cache design that is tuned to meet the varying runtime locality requirements of

different applications.

We evaluated various schemes using full-system simulation using multi-thread, and multi-

programmed workloads running on an eight-core CMP. We show that all the proposed shared

cache management schemes achieve significant performance improvement over the reference

schemes for these workloads. This thesis investigates the problem of sharing of last level

cache between concurrently running applications and evaluates cache management schemes

as a mean of optimizing the overall system performance. All the proposed cache architectures

were simulated and evaluated for performance through simulation studies using Parsec and

SPEC 2006 Benchmarks.

vi

TABLE OF CONTENTS

 Page No.

Certificate i

Acknowledgements iii

Abstract iv

CHAPTER 1 : Introduction 1

1.1 Need for Chip Multiprocessors 4

1.2 Software Implications 4

1.3 Hardware Implications 5

1.4 CMP Design Trends 6

1.5 Non-Uniform Access Latency 7

1.6 Thesis Focus: Shared L2 Cache Management 8

 1.6.1 Thesis Problem Statement 8

1.7 Evaluation Metrics for CMP 10

 1.7.1 Latency 10

 1.7.2 Network Traffic (Bandwidth) 10

 1.7.3 Effective Cache Utilization 11

 1.7.4 Energy/Power Consumption 11

1.8 Thesis Contribution 11

1.9 Organization of Thesis 13

CHAPTER 2: Background and Literature Review 15

2.1 Introduction 16

 2.1.1 Conventional cache architectures 16

 2.1.2 Replacement schemes in caches 17

 2.1.3 Energy efficient cache architectures 19

 2.1.4 Operating system support 20

2.2 Conventional cache design limitations 22

 2.2.1 Caching for Chip Multiprocessor 22

 2.2.2 Cache Proposals for Multicores 23

2.3 An Introduction to Multiprocessor Memory Consistency 31

 2.3.1 Effect of Caches on Memory Consistency 32

 2.3.2 Cache Coherence Invariant and Permission 34

 2.3.3 Coherence invariants 35

2.4 Coherence Protocols 35

vii

 2.4.1 Design space for cache coherence protocols 38

 2.4.2 Specifying cache coherence protocols 38

 2.4.3 Stable States 39

 2.4.4 Transient States 40

2.5 Existing Cache coherence protocols 43

 2.5.1 Snooping bus-based coherence protocol 43

 2.5.2 AMD-Hammer Coherence protocol 45

 2.5.3 Token-Based Coherence protocol 46

 2.5.4 Directory-based protocol 47

2.6 Summary 49

CHAPTER 3: EVALUATION METHODOLOGY 50

3.1 Introduction 51

3.2 Experimental Frame work 51

 3.2.1 Simulation Tools (Simulation Setup) 51

 3.2.2 Detailed Cache Simulator 52

 3.2.3 Protocol-Independent Components 54

 3.2.4 Specification Language for Implementing Cache Coherence (SLICC) 55

3.3 Interconnection Network 56

 3.3.1 GEMS Interconnection Network 56

 3.3.2 Garnet Network / Orion 57

 3.3.3 Base GARNET model design 59

3.4 Energy Model 60

 3.4.1 CACTI 60

 3.4.2 Energy calculation 60

3.5 Workload Description 61

 3.5.1 Limitations of Existing Benchmark Suites 62

 3.5.2 Multi-threaded Benchmarks 63

 3.5.2.1 Input Sets 64

 3.5.2.2 Workloads 64

 3.5.2.3 Characterization 66

 3.5.3 Multi-programmed benchmarks 67

3.6 Summary 68

CHAPTER 4: Adaptive Block Pinning: A Novel Shared Cache Partitioning for CMP 69

4.1 Introduction 70

4.2 Motivation 74

viii

 4.2.1 Cache Miss Classification 74

 4.2.2 Traditional Processors 74

 4.2.3 Chip-Multiprocessors 74

 4.2.4 Characterization of Compulsory Inter-processor and Intra-processor misses 78

4.3 Taxonomy Used in CMPS 79

4.4 Baseline Architecture 80

4.5 Shared Cache Management Scheme 81

 4.5.1 Set Pinning Ownership Scheme 81

 4.5.2 Proposed Block Pinning Scheme 82

 4.5.3 Cache HIT/MISS Policy 85

 4.5.4 Block Ownership Relinquishment Policy 86

 4.5.5 Hardware Support 89

4.6 Experimental Methodology 90

 4.6.1 Simulation Environment 90

 4.6.2 Benchmarks 90

4.7 Results 91

4.8 Related Work 93

4.9 Summary 95

CHAPTER 5: Selective Replication in the Shared Last Level Cache 96

5.1 Introduction 97

5.2 Motivations 99

5.3 Proposed Selective Replication Policy 101

5.4 Replication Policy: owner bank knows when to replicate 103

 5.4.1 Working of the proposed scheme 101

 5.4.2 Managing Read/Write Request 105

 5.4.2.1 Read Request 105

 5.4.2.2 Write Request 107

 5.4.2.3 Invalidation Request 108

 5.4.2.4 Eviction Request 108

5.5 Hardware Overhead of Proposed Policy 108

5.6 Cache Coherence Protocol 109

5.7 Verification of Protocol 111

5.8 Experimental Setup 111

 5.8.1 Simulation Environment 111

 5.8.2 Benchmarks 112

ix

5.9 Results 113

5.10 Related Work 116

5.11 Summary 118

CHAPTER 6: Adaptive Block Migration-Replication (AMR) in NUCA 119

6.1 Introduction 119

6.2 Motivations for This Work 121

 6.2.1 Exploiting Dynamic Non Uniform Cache Architecture 123

 6.2.2 Data Lookup with in The D-NUCA 124

6.3 Proposed Shared Cache Management using AMR 125

 6.3.1 Baseline Architecture 125

 6.3.2 Working of the Adaptive Migration-Replication scheme (AMR) 129

 6.3.2.1 Single remote requestor 131

 6.3.2.2 Multiple frequent requestors 133

6.4 Proposed Data Access Policy for Shared Last Level Cache 135

6.5 Updating location pointers 138

6.6 Coherence Protocol 138

 6.6.1 False miss 139

 6.6.2 Read request 140

 6.6.2.1 Hit in the local bankcluster 140

 6.6.2.2 Miss in the local bankcluster 140

6.6.2.2.1 Replica absent 140

6.6.2.2.2 Replica present in the local bankcluster of requesting core 141

6.6.2.2.3 Replica(s) present in the local bankcluster of other cores 141

 6.6.3 Exclusive write request 142

 6.6.3.1 Replica absent in bankset 142

 6.6.3.2 Replica exists in the same bankset: GETX Request 142

 6.6.4 L1 evictions 143

 6.6.4.1 No replica in the bankset 143

 6.6.4.2 Replica(s) present in the bankset replicas 143

6.7 Special cases 144

6.8 Evaluation Methodology 144

 6.8.1 Multicore System 144

 6.8.2 Benchmarks 145

 6.8.3 Energy 145

6.9 Results 146

x

 6.9.1 Performance Evaluations 146

 6.9.2 Network Traffic 146

 6.9.3 Energy Consumption 147

6.10 Related work 148

6.11 Summary 150

CHAPTER 7: A Novel Work-Load aware adaptive cache 151

7.1 Introduction 152

7.2 Motivations 153

7.3 Justification for Proposed Cache Architectures 154

 7.3.1 Cache Block Utilization 154

 7.3.2 Effect of block size on cache miss rate and bandwidth 156

 7.3.3 Requirement for adaptive cache blocks 156

7.4 Proposed Variable Granularity cache architecture 157

7.5 Cache Management Scheme 158

 7.5.1 Cache Set-Indexing 158

 7.5.2 Data Lookup 159

 7.5.3 Block Insertion 160

 7.5.4 Block Replacement 160

7.6 Hardware Overhead 161

7.7 Spatial Locality Predictor 161

7.8 Results 161

7. 9 Related Work 163

7.10 Summary 164

CHAPTER 8 : Conclusions and Future Work 165

8.1 Conclusions 166

8.2 Future Directions 169

 8.2.1 Global Replacement Policy 169

 8.2.2 Dynamic granularity block movement with Coherence Granularity for caches
in CMP

169

 8.2.3 Mapping strategy 170

 8.2.4 Tiled architecture 170

List of References 171

List of Publications 182

Brief Biography of Candidate and Supervisor 184-185

xi

LIST OF TABLES

Table 1.1: Comparisons of several leading industry CMPs 3

Table 2.1: Summary of coherence protocols 49

Table 3.1: Benchmark characteristics 67

Table 4.1: Miss due to eviction of a block by the same core 75

Table 4.2: Miss due to eviction of a block by the different core 76

Table 4.3: Configuration parameters for simulation 90

Table 5.1: System configuration 111

Table 5.2: Benchmarks 112

Table 6.1: System configuration 145

xii

LIST OF FIGURES

Figure 1.1 :
Intel processor technology road map, core count increases in next
decade

2

Figure 1.2 : Cache design complexity 6

Figure 1.3 : Uniform cache access (UCA) Vs Non uniform caches architectures 7

Figure 1.4 :
Non-uniform cache architecture (NUCA) has long cross-chip latency,
wire delay dominates overall cache access time

8

Figure 1.5 : Private design of L2 caches 9

Figure 1.6 : Shared design of L2 caches 9

Figure 2.1 :
Sketch of CMP memory access that hits in the L1 cache, hit in the
shared last level L2 cache and miss in both private L1 and shared L2
Cache

23

Figure 2.2 (a) : Fixed sets per processors 24

Figure 2.2 (b) : Fixed Partitioned sets 24

Figure 2.2 (c) : Sets with variable number of blocks 25

Figure 2.3 : Problem of Incoherence 33

Figure 2.4 : Dividing a given memory location’s lifetime into epochs 34

Figure 2.5 : Cache Controller 35

Figure 2.6 : Memory Controller 36

Figure 2.7 : State Diagram for MSI 40

Figure 2.8 : MESI 41

Figure 2.9 : State Transition for MOESI Protocol 42

Figure 2.10 : Cache to Cache miss in AMD-Hammer protocol 45

Figure 2.11 : Cache to Cache miss in Token coherence protocol 47

Figure 2.12 : Cache to Cache transition in Directory based coherence protocol 49

Figure. 3.1 :
A block diagram of GEMS Structure Ruby, detailed memory
simulator can be driven by one of four memory system request
generators

52

Figure 3.2 : Interconnection network on chip 57

Figure 4.1 : Multi-processors with physically centralized memory 70

Figure 4.2 : Multi-processors with Distributed Shared memory 71

Figure 4.3 : Distributed shared memory with message passing 71

Figure 4.4 : Chip Multiprocessor with on-chip shared L2 cache 72

Figure 4.5 :
State diagram representing a memory element’s life cycle in the shared
cache

77

Figure 4.6 : Distribution of compulsory, inter-processor and intra-processor misses 78

Figure 4.7 : Memory addresses leading to Inter and intra-processor misses 79

Figure 4.8 : Block Diagram of Proposed Architecture 80

Figure 4.9 : Basic flow chart explaining the logic of adaptive block pinning 82

xiii

Figure 4.10 : Inter processor Miss in dual core processor 83

Figure 4.11 : Allocation of block ownership to prevent eviction in dual core processor 84

Figure 4.12 : Ownership prevent eviction in dual core processor 84

Figure 4.13 : Cancellation of block ownership in dual core processor 88

Figure 4.14 :
Counter CT-1 saturates and ownership bits (C1) are reset in dual core
processor

89

Figure 4.15 : L2 Cache Miss Rate 91

Figure 4.16 : POP Cache Hit Rate 92

Figure 4.17 : Performance with different cores 93

Figure 5.1 :
Trade-off between off-chip miss rate and on-chip access latency in
private/shared on-chip cache designs

97

Figure 5.2 : Non-Uniform Cache Architecture 98

Figure 5.3 : Shared Level-2 Cache Organization 100

Figure.5.4 : Bank cluster in NUCA 101

Figure 5.5 : Non-Uniform Cache Architecture 102

Figure 5.6 :
Shaded red portion constitutes the central bank-clusters, whereas light
brown bank close to the cores are the local bank-clusters

102

Figure 5.7 : Address Interpretation 103

Figure 5.8 : State transition based on the value of reuse threshold 104

Figure 5.9 : Additional in-line directory bits for the proposed scheme 109

Figure 5.10 : Sequence diagram for block replication 110

Figure 5.11 : Sequence diagram for block invalidation 110

Figure 5.12 : Normalized Completion Time 113

Figure 5.13 : L2 Hit Latency 114

Figure 5.14 : Distribution of Network Traffic 115

Figure 5.15 : Normalized Energy Consumption 116

Figure 6.1 : NUCA Organizations 120

Figure 6.2 :
Set sharing schemes in NUCA Organization with different mapping
schemes

122

Figure 6.3 :
Data ping-ponging between banks 16 and 24, and it is not able to reach
near the local bank clusters in Dynamic NUCA Organizatio n

124

Figure 6.4 :
Example to illustrate the complexity of data look in Dynamic NUCA
Organization

125

Figure 6.5 : Multi-banked NUCA Organization (with Bank ID’s indicated) 126

Figure 6.6 : Logical Partitioning into Bankclusters 126

Figure 6.7 : Bankset shown in red (16 way bankset associative) 127

Figure 6.8 : Address Interpretation 128

Figure 6.9 : Remote hit in the local bank-cluster of Core-7 130

Figure 6.10 : Dynamic profiling of block usage with inline directory counters 131

Figure. 6.11 : Gradual Block migration 132

xiv

Figure 6.12 : Block ping-pong scenario with two competing cores 133

Figure 6.13 :
Replica creation in the local bank cluster of frequent requestor (Core
2)

134

Figure 6.14 : Location pointer co-located with each set 135

Figure 6.15 :
Additional bits within cache line to maintain coherence and reuse
tracking

139

Figure 6.16 : Core-4 facing a false miss due to block migration 140

Figure 6.17 : Migration mechanism to handle read requests (replica absent) 141

Figure 6.18 :
Sequence diagram showing the invalidation steps in case of write
requests

142

Figure 6.19 : Handling L1 evictions (no replica in bankset) 143

Figure 6.20 : Normalized completion Time 146

Figure 6.21 : Normalized Network Traffic 147

Figure 6.22 : Normalized Energy Consumption 148

Figure 6.23 : Normalized average L2 Hit Latency 149

Figure 7.1 : Cache Hierarchy and trade-off between size and latency 152

Figure 7.2 : Set associative cache with fixed data block size 153

Figure 7.3 : Percentage utilization of blocks 155

Figure 7.4 : Percentage utilization of blocks 155

Figure 7.5 : Variable Granularity Cache Architecture 157

Figure 7.6 : Data look-up logic 159

Figure 7.7 : Hit/Miss Block 160

Figure 7.8 :
Read and Write Accesses to a set containing two blocks of size 3 and 4
words respectively

162

Figure 7.9 :
Read and Write Accesses to another set containing two blocks of size 3
and 2 words respectively

162

Figure 7.10 : Cache Simulation 163

xv

LIST OF ACRONYMS

CMP Chip Multiprocessors

UCA Uniform Cache Architecture

NUCA Non-Uniform Cache Architecture

SNUCA Static Non-Uniform Cache Architecture

DNUCA Dynamic Non-Uniform Cache Architecture

LLC Last Level Cache

L1 Level One Cache

L2 Level Two Cache

DIR Directory

L1D Level One Data Cache

L1I Level One Instruction Cache

VLIW Very Large Instruction Word

TLP Thread Level Parallelism

ILP Instruction Level Parallelism

FIFO First In First Out

LRU Least Recently Used

LFU Least Frequently Used

MRU Most Recently Used

SMP Symmetric Multiprocessor

NUMA Non-Uniform Memory Access

3C Compulsory Capacity Conflict

1

Chapter 1

Introduction

This chapter introduces the need for chip multiprocessor with on chip cache memory. In

addition to that, it describes the on-chip cache configurations for CMP and finally it presents

the contributions of this thesis.

2

Chapter 1

INTRODUCTION

1. Introduction

Advances in VLSI technology [1] over the past two decades has enabled the improvement of

VLSI systems performance in two ways. Firstly, increase in system operating frequency due

to shrinking of transistor sizes. Secondly, implementing several micro-architectural

techniques, like super-scalar, out-of-order issue, on-chip caching and deep pipelines

supported by sophisticated branch predictors. Unfortunately, as has been recently noted, the

future effectiveness of these approaches is limited due to the emergence of two main

constraints. The first constraint is increase in the number of transistors and their switching

frequency which leads to an overall increase in power consumption. The second constraint is

that, as the feature size is decreased, wire delays do not scale efficiently and become a major

design limitation for large integrated circuits. These problems have caused a change in the

design paradigm of the microprocessor industry [2] [3] [4] [5] [6]. Figure 1.1 shows that the

design focus has shifted to Chip Multi-processors, which integrates multiple uniprocessors on

to the same die. Chip Multiprocessors (CMPs) are being developed by all the main vendors

[8] [9] [10] [11] [12] [13]. However, the sharing of the on chip resources amongst the cores

impose new constraints and create new challenges [7] for designers.

Figure 1.1: Intel processor technology road map, core count increases in next decade

3

This thesis investigates various design alternatives to improve the performance of the on-chip

cache system in CMP architectures. Compared to uniprocessor cache systems, CMP caches

have two distinct features that present new challenges. First, the size of the on-chip cache

which continue to grow, creating the phenomenon of non-uniform access latency. Non

uniform cache architecture allows various parts of the cache to be accessed with different

latencies, depending on the physical location. Therefore, a strategic physical placement of

cached data can significantly improve performance. Second, the on chip cache system must

be able to provide low access latencies to multiple on chip cores simultaneously. Table. 1.1

summarizes the main features of some first generation CMPs from several leading

manufacturers. These CMPs show the trend of increasing cache and core count with moderate

clock frequencies.

Table 1.1: Comparisons of several leading industry CMPs.

 Year

Cores
(Hardware

Threads
per Core)

Tech. (nm)/
Transistors /
Freq. (GHz)

Inter-
connect
strategy

L2 Cache
Configuration

size/ assoc /
Latency

L2
Cache

Sharing
Pattern

Server Processors

IBM Power5 2003 2(2) 130/276M/1.9 Bus 1.9MB/10/13 Shared

AMD
Opteron

2004 2(1) 90/233M/2.2 Bus 1MB/16/12 Private

Intel
Montectio

2005 2(2) 90/1.7B/1.8 Bus 24MB/12/14 Private

Sun Niagara 2005 8(4) 90/N.A./N.A. Bus 3MB/8/N.A. Shared

Embedded Processors

RMI XLR 2005 8(4) 90/N.A./1.5 Ring 2MB/8/N.A. Shared

Caviurn
Octeom

2005 16(1) 90/N.A./0.6 Bus
1MB/N.A./N.

A.
Shared

SiByte BCM
14xx

2005 4(1) 90/N.A./1.2 N.A.
1MB/N.A./N.

A.
Shared

The main contributions of this thesis are cache management schemes: an Adaptive Block

pinning, Selective block replication and Adaptive Replication-Migration policy for large

shared L2 cache along with a proposed novel reconfigurable cache architecture as explained

later in section 1.8. These shared cache management techniques achieve significant

reductions on cache access latency and communication power over the baseline private and

shared designs.

4

1.1 Need for Chip Multiprocessors

The performance improvement brought by technological advances [14] earlier has slowed

down dramatically in past four to five years. This slowdown can be attributing to three key

factors as explained below.

First, the most complex micro architectural designs can only bring marginal performance

gain at the expense of significantly higher design efforts and longer design cycle. The

traditional channels to improve performance by widening the issue widths and using better

speculation mechanisms are fundamentally limited by the amount of instruction-level

parallelism (IPL). These methods have already reached point of diminishing returns.

Second, higher clock frequencies can no longer be directly translated into better performance

because global wire delay does not scale with the silicon feature size. For each subsequent

technology generation, less on chip distance can be traversed within one clock cycle, leading

to long cross-chip latencies [15] [16]. Thus even though individual chip components continue

to become faster, the communication latency among different components remains constant,

limiting the performance of the overall system.

Third, power consumption has become a key design constraint that limits achievable

processor performance in traditional desktop and server systems. Elevated power density

causes transistor reliability and stability problems resulting in higher die temperature. The

increasing power usages is the primary reason which finally forces chip designer to deviate

evolving traditional super-scalar uniprocessors [3].

1.2 Software Implications

Traditional super-scalar and VLIW architecture exploit instruction level parallelism relying

on speculative execution to gain performance. Because the instruction level parallelism that

exists in sequential programs is limited even the most elaborate systems today can only

achieve a marginal performance gain with better prediction and speculation mechanisms.

CMP exploits a much coarser form of parallelism at the thread level which we refer to as

thread level parallelism (TLP). For applications with significant TLP, CMP can deliver

higher throughput and consume less energy per operation than a wider issue superscalar

architecture [17]. Several important classes of application have abundant thread level

parallelism and can take advantage of CMP as described below:

5

1. Server workloads: The large transaction-based server workloads, such as web or data

base servers, are inherently thread-parallel because each transaction is an independent

task. Today, server workloads are executed on large multichip multiprocessor systems

to obtain high throughput. CMPs will work very well for these workloads.

2. Parallel scientific workloads: The Classic algorithms, such as Fourier transform or LU

decomposition, are the centerpieces of many critical scientific workloads. Similarly,

large compute intensive programs such as weather forecasting demand extremely high

performance that uniprocessors are unable to deliver. Because of their importance,

they are well studied and heavily parallelized at the thread level to take advantage of

large multichip systems. These scientific workloads will work even better on CMPs

because they have tighter integration that reduces communication latencies among

different cores and memory.

3. Multi-Programmed workloads: Most commercial modern operating systems support

multitasking and can run a large number of programs in parallel. In fact, desktop

machines today run hundreds of programs concurrently using time-sharing. Thus, we

anticipate multi-programmed workloads to be the most common ones for a desktop

processor. Multi-programmed workloads are naturally thread parallel as different

programs rarely share data, thus fully utilizing the features of a CMP.

1.3 Hardware Implications

From a hardware point of view, CMPs address three key bottlenecks of unicore processors:

(1) Power budget, (2) Global wire delays, (3) Design complexity as described below:

1. Power budget: CMPs achieve high performance by running different threads in

parallel, putting less pressure on individual thread performance. Thus, CMPs can use

relatively less aggressive cores and scale back clock frequency. This approach

sacrifices some single-thread performance, but allows many power-inefficient

features to be removed from the processor, thereby reducing energy per operation.

2. Global Wire Delay: The physical structure of a CMP naturally constricts the majority

of the data movement to be localized within each processor core. Global wires in a

CMP will mainly be responsible for transporting shared data between different

threads. While increasing global wire delay will remain a problem, such global

communication happens much less frequently compared to, for example, access to the

register file in a wide super-scalar processor. In addition, this abstraction gives more

6

control over the wire delay problem to the software. For example, the operating

system can place multiple threads that have a high degree of sharing in adjacent cores

to minimize the cost of global communication.

3. Design complexity: The CMP approach reduces design complexity by allowing the

chip makers to reuse previous core designs with minor modifications to suit future

products. The focus of the redesign effort is the interconnection network responsible

for communication among cores, caches, physical memory, and I/O devices. Thus

CMPs can have a much shorter design cycle and time to market compared to super-

scalars (refer Figure 1.2).

Figure 1.2: Cache design complexity

1.4 CMP Design Trends

There are two trends in future CMP design; First, CMPs will have more cores. For example,

the Niagara [18] and XLR chips have 8 cores and cavium octeon CN38xx chip has 16 cores

as shown in Table. 1.1. Each core is likely to be relatively simple, especially in the embedded

chip space. Second CMP will have more total cache capacity. For example, the newest Intel

Montecito chip, based on the Itanium [11], has two cores, each with its own 12 MB L3 cache,

forming a total on-chip capacity of over 24MB.

7

1.5 Non-Uniform Access Latency

Traditional cache architectures are uniform cache architecture (UCA) as shown in Figure

1.3(a) where the access latency to each location is same. Most current cache designs divide

large caches into small slices as shown in Figure 1.3(b) to reduce both access latency and

energy consumption. The cache access latency is primarily dominated by the access time of

each individual cache slice, thus the access latencies to various slices are fixed.

(a) UCA (b) NUCA

Number of banks: 1 bank : 32 banks

Average loaded access time: 255 cycles : 24 cycles

Figure 1.3: Uniform cache access (UCA) Vs Non uniform caches architectures

In the larger caches anticipated in future CMPs, wire delay [16] will cause cross-chip

communications to reach tens of cycle. Cache fetch latencies will be dominated by the wire

delay to reach each individual cache slice rather than the time spent accessing the slice itself.

The access latencies to various slices will become significantly different depending on their

location with respect to the load/store unit of the processor. UCA design is no longer suitable

for these wire delay dominated caches because using the worst-case latency will result in

unacceptable hit times. Thus, we must allow different slices of the cache to be accessed at

their fastest possible latencies. The resulting cache design is what we refer to as a non-

uniform cache Architecture (NUCA) [19]. Figure 1.4, illustrates this cross-chip latency.

A NUCA architecture can be either static or dynamic. A static NUCA(S-NUCA) simply

relaxes a UCA design and allows different cache slices to be accessed with different

latencies. It is static because each cache block is still statically mapped to a specific bank.

8

The more flexible dynamic NUCA (D-NUCA) cache exposes the physical location of each

block to the designer, allowing more optimal placement than the statically address-mapped

approach of S-NUCA.

Figure 1.4: Non-uniform cache architecture (NUCA) has long cross-chip latency, wire delay

dominates overall cache access time.

The more flexible dynamic NUCA (D-NUCA) cache exposes the physical location of each

block to the designer, allowing more optimal placement than the statically address-mapped

approach of S-NUCA. An intelligent placement maps the data to physical cache locations so

that the working set of the workload stays in the cache slices which are physically closest to

the core. Such a placement minimizes the cross-chip communication latency incurred by

cache accesses. However, the process of locating a cache block in a D-NUCA can cost

significantly more time and energy as compared to S-NUCA.

1.6 Thesis Focus: Shared L2 Cache Management

1.6.1 Thesis Problem Statement

For any computer system, its overall performance is often directly correlated to the

performance of its memory hierarchy. In CMPs, off-chip misses will remain expensive but

increase in clock frequency together with worsening global wire delays will also increase

latencies for cross chip communication. Effective use of on-chip cache must therefore

consider both the cost of off chip misses and the cost of cross chip communications. Two

base-line last level cache designs private and shared illustrate the trade-off between these two

9

components of effective data access latency. For simplicity we assume in the rest of the thesis

that the second level cache (L2) is the last level of on chip cache.

Figure 1.5: Private design of L2 caches

A private design eventually partitions all of the on chip L2 cache slices such that each

processor is assigned to its closest partition as its private L2 cache as shown in Figure 1.5.

The shared design aggregates all the L2 cache slices to form a single L2 cache slice shared by

all the cores as shown in Figure 1.6.

Figure 1.6: Shared design of L2 caches

The private design has a low L2 hit latency as the private L2 cache is physically co-located

with the processor core and has a much smaller area than a shared cache. This layout

10

provides good performance if the working set fits with the local L2 slice. The disadvantage of

the private design is that effective on chip cache capacity is reduced for shared data as each

core must retain its own copy of shared data block. The shared design reduces the off chip

miss rate for large shared working sets because only a single on chip cache copy is required

for any shared data.

However large shared L2 caches have worse access latency than a small private L2 cache.

With multiple cores, this placement task becomes particularly challenging because many

cores may contest for the same shared data simultaneously and the optimal placement of the

shared data in cache may not be close to any of the requesting cores, thus impacting the

access rate. In this thesis, we have investigated various cache management policies for large

shared Last Level cache in CMP. We studied private and shared cache designs and explored

novel cache management schemes with optimal trade-offs between the off chip miss rate and

the cross chip latency to achieve low data access latencies for future CMP.

1.7 Evaluation Metrics for CMP

This section presents the evaluation metric employed in this thesis. We do not focus on

traditional uniprocessor metrics such as IPC since it is not the correct metric to evaluate CMP

performance.

1.7.1 Latency

CMP running many commercial, scientific, and data-mining workloads exhibit abundant

thread-level parallelism, and thus using multiple processors is an attractive approach for

increasing their performance. To support the frequent communication and synchronization in

these workloads efficiently, servers should optimize the latency of cache-to-cache misses. A

cache-to-cache miss is a miss, often caused by accessing shared data that requires another

processor’s cache to supply the data. To reduce the latency of cache-to-cache misses, a

coherence protocol should ideally support direct cache-to-cache transfer. Our goal in this

thesis is to reduce the access latency of shared caches in CMPs. Execution time is the

ultimate effect of latency to the system performance and we use that as an evaluation metric.

1.7.2 Network Traffic (Bandwidth)

A cache coherence protocol should conserve bandwidth to reduce power consumption and

avoid interconnect contention, because contention reduces performance. Past research has

extensively studied the bandwidth efficiency of different cache management schemes and

11

coherence protocols. We use both on-chip and off-chip network traffic (bandwidth) as

evaluation metrics.

1.7.3 Effective Cache Utilization

The increasing gap between processor and memory speed and increased number of cores in

the system make maximizing on-chip cache capacity crucial to achieving good performance.

If the effective on-chip cache capacity is small, the number of off-chip misses will increase,

which hurts system performance severely due to increased off-chip bandwidth and

corresponding higher energy consumption. In order to measure how effectively we improve

utilization we use cache miss rate, (misses per kilo instructions (MPKI)), as our performance

metric.

1.7.4 Energy/Power Consumption

With the increased performance and clock rate of processors, processor power consumption

and heat dissipation have become one of the challenges in the design of high-performance

systems. Monolithic processors have reached a level where they consume large power

resulting in less performance improvement per unit power; as a result, industry moved to

multi-core on a chip for performance growth while depending less on raw circuit speed and,

thus, power. We estimate the dynamic energy in the on-chip memory hierarchy to be roughly

30% of overall chip energy consumption. We use dynamic energy (and hence dynamic

power) consumption as the evaluation metric. Although we do not model leakage (static)

power for the full system or dynamic power for the cpu logic, we can put the dynamic power

of on-chip memory hierarchy into perspective by looking into some prior studies [5].

1.8 Thesis Contribution

The most important contributions of this thesis are:

• Adaptive block Pinning Technique. We have proposed and evaluated a hardware-based

approach, called block pinning, for eliminating inter-processor misses and reducing intra-

processor misses in a shared cache. Furthermore, we showed that an adaptive block

pinning scheme provides improvement over the benefits obtained by the block pining and

set pinning scheme by significantly reducing the number of off–chip accesses. This work

also proposes two different schemes of relinquishing the ownership of a block to avoid

domination of ownership of few active cores in multi-core system which results in

12

performance degradation. Extensive analysis of these approaches with SPEC and Parsec

benchmarks are performed using a full system simulator.

• Selective block Replication Scheme. We proposed and evaluated selective block

replication scheme which improve upon the conventional large shared uniform cache and

various NUCA schemes proposed so far, such as S-NUCA, SPNUCA in terms of average

access latency without significant reduction in the hit rate. This scheme dynamically

keeps track of frequency of usage of the remote blocks and selectively replicates the

highly used block in the local bank cluster of the requesting cores. The complete set of L2

cache is divided into various bank clusters. Each core has a local bank cluster which is

close to it and a central bank cluster. This scheme allows use of both shared as well as

replicated blocks. An extensive analysis of our proposed scheme as compared to static

NUCA using SPEC and Parsec benchmarks are performed using a full system simulator.

• Adaptive Replication-Migration Scheme (AMR) with data access policy. NUCA

partitions the complete cache memory into smaller multiple banks and allows banks near

the processor core to have lower access latencies than those further away, thus reducing

the effects of the cache’s internal wire delays. Our proposed AMR scheme uses migration

scheme to move blocks close to the requesting core in addition to the selective block

replication scheme to keep most frequently used blocks within the local bank cluster of

the requesting core and prevent data ping-ping effect. Previous work considered D-

NUCA as a promising design. In our work, we proposed an efficient data access

algorithm for NUCA design using a set of location pointers with in each bank to reduce

miss latency and on-chip network contention. Extensive analysis shows that our proposed

AMR scheme along with data access scheme reduces dynamic energy consumed per

memory request, and achieves an average performance speedup as compared to S-NUCA

and D-NUCA cache management schemes.

• A novel reconfigurable cache architecture with adaptive block size. Data movement

between cores shared cache and its management impacts memory access latency and

power. The efficiency of high-performance shared memory multi-core processors

depends on the design of the on chip cache hierarchy and the coherence protocol. Current

multi-core cache hierarchies uses a fixed size cache block in the cache organization and in

the design of the coherence protocols. The fixed size of block in the set is basically

chosen to match average spatial locality requirement across a range of applications, but it

also results in wastage of bandwidth because of unnecessary coherence traffic for shared

13

data. The additional bandwidth has a direct impact on the overall energy consumption. In

this work, we present a new adaptable cache design that matches data movements with

the spatial locality of the application.

With the contributions described above, we have developed faster and more efficient shared

cache management schemes that provides larger effective on-chip cache capacity, faster data

availability, reduced L1 miss penalty, reduced last-level cache miss, reduced interconnect and

off-chip bandwidth requirement, and reduced dynamic power consumption.

1.9 Organization of Thesis

This thesis is structured in eight chapters.

Chapter 1 highlights the advantages of CMP architectures and the problems that this research

attempts to investigate. The remainder of the thesis is arranged as follows.

Chapter 2 reviews the background information related to the traditional cache architecture,

first generation CMP cache architecture, and network on chips, cache coherency, cache

simulators and shared cache memories. It also reviews several schemes that attempt to

improve the efficiency of cache hierarchies both in the single processor and the CMP domain.

Chapter 3 describes the experimental methodology followed in this thesis, we describe the

CMP working environment with processor and cache simulator used as well as their

integration. It also provides a short overview of the benchmark used for the evaluation of

different proposed shared cache management schemes.

Chapter 4 describes a proposed novel adaptive block pinning scheme to manage unwanted

block eviction and block relinquishment policy to dynamically relinquish the owner ship of

the cache block in shared cache architecture.

Chapter 5 describes the detailed implementation of non-uniform cache architecture for multi-

cores and the proposed selective cache line replication scheme for non-uniform cache

architectures.

Chapter 6 presents adaptive migration-replication (AMR) scheme which combines the

advantage of selective block replication and block migration to reduce both off-chip and

cross-chip access latency. We also present the implementation of a novel data access policy

to manage network traffic on the chip. These are evaluated together with other schemes that

were developed during this work. The advantages and drawbacks of each scheme are

identified which is then used to develop a novel shared cache management scheme.

14

Chapter 7 describes a novel reconfigurable cache architecture that adapts according to the

applications executed on the processors.

Chapter 8 concludes this thesis by summarizing the contributions made in addition to future

directions and possibilities. Finally, in Appendix A, we give an overview of the cache

coherence protocol used in this thesis.

15

Chapter 2

Background and Literature Review

This chapter discusses the design choices that can be found in literature for cache

organization and for the design of cache coherence protocols for multiprocessors. This

chapter presents an overview of current cache coherence protocols and discuss several

alternatives to design the cache hierarchy in CMP architectures.

16

Chapter 2

Background and Literature Review

2.1 Introduction

In this chapter, we will briefly discuss background information related to this work. We will

begin in section 2.1 by discussing conventional cache design techniques and existing cache

replacement policies. In section 2.2 we describe cache hierarchy and cache partitioning for

chip multiprocessor along with various existing cache design techniques for multicores to

improve system performance. Finally, section 2.3 presents an overview of existing cache

coherence protocols developed for current multiprocessors.

2.1.1 Conventional cache architectures

One of the major components of architecture level power consumption is the memory

subsystem [21]. Benini et al. [22] analyzed in detail various architectures and optimization

techniques used in memories. Panda et al. [23] surveyed various techniques used in memory

related optimizations in embedded systems. As per the existing research 42% and 23% of the

total processor power in StrongARM 110 [24] and Power PC respectively is used by the

cache. According to these numbers, there is substantial influence on the overall energy

utilization when cache energy consumption is reduced.

Several hardware (architecture level) and software techniques have been proposed to lower

the consumption of power and enhance the memory subsystem performance. Each of these

techniques has its own merits and demerits. The hardware techniques may result in intricate

circuit implementation while incorporating a variety of applications. The software methods

adjusted for a specific application cannot be reemployed for any other applications. These

issues are extremely important for system design as increase in the cost of hardware pushes

the system towards non-application specific designs.

Lowering the consumption of the cache power can be attained by lowering the number of

cache misses, latency (delay) per access, shutting down a part of the cache, reconfiguring the

cache for specific applications. Various architecture level techniques described in literature to

attain these, include hardware prefetching [27], vertical cache partitioning, horizontal cache

partitioning, reconfiguring cache architecture [38], optimizing cache control circuitry,

modifying the replacement circuitry to improve hit rate [32] [33], making use of the compiler

17

and operating system information (software controlled cache) to improve performance and

various combinations of some of these [40].

While designing a cache, one has to choose between the direct-mapped and set-associative

mapping schemes as these are the existing energy proficient mapping techniques [25]. Both

these schemes have their own advantages and disadvantages in context of cache access time,

dynamic power consumption and cache hit rate. Literature shows that direct-map cache

consumes much lesser dynamic power per cache access compared to a set-associative cache.

For instance, Hennessy and Patterson reported 55% more dynamic power consumption per

access for a 4-way set-associative cache as compared to that of a direct-map cache.

An experiment conducted by Hennessy and Patterson [25] indicated that a rise in

associativity results in a lowering of the miss rate and thus, lowered the consumption of

power. This indicates that for applications needing a high cache hit rate and low energy

consumption it is preferable to use a set-associative cache, despite it the additional cost

related to consumption of power due to increase in tag comparison. For instance, for a direct-

mapped 8KB cache, the average miss rate for the SPEC92 benchmarks is 4.6% while it is

3.8% for two way and 8KB set-associative cache and 2.9% for a 4-way 8KB set-associative

cache. Though the miss rate reduction is small, it results in a significant performance

improvement which depends heavily on the hit rate and access time, as the large cycle

penalty of a cache miss is now avoided. So, if we measure the performance of a cache in

terms of the power consumption, the set associative cache may give better performance than

the direct-mapping scheme because energy overhead due to miss penalty is much higher than

per access power. Thus, applications that need a higher cache hit rate favor a set-associative

cache over a direct-mapped cache. The cache power consumption characteristic varies with

the total cache size as well [26]. Small cache size is energy proficient and has less access

latency but suffers because of poor hit rate. Set-associative mapping scheme also provides

support for energy efficient caching schemes like way shutdown, way concatenation, way

prediction and process aware caching efficiently. Thus, set-associative mapping scheme is

chosen for this work.

2.1.2 Replacement schemes in caches

The three types of misses incurred in the cache are the compulsory, capacity and conflict

misses. A compulsory miss is the result of the first access to a block that has previously never

existed in the cache. A capacity miss occurs when the cache is not big enough to

18

accommodate all the blocks required to efficiently execute the program. A conflict miss takes

place when multiple blocks map to the same set. This occurs in the direct-mapped and set-

associative cache, but not in the fully associative cache. Conflict misses are one of the major

cause of cache misses during program execution.

The performance of a cache replacement techniques chiefly relies on how precisely the cache

can envisage the future reference pattern depending on previous references. The future

reference pattern may depend on the past reference pattern and input data. It is relatively easy

to find the reference pattern in a static scheduled system than in a dynamic-scheduled system.

The choice of a replacement policy is one of the most crucial cache design problems.

Selection of a suitable line/block replacement algorithm, in the case of fully associative and

set-associative caches [28], can have significant impact on the overall system performance.

The existing processors use different replacement strategies including random, round robin,

First-In-First-Out (FIFO), Least Frequently Used (LFU), Least Recently Used (LRU), Pseudo

LRU (PLRU), MRU (Most Recently Used) and variants of these [29] [43] [44]. The

performance of all these policies are compared and analyzed with reference to the optimal

replacement policy (OPT). This strategy cannot be implemented in the instance of dynamic

scheduling systems, since the future cache references are not accessible [30]. Even if the

future references are known, it is impractical to implement this scheme because of the

computational complexity involved in finding the cache line to be evicted. However, it is

very useful in determining the lower limit for the number of cache misses.

The least frequently used (LFU) replacement scheme selects the cache line to be evicted

based on the frequency of access of the cache lines. LFU requires maintaining a frequency

count register per cache line and is incremented by one, each time a reference is made to the

cache line. So a register is updated for every cache access. LFU finds the cache line with the

lowest frequency count as the one to be evicted. LRU and its variants are the commonly

employed replacement policy in the cache on account of their high performance [29]. There

are different techniques to implement LRU in hardware, which comprise of Counter, Square

matrix, Skewed matrix, link list, Phase, and Systolic array method [31]. The replacement

circuit intricacy and the additional hardware needs are comparatively less than the LRU and

LFU in the instance of FIFO and Random replacement schemes [34] [35]. A variant of LRU

replacement policy is Early Eviction LRU (EELRU) [37]. The EELRU dynamically opts to

remove the LRU page or the most recently used page. Maki et al. [39] try to improve the

LRU replacement decision with the help of an additional bit (lock/release) per cache line and

19

lock and release operations. This process aware scheme reported 60.9% reduction in cache

miss ratio and faster execution then the LRU replacement strategy. Wang et al. proposed a

replacement algorithm which improves the cache hit performance or in the worst case

performs similar to LRU for set-associative caches [40]. Wong and Baer [32] proposed an

enhancement for the LRU replacement policy with a temporal bit per cache line. This

temporal bit acts opposite to the EM bits in [40], i.e. it specifies the cache lines to be retained

in the cache rather than cache lines to be evicted. The temporal bit settings are determined by

off-line profiling or an on-line hardware history table. This bit set when there is a cache hit in

that line and is reset when non-LRU line is evicted from the set. Martin Kampe et al.

proposed self-correcting LRU [36], which depends on LRU, supplemented with a feedback

loop to continuously oversee and revise the mistakes done during replacement. O'Neil et al.

proposed the LRU-2 method [41] that evicts the memory block with a minimum time stamp

of the second to last reference. A hardware history table is used by Lai et al. [42] to envisage

when a cache block is dead and which block to pre-fetch and replace the dead one. The fact

that the size of the history table restricts the length of the history consulted is the

disadvantage of this algorithm. The technique of merging any two extant replacement

strategies is indicated by Yannis Smaragdakis [45]; this technique is extremely suitable with

real program data, frequently surpassing LRU (in addition to all the other policies it adopts)

by over 40 %. Jaafar Alghazo et al. [46] proposed SF-LRU (Second Chance-Frequency-

Least Recently Used) that merges LRU and Least Frequently Used (LFU) using the second

chance concept. Outcomes of experiments conducted indicate that the SF-LRU crucially

lowers the number of cache misses in contrast to the LRU (up to 6.3%) and LFU (up to

9.3%). SFLRU [36] has been recommended to attempt to partly consider the frequencies

while making the LRU decisions and to ensure that the costs are less. Most Recently Used

(MRU) policy selects the most recently used cache line from a set for eviction. This

algorithm is not widely used in the cache memory system because of its bad temporal

locality. In addition to all these replacement policies, there exist various replacement

strategies which are very specific to architectures like victim cache [48], skewed-associative

cache, elbow cache etc.

2.1.3 Energy efficient cache architectures

Cache memory analysis reveals that the chief sources of power consumption are the data lines

and data sense amplifiers. The power consumption by the data lines and data sense amplifiers

as per Wilton and Jouppi [26] were 55%, 65% and 75% of the total cache sub system power

20

consumption for the direct-mapped, 2-way set-associative and 4-way set associative mapping

schemes respectively. One way to minimize the dynamic power consumption is to mitigate

the intrinsic activities of the cache during a cache access. Minimum cache power

consumption can be achieved if the cache access incurs minimum conflict misses. Also, if

each cache hit results in reading and comparing only one tag entry, then enabling and

accessing only that one data entry and if each cache miss results in only reading and

comparing one tag entry also helps in reducing power consumption.

Hardware pre-fetching [27] is an accepted method to improve the cache performance in

conventional systems. Pre-fetching methods attempt to lower the cache miss rate by pre-

fetching instructions into internal cache. This may results in replacing useful data in the

cache. Unfortunately, most of the existing pre-fetching methods are not extremely efficient in

embedded systems because of real time processing constraints.

Embedded systems employ various partitioning schemes to make cache energy efficient and

deterministic. This ensures the smooth execution of higher priority time-critical tasks. A

cache partitioning can be either static (fixed) or dynamic. A fixed partitioning scheme

partitions the entire cache into N equal/ unequal sizes and assigns them to the tasks. In case of

dynamic partitioning scheme, cache is partitioned based on various parameters such as size of

the task, priority of the task, number of cache blocks in use etc. Another way of partitioning

the cache is vertical and horizontal partitioning.

2.1.4 Operating system support

CMP incorporate novel hardware features that are dissimilar from traditional uniprocessors or

conventional symmetric multiprocessing (SMP) multiprocessor systems. These novel features

bring additional performance improvement possibilities and problems. Chip multi-processors

architectures deal with three basic difficulties in further expanding processor clock

frequencies further. To start with, the performance difference between the speed of the

processor and memory forces processors to halt for the vast majority of their time for the

memory to deliver the information, making recurrence increments in frequency insufficient.

Secondly, vital utilization and high temperature dispersal of processors, which are attached to

the frequency of CMP, are reaching their physical breaking points. Lastly, higher frequencies

need deep execution pipelines, making the design configuration and verification of advanced

processors even more difficult and challenging.

21

Consequently, Chip multi-processor have turned into the new mainstream architecture [49]

and henceforth obliges prime consideration from software programming engineers to have a

Chip multi-processor aware operating system and applications framework. Considering the

software perspective, the skill to use the maximum capacity of various execution cores in

chip multi-processor has turned out to be troublesome, as it includes many software

programming layers. At the higher level, each core is used to execute an alternate application,

or a solitary application must be parallelized, either naturally or manually, into various

threads. On the other hand, when application level parallelism is separated and communicated

clearly, there are two difficulties in accomplishing adaptable execution that are present in

chip multi-processor architectures.

Contention on Shared Resources: In contrast to the conventional SMP (symmetric

multiprocessor) systems, there are more shared resources on the critical path in each

individual core in a chip multi-processor. Some of these resources comprise of on-chip

shared last level caches, the memory controller, and the interconnection network to other

processor sockets (or the I/O fabric). The presence of uncontrolled contention in any of these

shared resources may lead to a degraded system throughput and hampers performance.

Non-Uniform Inter-Core Communication Latency:

In contrast to traditional SMP systems, chip multi-processors are hierarchical in nature, and

the communication latency between two cores in chip multi-processor varies substantially

and relies on their physical closeness. For instance, in contrast to cores that are located on

two different chips, same chip cores can interact quicker via on-chip caches. This facet of

chip multi-processors is similar to conventional NUMA (non-uniform memory access

latency) multiprocessor systems. Effectively, chip multi-processors designs include extra

levels to the memory hierarchy and, consequently, result in the non-uniformity of

communication latency much more pronounced as compared to conventional NUMA

systems. Consequently, handling these issues, to a certain extent, falls under the purview of

the operating system. Apart from having knowledge of the basic CMP hardware design, the

software system (operating system) can remove and include information related to the

dynamic character of the running system, which comprises of how well the hardware, and

how well the software applications are performing , thus allowing the operating system to

deal with the resources in an efficient way. So as to ensure the same, the operating system

precisely recognizes and quantifies the latency inflicting events in an intricate multi-core

system. At the operating system level, there have been three crucial methods to deal with the

22

issue pertaining to consumption of energy: process scheduling techniques [20], paging

systems [50], and performance tuning [51].

In summary, chip multi-processors addresses the primary issues that are present within the

evolution of chip multi-processors like the power wall, memory wall and design intricacy.

The basic shift in chip multi-processor design needs in depth support from software’s so as to

attain the complete potential in terms of processing speed.

2.2 Conventional cache design limitations

The mechanism and policies utilized for conventional caches architectures that support uni-

cores have several limitations when they are used with CMPs. Firstly, these schemes are

insufficient to handle the competition among the cores for the on chip caches. Secondly, these

policies failed to support physical memory sharing between rival threads, and to avoid

damaging intrusion like thrashing. Lastly, fairness improvement, QoS guarantee and priority

supports are other limitations of conventional caching policies. There are no traditional cache

proposals that deal with all CMP caching needs.

2.2.1 Caching for Chip Multiprocessor

CMP is the novel standard for high-performance computing. The chip designers raises the

number of processor cores in the chip so as to benefit from the thread-level parallelism and

frequency is reduced to lower the consumption of power. A lower frequency not only saves

power but also lowers the processor-memory performance gap and thus harmonizes the

architecture to some degree.

Although, CMP caching presents a number of new challenges to CMP cache designers, these

challenges are not new in the history of general caching analysis & research. It has been dealt

with in varied caching systems including virtual memory paging, conventional shared-

memory multiprocessor memory designs and web caching. The notion of caching was

introduced and recorded within the IBM System/360 implementation [102] that employed a

high-speed buffer to reduce the processor-memory speed discrepancy by utilizing the locality

principle [40]. The cache’s efficacy is to a great extent ascertained by its data placement,

access and replacement strategies for a specific cache size. Majority of the linked studies

pertaining to CMP caching emphasizes on the memory organization of shared memory

multiprocessors. Figure 2.1, indicates a Dual core CMP with multi-level cache and their on-

chip access latencies. In this figure, two cores share the last-level cache. The latency for

cache hits in the first-level cache is the interaction time for roundtrip to the cache in addition

23

to the hit time for the cache. If there is a hit in the last-level cache, the latency is the (round-

trip) interaction time (both between processor and first-level cache, and between first-level

and last-level cache), miss time for the first-level cache and hit time for the last-level cache.

For misses in all levels of cache, latency comprises of miss times for all caches, (round-trip),

interaction time (also comprising of off-chip interaction) and latency of primary memory.

The first-level cache characteristically has a latency of 2-3 clock cycles and the ability of

around 16-64 Kbytes. On-chip last-level caches in comparison have bigger storage abilities

and latency. Latency is characteristically in the extent of 8-30 clock cycles and capacity is in

megabytes with the extant high-end processors. The increased latency of the larger memory

blocks is the result of the distance to the memory block on account of the bigger size and the

look up time in the bigger memory block.

Figure 2.1: Sketch of CMP memory access that hits in the L1 cache, hit in the shared last

level L2 cache and miss in both private L1 and shared L2 Cache

2.2.2 Cache Proposals for Multicores

In this section, we present few existing cache design proposals for CMP that are more

pertinent to some part of our proposed work. These proposals focused on last-level cache in a

CMP. The last-level of cache in a CMP can be private, shared or a hybrid. A private cache

can be quicker compared to a shared cache and its content is not modified by other

processors, while a shared cache can use the cache space in a superior manner as an

application that functions on a huge data set will employ a bigger amount of the cache space

24

when run concurrently with an application that is being executed on a small data set. A

hybrid cache, on the other hand, merges the benefits of the private and shared caches. Several

of these proposals are combinations of both private & shared cache organization. These

hybrid proposals merge the benefits of both private and shared caches. Figure 2.2, puts forth

three different manners of segregating a cache in CMPs with shared cache. In Figure 2.2 (a)

each set belongs to only single core in CMP.

Figure 2.2 (a): Fixed sets per processors

While Figure 2.2(b) shows that each set contains equal number of cache blocks from two

active cores in CMP. Whereas, the third case presents another mechanism in which, each set

can be segregated with a variable number of cache blocks from two different cores as shown

in Figure 2.2(c).

Figure 2.2 (b): Fixed Partitioned sets

It is easier to re-segregate the cache as there is no modification to which a group addresses

maps to. Modifying the segregated size is intricate on account of the hashing function that

25

maps memory addresses to sets has to be altered and the cache blocks have to be relocated or

invalidated. Researchers have proposed several schemes that partitions the cache in a better

manner so that, the core that can use additional cache space get more space whereas core that

is not utilizing the pre-fetched blocks in the cache can get less cache space.

Figure 2.2 (c): Sets with variable number of blocks

The number of cores being integrated on the die is on the rise as CMP platforms are

becoming popular. To lower the off-chip memory access, the last level cache is generally

arranged to be a distributed shared cache. So as to evade hot-spots, cache lines are interleaved

across the distributed shared cache slices. On the other hand, as one increases the number of

cores and cache slices in the platform, majority of the data references are transmitted to the

remote cache slices, thus increases the access latency to a considerable level. A hybrid last

level cache was recommended by Zhao et al. [53]. On each cache slice, it has some degree of

private space and some degree of shared space. The aim is to offer more hits into the local

slice while trying to sustain a lower general miss rate for workloads with no sharing. The aim

on the other hand, for workloads with adequate sharing is to permit additional sharing in the

last-level cache slice. The researchers also discussed the hybrid last-level cache design

choices and analyzed its hit/miss rate for several crucial server applications and multi-

programmed workloads. As per the simulation outcomes it was inferred that this kind of

architecture was most beneficial as it could increase the local hit rate to a great extent and

simultaneously ensure that the overall miss rate was comparable to that of the shared cache.

This scheme overlooks the matter related to the proportions of private as against the shared

cache dynamic partitioning based on the workload behavior.

26

The issue of segregating a shared cache amongst several simultaneous running applications

was analyzed by Qureshi et al. [59]. The frequently employed LRU strategy totally

segregates a shared cache as and when demanded, providing more cache resources to the

application with a higher demand and lesser cache resources to applications with lower

demands. On the other hand, a higher need for cache resources is not always linked to a

superior performance by the extra cache resources. It is advantageous for performance to use

the cache resources in the application that can best make use of the resources instead of

application that demands additional cache resources. Thus, the author recommend utility-

based cache partitioning (UCP), a low-overhead, runtime method that partitions a shared

cache between several application based on the lowering in cache misses that all the

applications probably get for a given extent of cache resources. The recommended method

observes each application at runtime employing a novel, cost-efficient, hardware circuit that

needs storage less than even 2KB. The data gathered by the monitoring circuits is employed

by a partitioning algorithm to choose the amount of cache size to be apportioned for each

application. The assessment with 20 multi-programmed workloads indicates that UCP

enhances functioning of a dual-core system by around 23% and on average 11% in contrast to

LRU-dependent cache partitioning. The current study has overlooked the multi-threaded

workload and the difference in utility of private data of rival threads.

A simple architectural extension and adaptive strategies for handling the L2 and L3 cache

hierarchy in a CMP system was proposed by Speight et al. [55]. Specifically, the researchers

assess two methodologies that enhance cache efficacy. Initially they recommended the

employment of a small history table to offer clues to the L2 caches as to which lines are

resident in the L3 cache. They use this table to remove few unrequired clean write backs to

the L3 cache, lowering pressure on the L3 cache and on the on-chip bus. Next, they analyze

the functioning advantages of permitting write backs from L2 caches to be transmitted to the

adjacent on-chip L2 caches instead of compelling them to be grasped by the L3 cache. In

addition to lowering the capacity stress on the L3 cache it also makes the following access

quicker as L2-to-L2 cache transfers characteristically have lower latencies compared to

accesses to a huge L3 cache array. The performance enhancement of these two schemes, and

their merged impact, on four commercial workloads is the lowering in the overall execution

time of around 13%.

Hardware-managed coherent caches and software-managed streaming memory are the two

primary models for the on-chip memory in CMP systems. A direct comparison of the two

27

models has been undertaken by Leverich et al. [56] assuming a similar group of presumptions

pertaining to technology, area, and computational skills.

The aim is to enumerate how and when they vary in context of execution, consumption of

energy, and width requirements in addition to latency tolerance for a CMPs. They show that

for all data-parallel applications, the performance and scaling of the both cache-based and

streaming models are similar. For specific applications that have limited data reuse, streaming

scales are superior on account of superior bandwidth employment and macroscopic software

pre-fetching. On the other hand, the initiations of methods like hardware pre-fetching and

non-allocating stores to the cache-based model reduce the streaming benefit. Overall, the

outcomes show that there is no adequate benefit in developing streaming memory systems

where all on-chip memory structures are handled explicitly. However, the author indicates

that streaming at the programming model level is especially advantageous, even with the

cache based model, as it improves locality and develops chances for maximization of

bandwidth. Furthermore, the author researcher notices that stream programming is really

effortless with the cache-based prototype as the hardware ensures suitable, best-endeavor

implementation even when the programmer fails to normalize the code of the application.

The Cooperative Cache Partitioning (CCP) to assign cache resources between threads

running simultaneously on CMPs was put forth by Chang et al. [57]. Distinct cache

partitioning schemes that employ a sole spatial partition recurrently all through a stable

program stage, CCP resolves cache contention with several time-sharing partitions.

Timesharing cache resources between partitions permits each thrashing thread to quicken

noticeably in at least one segment by one-sidedly reducing the capacity assignments to other

threads and also enhancing fairness by providing varied partitions an equal chance for

execution. Time-sharing based cache partitioning is additionally merged with CMP

cooperative caching [58] to develop the advantages of LRU-based latency optimizations,

which result to a basic partitioning algorithm and superior execution for workloads that fail to

take advantage of the cache partitioning. The author assess the efficacy of CCP by simulating

a 4-core CMP running all grouping of 7 representative SPEC2000 benchmarks. For

workloads that can take advantage of cache partitioning, CCP attains around 60%, and on

average 12%, superior performance compared to the comprehensive seeking of optimal static

partitions. Generally, CCP offers the most superior outcomes on almost all assessment

criteria for varied cache sizes.

28

The huge data working sets of commercial and scientific workloads underline the L2 caches

of CMPs. Few CMPs employ a shared L2 cache to increase the on-chip cache storage and

reduce off-chip misses. Other CMPs employ private L2 caches and duplicates data to restrict

the delay on account of global wires and reduce cache access time. The latest hybrid schemes

employ selective duplication to balance latency and capacity, but their static duplication

norms may lead to performance degradation for some amalgamations of workloads and

system configurations. The Adaptive Selective Replication (ASR) has been recommended by

Beckmann et al. [60]; it is a method that dynamically oversees workload behavior to control

duplication. ASR duplicates cache blocks only when it evaluates the advantage of duplication

(lower L2 hit latency) to surpass the outlays (additional L2 misses). Full-system simulations

of 8-processor CMPs indicate that ASR offers a healthy execution: enhancing the execution

by over 29% in contrast to shared caches, 19% in contrast to private caches and 12% in

contrast to CMP-NuRapid and Victim Replication.

A comprehensive research of fairness in cache sharing amongst threads in a chip

multiprocessor (CMP) architecture was put forth by Kim et al. [61]. The earlier studies

related to CMP architectures have merely analyzed throughput maximization methods for a

shared cache. Researchers have not assessed the problem of fairness in cache sharing, and its

association to throughput. Fairness is an essential problem as the Operating System (OS)

thread scheduler’s efficacy relies on the hardware to offer a suitable fair cache sharing to co-

scheduled threads. In the absence of such hardware, grave issues, including thread starvation

and priority inversion, may occur making the OS scheduler unproductive. The researcher

provides many inputs. Initially, the researcher recommends and assesses five cache fairness

metrics that gauge the extent of fairness in cache sharing, and indicates that two of them are

linked strongly with the execution -time fairness. Execution time fairness is described as

how uniform the execution times of co-scheduled threads are modified; where each

modification is comparative to the execution time of the same thread being implemented

solely. Next, using the metrics, the researcher recommends static and dynamic L2 cache

partitioning algorithms that maximize fairness. It is effortless to implement the dynamic

portioning algorithm as it does not need any major profiling and has a reduced overhead; it

does not limit the cache replacement algorithm to LRU. Despite the static algorithm require

the cache to keep LRU stack information, it can help the OS thread scheduler to evade cache

thrashing. Finally, the author studies the relationship between fairness and throughput, while

maximizing throughput does not necessarily improve fairness. Employing a group of co-

29

scheduled pairs of applications (benchmarks), on average the recommended algorithms

enhance fairness by factor of 4x while enhancing the throughput by 15%, in contrast to a non-

partitioned shared cache.

A distributed L2 cache management approach via page-level data to cache slice mapping in a

processor chip comprising of several cores was recommended and analyzed by Jin et al. [62].

L2 cache handling is an essential multi-core processor design facet to overpower non-uniform

cache access latency to achieve high performance during the execution of the program and to

lower on-chip net-work traffic and its power consumption.

An arrangement for the on-chip memory system of a chip multiprocessor, in which a 16MB

pool of 256 L2 cache banks is shared by 16 processors, was recommended by Huh et al. and

Foglia [63, 65]. The L2 cache is arranged as non-uniform cache architecture (NUCA) array

with a switched network inserted in it for superior performance. Researchers indicate that this

arrangement can endorse the range of degrees of sharing: unshared, in which every processor

owns a private segment of the cache, thereby, lowering the hit latency; completely shared, in

which each processor shares the entire cache, thereby reducing misses, and every point in

between. Researchers seek the best level of sharing for several cache bank mapping

strategies, and also assess a per-application cache partitioning policy. They infer that a static

NUCA arrangement with sharing degrees of two or four is most suitable for varied

commercial and scientific parallel workloads.

A dynamic cache partitioning scheme that clearly assigns cache space between concurrently

executing process and reduces the overall cache misses was put forth by Suh et al. [66].

Employing a group of on-line counters, the scheme dynamically estimates each process gain

or loss in varied cache assignments in context of the number of cache misses. Then, the

dynamic alteration of the allocation occurs to ensure that more essential processes can

employ additional cache space [67].

Nahalal, a new CMP cache architecture that partitions the L2 cache as per the data sharing of

the programs was recommended by Guz et al. [68]; this provides locality of reference to

shared as well as private data. A part of the L2 memory is located in the center of the chip,

surrounded on all sides by all processors, while the remainder of the L2 memory is situated

on the outer slices [20]. The hottest shared data populates the inner memory and is quickly

accessed by all the processors. A "backyard" for each processor is created by the outer slices.

30

The cache-fair scheduling algorithm, a novel operating system scheduling algorithm for

multi-core processors is introduced by Fedorova et al. [69]. This algorithm lowers the impact

of unequal CPU cache sharing that take place on these processors and result in partial CPU

sharing, priority inversion, and insufficient CPU accounting. As per the author, the execution

of the algorithm in the Solaris operating system indicates that it generates better priority

enforcement and enhanced execution stability for applications. With traditional scheduling

algorithms, application performance on multicore processors differs by around 36% based on

the runtime attributes of concurrent processes. The author assessed the execution of the

algorithm in Solaris 10 and indicated that it crucially lowers co-runner dependent

performance difference, while levying slight drawback on best-effort threads. Co-runner-

dependent performance is the outcome of unequal cache sharing, and by evading the same,

the researchers deal with the issues that were the result of unequal cache sharing.

Uncontrolled sharing in CMP results in situations where one core eliminates beneficial L2

cache content belonging to another core. To deal with this issue, Tam et al. [70] executed a

software tool that permitted partitioning of the shared L2 cache by directing the assignment

of physical pages. This method is successful in lowering cache contention in multi-

programmed SPECcpu2000 and SPECjbb2000 workloads. Performance enhancements of

around 17% were attained without any negative impact on co-scheduled applications. This

study failed to analyze how this method dynamically altered the number of partitions

accorded to an application in an on line, that too in a reduced overhead conduct.

As many schemes already exists and there is a need to find an efficient dynamic partitioning

scheme that explicitly allocates cache space amongst simultaneously executing tasks this

research work proposes to investigate the cache allocation that can be dynamically changed

so that more needy tasks can use more cache space and also propose to investigate methods to

resolve ownership of cache space efficiently.

As a response to the rising (comparative) wire delay, different methods have been proposed

by architects to handle the influence of slow wires on huge uniprocessor L2 caches. Block

migration (e.g., D-NUCA and NuRapid) lowers the average hit latency by transferring

commonly employed blocks towards the lower-latency banks. Transmission Line Caches

(TLC) employs on-chip transmission lines to offer low latency to all banks. Conventional

stride-based hardware prefetching attempts to endure instead of lowering the latency. There

are more issues with chip multiprocessors (CMPs). To begin with, CMPs frequently share the

on-chip L2 cache, needing several ports to offer adequate bandwidth. Next, multiple threads

31

indicate several varied working sets, which vie for restricted on-chip storage. Thirdly, sharing

code and data interferes with block migration, as one processor’s low-latency bank acts as

another processor’s high-latency bank. L2 cache designs for CMPs that merge these three

latency management methods were proposed by Bradford et al. and Kannan [71]. The

researchers employ comprehensive full-system simulation to evaluate the performance

tradeoffs for both commercial and scientific workloads.

The probability of using a very small data cache, split for fulfilling the needs of the temporal

and spatial streams was analyzed by Naz et al. [72].

The influence of different cache architectures on the execution behavior of multi-threading

applications was analyzed by Tao et al. [74]. His emphasis was on four common cache

planning problems: cache structure, configuration criteria, coherence influence, and

prefetching strategies. The research relies on a self-developed cache simulator that designs

the operability of a multi-core cache hierarchy with arbitrary levels and different

organizations. Both the hardware and program developers can be directed by the attained

outcomes to maximize their cache designs or the program codes.

In a shared L2 cache model of CMP, cache coherency is an important research issue to be

addressed. Although traditional cache coherency protocol has been used [83]. In a CMP,

cache coherency has been handled in a way to take advantage of its design structure. Roy et

al. [75] proposes variable forwarding cache coherence to improve performance of the system

by using variable forwarding. This work proposes and investigates various cache coherency

issues that exist in CMP and various ways of resolving them.

2.3 An Introduction to Multiprocessor Memory Consistency

Serial programs running on Von-Neumann machines present a simple intuitive model to the

programmer. The instructions seem to be executed in the manner stated by the programmer or

compiler irrespective of the fact that the design of the machine really executes them in a

varied sequence. Crucially, a program’s load returns the last value that was written in the

memory location. Similarly the value of the next load is ascertained by the store to a memory

location. This description results in a direct implementation and semantics for programs

being executed on a single uniprocessor. Multi-threaded programs being executed on

multiprocessor machines obscure the programming model and also the implementation to

enforce a specific model. Specifically, the value returned by a given load is indistinct as the

latest store may have taken place on a varied processor core. Hence, architects describe

32

memory consistency models [76] to state how a processor core can detect memory accesses

from other processor cores in the system. Sequential consistency is a model described to be

one that the outcome of any execution is similar as if the operations of all processors were

executed in some chronological order, and the operations of each distinct processor act in this

sequence in the order stated by its program [77]. Other, more relaxed consistency models [78]

can provide the system designer additional freedom to further optimize memory system to

decrease memory latency. For instance, a relaxed model (memory) allows simple

implementation of write buffers with the bypassing option. While relaxed prototypes can

enhance performance by retiring memory instructions prior to them having being noticed by

other processors in the system, proper synchronization of multi-threaded applications is still

needed. Systems employing relaxed memory consistency prototype either have additional

instructions that permit a programmer to compel orderings between loads and stores [79], or

describe semantics in a way that a programmer can synchronize by employing sensibly

developed series of loads and stores. The addition of cache memories influences how

consistency is enforced irrespective of sequential or relaxed consistency.

2.3.1 Effect of Caches on Memory Consistency

Cache memories have been paramount in facilitating the rapid performance progress of

microprocessors over the past twenty years. They allow processor speeds to increase at a

greater rate than DRAM speeds by exploiting locality in memory accesses. The importance of

caches is their effective operation with very little impact on the programmer or compiler. In

other words, details of the cache hierarchy do not affect the instruction set architecture and

their operation is all hardware-based and automatic from a programmer’s point-of-view.

While implementing a cache hierarchy had little ramification on a uniprocessor’s memory

consistency, caches complicate multiprocessor memory consistency. The root of the problem

lies in store propagation. Figure 2.3 illustrates a simple example of incoherence. Initially,

memory location A has the value 42 in memory, and then both Core 1 and Core 2 loads this

value from memory into their respective caches. At time 3, Core 1 increments the value at

memory location A from 42 to 43 in its cache, making Core 2’s value of A in its cache stale

or incoherent. To prevent incoherence, the system must implement a cache coherence

protocol to regulate the actions of the cores such that Core 2 cannot observe the old value of

42 at the same time that Core 1 observes the value 43. The design and implementation of

these cache coherence protocols are the main topics of discussion. While R1 and R2 – the

two cores in a system may load the same memory block into their corresponding private

33

caches, a following store by any one of the cores would result in a variation in the values of

the caches. Hence, if R1 stores to a memory block that exists in both the caches of R1 and

R2, R2’s cache has a probable old value on account of the R1’s default function of storing its

individual cache. The current cache incoherence would not be an issue if R2 never loads to

the block while still cached or if the multiprocessor did not back the transparent shared-

memory abstraction. However, since the multiprocessor memory model should support

shared-memory programming, at some point the future loads of the block by R2 needs to

obtain the novel value stored by R1, as described by the model. Thus, R1’s store must

probably impact the status of the cache line in R2’s cache to sustain consistency, and the

methods for doing the same are known to be cache coherence. Hence, the policy of the

current study considers the cache coherence to be an independent problem related to memory

consistency that is essential but not adequate to implement a given model. All the protocols

that we discuss can endorse any memory consistency prototypes, but our explanations would

presume sequential consistency.

Figure 2.3: Problem of Incoherence

34

2.3.2 Cache Coherence Invariant and Permission

The example of an incoherent situation described in the previous section 2.2 is intuitively

“incorrect” in that cores observe different values of a given datum at the same time. In this

section, we transition from an intuitive sense of what is incoherent to a precise definition of

coherence. There are several definitions of coherence that have appeared in textbooks and in

published papers. We present the definition we prefer for its insight into the design of

coherence protocols. In the sidebar, we discuss alternative definitions and how they relate to

our preferred definition. The basis of our preferred definition of coherence is the single-

writer–multiple-reader (SWMR) invariant. There may be either a single core that may write

(and may also read) or multiple cores that may read any given memory location at any given

moment of time. Thus, there is never a time when a given memory location may be written

by one core and simultaneously either read or written by any other cores. Another way to

view this definition is to consider, for each memory location, that the memory location’s

lifetime is divided up into epochs. In each epoch, either a single core has read–write access or

some number of cores (possibly zero) have read-only access. Figure 2.4 illustrates the

lifetime of an example memory location, divided into four epochs that maintain the SWMR

invariant.

In addition to the SWMR invariant, coherence requires that the value of a given memory

location is propagated correctly. To explain why values matter, let us reconsider the example

in Figure 2.2. Even though the SWMR invariant holds, if during the first read-only epoch

Cores 2 and 5 can read different values, then the system is not coherent.

Figure 2.4: Dividing a given memory location’s lifetime into epochs

Similarly, the system is incoherent if Core 1 fails to read the last value written by Core 3

during its read–write epoch or any of Cores 1, 2, or 3 fail to read the last write performed by

Core 1 during its read–write epoch. Thus, the definition of coherence must augment the

SWMR invariant with a data value invariant that pertains to how values are propagated from

one epoch to the next. This invariant states that the value of a memory location at the

beginning of a period is similar to the value of the memory location at the completion of its

35

last read–write period. There are other interpretations of these invariants that are equivalent.

One notable example [88] interpreted the SMWR invariants in terms of tokens. The

invariants are as follows. For each memory location, there exist a fixed number of tokens that

is at least as large as the number of cores. If a core has all of the tokens, it may write the

memory location. If a core has one or more tokens, it may read the memory location. At any

given time, it is thus impossible for one core to be writing the memory location while any

other core is reading or writing it.

2.3.3 Coherence invariants

1. Single-Writer, Multiple-Read (SWMR) Invariant. At any given (rational) time, for

any memory location B, only a single core is present that may write to B (and also has

the ability to read it) or some limited cores that may only read B.

2. Data-Value Invariant. The value of the memory location at the initiation of a period is

equivalent to the value of the memory location at the completion of its last read–write

period.

2.4 Coherence Protocols

The goal of a coherence protocol is to maintain coherence by enforcing the invariants

introduced in the previous section. To implement these invariants, we associate with each

storage structure (each cache) and the LLC/memory a finite state machine called a coherence

controller.

Figure 2.5: Cache Controller

36

The collection of these coherence controllers constitutes a distributed system in which the

controllers exchange messages with each other to ensure that, for each block, the SWMR and

data value invariants are maintained at all times. The interactions between these finite state

machines are specified by the coherence protocol. Coherence controllers have several

responsibilities. The coherence controller at a cache, which we refer to as a cache controller,

is illustrated in Figure 2.5. The cache controller must service requests from two sources. On

the “core side,” the cache controller interfaces to the processor core. The controller accepts

loads and stores from the core and returns load values to the core. A cache miss causes the

controller to initiate a coherence transaction by issuing a coherence request (e.g., request for

read-only permission) for the block containing the location accessed by the core. This

coherence request is sent across the interconnection network to one or more coherence

controllers. A transaction includes a request and the other message(s) that are exchanged in

order to satisfy the request (e.g., a data response message sent from another coherence

controller to the requestor). The types of transactions and the messages that are sent as part of

each transaction depend on the specific coherence protocol. On the cache controller’s

“network side,” the cache controller interfaces to the rest of the system via the

interconnection network. The controller receives coherence requests and coherence responses

that it must process. As with the core side, the processing of incoming coherence messages

depends on the specific coherence protocol.

Figure 2.6: Memory Controller

The coherence controller at the LLC/memory, which we refer to as a memory controller, is

illustrated in Figure 2.6. A memory controller is akin to a cache controller, the sole exception

being that it generally has only a network side. As such, it does not issue coherence requests

37

(on behalf of loads or stores) or receive coherence responses. Other agents, such as I/O

devices, may behave like cache controllers, memory controllers, or both depending upon their

specific requirements. Each coherence controller implements a set of finite state machines

rationally one independent, but similar finite state machine per block and receives and

processes events (e.g., incoming coherence messages) depending upon the block’s state. For

an event of type E (e.g., a store request from the core to the cache controller) to block B, the

coherence controller takes actions (e.g., issues a coherence request for read-write permission)

that are a function of E and of B’s state (e.g., read only). After taking these actions, the

controller may change the state of B. As stated initially in the current study, permitting

multiple cores to access the same address space to store data in their private caches leads to a

cache coherence problem. This problem is made transparent to software via hardware

implementation of cache coherence protocols. There are two varied strategies that can be

employed to sustain cache coherence, and depending on them, we can segregate amongst

invalidation and update-based cache coherence protocols [80, 81]. On getting a write request,

invalidation-based protocols [78] sends invalidation messages to all the sharers (the sole

exception being the requester) and it requires privates copies must be invalidated. However,

update based protocols forwards the newly written copy to all the sharers after write

operation. The chief drawback of the update-based protocols is the generation of heavy

network traffic. This is more evident, when a processing core writes a block several time

prior to another core reading the block; this results in all updates being notified, requiring a

varied message for each one. Despite this disadvantage being lowered by adaptive protocols

[82], this is one of the chief reason why the latest systems employ invalidation-based

protocols and, thus, the current work considers invalidation based cache coherence protocols.

Invalidation-based protocols need to guarantee the subsequent invariant.

Logically, at any point, a single core can write a cache block or multiple cores (SWMR) can

read one cache block. Thus, if a processing core desires to alter a cache block, this block has

to be invalidated beforehand (the read permission needs to be invalidated) from the other

caches. Similarly, if a processing core desires to read a cache block, the write permission

allotted to some other cache needs to be invalidated beforehand. There are other crucial

design choices that impact the ultimate efficacy of the protocol when implementing a cache

coherence protocol. The subsequent section outlines the description of a cache coherence

protocol and subsequently discusses the existing protocols.

38

2.4.1 Design space for cache coherence protocols

There are many options for designing cache coherence protocols based on the states of the

blocks present in the private caches. These options have been generally termed based on the

states they use: MOESI, MOSI, MESI, MSI etc. Each state stands for varied authorizations

for a block present in a private cache.

2.4.2. Specifying cache coherence protocols

A designer of a coherence protocol must choose the states, stable states, transient states,

transactions, events, and transitions for each type of coherence controller in the system.

Cache block states:

In a system with only one actor (e.g., a single core processor without coherent DMA), the

state of a cache block is either valid or invalid. There might be two possible valid states for a

cache block if there is a need to distinguish blocks that are dirty. A dirty block has a value

that has been written more recently than other copies of this block. For example, in a two-

level cache hierarchy with a write-back L1 cache, the block in the L1 may be dirty with

respect to the stale copy in the L2 cache. A system with multiple actors can also use just these

two or three states, but we often want to distinguish between different kinds of valid states.

There are four characteristics of a cache block that we wish to encode in its state: validity,

dirtiness, exclusivity, and ownership [83].

The latter two characteristics are unique to systems with multiple actors.

Validity: A valid block has the most up-to-date value for this block. The block may be read,

but it may only be written if it is also exclusive.

Dirtiness: As in a single core processor, a cache block is dirty if its value is the most up-to-

date value, this value differs from the value in the LLC/memory, and the cache controller is

responsible for eventually updating the LLC/memory with this new value. The term clean is

often used as the opposite of dirty.

Exclusivity: A cache block is exclusive if it is the only privately cached copy of that block in

the system (i.e., the block is not cached anywhere else except perhaps in the shared LLC).

Ownership: A cache controller (or memory controller) is the owner of a block if it is liable

for replying to coherence requests for that block. In most protocols, there is exactly one

owner of a given block at all times. A block that is owned may not be removed from a cache

to permit another block to enter due to a capacity or conflict miss without giving the

39

ownership of the block to another coherence controller. Non-owned blocks may be evicted

silently (i.e., without sending any messages) in some protocols.

In this section, we first discuss some commonly used stable states of the blocks that are not

currently in the midst of a coherence transaction and then discuss the use of transient states

for describing blocks that are currently in the midst of transactions.

2.4.3 Stable States

Many coherence protocols use a subset of the classic five state MOESI model first introduced

by Sweazey and Smith [83]. These MOESI (often pronounced either “MO-sey” or “mo-EE-

see”) states refer to the states of blocks in a cache, and the most fundamental three states are

MSI; the O and E states may be used, but they are not as basic. Each of these states has a

different combination of the characteristics described above.

M (modified): In CMP system, only a private cache of a single core keeps the valid copy of

the data block in this state, and only this single core has permission to read/write over the

block. The private caches of the other cores do not hold any valid copy of this block. Even

the shared L2 cache holds an invalid copy of this block. In the case of requests from other

cores for this particular block, the private cache with valid copy of the block in modified state

must provide requested block

S (shared): In this state cache holds a valid data block. In CMP system, multiple cores are

allowed to keep private copies of the data block in shared state but a single core holds the

block in owned state. If there is no private cache with data block in owned state then shared

L2 cache is responsible for providing the requested block.

I (invalid): In this state cache do not keeps a valid copy of the requested data block. A valid

copy of the requested data block can be present in shared L2 cache or in the private cache of

another core.

O (owned): In this state, the copy of the block in the cache is valid as well as dirty but it is

not the exclusive copy. The private caches of the other cores may hold a read-only copy of

this block but none of them can hold the block in owned state. The shared L2 cache holds a

stale copy of the block. In case other cores need to modify this block, the coherence

controller needs to send invalidation messages to invalidate all the private copies in the

system. This scenario is quite similar with the shared state. The main difference between

these two states is that in case of a miss, the private cache with block in owned state is

40

responsible for forwarding this block since the shared L2 cache holds the stale copy of the

block. However, the block evictions in the owned state entails write back operations.

E (exclusive): In this state cache holds a valid copy of the requested cache block. This single

core is allowed to read/write to this valid copy of the data block. Another valid copy of the

block may exist in the shared on-chip cache.

The most basic protocols use only the MSI states, but there are reasons to add the O and E

states to optimize certain situations. When we present MESI snooping and directory protocols

in later chapters, we discuss the issues involved.

2.4.4 Transient States

Thus far we have discussed only the stable states that occur when there is no current

coherence activity for the block, and it is only these stable states that are used when referring

to a protocol (e.g., “a system with a MESI protocol”). However, there may exist transient

states that occur during the transition from one stable state to another stable state. We had the

transient state IVD (in I, going to V, waiting for DataResp). In more sophisticated protocols,

we are likely to encounter dozens of transient states. We encode these states using a notation

XYZ, which denotes that the block is transitioning from stable state X to stable state Y, and

the transition will not complete until an event of type Z occurs. For example, in a protocol in

a later chapter, we use IMD to denote that a block was previously in I and will become M

once a D(ata) message arrives for that block. The various combinations using a subset of

these states are illustrated below to design different protocols:

MSI

The simplest cache coherence protocol requires at least MSI states (three states) to enforce

invariant discussed previously while using write back private cache. A single core in the

CMP has provided read/write permissions for a block, which means its private cache holds

block in M (modified) state. However, other cores in the CMP have permissions to read the

block while caching the block in S (shared state). Figure 2.7 presents state transition diagram

for a simple MSI based cache coherence protocol.

Figure 2.7: State Diagram for MSI

41

In case of a request for a new block from one of the processing core, an existing block must

be evicted from the private cache to make space for the incoming block. Moreover, the

eviction of block requires state transition to the I state but we have not shown these

transitions in the state diagram.

In order to read a block the core must issues GetS request for the block while executing an

application. It requires read permission (Rd/GetS) for the block if the block is not previously

accessed. However, if the core already have a read permission then a read request is

generated (Rd/-). On the other side, if the executing core needs to write to a cache block then

it must generate GetX request to obtain the write permission (Wr). As shown in Figure 2.7,

the transition due to the requests generated by remote cores are represented by dashed arrows

while the normal arrows represents the transition caused by local requests. The design of MSI

cache coherence protocols is relatively simple but it has few drawbacks which can be

improved by adding few more states such as Exclusive (E) and Owner (O). The addition of

exclusive (E) state further optimizes the simple MSI protocol for non-shared data blocks.

Hence, it is essential to obtain good performance for sequential applications running on a

multiprocessor. On receiving a read request from a core, the data block is brought into private

cache and stored with exclusive state instead of the shared state. In this case, the requesting

core obtains write permissions for a block. However, the subsequent write request for this

block will not result into cache miss (in case none of the other cores requested for the block).

After write operation the status of the cache block will be silently changed to the modified

one. The difference between the exclusive state and modified state is that the data block with

exclusive state is clean and the shared LLC cache holds a valid copy of the data block. The

main benefit of this state is that in case of block eviction or read requests from other

processing cores, there is no need to write back data to the shared cache.

Figure 2.8: State transition for MESI

42

The state transition diagram for the MESI based cache coherence protocol is presented in

Figure 2.8.

Now, to further optimize the MESI protocol [83] an additional state is introduced know as

owned state. The main advantage of owned state is that in case of a shared request from a

remote processing core to the cache block stored in the modified state, the state changes from

modified to the owned state instead of transition to the shared state. The owned state is quite

similar to the shared state with the difference that the shared LLC cache do not hold a valid

copy of the data block. Following are the benefits of the addition of owned state:

• The first one is the reduction of network traffic because the processing core does not need to

write the data block back to the shared L2 cache during a remote read request and the block

state transitions from the modified state to the owned state.

• Secondly, the shared L2 cache is not required to maintain a replica for blocks within the

owned state, which can lead to improved utilization and thus lowering the miss rate of the

shared cache. Note that in CMPs with a shared cache organization, the misses of the shared

cache require off-chip accesses.

• Thirdly, for a few architectures cache misses can be resolved more rapidly by supplying

data from private caches as compared to the shared cache. This is primarily the case of the cc-

NUMA machines [93], in which the shared cache is represented by main memory, or perhaps

even CMPs utilizing a private cache organization [114]. However, in CMPs along with a

shared cache organization, the data block can be delivered more quickly from the shared

cache and, in this case, this benefit can be ignored. Figure 2.9 presents the state transition

diagram for the MOESI cache coherence protocol.

Figure 2.9: State Transition for MOESI Protocol

43

The owned state also can also be witnessed without the exclusive state resulting in a MOSI

protocol whose state transition diagram is not indicated. All the cache coherence protocols

evaluated in the current study presume MOESI states.

2.5 Existing Cache coherence protocols

In this section, we will present few already existing cache coherence protocols for

multiprocessors.

2.5.1 Snooping bus-based coherence protocol

Goodman et al. [79] first described snooping coherence on bus. In snoop-based protocols, a

coherence request is broadcast to all nodes and every node snoops the request. Each node

maintains an identical state machine to implement the cache coherence protocol. By snooping

the request, each node applies the message on current state of the state machine and responds

accordingly. In these systems, a node is considered a uniprocessor with its private cache

hierarchy. Snoop-based protocol is implemented by using different techniques depending on

the topology for interconnect. The most interesting ones are bus-based and ring-based

snooping. Bus-based snooping is the widely used approach for cache coherence where a bus

connects all components to a set of wires. A bus offers the key ordering and atomicity

attributes that allow straightforward coherence operations. Goodman [79] first described

snooping coherence on a bus. This technique has some variants. The sent messages are

viewed by all the endpoints on a bus in a similar total order. Busses offer atomicity such that

at one time only one message is visible on the bus and that all endpoints see that message.

Buses execute shared lines that permit any endpoint to alter a signal or condition that is

visible across to all other endpoints during a bus transaction. Shared wires are used for bus

arbitration. They are also used in coherence actions like a processor having a shared copy of

the cache line can indicate whether there is any shared cache copy on snooping a GETS

request in the bus. When a GETX request (permission to modify data) is introduced on the

bus, all nodes snoop their caches and the memory controller gets ready to fetch the data from

DRAM. If the tag is present in a processor’s cache in read-shared state S, the coherence state

is altered to invalid state I to nullify read permission from its own processor. If the

processor’s cache has a tag in altered state M, exclusive state E, or owner state O, it declares

the shared owned line to constrain a memory reply and then puts the data on the bus before

moving its state to I. In a bus-based protocol, the shared owned line provides the functionality

of signaling the memory controller not to send the data when data is altered in a processor’s

44

cache. If there is no processor to provide the data (shared owned line is not set) memory

controller provides the data. When a GETS request (permission to read data) appears on the

bus, all nodes snoop their caches and the memory controller gets ready to fetch the data from

DRAM. If the processor’s cache has a tag in M, E, or O state, it declares the shared owned

line to constrain a memory reply and then puts the data on the bus before moving its state to

O or S state depending on implementations; otherwise memory controller serves the data and

requester moves to E- state.

Cache replacements are performed silently for copies in S or E state. For M or O state it

requires a write back of modified data to memory. To write back, the node needs to introduce

a WRITEBACK bus transaction that contains includes the data and is accepted by memory.

The atomic character of the bus guarantees that racing coherence requests are ordered in

context to the write back function. Sometimes the write back data may be buffered in write

back buffer to serve the misses before writing back. In that case, bus snoops must also look

into write back buffer. Bus arbitration determines the fairness of the bus-based broadcast

protocol as a processor can complete its transaction if and only if it is able to send its request

on the bus. A state transition must appear atomic. For example, two nodes may send the

UPGRADE request simultaneously while both are in shared state. One of them will get the

bus exclusive access and the other will not. The bus-owner node’s UPGRADE will invalidate

second requester’s copy. Once the second requester gets the bus access, the UPGRADE

message is no longer valid as it does not have a shared copy. There are several ways bus can

be implemented. One approach is to use electrically shared wires which are held exclusively

for the entire cache coherence transaction (atomic transaction). A better performing option is

to use split transactions to permit other processors to get the bus while awaiting a reply.

Modern snooping systems execute a logical bus employing additional switches, state, and

logic instead of shared electrical wires; some of those systems also execute the ordering of a

bus only for coherence control messages and not for data such as Sun Starfire [86] [87]

system executes a logical bus merely for coherence request messages, but data responses are

transmitted on a different switched interconnect. Few of the buses use pipelining methods in

order to attain more concurrency. While these more aggressive buses may ease the atomicity

attribute, they still offer a total order of coherence requests that allows a straightforward

execution of snooping.

45

The disadvantage of these bus-based snooping protocols is that the buses have limited

bandwidth. The more often it snoops on the bus, the less bandwidth is available for the bus’s

main job of transferring information back and forth. In addition, the broadcast nature of cache

messages requires even more valuable bandwidth.

2.5.2 AMD-Hammer Coherence protocol

The Opteron systems from AMD made use of Hammer cache coherence protocol for CMPs

[8] [9]. Just as snooping-based protocols, Hammer fails to retain any coherence details about

the blocks kept in the private caches and, due to this fact, it relies upon broadcasting requests

to each individual cores on the chip to resolve cache misses. Its key benefit in comparison

with snooping-based protocols is that it manages systems which makes uses unordered point-

to-point interconnection networks. The hammer protocol supports small to moderate number

of cores and it works with unordered interconnection network where traditional snooping is

not possible.

Figure 2.10: Cache to Cache miss in AMD-Hammer protocol

In case of a cache miss, the hammer first sends a request to the home memory, it allocates a

transaction entry to place the block into a busy state and the request is send to all the cores

within the system like broadcast based protocol to obtain the requested block and to clear

away the potential copies of the block in case of a write miss. Finally, the request is

forwarded to the memory controller that fetches data from main memory and sends it to the

requester. After receiving forwarded request, each core sends an explicit acknowledgment or

the data message to the requester. As soon as the requester obtains each of the responses, it

transmits an unblock message to the home tile. This message informs the home tile with the

fact that the miss has already been fulfilled. In such a manner, if there is an additional request

for the identical block waiting with the home tile, then it is processed by providing the

46

requested block. Despite the fact that the unblock message may also introduce additional

contention towards the home tile, it really stops the appearance of race problems. This

message is also helpful to eliminate race conditions in directory-based protocols, which are

discussed shortly. Figure 2.10 demonstrates an illustration of how Hammer resolves a cache-

to-cache transfer miss. As shown in figure, the core R communicates a GetX request (write)

towards the home node (H). Thereafter, home node transmits invalidation messages to all the

cores. The core having the ownership of the requested block replies with the data block (3

Data). On the other hand, all the cores that do not maintain a copy of a given block (Invalid)

retort by means of the acknowledgement messages. As soon as the requester obtains each of the

responses, it transmits the unblock message (4 Unbl) towards the home core. At first, we

observed that, this protocol requires three hops within the critical path before the required

data block is acquired. Secondly, transmitting the invalidation messages raises significantly

the traffic inserted within the interconnection network and, as a consequence increases power

consumption.

2.5.3 Token-Based Coherence protocol

Token coherence [88] is a framework for designing coherence protocols whose main asset is

that it decouples the correctness substrate from several different performance policies. Token

coherence protocols can avoid both the need of a totally ordered network and the introduction

of additional indirection caused by the access to the home tile in the common case of cache-

to-cache transfers. Token coherence protocols keep cache coherence by assigning T tokens to

every memory block, where one of them is the owner token. Then, a processing core can read

a block only if it holds at least one token for that block and has valid data. On the other hand,

a processing core can write a block only if it holds all T tokens for that block and has valid

data. Token coherence avoids starvation by issuing a persistent request when a core detects

potential starvation. In CMP systems, it uses a distributed arbitration scheme for persistent

requests, which are issued after a single retry to optimize the access to contended blocks.

Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In

case of a write miss, they have to answer with all tokens that they have. The data block is sent

along with the owner token. When the requester receives all tokens the block can be

accessed. On the other hand, just one token is required upon a read miss. The request is

broadcast to all other tiles, and only those that have more than one token (commonly the one

that has the owner token) answer with a token and a copy of the requested block. Figure 2.11

shows an example of how Token solves a cache-to-cache transfer miss. Requests are

47

broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which responds

by sending the data and all the tokens (2 Data).

Figure 2.11: Cache to Cache miss in Token coherence protocol

We can see that this protocol avoids indirection since only two hops are introduced in the

critical path of cache misses. However, as happens in Hammer, this protocol also has the

drawback of broadcasting requests to all tiles on every cache miss, which results in high

network traffic and, consequently, power consumption at the interconnect.

2.5.4 Directory-based protocol

One of the most widely used cache coherence protocol [85] [89] in shared memory

multiprocessors was directory based coherence protocol. A number of conventional

multiprocessors that employed directory protocols are the Standford DASH [91] and FLASH

[92] multiprocessors, the SGI Origin 2000/3000 [93], and the AlphaServer GS320 [94].

Currently, a number of Chip Multiprocessors, such as Piranha [95] or Sun UltraSPARC T2

[96], as well employs directory protocols to maintain cache coherence. In directory based

protocols, the serialization location is also the home core of the block, which is similar to the

hammer protocol. In comparison to hammer, the directory based protocols refrain from

transmitting the requests by maintaining details about the state of every individual block

within the private caches. This data is known as directory information (therefore known as

directory-based protocols). In an effort to speed up cache misses, this directory details are not

kept in main memory. Rather, it is often stored on-chip with the home tile of each and every

block. The directory-based protocol that we have implemented for CMPs is similar to the

intra-chip coherence protocol used in Piranha. Essentially, the directory data is comprised of

a full-map (or bit-vector) sharing code that is utilized for tracking the sharers of the block.

Sharing code permits protocol in terms of sending invalidation messages to caches that are

currently sharing block, and so remove unnecessarily identified coherent messages. In

48

directory-based protocols, where O-state is for ‘an owner field’, referring to owner tile gets

added to directory information meant for every block. Owner field permits protocols in terms

of detecting tile that needs to offer block meant under varied sharers. Thus, requests are

forwarded to tile. Application of directory information permits protocol for reducing adequate

network traffic as against Hammer as well as Token. Over each cache missed in application is

marked in directory protocol [97] [98], where core reason to miss sends request to home tile,

an aspect that serializes for all kinds of requests issued in terms of same block. Every home

tile comprises of on-chip directory cache that is responsible for storing, sharing and further

owning data for blocks as it manages. This cache gets implied for blocks that never hold any

copy in shared cache. Moreover, tags’ part of the shared cache comprises field for storing all

the shared data meant for those blocks with a valid entry in cache. As home tile decides about

the request process, it gains access towards directory data and further performs apt kinds of

coherent actions. These actions comprise forwarding request to owner tile, and further lay

interest in invalidating all the block copies for an instant where write gets missed. Whenever,

the tile obtains a forwarding request, it sends the data towards the consumer when it is

already available or, in other instance, the request need to hold back until the data will be

available. Similar to Hammer, each and every tiles must reply to the invalidation messages

using an acknowledgement message to the consumer. Since, the acknowledgement messages

are obtained by the requester, it is often essential to update the consumer regarding the

number of acknowledgements that it must obtain prior to accessing the requested data block.

Within the implementation that we use in this thesis, this information is sent from the home

tile, which has knowledge of the total number of invalidation messages released, to the

requester in addition to forwarding as well as data messages. Whenever the consumer obtains

all acknowledgements and the data block, it unblocks the home tile in order to permit it to

process additional requests for that block. Figure 2.12 presents an illustration of how

directory resolves a cache-to-cache transfer miss. The request is forward towards the home

tile, wherein the directory data is preserved (1 GetX). After that, the home tile forwards the

request towards the source of the block, which is extracted from the directory data (2 Fwd).

Whenever the data forwarded by the provider arrives towards the requester (3 Data), the miss

is considered solved and the home tile must be unblocked (4 Unbl). As we can see, although

this protocol presents indirection to resolve cache misses (about three hops within the critical

path of the miss), a small number of coherence messages are involved to resolve them, which

ultimately translates into savings in network traffic and less power consumption. This

attribute makes the directory protocol the utmost scalable approach.

49

Figure 2.12: Cache to Cache transition in Directory based coherence protocol

The cache coherence protocols explained earlier are summarized in Table 2.1. It is not

feasible to employ conventional snooping-based protocols for scalable point-to-point

networks. Hammer can work over scalable point-to-point networks but at the expense of

broadcasting requests to all cores and introducing indirection in the critical path of cache

misses. Tokens on the other hand, evade the indirection but yet send requests to all cores on

every cache miss, which, in turn, influences the consumption of power and network traffic.

Contradictorily, directory merely sends requests to the core that must obtain them; it

however, initiates indirection, which influences the execution time of the applications.

Table 2.1: Summary of coherence protocols

 Network Requests Indirection

Snooping shared interconnect To all cores No

Hammer Point-to-point To all cores Yes

Token Point-to-point To all cores No

Directory Point-to-point Only to necessary Yes

In our work in this thesis, we have used modified directory-based coherence protocols that

circumvents both broadcasting messages to each of the cores and the indirection to the owner

core for majority of cache misses.

2.6 Summary

In this chapter, we reviewed the existing research done to optimize cache management

schemes for uni-cores and multicore processors. We focused on some fundamental work

followed by description of existing cache coherence techniques for multiprocessors.

50

Chapter 3

Evaluation Methodology

This chapter describes the experimental framework and the benchmarks used in this thesis.

51

Chapter 3

Evaluation Methodology

3.1 Introduction

The Experimental frame work and the methodology employed in this thesis is described in

the current chapter. First, a flexible and detailed cache-coherent distributed shared memory

system prototype that comprises of L1 caches, L2 caches, main memory and interconnection

network is implemented. Then details of the timing simulation tool are presented followed

by the discussion of the power and area estimation tools.

The remainder of the chapter is structured as follows: Section 3.2 presents the details of the

simulation tools used for the performance evaluations carried out in the current work. Section

3.3 and Section 3.4 discusses the interconnection and power estimation tools used for

calculating the improvements for the proposed schemes. At last, the discussions on the choice

of application programs (benchmarks) and their descriptions are presented in Section 3.5.

3.2 Experimental Frame work

We employed an in-order processor model with the emphasis on the average raw memory

latency encountered by each memory request to provide a much better illustration of the

memory system behavior.

3.2.1 Simulation Tools (Simulation Setup)

We have used Simics from Virtutech, which is a full system simulator [99] that has the ability

of simulating an entire computing system, including processors, caches and memories,

graphics and networking cards, hard disks, and many types of removable media. This kind of

flexibility allows the simulation of many different hardware architectures and the ability to

boot a variety of different operating systems. Better yet, the ability to boot these operating

systems means that there are a variety of benchmarking suites available to test system

optimizations. Simics provides a built-in cache system called g-cache that allows individual

cache modules to be attached to a processor. Using these cache modules it is possible to build

up a model of the entire cache system, including simulating accesses to main memory. The g-

cache implementation even provides support for a built-in coherency protocol called MESI,

which is used in a many of Intel’s microprocessors. While this implementation of MESI is

specifically intended for cache systems utilizing write-through L1 caches and write-back L2

52

caches, it can be modified to work for other configurations. MESI, which represents Modified

Exclusive Shared Invalid, provides a method for indicating the status of lines within the

cache. Limiting the number of states to four requires that only two bits be added to each line

in the cache, resulting in a relatively small storage overhead.

At present, Simics backs prototypes for the following architectures: UltraSPARC, Alpha,

x86, x86-64 (Hammer), PowerPC, IPF (Itanium), MIPS and ARM. In addition to the ability

of simulating target architectures, Simics easily allows the inclusion of extensions or modules

in order to extend its functionalities.

3.2.2 Detailed Cache Simulator

We employed a modular simulation infrastructure GEMS (General Execution-driven

Multiprocessor Simulator) that decouples both stimulation functionality and timing so as to

develop a simulation tool-set that endorses both full-system and timing simulation [100]. We

utilized Simics [99], a full-system functional simulator, as the basis on which different timing

simulation units could be loaded dynamically. We control both the efficacy and robustness of

a functional simulator by decoupling functionality and timing simulation in GEMS. The

employment of the modular design offers the adaptability to simulate different system

modules in varied levels of details. GEMS include a group of modules executed in C++ that

plug into Simics and add timing capacities to the simulator. GEMS provide offers varied

modules for designing different facets of architecture.

Figure. 3.1: A block diagram of GEMS Structure: Ruby, detailed memory simulator can be
driven by one of four memory system request generators

53

The heart of GEMS is the Ruby memory system simulator. As illustrated in Figure 3.1,

GEMS provides multiple drivers that can serve as a source of memory operation requests to

Ruby:

1) Random tester module: The most basic driver of Ruby is a random testing unit designed

to stress test the corner cases of a given memory organization. It makes use of false

sharing as well as action/check pairs to identify several possible memory system as well

as coherence issues in addition to race problems [28]. A number of capabilities are found

in Ruby that can debug the modelled system along with deadlock identification as well as

protocol tracing.

2) Micro-benchmark module: This driver allows several micro-benchmarks with a

common interface. The feature work extremely well for fundamental timing validation, in

addition to comprehensive performance evaluation of certain conditions (e.g., lock

contention or widely-share data).

3) Simics: This driver makes use of Simics functional simulator to effectively approximate a

reliable in-order processor without pipeline stalls. Simics sends each and every load,

store, and instruction fetch requests to Ruby, which carries out the first stage cache access

to find out if the operation hits or misses within the first level cache. Upon the cache hit,

Simics may keep executing instructions, switching between processors within a multiple

processor setting. On a cache miss, Ruby stalls Simics’ request originating from issuing

processor, and thereafter simulates the cache miss. Every individual processor could have

only a single miss outstanding, however contention along with other timing affects among

the cpu cores will decide when the request finishes. By governing the timing related to

when Simics advances, Ruby decides the timing-dependent functional simulation in

Simics (e.g., to identify which processor subsequently receives a memory block).

4) Opal: This powerful driver models a dynamically-scheduled SPARC v9 processor and

certainly utilizes Simics to verify its functional correctness.

 The initial pair of drivers belong to a stand-alone executable that is separate from Simics

or any real simulated program. Moreover, Ruby is particularly developed to assist various

other drivers other than four already mentioned by means of well-defined interface.

GEMS’ modular layout offers considerable simulator configuration flexibility. For

example, these memory system simulator is separate from our processor simulator.

GEMS additionally provides flexibility in specifying several cache coherence protocols

54

that can be simulated by our timing simulator. It divides the protocol-dependent

information from the protocol-independent system components as well as techniques. To

facilitate specifying different protocols and systems, it provides the protocol specification

language SLICC which we have used for implementing the proposed cache management

techniques. The two main simulation modules are Ruby and Opal.

5) Ruby: Ruby has been identified as timing simulator for multiprocessors memory system

which includes caches, controllers of cache and memory, interconnection network, and

main memory banks. Ruby comprises hard-coded timing simulation in relation with

components that remain largely independent over cache-coherent protocol (like,

interconnecting network) added by the capability to describe protocol-dependent

elements (as cache controllers) in terms of domain-specific language, SLICC

(Specification Language for Implementing Cache Coherence). Ruby module is realized

using C++ and further uses queue-driven model for simulating timing. Message buffers of

different latencies and bandwidth are used for communication in between various

components, in addition the components at the receiving end of the buffer are scheduled

to get up over next message, which is available for reading from the buffer. However,

there are many buffers that are used under strict first-in-first-out (or the FIFO) manner,

whereby the buffers are never liable to remain restricted towards FIFO behavior. The

simulation proceeds by invoking the wakeup method for the next scheduled event on the

event queue. Thus, simulation remains identical, in case all the components get woken up

in every cycle; so that event queue can get optimized for avoiding unnecessary processing

in every cycle.

3.2.3 Protocol-Independent Components

The message buffer, cache arrays, memory arrays and assorted glue logic are the protocol

independent components of ruby. However, a pair of components that deserves discussion are

definitely the caches as well as the interconnection network.

Caches: Ruby module permits to implement a complete cache hierarchy associated with each

single core in addition to the shared caches employed in the CMPs along with other

hierarchical coherence system. Cache attributes which can include size and associativity, are

considered as the configuration parameters.

55

Interconnection Network: The interconnection network is the unified communication

substrate used to communicate between cache and memory controllers. A single monolithic

interconnection network model is used to simulate all communication, even between

controllers that would be on the same chip in a simulated CMP system. As such, all intra-chip

and inter-chip communication is handled as part of interconnect, although each individual

link can have different latency and bandwidth parameters. This design provides sufficient

flexibility to simulate the timing of almost any kind of system. A controller communicates by

sending messages to other controllers. Ruby’s interconnection network models the timing of

the messages as they traverse the system. Messages sent to multiple destinations (such as a

broadcast) use traffic-efficient multicast-based routing to fan out the request to the various

destinations. Ruby models a point-to-point switched interconnection network that can be

configured similarly to interconnection networks in current high-end multiprocessor systems,

including both directory-based and snooping-based systems.

For simulating systems based on directory protocols, Ruby supports three non-ordered

networks: a simplified full connected point-to-point network, a dynamically-routed 2D-torus

interconnect inspired, and a flexible user-defined network interface. The first two networks

are automatically generated using certain simulator configuration parameters, while the third

creates an arbitrary network by reading a user-defined configuration file. This file-specified

network can create complicated networks such as a CMP-DNUCA network. For snooping-

based systems, Ruby has two totally-ordered networks: a crossbar network and a hierarchical

switch network. Both ordered networks use a hierarchy of one or more switches to create a

total order of coherence requests at the network’s root. This total order is enough for many

broadcast-based snooping protocols, but it requires that the specific cache-coherence protocol

does not rely on stronger timing properties provided by the more traditional bus-based

interconnect. The topology of interconnect is specified by a set of links between switches,

and the actual routing tables are re-calculated for each execution, allowing for additional

topologies to be easily added to the system. The interconnect models virtual networks for

different types and classes of messages, and it allows dynamic routing to be enabled or

disabled on a per-virtual-network basis (to provide point-to-point order if required). Each link

of interconnect has limited bandwidth, but interconnects does not model the details of the

physical or link-level layer. By default, infinite network buffering is assumed at the switches,

but Ruby also supports finite buffering in certain networks. Although, Ruby’s interconnect

model is sufficient for coherence protocol and memory hierarchy research, but it allows

56

integration of more detailed interconnection network for research focusing on low-level

interconnection network issues.

3.2.4 Specification Language for Implementing Cache Coherence (SLICC)

A domain-specific language is included under Ruby to state cache coherence protocols

referred to as SLICC (Specification Language for Implementing Cache Coherence).SLICC

permits the effortless development of varied cache coherence protocols and it has been

employed to implement the protocols assessed in the current study. It relies on notion of

stating distinct controller state machines that represent system elements like cache controllers

and directory controllers. Each controller is theoretically a per-memory-block state machine,

which comprises of:

• States: group of probable states for each cache block,

• Events: conditions that activate state changes, like message arrivals,

• Transitions: the cross-result of states and events (relying on the state and event, a

transition executes an atomic series of activities and modifies the block to a new state)

• Actions: the particular operation executed during a transition.

For instance, the SLICC code may specify a “Shared” state that permits read-only access for
a block in a cache.

3.3 Interconnection Network

3.3.1 GEMS Interconnection Network

Our initial simulation uses GEMS’s [100] network model for interconnect and switch

contention prototype. It uses virtual cut-through switching for transferring cache messages

through interconnects. The network link width is 16 bytes and so is the flit size. The data and

command communications are executed by messages of three varied sizes (8 bytes, 16 bytes,

and 72 bytes). 8-byte and 72-byte messages are used by L2S and Victim Migration. The

network link is shared at an 8B granularity; this indicates two 8B messages (or one 8B

message and part of a 16B or 72B message) can be sent at the same time, presuming that both

the messages are to be sent. We worked with a buffer size of 3 and a message is allowed to go

through a link/switch in cases where there is a free buffer entry on the other side. The link is occupied

across most of the cycles required (determined by message size, link-width, and link latency) to

forward a message from one particular side to the other side. Messages are forwarded in first come

first serve (FCFS) manner. L2S makes use of 2 virtual channels (one for request and one more for

57

response messages) in each direction. Messages swapped between L1s as well as L2s are treated as

on-chip traffic and messages communicated between L2S and memory controller are treated as off-

chip traffic.

3.3.2 Garnet Network / Orion

With increasing core counts, the on-chip network becomes an integral part of future chip

multiprocessor (CMP) systems. Future CMPs, with dozens to hundreds of nodes, will require

a scalable and efficient on-chip communication fabric. There are several ways in which on-

chip communication can affect higher-level system design. Contention delay in the network,

as a result of constrained bandwidth, impacts system message arrivals. In multi-threaded

applications, spin locks and other synchronization mechanisms magnify small timing

variations into very different execution paths. Network protocols also impact the ordering of

messages. A different order of message arrival can impact the memory system behavior

substantially. Especially for cache coherence protocols, protocol level deadlocks are carefully

avoided by designing networks that obey specific ordering properties among various protocol

messages. The manner in which the ordering is implemented in the network leads to different

messages seeing different latencies and again impacts message arrivals. Communication

affects not only performance, but can also be a significant consumer of system power. Not

only do network characteristics impact system-level behavior, the memory system also

impacts network design to a huge extent. Co-designing interconnects and the memory system

provides the network with realistic traffic patterns and leads to better retuning of network

characteristics.

Figure 3.2: Interconnection network on chip

58

System-level knowledge can highlight which metric (delay/throughput/power) is more

important. The inter-connect also needs to be aware of the specific ordering requirements of

higher levels of design. Figure 3.2 shows how various components of a CMP system are

coupled together. The inter-connection network is the communication backbone of the

memory system. Thus, interconnection network details can no longer be ignored during

memory system design. To study the combined effect of system and interconnect design, we

require a simulation infrastructure that models these aspects to a sufficient degree of detail. In

most cases, it is difficult to implement a detailed and accurate model that is fast enough to run

realistic workloads. Adding detailed features increases the simulation overhead and slows it

down. However, there are some platforms that carefully trade off accuracy and performance

to sufficiently abstract important system characteristics while still having reasonable speed of

simulation on realistic workloads. One such platform is the GEMS full-system simulation

platform. It does a good job in capturing the detailed aspects of the processing cores, cache

hierarchy, cache coherence, and memory controllers. This has led to widespread use of

GEMS in the computer architecture research community. There has been a huge body of

work that has used GEMS for validating research ideas. One limitation of GEMS, however, is

its approximate interconnect model. The interconnection substrate in GEMS serves as a

communication fabric between various cache and memory controllers. The model is basically

a set of links and nodes that can be configured for various topologies with each link having a

particular latency and bandwidth. For a message to traverse the network, it goes hop by hop

towards the destination, stalling when there is contention for link bandwidth. GEMS does not

model a detailed router or a network interface. By not modeling a detailed router micro

architecture, GEMS ignores buffer contention, switch and Virtual Channel (VC) arbitration,

realistic link contention and pipeline bubbles. The GEMS interconnect model also assumes

perfect hardware multicast support in the routers. In on-chip network designs, supporting fast

and low power hardware multicast is a challenge. These and other limitations in the

interconnect model can significantly affect the results reported by the current GEMS

implementation. Trace driven techniques also do not capture program variability that a full-

system evaluation can. In the light of the above issues, we have integrated GARNET, which

is a detailed timing model of a state-of-the-art interconnection network, modeled in detail up

to the microarchitecture level. A classical five-stage pipelined router with virtual channel

flow control is implemented. Such a router is typically used for high-bandwidth on-chip

networks.

59

3.3.3 Base GARNET model design

Modern on-chip network designs use a modular packet-switched fabric in which network

channels are shared over multiple packet flows. We used a classic five-stage virtual channel

router [101]. The router can have any number of input and output ports depending on the

topology and configuration. The major components, which constitute a router, are the input

buffers, route computation logic, VC allocator, switch allocator and crossbar switch. A five-

stage router pipeline was selected to adhere to high clock frequency network designs. Every

VC has its own private buffer. The routing is dimension-ordered. Since research in providing

hardware multicast support is still in progress and state-of-the art on-chip networks do not

have such support, we do not model it inside the routers. A head it, on arriving at an input

port, first gets decoded and gets buffered according to its input VC in the buffer write (BW)

pipeline stage. In the same cycle, a request is sent to the Route Computation (RC) unit

simultaneously, and the output port for this packet is calculated. The header then arbitrates

for a VC corresponding to its output port in the VC allocation (VA) stage. Upon successful

allocation of an output VC, it proceeds to the Switch Allocation (SA) stage where it arbitrates

for the switch input and output ports. On winning the switch, then it moves to the switch

traversal (ST) stage, where it traverses the crossbar. This is followed by Link Traversal (LT)

to travel to the next node. Body and tail its follow a similar pipeline except that they do not

go through RC and VA stages, instead inheriting the VC allocated by the head it. The tail it

on leaving the router, deallocates the VC reserved by the packet. Router micro architectural

components: Keeping in mind on-chip area and energy considerations, single-ported buffers

and a single shared port into the crossbar from each input were designed. Separable VC and

switch allocators were modeled. This was done because these designs are fast and of low

complexity, while still providing reasonable throughput, making them suitable for the high

clock frequencies and tight area budgets of on-chip networks.

The individual allocators are round-robin in nature. Interactions between memory system and

garnet as shown in Figure 3.1. The interconnection network acts as the communication

backbone for the entire memory system on a CMP. The various L1 and L2 cache controllers

and memory controllers communicate with each other using the interconnection network.

Note that we are talking about a shared L2 system here. The network interface acts as the

interface between various modules and the network. On a load/store, the processor looks in

the L1 cache. On a L1 cache miss, the L1 cache controller places the request in the request

buffer. The network interface takes the message and breaks it into network-level units (its)

60

and routes it to the appropriate destinations which might be a set of L1 controllers as well as

L2 controllers. The destination network interfaces combine this into the original request and

pass it on to the controllers. The responses use the network in a similar manner for

communication. Some of these messages might be on the critical path of memory accesses. A

poor network design can degrade the performance of the memory system and also the overall

system performance. Thus, it is very important to architect the interconnection network

efficiently.

3.4 Energy Model

3.4.1 CACTI

CACTI (Cache Access and Cycle Time Information) [102] provides an integrated cache and

memory access time, cycle time, area, leakage, and dynamic power model. By integrating all

these models together, one can get to know trade-offs between time, power, and area. CACTI

is continually being upgraded due to the incessant improvements in semiconductor

technologies. Particularly, we employ the version 5.3 for the results presented in this thesis.

We are mainly interested in getting the access latencies and area requirements of both cache

and directory structures that are necessary for implementing our ideas. In this study, we

assume that the length of the physical address is 40 bits as, for example, in the Sun

UltraSPARC T2 architecture [96]. This length is used to calculate the bits required to store

the tag field for each cache. Moreover, we also assume a 45nm process technology, and the

other parameters shown in the following section.

3.4.2 Energy calculation

This thesis also evaluates the energy consumed by the NUCA cache and the off-chip

memory. To do so, we used a similar energy model to that adopted by Bardine et al. [103].

This allowed us to also consider the total energy dissipated by the NUCA cache and the

additional energy required to access the off-chip memory. The energy consumed by the

memory system is computed as follows:

Etotal = Estatic + Edynamic

Estatic = ES_noc + ES_banks + ES_mechanism

Edynamic = ED_noc + ED_banks + ED_mechanism + Eoff−chip

We used models provided by CACTI to evaluate static energy consumed by the memory

structures (ES_banks and ES_mechanism). CACTI has been used to evaluate dynamic energy

61

consumption as well, but GEMS support is required in this case to ascertain the dynamic

behavior in the applications (ED_banks and ED_mechanism). GEMS also contains an

integrated power model based on Orion [104] that we used to evaluate the static and dynamic

power consumed by the on-chip network (ES_noc and ED_noc). Note that the extra messages

introduced by the mechanism that is being evaluated into the on-chip network are accurately

modeled by the simulator. The energy dissipated by the off-chip memory (Eoff−chip) was

determined using the Micron System Power Calculator [105] assuming a modern DDR3

system (4GB, Vdd: 1.5v, 333 MHz). Our evaluation of the off-chip memory focused on the

energy dissipated during active cycles and isolated this from the background energy. This

study shows that the average energy of each access is 550 pJ. As an energy metric we used

the energy consumed per memory access. This is based on the energy per instruction (EPI)

metric which is commonly used for analyzing the energy consumed by the whole processor.

This metric works independently of the amount of time required to process an instruction and

is ideal for throughput performance.

3.5 Workload Description

The aim of this section is to choose a benchmark suite that can be used to design the next

generation of processors. In this section, we first present the requirements for such a suite.

We then discuss how the existing benchmarks fail to meet these requirements.

We have the following five requirements for a benchmark suite:

Multithreaded Applications: Shared-memory CMPs are already ubiquitous. The trend for

future processors is to deliver large performance improvements through increasing core

counts on CMPs while only providing modest serial performance improvements.

Consequently, applications that require additional processing power will need to be parallel.

Emerging Workloads: Rapidly increasing processing power is enabling a new class of

applications whose computational requirements were beyond the capabilities of the earlier

generation of processors. Such applications are significantly different from earlier

applications.

Diverse Workloads: Applications are increasingly diverse, run on a variety of platforms and

accommodate different usage models. They include both interactive applications like

computer games, offline applications like data mining program and programs with different

parallelization models. Specialized collections of benchmarks can be used to study some of

these areas in more detail, but decisions about general-purpose processors should be based on

62

a diverse set of applications. While a truly representative suite is impossible to create,

reasonable effort should be made to maximize the diversity of the program selection. The

number of benchmarks must be large enough to capture a sufficient amount of characteristics

of the target application space.

Employ State-of-Art Techniques: A number of application areas have changed dramatically

over the last decade and use very different algorithms and techniques. Visual applications for

example have started to increasingly integrate physics simulations to generate more realistic

animations. A benchmark should not only represent emerging applications but also use state-

of-art techniques.

Support Research: A benchmark suite intended for research has additional requirements

compared to one used for benchmarking real machines alone. Benchmark suites intended for

research usually go beyond pure scoring systems and provide infrastructure to instrument,

manipulate, and perform detailed simulations of the included programs in an efficient

manner.

3.5.1 Limitations of Existing Benchmark Suites

In the remaining part of this section we analyze how existing benchmark suites fall short of

the presented requirements and must thus be considered unsuitable for evaluating CMP

performance.

SPEC CPU2006 and OMP2001: SPEC CPU2006 and SPEC OMP2001 [106] are two of the

largest and most significant collections of benchmarks. They provide a snapshot of current

scientific and engineering applications. Computer architecture research, however, commonly

focuses on the near future and should thus also consider emerging applications. Workloads

such as systems programs and parallelization models which employ the producer-consumer

model are not included. SPEC CPU2006 is furthermore a suite of serial programs that is not

intended for studies of parallel machines.

SPLASH-2: This is a suite composed of multithreaded applications [107] and hence seems to

be an ideal candidate to measure performance of CMPs. However, its program collection is

skewed towards HPC and graphics programs. It thus does not include parallelization models

such as the pipeline model which are used in other application areas. SPLASH- 2 should

furthermore not be considered state-of-art anymore. Barnes for example implements the

Barnes-Hut algorithm for N-body simulation. For galaxy simulations it has largely been

superseded by the TreeSPH method, which can also account for mass such as dark matter

63

which is not concentrated in bodies. However, even for pure N-body simulation barnes must

be considered outdated. In 1995 Xu proposed a hybrid algorithm which combines the

hierarchical tree algorithm and the Fourier-based Particle-Mesh (PM) method to the superior

TreePM method. Our analysis shows that similar issues exist for a number of other

applications of the suite including raytrace and radiosity.

Other Benchmark Suites Apart from all the major types of benchmark suites, there are

various smaller collections of workloads that are in general designed in order to research over

determined program area and therefore remain limited towards single application domain. This

is the reason that such aspects remain inclusive of smaller application sets against diversified

benchmark suite, offered typically. Such limitations are not applicable for scientific research,

which do not restrict the application domain. Such type of benchmark suites can be noted as

ALPBench, MineBench, MediaBench, BioParallel and Physics-Bench. As they follow

diversified approaches, we will not discuss such suites in detail.

3.5.2 Multi-threaded Benchmarks

One of the goals of the PARSEC suite was to assemble a program [108] selection that is large

and diverse enough to be sufficiently representative for scientific studies. It consists of 9

applications and 3 kernels which were chosen from a wide range of application domains.

PARSEC workloads were selected to include different combinations of parallel models,

machine requirements and runtime behaviors. All benchmarks are written in C/C++ because

of the continuing popularity of these languages in the near future. PARSEC meets all the

requirements outlined in Section 3.4.3:

• All the applications are parallelized

• PARSEC benchmark suite never gets skewed for HPC programs that appear in

abundance, yet represent just a niche. It lays importance over emerging workloads.

• Diversified workloads are selected from various areas like media processing,

computational, computer vision, enterprise servers, finance and animation physics.

PARSEC appears more diverse against SPLASH-2.

• Every application represents state-of-art in respective areas.

• PARSEC supports computer architecture research in a number of ways. The most

important one is that for each workload six input sets with different properties are defined

64

(Section 3.1). The characteristics of the included workloads differ substantially from

SPLASH-2 [6].

Recent technology trends such as the emergence of CMPs and the growth of world data seem

to have a strong impact on workload behavior.

3.5.2.1 Input Sets

PARSEC defines six input sets for each benchmark:

TEST: A very small input set to test the basic functionality of the program.

SIMDEV: A very small input set which guarantees basic program behavior similar to the real

behavior, intended for simulator test and development.

SIMSMALL, SIMMEDIUM and SIMLARGE: Input sets of different sizes suitable for

simulations.

NATIVE: A large input set intended for native execution.

TEST and SIMDEV are merely intended for testing and development and should not be used

for scientific studies. The three simulator inputs for studies vary in size, but the general trend

is that larger input sets contain bigger working sets and more parallelism. Finally, the native

input set is intended for performance measurements on real machines and exceeds the

computational demands which are generally considered feasible for simulation by orders of

magnitude.

3.5.2.2 Workloads

The following workloads are part of the PARSEC suite:

BLACKSCHOLES: This application is an Intel RMS benchmark. It calculates the prices for

a portfolio of European options analytically with the Black-Scholes partial differential

equation (PDE). There is no closed-form expression for the Black- Scholes equation and as

such it must be computed numerically.

BODYTRACK: This computer vision application is an Intel RMS workload which tracks a

human body with multiple cameras through an image sequence. This benchmark was

included due to the increasing significance of computer vision algorithms in areas such as

video surveillance, character animation and computer interfaces.

CANNEL: This kernel was developed by Princeton University. It uses cache-aware

simulated annealing (SA) to minimize the routing cost of a chip design. Canneal uses fine-

65

grained parallelism with a lock-free algorithm and a very aggressive synchronization strategy

that is based on data race recovery instead of avoidance.

DEDUP: This kernel was developed by Princeton University. It compresses a data stream

with a combination of global and local compression that is called ’deduplication’. The kernel

uses a pipelined programming model to mimic real-world implementations. The reason for

the inclusion of this kernel is that deduplication has become a mainstream method for new

generation backup storage systems.

FACESIM: This Intel RMS application was originally developed by Stanford University. It

computes a visually realistic animation of the modeled face by simulating the underlying

physics. The workload was included in the benchmark suite because an increasing number of

animations employ physical simulation to create more realistic effects.

FERRET: This application is based on the Ferret toolkit which is used for content-based

similarity search. It was developed by Princeton University. The reason for the inclusion in

the benchmark suite is that it represents emerging next-generation search engines for non-text

document data types. In the benchmark, we have configured the Ferret toolkit for image

similarity search. Ferret is parallelized using the pipeline model.

FLUDANIMATE: This Intel RMS application uses an extension of the Smoothed Particle

Hydrodynamics (SPH) method to simulate an incompressible fluid for interactive animation

purposes. It was included in the PARSEC benchmark suite because of the increasing

significance of physics simulations for animations.

FREQMINE: This application employs an array-based version of the FP-growth (Frequent

Pattern-growth) method for Frequent Item set Mining (FIMI). It is an Intel RMS benchmark

which was originally developed by Concordia University. Freqmine was included in the

PARSEC benchmark suite because of the increasing use of data mining techniques.

STREAMCLUSTER: This RMS kernel was developed by Princeton University and solves

the online clustering problem. Streamcluster was included in the PARSEC benchmark suite

because of the importance of data mining algorithms and the prevalence of problems with

streaming characteristics.

SWAPTIONS: The application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. Swaptions employs Monte Carlo

(MC) simulation to compute the prices.

66

VIPS: This application is based on the VASARI Image Processing System (VIPS) which was

originally developed through several projects funded by European Union (EU) grants. The

benchmark version is derived from a print on demand service that is offered at the National

Gallery of London, which is also the current maintainer of the system. The benchmark

includes fundamental image operations such as an affine transformation and a convolution.

X264: This application is an H.264/AVC (Advanced Video Coding) video encoder. H.264

describes the lossy compression of a video stream and is also part of ISO/IEC MPEG-4. The

flexibility and wide range of application of the H.264 standard and its ubiquity in next-

generation video systems are the reasons for the inclusion of x264 in the PARSEC

benchmark suite.

3.5.2.3 Characterization

We are interested in the following benchmark characteristics:

Parallelization: PARSEC benchmarks use different parallel models which have to be

analyzed in order to know whether the programs can scale well enough for the analysis of

CMPs of a certain size.

Working sets and locality: Knowledge of the cache requirements of a workload are

necessary to identify benchmarks suitable for the study of CMP memory hierarchies.

Communication-to-computation ratio and sharing: The communication patterns of a

program determine the potential impact of private caches and the on-chip network on

performance.

Off-chip traffic: The off-chip traffic requirements of a program are important to understand

how off-chip bandwidth limitations of a CMP can affect performance.

In Table 3.1 we summarize the important characteristics of the identified working sets. Most

workloads exhibit well defined working sets with clearly identifiable points of inflection.

Compared to SPLASH-2, PARSEC working sets are significantly larger and can reach

hundreds of megabytes such as in the cases of canneal and freqmine.

Two types of workloads can be distinguished:

The first group contains benchmarks such as bodytrack and swaptions which have working

sets no larger than 16 MB. These workloads have a limited need for caches with a bigger

capacity, and the latest generation of CMPs often already has caches sufficiently large to

accommodate most of their working sets.

67

The second group of workloads is composed of the benchmarks canneal, ferret, facesim,

fluidanimate and freqmine. These programs have very large working sets of sizes 65 MB and

more, and even with a relatively constrained input set such as simlarge, their working sets can

reach hundreds of megabytes.

Table 3.1: Benchmark characteristics

Program
Application

Domain

Parallelization
Model

Granularity

Working
Set

Date Usage
Sharing

Exchange

blackscholes
Financial
Analysis

data-parallel coarse small low low

bodytrack Computer Vision data-parallel medium medium high medium

Canneal Engineering unstructured fine unbounded high high

dedup
Engineering

Storage
pipeline medium unbounded high high

Facesim Animation data-parallel coarse large low medium

Ferret Similarity search pipeline medium unbounded high high

Fluidanimate Animation data-parallel fine large low medium

Freqmine Data Mining data-parallel medium unbounded high medium

Streamcluster Data Mining data-parallel medium medium low medium

Swaptions
Financial
Analysis

data-parallel coarse medium low low

Vips
Media

processing
data-parallel coarse medium low medium

X264
Media

processing
pipeline coarse medium high high

Furthermore, the requirement of those workloads for cache capacity is almost voracious and

rises with the extent of data processed by them. The Table 3.1 outlines the approximations for

the biggest working set of every PARSEC workload for the native input group. In many

instances, they are remarkably huge and can even touch gigabytes. These huge working

groups are commonly the result of an algorithm that functions and is based on huge amounts

of input data that is gathered. Canneal, dedup, ferret and freqmine are programs with

unbounded working groups.

3.5.3 Multi-programmed workloads

We also evaluated our proposed schemes with multi-programmed workloads, which comprise

of many application instances running at the same time using different subsets of the cores

available on chip. As it is anticipated that several core architectures will also be used for

68

throughput computing and multi-programmed workloads have varied protocol requirements

as compared to parallel applications, they also make an interesting scenario for the

assessment undertaken in this work.

3.6 Summary

To summarize, Simics full sytem simulator along with GEMS enables us to model cache

memory, interconnects and off-chip memory with moderate accuracy and power is measure

by CACTI. We have carefully chosen applications from diverse domains. The

multiprogramming workloads that we simulate have applications with varying memory

intensive and non-intensive properties. We consider an eight core chip multiprocessor in all

our experiments. And finally, we have evaluated our proposed schemes by executing these

diverse memory intensive applications on our baseline architecture with proposed cache

management schemes.

69

Chapter 4

Adaptive Block Pinning: A Novel Shared Cache

Partitioning Scheme for CMP

This chapter presents an Adaptive Block Pinning Scheme, which is a Novel Shared Cache

Management Scheme for CMPs to reduce miss rate.

70

Chapter 4

Adaptive Block Pinning: A Novel Shared Cache Partitioning for CMP

4.1 Introduction

Traditionally, multi-processor systems have been designed by interconnecting multiple

uniprocessors and DRAM modules. In comparison to uniprocessors, a multi-chip system is

capable of delivering computing power that is several magnitudes higher. However, the

design and performance of the memory system for multi-chip system directly affects the

overall system performance. Below are three different alternatives, each differing in the way

they store and access data. Figure 4.1, shows a physically centralized memory shared by all

of the processors, interconnected through a shared bus. While this approach is simple, it can

only be applied when the number of processors in the system is small.

Figure 4.1: Multi-processors with physically centralized memory

Large multi-chip systems generally have hundreds of processors and the bandwidth of a

centralized memory system does not scale with the processor count. In these large multi-chip

systems, physical memory is typically distributed across the system, with a portion of the

memory co-located with each processor. A communication protocol is used to manage the

exchange of shared data between different processors. Two such approaches are illustrated in

Figure 4.2 and Figure 4.3. Traditionally, designers have taken two approaches for

implementing a physically distributed memory system: message passing and distributed

shared memory.

71

Figure 4.2: Multi-processors with distributed shared memory

Figure 4.3: Distributed shared memory with message passing

CMP also called as multi-core processors and they are closely related to earlier multi-chip

multiprocessor systems. The main difference between the multi-chip multiprocessor and chip

multiprocessor lies in the communication network. Communication between two nodes in a

multi-chip multiprocessor system can take hundreds of cycles because of messages travel

through an inter-chip network as shown in Figure 4.1, 4.2, and 4.3. Generally off chip

operations are clocked at a fraction of the chip frequency and are limited by on chip pin

bandwidth. However in a CMP as shown in Figure 4.4, the communication messages between

processor cores travel through an on chip interconnection network, capable of delivering

much higher bandwidths at lower latencies. This significantly lowers the cost of inter node

communication as compared to multi-chip multiprocessors.

72

Figure 4.4: Chip Multiprocessor with on-chip shared L2 cache.

For any CMP, the memory system is a main component which can improve or reduce

performance dramatically. The latest versions of many architectures are CMP with the last

level of on-chip cache memory organized as either shared or private. Private L2 caches for

each core has the advantage of low access latency, but these caches fail to make optimum use

of on-chip memory space because some blocks may need to be replicated in other private L2

caches. While multiple cores with single shared caches make optimum use of on-chip cache

space, they do suffer from high access latency compared to private caches. L Hsu and Iyer

[110] have shown that organizing the last level L2 cache as a shared cache gives better

performance than private caches. CMPs with last level caches as shared caches give rise to

another type of miss that were not present in private caches: “inter-processor misses”. A miss

is called an inter-processor miss in a multi-core system where a core evicts a block which was

brought into the cache by another core and subsequent accesses by this core to the same block

lead to a cache miss. To eliminate inter-processor misses, researchers have proposed many

techniques: Shekhar [109] gives replacement ownership of a set to a core that brings the first

block into that set. Only this core is allowed to evict the blocks from that set. In a multi-core

system, ownership exists only for replacement; non-owner cores can read and write into the

set but can’t evict the blocks. A major problem faced by such multi-core architectures is

cache contention, where multiple cores compete for usage of the single shared L2 cache.

Research shows that uncontrolled sharing leads to scenarios where one core evicts useful L2

cache data which belongs to another core.

This chapter proposes a fine grained control over the replacement ownership. Our work

analyzes and proposes a technique to provide ownership of individual blocks in a set instead

73

of providing ownership of a complete set to a core and it will be shown that such a fine

control results in better utilization of the blocks inside a set. In the beginning, we investigated

and presented a comparative understanding of cache misses in the context of CMPs with

shared last level cache by comparing the CII scheme (Compulsory, Inter-processor and Intra-

processor) to the traditional 3C scheme proposed for uniprocessors. This classification

provides an insight into the interaction between cache references made by different cores

Then, we presented two different approaches for dealing with data ownership in the shared L2

cache and make the following important contributions in this Chapter:

• First, we proposed a novel technique called block pinning which associates cache blocks

with owner processors (ownership in this chapter refers to right of a processor to evict

blocks within the set on a cache miss) and redirects blocks that would lead to inter-

processor misses to a small Processor Owned Private (POP) cache. Each core has its

own POP cache. Also provided is a quantitative analysis of the effect of block pinning

on both inter-processor misses and intra-processor misses in a shared cache.

• Then, as an enhancement over the set pinning and block pinning approach, we proposed

a technique called adaptive block pinning which improves the benefits obtained by set

and block pinning, by adaptively relinquishing ownership of pinned blocks within sets.

The adaptive block pinning approach mitigates the effect of dominated ownership of

blocks within a set by a few processors which is observed in the block pinning approach.

• Finally, we have evaluated each of the above approaches using a full system simulator

which provides a characterization of the sensitivity of performance to various

configuration parameters. In addition, we compare our approach to a set pinned cache

[109] and a traditional cache.

The rest of the Chapter is structured as follows. Section 4.2, lays out the motivation for this

work by analyzing the problem of inter-processor misses. In section 4.3, we describe the

baseline architecture followed by basic taxonomy used in chip multiprocessors. Section 4.4

provides detailed explanation of the proposed architecture and ownership relinquishing

techniques. Section 4.5 provides details of the experimental methodology used and also the

details of the benchmarks applications used for evaluation. Results are presented in section

4.6 followed by related work in Section 4.7 and conclusion are given in section 4.8.

74

4.2 Motivation

4.2.1 Cache Miss Classification

One fundamental aspect of multi-core processors is the way in which the memory is

organized. Memory architecture and its performance, influences both the performance of the

tasks running on the processors as well the communication between tasks and processors.

Especially when task’s performance depends on the locality of data in caches. A smart

memory miss classification along with its prevention can have a profound impact on

performance and is yet to be explored for its efficiency in multi-core architectures.

4.2.2 Traditional Processors

The standard traditional cache miss classification with respect to single processor architectures is the

3C miss classification: Compulsory, Capacity and Conflict misses. According to this classification,

cache misses are broadly divided into compulsory and non-compulsory misses. Compulsory misses

are those misses that are generated due to initial reference to a memory location. The variation in the

size of the cache as well as in the associativity makes negligible variation in the number of

compulsory misses. Prefetching can help here, as can larger cache block sizes (which are a form of

prefetching). Non-compulsory misses are classified as Capacity and Conflict misses where Capacity

misses are those misses that occur regardless of associativity or block size. Capacity misses occur

solely due to the finite size of the cache memory. Conflict misses are those misses that arises due to

inadequate associativity (i.e., they do not occur in a fully associative cache). They usually have

subclasses of conflict misses which are further categorized as mapping misses that are not avoidable

given a particular degree of associativity as well as replacement miss that happen to be caused by a

sub–optimal replacement policy. These classifications have enabled researchers to analyze the reasons

for various classes of cache misses accurately. They have in turn influenced the successful

development of a number of performance optimizations which target reduction of specific kinds of

cache misses and improve system performance in the case of uniprocessors [8] [22][35][36][38].

4.2.3 Chip-Multiprocessors

The most current versions of several processor architectures include chip multiprocessors

(CMPs) along with a shared L2/L3 cache [110] [18] [10]. In these CMPs, the processors

compete for the shared cache. With regards to CMPs with shared caches, the traditional 3C

miss classification is not really enough to comprehend and analyze the exact cause of cache

misses. Traditional classification failed to model the contention that arises among different

processors in gaining access to the shared cache. The opportunity to systematically

characterize solutions to scale down misses in shared caches by making use of the existing

75

classifications is also limited. While coherence misses are being utilized to model misses in

multiprocessors with private caches, it aims to solve the problems associated with sharing

data. To address these issues, a fresh cache miss analysis is required that interprets the interactions

among transactions from several cores within a CMP along with shared cache. This is also crucial in

order to develop various techniques to have highly effective shared cache management. So, we

analyzed the identification of cache misses in the context of CMPs utilizing shared cache.

 Researchers are extensively working on managing shared caches in Chip Multi-Processors

(CMPs). Different cache management schemes have been proposed for multi-core shared

cache architectures. M. Dubois [110] first introduced a class of misses that was not present in

the traditional processors. This category is called coherency misses and is present only in

Multi Processors. These misses occur because of invalidation of cache blocks shared between

private caches of multiple processors. Shekhar [109] introduced another way of categorizing

misses in multi-core systems namely into compulsory misses, intra-processor misses and

inter-processor misses (CII). The inspiration for our work comes from the transactions

indicated in Table 4.1 and 4.2. Think about a CMP with two cores, Core1 and Core2 long

with a fully associative shared L2 cache. Table 4.1 and 4.2 illustrate two possible forms of

transactions which could cause a miss within the shared cache. Table 4.1 symbolizes a

conventional capacity miss in which the same Core1 is accountable to each of the initial

reference as well as expulsion of the stored memory block A.

Table 4.1: Miss due to eviction of a block by the same core

Table 4.2 also depicts a miss by processor Core1 that occurs to a memory element A. The

difference here is that A was brought into the cache by an earlier reference by processor

76

Core1, but it was evicted by Core2, because of a reference to a different memory element B

that is mapped to the same cache block as A.

Table 4.2: Miss due to eviction of a block by the different core

In this example, simply by classifying these kinds of misses as “capacity misses” just like in

the 3C miss classification, we were unable to learn about the inherent dissimilarities within

the cause for these types of misses. This is also true with conflict misses. Hence, an

appropriate classification of the cache misses identical to that illustrated in table 4.1 is known

to be Intra-processor misses as well as other one identical to that illustrated in table 4.2 is

known to be Inter-processor misses. Therefore, the cache misses within a multi-core

processor along with a shared cache are classified into compulsory misses, intra-processor

misses as well as inter-processor misses.

In an attempt to provide a much more comprehensive knowledge of the CII classification, we

present the life span of a memory element as indicated within the state diagram in Figure 4.5.

This state diagram could be described as life span of a memory element in CMP when using

the shared cache during the execution of a computer program, presuming this program is

running on a dual core processor. The similar diagram can be easily outstretched to any range

of cores. As shown in state diagram, the memory element under observation is at first usually

not referred by any core, therefore we consider to be among the Never Referenced state. At

this instant, |the initial access by P1 or perhaps even core P2 will result in a compulsory miss

and the state of memory element is changed from Never referenced to the Referenced for the

first time within the life span of the element.

77

Figure 4.5: State diagram representing a memory element’s life cycle in the shared cache

Now, further references by any of the core to this memory element in the Referenced state

results to a cache hit. In case of replacement of the memory element, the state of the memory

element changes into the Replaced state. And the memory location is marked with the core

ID that have replaced the initial memory element. For illustration, a memory which is

expelled from the cache due to a reference from core P1 is present in Replaced P1 state. At

this moment, it is easy to recognize that each and every non-compulsory cache misses to any

memory element take place while it is within the Replaced state. Therefore, the identification

of the non-compulsory misses is based upon the fact that whether the cache miss is happening

due to memory element actually being replaced by the same core P1 or possibly by a different

core P2. This is inferred merely by matching the core suffering from the miss with the ID of

the memory element in the Replaced state. It is important to understand that the identification

of non-compulsory misses into intra-processor misses as well as inter-processor misses is

orthogonal with the identification of the same as capacity and conflict misses. As an

illustration, the examples presented with reference to table 4.1 and table 4.2, in case of a fully

associative cache, represent (a) capacity miss that is also an intra-processor miss and (b)

capacity miss that is also an inter-processor miss. Conflict misses may also be classified as

intra-processor misses and inter-processor misses by this classification. This CII

classification is a bit more significant in comparison with the 3C miss classification and more

importantly, it is able to model the correspondence within transactions of several cores at the

level of the shared cache.

78

4.2.4 Characterization of Compulsory Inter-processor and Intra-processor misses

We have measured the distribution of various types of misses. Figure 4.6 plots the

distribution of compulsory, inter-processor and intra-processor misses with our baseline

system configuration (A detailed description of our baseline configuration is given in Section

4.4). The black portion of the stacked bars represents the inter-processor misses, the spotted

portion (in the middle) represents intra-processor misses and the striped portion represents the

compulsory misses. On an average, 40.3% of the misses are inter-processor misses, 24.6% of

the misses are intra-processor misses and the remaining 35.1% are compulsory misses.

Figure 4.6: Distribution of compulsory, inter-processor and intra-processor misses [109]

Now, reducing off–chip accesses is the key to a successful shared cache management scheme

in a CMP with large shared L2/L3 cache [19]. The effect of compulsory misses can be

reduced by hiding their latency. This can be achieved by prefetching data into the cache

before it is accessed. There have been many recent studies for reducing memory bandwidth

and the number of off–chip accesses through hardware/software data prefetching [27] [48].

However, the focus of this chapter is on developing techniques to reduce inter-processor and

intra-processor misses. In our proposed architecture, inter-processor misses are eliminated by

giving replacement ownership of a block to a processor, while Shekhar [109] eliminates inter-

processor misses by giving replacement ownership of a set to a processor.

For a “hot set” [109] in the on-chip cache, ownership of the complete set is given to a single

processor. But if a set is not a “hot set”, providing ownership to a single processor will

79

increase the load on POP caches of other processors. Figure 4.7 indicates that only about 9%

of the memory addresses result in hot sets, so the number of hot sets is not going to be too

large.

Figure 4.7: Memory addresses leading to Inter and intra-processor misses [109]

4.3 Taxonomy Used in CMPs

The most common cache miss classification scheme for single processor architectures is the

3C miss classification: Compulsory, Capacity and Conflict misses. It can be broadly

classified as compulsory and non-compulsory misses (conflict and capacity misses).

Compulsory Misses: Compulsory misses are those misses caused by the first reference to a

datum. Cache size and associativity make no difference to the number of compulsory misses.

Non -Compulsory Misses:

Capacity Misses: Capacity misses are those misses that occur regardless of associativity or

block size, solely due to the finite size of the cache.

Conflict Misses: Conflict misses are those misses that occur due to insufficient associativity

(i.e., they do not occur in a fully associative cache).

Intra-processor Miss: Non-compulsory misses are further classified based on the processor

responsible for evicting the referenced block. A non-compulsory miss is classified as an intra-

processor miss if it was evicted by the same processor that brought it into the cache.

80

Inter-processor Miss: A non-compulsory miss is classified as an inter-processor miss if the

block brought into the cache by one processor is evicted by other processors on the chip.

Hot Blocks: If the number of intervening references between successive references to few

blocks in the L2 cache is large, then it indicates that these few blocks are accessed over and

over again and we call these blocks as hot blocks.

Processor Owned Private (POP) cache: A very small region of the shared L2 cache, which

is confined to be written by individual processors.

4.4 Baseline Architecture

The block diagram of the proposed block pinning architecture for L2 cache is shown in

Figure 4.8. As seen from the figure, we have eight cores C1 to C8 on the same chip with

individual private L1 caches and a large shared L2 cache. The L2 cache is further partitioned

into a large shared cache and eight small POP caches (one for each core). In case of a hit, the

common shared L2 cache behavior is similar to a traditional shared cache. In case of a miss in

the common L2 cache, all the POP caches are searched in parallel. If there is a hit in any of

the POP caches, the data block is transferred to the requesting core.

Figure 4.8: Block Diagram of Proposed Architecture

81

4.5 Shared Cache Management Scheme

This section, first presents the data ownership policy and some of its drawbacks that restricts

it to achieve performance benefits at low implementation cost. Then, the rest of the section

describes in detail the proposed block ownership management scheme for shared L2 cache.

4.5.1 Set Pinning Ownership Scheme

Set pinning is basically a cache management scheme in which each single core obtains

replacement ownership associated with a certain number of sets within the shared L2 cache.

Exclusively the processing core which has the replacement ownership of a given set actually

being accessed have the permissions to carry out change in that set. This novel shared cache

management scheme eliminates inter-processor misses without paying for additional costs of

maximizing the associativity of a given shared cache. The conceptual proposal of the set

pinning scheme is founded on two significant observations regarding the behaviour of non–

compulsory misses within the shared cache. Researchers examined the total number of

diverse memory addresses within the references that results in inter-processor as well as

intra-processor misses.

The division of the number of references to diverse memory addresses leading to inter-

processor as well as intra-processor misses have been measured and it has been observed that

the low fraction of distinct memory addresses leading to inter-processor misses suggests that

the majority of the inter-processor misses take place mainly because of few blocks within the

memory. We also examined the amount of time period in relation to the total number of

intervening references between successive references to each of these blocks and certainly

noticed that the majority of blocks are accessed again and again within 100 references 64.5%

of the time on average. This indicates that these blocks are frequently accessed and this

increases miss rate. We have also observed that the policy of allocating ownership of sets to

processors may lead to many blocks in the set being unused. Secondly, the policy of

allocating sets to processors is based on first come first serve allocation. This simple

allocation policy results in an unfair division of the sets in the shared L2 cache. So we have

proposed a new cache management scheme to exploit these two observations. First, by

disallowing the large number of references for these few blocks that are responsible for

evicting L2 cache blocks and therefore causing inter-processor misses. Secondly, the issue of

fairness in acquiring ownership in the shared L2 cache.

82

4.5.2 Proposed Block Pinning Scheme

Block pinning is a cache management scheme where every processor acquires replacement

ownership of a certain number of blocks in the shared cache. Only the processor that has

replacement ownership of the block being accessed can replace that block entry in the set.

The basic flow chart explaining the logic of block pinning is shown in Figure.4.9.

Figure 4.9: Basic flow chart explaining the logic of adaptive block pinning

In multi-core systems, inter-processor misses occur when a block (A) brought into the cache

by one core (C1) is evicted by another core (C2) and any subsequent access by core (C1) to the

same block (A) leads to a cache miss. A simple method to prevent inter-processor misses is

by allocating block ownership to a core at the time of bringing data into the cache from off-

chip memory. This method assigns replacement ownership to all the blocks in the entire L2

cache. While all cores can read and write into the block, only the owner core has the

permission to replace or evict a block from the cache. For example, assume a dual core

83

processor with cores (C1) and (C2) as shown in Figure. 4.10, where both the cores are sending

references to the same set. In the absence of block ownership, if C2 experiences a miss, it may

evict a block which was brought into the cache by C1. Now, any subsequent access by C1 to

the same block will result in a cache miss and lead to an overall increase in the miss rate. But

if block replacement ownership is assigned to cores, C2 will not be able to evict a block that

is owned by C1 as shown in Figure 4.10. One particular observation with this method of

reducing inter-processor misses is that it may lead to an increase in intra-processor misses.

Figure 4.10: Inter processor Miss in dual core processor

The rate of intra-processor misses can be controlled by identifying whether the referenced set

is a “hot set” or not. Once the set is identified as hot, assigning new block ownership in the

hot set will increase intra-processor misses, since each core has lesser number of replacement

candidates to choose from when it requires more blocks in that set. So, hot set miss rate is

high either due to inter-processor misses or due to increased intra-processor misses.

84

Figure 4.11: Allocation of block ownership to prevent eviction in dual core processor

Figure 4.12: Ownership prevent eviction in dual core processor

To control (reduce) this increase in intra-processor misses, POP caches are used. Suppose, if

during the last N1 accesses to a particular set there are M1 or more misses (where M1 is the

threshold value), then this particular set is considered to be a “hot set” and the ownership of

one of the cores is canceled and the core will now bring its blocks from memory to its POP

cache instead of the hot set. This process will decrease the traffic to the hot set and eventually

the miss rate will come down. This process of canceling the ownership of cores from a

particular set may lead to a situation where only one core owns all the blocks in a set. To

avoid this situation, the ownership of a core is canceled if it owns a certain minimum number

of blocks. If a set is not a hot set, it means that not many addresses are being generated by

different cores that index into this set. In this case, to reduce the miss rate, the proper

85

distribution of block ownership among the cores is necessary. Consider an example when

core C1 owns most of the blocks in the cache and is rarely using these blocks while core C2

has ownership of a few blocks and suffers misses in that set because it has fewer blocks to

choose from when evicting a block. If the ownership of the less frequently used blocks of

core C1 is transferred to core C2, then the overall miss rate can be controlled and hence

reduced. The algorithm applied for relinquishing the ownership of blocks is explained in

Algorithm-1 and implemented using full system simulator. Also by allowing all the cores in

a multi-core system to share “non hot sets”, the load/traffic on the POP cache can be reduced.

Now, to assign block ownership in the last level shared cache, (log2n) bits in each block are

needed to indicate owner of the block, (where n is number of cores in the multi-core system).

When for the first time, a core fetches a block from off-chip memory to the cache, its 'Core

ID ' number will be written in the ownership bits of the block. Now only this core has the right

to evict the block from the cache, as long as keeps ownership of the block.

4.5.3 Cache HIT/MISS Policy

In the proposed cache architecture, the shared L2 cache is organized as POP caches and a

common cache. In case of a miss in the L1 cache, the request is forwarded to the common L2

cache. If there is a hit, then the requested block is sent to the requesting core. In case of a

miss, the POP caches of all the cores are probed in parallel for the requested block. If the

request hits in one of the POP caches, then the block is sent from that POP cache. These two

partitions are non-inclusive in nature. Whenever a cache miss occurs in the shared Last level

cache, it may result due to any one of the following scenarios:

1 The reference from a core may point to a set where some of the blocks are not owned by

any of the cores in the multi-core system. In this case, the requested block will be

transferred from memory to the referenced set and ownership bits will be set with the

‘CoreID’ of the requesting processor.

2 The request from a core to a block address may point to a set where all the blocks are

owned by cores other than the one which experiences a miss. In this case, a block cannot

be replaced from this set because the requesting core doesn’t own any block. So, data

from memory will be transferred to the POP cache of the requesting core that is

experiencing a miss.

3 The reference from a core to a lock address is pointing to a set where the requesting core

owns some of the blocks in that set. In this case, the core will replace one of the blocks

86

owned by it with the new block. In this case, the block to be replaced is one which is least

recently used among the blocks owned by the core in that set, which need not be the least

recently used block of the entire set.

4.5.4 Block Ownership Relinquishment Policy

This section proposes two methods to relinquish the ownership of a block: In the first

method, one saturating counter per block is used. This counter is initialized to half of the

maximum count. Every time when the block is accessed and it results in a hit, the counter

value is increased by one. If the counter reaches maximum value i.e. all 1’s it will stay there

(saturating). If a processor experiences a miss in a particular set, then the counters

corresponding to all the blocks owned by other processors in that set are decremented by one.

If any counter hits zero, ownership of this block is cancelled and given to the processor

whose miss makes the counter hit zero. Qualitatively, a counter hitting zero means that the

processor owning it is not using it effectively and this block can be used more effectively by

other processors. This technique has a major drawback in that the numbers of counters

required is equal to the number of blocks in the cache. This huge hardware requirement

makes this technique less attractive.

The other technique for ownership relinquishment requires just two counters per set (CT1 and

CT2). The algorithm for this technique is given below. CT2 is used to determine whether or

not a set is a “hot set” and CT1 is used to fine tune the number of blocks owned by each

processor in a set. Selecting two counters is based on the observation that misses may occur

in a set can rise because of two reasons:

1. Set is a “hot set” and most of the processors are trying to put their blocks in the same

set and hence intra-processor misses are more.

2. Set is not a hot set but the distribution of blocks in the set is unfair, i.e. the processor

requiring more blocks owns less blocks and the processor owning more blocks is not

utilizing them effectively.

Let the set Cores = {C0, C1,..C7} represent the cores present in the baseline system. The set

HS includes all the “hot sets” of the cache. The ownership of the different blocks in the set is

indicated in the Owners set. Owners(s)
 denotes the set containing the owners of all blocks in

set s. xj, yj, mj, nj are chosen by experiments to meet the performance needs of Application j.

The shorthand numAccesses(s) is used to denote the number of accesses to set s. The set RB

contains the list of all blocks that have a particular core, say core c as their owner.

87

/* Algorithm for relinquishing ownership and cache operation */

Algorithm 1: Algorithm for relinquishing ownership

function handlePinnedCacheMiss
INPUT: Requesting core (c), Referenced Set (s), HS, Owners(s), CT1

(s), CT2
(s).

OUTPUT: HSnew, Ownersnew
(s)

BEGIN
1. X ← xj, Y ← yj, M ← mj, N ← nj, CT1

(s) ← 0, CT2
(s) ← 0;

2. if (numAccesses(s) == Y && CT1(s) == X) //unfair distribution
3. Bk

(s)
 ← LRUBlock(s);

4. Bk
(s). Owner ← c, update Owners(s);

5. Ownersnew
(s) ← Owners(s)

, CT1
(s)

 ← 0;
6. endif
7. elsif (numAccesses(s) == Y && CT1(s) != X) // relinquishment not needed
8. CT1

(s)
 ← 0; // reset counter

9. endif
10. elseif (numAccesses(s) == N && CT2(s) == M) // set is ‘hot’
11. HS.add(s), HSnew ← HS;
12. while (missRate >= MRT) || (s.numBlocksWithOwner (c) != numBlockInSet(s)))
13. for some k Cores and k != c
14. RB ← findBlocksWithOwner(k);
15. ∀ r ∈ RB, r.Owner ← xx; // Cancel ownership
16. update Owners(s), Ownersnew

(s) ← Owners(s)
,

17. k.loadNewBlockLocation ← POPCache k
18. end for
19. end while
20. end if
21. elseif (numAccesses(s) == N && CT2(s) != M)
22. CT2

(s) ← 0;
23. end if
END

Algorithm 2: Algorithm for cache operation

function handleReference
INPUT: Read/Write request (Req j) from some c Cores that indexes set s.
BEGIN
Lookup L1c
 if (hit)
Read/write data block, update LRU stack
 else // L1 miss
 FwdReqj →BlockPinnedL2c
 if (hit)
 Read/write data block, update LRU stack
 else // Pinned L2 cache miss

88

 CT1(s)++, CT2
(s)++; //increment miss counters

 handlePinnedCacheMiss; // Algorithm 1
 FwdReq j →POPCachec ;
 Lookup POPCachec :
 if (hit) // POP Cache hit
 Read/Write data
 else
 FwdReq j →off-chip ;
 end if
 numAccesses(s)++;
 end if
 end if
END

These blocks will be relinquished to bring the cache miss rate below a predetermined Miss

Rate Threshold (MRT). Bk(s) is the LRU block located in the kth way of the set s. Counter CT1

produces a high output (all 1’s) if there are X misses in the last Y accesses to a set and

counter CT2 produces a high output (all 1’s) if there are M misses in the last N accesses to

that set. Here M is a multiple of X and N is a multiple of Y. Multiplication factor in both

cases is the same. So, if the miss rate increases above a particular value, CT1 will detect it

first, and the set is assumed not to be a “hot set” at this point. The ownership of the blocks in

the set which are not being utilized effectively is canceled. To do this, whenever CT1

produces a high output as shown in Figure. 4.13 ownership of the least recently used block in

the set is cancelled, so that a processor suffering more misses can acquire the ownership of

this block and the miss rate can come down.

Figure 4.13: Cancellation of block ownership in dual core processor

89

Qualitatively, in canceling ownership of the least recently used block, it is assumed that this

block is not being utilized properly by the owner and can be better utilized by processors

other than the current owner. Once ownership of a block is canceled, CT1 is reset to its initial

value. If the miss rate still remains high after a few such attempts, the number of such

attempts as determined by the ratio of N/Y, CT2 will also produce a high output and the set is

treated as a “hot set”. This indicates that every processor is trying to put its blocks in this set.

In this case, the ownership of all the blocks of a particular processor is canceled as shown in

Figure. 4.14 and this processor will now bring any new blocks to its POP cache instead of the

“hot set”. This cancelation of ownership of blocks will continue until either miss rate goes

below the threshold value or the complete set is owned by a single processor. In effect, the

load on the hot set and the miss rate both will reduce.

Figure 4.14: Counter CT-1, 2 saturates and ownership bits of C1 are reset in dual core
processor

4.5.5 Hardware Support

The relinquishing of the blocks in a set by an owner core is based on the confidence counters

for each set (CT1 and CT2), which indicates the confidence of the system in assigning

ownership of a block to the current owner. The total additional hardware cost includes that

for the counters CT1 and CT2 along with the processor identifier field (CoreID) for the block

pinning architecture. After experimenting with a range of values from 2 to 16 and we found

that 4 bits for CT1 and 6 bits for CT2 were sufficient to account for the longest duration of

ownership without frequent saturations. Therefore, the total additional hardware cost is about

2.5% of the L2 cache in our baseline configuration.

90

4.6 Experimental Methodology

In this section we describe our baseline system configuration and evaluation methodology.

All the results are obtained with the baseline system configuration described below.

4.6.1 Simulation Environment

Evaluating the performance of CMPs with different Last level cache architectures requires a

way of simulating the environment in which we would expect these architectures to be used

in real systems. We have used Virtutech Simics [99] full system functional simulator with

modified gcache extended with Multifacet GEMS [100]. The base line configuration is given

below in Table 4.3.

Table 4.3: Configuration Parameters for simulation

No of Cores 8

Core Mode Single Thread

Frequency 1Ghz

L1-Data Cache 32kb, 64 bytes

L1-Instruction Cache 32kb, 64 bytes

Shared L2 Cache 8-Way Set Associative

L2- Cache (Size) 2MB

POP Cache 8-Way, 16Kb, 64bytes

4.6.2 Benchmarks

To quantitatively examine the CII classification and to figure out the benefits of the proposed

block pinning as well as adaptive block pinning schemes for shared cache memories on

CMPs, we put into use few programs from the SPEC benchmark suite [106]. All of the

chosen programs make use of the reference input set and certainly fast forwarded to the

beginning of the main loops. We have also used selected programs from the PARSEC [108]

benchmark suite. All of these benchmarks use sim-large inputs and are fast forwarded to the

beginning of Region of Interest (ROI). The method for the simulations involves first skipping

both the initialization and thread creation phases and then fast-forwarding while warming up

the cache for 500 million cycles and then collect statistics until the end of another 500 million

cycles.

91

4.7 Results

This section analyses the impact of our novel adaptive block pinning technique for block

ownership technique on performance in the baseline architecture. Figure 4.15 shows the

performance improvement achieved with adaptive block pinning when compared to a

conventional cache. On average we observed that there is a significant reduction in misses

per thousand instructions (mpki) while running the PARSEC benchmark applications. As

stated earlier adaptive block pinning does not influence the number of compulsory cache

misses. Adaptive block pinning eliminates inter-processor misses but they may introduce few

additional intra-processor misses in the POP cache. Therefore the effective misses are the

misses that occur in both block pinned L2 cache as well as POP caches. The effective miss

rate is defined as

essesTotalL2acc

ssesPOPCachemidL2missesBlockPinne
=Missrate2EffectiveL

∩−

The effective miss rates for adaptive block pinning and set pinning, normalized with respect

to the miss rates of the traditional shared cache scheme are plotted in Figure. 4.15.

Figure 4.15: L2 Cache Miss Rate

The percentage of improvement is obtained by taking the difference between the average

value along all the applications for reference and proposed schemes. The adaptive block

pinning scheme achieves an average improvement of 22% and 4% as compared to traditional

92

cache and set pinned cache schemes. Another metric that determines the performance of our

scheme is the effective hit rate of the POP caches. We define this metrics as

2ockPinnedLMissesinBl

nPOPCachesTotalHitsi
=POPHitRate−

The effective hit rates in POP caches are plotted in Figure 4.16.

Figure 4.16: POP Cache Hit Rate

The hit rates are found to improve by 3-4% (averaged across all benchmarks) as compared to

the set pinning scheme. The sensitivity analysis with varying number of cores plotted in

Figure 4.17 shows the speedup obtained by our adaptive block pinning scheme relative to the

traditional shared cache and set pinning scheme with 4, 8 and 12 cores.

93

Figure 4.17: Performance with different cores

4.8 Related Work

Qureshi [54] divides the blocks in a set among different processors. Here, at the end of a time

frame, miss rate is measured, which means that any action to reduce the growing miss rate

can be taken only at the end of a time frame. This paper proposes an implementation where

corrective action can be taken at any time when miss rate grows above a given threshold

value. Recently, people from research and academia have investigated several multicore

cache architectures in the effort to attain the reduced access latency of private L2 caches

together with the reduced off-chip miss rates of shared L2 caches [60] [114] [116]. Dynamic

and Static last level shared cache management policies have been investigated in an effort to

take care of the problem of data isolation [54]. Researchers have also extensively analyzed

quite similar issues in distributed video-on-demand systems. Victim replication [116] is

basically a modification of the shared last level cache design that attempts to maintain copies

of local primary cache victims inside the local L2 cache portion however permits a number of

copies of a cache block to co-exist in various L2 portions of the shared L2 cache. Chang and

Sohi [114] present CMP Cooperative Caching, a simple setup to control |total on-chip cache

resources as well as incorporates the merits of both private as well as shared cache

organizations by creating an aggregate “shared” cache, by means of cooperation in between

94

private caches. The technique used by cooperative caching is to keep a locally expelled block

within the on-chip L2 cache of a different private portion which may free cache space instead

of evict it from the on-chip hierarchy entirely. With regard to set–pinning as well as adaptive

set–pinning, Shekhar [109] diverts the cache blocks which may trigger an existing cache

block to be evicted from the on chip cache towards the small POP cache to decrease off–chip

accesses, and hence avoiding inter-processor misses as well as reducing intra-processor

misses in CMPs. Adaptive Selective Replication (ASR), dynamically tracks the workload

patterns in order to manage block replications in the cache and it was suggested by

Beckmann and Wood [60]. The ASR mechanism replicates cache blocks in the event when it

estimates that the benefits of replication in terms of much lower L2 hit latency exceed the

expense as a consequence of elevated L2 misses. Adaptive Selective Replication may work

extremely well in association with our scheme to further improve the L2 hit latency.

Petoumenos [117] has implemented} a better statistical model of a CMP shared cache which

explains each of the cache sharing as well as its management using a novel fine-grained

technique called StatShare. This model precisely explains the behavior of shared threads

using run-time statistics and enables us to learn how systematically each thread uses its space.

Even though this model precisely identifies capacity misses and can approximate cold misses

however it fails to address conflict misses. Software level shared cache management policies

for CMP have been explored during the last few years. Rafique [118] presented an Operating

System-driven which typically incorporates a hardware cache quota management technique,

an OS interface as well as a set of OS level quota orchestration scheme to obtain enhanced

flexibility. Tam [70] addressed the problem of uncontrolled sharing and presented a software

assisted technique in the Operating System which enables splitting up of the Last level shared

L2 cache by governing the assignment of physical pages. These software schemes provides

higher flexibility at the expense of inhibited applicability as compared to a hardware scheme.

In uniprocessors, the minimization of conflict misses in privately used caches connected with

a single core continues to be a useful problem of investigation and there have been a variety

of vital works that manage this challenge in both of the hardware and software [119] [48]

[123] [124]. Collins and Tullsen [119] revealed the usage of a hardware miss classification

table which permits the processor or memory controller to distinguish every individual cache

miss as either a conflict miss or just a capacity (non-conflict) miss.

95

4.9 Summary

Inter-processor misses constitute 40% of the total number of misses in a Chip Multi Processor

with shared L2 cache. This work proposes a new architecture to eliminate these misses

without a significant increase in intra-processor misses by giving replacement ownership of a

block to one of the processors. This work also shows that if a processor is not utilizing blocks

owned by it optimally, the ownership of its blocks can be transferred to other processors. In

this work, two techniques to relinquish the ownership of a block are presented. The first

technique uses a saturating counter per block that is decremented whenever a request misses

in the set. Ownership of a block is relinquished when the counter hits zero. Since the first

technique incurs a significant hardware overhead, a second technique that uses two counters

per set (CT1 and CT2) is proposed. CT2 is used to determine whether or not a set is a “hot set”

and CT1 is used to fine tune the number of blocks owned by each processor in a set.

96

Chapter 5

Selective Replication in the Shared Last Level Cache

This chapter presents Selective Replication scheme in Shared Last Level Cache for effectively

dealing with fixed block location problem in NUCA caches.

97

Chapter 5

Selective Replication in the Shared Last Level Cache

5.1 Introduction

In the previous chapter of this thesis, we have focused on the problem of inter-processor and

intra-processor cache misses in the shared L2 cache for large-scale CMPs. For that study, we

have assumed a shared L2 cache organization with a uniform access latency and physical

mapping of blocks to uniform shared L2 cache. In this chapter, we discuss the perks and

drawbacks of this organization, and we propose an alternative mapping policy. As discussed

in the introduction of this thesis, an important decision when designing a multi-core processor

is how to organize and manage the last-level on-chip cache, i.e., the L2 cache in this thesis,

since cache misses at this cache level result in long-latency off-chip accesses. The two

common ways of organizing this cache level are private to the local core or shared among all

cores. Figure 5.1 presents the trade-off between two conflicting goals that is to reduce off

chip miss rate and to reduce on chip miss latency.

Figure 5.1: Trade-off between off-chip miss rate and on-chip access latency in private/shared
on-chip cache designs

The private L2 cache organization, ensures fast access to the L2 cache. However, it has two

main drawbacks that could lead to an inefficient use of the aggregate L2 cache capacity. First,

local L2 banks keep a copy of the blocks requested by the corresponding core, potentially

replicating blocks in multiple L2 cache banks. Second, load balancing problems appear when

98

the working set accessed by all the cores is heterogeneous, i.e., some banks may be over-

utilized while others are under-utilized. Since these drawbacks can result in more off-chip

accesses, which are very expensive, there is a shift from private caches to shared cache

organization. However, the non-uniform latencies in a single large shared cache becomes the

bottle neck for this kind of architecture. Therefore, researchers from both industry and

academia proposed to implement a shared non-uniform cache organization for multi-core

processor [10] [76]. The shared L2 cache organization, also called non-uniform cache

architecture (NUCA) [19] as shown in Figure 5.2, which provides more efficient use of the

L2 cache by storing only one copy of each block and by distributing the copies across the

different banks.

Figure 5.2: Non-Uniform Cache Architecture

The main drawback of this organization for multi-core processor is the long L2 access

latency, since it depends on the bank wherein a block is allocated, i.e. a bank in the local bank

cluster or a bank in either the central or the local bank clusters of the other cores. The most

straightforward way of distributing blocks among the different banks in the non-uniform

cache organization is by using a physical mapping policy in which a set of bits in the block

address defines the owner bank for each block.

Some recent proposals [63, 134] and commercial CMPs choose the less significant bits for

selecting the owner bank. In this way, blocks are assigned to banks in a round-robin fashion

99

with block-size granularity. This random distribution of blocks does not take into account the

distance between the requesting core and the home bank on a L1 cache miss. Moreover, the

average distance between two cores in the system significantly increases with the increasing

number of cores on the CMP, which can become a performance problem for multi-core

processors. To address these issues, we proposed a selective cache line replication scheme for

shared L2 NUCA. The proposed selective replication mechanism makes use of unused cache

lines in the local bank-clusters of different cores. We extend our proposed replication

scheme, to balance between access latency and cache capacity in shared NUCA designs by

selectively replicating frequently used data close to the requesting cores, while

simultaneously ensuring low off-chip memory accesses.

The rest of the chapter is organized as follows: The next section, describes the motivation

for this work. Section 5.3 provides detailed explanation of the proposed policy. In section

5.4, the baseline architecture and simulation environment is briefly described, followed by

the results and implementation overhead. Related work is discussed in section 5.5 and

finally conclusions are given in section 5.6.

5.2 Motivation

In order to adapt to the ever-growing needs of modern memory-hungry work-loads, on-chip

cache size need to be increased. Unfortunately, expanding the cache size alone is not

sufficient to increase the efficiency since the traditional UCA design exhibits serious

limitations as larger capacity comes at the cost of increased access latency. For that reason,

large on-chip caches with a single, large and uniform latency are undesirable.

Ideally, we would like data to reside in the part of the cache that is physically located close to

the processor so that it can be accessed faster than data that resides farther away from the

processor. The solution lies in a distributed cache design that manage to provide varying

access times and increased bandwidth. In order to achieve this goal, a complete shift in the

cache architecture design paradigm was required. The previously single, monolithic chunk of

cache (UCA) is transformed to a finer-grained structure, as shown in Figure 5.3.

100

(a) UCA (b) NUCA

Number of banks: 1 bank : 32 banks

Average loaded access time: 255 cycles : 24 cycles

Figure 5.3: Shared Level-2 Cache Organization

More specifically, the last-level cache is composed of physically independent banks, which

are evenly distributed across the die area. This design provides varying access latencies

between the cores and the cache banks, depending on the physical distance between the

requesting core and the cache bank where the requested data resides. This leads to a Non-

Uniform Cache Access (NUCA) organization of the cache. NUCA provides faster access to

cache blocks in the banks that reside closer to the processor.

For example, as suggested by Kim et al. [19] and illustrated in Figure 5.3(b), the closest bank

in a 16 MB, on-chip L2 cache built in a 50 nm process technology can be accessed in 4

cycles, while an access to the farthest bank might take up to 47 cycles. On the other hand,

every access to a UCA of the same size would require a constant latency of 41 cycles. As

access time is directly related to the block's placement, the placement is an important

decision. Figure 5.3(b) shows a banked NUCA cache, as opposed to the classic UCA shown

in Figure 5.3(a). This static NUCA design uses a two-dimensional switched network,

permitting a large number of small, fast banks to be interconnected. The NUCA design

allows accessing each bank at different speeds, proportional to the distance of the bank from

the requesting core. Thus, the closest bank can be accessed in the minimum time, while an

access to the farthest is the slowest. A block can only be placed in a single location during its

lifetime. This, of course, imposes serious limitations with this architecture: a frequently

accessed block may be placed in a bank located far from the requesting core, thus suffering

the overhead of a high access time every time it is accessed. The block cannot be placed to

101

any other bank, closer to its requester, in order to improve its access time, since its location in

the cache is statically defined by its address.

This limitation of the static NUCA motivated us to propose selective cache line replication in

the NUCA cache, which addresses the problems that arise from static placement of cache

blocks.

5.3 Proposed Selective Replication Policy

We assume Last level shared L2 Cache as a Non-Uniform Cache Architecture, based on Kim

et al.’s NUCA design [16]. The following definitions will help facilitate describing our

baseline architecture.

Owner Bank: The bank in which data is mapped for the first time after an off-chip access

using the static address mapping scheme.

Bank clusters: A group of eight banks compose a bank-cluster and the complete NUCA

cache (128 banks) is divided into a 16 bank-cluster as shown by red dotted box in Figure. 5.4.

Each bank cluster consists of a single bank of logical bankset.

Figure.5.4: Bank cluster in NUCA

Bank set: All the banks that compose NUCA cache can be logically treated as a set-

associative structure as shown in Figure. 5.5, where each bank in a bank-cluster holds one

way of a logical bank set.

102

As shown in Figure. 5.5, the complete NUCA cache is partitioned into 128 banks, which is

logically organized into a 16-way bankset associative structure (Grey color banks constitute a

bankset). Now, the group of eight banks (bankcluster) that are located close to the cores are

Figure 5.5: Non-Uniform Cache Architecture

called local banks whereas the other eight banks that are located at the center of the NUCA

cache are called central banks as shown in Figure. 5.6. Therefore, in a bank-set associative

NUCA cache a data block can have 16 possible placements (eight local banks and eight

central banks).

Figure 5.6: Shaded red portion constitutes the central bank-clusters, whereas light brown

bank close to the cores are the local bank-clusters

103

The address mapping of the incoming data block when it comes from off chip main memory

is statically predetermined by selecting lower bits of the data block address as shown in

Figure. 5.7. The LRU data block in the referenced set of this bank would be evicted if the set

is completely occupied by data blocks.

Figure 5.7: Address Interpretation

5.4 Replication Policy: owner bank knows when to replicate

In this section, we propose an efficient, highly accurate and low-overhead mechanism to

track the re-usability of each cache line in the shared NUCA. Our scheme allows dynamic

replication of those cache lines that shows high usage at the shared LLC. When a replicated

cache line is evicted or invalidated, the proposed scheme dynamically adjusts its future

replication decision. This scheme also reduces access latency and energy consumption by

selectively replicating the cache line that shows high re-usability to the local bank-cluster of

the requesting core. It also maintains coherence complexity similar to that of a conventional

non-hierarchical coherence protocol as replications are allowed only in the local bank cluster

of the requesting core. The extra coherence complexity arises only when the replicated cache

line is evicted or invalidated from the local bank-cluster.

5.4.1 Working of the proposed scheme

For proper working of the proposed scheme, we identified four key requirements for efficient

cache line replication in the NUCA cache. The first involves selecting a cache line for

replication. The second one is the intelligent placement of the replicated cache line. The third

requirement is the lookup mechanism capable of quickly locating the replicated cache line

within the shared cache and finally maintaining cache coherence for the replicated cache

lines. We first define few terms to facilitate describing our proposed scheme.

104

Owner Bank: The bank where data is placed for the first time, after being brought from off-

chip memory. All the subsequent off-chip requests are serialized at this bank for maintaining

coherence and resolving false misses.

Copy Sharer: A core that is given access to a separate cache line copy in its local bank

cluster.

Non-copy sharer: A core that is acting as a simple sharer of the cache line and has not

received a separate copy of the line in its local bank cluster.

Owner bank reuse: The number of times a cache line is accessed at the owner bank before

being evicted or written.

Replicated line reuse: The number of times the local copy of the replicated cache line is

accessed before it is invalidated or evicted.

Reuse threshold (RCT): If the value of re-usage becomes equal to or greater than this value,

then a separate copy of the cache line is created.

Note that for any cache line, one core can be a single copy sharer while other cores can be

non-copy sharers of the cache line. So, initially all the cores are non-copy sharers of the cache

line as shown in figure 5.8. We have used a directory based coherence protocol, in which

each cache entry is further extended with an extra replication indicator bit (RIB) and a 2 bit

saturating counter (RCT-1) as shown in the Figure. 5.8. Based on the value of RCT-1 and the

status of RIB, the cache controller allows creating a separate copy of cache line in the local

bank-cluster.

Figure 5.8: State transition based on the value of reuse threshold

105

5.4.2 Managing Read/Write Request

This section describes how our proposed scheme manages a read/write request and handles

evictions and invalidations for replicated cache lines.

5.4.2.1 Read Request

As a result of a compulsory miss, a data block is loaded into the cache from off-chip memory.

The cache controllers are designed in such a way that on a L1 cache read miss, it first

searches the local bank cluster of the requesting core (where the requested data block can be

mapped or replicated within the NUCA cache to provide reduced access latency). If the

request hits, the block is inserted at the L1 cache of the requesting core. In addition, if this is

the replicated copy of the cache line then the corresponding replication reuse counter (RCT-

2) should be incremented to keep track of the line reuse information. In our scheme, for a

newly replicated cache line, the counter RCT-1 is reset to 1 and RCT-2 is incremented on

every request that results in a hit. Figure 5.9 shows the directory entry to track a replicated

cache line. In case of a miss, the memory request is forwarded to the owner bank by using the

lower address bits of the block address (Figure. 5.7), beginning the next stage of the search

mechanism. If the data block is found, the request is hit and the block is sent to the core that

started the memory request, thereby completing the search mechanism. In case the cache line

is not found in the owner bank, the memory request is forwarded to off-chip memory.

 Figure 5.9: Additional in-line directory bits for the proposed scheme

Algorithm-1, presents how to handle read requests from the cores. The logic for all the

algorithms are implemented using full system simulator. To ensure the correct operation and

accuracy of our proposed block replication policy, the in-line cache directory entries are

extended with extra bits as shown in Figure. 5.9 to keep a track of reuse as well as replicated

line information. These additional bits include the Replication indicator bit (RIB), which

identifies whether a replicated copy of cache line is created. If it is set to 1, then an extra copy

of cache line is placed in local bank-cluster of the requesting core. Secondly, there is a

106

separate owner bank reuse counter (RCT-1) for each core. This counter is used to track the

number of times the line is accessed by a core at the owner bank. Initially, it is reset to zero

and is incremented on every access to the owner bank. If this counter reaches the reuse

threshold (RCT) then RIB is set to 1 and a separate copy of the cache line is placed in the

local bank cluster of the requesting core. If the value of RCT-1 is less than the reuse threshold

(RCT), then the cache line is inserted in the private L1 cache of the requesting core, without

being replicated. In order to better understand algorithm-1 and algorithm-2, let the set C =

{C0, C1, C2, C3, C4, C5, C6, C7} represent the cores as described in the baseline NUCA

architecture. Let L1 = {L10, L11, L12, L14, L15, L16, L17} be their respective private L1

caches. We use BClocal and BCowner to refer to the local and owner bankclusters respectively.

Algorithm 1##Read request

1: function handleReadRequest
2: INPUT: ReadReq j from Ci є C
3: Begin:
4: Lookup L1i
5: if (hit)
6: Load Line j
7: LRUQueueset .movetoEnd(Linej)
8: else
9: Fwd ReadReq j →BC local
10: if (hit)
11: Load Linej
12: LRUQueueset .movetoEnd(Linej)
13: RCT-2 ++
14: else // local bank-cluster miss
15: Fwd ReadReq j → BC owner
16: if (hit)
17: if (RCT-1 > RCT)
18: RIB ← 1
19: endif // Line 17
20: if (RIB == 1)
21: BC local.insertReplica (Line j)
22: RCT-1 ← 1, Load Line j
23: else// RIB!= 1
24: RCT-1 ++, Load Linej
25: LRUQueueset .movetoEnd(Line j)
26: endif // Line 20
27: else //owner bank miss
28: Fwd ReadReq j → off-chip
29: endif // Line 16
30: endif // Line 10
31: endif // Line 5
32: End// Line 3

107

Also assumed is a LRU based replacement policy, implemented using a queue. In our

analysis, we have considered few special cases that could further accelerate our proposed

policy. For example, during the initial search into the local-bank cluster closer to the core, it

is possible for the same bank to be the owner bank and the read request can be handled

directly at the local bank cluster of the core, resulting in reduced number of steps. In this

case, even if the replication indicator bit (RIB) is set to 1 (to create a copy of replicated line)

the cache line is only inserted at its private L1 cache, without being replicated.

5.4.2.2 Write Request

In this section, the details of write requests handled by our proposed scheme are presented. In

case of a write request, the cache controller first checks the private L1 cache. If it is not

present in exclusive state it results in a miss and the local bank cluster is probed for the

replicated cache line. If the replicated cache line exists in the exclusive or modified state, it is

moved to the private L1 cache and its reuse counter is incremented. If the replicated cache

line is present in the shared state or if it does not exist, then the request is forwarded to the

owner bank depending on the lower bits of the requesting address as discussed in Figure. 5.7.

Upon receiving the request, the owner bank checks the directory information for that line and

sends invalidation messages to all other sharers and L1 copies to maintain the single-writer

and multiple reader case, thereby simplifying the coherence protocol complexity. Once the

invalidation acknowledgements are received, the owner reuse counter (RCT-1) of all the non-

copy sharers are reset to 0 except for the requesting core since they have not shown enough

cache line reuse. If the requesting core is the only sharer then its owner reuse counter (RCT-

1) is incremented otherwise it is reset to 1.

Algorithm-2, illustrates how to handle write requests for the cache line.

Algorithm 2 ## Write request

1: function handleWriteRequest
2: INPUT: WriteReq j from Ci є C
3: Begin:
4: Lookup L1i
5: if (hit)
6: Write Line j, update LRU state
7: else //miss
8: Fwd WriteReq j → BC local
9: if (hit && cacheLine j.state == M/EX)
10: L1i.insert (Line j)
11: RCT-2 ++
12: Write Line j, update LRU state

108

13: elsif (hit && cacheLine j.state == S)
14: Fwd WriteReq j → BC owner
15: Send Inv. → L1 copies, copy-sharers
16: RCT-1other sharers ← 0
17: Recv. Inv. Ack
18: if (Ci.isCopySharer(Line j))
19: Send RCT-2→BC owner
20. Decide Replica status Ci
21: endif // Line 18
22: cacheLine j.state ← EX
23: L1i.insert (Line j), Write Line j
24: update LRU state
25: if (Ci.isSingleSharer (Line j))
26: RCT-1 ++
27: else
28: RCT-1 ←1
29: endif // Line 25
30: endif // Line 9
31: endif // Line 5
32: End // Line 3

5.4.2.3 Invalidation Request

In case of an invalidation request, if a copy of cache line is found in either of the caches (L1

or local bank-cluster), an acknowledgement is sent to the owner bank. If a replicated cache

line exists then the replica reuse counter is communicated back with acknowledgement. This

information is used to decide whether the core will maintain replica status or not. If the value

of RCT-1+RCT-2 (owner reuse + replicated line reuse) is greater than threshold value then it

maintains replica status, otherwise it is demoted to the status of a non-copy sharer.

5.4.2.4 Eviction Request

On an L1 cache line eviction request, the local bank-cluster is probed for the same address. If

a replicated block exists, then the dirty data in the L1 cache is merged with it, otherwise an

acknowledgment is sent to the LLC owner bank. In case the replicated cache line in the local

bank cluster is evicted then the L1 cache is searched for the same address and invalidated. An

acknowledgment is sent to owner bank with the replicated line reuse counter information. If

RCT-2(reuse counter) >=RCT, then the core maintains copy status, otherwise it is demoted to

non-copy status.

5.5 Hardware Overhead of Proposed Policy

The proposed replication policy requires additional hardware to implement the selective

replication of blocks within the shared LLC. As shown in Figure. 5.9, each directory entry

109

requires 2 bits for the replicated line reuse counter (RCT-2) (for an optimal threshold of 4)

and 1 extra bit to store replication information (RIB). Hence, the proposed scheme requires

an additional (8X3) + (2X8) X 8 = 152 bits of storage per LLC directory entry. Therefore, the

extra number of bits required per bank is 128X152 = 2.375kB. So, as per our baseline

configuration with 8 MB LLC NUCA cache consisting of 128 banks, the total hardware

required by the proposed scheme is 51.968kB, which is 0.634% additional hardware required.

The proposed selective replication scheme can be easily extended to tiled CMPs as well and

is not restricted to NUCA based designs. In addition to the hardware overhead, there is

additional complexity in cache design partly because of the additional latency introduced by

comparison with the threshold, which is taken care of in our design.

5.6 Cache Coherence Protocol

Our work uses a directory protocol that does not need an ordered interconnect to satisfy

coherency. We also believe that future CMPs will rely on a directory like structure to

maintain coherence and can scale to a large number of on-chip cores. To ensure correctness

and to implement different read and write scenarios, cache coherence protocols utilize

transition states. Transient states usually include states where the controller is waiting for

acknowledgements or data to be received. Our protocol implementation inherits such

transition states from the baseline cache coherence protocol and uses these transient states to

maintain a coherent view of the system. In the proposed cache access scheme, for any cache

line that does not exhibit complex sharing and therefore search mechanism, the implemented

protocol works similar to the baseline cache coherence protocol. This is basically enforcing a

write-invalidate policy for all cache lines in the shared NUCA. The coherence protocol is

designed on top of the write-invalidate directory protocol, which is a modified baseline

MOESI protocol. Race conditions are handled using busy or active states for each request.

Sequence diagram in Figure. 5.10, briefly describes how a write-invalidate based protocol

works for a simple cache line replication example, and the sequence diagram in Figure. 5.11,

describes block invalidation. The arrows represent a specific location in the system with a

hypothetical time line. From left to right, these locations are the requesting core, the L2

shared cache which also includes the directory that is co-located, the consumer cores, and the

main memory.

110

Figure 5.10: Sequence diagram for block replication

 Figure 5.11: Sequence diagram for block invalidation

For clarity in explanation, the example assumes a single requesting core and a single

consumer core of the cache line. Also, we assume that initially the cache line is in the

111

OWNED state in the requestor’s cache and SHARED in the consumer core’s cache. The

directory is co-located with each cache line and it tracks the coherence state of cache lines

belonging to different cores.

5.7 Verification of Protocol

Modified MOESI based directory protocol relies on the baseline coherence protocol for

correctness. However, before the protocol is put into operation, it is essential to verify its

robustness when subjected to different race scenarios. A robust coherence protocol is

required to ensure correctness under all possible conditions. For the verification, we have

utilized the stress tests provided by the GEMS toolset. By stress testing over a large design

space encompassing all possible race conditions, certain coherency issues were identified and

the protocol was suitably modified and corrected.

5.8 Experimental Setup

5.8.1 Simulation Environment:

In this section, we describe our evaluation methodology with all the results obtained

using the system configuration described in Table 5.1. We simulated the entire system

using Virtutech Simics full-system simulator [99] extended with the GEMS toolset [100].

GEMS is an event driven simulator that provides a complete memory-system timing

model that enabled us to model the multi-banked NUCA cache architecture.

Table 5.1: System Configuration

Configuration Parameters

No of Cores 8

Core Mode Single Thread

Frequency 1Ghz

L1-Data Cache 32kb, 64 bytes

L1-Instruction Cache 32kb, 64 bytes

Shared L2 Cache 8 Mb, 128 banks

Bank Size 64 Kb, 8-Way, 64bytes

Furthermore, the RUBY memory system simulator provides support to implement

baseline system memory hierarchy. This includes the on chip interconnection network

parameters, bank access time, mapping, replacement policies etc. In RUBY, each cache

112

bank has its own controller and using the domain specific language called SLICC we can

specify with precision the coherence protocol. This environment allows us to simulate a

complete multiprocessor system that is running a commercial operating system without

any modification and it accurately models the network contention introduced during the

simulation. The simulated system is organized as a single CMP that consists of eight

UltraSPARC IIIi homogeneous cores with layout depicted in Figure 5.4. Each processor

core has its own first-level cache (data and instructions) and is connected to a node of the

network. The last level of the memory hierarchy is the NUCA distributed in 128 banks

connected to the cores via switches. We used MOESI based directory protocol to maintain

correctness and robustness of the memory subsystem. The main system configuration

parameters used in our simulations are shown in Table 5.2.

5.8.2 Benchmarks

To quantitatively analyze the proposed scheme, we used two different scenarios: 1)

Multi-programmed and 2) Parallel applications. The first one executes in parallel a set of

eight different SPEC CPU2006 workloads with the reference input and fast forwarded to

the beginning of the main loops. Table 5.2 outlines the workloads that make up this

scenario. The Parallel workload simulates the complete set of applications from the

PARSEC v2.0 benchmark suite [108] with the sim-large input data sets. This benchmark

suite contains 13 programs from different areas such as, computer vision, image

processing, financial analytics, video encoding and animation physics. The method for the

simulations involves first skipping both the initialization and thread creation phases and

then fast-forwarding while warming up the cache for 500 million cycles.

Table 5.2: Benchmarks

Benchmarks Applications Input

PARSEC

Blackscholes, bodytrack,

canneal, racesim,

fluidanimate, x264,
raytrace,swaptions, streamcluster

Sim-large Input

SPEC2006
Mix or Different applications,
gcc, ibm, astar, mcf, soplex,

perlbench
Reference Input

113

Then finally, we performed a detailed simulation for 500 million cycles. We use the

aggregate number of user instructions committed per cycle as the performance metric,

which is proportional to the overall system throughput.

5.9 Results

We have simulated the execution of selected applications from the PARSEC multithreaded

benchmark suite [108] to completion using sim-large input set. We have used energy

consumption of the shared cache memory and the completion time as the reference

performance metrics. We have also analyzed the network traffic in terms of the bytes-per-

instruction and L2 hit latency to further evaluate our proposal. For the applications that have

high miss rate in the NUCA cache, our scheme outperforms the S-NUCA baseline

architecture by 8% as shown in Figure 5.12. By taking advantage of selective replication for

highly reused cache lines at the owner bank, memory requests are directly satisfied by only

accessing the local bankcluster. The percentage of improvement is obtained by taking the

difference between the average value along all the applications for reference and proposed

schemes. Figure. 5.12, shows the normalized completion time for the selected benchmarks

and we observe that in none of the considered benchmark applications, performance is

degraded.

Figure 5.12: Normalized Completion Time

In the chosen applications, completion time reduction varies from about 4% up to 36%. On

average, this translates to about 8% increase in performance. Figure. 5.13, shows the average

L2 hit latency in both S-NUCA and the selective replication scheme. With the adoption of the

114

replication mechanism, L2 response time reduces by close to 12% on average; this is due to

the fact that most of the hits are concentrated in the faster local-banks and the requested

blocks can be provided in a very short time. For few applications like Streamcluster and

Bodytrack, we have observed low L1 miss rate, so they can’t gain much from the proposed

policy but there is no further degradation in their performance. Therefore, for the applications

with higher miss rates, the impact on the performance is even better. In the second scenario,

we have observed applications with low high miss rate, like Dedup and Swaptions. In this

scenario both the schemes take equal access latencies when the request hits in the closest

banks. With applications having very high hit rate like Bodytrack, we have observed slight

performance improvement. We assume that the applications running on future processors will

follow the characteristics of the first scenario: applications with large working sets and many

applications running simultaneously.

Figure 5.13: L2 Hit Latency

In general, our scheme shows good performance improvement with almost all benchmarks of

the PARSEC suite, with more than 8-10% improvement in the Ferret application. Figure.

5.14, presents the distribution of the data as well as control messages that affect the overall

network traffic in terms of number of bytes per instruction. In our architecture the size of

control message is 8 bytes (header only) whereas the size of the data message is 72 bytes

which contains 8 bytes for the header portion and 64 bytes for the data block. From Figure.

5.14, it can be observed that the total network traffic is reduced for almost all the applications

which are the result of selective replication of cache lines at the closer banks (local bank-

115

clusters). The closer banks are the banks in the local bank-cluster that are physically close to

the cores. This reduces the network distance traversed by a packet to reach the receiver bank.

In the proposed policy the data packets traverse a lesser number of hops with respect to S-

NUCA, as seen in the graph and the data portion of the network traffic is reduced whereas the

control part of the network traffic remains almost the same. In our proposed policy, the

selective replication and then invalidation for read-write blocks is triggered only few times as

compared to the total number of L2 accesses.

Figure 5.14: Distribution of Network Traffic

As a result, the overhead of replication and invalidation messages has a low impact on the

total network traffic. Reduction in network traffic as shown in Figure. 5.14 reduces dynamic

energy consumption because of reduced overall network activity. Figure. 5.15, shows the

dynamic energy consumption of each benchmark using the proposed selective replication

policy.

116

Figure 5.15: Normalized Energy Consumption

The energy reduction can be primarily attributed to the reduction in network traffic.

Therefore, for benchmarks where our proposal improves the L2 performance, the energy

benefits will in fact be higher. We observed that the proposed scheme improves energy

consumption of the NUCA cache by more than 27% as compared to the S-NUCA baseline

architecture. To summarize, the proposed selective replication policy reduces energy

consumption and enhances performance when compared to other last level shared NUCA

data management schemes. We explored all values of RCT between 1 and 8 and found that

they provide no additional insight beyond a threshold value of 4. The proposed policy makes

use of data locality on-chip and reduces off-chip miss rate. Overall, our replication policy

consumes 27%lower energy and shows 15% lower completion time when compared to S-

NUCA.

5.10 Related Work

Prior research on cache management in multi-core processors has mostly focused on the last

level cache. Shared, private as well as hybrid LLC designs have been extensively reported in

[112] [113] [120] [130] [132]. All other cache levels have traditionally been organized as

private to a core. Private LLC organizations provide limited cache capacity to a thread and

adversely affect applications with large working sets. Shared organizations on the other hand

have the flexibility of storing the data of an application in various locations throughout the

cache, but at the cost of higher hit latencies since each request has to incur the wire delays

imposed by the meshed interconnection network. However their off-chip miss rates are low

as compared to private organization because data is not replicated in the LLC. The influence

117

of wire delay in shared LLC design implies that access latencies are not constant. To address

this problem of non-uniform access latencies, Kim et al. [19] introduced the original non

uniform cache architecture (NUCA) as shown in Figure. 5.2. In shared NUCA, the whole

LLC is partitioned into smaller banks such that nearer cache banks have lower access

latencies as compared to farther banks, thus mitigating the effects of on chip wire-delays. The

efficiency of a migration scheme depends on an accurate data access scheme that was

difficult to implement in the past. Kim was the first to highlight the importance of the bank

access scheme in dynamic NUCA organizations. Although block migration enhances D-

NUCA benefits to outperform S-NUCA, it is limited by the quality of the bank access scheme

within NUCA. This work was further extended by Huh et al. [63] who analyzed different

NUCA organizations and came to the same conclusion that although D-NUCA outperforms

other organizations, access policy is of prime importance in shared D-NUCA designs. Since

then researchers from both industry and academia have extensively studied policies in NUCA

architectures that efficiently manage: block placement [63][115][127][129][131], block

migration [126][127][135],replacement [128] and lookup [125][137]. The introduction of

CMPs further increased the complexity of the multi-banked NUCA design process. Chisti et

al. [134] also proposed an alternative NUCA design called NuRAPID, in which the Last level

cache is divided into a few large banks instead of many smaller banks for higher reliability,

efficiency and lower data migration rates with further extension to accommodate a limited

number of cores. The concept of cooperative caching in multi-core processor systems was

introduced by Chang et al. [114] to increase the overall cache capacity, where each processor

core has a local L2 cache and cache consistency, sharing are achieved by listening in on all

the L2 cache traffic and cooperating in decreasing the conflicts. Another variant of NUCA is

proposed by Liu et al. Beckmann and Wood [112] in their analysis show that block migration

policy is less effective for CMP because 40-60% of total hits in commercial workloads were

satisfied in the central banks. There has also been significant recent work in evaluating the

benefits and limitations of replication in CMP caches. Huh et al. [63] investigated sharing in

a CMP-NUCA cache and favored some replication between cache banks. Adaptive Selective

Replication dynamically evaluates the costs and benefits of replication on a per-block basis

and adapts to the needs of the workload. Other schemes similar to Adaptive Selective

Replication are the CMP-NuRAPID [134] and Cooperative Caching [114] proposals. The

above proposals reduce replication but utilize a static mechanism that does not adapt to the

needs of different workloads in different phases and other constraints. Finally, similar to

ASR, Suh et al. [138] used set and way counters to monitor cache block utilization. Zhang et

118

al. [116] used an automatically re-sizable cache with a miss tag buffer to track possible cache

hits if a full sized cache was available. However, Suh et al. used the monitoring information

to dynamically partition the ways in a set-associative cache among multiple thread sand

Zhang et al. used it to reduce energy consumption.

5.11 Summary

We have proposed an efficient selective replication policy for the last level cache. The cache

line re-usability is profiled dynamically using in-directory reuse counters. On a set of multi-

threaded applications, our selective replication policy reduces the overall energy by 27% and

the completion time by 15% when compared with Static-NUCA L2 cache management

policy. The coherence complexity of our protocol is almost identical to that of a traditional

non-hierarchical (flat) coherence protocol since replicas are only allowed to be created at the

LLC slice of the requesting core. Our proposed policy is implemented with an extra storage

overhead of 3.71% per NUCA bank.

119

 Chapter 6

Adaptive block Migration-Replication (AMR) in NUCA

This chapter presents challenges introduced by dynamic features provided by D-NUCA, like

multiple locations for data placement, migration movements and data access policy. This

chapter presents AMR scheme, which is an efficient and cost-effective mechanism to

overcome above challenges and reduce miss latency in the NUCA cache and the on-chip

network contention.

120

Chapter 6

Adaptive block Migration-Replication (AMR) in NUCA

6.1 Introduction

The static non-uniform cache architecture (NUCA) designs for shared last level cache

memory outperforms the classical uniform cache organization with slightly increased

complexity in the control mechanism. In S-NUCA as shown in Figure 6.1 (a) and (b), a

block can only be placed in a single location. This, imposes serious limitations with this

architecture: a frequently accessed block may be placed in a bank located far from the core,

thus suffering the overhead of a high access time every time it is accessed. The block

cannot be placed to any other bank, closer to its requester, since its location in the cache is

statically defined by its address. This limitation of the static NUCA motivated us to propose

selective cache line replacement in the NUCA cache, which address the problems that arise

from static placement of cache blocks in the previous chapter.

(a)

(b) (b)

Figure 6.1: NUCA Organizations

However, the limitations of the static NUCA organization gave birth to NUCA's next

generation designs, the dynamic NUCA, which address the problems that arise from static

placement. Data movement and their management further impacts memory access latency

and consumes power. We observed that previous D-NUCA designs have used a costly data

access scheme to locate data in the NUCA cache in order to achieve remarkable

performance improvement. To address these issues, we further investigated this limitation

along with the benefits of dynamic NUCA organization as well as discusses the drawbacks of

121

both S-NUCA and D-NUCA organization. Finally, we proposed an adaptive migration-

replication policy for non-uniform shared L2 cache supported with an efficient data access

policy using a set of location pointers with each banks, which provides solutions to the basic

problems with D-NUCA. Our scheme relies on low-overhead and highly accurate in-

hardware pointers to control network traffic and improves cache miss latency. Using

simulations for 8-core multi-core system, we show that our proposed data search

mechanism in D-NUCA design reduces 40% dynamic energy consumed per memory

request and improves average performance speedup by 6%.

The rest of the chapter is organized as follows: The next section describes motivation for

this work. Section 6.3 provides detailed explanation of proposed data access policy. In

section 6.4, the baseline architecture and simulation environment is briefly described,

followed by the results and implementation overhead. Related work is discussed in section

6.5 and finally conclusions are given in section 6.6.

6.2 Motivations for This Work

As technology nodes evolve, feature sizes keep shrinking with every generation. However

interconnects have scaled by a much smaller amount. Hence wire delays have shown slight

improvements and have now become a major hurdle in improving chip multiprocessor (CMP)

performance. This discrepancy has led to an increased focus in developing on-chip cache

architectures that can minimize the increasing wire delays [19] [63] [5] [138]. With

increasing number of cores physically distributed on-chip, accesses from different cores incur

non-uniform delays. Such an observation has led to the development of heavily banked non-

uniform cache architectures (NUCA), with an aim to utilize the closer banks to satisfy the

requests of different cores. Figure 6.2 shows three different ways of assigning sets to banks

proposed by Kim [19]. The migration mechanism proposed for these mapping schemes was

fairly simple, since it is tightly related to the organization of the banks in sets. When a hit

occurs to a data block in one of the cache's banks, it is swapped with the corresponding block

of another bank that belongs in the same bankset and is one step closer to the cache

controller.

122

(a) Simple Mapping (b) Fair Mapping (c) Shared Mapping

Figure 6.2: Set sharing schemes in NUCA Organization with different mapping schemes [16]

Traditionally, NUCA organizations have been classified as static (S-NUCA) and dynamic (D-

NUCA). While in S-NUCA a data block is mapped to a unique bank in the NUCA cache, D-

NUCA allows a data block to be mapped to multiple banks. D-NUCA also provides dynamic

features like migration of data between multiple banks by leveraging data locality and moves

frequently accessed data close to the requesting core. Multiple placement locations for data

and its migration between multiple banks, makes the data access scheme a key constraint in

D-NUCA based architectures. However, because of non-uniform distances between

requesting cores and shared L2 cache banks in the mesh interconnection network, on chip

cache access latencies vary greatly and can sometimes be very large due to wire delays.

Extensive research has been reported in literature dealing with such non uniform cache

architectures (NUCA) [19] [63] [110] [125] [129]. Several replication mechanisms have also

been proposed to balance between access latency and cache capacity in hybrid L2 cache

designs [60] [139]. Much of the previous efforts have focused on either the migration or

replication of blocks in the shared last level cache [60] [127]. Such a “one-policy-fits-all”

approach may adversely affect some applications that show greater benefit from using one

policy over the other. In this work, we proposed an adaptive migration-replication scheme

that is tuned to the varying runtime requirements of an application. The proposed scheme

analyzes the access patterns of applications during their execution in order to make the

migration/replication decision. Our approach is adaptive in the sense that it can shift between

the two policies (migration and replication) at runtime in order to best suit the requirements

of the application. Methods that have implemented a selective cache line replication scheme

on top of a migratory baseline policy lack an effective search mechanism to make best use of

the low access latency provided by replicated lines. To alleviate this drawback, we propose

an effective search policy to keep track of cache lines in the shared LLC. We have also

123

explored several exceptional cases that may arise because of replica creation and the race

conditions that it may cause, if left unsolved. The baseline coherence protocol was suitably

modified to ensure coherency of data in all possible scenarios.

In summary, we propose a novel runtime shared cache management scheme that uses both an

accurate, low overhead data access policy and an adaptive migration-replication mechanism

to meet the performance requirements of different applications in different phases of their

execution.

Following are our contributions in this effort:

1. Dynamically adapting the migration/replication decision at runtime according to the

needs of a particular application.

2. Proposing an accurate, low overhead data lookup policy that provides low latency cache

access in the presence of both replicated as well as migrated blocks in the cache.

3. Identifying possible race conditions that may arise due to the presence of both migrated

and replicated blocks in the cache and appropriately modifying the baseline coherence

protocol to handle these exceptional scenarios.

6.2.1 Exploiting Dynamic Non Uniform Cache Architecture

The migration mechanism allows data to move towards the most frequently referring core,

thus reducing the average cache latency by storing the most frequently accessed blocks in

banks close to the referring core. In CMP configurations in which processors are placed at

different sides of the shared D-NUCA cache, the performance improvements due to the

migration can be limited by the ping-pong or conflict hit phenomenon [110] [103] [60] shown

in Figure. 6.3. We recall that the typical way to implement migration consists in letting

cached blocks to migrate whenever a request coming from an L1 cache hits the block, and

letting them migrate in the direction of the requester to decrease access time. When the

requests for the same cache block are generated by L1 caches staying at opposite sides of the

D-NUCA (e.g., L1 from CPU-0 and L1 from CPU-4 in Figure. 6.1(b), the blocks

alternatively migrate up and down in the pertaining bankset, usually staying in the middle of

the bankset, that is, far from all the processors. The effects of ping-pong are twofold: First,

the performance improvements due to migration are limited, as shared blocks don’t succeed

in reaching the faster ways and secondly the dynamic energy consumption increases, due to

the increased NOC traffic induced by up and down migration of blocks.

124

Figure 6.3: Data ping-ponging between banks 16 and 24, and it is not able to reach near the
local bank clusters in Dynamic NUCA Organization

6.2.2 Data Lookup with in the D-NUCA

A NUCA design can be characterized based on four policies which determine its behavior:

Bank placement, which determines the first location of data in the cache.

Bank lookup, which defines the searching algorithm across the banks.

Bank migration, which decides data movements between the NUCA's banks.

Bank replacement, which deals with the evicted data and any actions required upon its

eviction.

Static NUCA implements static placement of data (standard placement depending on its

address), which also allows a simple static lookup mechanism, using the same static function

that is used for placement. It also implements a classic replacement policy, e.g. LRU, and no

migration of data at all. A data block is placed in a predetermined, statically determined by its

address, position and never moves until evicted. At the other extreme, in a dynamic NUCA,

a data block can be placed in any bank of the cache. This approach provides the greatest

flexibility and unlocks the possibility for greater performance gains. However, such an

extremely dynamic placement strategy comes at a cost. The overhead of locating a data

block in the cache when it could be found anywhere, can be too large as shown in

Figure 6.4.

125

Figure 6.4: Example to illustrate the complexity of data look in Dynamic NUCA
Organization

Locating data blocks with no limitation on their possible location, requires a broadcast to

all the banks for each access. That would be prohibitive in terms of both latency and

energy. Therefore, placement is strongly paired with the lookup mechanism and the greatest

challenge is developing hybrid solutions that lay somewhere between the static and the

extremely dynamic policies, which would deliver high performance at an affordable cost.

Hence, the full potential of the NUCA access latencies are not exploited.

6.3 Proposed Shared Cache Management using AMR

This section presents the details of our baseline architecture to facilitate the explanation

of the proposed scheme.

6.3.1 Baseline Architecture

The block diagram of the baseline architecture for L2 cache is shown in Figure. 6.5. As seen

from the figure, we have eight cores C1 to C8 on the same chip with individual private L1

caches and a large shared L2 cache.

126

Figure 6.5: Multi-banked NUCA Organization (with Bank ID’s indicated)

The L2 cache is further partitioned into multiple banks. We assume a last level shared L2

cache as a Non-Uniform Cache Architecture, derived from Kim et al.’s Dynamic NUCA-

1 (D-NUCA) design [16]. We first define few terms to facilitate describing our baseline

architecture.

Owner Bank: The bank to which data is mapped for the first time after an off-chip access

using a static address mapping scheme.

Bankclusters: A group of eight banks compose a bankcluster and the entire NUCA cache

(128 banks) is divided into 16 bankclusters shown by the highlighted portions in Figure 6.6.

Figure 6.6: Logical Partitioning into Bankclusters

127

Bankset: All the banks that compose the NUCA cache are treated as a set-associative

structure as shown in Figure 6.7 where in each bank holds one way of a logical bankset. Each

bankcluster consists of a single bank of a bankset. The mapping of addresses to banks in the

local bankcluster and the central bankcluster is presented in Algorithm-1 and Algorithm-2

respectively.

Figure 6.7: Bankset shown in red (16 way bankset associative)

As shown in Figure. 6.7, the entire NUCA cache is partitioned into 128 banks, which is

logically organized into a 16-way bankset associative structure (Red colored banks constitute

a bankset). Now, the group of eight banks (bankcluster) that are located close to the cores are

called local banks (grey colored region in Figure 6.6), whereas the other eight banks that are

located at the center of the NUCA cache are called central banks (indicated by light red

regions in Figure 6.6). Therefore, in a bankset associative NUCA cache a data block can have

16 possible placements (eight local banks and eight central banks).

Algorithm-1: L1 request mapping to local L2 bank:

function mapL1_request_LocalL2_dest

INPUT: L1 ID, num_banksets, CPU Address (addr),

OUPTUT: L2bank IDdest
local ,

BEGIN:

 L2bank IDdest = (L1 ID * num_banksets) + addr [log2 (num_banksets) -1: 0]

END

128

Algorithm-2: L1 request mapping to central L2 bank:

function mapL1_request_CentralL2_dest

INPUT: L1 ID, num_banksets, CPU Address (addr), num_L2banks.

OUPTUT: L2bank IDdest
central ,

BEGIN:

 L2bank IDdest = (L1 ID * num_banksets) + addr [log2 (num_banksets) -1: 0] +

(num_L2banks)/2;

END

The address mapping of an incoming data block to an L2 bank during its first reference from

off-chip memory is statically determined using the lower bits of the data block address as

shown in Figure 6.8. The LRU data block in the referenced set of this bank would be evicted

if the set is completely occupied by data blocks. Once the data block is placed in a bank of

the D-NUCA cache, the migration policy is used to determine its optimal position.

Researchers in the past have proposed gradual promotion (‘one-hit-one-hop’) for data blocks

[105] [58]. In Ideal D-NUCA, a data block can be mapped into any cache bank to maximize

placement flexibility for the block. However, the overhead of searching a data block in that

scenario may be too large as each bank in entire NUCA cache must be searched for the block.

Figure 6.8: Address Interpretation

Previously, data lookup was performed either using centralized tags or by broadcasting the

tags to all the banks. Such a policy came at the cost of increased network traffic and higher

power dissipation. To address this issue, researchers suggested that data blocks be allowed to

be mapped to only one bankset [16] [58]. Such a D-NUCA design uses a two-step multicast

129

data access algorithm. In the first step, it broadcasts a data block request to the local bank that

is closest to the core that has initiated the memory request, and to the eight other central

banks in the bankset. If all nine requests result in a miss, then in the second step, the request

is sent in parallel to the remaining seven banks (central banks) of the requested data’s bank-

set. Finally, if the request misses in the remaining banks as well, then it is forwarded to the

off-chip memory. Therefore, when we evaluate NUCA further, we will assume the same D-

NUCA architecture described above in this section, but we will use our proposed data access

algorithm (see sub-section 2.3) to find the exact location of data instead of the two step

multicast data access algorithm. The traditional D-NUCA access policy is described in

Algorithm 3.

Algorithm-3: Baseline D-NUCA data access policy

function handleCoreRequest
INPUT: Read/Write request for Linej (Reqj) from Ci є C
BEGIN
1. Lookup L1i
2. if (hit)
3. Load Line j , LRUQueueset .movetoEnd(Linej)
4. else
5. ∀ k BCcentral, Fwd ReadReq j →BC local

(i), k
6. if (hit)
7. Load Linej, LRUQueueset .movetoEnd(Linej)
8. else
9. ∀ k {BC} – {BC central, BClocal

(i)}
10. Fwd ReadReq j → k
11. if (hit)
12. Load Linej, LRUQueueset .movetoEnd(Linej)
13. else
14. Fwd ReadReq j → off-chip
15. endif
16. endif
17. endif
END

6.3.2 Working of the Adaptive Migration-Replication scheme (AMR)

When a block is first brought on-chip as a result of a cold miss, it is placed in a bank

statically determined by the lower bits of the physical address sent out by the requestor. In

cases where it is frequently accessed by a core that is located far away from this bank, this

position is far from optimum. A preferred location would be the local bank-cluster of the

requesting core. We propose two mechanisms that work in tandem to determine the optimum

130

location for a block on-chip, (i) a gradual mechanism in which the block migrates in steps

towards a remote requester, (ii) an abrupt mechanism in which the block is replicated directly

to the local bank of the requester. Both these mechanisms require the use of hardware

counters to monitor access patterns over a pre-determined time window. Consider the

example in Figure 6.9, in which there is a remote hit for a block located in the local bank-

cluster of Core 7, but frequently utilized by Core 0. There exists a need to move the candidate

block closer to the requesting core (Core 0) in order to reduce hit latency for Core 0. This is

achieved by means of cache line reuse tracking using hardware counters.

Figure 6.9: Remote hit in the local bank-cluster of Core-7

A 2-bit saturating hardware counter MC (Migration Counter) is used with each block to keep

track of access patterns from different cores. The core specific migration counter is

incremented on every hit from that particular core. Now, if MC saturates after a certain

number of accesses (≥ Migration Threshold (MT)), the second counter RC (Replication

Counter) begins to start incrementing, with MC reset to 0. On every MC saturation, the block

is migrated one step closer to the requesting core. The role of this second counter is to decide,

whether to provide a separate copy of the requested block at the local bank cluster of a

frequent requestor. Therefore, when RC saturates, a replica of the block is placed in the local

bank cluster of the requesting core, with the RIB of the replicated block (Replication

Indicator Bit =1) set to 1. Both MC and RC are now reset. Another scenario in which the

counters are reset is when the block reaches the local bank-cluster of a frequent requestor

131

after a series of migrations. Figure 6.10 shows the organization of banks, sets and cache lines

in the shared NUCA LLC with our novel contributions highlighted.

Figure 6.10: Dynamic profiling of block usage with inline directory counters
(V: Valid bit, T: Tag bits, D: Data bits)

The following sub-sections explain in detail, the series of steps taken by the proposed AMR

scheme in different scenarios.

6.3.2.1 Single remote requestor

The data access pattern of the application suggests a single remote requester. As a result, the

block is moved as per our migration policy (from its statically determined location) within the

same bankset. The core specific MC increases with each request from that particular core

along with block migration towards the requestor when MC saturates. In case, there is no

other requesting core then the block will be migrated to the local bank-cluster of the frequent

requestor as shown in the Figure. 6.11.

132

Figure. 6.11. Gradual Block migration

The logic for block migration is presented in Algorithm-4.

Algorithm-4: Block Migration

function handleNUCABlockMigrateRequest

INPUT: NUCA cache hit for Linej (Reqj) from Ci є C , MCi
(j), Location j(old)

OUTPUT: Location j(new)
BEGIN
1. if (MCi

(j) ≥ MT)
2. if (Location j(old)

 == Local bank other)
3. Location j

(new)
 ← Central bank other

4. RCi
(j) ++

5. else if (Location j(old)
 == Central bank other)

6. Location j
(new)

 ← Central bank i
7. RCi

(j) ++
8. else if (Location j(old)

 == Central bank i)
9. Location j(new)

 ← Local bank i
10. RCi

(j) ← 0
11. MCi

(j) ← 0
12. updateBlockLocation (Linej)
13. else
14. MCi

(j)
 ++

15. endif
16. endif
END

133

6.3.2.2 Multiple frequent requestors

The access patterns of the application may indicate frequent usage of a cache line from

multiple cores. In this case, the gradual migration mechanism proposed in [19] would lead to

the block ‘ping-ponging’ between the two competing cores as depicted in Figure 6.12. The

block’s position may alternate between the two central banks of the requesters or between

their local and central banks. With the block’s position dynamically varying with each

competing request, the block will not be able to eventually migrate to the local bankclusters

of either of the cores as discussed in the previous sub-section. In this case, finding out an

optimum placement for a data block within the NUCA is a key challenge to avoid ping-pong

within the bankclusters of the same bankset. The side-effects of ‘ping-ponging’ of data blocks

includes extra network traffic and subsequently greater dynamic power consumption. To

solve this problem, we propose to selectively replicate blocks when ‘ping-ponging’ of

requests is detected between two cores.

Figure 6.12: Block ping-pong scenario with two competing cores

In the proposed scheme, the cache controller uses the values of both the migration (MC) and

replication counters (RC). In case, the value of RC saturates for one of the requesting cores,

then the controller creates a copy of the requesting block into its local bankcluster (within in

same bankset) and sets RIB to 1 for this block (refer Figure 6.13). The migration and

replication counters for both copies of the blocks are reset to 0. The same is true for other

134

frequent requestors as well. Now all the future requests by the competing cores to the same

block can be handled at their respective local bankclusters, while requests from the other

cores move the original copy of block closer to them, as dictated by the migration policy. As

a result of replication, all competing cores that show enough promise (greater reuse as

reflected in the saturation of RC) would be given low-latency access to the block, while other

cores whose RC for that block is yet to saturate utilize the gradual migration scheme to

eventually obtain the block in their local bankclusters. The conditions for block replication

are presented in Algorithm 4.

Figure 6.13: Replica creation in the local bank cluster of frequent requestor (Core 2)

Algorithm-5: Block Replication

function handleNUCABlockReplicateRequest
INPUT: NUCA cache hit for Linej (Reqj) from Ci C , MC(j), RC(j) , Location j(old)
OUTPUT: Location j(new)
BEGIN
1. if (RCi

(j) ≥ RT)
2. Location j(new)

 ← Local bank i
3. RCi

(j) ← 0, MCi
(j)

 ← 0
4. RIB(j) ← 1
5. updateBlockLocation (Linej)
6. endif

END

135

6.4 Proposed Data Access Policy for Shared Last Level Cache

We have seen that D-NUCA uses a migration policy to move data blocks close to the

requesting core. This provides low-latency access in an architecture where wire delays

significantly impact processor performance. However, such a dynamic data movement within

NUCA banks comes at the cost of a complex data access policy. Designing an efficient and

low-cost data access policy is very challenging. In order to simplify the complexity of an

ideal D-NUCA, we restrict data movement within a group of banks called a bankset. Now, in

order to keep track of the location of the migrated and replicated blocks on-chip, we extend

each set within a bank with a p bit location pointer (for the p banks) as shown in Figure. 6.14.

Figure 6.14: Location pointer co-located with each set

 Each bit (denoted by the 1’s in the location pointer field) indicates the possibility that the

cache block is located in that bank, either due to migration or replication. There is a separate

RIB with each cache line that indicates whether the cache line possesses a replica in another

bank.

Further each bank acts as an owner bank for an equal number of blocks on the chip. This

assignment is done statically using the lower bits of the requestor's physical address. This

static assignment ensures that every bank is given a fair chance to be the owner of an equal

number of cache lines and helps in load balancing at the owner bank as all on-chip block

requests that miss in the local bankcluster are serialized at the owner bank. Based on the bits

which are set in the location pointer field, requests are sent to different banks. The number of

responses received vary based on the following cases:

136

1. If the block has no replica and has migrated away from the owner bank, a single

response is received.

2. If the block has no replica and is located at the owner bank, then the owner bank

services the request for the block.

3. If the block has a copy in another bank, responses from two or more banks may

pollute the on-chip network.

We handle the last case separately to ensure that the requestor is serviced from a single bank

that contains the block. The detailed logic is presented as follows. On a local bankcluster

miss, the owner bank location pointers are probed to identify possible locations of the cache

block. Requests are sent to all banks whose bit is set in the location pointer field. We ensure a

single responder by adding additional circuitry at the tag comparison stage. We propose that

only the original copy of the block (RIB=0) must service the new request in order to avoid

additional coherence complexities in the presence of multiple responders. Our additional

circuitry does not increase the latency of the tag comparison and can be done in parallel with

the check that is performed to ensure that the block contains valid data.

The location pointers need to be updated in case a block has migrated or a replica has been

created. Section 6.5 explains the mechanism to update the location pointers in detail. Previous

migration based approaches have either used broadcast or partitioned multicast as their search

policy. In contrast, using the location pointers in the owner bank, we can efficiently direct

our search to a subset of banks at the cost of a very low hardware overhead (6.8% including

reuse tracking).

Algorithm-6: Block search

function searchCacheBlock

INPUT: NUCA cache request for Linej (Reqj) from Ci C

BEGIN:

1. Fwd Req j → Owner Bank (j)

2. if (hit)

3. L1i ← Load Line j

4. else

5. ∀ k {Bits set in location field}

6. Fwd Req j → BankInBankset k

137

7. if (hit && RIB(j) !=1)

8. L1i ← Load Line j

9. else

10. Fwd Req j → off-chip

11. Owner Bank (j)
 ← Address [Bank-select bits]

12. L1i ← Load Line j

13. endif

14. endif

END

Algorithm-7: Updating Location Pointers

function updateBlockLocation

INPUT: CacheLinej, updateCause

BEGIN

1. k
 ← findOwnerBank(CacheLinej) //Static mapping

2. if (updateCause == MIGRATE || updateCause == REPLICATE)

3. if (numBlocksInSetWithOwner dest (k) == 0)

4. LocationPtr k [dest] ← 1

5. if (numBlocksInSetWithOwner src (k) == 0)

6. LocationPtr k [src] ← 0

7. endif

8. endif

9. else if (updateCause == EVICTION)

10. if (numBlocksInSetWithOwner src (k) == 0)

11. LocationPtr k [src] ← 0

12. endif

13. endif

END

138

6.5 Updating location pointers

To begin with, the location pointer bits and the RIB are reset to zero (invalid cache block).

The ‘p’ bit set pointer and the RIB are updated in the following scenarios.

1. When the block is first brought into the owner bank from off-chip memory, the location

pointer field corresponding to the owner bank is set (if it has not already been updated by

another block belonging to the same set and owned by the same bank). The RIB field for

the block is reset.

2. When the block migrates on a remote hit, the owner bank is made aware of the

destination bank for that block, and the bit corresponding to the destination bank is set in

the location pointer field of the owner bank.

3. When a ping-pong is detected and a replica is created, the RIB corresponding to the

replica block is set and the bank locations of the replica are updated in the location

pointer field of the owner bank for that block.

4. When a block (not having a replica in the same bankset) is evicted to off-chip memory,

the set is examined to see if it has any other blocks with the same owner bank as the

evicted block. If yes, then the location pointer field in the owner bank is left unchanged.

If not, the bit corresponding to the evicted block’s bank in the location pointer field of the

owner bank is reset to 0.

5. When a replica is invalidated, either due to an exclusive write request or write-back

request or when it has shown less reuse (LRU), the current bank holding the replica is

examined to see if it holds other blocks with the same owner bank as the replica. If yes,

then the location pointer bit field is left unchanged. Otherwise, the owner bank is notified

to reset the location pointer field bit corresponding to the bank from which the replica

was evicted.

6.6 Coherence Protocol

Researchers have been extensively working on managing on-chip coherence for shared

caches in CMPs. Different cache coherence protocols have been proposed to keep data

coherent in a multicore environment. This section presents the working of cache coherence

protocols as adapted to our proposed scheme. It is based on the basic MESI protocol to

maintain cache coherence and correctness. Figure 6.15 shows the additional bits required to

maintain the list of sharers and coherence state at the L1 cache and L2 cache.

139

6.6.1 False miss

In non-uniform shared last level caches that allow for migration, an important issue to be

addressed is the handling of requests to blocks in transit during the migration process. As the

request misses in both the source and destination banks, the requestor wrongly infers the

absence of the block on-chip. This problem has been referred to as the ‘false miss’ problem in

literature and can lead to costly off-chip misses (refer Figure 6.16). With two copies of the

block now present on-chip, if either of the copies is modified, it becomes impossible to

maintain coherence between the blocks.

Figure 6.15: Additional bits within cache line to maintain coherence and reuse tracking

To solve this problem, we use a two-way handshake between the source and destination

banks. On a remote hit, the source bank sends both the cache line and a ‘Migration:Begin’

message to the owner bank. The destination bank on receiving the data block responds with a

‘Migration:End’ message to the owner bank. The owner bank now acknowledges both the

source and destination banks after updating the location pointers, with ‘Migration:Ack;

messages. Now the source de-allocates the cache line. Requests received by the source during

the transition are serviced at the source and requests received after the ‘Migration:End’

message are forwarded to the destination by the owner bank. We will explain the working of

the proposed coherence protocol and the mechanism to handle false misses through the

following access scenarios.

140

6.6.2 Read request

6.6.2.1 Hit in the local bankcluster:

If the GETS (shared read) request hits in the local bankcluster of the requesting core, then it

is directly transferred to the private L1 cache of the requestor.

Figure 6.16: Core-4 facing a false miss due to block migration

6.6.2.2 Miss in the local bankcluster:

6.6.2.2.1. Replica absent: On a miss in the local bank-cluster of a requesting core, the

request is forwarded to the owner bank. If the block is present in the owner bank, it is sent to

the L1 cache of the requestor, otherwise the location pointers are examined and the request is

selectively broadcasted to all the banks whose bits were set in the location pointer field.

There exists a need to selectively broadcast search requests as locations are tracked at each

set and a single set may contain other blocks with the same owner bank as the requested

block, although the requested block may itself not be present in a particular bank. Now, the

bank that contains the requested block (tag match) responds to the requesting core and the

block is transferred to the L1 cache of the requestor. Further, this block migrates from the

initial bank toward a bank closer to the requesting core, if MC saturates, otherwise it will

remain in the same bank (MC incremented). Figure 6.17 explains the migration process in

detail. Consider a GETS request from Core 0’s L1 cache that misses in the local bankcluster.

Using the information provided by the location pointers at the owner bank the block is found

to be located at L2-36. On a hit in the remote bank (L2-36), MC4 saturates and the block

migrates one hop closer to Core 0. After three such MC4 saturations, the block migrates three

hops (L2-36 → L2-100 → L2-68 → L2-4) and is placed in the local bankcluster of Core 0.

141

Requests during the transit are handled as described in the previous section to avoid false

misses. The detailed sequence diagram is presented in Figure 6.17.

Figure 6.17: Migration mechanism to handle read requests (replica absent)

6.6.2.2.2. Replica present in the local bankcluster of requesting core: In this case, the

shared read request (GETS) can be handled directly at the local bankcluster that stores the

replica.

6.6.2.2.3. Replica(s) present in the local bankcluster of other cores: In this case the

request is forwarded to the owner bank. If the data is present in the owner bank then the data

is transferred to the L1 cache of the requesting core. In case there is a miss at the owner bank

then the location pointers are examined and subsequently the request is sent in parallel to all

the banks in the bankset, whose location pointer field is set to 1. In this case, however,

multiple banks respond to the request. In an attempt to reduce on-chip traffic created by

allowing multiple responders to send their data blocks, we choose only that data block, for

which RIB is not set. In contrast, an approach that receives data from all the responders and

then chooses to ignore the later received blocks would significantly limit on-chip bandwidth

for other requests. By making this optimization we also reduce coherence protocol

complexity and save energy. The requester on receiving the data block, acknowledges with a

‘DATA_ACK’ message.

142

6.6.3 Exclusive write request

6.6.3.1 Replica absent in bankset: If the write request hits in the local bank-cluster or in a

remote bank-cluster as determined by the location pointer bits of the owner bank, all other

sharers of the line are sent invalidation requests (INV). On receiving acknowledgements from

the sharers (INV_ACK), the requestor is given exclusive rights to the line. The block is

transferred to the L1 cache of the requestor and written (refer Figure 6.18)

6.6.3.2 Replica exists in the same bankset: GETX Request

Multiple copies of the cache line are present in the bank-set and a single core issues GETX

request. There are three different cases as per our lookup policy.

 Figure 6.18: Sequence diagram showing the invalidation steps in case of write
requests

1. Replica exists in the local bank-cluster of the requesting core (Exclusive or Modified

State): On a L1 cache miss for a GETX request from a core, the request is forwarded to

the local bankcluster of the same core. If a replica is present in the E or M state, then the

cache block can be directly transferred to the private L1 cache of the requesting core.

2. Replica exists in the local bank-cluster of the requesting core (Shared state) or Replica

exists in the local bankcluster of other cores (S/E/M state): In this case, the request is

forwarded to the owner bank of the block (where the list of sharers of the block are

maintained). The owner bank sends invalidation message to both L1 and LLC copies of

the block. The location of the replicas is determined at the owner bank using the location

143

pointers. Once the invalidation acknowledgements (INV_ACK) are received, the

requesting core can be granted exclusive access (E) to the line in its private L1 cache. The

invalidations mentioned above are essential to maintain the ‘single-writer multiple reader’

invariant necessary for the correct operation of coherence protocols.

6.6.4 L1 evictions

Consider the case when an incoming block evicts a dirty L1 line in a write-back cache.

6.6.4.1 No replica in the bankset: The L1 cache controller issues a PUTX (write-back) for

that line. The request is sent to the owner L2 bank and the set pointers are examined to find

the location of the line. The PUTX requests are selectively broadcasted to the banks whose

bits are set in the location pointer field. Once the line is found the dirty data block is written

into the corresponding L2 bank (refer Figure 6.19).

Figure 6.19: Handling L1 evictions (no replica in bankset)

6.6.4.2 Replica(s) present in the bankset: In this case, the request is forwarded to the owner

bank, and using the information obtained from the location pointer field and the replication

indicator bit (RIB) the dirty L1 block is merged with the LLC replicas.

144

6.7 Special cases

1. Two simultaneous PUTX requests for the same cache line issued by two different L1

cache controllers: There is no possibility of a race condition arising in this case as both

requests are forwarded to the owner bank and serialized before updating the replicated

blocks.

2. When a GETX request is issued by an L1 cache for a block owned by another L1 cache,

there exists a possibility that the write-back happens to the wrong L2 bank because of

gradual migration on a remote hit. This possibility is ruled out in our design because the

location pointers are updated in synchronism with every migration/replication event.

PUTX requests read the updated location pointers and can be satisfied at the correct L2

destination bank.

6.8 Evaluation Methodology

We evaluated the proposed AMR scheme (Algorithms) on an 8 core CMP. The basic system

configuration parameters used for the evaluation are shown in Table 6.1.

6.8.1 Multicore System:

All the experimental evaluations are performed using a single CMP that consists of eight

UltraSPARC IIIi homogeneous cores. The cache hierarchy, on-chip interconnection network

and cache coherence protocols are simulated using the Virtutech Simics full-system

simulator [99] that is extended with the GEMS toolset [100]. GEMS simulator provides

Ruby, which is a detailed memory sub-system simulator that provides support to implement

the proposed cache hierarchy within our baseline system. Each processor core has its own

first-level cache (data and instructions) and is connected to a node of the network. The last

level of the memory hierarchy is the D-NUCA baseline distributed in 128 banks and

connected to the cores via switches.

145

Table 6.1: System Configuration

Configuration parameters

No. of cores 8

Core mode Single thread

Frequency 1 GHz

L1-Data Cache 32 kB, 64 bytes

L1-Instruction Cache 32 kB, 64 bytes

Shared L2 cache 8 MB, 128 banks

Bank size 64 kB, 8-way, 64 bytes

We used MESI based directory protocol to maintain coherency of the memory subsystem.

6.8.2 Benchmarks

Our full system simulator runs an unmodified Solaris 10 operating system. To analyze the

proposed schemes, we run selected multithreaded applications from Princeton PARSEC 2.0

benchmark suite [108]. We also run a set of single-threaded applications from SPEC2006

suite. All the application are first compiled using gcc (provided with the Sun Studio 10 suite).

The method for the simulations involves first skipping both the initialization and thread

creation phases, and then fast-forwarding while warming up the cache for 500 million cycles.

Then a detailed simulation is performed for the next 500 million cycles.

6.8.3 Energy

To estimate the energy consumed by the baseline multi-banked NUCA cache and the off-chip

memory, we adopted an energy model given by Bardine et al. [103]. This allowed us to

calculate the dynamic energy dissipated by the banks in the LLC cache using the Orion tool.

To calculate the energy consumed during an off-chip memory access, we have used the

micron datasheet. Therefore, the total energy consumed by the NUCA memory system is the

sum of all three components:

Edynamic = Enetwork + Ebanks + Eoff−chip

146

6.9 Results

We selected few applications from the PARSEC 2.0 (Blackscholes, Bodytrack, Canneal,

Streamcluster, Swaptions and Fluidanimate) and the SPEC2006 benchmark suites and

simulated their execution on the baseline S-NUCA, D-NUCA configurations as well using

the proposed policy. We have compared 3 different LLC management schemes and chosen

completion time, energy consumption and network traffic (bytes-per-instruction) as the

reference evaluation metrics. We have also analyzed L2 access latency in all the three cases

to further evaluate our proposed scheme.

6.9.1 Performance Evaluations

The percentage of improvement is obtained by taking the difference between the average

value along all the applications for reference and proposed schemes. Figure 6.20 compares

the completion time (normalized) for selected applications. It was observed that the proposed

AMR scheme shows a reduction in the completion time as compared to SNUCA and D-

NUCA schemes for the considered benchmark applications. This can be attributed to the fact

that AMR combines the advantages of both selective replication (adopted for highly reused

cache lines) as well as block migration towards the requesting core. With the incorporation of

a smart data access mechanism (using location pointers) at the owner bank, most of the

memory requests are directly satisfied by accessing the low latency banks of the local bank-

cluster.

Figure 6.20: Normalized completion Time

On an average we obtain a 9% performance improvement with respect to S-NUCA (baseline)

and nearly 4% improvement with D-NUCA.

6.9.2 Network Traffic

A comparative evaluation of the variation in on-chip network traffic is shown in Figure 6.21.

It is based on the distribution of both data as well as control messages that affects the overall

network traffic (measured in terms of bytes-per-instruction). In our architecture the size of

control message is 8 bytes (header only) and the size of the data message is 72 bytes which

contains 8 bytes for the header portion and 64 bytes for the data block. It can be observed

from Figure 6.21 that the proposed AMR policy reduces the contribution of data messages to

147

the overall network traffic when compared to S-NUCA. The main reason for this reduction is

the selective data block replication in the local banks and the migration of data blocks

towards the requesting cores, which reduces the number of network hops that must be

traversed by a data packet to reach the destination node.

Figure 6.21: Normalized Network Traffic

In AMR, on an average the data packets traverse less number of hops with respect to D-

NUCA as well, bringing about a reduction in network traffic. We have also noticed that the

control messages are increased for both AMR and DNUCA (conventional, multi-cast search)

as compared to the S-NUCA due to the extra messages needed by both of the selective

replication and migration schemes to maintain coherency and track data block location.

Another important observation that can be made is that the proposed AMR, by virtue of using

an efficient data access policy is able to reduce the overall network traffic when compared to

both S-NUCA and D-NUCA. The reduction in the network traffic has a direct effect on

reducing dynamic energy consumption.

6.9.3 Energy Consumption

Figure 6.22 presents the energy consumption for the three different schemes. We have

normalized the results obtained from AMR and D-NUCA with respect to the baseline S-

NUCA for each application. Our results include the energy consumed (static and dynamic) by

the on-chip network, the last level NUCA cache, and the main memory. As seen from the

graph, both D-NUCA and AMR consume lower energy for almost all applications when

compared to S-NUCA. As explained in sub-section 6.3.2, by selectively replicating blocks to

S
-N

U
C

A

D
- N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
- N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
r o

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

Blackcholes Bodytrack Canneal Streamcluster Swaptions Fluidanimate Spec 2006

0

5

10

15

20

25

30
Data Message Control Message

N
u
m

b
er

 o
f b

yt
es

 p
e
r I

n
st

ru
ct

io
n

148

the local bankcluster of frequent requestors and by broadcasting search requests to only a

subset of banks of the bankset, we obtain 5.3 % and 2.3 % energy savings when compared to

S-NUCA and D-NUCA respectively.

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d -
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d -
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

p o
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

S
-N

U
C

A

D
-N

U
C

A

P
ro

po
se

d-
A

M
R

BlackcholesBodytrack Canneal Streamclust SwaptionFluidanimateSpec2006

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
e

d
 E

ne
rg

y

Figure 6.22: Normalized Energy Consumption

To summarize, our simulation results shows that the proposed AMR scheme performs better

than both the widely used S-NUCA and D-NUCA LLC management schemes (in terms of

completion time and energy consumption). The proposed inclusion of line migration together

with the selective replication scheme has considerable utility in improving LLC NUCA

performance. We have also observed significant reduction in the network traffic (refer Figure

6.21) and the average L2 hit latency (refer Figure 6.23) when compared to the two state-of-

the-art schemes (S-NUCA and D-NUCA).

6.10 Related work

Kim et al. [19] was the first to introduce the non-uniform cache architecture (NUCA) for the

last level shared cache as shown in Figure 1. In shared NUCA, the entire LLC is divided into

smaller equal sized banks such that nearer cache banks have lower access latencies as

compared to farther banks, thus mitigating the effects of increasing on-chip wire-delays.

149

Figure 6.23: Normalized average L2 Hit Latency

The benefits that can be obtained from a cache line migration policy are limited by the

effectiveness of a data access scheme that was difficult to implement in the past. Kim [19]

was the first to present the importance of the bank access scheme in D-NUCA organizations.

Although block migration enhances D-NUCA to outperform S-NUCA, it is limited by the

ping-ponging of data between requesting cores and the efficiency of the bank access scheme

within NUCA. We address both these issues using selective replication and an efficient

search scheme in this chapter. Beckmann and Wood [112] have shown that cache line

migration is not beneficial in NUCA cache architecture for multicores as approximately 50%

of the hits in commercial and scientific applications are in central bank-clusters to access

shared cache lines. In-order to obtain performance benefits they have however used a costly

data access policy. Huh et al. [63] proposed a 16 MB dynamic non-uniform cache

architecture with 16 cores, but their proposed migration policy ignored the problem of cache

line ping-ponging between bankclusters. CMP-NuRAPID [134] uses block replication in

NUCA caches, but this policy has ignored last level cache pressure due to block replication.

Reactive-NUCA [139] favors instruction replication but has neglected shared block

replication in the LLC. Victim replication [116] uses a static policy to replicate blocks that is

not effective for all applications, and Adaptive Selective Replication [60] only allows to

replicate shared-read-only data and ignores other types of data.

Blackscholes Bodytrack Canneal Streamcluster Swaptions Fluidanimate SPEC2006
0

0.2

0.4

0.6

0.8

1

1.2
S-NUCA D-NUCA Proposed-AMR

N
o

rm
a

liz
e

d
 a

ve
ra

g
e

 L
2

 H
i t

L
a

te
n

cy

150

To summarize, for programs that exhibit high degrees of sharing, a majority of the proposed

schemes have not been able to combine an efficient block migration scheme with the low

latency benefits provided by block replication. Efforts that do so, lack an efficient search

scheme that provides fast access to blocks. We have addressed this issue in this chapter by

using location pointers that brings about significant reduction in on-chip network traffic and

energy consumption at the cost of negligible hardware overhead.

6.11 Summary

We present an adaptive migration-replication scheme (AMR) for shared last level NUCA

cache, which dynamically tracks cache line reuse frequency and replicates cache lines that

show high reuse to the local bank-cluster of the requesting cores. Our proposed policy

determines when and where to migrate cache blocks in tandem with the replication decision.

On a set of chosen multi-threaded and single threaded applications, the proposed AMR policy

reduces overall energy consumed by 5.3% and 2.3 % and the completion time by 9% and 4%

when compared to the S-NUCA and D-NUCA LLC cache management policies respectively.

The coherence complexity of our protocol is almost identical to that of a traditional non-

hierarchical (flat) coherence protocol since replicas are only allowed to be created at the LLC

slice of the requesting core. Our proposed policy is implemented with an extra storage

overhead of 6.8% per NUCA bank.

151

Chapter 7

 A Novel work-load aware adaptive Cache

This chapter presents a novel reconfigurable cache architecture to improve cache capacity

and reduces on-chip network traffic to improve system performance.

152

Chapter 7

A Novel Workload-aware adaptive Cache

In this chapter, we have proposed a novel reconfigurable cache architecture to improve cache

capacity and reduces on-chip network traffic to improve system performance.

7.1 Introduction

In the previous chapters of this thesis, we have focused on the various cache management

challenges in the moderate to large shared L2 caches for CMPs. For that study, we have

assumed a cache hierarchy with private L1 caches and shared L2 cache organization with a

uniform/non-uniform access latency and physical mapping of blocks to the shared L2 cache.

Figure 7.1 presents the memory hierarchy along with trade-off in speed vs size. The

efficiency of current high-performance shared memory multicore processors depends on the

design of the on cache hierarchy and the coherence protocol. Traditional and current

processor cache hierarchies uses a fixed size of cache block in the cache organization and in

the design of the coherence protocols.

Figure 7.1: Cache Hierarchy and trade-off between size and latency

153

The fixed size of block in the set is chosen to match average spatial locality requirement

across a range of applications, but it also results in wastage of bandwidth because of

unnecessary coherence traffic for shared data. The additional bandwidth has a direct impact

on the overall energy consumption. In this chapter, we present a new adaptable cache design

that can be dynamically reconfigured to match the data movements for an executing

applications and its required spatial locality.

7.2 Motivations

Caches memories are designed to exploit locality of reference in order to take benefit of data

reuse by speeding up subsequent access to the same data block. There are two different types

of reference locality which cache designer try to exploit are temporal and spatial. Present day

processors use eight bytes of data at a time and private caches are designed to keep small

amount of data that is frequently used near the processor to exploit locality within executing

applications. Cache design are either direct mapped or set-associative where each block from

memory maps to a single entry in the cache (single way) or in one of the many (number of

ways) possible entries in the cache. Figure 7.2 presents a four way set-associative cache

structure with data and tag array, where size of each data-block size location is 64bytes. As

shown in figure 7.2 each set can store a fixed number of data blocks and that depends on the

set-associativity of the cache. Each data block entry (64-bytes) within a set is called a way.

Figure 7.2: Set associative cache with fixed data block size

154

Therefore, we have observed that the size of the cache block entry is the basic unit of data

transferred or allocated in the cache architectures. Data blocks size in caches affects multiple

system performance metrics including on-chip interconnection bandwidth, cache miss rate,

and cache utilization.

Uniformly sized data blocks simplifies cache requests, and support simple tag organization.

However, traditional caches are not flexible because of fixed data block size and fixed

number of data blocks in the set which results in poor caching efficiencies for applications

that has low spatial locality. We have analyzed that the cache block size exploits spatial

locality by naturally prefetching all the neighboring words at the same time.

However, few words in a data block could be evicted untouched during the life cycle of a

cache block, due to the varying spatial locality of executing applications. These unused words

in the data block consume interconnect bandwidth and pollute the cache, which increases the

number of misses. We have analyzed the influence of a fixed size data-block as shown in

Figure 7.3 and presented a novel modified cache design with adaptive cache block size

depending on the application executed on the processor.

7.3 Justification for Proposed Cache Architectures

In this section, we have first analyzed the influence of data block size on various parameters

that justifies the need for our proposed architecture.

7.3.1 Cache Block Utilization

Previous research had reported that in the absence of high spatial locality, a multiple word

cache blocks which are of 64 bytes in size on existing CMP tend to increase cache pollution

and fill the cache with neighboring words that are unlikely to be used during block life time.

To illustrate this issue, we divide the cache line into words of 8 bytes each and track which of

the words are used before the complete block is evicted. The profiled results for few

applications are shown in figure 7.3.

155

These results show that all of the executed applications accessed only 1-4 words within the

complete 8 words (64bytes) more than 80 % of the total accesses.

Figure 7.3: Percentage utilization of blocks

We have further analyzed the profiled results as shown in Figure 7.4. The result shows that

all of the executed applications accessed 1-2 words on an average over 70% of times within

1-4 words (which is 80 % of the total accesses.)

Figure 7.4: Percentage utilization of blocks

Canneal x264 Soplex lbm
0

10

20

30

40

50

60

70

80

90

100
5-8 words 1-4 words

%
 o

f w
o
rd

s
to

u
ch

e
d

Canneal x264 Soplex lbm
0

10

20

30

40

50

60

70

80

90

100
1-2 words

%
 o

f w
o

rd
s

to
u

ch
e

d

156

7.3.2 Effect of Block Size on Cache Miss Rate and Bandwidth

We have also observed that different applications have different cache block size

requirements and it affect cache miss rate which is directly correlated with the performance

and the size of the data transfer using interconnect network. The size of data transfer effects

bandwidth and dynamic energy [144]. Our analysis shows that there is strong influence of

block size on miss rate and bandwidth. We have executed an application on a system with

64K L1 cache and a 1M L2 cache with fixed ways in the cache with 64byte block size. In the

next run we have reduced the block size from 64 to 32 bytes which increases the miss rate.

However, when we have increased block size from 64 to 256 bytes, there is reduction in the

miss rate but increase in the bandwidth. Therefore, there is a trade-off in miss rate and

bandwidth and therefore choosing optimal block size presents the need to take both criteria’s

into account for an application.

7.3.3 Requirement for adaptive cache blocks

Previous research and our observation demands the need for novel cache architecture and

hierarchy which supports variable cache block sizes that adapts the spatial locality of the data

access patterns in an application. In summary: 1). A smaller fixed cache block improves

cache utilization but it increases miss rate and interconnect traffic for applications with good

spatial locality, affecting the overall performance. 2). A fixed Large cache block underutilizes

the cache space and on chip interconnect with unused words for applications with low spatial

locality, which significantly decreases the caching efficiency. 3). Spatial locality varies not

only with applications but also within each application, resulting in underutilization of the

significant fraction of the cache space.

In summary, a smaller fixed cache block can improve utilization and miss rate but is not suited

for applications that exhibited good spatial locality. On the other hand, a large fixed size cache

block goes under-utilized for applications exhibiting poor spatial locality. Since spatial locality

varies both between applications as well as within an application, there exists a need for a

cache which supports variable cache block sizes and adapts to the spatial locality of the data

access patterns in an application.

We make the following contributions in this work:

1) Proposing a variable granularity cache, with variable size and number of cache blocks per

set.

157

2) Designing the indexing, insertion, lookup and replacement polices for the proposed variable

cache architecture.

3) Implementing the proposed policy in Verilog HDL and analyzing the results obtained.

The rest of the chapter is structured as follows: Section 7.4 provides detailed explanation of

proposed architecture. Section 7.5 presents the details of the variable cache management

scheme. Section 7.6 includes a discussion on the hardware overhead. Section 7.7 briefly

outlines the spatial locality predictor used in the design. Results are presented in Section 7.8,

with related work in Section 7.9 and concluding remarks in Section 7.10.

7.4 Proposed Variable Granularity cache architecture

Figure 7.5 shows the detailed architecture of our variable granularity cache. An important

design consideration is the allocation of space for blocks (of different sizes) in the same

cache according to the spatial locality shown by the application.

Figure 7.5: Variable Granularity Cache Architecture

Figure 7.5, presents a fixed size (64kB), variable granularity cache with 256 sets and 256

bytes per set. Cache sets may also be configured to contain: example eight 32-byte blocks or

four 64-byte blocks, based on the application’s requirement. As a result, our architecture is

flexible both in terms of allowing for variable number of blocks as well as allowing blocks of

158

different sizes in the same set. We refer to such a cache organization as a ‘locality-aware

variable granularity cache organization.’

A traditional cache includes a separate data and tag array. But a cache architecture, such as

ours would require the tag array to grow or shrink in size based on the number of blocks

allocated to each set. One possible solution, is to completely eliminate the need for a separate

tag array, by merging both the data arrays and tag arrays. This merging is beneficial because

now, every tag co-located with the corresponding data. However this modification presents

its own challenges. We describe these challenges below and outline solutions for the same.

1) Distinguishing between data and tag words in the set: One possible solution is the

addition of a separate array to store bits to indicate which word in the cache array represents

tags and which one represents data-blocks as shown in the Tag/data bit array in Figure 7.5.

2) Tracking the validity of data stored in a cache line: In a conventional cache, the

valid/invalid bits are used by the block replacement and block insertion policies and are

typically associated with the tag array. One possible solution is the addition of another array

for storing information about the validity of data in every word of the set.

Finally as shown in Figure 7.5, the complete cache architecture has three separate arrays one

for storing data-blocks and tags together, one for identifying tag/data words and one for

storing the valid/invalid bit information. In the proposed cache architecture tags are extended

with ‘Begin’ and ‘End’ addresses to support variable multi-word blocks. The next section

gives the working of the overall cache architecture.

7.5 CACHE MANAGEMENT SCHEME

Some of the key aspects to be kept in mind while developing a cache architecture are the

indexing, look-up, insertion and replacement policies. We describe them in detail below:

7.5.1 Cache Set-Indexing

In this cache architecture the main storage array holds a collection of sets with different sized

data-blocks that do not overlap. Each cache block is divided into 4 different fields consisting

of <Tag, Begin, End, Data-Block> as shown in Figure 7.5. The minimum size of the data

block in the cache is one word and the maximum is TMAX words. The boundaries of any

cache block are given by the ‘Begin’ and ‘End’ bits. We can encode ‘Begin’ and ‘End’ in

log2 (TMAX) bits. In the cache, the set indexing technique masks the lower log2 (TMAX)

bits to ensure that all data-blocks in the same set index to the same set. The Tag and Set-

159

Index are identical for every word in the cache block. When TMAX = 8 words = 64 bytes, a

fair comparison with a fixed block size (64 bytes) conventional cache architecture can be

made.

7.5.2 Data Lookup

The steps involved in data look-up are described in Figure 7.6. In the first step, the lower log2

(TMAX) bits are masked from the address and the set index is derived from the remaining

bits. In parallel, the Tag/Data bit array activates the words in the data array corresponding to

the tags for comparison. In this cache architecture the minimum size of a block is two words,

one for the tag, and one for the data, therefore adjacent words cannot be tags.

Figure 7.6: Data look-up logic

The hit-miss block shown in Figure 7.7 consists of two comparators, one to determine if there

is a tag match and another one to ascertain if the requested word lies in the range specified by

the ‘Begin’ and ‘End’ bits. Using the base address of the requested word from the tag encoder

and the offset computed using a subtractor, we obtain the location of the requested word

which is routed to the destination using a multiplexer.

160

Figure 7.7: Hit/Miss Block

7.5.3 Block Insertion

In case of a miss for the desired word, the insertion policy should determine a position in the

set to allocate the incoming block. In order to accomplish data insertion we examine the

Valid/Invalid bit array. As described in Section 7.4 there is one bit per word in this array and

a “1” in the bit field indicates that the corresponding word (tag/data) has been allocated space

and contains valid information. So in order to reduce search space for an incoming data

block, this architecture performs a substring search on the Valid/Invalid bit array of the cache

set for contiguous sequence of “0s” (empty words). For example, to insert a block of four

words consisting of a single word-sized tag and triple word-sized data, it performs a substring

search for 0000 in Valid/Invalid bit array corresponding to the indexed set. In case a match is

found, the tag and data block may be inserted and the corresponding bits in the tag/data bit

array as well as in valid/invalid bit array can be set. However if the search results in a miss it

triggers the replacement policy as described below in Section 7.5.4.

7.5.4 Block Replacement

The key challenge in this policy is to identify the block to replace. When the selected block in

the cache is replaced, the corresponding bits in the tag/data bit array and valid/invalid bit

array are reset. We employ Least Frequently Used (LFU) as our replacement policy as

adopted in literature. It works as follows: Firstly, in the absence of vacant space in the cache

161

set, the least frequently used (LFU) block is probed for replacement. If after such a

replacement, there is still inadequate space available for the incoming block, our policy

resorts to replacing multiple smaller blocks (based on their position in the least frequently

used stack) till the incoming block may be accommodated.

7.6 Hardware Overhead

The extra bits required in this proposed cache are the tag/data bit per word and valid/invalid

bit per word in both arrays. Both the tag/data bit array and valid/invalid bit array sizes are

directly proportional to the cache size and require a minimal storage overhead of 3%.

7.7 Spatial Locality Predictor

A spatial locality predictor serves the purpose of determining the number of words to be

fetched on a cache miss. We examine the execution traces from different applications and

predict its spatial locality. In this work, we demonstrated the effectiveness of the technique

for a custom trace. Later, we will extend this work, for any application phase. For this

purpose, we intend to use a prediction table (similar to a branch history table) whose entries

are indexed by the program counter (PC). Each entry of the table contains a bit array, whose

field indicates whether a particular word has been touched before eviction. We use the PC to

index into the table, based on the notion that specific PC’s capture the spatial locality of the

application. The entries in the table need to be updated only on an eviction (often infrequent),

hence, the additional latency that will be imposed by the predictor is minimal. Our predictor

is optimistic and will over-fetch around the critical word requested by the processor. One

may also choose to bypass the predictor (cold miss) when prediction accuracy is low (low

confidence interval). Further, we also wish to conduct a sensitivity study to tackle certain

other issues that come with online prediction, such as determining the optimum size of the

prediction table and the prediction table entries, as a part of future work.

7.8 Results

The proposed architecture is simulated using Verilog Hardware Description Language (HDL)

using ModelSim.

162

Figure 7.8: Read and Write Accesses to a set containing two blocks of size 3 and 4 words

respectively

Figures 7.8 and 7.9 show how write accesses to different words in the variable cache are

handled. We present accesses to two sets each containing variable sized blocks for the

purpose of evaluation. In Figure 7.8, accesses to a single set of the variable granularity cache

are shown along with various control signals. This set contains a block of size 3 words (12

bytes) and another of size 4 words (16 bytes). We assume that a single byte transaction

occurs per cycle. The yellow oval indicates 12 write hits to the 3-word block. However a

request for a subsequent word results in a write miss as shown by the gray oval. The spatial

locality predictor predicts a complete 4-word block (TMAX) be used to refill the set. The 3-

word block by virtue of being least frequently used (due to previous accesses) is evicted.

Since there is still inadequate space available, the 4-word block is evicted as well. Now, as

indicated by the red oval, 16 write hits corresponding to the incoming block may be noticed.

As a result of the sequence of operations, a 3-word void is left in the set.

Figure 7.9: Read and Write Accesses to another set containing two blocks of size 3 and 2
words respectively.

163

The same sequence of operations as described earlier takes place, with the difference that the

2-word block is evicted instead of the 4-word block. In this case, assuming the same predictor

is used, a single word void is left in the set. In Figure 7.9, accesses to another set containing a

3-word and 2-word block are shown, whereas figure 7.10 shows complete cache simulation.

Figure 7.10: Cache Simulation.

7.9 Related Work

There has been a large body of research working on improving the utilization of the cache

and reduce energy consumption [143][145][148]. Qureshi et al. [151] proposed Line

Distillation to discard only untouched words from a block during eviction. Their design

consists of a Line Organized Cache (LOC) in which the cache blocks are of regular

granularity (64 bytes) and a Word Organized Cache (WOC) which contains word-sized

blocks. Therefore, this organization supports the storage of data at two granularities in the

cache. In contrast, we propose to maintain different word-sized cache blocks in order to fully

exploit the spatial locality shown by the application. Veidenbaum et al. [140] also proposed a

word-organized cache, but it incurs significant tag overhead. Sector caches have also been

proposed in the past [141][142][147]. They organize tags at the granularity of a sector and

data at sub-sector granularity. In particular, Pujara et al. [144] proposed a word-sized sector

cache that uses prefetching to determined words that may be utilized by the application. But a

164

common problem faced by all prefetching techniques is the issue of cache pollution with

unused words. Orthogonal to the above mentioned techniques, work has also been done

towards designing an adaptive granularity DRAM based architecture [146]. Similarly, many

techniques have been proposed at the software level (compiler) to re-order code to better

exploit spatial locality [149] [150].

7.10 Summary

In this chapter, a locality-aware variable granularity cache architecture is presented, that can

hold different number of cache blocks with variable number of words. This adaptive block

sizing minimizes the size of data messages and reduces on chip network traffic. By utilizing a

spatial locality predictor, we are able to reduce cache pollution for applications that exhibit

low spatial locality and improve the performance of other applications. Our variable

granularity cache is flexible and can be adapted to suit any level of the multilevel cache

hierarchy (L1, L2 or L3). We have used this novel cache to model L1 in the cache hierarchy.

Simulations in Verilog HDL demonstrate the feasibility of the proposed design. In future, we

will perform full system simulations using cache simulation tools [99]. In addition, the

number of words per block utilized by the application will also be evaluated by profiling the

cache evictions for a variety of benchmarks [108]

165

Chapter 8

 Conclusions and Future Work

This chapter presents the main conclusions of this thesis and outlines areas for future work.

166

Chapter 8

Conclusions and Future work

In this chapter, we conclude the thesis by summarizing the contributions and providing some

future directions for extending the work.

8.1 Conclusions

In order to take advantage of billions of transistors on single chip with manageable design

complexity while staying within the power budgets and meeting the demand of ever

increasing throughput requirement, CMP with many cores and shared LLC is a viable design

choice. With the adoption of this domain, we have higher demand on on-chip cache capacity

and interconnect bandwidth (on/off-chip). Many multi-threaded applications on CMP require

support for fine-grain and dynamically changing sharing access patterns. Multiprogrammed

and single-threaded applications require localized data access. All these applications are

penalized by indirection in directory-based cache coherence. Furthermore, their working sets

well exceed the private cache sizes and stress-test the shared LLC mostly by exceeding the

on-chip capacity. On-chip caches must therefore adapt to these varying needs to reduce L1

miss penalties and both on chip and off-chip bandwidth requirements.

In this thesis, we have tried to incorporate different cache management schemes to design a

CMP cache that solves the indirection problem as well as meets the requirements of fine-

grain sharing support, localized and faster coherence and data availability, larger effective

cache capacity, and application-adaptive replacement-migration policy.

As stated above, most of today’s multi-core processors feature Last level shared L2 caches. A

major problem faced by such multi-core architectures is cache contention, where multiple

cores compete for usage of the single shared L2 cache. Previous research shows that

uncontrolled sharing leads to scenarios where one core evicts useful L2 cache content

belonging to another core. To address this problem:

We examined in Chapter 4 a cache miss classification – CII: Compulsory, Inter-processor and

Intra-processor misses – for CMPs with shared caches and its comparison to 3C miss

classification for traditional uniprocessor, to provide a better understanding of the interactions

between memory references of different processors at the level of shared cache in a CMP. We

then propose a novel approach, called block pinning, for eliminating inter-processor misses

and reducing intra-processor misses in a shared cache. Further, we showed that an adaptive

167

block pinning scheme improves over the benefits obtained by the block pining and set

pinning scheme by significantly reducing the number of off–chip accesses. This work also

proposes two different schemes of relinquishing the ownership of a block to avoid

domination of ownership of few active cores in multicore system which results in

performance degradation. Extensive analysis of these approaches with SPEC and Parsec

benchmarks are performed using a full system simulator.

In Chapter 5 we presented the growing needs of modern memory-hungry work-loads,

therefore there is a growing need to keep large size on-chip caches. Unfortunately, expanding

the cache size alone is not sufficient to increase modern systems efficiency, since the

traditional UCA design exhibits serious limitations, larger capacity comes at the cost of

increased access latency, as wire delays grow along with the physical size of the memory

structure. For that reason, large on-chip caches with a single, large and uniform latency are

undesirable. In other words, increasing cache sizes only makes the existing gap between

processor and memory access speeds grow even wider. The solution lies in a distributed

cache design that manages to provide varying access times and increased bandwidth. In order

to achieve this goal, a complete shift in the cache architecture design paradigm was required.

The previously single, monolithic chunk of cache (UCA) is transformed to a finer-grained

structure. More specifically, the last-level cache is composed of physically independent

banks, which are evenly distributed across the die area. This design provides varying access

latencies between the cores and the cache banks, depending on the physical distance between

the requesting core and the cache bank where the requested data resides. Thus, we are led to a

Non-Uniform Cache Access (NUCA) organization. NUCA provides faster access to cache

blocks in the banks that reside closer to the processor. The major limitation with this

architecture is that a block can only be placed in a single location during its lifetime. This, of

course, imposes serious limitations with this architecture: a frequently accessed block may be

placed in a bank located far from the cache controller, thus suffering the overhead of a high

access time every time it is accessed. We proposed an efficient, and low-overhead

mechanism to track the re-usability of each cache line in the shared NUCA. Our scheme

allows dynamic replication of those cache lines that shows high usage at the shared LLC.

When a replicated cache line is evicted or invalidated, the proposed scheme dynamically

adjusts its future replication decision. This scheme also reduces access latency and energy

consumption by selectively replicating the cache line that show high re-usability in the local

bank-cluster of the requesting core. It also maintains coherence complexity similar to that of

168

a conventional non-hierarchical coherence protocol as replications are allowed only in the

local bank cluster of the requesting core.

Chapter 6 of this thesis dealt with the challenges raised by Dynamic NUCA design. The

limitations of the static NUCA organization resulted in NUCA's next generation designs, the

dynamic NUCA, which address the problems that rise from static placement. Furthermore,

future multi-core systems will execute massive memory intensive applications with

significant data sharing. Data movement and their management further impacts memory

access latency and consumes power. We observed that previous D-NUCA designs have

used a costly data access scheme to locate data in the NUCA cache in order to achieve

remarkable performance improvement. To address these situations, we further investigated

this limitation along with the benefits of dynamic NUCA organization and also discussed the

drawbacks of both S-NUCA and D-NUCA organization. Finally, we proposed an adaptive

migration-replication policy for non-uniform shared last level cache and proposed an efficient

data access policy using a set of location pointers with each banks, which addresses the basic

problems with these two potential future cache architectures SNUCA and D-NUCA. Our

scheme relies on low-overhead and highly accurate in-hardware pointers to control network

traffic and improves cache miss latency. Using simulations on 8-core multi-core system, we

show that our proposed data search mechanism in D-NUCA design reduces dynamic energy

consumed per memory request and outperforms multi cast access policy by an average

performance speedup.

In Chapter 7 we first presented the need for hybrid novel cache design based on the

observation of variable spatial locality exits among different application. Then, we

presented a novel cache architecture with adaptive block sizing to minimize the size of data

movement and reduces on chip network traffic.

To summarize, we optimized for both private and shared data in all types of applications. We

optimized for shared data in multi-threaded applications by providing fair adaptive block

ownership policy and its dynamic relinquishment (at block level).

We tracked frequency of usage of data in all types of applications including

multiprogrammed, multi-threaded applications on the fly and triggers selective replication of

most frequently used data at the local bank cluster and localized coherence in NUCA

(Chapter 5).

169

We also optimized cache for all types of applications by preventing data ping-pong and

uncontrolled data movements within NUCA using adaptive migration-replication (AMR)

policy (Chapter 6).

Our optimizations are applied at the L1 level using fine-grain variable size block movement

from LLC/L2 level (larger effective L1 capacity, as more words are moved close to private

L1 cache) (Chapter 7).

8.2 Future Directions

The experimental work presented in this thesis opens up following directions in the cache

hierarchy and coherence protocol design:

8.2.1 Global Replacement Policy.

Current last level non-uniform cache architectures (NUCA) for multicore processors employ

LRU (Least Recently used), PLRU (Pseudo-LRU) or its variants as their replacement

strategy. These policies work well for a traditional uniform cache architecture but none of

them address the issue of global cache line replacement as required in a heavily banked

NUCA cache. In a NUCA cache, highly reused cache lines placed in the local banks (near the

requesting cores) which face frequent eviction as compared to cache lines are placed far

away. This can lead to increased miss rates for different applications. A conventional

replacement policy employed at the local bank evicts the LRU cache line, without

considering the possibility of its future use. This policy also does not consider idle cache lines

(showing lesser reuse) at distant banks as candidates for replacement. Since multiple banks in

a NUCA cache work independently, there exists no means to identify the LRU cache line at a

global level, considering all banks. Therefore, there is a need for a global cache replacement

scheme that characterizes cache lines based on their reuse probability, and prioritizes the

retention of those blocks showing high reuse probability.

8.2.2 Dynamic granularity block movement with Coherence Granularity for caches in

CMP

Current research proposals and existing work maintains cache coherence at cache line

granularity or at page level granularity. With this fixed line/page size, it is easy to design and

maintain cache coherence in CMP. However, the main limitation of these proposals are that,

they do not allow to change the granularity of the line/page dynamically depending on the

170

workload pressure. Different workload have variable line size requirements and hence

variable granularity cache line has the potential to improve the overall performance in CMP.

8.2.3 Mapping strategy:

Conventional, static cache line and page mapping to the multi-banked last level cache banks

has the benefit of easy implementation. However, they do suffer from the long access latency

due to initial poor placement. In future, an efficient mapping policy is required along with

variable granularity block and cache coherence support.

8.2.4 Tiled architecture:

Analysis of our proposed schemes on a tiled architecture will be another interesting area of

our future work.

171

LIST OF REFERENCES

[1] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics, pp.
114–117, April 1965.

[2] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space of future cmps. In
Proceedings of the 10th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 199-210, 2001

[3] K. Krewell. Intel's PC roadmap sees double. Microprocessor Report, vo1.8, issue 5,
pp. 41-43, May 2004.

[4] R. Low. Microprocessor trends: multicore, memory, and power developments.
Embedded Computing Design, Magzine, September, 2005.

[5] M. Monchiero, R. Canal, and A. Gonzlez, Power/Performance/Thermal Design-Space
Exploration for Multicore Architectures. In IEEE Transactions on Parallel and
Distributed Systems, vol. 19, issue 5, pp. 666–681, 2008

[6] Frank Schirrmeiste. Multi-core Processors: Fundamentals, Trends, and Challenges.
Embedded Systems Conference, Imperas, Inc., 2200, pp. 6-15, California, April 4,
2007.

[7] Christian Martin. Multicore Processors: Challenges, Opportunities, Emerging Trends.
In proceeding of the Embedded world Exhibition and Conference, pp. 1-6, February
2014.

[8] Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred Weber. AMD Opteron™ shared-
memory MP systems. In Proceeding of the 14th Hot Chips Symposium, pp. 1-30,
August 2002.

[9] Chetana N. Keltcher Kevin J. McGrath Ardsher Ahmed Pat Conway. The AMD
opteron processor for Multiprocessor Server. IEEE Micro, vol. 23, issue 2, pp. 66-76,
March/April, 2003.

[10] Ron Kalla Balaram Sinharoy Joel M. Tendler, IBM Power5 Chip: A multithreaded
Dual core processor, IEEE Micro, vol. 24, issue 2, pp. 40-47, March/April, 2004.

[11] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-thread itanium processor.
IEEE Micro, vol. 25, issue 2, pp. 10-20, March-April 2005.

[12] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual,
January 2011.

[13] K. Krewell. Sun's Niagara pours on the cores. Microprocessor Report, vol. 18, issue 9,
pp. 11-13, September 2004.

[14] Borkar, S., Chien, A. A. The Future of Microprocessors. Communications of the
ACM, Vol. 54, No. 5, pp. 67-77, May 2011.

[15] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock rate
versus IPC: The end of the road for conventional microarchitectures. In 27th
International Symposium on Computer Architecture (ISCA), pp. 248–259, June 2000.

[16] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future of wires. In IEEE
transaction, vol. 89, issue 4, pp. 490–504, April 2001.

[17] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a
single-chip multiprocessor. In Proceedings of the 7th International Conference on

172

Architectural Support of Programming Languages and Operating Systems,
Cambridge, MA, pp. 2-11, October 1996.

[18] P. Kongetira, K. Aingaran, and K. Olukotun, Niagara: A 32-Way Multithreaded
SPARC Processor, IEEE Micro, vol.25, issue 2, pp. 21–29, 2005.

[19] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 211-222, 2002.

[20] A. J. Smith. Cache memories. Computing Surveys, vol. 14, issue 3, pp. 473–530,
September 1982.

[21] L. Benini and G. De Micheli. System-level power optimization: techniques and tools.
ACM Transaction on Design Automation Electronic System, vol. 5, issue 2, pp. 115–
192, Apr. 2000.

[22] L. Benini. Energy-Aware Design of Embedded Memories : A Survey of
Technologies, Architectures, and Optimization Techniques, vol. 2, issue 1, pp. 5–32,
2003.

[23] P. R. Panda, F. Catthoor, K. U. Leuven, N. D. Dutt, K. Danckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg. Data and Memory Optimization
Techniques for Embedded Systems. ACM Transaction on Design Automation of
Electronics Systems, vol. 6, issue 2, pp. 149–206, 2001.

[24] R. T. Witek, A. J. Black, E. M. Cooper, D. W. Dobberpuhl, P. M. Donahue, G. W.
Hoeppner, T. H. Lee, P. C. M. Lin, L. Madden, M. H. Pearce, K. J. Snyder, and S. C.
Thierauf, “0. 5-W CMOS RISC,” vol. 9, issue 1, pp. 1703–1714, 1997.

[25] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., 4th edition, 2007.

[26] S. J. E. Wilton and N. P. Jouppi. CACTI : An Enhanced Cache Access and Cycle
Time Model. IEEE Journal of solid state circuits, pp. 1–26, 1996.

[27] T. Chen and J. Baer. Effective hardware-based data prefetching for high-performance
processors. IEEE Transaction on Computing, vol. 44, issue 5, pp. 609–623, May
1995.

[28] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. In IEEE
Transactions on Computers, vol. 38, issue 12, pp. 1612–1630, December 1989.

[29] A. J. Smith. Cache Memories,” ACM Computer. Survey, vol. 14, issue 3, pp. 473–
530, September 1982.

[30] J. Jeong and M. Duhois. Optimal Replacements in Caches with Two Miss Costs. In
Proceedings of the 11th Annual ACM symposium on Parallel Algorithms and
Architectures, pp. 155–164, June 1999.

[31] T. S. B. Sudarshan, R. A. Mir, and S. Vijayalakshmi. Highly Efficient LRU
Implementations for High Associativity Cache Memory. In Proceedings of the 12th
IEEE International Conference on Advanced Computing and Communications, pp.
87-95, December 2014.

[32] W. Wong and J. Baer. Modified lru policies for improving second-level cache
behavior. In Proceedings of the 6th International Symposium on High-Performance
Computer Architecture, pp. 49-60, January 2000.

173

[33] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Performance evaluation of cache
replacement policies for the SPEC CPU2000 benchmark suite. In Proceedings of the
42nd Annual Southeast Reg. Conference, ACM-SE 42, pp. 267-272, 2004.

[34] Y. Deville and J. Gobert. A Class of Replacement Policies for medium and high
associativity Structures. ACM SIGMETRICS Computer Architecture News, vol. 20,
issue 1, pp. 55-64, March 1992.

[35] R. A. Sukumar and S. G. Abraham. Efficient Simulation of Caches under Optimal
Replacement with Application to Miss Characterization. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer System, pp.
24-35, May 1993.

[36] M. Kampe, P. Stenstrom, and M. Dubois. Self-correcting LRU replacement policies.
In Proceedings of the first Conference on Computing Frontiers, pp. 181-191, April
2004.

[37] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU : Simple and Effective Adaptive
Page Replacement. In Proceedings of the 1999 ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems, pp.
122–133, May 1999.

[38] A. V. Veidenbaum, W. Tang, R. Gupta, R. Nicolau and X. Ji. Adaptive Cache line
Size to Application Behavior. In Proceedings of the 13th International Conference on
Supercomputing, pp. 145-154, June 1999.

[39] N. Maki, K. Hoson and A. Ishida. A Data-Replace-Controlled Cache Memory System
and its Performance Evaluations. In Proceedings of the IEEE Region 10 Conference,
pp. 471–474, September 1999.

[40] Z. Wang, and D. O. F. Philosophy. Cooperative hardware/software caching for next
generation memory systems. Ph.D Thesis, Department of Computer Science,
University of Massachusetts, Amherst, Massachusetts, February, 2004.

[41] E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality proof of the LRU-K page
replacement algorithm. Journal of ACM, vol. 46, issue 1, pp. 92–112, Jan, 1999.

[42] A. Lai. C. Fide and B. Falsafi. Dead-block prediction & dead-block correlating
prefetchers. ACM SIGARCH Computer Architecture News, vol. 29, issue2, pp. 144–
154, 2001.

[43] J. T. Robinson and M. V. Devarakonda. Data Cache Management Using Frequency-
Based Replacement. In Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 134-142, May 1990.

[44] D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho and C. S. Kim. LRFU: a
spectrum of policies that subsumes the least recently used and least frequently used
policies. In IEEE Transaction on Computers, vol. 50, issue 12, pp. 1352–1361,
December. 2001.

[45] Y. Smaragdakis. General adaptive replacement policies. In Proceedings of the 4th
International Symposium on Memory Management - ISMM ’04, pp. 108-119,
October, 2004.

[46] J. Alghazo, A. Akaaboune, and N. Botros. Sf-lru Cache Replacement Algorithm. In
Proceedings of the Records 2004 International Workshop on Memory Technology,
Design and Testing, pp. 19-24, August 2004.

174

[47] J. Aguilar and E. L. Leiss. An Adaptive Coherence-Replacement Protocol for Web
Proxy Cache Systems. Communication and Systems, vol. 8, pp. 1–14, 2004.

[48] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, vol. 18, issue 3, pp. 364-373,
May, 1990.

[49] M. Flynn and P. Hung. Microprocessor design issues: Thoughts on the road ahead.
IEEE Micro, vol. 25, issue 3, pp.16–31, 2005.

[50] A lebeck, X. Fan, H. Zeng and C. Ellis. Power-Aware Page Allocation. ACM
SIGOPS Operating Systems Review, vol. 34, issue 5, pp. 105-116, 2000.

[51] A. Acquaviva and B. Ricc. Energy Characterization of Embedded Real-Time
Operating Systems. In Proceedings of the Workshop on Compliers and Operating
Systems for Low Power, pp. 53-73, December 2003.

[52] A. Gutierrez, R. G. Dreslinski, T. Mudge. Evaluating Private vs. Shared Last-Level
Caches for Energy Efficiency in Asymmetric Multi-Cores. In Proceedings of the
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), pp. 191-198, July, 2014.

[53] Li Zhao, Ravi Iyer, Mike Upton, Don Newell. Towards Hybrid Last Level Caches for
Chip-Multiprocessors. Intel Corporation. 2006. Available from:
http://wwwpassat.crhc.uiuc.edu/dasCMP/papers/dasCMP07/paper07.pdf.

[54] Moinuddin K. Qureshi Yale N. Patt. Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance Runtime Mechanism to Partition Shared Caches. In
Proceeding of the 39th Annual IEEE/ACM international Symposium on Micro-
architecture, Orlando, Florida, USA, pp. 423-432, Dec.2006.

[55] Evan Speight, Hazim Shafi, Lixin Zhang and Ram Rajamony. Adaptive Mechanisms
and Policies for Managing Cache Hierarchies in Chip Multiprocessors. In Proceeding
of the 32nd Annual International Symposium on Computer Architecture (ISCA’05),
Madison, Wisconsin USA, pp. 346-356 June 2005.

[56] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark
Horowitz, Christos Kozyrakis. Comparing Memory Systems for Chip
Multiprocessors. ACM SIGARCH Computer Architecture News New York USA,
Volume 35, Issue 2, pp. 358-368, May 2007.

[57] Jichuan Chang and Gurindar S. Sohi, Cooperative Cache Partitioning for Chip
Multiprocessors. In Proceedings of the 21st annual international conference on
Supercomputing, Seattle, Washington, pp. 242-252, Dec 2007.

[58] K. T. Sundararajan, V. Porpodas, T.M. Jones, N.P. Topham, B. Franke. Cooperative
Partitioning: Energy-Efficient Cache Partitioning for High-Performance CMPs. In
Proceeding of IEEE 18th International Symposium High Performance Computer
Architecture (HPCA), pp. 1-12, Feb. 2012.

[59] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell,Yan
Solihin, Lisa Hsu, Steve Reinhardt. QoS Policies and Architecture for Cache/Memory
in CMP Platforms. In Proceedings of the ACM SIGMETRICS 2007 the International
Conference on Measurement and modeling of Computer Systems, San Diego, pp. 23-
24, June 2007.

175

[60] Bradford M. Beckmann Michael R. Marty and David A. Wood. ASR: Adaptive
Selective Replication for CMP Caches. In Proceedings of the 39th Annual
IEEE/ACM international Symposium on Micro-architecture (MICRO-39), Orlando,
FL, pp. 443-454, Dec 2006.

[61] Seongbeom Kim, Dhruba Chandra and Yan Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT’04),
France, pp. 111- 122, Oct. 2004.

[62] Lei Jin Hyunjin Lee Sangyeun Cho. A Flexible Data to L2 Cache Mapping Approach
for Future Multi-core Processors. In Proceedings of the 2006 workshop on Memory
system performance and correctness, San Jose, California, pp. 92-101, Nov 2006.

[63] Jaehyuk Huh Changkyu Kim, Hazim Shafi Lixin Zhang Doug Burger Stephen W.
Keckler. A NUCA Substrate for Flexible CMP Cache Sharing. In Proceeding of the
19th International Conference on Supercomputing, ICS 2005, Cambridge,
assachusetts, USA, pp. 1028-1040, June 2005.

[64] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, Stephen W.
Keckler “Author Retrospective for A NUCA Substrate for Flexible CMP Cache
Sharing”, ICS 25th Anniversary Volume, pp. 74-76, June, 2014.

[65] Pierfrancesco Foglia, Daniele Mangano, Cosimo Antonio Prete, NUCA Model for
Embedded Systems Cache Design. IEEE 2005 Workshop on Embedded Systems for
Real-Time Multimedia (ESTIMEDIA), New York Metropolitan Area, USA, pp. 41-
46, September 2005.

[66] G.E. Suh, L. Rudolph, S. Devadas. Dynamic Partitioning of Shared Cache Memory.
The Journal of Supercomputing, Volume 28, Number 1, pp. 7-26, April 2004.

[67] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez and Mateo Valero. Explaining
Dynamic Cache Partitioning Speed Up. IEEE Computer Architecture Letter, vol. 6,
issue 1, pp. 1-4, Jan 2007.

[68] Zvika Guz, Idit Keidar, Avinoam Kolodny, Uri C. Weiser. Nahalal: Cache
Organization for Chip Multiprocessor. IEEE Computer Architecture Letters, vol. 6,
issue 1, pp. 21-24, Jan 2007.

[69] Alexandra Fedorova, Margo Seltzer and Michael D. Smith. Cache-Fair Thread
Scheduling for Multicore Processors. Technical Report TR-17-06, Division of
Engineering and Applied Sciences, Harvard University Cambridge, October 2006.

[70] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing Shared L2
Caches on Multicore Systems in Software. Workshop on the Interaction between
Operating Systems and Computer Architecture (WIOSCA), held in conjunction with
the International Symposium on Computer Architecture (ISCA), Toronto, Canada, Jan
2007.

[71] Hari Kannan, Fei Guo, Li Zhao, Ramesh Illikkal, Ravi Iyer, Don Newell, Yan Solihin,
Christos Kozyrakis. From Chaos to QoS: Case Studies in CMP Resource
Management. ACM SIGARCH Computer Architecture News, New York, USA, vol.
35, issue 1, pp. 21-30, June 2007.

[72] H. Kasture and D. Sanchez. Ubik: Efficient Cache Sharing with Strict QoS for
Latency-Critical Workloads. In Proceedings of the 19th international conference on

176

Architectural support for programming languages and operating systems (ASPLOS),
March, 2014.

[73] Afrin Naz, Mehran Rezaei, Krishna Kavi and Philip Sweany. Improving Data Cache
Performance with Integrated Use of Split Caches, Victim cache and Stream Buffers.
Media Workshop 04, ACM SIGARCH Computer Architecture News, New York,
USA, pp. 41-48, Nov 2005.

[74] Jie Tao, Marcel Kunze, and Wolfgang karl. Evaluating the cache Architecture of
Multicore processors. In Proceeding of the 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, France, pp. 12-19, February 2008.

[75] Roy A., Vadlamani S., Sudarshan T.S.B. Variable Forwarding Cache Coherency for
Chip Multiprocessors. In Proceeding of 14th Annual International Conference on
High Performance Computing (HiPC 07), pp. 40-45, October 2007.

[76] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. IEEE Computer, vol. 29, issue 12, pp. 66–76, December 1996.

[77] L. Lamport. How to Make a Multiprocess Computer that Correctly Executes
Multiprocess Programs. In IEEE Transactions on Computers, pp. 690–691, 1979.

[78] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-Memory. In
Proceedings of the 17th Annual International Symposium on Computer Architecture,
pp. 15–26, May 1990.

[79] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In
10th International Symposium on Computer Architecture (ISCA), pp. 124–131, June
1983.

[80] Per Stenstrom. A survey of cache coherence schemes for multiprocessors. In IEEE
Transactions on Computers, vol. 23, issue 6, pp.12–24, June 1990.

[81] Per Stenstrom, Mats Brorsson, Fredrik Dahlgren, Hakan Grahn, and Michel Dubois.
Boosting the performance of shared memory multiprocessors. IEEE Transactions on
Computers, vol. 30, issue 7, pp.63–70, July 1997.

[82] Hakan Nilsson and Per Stenstrom. An adaptive update-based cache coherence
protocol for reduction of miss rate and traffic. In Proceedings of the 6th International
Conference on Parallel Architectures and Languages Europe (PARLE), pp. 363–374,
June 1994.

[83] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency Protocols and
their Support by the IEEE Futurebus. In Proceedings of the 13th Annual International
Symposium on Computer Architecture, pp. 414–423, June 1986.

[84] Alberto Ros, Manuel E. Acacio, and José M. García. An efficient cache design for
scalable glueless shared-memory multiprocessors. In Proceedings of the ACM
International Conference on Computing Frontiers, pp. 321–330, May 2006.

[85] Alberto Ros, Ricardo Fernández-Pascual, Manuel E. Acacio, and José M. García.
Two proposals for the inclusion of directory information in the last-level private
caches of glueless shared-memory multiprocessors. Journal of Parallel Distributed
Computing (JPDC), vol. 68, issue 11, pp. 1413–1424, November, 2008.

[86] A. Charlesworth, Starfire: Extending the SMP Envelope, IEEE Micro vol. 18, issue 1,
pp. 39–49, February 1998.

177

[87] A. Charlesworth. The Sun Fireplane System Interconnect. In Proceedings of the 2001
ACM/IEEE Conference on Supercomputing, p-7-15, November 2001,

[88] M. Martin, M. Hill, and D. Wood. Token Coherence: Decoupling Performance and
Correctness. In Proceedings of the 30th Annual International Symposium on
Computer Architecture, pp. 182–193, June 2003,

[89] Anant Agarwal, Richard Simoni, John L. Hennessy, and Mark A. Horowitz. An
evaluation of directory schemes for cache coherence. In Proceedings of the 15th
International Symposium on Computer Architecture (ISCA), pages 280–289, May
1988.

[90] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems in
multi-cache systems. In IEEE Transactions on Computers, vol. 27, issue 12, pp.
1112–1118, December 1978.

[91] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop
Gupta, John L. Hennessy, Mark A. Horowitz, and Monica S. Lam. The Stanford
DASH multiprocessor. In IEEE Computer, vol. 25, issue 3, pp. 63–79, March 1992.

[92] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark A. Horowitz, Anoop
Gupta, Mendel Rosenblum, and John L. Hennessy. The Stanford FLASH
multiprocessor. In Proceedings of the 21st International Symposium on Computer
Architecture (ISCA), pp. 302–313, April 1994.

[93] James Laudon and Daniel Lenoski. The SGI Origin: A cc-NUMA Highly Scalable
Server. In Proceedings of the 24th International Symposium on Computer
Architecture (ISCA), pp. 241–251, June 1997.

[94] Kourosh Gharachorloo, M. Sharma, S. Steely, and S. Van Doren. Architecture and
Design of AlphaServer GS320. In Proceedings of the 9th International Conference on
Architectural Support for Programming Language and Operating Systems (ASPLOS),
pp. 13–24, November 2000.

[95] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk,
Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: A
scalable architecture based on single-chip multiprocessing. In Proceedings of the 27th
International Symposium on Computer Architecture (ISCA), pp. 12–14, June 2000.

[96] Manish Shah, Jama Barreh, Jeff Brooks, Robert Golla, Gregory Grohoski, Nils Gura,
Rick Hetherington, Paul Jordan, Mark Luttrell, Christopher Olson, Bikram Saha,
Denis Sheahan, Lawrence Spracklen, and Aaron Wynn. 236 UltraSPARC T2: A
highly-threaded, power-efficient, SPARC SoC. In IEEE Asian Solid-State Circuits
Conference, pp. 22–25, November 2007.

[97] Manuel E. Acacio, José González, José M. García, and José Duato. A new scalable
directory architecture for large-scale multiprocessors. In Proceedings of the 7th
International Symposium on High-Performance Computer Architecture (HPCA), pp.
97–106, January 2001.

[98] Yeimkuan Chang and Lasimi N. Bliuyan. An efficient hybrid cache coherence
protocol for shared memory Multiprocessors. IEEE Transactions on Computers, pp.
352–360, March 1999.

178

[99] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.Högberg,
F. Larsson, A.Moestedt, and B.Werner. Simics: A Full System Simulator Platform,
vol. 35, issue 2, pp. 50–58, 2002.

[100] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems) toolset. In Computer Architecture
News, pp. 92-99, 2005.

[101] Niket Agarwal, Li-Shiuan Peh, and Niraj Jha. Garnet: A detailed interconnection
network model inside a full-system simulation framework. Technical Report CE-P08-
001, Princeton University, pp. 33-42, 2008.

[102] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A tool to
understand large caches. Technical report, University of Utah and Hewlett Packard
Laboratories, 2007.

[103] A. Bardine, P. Foglia, G. Gabrielli, and C. A. Prete. Analysis of static and dynamic
energy consumption in nuca caches: Initial results. In Proceedings of the Workshop
on Memory Performance: Dealing with Applications, Systems and Architecture, pp.
105-112, 2007.

[104] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Orion: A power-performance simulator
for interconnection networks. In Proceedings of the 35th International Symposium on
Microarchitecture, pp. 294-305, 2002.

[105] Micron. System power calculator. In http : //www.micron.com/, 2009.

[106] Benchmarks. Spec cpu2006. In http : //www.spec.org/cpu2006, 2006.

[107] C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, Methodological
considerations and Characterization of the SPLASH-2 Parallel Application Suite. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture,
pp. 24–36, June 1995.

[108] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
Characterization and architectural implications. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, pp. 72-81, 2008.

[109] S. Srikantaiah, M. Kandemir, M. J. Irwin. Adaptive Set Pinning: Managing Shared
Caches in Chip Multiprocessors. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
135-144, March 2008.

[110] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell. “Exploring the cache
design space for large scale cmps.” SIGARCH Computer Architecture News, vol. 33,
issue 4, pp. 24–33, 2005.

[111] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenstrom. The
detection and elimination of useless misses in multiprocessors. In Proceeding of the
20th Annual International Symposium on Computer Architecture, pp. 88–97, 1993.

[112] Bradford M. Beckmann and David A. Wood. Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proceeding of the 37th international Symposium on
Microarchitecture (MICRO-37), Portland, Oregon, pp. 319-330, Dec 2004.

179

[113] H. Dybdahl and P. Stenström. An adaptive shared/private nuca cache partitioning
scheme for chip multiprocessors. In Proceedings of the 13th International Symposium
on High-Performance Computer Architecture, pp. 2-12, 2007.

[114] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In
Proceedings of the 33rd International Symposium on Computer Architecture, pp. 264-
276, 2006.

[115] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing replication,
communication, and capacity allocation in cmps. In Proceedings of the 32nd
International Symposium on Computer Architecture, 2005.

[116] M. Zhang and K. Asanovi´c. Victim replication: Maximizing capacity while hiding
wire delay in tiled chip multiprocessors. In Proceedings of the 32nd International
Symposium on Computer Architecture, pp. 336-345, 2005.

[117] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and E. Hagersten. Modeling
cache sharing on chip multiprocessor architectures. In Proceeding of the IEEE
International Symposium on Workload Characterization, pp. 160-171, 2006.

[118] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural support for operating
system-driven cmp cache management. In Proceeding of the 15th International
Conference on Parallel architectures and Compilation Techniques, Seattle, pp. 2-12,
2006.

[119] J. D. Collins and D. M. Tullsen. Runtime identification of cache conflict misses: The
adaptive miss buffer. ACM Transaction on Computer System, vol. 19, issue 4,
pp.413–439, 2001.

[120] G.Memik, G. Reinman, and W. H.Mangione-Smith. Reducing energy and delay using
efficient victim caches. In Proceeding of the 2003 International Symposium on Low
Power Electronics and Design, Seoul, pp. 262-265, 2003.

[121] Jason Mars Lingjia Tang Mary Lou Soffa. Directly Characterizing Cross Core
Interference through Contention Synthesis. In Proceedings of the 6th International
Conference on High Performance and Embedded Architectures and Compilers,
HiPEAC, pp. 167-176, January, 2011.

[122] A. Sandberg, D. Ekl ̈ v, E. Hagersten. Reducing cache pollution through detection and
elimination of non-temporal memory accesses. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-11, November, 2010.

[123] N. Topham, A. Gonzalez, and J. Gonzalez. The design and performance of a conflict-
avoiding cache. In Proceeding of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 71– 80, 1997.

[124] C. Zhang. Balanced cache: Reducing conflict misses of direct-mapped caches. In
Proceeding of the International Symposium on Computer Architecture, Boston, pp.
155-166, 2006.

[125] R. Ricci, S. Barrus, and R. Balasubramonian. Leveraging bloom filters for
smartsearch within nuca caches. In Proceedings of the 7th Workshop on Complexity-
Effective Design, 2006.

180

[126] M. Hammoud, S. Cho, and R. Melhem. Dynamic cache clustering for chip
multiprocessors. In Proceedings of the International Conference on Supercomputing,
pp. 56-67, 2009.

[127] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. A novel migration-based nuca design
for chip multiprocessors. In Proceedings of the International Conference on
Supercomputing, pp. 1-12, 2008.

[128] J. Lira, C. Molina, and A. González. Last bank: dealing with address reuse in non-
uniform cache architecture for cmps. In Proceedings of the 15th International Euro-
Par Conference (Euro-Par), pp. 297-308, 2009.

[129] N. Muralimanohar and R. Balasubramonian. Interconnect design considerations for
large nuca caches. In Proceedings of the 34th International Symposium on Computer
Architecture, pp. 369-380, 2007.

[130] M. Chaudhuri. Pagenuca: Selected policies for page-grain locality management in
large shared chip-multiprocessors. In Proceeding of the 15th International Symposium
on High-Performance Computer Architecture, pp. 227-238, 2009.

[131] J. Merino, V. Puente, and J. A. Gregorio. Sp-nuca: A cost effective dynamic non-
uniform cache architecture. ACM SIGARCH Computer Architecture News, vol. 36,
issue 2, pp. 64–71, May 2008.

[132] M. Hammoud, S. Cho, and R.Melhem. Acm: An efficient approach for managing
shared caches in chip multiprocessors. In Proceedings of the 4th International
Conference on High Performance and Embedded Architectures, pp. 355-372, 2009.

[133] A. Pesterev, N. Zeldovich, and R. Morris. Locating cache performance bottlenecks
using data profiling. In Proceedings of the 5th European conference on Computer
systems, EuroSys ’10: Pages 335-348, April, 2010.

[134] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In Proceeding of the
36th International Symposium on Microarchitecture, pp. 55-56, 2003.

[135] Liu C, Sivasubramaniam A, Kandemir M, Irwin MJ. Enhancing L2 organization for
CMPs with a center cell. In Proceedings of the 20th International Parallel and
Distributed Processing Symposium, pp.10-16, 2006.

[136] Wenisch TF, Wunderlich RE, Ferdman M, Ailamaki A, Falsafi B, Hoe JC. Simflex:
Statistical sampling of computer system simulation. In IEEE Micro, vol. 26, issue 4,
pp.18–31, 2006.

[137] S. Akioka, F. Li, K. Malkowski, P. Raghavan, M. Kandemir, and M. J. Irwin. Ring
data location prediction scheme for non-uniform cache architectures. In Proceedings
of the International Conference on Computer Design, pp. 693-698, 2008.

[138] Suh GE, Rudolph L, Devadas S. Dynamic Cache Partitioning for CMP/SMT Systems.
Journal of Supercomputing, pp. 7–26, 2004.

[139] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca: Near-
optimal block placement and replication in distributed caches. In Proceedings of the
36th International Symposium on Computer Architecture, pp. 3-14, 2009.

[140] A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting cache line
size to application behavior. In Proceedings of the 13th international conference on
Supercomputing, pp. 145-154. ACM, 1999.

181

[141] J.B. Rothman., and A.J. Smith. Sector cache design and performance. In Proceedings
of the 8th Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, 2000, pp. 124-133, 2000.

[142] J.B. Rothman, and A.J. Smith. "Minerva: An adaptive subblock coherence protocol
for improved smp performance." High Performance Computing. Springer Berlin
Heidelberg, pp. 64-77, 2002.

[143] H. Kim, and P.V. Gratz. "Leveraging Unused Cache Block Words to Reduce Power
in CMP Interconnect." Computer Architecture Letters, vol. 9, issue 1, pp. 33-36,
2010.

[144] Pujara, and A. Aggarwal. "Cache noise prediction." Computers, IEEE Transactions,
pp. 1372-1386, (2008).

[145] F.C. Chen, S.H. Yang, B. Falsafi, and A. Moshovos. "Accurate and complexity-
effective spatial pattern prediction." In Proceedings of the Software IEE, pp. 276-287,
2004.

[146] D.H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez. The dynamic granularity
memory system. In ACM SIGARCH Computer Architecture News, vol. 40, issue 3,
pp. 548-559, 2012.

[147] A. Seznec. "Decoupled sectored caches: conciliating low tag implementation cost." In
ACM SIGARCH Computer Architecture News, vol. 22, issue 2, pp. 384-393, 1994.

[148] C. Dubnicki, and T. J. LeBlanc. "Adjustable block size coherent caches." In ACM
SIGARCH Computer Architecture News, vol. 20, issue 2, pp. 170-180, 1992.

[149] S. Carr, K.S. McKinley, and C-W Tseng. “Compiler optimizations for improving data
locality”. vol. 28, issue 5, 1994.

[150] M.E. Wolf., and M.S. Lam. A data locality optimizing algorithm. ACM Sigplan
Notices, vol. 26, issue 6, pp. 30-44, 1991.

[151] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line distillation: Increasing cache
capacity by filtering unused words in cache lines. In Proceedings of the 13th
International Symposium of High-Performance Computer Architecture, pp. 250-259,
2007.

[152] Sparsh Mittal, Yanan Cao, and Zhao Zhang, MASTER: A Multi-core Cache Energy-
Saving Technique Using Dynamic Cache Reconfiguration, In IEEE Transactions on
very large scale integration (VLSI) systems, Vol. 22, No. 8, pp.1653 -1665, August
2014.

182

LIST OF PUBLICATIONS

JOURNAL PAPERS

1. Nitin Chaturvedi, S Gurunaryanan “An Efficient block pinning for multi-core

architectures”, Journal of Microprocessor and Microsystems”, Elsevier, ISSN 0141-

9331, 39(3), pp.181-188, 2015.

2. Nitin Chaturvedi, Arun Subramanian, S Gururnarayanan, “An Efficient data access

policy for shared last Level Cache”, WSEAS transaction on computers, ISSN 2224-

2872, 14(5), pp.38-48, 2015.

3. Nitin Chaturvedi, Arun Subramanian, S Gururnarayanan, “Selective cache line

replication scheme in Shared Last Level Cache”, Procedia of Computer Science,

Elsevier, ISSN 1877-0509, pp.1095-1107, 2015.

4. Nitin Chaturvedi, S Gururnarayanan, “Adaptive Block Pinning: A Novel Shared Cache

Partitioning Techniques for CMP”, European Journal of Scientific Research, ISSN

1450-216X, 124(1), pp. 80-93, 2014.

5. Nitin Chaturvedi, S Gururnarayanan “Study of Various Factors Affecting performance

of Multi-core architectures” in International Journal of Distributed and Parallel Systems

(IJDPS), ISSN 0976-9757, 1(2), pp. 37-45, 2013.

6. Nitin Chaturvedi, Jithin Thomas, S Gururnarayanan “Adaptive Zone-Aware Multi-bank

on Chip last level L2 cache Partitioning for Chip Multiprocessors” in the International

journal of Computer Applications, , ISSN 0123-4560, 6(9), pp. 19-23, 2010.

7. Nitin Chaturvedi, S Gurunaryanan “An Adaptive Migration-Replication Scheme

(AMR) for Shared Cache in Chip Multiprocessors “ manuscript submitted in Journal of

Parallel Computing” (Elsevier, initial submission 30 October 2014, revision

communicated)

8. Nitin Chaturvedi, S Gurunaryanan “An A Locality-Aware Variable Granularity Cache

Architecture ” revision submitted in Electronics Letter-IET on January

2015(communicated)

183

CONFERENCE PAPERS

9. Nitin Chaturvedi, Rakesh Kumar, TSB Sudarshan “Adaptive Block Pinning for Multi-

core Architectures” in proceedings of International Conference on High Performance

Computing (HiPC), Dec-2008

10. Nitin Chaturvedi, Pradeep Harinderan, S Gururnarayanan “A Novel shared L2 NUCA

cache partitioning scheme for Multi-core Architectures” in proceedings of International

Conference on Emerging Trends in Engineering (ICETE), pp. 183-188, Feb-2010.

11. Nitin Chaturvedi, Prashant Gupta, S Gurunarayanan “Efficient Cache Migration Policy

for Chip Multi-Processors” 2011 IEEE International Conference on Computational

Intelligence and Computing Research, ICCIC-11, pp. 102-107,2011 (IEEE-Explore).

12. Nitin Chaturvedi, S Gurunarayanan “An Adaptive Block Pinning Cache for Reducing

Network Traffic in Multi-Core Architectures” 2013 IEEE International Conference on

Computational Intelligence and Communication Network, ICCN-2013, pp. 446-450,

September 2013. (IEEE-Explore)

13. Nitin Chaturvedi, S Gurunarayanan “An Adaptive Cache Coherence Protocol with

adaptive Cache for Multi-core Architectures” in proceedings of International

Conference on Advanced Electronic Systems, ICAES-2013, pp. 197-201, September

2013, (IEEE-Explore)

184

BRIEF BIOGRAPHY OF CANDIDATE

Nitin Chaturvedi is a Lecturer in the Department of Electrical & Electronics

Engineering in Birla Institute of Technology and Science, Pilani since August

2008. Prior to this he worked as Assistant Lecturer in EEE/IU. His interest

includes, Energy efficient storage systems, CMOS VLSI Design, Computer

Architectures. He obtained his Master of Science (Electronics) from Devi

Ahilya University, Indore (M.P) and Master of Technology from University

Centre for Instrumentation and Microelectronics (UCIM) from Panjab

University, Chandigarh.

185

BRIEF BIOGRAPHY OF SUPERVISOR

Dr. S. Gurunarayanan is Professor in the Department of Electrical and

Electronics Engineering and he is Dean of Work Integrated Learning Program

Division (WILPD) in Birla Institute of Technology and Science, Pilani. He

obtained Masters in Science (Physics) from Alagappa University, Karaikudi,

Masters in Engineering (Systems & Information), from Birla Institute of

Technology and Science, Pilani, and Ph.D. (Electronics) from Birla Institute of

Technology and Science, Pilani in 1987, 1990 and 2000 respectively. He has

several publications in National and International Journals. His research

interests are Digital Design and Computer Architecture, VLSI Design,

Embedded Systems.

