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ABSTRACT 
 

The World Wide Web has become an integral part of every day life and rules the 

world’s economy. It has changed the way people work, communicate, and share 

information. The growth of Internet, in terms of the number of users and the type of 

objects accessed, has been phenomenal and fast. The content accessed has undergone 

a change from plain HTML pages to more dynamic pages with multimedia content, 

while the user-end equipments have evolved from desktops to laptops and mobile 

devices.  The fixed networks have transformed into a combination of fixed and mobile 

networks. This has led to slower speeds of web access and hence, lesser user 

satisfaction. Factors which contribute to the slower speeds of the web also include the 

heterogeneity of network connectivity, origin server location and distance from the 

users, traffic congestion, unexpected rise in demand and dynamic updating of 

information on the web servers. Reducing the latency in web access is critical for user 

satisfaction and productivity. Web caching and Prefetching are two methods being 

investigated recently by researchers, for improving the response times experienced by 

the user.  

 

This thesis discusses some aspects of caching and prefetching techniques to enhance 

web performance in fixed networks and mobile networks. These techniques are 

adopted for static web objects, multimedia web objects and wireless Internet access. 

Web caching is similar to memory system caching; differences being the 

nonuniformity of Web object sizes, retrieval costs and cacheability. A Web cache 

stores Web resources in anticipation of future requests. The replacement policies 

designed for Web caching thus must be characteristically different from that of 

memory systems.  Caching techniques for streaming multimedia objects and mobile 

networks are recent research issues. This thesis concentrates on four aspects of Web 

caching: QoS cache replacements, caching streaming multimedia objects, adaptive 

cache replacements for static and streaming objects and caching in mobile networks. 

 

Web caching does not support quality of service (QoS) and therefore can be seen as a 

best-effort service. All objects are handled equally. Introducing QoS to caching and 
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replacement is an interesting research issue. Cache-on-Demand protocol is an effort in 

that direction. This thesis proposes and evaluates one such caching technique with 

replacement policies to enhance the web performance. Also, it proposes a dual-

caching scheme for caching web objects, which enhances the web performance. The 

caching techniques popularly used for static web pages cannot be used for streaming 

multimedia objects. These objects cannot be cached in its entirety due to their large 

size. This thesis proposes caching and replacement techniques, for both the static and 

the adaptive kinds.  It proposes a frequency index based method for replacing partially 

cached multimedia objects using Cut-off and Optimal caching methods. 

 

Application of soft computing methods for caching and replacements in web caching 

is an interesting approach. This thesis proposes adaptive methods such as Fuzzy logic 

and Genetic algorithm for web caching and replacement. A Genetic algorithm is 

adopted for streaming multimedia web objects replacement and analyzed for its 

performance on different workloads.  

 

Accessing the World Wide Web data by using mobile devices is increasing due to the 

deployment of 2.5G and 3G services. A mobile user’s web access is largely 

determined by the user-specific preferences and the presentation of data is constrained 

by the capabilities of the device used. For reducing latency and disconnectivity while 

using Internet by a mobile client, prefetching and Quality of Service (QoS) can be 

deployed. A caching architecture for combining prefetching and QoS is proposed in 

the thesis. An attempt has been made to derive a dynamic cache invalidating scheme 

which uses ‘Bit-Sequence’ and ‘Bit-Sequence with bit count’ depending on the 

number of cache objects being updated. 

 

All the proposed schemes are tested for performance through simulation studies using 

benchmark web access logs.  The thesis also proposes and analyses various hardware 

designs and implementation for LRU replacement policy in high-associativity 

processor cache for caching uniform objects. 
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CHAPTER 1: INTRODUCTION 

 

CHAPTER 1 

INTRODUCTION 
 

The World-Wide Web has transformed much of the world's economy and will continue to 

do so.  It provided a paradigm shift in the way people work and communicate. Termed as 

an “Information Superhighway”, the web or Internet as it is popularly known provides 

access to a wealth of information, which can be accessed instantaneously from one’s 

desktop or laptop. However, from the point of view of time - access to information on 

today's Web is rarely instantaneous. The growth of web resulted in a performance penalty 

for both the web services and its infrastructure, the Internet. While performance continues 

to improve over time from improvements in bandwidth and device latencies, users 

continue to desire yet faster response time. Likewise, content providers continue to make 

greater demands on bandwidth. 

 

Good interactive response-time has long been known to be essential for user satisfaction 

and productivity [Brady 1986, Roast 1998]. This is also true for the Web [Bhatti 2000]. A 

widely-cited study from Zona Research [Zona 1999] provides evidence for the “eight 

second rule" in electronic commerce; ‘If a Web site takes more than eight seconds to 

load, the user is much more likely to become frustrated and leave the site’. Thus there is 

also significant economic incentive for many content providers to provide a responsive 

Web experience. 

 

1.1 WEB PERFORMANCE ENHANCEMENT TECHNIQUES 
 
There have been many studies to better understand characteristics of the web [Maltzahn 

1997, Wills 1999, Brewington 2000]. The factors, which contribute to the slower speeds 

of the web, include the heterogeneity of network connectivity, origin server locations and 

distances, traffic congestion, unexpected demand and dynamic updating of information 

available on the web. Many researchers have considered the problem of improving web 

response times. Some of the proposed performance improvements are by increasing the 
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CHAPTER 1: INTRODUCTION 

existing bandwidth by adopting alternative communication technologies. Also, the 

performance can be improved by efficiently using the existing infrastructure. Web 

caching and Prefetching are two such methods, which are used for improving the 

response times experienced by the user. The most extensively investigated solution is 

content caching [Aggarwal 1999, Cao 1997, Katsaros 2004]. Other solutions include the 

technique of prefetching [Davison 1999, Nanopoulos 2003] and cooperating caches. 

 

1.1.1 CACHING TECHNIQUES 
 
The web consists of Web Servers that accept requests from Web Clients for pieces of 

information called Web Objects. The interaction between clients and servers is by means 

of standard protocols, typically the Hypertext Transfer Protocol (HTTP). Any computer 

or device on the Internet can access web objects and thus become a Web client. A Web 

client that obtains Web content for the user or an application is called a Web browser. 

Examples of Web clients include personal computers, web-enabled phones, handheld 

computers, mobile devices that are web-enabled and so on. The web continues to grow 

rapidly and this growth puts great stress on the Internet and Web servers. Caching refers 

to a simple idea that if you use some information and think you might use it again in the 

near future, you store a copy of this information in some easily accessible place. Three 

features of Web caching according to Davison [Davison 2001] are: 

• Caching reduces network bandwidth usage. 

• Caching reduces user-perceived delays.  

• Caching reduces loads on the origin server. 

One central problem in Web caching is the cache replacement strategy. Cache 

replacement refers to the process that takes place when the cache becomes full and old 

objects must be removed to make space for the new one.  

 
1.1.2 PREFETCHING TECHNIQUES 
 
Prefetching is the cache-initiated speculative retrieval of a resource into a cache in the 

anticipation that it can be served from cache in the future.  Most requests on the Web are 

made on behalf of human users, and like other human-computer interactions, the actions 
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CHAPTER 1: INTRODUCTION 

of the user can be characterized as having identifiable regularities. Much of these patterns 

of activity, both within a user, and between users, can be identified and exploited by 

intelligent action prediction mechanisms [Wang 1996, Foxwell 1998]. These prediction 

mechanisms attempt to build a relatively concise model of the user so as to be able to 

dynamically predict the next action(s) that the user will take. One of the research focuses 

has been to apply machine-learning techniques to the problem of user action prediction 

on the Web, in particular, to predict the next Web page that a user will select. Such a 

system could anticipate each page retrieval and then, fetch that page ahead of time into a 

local cache so that the user experiences shorter response time [Avinoam 2000, Davison 

2002]. However, the evaluation of such models in terms of response time improvement 

requires the incorporation of real-world considerations such as network characteristics 

and content caching. 

 

1.2  OBJECTIVES AND APPROACH 
 
Web caching is similar to memory system caching. A Web cache stores Web resources in 

anticipation of future requests. However, significant differences between memory system 

and Web caching result from nonuniformity of Web object sizes, retrieval costs and 

cacheability.  The replacement policies designed for Web caching thus must be 

characteristically different from that of memory systems. There have been many 

replacement policies that have been proposed in the literature. In the early days of 

caching, simple replacement strategies were used. Therefore, research for more 

sophisticated replacement strategies was an important issue. Nowadays there exist several 

replacement policies. Although Web cache replacement in its general form seems to be a 

solved problem, there are new areas that need further investigation. This thesis 

concentrates on four aspects of Web caching: 

• QoS-aware Cache Replacement: Original caching does not support quality of 

service (QoS). That means, caching can be seen as a best-effort service. All 

objects are handled equally. Introducing some sort of on-demand protocol can 

make the replacement process QoS-aware. 

• Multimedia Cache Replacement: Multimedia cache requires new strategies to be 

adopted for replacement. Multimedia objects being very large in size, caching 
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them in entirety will lead to poor performance. Therefore, partial caching 

techniques have to be adopted to make caching effective and to enhance Web 

performance. Also, multimedia caches can use adaptation techniques to augment 

replacement strategies. 

• Adaptive Cache Replacement: The efficiency of replacement strategies depends 

on the actual workload. Differences in workloads can lead to varying performance 

for replacement strategies. Therefore the replacement policy can be made 

adaptive for different workloads. Adaptive algorithms like Fuzzy Logic and 

Genetic Algorithms can be used for cache replacement.  

• Caching in Mobile Networks: Accessing the World Wide Web data by using 

mobile devices is increasing due to the deployment of 2.5G and 3G services. A 

mobile user’s web access is largely determined by the user specific preferences 

and the presentation of data is constrained by the capabilities of the device used. 

For reducing latency and disconnectivity while using Internet through a mobile 

client, prefetching and QoS services can be deployed. 

 

This thesis deals with the above issues, and others, to various degrees. The study has led 

to investigation into a variety of areas, including soft computing techniques like Fuzzy 

Logic and Genetic Algorithms, simulation, networking, computer architecture and 

information retrieval. Web system performance has been evaluated for various 

replacement strategies. Generally one may choose from three general approaches to 

studying system performance: analytic modeling, simulation, or direct measurement. 

Each provides unique insights into the problem. Analytic approaches provide tools to 

model systems and scenarios to find trends and limits. Simulation allows for the rapid 

testing of a variety of algorithms without causing undue harm on the real world. Direct 

measurements provide grounding in reality with existence proofs and challenges for 

explanations. To realistically consider response times in the Web, however, strict analytic 

models become unmanageably complex, and thus the thesis concentrates our efforts on 

the latter two approaches. 
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The primary focus of this work is the design and development of replacement algorithms 

and the evaluation of such techniques for proxy caches. In addition to explorations and 

surveys of cache replacement techniques, the major part of the thesis will propose, 

implement, validate, and give examples of the use of each of the cache replacement 

policies for QoS-aware Web caching, Streaming Multimedia Caching and Adaptive 

Caching. Some of these methods can be adopted for mobile networks also. The thesis 

proposes a few algorithms which support caching and replacement in mobile networks.  

 

1.3 THESIS OUTLINE AND CONTRIBUTIONS 
 
The thesis comprises of eight chapters. Although there has been significant attention paid 

to cache replacement policies from the research community in the time since this thesis 

was conceived, this thesis makes a number of contributions. 

 

Chapter 2 gives a review of various caching techniques for Processor architecture and 

World Wide Web with a summary of the literature survey and background to work 

reported in the thesis. In Chapter 3, some modifications to the existing replacement 

polices for static web objects, are discussed. The policies like Dual-Stage caching and 

Randomized History based techniques are explained. Also QoS-aware replacement 

technique like Cache-On-Demand based caching is explained. The adaptation of this 

algorithm for client side caching is implemented and the results are analyzed.  The main 

contribution in this chapter is that the cache replacement has been designed to provide 

quality of service (QoS) replacement policies. This chapter identifies and enumerates key 

aspects of idealized QoS-enabled cache. It proposes and demonstrates the utility of a 

simple approach of Cache-On-Demand (CoD) protocol and its adaptation from client’s 

point of view. It also will analyze the performance of cache replacement policy for small 

caches for CoD. Then, the performance of the basic cache in the presence of CoD 

caching strategy has been evaluated to show that it does not affect the performance of the 

cache adversely, but improves the performance for the user with CoD-enabled cache. 

In Chapter 4 the thesis examines the problem of caching streaming multimedia objects 

and proposes and analyzes a popularity function or frequency index based cache 

replacement policy.  Also, it explores adaptive techniques for cache replacement using 
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Fuzzy Logic and Genetic Algorithm on caching static web objects. After analyzing these 

techniques and with encouraging results, these techniques are adopted for caching 

streaming multimedia objects in Chapter 5. These chapters deal with the complementary 

idea of content-based caching in fixed network domain. Here we establish the potential of 

caching streaming multimedia objects with different known schemes. Then propose the 

various design strategies for cache replacement polices for such schemes. The analysis of 

the proposed policies with different set of workloads and bandwidth to establish the 

stability of the policy also has been explained. 

 

Having established the potential for content-based caching, the thesis considers in 

Chapter 6 the approach of caching web objects for a mobile user while on the move. The 

adaptation of CoD approach in mobile networks has been explored and adaptivity of 

cache invalidation algorithm with the workload has been analyzed. Finally, Chapter 7 

summarizes the results of the thesis work, with conclusions.  

 

The main work reported in this thesis involves study of the web enhancement techniques 

using simulation studies. During this work, it was felt that a hardware realization of a 

replacement scheme should be attempted. As a first step, an LRU implementation for 

uniform objects was done and is reported in the Appendix of the thesis. It proposes 

various designs of LRU implementation for cached uniform objects in a Processor cache. 

These implementations have been carried out in Verilog-based simulation and synthesis 

using Mentor Graphics tools. 
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CHAPTER 2 

BACKGROUND AND LITERATURE SURVEY 
 
2.1 INTRODUCTION 
 
Computer architectures, operating systems, and databases all use caching mechanisms to 

alleviate the speed gap of hierarchical storage. The prevalence of the World Wide Web 

has made remote-object caching increasingly important. Cache performance depends 

heavily on replacement algorithms, which dynamically select a suitable subset of objects 

for caching in a finite space. Developing such algorithms for wide-area distributed 

environments is challenging because, unlike traditional paging systems, retrieval costs 

and object sizes are not necessarily uniform. A replacement algorithm’s general goal in a 

uniform caching environment is to reduce cache misses, usually by replacing an object 

with the least likelihood of re-reference. In contrast, reducing total cost incurred due to 

cache misses is more important in nonuniform caching environments [Bahn 2002]. A 

replacement algorithm in these environments should: 

 

• make good use of observations from past references to distinguish between 

objects likely and not likely to be referenced in the near future. These include 

distinguishing not only “hot” (frequently referenced) and “cold” (infrequently 

referenced) objects but also those that are hot but getting colder and those that are 

cold but getting hotter. 

 

• allow for efficient implementation in terms of both space and time complexities. 

The space needed to maintain an object’s reference history should be constant, 

preferably a few bytes per object, and the algorithm’s time complexity should not, 

for all practical purposes, exceed O(log n), where n is the number of objects in the 

cache. 

 

• incorporate the nonuniformity factor—cost and size—fairly and effectively. 
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2.2 PROCESSOR CACHING 
 
Today's high performance microprocessors operate at speeds that far outpace even the 

fastest of the memory bus architectures that are commonly available.  One of the biggest 

limitations of main memory is the wait state: period of time between operations. This 

means that during the wait states the processor waits for the memory to be ready for the 

next operation. The most common technique used to match the speed of the memory 

system to that of the processor is caching. Cache Memory is the level of computer 

memory hierarchy situated between the processor and main memory. It is a very fast 

memory the processor can access much more quickly than main memory or RAM.  

Cache is relatively small, but expensive. Its function is to keep a copy of the data and 

code (instructions) currently used by the CPU. By using cache memory, waiting states are 

significantly reduced and the work of the processor becomes more effective. Cache 

memories remain one of the hot topics in the research community, since the ever-

increasing speed gap between processor and memory only emphasizes the need for a 

more efficient memory hierarchy. As modern processors include multiple levels of 

caches, and as cache associativity increases it is important to know the effectiveness of 

common cache replacement policies [Al-Zoubi 2004].  

 

In general, cache memory attempts to predict which memory elements the processor is 

going to need next, and loading those memory elements before the processor needs it, and 

saving the results after the processor is done with it. Whenever the byte at a given 

memory address is needed to be read, the processor attempts to get the data from the 

cache memory.  If the cache doesn’t have that data, the processor is halted while it is 

loaded from main memory into the cache.  At that time, memory elements around the 

required data are also loaded into the cache. In the "real world", the direct mapped and set 

associative caches are by far the most common. Direct mapping is used more for level 2 

caches on motherboards, while the higher-performance set-associative cache is found 

more commonly on the smaller primary caches contained within processors.  
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Table 2.1: Comparison of Cache Mapping Functions 

Cache Type  Hit Ratio  Search Speed  

Direct Mapped  Good  Best  

Fully 
Associative  Best  Moderate  

N-Way Set 
Associative, 
N>1  

Very Good, 
Better as N 
Increases  

Good, Worse as 
N Increases  

 

Cache Line Replacement Algorithms 
 
When a new line is loaded into the cache, one of the existing lines must be replaced. In a 

direct mapped cache, the requested block can go in exactly one position, and the block 

occupying that position must be replaced. In an associative cache we have a choice of 

where to place the requested block and hence a choice of which block to replace. In a 

fully associative cache, all blocks are candidates for replacement. In a set associative 

cache, we must choose among the blocks in the selected set. Therefore a line replacement 

algorithm is needed which sets up well defined criteria upon which the replacement is 

made. A large number of algorithms are possible and many have been implemented.  

Four of the most common cache line replacement algorithms are:  

• Least Recently Used (LRU) - the cache line that was last referenced in the most 

distant past is replaced.  

• FIFO (First In- First Out) - the cache line from the set that was loaded in the most 

distant past is replaced.  

• LFU (Least Frequently Used) - the cache line that has been referenced the          

fewest number of times is replaced.  

• Random - a randomly selected line from cache is replaced  

The most commonly used algorithm is LRU replacement. It is implemented by keeping 

track of when each element in a set was used relative to the other elements in the set. For 

a two-way set associative cache, tracking when the two lines were used can be easily 

implemented in hardware by adding a single bit (use bit) to each cache line. Whenever a 
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cache line is referenced its use bit is set to 1 and the use bit of the other cache line in the 

same set is set to 0.  The line selected for replacement at any specific time is the line 

whose use bit is currently 0.  Based on the principle of the locality of reference that a 

recently used cache line is more likely to be referenced again, LRU tends to give the best 

performance.  In practice, as associativity increases, LRU is too costly to implement, 

since tracking the information is costly. Even for four-way set associativity, LRU is often 

approximated – for example, by keeping track of which of a pair of blocks is LRU (which 

requires one bit), and then tracking which line in each pair is LRU (which requires one 

bit per pair). For large associativity, implementing LRU hardware is complex.  

 

The FIFO replacement policy is again easily implemented in hardware by the cache lines 

as queues.  The LFU replacement algorithm is implemented by associating with each 

cache line a counter which increments on every reference to the line.  Whenever a line 

needs to be replaced, the line with the smallest counter value is selected, as it will be the 

cache line that has experienced the fewest references.  Random replacement is simple to 

build in hardware. While it may seem that this algorithm would be a poor replacement 

line selection method, in reality it performs only slightly worse than any of the other three 

algorithms that we mentioned. For a two-way set associative cache, random replacement 

has a miss rate of 1.1 times higher than LRU replacement. The reason for this is easy to 

see.  Since there are only two cache lines per set, any replacement algorithm must select 

one of the two, therefore the random selection method has a 50-50 chance of selecting the 

same one that the LRU algorithm would select yet the random algorithm has no overhead 

(i.e., there wouldn’t be any use bit). As the cache associativity becomes higher, the miss 

rate for both replacement strategies become more significant, and the difference becomes 

higher.  Hence for higher associativity cache LRU replacement policy is considered to be 

better than other replacement policies ignoring the complexity of the LRU hardware.  

 

2.3 WEB CACHING VS. PROCESSOR CACHING 
 
Web caching, where a Web cache stores Web resources in anticipation of future requests, 

is similar to memory system caching. However, significant differences between memory 

system and Web caching result from the nonuniformity of Web object sizes, retrieval 

10 



CHAPTER 2: BACKGROUND AND LITERATURE SURVEY 

costs, and cacheability. To address object size, cache operators and designers track both 

the overall object hit rate (percentage of requests served from cache) and the overall byte-

hit rate (percentage of bytes served from cache). Traditional replacement algorithms often 

assume a fixed object size, so variable sizes can affect their performance. Retrieval cost 

varies with object size, distance traveled, network congestion, and server load. Finally, 

some Web resources cannot or should not be cached, for example, because the resource is 

personalized to a particular client or is constantly updated. Caching is performed in 

various locations throughout the Web, including at the two endpoints known to a typical 

user — the Web browser and Web server.  

 

Unlike CPU caches or virtual memory, which cache objects of identical size, objects in a 

proxy cache may have widely varying sizes – from text files of a few bytes to videos of 

several megabytes. Also object types such as audio or image, may be considered 

separately by a replacement policy, in contrast to CPU caches, which treat all data as 

homogeneous. On the other hand, proxy caches are simpler in that there are no “dirty” 

objects to write back. Obviously caching will improve the overall performance of the 

system as long as the hit ratio, i.e. the ratio of locally available information to total 

volume of requests, is sufficiently high. However, unlike traditional low level caching, as 

used in most current computer architectures, a relatively low hit ratio suffices to make 

using a web caching system worthwhile. This is true because the overhead of a miss 

(getting the object from the remote server) can be very high compared to the speed of a 

local search and transfer and thus the savings on a few hits are sufficient to make up for 

the overhead needed for searching the cache storage first. 

 

There are several aspects, which clearly differentiate web caching from traditional 

caching environments. For example the fact that hit ratio considered significant even 

when it is low as mentioned earlier, also the fact that computation and memory at the 

proxy come relatively cheap and thus sophisticated cache management strategies are 

possible, including algorithms with different approaches for each class of objects. 

Another significant difference is that the bandwidths to the various servers are different 

(and indeed can change over time) and thus the cost of a miss does not depend on the size 
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of the object alone. Increased levels of performance can be achieved with web caching 

strategies specifically geared towards traditional web objects like web pages with static 

images and feature rich pages with multimedia objects. 

 

2.4 WEB CACHING TECHNIQUES 
 
Caching can be deployed at various points in the Internet: within the client browser, at or 

near the server (reverse proxy) to reduce the server load, or at a proxy server. A proxy 

server is a computer that is often placed near a gateway to the Internet as shown in Fig. 

2.1, and that provides a shared cache to a set of clients. Client requests arrive at the proxy 

regardless of the Web servers that host the required web objects. The proxy either serves 

these requests using previously cached responses or obtains the required web objects 

from the original Web servers on behalf of the clients. It optionally stores the responses 

in its cache for future use. Hence, the goals of proxy caching are twofold: first, proxy 

caching reduces the access latency for a web object; second, it reduces the amount of 

“external” traffic that is transported over the wide-area network (primarily from servers 

to clients), which also reduces the user’s perceived latency. A proxy cache may have 

limited storage in which it stores “popular” objects (web objects that users tend to request 

more frequently than other web objects). 

 

 
 

Fig 2.1. Possible locations for deploying web caching [Balamash 2004] 

 
Caching policies for traditional memory systems do not necessarily perform well when 

applied to World Wide Web traffic for the following reasons: 
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• In memory systems, caches deal mostly with fixed-size pages, so the size of the 

page does not play any role in the replacement policy. In contrast, web objects are 

of variable size, and object size can affect the performance of the policy. 

• The cost of retrieving missed web objects from their original servers depends on 

several factors, including the latency between the proxy and the original servers, 

the size of the object, and the bandwidth between the proxy and the original 

servers. Such dependence does not exist in traditional memory systems. 

• Web objects are frequently updated, which means that it is very important to 

consider the object expiration date at replacement instances. In memory systems, 

pages are not generally associated with expiration dates. 

• The popularity of web objects generally follows a Zipf-like law (i.e., the relative 

access frequency for an object is inversely proportional to the “rank” of that 

object) [Breslau 1999]. This essentially says that popular web objects are very 

popular and a few popular objects account for a high percentage of the overall 

traffic. Accordingly, object popularity needs to be considered in any Web caching 

policy to optimize a desired performance metric. A Zipf-like law has not been 

noticed in memory systems. While memory systems are known to exhibit 

temporal locality, this concept is quiet different from object popularity. 

 

Several web replacement policies have been proposed in the literature. Such policies 

attempt to optimize various performance metrics, including the byte hit ratio and the 

average download time [Bahn 2002]. Replacement policies rely on key metrics 

(parameters) to achieve their goals. Many of them use the recency or frequency 

information of past references; which are well exhibited in World Wide Web traffic [Jin 

2000a, Jin 2000b]. For example, the well known least recently used (LRU) caching 

policy employs the time since last access as its only parameter. Some policies combine 

both recency and frequency information, along with some other parameters such as the 

size of the object and the cost associated with each object. Since web objects are of 

variable size, two objects with different sizes and with the same likelihood of being 

referenced can have different costs. The cost of an object includes the time and 

processing overhead associated with retrieving the object from the original server. The 
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lifetime of the object and the cache space overhead associated with the object size are 

also considered as cost factors [Balamash 2004]. Table 2.2 summarizes some of the 

parameters used in cache replacement policies. 

 

Table 2.2: Examples of commonly used parameters in cache replacement policies 

Parameter Rationale 
Last access time Web traffic exhibits strong temporal locality 

Number of previous accesses Frequently accessed objects are likely to be accessed in 
the near future 

Average retrieval time Caching objects with high retrieval times can reduce the 
average access latency 

Object Size Caching small objects can increase the hit ratio 
“Expires” or “Last Modified”  
HTTP header values 

Caching an expired object wastes cache space and 
results in a miss when object is accessed. 

 

In [Wang 1999], Wang provides a good survey of Web caching schemes. It addresses 

several topics related to Web caching, including cache architectures, protocols, 

replacement policies, prefetching, cache coherency, proxy placement, user access 

prediction, and dynamic objects caching.  

 

2.4.1. DESIRABLE PROPERTIES OF WEB CACHING 
 
Besides the obvious goals of a caching system, a web caching system must have a 

number of properties from the user’s perspective and from the server’s perspective.  

The desirable properties from the user’s perspective are: 

• Fast access: Access latency is an important parameter to measure the quality of 

web service. A web caching system must aim at reducing the access latency so 

that it makes user experience of surfing the internet much better as compared to 

the network which does not use a caching system.  

• Robustness: This indicates the availability of the system, which is another 

important parameter to measure quality of web service. This includes the 

availability of the service even when proxies crash, eliminating single point of 

failure. When a failure occurs, the system must gracefully fail so that it is easy to 
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recover from failure. The caching system design should ensure such a fault 

tolerant system design. 

• Transparency: The operation of caching system must be transparent for the user, 

who is concerned only about faster response, higher availability and easier access. 

 

The desirable properties from the server perspective are: 

• Scalability: We know that the amount of growth the web has seen is exponential 

and it will continue to be so in the years to come. Any caching system designed 

must be should scale well with the increasing size and density of network. This 

requires all the protocols employed in the caching system to be as lightweight as 

possible. 

• Load balancing. It’s desirable that the caching scheme distributes the load evenly 

through the entire network. A single proxy/server shouldn’t be a bottleneck (or 

hot spot) and thereby degrades the performance of a portion of the network or 

even slow down the entire service system. 

• Simplicity. Simplicity is always an asset. Simpler schemes are easier to implement 

and likely to be accepted as international standards. We would like an ideal Web 

caching mechanism to be simple to deploy. 

 

2.4.2. TYPES OF CACHING 
 
There has been several research and study work being undertaken in the field of Web 

Caching. They deal with different caching architectures and cache deployment options. 

Some deployments go hand in hand with the caching system architecture, whereas some 

architectures allow for a variety of deployment options [Barish 2000, Wang 1999, 

Rabinovich 2002]. Web caching can be classified on the basis of the cache deployment as 

follows: 

 

Proxy Caching 
 
A proxy cache server intercepts HTTP requests from clients, and if it finds the requested 

object in its cache, it returns the object to the user. If the object is not found, the cache 
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goes to the object’s home server, the originating server, on behalf of the user, gets the 

object, possibly deposits it in its cache, and finally returns the object to the user. Proxy 

caches are usually deployed at the edges of a network (i.e., at company or institutional 

gateway or firewall hosts) so that they can serve a large number of internal users. The use 

of proxy caches typically results in wide-area bandwidth savings, improved response 

time, and increased availability of static Web-based data and objects. One disadvantage 

to this design is that the cache represents a single point of failure in the network. When 

the cache is unavailable, the network also appears unavailable to users. The other 

disadvantage is with respect to scalability. As demand rises, one cache must continue to 

handle all requests. There is no way to dynamically add more caches when needed, as is 

possible with transparent proxy caching. 

 

Reverse Proxy Caching  
 
The other way of deploying proxy cache is the notion of reverse proxy caching, in which 

caches are deployed near the origin of the content instead of near clients. This is an 

attractive solution for servers that expect a high number of requests and want to ensure a 

high level of quality of service. Reverse proxy caching is also a useful mechanism when 

supporting Web hosting farms (virtual domains mapped to a single physical site), an 

increasingly common service for many Internet service providers (ISPs). Note that 

reverse proxy caching is totally independent of client-side proxy caching. In fact, they 

may coexist and collectively improve overall performance. 

 
Transparent Caching  
 
Transparent proxy caching is similar to the proxy server approach. Transparent caches 

work by intercepting HTTP requests and redirecting them to Web cache servers or cache 

clusters. This style of caching establishes a point at which different kinds of 

administrative control are possible; for example, deciding how to load balance requests 

across multiple caches. The filtering of HTTP requests from all outbound Internet traffic 

may add additional latency. There are two ways to deploy transparent proxy caching: at 

the switch level and at the router level. Router-based transparent proxy caching uses 

policy-based routing to direct requests to the appropriate cache(s). For example, requests 
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from certain clients can be associated with a particular cache. In switch-based transparent 

proxy caching, the switch acts as a dedicated load balancer. This approach is attractive 

because it reduces the overhead normally incurred by policy-based routing. Although it 

adds extra cost to the deployment, switches are generally less expensive than routers. 

 

Adaptive Web Caching  
 
Adaptive Web caching [Michel 1998] views the caching problem as one of optimizing 

global data dissemination. A key problem adaptive caching targets is the “hot spot” 

phenomenon, where short-lived Internet content can, overnight, become massively 

popular and in high demand. Adaptive caching consists of multiple distributed caches 

which dynamically join and leave cache groups (referred to as cache meshes) based on 

content demand. Adaptivity and the self-organizing property of meshes are a response to 

those scenarios where demand for objects gradually evolves and those where demand 

spikes, or is otherwise unpredictably high or low. Adaptive caching uses the Cache 

Group Management Protocol (CGMP) and Content Routing Protocol (CRP). CGMP 

specifies how meshes are formed, and how individual caches join and leave those 

meshes. CRP is used to locate cached content from within the existing meshes. This 

technique relies on multicast communication between cache group members and makes 

use of URL tables to intelligently determine to which overlapping meshes requests should 

be forwarded. One of the key assumptions of the adaptive caching approach is that the 

deployment of cache clusters across administrative boundaries is not an issue. If the 

virtual topologies are to be most flexible and have the highest chance of optimizing 

content access, administrative boundaries must be relaxed so that groups form naturally 

at proper points in the network. 

 

Push Caching  
 
As described in [Bhide 2002], the key idea behind push caching is to keep cached data 

close to the clients requesting that information. Data is dynamically mirrored as the 

originating server identifies where requests originate. As with adaptive caching, one main 

assumption of push caching is the ability to launch caches that may cross administrative 
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boundaries. However, push caching is targeted mostly at content providers, which will 

most likely control the potential sites at which the caches could be deployed. Unlike 

adaptive caching, it does not attempt to provide a general solution for improving content 

access for all types of content from all providers. One study [Tiwari 1999] found that 

well-constructed push-based algorithms can lead to speedups of between 1.27 and 2.43 as 

compared to traditional cache hierarchies. This study also notes the general dilemma that 

push caching encounters: forwarding local copies of objects incurs costs (storage, 

transmission), while overall performance and scalability are only seen as improved if 

those objects are indeed accessed. Also combination of push and pull caching is going to 

yield a higher quality of service to the end user. 

 

Active Caching  
 
The WisWeb project at the University of Wisconsin explored how caching can be applied 

to dynamic objects [Cao 1998]. Their motivation is that the increasing amount of 

personalized content makes caching such information difficult and not practical with 

current proxy designs. Indeed, a recent study [Creres 1998] of a large ISP trace revealed 

that over 30 percent of client HTTP requests contained cookies, which are HTTP header 

elements typically indicating that a request be personalized. As Web servers become 

more sophisticated and customizable, and as one-to-one marketing e-commerce strategies 

proliferate the Internet, the level of personalization is anticipated to rise. Active caching 

uses applets, located in the cache, to customize objects that could otherwise not be 

cached. When a request for personalized content is first issued, the originating server 

provides the objects and any associated cache, cache the applets. When subsequent 

requests are made for that same content, the cache applets perform functions locally (at 

the cache) which would otherwise (more expensively) be performed at the originating 

server. Thus, applets enable customization while retaining the benefits of caching. 

 

2.4.3. CACHING ARCHITECTURES 
 
A caching architecture should provide the paradigm for proxies to cooperate efficiently 

with each other. Caches sharing mutual trust may assist each other to increase the hit rate. 
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Various caching architectures are hierarchical caching, distributed caching and hybrid 

caching 

 

Hierarchical Caching Architecture 
 
Hierarchical caching was pioneered in the Harvest Cache [Chankhunthod 1996]. A series 

of caches are hierarchically arranged in a tree like structure; these caches leverage from 

each other when an object request arrives and the receiving cache experiences a miss. 

Caches are placed at multiple levels of the network. Requests for a object travel up the 

caching hierarchy until the object is hit at some cache level. When the object is found, 

either at a cache or at the original server, it travels down the hierarchy, leaving a copy at 

each of the intermediate caches along its path. In hierarchical design, child caches can 

query parent caches, children can query each other but parents can never query their 

children. 

 

A hierarchical architecture is more bandwidth efficient, particularly when some 

cooperating cache servers do not have high-speed connectivity. In such a structure, 

popular Web pages can be efficiently diffused towards the demand.  With hierarchical 

caches, it has been observed that parent nodes can become heavily swamped during child 

query processing. Commercial caches such as Network Appliances NetCache employ 

clustering to avoid this swamping effect. 

 

However, there are some disadvantages associated with this caching architecture 

• Additional delays may be introduced at different levels. 

• An object may be duplicated at different levels, so multiple copies of the same 

object may exist leading to coherency problems. 

• Significant coordination may be required among the caches placed at key access 

points in the network. 

• Long queuing delays may be introduced at high levels because with increase in 

levels, the parent nodes become heavily swamped during the child query 

processing. 
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Distributed Caching Architecture 
 
In distributed Web caching systems, there are no caches at intermediate levels other than 

the institutional caches which serve each others’ misses [Povey 1997]. All the 

institutional level caches maintain metadata information about the contents of other 

caches at the same level, in order to decide from which institutional cache a miss object 

can be retrieved. This metadata information can be distributed in the system using a 

hierarchical mechanism. With distributed caching, most of the traffic flows through low 

network levels, which are less congested and no additional disk space is required at 

intermediate network levels. Web caching systems are composed of multiple distributed 

caches to improve  

 

• System Scalability: Caches can serve high degree of concurrent client requests 

• Availability:  Systems can survive the failure of some caches there by 

becoming more fault tolerant. 

• Leveraging physical locality: Having caches closer in proximity to certain 

groups of users helps in reducing network latencies. 

• Load Balancing: Caches can query each other; distributing objects among 

them and intercache communication helps in load balancing and resolving 

requests internally. 

 

There are several approaches to the distributed caching. The Harvest group designed the 

Internet Cache Protocol (ICP) [RFC 2186], which supports discovery and retrieval of 

objects from neighboring caches as well as parent caches. Another approach to 

distributed caching is the Cache Array Routing protocol (CARP) [Valloppillil 1998], 

which divides the URL-space among an array of loosely coupled caches and lets each 

cache store only the objects whose URL are hashed to it. Another technique related to 

cache-to-cache communication is the notion of cache digests, such as those implemented 

by Squid [Wessels 1998] and the Summary Cache [Fan 2000]. Digests can be used to 

reduce intercache communication by summarizing the objects contained in peer caches. 

Thus, request forwarding can be more intelligent and more efficient. This approach is 
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similar to the use of URL routing tables in adaptive caching as a more intelligent way to 

forward requests.  

 

Hybrid Caching Architecture 
 
In hierarchical caching the connection time is shorter. So placing additional copies at 

intermediate levels reduces the retrieval latency for small objects. Distributed caching has 

shorter transmission times and higher bandwidth usage than hierarchical caching. A well-

configured hybrid scheme can combine the advantages of both hierarchical and 

distributed caching. In a hybrid scheme, caches may cooperate with other caches at the 

same level or at a higher level using distributed caching. ICP is a typical example. The 

object is fetched from a parent/neighbor cache that has the lowest RTT. Rabinovich et al. 

[Rabinovich 1998] proposed to limit the cooperation between neighbor caches to avoid 

obtaining objects from distant or slower caches, which could have been retrieved directly 

from the origin server at a lower cost. 

 

2.4.4. CACHE REPLACEMENT POLICIES  
 
Effectiveness of proxy caches depends on object placement and replacement algorithms 

that can yield high hit rate. A good admission control policy is especially important while 

caching non-uniformly sized objects, because a considerable amount of disruption can be 

caused when an object is added and others are purged from the cache. Highly frequent 

replacements may cause space and time wastage, and storage of objects, which are never 

hit. Therefore, an optimal cache replacement policy is essential. 

To summarize, the important factors (characteristics) of web objects that can influence 

the replacement process are 

• Recency: time of (since the last reference of the object) 

• Frequency: number of requests to an object 

• Size: size of the web object in bytes. 

• Cost: cost of fetching an web object from its origin server 

• Modification time: time of (since) last modification 

• Expiration time: time when an object gets stale and can be replaced immediately. 
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Most of the replacement policies designed for web caches use some of these factors for 

decision making. They can be classified as suggested in [Wang 1999, Aggarwal 1999]. 

 
Traditional Replacement Policies 
 
• Least Recently Used (LRU): It removes the object which was least recently requested 

by using a reference count to store information about time of last access. 

• Least Frequently Used (LFU): It evicts the object whose frequency of access is the 

least.  

• Pitkow/Recker: [Pitkow 1994] evicts objects in LRU order, except if all objects are 

accessed within the same day, in which case the largest files are removed first. 

 

Key-Based Replacement Policies 
   
The objects are replaced based on a primary key. In case there is a tie, it is broken using a 

secondary key and tertiary key, etc. Few of these policies are 

• Size: [Williams 1996] This strategy removes the object having largest size. The LRU 

strategy is applied for the objects with the same size. One variant is LOG2_SIZE 

which uses ⎣ ⎦ instead of size. )(log2 size

• LRU-MIN: [Abrams 1995] A particular size S is chosen and if there are any objects in 

the cache which have size of at least S, the least recently used such object is removed 

from the cache. In case there are no such objects, then starting from the objects with 

size at least S/2 in LRU order, objects are evicted i.e. the object which has the largest 

log(size) and is the least recently used among all such objects will be evicted first. 

• LRU-Threshold: [Abrams 1995] It is the same as LRU, but objects larger than a 

certain threshold size are never cached. 

• Hyper-G:  [Wooster 1997] It is a refinement of LFU, breaks ties using the recency of 

last use and size. 

• Lowest Latency First: [Williams 1996] It minimizes average latency by evicting the 

object with the lowest download latency first. 

Table 2.3 shows examples of the key based replacement policies. 
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Cost-Based Replacement Policies 
  
In these policies, a potential cost function derived from different factors such as time 

since last access, size of the object, entry time of the object in the cache, transfer time 

cost, object expiration time etc. is used to choose the objects to be replaced. Some of the 

algorithms based on this policy are  

• Greedy Dual-Size(GD-Size) : [Cao 1997] It associates a cost with each object and 

evicts the object with the lowest cost to size ratio. 

• Hybrid: [Wooster 1997] It associates a utility function with each object and evicts the 

one with the least utility to reduce the total latency. 

• Least Normalized Cost Replacement(LNC-R-W3): [Scheuermann 1997] This 

algorithm employs a rational function of the access frequency, transfer time cost and 

the size and removes the object with the lowest value for this function. 

• Server-assisted scheme: [Cohen 1998] The server generates a histogram of inter-

request times by observing its request logs. It calculates a value for an object in terms 

of its fetching cost, size, next request time and cache prices during the time period 

between requests and evicts the object having the least value. 

 

Table 2.3 Examples of Key-based policies 
 

Name Primary Key Secondary Key Tertiary Key
LRU Time Since Last Access   
FIFO Entry Time of Object in Cache   
LFU Frequency of Access   
SIZE Size Time Since Last Access  

LOG2-SIZE ⎣ ⎦)(log2 Size  Time Since Last Access  
HYPER-G Frequency of Access Time Since Last Access Size 

 

There have been other proposals for classification of replacement policies in the 

literature. [Jin 2000a, Bahn 2002, Podlipnig 2003]. There have been other replacement 

strategies proposed and discussed. To sum up, a great deal of effort has been made to 

maximize the web object hit rate and minimize the latency in delivery of contents to the 

clients.  One popular caching product realized in software and is the freely available 

Squid proxy cache [Squid 1998]. In its original implementation Squid uses LRU with 
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some modifications. The replacement algorithm is not triggered on demand but runs 

periodically every second. Squid has a low and a high water mark. When the disk usage 

is close to the low water mark, the replacement is less aggressive (fewer objects 

removed). When the usage is close to the high water mark, the replacement is more 

aggressive (more objects removed). The replacement depends among other things on an 

LRU-threshold that is dynamically calculated, based on the current cache size and the 

low and high water marks. An object is removed if the time since last access is greater 

than this threshold. Furthermore, Squid supports LFU and GD-Size replacement policies. 

Table 2.4 gives the summary of the algorithms described so far. 

 

2.4.5. CACHE CONSISTENCY 
 
In its simplest form, the web is a set of servers and clients. To retrieve a particular web 

resource, the client attempts to communicate over the internet to the origin web server as 

shown in Fig 2.2.  

 

 
 

Fig 2.2 HTTP transfer between client and server. [Davison 2001] 
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Table 2.4 Summary of Existing Replacement Algorithms 

 

Algorithm 

Reference 

based on 

recency 

history 

Reference 

based on 

frequency 

history 

Consideration of 

nonuniformity of 

the object 

Time 

Comple

xity 

Space 

Complexit

y 

Advantages Disadvantages 

LRU 

Last 

reference 

time 

No No O(1) O(1) 
Simple to 

implement 

Fixed 

performance 

measure;  

LFU No 
Number of 

references 
No O(log n) O(1) 

Keeps many 

objects in 

cache 

Fixed 

performance 

measure; 

Size No No 
Size in biased 

manner 
O(log n) O(1) 

Keeps many 

objects in 

cache 

Fixed 

performance 

measure; 

doesnot consider 

reference history 

LRU-min 

Last 

reference 

time 

No 
Size in biased 

manner 
O(n) O(1) 

Keeps many 

objects in 

cache 

Time 

complexity; 

Fixed 

performance 

measure 

Hybrid No 
Number of 

references 
Size and latency O(log n) 

O(1) + per-

server 

information 

Good 

estimation of 

download 

latency 

Per-server 

information 

overhead; fixed 

performance 

measure 

LNC-R-W3 

k-th 

reference 

time 

Based on k-

th reference 

time 

Normalised 

manner 
O(n) O(k) 

Normalized 

contribution 

to cost saving 

ration 

Time 

Complexity 

GD-Size 

Last 

reference 

time 

No Weighted manner O(log n) O(1) 

No parameter; 

Can optimize 

any 

performance 

measure 

Does not 

consider 

frequency 
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To connect to the server, the client needs the host’s numerical identifier. It queries the 

domain name system (DNS) to translate the hostname to its Internet Protocol (IP) 

address, with which it can establish a connection to the server and request the content. 

Once the Web server has received and examined the client’s request, it can generate and 

transmit the response. As Fig 2.2 shows, each step in this process takes time. The 

hypertext transfer protocol (HTTP) specifies the interaction among Web clients, servers, 

and intermediaries. Requests and responses are encoded as headers that precede optional 

bodies containing content. Fig 2.3 shows one set of request and response headers. The 

first request header shows the method used (GET), the resource requested (“/”), and the 

version of HTTP supported (1.1).  

 

Another commonly used method is POST, which allows clients to send content with a 

request (for instance, to carry variables from an HTML form). The first line of the 

response header shows the HTTP version supported and a response code with standard 

values. The headers of an HTTP transaction also specify aspects relevant to an object’s 

cacheability. The relevant headers from the example in Fig 2.3 include Date, Last-

Modified, ETag, Cache-Control, and Expires. For example, in HTTP GET requests that 

include an If-Modified-Since header, Web servers use the Last-Modified date on the 

current content to return the object only if the object changed after the date of the cached 

copy. The origin server needs an accurate clock to calculate and present modification and 

expiration times in the other tags. An ETag (entity tag) represents a signature for the 

object and allows for a stronger test than If-Modified-Since: If the signature of the current 

object at this URL matches the signature of the cached one, the objects are considered 

equivalent. The Expires and Cache-Control: max-age headers specify how long the object 

can be considered valid. For slowly or never-changing resources, an explicit expiration 

date tells caches how long they can keep the object (without requiring the cache to 

contact the origin server to validate it). 
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Fig 2.3 HTTP request and response headers [Davison 2001] 

 

2.5. SUMMARY 
 
In this chapter, the basics of caching techniques as applied to computer architecture and 

web has been discussed. Further a detailed description of types of caching in web and 

caching architectures is also presented. The replacement policies with merits and 

demerits for each replacement strategy have been analysed. 
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CHAPTER 3 

 
REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS 
 
 
3.1 INTRODUCTION 
 
The size and cost concerns make web caching a much more complicated problem than 

traditional caching. In the previous chapter, we discussed variety of web caching 

algorithms proposed so far. Effectiveness of proxy caches depends on document 

placement and replacement algorithms that yield high hit rate. A good admission control 

policy is also important while caching non-uniformly sized objects, because a 

considerable amount of disruption can be caused when an object is added and others are 

purged from the cache. Highly frequent replacements may cause space and time wastage, 

and storage of objects, which are never hit. Therefore, an optimal cache replacement 

policy needs to be designed. 

 
There are a number of results on the optimal offline replacement algorithms and online 

competitive algorithms, on simplified versions of the Web caching problem. The variable 

document sizes in web caching make it complicated to determine an optimal offline 

replacement algorithm. If one is given a sequence of requests to uniform size blocks of 

memory, it is well known that the simple rule of evicting the block whose next request is 

farthest in the future will yield the optimal performance [Belady 1966]. In the variable-

size case, no such efficient offline algorithm is known. 

 

For the cost consideration, there have been several algorithms developed for the uniform-

size variable-cost paging problem. GreedyDual [Young 1994], is actually a range of 

algorithms which include a generalization of LRU and a generalization of FIFO. The 

name GreedyDual comes from the technique used to prove that this entire range of 

algorithms is optimal according to its competitive ratio. The competitive ratio is 

essentially the maximum ratio of the algorithms cost to the optimal offline algorithm's 

cost over all possible request sequences.  
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3.2 MODIFICATIONS TO EXISTING REPLACEMENT POLICIES 
 
Some improvements to the existing replacement policies and the admission policies, 

which will help in improving the hit ratio for static web documents, are presented here. 

Three caching schemes for static web documents are discussed in detail. The first one is a 

dual-stage victim based replacement policy which replaces a single-level web caching to 

dual-level web caching. The victims of the replacement can be cached using a second 

level of cache memory to enhance the life of a web document. The second one is a 

randomized history based caching and replacement, where a history based approach is 

combined with a randomized LRU approach. The third one is a Cache-on-Demand (CoD) 

protocol based caching which has been modified to include few more features to 

effectively cache the objects by demand and provide quality of service (QoS) in place of 

best effort service. This later scheme has been extended to wireless networks also. 

 

3.2.1. DUAL-STAGE CACHING WITH VICTIM CACHE 
 
The simplest form of a replacement policy is Least Recently Used (LRU). Several 

extensions to this simplest form have been implemented. The size adjusted LRU is one 

such algorithm [Aggarwal 1999], which is popular and has a good performance. We 

extend this algorithm to include an admission control policy and a multilevel cache 

(victim cache), which produces better performance than the ordinary schemes.   In fact 

this extension can be used with any other caching algorithm. Here, first the Size-adjusted 

LRU policy is discussed. 

 

3.2.1.1 Size adjusted LRU Replacement Policy 
 
When an object is to be inserted into the cache, more than one object may need to be 

removed in order to create sufficient space. In the LRU, objects are greedily removed 

from the cache in the order of recency of last access until enough space is created for the 

incoming object. But such a policy is not the only possible LRU generalization for 

handling objects of non-uniform size. Charu Agarwal et.al [Aggarwal 1999] proposed a 
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heuristics to solve an optimization problem, which mimics but generalizes the LRU 

criteria for uniform sized objects.  A brief discussion of the scheme is given here. 

Assume that there are N objects, and that object i has size S i. A counter is maintained and 

incremented each time there is a request for an object. This counter is named as the 

Dynamic Count (di). Let i be the object requested. The object will be fetched if present in 

the cache; a hit. If miss, assuming i satisfies the admission control requirements, it has to 

be decided that which objects have to be purged from the cache.  

The following steps are defined: 

 

Dynamic count (di) is maintained for all the objects in the cache table 
Object requested (irrespective of cache hit or miss) { 

di ++ for all the objects} 
When a new object enters: 

di = 1 
Objects arrangement:  
          In the order of size x dynamic count )( ii dS ×  
When a new object enters:  
           Insert correctly in the cache table. 

Object(s) with the highest )( ii dS × count value is thrown off to make space for 
the incoming object. 

 
Also the objects can be ordered by the ratio of cost to size. If so, then choose the objects 

with the highest cost-to-size ratio, one by one, until no more objects are to be purged. The 

cost-to-size ratio for the object i is
)(

1

ii dS ×
. So, we reindex the objects in order of non-

decreasing values of . Then we greedily pick the highest index objects one by 

one and purge them from the cache until we have created sufficient space for the 

incoming object. This is defined as Size-Adjusted LRU, or SLRU replacement scheme. 

)( ii dS ×

 
3.2.1.2 Access Cost and Expiration time 
 
The scheme discussed here attempts to maximize the probability of a cache hit. If ci is the 

access cost of object i and yi be the decision variable to decide the object should be 

thrown out or not from the cache where yi = 0 (for not throwing out) and yi = 1 (for 

throwing out), then the generalized objective function is defined as∑ ×

i

ii

d
yc

. Similarly, 
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for arranging objects in the Size adjusted LRU, considering the access cost, the 

generalized   function   for arrangement   will be
i

ii

c
dS )( ×

.  We can observe that if all 

values of ci are uniform (1, for example), then the replacement policy will be the SLRU. 

 

To define the expiry time we define δti1 to be the difference between current time (t) and 

the time when it was last accessed and δti2 be the difference between the object expiration 

time and t. Then the refresh overhead factor for an incoming object i is defined to be 

⎭
⎬
⎫

⎩
⎨
⎧

=
2

1,1min
i

i
i t

t
r

δ
δ

. This value is approximately the reciprocal of the number of expected 

accesses before the object needs to be refreshed. We can incorporate the refresh overhead 

factor into the replacement policy by ordering objects in terms of nondecreasing values 

of
)1(

)(

ii

ii

rc
dS
−×

×
, and greedily purging those objects with the highest indexes. 

 
3.2.1.3 Admission control Policy 
 
When a requested object is obtained by the proxy, to place in a cache, we have to check 

whether the object entry into the cache is profitable or not. An admission control policy 

decides whether or not it is profitable to cache an object. A good admission control policy 

is very important when caching non-uniform size objects, because an object, which is 

added, may replace not one but several objects in the cache. When Objects are replaced 

frequently it may lead to wastage of space. A small additional cache, called the auxiliary 

cache, which maintains the identities of some X number of objects can be used. For each 

object in this auxiliary cache we also maintain timestamps of the last access, measured 

both in terms of the number of object accesses and time, together with access cost and 

expiration time data. The access counter is incremented each time an object is requested 

from the cache, whether or not that request can be fulfilled. Because the auxiliary cache 

contains identities of objects rather than the objects themselves, its size is negligible 

compared to that of the main cache. LRU Order is used for this auxiliary cache.  
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An algorithm for this can be defined as:  

object i requested 
   if (object i present in auxiliary cache){ 

determine the objects to be thrown out to make space for the incoming object 

if (caching of object profitable by 
i

i
i d

r
c

)1( −
 ) 

  put in the main cache  
   } 
 else{ 
     don’t cache 
   } 
Update auxiliary cache by LRU 
 

The sum 
i

i
i d

r
c

)1( −∑ of the set of candidate outgoing objects is determined using the 

replacement scheme. We admit an object only if it is profitable to do so. Observe that the 

information needed can be obtained from the auxiliary cache. After this iteration, the time 

stamp of the object i is updated. 

 
3.2.1.4 Dual-stage caching with Victim Cache 
 
The above scheme is modified by including Dual-stage Caching scheme. So far, we have 

considered only a single level of caching objects. Though the term auxiliary cache may 

be misleading, we can note that it does not maintain the actual cache entities. As the 

cache space in proxy is increasing and space not being a constraint, we propose a Dual-

stage caching scheme wherein we maintain an additional cache called the Victim cache. 

The admission control policy decides whether the object entry into the cache is 

worthwhile or not. The cache replacement policy determines the objects to be cached 

considering various parameters, mainly the recency of use and the size. 

 

While the object ik enters the cache, after undergoing admission control, the cache 

replacement policy determines the objects to be purged to make space for the incoming 

object.  These objects that are candidates for purge are given a second chance. This is 

accomplished with the help of a victim cache. The victim cache is a subordinate cache 

memory in addition to the main cache which will have the objects that are the victims of 

the replacement. The size of the victim cache is taken as (1/6)th of the proxy caching 
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memory as a thumb rule, which is similar to the victim caches in computer architecture 

proposed by Norman Jouppi [Jouppi 1990]. 

 

The concept of victim cache as proposed by Jouppi [Jouppi 1990, Hennessy 2003] is 

popular in computer architecture; it has been proved that it improves the hit rate by 

considerable amount due to locality of reference. In World Wide Web, considering the 

workload characteristics as discussed in [Arlitt 1996], some of the web objects, especially 

in institutional workload, have a fair number of references after the object is purged. By 

using SLRU the caching space is effectively used but to achieve a greater hit rate a 

second chance for the purged object is essential. In this method, whenever an object 

leaves the main cache, instead of immediately purging it, is stored in the victim cache. 

The victim cache has a simple replacement algorithm like the First in First out (FIFO) to 

reduce the computational time and to have a simple data structure. Thus the object in the 

victim cache is purged on the first come first purge basis. The algorithm for the proposed 

caching scheme is: 

 

Object i is requested (after the admission control) { 
        Check in the main cache 
        Check in the victim cache 
  If present in the victim cache { 
                            Place the object in the main cache 
  } 
 If not present in the main cache { 
              decide the objects to be removed from the main cache 
 place these objects in the victim cache in the order of FIFO 

}     
      } 
 
This method of cache replacement accomplished by a dual stage caching will give a 

second chance to the objects which are to otherwise purge thus enhancing the 

performance of the Proxy Cache. 
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3.2.1.5 Discussion of Results 
 
To compare the performance of various replacement policies with dual-stage admission 

control and victim cache, we chose three different caching schemes, the naive LRU 

replacement policy, the CLOCK PIN policy and the SLRU.  For obtaining the 

experimental results, we employed trace driven simulations. 

 

These schemes were implemented in conjunction with the admission control that was 

discussed earlier in this section. We compare these results with those obtained without 

the admission control policy. The final extension proposed, namely the dual stage 

caching with the victim cache was also simulated and the results are discussed. We 

compare SLRU, in order to show that the two schemes are virtually identical in terms of 

performance. We are interested in examining the performance of the algorithms under the 

assumption that objects have varying sizes, relative frequencies, and combinations of 

these two factors.  

 

It is well known that the performance of caching policies for Web objects often depends 

on whether smaller objects have higher frequency or vice versa. The LRU scheme is very 

robust for uniform size objects and varying distributions of relative frequencies. All the 

schemes that we compare are in fact generalizations of LRU in one way or the other and, 

consequently, it is useful to see how the correlation of size and frequency factors into the 

robustness of the proposed schemes. For the simulation, real time traces have been used. 

We considered the logs for two weeks, traces taken from an institutional proxy (BITS 

Squid server) with number of entries in the log being 70,000 user accesses. Most of the 

frequently accessed pages had relatively smaller sizes. We ran the simulation for varying 

values of the cache capacity. The performance curves for the different replacement 

policies of the traces are illustrated in Fig. 3.1 to Fig 3.5  

 
Trace driven simulation without Admission control 
 
As shown in Fig 3.1, the simulation results for the LRU, SLRU and the CLOCK PIN 

without the admission control policy clearly shows that the SLRU outperforms the other 
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two schemes of cache replacement. However the hit ratio obtained is found to be 

relatively very low. The SLRU algorithm is found to be better than the other algorithms. 

 

 
Fig. 3.1. Hit Ratio Vs Size of the Cache for LRU, Clock Pin and SLRU policies without 

Admission Control 
 

Table 3.1 Hit ratio of cache without admission control for various cache sizes 

 
Size  

(MB) 100 200 300 400 500 600 700 800 900 1000 

LRU 0.1799 0.2492 0.2623 0.2860 0.3218 0.3610 0.4033 0.4203 0.4364 0.45 
Clock 

Pin 0.0866 0.0966 0.0988 0.1407 0.1522 0.1895 0.1967 0.2610 0.2756 0.2814 

SLRU 0.1918 0.2568 0.2711 0.2990 0.3343 0.3781 0.4282 0.4319 0.4531 0.4729 
 

Trace driven simulation with Admission control  
 
After adopting the admission control policy discussed earlier, the trace driven simulation 

results using the same set of traces, is as shown in Fig 3.2. It can be seen that the SLRU 

policy is still found to perform better than the other two algorithms. As expected the 

cache becomes more stable as it results in the entry of the objects only after checking of a 
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set of conditions in the admission control. This stable cache memory is found to give 

better hit ratio when compared to the one without the admission control policy. 

 

 
Fig. 3.2. Hit Ratio Vs Size of the Cache for LRU, Clock pin and SLRU with Admission 

Control 
 
 

Table 3.2. Hit ratio of cache with admission control for various cache sizes 
 

Size  
(MB) 100 200 300 400 500 600 700 800 900 1000 

LRU 0.2500 0.3375 0.3889 0.4603 0.5159 0.5600 0.6007 0.6111 0.6599 0.6818 
Clock 

Pin 0.0644 0.0987 0.1193 0.1269 0.1472 0.1689 0.1924 0.2322 0.2734 0.2941 

SLRU 0.2609 0.3454 0.4080 0.4758 0.5292 0.5770 0.6190 0.6319 0.6139 0.7130 
 
 

 
 
Trace driven simulation for dual stage caching  
 
Finally the extension to the replacement scheme proposed with a dual stage of caching is 

simulated using the same set of traces.  
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Fig. 3.3. Hit Ratio Vs Size of the Cache for LRU and SLRU with Admission Control and 
Dual Stage Caching 

 
 

Table 3.3. Hit ratio of cache with admission & dual stage caching for various cache sizes 
 

Size  
(MB) 100 200 300 400 500 600 700 800 900 1000 

LRU 0.295 0.319 0.43 0.491 0.533 0.552 0.583 0.603 0.639 0.678 
SLRU 0.321 0.359 0.445 0.524 0.548 0.587 0.603 0.632 0.689 0.723 

 
 

As shown in Fig 3.4 and Fig 3.5, comparing the LRU and SLRU without admission 

control policy, with admission control policy and with admission control dual-stage 

cache, it can be seen that by introducing admission policy and dual-stage cache the 

performance of the cache can be improved significantly. As the cache size increases there 

is a considerable amount of improvement. 
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Fig 3.4 Comparison of LRU( Without Admission control), LRU(With Admission control) 
and LRU(With Admission control and Dual Cache) 

 
 

 
 

Fig 3.5 Comparison of SLRU( Without Admission control), SLRU(With Admission 
control) and SLRU(With Admission control and Dual Cache) 

 

Based on these results, it can be concluded that Dual-Stage with Victim Cache policy is a 

practical and viable caching algorithm. It has better hit ratio performance and is also 

robust to varying workload characteristics.  
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3.2.2. RANDOMIZED HISTORY BASED CACHING AND REPLACEMENT 
 
As discussed earlier the LRU and its variants have worked well for processor caches 

[Silberschatz 2001]. It has been shown by Cao [Cao 1997] that the eviction rule “replace 

the least recently used document” performs poorly in web-caches, instead using a 

combination of several criteria, such as recency, frequency, the size, and the cost of 

fetching a document, leads to sizable improvement in hit rate and latency reduction. 

However, in order to implement these novel schemes, one needs to maintain complex 

data structures. Most of them require a priority queue in order to reduce the time to find a 

replacement from O(k) to O(log k), where k is the number of documents in the cache. 

Further these data structures need to be constantly updated (ie. even when there is no 

eviction), although they are solely used for eviction. A simple Random Replacement 

(RR) algorithm evicts a document drawn at random from the cache [Motwani 1995]. This 

algorithm does not need any data structure to support the eviction decisions. However, as 

might be expected, the RR algorithm does not perform well. So recently a scheme was 

proposed in [Psounis 2002] to combine the benefits of both the utility function based 

schemes like LRU, LFU and SLRU with RR schemes.  

  

To better the performance of the above scheme we combine the history based scheme 

with the randomized utiity based schemes.   

 

3.2.2.1 Randomized Algorithm 
 
Here we briefly describe the Randomized Web cache replacement scheme [Psounis 

2002]. Consider a scheme which draws N documents from the cache and evicts the least 

useful document in the sample, where the usefulness of a document is defined by a utility 

function. After replacing the least recently used of N samples, the identity of the next M 

(usually less than N) least useful samples is retained in memory. At the next eviction 

time, N-M samples are drawn from the cache and the least recently used of these N-M 

and M previously retained samples are combined to form N samples. The identities of the 

M least useful of these samples are retained in memory and so on. Intuitively, the 

performance of the algorithm that works on few randomly chosen samples depends on 
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the quality of the samples. Therefore, by deliberately tilting the distribution of the 

samples towards the good side, considerable improvement in performance can be 

achieved. It is found that the improvement in performance can be exponential for small 

values of M. As the value of M increases, degradation in the performance can be 

observed because bad samples are being retained and not enough new samples are being 

chosen. 

 

The Randomized Algorithm 
 
If (eviction) { 
If (first_iteration) { 
    Sample (N); 
    Evict_least_useful; 
    Keep_least_useful (M); 
} 
Else  { 
    Sample (N-M); 
    Evict_least_useful; 
    Keep_least_useful (M); 
        } 
}   
 

3.2.2.2 Randomized Least recently Used (RLRU) 
 
The randomized LRU approximates the deterministic LRU. More the samples better will 

be the approximation towards LRU by RLRU. In this scheme the data structure is not 

maintained for the eviction purposes. The parameter used by the utility function i.e. the 

time since the pages last used is stored in order to be available when the document is 

chosen as a sample. Moreover the whole cache need not be sorted according to the last 

accessed time of the document. The number of updations that take place in this case are 

less when compared to deterministic LRU. 

 
If (eviction) { 
If (first_iteration) { 
    Sample (N); 
    Arrange these N samples in the increasing order of last accessed time 
    Evict the first sample of these sorted samples 
    Keep the next M samples for the succeeding iteration 
} 
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Else  { 
    Sample (N-M); 
    Sort these N-M new samples and M previously retained in the increasing order of last      
                                                                                                                       accessed time  
    Evict the first sample of these sorted samples 
    Keep the next M samples for succeeding iteration 
        } 
}   
 

3.2.2.3 Randomized Size Adjusted Least recently Used (RSLRU) 
 
The randomized SLRU approximates SLRU. Just like RLRU in this scheme the data 

structure is not maintained for the eviction purposes. The parameter used by the utility 

function i.e. the product of size and dynamic count is stored in order to be available when 

the document is chosen as a sample. Moreover the whole cache need not be sorted 

according to the product of size and dynamic count of the document. The number of 

updations that take place in this case are less when compared to SLRU. 

 
If (eviction) { 
If (first_iteration) { 
    Sample (N); 
    Arrange these N samples in the increasing order product of size and dynamic count. 
    Evict the first sample of these sorted samples 
    Keep the next M samples for the succeeding iteration 
} 
Else  { 
    Sample (N-M); 
    Sort these N-M new samples and M previously retained in the increasing order of 
product of size and dynamic count. 
    Evict the first sample of these sorted samples 
    Keep the next M samples for succeeding iteration 
       } 
} 
 

3.2.2.4 History based Cache Replacement Algorithm 
 
A typical cache replacement approach involves updating the cache content under a 

certain criterion or over a considered time period. One of the disadvantages of the LRU is 

that it only considers the time of the last reference and it has no indication of the number 

of references for a certain Web object. In the previous section we presented a random 
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cache replacement policy, which overcomes the difficulty of maintaining the data 

structure. Here we introduce a scheme to support a “history” of the number of references 

to a specific Web object.  

 

Definition of History function 
 
Suppose that r1, r2, . . . , rn are the requests for cached Web objects as logged at the time 

units t1, t2, . . . , tn respectively. A history function for a specific cached object x is 

defined as follows: 

hist(x, h) =  ti       if there are exactly h - 1 references between times ti and tn, and 

                =  0      otherwise. 

The above function hist(x, h) is a time metric and defines the time of the past hth 

reference to a specific cached object x. Furthermore, the time ti identifies the first of the 

last h references to x. To analyze the performance of History based Randomized 

algorithm, a combination of random replacement with the history based algorithm has 

been implemented and the results have been analyzed.  

 

3.2.2.5 History based RLRU (HRLRU) 
 
Randomly chosen documents are arranged on the basis of the parameter, history. The 

object with the least history value is evicted first. In case of a tie between the history 

value the LRU scheme is used to choose the object for eviction. The history of an object 

is defined as the first of the last hth reference to that object. 

3.2.2.6 History based RSLRU (HRSLRU) 

Implementation is the same as HRLRU except that if two or more objects have the same 

history value then the tie is broken using SLRU scheme. 

 

 HRLRU and HRSLRU algorithm will replace the cached object with minimum history 

value from the randomly selected sample. If two or more objects have the same history 

value then the tie is broken by the LRU algorithm or SLRU algorithm respectively. 
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If (eviction) { 
If (first_iteration) { 
    Sample (N); 
    Arrange these N samples in the increasing order of the history value. 
    Evict the first sample of these sorted samples 
    Keep the next M samples for the succeeding iteration 
} 
Else  { 
    Sample (N-M); 
    Sort these N-M new samples and M previously retained in the increasing order of the 
history value. 
    Evict the first sample of these sorted samples 
    Keep the next M samples for succeeding iteration 
       } 
} 
 
 

3.2.2.7 Discussion of Results 
 
The simulation has been carried out for varying sizes of cache capacity and also for 

different values of N and M. As shown in Fig 3.6, it is observed that the behaviour of 

LRU for N=8, M=2 and N=30, M=5 are identical. Thus the values of N and M do not 

affect the LRU curve significantly. However the RLRU curves are affected. The average 

behavior of the RLRU curve for N=8, M=2 is better than N=30, M=5. 

 

From Fig 3.7, it is observed that the behavior of SLRU for N=8, M=2 and N=30, M=5 

are identical. Thus the values of N and M do not affect the SLRU curve significantly. 

However the RSLRU curves are affected. The average behavior of the RSLRU curve for 

N=30, M=5 is better than N=8, M=2. For case 1 the object for eviction is chosen from 25 

objects and for case 2 from 6 objects. So the probability of retention of the object with 

smaller product of size and the dynamic count is more and hence the hit ratio is more for 

the case 1. 

 

In Fig 3.8, we can observe the behavior of Randomized LRU and Randomized SLRU for 

2 cases mentioned earlier. It is observed that for case 1 and case 2 that RSLRU performs 

better that RLRU. Now comparing the behavior of History-Based RLRU, Randomized 
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LRU and LRU, as shown in Fig 3.9, we observe that HRLRU performs better than RLRU 

which in turn performs better than LRU. Similarly comparing the behavior of History-

Based Randomized SLRU, Randomized SLRU and SLRU, as shown in Fig 3.11, we 

observe that RSLRU performs better than HRSLRU which in turn performs better than 

SLRU. Finally we compare the History based implementation of RLRU and RSLRU, as 

shown in Fig 3.12 and Fig 3.13 for case 1 and case 2, we observe that HRSLRU performs 

better for smaller cache sizes in both the cases. After a certain cache size HRLRU 

performs better. 

 
 

Fig 3.6 Cache Size vs Hit ratio for LRU & RLRU 1) N=30, M=5 2) N=8, M=2 
 

Table 3.4 LRU & RLRU Hit ratio for N=30 & 8 and M= 5 & 2 
 

Size(MB) LRU1 RLRU1 LRU2 RLRU2
100 0.2307 0.0946 0.2294 0.1748 
200 0.3032 0.4329 0.3022 0.404 
300 0.3565 0.3689 0.3542 0.4943 
400 0.4001 0.5021 0.3929 0.5119 
500 0.4131 0.5249 0.4134 0.4953 
600 0.4293 0.4556 0.43 0.5596 
700 0.4407 0.5255 0.4439 0.7576 
800 0.4534 0.5301 0.4527 0.5031 
900 0.4628 0.7345 0.4612 0.7793 
1000 0.4673 0.792 0.466 0.7117 
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Fig 3.7 Cache size vs Hit ratio for SLRU & RSLRU 1) N=30, M=5 2) N=8, M=2 

 

 

 

 

Table 3.5 SLRU & RSLRU Hit ratio for N=30 & 8 and M= 5 & 2 

Size(MB) SLRU1 RSLRU1 SLRU2 RSLRU2 
100 0.263 0.1961 0.2617 0.5342 
200 0.3341 0.6772 0.3393 0.5689 
300 0.3817 0.6924 0.3865 0.5962 
400 0.4168 0.714 0.4285 0.6326 
500 0.4632 0.7426 0.4571 0.698 
600 0.4905 0.7665 0.5186 0.7205 
700 0.5472 0.776 0.568 0.7426 
800 0.578 0.7816 0.6003 0.7912 
900 0.5238 0.8055 0.6478 0.7673 
1000 0.5368 0.8185 0.6526 0.8029 
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Fig 3.8 Cache size vs. Hit ratio for RLRU & RSLRU 1) N=30, M=5 2) N=8, M=2 
 
 
 
 
 
 

Table 3.6 RLRU & RSLRU Hit ratio for N=30 & 8 and M= 5 & 2 
 

Size(MB) RLRU1 RSLRU1 RLRU2 RSLRU2 
100 0.0946 0.1961 0.1748 0.5342 
200 0.4329 0.6772 0.404 0.5689 
300 0.3689 0.6924 0.4943 0.5962 
400 0.5021 0.714 0.5119 0.6326 
500 0.5249 0.7426 0.4953 0.698 
600 0.4556 0.7665 0.5596 0.7205 
700 0.5255 0.776 0.7576 0.7426 
800 0.5301 0.7816 0.5031 0.7912 
900 0.7345 0.8055 0.7793 0.7673 
1000 0.792 0.8185 0.7117 0.8029 
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Fig 3.9 Cache size vs. Hit ratio for HRLRU, RLRU & LRU for N=30, M=5 
 
 
 
 
 
 

Table 3.7 HRLRU, RLRU and LRU Hit ratio for N=30 and M= 5 
 

Size(MB) HRLRU RLRU LRU 
100 0.1134 0.0946 0.2207
200 0.4807 0.4329 0.3032
300 0.4225 0.3689 0.3565
400 0.5323 0.5021 0.4001
500 0.5665 0.5249 0.4131
600 0.5265 0.4556 0.4293
700 0.6497 0.5255 0.4407
800 0.6328 0.5301 0.4534
900 0.8729 0.7345 0.4628
1000 0.8005 0.792 0.4673
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Fig 3.10 Cache size vs. Hit ratio for HRLRU, RLRU & LRU for N=8, M=2 
 
 
 
 
 
 

Table 3.8 HRLRU, RLRU and LRU Hit ratio for N=8 and M= 2 
 

Size(MB) HRLRU RLRU LRU 
100 0.0819 0.1748 0.2294
200 0.2918 0.404 0.3022
300 0.3874 0.4943 0.3542
400 0.4615 0.5119 0.3929
500 0.4465 0.4953 0.4134
600 0.5031 0.5596 0.43 
700 0.5544 0.7576 0.4439
800 0.7348 0.5031 0.4527
900 0.5447 0.7793 0.4612
1000 0.6692 0.7117 0.466 
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Fig 3.11 Cache size vs Hit ratio for HRSLRU, RSLRU & SLRU for N=30, M=5 
 
 
 
 

Table 3.9 HRSLRU, SLRU and RSLRU Hit ratio for N=30 and M= 5 
 

Size(MB) HRSLRU SLRU RSLRU
100 0.1664 0.263 0.1961 
200 0.6001 0.3341 0.6772 
300 0.5693 0.3817 0.6924 
400 0.5802 0.4168 0.714 
500 0.5975 0.4632 0.7426 
600 0.5724 0.4905 0.7665 
700 0.6053 0.5472 0.776 
800 0.6261 0.578 0.7816 
900 0.6317 0.5238 0.8055 
1000 0.6412 0.5368 0.8185 
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Fig 3.12 Cache size vs Hit ratio for HRSLRU, SLRU & RSLRU for N=8, M=2 
 
 
 
 
 

Table 3.10 HRSLRU, SLRU and RSLRU Hit ratio for N=8 and M= 2 
 

Size(MB) HRSLRU SLRU RSLRU
100 0.4983 0.2617 0.5342 
200 0.5628 0.3393 0.5689 
300 0.5663 0.3865 0.5962 
400 0.578 0.4285 0.6326 
500 0.6075 0.4571 0.698 
600 0.6122 0.5186 0.7205 
700 0.6122 0.568 0.7426 
800 0.6269 0.6003 0.7912 
900 0.6274 0.6478 0.7673 
1000 0.6447 0.6526 0.8029 
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Fig 3.13 Cache size vs. Hit ratio for HRSLRU & HRSLRU for N=30, M=5 
 
 
 

Table 3.11 HRLRU and HRSLRU Hit ratio for N=30, M=5 
 

Size(MB) HRLRU HRSLRU
100 0.1134 0.1664 
200 0.4807 0.6001 
300 0.4225 0.5693 
400 0.5323 0.5802 
500 0.5665 0.5975 
600 0.5265 0.5724 
700 0.6497 0.6053 
800 0.6328 0.6261 
900 0.8729 0.6317 
1000 0.8005 0.6412 
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Fig 3.14 Cache size vs Hit ratio for HRLRU & HRSLRU for N=8, M=2 
 

Table 3.12 HRLRU and HRSLRU Hit ratio for N=8, M=2 
 

Size(MB) HRLRU HRSLRU
100 0.0819 0.4983 
200 0.2918 0.5628 
300 0.3874 0.5663 
400 0.4615 0.578 
500 0.4465 0.6075 
600 0.5031 0.6122 
700 0.5544 0.6122 
800 0.7348 0.6269 
900 0.5447 0.6274 
1000 0.6692 0.6447 

 
Being randomized, the performance of this algorithm depends crucially on the quality of 

the samples it obtains. Further the utility function in these algorithms considers only the 

recency and it does not consider the number of accesses of the object in the past, which is 

also very important for the popularity of the web object. To consider this we have 

adopted a History based replacement algorithm. 
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It has been observed that randomized replacement policy with LRU or SLRU performs 

better than only LRU or SLRU. A size based replacement is more efficient than a Least 

recently used policy. This is confirmed by our results which prove that RSLRU has a 

higher hit ratio than RLRU. On using random replacement with history based policy we 

observe that HRLRU performs better than RLRU but this does not hold for the size based 

replacement. In the case of HRSLRU and HRLRU it is observed that for smaller cache 

sizes the former performs better. HRSLRU is almost stable with increasing cache sizes. 

 

3.2.3. MODIFIED CACHE-ON-DEMAND PROTOCOL 
 

Cache-on-Demand(CoD) is a new protocol for web caching, which allows a web cache to 

allocate its local resources (e. g. disk space) upon external requests from either content 

provider or web users themselves, and thus provides Quality of Service (QoS) and service 

level agreement (SLA) in delivering content [Ahuja 2002]. The advantage to the content 

provider is QoS guarantees like fresh content being available to a web user from a CoD 

enabled web cache. The model also provides for a new value added service that can be 

offered by network operators and ISPs (usually the cache owners), who can build revenue 

in return for providing caching resources to the requesters. And above all, it improves the 

user experience. 

 

The CoD concept can also be applied between the cache and the web clients. This 

protocol also supports strong consistency by giving complete content management 

control to the content provider. The CoD client can reserve resources for a specified 

duration of time and push its content to the cache. It can explicitly update the cached 

content in order to maintain strong consistency between the original and the cached 

copies of the content. It can request the CoD enabled cache to invalidate the content and 

free up the reserved resources. It can also request for content specific access log 

information. 
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3.2.3.1 Service Discovery 
 
Before the client can use the CoD services of a cache, it has to be aware of which are the 

proxy caches that are CoD enabled.  This is done by harnessing the ease with which 

HTTP allows new extension headers to be added. When forwarding a request/reply, a 

CoD enabled cache adds new HTTP headers for which it sends information like its 

hostname or IP address as well as the port number on which it listens for CoD requests. 

When a client receives these extension headers, it may simply ignore them if it is not 

configured to interpret them. If it is, on the other hand, enhanced to be a CoD client, it 

extracts the values of these headers and then the two entities can communicate using CoD 

protocol. This initial communication mechanism is shown in Fig 3.15, where the origin 

web server is capable of using the CoD protocol, but the browser is not. 

 

 
Fig 3.15: Cache on Demand Service Discovery 

 
3.2.3.2 Protocol Messages 
 
Once a client wiling to use the CoD services has determined the location of a CoD 

enabled cache, it can use the following types of messages to communicate with the cache: 

RESERVE, UPDATE, RELEASE, DELETE and LOG. The format of these CoD 

messages is shown in Fig. 3.16. These messages are sent by the requestor to the CoD 
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enabled cache for a request to reserve resources, update content, free up the reserved 

resources, delete the stored content and obtain an access log respectively. 

 

 
Fig. 3.16: Cache on Demand Message Formats 

 

3.2.3.3 Request Handling 
 
The CoD server continuously waits for requests from its clients. A CoD client first 

authenticates with the CoD server and then submits a CoD request. When the CoD server 

receives a request from a client, it reads in the request message and passes it to determine 

the type of the request and also checks the validity of the request. The way a request is 

handled further depends on the type of the request. 

 

 RESV 

A CoD client uses RESV message to reserve disk space on the cache for a specific 

duration of time. The client can provide a list of URLs to be fetched along with RESV 

requests or it can decide to send a URL list through an UPDT message at a later time. 

When the CoD server receives the RESV request, it reads the time at which the client 

would like the reservation to start (begin_time), the time duration for which the resources 

have to be reserved and the amount of resources requested. The request is run through an 

admission control algorithm, discussed later in this chapter, to determine whether or not it 

should be accepted. If the request is rejected, a REJECT message is sent back to the 

requestor. If accepted, a random request_id is generated and sent to the requestor. The 

client can use this id number with other CoD commands to take further actions on the 

reservation. The next step is to determine when to fetch the content. If the begin_time for 

the request is the current time or a past time, content is fetched immediately. If it is a time 

in the future, a timer is set to indicate when the content should be fetched. When ready to 

fetch, the URLs listed in the RESERVE message are read one by one and content is 
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fetched from the origin server. This involves creating an HTTP request for each URL and 

forwarding it to the origin server. When content is fetched, the standard HTTP 

cachability rules are used to check whether or not the object can be cached. Another 

check is performed to make sure that the object does not exceed the disk quota reserved 

for that particular CoD client. If either of these checks implies that the object should not 

be stored in the cache, then an error is logged in the access log file. A RESV request 

without any URL request is also allowed. In this case, it is the CoD client’s responsibility 

to send a list of URLs in an UPDT message. 

 

UPDT 

Web caches traditionally maintain a weak consistency between the original content and 

its cached copies. Consistency checks are performed only when a user agent forces to do 

so by sending an IMS (If Modified Since) request. Such a model does not guarantee the 

freshness of cached content. But CoD provides functionality to support strong content 

consistency. In this case, the content provider, as a CoD client has strong control over 

what content is cached at the CoD caches. If content stored in a CoD cache is modified at 

the origin server, the origin server can either send an updated copy of the content or send 

invalidation messages to CoD server to discard the CoD content. To update the content 

stored in the cache an UPDATE request can be sent to the CoD enabled cache. An UPDT 

message must always be accompanied with the id number of the initial reservation that 

needs to be updated. It may also include a list of URLs that the CoD client wants the 

cache to refresh. If no URL list is given, all the URLs in the original request are fetched 

again. The UPDT message can also be used in another scenario. As mentioned above, a 

RESV request might or might not have a URL list included with it. If no URLs are 

provided with RESV then the URLs can be specified with an UPDT request. Depending 

on the begin_time of the RESV request, the content will either be fetched immediately or 

in the future. 

 

RELS 

It is guaranteed that the reserved content will be stored at the web cache at least for the 

time period requested in the RESERVE request. After the expiration of the agreement, 

56 



CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS 

the status of that content changes from strongly guaranteed to weakly guaranteed. This 

implies that the content may still be reserved to a user from the cache as long as it is 

fresh, but if another client requests for resources and cache does not have enough 

resources available, then this content will be replaced as per the cache replacement 

algorithm. However a CoD client can send a RELS request to free up some/all of the used 

disk space from within its quota before the agreement expires, without changing the 

original amount of disk space reserved, so that it can accomodate new content in the 

cache. This helps it to change the content stored in the cache without having to first 

delete the existing reservation and then send a new RESV request. If any URLs are 

included in the RELS request, only those URLs are released. If no URLs are specified, 

then all of the content corresponding to that request_id is released. The content will not 

be actually deleted from the cache immediately, but will become weakly guaranteed 

content. The initial amount of resources (disk space) reserved remains unaffected. 

 

DEL 

The DEL request is used when a CoD client wants to actually release partly/ wholly the 

resources that it had reserved. By deleting content with the DEL command, it can ensure 

that the content will not be available from the cache to other clients. Also, by deleting the 

resources before the reservation agreement expires, the CoD client can save itself some 

billing charges. Like the RELEASE message, if URLs are specified, only those URLs are 

deleted. If no URLs are specified, all the URLs are associated with that request_id are 

deleted from the cache. This will ensure that the content is not even available as best-

effort content from the cache. In this case, the client also loses the corresponding reserved 

disk space. A URL released with the RELS command may still be served as a HIT to web 

users from the cache, but a URL deleted with the DEL command will be flushed out from 

the cache physically and will result in a MISS if a user requests it. 

 

LOG 

The access log file on a CoD enabled proxy server can have log messages in three 

different formats. The first format is used when a web user accesses an object through the 

cache. The other two log messages can be logged as a result of fetching content according 
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to a CoD agreement. A CoD client can request the access logs specific to its content by 

sending a LOG request to the cache. The request may include either a request id number, 

or a list of URLs, or both of them. This flexibility is provided to ensure that access logs 

can be retrieved even after the reservation has expired, in which case the request id would 

be invalid and the URL list could be used to retrieve the log. 

 

3.2.3.4 Admission Control 
 
A Cache on Demand server uses the admission control algorithm to determine if the 

requested resources can be allocated to a client. Current implementations allow clients 

only to request disk space on the CoD caches, so the admission control algorithm is used 

to ascertain that the total amount of disk space reserved by various clients is always less 

that or equal to the total hard disk capacity available on the server.  

If we express this mathematically, we have, 

  req(t) + rsvd(t) <= D 

 where,  req(t)   = disk space being requested at time t 

  rsvd(t) = disk space already reserved at time t 

  D = constant total disk space available 

For example, considering a cache with a total 100 MB disk space available for its clients. 

When no reservations have been made, the system can be represented by the graph in 

Fig.3.17, where the dotted line represents the total disk space available. If suppose the 

first reservation is made for s=50 MB, starting at time t1=10 and ending at t2=30. The 

disk reservation is shown with a solid line in Fig.3.18. The next request is to reserve 

another 50 MB, starting at t1=20 and ending at t2=40. This request will be accepted 

because, as can be seen in Fig.3.19, the total reserved disk space at all times is less than 

or equal to the total available (100 MB). If the CoD server receives a third request to 

reserve 20 MB, starting at t1=25 and ending at t2=50, then this request will be rejected 

because in this case, the step function representing the reserved disk space crosses over 

the maximum limit as shown in Fig 3.20. 

 

58 



CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS 

          
Fig.3.17 Maximum disk space available    Fig.3.18 When request s=50MB, t1=10,   

                                                                                    t2=30, accepted 

 
Fig.3.19 When request s=50MB, t1=20,  Fig.3.20 When request s=20 MB, 

t2=40, accepted                     t1=25, t2=50, rejected 

 

This admission control algorithm can be extended for other types of resources, like CPU 

power and network bandwidth, as needed. 

 

3.2.3.5 Modifications to the CoD Protocol 
 

• When the total size of the URLs exceeds the total cache space reserved for a 

particular client, following policy can be adopted instead of plainly rejecting the 

request. The URLs are arranged in increasing order of object size and they are 

allocated in that order till no URL can be fit into the reserved space. 
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• When a URL requested through UPDATE is already present in the CoD cache, 

the CoD server fetches the updated copy of the URL. If the URL is a new request 

it is fetched from the appropriate origin server and cached for the first time. If the 

size of the web object obtained from the URL is greater than the free CoD cache 

space available for the user, then that particular request is rejected. 

• When a particular web object is freed using RELS, the space occupied by it is 

added on to the free CoD cache space and its corresponding record in the client 

structure is removed. 

• If there are no URLs in the RELS message, then the space occupied by all the 

currently cached URLs for that client is added on to the free space and the records 

corresponding to them are removed from the client structure. 

• If URLs are specified in the DEL message, the client loses the corresponding disk 

space. The CoD server ensures that the content will not be available from the 

cache to web servers. By deleting the resources before the reservation agreement 

expires, the CoD client can save itself some billing charges. 

• If URLs are not specified in the DEL message all the URLs that are associated 

with that client are deleted from the cache and the freed CoD cache space is added 

to the common CoD cache pool. 

• If the request is a normal http request and not a CoD request, it is cached in the 

http portion of the cache. After every http request all the objects are sorted using 

an algorithm similar to the SLRU wherein all the cached objects are sorted in the 

decreasing order of object size. Once that is done the array of objects is scanned 

for objects having the same size. If found these objects with same size are sorted 

in the decreasing order of number of times they have been accessed previously. 

What effectively happens in the above algorithm is that very large sized and least 

frequently used objects are pushed to the top of the array. When a fresh http 

request requires an object to be brought into the cache and there isn’t enough free 

space to accommodate the new object, then the objects from the top of the array 

are removed till there is just enough cache space for the new web object.     
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3.2.3.6 Discussion of Results 
 
A proxy cache has been simulated which can accept Cache on Demand requests as well as 

normal caching requests. A portion of the cache (in terms of percentage of the total size of the 

cache) is always reserved for CoD requests. The rest of the cache is used as a normal cache. The 

admission and replacement for the CoD part of the cache is done through an appropriate message 

from the user who reserved the cache. The simulation was done for 3 admission policies. One-

time caching i.e. caching the URL the first time it is requested by the user, Two-time caching i.e. 

caching the URL when it is requested for the second time and Three-time caching i.e. caching 

the URL when it is requested for the third time. The replacement policy followed is Size – 

Adjusted Least Recently Used (SLRU). We assume that there are N objects, and that object i has 

size Si. A counter is maintained and incremented each time there is a request for an object. This 

counter has been named as the Dynamic Count(di). The steps followed in this policy are as 

follows: 

Dynamic count(di) is maintained  for all the objects in the cache table. 

When a new object enters :   d = 1 

The object is inserted correctly in the cache table Object/s with the maximum Si x di 

count value is thrown off to make space for the incoming object. 

Object requested (irrespective of cache hit or miss) :  di ++ for the object 

Object arrangement:   In the order of Size * dynamic count (Si x di)     

Inserted correctly in the cache table Object/s with the maximum Si x di count value is 

thrown off to make space for the incoming object. 

 

The log data used in the simulations was the access log of the Institutional Squid Proxy Server. 

The number of access logs used was 50000 logged over a period of 6 days. The simulation was 

done for total cache sizes of 50 MB, 100 MB and 200 MB. The percentage of the Cache on 

Demand cache was varied for the different sizes and the hit ratio of the normal cache was noted. 

The minimum hit ratio was fixed as 0.4 and based on this, the maximum percentage of the cache 

on demand cache was observed.  
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The graphs obtained for the hit ratio of various cache sizes are shown in Fig 3.21 to Fig 3.29. 
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Fig 3.21 Effect of CoD on the hit ratio of the one time admission policy normal cache for cache 

size 50MB 
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Fig 3.22 Effect of CoD on the hit ratio of the two time admission policy normal cache for cache 

size 50 MB 
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Fig 3.23 Effect of CoD on the hit ratio of the three time admission policy normal cache for cache 

size 50 MB 
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Fig 3.24 Effect of CoD on the hit ratio of the one time admission policy normal cache for cache 

size 100 MB 
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Fig 3.25 Effect of CoD on the hit ratio of the two time admission policy normal cache for cache 

size 100 MB 
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Fig 3.26 Effect of CoD on the hit ratio of the three time admission policy normal cache for cache 

size 100 MB 
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Fig 3.27 Effect of CoD on the hit ratio of the one time admission policy normal cache for cache 

size 200 MB 
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Fig 3.28 Effect of CoD on the hit ratio of the two time admission policy normal cache for cache 

size 200 MB 
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Fig 3.29 Effect of CoD on the hit ratio of the three time admission policy normal cache for cache 

size 200 MB 

 

The results obtained as shown in Fig 3.21 to Fig 3.29, the effect of the presence of CoD cache as 

a percentage of normal cache on the hit ratio of normal cache. The table shows the amount of 

CoD cache size as a percentage of the normal cache that is available for the normal cache hit 

ratio which should remain above 40% are,  

 

Table 3.13 Precentage of CoD cache for normal cache having 40% and above hit ratio 
 

Size(MB) One-time policy 
CoD present (%)

Two-time policy
Hit ratio (%) 

Three-time policy 
Hit ratio (%) 

50 90 90 90 
100 95 95 95 
200 97 97 97 

 

Thus it can be said that having a CoD Enabled Proxy Caches which can dedicate its own cache 

from 50% to 90% depending on number of users using this facility, does not affect the normal 

cache hit ratio drastically. Thus the CoD protocol enhances traditional web caches with the 

capability of reserving resources to store external content for a specified period of time. The 

major benefit of this feature is that a third party, such as a content provider or a business partner 

can have guaranteed content presence in the network, and also strong control on the content 
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delivered to web users. Furthermore, a third party can enforce strong content consistency since it 

can keep track of distributed content at different CoD cache locations. 

 

Although the current implementation of Cache on Demand allows a cache to allocate 

only disk space to its clients, in the future this can be extended to include features like 

network QoS provisioning and system level resource allocation. Guaranteeing network 

QoS would be useful for applications like streaming media, where it would be desirable 

to be able to reserve network resources along the path so that the end-to-end delay can be 

controlled. System-level resource allocation could include leasing out memory or CPU 

utilization. This could facilitate services such as edge application hosting.  

 
3.3 SUMMARY 
 
In this chapter the Dual-Stage Victim based Web Caching method to enhance the 

performance of the web caches has been discussed. Next the significance of randomized 

algorithms and the enhancement of this scheme to include History scheme is discussed. 

This improves the performance of Randomized replacement policies. Also Cache on 

Demand protocol, which is used for improving the quality of service to the end user has 

been discussed. It is also shown that using CoD is not going to affect the effectiveness of 

the normal caching service. 
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CHAPTER 4 
 

REPLACEMENT POLICIES FOR CACHING STREAMING 
MULTIMEDIA OBJECTS 

 
 
4.1 INTRODUCTION 
 
During recent years, the rapid increase in commercial usage of the Internet has resulted in 

explosive growth in demand for web-based streaming applications.  As requests and 

delivery of streaming video and audio over the Web becomes more popular, caching of 

media objects on the edge of the Internet has become increasingly important. Recently, 

several commercial companies have announced media distribution services on the 

Internet using a number of proxy caches. Examples include Akamai (www.akamai.com), 

Digital Island (www.digisle.com), Enron Broadband Services (www.enron.net) and 

others. Companies that provide hardware and software caching products include Inktomi 

(www.inktomi.com), CacheFlow (www.cacheflow.com), Network Appliance 

(www.netapp.com) and others. This trend is expected to continue, and justifies the need 

for caching popular streams at a proxy server close to the clients.  

 

However, techniques for caching text and image objects are not appropriate for caching 

media streams. The main reason is due to the large sizes of typical media objects, 

variable-bit rate property and real time constraints. For a large media file, such as a 2-

hour video, treating the whole video as a single web object to be cached is impractical. 

Just storing the entire contents of long streams would exhaust the capacity of a 

conventional proxy cache. Hence, only the very few video objects that are ‘hot’ should be 

cached entirely. Most media objects probably should only be cached partially. Because of 

the high start-up overhead and isochronous requirement, a streaming media request 

typically is not started by a proxy server until sufficient blocks of data are cached locally. 

Such delayed starts can frustrate users and make customers unhappy. To overcome this 

problem, the beginning portions of most media objects should be cached. Hence, from the 

caching perspective, the beginning portion of a media stream is more important than the 

later portion.  
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From the caching perspective, multimedia-streaming objects are the most challenging 

ones. Other major concern while dealing with multimedia objects is the variable bit rate 

property. The uncompressed video that is composed of standard sized frames, become 

variable sized when compressed using techniques like MPEG. This makes them variable 

bit rate objects. Thus, while caching such objects one has to take into consideration the 

variable sized frames present in the videos. Multimedia objects have critical timing 

requirements. Any network congestion and other delays would heavily degrade the 

quality of service. These objects have started proliferating across the Internet recently. 

For this reason, user access patterns to these objects are not clearly known, like the 

normal web objects. This makes even the replacement of these objects, a challenging 

task. The video objects are mostly static in nature. Thus the cache consistency is not 

much of an issue in case of these objects.  

 

One of the first works done in the field of caching techniques for multimedia objects was 

Resource Based Caching (RBC) algorithm [Tiwari 1998].  

The RBC algorithm  

(i) Characterizes each object by its resource requirement and a caching gain,  

(ii) Dynamically selects the granularity of the entity to be cached that minimally 

uses the limited cache resource (i.e., bandwidth or space), and  

(iii) If required, replaces the cached entities based on their cache resource usage 

and caching gain.  

But this has the disadvantage of caching the objects in their entirety, which puts ever 

higher demand on the cache size. 

 

Few other caching techniques for multimedia objects have been proposed in the 

literature. In Prefix caching [Sen 1999], the proxy stores a prefix consisting of the initial 

frames of each clip. Upon receiving a request for the stream, the proxy immediately 

initiates transmission to the client, while simultaneously requesting the remaining frames 

from the server.  
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Prefetching [Rejaie 1999, Rejaie 2000] is another technique wherein the objects are 

fetched based on prediction thus involving a lot of overhead in network bandwidth. Here, 

the video is prefethced and cached in its entirety. 

 

A recent variation for the Prefetching technique is layered video format caching 

according to the QoS requested by the client [Jerkins 2003]. Also, the layered approach 

used ensures that the basic layer delivered to the client is the one cached and then the 

quality of the stream is improved on subsequent requests depending on the bandwidth 

availability. Even though it provides the benefit of caching according to the QoS 

requirement of user, this method stores the object in its entirety, which puts restriction on 

number of objects that can be stored. 

 

Video summarization [Lee 2002] proposes to deliver a summary of the video before the 

delivery of the actual video. The content analysis service performs shot boundary 

detection, key-frame selection, and face detection and tracking. When a client requests a 

streaming video file, proxy system initially provides the video summary to the user. The 

user quickly browses these summary images to decide whether to download the video. If 

the user selects to download, the user can also choose which part of the video to 

download. This system has been designed to utilize the content analysis service that is 

currently applied to videos of format MPEG-1 and MPEG-2. A similar technique has to 

be used for other streaming formats. All this amounts to a lot of processing overhead on 

the proxy server and overhead of maintaining video summary for all the requests. 

 

In Segment based caching [Wu 2001] blocks of a media stream received by a proxy 

server are grouped into variable-sized segments. The cache admission and replacement 

policies then attach different caching values to different segments, taking into account the 

segment distance from the start of the media. These caching policies give preferential 

treatments to the beginning segments. As such, users can quickly play back the media 

objects without much delay. This works well when the set of hot media objects changes 

over time.  
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4.2 CUT-OFF AND OPTIMAL CACHING TECHNIQUES 
 
Multimedia objects, more specifically video objects, with their inherent properties cannot 

be cached in their entirety. A technique called Video Staging was proposed for caching 

video objects, where the video proxy would cache only a part of the video content. A 

video staging algorithm would decide what part of the video should be cached in the 

proxy. Any such algorithm would look at video object as set of video frames, each of 

which can be of different size. 

 

Two of the video staging algorithms are explored here: cut-off caching algorithm (CC) 

[Zhang 2000] and optimal caching algorithm (OC) [Chang 2001, Chang 2002]. These are 

described below and their performances are analyzed through implementation of both the 

algorithms. Standard benchmark videos have been used for the comparison purposes. 

 

The video staging algorithms in the study have considered cache size and available 

external bandwidth as two important resources, for video proxy caching. Since each 

frame is of different size, and should be served in the given frame period, the algorithms 

intend to cache only parts of those frames which cannot be completely supported by the 

external network bandwidth. A cutoff size must be chosen so that all the frame parts 

above this cutoff are cached as explained in the following part.  

 

NOTATIONS 

The CC and OC algorithms are almost similar except that OC algorithm has an added 

feature called prefetching by which its performance is enhanced. This section first 

discusses the CC algorithm which is fairly simple, followed by the more complex OC 

algorithm. 

 

A cutoff size or cutoff rate is an important factor in any video staging algorithm. A cutoff 

size is decided depending upon the external bandwidth and some other factors. This 

cutoff size indicates the size that can be fetched in the given frame period from the server 

in the worst-case scenario. Thus, for most of the time cutoff size lies substantially lower 
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than the number of bits that can be supported by the external bandwidth. Any frame that 

is smaller in size than the cutoff need not be cached; for any frame that is larger than 

cutoff, the portion above the cutoff needs to be cached.  

 

According to the CC algorithm, any video file F is composed of several frames (no 

layering of frames has been assumed). For each frame, some portion of it can be fetched 

using the available network bandwidth, which is called as cutoff size or rate and is 

denoted by c(i). Below are the notations that would be followed in this chapter as shown 

in Fig.4.1 

 

For a given video file F 

1. F = { si | 0 <= i <= n  } 

2. si represents the i-th frame 

3. s(i) : size of i-th frame 

4. sc(i) : size of i-th frame that must be cached 

5. c(i) : cutoff size for any frame i, supported by bandwidth 

6. sc(i) = s(i) - c(i)  

 

 

Fig.4.1: Video Frames and the notations 
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4.2.1 CC ALGORITHM 

The CC algorithm proposes to cache only those parts of video frame, which are above the 

cutoff size for each frame. When a client requests a video file and there is a cache-miss at 

the proxy, parts of this file must be cached. A request is sent to the server for the video 

file and proxy starts receiving the video frames, one each per frame period. In the proxy, 

the CC algorithm is run for each frame obtained. The size of the frame obtained is 

compared with the cutoff size. If the size is less than the cutoff size, no part of this frame 

needs to be cached. If the frame size is larger than the cutoff size, then the bits of the 

frame that fall in the excess part (above the cutoff) are cached into the proxy as shown in 

Fig. 4.2. 

 

 

Fig.4.2: Illustration of CC Algorithm 

 

Following the above given notations, CC algorithm can be written down as follows: 

i=0; 
repeat 
        i = i+1; 
        if ( s(i) < c(i) ) 
        { 
              /* The frame size is less than cutoff */ 
 
              sc(i) = 0; 
              /* Nothing to cache */ 
        } 
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        else 
        { 
              /* The frame size is larger than 
               cutoff */ 
              sc(i) = s(i) - c(i ) ; 
              /* cache sc(i) bits of frame I 
             into the proxy */ 
         } 
until (i>(n-1)); 
 

Once the file is cached, the proxy would serve any other request for the same file in the 

following manner. Any frame, which is less than cutoff size, would be completely 

obtained from the server. For any frame which is greater in size than cutoff, the first c(i) 

bits are obtained from the server and the remaining sc(i) bits which are already present in 

the proxy are concatenated to the first part. This is served to the client. Thus, the client 

will not experience any delay even for a frame greater than cutoff size because only the 

portion supported by the bandwidth is obtained from the server and rest is present in the 

proxy already. The quality of service is guaranteed in this type of delivery, while caching 

only a part of the video frame. 

 

4.2.2 OC ALGORITHM 

The basic disadvantage of the CC algorithm is that the network bandwidth available is 

not completely utilized. This happens for frames that are less than the cutoff size, where 

in only a portion of the available bandwidth is utilized and the rest of it is wasted. The 

OC algorithm proposes to utilize even this bandwidth for prefetching some part of the 

next frame. The algorithm follows the same procedure as CC algorithm for the frames 

that are larger than cutoff size. But for the frames that are smaller than cutoff, some 

portion of the next frame is prefetched. The amount to be prefetched is chosen so as to fill 

the network bandwidth to c(i) bits completely. Since some portion of next frame is 

prefetched, less number of bits are needed to be cached for any given frame (if its size is 

greater than cutoff). Thus, this algorithm not only utilizes the network bandwidth more 

efficiently but also reduces the required cache size for each file. This means more files 

can be cached in the proxy for the same given storage space as illustrated in Fig. 4.3. 
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Fig.4.3: Illustration of OC algorithm 

Following the above given notations, OC algorithm can be written down as follows: 

i=0; 
 repeat 
        i = i+1; 
        if ( s(i) < c(i) ) 
        { 
              /* The frame size is less than cutoff */ 
              sc(i) = 0 ; 
              /* Nothing to cache */ 
              /* prefetch some portion of  
              next frame */ 
             /* prefetch size = c(i) - s(i); from  
            next frame */ 
        } 
        else 
        { 
              /* The frame size is larger than 
              cutoff */ 
             sc(i) = s(i) - c(i ) ; 
             /* Cache sc(i) bits of frame i 
            into the proxy */ 
         } 
until (i>(n-1)); 
 

Once the file is cached, the proxy would serve any other request for the file in the same 

manner as in the case of CC Algorithm. But the concatenation process becomes slightly 
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complicated because of prefetching. For any frame, prefetched portion along with cached 

portion should be concatenated to the frame obtained from the server. 

 

Benchmark videos for this purpose were obtained from [Traces 1995]. These video files 

contain a series of numbers indicating the size of the given video frame. A client's request 

for a video is forwarded to the video proxy. If it is a cache miss, another request will be 

sent to the origin video server. In response, the origin server will send the sizes of the 

video frames. The way proxy handles the caching of these video frames depends upon the 

algorithm (OC or CC). Once the video object is cached, the proxy maintains a file that 

contains details about the amount of each frame cached and the portion that needs to be 

fetched from the server.  The proxy under consideration is assumed to have infinite cache 

size to accommodate any number of video files. 

 

Two indices have been used to evaluate the performance of the algorithms. The first one 

is total cache size required to store a video file. This is obtained by summing all sc(i)'s for 

a given video file. The second performance index is the bandwidth utilization. This is 

obtained by taking the ratio of bandwidth utilized for fetching portions of the video from 

the origin server and the total external bandwidth available.  
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Two graphs have been plotted one for each performance index with bandwidth on the x-

axis. In case of the total cache size requirement, for all the bandwidths used, OC 

algorithm occupied less cache space as shown in Fig.4.4. Considering the total bandwidth 

utilized, OC algorithm outperforms the CC algorithm. It utilizes the external bandwidth 
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more than the CC algorithm for all the cases of bandwidth, as illustrated in Fig.4.5. By 

these results it can be seen that though OC algorithm is slightly difficult to implement, it 

definitely is a better performer. 
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Fig.4.4: Cache Size vs. Bandwidth for streaming multimedia objects 

 
Fig 4.5: Network Utilisation vs. Bandwidth for streaming multimedia objects 
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The request pattern was formulated using standard benchmark videos obtained 

specifically for this purpose. Also the proxy in the consideration was assumed to have 

infinite cache size to accommodate any number of video files. Replacement of the video 

files has not been considered in the above implementation. In the following sections a 

replacement policy based on a popularity index is proposed to improve the performance 

multimedia caching. 

 

4.3 POPULARITY FUNCTION BASED REPLACEMENT POLICY 
 
Current replacement algorithms usually make a binary decision on the caching of an 

atomic object. The object is cached or flushed in its entirety based on the time or 

frequency. The above two algorithms cache the objects partially, (i.e. some portion in a 

frame is cached). A replacement algorithm, which uses just time or frequency, would not 

suffice. The algorithm should take into account the size because size is the most 

important factor in the case of multimedia objects. Also, in the case of videos, popularity 

of the videos is quite essential, because once a video becomes popular the requests for 

such videos grow exponentially and less popular videos are almost ignored.  

 

The caching of the videos using the above two algorithms, CC and OC, happens frame-

by-frame. Thus, logically the replacement also can be frame-by-frame. Once the victim 

video is selected, the deletion of frames can be done from first frame or the last frame. 

The best choice would be to start deleting from the last frame, because any remaining 

frames could be used to serve a future request, at least partially. This also serves another 

purpose; if any request for the video being deleted arrives, it could be locked and other 

file could be chosen for deletion. 

 

4.3.1 POPULARITY FUNCTION OR FREQUENCY INDEX 
 
As mentioned above, the size and frequency of the video are essential for knowing the 

popularity of the video, and we choose a popularity function that takes into account both 

the parameters. We use a modified hit ratio of a cached stream as a metric to measure its 

popularity. The proxy can easily count the number of byte hits for every cache resident 
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stream during an interval. Most of the current schemes assign a binary value to a hit, i.e. 

0 for lack of interest and 1 for each request.  However not all bytes of a stream are 

present in the proxy. A hit in this case means the hit for bytes present in the cache. The 

bytes requested would not be the size of the entire video requested, but the number bytes 

cached for that video. The bytes hit would then become the number of bytes present in 

the cache for that particular video (bytes present is different from bytes cached, because 

deletion starts from the last frames, and in some cases only last few frames are removed). 

 

Intuitively, the popularity of each stream must reflect the level of interest that is observed 

through this interaction. We assume that the total bytes requested for each stream 

indicates the level of interest in that stream. For example if a client only watches half of 

one stream, his level of interest is half of a client who watches the entire display. Based 

on this observation, we extend the semantic of a hit and introduce a Byte Hit, called a 

bhit, which is defined as follows: 

 

For the video V, 

10
)(
)(Pr

)(Re
)(

≤≤== bhit
VCachedBytes
VesentBytes

VquestedBytes
VDeliveredBytesbhit  

The proxy server keeps track of byte hits for each request from the client. The cumulative 

value of Byte Hit is used as a Frequency Index of a cached stream. The popularity of each 

video is given by its Frequency Index and is recalculated at the end of a session as 

follows: 

∑
=

=
n

i
ibhit

0
)(FI  

Where FI is the popularity of the video, n is the number of times the video is requested 

for in the given time interval and bhit(i) is the Byte Hit for ith request. 

 

Size of the video is taken is into account by the Byte Hit, because it’s a byte-hit ratio. 

Since we are cumulating Byte Hit for each hit, the frequency is also taken care of. Thus 

the above formula has the two important factors: size and frequency, which makes it a 

true measure of the popularity of the video. 
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4.3.2 THE REPLACEMENT ALGORITHM 
 
The replacement algorithm is completely based on popularity. If there is a cache hit, then 

the Byte Hit of the video is calculated for the present request. The Frequency Index (FI) 

of that video would be updated by adding the Byte Hit to its previous FI. 

The issue of replacement comes into picture if there is a cache miss. On a cache miss, the 

requested file would be cached into the proxy. While caching, if the cache size exceeds 

the maximum permissible amount, one of the files should be replaced. A data structure 

that contains FI’s of the videos is maintained. The video with least FI is selected as 

victim video for replacement. Victim video would then be replaced by the requested 

video frame-by-frame. The victim video is deleted starting from the last frame. 

While deleting, if a request arrives for the victim video then it is locked and is not 

allowed to be deleted. Another victim file would be selected and the replacement resumes 

again. This not only satisfies the users’ requests but also increases the hit-rate. The 

replacement continues till the first frame of the victim video is replaced (i.e. till the video 

is completely deleted). If the requested video isn’t completely cached yet, another victim 

video should be selected from the list and replacement process continues as above. Hit-

Ratio of the proxy would be calculated for each request received from the client. 

If (Cache Hit) 
{ 
//Calculate the bhit for the requested video. 

10
)(
)(Pr

)(Re
)(

≤≤== bhit
VCachedBytes
VesentBytes

VquestedBytes
VDeliveredBytesbhit  

//Update the Frequency Index 
FI = FI  +  bhit;  

} 
 
If (Cache Miss) 
{ 
    // Cache the frames of the requested video 
      Cache (OC or CC); 
      If (Cache Size + NextFrameSize >  

MaxCacheSize) 
      { 
      REPLACE: 
              //Replace a video. 
             //Select the least popular video as  
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            “victim video”. 

            Select (V) where FI = FImin. 
 

 //Replace the victim video from last    

 frame with the requested video. 

Replace (Victim Video with   
Requested  Video); 

 
 //If a request arrives for the victim video  
 while being deleted, lock it. 

           If (Request (Victim Video) == TRUE) 
             { 
                    Lock (Victim Video); 

    // Select another Victim video that  
      comes next in the list and replace it. 

                  Goto REPLACE; 
             } 

// Delete the entire victim video if required 
             if (Victim Video Frame No. = = 1) 
             { 
                  Delete(Victim Video); 
    // if the Requested video is not cached  
                  completely yet  

 

If (Cache (Requested Video)! = Finished) 

                { 

       // Select another Victim video that  
       comes next in the list and  replace it. 

                   Goto REPLACE; 
                } 
        } 
      } 
} 
 

Implementation of the replacement algorithm in the video proxy was done using tree and 

stack structures. Tree was used to maintain the Frequency Indices of the videos (i.e. as a 

popularity table). Since cache placement or replacement is done frame-by-frame, stack 

was used to store the frames within a video in a LIFO order. Hit ratio was the 

performance metric for comparing the two algorithms. The benchmark videos for this 

purpose were obtained from [Traces 1995] and are the same as used earlier. 
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The sequence of actions is as follows. The client, first, requests for a particular video file 

from the proxy server. The proxy server maintains a cache of the video files. On receipt 

of a request, the proxy server first searches in its local cache whether it has the requested 

file. In case of the file being present, part of the file is obtained from the cache and the 

portion greater than the cut-off limit is supplied from the cache itself. The cut-off limits 

and the cache size are obtained from the user during run-time. In case the file is not 

present (cache miss), the proxy contacts the origin server. The origin server sends the 

video frame sizes to the proxy server. For each frame size received from the server, the 

proxy runs the OC or CC algorithm. In case of a cache miss, the replacement algorithm is 

run. Hit Ratio is calculated for each client request, be it a cache hit or a miss.  

 

4.3.3 DISCUSSION OF RESULTS 
 
The Frequency Index replacement (FIR) algorithm has been run for request sequences 

formed by benchmark videos mentioned earlier. The same request sequences were also 

tested with standard replacement algorithms like Least Recently Used (LRU) and Least 

Frequently Used (LFU). Graphs indicating their performance (hit-ratio) have been 

plotted.  

 

The replacement algorithm has been run for two request sequences. Two sets of graphs 

have been plotted for each request pattern. The hit ratio has been plotted with respect to 

changing bandwidth and max cache size. In the first case, the cache size was kept 

constant and bandwidth was varied over a range of values. The bandwidths chosen for 

simulation were 40 Kbps, 56 Kbps and 100 Kbps. The obtained hit ratio for both OC and 

CC algorithms are plotted against bandwidth. Similarly in the second case the bandwidth 

was kept constant and maximum cache size was varied over a range of values. The cache 

sizes chosen for simulation were 40, 80, 160 and 200 GB. The obtained hit ratio for both 

OC and CC algorithms are plotted against cache size. 

  

It is observed that the hit-ratio increases with increase in bandwidth. This is because as 

the available bandwidth increases, the cut-off size increases and hence the number of 

bytes cached per video decreases. Consequentially, more number of videos can be 
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cached, thereby improving the hit-ratio. It is also observed that the OC algorithm gives a 

better hit ratio compared to the CC algorithm. As the bandwidth increases, the hit ratios 

of both the algorithms become nearly the same, because both the algorithms behave the 

same way at high bandwidths. 

 

Refer to Fig. 4.6 to 4.8 

Bandwidth = 40 kbps

 
Fig. 4.6: Hit Ratio vs Cache Size for a constant bandwidth of 40kbps 

 
Fig. 4.7: Hit Ratio vs Cache Size for a constant bandwidth of 56kbps 
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Bandwidth = 100 kbps

 
Fig. 4.8: Hit Ratio vs Cache Size for a constant bandwidth of 100kbps 

 

In the second set of graphs (Fig. 4.9 to 4.12), the hit-ratio increases with increase in cache 

size. This can be explained by the argument that for a constant bandwidth, more the 

available cache size, more the number of videos that can be cached and hence more the 

hit-ratio. In this case as well, the OC algorithm gives a better performance compared to 

the CC algorithm. As the cache size increases, the hit ratios of both the algorithms 

become nearly the same, because at high cache sizes any number of videos can be 

cached, irrespective of the algorithm. 

 

 
Fig 4.9: Hit Ratio vs Bandwidth for a constant Cache Size of 40GB 
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Cache Size = 80 GB

 
Fig 4.10: Hit Ratio vs Bandwidth for a constant Cache Size of 80GB 

 

 

 

 

 
Fig 4.11: Hit Ratio vs Bandwidth for a constant Cache Size of 160GB 
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Cache Size = 200 GB
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Fig 4.12: Hit Ratio vs Bandwidth for a constant Cache Size of 200GB 

 

 

In comparison with LFU and LRU under similar memory availability, FIR algorithm 

yields better hit-ratio as shown in Fig.4.13. This is primarily due to the fact that 

replacement here happens frame by frame as opposed to complete Boolean replacement 

in the other two algorithms. 
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Fig 4.13 Comparison of the performance of LFU, LRU and FIR 
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Also to verify the reliability of the proposed FIR algorithm, the algorithm was tested 

under varying conditions of bandwidth and cache size using both OC and CC for caching. 

As seen in the results obtained, algorithm did not indicate extreme swings in performance 

when the parameters were varied. The hit ratios obtained varied between 0.5 and 0.7, 

which can be construed as an absolute indication of the efficient functioning and 

reliability of the algorithm under all conditions. 

 
 

4.4 SUMMARY 
 
In this chapter we discussed various methods used for Multimedia objects Web Caching. 

Video staging algorithm is a caching technique which allows partial caching of 

multimedia objects. We also discussed the performance of Cut-off Caching (CC) and 

Optimal Caching (OC) techniques. A Frequency Index based Replacement policy was 

proposed and its performance was tested for CC and OC algorithms. 
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CHAPTER 5 

 
SOFT COMPUTING TECHNIQUES IN WEB CACHING 

 
5.1 INTRODUCTION 

 
Unlike the traditional hard computing methods, soft computing techniques such as fuzzy 

logic, neural networks and genetic algorithms are aimed at accommodating the pervasive 

imprecision of the real world. The guiding principle of soft computing technique is to 

exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, 

robustness, and low solution cost. Evolutionary programming has been successfully 

applied to numerous problems from different domains. Fuzzy Logic and Genetic 

algorithms are popular techniques, which can be applied to many computational problems 

requiring adaptation to a changing environment or search through a huge number of 

possibilities for solutions [Vakali 1999a].  

 

Fuzzy Logic representations founded on fuzzy set theory try to capture the way humans 

represent and reason with real-world knowledge in the face of uncertainty. Uncertainty 

could arise due to generality, vagueness, ambiguity, chance or incomplete knowledge 

[Rajasekaran 2003]. In recent years, attempts have been made to use soft computing 

techniques for web caching and replacement. There is a need to base the replacement 

process on both qualitative and quantitative information [Calzarossa 2003]. The 

algorithms must take care of the characteristics and properties of workloads of proxy 

servers and must apply some qualitative reasoning to identify the pages to evict from the 

cache. Recently the Fuzzy Algorithm for web caching has been proposed by M. 

Calzarossa and G. Valli [Calzarossa 2003]. Here the variables describing each web object 

cached are first fuzzified. A set of fuzzy control rules is then applied and their outputs are 

defuzzified as to identify the object to evict.  

 

Genetic Algorithm (GA) has been used to solve scientific problems demanding 

optimization and adaptation to a changing environment. The idea in this approach is to 

evolve a population of candidate solutions to a given problem, using operations inspired 
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by natural genetic variation and natural selection, expressed as “survival of the fittest”. 

GAs are being applied to many computational problems requiring either search through a 

huge number of possibilities for solutions, or adaptation to a changing environment. More 

specifically, GAs have been applied in the areas of scientific modeling and machine 

learning, but recently there has been a growing interest in their application in other fields  

[Vakali 1999b, Goldberg 2004] 

 

This chapter describes the application of fuzzy logic with two different rule sets and 

application of Genetic Algorithm technique for replacement policies for caching static 

web objects and an algorithm for caching streaming multimedia web objects. Our choice 

is motivated by the need to take both qualitative as well as quantitative information into 

account for replacement while using soft computing method. These algorithms consider 

the nature and properties of the workloads of institutional proxy servers and apply some 

qualitative reasoning to identify the object to evict from the cache.  

 

5.2 FUZZY REPLACEMENT ALGORITHM 
 
In the Fuzzy Inference Method, whenever the cache is full and a cache miss occurs, the 

fuzzy algorithm determines the objects to be evicted by computing a mathematical merit 

called Replacement Probability for each of the objects, depending on certain parameters 

of input viz. Size, Frequency and Access recency. The fuzzy knowledge base includes the 

input and output variables, their respective membership functions, and the fuzzy rule 

base. The algorithm involves fuzzification, rule inference and defuzzification.  

 

Application of Fuzzy Logic consists of three stages: Input, Processing and Output. The 

input stage maps sensor or other inputs to the appropriate membership functions and 

truth-values. The process of converting a crisp input value into a fuzzy value is known as 

“fuzzification”. The processing stage invokes each appropriate rule from a ‘set of rules’ 

and generates a result for each, then combines the results of the rules. Finally the output 

stage converts the combined result back into a specific control output value. The 

collection of logic rules on which the processing stage is based is a bunch of If- Then 

statements where the ‘IF’ part is the “antecedent” and the ‘THEN’ part is called the 
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“consequent”.  In practice, fuzzy rule sets usually have several antecedents that are 

combined using fuzzy operators such as AND, OR and NOT. There are several different 

ways to define the result of a rule, but one of the most common and simplest is the “max-

min” inference method, in which the output membership function is given the truth-value 

generated by the premise. The results of all the rules that have fired are “defuzzified” to a 

crisp value by one of several methods such as the “centroid method” in which the “center 

of mass” of the result provides the crisp value. In centroid defuzzification, the values are 

ORed, that is, the maximum value is used and values are not added, and the results are 

then combined using a centroid calculation [Kosko 1994]. 

 

The proposed approach is that the variables describing each web document are 

“fuzzified”, fuzzy rules from a given rule set are applied and then their outputs are 

“defuzzified” to identify the objects to be expelled from the cache. Based on the above 

approach we propose a cache replacement policy for web proxy servers. The replacement 

policy is as follows: when a cache miss occurs and the cache is full, the algorithm 

determines the objects to evict by computing for each object in the cache a figure of 

merit, namely, its probability of replacement. Among the objects ranked according to 

their probability of replacement, the algorithm chooses the one with the highest rank.  

 

The operation of any Fuzzy-based system depends on the proper choice of process state 

input variables and control output variables. Here, we have chosen three input variables 

to represent the process state. These variables describe each web object in terms of its 

size, access frequency and access recency i.e. time elapsed since last access. As output 

variable, we have chosen the probability of replacement, RP of each object. For each of 

these variables, the fuzzy sets with the membership functions are designed which 

describes the degree of membership of the variable to the corresponding fuzzy set. Figs 

5.1, 5.2 and 5.3 show the membership functions of the three input variables. Here, 

membership functions having triangular or trapezoidal shapes have been used. 
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INPUT VARIABLE FREQUENCY  

Fig 5.1: Membership Function for Input Variable Frequency 

 

 

 

 

 
INPUT VARIABLE TIME 

Fig 5.2: Membership Function for Input Variable Time 
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INPUT VARIABLE SIZE (KBYTES) 

Fig 5.3: Membership Function for Input Variable Size  

 

 

The simulations have been carried out with 2 rule sets: Fuzzy12 with 12 rules and 

Fuzzy24 with 24 rules as shown in Table 5.1 and Table 5.2 respectively. In both cases, 

there are 3 membership functions associated with the variable Frequency. LOW, 

MEDIUM and HIGH have been used as labels i.e. descriptive lingual values. In Fuzzy12, 

there are 3 membership functions LOW, MEDIUM and HIGH associated with variable 

Size whereas in Fuzzy24, an additional membership function VERY HIGH has also been 

added. To describe the variable Time, in both cases, we have chosen 5 variables. This is 

because the algorithm requires a finer control of this variable. The corresponding 

descriptive labels are VERY LOW, LOW, MEDIUM, HIGH, and VERY HIGH. The 

centers and the left and right limits of the membership functions have been obtained as a 

result of analysis of proxy workloads. Fig 5.4 shows the membership functions of the 

output variable, that is, the probability of replacement RP. As can be seen, for Fuzzy12 

and Fuzzy24, 4 membership functions, with descriptive variables LOW, MEDIUM, 

HIGH, VERY HIGH, have been associated with this variable. 
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Table 5.1: Fuzzy12 Rule Sets 

FUZZY12 
If (Frequency is LOW) and (Time is VHI) and (Size is MED) then (RP is VHI) 
If (Frequency is LOW) and (Time is HIG) and (Size is HIG) then (RP is VHI) 
If (Frequency is MED) and (Time is VHI) and (Size is HIG) then (RP is VHI) 
If (Frequency is LOW) and (Time is VHI) and (Size is HIG) then (RP is VHI) 
If (Frequency is LOW) and (Time is HIG) and (Size is LOW) then (RP is HIG) 
If (Frequency is MED) and (Time is HIG) and (Size is LOW) then (RP is MED) 
If (Frequency is MED) and (Time is VHI) and (Size is MED) then (RP is HIG) 
If (Frequency is MED) and (Time is HIG) and (Size is HIG) then (RP is HIG) 
If (Frequency is HIG) and (Time is VHI) and (Size is HIG) then (RP is LOW) 
If (Frequency is HIG) and (Time is HIG) and (Size is HIG) then (RP is LOW) 
If (Frequency is LOW) and (Time is MED) and (Size is HIG) then (RP is HIG) 
If (Frequency is MED) and (Time is HIG) and (Size is MED) then (RP is MED) 

 

Table 5.2: Fuzzy24 Rule Sets 

   FUZZY24  
If (Frequency is LOW) and (Time is VHI) and (Size is MED) then (RP is VHI) 
If (Frequency is LOW) and (Time is HIG) and (Size is HIG) then (RP is VHI) 
If (Frequency is MED) and (Time is VHI) and (Size is HIG) then (RP is VHI) 
If (Frequency is LOW) and (Time is VHI) and (Size is HIG) then (RP is VHI) 
If (Frequency is LOW) and (Time is HIG) and (Size is LOW) then (RP is HIG) 
If (Frequency is MED) and (Time is HIG) and (Size is LOW) then (RP is MED) 
If (Frequency is MED) and (Time is VHI) and (Size is MED) then (RP is HIG) 
If (Frequency is MED) and (Time is HIG) and (Size is HIG) then (RP is HIG) 
If (Frequency is HIG) and (Time is VHI) and (Size is HIG) then (RP is LOW) 
If (Frequency is HIG) and (Time is HIG) and (Size is HIG) then (RP is LOW) 
If (Frequency is LOW) and (Time is MED) and (Size is HIG) then (RP is HIG) 
If (Frequency is LOW) and (Time is VLOW) and (Size is LOW) then (RP is MED) 
If (Frequency is MED) and (Time is VLOW) and (Size is LOW) then (RP is MED) 
If (Frequency is HIGH) and (Time is VLOW) and (Size is MED) then (RP is LOW) 
If (Frequency is MED) and (Time is VLOW) and (Size is LOW) then (RP is MED) 
If (Frequency is MED) and (Time is MED) and (Size is LOW) then (RP is MED) 
If (Frequency is LOW) and (Time is MED) and (Size is MED) then (RP is HIG) 
If (Frequency is HIG) and (Time is MED) and (Size is LOW) then (RP is MED) 
If (Frequency is MED) and (Time is VHI) and (Size is MED) then (RP is MED) 
If (Frequency is HIGH) and (Time is MED) and (Size is MED) then (RP is MED) 
If (Frequency is MED) and (Time is VLOW) and (Size is MED) then (RP is MED) 
If (Frequency is LOW) and (Time is VLOW) and (Size is VHI) then (RP is HIG) 
If (Frequency is LOW) and (Time is MED) and (Size is VHI) then (RP is HIG) 
If (Frequency is MED) and (Time is VLOW) and (Size is VHI) then (RP is MED) 
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OUTPUT VARIABLE RP 

        Fig 5.4: Membership Function for Replacement Probability 

 

Having defined the membership functions, we construct the fuzzy rule base. As 

mentioned earlier in this section, the rule base consists of fuzzy conditional statements in 

the form “if-then” in which the antecedent is a condition pertaining to the particular 

application and the consequent is an action for the controlled system. Each rule in the 

antecedent involves one or more variables. There is no general procedure for deciding on 

the optimal number of fuzzy control rules and the role of each variable. We have defined 

two sets of rules, namely Fuzzy24 and Fuzzy12 having 24 and 12 rules respectively. The 

aim of Fuzzy24 as well as Fuzzy12 is to keep in the cache objects that have been 

accessed very recently, and to evict large objects. Moreover, among objects with similar 

size, the rules penalize objects characterized by a small number of accesses or objects 

accessed very recently. In Fuzzy24, 24 rules have been designed so as to take into 

account the Size of the object when it is large. 

 

Fuzzification does the job of mapping crisp input data into fuzzy sets by means of the 

corresponding membership functions. The input values Size, Frequency and Recency 

related to each object are converted into linguistic labels. Next, for each rule, the 

antecedent is evaluated based on the descriptive label and the degree of truth is computed 

by applying the fuzzy AND operator, the product. The aggregation process combines the 
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outputs of the rules by applying the maximum operator to each descriptive label of the 

output variable RP (i.e. the probability of replacement). The defuzzification transforms 

these four values into a non-fuzzy control action corresponding to the probability of 

replacement of the object. The defuzzification used in our algorithm is based on the 

centroid method. The masses, obtained as a result of the aggregation process, have been 

placed at the three points where the membership functions of the output variable RP 

intersect, that is, at the points 0.25, 0.5 and 0.75. Moreover, the mass corresponding to 

the label VERY HIGH has been placed at 1. Finally, the objects are ranked according to 

their probability of replacement. The algorithm evicts the objects with the highest rank. 

 

5.2.1 IMPLEMENTATION 
 
The performance analysis of the Fuzzy algorithm has been carried out using the 

simulation of a trace obtained from the logs from Duke University [Traces 1995]. This 

trace contains a day’s worth of all the HTTP requests to the Environmental Protection 

Agency (EPA) WWW server. During the simulation, only cacheable static objects were 

considered. The proposed Fuzzy algorithm is compared with the traditional cache 

replacement algorithms viz. LRU, LFU and SLRU Algorithms. Figs 5.5 to 5.10 illustrate 

the results of this simulation.  
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Fig 5.5 Hit Ratio Obtained from the trace1 for LRU and FUZZY12 
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Hit Rate vs Cache Size for FUZZY and 
LFU
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Fig 5.6 Hit Ratio Obtained from the trace1 for LFU and FUZZY12 
 
 
 
 

Hit Rate vs Cache Size for FUZZY and 
SLRU
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Fig 5.7 Hit Ratio Obtained from the trace1 for SLRU and FUZZY12 
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Hit Rate vs CacheSize for FUZZY and 
LRU
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Fig 5.8 Hit Ratio Obtained from the trace1 for LRU and FUZZY24  
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Fig 5.9 Hit Ratio obtained from the trace1 for LFU and FUZZY24  
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Hit Rate vs Cache Size for FUZZY and SLRU
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Fig 5.10 Hit Ratio Obtained from the trace1 for SLRU and FUZZY24 
 

Tests have also been done on small logs obtained from BITS proxy server. For these 

tests, since the log has fewer requests, the cache size is kept small. This was to 

experiment with smaller individual caches for the clients in some cases, which can be 

allowed on demand. Figs 5.11 to 5.13 show these results.  
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Fig 5.11 Hit Ratio Obtained from the trace2 for LRU and FUZZY24 
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Hit Rate vs Cache Size for FUZZY and 
LFU
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Fig 5.12 Hit Ratio Obtained from the trace2 for LFU and FUZZY24 
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Fig 5.13 Hit Ratio Obtained from the trace2 for SLRU and FUZZY24 
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5.2.2 DISCUSSION OF RESULTS 
 
The results of the simulations are depicted in the graphs. The results of the simulation 

show that; 

• In case of Fuzzy24 rule set the FUZZY algorithm outperforms the LRU and LFU 

algorithms. However the Hit Rate of SLRU is nearly equal to that of the FUZZY 

algorithm as observed in Fig 5.8, 5.9 and 5.10. 

• The Fuzzy Algorithm is outperformed by the size-based algorithm, SLRU. 

• In case of Fuzzy12 rule set, the performance of FUZZY algorithm in terms of Hit Rate 

is poor as compared to LRU, LFU and SLRU as observed in Fig 5.5, 5.6 and 5.7. 

The results of the simulation on the small log of fewer requests show that: 

• For very small cache sizes, the performance of FUZZY is inferior to that of the other 

three algorithms as observed in Fig 5.11, 5.12 and 5.13. 

• However for larger cache sizes, the hit rates for FUZZY are higher or nearly equal to 

that of LRU and LFU. The SLRU algorithm shows better performance as compared to 

FUZZY in most cases. 

This shows that the FUZZY algorithm is suitable on a cache, which generally faces fewer 

requests, when the cache size is above a certain threshold value. 

 

Byte Hit Rate is another metric of performance evaluation. It is the fraction of requested 

bytes retrieved directly from the cache. In case of Fuzzy24 rule set, the FUZZY 

Algorithm has mediocre performance with respect to this metric. The LRU has the least 

Byte Hit Rate and both SLRU as well as LFU has the highest Byte Hit Rate, with SLRU 

performing better for lower cache sizes and LFU performing better for higher cache sizes. 

 

Thus, the replacement algorithm based on Fuzzy Logic that has been discussed here can 

lead to significant improvement in performance in certain situations such as when the 

cache size is small and more number of Fuzzy rules is used in the rule set. The 

performance of Fuzzy Algorithm improves greatly over the conventional methods as the 

number of rules in the rule set increases. Fuzzy algorithm’s performance is not so 
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favorable when there are fewer rules, as is evident with the Fuzzy12 rule set, except for 

particular cache sizes. Moreover the results of the simulations have shown that the Fuzzy 

algorithm achieves good performance even for small cache size, less than 5% of the 

cache capacity. However it remains inferior to SLRU.  

 

The complexity of the algorithm is of the order of the number of objects O(n), in the 

cache as it evaluates for each page its probability of replacement. The running time 

complexity also depends upon the number of rules in the rule set. However, even though 

this complexity is larger than the complexity of most of the traditional algorithms, it is 

not much of an issue. The workload of a proxy server is typically I/O bound and the 

processor is never the bottleneck of the system. However, it is worth investing a few 

extra CPU cycles in a replacement policy that helps to save disk and network accesses. 

 

5.3 GENETIC ALGORITHM REPLACEMENT POLICY (GAR) 
 
The essential ingredients of the Genetic algorithm are population size (constant), string 

coding, fitness function, crossover, mutation and the number of generations. The standard 

genetic algorithm consists of an initial population chosen randomly. Every member of the 

population is coded into a unique string and has a definite fitness value attached to it. The 

fitness function used is dependent on the problem in hand.  

 

This initial population is now made to go through the process of selection wherein 

members produce copies of themselves depending on their fitness value. Then the strings 

are made to go through the process of crossover and then mutated to finally end up with a 

new generation. The initial population set is now replaced with the new generation 

obtained and the whole procedure is repeated for a certain number of generations. The 

appropriateness of the fitness function is critical since this holds the key to members with 

low fitness values being eliminated in every generation. The selection process mimics the 

“Survival of the Fittest” theory. Also it is to be noted that the size of the population 

remains constant throughout the run of the algorithm in every phase. Genetic Algorithm 

is used because of two main reasons. First, the algorithm in its natural form itself 

identifies members of the population with low fitness and eliminates them. This fits into 
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caching and replication of internet data. This can be very well extended to replacement, 

as our objective in replacement is to find out objects with low fitness (popularity). 

Second, Genetic Algorithm is applied to problems demanding optimization out of spaces, 

which are too large to be exhaustively searched. A typical cache consists of millions of 

web objects. Conventional algorithms would require that we search through the entire 

space thereby taking more time for replacement. Genetic Algorithm works with just a 

sample population and typically the population size is far less compared to the size of the 

actual search space.  

 

In our approach, the cache has been modeled as follows to fit in the usage of Genetic 

Algorithm. The cache can be visualized to consist of a set of individuals. This set is the 

complete search space. Each member of the cache is a specific web object and has a 

fitness value associated with it. This fitness is directly proportional to its popularity. The 

replacement algorithm is all about identifying the individuals (web objects) with low 

fitness (popularity) so that they could be evicted from the cache. 

 

5.3.1 FITNESS CALCULATION 
 
This is the most critical calculation upon which hinges the performance of the algorithm. 

We maintain a standard array, which stores the fitness of all the individual web objects in 

the cache. Every time a request for an object in the cache is made, its corresponding 

fitness value is incremented. If an object is absent in the cache, then it is brought in to the 

cache and its fitness value is initialized to zero. Hence at any point of time, this fitness 

array will contain the number of times every object in the cache has been accessed. 

Hence it would be the exact indicator of the popularity of the web object. 

 

 

5.3.2 PSEUDO CODE 
 
The Genetic Algorithm replacement scheme looks essentially as follows. 
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//definitions 

old-pop, new-pop, popsize, fitness, noofgen, prob-cross, prob-mut 

 

//pseudo-code 

old-pop = initpop (popsize) // initialize a population randomly and assign it to old-pop 

gen  1 //temporary variable 

while (gen <= noofgen) 

do 

{ 

//selects a population of size popsize based on the fitness values 

 parents =  select (old-pop, fitness)  

 crossover (parents, new-pop, prob-cross) 

 mutation (new-pop, prob-mut) 

 old-pop  new-pop 

 gen  gen + 1 

} 

In the above mentioned replacement algorithm, fitness is an array which contains the 

fitness values of all the web objects in the cache. The initpop( ) function randomly picks 

up popsiz  number  of  individuals from the cache and stores it in  old-pop. The function 

select( ) ensures that only individuals with high fitness get selected. The unfit individuals 

are weeded out here.  

 

5.3.3 IMPLEMENTATION  
 
Every request from the trace was processed either locally or from the origin server. If the 

local cache did not have the requested file, then it is construed as a cache miss and the 

object is brought in and stored in the cache. Before bringing in a new object a check is 

made if the space is sufficient for accommodating the new object. If not, the replacement 

routine is called and objects with low popularity are evicted making way for the new 

object. Crossover was effected using arithmetic crossover. The probabilities for crossover 

and mutation were 0.8 and 0.05.  

 103



CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING 

 

The performance analysis of the Genetic Algorithm based replacement policy has been 

carried out using the simulation of a trace provided by the logs from Duke University. 

This trace contains a day’s log of all the HTTP requests to the EPA WWW server. In the 

simulation, the proposed replacement algorithm is compared with the traditional cache 

replacement algorithms viz. LRU, LFU and SLRU Algorithms. The performance metric 

used for comparison has been the hit-ratio. The cache sizes taken for simulation were in 

the order of a few megabytes (MB). This is far less than the total cache sizes available for 

the proxy caches. But when cache-on-demand scheme is used [Ahuja 2002], where a 

single user can get a cache space on demand for the time he wants to browse the net it is 

assumed that it can only be in the range of a few megabytes. 

 

5.3.4 DISCUSSION OF RESULTS 
 
The results of the simulation are depicted in the graphs in Figs 5.14 to 5.16. The salient 

features of the results are: 

 

• The Genetic Algorithm based Cache Replacement Policy (GAR) has a higher hit-

ratio compared to LRU and LFU. 

• SLRU has a superior hit-ratio than GAR for lower cache sizes. For cache-sizes up 

to 2MB, SLRU performs better than GAR. Beyond this GAR scores over SLRU. 

• The hit-ratio of GAR has been found to be between 0.6 and 0.8 which can be 

construed as an indication of the reliable performance of the algorithm absolutely. 

 

Hence it can be concluded that GAR can be used beyond a certain threshold value of 

cache size. As the cache size increases, the performance of the algorithm increases. Also 

an important parameter to be varied for the algorithm is the population size. It has been 

clearly noted during simulation that as the population size increases, the hit-ratio also 

increases.  
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Fig. 5.14 Hit Ratio of GAR and LRU for varying cache sizes 

 

 
Fig. 5.15 Hit Ratio of GAR and LFU for varying cache sizes 

 

 
Fig. 5.16 Hit Ratio of GAR and SLRU for varying cache sizes 
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A study was also done comparing the time taken for the running of the replacement 

algorithm proposed with the Least Frequently Used Algorithm. It has been observed that 

as the number of objects in the cache increases, the time taken for the run of GAR is 

lower compared to LFU. Hence it is advantageous to use GAR especially when the cache 

size is large and there are a large number of objects to consider before picking a victim 

page. Another point is that the time taken for the run of GAR is not very dependent on 

the cache size. Since Genetic Algorithms deal only with a fixed population at a time, the 

size of the cache is immaterial. This fact can be exploited if GAR is deployed for really 

huge caches, with a large number of files to search from. The graph regarding the time 

analysis, is shown in Fig. 5.17. 

 

 

 

 
Fig. 5.17 Time taken vs Cache Size for the GAR algorithm 
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5.4 GENETIC ALGORITHM BASED REPLACEMENT POLICY FOR STREAMING 

MULTIMEDIA OBJECTS (GAR-M) 
 
Replacement is all about identifying the “correct” frames to remove thereby making way 

for newer ones to be cached. Here, in our approach every frame in the video is handled 

and evaluated separately. A fitness value for every frame is calculated and the 

replacement is done of the less fit frames and not a whole video as such. 

 

The cache is viewed as a set of frames. Every frame in the set is a member of one video 

file. This whole set is our search space. The replacement policy aims to identify and evict 

individuals (frames) with low fitness values.  

 

5.4.1 FITNESS CALCULATION 
 
The fitness of every frame is dependent of three factors, individual popularity, position 

and popularity of parent video. They are discussed below: 

 

Individual popularity 

Consistent with the frame-wise handling of the videos, every frame is monitored and 

assigned an individual “hit” value. This value is an indication of the number of times the 

particular frame was accessed when it was in the cache. Every frame collects some points 

whenever it is accessed while in the cache. 

 

Position in the parent video 

The position of a frame in the video that it is a part of is critical for assigning a fitness 

value. Frames, which occur earlier, have more weightage compared to the later frames in 

a video. This is because, when a user requests for a video, there is a very high probability 

that he would start viewing the earlier frames first. In the event of them being absent, the 

proxy has to fetch it from the origin server, thereby consuming more time. Hence absence 

of the earlier frames would severely lower the Quality of Service. If the later frames are 

absent, the proxy can fetch them from the origin server while it is sending the earlier 
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frames to the user.  In the algorithm proposed, every time a frame in the cache is “hit” it 

collects points in proportion to its position.  

• If a frame belongs to the first 20% of the file, it would pick up 10 points.  

• If a frame belongs to the second 20% of the file, it would pick up 8 points.  

• If a frame belongs to the third 20% of the file, it would pick up 6 points. 

• If a frame belongs to the fourth 20% of the file, it would pick up 4 points. 

• If a frame belongs to the last 20% of the file, it would pick up 2 points. 

 

Popularity of the parent video 

The fitness value of a frame is also governed by the popularity of the video that it is a 

part of. Frames with very low individual popularity will have their fitness shored up if the 

video that it is a part of is very popular. This is due to the fact that since the video is very 

popular, there is a high probability for requisition of any of its frames. Hence, fetching 

any of these frames from the origin server would reduce the quality of service, especially 

in the context that the video is to be requested multiple times. 

 

This way, the number of points garnered by every frame (pf) would be an indication of 

both its popularity as well as its position. 

Let  be the popularity of the video, i.  iv

∑= fi pv   where  is the points garnered by frame, f   fp

for all the frames in the video i.

So, the ‘fitness’  for any frame f would be, ff

    where fif pwvwf ×−+×= )1( 10 ≤≤w  is the weightage of the video. 

 

5.4.2 IMPLEMENTATION 
 
For evaluating the performance, the simulation has a proxy server which receives the 

requests for video objects from the client. The object is a video file, taken from the 

benchmark videos. The video is sent to the client frame by frame.  
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The origin server handles the request from the proxy server in case of a cache miss. If the 

video requested by the user is not present in the cache, then request is forwarded to the 

origin server. The origin server sends the video frame sizes to the proxy server. In case of 

a cache miss the replacement algorithm is run. Hit Ratio is calculated for each client 

request, be it a hit or a miss. 

 

The performance analysis of the Genetic Algorithm based replacement policy has been 

carried out using benchmark videos obtained from [Video 1995]. The video files obtained 

were diverse enough to cover various categories like movies, sports, news, and 

animations. This was chosen so as to make the testing process comprehensive and also 

test the robustness of the algorithm. The files had approximately 40000 frames each, on 

an average. Every video file included size information per frame.  

 

After every request, the individual fitness values of the relevant frames were updated. In 

the simulation, the proposed replacement algorithm was compared with the traditional 

cache replacement algorithms viz. LRU and LFU Algorithms. The performance metric 

used for comparison has been the hit-ratio. The testing was done for two different sample 

requests. Each of the request patterns had around 100 requests each. Hence the results 

obtained can be assumed as an indication of the performance of the algorithm over a 

sustained period of time. The hit-ratios were analyzed by varying the cache sizes as a 

percentage of the total possible size of all the files taken for simulation. The algorithm 

was tested for cache sizes, ranging from 20% to 80% of the total size of all the files put 

together.  

 

5.4.3 DISCUSSION OF RESULTS 
 
In the testing of the algorithm, it has been observed that the Genetic Algorithm based 

replacement policy gives a better hit-ratio compared to the standard replacement 

algorithms like LRU and LFU. The improvement in performance over LRU and LFU has 

been observed to increase for higher cache sizes. Hence it can be concluded that the 

algorithm is suited especially for high-end servers, which deal with a large number of 
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cache files. Also the hit-ratio of the algorithm hovers between 0.6 and 0.8, which can be 

construed as an absolute indication of the robustness and efficiency of the algorithm. 

 

The graphs obtained from the simulation are as shown in Fig 5.18 and Fig. 5.19 are the 

results obtained by running the algorithm for the two sample requests mentioned earlier.  

 

 
Fig 5.18: Hit Ratio of GAR-M, LRU and LFU for varying cache sizes for Sample-1 

 

 

 
Fig 5.19: Hit Ratio of GAR-M, LRU and LFU for varying cache sizes for Sample-2 
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5.5 SUMMARY 
 
The study of the soft computing techniques used in web caching is in its early stages. In 

this chapter an attempt has been made to use the Fuzzy logic and Genetic algorithms to 

improve the performance of web caching. The result obtained clearly indicates the 

advantage of using these techniques over conventional techniques. The implementation 

initially considered static web objects and was later extended to multimedia objects. It is 

observed that these algorithms have an edge over other, specifically as the proxy cache 

size and number of requests increase. 
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CHAPTER 6 

 
CACHING IN MOBILE NETWORKS 

 
6.1 INTRODUCTION 
 
Accessing the World Wide Web data by using mobile devices is increasing due to the 

deployment of 2.5G and 3G services. The growth of wireless networks has made the 

wireless web applications more popular and sophisticated. Due to the strong demand for 

bringing web applications into wireless environments, much effort has been made to 

consolidate the WWW with wireless networks [Baquero 19995, Housel 1996]. Such 

integration is also referred to as W4 – World Wide Web for Wireless. Figure 6.1 depicts a 

typical W4 architecture. 

 

 
Figure 6.1: World Wide Web for Wireless Network Architecture 

 

In this architecture, mobile hosts access the wireless network through base stations, 

which are inter-connected by access routers to form wireless LANs, and in turn are 

connected to the Internet through gateway routers. Among the numerous studies carried 

out on the enhancement of wireless internet performance, caching popular web data at 

locations close to the mobile clients is an effective solution to improving the quality of 

wireless web applications. 

 
A mobile user’s web access is largely determined by the user specific preferences and the 

presentation of data is constrained by the capabilities of the device used. To understand 
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Caching in wireless environment it is imperative to understand the key aspects involved 

in such networks and devices, specially their limitations over those that work in wired 

and fixed networks. The most important issue is the bandwidth in wireless networks. 

Bandwidth of wireless links that connect mobile units to the fixed networks is very 

limited and therefore is a major performance bottleneck. While a wireless LAN 

bandwidth is in the order of 11-50 Mbps, the typical bandwidth of wireless cellular 

systems is in the order of 10-55 Kbps.  

 

User access devices such as PDAs (Personal Digital Assistants) or mobile phones have 

significantly smaller displays, slower processors and smaller memories, than more 

traditional end-user computers such as workstations and PCs. Given the trend towards 

wider variety and higher level of integration such as digital audio and video players in 

mobile units, the differences in power and expected capabilities will continue to grow 

larger. Importantly, Internet services are being integrated into mobile devices adding 

more constraints. This issue also affects content-providers and application programmers, 

as their model of the machine that allows the end-user to access content and run 

applications is no longer simple. That these devices already or will eventually connect to 

the Internet via wireless links introduces further complexity [Forman 1994, 

Satyanarayanan 1996, Shankarnarayanan 2002]. 

 

Disconnection is another distinguishing feature. Users may turn off their mobile 

computers to save battery energy, which is called voluntary foreseeable disconnection. 

Disconnection can be unpredictable too, as a result of wireless network failure. Wireless 

links have significantly different properties regarding performance, reliability, and 

security than the more prevalent wired links with which the Internet evolved. Wireless 

links generally have lower bandwidth and much higher error rates. Outages that result in 

disconnections are common and the ability to eavesdrop is qualitatively easier when 

compared to tapping a wired link [Parker 1998] 

 

Bringing Internet connectivity to wireless devices offers a number of challenges. 

Basically, the Internet assumes powerful endpoints. The Internet expects endpoints to 
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carry out significant control functions, and this simplifies the internals of the Internet 

leading to increased efficiency and lowered costs. This implies that a user "pays" (in one 

way or another) only for what they need; as long as the Internet delivers packets, it is up 

to the endpoint to enhance this most basic service with such properties as in-order 

delivery, reliable transmission, and flow control, to name a few.  Simply delivering bits at 

a high enough rate to untethered devices and creating devices with sufficient display, 

memory, and user interface features to allow efficient interaction with the Internet 

requires innovative technologies and new standards. [Saha 2001, Pasquale 2002]. 

 

6.2 INTELLIGENT PROXY SERVER WITH CACHE-ON-DEMAND PROTOCOL 
 
Users are interested in high level services like e-commerce, with uninterrupted access and 

faster response time. In general, the usage of wireless access can be described by mobility 

scenario which is termed as true mobile access. Terminals can be moved within and 

between the range of multiple access points or base stations. Dynamic changes of the 

supporting access points or base stations during a session are expected to appear. Such 

changes are called handovers. For mobile access to be attractive, deployment of access 

points should be dense. The degree of service continuity in spite of handovers is one of 

the essential quality features. Continuity of service might be expressed in terms of the 

amount of information during handover. The case of frequent, possibly interruption-less 

handover usually implies a homogeneous system concept in which all the access points 

and the end-system are incorporated. This is the scenario for the majority of solutions 

deployed or considered today, like GSM, GPRS or the emerging UMTS [Wolisz 2000a, 

Wolisz 2000b]. 

 
Cache-On-Demand (COD), as explained earlier, is a protocol for web caching in a fixed 

network environment, which allows a proxy cache sever to allocate its local storage 

resources upon external requests from either content providers or clients themselves, and 

thus provides quality of service (QoS) in delivering content to users. The advantage to the 

content providers is QoS guarantees like fresh content being available to a web user from 

a Cache-On-Demand-enabled web cache. Advantage to the clients being reduced latency 

and, thus, better user experience. 
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The following sections discuss the Intelligent Proxy Server combined with the 

deployment of CoD Protocol. 

 
6.2.1 LATENCY REDUCTION SCHEMES 
 
Prefetching is one of the common approaches used to reduce network latency. When a 

user is idle, web pages can be prefetched from the remote sites ahead of their actual time 

of use. In case the user really requests those prefetched web pages, the requests can be 

satisfied by the local cache instead of the far away remote systems. This gives a much 

shorter user perceived latency. The criteria for deciding whether a web page should be 

prefetched can be statistical (the recent access logs can be used as a basic parameter of 

statistical prefetching decisions) or deterministic (just a set of user-predefined web pages 

are prefetched). 

 

A dynamically constructed web page might constantly change, thus, any form of caching 

and prefetching is prohibited for such pages. Delta encoding reduces this problem by only 

sending the portion of the binary file, which changed since the last version stored on the 

proxy side. HTML Pre-Processing (HPP) is an HTML extension, which distinguishes a 

static and a dynamic portion [Douglis 1997]. While the static portion can be cached, the 

dynamic portion is generated for each request. Since a large portion of dynamic web 

pages is static, such a scheme can alleviate the perceived latency. 

 

Here, Client Side Prefetching is used as it gives the user the control of the prefetch 

process. Advantages of this technique are that it does not increase network traffic, 

attempts to improve on all parts of latency, can be implemented on the client side, 

without the cooperation of any other tier and  can work seamlessly with any other latency 

reduction technique [Eden 2000].  

 
6.2.2. ISSUES IN MOBILE COMMUNICATION ENVIRONMENT 
 
The unique characteristics of the mobile communication systems are as follows: 
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• In mobile communication systems, the scope of web access is relatively limited as 

compared to fixed network. Due to the limitations in processing power, size, and 

computational speed of the mobile devices and due to high communication cost, 

mobile user requests are only for a small amount of frequently accessed 

information from the Internet (e.g. travel information, financial report, weather 

report, daily news reports etc). These can be prefetched and put into the local 

disk, giving a higher cache hit ratio. No complex prediction algorithm is needed.  

• Before a mobile station connects to a mobile network system, it must register 

itself to the system. The information about the station and the user can then be 

known by the system.  This is the time to initialize the prefetching process. 

• Transcoding is usually needed in mobile applications to convert an object from 

one format to another so as to present the object in a scale down format, see [Han 

1998, Wong 2001]. However, transcoding spends system resources and causes 

system delay. If the system can transcode the prefetched objects before the user 

actually requests them, the user will experience a much shorter delay.  

 

Based on these characteristics, a suitable prefetching scheme for the mobile applications 

needs to be designed.  

 

6.2.3. AN INTELLIGENT PROXY SERVER (IPS)  
 
Studies on prefetching show that most of the research work has been on statistical 

prefetching [Jiang 1998, Markatos 1998]. But an important observation is that 

deterministic prefetching is more suitable for mobile communication. It gives little or no 

bandwidth overhead because it is configured statically by the users. When the user is 

accessing the Internet by a mobile device, he accesses a limited set of web pages (unlike 

the case when he is using desktop or notebook PCs via the fixed network). The reason is 

due to the high communication cost and limited capacity of mobile devices, prefetching a 

set of user-predefined web pages is enough in most cases. This kind of prefetching not 

only gives higher prefetching hit rate, but is also simpler than the statistical approach.  
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The Intelligent Proxy System proposed by Yeung et. al [Yeung 2003] is based on unique 

characteristics of mobile communication system as discussed in the section 6.2.2.  

The proposed prefetching scheme comprises of two basic components:  

 The User Profile Database (UPD) and  

 The Intelligent Proxy Server (IPS).  

 

The scheme followed is: 

• When a user subscribes the mobile service from an operator, his profile (i.e. URLs 

of his favorite web pages) will be created and stored in the User Profile Database 

(UPD).  

• When a mobile device registers to the mobile network, the registration 

information will be recorded in the Home Location Register (HLR).  

• The HLR registration information is then sent to the Intelligent Proxy Server 

(IPS).  

• The IPS then prefetches the web pages for the user based on the information of 

the user profile in the UPD.  

• Based on the preference of the user, the prefetched web pages can be stored in the 

IPS for later access or immediately sent to the mobile device of that user.  

• Note that the HLR may already record the type of device being used by the user, 

thus, transcoding on the prefetched web pages can be performed immediately if 

needed.  

The proposed prefetching scheme is built on top of the existing mobile communication 

infrastructure. As shown in Fig. 6.2, the IPS works as an add-on component of the 

Internet gateway of a mobile network. The UPD, on the other hand, can be viewed as an 

add-on to the HLR. Thus the scheme can be smoothly implemented in the existing mobile 

networks. 
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UPD Home 
Location

IPS 

 
Fig 6.2 Overall architecture of the IPS system  

 
6.2.3.1. User Profile Database  
 
User Profile Database (UPD) is a database which stores user profiles. Each user profile 

consists of two fields: 

• International Mobile Station Subscriber Identity (IMSI) of mobile device: a 

unique identifier of the mobile device.  

• A list of URLs that are chosen by the users. Users can update their profiles by any 

means as provided by the operator. Sample contents of a UPD are as shown 

below: 

 

IMSI_A   http://www.sie1.com/ 
  http://www.sie2.com/page1.htm 
  http://www.site3.com/page1.cfm 
 
IMSI_B http://www.site2.com/page2.htm 
  http://www.site4.com/page1.asp 
 

 

6.2.3.2. Intelligent Proxy Server  
 
As explained earlier, the IPS accesses the user profiles stored in the UPD when the user 

registers to the mobile network. The accessed information is then used by the prefetching 

process to retrieve the objects.  

There are two modules in the Intelligent Proxy Server (IPS) as shown in Fig 6.3.  
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The Caching Module 
 
This module works as a traditional proxy server. When an Internet access request arrives 

(1)], the caching module will first check whether the local cache can satisfy the 

request(hit) or not(miss) (2). If the request is a hit, the requested page will be returned to 

the user (3). Otherwise, the requested page will be retrieved from the remote site (4), (5) 

and stored into the local cache (6). This completes a normal request process.  

 
 

 

Normal Request 
Generated by Mobile 

Users 
IPS 

To Remote Servers

41 
Caching 
Module 

3 5

Fig 6.3 Architecture of the IPS 

 

The Prefetching Module 
 
When a user registers to a mobile network, the registration information including the 

IMSI of the user device will be sent from the HLR to the prefetching module (7). The 

module starts the prefetching process by looking up the registered profile of the user in 

the UPD (8). It then checks whether the pages are cached in the local cache or not (and 

whether the cached ones are updated ones) (9). For those pages that are not cached, the 

prefetching module requests them from the remote web sites (10, 11). The prefetched 

pages are then put into the local cache (12). This completes a prefetch request process. 

Local Disk UPD 

Prefetching 
Module 7 

10 

11 

 To Remote Servers
 Registration Information 

from HLR 
9,12

2, 6

 
8
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We can see that the caching module and the prefetching module generate normal requests 

and prefetching requests respectively. Since the normal requests are more important than 

the prefetching requests, they should have a higher priority to be served first. 

 

An example showing how the proposed prefetching scheme can be implemented in a 

General Packet Radio Service (GPRS) network is given in Fig. 6.4. 

 

UPD Home 
Location 
Register

IPS 

 
Fig 6.4 The GPRS Network with the proposed prefetching scheme  

 

Before a mobile station can use the GPRS services, it must register to a Serving GPRS 

Support Node (SGSN) of a GPRS network. This procedure is called GPRS attach. The 

register information will then be sent to a Gateway GPRS Support Node (GGSN). GGSN 

is the Internet gateway between the GPRS backbone network and the external packet data 

network.  Fig. 6.4 shows how the IPS and UPD works with the SGSN and the GGSN. 

 

6.2.4. CACHE-ON-DEMAND PROTOCOL  
 
The Cache-On-Demand protocol supports strong consistency by giving complete content 

management control to the content provider. The Cache-On-Demand client can reserve 

resources for a specified duration of time and pull required contents to the cache. It can 

explicitly update the cached content in order to maintain strong consistency between the 
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Network 
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original and the cached copies of the content. It can request the Cache-On-Demand-

enabled cache to invalidate the content and free up the reserved resources. Cache-On-

Demand can be implemented as a paid service model. Clients are charged for the amount 

of resources reserved by them for the duration of the reservation. 

 
6.2.5. THE IPS-COD COMBINED PROTOCOL  
 
The IPS scheme lends us the concept of prefetching of web content based on the User’s 

profile which may be specified by the client himself or may be gauged from the client’s 

past access history.  

 

The COD protocol testifies that the above would reduce the bandwidth usage and latency 

in servicing client requests as also the load placed on Origin Servers and the congestion 

in the mobile network. In addition, it indicates that redundant usage of storage space 

would be reduced if the web content is prefetched and maintained only for a requested 

period of time and for those clients alone, who request for the prefetching facility.  

 

Leaving the option of using the prefetch facility open to the clients would also save the 

clients who do not use the facility from being unnecessarily charged for the same. Only 

interested clients use the facility and pay for the same. Building on the concepts from 

these protocols, we have implemented a new scheme which capitalizes on the advantages 

of both. 

  
In this protocol, we assume that the Proxy Server is the Base Station. Starting from 

registration of the client with the mobile network to servicing of its requests by the 

Server, the protocol works as follows: 

 

1. When a user registers to a mobile network, the registration information including 

the IMSI of the user device will be sent from the Home Location Register (HLR) 

to the Proxy.  
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2. The client communicates to the HLR whether it wants to use the prefetching 

facility or not.  

3. If client does not wish to use the facility, then goto step 8. 

4. If client communicates in the affirmative, then the Proxy starts the prefetching 

process by looking up the registered profile of the user in the UPD.  

5. If the profile of the client is not registered in the UPD, then the same is stored by 

the client and then the prefetching process begins. When the client registers, then 

the profile would be available for the mobile network. 

6. Proxy then checks whether the pages are already cached in its local cache (and 

whether the cached ones are updated copies).  

7. For those pages that are not cached/ not updated, the Proxy Server requests them 

from the Origin Server. The prefetched pages are then put into the local cache. 

This completes a prefetch request process. 

8. When an Internet access request arrives from the client, the Proxy first checks 

whether its local cache can satisfy the request or not.  

9. If so, the requested page will be directly returned to the user. Otherwise (i.e. if the 

page is either not cached or cached but not updated), the requested page will be 

retrieved from the Origin Server and stored into the local cache before servicing 

the request.  

 

This protocol design is implemented and verified. The working of the protocol is depicted 

in Fig 6.5 and Fig 6.6 
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READ IN USER 
PROFILE UPD

 
Fig 6.5 Protocol Sequence: Client requests for prefetching facility 

 
Fig 6.6 Protocol Sequence: Client does not request for prefetching facility 
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6.2.6. DISCUSSION OF RESULTS  
 
To evaluate the performance of the CoD protocol in a mobile environment the 

performance of CoD is measured on a smaller cache size of 100K and 1000K. This cache 

size, will be easier to handle even when the mobile user is on the move. The factors that 

are considered for performance evaluation are; hit ratio, percentage of the normal cache 

for the CoD case and number of Requests by different users. 

 

We consider two implementations. The normal proxy server implementation that caches 

all the requests from the clients and the CoD implementation of the proxy server. The 

whole process is simulated where the server generates a random size for the objects being 

requested for and then based on the caching strategy the objects are cached. The log file 

for the first case discussed above just consists of normal http requests where as the log 

file for the second case consists of both CoD and the normal http requests distinguished 

by the keyword ‘COD’ at the beginning of the requests. Now both the programs are run 

varying some of the parameters and then plotting the graphs.  

 
In the normal proxy server implementation the hit ratio has been plotted for all the 

requests made. Fig 6.7 shows the variation of hit ratio with the number of requests for 

different cache sizes. The no of requests are on the X-axis and the hit ratio on the Y-axis. 

The black line shows the variation for a cache size of 100k and the grey line shows the 

variation for a cache size of 1000k. As expected the hit ratio for the 1000k cache is higher 

than that for the 100k cache. 

 
In the CoD implementation, the CoD cache size reserved is expressed as the percentage 

of the normal cache. Fig 6.8 shows the variation of the hit ratio with the percentage of 

normal cache reserved. The percentage of the normal cache reserved is on the X-axis and 

the hit ratio on the Y-axis. The graphs have been plotted after satisfying 10000 requests 

from the client.  
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Fig 6.7 No. of requests vs hit ratio for normal cache in an IPS-CoD system 

 
Fig 6.8 Percentage of normal cache vs. Hit ratio in an IPS-CoD system 
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This experimentation is to show the basic advantage of integrating the mobile network 

with the Cache-on-Demand protocol. Analyzing the results obtained, we can see that for 

smaller size of caches, the CoD protocol will help the user with a better Quality of 

Service and can be offered as a service by the Content Delivery vendors.  

This problem gets escalated in a mobile communication environment which suffers from 

limitations in processing power, size, and computational speed of the mobile devices in 

addition to high communication cost. Due to these limitations, as mobile users request for  

frequently accessed information from the Internet the web content is prefetched based on 

the user’s profile and stored in the proxy cache. This results a higher cache hit ratio, 

reduces the bandwidth usage and latency in servicing client requests. In addition, it also 

minimizes the congestion in the mobile network and the load placed on Origin Servers.  

 

Here, the idea of using a novel but simple prefetching scheme with cache-on-demand 

protocol in mobile communication systems is discussed. The scheme was designed based 

on three major observations on the characteristics of mobile networks, and is therefore 

well suited to today’s mobile applications. Simulation model on the scheme is built to 

study the system performance verification.  

 

6.3 DYNAMIC CACHE INVALIDATION SCHEME 
 
Caching of frequently accessed data at the mobile clients has been considered to be a 

very effective mechanism in reducing wireless bandwidth requirements as well as energy 

consumption, since no energy is expended to transmit and receive data. For caching to be 

effective, the cache content must be consistent with those stored in the server. This is 

difficult to enforce due to the frequent disconnection and mobility of clients. The basic 

approach adopted is for the server to periodically broadcast invalidation reports that 

contain information about objects that have been updated recently [Barbara 1994, Jing 

1999]. Based on the report, clients can invalidate objects that have been updated and 

salvage their cache content that are still valid. Most of the existing algorithms address 

three issues. The first issue deals with the content of the invalidation reports. The second 

issue concerns how invalidation is performed. The third issue looks at the support the 
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server provides. The model for a mobile data access system adopted is as shown in 

Fig.6.9.  

Wireless cell Wireless cell 

MC MC MC MC 

MC 

MSS/DS 
MSS/DS

 

 

Fig 6.9 Wireless Computing Environment 

 The mobile environment consists of two distinct sets of entities, a larger number of 

mobile clients (MC) and relatively fewer, but more powerful, fixed hosts called mobile 

support stations (MSS) or database servers (DS). The fixed hosts are connected through a 

wired network and may also be serving local terminals. Some of the fixed hosts, like 

MSS, are equipped with wireless communication capability. An MC can connect to a 

server through a wireless communication channel. It can disconnect from the server by 

operating in a sleep mode or a power-off mode. Each MSS can communicate with MCs 

that are within its radio coverage area called a wireless cell. A wireless cell can either be 

a cellular connection or a wireless local area network. At any time, an MC can be 

associated with only one MSS and is considered to be local to that MSS. An MC can 

directly communicate with an MSS if the mobile client is physically located within the 

 
Wired Network
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cell serviced by the MSS. An MC can move from one cell to another. The servers manage 

service on-demand requests from mobile clients. Based on the requests, the objects are 

retrieved and sent via the wireless channel to the mobile clients. The wireless channel is 

logically separated into two sub-channels, an uplink channel which is used by clients to 

submit queries to the server via MSS, and a downlink channel which is used by MSS to 

pass the replies from the server to the intended clients. We assume that updates only 

occur at the server and mobile clients only read the data. To conserve energy and 

minimize channel contention, each MC caches its frequently accessed objects in its 

nonvolatile memory such as a hard disk. Thus, after a long disconnection, the content of 

the cache can still be retrieved. To ensure cache coherency, each server periodically 

broadcasts invalidation reports. All active mobile clients listen to the reports and 

invalidate their cache content accordingly. We assume that all queries are batched in a 

query list and are not processed until the MC has invalidated its cache with the most 

recent invalidation report. We assume that each server stores a copy of the database and 

broadcasts the same invalidation reports. In this way, clients moving from one cell to 

another will not be affected. Thus, it suffices for us to restrict our discussion to just one 

server and one cell. The following cache invalidation strategy is based on the model 

reported in [Tan 2001] 

6.3.1 Taxonomy of Cache Invalidation Strategies 
 
Two basic categories of cache invalidation strategies have been proposed in the literature. 

They are: 

• Stateful approach 

• Stateless approach 

 

Stateful Approach 
 
In the stateful approach, the server knows the objects that are cached by the mobile 

clients. As such, whenever there is any update to the database, the server will send 

invalidation messages to the affected clients. 

128 



CHAPTER 6: CACHING IN MOBILE NETWORKS 

Stateless Approach 
 
In the stateless approach, the server is not required to be aware of the state of the client’s 

cache. Instead, the server broadcasts information on objects that are most recently 

updated and the clients will listen for and use the reports to invalidate their caches. The 

invalidation methods in stateless approach can be classified into asynchronous and 

synchronous methods. In the asynchronous method, once a record is updated, the server 

will broadcast updated value immediately. The asynchronous method is effective for 

always connected clients, and allows them to be notified immediately of updates. 

However, for a client which reconnects after a period of disconnection, the client has no 

idea of what has been updated and so the entirety of its cache content has to be 

invalidated. To salvage the cache content, Barbara and Imielinski [Barabara 1994] have 

proposed that an invalidation report can be piggybacked with each invalidation notice. In 

this case, upon reconnection, clients will have to wait for the first asynchronous 

invalidation report. However, since the report is sent asynchronously, there is no 

guarantee on how long the client must wait. On the contrary, the synchronous method is 

based on the periodic broadcasting of invalidation reports. The server keeps track of the 

records that are recently updated and broadcasts this information to clients periodically. 

Based on the report, a client determines whether its cache is valid for the query; if it is, it 

can be used to answer the query, and otherwise, the query may have to be submitted to 

the server. Because of its periodic broadcast nature, synchronous methods provide a 

bound on the waiting time of the next report. 

 

The Cache invalidation schemes reported in the literature mostly fall into the stateless 

category. Some common issues that have been addressed in designing cache invalidation 

schemes are given below. These are the content of the report, the invalidation process, 

and the information (log) that the server must maintain. 
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6.3.2 Content of the Invalidation Report 
 
Ideally, the server should keep track of all updates and broadcast them to the mobile 

clients. But, this is costly and impractical in view of the limited bandwidth and short 

battery life of mobile clients. Instead, the server maintains a short (of reasonable length) 

history of updates and broadcasts an update report (UR) that reflects the most recent 

changes. Several issues need to be addressed with regards to the content of the report. 

 

The granularity of the report refers to the level of details of information each record of 

the report captures. A record in the report can be an 〈id, TS〉 pair, where id is the 

identifier of the object that is updated and TS is the timestamp at which this object is 

updated. Alternatively, the report can reflect the full detail of the object that is updated at 

time TS, i.e., the record is the pair 〈object, TS〉. The former is commonly known as 

update invalidation as clients can only invalidate their cache content. The latter, on the 

other hand, allows clients to immediately update their invalid copy with the object that is 

broadcast. It is thus referred to as an update propagation mechanism. Clearly, there is a 

tradeoff between the two mechanisms. Under update propagation, when the 

disconnection time is short, clients can update its cache immediately. Under update 

invalidation, clients must still submit requests to retrieve the updated records even if the 

disconnection time is short. However, under update propagation, since the entire record is 

broadcast, the report is much larger and can take up a significant portion of the downlink 

channel capacity, which is a scarce resource in wireless environment. Moreover, given 

the same report size, update invalidation can afford to reflect a longer history of updates. 

 

The size of the invalidation report can be fixed or varied. The update history refers to the 

history of the updates that are reflected in the report and can be fixed or varied too. These 

two factors are interrelated in the sense that one typically affects the other. It can also be 

fixed by the number of objects/groups to be included in the report. Obviously, under 

these cases, the update history cannot be predetermined (i.e., it has to be variable) since 

the number of updates varies over a fixed period of time. On the other hand, the report 

size can vary from broadcast to broadcast by fixing the update history being reflected. 
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To conserve energy, it may be necessary to organize the invalidation report to facilitate 

selective tuning. This can be done by interleaving the content of the report with “indexes” 

that can provide “direct” access to the targeted portion of the report. Thus, only the 

desired portion of the report needs to be examined. 

 

6.3.3 Invalidation Mechanism 
 
There are two issues to address here. The first concerns the scale of the invalidation, 

whether it is cache-level or query level. The second concerns the participants that are 

involved, whether the invalidation is performed by the client only, by the server only, or 

by collaboration between the two. 

 

When a client receives an invalidation report, it can invalidate its cache content in two 

ways. First, it can perform cache-level invalidation, i.e., cache validity is performed for 

all objects cached. This requires scanning a large portion of the invalidation report, if not 

the entirety of the report. As a result, it is not particularly suited for selective tuning. In 

this approach, the cache content is associated with one timestamp - only the timestamp of 

the most recent invalidation report. On the other hand, the client can perform query-level 

invalidation, where validation is performed only on the objects queried. This reduces the 

number of objects to be invalidated and, hence, the report can be organized for selective 

tuning. However, each cached object has to be associated with a timestamp as compared 

to a single timestamp for all cached object in cache-level invalidation. The timestamp of 

an object represents the timestamp at which the object is last known to be valid. This is 

usually the timestamp of the invalidation report that was last used to validate the object. 

Thus, different cached objects will have different timestamps. So, each queried object 

may use a different list of objects for invalidation. When a query is issued, the query 

objects’ timestamps are checked against that of the invalidation report received. For each 

object queried, the appropriate list of objects is used to (in)validate it. 

 

Invalidating the cache content can be performed by the client alone. This requires that the 

client based its invalidation purely on the invalidation reports. Thus, the effectiveness of 

such approaches is dependent on the content of the report. On the other extreme, we can 
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allow the server to perform the invalidation alone. This, however, will require the client 

to inform the server about its cache content which can be costly since transmitting this 

information consumes energy and bandwidth. Finally, the client and server can 

collaborate to identify the cache content that should be invalidated. The client uses the 

invalidation report to invalidate its cache content; for those that remain uncertain, the 

client submits their information to the server for invalidation. 

 

Another important issue in the design of a cache invalidation scheme concerns the 

information (update logs) maintained at the server to reflect the updates on the database. 

The update logs may contain update information of each individual object or its 

identifier. For the former, the log record is of the form 〈object, TS〉 to reflect that object 

has been updated at timestamp TS. For the latter, the server only needs to maintain 〈id, 

TS〉 pairs, each of which indicates that the object with identifier id is updated at TS. 

Alternatively, each log record may reflect updates on a collection of objects. In this 

group-based approach, objects are organized into groups and the log record reflects the 

latest update to the group, i.e., each log record is of the form 〈group-id, TS〉 where TS is 

the most recent timestamp that an object in group identified by group-id has been 

updated. The second issue concerns the size and log history which is the duration that the 

update logs should be maintained which, like the content, are interrelated. The size can be 

fixed by restricting updates to be maintained for a fixed number of objects. In this case, 

the log history changes depending on the updates. On the other hand, variable sized logs 

can be maintained by fixing the log history to a fixed interval. 

 

6.3.4 Cache Invalidation Scheme 
 
Based on the above discussion, [Tan 2001] analyzed several cache invalidation 

schemes. The cache invalidation scheme reported in this thesis is a combination of Bit-

Sequence Scheme and Bit-Sequences with Bit Count Scheme. Here we propose a 

Dynamic Cache Invalidation scheme which can dynamically adopt Bit-Sequence Scheme 

or Bit-Sequences with Bit Count Scheme. 
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The Bit-Sequence Scheme (BS) 
 
The Bit-Sequence algorithm uses the following framework: 

• Content: The report consists of a list of 〈list of ids, TS〉 pairs in a compact form. 

This allows the report size to be fixed, though the update history varies.  There is 

no organization to support selective tuning. 

• Invalidation Mechanism: The invalidation is performed by the client at cache-

level. 

• Log: The logs maintained at the server keeps track of individual object update 

information using 〈id, TS〉 pairs for up to half the database size, i.e., the size of the 

log is fixed but the update history is variable. 

 

Let the number of database objects be N=2n. In the BS algorithm, the invalidation report 

reflects updates for n different times Tn, Tn-1, . . . , T1, where Ti 〈 Ti-1 for 1 〈 i ≤ n. The 

report comprises n binary bit-sequences, each of which is associated with a timestamp. 

Each bit represents a data object in the database. A ‘1’ bit in a sequence means that the 

data object represented by the bit has been updated since the time specified by the 

timestamp of the sequence. A ‘0’ bit means that the object has not been updated since 

that time. The n bit-sequences are organized as a hierarchical structure with the highest 

level (i.e., bit sequence Bn) having as many bits as the number of objects in the database 

and the lowest level (i.e., bit-sequence B1) having only two bits. For the sequence Bn, as 

many as half of the N bits (i.e., 
2
N ) can be set to “1” to indicate the 

2
N  objects that have 

been updated. The timestamp of the sequence Bn is Tn. The next sequence in the 

structure, Bn+1, has 
2
N  bits. The kth bit in Bn-1 corresponds to the kth  ‘1’ bit in Bn, and 

22
N  bits can be set to ‘1’ to indicate that 22

N  objects have been updated since Tn+1. In 

general, for sequence Bn-i, 0 ≤ i ≤ n -1, there are i

N
2

 bits and the sequence will reflect that 
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12 +i

N  objects have been updated after the timestamp Tn-i. The kth bit in sequence Bn-i 

corresponds to the kth ‘1’ bit in the preceding sequence (i.e., Bn-i+1).  

 

An additional dummy sequence B0, with timestamp T0, is used to indicate that no object 

has been updated after T0.  In general, N does not need to be a power of two and the 

number of lists can also be any value other than n.  Furthermore, the list associated with 

timestamp Ti does not need to reflect the updates for half the number of objects in the list 

associated with Ti+1, 1 ≤ i ≤ n -1. The Bit-Sequences structure is broadcast to clients 

periodically. The protocol for invalidating the cache is shown in Fig.6.10 

 

 
//T – timestamp of current report 
// TC – timestamp of last valid report received by mobile client 
if T0  T≤ C 

        all cached objects are valid 
else { 
         if TC < Tn
 remove the entire cache content 
         else { 
       determine the bit sequence Bi such that Ti≤TC<Ti-1, 1 i n ≤ ≤
       invalidate all the objects marked “1” in Bi
     } 
         } 
for every object O ∈Qi { 
        if (O is in the cache) 
 use the cache’s content to answer the query 
        else 
 submit request for O 
} 
TC ←T 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.10 The Bit-Sequence scheme Protocol 
 

The Bit-Sequence sceheme can be explained with an example. Consider a Bit-Sequence 

structure for an invalidation report as shown in Fig 6.11.  As shown, the first level (B4) 

has 16 bits, eight of which have been set to “1”. These eight objects are the most recently 

updated objects. The timestamp for B4 is 18.  Similarly, bit sequence B1 has two bits, 

reflects the most recently updated object 8, and has a timestamp of 32. 
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B4 1    0    0    0    1    1   1  1   0   1   0   1  0  0  0     1

 
Fig 6.11 Bit Sequence Example 

Assume that the client receives this invalidation report when it submits its query for 

objects 5 and 8. Suppose the last invalidation report received by the client before it 

disconnects is at time 31. Since the client’s cache content is last valid at time 31, it should 

use the sequence B2 to invalidate its cache. To locate those objects denoted by the two 

“1” bits, the client will check the sequences B2-B4. This is accomplished as follows: To 

locate the object corresponding to the second bit that is set to “1” in B2, the client has to 

check the second “1” bit in B3. Since the second “1” bit in B3 is in the fifth position, the 

client will have to examine the 5th “1” bit in B4. Because B4 is the highest bit-sequence 

and the 5th “1” bit is in the eighth position, the client can conclude that object 8 has been 

updated since time 31. Similarly, the client can determine that the 12th object has also 

been updated since that time. Therefore, both objects will be invalidated by the client. 

Since the client requests for objects 5 and 8, object 5 remains valid and can be used to 

answer the query while the request for the invalid object 8 has to be submitted to the 

server. 

Bit-Sequences with Bit Count (BB) 
 
The other scheme, is the Bit-Sequences with Bit Count (BB) scheme. Like the Bit-

Sequence approach, it comprises of a set of bit sequences organized in a hierarchical 

manner. However, only the relevant bits need to be examined. This is achieved by 

associating each bit sequence with a bit count array.   

 0    0     0   1  1    0   1   1

 0    1    1   0

B3 

T4 = 18 
T3 = 26 
T2 = 30 
T1 = 32 B2 

B1   1   0 
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Let N be the number of objects in the database. Furthermore, let bt denote the size of a 

timestamp. We also assume that a query Q returns the set of objects {O1,O2, . . .,Oq} as 

answers. Furthermore, we assume that the objects are already ordered in the same manner 

as the information reflected in the invalidation report, i.e., information for O1 will be 

received before information for O2 and so on. If the objects are not ordered accordingly, 

then they can be sorted. We also denote the corresponding timestamps when these objects 

are last valid in the client cache as t1, t2, . . .  tq, respectively. 

 

As in the BS scheme, the BB structure comprises a set of n bit sequences: Sequence Bn 

has a timestamp Tn  indicates that updates after Tn are reflected and comprises N bits, half 

of which are set to ‘1’; sequence Bn-1 has timestamp Tn-1 and N/2 bits, of which N/22 bits 

are set to ‘1’ and so on. In fact, the content of the bit sequences are exactly the same as 

those of the BS scheme. Like the BS scheme, if the bit sequence Bn-i is to be used to 

invalidate the cache, then the sequences Bn-i, Bn-i+1, . . .,Bn may have to be examined. 

However, the proposed BB strategy adopts a top-down examination of the sequences, i.e., 

from Bn to Bn-i, rather than the bottom-up approach (i.e., Bn-i to Bn) of BS scheme. 

Moreover, for some valid objects, it may not be necessary to examine all the sequences 

from Bn to Bn-i as it may be possible to determine their validity and terminate the search 

before sequence Bn-i. Furthermore, the proposed scheme only examines the relevant bits 

in each sequence. As the kth “1” bit in Bn-i corresponds to the kth bit in Bn-i-1, we need a 

mechanism that can count the number of “1” bits in a sequence, say Bn-i, without 

examining the entire sequence. To illustrate how selective tuning can be facilitated with 

such a mechanism, let us consider a query to validate an object O. The client first 

identifies the bit sequence that should be used. This is accomplished by examining the set 

of timestamps. Suppose the sequence is Bn-i. This means that we need to examine 

sequence Bn, followed by Bn-1, and so on until Bn-i. From object O, the client can 

selectively tune to the corresponding bit in Bn without scanning the entire Bn. If the bit is 

set to ‘0’, then the object is valid, since object O will not be found in any subsequent 

sequences Bn-1, Bn-2, . . .; otherwise, the client determines the number of ‘1’ bits from the 

beginning of Bn to the bit corresponding to O. From this number, it can again selectively 
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tune to Bn-1 and examine the corresponding bit of O in Bn-1. Again, if the bit is ‘0’, then 

the object O is valid and the search terminates; otherwise, its position in the Bn-2 is 

determined and this process is repeated until sequence Bn-i. We can terminate when we 

encounter ‘0’ bit at any of the sequences from Bn to Bn-i. If the relevant bit at Bn-i is ‘1’, 

then the object is invalid; otherwise, it is valid.  

 

Now, the mechanism to facilitate selective tuning is simple. We associate with each bit 

sequence a bit count array, all of which have entries that are j bits. For bit sequence Bn-i,  

0 ≤ i ≤ n -1, the sequence is partitioned into packets of 2j bits.  

In other words, there are ⎥
⎥

⎤
⎢
⎢

⎡
j

iN
2

2/  packets. In general, for sequence Bn-i, the number of 

array entries is ⎥
⎥

⎤
⎢
⎢

⎡
j

iN
2

2/ . Essentially, the kth entry in the bit count array of sequence  

Bn-i represents the number of ‘1’ bits that have been set for the kth packet in the sequence. 

Selective tuning is achieved as follows: Let packet i contain the bit which is the selected 

for the query sent. From the bit array count, we can determine the number of ‘1’ bits that 

have been set for packets 1 to i - 1. The client can then tune into the ith packet and scan 

the ith packet until the relevant bit. In this way, we will be able to compute the number of 

“1” bits.  

 

To check the validity of the answer objects to query Q, the client employs the protocol 

shown in Fig.6.12.  The invalidation report is organized as follows: The counter is 

broadcast first, the timestamps are broadcast next, followed by the bit count arrays for 

sequences Bn, Bn-1, . . ., and, finally, the bit sequences Bn, Bn-1, . . .,B1. 

 

 

 

 

 

 

 

137 



CHAPTER 6: CACHING IN MOBILE NETWORKS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//Answer Set = {O1, O2, …, Oq}  --- objects for query Q 
//tid - last known valid time of object with id Oid
download the counter, the timestamps and the bit count arrays 
for each object Oi ∈Answer set 
         if TO  t≤ i     // object Oi is valid 

AnswerSet = AnswerSet – {Oi} 
        else if ti < Tn    // object oi is invalid 
 AnswerSet = AnswerSet – {Oi} 
// AnswerSet contains the remaining objects whose validity is still uncertain 
for each object Oi ∈  AnswerSet 
          determine the bit sequence to be used to validate Oi
k = n 
repeat { 
          for each object Oi ∈  AnswerSet, examine bit sequence Bk { 
 tune to packet p containing information on Oi  
 examine the bits in packet p until position of Oi 
 let the number of “1” bits set (in p inclusive of Oi ) be b 
 if Bk is the bit sequence to be used to validate Oi { 
         if the bit corresponding to Oi is set to “1” 
  Oi is invalid 
         else  
  Oi is valid 
          AnswerSet = AnswerSet – {Oi} 
 } else { 
         if the bit corresponding to Oi is set to “0” { 
  Oi is valid 
          AnswerSet = AnswerSet – {Oi} 
     } else { 
             // we need to examine the next sequence Bk-1
          from the bit count array of Bk
        determine the number of “1” bit from packet 1 to p-1 of Bk
          let this value be c 
          the position of Oi in bit sequence Bk-1 is (c+b) 
      } 
        } 
          } 
          k = k – 1 
} until AnswerSet = ∅ 

Fig 6.12 The Bit-Sequence with Bit count scheme Protocol 
 

To illustrate Bit Sequence with Bit count scheme consider the previous example 

discussed for Bit-Sequence scheme. The BB structure is as shown in Fig 6.13. 
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Fig 6.13 Bit Sequence with Bit Count (BB) Example 

 

Each bit count array entry keeps track of the number of “1” bits set for four objects. Since 

there are 16 objects in the database, there are four entries in the bit count array 

corresponding to B4, two entries in B3’s bit count array, and one entry in B2’s bit count 

array. Note that B1 is not associated with a bit count array. Assume that a query requests 

for objects 5 and 8 whose cached timestamps are, respectively, 31 and 27. From the 

timestamps in the invalidation report, the client knows that it needs to check B2 for the 

validity of object 5, and B3 for the validity of object 8. The client first determines which 

two bits in B3 correspond to the two queried objects. This is done as follows: As both 

objects 5 and 8 are in the same packet, from the first bit count array entry of B4, the client 

knows that there is only one “1” bit among the first four objects in the bit-sequence B4.  

Thus, it will tune to the beginning of the second packet of B4 and examine the first bit in 

the second packet till the fourth bit. Since the first bit corresponds to object 5 and it is set 

to “1”, the client knows that object 5 is the second bit in B3. Similarly, the client can 

determine that object 8 is the fifth bit in B3. For object 5, the client examines the 

corresponding bit in B3 which has been set to “0” indicating that the object is valid. For 

object 8, the client first examines the bit count array for B3 and knows that the first entry 

contains a value of 1. By examining the first bit of the second packet of B3, it determines 

that the bit corresponding to object 8 is set to ‘1’. This also means that object 8 can be 

found in the second bit of B2. It then examines the second bit of B2 and finds that object 8 

is invalid. The protocol is as shown in Fig. 6.13. 
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6.3.5 Complexity of BS & BB Schemes 
 
Time Complexity of Bit-sequence algorithm: 
 
In order to calculate the time complexity of bit-sequence algorithm, let us consider the 

following example. The structure of the invalidation report along with the bit sequences 

and time stamps are as given in Fig 6.14 

 

B4 1    0    0    0     1     1    1    1    0    1   0   1  0  0  0     1

 
Fig 6.14 Structure of IR with bit sequence time 

 

Assume that the client receives this invalidation report when it s

the last invalidation report the client received be at time 31. So f

query we start from the bit-sequence B2 as the last valid time-sta

stamp T2 and T1. The maximum number of updates possible at 

which is equal to the number of bits in the next bit-sequence i.e.

of iterations to be run for answering the validity of the present ca

the sum of the number of bits in bit-sequences B2, B3 and B4.  

Mathematically, 

The total number of iterations = s [B2] + s [B3] + s [B4] 

where s [Bi] denotes number of bits in bit-sequence Bi. 

The above example shows us that knowing the last valid time-s

the total number of iterations. Generalizing the above example

complexity of bit-sequence algorithm. 

 0    0     0    1    1     0    1    1 

 0    1    1   0 

B3 

T4 = 18 
T3 = 26 

 T2 = 30 
T1 = 32 B2 

B1   1   0 
Bottom-up
approach 
stamps 

ubmits its query and let 

or answering the present 

mp 31 is between time-

the bit-sequence B2 is 2 

 B1. So the total number 

che’s objects is equal to 

tamp is sufficient to get 

 we calculate the time 
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Let N be the total number of objects in the cache and k be the total number of updates. 

Let Ti be the last valid time-stamp. So, the corresponding last valid bit-sequence is Bi. 

The relation between k and i is given below: 

s(Bi) = 2i = 2k  

Using the above statements we get the following: 

Time Complexity of bit-sequence algorithm, T (BS) = (2k + 22k + ….. + N)  

But , N = k
k
N
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T (BS) = 2(N-k) 

Thus, the time complexity of the bit-sequence is 2(N-k). 

 

Time Complexity of Bit Sequence with Bit Count (BB) algorithm: 
 
Unlike the above algorithm this algorithm works on selective tuning top-down approach. 

The algorithm searches the validity of only one object unlike the case of bit-sequence 

which checks the validity of all objects at a time.  

The time-complexity of the algorithm in finding the validity of one object: 

Let, total number of objects in the server be N; 

Let the Packet size  be √N and the number of updates be k; 

In one bit-sequence, 

Number of iterations = (Total no. of packets – 1) + (Packet size) 
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But, the number of bit-sequences to be checked for is equal to ⎟
⎠
⎞

⎜
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k
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2log  

Therefore, for one object 
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Simplifying this we get, 
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minimum value of T at p, 

⎟
⎠
⎞

⎜
⎝
⎛
−

=
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N
kNp

2log

)(2  

But, maximum number of updates possible (worst case), k = N/2. 

Therefore, 
2log

))2/((2

2

NNp −
=  = N  

Thus for minimum time complexity, Np =  

 

6.3.6 Dynamic Cache Invalidation Scheme 
 
The algorithm which we propose is a combination of both the algorithms BS and BB. Bit 

sequence algorithm works well when the number of objects in the cache is huge and the 

probability of the number of updates at the server is less. If the number of objects in the 

cache is huge then BB is less efficient because it has to traverse down the invalidation 

report for each object to find its validity. So, combination of both these strategies along 

with a proper switching condition which synergizes the advantages of both the algorithms 

will be much efficient. 

The switch condition between BS and BB is explained below: 

The main deciding factor for the efficiency of both the algorithms is time complexity. So 

for using BB algorithm the time complexity for invalidating the entire cache should be 

less than the time complexity of the BS algorithm. 

i.e., 

T (BB) ≤ T (BS)  

So,  ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −+
−

∗∗
k
NN

N
kNA 2log1)(2 ≤ 2(N-k) 

If the above condition is true then we use BB else we use BS. 
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6.3.7 Discussion of Results 
 
It is found that the algorithm BS-BB works better for smaller cache sizes. The range for 

which it is valid is given by following proof: 

 

For using the dynamic algorithm proposed here, the following condition should be 

satisfied.. 

( ) ⎟
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⎜
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⎛ −+
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NN

N
kNA 2log1)(2 ≤ 2(N-k) 

Rearranging the above statement and substituting A = pN we get, 

( ) ( ) ( ) ( ) kNpNNpkNNpNNpN 22 log112log112 −+−≤−+−  

We divide both sides of the inequation with ( )( )112 −− NpNpN  assuming it to be 

positive. 

Thus we get, 
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This is not possible as k is always less than N. So, 

( )( )112 −− NpNpN  < 0 

(√N-1)(p√N-1) < 0 

Thus, 1 < √N < ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
1  

But the k value is considered only half the N value at maximum. So the above equation 

becomes, 

1 < √N < ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p2

1  

 

The above condition gives the range of N. If the above condition is not satisfied then Bit 

Sequence algorithm is applied. 

 
The time vs. updates for different N values are as shown in Fig 6.15 to Fig 6.19. 
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N=400; cache size=1%

 
Fig 6.15 No. of updates vs time for N=400 and cache size = 1% of the total objects 

  
Fig 6.16 No. of updates vs time for N=800 and cache size = 1% of the total objects 

 
Fig 6.17 No. of updates vs time for N=4000 and cache size = 1% of the total objects 

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

Ti
m

e 
--

 
BS 
BB 

0 250 50 100 150 200
No. of updates(k) ---

N= 800; cache size=1%

3000 

2500 

2000 

Ti
m

e 
--

 

BS 1500 BB 
1000 

500 

0 
0 100 200 300 400 500

No. of updates(k) ----

N=4000; cache size=1%

0 
5000 

10000 
15000 
20000 
25000 
30000 
35000 
40000 

Ti
m

e 
--

 

BS 
BB 

0 500 1000 1500 2000 2500
No. of updates(k) --

145 



CHAPTER 6: CACHING IN MOBILE NETWORKS 

 

N= 200; cache sizes= 3%

 
Fig 6.18 No. of updates vs time for N=200 and cache size = 3% of the total objects 

                               

 
Fig 6.19 No. of updates vs time for N=1000 and cache size = 3% of the total objects 

 
Fig 6.20 No. of updates vs time for N=100 and cache size = 10% of the total objects 
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6.4 Summary 
 
In this chapter, we present a QoS strategy for Wireless Internet Access based on IPS-CoD 

protocol. The objects requested by clients are prefetched into the cache and made 

available beforehand, so that the latency for clients on the move can be significantly 

reduced. This strategy can be combined with hand-off management to give better results. 

We also showed that this strategy does not have significant impact on the cache hit for 

other clients who are not using CoD service. Also, later we discussed the cache 

invalidation strategy in a mobile environment and a dynamic cache invalidation strategy 

based on Bit Sequence and Bit Sequence with bit count invalidation schemes. We derived 

a condition for adopting one of these strategies depending on object invalidation 

parameter. 
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CHAPTER 7 

CONCLUSIONS 
 

The thesis deals with different caching techniques for enhancing the user experience in 

fixed and wireless web access. In this chapter, we summarize the main contribution made 

and point out some of the possible extension of the work. 

 
The thesis, focused on the design and implementation of dual-stage victim cache policy 

(Chapter 3). Based on the results obtained, we can conclude that Dual-Stage with Victim 

Cache policy is a practical and viable caching algorithm. It has a good hit ratio 

performance and is also robust w.r.t varying workload characteristics. The study of how 

different caching algorithms would perform with smaller size caches which can be used 

for schemes like Cache-on-Demand proxies was carried out. Further a History-based 

randomized cache replacement policy has been analyzed. It is observed that randomized 

replacement policy with LRU or SLRU performs better than only LRU or SLRU. Size 

based replacement is known to be more efficient than a Least Recently Used policy. This 

is confirmed by our results, which shows that RSLRU has a higher hit ratio than RLRU. 

On using random replacement with history based policy we observe that HRLRU 

performs better than RLRU, but this does not hold for the size based replacement. In the 

case of HRSLRU and HRLRU it is observed that for smaller cache sizes the former 

performs better. HRSLRU is quite stable with increasing cache sizes.  The Cache on 

Demand (CoD) protocol enhances traditional web caches with the capability of reserving 

resources to store external content for a specified period of time. The major benefit of this 

feature is that a third party, such as a content provider or a business partner can have 

guaranteed content presence in the network, and also strong control on the content 

delivered to web users. Furthermore, a third party can enforce strong content consistency 

since it can keep track of distributed content at different CoD cache locations. 

 

The cache replacement in streaming multimedia is a prominent research problem and 

Chapter 4 of the thesis deals with this. The results obtained for OC algorithm and CC 

algorithm were analyzed.  It was observed that in case of the total cache size requirement, 
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for all the bandwidths used, OC algorithm occupies less cache space than CC algorithm. 

In case of the total bandwidth utilized OC algorithm outperforms the CC algorithm. It 

utilizes the external bandwidth more efficiently than CC algorithm for all the cases of 

bandwidth. By these results it is evident that though OC algorithm is slightly difficult to 

implement, it definitely is a better performer. A replacement policy, based on frequency-

index was proposed for replacing videos that are cached using the above algorithms. A 

popularity table is maintained in the proxy, which has the popularity index for all the 

video files stored in the proxy. The videos are replaced based on their popularity; the 

least popular video is removed from the proxy first. It has been observed that the hit-ratio 

increases with increase in bandwidth. This is due to the reason that, as the available 

bandwidth increases, the cut-off size increases and hence the number of bytes cached per 

video decreases. Consequentially, more number of videos can be cached thereby 

improving the hit-ratio. It was also observed that the OC algorithm gives a better hit ratio 

compared to the CC algorithm. As the bandwidth increases the hit ratios of both the 

algorithms are nearly the same, since both the algorithms behave the same way at high 

bandwidths. Further, the hit-ratio increases with increase in cache size. Also for a 

constant bandwidth, more the available cache size, more the number of videos that can be 

cached and hence higher the hit-ratio. In this case as well, the OC algorithm gives a better 

performance compared to the CC algorithm. FIR algorithm yields better hit-ratio as 

compared to traditional algorithms like LRU and LFU. This is primarily due to the fact 

that replacement here happens frame-by-frame as opposed to complete Boolean 

replacement in the other two algorithms. 

 

In Chapter 5 we proposed soft computing techniques for cache replacement strategies 

both for static web objects and streaming multimedia objects. Size based policies 

normally have a higher hit rate eg.. SLRU outperforms even FUZZY algorithm, but 

suffer from a lower byte hit rate. The Fuzzy Algorithm has a higher hit rate for lesser 

cache sizes when compared to LRU and LFU. Considering Byte Hit Rate, for smaller 

cache sizes the traditional algorithms are better than Fuzzy approach proposed whereas 

for large cache sizes Fuzzy approach performed better than LRU and LFU but not better 

than SLRU. This made us to consider the other soft computing method, the Genetic 
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Algorithm.  On analyzing the Genetic Algorithm based Cache Replacement Policy 

(GAR), it was observed that GAR has a higher hit-ratio as compared to traditional 

algorithms. SLRU has a superior hit-ratio than GAR for smaller cache sizes. As cache-

size was increased, GAR scores over SLRU. The hit-ratio of GAR has been found to be 

between 0.6 and 0.8. 

 

Genetic algorithms was then extended to cache streaming multimedia objects in place of 

frequency indexed replacement policy. We adopted Genetic Algorithm by assigning a 

fitness value to every frame and the replacement was done of the less fit frames and not 

whole videos. In the comparison, Genetic algorithm based replacement algorithm yielded 

better hit-ratios than LFU and LRU under similar memory availability, for a synthetic 

workload. This is primarily due to the fact that replacement here happen frame-by-frame 

as opposed to complete Boolean replacement in the other two algorithms. The number of 

replacements as compared to LRU and LFU has been minimal which shows that the 

network bandwidth is saved due to minimal replacements. It can be observed that the 

algorithm is suited especially for high-end servers, which deal with a large amount of 

memory for caching multimedia objects.  

In Chapter 6, the issues of caching in a mobile environment were addressed. We 

proposed integrating intelligent proxy servers with cache-on-demand protocol which 

helps the cache to be reserved for the mobile client being registered in a new base station 

and prefetching the web objects requested by the client. So, the frequently accessed web 

content is prefetched based on the user’s profile and put into the proxy cache. This was 

done to show the basic advantage of integrating the mobile network with the Cache-on-

Demand protocol. Analyzing the results obtained, we can see that the CoD protocol will 

help the user with a better Quality of Service and can be offered as a service by the 

Content Delivery vendors, without affecting the clients who are not using the prefetching 

service. This gives a higher cache hit ratio, reduces the bandwidth usage and latency in 

servicing client requests. In addition, it also minimizes the congestion in the mobile 

network and the load placed on origin servers.   
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The thesis also discussed the cache invalidation schemes, which is to keep cache 

coherency in a wireless environment. The scheme ‘bit-sequence’ and ‘bit-sequences with 

bit count’ were discussed. After deriving the time complexity of these two algorithms, we 

proposed a dynamic scheme where the derived condition can be used to chose between 

the bit-sequence and bit-sequence with bit-count scheme. It is shown that this scheme 

works well with various workloads. 

In Appendix A, implementation of replacement schemes for uniformed objects is 

discussed. LRU is the most popular and efficient scheme used for replacement scheme 

for uniformed objects, but it has been the most difficult scheme to be implemented 

especially when the associativity of the cache is higher. Higher associativity with the 

LRU replacement policy is a good configuration for reducing miss rate in the cache 

design and enriching the performance in many applications, high-end servers, 

workstation and modern processors. Implementing LRU policy in hardware for high 

associativity is difficult. Implementation objectives are identified and various 

implementations namely Square Matrix, Skewed Matrix, Counter, Phase, Link List and 

Systolic Array are discussed. The results of the different implementations for increasing 

associativity are analyzed. It is inferred that for higher associativity, conservation of 

space to store data of the schemes is important but the associated logic cannot be totally 

neglected. At higher associativity, Linked List, Systolic Array and Skewed Matrix are the 

designs most suitable for implementations. Delay also follows the same characteristics 

and with increase in associativity, the Link List, Systolic and Skewed Matrix would 

involve less delay. Although the implementation size for one set grows rapidly with 

increase in associativity, the growth is much less when considered for the entire cache. 

The results also show that the LRU implementations, which involve smaller storage 

space with little increase in component size or number of components, show better 

behavior with increasing associativity. Finally of all the implementations, Systolic and 

Link List show better results while Skewed Matrix with less information also exhibit 

similar performance. 

 
Further Fuzzy Logic and Neural Network approach for caching & replacements of 

multimedia objects can be carried out as future work which will lead to comparative 
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evaluation of these soft-computing techniques.  Efficient cooperative caching for 

streaming multimedia objects among peer-proxies needs to be investigated. Also the 

other area which has to be addressed is cost-optimization methods for mobile users where 

the contents cached can dynamically move with a mobile client. 
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APPENDIX 
 

LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS 
 

A.1 INTRODUCTION 
 
Use of cache memories in computer architecture is well known and existed even before 

the Internet was envisaged. Proxy caching for enhancing web service performance has 

several similarities to caching in memory architectures to improve computer performance 

[Smith 1982]. Because central processing units operate at high speeds while memory 

systems operate at a slower rate, CPU designers provide one or more levels of cache – a 

small amount of memory that operates at or close to the speed of the CPU. When the 

CPU finds the information it needs in the cache, a hit, it doesn’t have to slow down. 

When it fails to find the requested object in the cache, a miss, it must fetch the object 

directly and incur the associated performance cost. 

 

Typically, when a cache miss occurs, the CPU places the fetched object in the cache, 

assuming temporal locality — that a recently requested object is more likely than others 

to be requested in the future. Memory systems also typically retrieve multiple 

consecutive memory addresses and place them in the cache in a single operation, 

assuming spatial locality — that nearby objects are more likely to be requested during a 

certain time span. At some point the cache will become full and the system will use a 

replacement algorithm to make room for new objects, for example, firstin/first-out 

(FIFO), least recently used (LRU), or least frequently used (LFU). The goal is to 

maximize the likelihood of a cache hit for typical memory architectures. 

 

Modern processors, commercial systems, high performance servers and workstations 

have high-associative caches for performance improvement. The complexity of 

implementation of LRU policy for highly associative cache tends to increase as the 

associativity increases [Hennessy 2003, Patterson 2005, Hwang 1993, Deville 1992].  

The increase in complexity additionally increases the delay incurred in detecting the line 
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for replacement degrading the cache performance. This work is an effort to implement 

and analyze efficient LRU implementations for high-associative caches. Various 

implementations of LRU were designed, simulated and synthesized for comparison. 

These designs are analyzed with respect to their implementation complexity.  

 

A.2 HIGH-ASSOCIATIVITY CACHE WITH LRU POLICY 
 
The classical approach to improve the cache behavior is reducing miss rate.  Increasing 

associativity in the cache reduces conflict misses thereby reducing miss rates and 

improving performance. Studies have shown that conflict miss reduces from 28% to 4% 

when the associativity changes from 1-way to 8-way [Patterson 2005]. High-associative 

cache is more efficient when miss penalty is large and memory inter connect contention 

delay is significant and sensitive to the cache miss rate [ZhangC 1997]. Due to rapid 

changes in technology, the miss penalty is becoming smaller and thus, the replacement 

policies have to be faster. Better performance of high-associative cache depends on 

efficient replacement algorithm [Deville 1992]. The replacement algorithm LRU, that 

replaces the least used line in cache, has miss ratio and performance, comparable to 

optimal (OPT or MIN) algorithm.  

 

LRU is currently the most common replacement strategy used in cache, which gives 

higher performance [Smith 1982]. Result from [Smith 1985] have shown that for many 

workloads FIFO and Random replacement policies yield similar performance but the 

miss ratio of LRU is 12% lower on the average thus yielding better performance than 

other policies. Studies  [Sugumar 1993] have shown that in the case of larger 

associativity, LRU can be noticeably improved and made more optimal when compared 

to the off-line MIN [Belady 1966] or the equivalent OPT algorithms [Mattson 1996].  A 

high-associative cache with LRU is a better solution for reducing miss rate and 

improving performance. This combination has an added advantage of reducing thrashing 

provided that associativity value, N is greater than M, where M is the number of different 

blocks that map to the same set. Results from [Ailamaki 2000] reveal that cache design 

affects the behavior of database application and high-associativity gives better 

performance for database workload. Increasing associativity in Network processor cache 
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removes the problem of cache conflicts [Gopalan 2002] enhancing performance. High- 

associativity is a reasonable way to increase the physically addressed cache size for it 

does not increase the translation hardware. High-associativity also improves execution 

time of numerical intensive applications. 

 

Commercial systems use processors with high-associative cache to obtain better 

performance. IBM POWER 3 architecture has 64KB data and 32KB instruction cache 

implemented as content addressable memories with each array having 128-way set 

associative and 8-way interleaved cache [Papermaster 1998]. Many Industrial Embedded 

processors like ARM3 has 64-way associativity, Strong ARM, Intel SA-110 and Intel X 

Scale has 32-way associativity [ZhangM 2000, SA110 2000]. Altera's Excalibur EPXA10 

has a 200 MHz ARM 922T processor with 64-way set associative 8Kbyte instruction and 

8KByte data caches [Excalibur 2002]. Thus, high-associativity has been employed 

commercially to enhance the performance of systems and applications.  

 

A.3 IMPLEMENTATION COMPLEXITY 
 
A 2-way set associative cache with LRU policy can be implemented with a one-bit 

counter called the access bit. When a line is accessed from the set, the access bit of the 

line is set representing most recently used line and the access bit of the other line is reset 

to zero representing least recently used line. If associativity is increased to four, LRU 

could be implemented as a counter where the number of access bits will be two. Beyond 

this implementing a LRU policy becomes difficult. The number of lines in a cache set 

increases, increasing the storage space to maintain the LRU history, thereby increasing 

cache size and cost. Complexity of the logic to implement the LRU also increases 

[Deville 1992]. Studies reveal that the performance impact of the LRU policy reduces as 

the associativity increases [Wong 2000]. [Mattson 1996] showed the LRU performs close 

to OPT replacement algorithm when associativity is less but has a large number of 

victims to choose from when the associativity is large decreasing performance. Although 

LRU is the best replacement policy, which can help to reduce miss ratio, it performs 

poorly due to inefficient implementation [Deville 1992, ZhangC 1997]. Efficient 

implementation of LRU in a high-associative cache will increase the performance of the 
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cache. It is shown in [Sugumar 1993, Deville 1992] that for FIFO and random 

replacement policies the complexity of implementation is relatively low whatever is the 

associativity. Sugumar and others gave a simpler implementation for FIFO and Random 

replacement policy. Eventhough LRU is the best policy, designers of embedded 

microprocessors for low power design chose other policies instead of LRU and made a 

compromise on performance in order to have simpler implementation [Clark 2001].   

 

An efficient LRU implementation to improve the performance is necessary but 

implementation has many design constraints. LRU hardware should maintain a data 

structure where it logs every access to the cache. As the associativity increases the size of 

the data structure and associated logic also increases. But the storage size cannot be large 

due to space and time constraints. When the storage space is reduced, the complexity of 

the logic needed to log the access usually increases. Further the time taken to log every 

access and the time to find the line to replace when a miss occurs should be less in order 

to reduce the miss penalty. LRU hardware, with less storage space to log the access, with 

less complexity in circuit, less time to log the access, less time to detect the replacement 

line on miss is required for improved performance of cache. 

 

A.4 PROPOSED DESIGN APPROACHES FOR LRU IMPLEMENTATION 
 
The information of each access should be logged in a data structure that determines the 

performance of the LRU hardware.  Each set in the associative cache has its own LRU 

hardware for implementing the LRU policy. On referencing this set the corresponding 

hardware is also invoked requiring no separate detection. The collection of this hardware 

for all the sets in the cache is the Global Set. And the hardware for the set, which is being 

referenced, is the Working Set. The cache line index in case of a hit is the index of the 

line whose tag matches with the tag bits of the referenced address and in case of a miss is 

the index of the line identified for replacement by LRU hardware. In this section, we 

compare six different implementations of LRU policy for attaining high performance for 

an N-way set associative cache with Square Matrix, Skewed Matrix, Counter, Link list, 

Phase and Systolic Array methods 
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A.4.1 SQUARE MATRIX IMPLEMENTATION  
 
This scheme implements a simple data structure with a simple storage element, D flip-

flop. The data structure used is a square matrix of this storage element and is of order N 

for an N-way set associative cache.  The global set contains M replications of this data 

structure for a cache with M sets. Here each of the N rows of the data structure maps to 

one of the N cache lines of the set and logs the access information of that line. Initially all 

the bits in matrix are set to zero as shown in Fig A.1. The Square-Matrix implementation 

follows a simple logging scheme wherein, it sets the row of accessed line to one and after 

this sets the column of the accessed line to zero.  

           
Fig A.1 4x4 matrix initialized to zero                         Fig A.2 4x4 matrix with cache line 3    
                                                                                       as the least recently used line. 
 

The number of ones in each row is an indication of the order of the accessed cache lines 

for the set. A line with more number of 1’s is more recently accessed than the one that 

has less number of 1’s. The row in the matrix, which has the maximum number of 1’s, is 

the line most recently used and the row, with all bits set to zero is the line least recently 

used as shown in Fig A.2.  On a cache miss, LRU is detected by checking the row for 

which all the storage elements are zero. There will always be a line that has the entire row 

set to zero. The Matrix is made up of N x N storage elements. The hardware also has one 

n x N decoder, a 2 to 1 n-bit multiplexer and N x n priority encoder, where n is . 

The encoder gives priority to lines with lower index value. Fig A.3 shows the LRU 

implementation of N-way set-associative cache.  

N2log
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Fig  A.3 Square Matrix Implementation 

 

The cache line index is presented to the n x N decoder from the multiplexer, which is 

switched by the hit signal to accept it. The cache line index selects the correct 

corresponding row and column. The storage elements in the row are set and in the 

column are reset. The ANDed output of the values of the elements of each row is fed into 

a priority encoder, which detects the rows whose all elements are Zero and selects one 

amongst them as the LRU. In case of a miss this index is presented to the multiplexer, 

which is triggered by the miss signal to accept it and the corresponding row and the 

column are set and reset respectively. RESET pulse high initializes the matrix by setting 

all storage elements to zero. The hit or miss decides how the matrix information is to be 

altered. As very simple operations of set/reset are done on the basic storage elements, the 

delay involved and the time required to log the access is less when there is a hit. The 

replacement line is obtained from the priority encoder after the values in all the storage 

elements are ANDed causing considerable delay in the detection of the replacement. The 

data structure implemented is simple and a minimum of associated logic is required. But 

the design does not scale well because a large amount of space is required to hold the 

information that increases quadratically with N, the associativity.  
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A.4.2 SKEWED-MATRIX IMPLEMENTATION  
 
Skewed-Matrix method is a variant of the previous implementation where a compromise 

is made in the amount of LRU history being stored. For large sets only a group of cache 

lines in the set may be active simultaneously. Not keeping the history of other lines 

would only affect performance slightly. The history is kept for a smaller number of lines 

B, where B is less than N and needs careful choosing with respect to N. If a line is not 

accessed in the last B accesses of the set it is considered to be the least recently used line. 

So, when B is less than N we have more than one line for replacement simultaneously. 

This differs from the previous implementation in choosing the column to set to zero and 

in the choice of the replacement row. Rows are set as in Square matrix but since the 

number of columns is less so more than one line maps to one column. N lines clear B 

columns and so after B accesses more than one row would have all zero values as N mod 

B lines would map to the same column. The Matrix itself has B columns and N rows as 

shown Fig A.4. A separate bxB decoder with lower order b lines from the Multiplexer as 

input, where b is , is used for the columns. The replacement mechanism chooses 

the row that is zero only if the one above it is not, so as to use all the rows, which would 

not be possible with the previous implementation. 

B2log

 

 
Fig A.4 Skewed Matrix Implementation 
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Skewed-Matrix needs less storage space than the Square Matrix though there is some 

increase in the complexity of the associated circuitry and the path to detect the 

replacement. It performs as well as the Square-Matrix implementation given the correct 

value of B but to predict the correct value of B is difficult. 

 
A.4.3 COUNTER IMPLEMENTATION 
 
Using a register for each row to maintain the LRU history can reduce the large space 

occupied by the Square and Skewed Matrix implementations. As the value of N becomes 

higher there is exponential drop in the storage space when compared with previous 

implementations. There is one to one mapping between the register, used to record LRU 

information and the cache line in a set. The values in the register indicate the order in 

which the cache lines within a set have been accessed. A register with a larger value 

means that corresponding cache line is more recently accessed than the line whose 

register has a lesser value. The smallest value, Zero in the register indicates the 

corresponding cache line is least recently accessed line and the highest value, N-1 

indicates the corresponding cache line is most recently accessed line. Initially all the 

registers are set to zero. The value of the active register whose cache line is being 

accessed, is compared with the value of other registers .The registers whose value is 

greater than active register are decremented and the active register is set to the highest 

value N-1. The register can be reset to zero, decremented and loaded externally. Each 

cache line in every set is mapped to a register.  

 

The hardware implementation for this data structure for set is as shown in Fig A.5 and 

needs one 1xN -bit demultiplexer, one 2x1 -bit multiplexer, one 1xN 1-bit 

demultiplexer, one Nx1 -bit multiplexers, N -bit comparators, N -

bit registers and one Nx1 priority encoder. The comparator hardware determines the 

registers whose value is greater than the register of the indexed cache line and equal to it. 

A zero register means that the line can be replaced and there can be a number of registers 

that can be used as replacements, so a priority encoder decides which of the line can be 

replaced. 

N2log N2log

N2log N2log N2log
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Fig A.5 Counter Implementation 

 

The register is decremented if a comparator for that register signals that the register is 

greater than the indexed line provided the load signal for that register is not high. The 

indexed register is set to N-1 by using the input from the first demultiplexer and the 

register to be used for comparison is indicated by the second demultiplexer and is fed to 

all comparators using the multiplexer. The 2x1 multiplexer is used to select the indexed 

line, which is the replacement line in case of a miss or the accessed cache line index in 

case of a hit. This implementation uses the minimum, N number of Storage elements, 

among the various implementations but the associated logic to detect LRU and logging 

information is more as compared to other implementations. The implementation does not 

scale well as the complexity of the associated circuitry increases with N. 

 

A.4.4 PHASE IMPLEMENTATION  
 
Phase implementation uses the Matrix to implement the Phases concept. Phase is the 

period where a series of references is made in the set. This implementation is an 

adaptation from [Deville 1992] by Yannick Deville and Jean Gobert, which shows that 
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using phases improves the miss ratio. The rows are indexed from 0 to E-1 and the 

columns from 0 to B-1. E is associativity of the cache and B is a free parameter chosen 

depending on the design but it should be less than and multiple of E. The Matrix is set to 

zero initially. The column with the highest index is the active phase, so there is no need 

of the B-pointer, which is a pointer that points to the active phase to track of this phase. A 

counter, E-counter, is used to keep track of the number of lines that have entered the 

phase and when a maximum of E/B lines are in the phase, new phase starts. The change 

of phase is indicated by a shift in the Matrix. All the rows of the Matrix are shifted left by 

one element. At the start of the phase all the highest Index elements are set to zero. Every 

time a line is accessed its row is set to 1. E-counter is incremented only when a line, 

which is accessed, has a zero in the highest indexed column of the corresponding row, i.e. 

in the active phase. When the E-counter reaches E/B value, the phase ends. The LRU will 

be the row that has the least number of ones or the maximum number of zero’s.  There 

can be more than one such row.  

 

 
 

Fig A.6 Phase Implementation 
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Phase implementation uses a shift register as a basic storage element. A shift value of 1 

shift the values in the registers to left, 2 shifts the values in the registers to right and 0 

does not shift at all. When there is a left shift the MSB is set to zero. The register is 

cleared at Reset signal and stores the input value when load signal is high. Along with the 

N storage elements, the hardware consists, as shown in Fig A.6, of a 1 x N Multiplexer,  

1 x  N bit Demultiplexer, a priority encoder, N comparators and a E/B-bit counter, as the 

E-counter. Each storage element corresponds to the row of the Matrix. When there is an 

access and the value E-counter is not E/B-1 then the E-counter is incremented provided 

the MSB, active bit of the accessed row is not one. An MSB value, 1 of the row accessed 

indicates that it is previously accessed and the counter should not be incremented. If the 

MSB of the accessed row is 0 and the E-counter has reached its maximum value then the 

rows are left shifted and the counter is set to 1. On every access, all the bits of the 

corresponding register of the accessed line are set to 1. Multiplexer selects the accessed 

row, which is the index in case of a hit or the LRU row in case of a miss. A priority 

encoder indicates the LRU row. Phase implementation is similar to Skewed or Square 

Matrix implementations but requires more complex logic. Design parameter B has to be 

chosen carefully. A small value means less storage space but a low accuracy of 

prediction. A large value means it requires large storage space. Appropriate value of B 

will help reduce the complexity of the circuit. Accessing a line in Phase implementation 

takes less time.   

 

A.4.5 LINK-LIST IMPLEMENTATION  
 
In the Link-list implementation, by using a smaller additional space we design logic to 

determine the LRU line with minimum delay and at the same time update the data 

structure. The cache lines indexes are mapped to two lists: Previous and Next. The Next 

register of the cache line maintains the index of the line that was accessed after that cache 

line and the Previous register of the cache line maintains the index of the line that was 

accessed before that cache line.  The most recently used cache lines are moved to the 

head of the list and the less recently used lines to the end of the list. LRU register keeps 

track of the index at the end of the list and the MRU, the index at the head of the list. An 

arbitrary ordered list can be chosen to initialize all the registers as shown in Fig A.7 and 
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the line at the end of the list becomes the LRU. When lines are accessed and as they are 

accessed their order of access is determined in the list. The algorithm used for updating 

the lists handles the three cases. If the accessed line is LRU then it is made to point to the 

next of LRU, and if it is the MRU then nothing needs to be done.  

 

 
Fig A.7 Entry in the Previous list and Next list for Link List implementation 

 

But for any other line the previous node is made to point to the next node in the Next list 

and similarly the Previous list is updated. The accessed line is made the MRU.  X is the 

hardware that determines the Next or the Previous index value of the line index to which 

this register in the list is mapped.  The hardware for a set is as shown in Fig A.8. It has 

four 1xN log2N-bit demultiplexers, four 1xN 1-bit demultiplexers, two Nx1 log2N-bit 

multiplexers, one 2x1 log2N-bit multiplexer, N storage elements for the Next list and 

Previous list each, and two storage elements for LRU and MRU. The demultiplexers 

select the storage element in the other list and also give the value to be stored in this list. 

The multiplexer selects the correct storage element to which the data must go and also 

selects the load of that element. Two pairs of multiplexers are used for updating the list 

with values from the LRU and MRU storage elements and also from the storage elements 

in the list itself, simultaneously. The three cases are handled by the load signal to the two 

lists from the comparators, which compare the LRU and the MRU with the accessed line 

index. The number of components in the associated logic for this implementation does 

not increase as the value of N increases, however the size of the components increases. 

But the delay in determining the LRU is not affected much by the increase in the value of 

N.    
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Fig A.8 Link List Implementation 

 
A.3.6 SYSTOLIC ARRAY IMPLEMENTATION  
 
The list for all previous implementations determines the true order of access of the 

respective cache lines immediately after access but the systolic array, which is an 

adaptation from [Grossman 2002] does not update the list immediately. This scheme has 

a Systolic node as shown in Fig A.9 which has both storage and processing capability.  

 
Fig A.9 Systolic Node 
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Systolic Array implementation for one set, shown in Fig A.10 uses N/2 such nodes to 

form the list with the last node having the input connected to the output. The LRU is 

always correct since it is the first node of the list and updated first. Systolic array which 

uses the concept of link list, sorts the line-index from LRU to MRU. Each node 

comprises of 3 registers of  bit each, one for storing the cache line index L that is 

being accessed, one for current index that is stored in the node and one for storing the 

index that would be stored in the register at the end of second clock pulse. For sorting, 

the cache line index L that is accessed is given to the working set.  

N2log

 

 
 

Fig A.10 Systolic Array Implementation 

 

L value passes through each node of the array and is compared with the current indices 

till the match is found when the Match bit of the node is set to one. When the M bit is set 

the nodes start copying the value of current index from the adjacent node. The L value 

passes through all the nodes and finally get settled and deposited in the end node. The 

forward signal between two adjacent nodes carries L index and M bit and backward 

signal carries the current index of the node to the backside node when match M bit is set. 

The last node is wired to itself for L value to get deposit in the Last node, as it is MRU. 

The list slowly updates over many cycles but maintains the information correctly. When 

there is a cache miss, the line for replacement is the value in the current index of the first 

systolic node of the working set and the line index is fed back for updating the access. 

This reduces the time required for searching the line for replacement. The hardware 

implementation is accommodated for one cache line access per cycle. This is obtained by 

the use of two index registers, one  bit register for storing current index, one 

single bit register to store match M, a  bit multiplexer, a  bit comparator to 

compare the L value and current index and OR gate. And every node is made to share the 

L register, which is again  bit.  

N2log

N2log N2log

N2log
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A.5 DISCUSSION OF RESULTS 
 
The Simulations carried out established the functional correctness of the various LRU 

hardware implementations. Each implementation was simulated with the cache for 

associativity of 2, 4, 8, 16 and 32. Cache size of 128KB, with line size of 32 bytes, word 

size 32 bits, using write-back and write allocate policies was the design configuration. 

The syntheses of different implementations were carried out using the FPGA Advantage 

5.2, Leonardo Spectrum Level 3 v2001_1d.45, from Exemplar Logic Inc. The library 

used for the synthesis is ASIC SCL05u library with ±5 Volt and 300C design parameters.  

  
The graph in Fig. A.11 shows the variation of the number of gates per cache set with the 

associativity. Fig. A.12 shows the Storage size that the different implementations occupy 

in the entire cache. The cache considered is a 128KB cache with line size of 32 words. 

Each word is 4 bytes The design parameter, B for Skewed and Phase implementations 

used is equal to the associativity when the associativity is less than 16 and equal to 16 for 

higher associativities. Square Matrix, Skewed Matrix, Counter and Systolic Array show 

better results and consume less space when the associativity is smaller but at higher 

associativity Link List, Systolic Array and Skewed Matrices perform better. The graph in 

Fig. A.13(a) and Fig. A.13(b) shows the growth of the area with increase in Associativity. 

2-way Set Associtivity is taken as the reference and the ratio of the number of gates of all 

associativites with that of 2-way Set Associative is plotted. Fig. A.13 (a) shows the 

results per cache set and Fig. A.13 (b) shows the result for entire cache. It can be 

observed that the growth rates are not uniform for various implementations although the 

growth rates increase for all implementations. The number of gates for one cache line 

with change of associativity is plotted in the graph of Fig. A.14. It follows the same trend 

as the Fig. A.11. The response curve in the Fig. A.11 and Fig. A.14 for Phase and 

Skewed implementations is because after 16-way associativity the design parameter B 

differs from associativity N. Based on the trends of the size of hardware for 

associativities ranging from 2 to 32, Fig. A.15 gives the projections for a 128KB cache. 

 

When the associativity is small all the implementations have more or less the same 

storage to log information but the small difference in area occupied arises due to 
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difference in the complexity of logic as is observed in Fig A.11 and A.12. The associated 

logic is the dominating factor determining the area occupied for small associativity. From 

the graphs we can infer that the Square Matrix method occupies the largest area followed 

by Skewed Matrix, Counter, Systolic, Phase and Link list implementations. The 

comparison of Skewed Matrix and Square Matrix clearly indicates that at higher 

associativity storage space must be the criterion that decides the area required. From Fig 

A.15 it can be observed that for 128-way set associativity Square Matrix uses 3 times as 

many gates as Systolic Array, 2.2 times as many gates as Link List, 1.6 times as many 

gates as Counter implementation. Hence, for high-associative cache the implementations 

that score well are Link List, Skewed Matrix and Systolic methods, which conserve the 

storage space. Systolic array has the least area requirement as it has small storage space 

and also does not employ too much logic to update the list quickly. The counter 

implementation that has the least storage space for the data requires a large area 

suggesting the fact that reducing the space alone for high-associativity cache would not 

provide good results. Skewed and Phase implementations have same characteristics as 

they use the same storage area for information although the associated logic is different. 

Link List and Phase implementations have the least growth in area. For link list the size 

of the components involved increases rather than the number of components and for the 

Phase implementation the number of components increases but the size remains the same. 

The LRU implementations that involve smaller storage space with little increase in 

component size or number of components, show better behavior with increasing 

associativity. The size of the hardware gives some indications to the delay involved. As 

the associativity increases the size of different implementations increase indicating that 

associated delay to retrieve the LRU cache line also increases. The amount of increase in 

delay for Link List, Systolic and Phase implementations is smaller as the increase in 

number of gates with increase in associativity, is much slower as compared to other 

implementations. 

 

It is inferred that for high-associative cache conservation of space to store data of the 

schemes is important but the associated logic cannot be totally neglected. In high- 

associativity cache Link List, Systolic Array and Skewed Matrix are the designs most 
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suitable for implementations, and also with increase in associativity the Link List, 

Systolic and Skewed Matrix methods would involve less delay. Although the 

implementation size for one set grows rapidly for increase in associativity, the similar 

increase when the entire cache is considered is much less. The results also show that the 

LRU implementations, which involve smaller storage space with little increase in 

component size or number of components, show better behavior with increasing 

associativity. Finally of all the implementations, Systolic and Link List show the best 

performance. 
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Fig A.11 No. of Gates per cache set vs Associativity 
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Fig A.12 No. of Gates vs Associativity for 128KB cache 
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Fig A.13 (a) Ratio of No. of Gates per Cache Set w.r.t 2-way Set Associativity vs 

Associativity 
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Fig A.13 (b) Ratio of No. of Gates for entire cache  w.r.t 2-way Set Associativity vs 

Associativity 
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No. of Gates per Cache Line vs Associativity
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Fig A.14 No. of Gates per Cache Line vs Associativity 
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Fig A.15 No. of Gates vs Associativity for a 128 KB cache 
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APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS 

A.6 SUMMARY 
This discussed the implementation of the least recent used replacement policy for caches 

with high-associtivity. High-associativity cache with LRU as replacement policy is a 

good configuration for reducing miss rate in the cache design and enriching the 

performance in many applications, high-end servers, workstation and modern processors. 

Implementing LRU policy in hardware for high associativity is difficult. Implementation 

objectives are identified and various designs, namely Square Matrix, Skewed Matrix, 

Counter, Phase, Link List and Systolic Array are implemented and the results are 

analyzed. It is inferred that for high-associativity, conservation of space to store data of 

the scheme is important but the associated logic cannot be totally neglected. In high- 

associativity cache, Link List, Systolic Array and Skewed Matrix are the designs most 

suitable for implementation. Also with increase in associativity the Link List, Systolic 

and Skewed Matrix would involve less delay. Although the implementation complexity 

for a set grows rapidly with increase in associativity, the growth is much less when 

considered for the entire cache. The results also show that the LRU implementations, 

which involve smaller storage space with little increase in component size or number of 

components, show better behavior with increasing associativity. Finally of all the 

implementations, Systolic and Link List shows better results. 
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