

Techniques to Enhance Web Performance in Fixed Networks

and Mobile Networks.

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

T S B SUDARSHAN

Under the Supervision of

Prof. G. Raghurama

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2007

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Techniques to Enhance Web

Performance in Fixed Networks and Mobile Networks” and submitted by

Mr. T S B Sudarshan ID No. 1999PHXF009 for award of Ph.D degree of

the Institute embodies original work done by him under my supervision.

 Signature of the Supervisor

Date: Name: Prof. G. RAGHURAMA

 Designation: Deputy Director (Academic)

Dedicated to all my Teachers

ACKNOWLEDGEMENTS

I am most indebted to my supervisor, Professor G. Raghurama for his guidance, wisdom,

valuable suggestions and encouragement throughout my work. Talking to him has always

been enlightening and highly productive. Throughout the years, it has been a great

learning experience working under him. His constructive criticism when required has

greatly helped me in my career.

I would like to thank Prof Sundar Balasubramanian, Group Leader, CS & IS Group, Prof

Rahul Banerjee, Unit Chief, Software Development & Education Technology Unit, for all

the support and encouragement throughout. I also thank all my colleagues who directly

and indirectly helped me in completing my thesis.

A special appreciation to Nokia Research Center, Boston for funding my research work.

In particular, I would like to thank Dr. Sudhir Dixit for providing necessary assistance,

encouragement and suggestions on several occasions. I would like to thank Prof J.P

Mishra, Chief, Information Processing Centre, for his support and facilities provided to

do this work.

Thanks are due to Prof. L.K. Maheshwari, Vice-Chancellor, BITS, for the interest shown

in my work and constant encouragement. A word of thanks to Prof Ravi Prakash, Dean,

Dr. S.S. Deshmukh, Mr. Dinesh Kumar and other staff members of Research &

Consultancy Division who directly or indirectly assisted me during this period.

Beyond doubt, pursuing higher studies has been possible only due to the support and

encouragement from my parents. Being teachers themselves, they have been source of

inspiration for me to aim higher in teaching and research. Thank You Mom and Dad.

Lastly, but always first in my heart, I appreciate the support of my wife, Dr. Shikha

Tripathi throughout. Thank you for your incredible support. My daughters Kriti and

Prakhya have been wonderful, co-operative and less demanding.. Thanks kids!

Finally, I give thanks to Almighty GOD, for guiding me to this stage in my life.

ABSTRACT

The World Wide Web has become an integral part of every day life and rules the

world’s economy. It has changed the way people work, communicate, and share

information. The growth of Internet, in terms of the number of users and the type of

objects accessed, has been phenomenal and fast. The content accessed has undergone

a change from plain HTML pages to more dynamic pages with multimedia content,

while the user-end equipments have evolved from desktops to laptops and mobile

devices. The fixed networks have transformed into a combination of fixed and mobile

networks. This has led to slower speeds of web access and hence, lesser user

satisfaction. Factors which contribute to the slower speeds of the web also include the

heterogeneity of network connectivity, origin server location and distance from the

users, traffic congestion, unexpected rise in demand and dynamic updating of

information on the web servers. Reducing the latency in web access is critical for user

satisfaction and productivity. Web caching and Prefetching are two methods being

investigated recently by researchers, for improving the response times experienced by

the user.

This thesis discusses some aspects of caching and prefetching techniques to enhance

web performance in fixed networks and mobile networks. These techniques are

adopted for static web objects, multimedia web objects and wireless Internet access.

Web caching is similar to memory system caching; differences being the

nonuniformity of Web object sizes, retrieval costs and cacheability. A Web cache

stores Web resources in anticipation of future requests. The replacement policies

designed for Web caching thus must be characteristically different from that of

memory systems. Caching techniques for streaming multimedia objects and mobile

networks are recent research issues. This thesis concentrates on four aspects of Web

caching: QoS cache replacements, caching streaming multimedia objects, adaptive

cache replacements for static and streaming objects and caching in mobile networks.

Web caching does not support quality of service (QoS) and therefore can be seen as a

best-effort service. All objects are handled equally. Introducing QoS to caching and

i

replacement is an interesting research issue. Cache-on-Demand protocol is an effort in

that direction. This thesis proposes and evaluates one such caching technique with

replacement policies to enhance the web performance. Also, it proposes a dual-

caching scheme for caching web objects, which enhances the web performance. The

caching techniques popularly used for static web pages cannot be used for streaming

multimedia objects. These objects cannot be cached in its entirety due to their large

size. This thesis proposes caching and replacement techniques, for both the static and

the adaptive kinds. It proposes a frequency index based method for replacing partially

cached multimedia objects using Cut-off and Optimal caching methods.

Application of soft computing methods for caching and replacements in web caching

is an interesting approach. This thesis proposes adaptive methods such as Fuzzy logic

and Genetic algorithm for web caching and replacement. A Genetic algorithm is

adopted for streaming multimedia web objects replacement and analyzed for its

performance on different workloads.

Accessing the World Wide Web data by using mobile devices is increasing due to the

deployment of 2.5G and 3G services. A mobile user’s web access is largely

determined by the user-specific preferences and the presentation of data is constrained

by the capabilities of the device used. For reducing latency and disconnectivity while

using Internet by a mobile client, prefetching and Quality of Service (QoS) can be

deployed. A caching architecture for combining prefetching and QoS is proposed in

the thesis. An attempt has been made to derive a dynamic cache invalidating scheme

which uses ‘Bit-Sequence’ and ‘Bit-Sequence with bit count’ depending on the

number of cache objects being updated.

All the proposed schemes are tested for performance through simulation studies using

benchmark web access logs. The thesis also proposes and analyses various hardware

designs and implementation for LRU replacement policy in high-associativity

processor cache for caching uniform objects.

ii

TABLE OF CONTENTS

 LIST OF FIGURES --- vi
 LIST OF TABLES --- xi
 LIST OF ACRONYMS -- xii

1. INTRODUCTION

1.1 Web Performance Enhancement Techniques: An Overview ------- 1
1.1.1 Caching Technique --- 2
1.1.2 Prefetching Technique -------------------------------------- 2

1.2 Objectives and Approach --- 3
1.3 Thesis Outline and Contributions ------------------------------------- 5

2 BACKGROUND & LITERATURE SURVEY

2.1 Introduction --- 7
2.2 Processor caching -- 8
2.3 Web Caching vs. Processor Caching ---------------------------------- 10
2.4 Web Caching Techniques --- 12

2.4.1 Desirable properties of WWW Caching ------------------ 14
2.4.2 Types of Caching -- 15
2.4.3 Caching Architectures -------------------------------------- 18
2.4.4 Cache Replacement Policies ------------------------------- 21
2.4.5 Cache consistency --- 24

2.5 Summary --- 27

3 REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS
3.1 Introduction --- 28
3.2 Modifications to Existing Replacement Policies ----------------------- 29

3.2.1 Dual Stage Caching with Victim Cache -------------------- 29
3.2.1.1 Size adjusted LRU Replacement Policies ----- 29
3.2.1.2 Access cost and Expiration time ---------------- 30
3.2.1.3 Admission control policy ------------------------ 31
3.2.1.4 Dual stage caching with victim cache ---------- 32
3.2.1.5 Discussion of Results ----------------------------- 34

3.2.2 Randomized History Based Caching and Replacement --- 39
3.2.2.1 Randomized Algorithm --------------------------- 39
3.2.2.2 Randomized LRU --------------------------------- 40
3.2.2.3 Randomized SLRU ------------------------------- 41
3.2.2.4 History based Cahe replacement algorithm --- 41
3.2.2.5 History based RLRU ----------------------------- 42
3.2.2.6 History based RSLRU --------------------------- 42
3.2.2.7 Discussion of Results ---------------------------- 43

3.2.3 Modified Cache-on-Demand protocol ---------------------- 53
3.2.3.1 Service Discovery -------------------------------- 54
3.2.3.2 Protocol Messages -------------------------------- 54
3.2.3.3 Request Handling --------------------------------- 55

iii

3.2.3.4 Admission Control -------------------------------- 58
3.2.3.5 Modifications to CoD Protocol ------------------ 59
3.2.3.6 Discussion of Results ----------------------------- 61

3.3 Summary -- 67

4 REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

4.1 Introduction -- 68
4.2 Cutoff Caching & Optimal Caching Techniques ---------------------- 71

4.2.1 CC algorithm --- 73
4.2.2 OC Algorithm -- 74

4.3 Popularity Function Based Replacement Policy ----------------------- 78
4.3.1 Popularity Function or Frequency Index ------------------- 78
4.3.2 The Replacement Algorithm --------------------------------- 80
4.3.3 Discussion of Results --- 82

4.4 Summary -- 87

5 SOFT COMPUTING TECHNIQUES IN WEB CACHING
5.1 Introduction --- 88
5.2 Fuzzy Replacement Algorithm -- 89

5.2.1 Implementation --- 95
5.2.2 Discussion of Results -- 100

5.3 Genetic Algorithm Replacement Policy --------------------------------- 101
5.3.1 Fitness Calculation --- 102
5.3.2 Pseudo Code -- 102
5.3.3 Implementation --- 103
5.3.4 Discussion of Results -- 104

5.4 GAR For Streaming Multimedia Objects -------------------------------- 107
5.4.1 Fitness Calculation --- 107
5.4.2 Implementation --- 108
5.4.3 Discussion of Results -- 109

5.5 Summary --- 111

6 CACHING IN MOBILE NETWORKS
6.1 Introduction -- 112
6.2 Intelligent Proxy Server with Cache-On-Demand protocol ----------- 114

6.2.1 Latency Reduction Schemes ---------------------------------- 115
6.2.2 Issues in Mobile Communication Environment ------------ 115
6.2.3 An Intelligent Proxy Server ----------------------------------- 116

6.2.3.1 User Profile Database ---------------------------- 118
6.2.3.2 Intelligent Proxy Server -------------------------- 118

6.2.4 Cache-On-Demand Protocol ---------------------------------- 120
6.2.5 IPS-COD Combined Protocol -------------------------------- 121
6.2.6 Discussion of Results -- 124

6.3 Dynamic Cache Invalidation Protocol ------------------------------------ 126
6.3.1 Taxonomy of Cache Invalidation Strategies ---------------- 128
6.3.2 Content of Invalidation Report ------------------------------- 130

iv

6.3.3 Invalidation Mechanism --------------------------------------- 131
6.3.4 Cache Invalidation Scheme ----------------------------------- 132
6.3.5 Complexity of BS & BB Schemes --------------------------- 140
6.3.6 Dynamic Cache Invalidation Scheme ----------------------- 143
6.3.7 Discussion of Results -- 144

6.4 Summary -- 147
7 CONCLUSIONS -- 148

APPENDIX:

LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS ------------------------------- 153

A.1 Introduction -- 153
A.2 Higher Associativity with LRU Policy ----------------------------------- 154
A.3 Implementation Complexity --- 155
A.4 Proposed Design Approaches for LRU Implementation --------------- 156
 A.4.1 Square Matrix Implementation --------------------------------- 157
 A.4.2 Skewed Matrix Implementation -------------------------------- 159
 A.4.3 Counter Implementation --- 160
 A.4.4 Phase Implementation -- 161
 A.4.5 Link List Implementation -- 163
 A.4.6 Systolic Array Implementation --------------------------------- 165
A.5 Discussion of Results --- 167
A.6 Summary --- 172

REFERENCES --- 173

PUBLICATIONS --- 187

BRIEF BIOGRAPHY OF CANDIDATE AND SUPERVISOR ------------------------------- 190

v

LIST OF FIGURES

FIG CAPTION PAGE NO.
NO.

2.1 Possible locations for deploying web caching --------------------------------------- 12

2.2 HTTP transfer between client and server --- 24

2.3 HTTP request and response headers --- 27

3.1 Hit Ratio Vs Size of the Cache for LRU, Clock pin and SLRU without Admission
Control -- 35

3.2 Hit Ratio Vs Size of the Cache for LRU, Clock pin and SLRU with Admission
Control -- 36

3.3 Hit Ratio Vs Size of the Cache for LRU and SLRU with Admission Control and Dual
Stage Caching -- 37

3.4 Comparison of LRU(Without Admission control), LRU(With Admission control)
and LRU(With Admission control and Dual Cache) --------------------------------- 38

3.5 Comparison of SLRU(Without Admission control), SLRU(With Admission control)
and SLRU(With Admission control and Dual Cache) ------------------------------- 38

3.6 Cache Size vs Hit ratio for LRU & RLRU 1) N=30, M=5 2) N=8, M=2 ---------- 44

3.7 Cache size vs Hit ratio for SLRU & RSLRU 1) N=30, M=5 2) N=8, M=2 -------- 45

3.8 Cache size vs. Hit ratio for RLRU & RSLRU 1) N=30, M=5 2) N=8, M=2 ------ 46

3.9 Cache size vs. Hit ratio for HRLRU, RLRU & LRU for N=30, M=5 -------------- 47

3.10 Cache size vs. Hit ratio for HRLRU, RLRU & LRU for N=8, M=2 -------------- 48

3.11 Cache size vs Hit ratio for HRSLRU, RSLRU & SLRU for N=30, M=5 -------- 49

3.12 Cache size vs Hit ratio for HRSLRU, RSLRU & SLRU for N=8, M=2 ---------- 50

3.13 Cache size vs. Hit ratio for HRSLRU & HRSLRU for N=30, M=5 --------------- 51

3.14 Cache size vs Hit ratio for HRSLRU & HRSLRU for N=8, M=2 ----------------- 52

3.15 Cache on Demand Service Discovery --- 54

 vi

FIG CAPTION PAGE NO.
NO.

3.16 Cache on Demand Message Formats --- 55

3.17 Maximum disk space available -- 59

3.18 When request s=50 MB, t1=10, t2=30, accepted ------------------------------------ 59

3.19 When request s=50MB, t1=20, t2=40, accepted ------------------------------------- 59

3.20 When request s=20 MB, t1=25, t2=50, rejected ------------------------------------- 59

3.21 Effect of CoD on the hit ratio of the one time admission policy normal cache for
cache size 50MB -- 62

3.22 Effect of CoD on the hit ratio of the two time admission policy normal cache for
cache size 50MB -- 62

3.23 Effect of CoD on the hit ratio of the three time admission policy normal cache for
cache size 50MB -- 63

3.24 Effect of CoD on the hit ratio of the one time admission policy normal cache for
cache size 100 MB -- 63

3.25 Effect of CoD on the hit ratio of the two time admission policy normal cache for
cache size 100 MB --- 64

3.26 Effect of CoD on the hit ratio of the three time admission policy normal cache for
cache size 100 MB --- 64

3.27 Effect of CoD on the hit ratio of the one time admission policy normal cache for
cache size 200 MB --- 65

3.28 Effect of CoD on the hit ratio of the two time admission policy normal cache for
cache size 200 MB --- 65

3.29 Effect of CoD on the hit ratio of the three time admission policy normal cache for
cache size 200 MB --- 66

4.1 Video Frames and the notations -- 72

4.2 Illustration of CC Algorithm -- 73

4.3 Illustration of OC algorithm --- 75

 vii

FIG CAPTION PAGE NO.
NO.

4.4 Cache Size vs. Bandwidth for streaming multimedia objects ----------------------- 77

4.5 Network Utilisation vs. Bandwidth for streaming multimedia objects ------------- 77

4.6 Hit ratio vs. Cache Size for a constant bandwidth of 40kbps ------------------------ 83

4.7 Hit Ratio vs. Cache Size for a constant bandwidth of 56kbps ----------------------- 83

4.8 Hit Ratio vs. Cache Size for a constant bandwidth of 100kbps --------------------- 84

4.9 Hit Ratio vs. Bandwidth for a constant cache size of 40GB ------------------------- 84

4.10 Hit Ratio vs. Bandwidth for a constant cache size of 80GB ------------------------ 85

4.11 Hit Ratio vs. Bandwidth for a constant cache size of 160GB ---------------------- 85

4.12 Hit Ratio vs. Bandwidth for a constant cache size of 200GB ---------------------- 86

4.13 Comparison of performance of LFU, LRU and FIR --------------------------------- 86

5.1 Membership Function for Input Variable Frequency ---------------------------------- 91

5.2 Membership Function for Input Variable Time -- 91

5.3 Membership Function for Input Variable Size --- 92

5.4 Membership Function for Replacement Probability ---------------------------------- 94

5.5 Hit Ratio Obtained from the trace1 for LRU and FUZZY12 ------------------------- 95

5.6 Hit Ratio obtained from the trace1 for LFU and FUZZY12 -------------------------- 96

5.7 Hit Ratio Obtained from the trace1 for SLRU and FUZZY12 ----------------------- 96

5.8 Hit Ratio Obtained from the trace1 for LRU and FUZZY24 ------------------------- 97

5.9 Hit Ratio Obtained from the trace1 for LFU and FUZZY24 ----------------------- 97

5.10 Hit Ratio Obtained from the trace1 for SLRU and FUZZY24 -------------------- 98

5.11 Hit Ratio Obtained from the trace2 for LRU and FUZZY24 ---------------------- 98

5.12 Hit Ratio obtained from the trace2 for LFU and FUZZY24 ----------------------- 99

 viii

FIG CAPTION PAGE NO.
NO.

5.13 Hit Ratio Obtained from the trace2 for SLRU and FUZZY24 -------------------- 99

5.14 Hit Ratio of GAR and LRU for varying cache sizes -------------------------------- 105

5.15 Hit Ratio GAR and LFU for varying cache sizes ----------------------------------- 105

5.16 Hit Ratio GAR and SLRU for varying cache sizes --------------------------------- 105

5.17 Time taken vs Cache Size for the GAR algorithm ---------------------------------- 106

5.18 Hit Ratio of GAR-M, LRU and LFU for varying cache sizes for Sample-1 ---- 110

5.19 Hit Ratio of GAR-M, LRU and LFU for varying cache sizes for Sample-2 ---- 110

6.1 World Wide Web for Wireless Network Architecture ------------------------------- 111

6.2 Overall architecture of the IPS system --- 118

6.3 Architecture of the IPS --- 119

6.4 The GPRS Network with the proposed prefetching scheme --------------------------------- 120

6.5 Protocol working when Client requests for prefetching facility --------------------- 123

6.6 Protocol working when Client does not request for prefetching facility ----------- 123

6.7 No. of requests vs hit ratio for normal cache in an IPS-CoD system --------------- 125

6.8 Percentage of normal cache vs. Hit ratio in an IPS-CoD system -------------------- 125

6.9 Wireless Computing Environment -- 127

6.10 The Bit Sequence Scheme Protocol --- 134

6.11 Bit Sequence Example =-- 135

6.12 The Bit Sequence with Bit Count scheme protocol -------------------------------- 138

6.13 Bit Sequence with Bit Count (BB) Example -------------------------------------- 139

6.14 Structure of IR with bits sequence time stamps ----------------------------------- 140

6.15 No. of updates vs time for N=400 and cache size = 1% of the total objects --- 145

 ix

FIG CAPTION PAGE NO.
NO.

6.16 No. of updates vs time for N=800 and cache size = 1% of the total objects --- 145

6.17 No. of updates vs time for N=4000 and cache size = 1% of the total objects -- 145

6.18 No. of updates vs time for N=200 and cache size = 3% of the total objects --- 146

6.19 No. of updates vs time for N=1000 and cache size = 3% of the total objects -- 146

6.20 No. of updates vs time for N=100 and cache size = 10% of the total objects -- 146

A.1 4 x 4 matrices initialized to zero -- 157

A.2 4 x 4 matrices with cache line 3 as the least recently used line ------------------- 157

A.3 Square Matrix Implementation -- 158

A.4 Skewed Matrix Implementation --- 159

A.5 Counter Implementation -- 161

A.6 Phase Implementation -- 162

A.7 Entry in the Previous list and Next list for Link List implementation ------------ 164

A.8 Link List Implementation --- 165

A.9 Systolic Node --- 165

A.10 Systolic Array Implementation --- 166

A.11 No. of Gates per cache set vs Associativity --- 169

A.12 No. of Gates vs Associativity for 128KB cache ------------------------------------ 169

A.13(a) Ratio of No. of Gates per Cache Set w.r.t 2-way Set Associativity vs
Associativity --- 170

A.13(b) Ratio of No. of Gates for entire cache w.r.t 2-way Set Associativity vs
Associativity --- 170

A.14 No. of Gates per Cache Line vs Associativity ----------------------------------- 171

A.15 No. of Gates vs Associativity for a 128 KB cache ------------------------------ 171

 x

LIST OF TABLES

TABLE CAPTION PAGE NO.
NO.

2.1. Comparison of Cache Mapping Functions. --- 9

2.2 Examples of commonly used parameters in cache replacement policies ---------- 14

2.3 Examples of Key-based Replacement policies -- 23

2.4 Summary of Existing Replacement Algorithms --------------------------------------- 25

3.1 Hit ratio of cache without admission control for various cache sizes -------------- 35

3.2 Hit ratio of cache with admission control for various cache sizes ------------------ 36

3.3 Hit ratio of cache with admission & dual stage caching for various cache sizes -- 37

3.4 LRU & RLRU Hit ratio for N=30 & 8 and M= 5 & 2 -------------------------------- 44

3.5 SLRU & RSLRU Hit ratio for N=30 & 8 and M= 5 & 2 ----------------------------- 45

3.6 RLRU & RSLRU Hit ratio for N=30 & 8 and M= 5 & 2 ----------------------------- 46

3.7 HRLRU, RLRU and LRU Hit ratio for N=30 and M= 5 ------------------------------ 47

3.8 HRLRU, RLRU and LRU Hit ratio for N=8 and M= 2 ------------------------------- 48

3.9 HRSLRU, RSLRU and SLRU Hit ratio for N=30 and M= 5 ------------------------ 49

3.10 HRSLRU, RSLRU and SLRU Hit ratio for N=8 and M= 2 ------------------------ 50

3.11 HRSLRU and HRSLRU Hit ratio for N=30, M=5 ----------------------------------- 51

3.12 HRSLRU and HRSLRU Hit ratio for N=8, M=2 ------------------------------------ 52

3.13 Precentage of CoD cache for normal cache having 40% and above hit ratio ---- 66

5.1 Fuzzy12 Rule Set -- 93

5.2 Fuzzy24 Rule Set -- 93

xi

LIST OF ACRONYMS

BB: Bit sequence with Bit count

BS: Bit Sequence

CARP: Cache Array Routing Protocol

CC: Cut-off Caching

CGMP: Cache Group Management Protocol

CoD: Cache on Demand

CRP: Content Routing Protocol

FIFO: First in First out

FIR: Frequency Index based Replacement

GAR Genetic Algorithm based Replacement

GAR-M: Genetic Algorithm base Replacement for streaming Multimedia objects

GGSN: Gateway GPRS Support Node

GPRS: General Packet Radio Service

HDL: Hardware Description Language

HLR: Home Location Register

HRLRU: History-based Random Least Recently Used

HRLFU: History-based Random Least Frequently Used

HRSLRU: History-based Random Size-based Least Recently Used

HTML: Hyper Text Markup Language

HTTP: Hyper Text Transfer Protocol

IMSI: International Mobile station Subscriber Identity

IP: Internet Protocol

 xii

IPS: Intelligent Proxy Server

IR: Invalidation Report

ISP: Internet Service Provider

LAN: Local Area Network

LFU: Least Frequently Used

LRU: Least recently Used

MC; Mobile Client

MRU: Most Recently Used

MSS: Mobile Support Station

OC: Optimal Caching

PDA: Personal Digital Assistant

QoS: Quality of Service

RBC: Resource Based Caching

RLRU: Random Least Recently Used

RLFU: Random Least Frequently Used

RSLRU: Random Size-based LRU

RR: Random Replacement

RTT: Round Trip Time

SGSN: Serving GPRS Support Node

SLA: Service Level Agreement

SLRU: Size-Least Recently Used

TCP: Transmission Control Protocol

TS: Time Stamp

 xiii

UPD: User Profile Database

UR: Update Report

URL: Universal Resource Locator

WWW: World Wide Web

 xiv

CHAPTER 1: INTRODUCTION

CHAPTER 1

INTRODUCTION

The World-Wide Web has transformed much of the world's economy and will continue to

do so. It provided a paradigm shift in the way people work and communicate. Termed as

an “Information Superhighway”, the web or Internet as it is popularly known provides

access to a wealth of information, which can be accessed instantaneously from one’s

desktop or laptop. However, from the point of view of time - access to information on

today's Web is rarely instantaneous. The growth of web resulted in a performance penalty

for both the web services and its infrastructure, the Internet. While performance continues

to improve over time from improvements in bandwidth and device latencies, users

continue to desire yet faster response time. Likewise, content providers continue to make

greater demands on bandwidth.

Good interactive response-time has long been known to be essential for user satisfaction

and productivity [Brady 1986, Roast 1998]. This is also true for the Web [Bhatti 2000]. A

widely-cited study from Zona Research [Zona 1999] provides evidence for the “eight

second rule" in electronic commerce; ‘If a Web site takes more than eight seconds to

load, the user is much more likely to become frustrated and leave the site’. Thus there is

also significant economic incentive for many content providers to provide a responsive

Web experience.

1.1 WEB PERFORMANCE ENHANCEMENT TECHNIQUES

There have been many studies to better understand characteristics of the web [Maltzahn

1997, Wills 1999, Brewington 2000]. The factors, which contribute to the slower speeds

of the web, include the heterogeneity of network connectivity, origin server locations and

distances, traffic congestion, unexpected demand and dynamic updating of information

available on the web. Many researchers have considered the problem of improving web

response times. Some of the proposed performance improvements are by increasing the

1

CHAPTER 1: INTRODUCTION

existing bandwidth by adopting alternative communication technologies. Also, the

performance can be improved by efficiently using the existing infrastructure. Web

caching and Prefetching are two such methods, which are used for improving the

response times experienced by the user. The most extensively investigated solution is

content caching [Aggarwal 1999, Cao 1997, Katsaros 2004]. Other solutions include the

technique of prefetching [Davison 1999, Nanopoulos 2003] and cooperating caches.

1.1.1 CACHING TECHNIQUES

The web consists of Web Servers that accept requests from Web Clients for pieces of

information called Web Objects. The interaction between clients and servers is by means

of standard protocols, typically the Hypertext Transfer Protocol (HTTP). Any computer

or device on the Internet can access web objects and thus become a Web client. A Web

client that obtains Web content for the user or an application is called a Web browser.

Examples of Web clients include personal computers, web-enabled phones, handheld

computers, mobile devices that are web-enabled and so on. The web continues to grow

rapidly and this growth puts great stress on the Internet and Web servers. Caching refers

to a simple idea that if you use some information and think you might use it again in the

near future, you store a copy of this information in some easily accessible place. Three

features of Web caching according to Davison [Davison 2001] are:

• Caching reduces network bandwidth usage.

• Caching reduces user-perceived delays.

• Caching reduces loads on the origin server.

One central problem in Web caching is the cache replacement strategy. Cache

replacement refers to the process that takes place when the cache becomes full and old

objects must be removed to make space for the new one.

1.1.2 PREFETCHING TECHNIQUES

Prefetching is the cache-initiated speculative retrieval of a resource into a cache in the

anticipation that it can be served from cache in the future. Most requests on the Web are

made on behalf of human users, and like other human-computer interactions, the actions

2

CHAPTER 1: INTRODUCTION

of the user can be characterized as having identifiable regularities. Much of these patterns

of activity, both within a user, and between users, can be identified and exploited by

intelligent action prediction mechanisms [Wang 1996, Foxwell 1998]. These prediction

mechanisms attempt to build a relatively concise model of the user so as to be able to

dynamically predict the next action(s) that the user will take. One of the research focuses

has been to apply machine-learning techniques to the problem of user action prediction

on the Web, in particular, to predict the next Web page that a user will select. Such a

system could anticipate each page retrieval and then, fetch that page ahead of time into a

local cache so that the user experiences shorter response time [Avinoam 2000, Davison

2002]. However, the evaluation of such models in terms of response time improvement

requires the incorporation of real-world considerations such as network characteristics

and content caching.

1.2 OBJECTIVES AND APPROACH

Web caching is similar to memory system caching. A Web cache stores Web resources in

anticipation of future requests. However, significant differences between memory system

and Web caching result from nonuniformity of Web object sizes, retrieval costs and

cacheability. The replacement policies designed for Web caching thus must be

characteristically different from that of memory systems. There have been many

replacement policies that have been proposed in the literature. In the early days of

caching, simple replacement strategies were used. Therefore, research for more

sophisticated replacement strategies was an important issue. Nowadays there exist several

replacement policies. Although Web cache replacement in its general form seems to be a

solved problem, there are new areas that need further investigation. This thesis

concentrates on four aspects of Web caching:

• QoS-aware Cache Replacement: Original caching does not support quality of

service (QoS). That means, caching can be seen as a best-effort service. All

objects are handled equally. Introducing some sort of on-demand protocol can

make the replacement process QoS-aware.

• Multimedia Cache Replacement: Multimedia cache requires new strategies to be

adopted for replacement. Multimedia objects being very large in size, caching

3

CHAPTER 1: INTRODUCTION

them in entirety will lead to poor performance. Therefore, partial caching

techniques have to be adopted to make caching effective and to enhance Web

performance. Also, multimedia caches can use adaptation techniques to augment

replacement strategies.

• Adaptive Cache Replacement: The efficiency of replacement strategies depends

on the actual workload. Differences in workloads can lead to varying performance

for replacement strategies. Therefore the replacement policy can be made

adaptive for different workloads. Adaptive algorithms like Fuzzy Logic and

Genetic Algorithms can be used for cache replacement.

• Caching in Mobile Networks: Accessing the World Wide Web data by using

mobile devices is increasing due to the deployment of 2.5G and 3G services. A

mobile user’s web access is largely determined by the user specific preferences

and the presentation of data is constrained by the capabilities of the device used.

For reducing latency and disconnectivity while using Internet through a mobile

client, prefetching and QoS services can be deployed.

This thesis deals with the above issues, and others, to various degrees. The study has led

to investigation into a variety of areas, including soft computing techniques like Fuzzy

Logic and Genetic Algorithms, simulation, networking, computer architecture and

information retrieval. Web system performance has been evaluated for various

replacement strategies. Generally one may choose from three general approaches to

studying system performance: analytic modeling, simulation, or direct measurement.

Each provides unique insights into the problem. Analytic approaches provide tools to

model systems and scenarios to find trends and limits. Simulation allows for the rapid

testing of a variety of algorithms without causing undue harm on the real world. Direct

measurements provide grounding in reality with existence proofs and challenges for

explanations. To realistically consider response times in the Web, however, strict analytic

models become unmanageably complex, and thus the thesis concentrates our efforts on

the latter two approaches.

4

CHAPTER 1: INTRODUCTION

The primary focus of this work is the design and development of replacement algorithms

and the evaluation of such techniques for proxy caches. In addition to explorations and

surveys of cache replacement techniques, the major part of the thesis will propose,

implement, validate, and give examples of the use of each of the cache replacement

policies for QoS-aware Web caching, Streaming Multimedia Caching and Adaptive

Caching. Some of these methods can be adopted for mobile networks also. The thesis

proposes a few algorithms which support caching and replacement in mobile networks.

1.3 THESIS OUTLINE AND CONTRIBUTIONS

The thesis comprises of eight chapters. Although there has been significant attention paid

to cache replacement policies from the research community in the time since this thesis

was conceived, this thesis makes a number of contributions.

Chapter 2 gives a review of various caching techniques for Processor architecture and

World Wide Web with a summary of the literature survey and background to work

reported in the thesis. In Chapter 3, some modifications to the existing replacement

polices for static web objects, are discussed. The policies like Dual-Stage caching and

Randomized History based techniques are explained. Also QoS-aware replacement

technique like Cache-On-Demand based caching is explained. The adaptation of this

algorithm for client side caching is implemented and the results are analyzed. The main

contribution in this chapter is that the cache replacement has been designed to provide

quality of service (QoS) replacement policies. This chapter identifies and enumerates key

aspects of idealized QoS-enabled cache. It proposes and demonstrates the utility of a

simple approach of Cache-On-Demand (CoD) protocol and its adaptation from client’s

point of view. It also will analyze the performance of cache replacement policy for small

caches for CoD. Then, the performance of the basic cache in the presence of CoD

caching strategy has been evaluated to show that it does not affect the performance of the

cache adversely, but improves the performance for the user with CoD-enabled cache.

In Chapter 4 the thesis examines the problem of caching streaming multimedia objects

and proposes and analyzes a popularity function or frequency index based cache

replacement policy. Also, it explores adaptive techniques for cache replacement using

5

CHAPTER 1: INTRODUCTION

Fuzzy Logic and Genetic Algorithm on caching static web objects. After analyzing these

techniques and with encouraging results, these techniques are adopted for caching

streaming multimedia objects in Chapter 5. These chapters deal with the complementary

idea of content-based caching in fixed network domain. Here we establish the potential of

caching streaming multimedia objects with different known schemes. Then propose the

various design strategies for cache replacement polices for such schemes. The analysis of

the proposed policies with different set of workloads and bandwidth to establish the

stability of the policy also has been explained.

Having established the potential for content-based caching, the thesis considers in

Chapter 6 the approach of caching web objects for a mobile user while on the move. The

adaptation of CoD approach in mobile networks has been explored and adaptivity of

cache invalidation algorithm with the workload has been analyzed. Finally, Chapter 7

summarizes the results of the thesis work, with conclusions.

The main work reported in this thesis involves study of the web enhancement techniques

using simulation studies. During this work, it was felt that a hardware realization of a

replacement scheme should be attempted. As a first step, an LRU implementation for

uniform objects was done and is reported in the Appendix of the thesis. It proposes

various designs of LRU implementation for cached uniform objects in a Processor cache.

These implementations have been carried out in Verilog-based simulation and synthesis

using Mentor Graphics tools.

6

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 INTRODUCTION

Computer architectures, operating systems, and databases all use caching mechanisms to

alleviate the speed gap of hierarchical storage. The prevalence of the World Wide Web

has made remote-object caching increasingly important. Cache performance depends

heavily on replacement algorithms, which dynamically select a suitable subset of objects

for caching in a finite space. Developing such algorithms for wide-area distributed

environments is challenging because, unlike traditional paging systems, retrieval costs

and object sizes are not necessarily uniform. A replacement algorithm’s general goal in a

uniform caching environment is to reduce cache misses, usually by replacing an object

with the least likelihood of re-reference. In contrast, reducing total cost incurred due to

cache misses is more important in nonuniform caching environments [Bahn 2002]. A

replacement algorithm in these environments should:

• make good use of observations from past references to distinguish between

objects likely and not likely to be referenced in the near future. These include

distinguishing not only “hot” (frequently referenced) and “cold” (infrequently

referenced) objects but also those that are hot but getting colder and those that are

cold but getting hotter.

• allow for efficient implementation in terms of both space and time complexities.

The space needed to maintain an object’s reference history should be constant,

preferably a few bytes per object, and the algorithm’s time complexity should not,

for all practical purposes, exceed O(log n), where n is the number of objects in the

cache.

• incorporate the nonuniformity factor—cost and size—fairly and effectively.

7

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

2.2 PROCESSOR CACHING

Today's high performance microprocessors operate at speeds that far outpace even the

fastest of the memory bus architectures that are commonly available. One of the biggest

limitations of main memory is the wait state: period of time between operations. This

means that during the wait states the processor waits for the memory to be ready for the

next operation. The most common technique used to match the speed of the memory

system to that of the processor is caching. Cache Memory is the level of computer

memory hierarchy situated between the processor and main memory. It is a very fast

memory the processor can access much more quickly than main memory or RAM.

Cache is relatively small, but expensive. Its function is to keep a copy of the data and

code (instructions) currently used by the CPU. By using cache memory, waiting states are

significantly reduced and the work of the processor becomes more effective. Cache

memories remain one of the hot topics in the research community, since the ever-

increasing speed gap between processor and memory only emphasizes the need for a

more efficient memory hierarchy. As modern processors include multiple levels of

caches, and as cache associativity increases it is important to know the effectiveness of

common cache replacement policies [Al-Zoubi 2004].

In general, cache memory attempts to predict which memory elements the processor is

going to need next, and loading those memory elements before the processor needs it, and

saving the results after the processor is done with it. Whenever the byte at a given

memory address is needed to be read, the processor attempts to get the data from the

cache memory. If the cache doesn’t have that data, the processor is halted while it is

loaded from main memory into the cache. At that time, memory elements around the

required data are also loaded into the cache. In the "real world", the direct mapped and set

associative caches are by far the most common. Direct mapping is used more for level 2

caches on motherboards, while the higher-performance set-associative cache is found

more commonly on the smaller primary caches contained within processors.

8

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Table 2.1: Comparison of Cache Mapping Functions

Cache Type Hit Ratio Search Speed

Direct Mapped Good Best

Fully
Associative Best Moderate

N-Way Set
Associative,
N>1

Very Good,
Better as N
Increases

Good, Worse as
N Increases

Cache Line Replacement Algorithms

When a new line is loaded into the cache, one of the existing lines must be replaced. In a

direct mapped cache, the requested block can go in exactly one position, and the block

occupying that position must be replaced. In an associative cache we have a choice of

where to place the requested block and hence a choice of which block to replace. In a

fully associative cache, all blocks are candidates for replacement. In a set associative

cache, we must choose among the blocks in the selected set. Therefore a line replacement

algorithm is needed which sets up well defined criteria upon which the replacement is

made. A large number of algorithms are possible and many have been implemented.

Four of the most common cache line replacement algorithms are:

• Least Recently Used (LRU) - the cache line that was last referenced in the most

distant past is replaced.

• FIFO (First In- First Out) - the cache line from the set that was loaded in the most

distant past is replaced.

• LFU (Least Frequently Used) - the cache line that has been referenced the

fewest number of times is replaced.

• Random - a randomly selected line from cache is replaced

The most commonly used algorithm is LRU replacement. It is implemented by keeping

track of when each element in a set was used relative to the other elements in the set. For

a two-way set associative cache, tracking when the two lines were used can be easily

implemented in hardware by adding a single bit (use bit) to each cache line. Whenever a

9

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

cache line is referenced its use bit is set to 1 and the use bit of the other cache line in the

same set is set to 0. The line selected for replacement at any specific time is the line

whose use bit is currently 0. Based on the principle of the locality of reference that a

recently used cache line is more likely to be referenced again, LRU tends to give the best

performance. In practice, as associativity increases, LRU is too costly to implement,

since tracking the information is costly. Even for four-way set associativity, LRU is often

approximated – for example, by keeping track of which of a pair of blocks is LRU (which

requires one bit), and then tracking which line in each pair is LRU (which requires one

bit per pair). For large associativity, implementing LRU hardware is complex.

The FIFO replacement policy is again easily implemented in hardware by the cache lines

as queues. The LFU replacement algorithm is implemented by associating with each

cache line a counter which increments on every reference to the line. Whenever a line

needs to be replaced, the line with the smallest counter value is selected, as it will be the

cache line that has experienced the fewest references. Random replacement is simple to

build in hardware. While it may seem that this algorithm would be a poor replacement

line selection method, in reality it performs only slightly worse than any of the other three

algorithms that we mentioned. For a two-way set associative cache, random replacement

has a miss rate of 1.1 times higher than LRU replacement. The reason for this is easy to

see. Since there are only two cache lines per set, any replacement algorithm must select

one of the two, therefore the random selection method has a 50-50 chance of selecting the

same one that the LRU algorithm would select yet the random algorithm has no overhead

(i.e., there wouldn’t be any use bit). As the cache associativity becomes higher, the miss

rate for both replacement strategies become more significant, and the difference becomes

higher. Hence for higher associativity cache LRU replacement policy is considered to be

better than other replacement policies ignoring the complexity of the LRU hardware.

2.3 WEB CACHING VS. PROCESSOR CACHING

Web caching, where a Web cache stores Web resources in anticipation of future requests,

is similar to memory system caching. However, significant differences between memory

system and Web caching result from the nonuniformity of Web object sizes, retrieval

10

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

costs, and cacheability. To address object size, cache operators and designers track both

the overall object hit rate (percentage of requests served from cache) and the overall byte-

hit rate (percentage of bytes served from cache). Traditional replacement algorithms often

assume a fixed object size, so variable sizes can affect their performance. Retrieval cost

varies with object size, distance traveled, network congestion, and server load. Finally,

some Web resources cannot or should not be cached, for example, because the resource is

personalized to a particular client or is constantly updated. Caching is performed in

various locations throughout the Web, including at the two endpoints known to a typical

user — the Web browser and Web server.

Unlike CPU caches or virtual memory, which cache objects of identical size, objects in a

proxy cache may have widely varying sizes – from text files of a few bytes to videos of

several megabytes. Also object types such as audio or image, may be considered

separately by a replacement policy, in contrast to CPU caches, which treat all data as

homogeneous. On the other hand, proxy caches are simpler in that there are no “dirty”

objects to write back. Obviously caching will improve the overall performance of the

system as long as the hit ratio, i.e. the ratio of locally available information to total

volume of requests, is sufficiently high. However, unlike traditional low level caching, as

used in most current computer architectures, a relatively low hit ratio suffices to make

using a web caching system worthwhile. This is true because the overhead of a miss

(getting the object from the remote server) can be very high compared to the speed of a

local search and transfer and thus the savings on a few hits are sufficient to make up for

the overhead needed for searching the cache storage first.

There are several aspects, which clearly differentiate web caching from traditional

caching environments. For example the fact that hit ratio considered significant even

when it is low as mentioned earlier, also the fact that computation and memory at the

proxy come relatively cheap and thus sophisticated cache management strategies are

possible, including algorithms with different approaches for each class of objects.

Another significant difference is that the bandwidths to the various servers are different

(and indeed can change over time) and thus the cost of a miss does not depend on the size

11

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

of the object alone. Increased levels of performance can be achieved with web caching

strategies specifically geared towards traditional web objects like web pages with static

images and feature rich pages with multimedia objects.

2.4 WEB CACHING TECHNIQUES

Caching can be deployed at various points in the Internet: within the client browser, at or

near the server (reverse proxy) to reduce the server load, or at a proxy server. A proxy

server is a computer that is often placed near a gateway to the Internet as shown in Fig.

2.1, and that provides a shared cache to a set of clients. Client requests arrive at the proxy

regardless of the Web servers that host the required web objects. The proxy either serves

these requests using previously cached responses or obtains the required web objects

from the original Web servers on behalf of the clients. It optionally stores the responses

in its cache for future use. Hence, the goals of proxy caching are twofold: first, proxy

caching reduces the access latency for a web object; second, it reduces the amount of

“external” traffic that is transported over the wide-area network (primarily from servers

to clients), which also reduces the user’s perceived latency. A proxy cache may have

limited storage in which it stores “popular” objects (web objects that users tend to request

more frequently than other web objects).

Fig 2.1. Possible locations for deploying web caching [Balamash 2004]

Caching policies for traditional memory systems do not necessarily perform well when

applied to World Wide Web traffic for the following reasons:

12

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

• In memory systems, caches deal mostly with fixed-size pages, so the size of the

page does not play any role in the replacement policy. In contrast, web objects are

of variable size, and object size can affect the performance of the policy.

• The cost of retrieving missed web objects from their original servers depends on

several factors, including the latency between the proxy and the original servers,

the size of the object, and the bandwidth between the proxy and the original

servers. Such dependence does not exist in traditional memory systems.

• Web objects are frequently updated, which means that it is very important to

consider the object expiration date at replacement instances. In memory systems,

pages are not generally associated with expiration dates.

• The popularity of web objects generally follows a Zipf-like law (i.e., the relative

access frequency for an object is inversely proportional to the “rank” of that

object) [Breslau 1999]. This essentially says that popular web objects are very

popular and a few popular objects account for a high percentage of the overall

traffic. Accordingly, object popularity needs to be considered in any Web caching

policy to optimize a desired performance metric. A Zipf-like law has not been

noticed in memory systems. While memory systems are known to exhibit

temporal locality, this concept is quiet different from object popularity.

Several web replacement policies have been proposed in the literature. Such policies

attempt to optimize various performance metrics, including the byte hit ratio and the

average download time [Bahn 2002]. Replacement policies rely on key metrics

(parameters) to achieve their goals. Many of them use the recency or frequency

information of past references; which are well exhibited in World Wide Web traffic [Jin

2000a, Jin 2000b]. For example, the well known least recently used (LRU) caching

policy employs the time since last access as its only parameter. Some policies combine

both recency and frequency information, along with some other parameters such as the

size of the object and the cost associated with each object. Since web objects are of

variable size, two objects with different sizes and with the same likelihood of being

referenced can have different costs. The cost of an object includes the time and

processing overhead associated with retrieving the object from the original server. The

13

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

lifetime of the object and the cache space overhead associated with the object size are

also considered as cost factors [Balamash 2004]. Table 2.2 summarizes some of the

parameters used in cache replacement policies.

Table 2.2: Examples of commonly used parameters in cache replacement policies

Parameter Rationale
Last access time Web traffic exhibits strong temporal locality

Number of previous accesses Frequently accessed objects are likely to be accessed in
the near future

Average retrieval time Caching objects with high retrieval times can reduce the
average access latency

Object Size Caching small objects can increase the hit ratio
“Expires” or “Last Modified”
HTTP header values

Caching an expired object wastes cache space and
results in a miss when object is accessed.

In [Wang 1999], Wang provides a good survey of Web caching schemes. It addresses

several topics related to Web caching, including cache architectures, protocols,

replacement policies, prefetching, cache coherency, proxy placement, user access

prediction, and dynamic objects caching.

2.4.1. DESIRABLE PROPERTIES OF WEB CACHING

Besides the obvious goals of a caching system, a web caching system must have a

number of properties from the user’s perspective and from the server’s perspective.

The desirable properties from the user’s perspective are:

• Fast access: Access latency is an important parameter to measure the quality of

web service. A web caching system must aim at reducing the access latency so

that it makes user experience of surfing the internet much better as compared to

the network which does not use a caching system.

• Robustness: This indicates the availability of the system, which is another

important parameter to measure quality of web service. This includes the

availability of the service even when proxies crash, eliminating single point of

failure. When a failure occurs, the system must gracefully fail so that it is easy to

14

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

recover from failure. The caching system design should ensure such a fault

tolerant system design.

• Transparency: The operation of caching system must be transparent for the user,

who is concerned only about faster response, higher availability and easier access.

The desirable properties from the server perspective are:

• Scalability: We know that the amount of growth the web has seen is exponential

and it will continue to be so in the years to come. Any caching system designed

must be should scale well with the increasing size and density of network. This

requires all the protocols employed in the caching system to be as lightweight as

possible.

• Load balancing. It’s desirable that the caching scheme distributes the load evenly

through the entire network. A single proxy/server shouldn’t be a bottleneck (or

hot spot) and thereby degrades the performance of a portion of the network or

even slow down the entire service system.

• Simplicity. Simplicity is always an asset. Simpler schemes are easier to implement

and likely to be accepted as international standards. We would like an ideal Web

caching mechanism to be simple to deploy.

2.4.2. TYPES OF CACHING

There has been several research and study work being undertaken in the field of Web

Caching. They deal with different caching architectures and cache deployment options.

Some deployments go hand in hand with the caching system architecture, whereas some

architectures allow for a variety of deployment options [Barish 2000, Wang 1999,

Rabinovich 2002]. Web caching can be classified on the basis of the cache deployment as

follows:

Proxy Caching

A proxy cache server intercepts HTTP requests from clients, and if it finds the requested

object in its cache, it returns the object to the user. If the object is not found, the cache

15

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

goes to the object’s home server, the originating server, on behalf of the user, gets the

object, possibly deposits it in its cache, and finally returns the object to the user. Proxy

caches are usually deployed at the edges of a network (i.e., at company or institutional

gateway or firewall hosts) so that they can serve a large number of internal users. The use

of proxy caches typically results in wide-area bandwidth savings, improved response

time, and increased availability of static Web-based data and objects. One disadvantage

to this design is that the cache represents a single point of failure in the network. When

the cache is unavailable, the network also appears unavailable to users. The other

disadvantage is with respect to scalability. As demand rises, one cache must continue to

handle all requests. There is no way to dynamically add more caches when needed, as is

possible with transparent proxy caching.

Reverse Proxy Caching

The other way of deploying proxy cache is the notion of reverse proxy caching, in which

caches are deployed near the origin of the content instead of near clients. This is an

attractive solution for servers that expect a high number of requests and want to ensure a

high level of quality of service. Reverse proxy caching is also a useful mechanism when

supporting Web hosting farms (virtual domains mapped to a single physical site), an

increasingly common service for many Internet service providers (ISPs). Note that

reverse proxy caching is totally independent of client-side proxy caching. In fact, they

may coexist and collectively improve overall performance.

Transparent Caching

Transparent proxy caching is similar to the proxy server approach. Transparent caches

work by intercepting HTTP requests and redirecting them to Web cache servers or cache

clusters. This style of caching establishes a point at which different kinds of

administrative control are possible; for example, deciding how to load balance requests

across multiple caches. The filtering of HTTP requests from all outbound Internet traffic

may add additional latency. There are two ways to deploy transparent proxy caching: at

the switch level and at the router level. Router-based transparent proxy caching uses

policy-based routing to direct requests to the appropriate cache(s). For example, requests

16

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

from certain clients can be associated with a particular cache. In switch-based transparent

proxy caching, the switch acts as a dedicated load balancer. This approach is attractive

because it reduces the overhead normally incurred by policy-based routing. Although it

adds extra cost to the deployment, switches are generally less expensive than routers.

Adaptive Web Caching

Adaptive Web caching [Michel 1998] views the caching problem as one of optimizing

global data dissemination. A key problem adaptive caching targets is the “hot spot”

phenomenon, where short-lived Internet content can, overnight, become massively

popular and in high demand. Adaptive caching consists of multiple distributed caches

which dynamically join and leave cache groups (referred to as cache meshes) based on

content demand. Adaptivity and the self-organizing property of meshes are a response to

those scenarios where demand for objects gradually evolves and those where demand

spikes, or is otherwise unpredictably high or low. Adaptive caching uses the Cache

Group Management Protocol (CGMP) and Content Routing Protocol (CRP). CGMP

specifies how meshes are formed, and how individual caches join and leave those

meshes. CRP is used to locate cached content from within the existing meshes. This

technique relies on multicast communication between cache group members and makes

use of URL tables to intelligently determine to which overlapping meshes requests should

be forwarded. One of the key assumptions of the adaptive caching approach is that the

deployment of cache clusters across administrative boundaries is not an issue. If the

virtual topologies are to be most flexible and have the highest chance of optimizing

content access, administrative boundaries must be relaxed so that groups form naturally

at proper points in the network.

Push Caching

As described in [Bhide 2002], the key idea behind push caching is to keep cached data

close to the clients requesting that information. Data is dynamically mirrored as the

originating server identifies where requests originate. As with adaptive caching, one main

assumption of push caching is the ability to launch caches that may cross administrative

17

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

boundaries. However, push caching is targeted mostly at content providers, which will

most likely control the potential sites at which the caches could be deployed. Unlike

adaptive caching, it does not attempt to provide a general solution for improving content

access for all types of content from all providers. One study [Tiwari 1999] found that

well-constructed push-based algorithms can lead to speedups of between 1.27 and 2.43 as

compared to traditional cache hierarchies. This study also notes the general dilemma that

push caching encounters: forwarding local copies of objects incurs costs (storage,

transmission), while overall performance and scalability are only seen as improved if

those objects are indeed accessed. Also combination of push and pull caching is going to

yield a higher quality of service to the end user.

Active Caching

The WisWeb project at the University of Wisconsin explored how caching can be applied

to dynamic objects [Cao 1998]. Their motivation is that the increasing amount of

personalized content makes caching such information difficult and not practical with

current proxy designs. Indeed, a recent study [Creres 1998] of a large ISP trace revealed

that over 30 percent of client HTTP requests contained cookies, which are HTTP header

elements typically indicating that a request be personalized. As Web servers become

more sophisticated and customizable, and as one-to-one marketing e-commerce strategies

proliferate the Internet, the level of personalization is anticipated to rise. Active caching

uses applets, located in the cache, to customize objects that could otherwise not be

cached. When a request for personalized content is first issued, the originating server

provides the objects and any associated cache, cache the applets. When subsequent

requests are made for that same content, the cache applets perform functions locally (at

the cache) which would otherwise (more expensively) be performed at the originating

server. Thus, applets enable customization while retaining the benefits of caching.

2.4.3. CACHING ARCHITECTURES

A caching architecture should provide the paradigm for proxies to cooperate efficiently

with each other. Caches sharing mutual trust may assist each other to increase the hit rate.

18

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Various caching architectures are hierarchical caching, distributed caching and hybrid

caching

Hierarchical Caching Architecture

Hierarchical caching was pioneered in the Harvest Cache [Chankhunthod 1996]. A series

of caches are hierarchically arranged in a tree like structure; these caches leverage from

each other when an object request arrives and the receiving cache experiences a miss.

Caches are placed at multiple levels of the network. Requests for a object travel up the

caching hierarchy until the object is hit at some cache level. When the object is found,

either at a cache or at the original server, it travels down the hierarchy, leaving a copy at

each of the intermediate caches along its path. In hierarchical design, child caches can

query parent caches, children can query each other but parents can never query their

children.

A hierarchical architecture is more bandwidth efficient, particularly when some

cooperating cache servers do not have high-speed connectivity. In such a structure,

popular Web pages can be efficiently diffused towards the demand. With hierarchical

caches, it has been observed that parent nodes can become heavily swamped during child

query processing. Commercial caches such as Network Appliances NetCache employ

clustering to avoid this swamping effect.

However, there are some disadvantages associated with this caching architecture

• Additional delays may be introduced at different levels.

• An object may be duplicated at different levels, so multiple copies of the same

object may exist leading to coherency problems.

• Significant coordination may be required among the caches placed at key access

points in the network.

• Long queuing delays may be introduced at high levels because with increase in

levels, the parent nodes become heavily swamped during the child query

processing.

19

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Distributed Caching Architecture

In distributed Web caching systems, there are no caches at intermediate levels other than

the institutional caches which serve each others’ misses [Povey 1997]. All the

institutional level caches maintain metadata information about the contents of other

caches at the same level, in order to decide from which institutional cache a miss object

can be retrieved. This metadata information can be distributed in the system using a

hierarchical mechanism. With distributed caching, most of the traffic flows through low

network levels, which are less congested and no additional disk space is required at

intermediate network levels. Web caching systems are composed of multiple distributed

caches to improve

• System Scalability: Caches can serve high degree of concurrent client requests

• Availability: Systems can survive the failure of some caches there by

becoming more fault tolerant.

• Leveraging physical locality: Having caches closer in proximity to certain

groups of users helps in reducing network latencies.

• Load Balancing: Caches can query each other; distributing objects among

them and intercache communication helps in load balancing and resolving

requests internally.

There are several approaches to the distributed caching. The Harvest group designed the

Internet Cache Protocol (ICP) [RFC 2186], which supports discovery and retrieval of

objects from neighboring caches as well as parent caches. Another approach to

distributed caching is the Cache Array Routing protocol (CARP) [Valloppillil 1998],

which divides the URL-space among an array of loosely coupled caches and lets each

cache store only the objects whose URL are hashed to it. Another technique related to

cache-to-cache communication is the notion of cache digests, such as those implemented

by Squid [Wessels 1998] and the Summary Cache [Fan 2000]. Digests can be used to

reduce intercache communication by summarizing the objects contained in peer caches.

Thus, request forwarding can be more intelligent and more efficient. This approach is

20

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

similar to the use of URL routing tables in adaptive caching as a more intelligent way to

forward requests.

Hybrid Caching Architecture

In hierarchical caching the connection time is shorter. So placing additional copies at

intermediate levels reduces the retrieval latency for small objects. Distributed caching has

shorter transmission times and higher bandwidth usage than hierarchical caching. A well-

configured hybrid scheme can combine the advantages of both hierarchical and

distributed caching. In a hybrid scheme, caches may cooperate with other caches at the

same level or at a higher level using distributed caching. ICP is a typical example. The

object is fetched from a parent/neighbor cache that has the lowest RTT. Rabinovich et al.

[Rabinovich 1998] proposed to limit the cooperation between neighbor caches to avoid

obtaining objects from distant or slower caches, which could have been retrieved directly

from the origin server at a lower cost.

2.4.4. CACHE REPLACEMENT POLICIES

Effectiveness of proxy caches depends on object placement and replacement algorithms

that can yield high hit rate. A good admission control policy is especially important while

caching non-uniformly sized objects, because a considerable amount of disruption can be

caused when an object is added and others are purged from the cache. Highly frequent

replacements may cause space and time wastage, and storage of objects, which are never

hit. Therefore, an optimal cache replacement policy is essential.

To summarize, the important factors (characteristics) of web objects that can influence

the replacement process are

• Recency: time of (since the last reference of the object)

• Frequency: number of requests to an object

• Size: size of the web object in bytes.

• Cost: cost of fetching an web object from its origin server

• Modification time: time of (since) last modification

• Expiration time: time when an object gets stale and can be replaced immediately.

21

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Most of the replacement policies designed for web caches use some of these factors for

decision making. They can be classified as suggested in [Wang 1999, Aggarwal 1999].

Traditional Replacement Policies

• Least Recently Used (LRU): It removes the object which was least recently requested

by using a reference count to store information about time of last access.

• Least Frequently Used (LFU): It evicts the object whose frequency of access is the

least.

• Pitkow/Recker: [Pitkow 1994] evicts objects in LRU order, except if all objects are

accessed within the same day, in which case the largest files are removed first.

Key-Based Replacement Policies

The objects are replaced based on a primary key. In case there is a tie, it is broken using a

secondary key and tertiary key, etc. Few of these policies are

• Size: [Williams 1996] This strategy removes the object having largest size. The LRU

strategy is applied for the objects with the same size. One variant is LOG2_SIZE

which uses ⎣ ⎦ instead of size.)(log2 size

• LRU-MIN: [Abrams 1995] A particular size S is chosen and if there are any objects in

the cache which have size of at least S, the least recently used such object is removed

from the cache. In case there are no such objects, then starting from the objects with

size at least S/2 in LRU order, objects are evicted i.e. the object which has the largest

log(size) and is the least recently used among all such objects will be evicted first.

• LRU-Threshold: [Abrams 1995] It is the same as LRU, but objects larger than a

certain threshold size are never cached.

• Hyper-G: [Wooster 1997] It is a refinement of LFU, breaks ties using the recency of

last use and size.

• Lowest Latency First: [Williams 1996] It minimizes average latency by evicting the

object with the lowest download latency first.

Table 2.3 shows examples of the key based replacement policies.

22

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Cost-Based Replacement Policies

In these policies, a potential cost function derived from different factors such as time

since last access, size of the object, entry time of the object in the cache, transfer time

cost, object expiration time etc. is used to choose the objects to be replaced. Some of the

algorithms based on this policy are

• Greedy Dual-Size(GD-Size) : [Cao 1997] It associates a cost with each object and

evicts the object with the lowest cost to size ratio.

• Hybrid: [Wooster 1997] It associates a utility function with each object and evicts the

one with the least utility to reduce the total latency.

• Least Normalized Cost Replacement(LNC-R-W3): [Scheuermann 1997] This

algorithm employs a rational function of the access frequency, transfer time cost and

the size and removes the object with the lowest value for this function.

• Server-assisted scheme: [Cohen 1998] The server generates a histogram of inter-

request times by observing its request logs. It calculates a value for an object in terms

of its fetching cost, size, next request time and cache prices during the time period

between requests and evicts the object having the least value.

Table 2.3 Examples of Key-based policies

Name Primary Key Secondary Key Tertiary Key
LRU Time Since Last Access
FIFO Entry Time of Object in Cache
LFU Frequency of Access
SIZE Size Time Since Last Access

LOG2-SIZE ⎣ ⎦)(log2 Size Time Since Last Access
HYPER-G Frequency of Access Time Since Last Access Size

There have been other proposals for classification of replacement policies in the

literature. [Jin 2000a, Bahn 2002, Podlipnig 2003]. There have been other replacement

strategies proposed and discussed. To sum up, a great deal of effort has been made to

maximize the web object hit rate and minimize the latency in delivery of contents to the

clients. One popular caching product realized in software and is the freely available

Squid proxy cache [Squid 1998]. In its original implementation Squid uses LRU with

23

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

some modifications. The replacement algorithm is not triggered on demand but runs

periodically every second. Squid has a low and a high water mark. When the disk usage

is close to the low water mark, the replacement is less aggressive (fewer objects

removed). When the usage is close to the high water mark, the replacement is more

aggressive (more objects removed). The replacement depends among other things on an

LRU-threshold that is dynamically calculated, based on the current cache size and the

low and high water marks. An object is removed if the time since last access is greater

than this threshold. Furthermore, Squid supports LFU and GD-Size replacement policies.

Table 2.4 gives the summary of the algorithms described so far.

2.4.5. CACHE CONSISTENCY

In its simplest form, the web is a set of servers and clients. To retrieve a particular web

resource, the client attempts to communicate over the internet to the origin web server as

shown in Fig 2.2.

Fig 2.2 HTTP transfer between client and server. [Davison 2001]

24

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Table 2.4 Summary of Existing Replacement Algorithms

Algorithm

Reference

based on

recency

history

Reference

based on

frequency

history

Consideration of

nonuniformity of

the object

Time

Comple

xity

Space

Complexit

y

Advantages Disadvantages

LRU

Last

reference

time

No No O(1) O(1)
Simple to

implement

Fixed

performance

measure;

LFU No
Number of

references
No O(log n) O(1)

Keeps many

objects in

cache

Fixed

performance

measure;

Size No No
Size in biased

manner
O(log n) O(1)

Keeps many

objects in

cache

Fixed

performance

measure;

doesnot consider

reference history

LRU-min

Last

reference

time

No
Size in biased

manner
O(n) O(1)

Keeps many

objects in

cache

Time

complexity;

Fixed

performance

measure

Hybrid No
Number of

references
Size and latency O(log n)

O(1) + per-

server

information

Good

estimation of

download

latency

Per-server

information

overhead; fixed

performance

measure

LNC-R-W3

k-th

reference

time

Based on k-

th reference

time

Normalised

manner
O(n) O(k)

Normalized

contribution

to cost saving

ration

Time

Complexity

GD-Size

Last

reference

time

No Weighted manner O(log n) O(1)

No parameter;

Can optimize

any

performance

measure

Does not

consider

frequency

25

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

To connect to the server, the client needs the host’s numerical identifier. It queries the

domain name system (DNS) to translate the hostname to its Internet Protocol (IP)

address, with which it can establish a connection to the server and request the content.

Once the Web server has received and examined the client’s request, it can generate and

transmit the response. As Fig 2.2 shows, each step in this process takes time. The

hypertext transfer protocol (HTTP) specifies the interaction among Web clients, servers,

and intermediaries. Requests and responses are encoded as headers that precede optional

bodies containing content. Fig 2.3 shows one set of request and response headers. The

first request header shows the method used (GET), the resource requested (“/”), and the

version of HTTP supported (1.1).

Another commonly used method is POST, which allows clients to send content with a

request (for instance, to carry variables from an HTML form). The first line of the

response header shows the HTTP version supported and a response code with standard

values. The headers of an HTTP transaction also specify aspects relevant to an object’s

cacheability. The relevant headers from the example in Fig 2.3 include Date, Last-

Modified, ETag, Cache-Control, and Expires. For example, in HTTP GET requests that

include an If-Modified-Since header, Web servers use the Last-Modified date on the

current content to return the object only if the object changed after the date of the cached

copy. The origin server needs an accurate clock to calculate and present modification and

expiration times in the other tags. An ETag (entity tag) represents a signature for the

object and allows for a stronger test than If-Modified-Since: If the signature of the current

object at this URL matches the signature of the cached one, the objects are considered

equivalent. The Expires and Cache-Control: max-age headers specify how long the object

can be considered valid. For slowly or never-changing resources, an explicit expiration

date tells caches how long they can keep the object (without requiring the cache to

contact the origin server to validate it).

26

CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

Fig 2.3 HTTP request and response headers [Davison 2001]

2.5. SUMMARY

In this chapter, the basics of caching techniques as applied to computer architecture and

web has been discussed. Further a detailed description of types of caching in web and

caching architectures is also presented. The replacement policies with merits and

demerits for each replacement strategy have been analysed.

27

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

CHAPTER 3

REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

3.1 INTRODUCTION

The size and cost concerns make web caching a much more complicated problem than

traditional caching. In the previous chapter, we discussed variety of web caching

algorithms proposed so far. Effectiveness of proxy caches depends on document

placement and replacement algorithms that yield high hit rate. A good admission control

policy is also important while caching non-uniformly sized objects, because a

considerable amount of disruption can be caused when an object is added and others are

purged from the cache. Highly frequent replacements may cause space and time wastage,

and storage of objects, which are never hit. Therefore, an optimal cache replacement

policy needs to be designed.

There are a number of results on the optimal offline replacement algorithms and online

competitive algorithms, on simplified versions of the Web caching problem. The variable

document sizes in web caching make it complicated to determine an optimal offline

replacement algorithm. If one is given a sequence of requests to uniform size blocks of

memory, it is well known that the simple rule of evicting the block whose next request is

farthest in the future will yield the optimal performance [Belady 1966]. In the variable-

size case, no such efficient offline algorithm is known.

For the cost consideration, there have been several algorithms developed for the uniform-

size variable-cost paging problem. GreedyDual [Young 1994], is actually a range of

algorithms which include a generalization of LRU and a generalization of FIFO. The

name GreedyDual comes from the technique used to prove that this entire range of

algorithms is optimal according to its competitive ratio. The competitive ratio is

essentially the maximum ratio of the algorithms cost to the optimal offline algorithm's

cost over all possible request sequences.

28

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

3.2 MODIFICATIONS TO EXISTING REPLACEMENT POLICIES

Some improvements to the existing replacement policies and the admission policies,

which will help in improving the hit ratio for static web documents, are presented here.

Three caching schemes for static web documents are discussed in detail. The first one is a

dual-stage victim based replacement policy which replaces a single-level web caching to

dual-level web caching. The victims of the replacement can be cached using a second

level of cache memory to enhance the life of a web document. The second one is a

randomized history based caching and replacement, where a history based approach is

combined with a randomized LRU approach. The third one is a Cache-on-Demand (CoD)

protocol based caching which has been modified to include few more features to

effectively cache the objects by demand and provide quality of service (QoS) in place of

best effort service. This later scheme has been extended to wireless networks also.

3.2.1. DUAL-STAGE CACHING WITH VICTIM CACHE

The simplest form of a replacement policy is Least Recently Used (LRU). Several

extensions to this simplest form have been implemented. The size adjusted LRU is one

such algorithm [Aggarwal 1999], which is popular and has a good performance. We

extend this algorithm to include an admission control policy and a multilevel cache

(victim cache), which produces better performance than the ordinary schemes. In fact

this extension can be used with any other caching algorithm. Here, first the Size-adjusted

LRU policy is discussed.

3.2.1.1 Size adjusted LRU Replacement Policy

When an object is to be inserted into the cache, more than one object may need to be

removed in order to create sufficient space. In the LRU, objects are greedily removed

from the cache in the order of recency of last access until enough space is created for the

incoming object. But such a policy is not the only possible LRU generalization for

handling objects of non-uniform size. Charu Agarwal et.al [Aggarwal 1999] proposed a

29

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

heuristics to solve an optimization problem, which mimics but generalizes the LRU

criteria for uniform sized objects. A brief discussion of the scheme is given here.

Assume that there are N objects, and that object i has size S i. A counter is maintained and

incremented each time there is a request for an object. This counter is named as the

Dynamic Count (di). Let i be the object requested. The object will be fetched if present in

the cache; a hit. If miss, assuming i satisfies the admission control requirements, it has to

be decided that which objects have to be purged from the cache.

The following steps are defined:

Dynamic count (di) is maintained for all the objects in the cache table
Object requested (irrespective of cache hit or miss) {

di ++ for all the objects}
When a new object enters:

di = 1
Objects arrangement:
 In the order of size x dynamic count)(ii dS ×
When a new object enters:
 Insert correctly in the cache table.

Object(s) with the highest)(ii dS × count value is thrown off to make space for
the incoming object.

Also the objects can be ordered by the ratio of cost to size. If so, then choose the objects

with the highest cost-to-size ratio, one by one, until no more objects are to be purged. The

cost-to-size ratio for the object i is
)(

1

ii dS ×
. So, we reindex the objects in order of non-

decreasing values of . Then we greedily pick the highest index objects one by

one and purge them from the cache until we have created sufficient space for the

incoming object. This is defined as Size-Adjusted LRU, or SLRU replacement scheme.

)(ii dS ×

3.2.1.2 Access Cost and Expiration time

The scheme discussed here attempts to maximize the probability of a cache hit. If ci is the

access cost of object i and yi be the decision variable to decide the object should be

thrown out or not from the cache where yi = 0 (for not throwing out) and yi = 1 (for

throwing out), then the generalized objective function is defined as∑ ×

i

ii

d
yc

. Similarly,

30

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

for arranging objects in the Size adjusted LRU, considering the access cost, the

generalized function for arrangement will be
i

ii

c
dS)(×

. We can observe that if all

values of ci are uniform (1, for example), then the replacement policy will be the SLRU.

To define the expiry time we define δti1 to be the difference between current time (t) and

the time when it was last accessed and δti2 be the difference between the object expiration

time and t. Then the refresh overhead factor for an incoming object i is defined to be

⎭
⎬
⎫

⎩
⎨
⎧

=
2

1,1min
i

i
i t

t
r

δ
δ

. This value is approximately the reciprocal of the number of expected

accesses before the object needs to be refreshed. We can incorporate the refresh overhead

factor into the replacement policy by ordering objects in terms of nondecreasing values

of
)1(

)(

ii

ii

rc
dS
−×

×
, and greedily purging those objects with the highest indexes.

3.2.1.3 Admission control Policy

When a requested object is obtained by the proxy, to place in a cache, we have to check

whether the object entry into the cache is profitable or not. An admission control policy

decides whether or not it is profitable to cache an object. A good admission control policy

is very important when caching non-uniform size objects, because an object, which is

added, may replace not one but several objects in the cache. When Objects are replaced

frequently it may lead to wastage of space. A small additional cache, called the auxiliary

cache, which maintains the identities of some X number of objects can be used. For each

object in this auxiliary cache we also maintain timestamps of the last access, measured

both in terms of the number of object accesses and time, together with access cost and

expiration time data. The access counter is incremented each time an object is requested

from the cache, whether or not that request can be fulfilled. Because the auxiliary cache

contains identities of objects rather than the objects themselves, its size is negligible

compared to that of the main cache. LRU Order is used for this auxiliary cache.

31

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

An algorithm for this can be defined as:

object i requested
 if (object i present in auxiliary cache){

determine the objects to be thrown out to make space for the incoming object

if (caching of object profitable by
i

i
i d

r
c

)1(−
)

 put in the main cache
 }
 else{
 don’t cache
 }
Update auxiliary cache by LRU

The sum
i

i
i d

r
c

)1(−∑ of the set of candidate outgoing objects is determined using the

replacement scheme. We admit an object only if it is profitable to do so. Observe that the

information needed can be obtained from the auxiliary cache. After this iteration, the time

stamp of the object i is updated.

3.2.1.4 Dual-stage caching with Victim Cache

The above scheme is modified by including Dual-stage Caching scheme. So far, we have

considered only a single level of caching objects. Though the term auxiliary cache may

be misleading, we can note that it does not maintain the actual cache entities. As the

cache space in proxy is increasing and space not being a constraint, we propose a Dual-

stage caching scheme wherein we maintain an additional cache called the Victim cache.

The admission control policy decides whether the object entry into the cache is

worthwhile or not. The cache replacement policy determines the objects to be cached

considering various parameters, mainly the recency of use and the size.

While the object ik enters the cache, after undergoing admission control, the cache

replacement policy determines the objects to be purged to make space for the incoming

object. These objects that are candidates for purge are given a second chance. This is

accomplished with the help of a victim cache. The victim cache is a subordinate cache

memory in addition to the main cache which will have the objects that are the victims of

the replacement. The size of the victim cache is taken as (1/6)th of the proxy caching

32

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

memory as a thumb rule, which is similar to the victim caches in computer architecture

proposed by Norman Jouppi [Jouppi 1990].

The concept of victim cache as proposed by Jouppi [Jouppi 1990, Hennessy 2003] is

popular in computer architecture; it has been proved that it improves the hit rate by

considerable amount due to locality of reference. In World Wide Web, considering the

workload characteristics as discussed in [Arlitt 1996], some of the web objects, especially

in institutional workload, have a fair number of references after the object is purged. By

using SLRU the caching space is effectively used but to achieve a greater hit rate a

second chance for the purged object is essential. In this method, whenever an object

leaves the main cache, instead of immediately purging it, is stored in the victim cache.

The victim cache has a simple replacement algorithm like the First in First out (FIFO) to

reduce the computational time and to have a simple data structure. Thus the object in the

victim cache is purged on the first come first purge basis. The algorithm for the proposed

caching scheme is:

Object i is requested (after the admission control) {
 Check in the main cache
 Check in the victim cache
 If present in the victim cache {
 Place the object in the main cache
 }
 If not present in the main cache {
 decide the objects to be removed from the main cache
 place these objects in the victim cache in the order of FIFO

}
 }

This method of cache replacement accomplished by a dual stage caching will give a

second chance to the objects which are to otherwise purge thus enhancing the

performance of the Proxy Cache.

33

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

3.2.1.5 Discussion of Results

To compare the performance of various replacement policies with dual-stage admission

control and victim cache, we chose three different caching schemes, the naive LRU

replacement policy, the CLOCK PIN policy and the SLRU. For obtaining the

experimental results, we employed trace driven simulations.

These schemes were implemented in conjunction with the admission control that was

discussed earlier in this section. We compare these results with those obtained without

the admission control policy. The final extension proposed, namely the dual stage

caching with the victim cache was also simulated and the results are discussed. We

compare SLRU, in order to show that the two schemes are virtually identical in terms of

performance. We are interested in examining the performance of the algorithms under the

assumption that objects have varying sizes, relative frequencies, and combinations of

these two factors.

It is well known that the performance of caching policies for Web objects often depends

on whether smaller objects have higher frequency or vice versa. The LRU scheme is very

robust for uniform size objects and varying distributions of relative frequencies. All the

schemes that we compare are in fact generalizations of LRU in one way or the other and,

consequently, it is useful to see how the correlation of size and frequency factors into the

robustness of the proposed schemes. For the simulation, real time traces have been used.

We considered the logs for two weeks, traces taken from an institutional proxy (BITS

Squid server) with number of entries in the log being 70,000 user accesses. Most of the

frequently accessed pages had relatively smaller sizes. We ran the simulation for varying

values of the cache capacity. The performance curves for the different replacement

policies of the traces are illustrated in Fig. 3.1 to Fig 3.5

Trace driven simulation without Admission control

As shown in Fig 3.1, the simulation results for the LRU, SLRU and the CLOCK PIN

without the admission control policy clearly shows that the SLRU outperforms the other

34

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

two schemes of cache replacement. However the hit ratio obtained is found to be

relatively very low. The SLRU algorithm is found to be better than the other algorithms.

Fig. 3.1. Hit Ratio Vs Size of the Cache for LRU, Clock Pin and SLRU policies without

Admission Control

Table 3.1 Hit ratio of cache without admission control for various cache sizes

Size

(MB) 100 200 300 400 500 600 700 800 900 1000

LRU 0.1799 0.2492 0.2623 0.2860 0.3218 0.3610 0.4033 0.4203 0.4364 0.45
Clock

Pin 0.0866 0.0966 0.0988 0.1407 0.1522 0.1895 0.1967 0.2610 0.2756 0.2814

SLRU 0.1918 0.2568 0.2711 0.2990 0.3343 0.3781 0.4282 0.4319 0.4531 0.4729

Trace driven simulation with Admission control

After adopting the admission control policy discussed earlier, the trace driven simulation

results using the same set of traces, is as shown in Fig 3.2. It can be seen that the SLRU

policy is still found to perform better than the other two algorithms. As expected the

cache becomes more stable as it results in the entry of the objects only after checking of a

35

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

set of conditions in the admission control. This stable cache memory is found to give

better hit ratio when compared to the one without the admission control policy.

Fig. 3.2. Hit Ratio Vs Size of the Cache for LRU, Clock pin and SLRU with Admission

Control

Table 3.2. Hit ratio of cache with admission control for various cache sizes

Size
(MB) 100 200 300 400 500 600 700 800 900 1000

LRU 0.2500 0.3375 0.3889 0.4603 0.5159 0.5600 0.6007 0.6111 0.6599 0.6818
Clock

Pin 0.0644 0.0987 0.1193 0.1269 0.1472 0.1689 0.1924 0.2322 0.2734 0.2941

SLRU 0.2609 0.3454 0.4080 0.4758 0.5292 0.5770 0.6190 0.6319 0.6139 0.7130

Trace driven simulation for dual stage caching

Finally the extension to the replacement scheme proposed with a dual stage of caching is

simulated using the same set of traces.

36

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig. 3.3. Hit Ratio Vs Size of the Cache for LRU and SLRU with Admission Control and
Dual Stage Caching

Table 3.3. Hit ratio of cache with admission & dual stage caching for various cache sizes

Size
(MB) 100 200 300 400 500 600 700 800 900 1000

LRU 0.295 0.319 0.43 0.491 0.533 0.552 0.583 0.603 0.639 0.678
SLRU 0.321 0.359 0.445 0.524 0.548 0.587 0.603 0.632 0.689 0.723

As shown in Fig 3.4 and Fig 3.5, comparing the LRU and SLRU without admission

control policy, with admission control policy and with admission control dual-stage

cache, it can be seen that by introducing admission policy and dual-stage cache the

performance of the cache can be improved significantly. As the cache size increases there

is a considerable amount of improvement.

37

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.4 Comparison of LRU(Without Admission control), LRU(With Admission control)
and LRU(With Admission control and Dual Cache)

Fig 3.5 Comparison of SLRU(Without Admission control), SLRU(With Admission
control) and SLRU(With Admission control and Dual Cache)

Based on these results, it can be concluded that Dual-Stage with Victim Cache policy is a

practical and viable caching algorithm. It has better hit ratio performance and is also

robust to varying workload characteristics.

38

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

3.2.2. RANDOMIZED HISTORY BASED CACHING AND REPLACEMENT

As discussed earlier the LRU and its variants have worked well for processor caches

[Silberschatz 2001]. It has been shown by Cao [Cao 1997] that the eviction rule “replace

the least recently used document” performs poorly in web-caches, instead using a

combination of several criteria, such as recency, frequency, the size, and the cost of

fetching a document, leads to sizable improvement in hit rate and latency reduction.

However, in order to implement these novel schemes, one needs to maintain complex

data structures. Most of them require a priority queue in order to reduce the time to find a

replacement from O(k) to O(log k), where k is the number of documents in the cache.

Further these data structures need to be constantly updated (ie. even when there is no

eviction), although they are solely used for eviction. A simple Random Replacement

(RR) algorithm evicts a document drawn at random from the cache [Motwani 1995]. This

algorithm does not need any data structure to support the eviction decisions. However, as

might be expected, the RR algorithm does not perform well. So recently a scheme was

proposed in [Psounis 2002] to combine the benefits of both the utility function based

schemes like LRU, LFU and SLRU with RR schemes.

To better the performance of the above scheme we combine the history based scheme

with the randomized utiity based schemes.

3.2.2.1 Randomized Algorithm

Here we briefly describe the Randomized Web cache replacement scheme [Psounis

2002]. Consider a scheme which draws N documents from the cache and evicts the least

useful document in the sample, where the usefulness of a document is defined by a utility

function. After replacing the least recently used of N samples, the identity of the next M

(usually less than N) least useful samples is retained in memory. At the next eviction

time, N-M samples are drawn from the cache and the least recently used of these N-M

and M previously retained samples are combined to form N samples. The identities of the

M least useful of these samples are retained in memory and so on. Intuitively, the

performance of the algorithm that works on few randomly chosen samples depends on

39

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

the quality of the samples. Therefore, by deliberately tilting the distribution of the

samples towards the good side, considerable improvement in performance can be

achieved. It is found that the improvement in performance can be exponential for small

values of M. As the value of M increases, degradation in the performance can be

observed because bad samples are being retained and not enough new samples are being

chosen.

The Randomized Algorithm

If (eviction) {
If (first_iteration) {
 Sample (N);
 Evict_least_useful;
 Keep_least_useful (M);
}
Else {
 Sample (N-M);
 Evict_least_useful;
 Keep_least_useful (M);
 }
}

3.2.2.2 Randomized Least recently Used (RLRU)

The randomized LRU approximates the deterministic LRU. More the samples better will

be the approximation towards LRU by RLRU. In this scheme the data structure is not

maintained for the eviction purposes. The parameter used by the utility function i.e. the

time since the pages last used is stored in order to be available when the document is

chosen as a sample. Moreover the whole cache need not be sorted according to the last

accessed time of the document. The number of updations that take place in this case are

less when compared to deterministic LRU.

If (eviction) {
If (first_iteration) {
 Sample (N);
 Arrange these N samples in the increasing order of last accessed time
 Evict the first sample of these sorted samples
 Keep the next M samples for the succeeding iteration
}

40

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Else {
 Sample (N-M);
 Sort these N-M new samples and M previously retained in the increasing order of last
 accessed time
 Evict the first sample of these sorted samples
 Keep the next M samples for succeeding iteration
 }
}

3.2.2.3 Randomized Size Adjusted Least recently Used (RSLRU)

The randomized SLRU approximates SLRU. Just like RLRU in this scheme the data

structure is not maintained for the eviction purposes. The parameter used by the utility

function i.e. the product of size and dynamic count is stored in order to be available when

the document is chosen as a sample. Moreover the whole cache need not be sorted

according to the product of size and dynamic count of the document. The number of

updations that take place in this case are less when compared to SLRU.

If (eviction) {
If (first_iteration) {
 Sample (N);
 Arrange these N samples in the increasing order product of size and dynamic count.
 Evict the first sample of these sorted samples
 Keep the next M samples for the succeeding iteration
}
Else {
 Sample (N-M);
 Sort these N-M new samples and M previously retained in the increasing order of
product of size and dynamic count.
 Evict the first sample of these sorted samples
 Keep the next M samples for succeeding iteration
 }
}

3.2.2.4 History based Cache Replacement Algorithm

A typical cache replacement approach involves updating the cache content under a

certain criterion or over a considered time period. One of the disadvantages of the LRU is

that it only considers the time of the last reference and it has no indication of the number

of references for a certain Web object. In the previous section we presented a random

41

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

cache replacement policy, which overcomes the difficulty of maintaining the data

structure. Here we introduce a scheme to support a “history” of the number of references

to a specific Web object.

Definition of History function

Suppose that r1, r2, . . . , rn are the requests for cached Web objects as logged at the time

units t1, t2, . . . , tn respectively. A history function for a specific cached object x is

defined as follows:

hist(x, h) = ti if there are exactly h - 1 references between times ti and tn, and

 = 0 otherwise.

The above function hist(x, h) is a time metric and defines the time of the past hth

reference to a specific cached object x. Furthermore, the time ti identifies the first of the

last h references to x. To analyze the performance of History based Randomized

algorithm, a combination of random replacement with the history based algorithm has

been implemented and the results have been analyzed.

3.2.2.5 History based RLRU (HRLRU)

Randomly chosen documents are arranged on the basis of the parameter, history. The

object with the least history value is evicted first. In case of a tie between the history

value the LRU scheme is used to choose the object for eviction. The history of an object

is defined as the first of the last hth reference to that object.

3.2.2.6 History based RSLRU (HRSLRU)

Implementation is the same as HRLRU except that if two or more objects have the same

history value then the tie is broken using SLRU scheme.

 HRLRU and HRSLRU algorithm will replace the cached object with minimum history

value from the randomly selected sample. If two or more objects have the same history

value then the tie is broken by the LRU algorithm or SLRU algorithm respectively.

42

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

If (eviction) {
If (first_iteration) {
 Sample (N);
 Arrange these N samples in the increasing order of the history value.
 Evict the first sample of these sorted samples
 Keep the next M samples for the succeeding iteration
}
Else {
 Sample (N-M);
 Sort these N-M new samples and M previously retained in the increasing order of the
history value.
 Evict the first sample of these sorted samples
 Keep the next M samples for succeeding iteration
 }
}

3.2.2.7 Discussion of Results

The simulation has been carried out for varying sizes of cache capacity and also for

different values of N and M. As shown in Fig 3.6, it is observed that the behaviour of

LRU for N=8, M=2 and N=30, M=5 are identical. Thus the values of N and M do not

affect the LRU curve significantly. However the RLRU curves are affected. The average

behavior of the RLRU curve for N=8, M=2 is better than N=30, M=5.

From Fig 3.7, it is observed that the behavior of SLRU for N=8, M=2 and N=30, M=5

are identical. Thus the values of N and M do not affect the SLRU curve significantly.

However the RSLRU curves are affected. The average behavior of the RSLRU curve for

N=30, M=5 is better than N=8, M=2. For case 1 the object for eviction is chosen from 25

objects and for case 2 from 6 objects. So the probability of retention of the object with

smaller product of size and the dynamic count is more and hence the hit ratio is more for

the case 1.

In Fig 3.8, we can observe the behavior of Randomized LRU and Randomized SLRU for

2 cases mentioned earlier. It is observed that for case 1 and case 2 that RSLRU performs

better that RLRU. Now comparing the behavior of History-Based RLRU, Randomized

43

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

LRU and LRU, as shown in Fig 3.9, we observe that HRLRU performs better than RLRU

which in turn performs better than LRU. Similarly comparing the behavior of History-

Based Randomized SLRU, Randomized SLRU and SLRU, as shown in Fig 3.11, we

observe that RSLRU performs better than HRSLRU which in turn performs better than

SLRU. Finally we compare the History based implementation of RLRU and RSLRU, as

shown in Fig 3.12 and Fig 3.13 for case 1 and case 2, we observe that HRSLRU performs

better for smaller cache sizes in both the cases. After a certain cache size HRLRU

performs better.

Fig 3.6 Cache Size vs Hit ratio for LRU & RLRU 1) N=30, M=5 2) N=8, M=2

Table 3.4 LRU & RLRU Hit ratio for N=30 & 8 and M= 5 & 2

Size(MB) LRU1 RLRU1 LRU2 RLRU2
100 0.2307 0.0946 0.2294 0.1748
200 0.3032 0.4329 0.3022 0.404
300 0.3565 0.3689 0.3542 0.4943
400 0.4001 0.5021 0.3929 0.5119
500 0.4131 0.5249 0.4134 0.4953
600 0.4293 0.4556 0.43 0.5596
700 0.4407 0.5255 0.4439 0.7576
800 0.4534 0.5301 0.4527 0.5031
900 0.4628 0.7345 0.4612 0.7793
1000 0.4673 0.792 0.466 0.7117

44

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.7 Cache size vs Hit ratio for SLRU & RSLRU 1) N=30, M=5 2) N=8, M=2

Table 3.5 SLRU & RSLRU Hit ratio for N=30 & 8 and M= 5 & 2

Size(MB) SLRU1 RSLRU1 SLRU2 RSLRU2
100 0.263 0.1961 0.2617 0.5342
200 0.3341 0.6772 0.3393 0.5689
300 0.3817 0.6924 0.3865 0.5962
400 0.4168 0.714 0.4285 0.6326
500 0.4632 0.7426 0.4571 0.698
600 0.4905 0.7665 0.5186 0.7205
700 0.5472 0.776 0.568 0.7426
800 0.578 0.7816 0.6003 0.7912
900 0.5238 0.8055 0.6478 0.7673
1000 0.5368 0.8185 0.6526 0.8029

45

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.8 Cache size vs. Hit ratio for RLRU & RSLRU 1) N=30, M=5 2) N=8, M=2

Table 3.6 RLRU & RSLRU Hit ratio for N=30 & 8 and M= 5 & 2

Size(MB) RLRU1 RSLRU1 RLRU2 RSLRU2
100 0.0946 0.1961 0.1748 0.5342
200 0.4329 0.6772 0.404 0.5689
300 0.3689 0.6924 0.4943 0.5962
400 0.5021 0.714 0.5119 0.6326
500 0.5249 0.7426 0.4953 0.698
600 0.4556 0.7665 0.5596 0.7205
700 0.5255 0.776 0.7576 0.7426
800 0.5301 0.7816 0.5031 0.7912
900 0.7345 0.8055 0.7793 0.7673
1000 0.792 0.8185 0.7117 0.8029

46

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.9 Cache size vs. Hit ratio for HRLRU, RLRU & LRU for N=30, M=5

Table 3.7 HRLRU, RLRU and LRU Hit ratio for N=30 and M= 5

Size(MB) HRLRU RLRU LRU
100 0.1134 0.0946 0.2207
200 0.4807 0.4329 0.3032
300 0.4225 0.3689 0.3565
400 0.5323 0.5021 0.4001
500 0.5665 0.5249 0.4131
600 0.5265 0.4556 0.4293
700 0.6497 0.5255 0.4407
800 0.6328 0.5301 0.4534
900 0.8729 0.7345 0.4628
1000 0.8005 0.792 0.4673

47

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.10 Cache size vs. Hit ratio for HRLRU, RLRU & LRU for N=8, M=2

Table 3.8 HRLRU, RLRU and LRU Hit ratio for N=8 and M= 2

Size(MB) HRLRU RLRU LRU
100 0.0819 0.1748 0.2294
200 0.2918 0.404 0.3022
300 0.3874 0.4943 0.3542
400 0.4615 0.5119 0.3929
500 0.4465 0.4953 0.4134
600 0.5031 0.5596 0.43
700 0.5544 0.7576 0.4439
800 0.7348 0.5031 0.4527
900 0.5447 0.7793 0.4612
1000 0.6692 0.7117 0.466

48

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.11 Cache size vs Hit ratio for HRSLRU, RSLRU & SLRU for N=30, M=5

Table 3.9 HRSLRU, SLRU and RSLRU Hit ratio for N=30 and M= 5

Size(MB) HRSLRU SLRU RSLRU
100 0.1664 0.263 0.1961
200 0.6001 0.3341 0.6772
300 0.5693 0.3817 0.6924
400 0.5802 0.4168 0.714
500 0.5975 0.4632 0.7426
600 0.5724 0.4905 0.7665
700 0.6053 0.5472 0.776
800 0.6261 0.578 0.7816
900 0.6317 0.5238 0.8055
1000 0.6412 0.5368 0.8185

49

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.12 Cache size vs Hit ratio for HRSLRU, SLRU & RSLRU for N=8, M=2

Table 3.10 HRSLRU, SLRU and RSLRU Hit ratio for N=8 and M= 2

Size(MB) HRSLRU SLRU RSLRU
100 0.4983 0.2617 0.5342
200 0.5628 0.3393 0.5689
300 0.5663 0.3865 0.5962
400 0.578 0.4285 0.6326
500 0.6075 0.4571 0.698
600 0.6122 0.5186 0.7205
700 0.6122 0.568 0.7426
800 0.6269 0.6003 0.7912
900 0.6274 0.6478 0.7673
1000 0.6447 0.6526 0.8029

50

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.13 Cache size vs. Hit ratio for HRSLRU & HRSLRU for N=30, M=5

Table 3.11 HRLRU and HRSLRU Hit ratio for N=30, M=5

Size(MB) HRLRU HRSLRU
100 0.1134 0.1664
200 0.4807 0.6001
300 0.4225 0.5693
400 0.5323 0.5802
500 0.5665 0.5975
600 0.5265 0.5724
700 0.6497 0.6053
800 0.6328 0.6261
900 0.8729 0.6317
1000 0.8005 0.6412

51

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig 3.14 Cache size vs Hit ratio for HRLRU & HRSLRU for N=8, M=2

Table 3.12 HRLRU and HRSLRU Hit ratio for N=8, M=2

Size(MB) HRLRU HRSLRU
100 0.0819 0.4983
200 0.2918 0.5628
300 0.3874 0.5663
400 0.4615 0.578
500 0.4465 0.6075
600 0.5031 0.6122
700 0.5544 0.6122
800 0.7348 0.6269
900 0.5447 0.6274
1000 0.6692 0.6447

Being randomized, the performance of this algorithm depends crucially on the quality of

the samples it obtains. Further the utility function in these algorithms considers only the

recency and it does not consider the number of accesses of the object in the past, which is

also very important for the popularity of the web object. To consider this we have

adopted a History based replacement algorithm.

52

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

It has been observed that randomized replacement policy with LRU or SLRU performs

better than only LRU or SLRU. A size based replacement is more efficient than a Least

recently used policy. This is confirmed by our results which prove that RSLRU has a

higher hit ratio than RLRU. On using random replacement with history based policy we

observe that HRLRU performs better than RLRU but this does not hold for the size based

replacement. In the case of HRSLRU and HRLRU it is observed that for smaller cache

sizes the former performs better. HRSLRU is almost stable with increasing cache sizes.

3.2.3. MODIFIED CACHE-ON-DEMAND PROTOCOL

Cache-on-Demand(CoD) is a new protocol for web caching, which allows a web cache to

allocate its local resources (e. g. disk space) upon external requests from either content

provider or web users themselves, and thus provides Quality of Service (QoS) and service

level agreement (SLA) in delivering content [Ahuja 2002]. The advantage to the content

provider is QoS guarantees like fresh content being available to a web user from a CoD

enabled web cache. The model also provides for a new value added service that can be

offered by network operators and ISPs (usually the cache owners), who can build revenue

in return for providing caching resources to the requesters. And above all, it improves the

user experience.

The CoD concept can also be applied between the cache and the web clients. This

protocol also supports strong consistency by giving complete content management

control to the content provider. The CoD client can reserve resources for a specified

duration of time and push its content to the cache. It can explicitly update the cached

content in order to maintain strong consistency between the original and the cached

copies of the content. It can request the CoD enabled cache to invalidate the content and

free up the reserved resources. It can also request for content specific access log

information.

53

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

3.2.3.1 Service Discovery

Before the client can use the CoD services of a cache, it has to be aware of which are the

proxy caches that are CoD enabled. This is done by harnessing the ease with which

HTTP allows new extension headers to be added. When forwarding a request/reply, a

CoD enabled cache adds new HTTP headers for which it sends information like its

hostname or IP address as well as the port number on which it listens for CoD requests.

When a client receives these extension headers, it may simply ignore them if it is not

configured to interpret them. If it is, on the other hand, enhanced to be a CoD client, it

extracts the values of these headers and then the two entities can communicate using CoD

protocol. This initial communication mechanism is shown in Fig 3.15, where the origin

web server is capable of using the CoD protocol, but the browser is not.

Fig 3.15: Cache on Demand Service Discovery

3.2.3.2 Protocol Messages

Once a client wiling to use the CoD services has determined the location of a CoD

enabled cache, it can use the following types of messages to communicate with the cache:

RESERVE, UPDATE, RELEASE, DELETE and LOG. The format of these CoD

messages is shown in Fig. 3.16. These messages are sent by the requestor to the CoD

54

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

enabled cache for a request to reserve resources, update content, free up the reserved

resources, delete the stored content and obtain an access log respectively.

Fig. 3.16: Cache on Demand Message Formats

3.2.3.3 Request Handling

The CoD server continuously waits for requests from its clients. A CoD client first

authenticates with the CoD server and then submits a CoD request. When the CoD server

receives a request from a client, it reads in the request message and passes it to determine

the type of the request and also checks the validity of the request. The way a request is

handled further depends on the type of the request.

 RESV

A CoD client uses RESV message to reserve disk space on the cache for a specific

duration of time. The client can provide a list of URLs to be fetched along with RESV

requests or it can decide to send a URL list through an UPDT message at a later time.

When the CoD server receives the RESV request, it reads the time at which the client

would like the reservation to start (begin_time), the time duration for which the resources

have to be reserved and the amount of resources requested. The request is run through an

admission control algorithm, discussed later in this chapter, to determine whether or not it

should be accepted. If the request is rejected, a REJECT message is sent back to the

requestor. If accepted, a random request_id is generated and sent to the requestor. The

client can use this id number with other CoD commands to take further actions on the

reservation. The next step is to determine when to fetch the content. If the begin_time for

the request is the current time or a past time, content is fetched immediately. If it is a time

in the future, a timer is set to indicate when the content should be fetched. When ready to

fetch, the URLs listed in the RESERVE message are read one by one and content is

55

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

fetched from the origin server. This involves creating an HTTP request for each URL and

forwarding it to the origin server. When content is fetched, the standard HTTP

cachability rules are used to check whether or not the object can be cached. Another

check is performed to make sure that the object does not exceed the disk quota reserved

for that particular CoD client. If either of these checks implies that the object should not

be stored in the cache, then an error is logged in the access log file. A RESV request

without any URL request is also allowed. In this case, it is the CoD client’s responsibility

to send a list of URLs in an UPDT message.

UPDT

Web caches traditionally maintain a weak consistency between the original content and

its cached copies. Consistency checks are performed only when a user agent forces to do

so by sending an IMS (If Modified Since) request. Such a model does not guarantee the

freshness of cached content. But CoD provides functionality to support strong content

consistency. In this case, the content provider, as a CoD client has strong control over

what content is cached at the CoD caches. If content stored in a CoD cache is modified at

the origin server, the origin server can either send an updated copy of the content or send

invalidation messages to CoD server to discard the CoD content. To update the content

stored in the cache an UPDATE request can be sent to the CoD enabled cache. An UPDT

message must always be accompanied with the id number of the initial reservation that

needs to be updated. It may also include a list of URLs that the CoD client wants the

cache to refresh. If no URL list is given, all the URLs in the original request are fetched

again. The UPDT message can also be used in another scenario. As mentioned above, a

RESV request might or might not have a URL list included with it. If no URLs are

provided with RESV then the URLs can be specified with an UPDT request. Depending

on the begin_time of the RESV request, the content will either be fetched immediately or

in the future.

RELS

It is guaranteed that the reserved content will be stored at the web cache at least for the

time period requested in the RESERVE request. After the expiration of the agreement,

56

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

the status of that content changes from strongly guaranteed to weakly guaranteed. This

implies that the content may still be reserved to a user from the cache as long as it is

fresh, but if another client requests for resources and cache does not have enough

resources available, then this content will be replaced as per the cache replacement

algorithm. However a CoD client can send a RELS request to free up some/all of the used

disk space from within its quota before the agreement expires, without changing the

original amount of disk space reserved, so that it can accomodate new content in the

cache. This helps it to change the content stored in the cache without having to first

delete the existing reservation and then send a new RESV request. If any URLs are

included in the RELS request, only those URLs are released. If no URLs are specified,

then all of the content corresponding to that request_id is released. The content will not

be actually deleted from the cache immediately, but will become weakly guaranteed

content. The initial amount of resources (disk space) reserved remains unaffected.

DEL

The DEL request is used when a CoD client wants to actually release partly/ wholly the

resources that it had reserved. By deleting content with the DEL command, it can ensure

that the content will not be available from the cache to other clients. Also, by deleting the

resources before the reservation agreement expires, the CoD client can save itself some

billing charges. Like the RELEASE message, if URLs are specified, only those URLs are

deleted. If no URLs are specified, all the URLs are associated with that request_id are

deleted from the cache. This will ensure that the content is not even available as best-

effort content from the cache. In this case, the client also loses the corresponding reserved

disk space. A URL released with the RELS command may still be served as a HIT to web

users from the cache, but a URL deleted with the DEL command will be flushed out from

the cache physically and will result in a MISS if a user requests it.

LOG

The access log file on a CoD enabled proxy server can have log messages in three

different formats. The first format is used when a web user accesses an object through the

cache. The other two log messages can be logged as a result of fetching content according

57

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

to a CoD agreement. A CoD client can request the access logs specific to its content by

sending a LOG request to the cache. The request may include either a request id number,

or a list of URLs, or both of them. This flexibility is provided to ensure that access logs

can be retrieved even after the reservation has expired, in which case the request id would

be invalid and the URL list could be used to retrieve the log.

3.2.3.4 Admission Control

A Cache on Demand server uses the admission control algorithm to determine if the

requested resources can be allocated to a client. Current implementations allow clients

only to request disk space on the CoD caches, so the admission control algorithm is used

to ascertain that the total amount of disk space reserved by various clients is always less

that or equal to the total hard disk capacity available on the server.

If we express this mathematically, we have,

 req(t) + rsvd(t) <= D

 where, req(t) = disk space being requested at time t

 rsvd(t) = disk space already reserved at time t

 D = constant total disk space available

For example, considering a cache with a total 100 MB disk space available for its clients.

When no reservations have been made, the system can be represented by the graph in

Fig.3.17, where the dotted line represents the total disk space available. If suppose the

first reservation is made for s=50 MB, starting at time t1=10 and ending at t2=30. The

disk reservation is shown with a solid line in Fig.3.18. The next request is to reserve

another 50 MB, starting at t1=20 and ending at t2=40. This request will be accepted

because, as can be seen in Fig.3.19, the total reserved disk space at all times is less than

or equal to the total available (100 MB). If the CoD server receives a third request to

reserve 20 MB, starting at t1=25 and ending at t2=50, then this request will be rejected

because in this case, the step function representing the reserved disk space crosses over

the maximum limit as shown in Fig 3.20.

58

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

Fig.3.17 Maximum disk space available Fig.3.18 When request s=50MB, t1=10,

 t2=30, accepted

Fig.3.19 When request s=50MB, t1=20, Fig.3.20 When request s=20 MB,

t2=40, accepted t1=25, t2=50, rejected

This admission control algorithm can be extended for other types of resources, like CPU

power and network bandwidth, as needed.

3.2.3.5 Modifications to the CoD Protocol

• When the total size of the URLs exceeds the total cache space reserved for a

particular client, following policy can be adopted instead of plainly rejecting the

request. The URLs are arranged in increasing order of object size and they are

allocated in that order till no URL can be fit into the reserved space.

59

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

• When a URL requested through UPDATE is already present in the CoD cache,

the CoD server fetches the updated copy of the URL. If the URL is a new request

it is fetched from the appropriate origin server and cached for the first time. If the

size of the web object obtained from the URL is greater than the free CoD cache

space available for the user, then that particular request is rejected.

• When a particular web object is freed using RELS, the space occupied by it is

added on to the free CoD cache space and its corresponding record in the client

structure is removed.

• If there are no URLs in the RELS message, then the space occupied by all the

currently cached URLs for that client is added on to the free space and the records

corresponding to them are removed from the client structure.

• If URLs are specified in the DEL message, the client loses the corresponding disk

space. The CoD server ensures that the content will not be available from the

cache to web servers. By deleting the resources before the reservation agreement

expires, the CoD client can save itself some billing charges.

• If URLs are not specified in the DEL message all the URLs that are associated

with that client are deleted from the cache and the freed CoD cache space is added

to the common CoD cache pool.

• If the request is a normal http request and not a CoD request, it is cached in the

http portion of the cache. After every http request all the objects are sorted using

an algorithm similar to the SLRU wherein all the cached objects are sorted in the

decreasing order of object size. Once that is done the array of objects is scanned

for objects having the same size. If found these objects with same size are sorted

in the decreasing order of number of times they have been accessed previously.

What effectively happens in the above algorithm is that very large sized and least

frequently used objects are pushed to the top of the array. When a fresh http

request requires an object to be brought into the cache and there isn’t enough free

space to accommodate the new object, then the objects from the top of the array

are removed till there is just enough cache space for the new web object.

60

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

3.2.3.6 Discussion of Results

A proxy cache has been simulated which can accept Cache on Demand requests as well as

normal caching requests. A portion of the cache (in terms of percentage of the total size of the

cache) is always reserved for CoD requests. The rest of the cache is used as a normal cache. The

admission and replacement for the CoD part of the cache is done through an appropriate message

from the user who reserved the cache. The simulation was done for 3 admission policies. One-

time caching i.e. caching the URL the first time it is requested by the user, Two-time caching i.e.

caching the URL when it is requested for the second time and Three-time caching i.e. caching

the URL when it is requested for the third time. The replacement policy followed is Size –

Adjusted Least Recently Used (SLRU). We assume that there are N objects, and that object i has

size Si. A counter is maintained and incremented each time there is a request for an object. This

counter has been named as the Dynamic Count(di). The steps followed in this policy are as

follows:

Dynamic count(di) is maintained for all the objects in the cache table.

When a new object enters : d = 1

The object is inserted correctly in the cache table Object/s with the maximum Si x di

count value is thrown off to make space for the incoming object.

Object requested (irrespective of cache hit or miss) : di ++ for the object

Object arrangement: In the order of Size * dynamic count (Si x di)

Inserted correctly in the cache table Object/s with the maximum Si x di count value is

thrown off to make space for the incoming object.

The log data used in the simulations was the access log of the Institutional Squid Proxy Server.

The number of access logs used was 50000 logged over a period of 6 days. The simulation was

done for total cache sizes of 50 MB, 100 MB and 200 MB. The percentage of the Cache on

Demand cache was varied for the different sizes and the hit ratio of the normal cache was noted.

The minimum hit ratio was fixed as 0.4 and based on this, the maximum percentage of the cache

on demand cache was observed.

61

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

The graphs obtained for the hit ratio of various cache sizes are shown in Fig 3.21 to Fig 3.29.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

 Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he

Series1

Fig 3.21 Effect of CoD on the hit ratio of the one time admission policy normal cache for cache

size 50MB

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 50 100 150

 Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he

Series1

Fig 3.22 Effect of CoD on the hit ratio of the two time admission policy normal cache for cache

size 50 MB

62

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8

0 50 100 150

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he

Series1

Fig 3.23 Effect of CoD on the hit ratio of the three time admission policy normal cache for cache

size 50 MB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he

Series1

Fig 3.24 Effect of CoD on the hit ratio of the one time admission policy normal cache for cache

size 100 MB

63

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

0

0.1

0.2

0.3

0.4

0.5

0.6

80 85 90 95 100

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 C
ac

he

Series1

Fig 3.25 Effect of CoD on the hit ratio of the two time admission policy normal cache for cache

size 100 MB

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7

85 90 95 100

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 C
ac

he

Series1

Fig 3.26 Effect of CoD on the hit ratio of the three time admission policy normal cache for cache

size 100 MB

64

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

0

0.1

0.2

0.3

0.4

0.5

0.6

75 80 85 90 95 100

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he

Series1

Fig 3.27 Effect of CoD on the hit ratio of the one time admission policy normal cache for cache

size 200 MB

0

0.1

0.2

0.3

0.4

0.5

0.6

88 90 92 94 96 98

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he

Series1

Fig 3.28 Effect of CoD on the hit ratio of the two time admission policy normal cache for cache

size 200 MB

65

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

85 90 95 100

Percentage of CoD in cache

H
it

R
at

io
 o

f N
or

m
al

 c
ac

he
Series1

Fig 3.29 Effect of CoD on the hit ratio of the three time admission policy normal cache for cache

size 200 MB

The results obtained as shown in Fig 3.21 to Fig 3.29, the effect of the presence of CoD cache as

a percentage of normal cache on the hit ratio of normal cache. The table shows the amount of

CoD cache size as a percentage of the normal cache that is available for the normal cache hit

ratio which should remain above 40% are,

Table 3.13 Precentage of CoD cache for normal cache having 40% and above hit ratio

Size(MB) One-time policy
CoD present (%)

Two-time policy
Hit ratio (%)

Three-time policy
Hit ratio (%)

50 90 90 90
100 95 95 95
200 97 97 97

Thus it can be said that having a CoD Enabled Proxy Caches which can dedicate its own cache

from 50% to 90% depending on number of users using this facility, does not affect the normal

cache hit ratio drastically. Thus the CoD protocol enhances traditional web caches with the

capability of reserving resources to store external content for a specified period of time. The

major benefit of this feature is that a third party, such as a content provider or a business partner

can have guaranteed content presence in the network, and also strong control on the content

66

CHAPTER 3: REPLACEMENT POLICIES FOR CACHING STATIC WEB OBJECTS

delivered to web users. Furthermore, a third party can enforce strong content consistency since it

can keep track of distributed content at different CoD cache locations.

Although the current implementation of Cache on Demand allows a cache to allocate

only disk space to its clients, in the future this can be extended to include features like

network QoS provisioning and system level resource allocation. Guaranteeing network

QoS would be useful for applications like streaming media, where it would be desirable

to be able to reserve network resources along the path so that the end-to-end delay can be

controlled. System-level resource allocation could include leasing out memory or CPU

utilization. This could facilitate services such as edge application hosting.

3.3 SUMMARY

In this chapter the Dual-Stage Victim based Web Caching method to enhance the

performance of the web caches has been discussed. Next the significance of randomized

algorithms and the enhancement of this scheme to include History scheme is discussed.

This improves the performance of Randomized replacement policies. Also Cache on

Demand protocol, which is used for improving the quality of service to the end user has

been discussed. It is also shown that using CoD is not going to affect the effectiveness of

the normal caching service.

67

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

CHAPTER 4

REPLACEMENT POLICIES FOR CACHING STREAMING
MULTIMEDIA OBJECTS

4.1 INTRODUCTION

During recent years, the rapid increase in commercial usage of the Internet has resulted in

explosive growth in demand for web-based streaming applications. As requests and

delivery of streaming video and audio over the Web becomes more popular, caching of

media objects on the edge of the Internet has become increasingly important. Recently,

several commercial companies have announced media distribution services on the

Internet using a number of proxy caches. Examples include Akamai (www.akamai.com),

Digital Island (www.digisle.com), Enron Broadband Services (www.enron.net) and

others. Companies that provide hardware and software caching products include Inktomi

(www.inktomi.com), CacheFlow (www.cacheflow.com), Network Appliance

(www.netapp.com) and others. This trend is expected to continue, and justifies the need

for caching popular streams at a proxy server close to the clients.

However, techniques for caching text and image objects are not appropriate for caching

media streams. The main reason is due to the large sizes of typical media objects,

variable-bit rate property and real time constraints. For a large media file, such as a 2-

hour video, treating the whole video as a single web object to be cached is impractical.

Just storing the entire contents of long streams would exhaust the capacity of a

conventional proxy cache. Hence, only the very few video objects that are ‘hot’ should be

cached entirely. Most media objects probably should only be cached partially. Because of

the high start-up overhead and isochronous requirement, a streaming media request

typically is not started by a proxy server until sufficient blocks of data are cached locally.

Such delayed starts can frustrate users and make customers unhappy. To overcome this

problem, the beginning portions of most media objects should be cached. Hence, from the

caching perspective, the beginning portion of a media stream is more important than the

later portion.

68

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

From the caching perspective, multimedia-streaming objects are the most challenging

ones. Other major concern while dealing with multimedia objects is the variable bit rate

property. The uncompressed video that is composed of standard sized frames, become

variable sized when compressed using techniques like MPEG. This makes them variable

bit rate objects. Thus, while caching such objects one has to take into consideration the

variable sized frames present in the videos. Multimedia objects have critical timing

requirements. Any network congestion and other delays would heavily degrade the

quality of service. These objects have started proliferating across the Internet recently.

For this reason, user access patterns to these objects are not clearly known, like the

normal web objects. This makes even the replacement of these objects, a challenging

task. The video objects are mostly static in nature. Thus the cache consistency is not

much of an issue in case of these objects.

One of the first works done in the field of caching techniques for multimedia objects was

Resource Based Caching (RBC) algorithm [Tiwari 1998].

The RBC algorithm

(i) Characterizes each object by its resource requirement and a caching gain,

(ii) Dynamically selects the granularity of the entity to be cached that minimally

uses the limited cache resource (i.e., bandwidth or space), and

(iii) If required, replaces the cached entities based on their cache resource usage

and caching gain.

But this has the disadvantage of caching the objects in their entirety, which puts ever

higher demand on the cache size.

Few other caching techniques for multimedia objects have been proposed in the

literature. In Prefix caching [Sen 1999], the proxy stores a prefix consisting of the initial

frames of each clip. Upon receiving a request for the stream, the proxy immediately

initiates transmission to the client, while simultaneously requesting the remaining frames

from the server.

69

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

Prefetching [Rejaie 1999, Rejaie 2000] is another technique wherein the objects are

fetched based on prediction thus involving a lot of overhead in network bandwidth. Here,

the video is prefethced and cached in its entirety.

A recent variation for the Prefetching technique is layered video format caching

according to the QoS requested by the client [Jerkins 2003]. Also, the layered approach

used ensures that the basic layer delivered to the client is the one cached and then the

quality of the stream is improved on subsequent requests depending on the bandwidth

availability. Even though it provides the benefit of caching according to the QoS

requirement of user, this method stores the object in its entirety, which puts restriction on

number of objects that can be stored.

Video summarization [Lee 2002] proposes to deliver a summary of the video before the

delivery of the actual video. The content analysis service performs shot boundary

detection, key-frame selection, and face detection and tracking. When a client requests a

streaming video file, proxy system initially provides the video summary to the user. The

user quickly browses these summary images to decide whether to download the video. If

the user selects to download, the user can also choose which part of the video to

download. This system has been designed to utilize the content analysis service that is

currently applied to videos of format MPEG-1 and MPEG-2. A similar technique has to

be used for other streaming formats. All this amounts to a lot of processing overhead on

the proxy server and overhead of maintaining video summary for all the requests.

In Segment based caching [Wu 2001] blocks of a media stream received by a proxy

server are grouped into variable-sized segments. The cache admission and replacement

policies then attach different caching values to different segments, taking into account the

segment distance from the start of the media. These caching policies give preferential

treatments to the beginning segments. As such, users can quickly play back the media

objects without much delay. This works well when the set of hot media objects changes

over time.

70

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

4.2 CUT-OFF AND OPTIMAL CACHING TECHNIQUES

Multimedia objects, more specifically video objects, with their inherent properties cannot

be cached in their entirety. A technique called Video Staging was proposed for caching

video objects, where the video proxy would cache only a part of the video content. A

video staging algorithm would decide what part of the video should be cached in the

proxy. Any such algorithm would look at video object as set of video frames, each of

which can be of different size.

Two of the video staging algorithms are explored here: cut-off caching algorithm (CC)

[Zhang 2000] and optimal caching algorithm (OC) [Chang 2001, Chang 2002]. These are

described below and their performances are analyzed through implementation of both the

algorithms. Standard benchmark videos have been used for the comparison purposes.

The video staging algorithms in the study have considered cache size and available

external bandwidth as two important resources, for video proxy caching. Since each

frame is of different size, and should be served in the given frame period, the algorithms

intend to cache only parts of those frames which cannot be completely supported by the

external network bandwidth. A cutoff size must be chosen so that all the frame parts

above this cutoff are cached as explained in the following part.

NOTATIONS

The CC and OC algorithms are almost similar except that OC algorithm has an added

feature called prefetching by which its performance is enhanced. This section first

discusses the CC algorithm which is fairly simple, followed by the more complex OC

algorithm.

A cutoff size or cutoff rate is an important factor in any video staging algorithm. A cutoff

size is decided depending upon the external bandwidth and some other factors. This

cutoff size indicates the size that can be fetched in the given frame period from the server

in the worst-case scenario. Thus, for most of the time cutoff size lies substantially lower

71

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

than the number of bits that can be supported by the external bandwidth. Any frame that

is smaller in size than the cutoff need not be cached; for any frame that is larger than

cutoff, the portion above the cutoff needs to be cached.

According to the CC algorithm, any video file F is composed of several frames (no

layering of frames has been assumed). For each frame, some portion of it can be fetched

using the available network bandwidth, which is called as cutoff size or rate and is

denoted by c(i). Below are the notations that would be followed in this chapter as shown

in Fig.4.1

For a given video file F

1. F = { si | 0 <= i <= n }

2. si represents the i-th frame

3. s(i) : size of i-th frame

4. sc(i) : size of i-th frame that must be cached

5. c(i) : cutoff size for any frame i, supported by bandwidth

6. sc(i) = s(i) - c(i)

Fig.4.1: Video Frames and the notations

72

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

4.2.1 CC ALGORITHM

The CC algorithm proposes to cache only those parts of video frame, which are above the

cutoff size for each frame. When a client requests a video file and there is a cache-miss at

the proxy, parts of this file must be cached. A request is sent to the server for the video

file and proxy starts receiving the video frames, one each per frame period. In the proxy,

the CC algorithm is run for each frame obtained. The size of the frame obtained is

compared with the cutoff size. If the size is less than the cutoff size, no part of this frame

needs to be cached. If the frame size is larger than the cutoff size, then the bits of the

frame that fall in the excess part (above the cutoff) are cached into the proxy as shown in

Fig. 4.2.

Fig.4.2: Illustration of CC Algorithm

Following the above given notations, CC algorithm can be written down as follows:

i=0;
repeat
 i = i+1;
 if (s(i) < c(i))
 {
 /* The frame size is less than cutoff */

 sc(i) = 0;
 /* Nothing to cache */
 }

73

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

 else
 {
 /* The frame size is larger than
 cutoff */
 sc(i) = s(i) - c(i) ;
 /* cache sc(i) bits of frame I
 into the proxy */
 }
until (i>(n-1));

Once the file is cached, the proxy would serve any other request for the same file in the

following manner. Any frame, which is less than cutoff size, would be completely

obtained from the server. For any frame which is greater in size than cutoff, the first c(i)

bits are obtained from the server and the remaining sc(i) bits which are already present in

the proxy are concatenated to the first part. This is served to the client. Thus, the client

will not experience any delay even for a frame greater than cutoff size because only the

portion supported by the bandwidth is obtained from the server and rest is present in the

proxy already. The quality of service is guaranteed in this type of delivery, while caching

only a part of the video frame.

4.2.2 OC ALGORITHM

The basic disadvantage of the CC algorithm is that the network bandwidth available is

not completely utilized. This happens for frames that are less than the cutoff size, where

in only a portion of the available bandwidth is utilized and the rest of it is wasted. The

OC algorithm proposes to utilize even this bandwidth for prefetching some part of the

next frame. The algorithm follows the same procedure as CC algorithm for the frames

that are larger than cutoff size. But for the frames that are smaller than cutoff, some

portion of the next frame is prefetched. The amount to be prefetched is chosen so as to fill

the network bandwidth to c(i) bits completely. Since some portion of next frame is

prefetched, less number of bits are needed to be cached for any given frame (if its size is

greater than cutoff). Thus, this algorithm not only utilizes the network bandwidth more

efficiently but also reduces the required cache size for each file. This means more files

can be cached in the proxy for the same given storage space as illustrated in Fig. 4.3.

74

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

Fig.4.3: Illustration of OC algorithm

Following the above given notations, OC algorithm can be written down as follows:

i=0;
 repeat
 i = i+1;
 if (s(i) < c(i))
 {
 /* The frame size is less than cutoff */
 sc(i) = 0 ;
 /* Nothing to cache */
 /* prefetch some portion of
 next frame */
 /* prefetch size = c(i) - s(i); from
 next frame */
 }
 else
 {
 /* The frame size is larger than
 cutoff */
 sc(i) = s(i) - c(i) ;
 /* Cache sc(i) bits of frame i
 into the proxy */
 }
until (i>(n-1));

Once the file is cached, the proxy would serve any other request for the file in the same

manner as in the case of CC Algorithm. But the concatenation process becomes slightly

75

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

complicated because of prefetching. For any frame, prefetched portion along with cached

portion should be concatenated to the frame obtained from the server.

Benchmark videos for this purpose were obtained from [Traces 1995]. These video files

contain a series of numbers indicating the size of the given video frame. A client's request

for a video is forwarded to the video proxy. If it is a cache miss, another request will be

sent to the origin video server. In response, the origin server will send the sizes of the

video frames. The way proxy handles the caching of these video frames depends upon the

algorithm (OC or CC). Once the video object is cached, the proxy maintains a file that

contains details about the amount of each frame cached and the portion that needs to be

fetched from the server. The proxy under consideration is assumed to have infinite cache

size to accommodate any number of video files.

Two indices have been used to evaluate the performance of the algorithms. The first one

is total cache size required to store a video file. This is obtained by summing all sc(i)'s for

a given video file. The second performance index is the bandwidth utilization. This is

obtained by taking the ratio of bandwidth utilized for fetching portions of the video from

the origin server and the total external bandwidth available.

Cache Size:

∑
=

=
n

i
isc

0
)(C

Bandwidth Utilization:

∑
∑=

=

×

−
=

n

i
n

i
iTWANr

iTiscis
0

0
)]()([

)](/))()([(B

Two graphs have been plotted one for each performance index with bandwidth on the x-

axis. In case of the total cache size requirement, for all the bandwidths used, OC

algorithm occupied less cache space as shown in Fig.4.4. Considering the total bandwidth

utilized, OC algorithm outperforms the CC algorithm. It utilizes the external bandwidth

76

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

more than the CC algorithm for all the cases of bandwidth, as illustrated in Fig.4.5. By

these results it can be seen that though OC algorithm is slightly difficult to implement, it

definitely is a better performer.

0.7
C

ac
he

 S
iz

e(
%

 d
at

a
)

0.6
0.5
0.4
0.3
0.2
0.1

0
0 100 200 300 400

 Bandwidth(kbps)

OC CC

Fig.4.4: Cache Size vs. Bandwidth for streaming multimedia objects

Fig 4.5: Network Utilisation vs. Bandwidth for streaming multimedia objects

0
0.2
0.4
0.6
0.8

1
1.2

0 100 200 300 400

 Bandwidth(kbps)

OC CC

N
et

w
or

k
U

til
iz

at
io

n(
%

)

77

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

The request pattern was formulated using standard benchmark videos obtained

specifically for this purpose. Also the proxy in the consideration was assumed to have

infinite cache size to accommodate any number of video files. Replacement of the video

files has not been considered in the above implementation. In the following sections a

replacement policy based on a popularity index is proposed to improve the performance

multimedia caching.

4.3 POPULARITY FUNCTION BASED REPLACEMENT POLICY

Current replacement algorithms usually make a binary decision on the caching of an

atomic object. The object is cached or flushed in its entirety based on the time or

frequency. The above two algorithms cache the objects partially, (i.e. some portion in a

frame is cached). A replacement algorithm, which uses just time or frequency, would not

suffice. The algorithm should take into account the size because size is the most

important factor in the case of multimedia objects. Also, in the case of videos, popularity

of the videos is quite essential, because once a video becomes popular the requests for

such videos grow exponentially and less popular videos are almost ignored.

The caching of the videos using the above two algorithms, CC and OC, happens frame-

by-frame. Thus, logically the replacement also can be frame-by-frame. Once the victim

video is selected, the deletion of frames can be done from first frame or the last frame.

The best choice would be to start deleting from the last frame, because any remaining

frames could be used to serve a future request, at least partially. This also serves another

purpose; if any request for the video being deleted arrives, it could be locked and other

file could be chosen for deletion.

4.3.1 POPULARITY FUNCTION OR FREQUENCY INDEX

As mentioned above, the size and frequency of the video are essential for knowing the

popularity of the video, and we choose a popularity function that takes into account both

the parameters. We use a modified hit ratio of a cached stream as a metric to measure its

popularity. The proxy can easily count the number of byte hits for every cache resident

78

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

stream during an interval. Most of the current schemes assign a binary value to a hit, i.e.

0 for lack of interest and 1 for each request. However not all bytes of a stream are

present in the proxy. A hit in this case means the hit for bytes present in the cache. The

bytes requested would not be the size of the entire video requested, but the number bytes

cached for that video. The bytes hit would then become the number of bytes present in

the cache for that particular video (bytes present is different from bytes cached, because

deletion starts from the last frames, and in some cases only last few frames are removed).

Intuitively, the popularity of each stream must reflect the level of interest that is observed

through this interaction. We assume that the total bytes requested for each stream

indicates the level of interest in that stream. For example if a client only watches half of

one stream, his level of interest is half of a client who watches the entire display. Based

on this observation, we extend the semantic of a hit and introduce a Byte Hit, called a

bhit, which is defined as follows:

For the video V,

10
)(
)(Pr

)(Re
)(

≤≤== bhit
VCachedBytes
VesentBytes

VquestedBytes
VDeliveredBytesbhit

The proxy server keeps track of byte hits for each request from the client. The cumulative

value of Byte Hit is used as a Frequency Index of a cached stream. The popularity of each

video is given by its Frequency Index and is recalculated at the end of a session as

follows:

∑
=

=
n

i
ibhit

0
)(FI

Where FI is the popularity of the video, n is the number of times the video is requested

for in the given time interval and bhit(i) is the Byte Hit for ith request.

Size of the video is taken is into account by the Byte Hit, because it’s a byte-hit ratio.

Since we are cumulating Byte Hit for each hit, the frequency is also taken care of. Thus

the above formula has the two important factors: size and frequency, which makes it a

true measure of the popularity of the video.

79

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

4.3.2 THE REPLACEMENT ALGORITHM

The replacement algorithm is completely based on popularity. If there is a cache hit, then

the Byte Hit of the video is calculated for the present request. The Frequency Index (FI)

of that video would be updated by adding the Byte Hit to its previous FI.

The issue of replacement comes into picture if there is a cache miss. On a cache miss, the

requested file would be cached into the proxy. While caching, if the cache size exceeds

the maximum permissible amount, one of the files should be replaced. A data structure

that contains FI’s of the videos is maintained. The video with least FI is selected as

victim video for replacement. Victim video would then be replaced by the requested

video frame-by-frame. The victim video is deleted starting from the last frame.

While deleting, if a request arrives for the victim video then it is locked and is not

allowed to be deleted. Another victim file would be selected and the replacement resumes

again. This not only satisfies the users’ requests but also increases the hit-rate. The

replacement continues till the first frame of the victim video is replaced (i.e. till the video

is completely deleted). If the requested video isn’t completely cached yet, another victim

video should be selected from the list and replacement process continues as above. Hit-

Ratio of the proxy would be calculated for each request received from the client.

If (Cache Hit)
{
//Calculate the bhit for the requested video.

10
)(
)(Pr

)(Re
)(

≤≤== bhit
VCachedBytes
VesentBytes

VquestedBytes
VDeliveredBytesbhit

//Update the Frequency Index
FI = FI + bhit;

}

If (Cache Miss)
{
 // Cache the frames of the requested video
 Cache (OC or CC);
 If (Cache Size + NextFrameSize >

MaxCacheSize)
 {
 REPLACE:
 //Replace a video.
 //Select the least popular video as

80

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

 “victim video”.

 Select (V) where FI = FImin.

 //Replace the victim video from last

 frame with the requested video.

Replace (Victim Video with
Requested Video);

 //If a request arrives for the victim video
 while being deleted, lock it.

 If (Request (Victim Video) == TRUE)
 {
 Lock (Victim Video);

 // Select another Victim video that
 comes next in the list and replace it.

 Goto REPLACE;
 }

// Delete the entire victim video if required
 if (Victim Video Frame No. = = 1)
 {
 Delete(Victim Video);
 // if the Requested video is not cached
 completely yet

If (Cache (Requested Video)! = Finished)

 {

 // Select another Victim video that
 comes next in the list and replace it.

 Goto REPLACE;
 }
 }
 }
}

Implementation of the replacement algorithm in the video proxy was done using tree and

stack structures. Tree was used to maintain the Frequency Indices of the videos (i.e. as a

popularity table). Since cache placement or replacement is done frame-by-frame, stack

was used to store the frames within a video in a LIFO order. Hit ratio was the

performance metric for comparing the two algorithms. The benchmark videos for this

purpose were obtained from [Traces 1995] and are the same as used earlier.

81

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

The sequence of actions is as follows. The client, first, requests for a particular video file

from the proxy server. The proxy server maintains a cache of the video files. On receipt

of a request, the proxy server first searches in its local cache whether it has the requested

file. In case of the file being present, part of the file is obtained from the cache and the

portion greater than the cut-off limit is supplied from the cache itself. The cut-off limits

and the cache size are obtained from the user during run-time. In case the file is not

present (cache miss), the proxy contacts the origin server. The origin server sends the

video frame sizes to the proxy server. For each frame size received from the server, the

proxy runs the OC or CC algorithm. In case of a cache miss, the replacement algorithm is

run. Hit Ratio is calculated for each client request, be it a cache hit or a miss.

4.3.3 DISCUSSION OF RESULTS

The Frequency Index replacement (FIR) algorithm has been run for request sequences

formed by benchmark videos mentioned earlier. The same request sequences were also

tested with standard replacement algorithms like Least Recently Used (LRU) and Least

Frequently Used (LFU). Graphs indicating their performance (hit-ratio) have been

plotted.

The replacement algorithm has been run for two request sequences. Two sets of graphs

have been plotted for each request pattern. The hit ratio has been plotted with respect to

changing bandwidth and max cache size. In the first case, the cache size was kept

constant and bandwidth was varied over a range of values. The bandwidths chosen for

simulation were 40 Kbps, 56 Kbps and 100 Kbps. The obtained hit ratio for both OC and

CC algorithms are plotted against bandwidth. Similarly in the second case the bandwidth

was kept constant and maximum cache size was varied over a range of values. The cache

sizes chosen for simulation were 40, 80, 160 and 200 GB. The obtained hit ratio for both

OC and CC algorithms are plotted against cache size.

It is observed that the hit-ratio increases with increase in bandwidth. This is because as

the available bandwidth increases, the cut-off size increases and hence the number of

bytes cached per video decreases. Consequentially, more number of videos can be

82

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

cached, thereby improving the hit-ratio. It is also observed that the OC algorithm gives a

better hit ratio compared to the CC algorithm. As the bandwidth increases, the hit ratios

of both the algorithms become nearly the same, because both the algorithms behave the

same way at high bandwidths.

Refer to Fig. 4.6 to 4.8

Bandwidth = 40 kbps

Fig. 4.6: Hit Ratio vs Cache Size for a constant bandwidth of 40kbps

Fig. 4.7: Hit Ratio vs Cache Size for a constant bandwidth of 56kbps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

CC Algorithm

H
it

R
at

io

OC Algorithm

40 GB 80 GB 160 200
GB GB

Cache Size

Bandwidth = 56 kbps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
it

R
at

io

CC Algorithm

40 GB 80 GB 160 200
GB GB

Cache Size

OC Algorithm

83

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

Bandwidth = 100 kbps

Fig. 4.8: Hit Ratio vs Cache Size for a constant bandwidth of 100kbps

In the second set of graphs (Fig. 4.9 to 4.12), the hit-ratio increases with increase in cache

size. This can be explained by the argument that for a constant bandwidth, more the

available cache size, more the number of videos that can be cached and hence more the

hit-ratio. In this case as well, the OC algorithm gives a better performance compared to

the CC algorithm. As the cache size increases, the hit ratios of both the algorithms

become nearly the same, because at high cache sizes any number of videos can be

cached, irrespective of the algorithm.

Fig 4.9: Hit Ratio vs Bandwidth for a constant Cache Size of 40GB

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
it

R
at

io

CC Algorithm

OC Algorithm

40 GB 80 GB 160 200
GB GB

Cache Size

Cache Size = 40 GB

0.6
0.5

H
it

R
at

io

0.4
CC Algorithm

0.3
0.2
0.1

0
40 kbps 56 kbps 100 kbps

Bandwidth

OC Algorithm

84

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

Cache Size = 80 GB

Fig 4.10: Hit Ratio vs Bandwidth for a constant Cache Size of 80GB

Fig 4.11: Hit Ratio vs Bandwidth for a constant Cache Size of 160GB

0.46
0.48

0.5
0.52
0.54
0.56
0.58

0.6
0.62

H
it

R
at

io

CC Algorithm

OC Algorithm

40 kbps 56 kbps 100 kbps

Bandwidth

Cache Size = 160 GB

0.48
0.5

0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66

H
it

R
at

io

CC Algorithm

40 kbps 56 kbps 100 kbps

Bandwidth

OC Algorithm

85

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

Cache Size = 200 GB

0.68
0.66

H
it

R
at

io

0.64
CC Algorithm

0.62
0.6

0.58
0.56

40 kbps 56 kbps 100 kbps

Bandwidth

OC Algorithm

Fig 4.12: Hit Ratio vs Bandwidth for a constant Cache Size of 200GB

In comparison with LFU and LRU under similar memory availability, FIR algorithm

yields better hit-ratio as shown in Fig.4.13. This is primarily due to the fact that

replacement here happens frame by frame as opposed to complete Boolean replacement

in the other two algorithms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

40GB 80GB 160GB 200GB

Cache Size

H
it

Ra
tio LFU

LRU
FIR

Fig 4.13 Comparison of the performance of LFU, LRU and FIR

86

CHAPTER 4: REPLACEMENT POLICIES FOR CACHING STREAMING MULTIMEDIA OBJECTS

Also to verify the reliability of the proposed FIR algorithm, the algorithm was tested

under varying conditions of bandwidth and cache size using both OC and CC for caching.

As seen in the results obtained, algorithm did not indicate extreme swings in performance

when the parameters were varied. The hit ratios obtained varied between 0.5 and 0.7,

which can be construed as an absolute indication of the efficient functioning and

reliability of the algorithm under all conditions.

4.4 SUMMARY

In this chapter we discussed various methods used for Multimedia objects Web Caching.

Video staging algorithm is a caching technique which allows partial caching of

multimedia objects. We also discussed the performance of Cut-off Caching (CC) and

Optimal Caching (OC) techniques. A Frequency Index based Replacement policy was

proposed and its performance was tested for CC and OC algorithms.

87

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

CHAPTER 5

SOFT COMPUTING TECHNIQUES IN WEB CACHING

5.1 INTRODUCTION

Unlike the traditional hard computing methods, soft computing techniques such as fuzzy

logic, neural networks and genetic algorithms are aimed at accommodating the pervasive

imprecision of the real world. The guiding principle of soft computing technique is to

exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability,

robustness, and low solution cost. Evolutionary programming has been successfully

applied to numerous problems from different domains. Fuzzy Logic and Genetic

algorithms are popular techniques, which can be applied to many computational problems

requiring adaptation to a changing environment or search through a huge number of

possibilities for solutions [Vakali 1999a].

Fuzzy Logic representations founded on fuzzy set theory try to capture the way humans

represent and reason with real-world knowledge in the face of uncertainty. Uncertainty

could arise due to generality, vagueness, ambiguity, chance or incomplete knowledge

[Rajasekaran 2003]. In recent years, attempts have been made to use soft computing

techniques for web caching and replacement. There is a need to base the replacement

process on both qualitative and quantitative information [Calzarossa 2003]. The

algorithms must take care of the characteristics and properties of workloads of proxy

servers and must apply some qualitative reasoning to identify the pages to evict from the

cache. Recently the Fuzzy Algorithm for web caching has been proposed by M.

Calzarossa and G. Valli [Calzarossa 2003]. Here the variables describing each web object

cached are first fuzzified. A set of fuzzy control rules is then applied and their outputs are

defuzzified as to identify the object to evict.

Genetic Algorithm (GA) has been used to solve scientific problems demanding

optimization and adaptation to a changing environment. The idea in this approach is to

evolve a population of candidate solutions to a given problem, using operations inspired

 88

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

by natural genetic variation and natural selection, expressed as “survival of the fittest”.

GAs are being applied to many computational problems requiring either search through a

huge number of possibilities for solutions, or adaptation to a changing environment. More

specifically, GAs have been applied in the areas of scientific modeling and machine

learning, but recently there has been a growing interest in their application in other fields

[Vakali 1999b, Goldberg 2004]

This chapter describes the application of fuzzy logic with two different rule sets and

application of Genetic Algorithm technique for replacement policies for caching static

web objects and an algorithm for caching streaming multimedia web objects. Our choice

is motivated by the need to take both qualitative as well as quantitative information into

account for replacement while using soft computing method. These algorithms consider

the nature and properties of the workloads of institutional proxy servers and apply some

qualitative reasoning to identify the object to evict from the cache.

5.2 FUZZY REPLACEMENT ALGORITHM

In the Fuzzy Inference Method, whenever the cache is full and a cache miss occurs, the

fuzzy algorithm determines the objects to be evicted by computing a mathematical merit

called Replacement Probability for each of the objects, depending on certain parameters

of input viz. Size, Frequency and Access recency. The fuzzy knowledge base includes the

input and output variables, their respective membership functions, and the fuzzy rule

base. The algorithm involves fuzzification, rule inference and defuzzification.

Application of Fuzzy Logic consists of three stages: Input, Processing and Output. The

input stage maps sensor or other inputs to the appropriate membership functions and

truth-values. The process of converting a crisp input value into a fuzzy value is known as

“fuzzification”. The processing stage invokes each appropriate rule from a ‘set of rules’

and generates a result for each, then combines the results of the rules. Finally the output

stage converts the combined result back into a specific control output value. The

collection of logic rules on which the processing stage is based is a bunch of If- Then

statements where the ‘IF’ part is the “antecedent” and the ‘THEN’ part is called the

 89

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

“consequent”. In practice, fuzzy rule sets usually have several antecedents that are

combined using fuzzy operators such as AND, OR and NOT. There are several different

ways to define the result of a rule, but one of the most common and simplest is the “max-

min” inference method, in which the output membership function is given the truth-value

generated by the premise. The results of all the rules that have fired are “defuzzified” to a

crisp value by one of several methods such as the “centroid method” in which the “center

of mass” of the result provides the crisp value. In centroid defuzzification, the values are

ORed, that is, the maximum value is used and values are not added, and the results are

then combined using a centroid calculation [Kosko 1994].

The proposed approach is that the variables describing each web document are

“fuzzified”, fuzzy rules from a given rule set are applied and then their outputs are

“defuzzified” to identify the objects to be expelled from the cache. Based on the above

approach we propose a cache replacement policy for web proxy servers. The replacement

policy is as follows: when a cache miss occurs and the cache is full, the algorithm

determines the objects to evict by computing for each object in the cache a figure of

merit, namely, its probability of replacement. Among the objects ranked according to

their probability of replacement, the algorithm chooses the one with the highest rank.

The operation of any Fuzzy-based system depends on the proper choice of process state

input variables and control output variables. Here, we have chosen three input variables

to represent the process state. These variables describe each web object in terms of its

size, access frequency and access recency i.e. time elapsed since last access. As output

variable, we have chosen the probability of replacement, RP of each object. For each of

these variables, the fuzzy sets with the membership functions are designed which

describes the degree of membership of the variable to the corresponding fuzzy set. Figs

5.1, 5.2 and 5.3 show the membership functions of the three input variables. Here,

membership functions having triangular or trapezoidal shapes have been used.

 90

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

INPUT VARIABLE FREQUENCY

Fig 5.1: Membership Function for Input Variable Frequency

INPUT VARIABLE TIME

Fig 5.2: Membership Function for Input Variable Time

 91

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

INPUT VARIABLE SIZE (KBYTES)

Fig 5.3: Membership Function for Input Variable Size

The simulations have been carried out with 2 rule sets: Fuzzy12 with 12 rules and

Fuzzy24 with 24 rules as shown in Table 5.1 and Table 5.2 respectively. In both cases,

there are 3 membership functions associated with the variable Frequency. LOW,

MEDIUM and HIGH have been used as labels i.e. descriptive lingual values. In Fuzzy12,

there are 3 membership functions LOW, MEDIUM and HIGH associated with variable

Size whereas in Fuzzy24, an additional membership function VERY HIGH has also been

added. To describe the variable Time, in both cases, we have chosen 5 variables. This is

because the algorithm requires a finer control of this variable. The corresponding

descriptive labels are VERY LOW, LOW, MEDIUM, HIGH, and VERY HIGH. The

centers and the left and right limits of the membership functions have been obtained as a

result of analysis of proxy workloads. Fig 5.4 shows the membership functions of the

output variable, that is, the probability of replacement RP. As can be seen, for Fuzzy12

and Fuzzy24, 4 membership functions, with descriptive variables LOW, MEDIUM,

HIGH, VERY HIGH, have been associated with this variable.

 92

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

Table 5.1: Fuzzy12 Rule Sets

FUZZY12
If (Frequency is LOW) and (Time is VHI) and (Size is MED) then (RP is VHI)
If (Frequency is LOW) and (Time is HIG) and (Size is HIG) then (RP is VHI)
If (Frequency is MED) and (Time is VHI) and (Size is HIG) then (RP is VHI)
If (Frequency is LOW) and (Time is VHI) and (Size is HIG) then (RP is VHI)
If (Frequency is LOW) and (Time is HIG) and (Size is LOW) then (RP is HIG)
If (Frequency is MED) and (Time is HIG) and (Size is LOW) then (RP is MED)
If (Frequency is MED) and (Time is VHI) and (Size is MED) then (RP is HIG)
If (Frequency is MED) and (Time is HIG) and (Size is HIG) then (RP is HIG)
If (Frequency is HIG) and (Time is VHI) and (Size is HIG) then (RP is LOW)
If (Frequency is HIG) and (Time is HIG) and (Size is HIG) then (RP is LOW)
If (Frequency is LOW) and (Time is MED) and (Size is HIG) then (RP is HIG)
If (Frequency is MED) and (Time is HIG) and (Size is MED) then (RP is MED)

Table 5.2: Fuzzy24 Rule Sets

 FUZZY24
If (Frequency is LOW) and (Time is VHI) and (Size is MED) then (RP is VHI)
If (Frequency is LOW) and (Time is HIG) and (Size is HIG) then (RP is VHI)
If (Frequency is MED) and (Time is VHI) and (Size is HIG) then (RP is VHI)
If (Frequency is LOW) and (Time is VHI) and (Size is HIG) then (RP is VHI)
If (Frequency is LOW) and (Time is HIG) and (Size is LOW) then (RP is HIG)
If (Frequency is MED) and (Time is HIG) and (Size is LOW) then (RP is MED)
If (Frequency is MED) and (Time is VHI) and (Size is MED) then (RP is HIG)
If (Frequency is MED) and (Time is HIG) and (Size is HIG) then (RP is HIG)
If (Frequency is HIG) and (Time is VHI) and (Size is HIG) then (RP is LOW)
If (Frequency is HIG) and (Time is HIG) and (Size is HIG) then (RP is LOW)
If (Frequency is LOW) and (Time is MED) and (Size is HIG) then (RP is HIG)
If (Frequency is LOW) and (Time is VLOW) and (Size is LOW) then (RP is MED)
If (Frequency is MED) and (Time is VLOW) and (Size is LOW) then (RP is MED)
If (Frequency is HIGH) and (Time is VLOW) and (Size is MED) then (RP is LOW)
If (Frequency is MED) and (Time is VLOW) and (Size is LOW) then (RP is MED)
If (Frequency is MED) and (Time is MED) and (Size is LOW) then (RP is MED)
If (Frequency is LOW) and (Time is MED) and (Size is MED) then (RP is HIG)
If (Frequency is HIG) and (Time is MED) and (Size is LOW) then (RP is MED)
If (Frequency is MED) and (Time is VHI) and (Size is MED) then (RP is MED)
If (Frequency is HIGH) and (Time is MED) and (Size is MED) then (RP is MED)
If (Frequency is MED) and (Time is VLOW) and (Size is MED) then (RP is MED)
If (Frequency is LOW) and (Time is VLOW) and (Size is VHI) then (RP is HIG)
If (Frequency is LOW) and (Time is MED) and (Size is VHI) then (RP is HIG)
If (Frequency is MED) and (Time is VLOW) and (Size is VHI) then (RP is MED)

 93

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

OUTPUT VARIABLE RP

 Fig 5.4: Membership Function for Replacement Probability

Having defined the membership functions, we construct the fuzzy rule base. As

mentioned earlier in this section, the rule base consists of fuzzy conditional statements in

the form “if-then” in which the antecedent is a condition pertaining to the particular

application and the consequent is an action for the controlled system. Each rule in the

antecedent involves one or more variables. There is no general procedure for deciding on

the optimal number of fuzzy control rules and the role of each variable. We have defined

two sets of rules, namely Fuzzy24 and Fuzzy12 having 24 and 12 rules respectively. The

aim of Fuzzy24 as well as Fuzzy12 is to keep in the cache objects that have been

accessed very recently, and to evict large objects. Moreover, among objects with similar

size, the rules penalize objects characterized by a small number of accesses or objects

accessed very recently. In Fuzzy24, 24 rules have been designed so as to take into

account the Size of the object when it is large.

Fuzzification does the job of mapping crisp input data into fuzzy sets by means of the

corresponding membership functions. The input values Size, Frequency and Recency

related to each object are converted into linguistic labels. Next, for each rule, the

antecedent is evaluated based on the descriptive label and the degree of truth is computed

by applying the fuzzy AND operator, the product. The aggregation process combines the

 94

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

outputs of the rules by applying the maximum operator to each descriptive label of the

output variable RP (i.e. the probability of replacement). The defuzzification transforms

these four values into a non-fuzzy control action corresponding to the probability of

replacement of the object. The defuzzification used in our algorithm is based on the

centroid method. The masses, obtained as a result of the aggregation process, have been

placed at the three points where the membership functions of the output variable RP

intersect, that is, at the points 0.25, 0.5 and 0.75. Moreover, the mass corresponding to

the label VERY HIGH has been placed at 1. Finally, the objects are ranked according to

their probability of replacement. The algorithm evicts the objects with the highest rank.

5.2.1 IMPLEMENTATION

The performance analysis of the Fuzzy algorithm has been carried out using the

simulation of a trace obtained from the logs from Duke University [Traces 1995]. This

trace contains a day’s worth of all the HTTP requests to the Environmental Protection

Agency (EPA) WWW server. During the simulation, only cacheable static objects were

considered. The proposed Fuzzy algorithm is compared with the traditional cache

replacement algorithms viz. LRU, LFU and SLRU Algorithms. Figs 5.5 to 5.10 illustrate

the results of this simulation.

Hit Rate vs CacheSize for FUZZY and
LRU

0
0.2
0.4
0.6
0.8

1000 2000 3000 4000 5000

Cache Size (kilobytes)

H
it

R
at

io

FUZZY
LRU

Fig 5.5 Hit Ratio Obtained from the trace1 for LRU and FUZZY12

 95

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

Hit Rate vs Cache Size for FUZZY and
LFU

0

0.2

0.4

0.6

0.8

1000 2000 3000 4000 5000

Cache Size (kilobytes)

H
it

R
at

io

FUZZY
LFU

Fig 5.6 Hit Ratio Obtained from the trace1 for LFU and FUZZY12

Hit Rate vs Cache Size for FUZZY and
SLRU

0
0.2
0.4
0.6
0.8

1

1000 2000 3000 4000 5000

Cache Size (kilobytes)

H
it

R
at

io

FUZZY
SLRU

Fig 5.7 Hit Ratio Obtained from the trace1 for SLRU and FUZZY12

 96

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

Hit Rate vs CacheSize for FUZZY and
LRU

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Cache Size (kilobytes)

H
it

R
at

io FUZZY
LRU

Fig 5.8 Hit Ratio Obtained from the trace1 for LRU and FUZZY24

Hit Rate vs Cache Size for FUZZY and
LFU

0.5
0.55
0.6

0.65
0.7

0.75

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Cache Size(kilobytes)

H
it

R
at

io

FUZZY
LFU

Fig 5.9 Hit Ratio obtained from the trace1 for LFU and FUZZY24

 97

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

Hit Rate vs Cache Size for FUZZY and SLRU

0

0.2

0.4

0.6

0.8

1

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Cache Size (kilobytes)

H
it

R
at

io
FUZZY
SLRU

Fig 5.10 Hit Ratio Obtained from the trace1 for SLRU and FUZZY24

Tests have also been done on small logs obtained from BITS proxy server. For these

tests, since the log has fewer requests, the cache size is kept small. This was to

experiment with smaller individual caches for the clients in some cases, which can be

allowed on demand. Figs 5.11 to 5.13 show these results.

Hit Rate vs Cache Size for FUZZY and
LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 10
0

Cache Size (kilobytes)

H
it

R
at

io

FUZZY
LRU

Fig 5.11 Hit Ratio Obtained from the trace2 for LRU and FUZZY24

 98

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

Hit Rate vs Cache Size for FUZZY and
LFU

0
0.1
0.2
0.3
0.4
0.5
0.6

10 20 30 40 50 60 70 80 90 10
0

Cache Size (kilobytes)

H
it

R
at

io
FUZZY
LFU

Fig 5.12 Hit Ratio Obtained from the trace2 for LFU and FUZZY24

Hit Rate vs Cache Size for FUZZY and
SLRU

0

0.1

0.2

0.3

0.4

0.5

0.6

10 30 50 70 90

Cache Size (kilobytes)

H
it

R
at

io

FUZZY
SLRU

Fig 5.13 Hit Ratio Obtained from the trace2 for SLRU and FUZZY24

 99

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

5.2.2 DISCUSSION OF RESULTS

The results of the simulations are depicted in the graphs. The results of the simulation

show that;

• In case of Fuzzy24 rule set the FUZZY algorithm outperforms the LRU and LFU

algorithms. However the Hit Rate of SLRU is nearly equal to that of the FUZZY

algorithm as observed in Fig 5.8, 5.9 and 5.10.

• The Fuzzy Algorithm is outperformed by the size-based algorithm, SLRU.

• In case of Fuzzy12 rule set, the performance of FUZZY algorithm in terms of Hit Rate

is poor as compared to LRU, LFU and SLRU as observed in Fig 5.5, 5.6 and 5.7.

The results of the simulation on the small log of fewer requests show that:

• For very small cache sizes, the performance of FUZZY is inferior to that of the other

three algorithms as observed in Fig 5.11, 5.12 and 5.13.

• However for larger cache sizes, the hit rates for FUZZY are higher or nearly equal to

that of LRU and LFU. The SLRU algorithm shows better performance as compared to

FUZZY in most cases.

This shows that the FUZZY algorithm is suitable on a cache, which generally faces fewer

requests, when the cache size is above a certain threshold value.

Byte Hit Rate is another metric of performance evaluation. It is the fraction of requested

bytes retrieved directly from the cache. In case of Fuzzy24 rule set, the FUZZY

Algorithm has mediocre performance with respect to this metric. The LRU has the least

Byte Hit Rate and both SLRU as well as LFU has the highest Byte Hit Rate, with SLRU

performing better for lower cache sizes and LFU performing better for higher cache sizes.

Thus, the replacement algorithm based on Fuzzy Logic that has been discussed here can

lead to significant improvement in performance in certain situations such as when the

cache size is small and more number of Fuzzy rules is used in the rule set. The

performance of Fuzzy Algorithm improves greatly over the conventional methods as the

number of rules in the rule set increases. Fuzzy algorithm’s performance is not so

 100

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

favorable when there are fewer rules, as is evident with the Fuzzy12 rule set, except for

particular cache sizes. Moreover the results of the simulations have shown that the Fuzzy

algorithm achieves good performance even for small cache size, less than 5% of the

cache capacity. However it remains inferior to SLRU.

The complexity of the algorithm is of the order of the number of objects O(n), in the

cache as it evaluates for each page its probability of replacement. The running time

complexity also depends upon the number of rules in the rule set. However, even though

this complexity is larger than the complexity of most of the traditional algorithms, it is

not much of an issue. The workload of a proxy server is typically I/O bound and the

processor is never the bottleneck of the system. However, it is worth investing a few

extra CPU cycles in a replacement policy that helps to save disk and network accesses.

5.3 GENETIC ALGORITHM REPLACEMENT POLICY (GAR)

The essential ingredients of the Genetic algorithm are population size (constant), string

coding, fitness function, crossover, mutation and the number of generations. The standard

genetic algorithm consists of an initial population chosen randomly. Every member of the

population is coded into a unique string and has a definite fitness value attached to it. The

fitness function used is dependent on the problem in hand.

This initial population is now made to go through the process of selection wherein

members produce copies of themselves depending on their fitness value. Then the strings

are made to go through the process of crossover and then mutated to finally end up with a

new generation. The initial population set is now replaced with the new generation

obtained and the whole procedure is repeated for a certain number of generations. The

appropriateness of the fitness function is critical since this holds the key to members with

low fitness values being eliminated in every generation. The selection process mimics the

“Survival of the Fittest” theory. Also it is to be noted that the size of the population

remains constant throughout the run of the algorithm in every phase. Genetic Algorithm

is used because of two main reasons. First, the algorithm in its natural form itself

identifies members of the population with low fitness and eliminates them. This fits into

 101

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

caching and replication of internet data. This can be very well extended to replacement,

as our objective in replacement is to find out objects with low fitness (popularity).

Second, Genetic Algorithm is applied to problems demanding optimization out of spaces,

which are too large to be exhaustively searched. A typical cache consists of millions of

web objects. Conventional algorithms would require that we search through the entire

space thereby taking more time for replacement. Genetic Algorithm works with just a

sample population and typically the population size is far less compared to the size of the

actual search space.

In our approach, the cache has been modeled as follows to fit in the usage of Genetic

Algorithm. The cache can be visualized to consist of a set of individuals. This set is the

complete search space. Each member of the cache is a specific web object and has a

fitness value associated with it. This fitness is directly proportional to its popularity. The

replacement algorithm is all about identifying the individuals (web objects) with low

fitness (popularity) so that they could be evicted from the cache.

5.3.1 FITNESS CALCULATION

This is the most critical calculation upon which hinges the performance of the algorithm.

We maintain a standard array, which stores the fitness of all the individual web objects in

the cache. Every time a request for an object in the cache is made, its corresponding

fitness value is incremented. If an object is absent in the cache, then it is brought in to the

cache and its fitness value is initialized to zero. Hence at any point of time, this fitness

array will contain the number of times every object in the cache has been accessed.

Hence it would be the exact indicator of the popularity of the web object.

5.3.2 PSEUDO CODE

The Genetic Algorithm replacement scheme looks essentially as follows.

 102

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

//definitions

old-pop, new-pop, popsize, fitness, noofgen, prob-cross, prob-mut

//pseudo-code

old-pop = initpop (popsize) // initialize a population randomly and assign it to old-pop

gen 1 //temporary variable

while (gen <= noofgen)

do

{

//selects a population of size popsize based on the fitness values

 parents = select (old-pop, fitness)

 crossover (parents, new-pop, prob-cross)

 mutation (new-pop, prob-mut)

 old-pop new-pop

 gen gen + 1

}

In the above mentioned replacement algorithm, fitness is an array which contains the

fitness values of all the web objects in the cache. The initpop() function randomly picks

up popsiz number of individuals from the cache and stores it in old-pop. The function

select() ensures that only individuals with high fitness get selected. The unfit individuals

are weeded out here.

5.3.3 IMPLEMENTATION

Every request from the trace was processed either locally or from the origin server. If the

local cache did not have the requested file, then it is construed as a cache miss and the

object is brought in and stored in the cache. Before bringing in a new object a check is

made if the space is sufficient for accommodating the new object. If not, the replacement

routine is called and objects with low popularity are evicted making way for the new

object. Crossover was effected using arithmetic crossover. The probabilities for crossover

and mutation were 0.8 and 0.05.

 103

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

The performance analysis of the Genetic Algorithm based replacement policy has been

carried out using the simulation of a trace provided by the logs from Duke University.

This trace contains a day’s log of all the HTTP requests to the EPA WWW server. In the

simulation, the proposed replacement algorithm is compared with the traditional cache

replacement algorithms viz. LRU, LFU and SLRU Algorithms. The performance metric

used for comparison has been the hit-ratio. The cache sizes taken for simulation were in

the order of a few megabytes (MB). This is far less than the total cache sizes available for

the proxy caches. But when cache-on-demand scheme is used [Ahuja 2002], where a

single user can get a cache space on demand for the time he wants to browse the net it is

assumed that it can only be in the range of a few megabytes.

5.3.4 DISCUSSION OF RESULTS

The results of the simulation are depicted in the graphs in Figs 5.14 to 5.16. The salient

features of the results are:

• The Genetic Algorithm based Cache Replacement Policy (GAR) has a higher hit-

ratio compared to LRU and LFU.

• SLRU has a superior hit-ratio than GAR for lower cache sizes. For cache-sizes up

to 2MB, SLRU performs better than GAR. Beyond this GAR scores over SLRU.

• The hit-ratio of GAR has been found to be between 0.6 and 0.8 which can be

construed as an indication of the reliable performance of the algorithm absolutely.

Hence it can be concluded that GAR can be used beyond a certain threshold value of

cache size. As the cache size increases, the performance of the algorithm increases. Also

an important parameter to be varied for the algorithm is the population size. It has been

clearly noted during simulation that as the population size increases, the hit-ratio also

increases.

 104

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

Fig. 5.14 Hit Ratio of GAR and LRU for varying cache sizes

Fig. 5.15 Hit Ratio of GAR and LFU for varying cache sizes

Fig. 5.16 Hit Ratio of GAR and SLRU for varying cache sizes

 105

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

A study was also done comparing the time taken for the running of the replacement

algorithm proposed with the Least Frequently Used Algorithm. It has been observed that

as the number of objects in the cache increases, the time taken for the run of GAR is

lower compared to LFU. Hence it is advantageous to use GAR especially when the cache

size is large and there are a large number of objects to consider before picking a victim

page. Another point is that the time taken for the run of GAR is not very dependent on

the cache size. Since Genetic Algorithms deal only with a fixed population at a time, the

size of the cache is immaterial. This fact can be exploited if GAR is deployed for really

huge caches, with a large number of files to search from. The graph regarding the time

analysis, is shown in Fig. 5.17.

Fig. 5.17 Time taken vs Cache Size for the GAR algorithm

 106

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

5.4 GENETIC ALGORITHM BASED REPLACEMENT POLICY FOR STREAMING

MULTIMEDIA OBJECTS (GAR-M)

Replacement is all about identifying the “correct” frames to remove thereby making way

for newer ones to be cached. Here, in our approach every frame in the video is handled

and evaluated separately. A fitness value for every frame is calculated and the

replacement is done of the less fit frames and not a whole video as such.

The cache is viewed as a set of frames. Every frame in the set is a member of one video

file. This whole set is our search space. The replacement policy aims to identify and evict

individuals (frames) with low fitness values.

5.4.1 FITNESS CALCULATION

The fitness of every frame is dependent of three factors, individual popularity, position

and popularity of parent video. They are discussed below:

Individual popularity

Consistent with the frame-wise handling of the videos, every frame is monitored and

assigned an individual “hit” value. This value is an indication of the number of times the

particular frame was accessed when it was in the cache. Every frame collects some points

whenever it is accessed while in the cache.

Position in the parent video

The position of a frame in the video that it is a part of is critical for assigning a fitness

value. Frames, which occur earlier, have more weightage compared to the later frames in

a video. This is because, when a user requests for a video, there is a very high probability

that he would start viewing the earlier frames first. In the event of them being absent, the

proxy has to fetch it from the origin server, thereby consuming more time. Hence absence

of the earlier frames would severely lower the Quality of Service. If the later frames are

absent, the proxy can fetch them from the origin server while it is sending the earlier

 107

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

frames to the user. In the algorithm proposed, every time a frame in the cache is “hit” it

collects points in proportion to its position.

• If a frame belongs to the first 20% of the file, it would pick up 10 points.

• If a frame belongs to the second 20% of the file, it would pick up 8 points.

• If a frame belongs to the third 20% of the file, it would pick up 6 points.

• If a frame belongs to the fourth 20% of the file, it would pick up 4 points.

• If a frame belongs to the last 20% of the file, it would pick up 2 points.

Popularity of the parent video

The fitness value of a frame is also governed by the popularity of the video that it is a

part of. Frames with very low individual popularity will have their fitness shored up if the

video that it is a part of is very popular. This is due to the fact that since the video is very

popular, there is a high probability for requisition of any of its frames. Hence, fetching

any of these frames from the origin server would reduce the quality of service, especially

in the context that the video is to be requested multiple times.

This way, the number of points garnered by every frame (pf) would be an indication of

both its popularity as well as its position.

Let be the popularity of the video, i. iv

∑= fi pv where is the points garnered by frame, f fp

for all the frames in the video i.

So, the ‘fitness’ for any frame f would be, ff

 where fif pwvwf ×−+×=)1(10 ≤≤w is the weightage of the video.

5.4.2 IMPLEMENTATION

For evaluating the performance, the simulation has a proxy server which receives the

requests for video objects from the client. The object is a video file, taken from the

benchmark videos. The video is sent to the client frame by frame.

 108

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

The origin server handles the request from the proxy server in case of a cache miss. If the

video requested by the user is not present in the cache, then request is forwarded to the

origin server. The origin server sends the video frame sizes to the proxy server. In case of

a cache miss the replacement algorithm is run. Hit Ratio is calculated for each client

request, be it a hit or a miss.

The performance analysis of the Genetic Algorithm based replacement policy has been

carried out using benchmark videos obtained from [Video 1995]. The video files obtained

were diverse enough to cover various categories like movies, sports, news, and

animations. This was chosen so as to make the testing process comprehensive and also

test the robustness of the algorithm. The files had approximately 40000 frames each, on

an average. Every video file included size information per frame.

After every request, the individual fitness values of the relevant frames were updated. In

the simulation, the proposed replacement algorithm was compared with the traditional

cache replacement algorithms viz. LRU and LFU Algorithms. The performance metric

used for comparison has been the hit-ratio. The testing was done for two different sample

requests. Each of the request patterns had around 100 requests each. Hence the results

obtained can be assumed as an indication of the performance of the algorithm over a

sustained period of time. The hit-ratios were analyzed by varying the cache sizes as a

percentage of the total possible size of all the files taken for simulation. The algorithm

was tested for cache sizes, ranging from 20% to 80% of the total size of all the files put

together.

5.4.3 DISCUSSION OF RESULTS

In the testing of the algorithm, it has been observed that the Genetic Algorithm based

replacement policy gives a better hit-ratio compared to the standard replacement

algorithms like LRU and LFU. The improvement in performance over LRU and LFU has

been observed to increase for higher cache sizes. Hence it can be concluded that the

algorithm is suited especially for high-end servers, which deal with a large number of

 109

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

cache files. Also the hit-ratio of the algorithm hovers between 0.6 and 0.8, which can be

construed as an absolute indication of the robustness and efficiency of the algorithm.

The graphs obtained from the simulation are as shown in Fig 5.18 and Fig. 5.19 are the

results obtained by running the algorithm for the two sample requests mentioned earlier.

Fig 5.18: Hit Ratio of GAR-M, LRU and LFU for varying cache sizes for Sample-1

Fig 5.19: Hit Ratio of GAR-M, LRU and LFU for varying cache sizes for Sample-2

 110

CHAPTER 5: SOFT COMPUTING TECHNIQUES IN WEB CACHING

5.5 SUMMARY

The study of the soft computing techniques used in web caching is in its early stages. In

this chapter an attempt has been made to use the Fuzzy logic and Genetic algorithms to

improve the performance of web caching. The result obtained clearly indicates the

advantage of using these techniques over conventional techniques. The implementation

initially considered static web objects and was later extended to multimedia objects. It is

observed that these algorithms have an edge over other, specifically as the proxy cache

size and number of requests increase.

 111

CHAPTER 6: CACHING IN MOBILE NETWORKS

CHAPTER 6

CACHING IN MOBILE NETWORKS

6.1 INTRODUCTION

Accessing the World Wide Web data by using mobile devices is increasing due to the

deployment of 2.5G and 3G services. The growth of wireless networks has made the

wireless web applications more popular and sophisticated. Due to the strong demand for

bringing web applications into wireless environments, much effort has been made to

consolidate the WWW with wireless networks [Baquero 19995, Housel 1996]. Such

integration is also referred to as W4 – World Wide Web for Wireless. Figure 6.1 depicts a

typical W4 architecture.

Figure 6.1: World Wide Web for Wireless Network Architecture

In this architecture, mobile hosts access the wireless network through base stations,

which are inter-connected by access routers to form wireless LANs, and in turn are

connected to the Internet through gateway routers. Among the numerous studies carried

out on the enhancement of wireless internet performance, caching popular web data at

locations close to the mobile clients is an effective solution to improving the quality of

wireless web applications.

A mobile user’s web access is largely determined by the user specific preferences and the

presentation of data is constrained by the capabilities of the device used. To understand

112

CHAPTER 6: CACHING IN MOBILE NETWORKS

Caching in wireless environment it is imperative to understand the key aspects involved

in such networks and devices, specially their limitations over those that work in wired

and fixed networks. The most important issue is the bandwidth in wireless networks.

Bandwidth of wireless links that connect mobile units to the fixed networks is very

limited and therefore is a major performance bottleneck. While a wireless LAN

bandwidth is in the order of 11-50 Mbps, the typical bandwidth of wireless cellular

systems is in the order of 10-55 Kbps.

User access devices such as PDAs (Personal Digital Assistants) or mobile phones have

significantly smaller displays, slower processors and smaller memories, than more

traditional end-user computers such as workstations and PCs. Given the trend towards

wider variety and higher level of integration such as digital audio and video players in

mobile units, the differences in power and expected capabilities will continue to grow

larger. Importantly, Internet services are being integrated into mobile devices adding

more constraints. This issue also affects content-providers and application programmers,

as their model of the machine that allows the end-user to access content and run

applications is no longer simple. That these devices already or will eventually connect to

the Internet via wireless links introduces further complexity [Forman 1994,

Satyanarayanan 1996, Shankarnarayanan 2002].

Disconnection is another distinguishing feature. Users may turn off their mobile

computers to save battery energy, which is called voluntary foreseeable disconnection.

Disconnection can be unpredictable too, as a result of wireless network failure. Wireless

links have significantly different properties regarding performance, reliability, and

security than the more prevalent wired links with which the Internet evolved. Wireless

links generally have lower bandwidth and much higher error rates. Outages that result in

disconnections are common and the ability to eavesdrop is qualitatively easier when

compared to tapping a wired link [Parker 1998]

Bringing Internet connectivity to wireless devices offers a number of challenges.

Basically, the Internet assumes powerful endpoints. The Internet expects endpoints to

113

CHAPTER 6: CACHING IN MOBILE NETWORKS

carry out significant control functions, and this simplifies the internals of the Internet

leading to increased efficiency and lowered costs. This implies that a user "pays" (in one

way or another) only for what they need; as long as the Internet delivers packets, it is up

to the endpoint to enhance this most basic service with such properties as in-order

delivery, reliable transmission, and flow control, to name a few. Simply delivering bits at

a high enough rate to untethered devices and creating devices with sufficient display,

memory, and user interface features to allow efficient interaction with the Internet

requires innovative technologies and new standards. [Saha 2001, Pasquale 2002].

6.2 INTELLIGENT PROXY SERVER WITH CACHE-ON-DEMAND PROTOCOL

Users are interested in high level services like e-commerce, with uninterrupted access and

faster response time. In general, the usage of wireless access can be described by mobility

scenario which is termed as true mobile access. Terminals can be moved within and

between the range of multiple access points or base stations. Dynamic changes of the

supporting access points or base stations during a session are expected to appear. Such

changes are called handovers. For mobile access to be attractive, deployment of access

points should be dense. The degree of service continuity in spite of handovers is one of

the essential quality features. Continuity of service might be expressed in terms of the

amount of information during handover. The case of frequent, possibly interruption-less

handover usually implies a homogeneous system concept in which all the access points

and the end-system are incorporated. This is the scenario for the majority of solutions

deployed or considered today, like GSM, GPRS or the emerging UMTS [Wolisz 2000a,

Wolisz 2000b].

Cache-On-Demand (COD), as explained earlier, is a protocol for web caching in a fixed

network environment, which allows a proxy cache sever to allocate its local storage

resources upon external requests from either content providers or clients themselves, and

thus provides quality of service (QoS) in delivering content to users. The advantage to the

content providers is QoS guarantees like fresh content being available to a web user from

a Cache-On-Demand-enabled web cache. Advantage to the clients being reduced latency

and, thus, better user experience.

114

CHAPTER 6: CACHING IN MOBILE NETWORKS

The following sections discuss the Intelligent Proxy Server combined with the

deployment of CoD Protocol.

6.2.1 LATENCY REDUCTION SCHEMES

Prefetching is one of the common approaches used to reduce network latency. When a

user is idle, web pages can be prefetched from the remote sites ahead of their actual time

of use. In case the user really requests those prefetched web pages, the requests can be

satisfied by the local cache instead of the far away remote systems. This gives a much

shorter user perceived latency. The criteria for deciding whether a web page should be

prefetched can be statistical (the recent access logs can be used as a basic parameter of

statistical prefetching decisions) or deterministic (just a set of user-predefined web pages

are prefetched).

A dynamically constructed web page might constantly change, thus, any form of caching

and prefetching is prohibited for such pages. Delta encoding reduces this problem by only

sending the portion of the binary file, which changed since the last version stored on the

proxy side. HTML Pre-Processing (HPP) is an HTML extension, which distinguishes a

static and a dynamic portion [Douglis 1997]. While the static portion can be cached, the

dynamic portion is generated for each request. Since a large portion of dynamic web

pages is static, such a scheme can alleviate the perceived latency.

Here, Client Side Prefetching is used as it gives the user the control of the prefetch

process. Advantages of this technique are that it does not increase network traffic,

attempts to improve on all parts of latency, can be implemented on the client side,

without the cooperation of any other tier and can work seamlessly with any other latency

reduction technique [Eden 2000].

6.2.2. ISSUES IN MOBILE COMMUNICATION ENVIRONMENT

The unique characteristics of the mobile communication systems are as follows:

115

CHAPTER 6: CACHING IN MOBILE NETWORKS

• In mobile communication systems, the scope of web access is relatively limited as

compared to fixed network. Due to the limitations in processing power, size, and

computational speed of the mobile devices and due to high communication cost,

mobile user requests are only for a small amount of frequently accessed

information from the Internet (e.g. travel information, financial report, weather

report, daily news reports etc). These can be prefetched and put into the local

disk, giving a higher cache hit ratio. No complex prediction algorithm is needed.

• Before a mobile station connects to a mobile network system, it must register

itself to the system. The information about the station and the user can then be

known by the system. This is the time to initialize the prefetching process.

• Transcoding is usually needed in mobile applications to convert an object from

one format to another so as to present the object in a scale down format, see [Han

1998, Wong 2001]. However, transcoding spends system resources and causes

system delay. If the system can transcode the prefetched objects before the user

actually requests them, the user will experience a much shorter delay.

Based on these characteristics, a suitable prefetching scheme for the mobile applications

needs to be designed.

6.2.3. AN INTELLIGENT PROXY SERVER (IPS)

Studies on prefetching show that most of the research work has been on statistical

prefetching [Jiang 1998, Markatos 1998]. But an important observation is that

deterministic prefetching is more suitable for mobile communication. It gives little or no

bandwidth overhead because it is configured statically by the users. When the user is

accessing the Internet by a mobile device, he accesses a limited set of web pages (unlike

the case when he is using desktop or notebook PCs via the fixed network). The reason is

due to the high communication cost and limited capacity of mobile devices, prefetching a

set of user-predefined web pages is enough in most cases. This kind of prefetching not

only gives higher prefetching hit rate, but is also simpler than the statistical approach.

116

CHAPTER 6: CACHING IN MOBILE NETWORKS

The Intelligent Proxy System proposed by Yeung et. al [Yeung 2003] is based on unique

characteristics of mobile communication system as discussed in the section 6.2.2.

The proposed prefetching scheme comprises of two basic components:

 The User Profile Database (UPD) and

 The Intelligent Proxy Server (IPS).

The scheme followed is:

• When a user subscribes the mobile service from an operator, his profile (i.e. URLs

of his favorite web pages) will be created and stored in the User Profile Database

(UPD).

• When a mobile device registers to the mobile network, the registration

information will be recorded in the Home Location Register (HLR).

• The HLR registration information is then sent to the Intelligent Proxy Server

(IPS).

• The IPS then prefetches the web pages for the user based on the information of

the user profile in the UPD.

• Based on the preference of the user, the prefetched web pages can be stored in the

IPS for later access or immediately sent to the mobile device of that user.

• Note that the HLR may already record the type of device being used by the user,

thus, transcoding on the prefetched web pages can be performed immediately if

needed.

The proposed prefetching scheme is built on top of the existing mobile communication

infrastructure. As shown in Fig. 6.2, the IPS works as an add-on component of the

Internet gateway of a mobile network. The UPD, on the other hand, can be viewed as an

add-on to the HLR. Thus the scheme can be smoothly implemented in the existing mobile

networks.

117

CHAPTER 6: CACHING IN MOBILE NETWORKS

UPD Home
Location

IPS

Fig 6.2 Overall architecture of the IPS system

6.2.3.1. User Profile Database

User Profile Database (UPD) is a database which stores user profiles. Each user profile

consists of two fields:

• International Mobile Station Subscriber Identity (IMSI) of mobile device: a

unique identifier of the mobile device.

• A list of URLs that are chosen by the users. Users can update their profiles by any

means as provided by the operator. Sample contents of a UPD are as shown

below:

IMSI_A http://www.sie1.com/
 http://www.sie2.com/page1.htm
 http://www.site3.com/page1.cfm

IMSI_B http://www.site2.com/page2.htm
 http://www.site4.com/page1.asp

6.2.3.2. Intelligent Proxy Server

As explained earlier, the IPS accesses the user profiles stored in the UPD when the user

registers to the mobile network. The accessed information is then used by the prefetching

process to retrieve the objects.

There are two modules in the Intelligent Proxy Server (IPS) as shown in Fig 6.3.

Internal
Gateway

Mobile
Communication

Network

Public Data
Network

Control
Signal

118

CHAPTER 6: CACHING IN MOBILE NETWORKS

The Caching Module

This module works as a traditional proxy server. When an Internet access request arrives

(1)], the caching module will first check whether the local cache can satisfy the

request(hit) or not(miss) (2). If the request is a hit, the requested page will be returned to

the user (3). Otherwise, the requested page will be retrieved from the remote site (4), (5)

and stored into the local cache (6). This completes a normal request process.

Normal Request
Generated by Mobile

Users
IPS

To Remote Servers

41
Caching
Module

3 5

Fig 6.3 Architecture of the IPS

The Prefetching Module

When a user registers to a mobile network, the registration information including the

IMSI of the user device will be sent from the HLR to the prefetching module (7). The

module starts the prefetching process by looking up the registered profile of the user in

the UPD (8). It then checks whether the pages are cached in the local cache or not (and

whether the cached ones are updated ones) (9). For those pages that are not cached, the

prefetching module requests them from the remote web sites (10, 11). The prefetched

pages are then put into the local cache (12). This completes a prefetch request process.

Local Disk UPD

Prefetching
Module 7

10

11

 To Remote Servers
 Registration Information

from HLR
9,12

2, 6

8

119

CHAPTER 6: CACHING IN MOBILE NETWORKS

We can see that the caching module and the prefetching module generate normal requests

and prefetching requests respectively. Since the normal requests are more important than

the prefetching requests, they should have a higher priority to be served first.

An example showing how the proposed prefetching scheme can be implemented in a

General Packet Radio Service (GPRS) network is given in Fig. 6.4.

UPD Home
Location
Register

IPS

Fig 6.4 The GPRS Network with the proposed prefetching scheme

Before a mobile station can use the GPRS services, it must register to a Serving GPRS

Support Node (SGSN) of a GPRS network. This procedure is called GPRS attach. The

register information will then be sent to a Gateway GPRS Support Node (GGSN). GGSN

is the Internet gateway between the GPRS backbone network and the external packet data

network. Fig. 6.4 shows how the IPS and UPD works with the SGSN and the GGSN.

6.2.4. CACHE-ON-DEMAND PROTOCOL

The Cache-On-Demand protocol supports strong consistency by giving complete content

management control to the content provider. The Cache-On-Demand client can reserve

resources for a specified duration of time and pull required contents to the cache. It can

explicitly update the cached content in order to maintain strong consistency between the

GGSN

GPRS

Network

Public Data
Network

Control
Signal

120

CHAPTER 6: CACHING IN MOBILE NETWORKS

original and the cached copies of the content. It can request the Cache-On-Demand-

enabled cache to invalidate the content and free up the reserved resources. Cache-On-

Demand can be implemented as a paid service model. Clients are charged for the amount

of resources reserved by them for the duration of the reservation.

6.2.5. THE IPS-COD COMBINED PROTOCOL

The IPS scheme lends us the concept of prefetching of web content based on the User’s

profile which may be specified by the client himself or may be gauged from the client’s

past access history.

The COD protocol testifies that the above would reduce the bandwidth usage and latency

in servicing client requests as also the load placed on Origin Servers and the congestion

in the mobile network. In addition, it indicates that redundant usage of storage space

would be reduced if the web content is prefetched and maintained only for a requested

period of time and for those clients alone, who request for the prefetching facility.

Leaving the option of using the prefetch facility open to the clients would also save the

clients who do not use the facility from being unnecessarily charged for the same. Only

interested clients use the facility and pay for the same. Building on the concepts from

these protocols, we have implemented a new scheme which capitalizes on the advantages

of both.

In this protocol, we assume that the Proxy Server is the Base Station. Starting from

registration of the client with the mobile network to servicing of its requests by the

Server, the protocol works as follows:

1. When a user registers to a mobile network, the registration information including

the IMSI of the user device will be sent from the Home Location Register (HLR)

to the Proxy.

121

CHAPTER 6: CACHING IN MOBILE NETWORKS

2. The client communicates to the HLR whether it wants to use the prefetching

facility or not.

3. If client does not wish to use the facility, then goto step 8.

4. If client communicates in the affirmative, then the Proxy starts the prefetching

process by looking up the registered profile of the user in the UPD.

5. If the profile of the client is not registered in the UPD, then the same is stored by

the client and then the prefetching process begins. When the client registers, then

the profile would be available for the mobile network.

6. Proxy then checks whether the pages are already cached in its local cache (and

whether the cached ones are updated copies).

7. For those pages that are not cached/ not updated, the Proxy Server requests them

from the Origin Server. The prefetched pages are then put into the local cache.

This completes a prefetch request process.

8. When an Internet access request arrives from the client, the Proxy first checks

whether its local cache can satisfy the request or not.

9. If so, the requested page will be directly returned to the user. Otherwise (i.e. if the

page is either not cached or cached but not updated), the requested page will be

retrieved from the Origin Server and stored into the local cache before servicing

the request.

This protocol design is implemented and verified. The working of the protocol is depicted

in Fig 6.5 and Fig 6.6

122

CHAPTER 6: CACHING IN MOBILE NETWORKS

READ IN USER
PROFILE UPD

Fig 6.5 Protocol Sequence: Client requests for prefetching facility

Fig 6.6 Protocol Sequence: Client does not request for prefetching facility

AUTH. REQ

REQUEST FOR URL

URL RETURNED

CLIENT HLR PROXY SERVER

UPD

REQUEST FOR URL

URL RETURNED

CONNECTION GRANTED

AUTHENTICATION REQUEST

CONN. GRANTED

Read User
Profile

AUTH-PRFTCH REQ

CONN. GRANTED

AUTHENTICATION REQUEST

URLS TO PREFETCH

CONNECTION GRANTED

PRFTCH REQS

URLs RETURNED

REQUEST FOR URL

URL RETURNED

CLIENT HLR PROXY SERVER

123

CHAPTER 6: CACHING IN MOBILE NETWORKS

6.2.6. DISCUSSION OF RESULTS

To evaluate the performance of the CoD protocol in a mobile environment the

performance of CoD is measured on a smaller cache size of 100K and 1000K. This cache

size, will be easier to handle even when the mobile user is on the move. The factors that

are considered for performance evaluation are; hit ratio, percentage of the normal cache

for the CoD case and number of Requests by different users.

We consider two implementations. The normal proxy server implementation that caches

all the requests from the clients and the CoD implementation of the proxy server. The

whole process is simulated where the server generates a random size for the objects being

requested for and then based on the caching strategy the objects are cached. The log file

for the first case discussed above just consists of normal http requests where as the log

file for the second case consists of both CoD and the normal http requests distinguished

by the keyword ‘COD’ at the beginning of the requests. Now both the programs are run

varying some of the parameters and then plotting the graphs.

In the normal proxy server implementation the hit ratio has been plotted for all the

requests made. Fig 6.7 shows the variation of hit ratio with the number of requests for

different cache sizes. The no of requests are on the X-axis and the hit ratio on the Y-axis.

The black line shows the variation for a cache size of 100k and the grey line shows the

variation for a cache size of 1000k. As expected the hit ratio for the 1000k cache is higher

than that for the 100k cache.

In the CoD implementation, the CoD cache size reserved is expressed as the percentage

of the normal cache. Fig 6.8 shows the variation of the hit ratio with the percentage of

normal cache reserved. The percentage of the normal cache reserved is on the X-axis and

the hit ratio on the Y-axis. The graphs have been plotted after satisfying 10000 requests

from the client.

124

CHAPTER 6: CACHING IN MOBILE NETWORKS

Fig 6.7 No. of requests vs hit ratio for normal cache in an IPS-CoD system

Fig 6.8 Percentage of normal cache vs. Hit ratio in an IPS-CoD system

125

CHAPTER 6: CACHING IN MOBILE NETWORKS

This experimentation is to show the basic advantage of integrating the mobile network

with the Cache-on-Demand protocol. Analyzing the results obtained, we can see that for

smaller size of caches, the CoD protocol will help the user with a better Quality of

Service and can be offered as a service by the Content Delivery vendors.

This problem gets escalated in a mobile communication environment which suffers from

limitations in processing power, size, and computational speed of the mobile devices in

addition to high communication cost. Due to these limitations, as mobile users request for

frequently accessed information from the Internet the web content is prefetched based on

the user’s profile and stored in the proxy cache. This results a higher cache hit ratio,

reduces the bandwidth usage and latency in servicing client requests. In addition, it also

minimizes the congestion in the mobile network and the load placed on Origin Servers.

Here, the idea of using a novel but simple prefetching scheme with cache-on-demand

protocol in mobile communication systems is discussed. The scheme was designed based

on three major observations on the characteristics of mobile networks, and is therefore

well suited to today’s mobile applications. Simulation model on the scheme is built to

study the system performance verification.

6.3 DYNAMIC CACHE INVALIDATION SCHEME

Caching of frequently accessed data at the mobile clients has been considered to be a

very effective mechanism in reducing wireless bandwidth requirements as well as energy

consumption, since no energy is expended to transmit and receive data. For caching to be

effective, the cache content must be consistent with those stored in the server. This is

difficult to enforce due to the frequent disconnection and mobility of clients. The basic

approach adopted is for the server to periodically broadcast invalidation reports that

contain information about objects that have been updated recently [Barbara 1994, Jing

1999]. Based on the report, clients can invalidate objects that have been updated and

salvage their cache content that are still valid. Most of the existing algorithms address

three issues. The first issue deals with the content of the invalidation reports. The second

issue concerns how invalidation is performed. The third issue looks at the support the

126

CHAPTER 6: CACHING IN MOBILE NETWORKS

server provides. The model for a mobile data access system adopted is as shown in

Fig.6.9.

Wireless cell Wireless cell

MC MC MC MC

MC

MSS/DS
MSS/DS

Fig 6.9 Wireless Computing Environment

 The mobile environment consists of two distinct sets of entities, a larger number of

mobile clients (MC) and relatively fewer, but more powerful, fixed hosts called mobile

support stations (MSS) or database servers (DS). The fixed hosts are connected through a

wired network and may also be serving local terminals. Some of the fixed hosts, like

MSS, are equipped with wireless communication capability. An MC can connect to a

server through a wireless communication channel. It can disconnect from the server by

operating in a sleep mode or a power-off mode. Each MSS can communicate with MCs

that are within its radio coverage area called a wireless cell. A wireless cell can either be

a cellular connection or a wireless local area network. At any time, an MC can be

associated with only one MSS and is considered to be local to that MSS. An MC can

directly communicate with an MSS if the mobile client is physically located within the

Wired Network

Local terminals
Local terminals

MSS/DS

MC MC

Wireless cell

Local terminals

127

CHAPTER 6: CACHING IN MOBILE NETWORKS

cell serviced by the MSS. An MC can move from one cell to another. The servers manage

service on-demand requests from mobile clients. Based on the requests, the objects are

retrieved and sent via the wireless channel to the mobile clients. The wireless channel is

logically separated into two sub-channels, an uplink channel which is used by clients to

submit queries to the server via MSS, and a downlink channel which is used by MSS to

pass the replies from the server to the intended clients. We assume that updates only

occur at the server and mobile clients only read the data. To conserve energy and

minimize channel contention, each MC caches its frequently accessed objects in its

nonvolatile memory such as a hard disk. Thus, after a long disconnection, the content of

the cache can still be retrieved. To ensure cache coherency, each server periodically

broadcasts invalidation reports. All active mobile clients listen to the reports and

invalidate their cache content accordingly. We assume that all queries are batched in a

query list and are not processed until the MC has invalidated its cache with the most

recent invalidation report. We assume that each server stores a copy of the database and

broadcasts the same invalidation reports. In this way, clients moving from one cell to

another will not be affected. Thus, it suffices for us to restrict our discussion to just one

server and one cell. The following cache invalidation strategy is based on the model

reported in [Tan 2001]

6.3.1 Taxonomy of Cache Invalidation Strategies

Two basic categories of cache invalidation strategies have been proposed in the literature.

They are:

• Stateful approach

• Stateless approach

Stateful Approach

In the stateful approach, the server knows the objects that are cached by the mobile

clients. As such, whenever there is any update to the database, the server will send

invalidation messages to the affected clients.

128

CHAPTER 6: CACHING IN MOBILE NETWORKS

Stateless Approach

In the stateless approach, the server is not required to be aware of the state of the client’s

cache. Instead, the server broadcasts information on objects that are most recently

updated and the clients will listen for and use the reports to invalidate their caches. The

invalidation methods in stateless approach can be classified into asynchronous and

synchronous methods. In the asynchronous method, once a record is updated, the server

will broadcast updated value immediately. The asynchronous method is effective for

always connected clients, and allows them to be notified immediately of updates.

However, for a client which reconnects after a period of disconnection, the client has no

idea of what has been updated and so the entirety of its cache content has to be

invalidated. To salvage the cache content, Barbara and Imielinski [Barabara 1994] have

proposed that an invalidation report can be piggybacked with each invalidation notice. In

this case, upon reconnection, clients will have to wait for the first asynchronous

invalidation report. However, since the report is sent asynchronously, there is no

guarantee on how long the client must wait. On the contrary, the synchronous method is

based on the periodic broadcasting of invalidation reports. The server keeps track of the

records that are recently updated and broadcasts this information to clients periodically.

Based on the report, a client determines whether its cache is valid for the query; if it is, it

can be used to answer the query, and otherwise, the query may have to be submitted to

the server. Because of its periodic broadcast nature, synchronous methods provide a

bound on the waiting time of the next report.

The Cache invalidation schemes reported in the literature mostly fall into the stateless

category. Some common issues that have been addressed in designing cache invalidation

schemes are given below. These are the content of the report, the invalidation process,

and the information (log) that the server must maintain.

129

CHAPTER 6: CACHING IN MOBILE NETWORKS

6.3.2 Content of the Invalidation Report

Ideally, the server should keep track of all updates and broadcast them to the mobile

clients. But, this is costly and impractical in view of the limited bandwidth and short

battery life of mobile clients. Instead, the server maintains a short (of reasonable length)

history of updates and broadcasts an update report (UR) that reflects the most recent

changes. Several issues need to be addressed with regards to the content of the report.

The granularity of the report refers to the level of details of information each record of

the report captures. A record in the report can be an 〈id, TS〉 pair, where id is the

identifier of the object that is updated and TS is the timestamp at which this object is

updated. Alternatively, the report can reflect the full detail of the object that is updated at

time TS, i.e., the record is the pair 〈object, TS〉. The former is commonly known as

update invalidation as clients can only invalidate their cache content. The latter, on the

other hand, allows clients to immediately update their invalid copy with the object that is

broadcast. It is thus referred to as an update propagation mechanism. Clearly, there is a

tradeoff between the two mechanisms. Under update propagation, when the

disconnection time is short, clients can update its cache immediately. Under update

invalidation, clients must still submit requests to retrieve the updated records even if the

disconnection time is short. However, under update propagation, since the entire record is

broadcast, the report is much larger and can take up a significant portion of the downlink

channel capacity, which is a scarce resource in wireless environment. Moreover, given

the same report size, update invalidation can afford to reflect a longer history of updates.

The size of the invalidation report can be fixed or varied. The update history refers to the

history of the updates that are reflected in the report and can be fixed or varied too. These

two factors are interrelated in the sense that one typically affects the other. It can also be

fixed by the number of objects/groups to be included in the report. Obviously, under

these cases, the update history cannot be predetermined (i.e., it has to be variable) since

the number of updates varies over a fixed period of time. On the other hand, the report

size can vary from broadcast to broadcast by fixing the update history being reflected.

130

CHAPTER 6: CACHING IN MOBILE NETWORKS

To conserve energy, it may be necessary to organize the invalidation report to facilitate

selective tuning. This can be done by interleaving the content of the report with “indexes”

that can provide “direct” access to the targeted portion of the report. Thus, only the

desired portion of the report needs to be examined.

6.3.3 Invalidation Mechanism

There are two issues to address here. The first concerns the scale of the invalidation,

whether it is cache-level or query level. The second concerns the participants that are

involved, whether the invalidation is performed by the client only, by the server only, or

by collaboration between the two.

When a client receives an invalidation report, it can invalidate its cache content in two

ways. First, it can perform cache-level invalidation, i.e., cache validity is performed for

all objects cached. This requires scanning a large portion of the invalidation report, if not

the entirety of the report. As a result, it is not particularly suited for selective tuning. In

this approach, the cache content is associated with one timestamp - only the timestamp of

the most recent invalidation report. On the other hand, the client can perform query-level

invalidation, where validation is performed only on the objects queried. This reduces the

number of objects to be invalidated and, hence, the report can be organized for selective

tuning. However, each cached object has to be associated with a timestamp as compared

to a single timestamp for all cached object in cache-level invalidation. The timestamp of

an object represents the timestamp at which the object is last known to be valid. This is

usually the timestamp of the invalidation report that was last used to validate the object.

Thus, different cached objects will have different timestamps. So, each queried object

may use a different list of objects for invalidation. When a query is issued, the query

objects’ timestamps are checked against that of the invalidation report received. For each

object queried, the appropriate list of objects is used to (in)validate it.

Invalidating the cache content can be performed by the client alone. This requires that the

client based its invalidation purely on the invalidation reports. Thus, the effectiveness of

such approaches is dependent on the content of the report. On the other extreme, we can

131

CHAPTER 6: CACHING IN MOBILE NETWORKS

allow the server to perform the invalidation alone. This, however, will require the client

to inform the server about its cache content which can be costly since transmitting this

information consumes energy and bandwidth. Finally, the client and server can

collaborate to identify the cache content that should be invalidated. The client uses the

invalidation report to invalidate its cache content; for those that remain uncertain, the

client submits their information to the server for invalidation.

Another important issue in the design of a cache invalidation scheme concerns the

information (update logs) maintained at the server to reflect the updates on the database.

The update logs may contain update information of each individual object or its

identifier. For the former, the log record is of the form 〈object, TS〉 to reflect that object

has been updated at timestamp TS. For the latter, the server only needs to maintain 〈id,

TS〉 pairs, each of which indicates that the object with identifier id is updated at TS.

Alternatively, each log record may reflect updates on a collection of objects. In this

group-based approach, objects are organized into groups and the log record reflects the

latest update to the group, i.e., each log record is of the form 〈group-id, TS〉 where TS is

the most recent timestamp that an object in group identified by group-id has been

updated. The second issue concerns the size and log history which is the duration that the

update logs should be maintained which, like the content, are interrelated. The size can be

fixed by restricting updates to be maintained for a fixed number of objects. In this case,

the log history changes depending on the updates. On the other hand, variable sized logs

can be maintained by fixing the log history to a fixed interval.

6.3.4 Cache Invalidation Scheme

Based on the above discussion, [Tan 2001] analyzed several cache invalidation

schemes. The cache invalidation scheme reported in this thesis is a combination of Bit-

Sequence Scheme and Bit-Sequences with Bit Count Scheme. Here we propose a

Dynamic Cache Invalidation scheme which can dynamically adopt Bit-Sequence Scheme

or Bit-Sequences with Bit Count Scheme.

132

CHAPTER 6: CACHING IN MOBILE NETWORKS

The Bit-Sequence Scheme (BS)

The Bit-Sequence algorithm uses the following framework:

• Content: The report consists of a list of 〈list of ids, TS〉 pairs in a compact form.

This allows the report size to be fixed, though the update history varies. There is

no organization to support selective tuning.

• Invalidation Mechanism: The invalidation is performed by the client at cache-

level.

• Log: The logs maintained at the server keeps track of individual object update

information using 〈id, TS〉 pairs for up to half the database size, i.e., the size of the

log is fixed but the update history is variable.

Let the number of database objects be N=2n. In the BS algorithm, the invalidation report

reflects updates for n different times Tn, Tn-1, . . . , T1, where Ti 〈 Ti-1 for 1 〈 i ≤ n. The

report comprises n binary bit-sequences, each of which is associated with a timestamp.

Each bit represents a data object in the database. A ‘1’ bit in a sequence means that the

data object represented by the bit has been updated since the time specified by the

timestamp of the sequence. A ‘0’ bit means that the object has not been updated since

that time. The n bit-sequences are organized as a hierarchical structure with the highest

level (i.e., bit sequence Bn) having as many bits as the number of objects in the database

and the lowest level (i.e., bit-sequence B1) having only two bits. For the sequence Bn, as

many as half of the N bits (i.e.,
2
N) can be set to “1” to indicate the

2
N objects that have

been updated. The timestamp of the sequence Bn is Tn. The next sequence in the

structure, Bn+1, has
2
N bits. The kth bit in Bn-1 corresponds to the kth ‘1’ bit in Bn, and

22
N bits can be set to ‘1’ to indicate that 22

N objects have been updated since Tn+1. In

general, for sequence Bn-i, 0 ≤ i ≤ n -1, there are i

N
2

 bits and the sequence will reflect that

133

CHAPTER 6: CACHING IN MOBILE NETWORKS

12 +i

N objects have been updated after the timestamp Tn-i. The kth bit in sequence Bn-i

corresponds to the kth ‘1’ bit in the preceding sequence (i.e., Bn-i+1).

An additional dummy sequence B0, with timestamp T0, is used to indicate that no object

has been updated after T0. In general, N does not need to be a power of two and the

number of lists can also be any value other than n. Furthermore, the list associated with

timestamp Ti does not need to reflect the updates for half the number of objects in the list

associated with Ti+1, 1 ≤ i ≤ n -1. The Bit-Sequences structure is broadcast to clients

periodically. The protocol for invalidating the cache is shown in Fig.6.10

//T – timestamp of current report
// TC – timestamp of last valid report received by mobile client
if T0 T≤ C

 all cached objects are valid
else {
 if TC < Tn
 remove the entire cache content
 else {
 determine the bit sequence Bi such that Ti≤TC<Ti-1, 1 i n ≤ ≤
 invalidate all the objects marked “1” in Bi
 }
 }
for every object O ∈Qi {
 if (O is in the cache)
 use the cache’s content to answer the query
 else
 submit request for O
}
TC ←T

Fig 6.10 The Bit-Sequence scheme Protocol

The Bit-Sequence sceheme can be explained with an example. Consider a Bit-Sequence

structure for an invalidation report as shown in Fig 6.11. As shown, the first level (B4)

has 16 bits, eight of which have been set to “1”. These eight objects are the most recently

updated objects. The timestamp for B4 is 18. Similarly, bit sequence B1 has two bits,

reflects the most recently updated object 8, and has a timestamp of 32.

134

CHAPTER 6: CACHING IN MOBILE NETWORKS

B4 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1

Fig 6.11 Bit Sequence Example

Assume that the client receives this invalidation report when it submits its query for

objects 5 and 8. Suppose the last invalidation report received by the client before it

disconnects is at time 31. Since the client’s cache content is last valid at time 31, it should

use the sequence B2 to invalidate its cache. To locate those objects denoted by the two

“1” bits, the client will check the sequences B2-B4. This is accomplished as follows: To

locate the object corresponding to the second bit that is set to “1” in B2, the client has to

check the second “1” bit in B3. Since the second “1” bit in B3 is in the fifth position, the

client will have to examine the 5th “1” bit in B4. Because B4 is the highest bit-sequence

and the 5th “1” bit is in the eighth position, the client can conclude that object 8 has been

updated since time 31. Similarly, the client can determine that the 12th object has also

been updated since that time. Therefore, both objects will be invalidated by the client.

Since the client requests for objects 5 and 8, object 5 remains valid and can be used to

answer the query while the request for the invalid object 8 has to be submitted to the

server.

Bit-Sequences with Bit Count (BB)

The other scheme, is the Bit-Sequences with Bit Count (BB) scheme. Like the Bit-

Sequence approach, it comprises of a set of bit sequences organized in a hierarchical

manner. However, only the relevant bits need to be examined. This is achieved by

associating each bit sequence with a bit count array.

 0 0 0 1 1 0 1 1

 0 1 1 0

B3

T4 = 18
T3 = 26
T2 = 30
T1 = 32 B2

B1 1 0

135

CHAPTER 6: CACHING IN MOBILE NETWORKS

Let N be the number of objects in the database. Furthermore, let bt denote the size of a

timestamp. We also assume that a query Q returns the set of objects {O1,O2, . . .,Oq} as

answers. Furthermore, we assume that the objects are already ordered in the same manner

as the information reflected in the invalidation report, i.e., information for O1 will be

received before information for O2 and so on. If the objects are not ordered accordingly,

then they can be sorted. We also denote the corresponding timestamps when these objects

are last valid in the client cache as t1, t2, . . . tq, respectively.

As in the BS scheme, the BB structure comprises a set of n bit sequences: Sequence Bn

has a timestamp Tn indicates that updates after Tn are reflected and comprises N bits, half

of which are set to ‘1’; sequence Bn-1 has timestamp Tn-1 and N/2 bits, of which N/22 bits

are set to ‘1’ and so on. In fact, the content of the bit sequences are exactly the same as

those of the BS scheme. Like the BS scheme, if the bit sequence Bn-i is to be used to

invalidate the cache, then the sequences Bn-i, Bn-i+1, . . .,Bn may have to be examined.

However, the proposed BB strategy adopts a top-down examination of the sequences, i.e.,

from Bn to Bn-i, rather than the bottom-up approach (i.e., Bn-i to Bn) of BS scheme.

Moreover, for some valid objects, it may not be necessary to examine all the sequences

from Bn to Bn-i as it may be possible to determine their validity and terminate the search

before sequence Bn-i. Furthermore, the proposed scheme only examines the relevant bits

in each sequence. As the kth “1” bit in Bn-i corresponds to the kth bit in Bn-i-1, we need a

mechanism that can count the number of “1” bits in a sequence, say Bn-i, without

examining the entire sequence. To illustrate how selective tuning can be facilitated with

such a mechanism, let us consider a query to validate an object O. The client first

identifies the bit sequence that should be used. This is accomplished by examining the set

of timestamps. Suppose the sequence is Bn-i. This means that we need to examine

sequence Bn, followed by Bn-1, and so on until Bn-i. From object O, the client can

selectively tune to the corresponding bit in Bn without scanning the entire Bn. If the bit is

set to ‘0’, then the object is valid, since object O will not be found in any subsequent

sequences Bn-1, Bn-2, . . .; otherwise, the client determines the number of ‘1’ bits from the

beginning of Bn to the bit corresponding to O. From this number, it can again selectively

136

CHAPTER 6: CACHING IN MOBILE NETWORKS

tune to Bn-1 and examine the corresponding bit of O in Bn-1. Again, if the bit is ‘0’, then

the object O is valid and the search terminates; otherwise, its position in the Bn-2 is

determined and this process is repeated until sequence Bn-i. We can terminate when we

encounter ‘0’ bit at any of the sequences from Bn to Bn-i. If the relevant bit at Bn-i is ‘1’,

then the object is invalid; otherwise, it is valid.

Now, the mechanism to facilitate selective tuning is simple. We associate with each bit

sequence a bit count array, all of which have entries that are j bits. For bit sequence Bn-i,

0 ≤ i ≤ n -1, the sequence is partitioned into packets of 2j bits.

In other words, there are ⎥
⎥

⎤
⎢
⎢

⎡
j

iN
2

2/ packets. In general, for sequence Bn-i, the number of

array entries is ⎥
⎥

⎤
⎢
⎢

⎡
j

iN
2

2/ . Essentially, the kth entry in the bit count array of sequence

Bn-i represents the number of ‘1’ bits that have been set for the kth packet in the sequence.

Selective tuning is achieved as follows: Let packet i contain the bit which is the selected

for the query sent. From the bit array count, we can determine the number of ‘1’ bits that

have been set for packets 1 to i - 1. The client can then tune into the ith packet and scan

the ith packet until the relevant bit. In this way, we will be able to compute the number of

“1” bits.

To check the validity of the answer objects to query Q, the client employs the protocol

shown in Fig.6.12. The invalidation report is organized as follows: The counter is

broadcast first, the timestamps are broadcast next, followed by the bit count arrays for

sequences Bn, Bn-1, . . ., and, finally, the bit sequences Bn, Bn-1, . . .,B1.

137

CHAPTER 6: CACHING IN MOBILE NETWORKS

//Answer Set = {O1, O2, …, Oq} --- objects for query Q
//tid - last known valid time of object with id Oid
download the counter, the timestamps and the bit count arrays
for each object Oi ∈Answer set
 if TO t≤ i // object Oi is valid

AnswerSet = AnswerSet – {Oi}
 else if ti < Tn // object oi is invalid
 AnswerSet = AnswerSet – {Oi}
// AnswerSet contains the remaining objects whose validity is still uncertain
for each object Oi ∈ AnswerSet
 determine the bit sequence to be used to validate Oi
k = n
repeat {
 for each object Oi ∈ AnswerSet, examine bit sequence Bk {
 tune to packet p containing information on Oi
 examine the bits in packet p until position of Oi
 let the number of “1” bits set (in p inclusive of Oi) be b
 if Bk is the bit sequence to be used to validate Oi {
 if the bit corresponding to Oi is set to “1”
 Oi is invalid
 else
 Oi is valid
 AnswerSet = AnswerSet – {Oi}
 } else {
 if the bit corresponding to Oi is set to “0” {
 Oi is valid
 AnswerSet = AnswerSet – {Oi}
 } else {
 // we need to examine the next sequence Bk-1
 from the bit count array of Bk
 determine the number of “1” bit from packet 1 to p-1 of Bk
 let this value be c
 the position of Oi in bit sequence Bk-1 is (c+b)
 }
 }
 }
 k = k – 1
} until AnswerSet = ∅

Fig 6.12 The Bit-Sequence with Bit count scheme Protocol

To illustrate Bit Sequence with Bit count scheme consider the previous example

discussed for Bit-Sequence scheme. The BB structure is as shown in Fig 6.13.

138

CHAPTER 6: CACHING IN MOBILE NETWORKS

Fig 6.13 Bit Sequence with Bit Count (BB) Example

Each bit count array entry keeps track of the number of “1” bits set for four objects. Since

there are 16 objects in the database, there are four entries in the bit count array

corresponding to B4, two entries in B3’s bit count array, and one entry in B2’s bit count

array. Note that B1 is not associated with a bit count array. Assume that a query requests

for objects 5 and 8 whose cached timestamps are, respectively, 31 and 27. From the

timestamps in the invalidation report, the client knows that it needs to check B2 for the

validity of object 5, and B3 for the validity of object 8. The client first determines which

two bits in B3 correspond to the two queried objects. This is done as follows: As both

objects 5 and 8 are in the same packet, from the first bit count array entry of B4, the client

knows that there is only one “1” bit among the first four objects in the bit-sequence B4.

Thus, it will tune to the beginning of the second packet of B4 and examine the first bit in

the second packet till the fourth bit. Since the first bit corresponds to object 5 and it is set

to “1”, the client knows that object 5 is the second bit in B3. Similarly, the client can

determine that object 8 is the fifth bit in B3. For object 5, the client examines the

corresponding bit in B3 which has been set to “0” indicating that the object is valid. For

object 8, the client first examines the bit count array for B3 and knows that the first entry

contains a value of 1. By examining the first bit of the second packet of B3, it determines

that the bit corresponding to object 8 is set to ‘1’. This also means that object 8 can be

found in the second bit of B2. It then examines the second bit of B2 and finds that object 8

is invalid. The protocol is as shown in Fig. 6.13.

139

CHAPTER 6: CACHING IN MOBILE NETWORKS

6.3.5 Complexity of BS & BB Schemes

Time Complexity of Bit-sequence algorithm:

In order to calculate the time complexity of bit-sequence algorithm, let us consider the

following example. The structure of the invalidation report along with the bit sequences

and time stamps are as given in Fig 6.14

B4 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1

Fig 6.14 Structure of IR with bit sequence time

Assume that the client receives this invalidation report when it s

the last invalidation report the client received be at time 31. So f

query we start from the bit-sequence B2 as the last valid time-sta

stamp T2 and T1. The maximum number of updates possible at

which is equal to the number of bits in the next bit-sequence i.e.

of iterations to be run for answering the validity of the present ca

the sum of the number of bits in bit-sequences B2, B3 and B4.

Mathematically,

The total number of iterations = s [B2] + s [B3] + s [B4]

where s [Bi] denotes number of bits in bit-sequence Bi.

The above example shows us that knowing the last valid time-s

the total number of iterations. Generalizing the above example

complexity of bit-sequence algorithm.

 0 0 0 1 1 0 1 1

 0 1 1 0

B3

T4 = 18
T3 = 26

 T2 = 30
T1 = 32 B2

B1 1 0
Bottom-up
approach
stamps

ubmits its query and let

or answering the present

mp 31 is between time-

the bit-sequence B2 is 2

 B1. So the total number

che’s objects is equal to

tamp is sufficient to get

 we calculate the time

140

CHAPTER 6: CACHING IN MOBILE NETWORKS

Let N be the total number of objects in the cache and k be the total number of updates.

Let Ti be the last valid time-stamp. So, the corresponding last valid bit-sequence is Bi.

The relation between k and i is given below:

s(Bi) = 2i = 2k

Using the above statements we get the following:

Time Complexity of bit-sequence algorithm, T (BS) = (2k + 22k + ….. + N)

But , N = k
k
N

∗⎟
⎠
⎞

⎜
⎝
⎛ =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∗

⎟
⎠
⎞

⎜
⎝
⎛

k
N

k
2log

2

So,

T (BS) = [2k + 22k + …. +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∗

⎟
⎠
⎞

⎜
⎝
⎛

k
N

k
2log

2]

 = k
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∗

⎟
⎠
⎞

⎜
⎝
⎛

122
2log

k
N

 = ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −12

k
Nk

T (BS) = 2(N-k)

Thus, the time complexity of the bit-sequence is 2(N-k).

Time Complexity of Bit Sequence with Bit Count (BB) algorithm:

Unlike the above algorithm this algorithm works on selective tuning top-down approach.

The algorithm searches the validity of only one object unlike the case of bit-sequence

which checks the validity of all objects at a time.

The time-complexity of the algorithm in finding the validity of one object:

Let, total number of objects in the server be N;

Let the Packet size be √N and the number of updates be k;

In one bit-sequence,

Number of iterations = (Total no. of packets – 1) + (Packet size)

141

CHAPTER 6: CACHING IN MOBILE NETWORKS

But, the number of bit-sequences to be checked for is equal to ⎟
⎠
⎞

⎜
⎝
⎛

k
N

2log

Therefore, for one object

T(BB) = [√N + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
N

 + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

4
N

 + …. ⎟
⎠
⎞

⎜
⎝
⎛

k
N

2log times] + () ⎟
⎠
⎞

⎜
⎝
⎛−

k
NN 2log1

 = () ⎟
⎠
⎞

⎜
⎝
⎛−+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

k
NNN

k
N 2

log
log1

2

112
2

Simplifying this we get,

 T (BB for one object) = ()

k
NN

N
kN

2log1)(2 −+
−

∗

Let the number of objects in the cache be A,

Opti

In th

size

Let

Ther

T (B

For

dp
dT

2

2

dp
Td
⎞⎛ − NkN)(
 T (BB) = () ⎟
⎠

⎜
⎝

−+∗∗
k

N
N

A 2log12

mal packet size for BB:

e previous section, while deriving time complexity it was assumed that the packet

is √N.

us assume that the packet size in the BB algorithm be p.

efore,

B) = ()
k
Np

p
kN

2log1)(2 −+
−

∗

the optimal packet size 0=
dp
dT and 02

2

>
dp

Td ,

0log))((2 2
2 =⎟

⎠
⎞

⎜
⎝
⎛+−−= −

k
NpkN

0)(4
>

−
=

p
kN

142

CHAPTER 6: CACHING IN MOBILE NETWORKS

minimum value of T at p,

⎟
⎠
⎞

⎜
⎝
⎛
−

=

k
N
kNp

2log

)(2

But, maximum number of updates possible (worst case), k = N/2.

Therefore,
2log

))2/((2

2

NNp −
= = N

Thus for minimum time complexity, Np =

6.3.6 Dynamic Cache Invalidation Scheme

The algorithm which we propose is a combination of both the algorithms BS and BB. Bit

sequence algorithm works well when the number of objects in the cache is huge and the

probability of the number of updates at the server is less. If the number of objects in the

cache is huge then BB is less efficient because it has to traverse down the invalidation

report for each object to find its validity. So, combination of both these strategies along

with a proper switching condition which synergizes the advantages of both the algorithms

will be much efficient.

The switch condition between BS and BB is explained below:

The main deciding factor for the efficiency of both the algorithms is time complexity. So

for using BB algorithm the time complexity for invalidating the entire cache should be

less than the time complexity of the BS algorithm.

i.e.,

T (BB) ≤ T (BS)

So, () ⎟
⎠

⎞
⎜
⎝

⎛ −+
−

∗∗
k
NN

N
kNA 2log1)(2 ≤ 2(N-k)

If the above condition is true then we use BB else we use BS.

143

CHAPTER 6: CACHING IN MOBILE NETWORKS

6.3.7 Discussion of Results

It is found that the algorithm BS-BB works better for smaller cache sizes. The range for

which it is valid is given by following proof:

For using the dynamic algorithm proposed here, the following condition should be

satisfied..

() ⎟
⎠

⎞
⎜
⎝

⎛ −+
−

∗∗
k
NN

N
kNA 2log1)(2 ≤ 2(N-k)

Rearranging the above statement and substituting A = pN we get,

() () () () kNpNNpkNNpNNpN 22 log112log112 −+−≤−+−

We divide both sides of the inequation with ()()112 −− NpNpN assuming it to be

positive.

Thus we get,

() () () ()1
log

11
log

1
22

−
+

−
≤

−
+

− Np
k

NpN
k

Np
N

NpN
N

This is not possible as k is always less than N. So,

()()112 −− NpNpN < 0

(√N-1)(p√N-1) < 0

Thus, 1 < √N < ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
1

But the k value is considered only half the N value at maximum. So the above equation

becomes,

1 < √N < ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p2

1

The above condition gives the range of N. If the above condition is not satisfied then Bit

Sequence algorithm is applied.

The time vs. updates for different N values are as shown in Fig 6.15 to Fig 6.19.

144

CHAPTER 6: CACHING IN MOBILE NETWORKS

N=400; cache size=1%

Fig 6.15 No. of updates vs time for N=400 and cache size = 1% of the total objects

Fig 6.16 No. of updates vs time for N=800 and cache size = 1% of the total objects

Fig 6.17 No. of updates vs time for N=4000 and cache size = 1% of the total objects

0
100
200
300
400
500
600
700
800
900

Ti
m

e
--

BS
BB

0 250 50 100 150 200
No. of updates(k) ---

N= 800; cache size=1%

3000

2500

2000

Ti
m

e
--

BS 1500 BB
1000

500

0
0 100 200 300 400 500

No. of updates(k) ----

N=4000; cache size=1%

0
5000

10000
15000
20000
25000
30000
35000
40000

Ti
m

e
--

BS
BB

0 500 1000 1500 2000 2500
No. of updates(k) --

145

CHAPTER 6: CACHING IN MOBILE NETWORKS

N= 200; cache sizes= 3%

Fig 6.18 No. of updates vs time for N=200 and cache size = 3% of the total objects

Fig 6.19 No. of updates vs time for N=1000 and cache size = 3% of the total objects

Fig 6.20 No. of updates vs time for N=100 and cache size = 10% of the total objects

0
100
200
300
400
500
600
700
800
900

Ti
m

e
--

bs
bb

0 20 40 60 80 100 120
No. of updates(k) ----

N=1000; cache size=3 %

12000
10000
8000

Ti
m

e
--

0
2000
4000
6000 bs

bb

0 100 200 300 400 500 600
No. of updates(k) ----

N=100; cache size= 10%

0
100
200
300
400
500
600
700
800
900

Ti
m

e
--

BS
BB

0 10 20 30 40 50 60
No. of updates(k) ---

146

CHAPTER 6: CACHING IN MOBILE NETWORKS

6.4 Summary

In this chapter, we present a QoS strategy for Wireless Internet Access based on IPS-CoD

protocol. The objects requested by clients are prefetched into the cache and made

available beforehand, so that the latency for clients on the move can be significantly

reduced. This strategy can be combined with hand-off management to give better results.

We also showed that this strategy does not have significant impact on the cache hit for

other clients who are not using CoD service. Also, later we discussed the cache

invalidation strategy in a mobile environment and a dynamic cache invalidation strategy

based on Bit Sequence and Bit Sequence with bit count invalidation schemes. We derived

a condition for adopting one of these strategies depending on object invalidation

parameter.

147

CHAPTER 7: CONCLUSIONS

CHAPTER 7

CONCLUSIONS

The thesis deals with different caching techniques for enhancing the user experience in

fixed and wireless web access. In this chapter, we summarize the main contribution made

and point out some of the possible extension of the work.

The thesis, focused on the design and implementation of dual-stage victim cache policy

(Chapter 3). Based on the results obtained, we can conclude that Dual-Stage with Victim

Cache policy is a practical and viable caching algorithm. It has a good hit ratio

performance and is also robust w.r.t varying workload characteristics. The study of how

different caching algorithms would perform with smaller size caches which can be used

for schemes like Cache-on-Demand proxies was carried out. Further a History-based

randomized cache replacement policy has been analyzed. It is observed that randomized

replacement policy with LRU or SLRU performs better than only LRU or SLRU. Size

based replacement is known to be more efficient than a Least Recently Used policy. This

is confirmed by our results, which shows that RSLRU has a higher hit ratio than RLRU.

On using random replacement with history based policy we observe that HRLRU

performs better than RLRU, but this does not hold for the size based replacement. In the

case of HRSLRU and HRLRU it is observed that for smaller cache sizes the former

performs better. HRSLRU is quite stable with increasing cache sizes. The Cache on

Demand (CoD) protocol enhances traditional web caches with the capability of reserving

resources to store external content for a specified period of time. The major benefit of this

feature is that a third party, such as a content provider or a business partner can have

guaranteed content presence in the network, and also strong control on the content

delivered to web users. Furthermore, a third party can enforce strong content consistency

since it can keep track of distributed content at different CoD cache locations.

The cache replacement in streaming multimedia is a prominent research problem and

Chapter 4 of the thesis deals with this. The results obtained for OC algorithm and CC

algorithm were analyzed. It was observed that in case of the total cache size requirement,

 148

CHAPTER 7: CONCLUSIONS

for all the bandwidths used, OC algorithm occupies less cache space than CC algorithm.

In case of the total bandwidth utilized OC algorithm outperforms the CC algorithm. It

utilizes the external bandwidth more efficiently than CC algorithm for all the cases of

bandwidth. By these results it is evident that though OC algorithm is slightly difficult to

implement, it definitely is a better performer. A replacement policy, based on frequency-

index was proposed for replacing videos that are cached using the above algorithms. A

popularity table is maintained in the proxy, which has the popularity index for all the

video files stored in the proxy. The videos are replaced based on their popularity; the

least popular video is removed from the proxy first. It has been observed that the hit-ratio

increases with increase in bandwidth. This is due to the reason that, as the available

bandwidth increases, the cut-off size increases and hence the number of bytes cached per

video decreases. Consequentially, more number of videos can be cached thereby

improving the hit-ratio. It was also observed that the OC algorithm gives a better hit ratio

compared to the CC algorithm. As the bandwidth increases the hit ratios of both the

algorithms are nearly the same, since both the algorithms behave the same way at high

bandwidths. Further, the hit-ratio increases with increase in cache size. Also for a

constant bandwidth, more the available cache size, more the number of videos that can be

cached and hence higher the hit-ratio. In this case as well, the OC algorithm gives a better

performance compared to the CC algorithm. FIR algorithm yields better hit-ratio as

compared to traditional algorithms like LRU and LFU. This is primarily due to the fact

that replacement here happens frame-by-frame as opposed to complete Boolean

replacement in the other two algorithms.

In Chapter 5 we proposed soft computing techniques for cache replacement strategies

both for static web objects and streaming multimedia objects. Size based policies

normally have a higher hit rate eg.. SLRU outperforms even FUZZY algorithm, but

suffer from a lower byte hit rate. The Fuzzy Algorithm has a higher hit rate for lesser

cache sizes when compared to LRU and LFU. Considering Byte Hit Rate, for smaller

cache sizes the traditional algorithms are better than Fuzzy approach proposed whereas

for large cache sizes Fuzzy approach performed better than LRU and LFU but not better

than SLRU. This made us to consider the other soft computing method, the Genetic

 149

CHAPTER 7: CONCLUSIONS

Algorithm. On analyzing the Genetic Algorithm based Cache Replacement Policy

(GAR), it was observed that GAR has a higher hit-ratio as compared to traditional

algorithms. SLRU has a superior hit-ratio than GAR for smaller cache sizes. As cache-

size was increased, GAR scores over SLRU. The hit-ratio of GAR has been found to be

between 0.6 and 0.8.

Genetic algorithms was then extended to cache streaming multimedia objects in place of

frequency indexed replacement policy. We adopted Genetic Algorithm by assigning a

fitness value to every frame and the replacement was done of the less fit frames and not

whole videos. In the comparison, Genetic algorithm based replacement algorithm yielded

better hit-ratios than LFU and LRU under similar memory availability, for a synthetic

workload. This is primarily due to the fact that replacement here happen frame-by-frame

as opposed to complete Boolean replacement in the other two algorithms. The number of

replacements as compared to LRU and LFU has been minimal which shows that the

network bandwidth is saved due to minimal replacements. It can be observed that the

algorithm is suited especially for high-end servers, which deal with a large amount of

memory for caching multimedia objects.

In Chapter 6, the issues of caching in a mobile environment were addressed. We

proposed integrating intelligent proxy servers with cache-on-demand protocol which

helps the cache to be reserved for the mobile client being registered in a new base station

and prefetching the web objects requested by the client. So, the frequently accessed web

content is prefetched based on the user’s profile and put into the proxy cache. This was

done to show the basic advantage of integrating the mobile network with the Cache-on-

Demand protocol. Analyzing the results obtained, we can see that the CoD protocol will

help the user with a better Quality of Service and can be offered as a service by the

Content Delivery vendors, without affecting the clients who are not using the prefetching

service. This gives a higher cache hit ratio, reduces the bandwidth usage and latency in

servicing client requests. In addition, it also minimizes the congestion in the mobile

network and the load placed on origin servers.

 150

CHAPTER 7: CONCLUSIONS

The thesis also discussed the cache invalidation schemes, which is to keep cache

coherency in a wireless environment. The scheme ‘bit-sequence’ and ‘bit-sequences with

bit count’ were discussed. After deriving the time complexity of these two algorithms, we

proposed a dynamic scheme where the derived condition can be used to chose between

the bit-sequence and bit-sequence with bit-count scheme. It is shown that this scheme

works well with various workloads.

In Appendix A, implementation of replacement schemes for uniformed objects is

discussed. LRU is the most popular and efficient scheme used for replacement scheme

for uniformed objects, but it has been the most difficult scheme to be implemented

especially when the associativity of the cache is higher. Higher associativity with the

LRU replacement policy is a good configuration for reducing miss rate in the cache

design and enriching the performance in many applications, high-end servers,

workstation and modern processors. Implementing LRU policy in hardware for high

associativity is difficult. Implementation objectives are identified and various

implementations namely Square Matrix, Skewed Matrix, Counter, Phase, Link List and

Systolic Array are discussed. The results of the different implementations for increasing

associativity are analyzed. It is inferred that for higher associativity, conservation of

space to store data of the schemes is important but the associated logic cannot be totally

neglected. At higher associativity, Linked List, Systolic Array and Skewed Matrix are the

designs most suitable for implementations. Delay also follows the same characteristics

and with increase in associativity, the Link List, Systolic and Skewed Matrix would

involve less delay. Although the implementation size for one set grows rapidly with

increase in associativity, the growth is much less when considered for the entire cache.

The results also show that the LRU implementations, which involve smaller storage

space with little increase in component size or number of components, show better

behavior with increasing associativity. Finally of all the implementations, Systolic and

Link List show better results while Skewed Matrix with less information also exhibit

similar performance.

Further Fuzzy Logic and Neural Network approach for caching & replacements of

multimedia objects can be carried out as future work which will lead to comparative

 151

CHAPTER 7: CONCLUSIONS

evaluation of these soft-computing techniques. Efficient cooperative caching for

streaming multimedia objects among peer-proxies needs to be investigated. Also the

other area which has to be addressed is cost-optimization methods for mobile users where

the contents cached can dynamically move with a mobile client.

 152

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

APPENDIX

LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

A.1 INTRODUCTION

Use of cache memories in computer architecture is well known and existed even before

the Internet was envisaged. Proxy caching for enhancing web service performance has

several similarities to caching in memory architectures to improve computer performance

[Smith 1982]. Because central processing units operate at high speeds while memory

systems operate at a slower rate, CPU designers provide one or more levels of cache – a

small amount of memory that operates at or close to the speed of the CPU. When the

CPU finds the information it needs in the cache, a hit, it doesn’t have to slow down.

When it fails to find the requested object in the cache, a miss, it must fetch the object

directly and incur the associated performance cost.

Typically, when a cache miss occurs, the CPU places the fetched object in the cache,

assuming temporal locality — that a recently requested object is more likely than others

to be requested in the future. Memory systems also typically retrieve multiple

consecutive memory addresses and place them in the cache in a single operation,

assuming spatial locality — that nearby objects are more likely to be requested during a

certain time span. At some point the cache will become full and the system will use a

replacement algorithm to make room for new objects, for example, firstin/first-out

(FIFO), least recently used (LRU), or least frequently used (LFU). The goal is to

maximize the likelihood of a cache hit for typical memory architectures.

Modern processors, commercial systems, high performance servers and workstations

have high-associative caches for performance improvement. The complexity of

implementation of LRU policy for highly associative cache tends to increase as the

associativity increases [Hennessy 2003, Patterson 2005, Hwang 1993, Deville 1992].

The increase in complexity additionally increases the delay incurred in detecting the line

 153

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

for replacement degrading the cache performance. This work is an effort to implement

and analyze efficient LRU implementations for high-associative caches. Various

implementations of LRU were designed, simulated and synthesized for comparison.

These designs are analyzed with respect to their implementation complexity.

A.2 HIGH-ASSOCIATIVITY CACHE WITH LRU POLICY

The classical approach to improve the cache behavior is reducing miss rate. Increasing

associativity in the cache reduces conflict misses thereby reducing miss rates and

improving performance. Studies have shown that conflict miss reduces from 28% to 4%

when the associativity changes from 1-way to 8-way [Patterson 2005]. High-associative

cache is more efficient when miss penalty is large and memory inter connect contention

delay is significant and sensitive to the cache miss rate [ZhangC 1997]. Due to rapid

changes in technology, the miss penalty is becoming smaller and thus, the replacement

policies have to be faster. Better performance of high-associative cache depends on

efficient replacement algorithm [Deville 1992]. The replacement algorithm LRU, that

replaces the least used line in cache, has miss ratio and performance, comparable to

optimal (OPT or MIN) algorithm.

LRU is currently the most common replacement strategy used in cache, which gives

higher performance [Smith 1982]. Result from [Smith 1985] have shown that for many

workloads FIFO and Random replacement policies yield similar performance but the

miss ratio of LRU is 12% lower on the average thus yielding better performance than

other policies. Studies [Sugumar 1993] have shown that in the case of larger

associativity, LRU can be noticeably improved and made more optimal when compared

to the off-line MIN [Belady 1966] or the equivalent OPT algorithms [Mattson 1996]. A

high-associative cache with LRU is a better solution for reducing miss rate and

improving performance. This combination has an added advantage of reducing thrashing

provided that associativity value, N is greater than M, where M is the number of different

blocks that map to the same set. Results from [Ailamaki 2000] reveal that cache design

affects the behavior of database application and high-associativity gives better

performance for database workload. Increasing associativity in Network processor cache

 154

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

removes the problem of cache conflicts [Gopalan 2002] enhancing performance. High-

associativity is a reasonable way to increase the physically addressed cache size for it

does not increase the translation hardware. High-associativity also improves execution

time of numerical intensive applications.

Commercial systems use processors with high-associative cache to obtain better

performance. IBM POWER 3 architecture has 64KB data and 32KB instruction cache

implemented as content addressable memories with each array having 128-way set

associative and 8-way interleaved cache [Papermaster 1998]. Many Industrial Embedded

processors like ARM3 has 64-way associativity, Strong ARM, Intel SA-110 and Intel X

Scale has 32-way associativity [ZhangM 2000, SA110 2000]. Altera's Excalibur EPXA10

has a 200 MHz ARM 922T processor with 64-way set associative 8Kbyte instruction and

8KByte data caches [Excalibur 2002]. Thus, high-associativity has been employed

commercially to enhance the performance of systems and applications.

A.3 IMPLEMENTATION COMPLEXITY

A 2-way set associative cache with LRU policy can be implemented with a one-bit

counter called the access bit. When a line is accessed from the set, the access bit of the

line is set representing most recently used line and the access bit of the other line is reset

to zero representing least recently used line. If associativity is increased to four, LRU

could be implemented as a counter where the number of access bits will be two. Beyond

this implementing a LRU policy becomes difficult. The number of lines in a cache set

increases, increasing the storage space to maintain the LRU history, thereby increasing

cache size and cost. Complexity of the logic to implement the LRU also increases

[Deville 1992]. Studies reveal that the performance impact of the LRU policy reduces as

the associativity increases [Wong 2000]. [Mattson 1996] showed the LRU performs close

to OPT replacement algorithm when associativity is less but has a large number of

victims to choose from when the associativity is large decreasing performance. Although

LRU is the best replacement policy, which can help to reduce miss ratio, it performs

poorly due to inefficient implementation [Deville 1992, ZhangC 1997]. Efficient

implementation of LRU in a high-associative cache will increase the performance of the

 155

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

cache. It is shown in [Sugumar 1993, Deville 1992] that for FIFO and random

replacement policies the complexity of implementation is relatively low whatever is the

associativity. Sugumar and others gave a simpler implementation for FIFO and Random

replacement policy. Eventhough LRU is the best policy, designers of embedded

microprocessors for low power design chose other policies instead of LRU and made a

compromise on performance in order to have simpler implementation [Clark 2001].

An efficient LRU implementation to improve the performance is necessary but

implementation has many design constraints. LRU hardware should maintain a data

structure where it logs every access to the cache. As the associativity increases the size of

the data structure and associated logic also increases. But the storage size cannot be large

due to space and time constraints. When the storage space is reduced, the complexity of

the logic needed to log the access usually increases. Further the time taken to log every

access and the time to find the line to replace when a miss occurs should be less in order

to reduce the miss penalty. LRU hardware, with less storage space to log the access, with

less complexity in circuit, less time to log the access, less time to detect the replacement

line on miss is required for improved performance of cache.

A.4 PROPOSED DESIGN APPROACHES FOR LRU IMPLEMENTATION

The information of each access should be logged in a data structure that determines the

performance of the LRU hardware. Each set in the associative cache has its own LRU

hardware for implementing the LRU policy. On referencing this set the corresponding

hardware is also invoked requiring no separate detection. The collection of this hardware

for all the sets in the cache is the Global Set. And the hardware for the set, which is being

referenced, is the Working Set. The cache line index in case of a hit is the index of the

line whose tag matches with the tag bits of the referenced address and in case of a miss is

the index of the line identified for replacement by LRU hardware. In this section, we

compare six different implementations of LRU policy for attaining high performance for

an N-way set associative cache with Square Matrix, Skewed Matrix, Counter, Link list,

Phase and Systolic Array methods

 156

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

A.4.1 SQUARE MATRIX IMPLEMENTATION

This scheme implements a simple data structure with a simple storage element, D flip-

flop. The data structure used is a square matrix of this storage element and is of order N

for an N-way set associative cache. The global set contains M replications of this data

structure for a cache with M sets. Here each of the N rows of the data structure maps to

one of the N cache lines of the set and logs the access information of that line. Initially all

the bits in matrix are set to zero as shown in Fig A.1. The Square-Matrix implementation

follows a simple logging scheme wherein, it sets the row of accessed line to one and after

this sets the column of the accessed line to zero.

Fig A.1 4x4 matrix initialized to zero Fig A.2 4x4 matrix with cache line 3
 as the least recently used line.

The number of ones in each row is an indication of the order of the accessed cache lines

for the set. A line with more number of 1’s is more recently accessed than the one that

has less number of 1’s. The row in the matrix, which has the maximum number of 1’s, is

the line most recently used and the row, with all bits set to zero is the line least recently

used as shown in Fig A.2. On a cache miss, LRU is detected by checking the row for

which all the storage elements are zero. There will always be a line that has the entire row

set to zero. The Matrix is made up of N x N storage elements. The hardware also has one

n x N decoder, a 2 to 1 n-bit multiplexer and N x n priority encoder, where n is .

The encoder gives priority to lines with lower index value. Fig A.3 shows the LRU

implementation of N-way set-associative cache.

N2log

 157

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Fig A.3 Square Matrix Implementation

The cache line index is presented to the n x N decoder from the multiplexer, which is

switched by the hit signal to accept it. The cache line index selects the correct

corresponding row and column. The storage elements in the row are set and in the

column are reset. The ANDed output of the values of the elements of each row is fed into

a priority encoder, which detects the rows whose all elements are Zero and selects one

amongst them as the LRU. In case of a miss this index is presented to the multiplexer,

which is triggered by the miss signal to accept it and the corresponding row and the

column are set and reset respectively. RESET pulse high initializes the matrix by setting

all storage elements to zero. The hit or miss decides how the matrix information is to be

altered. As very simple operations of set/reset are done on the basic storage elements, the

delay involved and the time required to log the access is less when there is a hit. The

replacement line is obtained from the priority encoder after the values in all the storage

elements are ANDed causing considerable delay in the detection of the replacement. The

data structure implemented is simple and a minimum of associated logic is required. But

the design does not scale well because a large amount of space is required to hold the

information that increases quadratically with N, the associativity.

 158

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

A.4.2 SKEWED-MATRIX IMPLEMENTATION

Skewed-Matrix method is a variant of the previous implementation where a compromise

is made in the amount of LRU history being stored. For large sets only a group of cache

lines in the set may be active simultaneously. Not keeping the history of other lines

would only affect performance slightly. The history is kept for a smaller number of lines

B, where B is less than N and needs careful choosing with respect to N. If a line is not

accessed in the last B accesses of the set it is considered to be the least recently used line.

So, when B is less than N we have more than one line for replacement simultaneously.

This differs from the previous implementation in choosing the column to set to zero and

in the choice of the replacement row. Rows are set as in Square matrix but since the

number of columns is less so more than one line maps to one column. N lines clear B

columns and so after B accesses more than one row would have all zero values as N mod

B lines would map to the same column. The Matrix itself has B columns and N rows as

shown Fig A.4. A separate bxB decoder with lower order b lines from the Multiplexer as

input, where b is , is used for the columns. The replacement mechanism chooses

the row that is zero only if the one above it is not, so as to use all the rows, which would

not be possible with the previous implementation.

B2log

Fig A.4 Skewed Matrix Implementation

 159

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Skewed-Matrix needs less storage space than the Square Matrix though there is some

increase in the complexity of the associated circuitry and the path to detect the

replacement. It performs as well as the Square-Matrix implementation given the correct

value of B but to predict the correct value of B is difficult.

A.4.3 COUNTER IMPLEMENTATION

Using a register for each row to maintain the LRU history can reduce the large space

occupied by the Square and Skewed Matrix implementations. As the value of N becomes

higher there is exponential drop in the storage space when compared with previous

implementations. There is one to one mapping between the register, used to record LRU

information and the cache line in a set. The values in the register indicate the order in

which the cache lines within a set have been accessed. A register with a larger value

means that corresponding cache line is more recently accessed than the line whose

register has a lesser value. The smallest value, Zero in the register indicates the

corresponding cache line is least recently accessed line and the highest value, N-1

indicates the corresponding cache line is most recently accessed line. Initially all the

registers are set to zero. The value of the active register whose cache line is being

accessed, is compared with the value of other registers .The registers whose value is

greater than active register are decremented and the active register is set to the highest

value N-1. The register can be reset to zero, decremented and loaded externally. Each

cache line in every set is mapped to a register.

The hardware implementation for this data structure for set is as shown in Fig A.5 and

needs one 1xN -bit demultiplexer, one 2x1 -bit multiplexer, one 1xN 1-bit

demultiplexer, one Nx1 -bit multiplexers, N -bit comparators, N -

bit registers and one Nx1 priority encoder. The comparator hardware determines the

registers whose value is greater than the register of the indexed cache line and equal to it.

A zero register means that the line can be replaced and there can be a number of registers

that can be used as replacements, so a priority encoder decides which of the line can be

replaced.

N2log N2log

N2log N2log N2log

 160

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Fig A.5 Counter Implementation

The register is decremented if a comparator for that register signals that the register is

greater than the indexed line provided the load signal for that register is not high. The

indexed register is set to N-1 by using the input from the first demultiplexer and the

register to be used for comparison is indicated by the second demultiplexer and is fed to

all comparators using the multiplexer. The 2x1 multiplexer is used to select the indexed

line, which is the replacement line in case of a miss or the accessed cache line index in

case of a hit. This implementation uses the minimum, N number of Storage elements,

among the various implementations but the associated logic to detect LRU and logging

information is more as compared to other implementations. The implementation does not

scale well as the complexity of the associated circuitry increases with N.

A.4.4 PHASE IMPLEMENTATION

Phase implementation uses the Matrix to implement the Phases concept. Phase is the

period where a series of references is made in the set. This implementation is an

adaptation from [Deville 1992] by Yannick Deville and Jean Gobert, which shows that

 161

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

using phases improves the miss ratio. The rows are indexed from 0 to E-1 and the

columns from 0 to B-1. E is associativity of the cache and B is a free parameter chosen

depending on the design but it should be less than and multiple of E. The Matrix is set to

zero initially. The column with the highest index is the active phase, so there is no need

of the B-pointer, which is a pointer that points to the active phase to track of this phase. A

counter, E-counter, is used to keep track of the number of lines that have entered the

phase and when a maximum of E/B lines are in the phase, new phase starts. The change

of phase is indicated by a shift in the Matrix. All the rows of the Matrix are shifted left by

one element. At the start of the phase all the highest Index elements are set to zero. Every

time a line is accessed its row is set to 1. E-counter is incremented only when a line,

which is accessed, has a zero in the highest indexed column of the corresponding row, i.e.

in the active phase. When the E-counter reaches E/B value, the phase ends. The LRU will

be the row that has the least number of ones or the maximum number of zero’s. There

can be more than one such row.

Fig A.6 Phase Implementation

 162

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Phase implementation uses a shift register as a basic storage element. A shift value of 1

shift the values in the registers to left, 2 shifts the values in the registers to right and 0

does not shift at all. When there is a left shift the MSB is set to zero. The register is

cleared at Reset signal and stores the input value when load signal is high. Along with the

N storage elements, the hardware consists, as shown in Fig A.6, of a 1 x N Multiplexer,

1 x N bit Demultiplexer, a priority encoder, N comparators and a E/B-bit counter, as the

E-counter. Each storage element corresponds to the row of the Matrix. When there is an

access and the value E-counter is not E/B-1 then the E-counter is incremented provided

the MSB, active bit of the accessed row is not one. An MSB value, 1 of the row accessed

indicates that it is previously accessed and the counter should not be incremented. If the

MSB of the accessed row is 0 and the E-counter has reached its maximum value then the

rows are left shifted and the counter is set to 1. On every access, all the bits of the

corresponding register of the accessed line are set to 1. Multiplexer selects the accessed

row, which is the index in case of a hit or the LRU row in case of a miss. A priority

encoder indicates the LRU row. Phase implementation is similar to Skewed or Square

Matrix implementations but requires more complex logic. Design parameter B has to be

chosen carefully. A small value means less storage space but a low accuracy of

prediction. A large value means it requires large storage space. Appropriate value of B

will help reduce the complexity of the circuit. Accessing a line in Phase implementation

takes less time.

A.4.5 LINK-LIST IMPLEMENTATION

In the Link-list implementation, by using a smaller additional space we design logic to

determine the LRU line with minimum delay and at the same time update the data

structure. The cache lines indexes are mapped to two lists: Previous and Next. The Next

register of the cache line maintains the index of the line that was accessed after that cache

line and the Previous register of the cache line maintains the index of the line that was

accessed before that cache line. The most recently used cache lines are moved to the

head of the list and the less recently used lines to the end of the list. LRU register keeps

track of the index at the end of the list and the MRU, the index at the head of the list. An

arbitrary ordered list can be chosen to initialize all the registers as shown in Fig A.7 and

 163

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

the line at the end of the list becomes the LRU. When lines are accessed and as they are

accessed their order of access is determined in the list. The algorithm used for updating

the lists handles the three cases. If the accessed line is LRU then it is made to point to the

next of LRU, and if it is the MRU then nothing needs to be done.

Fig A.7 Entry in the Previous list and Next list for Link List implementation

But for any other line the previous node is made to point to the next node in the Next list

and similarly the Previous list is updated. The accessed line is made the MRU. X is the

hardware that determines the Next or the Previous index value of the line index to which

this register in the list is mapped. The hardware for a set is as shown in Fig A.8. It has

four 1xN log2N-bit demultiplexers, four 1xN 1-bit demultiplexers, two Nx1 log2N-bit

multiplexers, one 2x1 log2N-bit multiplexer, N storage elements for the Next list and

Previous list each, and two storage elements for LRU and MRU. The demultiplexers

select the storage element in the other list and also give the value to be stored in this list.

The multiplexer selects the correct storage element to which the data must go and also

selects the load of that element. Two pairs of multiplexers are used for updating the list

with values from the LRU and MRU storage elements and also from the storage elements

in the list itself, simultaneously. The three cases are handled by the load signal to the two

lists from the comparators, which compare the LRU and the MRU with the accessed line

index. The number of components in the associated logic for this implementation does

not increase as the value of N increases, however the size of the components increases.

But the delay in determining the LRU is not affected much by the increase in the value of

N.

 164

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Fig A.8 Link List Implementation

A.3.6 SYSTOLIC ARRAY IMPLEMENTATION

The list for all previous implementations determines the true order of access of the

respective cache lines immediately after access but the systolic array, which is an

adaptation from [Grossman 2002] does not update the list immediately. This scheme has

a Systolic node as shown in Fig A.9 which has both storage and processing capability.

Fig A.9 Systolic Node

 165

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Systolic Array implementation for one set, shown in Fig A.10 uses N/2 such nodes to

form the list with the last node having the input connected to the output. The LRU is

always correct since it is the first node of the list and updated first. Systolic array which

uses the concept of link list, sorts the line-index from LRU to MRU. Each node

comprises of 3 registers of bit each, one for storing the cache line index L that is

being accessed, one for current index that is stored in the node and one for storing the

index that would be stored in the register at the end of second clock pulse. For sorting,

the cache line index L that is accessed is given to the working set.

N2log

Fig A.10 Systolic Array Implementation

L value passes through each node of the array and is compared with the current indices

till the match is found when the Match bit of the node is set to one. When the M bit is set

the nodes start copying the value of current index from the adjacent node. The L value

passes through all the nodes and finally get settled and deposited in the end node. The

forward signal between two adjacent nodes carries L index and M bit and backward

signal carries the current index of the node to the backside node when match M bit is set.

The last node is wired to itself for L value to get deposit in the Last node, as it is MRU.

The list slowly updates over many cycles but maintains the information correctly. When

there is a cache miss, the line for replacement is the value in the current index of the first

systolic node of the working set and the line index is fed back for updating the access.

This reduces the time required for searching the line for replacement. The hardware

implementation is accommodated for one cache line access per cycle. This is obtained by

the use of two index registers, one bit register for storing current index, one

single bit register to store match M, a bit multiplexer, a bit comparator to

compare the L value and current index and OR gate. And every node is made to share the

L register, which is again bit.

N2log

N2log N2log

N2log

 166

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

A.5 DISCUSSION OF RESULTS

The Simulations carried out established the functional correctness of the various LRU

hardware implementations. Each implementation was simulated with the cache for

associativity of 2, 4, 8, 16 and 32. Cache size of 128KB, with line size of 32 bytes, word

size 32 bits, using write-back and write allocate policies was the design configuration.

The syntheses of different implementations were carried out using the FPGA Advantage

5.2, Leonardo Spectrum Level 3 v2001_1d.45, from Exemplar Logic Inc. The library

used for the synthesis is ASIC SCL05u library with ±5 Volt and 300C design parameters.

The graph in Fig. A.11 shows the variation of the number of gates per cache set with the

associativity. Fig. A.12 shows the Storage size that the different implementations occupy

in the entire cache. The cache considered is a 128KB cache with line size of 32 words.

Each word is 4 bytes The design parameter, B for Skewed and Phase implementations

used is equal to the associativity when the associativity is less than 16 and equal to 16 for

higher associativities. Square Matrix, Skewed Matrix, Counter and Systolic Array show

better results and consume less space when the associativity is smaller but at higher

associativity Link List, Systolic Array and Skewed Matrices perform better. The graph in

Fig. A.13(a) and Fig. A.13(b) shows the growth of the area with increase in Associativity.

2-way Set Associtivity is taken as the reference and the ratio of the number of gates of all

associativites with that of 2-way Set Associative is plotted. Fig. A.13 (a) shows the

results per cache set and Fig. A.13 (b) shows the result for entire cache. It can be

observed that the growth rates are not uniform for various implementations although the

growth rates increase for all implementations. The number of gates for one cache line

with change of associativity is plotted in the graph of Fig. A.14. It follows the same trend

as the Fig. A.11. The response curve in the Fig. A.11 and Fig. A.14 for Phase and

Skewed implementations is because after 16-way associativity the design parameter B

differs from associativity N. Based on the trends of the size of hardware for

associativities ranging from 2 to 32, Fig. A.15 gives the projections for a 128KB cache.

When the associativity is small all the implementations have more or less the same

storage to log information but the small difference in area occupied arises due to

 167

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

difference in the complexity of logic as is observed in Fig A.11 and A.12. The associated

logic is the dominating factor determining the area occupied for small associativity. From

the graphs we can infer that the Square Matrix method occupies the largest area followed

by Skewed Matrix, Counter, Systolic, Phase and Link list implementations. The

comparison of Skewed Matrix and Square Matrix clearly indicates that at higher

associativity storage space must be the criterion that decides the area required. From Fig

A.15 it can be observed that for 128-way set associativity Square Matrix uses 3 times as

many gates as Systolic Array, 2.2 times as many gates as Link List, 1.6 times as many

gates as Counter implementation. Hence, for high-associative cache the implementations

that score well are Link List, Skewed Matrix and Systolic methods, which conserve the

storage space. Systolic array has the least area requirement as it has small storage space

and also does not employ too much logic to update the list quickly. The counter

implementation that has the least storage space for the data requires a large area

suggesting the fact that reducing the space alone for high-associativity cache would not

provide good results. Skewed and Phase implementations have same characteristics as

they use the same storage area for information although the associated logic is different.

Link List and Phase implementations have the least growth in area. For link list the size

of the components involved increases rather than the number of components and for the

Phase implementation the number of components increases but the size remains the same.

The LRU implementations that involve smaller storage space with little increase in

component size or number of components, show better behavior with increasing

associativity. The size of the hardware gives some indications to the delay involved. As

the associativity increases the size of different implementations increase indicating that

associated delay to retrieve the LRU cache line also increases. The amount of increase in

delay for Link List, Systolic and Phase implementations is smaller as the increase in

number of gates with increase in associativity, is much slower as compared to other

implementations.

It is inferred that for high-associative cache conservation of space to store data of the

schemes is important but the associated logic cannot be totally neglected. In high-

associativity cache Link List, Systolic Array and Skewed Matrix are the designs most

 168

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

suitable for implementations, and also with increase in associativity the Link List,

Systolic and Skewed Matrix methods would involve less delay. Although the

implementation size for one set grows rapidly for increase in associativity, the similar

increase when the entire cache is considered is much less. The results also show that the

LRU implementations, which involve smaller storage space with little increase in

component size or number of components, show better behavior with increasing

associativity. Finally of all the implementations, Systolic and Link List show the best

performance.

No of Gates per cache set Vs Associativity

0

5000

10000

15000

20000

25000

0 4 8 12 16 20 24 28 32 36

Associativity

N
o

of
 G

at
es

SQUARE MATRIX
SKEWED MATRIX
COUNTER
LINK LIST
PHASE
SYSTOLIC ARRAY

Fig A.11 No. of Gates per cache set vs Associativity

 169

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

Fig A.12 No. of Gates vs Associativity for 128KB cache

Ratio of No of Gates per Cache set w.r.t
2 - Way Set Associativity Vs Associativity

0

50

100

150

200

250

0 4 8 12 16 20 24 28 32 36

Associativity

R
at

io

SQUARE MATRIX
SKEWED MATRIX
COUNTER
LINKLIST
PHASE
SYSTOLIC ARRAY

Fig A.13 (a) Ratio of No. of Gates per Cache Set w.r.t 2-way Set Associativity vs

Associativity

Ratio of No of Gates wrt 2 Way Set Associativity vs
Associativity

0
2
4
6

8
10
12
14

16

0 4 8 12 16 20 24 28 32 36

Associativity

R
at

io

SQUARE MATRIX
SKEWED MATRIX
COUNTER
LINK LIST
PHASE
SYSTOLIC ARRAY

Fig A.13 (b) Ratio of No. of Gates for entire cache w.r.t 2-way Set Associativity vs

Associativity

 170

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

No. of Gates per Cache Line vs Associativity

0

100

200

300

400

500

600

700

800

0 4 8 12 16 20 24 28 32 36

Associativity

N
o.

 o
f G

at
es

SQUARE MATRIX
SKEWED MATRIX
COUNTER
LINKLIST
PHASE
SYSTOLIC ARRAY

Fig A.14 No. of Gates per Cache Line vs Associativity

No. of Gates vs Associativity for a 128 KB cache
with projections

0

500000

1000000

1500000

2000000

2500000

3000000

0 16 32 48 64 80 96 112 128 144

Associativity

N
o

of
 G

at
es

SQUARE MATRIX
SKEWED MATRIX
COUNTER
LINK LIST
PHASE
SYSTOLIC ARRAY

Fig A.15 No. of Gates vs Associativity for a 128 KB cache

 171

APPENDIX: LRU IMPLEMENTATIONS FOR UNIFORMED OBJECTS

A.6 SUMMARY
This discussed the implementation of the least recent used replacement policy for caches

with high-associtivity. High-associativity cache with LRU as replacement policy is a

good configuration for reducing miss rate in the cache design and enriching the

performance in many applications, high-end servers, workstation and modern processors.

Implementing LRU policy in hardware for high associativity is difficult. Implementation

objectives are identified and various designs, namely Square Matrix, Skewed Matrix,

Counter, Phase, Link List and Systolic Array are implemented and the results are

analyzed. It is inferred that for high-associativity, conservation of space to store data of

the scheme is important but the associated logic cannot be totally neglected. In high-

associativity cache, Link List, Systolic Array and Skewed Matrix are the designs most

suitable for implementation. Also with increase in associativity the Link List, Systolic

and Skewed Matrix would involve less delay. Although the implementation complexity

for a set grows rapidly with increase in associativity, the growth is much less when

considered for the entire cache. The results also show that the LRU implementations,

which involve smaller storage space with little increase in component size or number of

components, show better behavior with increasing associativity. Finally of all the

implementations, Systolic and Link List shows better results.

 172

REFERENCES

[Abrams 1995] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams

and Edward A. Fox, “Caching Proxies: Limitations and Potentials”, Proceedings of the

4th International World Wide Web Conference, Boston, MA, 1995, pp 119-133.

[Aggarwal 1999] Charu Aggarwal, Jeol L Wolf and Philip S Yu, “Caching on the World

Wide Web”, IEEE Transaction on Knowledge and Data Engineering, vol. 11, no.1, 1999,

pp 94-107.

[Ahuja 2002] Sadhana Ahuja, Tao Wu and Sudhir Dixit, “Cache On Demand”, IEEE

International Conference on Multimedia & Expo, Switzerland, Aug 2002.

[Ailamaki 2000] Anastassia Ailamaki, “Architecture-Conscious Database Systems”

Ph.D. dissertation, Univ. of Wisconsin, Madison, Department of Computer Sciences,

Wisconsin, 2000.

[Al-Zoubi 2004] Hussein Al-Zoubi, Aleksandar Milenkovic and Milena Milenkovic,

“Performance Evaluation of Cache Replacement Policies for the SPEC CPU2000

Benchmark Suite” Proceedings of 42nd annual ACM South East Regional Conference,

Huntsville, Alabama, USA, April 2004, pp 267-272.

[Arlitt 1996] M. F. Arlitt and C. L. Williamson, “Web Server Workload Characterization:

The search for invariants,” Proceedings of SIGMETRICS 96, Philadelphia, PA, 1996, pp.

126-137.

[Avinoam 2000] Avinoam N Eden, Brain W Joh and Trevor Mudge, “Web Latency

Redution via Client-Side Prefetching”, Proceedings of IEEE International Symposium on

Performance Analysis of Systems & Software, Austin, Texas, 2000, pp 193-200.

 173

[Balamash 2004] Abudallah Balamash and Marwan Krunz, “An Overview of Web

Caching Replacement Algorithms”, IEEE Communications: Surveys and Tutorials, vol.

6, No. 2. 2004, pp 44-56.

[Bahn 2002] Hyokyung Bahn, Kern Koh, Sam H. Noh, Sang Lyul, “Efficient

Replacement of Nonuniform Objects in Web Caches”, IEEE Computer, vol. 35, No. 6,

June 2002, pp 65-73.

[Baquero 1995] C. Baquero, V. Fonte, F. Moura, and R. Oliveira, “MobiScape: WWW

Browsing under Disconnected and Semi-Connected Operation”, Proceedings of First

Portuguese WWW National Conference, Braga, Portugal, July 1995.

[Barbara 1994] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching in

Mobile Distributed Environments,” Proceedings of 1994 ACM-SIGMOD Int'l Conf.

Management of Data, June 1994, pp. 1-12.

[Barish 2000] Greg Barish and Katia Obraczka, “World Wide Web Caching: Trends and

Techniques”, IEEE Communications Magazine, vol 38, no 5, 2000, pp 178-184.

[Belady 1966] Belady, L. A., “A Study of Replacement Algorithms for a Virtual-Storage

Computer,” IBM Systems Journal, vol. 5, no. 2, 1966, pp. 78-101.

[Bhatti 2000] Nina Bhatti, Anna Bouch, and Allan Kuchinsky. “Integrating user

perceived quality into Web server design” Proceedings of the 9 International World

Wide Web conference on Computer networks: The International Journal of Computer

and Telecommunications Networking

th

, Amsterdam, The Netherlands, 2000, pp 1-16.

[Bhide 2002] Manish Bhide, Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi

Ramamritham and Prashant J Shenoy, “Adaptive Push-Pull: Disseminating Dynamic

Web Data”, IEEE Transactions On Computers, vol 51, no. 6, 2002, pp 652-668.

 174

[Brady 1986] James T. Brady. “A theory of productivity in the creative process”, IEEE

Computer Graphics and Applications, 6(5), 1986, pp 25-34.

[Breslau 1999] Lee Breslau, Pei Cao, Li Fan, Graham Phillips and Scott Shenker, “Web

Caching and Zipf-Like Distributions: Evidence and Implications,” Proc. IEEE

INFOCOM Conf., 1999, pp. 126–134.

[Brewington 2000] Brian Brewington and George Cybenko, “How Dynamic is the

Web?” Proceedings of the 9 International World Wide Web conference on Computer

networks: The International Journal of Computer and Telecommunications Networking,

th

Amsterdam, The Netherlands 2000, pp: 257 - 276

[Calzarossa 2003] M. Calzarossa and G. Valli. “A Fuzzy Algorithm for Web Caching”,

Proceedings of SPECTS 03, SCS Press, 2003.

[Cao 1997] P. Cao and S Irani, “Cost-aware WWW proxy caching algorithms”

Proceedings of USENIX Symposium Internet Technologies and Systems, Monterey, CA,

1997, pp 193-206.

[Cao 1998] P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching Dynamic Contents

(Objects) on the Web," Proceedings of the IFIP International Conference on Distributed

Systems Platforms and Open Distributed Processing (Middleware '98), The Lake

District, England, Sept. 1998, pp. 373-388.

[Chang 2001] Ray-I Chang, Shin-Hung Chang, and Yen-Jen Oyang, “OC: An Optimal

Cache Algorithm for Video Staging”, Proceedings of International Conference on

Networking, August 2002

[Chang 2002] Shin-Hung Chang, Ray-I Chang, Jan-Ming Ho and Yen-Jen Oyang, “An

Effective Approach to Video Staging in Streaming Applications”, Proceedings of IEEE

Global Telecommunications Conference, November 2002, Vol 2, pp. 1733-1737.

 175

[Chankhunthod 1996] A. Chankhunthod, P. Danzig, and C. Neerdaels, "A hierarchical

internet object cache," Proceedings of the USENIX 1996 Annual Technical Conference,

San Diego, California, Jan. 1996, pp. 153--163.

[Clark 2001] Lawrence T. Clark, Eric J.Hoffman, Jay Miller, Manish Biyani, Yuyun

Liao, Stephen Strazdus, Michael Morrow, Kimberley E.Velarde and Mark A.Yarc, “An

Embedded 32b microprocessor core for low power and high performance applications,”

IEEE Journal of Solid State Circuits, vol. 36, no. 11, 2001, pp 1599-1608.

[Cohen 1998] E Cohen, B Krishnamurthy, and J Rexford, “Evaluating server-assisted

cache replacement in the Web”, Proceedings of the 6th European Symposium on

Algorithms. Lecture Notes in Computer Science, vol. 1461, Springer-Verlag, Germany,

1998, pp 307–319.

[Creres 1998] Ramn Creres, Fred Douglis, Anja Feldmann, Gideon Glass, Michael

Rabinovich, “Web Proxy Caching: The devil is in the details”, Workshop on Internet

Server Performance, Madison, WI, June 1998.

[Davison 1999] B D Davison, “Adaptive Web Prefetching,” Position Paper in

Proceedings of the 2nd workshop on Adaptive Systems and User Modelling on the World

Wide Web, Toronto, May 1999.

[Davison 2001]B D Davison, “A Web Caching Primer,” IEEE Internet Computing, 5,

July 2001. pp 38-45.

[Davison 2002] B D Davison, “The Design and Evaluation of Web Prefetching and

Caching Techniques”, Ph.D. dissertation. Department of Computer Science, Rutgers

University, New Brunswick, NJ. October 2002.

 176

[Deville 1992] Yannick Deville and J. Gobert, “A class of replacement policies for

medium and high-associativity structures,” ACM SIGARCH Computer Architecture

News, vol. 20, no.1, 1992, pp. 55-64.

[Douglis 1997] F. Douglis, A. Haro, and M. Rabinovitch, “HPP: HTML macro-

preprocessing to support dynamic document caching”, Proceedings of the Symposium on

Internetworking Systems and Technologies, USENIX, December 1997, pp 83-94.

[Eden 2000] Avinoam N Eden, Brain W Joh and Trevor Mudge, “Web Latency Redution

via Client-Side Prefetching”, Proceedings of IEEE International Symposium on

Performance Analysis of Systems & Software, Austin, Texas, 2000, pp 193-200.

[Excalibur 2002] “Excalibur Device Overview”, Data Sheet, May 2002

http://www.altera.com/literature/ds/ds_arm.pdf

[Fan 2000] Li Fan, Pei Cao, Jussara Almeida and Andrei Z. Broder, “Summary cache: A

Scalable Wide-Area Web Cache Sharing Protocol”, IEEE / ACM Transactions on

Networking, vol 8, no. 3, 2000, pp 281-293.

[Forman 1994] G H Forman and J Zahorjan, “The Challenges of Mobile Computing”,

IEEE Computer, 27 (6), 1994, pp 38-47.

[Foxwell 1998]Harry J. Foxwell and Daniel A Menasce, “Prefetching Results of Web

Searches”, Proceedings of International Computer Measurement Group Conference,

Anaheim, CA, 1998, pp 602-609.

[Goldberg 2004] David E Goldberg, “Genetic Algorithms in Search, Optimization and

Machine Learning”, Pearson Ed., New Delhi, 2004.

 177

[Gopalan 2002] Kartik Gopalan and Tzi-cker Chiueh, “Improving Route Lookup

Performance Using Network Processor Cache", Proceedings of the 2002 ACM/IEEE

Conference on Supercomputing, Baltimore, Maryland, November 2002, pp 1-10.

[Grossman 2002] J.P. Grossman, “A Systolic Array for Implementing LRU

Replacement”, Project Aries Technical Memo ARIES-TM-18, AI Lab, M.I.T.,

Cambridge, MA, March 13, 2002.

[Han 1998] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret and J.

Rubas,“Dynamic Adaptation in an Image Transcoding Proxy for Mobile Web Browsing,”

IEEE Personal Communications, vol. 5, no. 6, 1998, pp. 8-17.

[Hennessy 2003] John L Hennessy and David Patterson, “Computer Architecture: A

Quantitaive Approach”, Morgan Kaufmann, 3rd ed., 2003.

[Housel 1996] Barron C. Housel and David B. Lindquist, “WebExpress: A system for

optimizing Web browsing in a wireless environment”, Proceedings of the Second Annual

International Conference on Mobile Computing and Networking, November 1996, pp

108-116

[Hwang 1993] K. Hwang, “Advanced Computer Architecture: Parallelism, Scalability

and Programmability”, New York, McGraw-Hill Book Co., 1993.

[Irani 1997] S. Irani. “Page replacement with multi-size pages and applications to web

caching”, Proceedings for the 29th Symposium on Theory of Computing, 1997, pp 701-

710.

[Jerkins 2003] Lawrence Jerkins and R Radhika, “Multimedia Proxy caching for video

Streaming Applications”, National Conference on Networking, IIT Chennai, 2003.

 178

[Jiang 1998] Z. Jiang and L. Kleinrock, “Web prefetching in a mobile environment,”

IEEE Personal Communications, vol. 5, no. 5, 1998, pp.25-34.

[Jin 2000a] S. Jin and A. Bestavros, “Sources and Characteristics of Web Temporal

Locality,” Proceedings of IEEE/ACM International Symposium on Modeling, Analysis

and Simulation of Computing and Telecommunication Systems, San Francisco, CA, 2000,

pp. 28–35.

[Jin 2000b] S. Jin and A. Bestavros, “Popularity-Aware Greedy-dual Size Web Proxy

Caching Algorithms,” Proceedings of IEEE International Conference on Distributed

Computing Systems, Taiwan, 2000, pp.254–261.

[Jing 1999] J. Jing, A. Helal, and A. Elmagarmid, “Client-Server Computing in Mobile

Environments,” ACM Computing Surveys, vol. 31, no. 2, 1999. pp. 117-157.

[Jouppi 1990] Norman P. Jouppi, “Improving Direct mapped Cache Performance by the

addition of a small fully-associative cache and prefetch buffers”, Proceedings of the 17th

Annual International Symposium on Computer Architecture, Seattle, Washington, 1990,

pp 364-373.

[Katsaros 2004] D Katsaros and Y Manolopoulos, “Caching in Web memory

hierarchies”, Proceedings of ACM Symposium on Applied Computing, Nicosia, Cyprus,

2004. pp 1109-1113.

[Kosko 1994] Bart Kosko, Neural Networks and Fuzzy Systems, Prentice Hall of India,

New Delhi, 1994.

[Lee 2002] Sung-Ju Lee, Wei-Ying Ma, and Bo Shen, “An Interactive Video Delivery

and Caching System Using Video Summarization”, Computer Communications, vol. 25,

no. 4, Mar. 2002, pp. 424—435.

 179

[Maltzahn 1997] Carlos Maltzahn, Kathy Richardson and Dirk Grunwald, “Performance

issues of Enterprise-level Web Proxies”, Proceedings of the 1997 ACM SIGMETRICS

International Conference on Measurement and Modelling of Computer Systems, June

1997, pp 13-23.

[Markatos 1998] E. P. Markatos and C. E. Chronaki, “A Top-10 Approach to Prefetching

on the Web,” Proceedings of INET 1998, Jul. 1998

[Mattson 1996] R.L. Mattson, J. Gecsei, D.R. Slcitz and I.L. Traiger, “Evaluation

techniques for storage hierarchies,” IBM system journal, 1996, pp. 169-193.

[Michel 1998] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V.

Jacobson, “Adaptive Web Caching: Towards a New Global Caching Architecture”

Computer Networks and ISDN Systems, vol 30, 22-23, 1998, pp 2169-2177.

[Motwani 1995] R. Motwani and P Raghavan, “Randomized Algorithms”, Cambridge

Univ. Press, Cambridge, UK, 1995.

[Nanopoulos 2003] A Nanopoulos, D Katsaros and Y Manolopoulos, “A data mining

algorithm for generalized Web prefetching”, IEEE Transaction on Knowledge and Data

Engineering, 15(5), 2003, pp 1155-1169.

[Papermaster 1998] Mark Papermaster, Robert Dinkjian, Michael Mayfield,Peter Lenk,

Bill Ciarfella, Frank O’Connell and Raymond DuPont , “POWER3: Next Generation 64-

bit PowerPC Processor Design”, White Paper, IBM Corporation, 1998.

http://www-.ibm.com/ servers/eserver/pseries/hardware/whitepapers/power3wp.pdf

[Patterson 2005] David A. Patterson and John L. Hennessy, “Computer Organization and

Design”, 3rd ed., Morgan Kaufman, New Delhi, 2005.

 180

[Parker 1998] Tammy Parker. "Mobile Wireless Internet Technology Faces Hurdles,"

Computer, vol. 31, no. 3, 1998, pp. 12-14.

[Pasquale 2002] J. Pasquale, E. Hung, T. Newhouse, J. Steinberg and N. Ramabhadran,

“Improving Wireless Access to the Internet By Extending the Client/Server Model”,

Proceedings of European Wireless Conference, Florence, Italy, Feb. 2002, pp. 670-676.

[Pitkow 1994] J Pitkow and M Recker, “A simple yet robust caching algorithm based on

dynamic access patterns”, Proceedings of the 2nd International World Wide Web

Conference, Chicago, 1994, pp 1039-1046.

[Podlipnig 2003] Stefan Podlipnig and Laszlo Boszormenyi, “A Survey of Web Cache

Replacement Strategies”, ACM Computing Surveys, vol 35, no. 4, 2003, pp 374-398.

[Povey 1997] D. Povey and J. Harrison, “A Distributed Internet Cache", Proceedings of

the 20th Autralasian Computer Science Conference, Sydney, Australia, February 1997,

pp. 175-184.

[Psounis 2002] K Psounis and B Prabhakar, “Efficient Randomized Web-Cache

Replacement Schemes Using Samples From Past Eviction Times”, IEEE/ACM

Transactions on Networking, vol 10, No. 4, August 2002, pp 441-455.

[Rabinovich 1998] M. Rabinovich, J. Chase, and S. Gadde, “Not all hits are created

equal: cooperative proxy caching over a wide-area network”, Computer Networks And

ISDN Systems, 30, 22-23, 1998, pp. 2253-2259.

[Rabinovich 2002] Michael Rabinovich and Oliver Spatscheck, “Web Caching and

Replication”, Addison-Wesley, 2002.

 181

[Rajasekaran 2003] S. Rajasekaran and G A Vijayalakshmi Pai, “ Neural Networks,

Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications”, Prentice Hall of

India, New Delhi, 2003.

[Rejaie 1999] Reza Rejaie, Mark Handley, Haobo Yu and Deborah Estrin, “Proxy

Caching Mechanism for Multimedia Playback Streams in the Internet”, Proceedings of

4th International Web Caching Workshop, San Deigo, CA, April, 1999.

[Rejaie 2000] R. Rejaie, H. Yu, M. Handley, and D. Estrin., “Multimedia Proxy Caching

Mechanism for Quality Adaptive Streaming Applications in the Internet”, Proceedings of

the IEEE INFOCOM, Tel-Aviv, Isreal, Mar. 2000.

[RFC 2186] D.Wessels and K. Claffy, Internet cache protocol (IPC), version 2, RFC

2186.

[Roast 1998] Chris Roast. “Designing for delay in interactive information retrieval”,

Interacting with Computers, 10(1), 1998, pp 87-104.

[SA110 2000] “SA-110 Microprocessor,Technical Reference Manual,” December 2000.

http://renan.org/ARM/doc/27805802.pdf

[Saha 2001] Subhasis Saha, Mark Jamtgaard and John Villasenor. "Bringing the Wireless

Internet to Mobile Devices", Computer, vol. 34, no. 6, 2001, pp. 54-58.

[Satyanarayanan 1996] M Satyanarayanan, “Fundamental Challenges in Mobile

Computing”, Proceedings of the Fifteenth Annual ACM symposium on Principles of

Distributed Computing, Pennsylvania, 1996, pp 1-7

 182

[Scheuermann 1997] Peter Scheuermann, Junho Shim and Radek Vingralek, “A Case for

Delay-Conscious Caching of Web Documents",Computer Networks and ISDN Systems,

vol 29, no. 8--13, 1997, pp 997-1005.

[Sen 1999] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia

streams”, Proceedings of IEEE Infocom, 1999, pp 1310-1319.

 [Shankarnarayanan 2002] N K Shankarnarayanan, Anupam Rasotgi and Z Jiang,

“Performance of a Wireless Data Network with Mixed Interactive User Workloads”,

Proceedings of IEEE International Conference on Communications, NewYork, May

2002.

[Silberschatz 2001] A. Silberschatz and P. Galvin, Operating System Concepts, 6th Ed.

Addison-Wesley, 2001

[Smith 1982] A .J Smith, “Cache Memories,” ACM Computing surveys, vol. 14, no. 3,

1982, pp. 473-500.

[Smith 1985] J. E. Smith and J. R. Goodman,” Instruction cache replacement policies and

organizations,” IEEE Transactions on Computers, vol. C-34, no. 3, 1985, pp. 234–241.

[Sugumar 1993] Sugumar R.A and Abraham S.G, “Efficient simulation of caches under

optimal replacement with application to miss characterization,” Proceedings of the ACM

SIGMETRICS conference on Measurement and modeling of computer system, May1993,

pp. 24-35.

[Squid 1998] http://www.squid-cache.org/

[Tan 2001] Kian Lee Tan, Jun Cai and Beng Chen Ooi, “An Evaluation of Cache

Invalidation Strategies in Wireless Environments”, IEEE Transactions on Parallel and

 183

Distributed Systems, vol 12, no. 8, 2001, pp 789-807.

[Tiwari 1998] Renu Tewari, Harrick M., Vin, Asit and Dinkar Sitaramy, “Resource-based

Caching for Web Servers”, Proceedings of SPIE/ACM Conference on Multimedia

Computing and Networking, San Jose, Vol. 3310, 1998, pp 191-204.

[Tiwari 1999] Renu Tewari, M. Dahlin, H. Vin, and J. Kay, "Beyond Hierarchies: Design

Considerations for Distributed Caching on the Internet", Proceedings of the 19th

International Conference on Distributed Computing Systems, Austin, TX, June 1999

[Traces 1995] http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html

[Vakali 1999a] Athena Vakali, “ A Web-based evolutionary model for Internet Data

Caching”, Proceedings of 10th International Workshop on Database & Expert Systems

Applications, Italy, Sept 1999 pp 650-654

[Vakali 1999b] A. Vakali, “ An Evolutionary scheme for Web Replication and Caching”,

Proceedings of the 4th International Web caching Workshop, Work in Progress Session,

San Diego, California, Mar-Apr 1999.

[Valloppillil 1998] Vinod Valloppillil and Keith W. Ross. Cache Array Routing Protocol

v1.0, INTERNET DRAFT, 1998.

[Video 1995] www3.informatik.uni-wuerzburg.de/MPEG/traces/.

[Wang 1996] Z. Wang and J. Crowcroft. “Prefetching in World Wide Web”, Proceedings

of IEEE Global Internet, 1996, pp 28-32.

[Wang 1999] J. Wang, “A Survey of Web Caching Schemes for the Internet,” ACM

Computer Communication Review, vol. 29, no. 5, 1999, pp. 36–46.

 184

[Wessels 1998] Duane Wessels and K Claffy, “ICP and Squid Web Cache”, IEEE

Journal on Selected Areas in Communication, vol 16, no. 3, 1998, pp 345-357.

[Wills 1999] Craig E. Wills and Mikhail Mikhailov, “Towards a better understanding of

web resources and server responses for improved caching” Proceedings of the Eighth

International World Wide Web Conference, Toronto, Canada, 1999, pp 1231-1243.

[Wolisz 2000a] Adam Wolisz, “Wireless Internet Architectures: Selected Issues”,

Personal Wireless Communications, Poland, Kluwer, September 2000, pp 1-16.

[Wolisz 2000b] Adam Wolisz, C Hoene, B Rathke and M Schlager, “Proxies, Active

Networks, Re-configurable Terminals: The Cornerstones of Future Wireless Internet”,

Proceedings. of IST Mobile Communications Summit, Galway, Ireland, October 2000, pp.

795-803

[Wong 2000] Wayne A. Wong and Jean-Loup Baer, “Modified LRU policies for

improving second-level cache behavior,” Proceedings of the 6th International

Symposium on High-Performance Computer Architecture (HPCA), Toulouse, France,

January 2000, pp 49–60.

[Wong 2001] K. Y. Wong, S. Y. Hui and K. H. Yeung, "An Adaptive Network Prefetch

Scheme in a Transcoding Environment", Proceedings of 5th World Multiconference on

Systemics, Cybernetics, and Informatics, vol. XII, Orlando, U.S.A, July 2001, pp. 229-

233.

[Wooster 1997] R. P. Wooster and M. Abrams, "Proxy caching that estimates page load

delays," Computer Networks and ISDN Systems, vol. 29, no. 8-13, 1997 pp. 977—986.

 185

[Williams 1996] S Williams, M Abrams, C R Standridge, G Abdulla and E A Fox,

“Removal policies in network caches forWorld-WideWeb documents”, Proceedings of

ACM SIGCOMM. ACM Press, New York, NY, 1996, pp 293–305.

[Wu 2001] K.L.Wu, P.S.Yu, and J.L.Wolf, “Segment-based proxy caching of multimedia

Streams”, Proceedings of the l0th International Conference on World Wide Web, Hong

Kong, 2001, pp 36-44.

[Yeung 2003] K. H. Yeung, S. Y. Hui, and K. Y. Wong, "An Intelligent Proxy Server for

Mobile Communication Systems", SSGRR Conference, Italy, Aug. 2003.

[Young 1994] N. Young “The k-server dual and loose competitiveness for paging”

Algorithmica, vol. 11, no.6, 1994, pp 525-541.

[Zhang 2000] Zhi-Li Zhang, Yuewei Wang, David H. C. Du, and Dongli Su, “ Video

Staging: A Proxy-Server-Based Approach to End-to-End Video Delivery over Wide-

Area-Networks”, IEEE/ACM Transaction on Multimedia, vol. 8, no. 4, 2000, pp 429-442.

[ZhangC 1997] Chenxi Zhang, Xiaodong Zhang, and Yong Yan, “Two Fast and High-

Associativity Cache Schemes,” IEEE Micro Magazine, vol. 17, no. 5, 1997, pp. 40-49.

[ZhangM 2000] Michael Zhang and Krste Asanavio, “Highly-Associative Caches for

Low-Power Processors”, Kool Chips Workshop, 33rd International Symposium On

Microarchitecture, Monterey, California, December 2000.

[Zona 1999] “The economic impacts of unacceptable Web site download speeds”, White

paper, Zona Research, 1999. Available from: www.ebtwg.org/wp_downloadspeed.doc

 186

LIST OF PUBLICATIONS

Journal Papers

1. T S B Sudarshan, G Raghurama, "Fuzzy Logic Approach for Replacement Policy in

Web Caching", International Journal of Systemics, Cybernetics and Informatics
(Communicated)

2. T.S.B. Sudarshan, Rahil Abbas Mir, Vijayalakshmi S, G Raghurama, “LRU

Hardware Implementations for High Associativity Caching of Uniformed Objects”,
IET Transaction of Digital Electronics and Computers. (Communicated)

3. Ganesh T S, M.T.Fredrick, T S B Sudarshan, A K Somani, "Hash Chip: A Shared-

Resource Multi-Hash Function Processor Architecture on FPGA", Integration, The
VLSI Journal, Volume 40, Issue 1, January 2007, pp 11-19.

4. Biju Raveendran, T S B Sudarshan, and S Gurunarayanan, “Cache Memory Design

with Late Replacements for Embedded Systems”, International Journal of Lateral
Computing, (Accepted, To Appear)

5. T S B Sudarshan, Rahil Abbas Mir, Vijayalakshmi S "DRIL-A Flexible Architecture

for Blowfish Encryption using Dynamic Reconfiguration, Replication, Innerloop
pipelining, Loop-folding techniques", Lecture Notes in Computer Science, Advances
in Computer Systems Architecture, Volume 3740, 2005, pp 625 – 639.

Conference Papers Related to Thesis

6. T S B Sudarshan, G Raghurama, " Dual Stage Victim Cache based approach for Web

Caching", Proceedings of National Conference on Signal Processing, Intelligent
Systems & Networking Bangalore, India, December 2003.

7. T S B Sudarshan, J Sahidhar, G Raghurama, "Multimedia Proxy Caching Algorithms

for Streaming Objects.", International Conference on Recent Trends and New
Directions of Research in Cybernetics & Systems Theory, IASST, Guwahati, India,
January 2004.

8. T S B Sudarshan, A Ganesh, G Rahurama, "Genetic Algorithm Based Approach For

Replacement Policy in Web Caching", Proceedings of International Conference on
Systemics, Cybernetics and Informatics, Hyderabad, India, January 2005, pp 803-
806.

 187

9. T S B Sudarshan, Rahil Abbas Mir, Vijayalakshmi S "Highly Efficient LRU

Implementations for High Associativity Cache Memory", Proceedings of 12th IEEE
International Conference on Advanced Computing and Communications,
Ahemdabad, Gujarat, Allied Publishers Pvt. Ltd., India, December 2004, pp 87-95.

10. T S B Sudarshan, Pavankiran, Swetha Krishnan and G Raghurama, "Fuzzy Logic

Approach for Replacement Policy in Web Caching", Proceedings of 2nd IEEE Indian
International Conference on Artificial Intelligence, Pune, December 2005, .ISBN: 0-
9727412-1-6, pp 2308-2319.

11. T S B Sudarshan, A Ganesh, G Raghurama, "Caching and Replacement of Streaming

Objects Based on a Popularity Function", Proceedings of Third IASTED
International Conference on Communications and Computer Networks, Marina Del
Rey, California, USA, ACTA Press, October 2005, pp 208-212.

12. T S B Sudarshan, Ganesh Ananthanarayanan, G Raghurama, "Genetic Algorithm

Based Approach for Replacement Policy in Multimedia Web Caching", (Accepted)
4th International Conference on Communications, Internet and Information
Technology, Cambridge, USA, November 2005.

Other Conference Papers During Thesis Period

13. T S B Sudarshan, Ganesh T S, "Hardware Architectures for Message Padding in

Cryptographic Hash Primitives", Proceedings of 8th IEEE Workshop on Progress in
VLSI Design & Test 2004, Mysore, August 2004, pp 136-144.

14. Ganesh T S, T S B Sudarshan, N K Srinivasan, K Jaypal "Pre-Silicon Prototype of a

Unified Hardware Architecture for Cryptographic Message Detection Codes",
Proceedings of IEEE 2004 International Conference on Field Programmable
Technology, Brisbane, Australia, Dec 2004, pp 324-326.

15. Ganesh T S, T S B Sudarshan "ASIC Implementation of a Unified Hardware

Architecture for Non-Key Based Cryptographic Hash Primitives", Proceedings of
IEEE International Conference on Information Technology Coding and Computing,
Las Vegas, Nevada, USA, Published by Nova Science, New York, USA, Vol-I, April
2005, pp 580-585.

16. T S B Sudarshan, Rahil Abbas Mir, Vijayalakshmi S "Dynamic Reconfigurable

Architecture for Blowfish Algorithm Using Inner-Loop Pipelining, Loop-folding
Technique", Proceedings of IEEE Asia and South Pacific International Conference on
Embedded SoCs, IISc, Bangalore, July 2005. (Available on CD)

17. T S B Sudarshan, Rahil Abbas Mir, Vijayalakshmi S "DRIL-A Flexible Architecture

for Blowfish Encryption using Dynamic Reconfiguration, Replication, Innerloop

 188

pipelining, Loop-folding techniques", Proceedings of 10th Asia Pacific Computer
Systems Architecture Conference, Nanyang Technological University, Singapore,
October 2005, pp 625-639.

18. Suresh Sharma, T S B Sudarshan, "Design of an Efficient Architecture For Advanced

Encryption Standard Algorithm Using Systolic Structures", Web Proceedings of
IEEE International Conference of High Performance Computing, Goa, December
2005. http://www.hipc.org/hipc2005/hipc2005posters.html

19. Ravikumar L, T S B Sudarshan and Bharat Deshpande, “Matching Proximity of

Scheduling Algorithms for Grid Computing”, Proceedings of Third International
Conference on Systemics, Cybernetics and Informatics, Hyderabad, Jan 2006.

20. Ninad B Kothari, T S B Sudarshan, Shipra Bhal, Tejesh E C and S Gurunarayanan,

"Design of an Efficient Low-Power AES Engine for Zigbee Systems Progress in
VLSI Design & Test, ISBN 81-88901-24-5, Elite Publishing House Pvt. Ltd., Goa,
August 2006, pp 264-272

21. Biju Raveendran, T S B Sudarshan, and S Gurunarayanan, "Cache Memory Design

with Late Replacements for Embedded Systems", Proceedings of International
Conference on Embedded Systems, Mobile Communication and Computing,
Bangalore, August 2006, pp 76-90.

22. Biju Raveendran, T S B Sudarshan, S Gurunarayanan, "Selection Placement Data

Cache for Low Energy Embedded System", Proceedings of 14th IEEE International
Conference On Advanced Computing (ADCOM), NITK, Surathkal, December 2006,
pp 473-476. IEEE CATALOG No: 06EX1537, ISBN No: 1-4244-0715-X,
LIBRARY OF CONGRESS 2006934023

23. Ninad B Kothari, T S B Sudarshan, S Gurunarayanan, S Chandrashekhar "SOC

Design of a Low Power Wireless Sensor Network Node for Zigbee Systems",
Proceedings of 14th IEEE International Conference On Advanced Computing
(ADCOM), NITK, Surathkal, December 2006, pp 462-466. IEEE CATALOG No:
06EX1537, ISBN No: 1-4244-0715-X, LIBRARY OF CONGRESS 2006934023

24. Amarnath Bhadrashetty, Mandar Raje, T S B Sudarshan, “Enhancement of Advanced

Encryption Standard with CBC Mode and Building a Prototype for Secured
Communication”, Proceedings of 4th International Conference on Systemics,
Cybernetics and Informatics, Vol 1, Jan 2007, pp 563-568. (Best Paper & Best
Presentation award).

25. Biju Raveendran, T S B Sudarshan, Avinash Patil, Komal Randive, S Gurunarayanan,

“Enhancement Predictive Placement Scheme in Set-Associative Cache for Energy
Efficient Embedded Systems”, Proceedings of 4th IEEE International Conference on
Information Technology: New Generations, Las Vegas, Nevada, USA, (Published by
the IEEE Computer Society), April 2-4 2007 (Accepted)

 189

BRIEF BIOGRAPHY OF CANDIDATE

T S B Sudarshan is working as Assistant Professor in Computer Science & Information

Systems Group in Birla Institute of Technology and Science, Pilani from January 1998.

Prior to this he also worked as a faculty member in Bangalore University from 1993 to

1998. He obtained his Bachelors of Engineering (Electrical & Electronics) from

Bangalore University, and Masters of Engineering (Systems), from Birla Institute of

Technology, Mesra, Ranchi in 1989 & 1993 respectively. He is a life member of Indian

Society for Technical Education and Member of IEEE Computer Society. His research

interests are Web Caching, Caching for Streaming Media Objects for Fixed and Mobile

Networks, Computer Architecture, Crypto-Hardware Design, Memory Design for

Embedded Systems.

BRIEF BIOGRAPHY OF SUPERVISOR

Prof. G Raghurama is Professor in Electronics and Instrumentation Engineering Group

and Deputy Director (Academic) in Birla Institute of Technology and Science, Pilani. He

obtained Masters in Science (Physics) from IIT, Chennai, and Ph.D. (Physics) from the

Indian Institute of Science, Bangalore in 1980 and 1986 respectively. He was a member

of Technical Advisory Board of Cradle Technologies, USA. He has several publications

in National and International Journals. His research interests are in the area of

Telecommunications, Networking and Network Management.

 190

