

Thread Based XSS Detection System –
Technical Design Document

Version 1.0

Document Reference & History

Revision Author

1.0 Jayamsakthi Shanmugam

Contents
1 INTRODUCTION... 4

2 USECASE REALIZATIONS ... 5

2.1 STATIC VIEW ... 6

2.2 VIEW OF PARTICIPATING CLASSES .. 6

2.2.1 Package dependencies .. 7

2.3 DYNAMIC VIEW ... 8

2.3.1 Sequence diagrams ... 8

2.3.2 Method Description .. 9

2.3.3 Data Specifications .. 10

2.3.4 Configurable Parameters .. 10

2.3.5 Pseudo Code .. 11

1 Introduction
XSS thread based application which tracks the hacker’s intentions by their request’s

inputs. This will not allow malicious inputs to go further.

2 Usecase Realizations

Actor1

Xss Application

Database

XSS thread based application consists of use case tracking of malicious inputs which

have done by hackers. It tracks the hackers’ details from database and also it updates the

details into the database.

2.1 Static view

2.2 View of participating classes

+init()

+destroy()

+doFilter()

+isHacker() : bool

+storeIntrusion()

+isDataMalacious() : bool

+searchReplace() : object

+checkSpecialChars() : bool

XSSPhaseOneFilter

«interface»

Filter

«extends»

+ThreadCluster()

+run()

+isTainted() : bool

+setInput()

+killOtherThreads()

+setOtherThreads()

-data : object

-tainted : bool

-tags : object

-XMLReader

-tempVal

-Thread

ThreadCluster

+startElement()

+endElement()

+characters()

+warning()

+error()

+fatalError()

TagsHandler

DefaultHandler

+ThreadController()

+checkIntrusion()

+detectIntrusion() : bool

-ThreadCluster

-isDeamon

-result

-vInput

ThreadController

«uses»

«uses»

Class Description

ThreadCluster.java The class which differentiates the 3 threads and compares the

input and tags of White, Black and Malicious tags.

XSSPhaseOneFilter.ja

va

This Filter Servlet which invokes for every request and it filters

all the request inputs and passes the control to

ThreadController.

ThreadController.java This class intiates all the Threads for processing of the input

requests.

TagsHandler.java This is the inner class which parses all the xml tags.

2.2.1 Package dependencies

com.nonhacker

javax.xml org.xml.sax javax.servlet java.util

Package Description

com.nonhacker The main package of XSS Application

Org.xml.sax Used for xml parsing.

Javax.servlet Servlet package for the Filtering Requests

Java.util Utility package for Java

2.3 Dynamic view

2.3.1 Sequence diagrams

Actor1

XSSPhaseOneFilter ThreadController ThreadCluster Hacked.jsp

requests

isDataMalacious

checkSpecialChars

detectIntrusion

ThreadCluster

setDaemon

setInput

start

run

isTainted

storeIntrusion

getNoOfAttempts

processUser

redirect

isUserBlocked

redirect

updateStatus

boolean

2.3.2 Method Description

Method of

XSSPhaseOneFilter

Description

checkSpecialChars(str) It checks whether there are any special characters

are there in request inputs.

isDataMalacious(Vector

vInput)

This method invokes ThreadController and

checks whether request input is malicious are not

and accordingly it returns Boolean value.

It return true when the data is malicious and false

when data is not malicious.

isUserBlocked(req,userid) Checks whether user is blocked or not and if user

is blocked control will be forwarded to hacker.jsp

storeInstrusion(String

userid,request,noofAttemp

ts,status)

Inserts the user details into database, if this user

trying to insert malicious data.

processUserStatus() This method contains logic of processing user

status based on no of attempts, Lower limit for

no of attempts, Max No. of Attempts a user can

be made and accordingly it updates the database

tables.

updateStatus(userid,

status)

It is a db method which updates the status of

user.

Method of

ThreadCluster

Description

ThreadCluster(String

name,String type)

This constructor loads the xml files based on the

type of xml file and creates SAX parser for

parsing the different tags of xml files.

Run() Life cycle method of Thread class in which it

determines whether input data is malicious or not

based on tags of xml files and accordingly it sets

the Boolean result.

isTainted It returns the result set by run method.

setInput This method sets the input data.

setOtherThreads This method sets Threads t1, t2

killOtherThreads This methods interrupts the running threads if

malicious data is found.

Method of

ThreadController

Description

ThreadController Constructor which sets the input data as vector

detectIntrusion This method invokes all the three threads and

sets the corresponding data to those threads.

This method initiates the start processes of all

the three threads and returns the Boolean values

based on whether data is malicious or not

2.3.3 Data Specifications

One Database Table have been used for this Application ,

SECURITY_CHECK Table - This Table stores UserId, IPaddress, User Status and

Timestamp when User Status is changed, Active State of User, No of Attempts

made by user

User Status will be in N-Notice,W-Warning,B-Block.

Rec Active Status will either be in Y or N status at any instance of time.

2.3.4 Configurable Parameters

There are Two Property files which can be configurable.

Two Property files which are used by application are

1) dbAccess.properties : This is file is used for retrieving database details and

following parameters are used.

 propDriver - Database Driver.

 propURL – URL of Database.

 propUser - UserName to access Database

 propPassword - Password to access Database

 UserIDParam - Login Id of Application.

2) IED.properties : This is file is used to restrict the no of attempts a user will be

made and following parameters are used.

BLOCKING_TIME_INTERVEL - No. of Mins for a User will be

blocked.

ATTEMPTS_THRESHOLD – Max No. of Attempts a User can be made ,

If User exceeds this limit, User status will changed to Blocked and He

can’t Access the Application anymore.

ATTEMPTS_LOWER_LIMIT – Min No. of Attempts a User can be

made, If User exceeds this no. of Attempts User status will be changed to

Warning

2.3.5 Pseudo Code

This application can be deployed on any Application where it supports J2EE 1.3

Specs.This application tracks the malicious attempts made by user and accordingly it

will not allow the user to access the application based on his no. of attempts.

The following is Pseudo Code for this application

1) User login into application

2) XSS thread based applicationtracks the User logged in and if user is blocked then

it redirects to hacker.jsp

3) If User login for first time and a malicious attempt is found then a record will

be inserted into Security_Check Table with “Notice” as Status.

4) If he continously makes malicious attempts then User Status will be changed to

“Warning”.

5) If No of Attempts made by him exceeds ATTEMPTS_THRESHOLD i.e Max

No of ATTEMPTS , then Status will be changed to “Blocked”.

6) If User has got Status Blocked , Then User cannot access the application.

Pseudo Code for Checking Whether Request Input is malicious or not

1) Application tracks the input tags and it compares input with xml tags of White

Listed, BlackList and Malicious tags which are predefined in xml files.

2) Input tags should be part of white listed tags or it would be treated as Malicious

Attempts.

3) Input tags should not be part of Black Listed and Malicious tags and if match is

found then input will be treated as Malicious Attempts.

4) If malicious attempts are found and exceeds defined Max No. of Attempts, then

User is blocked.

