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ABSTRACT 
 
 

The capability of a robot to position its end effector with high accuracy and 

repeatability is an important attribute for industrial automation technology. A robotic arm 

must manipulate objects with a high degree of accuracy and repeatability. It has been 

well recognized that quality can be significantly improved during the early design stage if 

appropriate quality engineering methods are used. While much research has been done in 

field of robotics and robust design, but attempt to combine robotic manipulator design 

concepts with robust design techniques are rare. This deficiency significantly limits the 

performance of manipulator due to lack of proper selection of design parameters and 

tolerance. The motivation of this thesis is to develop an integrated methodology to reduce 

performance variations of manipulator by selecting optimal design parameters and 

tolerances. 

Like every physical system, there are number of factors, which cause performance 

variations of a manipulator. The performance variations of manipulators are attributed to 

control factors and noise factors. The factors whose values can be changed or controlled 

easily by designer are called control factors and which are difficult to control are called 

noise factors. Development of approach to simulate real life performance of manipulator 

incorporating effect of noise is a challenge to robotic system designer. Therefore, control 

and noise factors of the problem are identified and a probabilistic approach has been 

proposed to simulate the performance incorporating effect of noise. In order to 

investigate the effect of these control factors and noise factors and to obtain a better 

insight into the manipulator performance, the manipulator kinematics and dynamics 

models are used to simulate the performance of manipulator.  

Conducting physical experiments on manipulator by changing its parameters are very 

tedious, time consuming and uneconomical. To solve this problem, help of simulation is 

taken where simulation experiments are conducted by varying the values of control and 

noise factors. To explore the effects systematically, design of experiments technique is 

applied and the manipulator performance is made insensitive to effect of noise factors. 

This approach is also called parameter design technique, where the values of the control 



factors i.e. design parameters that minimize the effect of noise factors on the functional 

characteristics of the product are found.  

As identified control factors and noise factors are large in number, conducting 

simulation experiment becomes computationally expensive. Therefore, to screen the 

important parameters from identified parameters, fraction factorial design of experiments 

approach is used. Using this design of experiments technique and proposed probabilistic 

approach performance of the manipulator are simulated and analyzed. ANOVA technique 

has been used to screen the parameters, and identify those, which have significant 

influence on performance variability. To investigate the influence of time law of the 

trajectory for performing the task, above investigation is carried out.  

To get the optimal design parameters, response surface methodology (RSM) has been 

used. RSM is used to develop the relationship between independent control and noise 

parameters with the performances. As the mathematical relations relating the manipulator 

performances and the design and noise parameters are not available, therefore, 

application of RSM technique to this problem becomes pertinent. The design matrix 

obtained from central composite design (CCD), performance of manipulator is simulated 

using the proposed probabilistic approach. Then response equations relating the control 

and noise factors to response are developed. Subsequently response equations relating the 

control factors and noise factors to response for mean and variance of performance have 

been developed. To optimize the parameters, which deliver optimum performance, an 

optimization problem is formulated. The objective function of formulated optimization 

problem minimizes the performance while achieving decided value of performance 

variability. As the optimization problem formulated is nonlinear in nature, it is solved 

using an optimization subroutine. From this subroutine, optimal design parameters of 

manipulator are obtained while performing task following different trajectories.  

To reduce the variability in performance further and to determine the statistically 

significant parameter tolerances, further investigations are carried out. For parameter 

tolerance design, cross array design of experiment approach has been used. For 

simulation of performance same probabilistic approach is utilized. Statistical analysis of 

simulated results has been carried out to obtain the significant parameters for which 

tolerance can be tightened. Along with this analysis, optimal parameter tolerances which 



deliver optimum performance and insensitive to noise of control factor variation have 

been obtained. To validate the results obtained in cross array design of experiment 

approach, Monte Carlo simulation method has been utilized. This investigation is carried 

out for the manipulator for performing different tasks following different trajectories. The 

results obtained are compared with the results of cross array approach.  

An attempt has been made to obtain robust manipulator parameter design, using non-

conventional optimization method. A novel hybrid evolutionary optimization method has 

been proposed. In this approach, hybrid of orthogonal array available in the Taguchi 

method and Differential Evolution Technique are used. The proposed method has been 

used to select optimal design parameters for the manipulator for performing different 

tasks following different trajectories. 

In addition to above investigations, parametric sensitivity has also been explored. To 

determine the impact of change in parameter values on performance of manipulator, two 

dimensionless parameter indices are proposed. By changing these indices individually 

and simultaneously, investigations have been carried out and the performance sensitivity 

of manipulator to these changes has been analyzed to understand their influence. 

Similarly, the design parameter tolerances sensitivity has also been investigated for 

manipulator performing a task following cubic and quintic trajectories.  

In past research in robotic manipulator design primarily focused on system level 

design metrics based on geometry and dynamics. However, to achieve improved 

performance and to design better robotic systems, the effect of design and noise 

parameters on the capabilities of these systems has to be understood. The work done on 

the design of manipulators can be used for an array of applications and better complex 

manipulators can be designed.  

 
Key Words: Control Factor, Noise Factor, Performance, Positional Error,  

Mean Positional Error, SN Ratio, Manipulator Reliability, Optimal 
manipulator deign, Tolerance design, Fractional Factorial Design, 
Response Surface Methodology, Cross Array Design of Experiment, 
Hybrid Differential Evolution Technique.  
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CHAPTER-1 
 

PERFORMANCE OF MANIPULATOR 
 
 

1.1 INTRODUCTION 

Robot is a mechanical device, which performs programmed physical tasks, either 

according to a pre-defined program or, a set of general guidelines using artificial 

intelligence techniques. Robots are typically used to perform tasks that are too dirty, 

dangerous, difficult, repetitive, or dull for humans. Different types of robotic 

manipulators are used in the industrial settings for performing a variety of tasks, such as 

spray-painting, welding, pick-n-place, material handling and many other tasks. Certain 

operations, such as laser cutting, high-pressure water jet machining etc., require high 

accuracy and precision in robot’s end-effector path tracking. Operations, such as spot 

welding, part assembly and measuring require high accuracy in terms of robot end-

effector pose accuracy. 

A robotic manipulator is characterized by its degree of freedom, number of joints, 

type of joints, joint placements and joint motions; link lengths and shapes, which 

influence its performances, namely, the workspace, manipulability, speed of operation 

positioning accuracy, etc. The speed of operation significantly depends on the 

complexities of the kinematic and dynamic equations and their computations. The 

manipulators with different architectures will have different kinematic and dynamic 

equations with varying computational complexities. 

The performance of a robotic manipulator is estimated by simulating experiments. 

The performance evaluation problem is formulated as “for a given desired motion task, 

determine suitable design parameters that would help the robot to have motion as close as 

possible to the desired destination”. The performance of the robotic manipulator is 

mitigated by proper selection of optimal design parameters, process parameters and 

tolerances. To be as close as possible to the desired target point consistently indicates a 

better quality of performance. Improving quality of performance of a manipulator is of 

particular concern for the industry and hence has been taken up as the focus of the 

research. 



The mathematical models are not accurate representations of the robot kinematics and 

dynamics, and therefore, in reality there are significant discrepancies between the actual 

and the expected performance. Therefore, under the prevailing conditions designers 

should look for alternative approaches to obtain the desired quality performance. This 

thesis investigates possibilities to enhance the performance measure using parameter and 

tolerance based design strategies and offers algorithms and techniques based on design 

parameters and their tolerances approach to realize the desired performance quality. 

1.2 ROBOTICS TODAY 

Robotics is a system created by humans to create substitutes that would be able to mimic 

their behaviors in various aspects of interaction with the environment. The term robot is 

coined from the Slav word rabota, which means executive labour. The writer of science 

fiction literature Isaac Asimov introduced the term robotics to describe the science 

devoted to the study of robots that represent automation of human appearance but have 

no feelings. Today’s robotics covers many aspects of human living, although it is still far 

from the models anticipated by human imagination and science fiction. Some of the areas 

where robotics is present are industrial manufacturing, military, sea and space 

exploration, medicine, rescue services, entertainment. 

A robot represents a flexibly programmable manipulation system with multiple 

degrees of freedom, able to perform different tasks. Regardless of particular tasks, any 

robot should be capable to perform motions in a multidimensional working space to 

realize the desired position and orientation either of its complete structure (e.g. mobile 

robots) or of a part of its structure which is called the terminal device or the end-effector. 

One robot may contain more than one terminal device. Its multiple degrees of freedom 

must be controlled in a coordinated way in order to achieve a functional movement. The 

robot’s capacity for movement is provided by a mechanical system which in general 

consists of the locomotion and manipulation subsystems. The purpose of the locomotion 

subsystem is to move the robot within the environment, while the manipulation 

subsystem is used to operate neighboring objects. The robot’s capacity for perception is 

provided by a sensory system which can acquire data on the internal status of the 

mechanical system, as well as on the external status of the environment. The robot’s 



capacity for connecting perception to movement in a functional way is provided by a 

control system which can decide the execution of the action in respect of the constraints 

imposed by the mechanical system and the environment. 

Robots are not versatile enough, to accomplish different duties without significant 

human interference in the instances of path planning, trajectory generation, control and 

programming. This limited capability is a major handicap and may be attributed to the 

actual mechanical designs (e.g. low number of degrees of freedom and parasitic effects, 

such as flexibilities and friction) and the challenges of intelligent connection of robot 

perception with robot action (needs for arrays of sensors, efficient processing of sensory 

information, large computational power of control systems, effective but safe control 

strategies, etc.). 

Significant efforts have been spent to overcome these limitations. Various aspects of 

robotics are under permanent research and many contributions are still appearing. The 

subject of research reported in this thesis is optimal parameter and tolerance design of 

robotic manipulator by which better quality of performance is delivered. The objective is 

to develop parameter and tolerance design strategies that can improve in realizing the 

desired quality of performance. The quality of performance in this case refers to higher 

position accuracy and repeatability with low sensitivity to noises. Another emphasis is on 

the efficiency of robot motions, i.e., the thesis considers quality of performance 

improvement when the desired motions or tasks are followed. The motives for such 

considerations can be illustrated by an example from industrial manufacturing. If a robot 

accurately accomplishes its task when manufacturing a product, then the steps on the 

product post processing are reduced. The next two sections summarize theoretical issues 

of interest for robot performance and discuss the concepts that will be used later on in the 

thesis. 

1.3 PERFORMANCE OF A MANIPULATOR 

The performance of robotic manipulators are crucial to their commercial viability and 

widespread use in industry. Nowadays, robotic manipulators are required to achieve high 

positional accuracy and orientation at high speeds and should have the ability to interact 

with their environment in the desired manner. This increases the range of tasks for which 



they could be suitable but the idea of selecting a robot on basis of over all performance in 

workspace is rarely addressed by the research fraternity. Several measures of 

performance like reliability, positional error, SN ratio and performance index etc. are 

proposed by many researchers. For computation of performance measure, manipulator 

dynamics is generally neglected, even though it is widely used for control and simulation 

of robots. 

Traditionally, a solution to the performance problem requires the knowledge of 

mathematical models representing the kinematics and dynamics of the robot. Kinematics 

is modeled by applying the well-known physical principles describing the motion of a 

body in the multidimensional working space. A dynamic model is typically obtained 

from the basic physical laws governing the robot dynamics. When the models are 

available, some strategy is needed to act on them, in order to realize the desired task. This 

strategy requires capabilities of simulating the real life performance and means to act on 

the design variables, is called uncertainty modeling and robust design. 

This thesis develops strategies to minimize robot performance variability. The 

strategy includes development of modeling and simulation technique using robot 

kinematic and dynamic models to investigate the effect of different design and process 

parameters on performance variability. These strategies are off-line approaches, which 

select optimal design parameter using different optimization approaches. The strategies 

used do not essentially bring new theories, but contributes by merging of various 

concepts available in the literature. Such merging is not found elsewhere in the literature. 

1.3.1 Static and Dynamic Performance of Manipulator 

An industrial robot is a multifunctional and computer-controlled mechanical manipulator 

exhibiting a complex and highly nonlinear behavior. Even though most current robots 

have anthropomorphic configurations, they have far inferior manipulating abilities 

compared to humans. A great deal of research effort is presently being directed towards 

improving their overall performance by using optimal mechanical structures and control 

strategies. The optimal design of robot manipulators can include kinematic performance 

characteristics such as workspace, accuracy, repeatability, and redundancy.  



Static performance refers to point-wise performance measures that do not involve 

motion or control. Dynamic performance refers to integrable performance measures, such 

as motion time, energy, and tracking accuracy. Static performance is characteristic of a 

point while dynamic performance is characteristics of a direction. In designing robotic 

systems for desired performance, it is necessary to select a path, or a set of paths, 

representative of tasks for which the system is to be designed. 

Motion accuracy while performing a task is an important criterion that needs the 

designer’s attention. For the purpose of this study, a pose describes the location and 

orientation of an object relative to a reference frame. While performing a task, various 

poses are obtained. The quality of performance of the robot motion, final position and 

orientation achieved, exertion of force or torque, or other general output is described by 

three distinct and measurable groups: resolution, accuracy and repeatability. Industry-

wide standards for measuring these parameters are not yet fully established; however, 

improved methods for analyzing robot performance are being developed. The measures 

of performances representing the precision of the robot movement are: 

(i) Spatial Resolution, 

(ii)  Accuracy, 

(iii) Repeatability. 

The above measures of performances are defined with the following assumptions. First 

these terms are defined in the context of worst case condition and point-to-point motion 

of robot. It is easier to define the various precision features in the static context rather 

than a dynamic context. It is considerably more difficult to define and measure the 

robot’s capacity to achieve a defined motion path in space because it would be 

complicated by speed and other factors. 

(i) Spatial Resolution: The spatial resolution of a robot is the smallest incremental 

movement into which the robot can divide its work volume. Spatial resolution depends on 

two factors: the system’s control resolution and robot’s mechanical inaccuracies. The 

control resolution is determined by the robot’s position control system and its feed back 

measurement system. It is the controller’s ability to divide the total range of movement 

for the joint into individual increments that can be addressed in the controller. The 

increments are some times referred to as “addressable points”. The ability to divide the 



joint range into increments depends on the bit storage capacity in the control memory. 

The number is separate, identifiable increments (addressable point) for a particular axis is 

given by 

 n2increments ofNumber =  (1.1) 

where n is the number of bits in the control memory. 

The control resolution is defined as the total motion range divided by the number of 

increments. It is assumed that the system designer will make all the increments equal. 

This definition is applicable for robots with one joint. A robot with several degrees of 

freedom would have a control resolution for each joint of motion. To obtain the control 

resolution of the entire robot, component resolution for each joint would have to be 

summed up vectorially. The total control resolution would depend on the wrist motions as 

well as the arm and body motions. Since some of the joints of robots are combinations of 

rotary and prismatic joints the robots control resolution is difficult to determine.  

Mechanical inaccuracies in the robot’s link and joint components and its feed back 

measurement system constitute the other factor that contributes to spatial resolution. The 

mechanical inaccuracies can be listed as: 

(a) Elastic deflection in the structural members, 

(b) Gear backlash, 

(c) Stretching pulley cord, 

(d) Leakage of hydraulic fluids, 

(e) Other imperfections in mechanical systems. 

These inaccuracies tend to be worse for the larger robots simply because the errors are 

magnified by the larger components. The spatial resolution of the robot is the control 

resolution degraded by these mechanical inaccuracies. Spatial resolution can be improved 

by increasing the bit capacity of the control memory.  

(ii) Accuracy: Accuracy refers to a robot’s ability to position its wrist end at a desired 

target point within the work volume. The accuracy of a robot can be defined in terms of 

spatial resolution because the ability to achieve a given target point depends on how 

closely the robot can define the control increments for each of its joint motions. In the 



worst case the desired point would lie in the middle between two adjacent control 

increments. Ignoring the mechanical inaccuracies that reduce the robot’s accuracy, under 

worst case assumption, the accuracy becomes half of the control resolution. This 

relationship is illustrated in Fig. 1.1. In fact the mechanical inaccuracies would affect the 

ability to reach the target position. Accordingly the robot’s accuracy can be defined as 

one-half of its spatial resolution as shown in Fig. 1.2 

 

Fig. 1.1 Accuracy of Robot in Absence of Mechanical Inaccuracies 

 
Fig. 1.2 Accuracy and Spatial Resolution with Statistical Distribution of Mechanical Inaccuracies 

The definition of accuracy applies to the worst case, where the target point is directly 

between the two control points. This definition implies that the accuracy is the same 

anywhere in the robot’s work volume. In fact accuracy of a robot is affected by several 



factors. First the accuracy varies within the work volume, tending to be worse when the 

arm is in outer range of its work volume and better when the arm is closer to its base. The 

reason for this is that the mechanical inaccuracies are magnified with the robot’s arm 

fully extended. The mechanical errors will tend to be reduced when the robot is exercised 

through a restricted range of motions. The robot’s ability to reach a particular reference 

point within the limited workspace is called its local accuracy. When the accuracy is 

assessed within the robot’s full work volume, the term global accuracy is used. 

(iii) Repeatability: Repeatability is concerned with the robot’s ability to position its wrist 

or an end effector attached to its wrist at a point in space that had previously been taught 

to the robot. Repeatability and accuracy refer to two different aspect of the robot’s 

precision. Accuracy relates to the robot’s capacity to be programmed to achieve a given 

target point. The actual programmed point will probably be different from the target point 

due to limitations of control resolution. Repeatability refers to the robot’s ability to return 

to the programmed point i.e. the point (P) reached by manipulator because of spatial 

resolution, when commanded to do so. These concepts are illustrated in Fig. 1.3. 

 

Fig. 1.3 Repeatability and Accuracy 

The desired target point is denoted by T, because of the limitations on its accuracy, the 

programmed point becomes point P. Subsequently the robot is instructed to return to the 

programmed point P; however it does not return to the exact same position. Instead it 

returns to position R. The difference between P and R is a result of limitations on the 



robot’s repeatability. The robot will not return always to the same position R on 

subsequent repetitions of the motion cycle. Instead it will form a cluster of points on both 

sides of the position P in Fig. 1.3. Repeatability errors form a random variable and 

constitute a statistical distribution as shown in the figure. It would be convenient if the 

repeatability errors formed a nice bell shaped curve, suggesting a normally distributed 

random variable. What is closer to the reality is that for each joint, the mechanical in 

accuracies that are principally responsible for repeatability errors do not form nice 

symmetric bell-shaped distribution shown in the figure. However, when the errors from 

several axes of motion are combined together the resulting aggregate error is influenced 

by the central limit theorem in probability. The central limit theorem states that the “sums 

of random variables tend to form a normally distributed variable, even though the 

individuals come from a distribution other than normal”. Accordingly, inference that the 

repeatability error of a robot with five or six axes is approximately normal, even if the 

error due to each axis is not normal. 

An analogy to some of the performance parameters of a robotic system can be 

obtained by examining the performance of an archer or marksman who is attempting to 

place a projectile on a target, as represented in Fig. 1.4. The archer shoots his arrows 

from a fixed location in space and that the target is at a fixed location. The dynamic 

performance measures describe the quality of the path of the arrow, while for the static 

performance measures, the path of the arrow is not important. The static performance of 

the archer is measured by the placement of the arrow in the target. Accuracy and 

repeatability describe the ability of a robot to move to a desired location without any 

deviation and to follow a desired trajectory with little or no variance. 



 
Fig. 1.4 Illustrations of Repeatability and Accuracy 

1.4 IMPORTANCE OF ROBUST ROBOTIC MANIPULATOR DESIGN 

A robust product is one that works as intended regardless of variation in a product's 

manufacturing process, variation resulting from deterioration, and variation in use. 

Taguchi’s robust design method may achieve this goal desensitizing a product's 

performance characteristic(s) to variation in critical product and process design 

parameters. 

Three of the most common types of design parameters that influence quality 

characteristics are signal, noise, and control. Signal parameter levels are set by the user to 

produce the desired functional response, such as speed, thrust, and frequency. Noise 

parameters are difficult or expensive to control. They deviate from target values through 

unit-to-unit variation resulting from manufacturing processes and through deterioration 

from aging and wear. Control parameters are specified by the designer to minimize noise 

parameters that may or may not change the cost of the product. Tolerance factors are 

control parameters that affect costs. 

Orthogonal array techniques reduce the number of parametric variations and 

combinations required to determine the most optimum control parameter adjustment. 

Tolerance design may be necessary to bring the performance to target. Tolerance design 

trades off quality loss due to variations in performance with increased cost to tighten 



manufacturing tolerance and cost of higher grade materials and components. Parameters 

independent of quality characteristics are adjusted to cost, reliability, operations, or other 

quality considerations. Robust design aims for the widest operating environment, low 

grade components and materials, and widest manufacturing tolerances and variations for 

least product cost and operation.  

By selection of optimal parameters of manipulator following benefits will be 

achieved. The benefits will be in terms of quality of the manufactured product and the 

improvement in robot performance during the operation. The robot will be capable of 

performing the task with less variation. In processes that require a minimum of variations 

while performing task, robots will be able to perform these operations with greater 

uniformity than human workers. The processes can be fine tuned to operate at optimum 

condition, and these conditions contribute to higher quality. For processes that require 

consistency in the motion pattern e.g. spot welding, spray painting, robots will 

accomplish these tasks with more repeatability than humans. 

1.5 PROBLEM FORMULATION 

As mentioned in the preceding section, robots are commanded to perform a task in 

workspace. For performing a task within workspace, different type of trajectories are 

needed to be selected depending on the requirement. But the desired performance is not 

achieved because of presence of various forms of inaccuracies in parameters of 

manipulator. These inaccuracies are very difficult though not impossible to quantify and 

model. 

Therefore, available dynamic model using Lagrange-Euler method is used to simulate 

the performance of manipulator. The performance obtained from simulation would be 

deterministic in nature and devoid of effect of inaccuracies of parameters. Therefore, to 

simulate real life performance without help of prototype become a challenge in itself.  To 

assuage this difficulty it is decided to develop a mathematical approach by which real life 

performance can be simulated and modify the available techniques to analyze and 

optimize the performance of manipulator. While attempting this, available literatures are 

thoroughly reviewed to obtain the gaps and to avoid any duplication. It is observed that 

because of non-availability of proper mathematical approach for simulation of real life 



performance, the effects of kinematic and dynamic parameters and their tolerances on 

performance have not been studied. The use of design of experiment techniques to 

analyze, interpret correctly and optimize the performance has been observed to be 

nonexistent. The possible reason for no attempt could be technical difficulty and lack of 

awareness of the robot system designer. 

Among the performance of the manipulator accuracy and repeatability are most 

important performance. There are many literatures available in the direction of accuracy 

reductions of manipulators. Techniques like robot calibration and compensation are used 

to reduce this type of error. But there are few attempts in the direction of repeatability 

reduction of manipulator. Except identifying the sources of poor repeatability there are 

almost no attempt to minimize this type of performance variations. Present thesis 

challenges the prevailing idea and attempts to devise methods by which performance 

variations can be reduced. This advocates additional effort in the direction of segregating 

the contributions of performance variations. In this pursuit, the various performance 

measures proposed by researchers are introduced to investigate the contribution of 

various design parameters and its tolerances on manipulator performance variations. 

There are almost no attempts to reduce the performance variations of manipulator by 

selecting optimal kinematic and dynamic parameters in the published literature which has 

been reviewed in next chapter. The major hindrances come in this direction because of 

non-availability of suitable simulation methodology to simulate real life performance of 

manipulator. Likewise another difficulty arises in terms of suitable optimization strategy 

to select optimal kinematic and dynamic parameters. Since the use of simulation and 

optimization based approach, prior to costly manufacture of manipulator will reduce the 

overall cost, present thesis attempts to develop a suitable simulation method and modifies 

available optimization method to provide suitable tools to the designers. There have been 

several performance measures proposed by researchers to take care of kinematic and 

dynamic performances but none addresses accuracy and repeatability while performing 

task. This does not allow critical analysis of performance of manipulator within the 

workspace. Therefore, the present work develops approach to simulate the performance 

of manipulator and uses design of experiments technique to find statistically significant 

parameters which contributes the most to performance variations, and finds optimum 



combinations which is insensitive to effect of noise parameters. The work explores the 

effect of various parameters on performance. Design parameter tolerances also contribute 

to the performance variations of the manipulator, therefore design of experiment 

approach is used to investigate the statistical significance of parameter tolerances. Apart 

from above approaches there are almost no attempt to find optimal parameters based on 

performance of manipulator using conventional and non-conventional optimization 

approaches. As it is difficult to model the performance of manipulator in terms of design 

parameters, to obtain the optimal design parameters non-conventional (evolutionary) 

optimization technique is applied. The proposed approach is another off-line simulation 

optimization based approach which compliments the discussed design of experiment 

approach and searches for optimal solution with in the parameter bounds rather than at 

the corner points. 

Investigations for optimal design which demands the introduction of performance 

variations reduction in manipulator design are almost nonexistent. The present work 

divides the investigation of effects of parameters and tolerance of manipulator on 

performance measure and optimal design in following steps: 

• Attempt to simulate the performance using heuristic search based approach and 

finding optimal solutions. 

• Development of probabilistic approach to simulate the performance of 

manipulator. 

• Use of Combined array and Fractional factorial design of experiments approach 

to screen the parameters. 

• Classification of parameters i.e. parameters for which investigations need to be 

pursued and no further investigation should be pursued. 

• Development of dimensionless indices and exploration of effect of change of 

these indices on performance measure. 

• Exploration of the optimal dimensionless number combination for optimal 

performance measure. 

• Exploration for the optimal design parameter for robust design using response 

surface methodology (RSM). 



• Development of second order response equation for manipulator for performing 

a task following a particular trajectory. 

• Development of mean and variance of performance equation in parametric 

form. 

• Formulation of optimization problem using both mean and variance of 

performance equation. 

• Use of MATLAB fmincon optimization routine to obtain the optimal design 

parameters. 

• Use of cross array design of experiment approach to obtain optimal control 

factor tolerance and validation using Monte Carlo simulation approach. 

• Exploration of parametric tolerance sensitivity. 

• Development of hybrid optimization technique which takes real life 

performance into consideration in optimization process. 

• Conclusions and future perspective. 

1.5.1 Thesis Outline 

Conventional optimization paradigms are focused on maximizing or minimizing a certain 

performance measure of a system subject to some design constraints. In this, traditional 

view of optimization, the system design process is implicitly assumed to be deterministic 

in that is for a given input, the system will always produce the same output. In reality, 

however, this is not the case. There is a lot of uncertainty and variability involved in the 

design process that affects the system either directly or indirectly. Because of this 

uncertainty, the output performance of the system will be different from that predicted 

deterministically, which translates into an inferior system. So the problem is how to 

optimize a system given all the uncertainties? 

There are many sources of uncertainties that can influence a system. The variability in 

the inputs to the system is an obvious source of uncertainty. For an example an 

automotive power train system, this may include dimensional variation in the power train 

components, variation in the material properties, etc. The environment and operating 

condition under which the system is used is also another source of uncertainty. Weather 

(snow, rain, summer time, etc.) and road condition (city roads, desert, mud, etc.) are 



examples of this type of uncertainty. In a simulation-based design process, the 

discrepancy between the mathematical models and the real world system is an important 

source of uncertainty. These issues are highly relevant to real-world engineering design 

practice, and their applications will have a positive impact on the product design and 

development strategy. 

A model of product metric is simply a representation, simplification or estimation of a 

product’s realization to aid in making product decisions. Trial and error approaches to 

improve quality of product are too costly and risky. Effective models must be developed 

during the product development process so that experiments can be conducted. With the 

use of quantitative model it is easier to understand how a product will perform under all 

circumstances and operating conditions.  

The task of robust design is to select a best set of nominal configuration parameters 

that satisfies the performance specifications with minimum deviation due to manufacture, 

material, or use variations. A product is considered as a black box input-output model. 

The product uses material, information, and energy to produce output. 

In Chapter 2, the reviews are organized chronologically in two parts. The first part 

presents the review on approaches, techniques and design procedures developed to 

improve the performance of robot and the second part discusses robust design techniques. 

This chapter highlights the development of methodology and approaches, over the years 

to improve robot performance. In later stage this helped finding the gap and formulating 

the problem.  

In Chapter 3, the initial attempt to develop a heuristics search based method to 

simulate the performance incorporating effect of noise on manipulator is discussed. For 

optimal parameter design full factorial design of experiment approach has been applied. 

Statistical analysis of simulated results has been carried out to identify parameters 

responsible for performance variations. Lastly limitations of the proposed method have 

been discussed. 

Taking identified control and noise parameters and clue from Chapter 3, a 

probabilistic approach to simulate the performance is proposed in Chapter 4. The 

developed approach is used to screen the parameters, which have statistically significant 

influence on performance variability. To investigate the influence of time law of the 



trajectory, cubic and quintic trajectories are considered for performing different tasks. In 

addition to this investigation, impact of two dimensionless indices on performance of 

manipulator has been attempted. The performance sensitivity of manipulator to parameter 

change has been presented. To complement above investigation, manipulator control 

parameter tolerance sensitivity to performance measure has also been carried out for task 

following both of the time law. This investigation is similar to conducting experiments by 

changing one factor tolerance at a time. 

In Chapter 5, identified statistically significant parameters in Chapter 4 have been 

used to get the optimal design parameters using response surface methodology. The 

response equation for mean and variance of performance are developed. Using these 

fitted models optimal solutions are obtained.  

To reduce the variability in performance further, optimal tolerance of design factors 

of manipulator are searched for. For manipulator parameter tolerance design, cross array 

design of experiment approach has been applied in Chapter 6. The method to simulate the 

performance of manipulator has been discussed. Statistical analysis of simulated results 

has been carried out and the optimal parameter tolerances, which deliver optimum 

performance, have been provided. To validate the results obtained in cross array design 

of experiment approach help of Monte Carlo simulation method is taken. The results have 

been compared and presented. 

To achieve similar objective as discussed in Chapter 5, an attempt has been made to 

obtain the optimal design parameters of manipulator using a non-conventional 

optimization method. In Chapter 7, differential evolution optimization approach to find 

the optimal parameters of manipulator is discussed. However, this method has inherent 

deficiencies to handle simulated performance of a system, therefore a hybrid evolutionary 

optimization method has been proposed. The proposed method is applied to select 

optimal design parameters of manipulator. The results obtained have been presented for 

different tasks following different trajectories.  

In Chapter 8, the conclusions made in all the above chapters are summarized. Then 

the future perspective of the investigations has been high lighted. 



 

1.6 CONTRIBUTION OF THESIS 

The main contribution of this thesis is the development of a method for simulating the 

performance of manipulator and application of design of experiment technique to find 

optimal parameters and tolerances and development of hybrid evolutionary optimization 

technique. Applications of design of experiments techniques to mathematical models are 

rare. This thesis illustrates how design of experiments techniques is applied to 

mathematical models and used to determine statistically significant parameters and 

optimal parameters. The design of experiment and non-traditional optimization method 

presented are theoretically rigorous computational technique. The methods are fully 

applicable to any system which has coupled and nonlinear dynamic model. 

The thesis maintains that design of experiments and evolutionary techniques are 

important concepts that guarantee optimal solution with minimal number of computation. 

This application uses all good aspects of design of experiments, Taguchi method and 

evolutionary optimization method towards robot parameter design and optimization 

systems. 

To achieve higher performance and better design of robotic systems, the effect of the 

actuator's parameters on the capabilities of these systems has to be understood. 

Significant work has been done in this thesis to develop design strategies for manipulator 

designs for use in an array of applications. 



CHAPTER-2 
 

LITERATURE REVIEW 
 
 

2.1 INTRODUCTION 

The literature review in this chapter is organized in two parts; first is the review on 

techniques and design procedures to improve the performance of robot and the second is 

on various robust design techniques. Research trends to improve positioning accuracy 

and repeatability of robot as well as the techniques for their improvement through 

calibration process for robots are reviewed. Research in the direction of measurement and 

identification of parameters of robot mechanisms, as well as to compensation of 

positioning errors introduced by the differences between the actual robot and the 

idealized (nominal) kinematic robot model are surveyed. Research attempts to analyze 

and improve dynamic accuracy and design optimization approach have also been 

systematically reviewed. 

It is known that successful products rely on the best possible design and its 

performances. These designs are usually produced using the tools of engineering design 

optimization in order to meet design targets. However, conventional design optimization 

may not always satisfy the desired targets due to the significant uncertainty that exists in 

material, geometrical and process parameters. Therefore, ways to minimize the effect of 

uncertainty on product design and performance are of paramount concern to researchers 

and practitioners. The objective of robust design is to optimize the mean and minimize 

the variability that results from uncertainty represented by noise factors. The various 

objective functions and analysis techniques used for the Taguchi based approaches and 

optimization methods are reviewed. Robust optimal design methods are reviewed 

extensively and application of the robust design methods to different areas have been 

discussed. Most applications of robust design have been concerned with static 

performance in mechanical engineering and process systems, and applications in robotics 

are rare. The robust design of manipulators with kinematic and dynamic parameter 

uncertainty in the robotic system is used to obtain the optimal design. 



This chapter is organized in five sections. In section 2.2 different approaches to 

improve performance of manipulators are discussed. This section is discussed with the 

help of subsections. Sub-Section 2.2.1 discusses research results on robot calibrations. In 

this section kinematic model suitable for calibration, procedures for measurement and 

identification of kinematic parameters, and techniques for compensation of positioning 

errors introduced by idealized kinematic models are discussed. Sub-section 2.2.2 

discusses outlines of local calibration approaches other than discussed above available to 

improve positioning accuracy are presented. Along with kinematic calibration, precise 

identification of parameters of the dynamic robot model has received considerable 

emphasis in recently published literature. The research results are reviewed in sub-

section 2.2.3. Different procedures for evaluating the effect of inaccuracies in dynamic 

parameters on the internal accuracy of robot trajectory tracking are reviewed in sub-

section 2.2.4. Similarly different research attempts in the direction of design parameter 

optimization to improve performance of manipulator are presented. 

2.2 METHODS TO IMPROVE PERFORMANCE OF MANIPULATOR 

Robotic applications have been expanding since the introduction of robots in industries in 

the last century. The potential increase in the productivity and quality with deployment of 

robots in place of human operators is often the major reason for their use in many 

industrial applications. The ever increasing applications not only include the 

manufacturing processes, but also include applications in other fields, such as space, 

medicine and nuclear science. One of the serious bottlenecks for newer robots is the 

requirement that robots must be both accurate and repeatable. The performance 

characteristics like accuracy and repeatability required depends on the application. The 

question is, can new technology be utilized that will allow one to improve the 

performance characteristics of robots related to the positioning accuracy and 

repeatability? The positioning accuracy and repeatability are characterized by the error 

between the tool frame and the goal frame which has been a technological barrier in the 

robotics industry and the industry is searching for solutions for its reduction or 

“elimination”. 



The measures to improve performance of manipulators, over the years to improve 

performance of manipulators, which is a very vast concept, is the research area that has 

received considerable attention including a publication of a specialized monograph by 

Moorings et al. [Mooring 1991]. Robot accuracy is influenced by a number of factors. 

Kochekali et al. [Kochekali 1991] classified the factors that influence accuracy into six 

categories: 

• Environmental (for example, temperature changes), 

• Parametric (variation of kinematic parameters, joint zero-reference offsets, 

• Influence of dynamic parameters (drive-train compliance, friction and other 

nonlinearities, including hysteresis and backlash), 

• Measurement (resolution and nonlinearity of joint position sensors), 

• Computational (computer round-off and steady-state servo errors), and 

• Application (installation errors, and workpiece position and geometry errors). 

Analysis of their influence and elimination of causes is a subject of active research aimed 

at improving both kinematic and dynamic performance of a manipulator leading to better 

accuracy and repeatability. 

The research trends to improve performance have been categorized by 

different approaches as given below. 

(i) Kinematic Calibration, 

(ii) Local calibration approaches to improve positioning accuracy of manipulator, 

(iii) Identification of dynamic parameters, 

(iv) Influence of dynamic parameters to trajectory tracking accuracy, 

(v) Design optimization of manipulator parameter. 

2.2.1 Kinematic Calibration 

Robot calibration is a process by which robot accuracy can be improved by modifying the 

robot positioning software rather than altering the design of the robot or its control 

system. The term calibration assumes a set of procedures aimed at improvement of robot 

accuracy by software without changing the mechanical structure or robot control system 

[Roth 1991]. For precise identification of robot parameter values, the procedure involves 

developing a model whose parameters accurately represent the real robot. Next, 



specifically chosen features of the robot are accurately measured. This step is followed by 

identification procedure to compute those parameter values, which when input in the 

robot model accurately reflect the measurements made. 

Robot calibration makes possible the implementation of off-line designed computer 

integrated systems. Large time-saving is possible and costly mistakes can be avoided 

when the robot task can be planned and simulated off-line. Another important utility of 

robot calibration is the calibration for improvement in motion control and simulation. 

Precise identification of geometric and inertial parameter values is important for accurate 

control and simulation of the robot motion. 

Kinematic calibration is a process which involves identification of functional 

relationship (.)f  between joint sensor readings ],.......,[ 21 nqqqq =  and the 

transformation ET  that describes the actual position and the orientation of the robot end-

effector. Application of calibration procedure is discrete event, contrary to control 

schemes where model identification is carried continuously. A significant number of 

researchers have published their work in this last few years, were mostly devoted to 

analysis of models suitable for calibration purposes. 

Generally kinematic model-based calibration is considered as a global calibration 

method that improves robots accuracy across the whole volume of robot space. 

Kinematic calibration consists of four sequential steps: Modeling, Measurement, 

Identification, Compensation or Correction. 

Modeling - A kinematic model is a mathematical description of the geometry and motion 

of a robot. It is primarily definition and selection of a suitable relationship (.)f . 

Measurement - The measurement phase involves workspace sensing of positions of the 

end effector or tool of the robot e.g. physical data collection for selected set of measuring 

configurations, 

Identification - Parameter identification involves numerical methods. The methods must 

be reliable enough so that a solution can be reached while maintaining a reasonable level 

of confidence in the resulting identified parameter values e.g. determination of model 

parameters so that the error between the measured and the modeled pose is minimized. 



Error compensation - This is the final and decisive step in robot kinematic calibration, 

which is the implementation of the new model in the position control software of the 

robot. Sometimes referred as the correction step e.g. implementation of the identified 

model in the robot positioning software. 

High positioning accuracy with low robot velocities is important, so to solve this 

problem adequate static robot model had to be selected for calibration [Duelen 1991]. 

Roth had proposed a hierarchical classification in which the three modeling levels, e.g. 

three calibration levels were separated (1) Joint level calibration, (2) Kinematic model 

calibration and (3) Non-geometric (non-kinematic) calibration. Among the enumerated 

factors, the maximum attention was given to calibration of geometric parameters, so that 

the static robot model is often simply called the kinematic model.  

Whitney [Whitney 1986] had presented a forward calibration method for serial link 

manipulators. Authors used a model whose parameters represent link lengths, joint 

encoder offsets, the relative orientation of consecutive axes, and experimentally found the 

effects of joint compliance, backlash and gear transmission errors. Later Veitschegger 

and Wu [Veitschegger 1988] had developed a method to select a set of independent errors 

for modeling geometric errors in a manipulator’s structure. A method for calibration of a 

robot to correct position and orientation errors due to manufacturing has been presented 

by Boderick and Cipra [Boderick 1988]. It was based on the shape matrix of robot 

kinematic model description where each joint was individually and successively moved 

in order to explicitly calculate the shape matrix of each link. 

The goal of modeling is to develop the simplest possible model which describes the 

phenomenon under study with desired level of accuracy. Effects of the model complexity 

on resulting robot accuracy are analyzed by a number of researchers. The methods of 

calibrating and compensating for the kinematic errors in robot manipulators have been 

discussed. Ha et al. [Ha 1989] had proposed an approach to identify model parameters in 

which neither prior knowledge of the geometric parameters nor restrictive robot motions 

were required. The number of the model parameters to be identified was minimized 

through a regrouping procedure for the Lagrangian functions of robotic manipulators. 

Vira and Shiferaw [Vira 1989] had presented a higher-order approximation of the 

"generalized" kinematic error compensation model to enhance position accuracy and 



repeatability of robotic manipulators. The "generalized" model originally proposed by 

Driels and Pathre was successfully extended to include non-linear coupling effects among 

all error parameters. Judd have presented models to calibrate industrial robots [Judd 

1990]. The models developed, corrects problems with robot accuracy resulting from 

errors in the link and joint parameters, imperfection in the main spur and encoder pinion 

gears and structural deformations. Driels [Driels 1993] had attempted to improve the 

accuracy of a robot manipulator arm through the use of a calibration process. 

Subsequently Zak et al. [Zak 1993] had provided the necessary tools for the optimization 

of the calibration process, where a computer simulation of robot calibration and a 

systematic method for the evaluation of this calibration had been developed. They 

presented the generalized method for simulating the robot calibration procedure and 

evaluating its performance in terms of the robot’s expected accuracy after the calibration. 

Goswami and Bosnik [Goswami 1993] expressed end-effector pose of a robotic 

manipulator with respect to a reference coordinate frame in terms of nonlinear 

mathematical functions involving the link parameters and joint variables. Karan and 

Vukobratovic [Karan 1994] had discussed recent research results in the field of 

calibration and accuracy of kinematic and dynamic models for manipulation robots. 

Driels and Swayze [Driels 1994] had reported research related to methods used to 

provide partial pose data for robot calibration tests. Rather than focusing on traditional 

precision measurement techniques, they discussed calibration using end point motion 

constraint of various kinds. Kaizerman et al. [Kaizerman 1994] had proposed a new 

inverse kinematic calibration method, model based method where a first order 

relationship was obtained between the errors in the joint encoder readings and the 

necessary corrections to the kinematic parameters of the robot model. 

The basis of every calibration model is an adequate kinematic model, which should 

be able on one side to express deviations due to errors in construction and assembly of 

the robot links and the errors in setup of the zero-reference readings of the joint encoders, 

on the other side to describe propagation of errors due to nonlinear phenomena. A 

systematic methodology to perform the error analysis of serial link manipulators had been 

proposed by Mavroidis et al. [Mavroidis 1998] and its application to the patient 

positioning system was described. Experimental measurements that verified the validity 



of the method were shown. Abderrahim and Whittaker [Abderrahim 2000] have 

presented methods to improve the off-line programming capability of industrial robots by 

improving their accuracy. Rather than imposing more strict manufacturing tolerances, it 

was widely accepted that a method of identifying kinematic parameters specific to each 

individual robot provides a cost effective way of improving accuracy. Gong et al. [Gong 

2000] had investigated the effect of geometric errors, link compliance and temperature 

variation on robot positioning accuracy. The comprehensive error model was derived for 

combining geometric errors, position–dependent compliance errors and time–variant 

thermal errors. A general methodology was also developed to identify these errors 

simultaneously. Ouafi et al. [Ouafi 2000] had presented a new approach designed to 

improve the accuracy of multi-axis CNC machines through software compensation of 

geometric, thermal and dynamic errors. Based on a multi-sensor monitoring system, the 

proposed compensation scheme was built to ensure error prediction. Sultan and Wager 

[Sultan 2001] had used the independent-axis technique for the analysis with new 

mathematical models proposed to overcome the drawbacks of the existing methods. 

Moreover, the techniques employed here result in the prediction of transmission error 

functions and the modeling of the joint motion dependencies. Jang et al. [Jang 2001] had 

pointed that inaccurate positioning of the robot end effector causes joint deformation as 

well as geometric errors when an industrial robot has a payload at its end effector. Veryha 

and Kurek [Veryha 2003] had presented a method of robot end-effector pose accuracy 

improvement using joint error mutual compensation. The developed method had allowed 

locating special robot configurations with the highest robot end-effector pose accuracy 

using joint error maximum mutual compensation. 

Robot calibration technique is usually employed for evaluating the positioning 

accuracy of robots. In this method, one measurement is recorded each time the movement 

stops at a target position along the axis under test. As can be noted, this calibration 

technique does not consider the real mode of operation of the machine. The accuracy 

performance of the controller and measuring system of the machine depend on the way in 

which the machine moves to the target positions. Dynamic effects which are inherent 

during machine working affect the positional errors of the slide. Furthermore, this 



technique may be very time-consuming and labour intensive and may make the whole 

calibration process costly. 

Calibration itself is costly, and it causes the additional loss due to stopped production. 

On the other hand, any delay in idling the production process in order to perform 

calibration increases the probability of producing nonconforming units. Finally, it is 

difficult to judge which method is better since the relative contribution of geometric and 

non-geometric errors to robot accuracy vary from one robot to another. 

2.2.2 Local Calibration Approaches to Improve the Positioning Accuracy 

The described kinematic calibration techniques can be classified as global techniques. 

Although they are suitable in situations where it is anticipated that the robot operation 

will be performed in a wide workspace, they are generally characterized by the long 

duration of the calibration procedure and the high complexity of the compensation model. 

An alternative approach is to utilize local calibration techniques. In these techniques, 

rather than modeling various robot error sources explicitly, positioning errors were 

measured in localized regions, relative to workpieces, and such measurements were used 

for creating local inaccuracy distribution equations by using regression or weighted 

models. The local models are less complex than the global models, and they can provide 

a good basis for automatic calibration. 

Vertutt and Liegeois [Vertutt 1981] had presented an approach to analyze the 

essential qualities of manipulators such as position, orientation, force, acceleration and 

stiffness. These properties were displayed graphically in a condensed form, which 

allowed the designer to evaluate easily the influence of the various design parameters 

upon the capabilities of a projected arm to perform expected classes of tasks. Kumar and 

Waldron [Kumar 1981] developed a mathematical model of the random positioning 

errors of mechanical manipulators. This model was applied to a computer program to plot 

the generating curves of equal error surfaces for given manipulator geometries. 

Veitschegger and Wu [Veitschegger 1986] had presented detailed model that was applied 

to consecutive parallel joints and included the second-order terms. By comparing the 

results of the linear model and the second-order model, the accuracy of the linear model 

was evaluated for a given manipulator and range of input kinematic errors. Colson and 

Perreira [Colson 1985] had presented generalized set of performance criteria, not biased 



towards any particular robotic system and described the relationship of these measures to 

satisfactorily develop online and offline programs for a robotic system to perform an 

operation. Chen and Chao [Chen 1987] had identified and parameterized the sources that 

contribute to positioning accuracy and estimated the values of the parameters. Benhabib 

et al. had presented task-space tolerances as geometric pseudo-volumes which can easily 

be adopted by any industrial robot [Benhabib 1987]. The algorithms developed for the 

“direct” and “inverse” error analysis was used as independent software modules in any 

computer- aided design package for robots. The feasible joint-tolerance domain concept 

introduced herein provides the designer with the flexibility of specifying different 

tolerance requirements for the joints and selecting an optimal set of tolerances. Azadivar 

[Azadivar 1987] had studied the effect of manufacturing errors on the accuracy of the 

operations using a stochastic model and suggested a procedure for determining the 

optimum position error in a given manufacturing situation. Chen and Chao [Chen 1988] 

had examined error sources that contribute to positioning accuracy of robots with rotary 

joints. The effects of errors were parameterized and measurement data were fitted to 

obtain the values of these parameters. It was concluded that with sufficient but not 

exhaustive detail in the error modeling the differences can be reduced significantly from 

5.9 mm mean error with nominal model down to 0.28 mm mean error after error 

compensation. Bhatti and Rao [Bhatti 1988] had introduced reliability as a probabilistic 

measure of manipulator kinematic performance. 

A complementary area to the identification of kinematic error parameters is study of 

the statistical performance of robot positioning and statistical analysis of relationship 

between the errors in parameters of the model and the performance of the robot. Stone 

and Sanderson [Stone 1988] had applied Monte Carlo simulation techniques to 

investigate the influence of encoder calibration errors and machining and assembly errors 

to different robot performance characteristics. Starting from a linear error model and 

assuming independent and normally distributed geometric errors, Menq and Borm [Menq 

1989] had shown that the contour of equal probability of position errors (positioning error 

envelope) forms an ellipsoid. The probability with which the position error lies within the 

ellipsoid was governed by the two distributions. They proposed five error measure 

indices to statistically quantify the error ellipsoid. 



Jiang et al. [Jiang 1989] had outlined robot process capability problem and defined 

the terms. Two methods were used to analyze robot process capability data: the 

randomized complete block design method and the Taguchi based experimental design 

methods. The purposes of the study was to compare the results obtained by these two 

methods and determine which method was better for analyzing the data to be used in 

determining/optimizing a robot's process capability. Wang and Roth [Wang 1989] had 

studied the effect of the clearances on the position errors. The study was conducted to 

find influence of joint errors on manipulator and mechanisms accuracy. Lee and Woo 

[Lee 1989] had investigated the effect of geometrical uncertainty and the probabilistic 

tolerance volume due to joint errors. For this purpose, linear mapping from q∆  space to 

d∆  space through Jacobian matrix was analyzed probabilistically. Gosselin and Angeles 

[Gosselin 1991] had presented a novel performance index for the kinematic optimization 

of robotic manipulators. The index was based on the condition number of the Jacobian 

matrix of the manipulator, which was known to be a measure of the amplification of the 

errors due to kinematic and static transformations between the joint in Cartesian spaces. 

Lee and Gilmore [Lee 1991] had presented a probabilistic model and methods to 

determine the means and variances of the velocity and acceleration within stochastically 

defined planar pin jointed kinematic chains. The presented model considered the effects 

of tolerances on link length and radial clearance and uncertainty of pin location as a net 

effect on the link’s effective length. Shing and Loon [Shing 1992] had performed 

experiment and statistical analysis to evaluate the repeatability of a SCARA robot and 

proposed an alternative form of specification for repeatability. Gosselin [Gosselin 1992] 

had presented new dexterity indices that were applied to planar and spatial manipulators. 

These indices were based on the condition number of the Jacobian matrix of the 

manipulators, which was known to be a measure of their kinematic accuracy. Rastegar 

and Singh [Rastegar 1994] had developed a probabilistic method that can be used to solve 

a number of manipulator analysis, optimal synthesis, and task placement problems. This 

method was used to check whether the task requirements were met for a given 

manipulator and it was extended to the problems of determining kinematic parameters for 

which the task requirements were most closely met. Liu and Wang [Liu 1994] had 

assessed positioning accuracy of robot end-effectors using reliability approaches. The 



reliability provided a statistical means for representing robot accuracy. Both linear 

regression and iterative Taylor series methods were used to deal with limit states in 

reliability calculation. Kamrani et al. [Kamrani 1995] had developed a graphic simulation 

system for robotics operations, in conjunction with a kinematic error model to assist 

management in making investment decisions. Taguchi-type experimental design was 

used to predict the robot process capability. Vukobratovic and Borovac [Vukobratovic 

1995] had developed accuracy portrait for specified deviations of links parameters, 

showing the gripper deviation over the whole working volume. In addition, by changing 

links parameters deviations, whole families of portraits with the accompanying deviations 

were obtained. This information was used in the stage of the mechanism assembly to 

select links with appropriate deviations to ensure a desired accuracy portrait. Singh and 

Rastegar [Singh 1995] had presented a method to represent and measure the global 

manipulability of manipulators. The method was based on a new concept, referred to as 

the global velocity ellipsoid, which represents the global motion manipulability or the 

velocity transmission characteristics of a manipulator. Doel and Pai [Doel 1996] had 

introduced formalism for systematic construction of performance measures of robot 

manipulators in a unified framework based on differential geometry. Dhillon and 

Fashandi [Dhillon 1997] presented an overview of the most suitable robot safety and 

reliability assessment techniques. 

Ouezdou and Regnier [Ouezdou 1997] had dealt with the kinematic synthesis of 

manipulators. This method was based on distributed solving and used to determine the 

dimensional parameters of a general manipulator which will be able to reach a set of 

given tasks specified by orientation and position. Jiang et al. [Jiang 1997] had compared 

the results of accuracy from measurements of two systems and determined the degree of 

agreement and used the Taguchi method, as a basis of comparison analyses. In doing so, 

the accuracy of the robot under various operating conditions (load, speed, distance, 

direction, orientation, starting point and height) can also be determined. Edan et al. [Edan 

1998] had developed a three dimensional statistical evaluation framework for 

performance measurement of robotic systems. A specific experimental setup was 

designed, implemented and evaluated for different robot characteristics (velocities and 

target locations) and for a specific task. A statistical analysis method to evaluate the 



performance was demonstrated. Riemer and Edan [Riemer 2000] had evaluated the 

influence of target location on robot repeatability. An experiment was set up to analyze 

the effect of the three-dimensional target location on robot repeatability. Zhu and Ting 

[Zhu 2000] had established a general probability density function (p.d.f.) of the endpoint 

of planar robots. The p.d.f. of the endpoint of a planar robot was equivalent to that of 

endpoint of a string of planar joint deviation vectors. Carrerasa and Walker [Carrerasa 

2000] had applied interval methods to obtain significantly improved robot reliability 

estimates via fault trees for the case of uncertain and time-varying input reliability data. 

In this paper different parameterization strategies were evaluated in order to gain a 

complete understanding of the potential benefits of the approach. Kalanas and Kota, 

[Kalanas 2001] had proposed a method in which intermediate precision positions were 

expressed as a distribution. This method expanded the resulting set of acceptable 

solutions by adding an extra dimension to Burmester solutions i.e., Burmester surfaces 

instead of Burmester lines. 

2.2.3 Identification of Dynamic Parameters  

While considering the case of trajectory tracking, new factors appear, influencing 

primarily the internal trajectory tracking accuracy. An important source of the internal 

tracking inaccuracy is an imprecise knowledge of the dynamic robot model: inertia 

parameters of the robot links and the workpiece held by the robot, actuator parameters, 

and deformation of the mechanism links caused by dynamic forces. By separating the 

mechanism dynamics and actuator parameters, influencing the internal trajectory tracking 

accuracy, it can be said as "dynamic accuracy", i.e. the accuracy of the dynamic robot 

model. On the other hand, accurate knowledge of dynamic parameters is of importance 

only when a high-quality tracking of fast trajectories is demanded, and this is more and 

more the case in robotic practice today. However, the assessment of the inaccuracy in 

dynamic parameters is an important factor in evaluation of the quality of robust control 

strategies. Namely, the degree of influence of the accuracy of the dynamic robot model to 

the tracking accuracy depends on both the mechanism structure and the applied control 

algorithm. 

There exist several methods, in the scope of which the problem of robot manipulator 

accuracy is solved by using various control laws. Various control systems are introduced 



enabling good quality of system functioning under the action of significant uncertainties 

in the system itself and the working environment, hereby enabling the compensation of 

the influences of large irregularities during system work. The goal of the synthesis of 

intelligent control systems is similar to the case of conventional adaptive control 

algorithms. Similarity lies in the fact that the knowledge about the system is acquired 

directly during system operation by means of the learning processes, and the difference is 

that with intelligent control systems the uncertainty degree can be reasonably higher than 

that which can be tolerated in the case of adaptive control algorithms. Working 

requirements set in advance, demand supplementary functions of the control system, as a 

perception of the working environment, associative reasoning under the action of 

uncertainty, learning, knowledge generalization and using experience, decision making 

process on several levels, etc. 

For dynamic control of a robot the central issue is to determine generalized forces that 

should be applied at robot joints in order to compensate dynamic forces in the robot 

system. Dynamic forces τ  are considered as functions of joint sensors readings of 

positions q , velocities q�  and accelerations q�� : 

 ),,,,( βατ qqqf ���=  (2.1) 

where α  is the vector of kinematic parameters and β  is vector of dynamic parameters. 

Most of the effort in calibrating dynamic robot models has been devoted to identification 

of inertial parameters of robot links. The degree of uncertainty in dynamic parameters, 

especially in inertial parameters of links, is an important factor in judging the robustness 

of model-based control strategies. Besides off-line estimation procedures of inertial 

parameters of robot links should be preferred over adaptive control schemes, since 

parameters of links do not change once the manipulator is fabricated. 

The problems of generating persistently exciting trajectories for parameter estimation 

have been addressed by Khosla et al. [Khosla 1989]. To achieve the goal they had 

proposed an algorithm that categorizes the dynamic parameters of manipulator into three 

classes: uniquely identifiable, identifiable in linear combination form and unidentifiable. 

Wiens et al. [Wiens 1992] had defined a global measure of the indices and correlated 

quantities such as workspace volume and its reach. A complete investigation of how the 

scalar indices characterize inertial changes due to changes in geometric parameters (such 



as twist angles that may be caused by misalignment or bent shaft, etc) was presented. The 

study was based on the Eigen values, and their derivatives (sensitivities), of the 

generalized inertia matrix as indicators of performance measures. Deck and Dubowsky 

[Deck 1994] had presented work on the development and experimental verification of 

analytical models for the design of dynamic systems. Nenchev et al. [Nenchev 1997] had 

analyzed motion at direct kinematics singularities for a broad class of parallel 

manipulators based on the singularity-consistent parameterization framework. The aim 

was to present a motion feasibility study at and around direct kinematics singularities 

which were relevant to a broad class of parallel manipulators. Reyes and Kelly [Reyes 

1997] described the experimental evaluation of three identification schemes to determine 

the dynamic parameters of a two degrees of freedom direct-drive robot. Samak and Gupta 

[Samak 1998] had presented an efficient dynamic formulation for modeling and control 

of realistic six degrees of freedom robot manipulators. The basic dynamic formulation 

was based upon Kane's approach. Tu and Rastegar [Tu 1999] had developed a method 

using the trajectory pattern to determine the inherent characteristics of the nonlinear 

dynamics of open-loop chain robot manipulators with rigid links. The method was based 

on the selection of a basic trajectory pattern and examining the corresponding inverse 

dynamics model. 

Antonelli et al. [Antonelli 1999] had aimed at setting up a complete and systematic 

procedure for the identification of dynamic parameters of open-chain rigid manipulators. 

The procedure was articulated in the main points needed for the identification for a 

generic open-chain manipulator: model derivation, design of the identification 

trajectories, estimation algorithm and model simplification. Vukobratovic and Filipovic 

[Vukobratovic 2000] had developed the error model of tracking trajectories using a 

dynamic control law. By using the inverse dynamics method a control law was formed, 

into which the robot dynamics model was included. The sensitivity functions, for the 

analyses of the variations influence on the dynamic robot parameters of the trajectory 

tracking accuracy were given. Chan [Chan 2001] had proposed an efficient identification 

method for estimating the lumped parameters of robot manipulators including the 

characteristics of drive dynamics. The nonlinear and coupled dynamics of the robot were 

formulated into a form, which was linear in terms of a suitably selected set of equivalent 



manipulator parameters. Poignet et al. [Poignet 2003] had dealt with the application of 

interval analysis for outer bounding the physical parameters of parallel robots. In this 

paper, the problem of dynamic robot parameter estimation was expressed with a model 

which was linear with respect to the physical parameters. Burkan and Uzmay [Burkan 

2003] had presented a new robust control law for robot manipulators subjected to 

uncertainties. Stability of the system was established by the Lyapunov function, and a 

control law that guaranteed the system stability was derived as a result of analytical 

solution. 

Castro and Burdekin [Castro 2003] described a method for evaluating the positioning 

accuracy of machine tools and coordinate measuring machines under dynamic conditions. 

It was based on the Hewlett Packard 5519A laser interferometer, which was capable of 

performing dynamic calibration. This method used the A-quad-B pulses from the 

machine encoder as the position trigger signals, thus enabling to make measurements 

“on-the-fly”. Stoenescu and Marghitu [Stoenescu 2004] had investigated the effect of 

prismatic joint inertia on dynamics of planar kinematic chains with friction. The 

mathematical model of a planar kinematic chain was developed using Lagrange’s 

equations. 

The directions of problem solving by means of very precise robots realization belongs 

to another area of research. Such robots are specific in the sense that their mechanical 

configuration is simpler, but that means they are more capable of producing higher 

accuracy in trajectory tracking. 

These approaches to solve parameter identification and control problem are limited 

by several reasons. Technological possibilities to produce precise robot parts are among 

the most difficult challenge. Therefore, another group is the methods which model the 

causes of poor robot performance and analyze the influence of the deviations of the real 

values of the model parameters from the nominal onto the accuracy of robot trajectory 

tracking. 

2.2.4 Influence of Dynamic Parameters to Trajectory Tracking Accuracy 

Opposite to kinematic calibration, precise identification of parameters of the dynamic 

robot model received considerably less concern in the recent literature. Lack of interest in 

dynamic calibration can be described partly because of the fact that high positioning 



accuracy is usually required only in static or quasi-static conditions. On the other hand, 

accurate knowledge of dynamic parameters is of importance only when a high-quality 

tracking of fast trajectories is demanded, and this is still rarely the case in industrial 

practice today. The works concerning to modeling the sensitivity of trajectory tracking to 

variations of links inertial parameters and actuator parameters have been discussed. 

Although the results cannot be used directly to calibrate the robot, these can give an 

insight into the influence of the dynamic model parameters.  

Shiller and Dubowsky [Shiller 1991] had presented a method for computing the time 

optimal motions of robotic manipulator that considered the nonlinear manipulator 

dynamics, actuator constraints, joint limits and obstacles. Muthuswamy and Manoochehri 

[Muthuswamy 1992] had dealt with a computer based methodology for the synthesis of 

an optimal tool path for robot manipulators in the presence of obstacles and singularities 

of the workspace. Paredis and Khosla [Paredis 1993] had dealt with two important issues 

in relation to modular reconfigurable manipulators, namely, the determination of modular 

assembly configuration optimally suited to perform a specific task and the synthesis of 

fault tolerant systems. Lu et al. [Lu 1993] had presented a practical method for 

determining the dynamic parameters of robotic arms as a closed chain mechanism. Tu 

and Rastegar [Tu 1993] had used Monte Carlo method to solve a number of manipulator 

link shape design, task space, and obstacle placement problems. Using this procedure 

shape of links of manipulators to operate within geometrically specified enclosures was 

determined. Shiller and Chang [Shiller 1995] presented a method for reducing the 

tracking errors of articulated systems, moving along specified paths at high speeds. It 

consists of preshaping the reference trajectory to account for the dynamics of the 

feedback controller. The trajectory was assumed to be feasible, satisfying the known 

manipulator dynamics and the actuator constraints. The correction term, added to the 

nominal trajectory, was computed by filtering the nominal control inputs through the 

inverse of the feedback controller. 

Madrid and Badan [Madrid 1997] had proposed an on-line heuristic search method to 

solve the robot continuous-path tracking control problem. The numerical technique did 

not require inverse kinematic modeling of the robot and gave accurate tracking with good 

performance in the presence of disturbances. Pons et al. [Pons 1997] had presented a tool 



for identifying and quantifying nonlinear effects appearing during the motion of any 

manipulator, the nonlinear performance index. The index takes into account not only the 

geometrical parameters defining the manipulator but also its structural dynamics through 

the use of inertial parameters like mass, inertia, centre of mass. The index can be used in 

the design stage for analyzing and reducing these undesirable nonlinear effects in any 

general motion or in the trajectory planning looking for paths along which more precise 

control was expected. Duleba [Duleba 1997] had considered the minimum cost 

trajectory-planning problem with fixed time in robot manipulators. The task was solved 

by transforming the problem to a set of free right-end time optimal problems leading to a 

sub-optimal solution. Wredenhagen and Belanger [Wredenhagen 1998] had examined 

robot performance about a target point where the linearized robot dynamics was used. 

The method introduced a task based index characterized in terms of a linear quadratic 

cost criterion for a class of robots. Galicki and Ucinski [Galicki 2000] had presented an 

approach to planning time-optimal collision-free motions of robotic manipulators. It was 

based on using a negative formulation of the Pontryagin Maximum Principle which 

handles efficiently various controls and/or state constraints imposed on the manipulator 

motions. Constantinescu and Croft [Constantinescu 2000] had presented a method for 

determining smooth and time-optimal path constrained trajectories for robotic 

manipulators and investigated the performance of these trajectories through both 

simulations and experiments. The desired smoothness of the trajectory was imposed 

through limits on the torque rates. The third derivative of the path parameter with respect 

to time, the pseudo-jerk, was the controlled input. The limits on the actuator torques 

translate into state-dependent limits on the pseudo-acceleration. Rao and Bhatti [Rao 

2001] had presented techniques to compute the kinematic and dynamic reliabilities of the 

manipulator. The effects of tolerances associated with the various manipulator parameters 

on the reliabilities were studied. Szkodny [Szkodny 2001] had focused on sensitivity 

analyses of position and orientation coordinates of manipulator gripper to errors of 

kinematics parameters. In addition, it highlighted the sensitivity analyses of mass forces 

to errors of dynamics parameters. Zribiy et al. [Zribiy 2001] had developed a variable 

structure control scheme for constrained robots. This control law ensured the asymptotic 

convergence of the position errors to zero and the boundedness of the force tracking 



error. The control scheme required a few online computations and thus can be easily 

implemented. In this manner, the number of model parameters to be identified was 

greatly reduced. Sharma and Mittal [Sharma 2001] had investigated the effect of design 

models on control performance of the manipulator. Different designs model were 

obtained by choosing different dimensional combination of link lengths in a two-degree 

of freedom robotic arm. Furukawa [Furukawa 2002] had found the control inputs, which 

lead the system from the initial state to a desired terminal state without determining the 

path. The performance of the system was dictated by the governing equations of motion. 

Therefore, if a certain cost functional was defined, it was advantageous to derive the 

trajectory that can result in an optimal value for that cost functional, without defining, 

(i.e. restricting) the path. 

Khoukhi et al. [Khoukhi 2002] had considered the problem of optimal control design 

for off-line programming in educational assembly robotics. A new general algorithmic 

based simulation tool for the computer aided design of control systems and off-line 

programming for a large class of educational and industrial manipulators had been 

developed. Sergaki [Sergaki 2002] had proposed an innovative method, which achieves 

robot speed-control requirements, with simultaneous minimization of total 

electromechanical losses, while the drives follow the desired speed profiles of the robot 

joints under various loads and random load disturbances. Saramago and Ceccarelli 

[Saramago 2002] had presented a general methodology for the off-line planning of 

optimal trajectory of robot manipulators by taking into account the grasping forces in the 

manipulator gripper. Sergaki and Stavrakakis [Sergaki 2002] had considered the control 

problem of a robotic manipulator with separately excited dc motor drives as actuators. An 

innovative method was proposed which achieves robot speed-control requirements, with 

simultaneous minimization of total electromechanical losses, while the drives follow the 

desired speed profiles of the robot joints under various loads and random load 

disturbances. Saha [Saha 2003] had proposed a decomposition method for the generalized 

inertia matrix of an n-link serial manipulator for the simulation of industrial 

manipulators. Rodriguez and Weisbin [Rodriguez 2003] had summarized a new 

analytical method to conduct quantitative analysis of human-robot systems. The method 

was applicable to a broader class of systems whose performance needs to be evaluated. 



Antonelli et al. [Antonelli 2003] had proposed technique based on second order inverse 

kinematic algorithm, which enables the handling of velocity and acceleration constraints 

while the desired end effector path. A new closed loop inverse kinematic algorithm for 

real time kinematic control of robot manipulators had been presented, which pursued 

end-effector path tracking capability in the presence of joint velocity and acceleration 

limits. 

Simoesb et al. [Simoesb 2003] had presented an approach that characterizes the 

capabilities of the robotic system to produce plaster moulds and models by milling 

operations. Bhangale et al. [Bhangale 2004] had attempted to introduce a criterion based 

on the dynamics of a robot manipulator called generalized inertia matrix. The index 

influences both the control and simulation algorithms significantly by significantly 

enhancing the speed, precision, and stability of the robots. Saramago and Ceccarelli 

[Saramago 2004] had presented a study about the effect of numerical parameters on an 

optimal path planning of robot manipulators taking into account robot actuating energy 

and grasping forces in manipulator gripper. Shi et al. [Shi 2005] had constructed a 

probabilistic model for the deviation of the actual path generated by a coupler point from 

the desired one and presented a robust synthesis procedure of the path generating 

mechanism. Both the structural and mechanical errors were incorporated in the presented 

approach. It overcame the disadvantages of the previous works that usually dealt with 

these two kinds of errors. A four-bar path generating linkage was selected for numerical 

illustration. Waiboer et al. [Waiboer 2005] had presented the application of a perturbation 

method for the closed-loop dynamic simulation of a rigid-link manipulator with joint 

friction. In this method, the perturbed motion of the manipulator was modeled as a first-

order perturbation of the nominal manipulator motion. Sharma and Mittal [Sharma 2005] 

had investigated about the existence of a better model among a set of model choices 

available for design, which gives more consistent performance than others without using 

a sophisticated control strategy and observed that there was a significant effect on control 

performance due to type of movement.  

In recent times, there are increasing demands for high-quality fast trajectory tracking, 

and this will unavoidably introduce a need for using model-based dynamic control 

strategies, in which the accurate knowledge of dynamic parameters and effects of their 



tolerances plays one of dominant roles. Besides a systematic approach to analysis of the 

accuracy of kinematic and dynamic robot models it is not only a necessary prerequisite 

for control synthesis and evaluation of candidate control strategies, but it also offers a 

possibility to prescribe parameter tolerances in the design stage of the robotic 

mechanism, as well as to anticipate attainable accuracy, which is important in the 

selection of the appropriate robot for particular industrial application. 

2.2.5 Design Optimization of Robotic Manipulator Parameters  

To improve the performance of manipulator in various ways several available design 

optimization techniques are reviewed. The task that manipulator can perform, will vary 

greatly with the particular design. Its performance is dependent on load capacity, speed, 

size of workspace, and repeatability. Although robots are nominally programmable 

machine capable of performing wide variety of tasks, economy and practicality dictate 

different manipulators for particular types of tasks [Craig 1995]. The literatures, which 

dealt with the design of robot parameters using optimization methods are discussed 

below.  

Vukobratovi and Kiranski [Vukobratovi 1984] had developed a computer-oriented 

method for sensitivity model construction of open-chain mechanism. It comprised two 

different calculations: (a) the sensitivity of generalized forces acting at mechanism joints 

and (b) the sensitivity of actuator inputs, variable parameters (mass and moments of 

inertia) considered to be the dynamic parameters. Tourassis and Neuman [Tourassis 

1985] had proposed a novel approach, which reinforced the need to integrate the 

mechanical and controller designs of robotic manipulators. They proposed a conceptual 

framework leading to design guidelines for simplifying and reducing the nonlinear 

kinematic and dynamic coupling of robot dynamics. The framework was applied to 

illustrate the properties and structural characteristics of industrial robots. Akeel [Akeel 

1985] had described an approach to design robots for high performance in automotive 

painting. The approach had aimed at optimizing performance within process constraints 

and tolerances of its parameters. Manoochehri and Seireg [Manoochehri 1990] dealt with 

development of a generalized computer based methodology for the form synthesis and 

optimal design of robot manipulators. The methodology developed was implemented and 

operated in two modes. Wu et al. [Wu 1991] had implemented a methodology based on 



Taguchi methods to determine/optimize robot process capability for path following. The 

methodology consisted of the characterization of the robot path data, the experimental 

design, the data analysis procedure, and the verification of the results. Offodile and Ugwu 

[Offodile 1991] had investigated how various process variables such as speed of the tool 

center point and payload affect robot repeatability. The study was a simulated multi-

station assembly operation done on a flat tabletop. Various combinations of the process 

variables were used for the study. The results of the investigation showed that these 

process variables affect robot performance in varying degrees, with higher speeds and 

weights having the most significant effect. 

Kota and Chiou [Kota 1993] had used experimental design techniques that were 

based on statistically designed orthogonal arrays and suggested an alternate method to 

solve mechanism design tasks. It will also be beneficial to use this method to obtain a 

good starting point for the traditional optimal synthesis procedures. Chou and Sadler 

[Chou 1993] had proposed an alternative approach based on reducing the required level 

of the actuator torques so that the performance of a robot can be improved without 

increasing the size of the actuators. An optimization technique was developed and 

applied to solve the problem of the optimum placement of a robotic manipulator based on 

minimizing actuator torque requirements. 

Shiller and Sundar [Shiller 1993] had presented a design methodology for the 

selection of the actuator sizes and links lengths of multi degree of freedom mechanisms 

for minimum and near-minimum time motions along specified paths and between given 

points. Lee et al. [Lee 1994] developed a method to represent the kinematic and kinetic 

performance of the mechanism in such a way that the performance characteristics were 

quantifiable analytically and visible graphically to the designer in their entirety at the 

conceptual design stage. Sundar and Shiller [Sundar 1994] had presented a method to 

design multi-degree of freedom mechanisms for near time optimal motions. The design 

objective was to select system parameters, such as link lengths and actuator sizes that will 

minimize the optimal motion time of the mechanisms along a given path. Ibrahim 

[Ibrahim 1996] had presented the basic idea of computer-aided design of manipulation 

robots based on adopted optimization criteria and on set constraints of strengths, as well 

as on actuator capabilities. Using complete models of manipulator dynamics, a simulation 



programme was derived, giving at its output the optimal design parameters of 

manipulator. A study was conducted to investigate the effect of a robot’s geometrical 

parameters on its dynamic performance. Therefore, a performance measure indicator was 

introduced to give a quantifiable measure of the dynamic performance’s response to 

changes in the links’ geometrical parameters. Paredis et al. [Paredis 1997] had developed 

a rapidly deployable manipulator system combining the flexibility of reconfigurable 

modular hardware with modular programming tools, allowing the user to rapidly create 

and program a manipulator, which is custom-tailored for a given task. This article 

describes the main building blocks of such a system: a reconfigurable modular 

manipulator system, modular and reusable control software, and a novel agent-based 

approach to task-based design of modular manipulators. Lio [Lio 1997] dealt with the 

optimal design of linkages, i.e. linkages with minimum sensitivity to variations in 

dimensions which may be induced by environment, operating conditions, manufacturing 

defects, aging, deterioration, etc. 

Agrawal and Veeraklaew [Agrawal 1998] had proposed a technique to identify the 

optimal parameters of a robot for a motion sequence between two given states in a 

prescribed time such that a cost functional was minimized. Coello Coello et al. [Coello 

Coello 1998] had presented a hybrid approach to optimize the counterweight balancing of 

a robot arm. A new technique that combines an artificial intelligence technique called the 

genetic algorithm (GA) and the weighted min-max multiobjective optimization method 

was proposed. Rastegar et al. [Rastegar 1999] had proposed a task-specific optimal 

simultaneous kinematic, dynamic and control design approach for high performance 

robots. This design approach was based on the trajectory pattern method and a 

fundamentally new design philosophy that robots, in general, and ultrahigh-performance 

machines, in particular, must only be designed to perform a class or classes of motions 

effectively. Berner and Snyman [Berner 1999] had proposed a general optimization 

methodology to the design of a three link revolute-joint planar manipulator performing a 

complicated prescribed task. In particular the end effector follows a "figure-of-eight" 

path. The minimization of average torque required for execution of the task was 

addressed and the optimization was carried out with the link lengths and base coordinates 

taken as the five design variables. Zhu and Ting [Zhu 2001] had presented the theory of 



performance sensitivity distribution and a novel robust parameter design technique. In 

this technique, a Jacobian matrix was used to describe the effect of the component 

tolerance to the system performance and the performance distribution was characterized 

in the variation space by a set of Eigen values and Eigen vectors. Bi and Zhang [Bi 2001] 

had presented a new optimization design methodology that was applicable to modular 

systems. This new methodology was called concurrent optimization design method. A 

modular robot was taken as a case study. The method was superior to the existing 

methods for modular robot configuration designs in the sense that traditional type 

synthesis and dimensional synthesis was treated once. Shiakolas et al. [Shiakolas 2002] 

had studied four-bar mechanism synthesis by combining Differential Evolution (DE) an 

evolutionary optimization scheme that can search outside the initial defined bounds for 

the design variables, and a newly developed novel technique called the geometric 

centroid of precision points (GCPP) and the distant precision point in defining the initial 

bounds for the design variables. Shiakolas et al. [Shiakolas 2002] had discussed optimum 

robot design based on task specification using evolutionary optimization approaches. 

These evolutionary approaches were used for the optimum design of SCARA and 

articulated type manipulators based on kinematic, dynamic and structural analyses. 

Banka and Lin [Banka 2003] had proposed an effective top-down design approach for 

the mechanical design for assembly of a four degree of freedom revolute jointed robotic 

arm. The design process begins by specifying top-level design criteria and passing down 

these criteria from the top level of the manipulator’s structure to all of the subsequent 

components. Feng et al. [Feng 2004] had presented a new optimization method for 

dynamic design of planar linkage with clearances at joints. The general consideration was 

to optimize the mass distribution of links to reduce the change of joint forces. The center 

position of mass and the moment of inertia of moving links were taken as the optimizing 

variables. Zhang et al. [Zhang 2004] had developed a method for the optimum design of 

parallel kinematic tool heads using genetic algorithm considering global stiffness and 

workspace volume of the tool heads. Lastly, Rout and Mittal [Rout 2005(v)] had 

attempted to design and optimize the performance of 2-degree of freedom manipulator 

using artificial neural network technique. Developed model was utilized for simulating 

the performance of manipulator. 



2.3 ROBUST DESIGN TECHNIQUES 

Quality as customers perceive, has many quality elements such as performance, 

durability, reliability, service, delivery, etc. Among these quality elements, which directly 

influences engineering activities is the performance. It is known that quality of a product 

is in-built into it at the design stage.  

In the past twenty years or so, various non-deterministic methods have been 

developed to deal with design uncertainties. These methods can be classified into two 

approaches, namely reliability-based methods and robust design based methods. The 

reliability based methods estimate the probability distribution of the system’s response 

assuming a known probability distribution of the random parameters, and is 

predominantly used for risk analysis by computing the probability of failure of a system. 

However, the variation is not minimized in the reliability approaches [Siddall 1984], 

which concentrate on the rare events at the tails of the probability distribution [Doltsinis 

2004]. The robust design based methods improve the quality of a product by minimizing 

the effect of the causes of variation without eliminating these causes. The objective is to 

optimize the mean performance and minimize its variation, while maintaining feasibility 

with probabilistic constraints. This is achieved by optimizing the product and process 

design to make the performance minimally sensitive to the various causes of variation. 

Hence, robust design concentrates on the probability distribution near to the mean values. 

In this section the available robust design methods and alternative approaches are 

explained in brief and the work done by different researchers in this area has been 

classified and reviewed. 

The concepts of robust design and robust design techniques are discussed in  

sub-section 2.3.1. The Taguchi method and other implications are discussed in  

sub-section 2.3.2 and 2.3.3 respectively. Taxonomical reviews of methods developed by 

various researchers to obtain robust design are presented in section 2.4. In this section, 

reviews of research using design of experiment techniques, response surface 

methodology, nonlinear optimization method, stochastic optimization method, multi-

criteria optimization to obtain robust design are presented in sub-sections 2.4.1 to 2.4.5 

respectively. Finally, conclusions drawn from this review are presented in section 2.5. 



2.3.1 The Concept of Robust Design 

The robust design method can be traced back to the early 1920s when Fisher and Yates 

[Fisher 1951] developed the statistical design of experiments (DOE) approach to improve 

the yield of agricultural crops in England. Their methodology had little impact on 

manufacturing industry. The explanation partly lies in poor communication between 

statisticians and engineers and partly due to non-availability of proper study and research 

materials [Grove 1998]. In the late 1950s and early 1960s, Taguchi developed the 

foundations of robust design to meet the challenge of producing high-quality products. 

The arrival of the “quality movement” in 1980’s gave renewed impetus to industrial 

applications of a range of well established statistical methods including design and 

analysis of experiments, as well as techniques which have come to be known as statistical 

process control (SPC). Taguchi method is in common use in developed countries and is 

often applied very loosely to any industrial experiment with a statistical basis. The 

fundamental definition of robust design is described as a combination of parameters of 

product, which is insensitive to the effects of sources of variability, even through the 

sources themselves have not been eliminated [Fowlkes 1995]. In the design process, a 

number of parameters can affect the quality characteristic or performance of the product. 

Parameters within the system may be classified as signal factors, noise factors and control 

factors. Signal factors are those parameters that determine the range of configurations to 

be considered by the robust design. Noise factors are parameters that cannot be controlled 

by the designer, or are difficult and expensive to control, and constitute the source of 

variability in the system. Control factors are the specified parameters that the designer 

has to optimize to give the least sensitivity of the response to the effect of the noise 

factors. A P-diagram [Phadke 1989] may be used to represent different types of 

parameters and their relationships. The aim of robust design is to make the system 

response close to the target with low variations, without eliminating the noise factors in 

the system. The key step in the robust design problem is the specification of the objective 

function, and once this has been developed the tools of statistics (such as the analysis of 



variance) and the design of experiments (such as orthogonal arrays) may be used to 

obtain the solution. 

2.3.2 The Taguchi Method 

Taguchi method has become increasingly popular as a method for developing 

engineering products. It promises and delivers an ability to increase the quality of an 

engineered product via simple changes in the method of design. Taguchi’s definition of 

quality is the loss imparted to society from the time the product is shipped. That is, when 

a product fails to perform correctly, or when it breaks down, or when some of its parts do 

not conform to specifications, it creates undesirable cost to society. This definition 

represents a significant change in the way of thinking about quality. Instead of trying to 

define all the good things as quality, Taguchi emphasizes on losses that a product can 

create.  

For translating the abstract concept of ‘loss to society’ into an operational concept, 

Taguchi defined a “loss function” which assigns measurable penalties that are 

proportional to the distance a quality characteristic is away from its desired target value. 

The loss L(y) for a given product or process quality characteristic, Y, with particular a 

value y is defined as: 

 ( )2)( TykyL −=  (2.1) 

where k is the loss function coefficient and T is the target value or desired value. 

Taguchi has proposed methods for selecting design variables so that the effect of 

noise parameters is minimized. By making a design more tolerant to variation, it is 

possible to reduce the number of rejected parts. Such a design is called “robust design”. 

This methodology allows decisions based on total societal loss that is, to prefer only 

those solutions, which minimize variance in society’s preferences, minimizing cost to 

society as a whole. 

Taguchi defined robust product as one which displays low functional variability 

despite the influence of noise. To achieve this Taguchi’ suggested division of design 

process into three stages: system design, parameter design and tolerance design [Phadke 

1989]. System design is the design stage where the system configuration is developed, 

and engineering knowledge comes into play. Parameter design, sometimes called robust 

design, identifies factors that reduce the system sensitivity to noise, thereby enhancing 



the system’s robustness. Tolerance design specifies the allowable deviations in the 

parameter values, loosening tolerances, if possible and tightening tolerances, if necessary 

[Fowlkes 1995]. Taguchi’s objective functions for robust design arise from quality 

measures using quadratic loss functions. In the extension of this definition to design 

optimization, Taguchi suggested the signal-to-noise ratio, ))MSD(log10ratio(SN 10−= , 

as a measure of the mean squared deviation (MSD) in the performance. The use of SN 

ratio in system analysis provides a quantitative value for response variation comparison. 

Maximizing the SN ratio results in the minimization of the response variation and more 

robust system performance is obtained. Suppose there is only one response variable y  

and only one configuration of the system (so the signal factor may be neglected). Then 

for any set of control factors, x , the noise factors are represented by n  sets of parameters, 

leading to the n  responses, iy . Although there are many possible SN ratios, only two are 

considered here. These SN ratios depend on the type of responses are dealt with i.e. 

Nominal the better and Smaller the better. The nominal the better SN ratio is discussed 

below. 

This SN ratio quantifies the deviation of the response from the target, t , and is 

expressed as 
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where, S  is the population standard deviation. Equation (2.2) is essentially a sampled 

version of the general optimization criteria given in equation (2.1). It can be noted that 

the second form indicates that the MSD is the summation of population variance and the 

deviation of the population mean from the target. If the control parameters are so chosen 

such that, ty =  (the population mean is the target value), then the MSD is just the 

population variance. If the population standard deviation is related to the mean, then the 

MSD may also be scaled by the mean to give 
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The smaller the better SN ratio considers the deviation from zero and as the name 

suggests, penalizes large responses. Thus 
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This is equivalent to saying that the target is the best SN ratio with t = 0. The most 

important task in Taguchi’s robust design method is to test the effect of the variability in 

different experimental factors using statistical tools. The requirement to test multiple 

factors means that a full factorial experimental design that describes all possible 

conditions would result in a large number of experiments. Taguchi solved this difficulty 

by using orthogonal arrays (OA) to represent the range of possible experimental 

conditions. After conducting the experiments, the data from all experiments are evaluated 

using the analysis of variance (ANOVA) and the analysis of mean (ANOM) of the SN 

ratio to determine the optimum levels of the design variables. The optimization process 

consists of two steps; maximizing the SN ratio to minimize the sensitivity to the effects 

of noise, and adjusting the mean response to the target response. 

2.3.3 Taguchi’s Method and its other Implication to Design Problems 

Initially people were apprehensive about the Taguchi method and thought cannot be used 

in upstream engineering processes and used to think robust engineering is the use of 

orthogonal array to identify the level of process design parameters that improves quality. 

In 1990’s the need of an upstream tool to eliminate down stream problems was felt. This 

is when focus shifted to robust engineering. Robust engineering seeks to rapidly optimize 

the performance of products and processes, while lowering or maintaining costs, 

especially in R&D and other allied activities. Robust Engineering philosophy requires the 

engineer to concentrate on the function of design. As we discuss its implication will 

become clearer. It was commented that inherent lack of robustness in product design is a 

primary driver of superfluous manufacturing expenses [Taguchi 1990]. 

The product performance metrics that directly or indirectly cause loss to manufacturer 

or customer are warranty costs, scrap costs or rework cost, number of customer 

complaints. These post design and postproduction measures come into the picture only 

after the product is designed, manufactured and placed in the hands of customers.  

To address all these issues Taguchi method proposed to begin asking questions at the 

initial stage of design, such as: What is the design supposed to do? What is the 

performance expected by the customer? How does the design utilize energy? Taguchi 



used the phrase ideal function to describe what is wanted from an engineering system. 

Ideal function is the transfer of energy from input to a desired output form, without 

diversion into unwanted output states. The relative amount of energy in wanted and 

unwanted states can be measured by a signal to noise ratio, though it is not clear how this 

is justified. 

The task on hand is to ensure that energy being transferred to the desired state is 

maximized while energy left over to cause problems is minimized. It must be noted that 

minimizing energy in the unwanted state is no guarantee that energy in wanted state is 

maximized. The unwanted energy may get diverted into another state to cause another 

problem. The above concept is aptly applied to rectify design flaws in car windshield 

wiper system by using Taguchi method [Wilkins Jr 2000]. 

2.4 REVIEWS ON ROBUST DESIGN TECHNIQUES 

Although Taguchi’s contributions to the philosophy of robust design are almost 

unanimously considered to be of fundamental importance, there are certain limitations 

and inefficiencies associated with his methods. To reduce performance variation of a 

product several approaches have been developed over the years after Taguchi proposed 

his method. These can be classified as: design of experiments technique, response surface 

methodology, optimization methods, non-linear programming technique, stochastic 

optimization, multi-criteria optimization technique. In this chapter the research trends on 

each category is reviewed. 

2.4.1 Design of Experiments Technique 

A design of experiment is a test or series of tests in which purposeful changes are made 

to the input variables of system so that we may observe and identify the reasons for 

changes in the output response. For robust product design mostly fractional factorial 

design is used where number of experiments to be conducted is less and the Taguchi 

method tries to do the same. 

The Taguchi method for robust design has been criticized by Box for the use of two 

part orthogonal array for experimental design and SN ratio in robust optimization 

criterion. Box and Fung [Box 1986] pointed out that the orthogonal array method does 

not always yield the optimal solution and suggested that non-linear optimization 



techniques should be employed when a computer model of the design exists. Significant 

improvement over the results predicted by Taguchi was observed while studying a 

wheatstone bridge circuit design problem. Montgomery [Montgomery 1999] had 

demonstrated that the inner array used for the control factors in the Taguchi’s approach 

and the outer array used for noise factors, is often unnecessary and results in a large 

number of experiments. Tsui [Tsui 1992] had shown that the Taguchi method did not 

necessarily give an accurate solution for design problems with highly non-linear 

behavior. An excellent survey of these controversies was the panel discussion edited by 

Nair [Nair 1992]. 

It has earlier been discussed that the Taguchi method is nothing but an approach to 

engineering design optimization. Its application was illustrated in the design optimization 

[Unal 1993] study of aerospace propulsion system and found the Taguchi method can 

offer simultaneous improvement in quality, performance, cost, and engineering 

productivity. Steinberg and Bursztyn [Steinberg 1994] had shown that robust design 

experiments are effective when it is possible to build some variation directly into the 

experiment including noise factors. Nair [Nair 1993] had reviewed methods for analyzing 

data from robust parameter design experiments and discussed some new developments in 

parameter design and outlined their advantages. Taguchi’s approach has been extended in 

a number of ways. Yu and Ishii [Yu 1993] used the fractional quadrature factorial method 

for systems with significant nonlinear effects. 

Pledger [Pledger 1996] had observed the uncontrollable factors, explicitly introduced 

into experiment and established that some of the uncontrollable factors are observable 

during production. The extra information can enhance the choice of values for the 

controllable factors to keep, both, the mean and response on target and reduce the 

variance. Chipman [Chipman 1998] had considered use of Bayesian methods in fitting 

robust design experiment models and the subsequent optimization by incorporation of 

reliable assessment of uncertainty into the analysis of data. Borror and Montgomery 

[Borror 2000] had presented a combined array design as an alternative to standard 

Taguchi design. The method was better suited to robust design problem. The mixed 

resolution design was illustrated in an example involving control and noise variables. 

Sexton et al. [Sexton 2000] had used semi controlled experiments to improve mechanical 



design where procedure for searching a good plan using an algorithm was developed that 

can take account of key derived factors arising from component assembly. 

The most successful applications of robust design are found in the fields of 

mechanical design engineering (static performance) and process systems, and there have 

been few applications to the robustness of dynamic performance. Seki and Ishii [Seki 

1997] applied the robust design concept to the dynamic design of an optical pick-up 

actuator focusing on shape synthesis using computer models and design of experiments. 

The response in the first bending and torsion modes were selected as measures of 

undesirable vibration energy. The objective functions were defined as the signal-to-noise 

ratios of response frequencies and the sensitivities were derived from the design of 

experiments using an orthogonal array. Hwang et al. [Hwang 2001] optimized the 

vibration displacements of an automobile rear view mirror system for robustness, defined 

by the Taguchi concept. Rout and Mittal [Rout 2003(ii)] had applied the Taguchi method 

to find the optimum parameters of manipulator for reduced performance variations, 

thereby increasing positional accuracy of a manipulator. Rout and Mittal [Rout 2005(iii)] 

investigated the statistical significance of manipulator kinematic parameters using design 

of experiment approach. 

2.4.2 Response Surface Methodology 

The response surface methodology (RSM) is a set of statistical techniques used to 

construct an empirical model of the relationship between a response and the levels of 

some input variables, and to find the optimal responses. Lin and Tu [Lin 1995] had used 

dual response approach to achieve the goals of Taguchi’s philosophy. They highlighted 

some deficiencies of Taguchi method. Khatree [Khatree 1996] had tried to present an 

alternative approach to Taguchi’s robust parameter design. Lin et al. had tried to point out 

the limitation of goal formulations for approximation–based robust design. Based on 

different philosophies and mathematical deduction, they proposed three new methods to 

formulate robust design goals. Using a single variable function, they concluded that 

Kriging models perform better than RSM in a large design space with a high degree of 

non-linearity [Lin 1999]. Where Kriging model is an interpolation model comprised of 

two parts: a polynomial and a functional departure from that polynomial. Lucas [Lucas 



1994] and Myers et al. [Myers 1992] considered the RSM as an alternative to Taguchi’s 

robust design method. 

Monte Carlo simulation generates instances of random variables according to their 

specified distribution types and characteristics and although accurate response statistics 

may be obtained, the computation is expensive and time consuming. Mavris and Bandte 

[Mavris 1997] had combined the response model with a Monte Carlo simulation to 

construct cumulative distribution functions and probability density functions for the 

objective function and constraints. All these methods depend on the sampling statistics, 

whereby the probabilistic distributions of the stochastic input sets are required. One 

concern was that the response surface approximations might not generate the accurate 

sensitivities required for robust design [Su 1997]. 

2.4.3 Nonlinear Programming Optimization Method 

Terms or groups of terms that involve intrinsically nonlinear functions characterize a 

nonlinear programming problem. Methods that are derived to solve the broad set of 

problems that make up this functional classification will be referred as Nonlinear 

Programming Method. 

The optimization procedure aims to minimize/maximize the objective functions. The 

uncertainty in the noise factors means that the system performance is a random variable. 

One option in robust optimization is to minimize both the deviation in the mean 

value, t−µ , and the variance, 2σ , f  of the performance function, subject to the 

constraints. The quantities of mean and the standard deviation of system performance, for 

given signal and control factors, may be calculated if the joint probability density 

function (PDF) of the noise factors is known. For most practical applications these PDFs 

are unknown, but often it is assumed that all variables have independent normal 

distributions. In this case, the joint PDF becomes a product of the individual PDFs. 

However, evaluating objective function is extremely time consuming and 

computationally expensive and approximations using Taylor’s series expansions about 

the mean may be used. If only the linear terms are retained in the expansion, then the 

mean and variance of the response are readily computed in terms of the mean and 

variance of the noise factors. The constraints must also be satisfied. 



The noise factors are assumed to have stochastic nature, whereas the control factors 

are used to optimize the system and therefore must remain as parameters in the 

constraints. Parkinson et al. [Parkinson 1993] proposed a general approach for robust 

optimal design and addressed two main issues. The first issue was design feasibility, 

where the procedures are developed to account for tolerances during design optimization 

such that the final design will remain feasible despite variations in parameters or 

variables. The second issue was the control of the transmitted variation by minimizing 

sensitivities or by trading of controllable and uncontrolled tolerances. The calculation of 

the transmitted variation was based on well-known results developed for the analysis of 

tolerances [Bjorke 1989]. Ramakrishnan and Rao had formulated the robust design 

problem as a nonlinear optimization problem with Taguchi loss function as the objective 

[Ramakrishnan 1991]. Other significant publications in this area are by Belegundu and 

Zhang [Belegundu 1992] that extended Taguchi’s parameter design to the notion of 

conceptual robustness. Sundaresan et al. [Sundaresan 1993] had employed a single 

objective function that utilizes weighing factors for target performance and variance 

represented by sensitivity index. Yu and Ishii [Yu 1993] had also proposed nonlinear 

programming methods for robust design. Otto and Antonsson [Otto 1993] had illustrated 

the procedure to apply the Taguchi method for product design and applied to air tank 

design for determining which of two designs to pursue-an air tank with hemisphere heads 

or an air tank with flat heads. Cagan and Williams [Cagan 1993] had described a rigorous 

approach for robust optimal design, which allows a designer to explicitly consider and 

control the effects of variability in design variables and parameters on design. Castillo 

and Montgomery [Castillo 1993] had presented method to achieve same goals using 

standard non-linear programming technique; specifically the generalized reduced gradient 

algorithm. The proposed method is more flexible and easier to use than the dual response 

approach. Otto and Antonsson [Otto 1993] addressed robust design optimization with 

constraints, using constrained optimization methods.  

A number of engineering examples showed that the method works well if the 

tolerances are small. For larger tolerances or for strongly non-linear problems, higher 

order Taylor series expansions must be used. A second order worst-case model was 

described by Emch and Parkinson [Emch 1994] and a second order model using 



statistical analysis was presented by Lewis and Parkinson [Lewis 1994]. The 

disadvantage of higher order models was that the formulae to evaluate the response 

became quite complicated and computationally expensive. Parkinson [Parkinson 1995] 

had discussed the feasibility robustness and sensitivity robustness for robust mechanical 

design using engineering models. Variability was defined in terms of tolerances. For a 

worst-case analysis, a tolerance band was defined, whereas for a statistical analysis the 

σ3±  limits for the variable or parameter were used. Chen et al. [Chen 1996] had 

developed a robust design methodology to minimize variations caused by the noise and 

control factors, by setting the factors to zero in turn. 

2.4.4 Stochastic Optimization Method 

A slightly different strategy for robust design optimization is based on stochastic 

optimization. The stochastic nature of the optimization arises from incorporating 

uncertainty into the procedure, either as the parameter uncertainty through the noise 

factors, or because of the stochastic nature of the optimization procedure. 

The earliest work on stochastic optimization can be traced back to the 1950s [Beale 

1955] and detailed information may be obtained from recent books [Kall 1994]. The 

objective of stochastic optimization is to minimize the expectation of the sample 

performance as a function of the design parameters and the randomness in the system. 

Chakraborty and Dey [Chakraborty 1998] proposed a stochastic finite element method in 

the frequency domain for analysis of structural dynamic problems involving uncertain 

parameters. The uncertain structural parameters are modeled as homogeneous Gaussian 

stochastic fields and discretized by the local averaging method. Numerical examples were 

presented to demonstrate the accuracy and efficiency of the proposed method. Chen 

[Chen 2003] used Monte Carlo simulation and quadratic programming. Schueller 

[Schueller 2001] had given a recent review on structural stochastic analysis. Optimization 

approaches that are inherently stochastic include techniques such as simulated annealing, 

neural networks and evolutionary algorithms (EA) (genetic algorithms, evolutionary 

programming and evolution strategies (ES)), and these have been applied to 

multiobjective optimization problems [Hajela 1999]. These techniques do not require the 

computation of gradients, which is important if the objective function relies on estimating 

moments of the response random variables. Gupta and Li [Gupta 2000] applied 



mathematical programming and neural networks to robust design optimization, and 

showed that the approach is fruitful in solving highly non-linear design optimization 

problems in mechanical and structural design. Sandgren and Cameron [Sandgren 2002] 

used a hybrid combination of a genetic algorithm and non-linear programming for robust 

design optimization of structures with variations in loading, geometry and material 

properties. Parkinson [Parkinson 2000] employed a genetic algorithm for robust design to 

directly obtain a global minimum for the variability of a design function by varying the 

nominal design parameter values. The method proved effective and more efficient than 

conventional optimization algorithms. Additional studies are required before these 

methods are suitable for application to large-scale optimization problems. 

2.4.5 Multi-Criteria Optimization Method 

In design there may be situations, where it would be desirable to achieve a solution that is 

the “best” with respect to a number of different (competing) criteria. The mathematical 

tools necessary to formulate and solve such multi objective or multi criteria problems are 

called multi-criteria optimization method. A robust design is one that attempts to 

optimize both the mean and variance of the performance, and is therefore a multi-

objective and non-deterministic problem. Optimization of the mean often conflicts with 

minimizing the variance, and a trade-off decision between them is needed to choose the 

best design. Chen et al. [Chen 1999] had used a combination of multi-objective 

mathematical programming methods and the principles of decision analysis to address the 

multi-objective optimization in robust design. The compromise programming (CP) 

approach, that was the Tchebyche for min–max method, replaced the conventional 

Weighted Sum (WS) method. The advantages of the CP method over the WS approach in 

locating the efficient multi-objective robust design solution (Pareto points) were 

illustrated both theoretically and through example problems. Chen et al. [Chen 2000] 

made the bi-objective robust design optimization perspective more powerful by using a 

physical programming approach, where each objective was controlled with more 

flexibility than by using CP. Discussions on inequality constraint satisfaction were given 

by Parkinson et al. [Parkinson 1993], Du and Chen [Du 2001], Lee and Park [Lee 2001]. 

Research on equality constraint problems are limited to three approaches; to relax the 

equality constraint, to satisfy the equality constraint in a probabilistic sense [Sunderasan 



1991], or to remove the equality constraint through substitution [Das 2000]. Bras and 

Mistree introduced the compromise decision support problem (DSP) [Bras 1995]. Their 

approach is especially useful in design problems where there are no closed-form solutions 

and system performance is computationally expensive. 

To effectively address performance with respect to multiple measures in product 

design, a methodical approach that integrates multi criteria optimization concepts with 

statistical robust design technique was used. The method includes a systematic treatment 

of constraints, and the results are presented as a set of non-inferior design solutions 

[Kunjur 1995]. These solutions utilized ANOVA results to quantify the relative 

dominance and significance of design factors. Yu and Ishii [Yu 1998] have addressed the 

impact of manufacturing errors on design robustness and constraint activity, and have 

developed a systematic procedure to identify a variation pattern for typical processes, 

approximate performance based on pattern. A method was presented that makes use of 

the concepts of robust design and the techniques of Multi-criteria optimization for 

simultaneous optimization of many quality characteristics and illustrated the method 

using a case study gleaned from literature [Song 1995]. 

Thurston et al. [Thurston 1994] had presented design method whose basic premise 

was that the process of design should be driven from the very beginning by consideration 

of how the artifact will ultimately be evaluated. An algorithm was developed by 

Korngold and Gabriele [Korngold 1997] to efficiently optimize multidisciplinary 

coupled, non-hierarchic systems with discrete variables. Parkinson [Parkinson 2000] 

demonstrated that potential means of improving assembly quality by the use of 

deterministic optimization process based on variable limits. Zhang et al. [Zhang 2000] 

had suggested a method for deriving a utility function as a local approximation of 

efficient frontier and investigated at different locations of candidate solutions, with 

different range of interest, in problems with convex and non-convex behavior. 

A single criterion for robust design had been presented by using Taguchi’s SN ratio, 

as designers were not able to explicitly address the trade off between achieving the design 

performance and its robustness. To this effect, Chen et al. [Chen 1999] had developed a 

multiple objective approach to robust design, which offers more flexibility in addressing 

the multiple aspect of robust design. Robust design procedure had been applied to 



achieve improved vehicle handling performance as an integral part of simulation based 

vehicle design. The proposed procedure was effective for preventing the roll over of 

ground vehicle as well as for identifying a design that was not only optimal against worst 

maneuver inputs. Chen et al. [Chen 1999] had compared the statistical approach and a bi-

level optimization approach in terms of their effectiveness in solving robust design 

problems. Kalsi et al. [Kalsi 2001] had proposed concepts of robust design to reduce the 

effects of decisions made during the design of one subsystem on the performance of rest 

of the system. Concepts are demonstrated by considering a design of passenger aircraft. 

Chou and Chang [Chou 2000] had developed a relationship between the cost and 

tolerances of two characteristics of lock wheel and obtained as a bivariate cost tolerance 

function. Renaud and Tappeta [Renaud 1997] gave a comprehensive overview and 

provided a rigorous optimization strategy for multi-objective collaborative optimization. 

Rout and Mittal [Rout 2000(i)] presented an extensive review of the methodologies to 

obtain a robust design that have less performance variation due to the variations of 

control factors and noise factors. 

2.5 EPILOGUE 

This chapter reviewed the development of methods to improve the performance of 

manipulator since 1981 with a view to identify the need for investigation on robot 

performance variations. By increased industrialization and development in automation, 

the need to improve robotic performance has revived interest. The review presents the 

citation of developments on methodology to improve robot performance. 

The majority of present industrial robots are relatively inaccurate. Robot positioning 

accuracy, expressed in task-related coordinates, is often worse than the repeatability by 

higher magnitude. This reduces significantly the possibilities of practical application of 

such robots in some classes of industrial tasks. A bulk of research efforts has been 

devoted to this problem, resulting in practical calibration procedures that can be 

efficiently used to improve the robot positioning accuracy in static or quasi-static 

operating conditions. The area of calibration of robot models, local calibration, dynamic 

parameter identification and problems related to the improvement of accuracy of fast 

trajectory tracking, are reviewed. Besides, a systematic approach to analyze the accuracy 



of kinematic and dynamic robot models it is not only a necessary prerequisite for design 

synthesis and evaluation of design strategies, but it also offers a possibility to prescribe 

parameter tolerances in the design stage of the robotic mechanism, as well as to anticipate 

attainable accuracy, which is important in the selection of the appropriate robot for 

particular industrial application. 

The later part of the chapter contained a review of major approaches and techniques 

to robust design. It is noted that robust design is a multi-objective and non-deterministic 

problem. The objective is to optimize the mean and minimize the variability in the 

performance response that results from uncertainty represented through noise variables. 

The robust design approaches can generally be classified as statistical-based methods and 

optimization methods. Mostly the Taguchi method use direct experimentation and the 

objective functions for the optimization are expressed as the signal to noise ratio (SN 

ratio). Using the orthogonal array technique, the analysis of variance and analysis of 

mean of the SN ratio are used to evaluate the optimum design variables to ensure that the 

system performance is insensitive to the effects of noise, and to tune the mean response to 

the target. The optimization approaches for robust design are based on non-linear 

programming methods. The objective functions simultaneously optimize both the mean 

performance and the variance in performance. A trade-off decision must be made, to 

choose the best design with the maximum robustness. Recently, novel techniques such as 

simulated annealing and the field of evolutionary algorithms have been applied to solve 

the resulting multi-objective optimization problem. 

Based on the above study following conclusions can be drawn. There has been 

relatively little or not much literature available to handle the effects of noise in design 

optimization of robotic manipulator. Therefore, renewed attempts must be made to 

systematically underline ways and means to minimize the effect of uncertainty on 

manipulator performance. These aspects are of paramount concern to researchers and 

practitioners. There have been few attempts to compare the technique with other methods 

either analytically or experimentally, except for comparison with experimental design 

techniques. 
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CHAPTER-3 
 

SIMULATION OF MANIPULATOR PERFORMANCE USING SEARCH 
BASED METHOD AND OPTIMAL PARAMETER DESIGN 

 
 

3.1 INTRODUCTION 

Mostly industrial manipulators are required to perform tasks with a higher precision and speed 

than human beings. To perform task a manipulator is commanded to move its end-effector to 

a specified position but the actual position reached may be quite different from the desired 

one. This difference in the actual and desired position for the end-effector is termed as 

“positional error” of a manipulator and the average positional error is termed as its positioning 

accuracy. The parameters whose values can be changed or controlled by designer are called 

“control factors”. The performance variations of manipulators are attributed to “noise 

factors”, where noise factor are parameters which are difficult and costly to control.  

Conducting physical experiments on a manipulator to find out its positioning accuracy by 

changing its parameters is very tedious, time consuming and uneconomical. To assuage this 

problem, help of simulation is taken where experiments are conducted by varying values of 

parameters. Therefore, development of simulation method to obtain real life performance 

without conducting experiment becomes quite a challenge. To simulate the performance of 

manipulator a heuristic-search based simulation methodology has been developed. This 

methodology helps in incorporating effect of noise in dynamic model of manipulator to 

simulate real life performance. This methodology is based on parametric design of 

manipulator using design of experiment (DOE) approach, to select a combination of control 

factors of a product or process in such a way that the performance becomes insensitive to 

noise factors. DOE techniques are fairly standard approach and commonly used in statistical 

quality control, but their application to robotic parameter design is rare. Experiments 

conducted using above technique helps in understanding the combined effect of factors on 

performance. In this chapter the procedure to apply DOE technique to manipulator parameter 

design, to identify parameters responsible for performance variation and to find optimal 

combination, that deliver optimal performance is presented. Such an investigation is offline 
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strategy, which is novel and helps designer to select the parameters to reduce the performance 

variation, prior to actual manufacturing. 

This chapter is organized in seven sections. In section 3.2 steps for parameter design 

optimization have been discussed. The kinematic and dynamic models used for simulation of 

performance have been presented in section 3.3. The application of DOE technique to 2-DOF 

RR planar manipulator is discussed in section 3.4. In section 3.5 proposed simulation method 

to incorporate effect of noise factors and to simulate the performance has been presented. The 

assumed data for simulation and analysis of results of experiment are discussed in section 3.6 

and 3.7 respectively. The limitations of the proposed method are discussed in section 3.8. 

3.2 PARAMETER DESIGN USING DESIGN OF EXPERIMENT (DOE) TECHNIQUE 

Traditional optimization techniques used for determination of parameters for optimal 

performance are known for their inefficiency in handling uncertainties and nonlinearities of 

physical systems and the solutions obtained using these techniques may not be practical or 

may require high investments. 

DOE technique overcomes the drawbacks of conventional optimization techniques and 

has been used successfully to optimize processes and designs for diverse systems. This 

method identifies the optimal factor combination for optimal performance and factors that 

have significant effect on the performance. DOE technique allows the effect of a factor to be 

estimated at several levels of the factor yielding conclusions that are valid over a range of 

experimental conditions [Montgomery 2001]. The steps described below are used for 

applying DOE technique: 

Step 1. Statement of the problem, 

Step 2. Choice of factors and levels, 

Step 3. Selection of the response variable,  

Step 4. Choice of experimental design, 

Step 5. Perform the experiment, this involves following:  

(a) Conduct of the experiment, 

(b) Obtain the performance measure, 

Step 6. Data analysis. 
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3.3 KINEMATIC AND DYNAMIC MODELS OF 2-DOF RR PLANAR MANIPULATOR 

The parameter design using DOE is applied to get optimum design of robotic manipulators. A 

2-DOF RR planar manipulator is considered to establish the application of DOE technique to 

manipulator design. The mathematical model to simulate the performance of manipulator and 

compute the position reached is developed first and then the step-by-step application of DOE 

technique to a robot manipulator design is presented. 

The kinematic and dynamic models of 2-DOF RR planar manipulator used in this thesis 

are discussed briefly in this section. The detailed derivations of these are available in many 

textbooks [Mittal 2003]. 

Consider the 2-DOF RR planar manipulator shown in Fig. 3.1 having link lengths 1l  and 

2l , and joint angles 21 and θθ . Let ),( ff yxP  be the target position of end-effector in the 

Cartesian workspace of the manipulator, the point of interest for which the performance in 

terms of positional accuracy has to be modeled and optimized. The coordinates of P in 

Cartesian coordinates for joint angles 21 and θθ  are given by 

 12211 ClClx f +=  (3.1) 

 12211 SlSly f +=  (3.2) 

where, )sin(  and)cos( ,sin,cos jiijjiijiiii  SCSC θθθθθθ +=+===  with  i, j = 1, 2 for 

the two links, link 1 and link 2, respectively. 
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Fig. 3.1 A 2-DOF RR Planar Manipulator and its Parameters 
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From equations (3.1) and (3.2), joint variable 1θ  is obtained as: 
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Differentiating equations (3.1) and (3.2) and solving for joint velocities 21 and θθ ��  gives 
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where ) ,( yx ��  represent end-effector velocity ev  with αα sin and cos ee vyvx == �� , and α  is 

angle made by ev  with  positive x-axis of base frame. Assuming link masses as: 1m , 2m  and 

joint torques as 21 , ττ , respectively and assuming links as slender members with mass 

concentrated at center of gravity for each link, the dynamic model of 2-DOF RR planar 

manipulator is given by 
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where g  is acceleration due to gravity, 1θ��  and 2θ��  are joint accelerations. Equations (3.7) and 

(3.8) are solved for 1θ��  and 2θ��  and are written in a compact form as:  
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where edcba  and,,,  are given as: 
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Equations (3.1)-(3.15) have been used to identify significant parameters (factors) and compute 

the performance measures for the robotic manipulator using the DOE technique. 

3.4 APPLICATION OF DOE TECHNIQUE TO MANIPULATOR DESIGN 

The manipulator parameter design using DOE is carried out next according to the steps given 

in section 3.2. 

3.4.1 Statement of the Problem 

The problem of improving positional accuracy of the robot manipulator has been addressed in 

the past by considering optimal performance only with one prototype with fixed parameters 

and if the performance variation was found to be large then it was reduced by adoption of 

suitable calibration and control strategy. 

The main function for a robot manipulator is to accurately reach the commanded position. 

For the 2-DOF RR planar manipulator, the target position is in the work-plane of the 

manipulator and is described by point ),( ff yxP  assuming the work-plane of the manipulator 

is xy-plane. 

3.4.2 Identification of Factors and Levels 

The robot parameters like link dimensions, configuration, inertias, actuators, etc. play a vital 

role in its performance. Robotic system designer often comes across a situation where 

decision is to be made regarding these parameters. Except in few specific applications, 
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designer uses a particular parameter combination by choice or by convenience, overlooking 

available alternatives that may give optimal performance. 

Various parameters involved in the manipulator design are identified with the help of the 

mathematical models developed and using the parameter diagram (P-Diagram) for 

manipulator as shown in Fig. 3.2. The parameters other than input and output are classified as 

control factors or noise factors. 

Robot

Noise Factors
Environmental Conditions,

Eletrical Noise, Joint Friction,
Manufacturing and Assembly Errors

Response
Positional Error

Control Factors
Link Length,

Link Mass, Joint Torque

Input
Command for 

work to be done

 

Fig. 3.2 Parameter Diagram (P-Diagram) for Manipulator Performance. 

3.4.2.1 The Control Factors 

The control factors for manipulator are identified from the kinematic and dynamic equations 

(3.9) and (3.10). It is observed that 1θ��  and 2θ��  depends on following six independent 

parameters apart from the process variables 2121 and,, θθθθ �� : 

1. Length of link 1, 1l ; 

2. Length of link 2, 2l ; 

3. Mass of link 1, 1m ;  

4. Mass of link 2, 2m ;  

5. Torque applied at joint 1, 1τ ;  

6. Torque applied at joint 2, 2τ . 
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These six parameters are therefore, identified as control factors because designer can choose 

their values easily. 

For optimal parameter design using DOE technique, control factors can be considered at 

several levels. In this investigation, control factors are considered at two levels: “high” and 

“low”. Therefore, six control factors at two levels, results in a set of 26 (64) different 

combinations of six control factors. 

3.4.2.2 Sources of Noise in the Manipulator –The Noise Factors 

The function of the manipulator is to move its end-effector to a desired point accurately. 

However, the discrepancy in the desired and actual point reached can be attributed to presence 

of noise factors. The noise factors cause the end-effector to deviate from its target point. 

Noise factors are those factors that are difficult, expensive or hard to control during 

production or operation. Some of the noise factors that have direct influence over the 

performance of a manipulator are: 

(a) Environmental conditions in which manipulator operates, 

(b) Errors in manufacture and assembly, 

(c) Fluctuations in electricity supply, causing deviation in the joint actuator torques, 

(d)  Friction at the manipulator joints, and 

(e) Joint compliance between the joint encoder and the actual angular output.  

There can be several other noise factors, which may have influence over performance of the 

manipulator. These noise factors are very difficult to quantify, their effects on performance 

are still difficult to compute. To simulate the performance a heuristics based search approach 

has been proposed to include the effect of noise factors in the DOE to obtain an optimal 

design of robotic manipulator. This approach is explained in next section. 

3.4.3 Selection of Performance Measures for Manipulator –The Response variable 

To investigate the impact of different parameters on performance variation of manipulator, 

several performance measures have been proposed by researchers. Following four, 

performance measures have been considered in this work. 

(a) Positional Error: 

For a robotic manipulator positional performance measures are accuracy, repeatability and 

resolution. A combination of these measures are defined as positional error iε  as distance 
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between the actual point reached by the end-effector ),,( aaai zyxP  in the ith experiment and 

desired point ),,( fff zyxP  in 3-D space, that is,  

 ( ) ( )[ ]222 )( fafafai zzyyxx −+−+−=ε  (3.16) 

For the 2-DOF RR planar manipulator, with xy-plane as the workplane, the positional error iε  

in equation (3.16) will reduce to  

 [ ]22 )()( fafai yyxx −+−=ε  (3.17) 

The objective function to be optimized is therefore, to minimize the positional error 

considering the uncertainties involved. 

(b) Mean Positional Error: 

Mean positional error ε  is defines as the average positional error for large number of 

experiments performed, that is, 

 
=

=
n

i
in 1

1 εε  (3.18) 

where n is number of experiments or replications and iε is positional error for ith experiment. 

(c) Signal to Noise Ratio: 

The signal to noise ratio (SN ratio) proposed by Taguchi, has been used as the data 

transformation method to consolidate the repetitive data into one value, which reflects the 

mean value and amount of variation present in the data. For the robotic manipulator design 

objective is to minimize the positional error hence, it is always desired that it should be as 

small as possible. Therefore, as per Taguchi method, the quality characteristics (performance) 

is of ‘smaller-the-better’ type and for this case target is zero. SN ratio is given as [Park 1998] 

 )(log10ratioSN 10 MSD−=  (3.19) 

where MSD denotes the mean squared deviation from target value of the quality 

characteristics. Therefore, for manipulator design SN ratio becomes 
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SN ratio is an essential indicator of the ability of the system to perform well in relation to the 

effect of noise and measure to carryout the analysis of experiment. Clausing stated that the 

SN ratio is a good performance measure of robustness against noise [Clausing 1988].  

(d) Reliability: 

The reliability (R) of a manipulator is defined by Bhatti and Rao [Bhatti 1988] as the 

probability of the end-effector reaching a point or in a close vicinity of it within specified 

range. If the end-effector reaches a point within the specified range, it is considered as a 

successful experiment. The reliability R is given as, 

 
sExperiment ofnumber  Total

sExperiment sucessful ofNumber =R  (3.21) 

The specified range around a target point is called the permissible error region and its shape 

and size depends on the intended use of the manipulator. The reliability as performance 

measure has been used to evaluate the overall performance of all control factor combinations. 

3.4.4 Design the Experiment – Choice of Experimental Design 

The next step is to design the experiment. Experiment is defined as a test in which purposeful 

changes are made to the input variables of a system so that reasons for changes in the output 

response observed can be identified. There are several factors of interest in an experiment; 

therefore, to deal with these factors a factorial experiment strategy is used. Factorial 

experimental is an experimental strategy in which the design factors are varied and effects of 

all possible combinations of the levels of factors for the experiment are investigated. For 

example, if there are a levels of factor A, b levels of factor B, and c levels of factor C, then 

each replicate contains all cba ××  experimental combinations. One of the special case is that 

of k factors, each at two levels. Usually these levels are indicated by “high” and “low” levels 

of a factor. A complete replicate of such design requires k22......222 =×××  combinations 

and is called a 2k factorial design. Number of combinations of 2k design depends on the value 

of the k i.e. number of factors. To conduct the experiments and strategies adopted to simulate 

performance are discussed next. 

3.4.5 Performing and Analyzing the Experiment 

To perform experiment factorial combinations are required. Assuming that for an 

investigation there are three factors A, B, and C each at two levels. The design is called a 23 
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factorial design and eight combinations can now be displayed with the help of – and + 

notations to represent the “low” and “high” levels of the factors respectively. The eight 

combinations of the 23 design are shown in Table 3.1. This representation scheme is called the 

design matrix. 

Table 3.1 Design Matrix 

Combination 
Number 

Factor 

 A B C 
1 – – – 
2 + – – 
3 – + – 
4 + + – 
5 – – + 
6 + – + 
7 – + + 
8 + + + 

 
This design matrix helps experimenter to conduct experiment to investigate the joint effect of 

factors on a response. Commonly to represent the design matrix better, high and low level 

values of factors are used in place of – and + notations. Each factorial combination is run for 

finite number of replications to capture the effect of noise. The developed methodology and 

data utilized to simulate the performance is provided in sections 3.5 and 3.6. It is important to 

mention that while simulating the performance for the experiment no constraints such as 

maximum velocity and acceleration of links of manipulator are imposed. 

For each replication, outcome of the experiment is obtained as the positional error iε  and 

thereafter the performance measure mean positional error ε  and SN ratio are computed for 

each control factor combination. The relevance of the SN ratio equation is tied to interpreting 

the signal or numerator of the ratio as the ability of the product to perform correctly. By 

including the impact of the noise factors on the product as denominator, then SN ratio can be 

adopted as the barometer of the ability of the system to perform well in relation to the effect 

of noise. By applying this concept to experimentation control factor settings of the product 

that delivers both best performance (high signal) and minimizes the effect of noise factor 

influences (low noise) can easily be determined. When both the conditions are satisfied SN 



64 

ratio becomes highest. This means that reduction in mean response or improvement in 

consistency in response one data to the next. Therefore, to obtain optimal parameter 

combination, SN ratio values are compared after the conduct of experiment. 

Statistical analyses of performance of experiment have been carried out using analysis of 

variance (ANOVA) technique, which is a powerful tool for understanding complex physical 

phenomenon. ANOVA is used to subdivide the total variation into variation due to control 

factors, variation due to interacting control factors and variation due to error. After this, 

statistical tests like F-test are used to investigate statistically significant control factors and 

interacting factors, which help in screening many factors to discover the vital few and how 

they interact. For this study statistically significant control factors and interacting factors are 

determined using ANOVA, and its results are discussed in section 3.7. 

3.5 STRATEGY TO INCORPORATE EFFECTS OF NOISE FOR PARAMETER 

DESIGN 

For given set of control factor values and target point ),( ff yxP  in workspace, following six 

parameters are computed from the equations (3.3), (3.4), (3.5), (3.6), (3.9) and (3.10) 

1. Angular displacements 1θ , 2θ  

2. Angular velocities 1θ� , 2θ�  

3. Angular accelerations 1θ�� , 2θ��  

The computed values of these six parameters are free from the effects of noise. To incorporate 

the effect of noise in the above parameters, individual errors in form of noise for the six 

control factors are generated randomly. The randomly generated errors are assumed to follow 

normal distribution with zero mean and a specified standard deviation. Using set of values of 

control factors with noise, the above six parameters with noise incorporated are obtained as: 

angular displacements ( n
1θ , n

2θ ) from equations (3.3) and (3.4); angular velocities ( n
1θ� , n

2θ� ) 

from equations (3.5) and (3.6); and angular accelerations ( n
1θ�� , n

2θ�� ) from equations (3.9) and 

(3.10), where superscript ‘n’ is used to indicate the presence of noise in the parameter. To 

compute the point actually reached by the end-effector with the presence of noise in control 

factors, a search technique has been developed and is described in following section. 
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3.5.1 Locating Target Point Reached 

To compute the actual target point reached by the manipulator the angular displacements of 

links aa
21 and θθ are required where superscript ‘a’ indicates actual values with noise present. 

Taking computed values of n
1θ�� , n

2θ��  as input and control factors at nominal values (without 

noise) aa
21 and θθ are obtained. Since equations are nonlinear transcendental equations, the 

values of aa
21 and θθ  are obtained using a heuristic based search algorithm. The steps of the 

algorithm are given below: 

Algorithm 1: Search algorithm 

Step 1. Read nominal level values of six control factors 1l , 2l , 1m , 2m , 1τ  and 2τ . 

Step 2. Read standard deviations 
212121

and,,,, ττ σσσσσσ mmll  for the six control factors. 

Step 3. Read the range and step size for 1θ , 2θ  variations and permissible error e .  

Step 4. Read the manipulator target point ),( ff yxP . 

Step 5. Obtain 1θ , 2θ , 1θ� , 2θ� , 1θ��  and 2θ��  for input nominal values of control factors from 

equations (3.3), (3.4), (3.5), (3.6), (3.9) and (3.10), respectively. 

Step 6. Generate random errors based on standard deviations for six control factors and 

obtain control factor values with noise. Using these values of control factors, 

compute n
1θ , n

2θ , n
1θ� , n

2θ� , n
1θ�� , and n

2θ��  from equations (3.3), (3.4), (3.5), (3.6), (3.9) 

and (3.10), respectively. 

Step 7. Make starting guess for aa
21 and θθ , which is equal to 21 andθθ  in step 5 

Step 8. Compute aa
21 , θθ ����  from equations (3.9) and (3.10). 

Step 9. Compare the values of aa
21 ,θθ ����  obtained in step 8 with values of nn

21 ,θθ ����  obtained in 

step 6. If differences are within the specified permissible error e  go to step 10, else 

increment aa
21 and θθ  by chosen step size within the range and go to step 8.  

Step 10. Terminate the search and return aa
21 andθθ . 

For each factorial combination simulations are performed to obtain the individual 

performance of the experiment. The simulation is also run for the decided number of 

replications to compute defined performance measure. Likewise, for all the factorial 
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combinations, simulations are carried out for desired number of replications to compute the 

performance measures. 

3.6 SIMULATION 

To simulate the performance of manipulator computer programme is developed using the 

approach discussed in section 3.5. For the computer programme, MATLAB software and its 

commands are used.  

The numerical values used to simulate the performance of 2-DOF RR planar manipulator are 

given below: 

(a) Number of levels for each control factor = 2, 

(b) Nominal values of six control factors at two levels and standard deviations are given 

in Table 3.2. These standard deviations are used for simulation of noises. It can also be 

observed that the torque available at joint one and two have negative (–) signs. This 

indicates that the torque available at the joints is of retarding type, which is required 

for stationary end-effector at the target point.  

Table 3.2 Level Values of Control Factors and Standard Deviations 

Control Factor Low Level High Level Standard 
Deviation 

1l  (m) 0.40 0.50 0.0001 

2l  (m) 0.30 0.40 0.0001 

1m (kg) 5.5 6.5 0.01 

2m (kg) 4.0 5.0 0.01 

1τ (Nm) –500 –800 0.1 

2τ  (Nm) –100 –105 0.1 

 
(c) Number of combinations in factorial design = 26 = 64 

(d) Design matrix of few control factor combinations is shown in Table 3.3. All the 64 

combinations of design matrix are given in Appendix A1. 
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Table 3.3 Design Matrix for Control Factor Combinations 

Combination 
Number 1l (m) 2l  (m) 1m (kg) 2m (kg) 1� (Nm) 2� (Nm) 

1 0.40 0.30 7 5 –500 –100 

2 0.40 0.30 7 5 –500 –105 

3 0.40 0.30 7 5 –800 –100 

. . . . . . . 

 . . . . .  

. . . . . . . 

62 0.50 0.40 8 6 –500 –105 

63 0.50 0.40 8 6 –800 –100 

64 0.50 0.40 8 6 –800 –105 

 
(e) The step size of increment for search, range of search and permissible error value e  

for the search algorithm have been chosen as 

Increments: 1)(1 01.0 θθ =incr , 2)(2 01.0 θθ =incr , 

Ranges: 111 5.15.0 θθθ ≤≤  and 222 5.15.0 θθθ ≤≤ , 

Permissible error value: 005.0≈e . 

(f) Tolerances chosen for target point for computation of reliability are: 

m0005.0,m0005.0 ±=∆±=∆ yx . 

(g) Chosen number of replications for each combination of factorial design = 8 and 

for reliability = 200 

(h) To establish the proposed method, simulation is carried out for four different target 

points, Coordinates of four target points in workspace are given in Table 3.4 

Table 3.4 Task to be performed by Manipulator 

Case Cartesian Coordinate of 
Target point ),( ff yx  

(i) m)0.30m,40.0(  

(ii) m)0.40m,50.0(  

(iii) m)0.40m,40.0(  

(iv) m)0.30m,30.0(  
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Using above numerical values simulations are run. To determine the performance 

for each factor combination, simulation is run for 8 replications for the four cases i.e. 

target points. Since each control factor used for experiment has two levels, 8 

replications of six-factor experiment required 512 simulations to run. From each 

simulation, positional error )( iε  is obtained as response and taking these responses, 

analysis of experiment are carried out using ANOVA. The performances for four cases 

are analyzed by ANOVA technique and results are provided in Tables 3.5, 3.6, 3.7 and 

3.8, respectively. 

As discussed already ANOVA helps in comparing different sources of variations and 

making inferences about their relative importance. In ANOVA table, sum of squares (SS) 

indicate measure of the variability due to a source and the mean square (MS) of a source 

of variation is computed by dividing SS by its associated degrees of freedom. Finally 

computed F statistic oF  for the ANOVA is computed by dividing the MS of source by the 

MS of residual. This computed oF  statistic is compared with the tabulated F  statistic to 

draw inferences i.e. whether the factor has significant influence on performance variations 

or not. 

Analyses of all four cases are carried out separately and results are discussed below. 

During analysis the level of significance is assumed to be 0.10. Statistically significant 

parameters are those for which oF statistic is greater than tabulated F  statistic. For 

assumed level of significance F  tabulated is 2.71 i.e. ∞== ,1,10.0478,1,10.0,,10.0 21
FFF νν  71.2≈  

[Montegomery 2001]. The observed statistic oF  values have been provided in respective 

tables. To represent the ANOVA results in compact form, results of individual factors and 

few significant interacting factors are presented in the table. 
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Table 3.5 ANOVA of Full Factorial Design for case (i) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square oF  Value Remark 

1l  11.52×10–4 1 11.52×10–4 3.67 Significant 

2l  47.33×10–4 1 47.33×10–4 58.72 Significant 

1m  3.154×10–5 1 3.154×10–5 3.913×10–5 – 

2m  30.19×10–4 1 30.19×10–4 37.46 Significant 

1τ  1.02×10–4 1 1.02×10–4 1.26 – 

2τ  2.56×10–4 1 2.56×10–4 3.18 Significant 

21ll  1.13×10–4 1 1.13×10–4 1.040 – 

11τm  3.53×10–4 1 3.53×10–4 4.38 Significant 

12τm  4.03×10–4 1 4.03×10–4 5.00 Significant 

21121 ττmll  3.56×10–4 1 3.56×10–4 4.41 Significant 

Residual 385.271×10–4 478 0.81×10–4   

Corrected Total 506.35×10–4 511    

Table 3.6 ANOVA of Full Factorial Design for case (ii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square oF  Value Remark 

1l  193.54×10–4 1 193.54×10–4 46.22 Significant 

2l  415.76×10–4 1 415.76×10–4 99.29 Significant 

1m  1.134×10–5 1 1.134×10–5 3.913×10–5 – 

2m  44.59×10–4 1 44.59×10–4 10.65 Significant 

1τ  39.04×10–4 1 39.04×10–4 9.32 Significant 

2τ  1.56×10–4 1 1.56×10–4 3.18 Significant 

21ll  47.08×10–4 1 47.08×10–4 11.24 Significant 

11τl  147.30×10–4 1 147.30×10–4 35.18 Significant 

12τl  11.03×10–4 1 11.03×10–4 2.63 – 

121 τll  80.47×10–4 1 80.47×10–4 19.22 Significant 

Residual 2106.19×10–4 501 4.19×10–4   

Corrected Total 3085.01×10–4 511    
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Table 3.7 ANOVA of Full Factorial Design for case (iii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square oF  Value Remark 

1l  7.936×10–4 1 7.936×10–4 14.42 Significant 

2l  0.021 1 0.021 101.30 Significant 

1m  4.178×10–4 1 4.178×10–4 1.99 – 

2m  3.452×10–3 1 3.452×10–3 16.47 Significant 

1τ  1.770×10–4 1 1.770×10–4 8.44 Significant 

2τ  2.865×10–4 1 2.865×10–4 13.66 Significant 

21ll  9.332×10–4 1 9.332×10–4 4.45 Significant 

11ml  3.716×10–4 1 3.716×10–4 1.77 – 

21ml  1.410×10–3 1 1.410×10–3 6.72 Significant 

22ml  6.054×10–7 1 6.054×10–7 2.887×10–3 – 

22τl  1.653×10–3 1 1.653×10–3 7.88 Significant 

221 mll  1.379×10–3 1 1.379×10–3 6.57 Significant 

Residual 0.10 499 2.097×10–4   

Corrected Total 0.14 511    

Table 3.8 ANOVA of Full Factorial Design for case (iv) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square oF  Value Remark 

1l  1.759×10–4 1 1.759×10–4 1.43  

2l  5.125×10–4 1 5.125×10–4 4.17 Significant 

1m  1.112×10–3 1 1.112×10–3 9.05 Significant 

2m  4.990×10–4 1 4.990×10–4 4.06 Significant 

1τ  0.021 1 0.021 167.61 Significant 

2τ  1.022×10–3 1 1.022×10–3 8.32 Significant 

21ττ  5.762×10–4 1 5.762×10–4 46.91 Significant 

Residual 0.062 504 1.228×10–4   

Corrected Total 0.092 511    
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The results of ANOVA for case (i) are provided in Table 3.5. The oF  value of individual 

factor and interacting factors with tabulated F value are compared. It is observed that control 

factors 2221 ,,, τmll  and interacting factors 211211211 and, ττττ mllmm are statistically 

significant. The results of ANOVA for case (ii) are provided in Table 3.5. The oF  value of 

individual factor and interacting factors with tabulated F value are compared and observed 

that control factors 21221 and,,, ττmll and interacting factors 1121 , τlll  and 121 τll  are 

significant. 

ANOVA results of case (iii) are given in the Table 3.7. On similar lines, analysis and 

comparison is carried out. For case (iii), it is observed that factors 2122 and,, ττml  and 

interacting factors 221222121 and,, mlllmlll τ  are significant. ANOVA results for case (iv), 

are provided in the Table 3.8. By comparing oF  value with the tabulated F value factors 

21212 and,,, ττmml  and interacting factors 21ττ  are observed to be significant. 

The performance measures i.e. ε  and SN ratio are computed for each parameter 

combination. To indicate the trends of performance measure against the combination number, 

results are shown in graphs. The graph showing trend of mean positional error against 

combination number for all four cases are presented in Figs 3.3, 3.4, 3.5 and 3.6. 
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Fig 3.3 Mean Positional Error for case (i) 
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For case (i), it is observed from Fig. 3.3, that mean positional error is maximum 

m)02203.0( at combination number 42 and is minimum m)007355.0(  at combination 

number 29. 
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Fig 3.4 Mean Positional Error for case (ii) 

For case (ii) mean positional error is maximum m)0683.0(  at combination number 12 and 

is minimum m)00964.0( at combination number 56 as observed in Fig. 3.4. It is also observed 

that mean positional error is less than m02.0  from combination number 47 to 64. 
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Fig 3.5 Mean Positional Error for case (iii) 
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Likewise for case (iii) it is observed that mean positional error is maximum m)01586.0(  at 

combination number 43 and is minimum m)00593.0( at combination number 34, as shown in 

Fig. 3.5. It is also observed that mean positional error is less than m007.0 . 
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Fig 3.6 Mean Positional Error for case (iv) 

For case (iv) mean positional error is maximum m)02653.0(  at combination number 46 

and is minimum )m0078.0( at combination number 63 as observed in Fig. 3.6(a). It is 

observed that mean positional error is less than m 0.01  in few combinations. 

Similarly using the simulation results performance measure SN ratio is computed. The 

change of SN ratio against the combination number is presented with the help of graphs. The 

results of cases (i), (ii), (iii) and (iv) are presented in Figs 3.7, 3.8, 3.9 and 3.10 respectively. 

As this investigation utilizes all combinations of control factors into consideration these 

graphs summarizes the over all behavior of manipulator to control parameter change. 
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Fig 3.7 SN ratio for case (i) 
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In Fig.3.7, it is seen that SN ratio of different combinations are increasing from 

combination number 34th to 44th. The SN ratio is observed to vary between –1.78dB and 32.76 

dB. Similarly in Fig. 3.8, for case (ii) it is observed that performance vary between 5.86 dB 

and 70.50 dB. Combination number 1 to 17 and 33 to 47 have performance above 35 dB. Rest 

of the factor combinations show poor performance. 
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Fig 3.8 SN ratio for case (ii) 

It is seen that for case (iii) in Fig. 3.9, SN ratio vary between 35 dB to 42 dB. The 

maximum SN ratio is 42.57 dB at combination number 2. Interestingly most of the 

performance is observed to be above 34 dB for all combinations. 
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Fig 3.9 SN ratio for case (iii) 



75 

In Fig. 3.9, it is observed that maximum SN ratio is 42.57 dB at combination number 2 

and minimum 34.67 dB at combination number 41. Most of the performance fluctutae on and 

around 38 dB. Lastly for case (iv) results are plotted in Fig. 3.10 and it is observed that 

maximum SN ratio is 47.65 dB at combination number 55 and minimum 24.2 dB at 

combination number 37. Most of the performance fluctuate on and around 32 dB. 
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Fig 3.10 SN ratio for case (iv) 

To observe overall behavior of performance for all control factor combinations, reliability 

as a performance measure is computed by running the simulation 200 times separately. For 

computation of reliability, tolerance range around the target point is selected by trial and error 

basis because it was observed that wider the tolerance range higher the reliability and tighter 

the tolerance poorer the reliability for all factor combinations. Subsequently based on tolerance 

ranges chosen for experiment, reliability is computed. This tolerance range is assumed same 

for all the cases. The rational behind keeping this same is to make comparison between the 

cases easy. The change of performance measure i.e. reliability, against combination number is 

displayed in Figs. 3.11, 3.12, 3.13 and 3.14 for case (i), (ii), (iii) and (iv) respectively. 

For case (i), it is observed that maximum reliability is 0.07 at combination number 49. 

From above figure it is observed that better performance is found between 16th and 33rd and 

48th and 64th combination numbers. In this case, there are six combinations which showed poor 

performance. The value of reliability, is found to be zero in these combinations, indicating that 

the end-effector has not reached the specified region even once in 200 simulations. 
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Fig 3.11 Reliability for case (i) 

For case (ii), in Fig. 3.12, it is observed that maximum reliability is 0.07 at combination 

number 22. Better performance is found between combination number 47th and 58th. There are 

sixteen combinations for which reliability is zero. This indicates that the end-effector has not 

reached the region specified even once. The reason for showing poor performance in all the 

above cases are the tolerance value chosen around the target point. 
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Fig 3.12 Reliability for case (ii) 

Similarly for case (iii), computed performance measure reliability is plotted against the 

combination number. In Fig. 3.13, it is observed that maximum reliability is 0.25 at 

combination number 25, 51 and 61. Poor performances are found for more than forty 

combinations. 
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Fig 3.13 Reliability for case (iii) 

For case (iv) in Fig. 3.14, it is observed that maximum reliability is 0.16 at combination 

number 61. Poor performances are found for more than twenty one combinations, indicating 

that the end-effector has not reached the specified region even once in 200 simulations. 
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Fig 3.14 Reliability for case (iv) 

Referring to above graphs combination number which delivers optimal performance 

measure or poor performance can easily be observed. In addition, these graphs help in 

understanding and capturing the relationship between the performance measures. The detailed 

discussions and analysis are provided in next section. 
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3.7 DISCUSSION AND ANALYSIS OF PERFORMANCE 

After comparing the values of performance measure, optimal combinations which delivers 

optimal performance are identified and tabulated in Tables 3.9, 3.10, 3.11 and 3.12 for cases 

(i), (ii), (iii) and (iv) respectively. For case (i) the results of ANOVA are presented in Table 

3.5 which clearly indicates that all control factors are statistically significant. All control 

factors have significant role to play in performance measure apart from the interactions. 

Therefore, none of the control factors go out of contention for parameter design. Subsequently 

mean positional error, SN ratio and reliability are used to find the suitable control factor 

combinations for which performance is optimal. 

Table 3.9 Optimum Parameters for Different Performance Measure - case (i) 

Target Point )3.0,4.0(P  
Control factor 

SN ratio Reliability Mean Positional 
Error in (m) 

Value 
(Combination No.) 

32.7652 
(44) 

0.07 
(49) 

0.00735 
(29) 

1l  (m) 0.50 0.50 0.40 

2l  (m) 0.30 0.40 0.40 

1m  (kg) 8 7 8 

2m  (kg) 5 5 6 

1τ  (Nm) –800 –500 –500 

2τ  (Nm) –105 –105 –100 

 
Simulation results in terms of mean positional error, SN ratio and reliability for case (i) 

have been given in Figs. 3.3, 3.7 and 3.11, respectively for 64 parameter combinations. The 

optimum parameter combination using above performance measure are shown in Table 3.9. 

The basis for selection of optimum parameter combination is the combination number which 

has maximum value of SN ratio, reliability and minimum mean positional error. 
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Table 3.10 Optimum Parameters for Different Performance Measure - case (ii) 

Target Point )4.0,5.0(P  
Control Factor 

SN ratio Reliability Mean Positional 
Error in (m) 

Value 
(Combination No.) 

70.501272 
(12) 

0.07 
(22) 

0.009648 
(56) 

1l  (m) 0.40 0.40 0.50 

2l  (m) 0.30 0.40 0.40 

1m  (kg) 8 7 7 

2m  (kg) 5 6 6 

1τ  (Nm) –800 –500 –800 

2τ  (Nm) –105 –105 –105 

For case (ii) the results of ANOVA are presented in Table 3.6 and it is observed that 

control factor 1m  is statistically insignificant. The simulated performance measures are shown 

in Figs. 3.4, 3.8 and 3.12 for 64 parameter combinations. The optimum parameter 

combinations are presented in Table 3.10. Similarly, for case (iii) ANOVA of simulated 

results are presented in Table 3.7. In this case once again, control factor 1m  is observed to be 

statistically insignificant. The performance measures are shown in Figs. 3.5, 3.9, 3.13, and 

optimum parameter combinations are given in Table 3.11. The performance measures of case 

(iv) are shown in Figs. 3.6, 3.10, 3.14 for 64 parameter combinations. The optimum parameter 

combinations are presented in Table 3.12. Results of ANOVA are presented in Table 3.8 and 

conclude that control factor 1l  is statistically insignificant. 

Table 3.11 Optimum Parameters for Different Performance Measure - case (iii) 

Target point )4.0,4.0(P  
Control factor 

SN ratio Reliability Mean Positional 
Error in (m) 

Value 
(Combination No.) 

42.57 
(2) 

0.25 
(25) 

0.00593 
(34) 

1l  (m) 0.40 0.40 0.50 

2l  (m) 0.30 0.40 0.30 

1m  (kg) 7 8 7 

2m  (kg) 5 5 5 

1τ  (Nm) –500 –500 –500 

2τ  (Nm) –105 –100 –105 
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Table 3.12 Optimum Parameters for Different Performance Measure - case (iv) 

Target point )3.0,3.0(P  
Control factor 

SN ratio Reliability Mean Positional 
Error in (m) 

Value 
(Combination No.) 

47.65 
(55) 

0.16 
(61) 

0.0088 
(31) 

1l  (m) 0.50 0.50 0.40 

2l  (m) 0.40 0.40 0.40 

1m  (kg) 7 8 8 

2m  (kg) 6 6 6 

1τ  (Nm) –800 –500 –800 

2τ  (Nm) –100 –100 –100 

 

It has been observed that statistically significant factors are different for different target 

points in workspace. This indicates that different factors have different contribution to 

performance variation as target position changes or in other word, performance is dependent 

on the target point and for each target point different control factors are significant. But there 

is no evidence to show a correlation between them. It is important to note that statistically 

significant factors are major contributor to performance variation of manipulator, even though 

there is mathematical relationship between the parameters and these relations are utilized in 

simulating the performance. In addition to this optimum combination of control factors 

required to perform task are different for different cases. This indicate that one set of 

parameters of manipulator for one task will behave differently for other type of task. 

Finally the optimum factor combinations obtained using mean positional error, SN ratio 

and reliability do not agree in the all the cases considered. The trends of performance 

measures observed to be different in different cases and peaks observed for different 

combination numbers are equally comparable in both the figures. Possible reason for 

disagreement in optimal solution can be due to the transformation of positional error into 

Taguchi’s SN ratio which may not be same as the untransformed result obtained from 

reliability computation. It is observed that most of the combinations for case (i), (ii), (iii) and 

(iv) show poor simulation performance, possible reason may be attributed to the assumed 
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value of retarding torque. Moreover the torque supplied at joint may not be able to satisfy the 

requirement. Other reason may be the inherent round off error present in search solution 

computation. 

3.8 LIMITATIONS OF HEURISTICS BASED SEARCH SIMULATION METHOD 

Though the proposed method has been found to be useful in simulating and obtaining optimal 

parameter combinations, but it had certain limitations. While analyzing the limitations of 

present method, an attempt has been made to develop generalized simulation method for the 

optimal manipulator parameter design. The limitations of present method are listed below. 

1. Limitations in using start point of the task carried out by manipulator, 

2. Limitations in using time required to reach start to destination point by manipulator, 

3. Limitations in incorporating end conditions at the start as well as destination point, 

4. Limitations in explicit use of noise factors like friction, joint clearances, 

environmental condition and manufacturing tolerances, 

5. Limited scope to handle higher degree of freedom manipulator because of the 

complexity in kinematic and dynamic models. 

6. Accuracy in results is restricted due to termination conditions and time required to 

simulate performance and compute performance measure. 

3.9 EPILOGUE 

The work presented in this chapter gives an insight to the use of simulation method for 

modeling and optimizing the performance of robot manipulators. It illustrates search- 

heuristic based method to simulate various performance measure of manipulator and use of 

DOE technique to determine statistically significant parameters. While simulating, 

performance of manipulator no constraint i.e. angular velocity and accelerations have been 

applied. The approach discussed is an initial attempt in determining significant factors 

responsible for performance variations and selection of the optimum factors rather than 

spending effort in controlling performance of manipulator. The novelty of this exploration can 

be summarized as given below: 
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(a) Strategies to incorporate effect of noise for simulation of real life performance. 

(b) Use of both kinematic and dynamic models of manipulator for simulation of the 

performances i.e. mean positional error, SN ratio and reliability, to incorporate 

dynamic effects of parameters on performance of manipulators. 

(c) Use of DOE technique to analyze the performance of manipulator. 

(d) Use of ANOVA technique to analyze the statistical significance of kinematic and 

dynamic parameters that contribute most to the observed performance variations. 

(e) Use of performance measure i.e. reliability, to investigate overall performance of 

factorial combinations. 

Present work explores the performance variations problem of a manipulator in the perspective 

of robot designer and its manufacturer for its possible solution. 
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CHAPTER-4 
 

SCREENING OF FACTORS INFLUENCING THE PERFORMANCE  
OF MANIPULATOR 

 
 

4.1 INTRODUCTION 

The attempt to analyze the effect of different design, process and noise parameters on 

performance of manipulator is novel in the sense that the designer can focus on those 

parameter that has significant influence on performance variations rather than focusing on 

several unwanted parameters. Without proper knowledge on the impact of parameter values 

on the performance, robotic system designer often decides parameter values by intuition 

fulfilling some kinematic performance criteria like manipulability index, condition number 

etc. [Craig 1989]. 

The intention behind taking up the problem of screening of parameters of the robot 

manipulator is to develop the knowledge regarding the impact of parameters on performance. 

In past, many researchers had attempted statistical analysis of robot performance by changing 

several process parameters. However, use of simulations model and design of experiments 

technique to study influence of design, process and noise parameters are rare. In this chapter 

the screening of parameters by using the Fractional factorial DOE approach is carried out to 

identify the important parameter. The chapter discusses how this technique is applied to robot 

manipulator design problem. 

The parameters responsible for performance variations were explored in the previous 

chapter using search based heuristics method. In this chapter these are investigated once again 

using another novel method. In this method limitations of the earlier method discussed in 

earlier chapter are removed. The parameters relating to the manipulator designs were 

classified as the control factors and noise factors in previous chapter. To analyze the statistical 

significance of effects of these factors, DOE technique has been used. Effects of these factors 

are investigated using parameters at different level values. As the number of levels to be taken 

into consideration increase for each control factor and noise factor, the number of 

combinations becomes large, and unmanageable. Therefore, running experiments with all the 

combinations are cumbersome, uneconomical and time consuming. As the focus of this 
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chapter is to identify the parameters responsible for performance variations, parameter 

combinations are generated using “Fractional factorial design of experiment approach”. 

Where Fractional factorial designs are used for screening of parameters in an experiment. 

Screening of parameters experiment is usually performed in the early stages of a design 

project when it is likely that many of the parameters initially considered have little or no 

effect on the performance. In this chapter many factors i.e. control and noise factors, are 

considered with the purpose of identifying those factors that have statistically significant 

effects on performance variations. 

It has been observed in the previous chapter that simulation of real life performance of a 

manipulator is quite complex due to nature of kinematic and dynamic model. To avoid above 

difficulty, a novel method has been proposed which is different from the method discussed in 

earlier chapter. Since there are no closed form equations to simulate the real life performance 

of manipulator, a new method has been proposed to simulate the performance. The 

performances of the experiments are simulated using proposed approach. Obtained 

performances are subsequently used to study the statistical significance of parameters. As 

manipulator is expected to perform various tasks following different trajectories in the 

workspace, the statistical significance of the control and noise factors of manipulator are 

investigated. For investigating how tasks and trajectories affect the performance variations of 

manipulator, different tasks following different trajectories, have been used. The performance 

measure i.e. positional error defined in previous chapter is used for the analysis of parameters 

responsible for the performance variations in reaching the destination point. 

This chapter is organized in seven sections. In section 4.2, steps for application of 

Fractional factorial DOE technique to screen the parameters and the importance of this type of 

analysis are discussed. The application of Fractional factorial DOE technique to a  

2-DOF RR planar manipulator has been discussed in section 4.3. The methodology used to 

simulate the performance of the manipulator is discussed in section 4.4. The assumed 

manipulator data for simulation and analysis of results of experiment are presented in section 

4.5 and 4.6 respectively. In section 4.7, parametric sensitivity of manipulator performance at 

destination is also investigated to compliment the statistical analysis carried out in this 

chapter. Effects of particular class of parameters on performance of manipulator have been 

carried out and results have been presented. 
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4.2 FRACTIONAL FACTORIAL ( pk −2 ) DOE TECHNIQUE 

For parameter screening experiment using DOE technique, already identified control and 

noise factors in Chapter 3 needed to be considered at several levels. Since with increase in 

number of factors and number of levels increase the number of experimental runs, to keep 

number of experiment into a manageable level, factors at two levels are considered. 

Therefore, experiment with k factors will have k2  combinations. As the number of factors k  

in a k2  factorial increases the number of combinations required for a complete replicate of the 

design rapidly outgrows the resources of most experiments. To avoid this difficulty, a 

particular type of experimental design is used where not all parameter combinations are 

required for experimentation. However, for conducting such experiments it is assumed that 

high order factor interactions have negligible impact on performance. With this assumption, 

the main factor and low-order factor interaction effects are obtained by running only a 

fraction of the complete factorial experiment. 

The steps utilized for conducting experiments remains almost same as discussed in 

Chapter 3. Using same steps the parameters that have significant impact on the performance 

variations of a manipulator are studied. In place of repeating the steps followed, the 

modifications in adopted procedures are discussed in detail. The methodology described 

below is used for Fractional factorial DOE technique: 

Step 1. Statement of the problem 

The statement of problem and objective of the experiment are clearly spelt out. 

Step 2. Choice of factors and levels 

In this step, the factors to be varied in the experiment, the number of levels and the ranges 

over which these factors will be varied are decided.  

Step 3. Selection of the response variable 

The experimenter selects the response variable that really provides useful information 

about the product or process under investigation. 

Step 4. Choice of suitable fractional factorial experimental design, generators and resolution 

A k2  factorial design containing pk −2  combinations is called a p2/1  fraction of the k2  

design. For creating pk −2  combinations it require proper selection of p independent 

generators. The defining relations for the design consist of the p generators initially chosen 
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and their 12 −− pp  generalized interactions [Montgomery 2001]. The alias structures are 

found by multiplying each effect column by the defining relation. For choosing the 

generators, proper care should be taken so that effects of potential parameters are not aliased 

with each other. To avoid a factor getting aliased with other factors, suitable design resolution 

is selected. A design is of resolution R , if no p -factor performance is aliased with another 

effect containing less than pR −  factors. Design resolutions are always specified by Roman 

numeral subscripts. For conducting experiments pk −2  Fractional factorial design of resolution 

V  is selected. In this design resolution main effects are clear of two-factor interactions and 

two factor interactions are not aliased with each other. The smallest word in the defining 

relation of such a design must have five letters. This design allows the estimation of all the 

main effects and two factor interactions. 

Step 5. Perform the Experiment 

It is vital to carefully monitor the process or simulation to ensure that everything is done 

as per plan. In this step, experiment is conducted and performance measure is obtained. 

Step 6. Analysis of Performances 

Statistical methods are used to analyze the data so that results and conclusions are made 

about the factors in the experiment. 

4.3 APPLICATION OF FRACTIONAL FACTORIAL DOE TECHNIQUE FOR 

PARAMETER SCREENING 

Fractional factorial DOE technique has been satisfactorily applied in several engineering 

applications effectively. However, application to manipulator design problem has not been 

attempted so far. To invesigate the effect of parameters on performance of manipulator a 2-

DOF RR planar manipulator explained in previous chapter is considered. The step-by-step 

application of Fractional factorial DOE technique discussed above to a robot manipulator 

parameter-screening problem is presented here. 

4.3.1 Statement of the Problem 

The objective is to identify the manipulator parameters responsible for performance 

variations. It is desired that the manipulator must reach the commanded destination in the 

workspace accurately following a particular trajectory. For the 2-DOF RR planar manipulator, 
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the task is always specified by the start and target point in the workspace of the manipulator. 

The start point is denoted by ),( ii yxP  and the destination point by ),( ff yxP , where 

workspace is xy-plane. The kinematic and dynamic models of the manipulator are used to 

simulate the performance in reaching the destination point and performance along a trajectory 

of manipulator. The method used is discussed in next section. 

4.3.1.1 Kinematic and Dynamic Models of 2-DOF RR Planar Manipulator 

Conducting experiments to ascertain the statistical significance of parameters are very costly 

and uneconomical. Along with this difficulty, the measurements of performances are still 

costlier and difficult to measure. Developed approach provides information regarding the 

performances of a manipulator and works like a simulator. For easy reference considered 2-

DOF RR planar manipulator is shown in Fig. 3.1. The kinematic model in terms of D-H 

(Denavit-Hartenberg) notation for the homogenous transformation matrix [Mittal 2003] is 

given by  
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where )sin( ),cos( ,sin,cos jiijjiijiiii  SCSC θθθθθθ +=+===  with i, j = 1, 2 for the 

two links, link 1 and link 2, respectively. The coordinates of end-effector position ),( yxP  are 

obtained from last column of equation (4.1) or from equations (3.1) and (3.2), respectively. 

The links are assumed to be rigid thin rods and gravity loading is considered. Based on 

Lagrange-Euler formulation and considering that manipulator is moving freely in its 

workspace. The dynamic behavior of joint i of the manipulator with contributions of viscous 

friction is given by [Mittal 2003] 

 iikj
j k

ijk
j

jiji GqBqqhqM ++��+�= �����τ  (4.2) 

where, ijM  the symmetric inertia matrix, ijkh  the centrifugal and coriolis force coefficients, 

iB  the viscous friction coefficient at the joint, iG  the gravity force vector, )(tτ  the joint 

torque vector and )(),(),( tqtqtq ���  are the joint position, velocity, acceleration vectors, 
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respectively. The dynamic model used here has few exceptions as compared to the dynamic 

model considered in earlier chapter. For simulating performance of manipulator, the dynamic 

model is used in vector or matrix representation as compared to algebraic representation. The 

frictions at the joints are considered as compared to no friction in previous chapter. Therefore, 

torque equations for the two joints in generalized form are  

 11112121111 GBHMM ++++= θθθτ �����  (4.3) 

 22222221212 GBHMM ++++= θθθτ �����  (4.4) 
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where, 212121 ,,,,, θθθθθθ ������ are angular displacements, velocities, accelerations of link one 

and two, respectively; 21 and mm  are masses of link 1 and link 2, respectively and g  is the 

acceleration due to gravity. 

To determine the torque required at the joints of the manipulator following approach is 

used. Based on the trajectory chosen to perform the task, torque required at joints are 

determined. It is known that torque required to follow two trajectories are different. Thus by 

choosing different trajectories, influence of torque profile on performance variations of 

manipulator has also been investigated. In this chapter, effects of two trajectories i.e. cubic 

and quintic are studied to investigate the influence of time law and end conditions on 
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performance variations of manipulator. The two trajectories used for the exploration are 

discussed below. 

Trajectory I – Cubic Path 

For the manipulator to follow a cubic trajectory, the initial (i) and final (f) boundary 

conditions are: ( )iiiq 21 ; θθ= ; ( ) ; 21 fffq θθ= ; ( )0;0 =iq�  ( )0;0 and =fq�  where fi qq ,  are 

joint coordinates and fi qq �� ,  are joint velocities, respectively and time to reach the destination 

is gT . The time law of cubic trajectory is given [Mittal 2003] by: 
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where, 32103210 ,,,,,, bbbbaaaa  are constants. Applying boundary conditions to equation 

(4.5), the constants are given as: 
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Trajectory II - Quintic Path 

For the manipulator to follow a quintic trajectory, the initial (i) and final (f) boundary 

conditions are:  

( )iiiq 21 ; θθ= ; ( ) ; 21 fffq θθ= ; ( )0;0 =iq� ; ( )0;0 and =fq�  ( ) ( )0;0  and0;0 i == fqq ����  

where fi qq ,  are joint coordinates, fi qq �� ,  are joint velocities, fqq ���� , i  are joint accelerations 

respectively and time to reach the destination is gT . The time law of quintic trajectory is given 

[Craig 1989] by: 
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where 543210543210 ,,,,,,,,,,, bbbbbbaaaaaa  are constants. Applying boundary 

conditions to equation (4.6), the constants are given as: 
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Using equation (4.5) for cubic time law and equation (4.6) for quintic time law in dynamic 

model of manipulator )(tτ  is computed using process of inverse dynamics.  

4.3.2 Identification of Factors and Levels 

Referring to the kinematic model equations (3.1) and (3.2) and dynamic model of 2-DOF RR 

planar manipulator equations (4.3) and (4.4), the parameters which directly affect the working 

of manipulator are identified. The parameters are classified as control factors and noise 

factors. 

4.3.2.1 The Control Factors 

As discussed in chapter 3, control factors are identified from the kinematic and dynamic 

model of manipulator. Unlike to discussion in section 3.4.2 of Chapter 3, in this chapter first 

four i.e. link lengths 21 and ll , link masses 21 and mm  become control factors.  For these 

parameters, suitable values can be chosen to conduct experiment. 

4.3.2.2 The Noise Factors  

The noise factors were identified in chapter 3, and enlisted in section 3.4.2. The noise 

variables are known for their random natures but it is assumed that these parameters are 

controllable for the experimentation. 

4.3.3 Performance Measures for Manipulator - The Response Variable 

To identify the contribution of individual parameters on performance variations the 

performance measure “positional error” i.e. iε  defined in equation (3.17) and mean positional 

error i.e. ε  in equation (3.18) are used. This performance measure provides the information 

regarding the deviation in performance at the destination while moving along a particular 

trajectory. 

4.3.4 Design the Experiment – Choice of Experimental Design 

For economic reasons, Fractional factorial designs, are commonly used. This design consists 

of a subset or fraction of full factorial designs. Optimal fractions are chosen according to the 
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resolution and minimum aberration criteria. Aliasing of factorial effects is a consequence of 

using fractional factorial designs. 

4.3.5 Performing and Analyzing the Experiment 

For conduct of experiment, combined array approach [Montegomery 2001] has been used. 

This design is called combined array design because it contains control and noise parameters. 

In this approach the inner array for control parameters and outer array for noise parameters 

proposed by Taguchi [Park 1998] has been avoided. The main consideration in adopting this 

approach is to investigate the statistical significance of control and noise parameters in place 

of getting a design, which is insensitive to noise parameters. 

To investigate the effect of parametric variation on performance of manipulator, 

experiments are conducted with the help of design matrix. Each combination is run for finite 

number of replications to capture the effect of noise. The developed methodology and data 

utilized to simulate the performance is provided in sections 4.4 and 4.5. 

From each replication positional error is obtained as outcome of the experiment and 

thereafter the performance measure mean positional error are computed for each combination. 

Statistical analyses of performance of experiment are carried out using analysis of variance 

(ANOVA) technique; subsequently F-test is used to obtain statistically significant parameters 

and interacting parameters. For current study, statistically significant parameters and 

interacting parameters are determined using ANOVA, and its results are discussed in section 4.7. 

4.4 APPROACH TO SIMULATE THE PERFORMANCE OF MANIPULATOR 

INCORPORATING EFFECT OF NOISE 

The concept of uncertainty plays an important role in the investigation of manipulator 

performances. In manipulator’s performance analysis, unknown variations in material 

distribution, uncertainty in manufacturing and assembly and uncertainty in boundary 

condition leads to variation in performance. As it is known that the dynamic model of a 

manipulator is highly coupled and non-linear, simulation of real time performance 

incorporating of effect of noise become difficult. It is commonly observed that robots 

manufactured with same design specifications have different performance variability. The 

main reason for this is the design tolerances prescribed for the manufacturing and assembling 

operations and other noise factors discussed in Chapter 3.  
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Given the randomness of robot parameters, models for their probability distributions are 

needed. For the sake of conciseness, the variations of the parameter are assumed to obey 

Gaussian distributions with nonzero mean and nonidentical standard deviations. However, 

assumption of Gaussian distributions for tolerances on dimensions of any manufacturing 

processes reflects the actual distribution found in practice. Indeed the justification for 

representing many complicated phenomenon by Gaussian distribution functions lies in central 

limit theorem [Montgomery 2001]: If nxxxx ..........,, 321  are independent random variables 

with mean iµ  and variance 2
iσ , for parameter ix  and if, nxxxxy +++= ..........321 , then the 

distribution  
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n

i
i

n
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1

σ

µ
 (4.7) 

approaches the )1,0(N  distribution as n approaches infinity i.e. if y is the sum of n 

independent random variables having nonidentical density functions, then y tends to have a 

Gaussian density function as n approaches infinity. Hence the central limit theorem not only 

justifies approximate Gaussian distribution assumption but also simplifies the probability 

computations [Rao 1988]. Therefore, the variations in length and mass of the links are 

assumed to follow the Gaussian distribution and standard deviations are dependent on the 

specified tolerance for link lengths and link masses. 

Robot performing commanded task can be modeled as a stochastic process which is 

driven by actuators and when the time interval between sample values of supplied torque are 

small, the process becomes highly correlated over time. As torque being supplied to 

manipulator joint is in time order and highly correlated, the supplied torque by the actuators 

are treated as random vectors. These vectors are assumed to follow Gaussian stochastic 

process with Markov properties. The stochastic process with Markov properties has been used 

successfully to model Brownian motion process, diffusion processes, control systems and 

vibrations of structures [Ariaratnam 1988]. It is widely used in the area of Engineering, 

Communication theory and Management Sciences also. Therefore, supplied torque at 

manipulator joint is assumed to follow Gaussian stochastic process with Markov properties. 

Where the future values of a stochastic process depend only on immediate past or present but 
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not all past events. Thus, a stochastic process with Markov properties is represented 

mathematically as: 

The family of random variables { }
nt

X  indexed by the continuous real variable t and 

{ }......2,1............. 121 =<<< + nttt n  represents points in time,  

)().............( 11,1,1 1111 ntnttntntnt uXuXPuXuXuXuXP
nnnnn

======= +−+ +−+
 (4.8) 

where, 
nt

X  denote the state of the process at time nt  and ,.......,, 21 −− nnn uuu  are the values of 

the process parameters. )( 11 ntnt uXuXP
nn

== ++
 is called transition probability for 

))(( 11 ++ = nn utu , given that ))(..,.........)(( 11 nn utuutu == . The dynamics of a system can be 

written in state space representation as  

 dttutftdu ))(,()( =   (4.9) 

Equation (4.9) shows that the change in the system parameter )(tu  is a function of the value 

of )(tu  at time t and does not depend on the values of u  at previous times. It is assumed that 

the length and mass of link one and two of manipulator are random variables following 

Gaussian distribution, and the supplied torque at the joints by the actuators are random vectors 

following Gaussian stochastic process with Markov properties. The strategy adopted to 

simulate the joint torque vector is discussed below. 

4.4.1 Simulation of Joint Torque 

As the fluctuation in supplied joint torque vector )(tτ  is assumed to follow Gaussian 

stochastic process with Markov properties, it is simulated as a time series. The time series is a 

sequence of observation taken sequentially over time. These observations in a time series are 

regarded as a sample realization from an infinite population of such time series that could 

have been generated by the stochastic process. The stochastic model, which can be used for 

simulation of supplied joint torque vector, is the auto-regressive process model. In this model, 

the current values of the process are expressed as a finite, linear aggregate of previous values 

of the process and a shock ta . A generalized autoregressive process [Box 1994] of order p is 

represented as:  

 tptptttt a+++++= −−−− τφτφτφτφτ ~........~~~~
332211   (4.10) 
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where, the values of the process at equally spaced time ,.......2,1, −− ttt  is denoted by 

,.......,, 21 −− ttt τττ .Also the ....,.........~,~,~
21 −− ttt τττ  are the deviation from mean µ ; e.g. 

µττ −= tt
~  and the symbol pφφφφ ,.......,, 321  are the finite set of weight parameters. For 

simulation of random joint torque vector first order auto-regressive (Markov) process is 

assumed and equation (4.10) become 

 ttt a+= −11
~~ τφτ  (4.11) 

where, 1φ  is unknown constant and ta  is normally and independently distributed with mean 

zero and standard deviation aσ . The observations 
nt

τ~  from such a model have zero mean and 

standard deviation )1(/ 2
1φσ −a  and the observations that are k periods apart ) and ( ktt −ττ  

have correlation coefficient k
1φ . The relationship between the standard deviation of random 

shocks 
iaσ  and the process 

iτσ  is given by 

 )1( 2
1φσσ τ −=

iia  (4.12) 

To satisfy condition of stationary process, value of 1φ  is chosen between ]1,1[ +− , where 

stationary process has constant mean and standard deviation over time t. The noise parameters 

used in simulation process are denoted by 

(i) Error due to manufacturing and assembly tolerances are denoted by standard 

deviations of Gaussian distribution i.e. 
2121

and,, mmll σσσσ , 

(ii) Fluctuations in supplied joint torque are denoted by standard deviations of Gaussian 

stochastic process i.e. 
21

and ττ σσ , 

(iii) Viscous friction at the manipulator joints are denoted by constants 21  and BB , 

(iv) Joint clearances are denoted by standard deviations of Gaussian distribution i.e. 

21
and θθ σσ . 

The methodology adopted to simulate the performance of manipulator is discussed next. 

4.4.2 Computation of Manipulator Performance 

The dynamic model of a manipulator is highly coupled and non-linear therefore, present 

approach emphasizes a novel way of finding out the joint accelerations, velocities and 

positions because of difficulties associated with analytical method. Using process of inverse 
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dynamics, the input vectors )(tτ  required for the manipulator joints are obtained.  For 

computation of torque vector nominal values of manipulator geometric parameters, Cartesian 

coordinates of start and destination point, and type of trajectory to reach destination are used. 

Then torque vector required at the individual joints of manipulator are simulated using 

method discussed in sub-section 4.5.2. Using process of forward dynamics, the actual output 

vectors available at joints i.e. )(),(),( tqtqtq ���  are computed. The output vectors at the joint are 

obtained by integrating the dynamic model numerically. For each time step (sampling time) 

the effect of noise for each control factor, in the form of individual random error, are 

generated and incorporated in respective parameters. The noise parameters like manufacturing 

and assembly tolerances and fluctuation in supplied torque are incorporated into control 

parameters. Where as the noise parameters like viscous friction and effect of joint clearances 

and play, on performance are used individually in integration process. Subsequently joint 

coordinates )(tq  are transformed, using the kinematic equations, to obtain the Cartesian 

coordinates of the point reached at each time step and destination reached finally. After 

computing these performances of manipulator positional error at the destination while moving 

along a trajectory are obtained. 

4.5 SIMULATION 

To simulate the performance a computer programme is developed using the approach 

discussed in section 4.4. For the computer programme, MATLAB software and its commands 

are used. The numerical values used to simulate the real life performance of  

2-DOF RR planar manipulator the level values for geometric parameters i.e. link lengths and 

link masses, are assumed. The noises of geometric parameters are assumed to follow Gaussian 

distribution, with mean zero and standard deviation σ , and the noise in torque vector is 

assumed as AR stochastic process with mean zero and standard deviation
iτσ . 

4.5.1 Control and Noise Parameters 

The combined effect of control and noise parameters is studied. The manipulator control 

parameters and noise parameters have been chosen at two level values. Each of fourteen 

parameters is assigned a capital letters A, B, C, D, E, F, G, H, J, K, L, M, N, and O. The 

assumed values of control parameters and noise parameters are provided in Table 4.1. 
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Table 4.1 Level Values of Control and Noise Parameters 

Sl. No.  Factor Symbol used 
for ANOVA 

Low 
Level 

High 
Level 

1 1l (m) A 0.40 0.50 
2 2l  (m) B 0.30 0.40 
3 1m  (kg) C 7 8 
4 

C
on

tr
ol

 
Fa

ct
or

s 
2m  (kg) D 5 6 

5 
1τσ  (Nm) E 0.05 0.10 

6 
2τσ  (Nm) F 0.05 0.10 

7 
1θσ  (degree) G 0.05 0.1 

8 
2θσ  (degree) H 0.05 0.1 

9 1B  (Ns) J 3.5 4 
10 2B  (Ns) K 2 2.5 
11 

1l
σ  (m) L 5×10–5 1×10–4 

12 
2l

σ  (m) M 5×10–5 1×10–4 
13 

1mσ  (kg) N 2.5×10–3 5×10–3 
14 

N
oi

se
 F

ac
to

rs
 

2mσ  (kg) O 2.5×10–3 5×10–3 

4.5.2 Generation of Design Matrix 

The numbers of control and noise factors considered are 14 and each factor has two levels, 

then complete one replication of this design amounts to 16384 simulations. Another critical 

decision for any experimental design is the choice of the number of replicates to run. If 

numbers of replicates assumed are eight, then this experiment will require 131072 

simulations. Conducting and managing so many simulations and data is quite difficult. As the 

focus of investigation is to screen the parameters and interactions, which have strongest 

influence on performance variations, experiments are conducted using Fractional factorial 

design of experiment approach. To have manageable experiments 6142 −  Fractional factorial 

design of resolution V  is selected. In a resolution V  design some factors are aliased with four 

factor interactions and some two-factor interactions are aliased with three factor interactions. 

It can be inferred that any resolution V  experimental design, the individual factors are 

strongly clear and two factor interactions are clear. Therefore, experimental design of 

resolution V  is selected to capture the variations contributed by the individual factors, which 

are not aliased with other factors or two-factor interactions. 
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Since 214 factorial design has 14 main factors and 2
14 C  two factor interactions, to estimate 

the effect of these, 
64
1

 fraction or a 6142 −  design is considered. To find the new columns, of 

Fractional factorial design six design generators are used. The factor generator used for the 

Fractional factorial design matrix are given below. 

To generate this design matrix combinations, a 28  factorial design cotaining factors A, B, 

C, ..……, H are written and then rest six columns for J, K…, O are added. In this design the 

column J is found using J = ABCDE, and K = ABCFG, L = ABDEFG, M = ABDFH,  

N = ADEGH, O = ACEFGH respectively. These ABCDE, ABCFG,……, ACEFGH are 

called design generators for design matrix. The few combinations of design matrix is given in 

Table 4.2. The strength of the selected design plan is that any two factor interaction is 

strongly clear, weakness in individual factors are aliased with four factor interactions. 

Design matrix indicating all 256 combinations, used for the experimentation is provided in 

Appendix B1. The fractional factorial design chosen has 256 combinations, when each 

combination is run for 8 replications, leads to 2048 simulations. 

Table 4.2 Design Matrix for 214–6 Fractional factorial Design 

Sl. 
No. 

A 
(m) 

B 
(m) 

C 
(kg)

D 
(kg)

E 
(Nm) 

F 
(Nm) 

G 
(deg) 

H 
(deg) 

J 
(Ns) 

K 
(Ns) 

L 
(×10–4 m) 

M 
(×10–4 m) 

N 
(kg) 

O 
(kg) 

1 0.4 0.3 7 5 0.05 0.05 0.05 0.05 3.5 2 1 0.5 0.0025 0.005 
2 0.5 0.3 7 5 0.05 0.05 0.05 0.05 4 2.5 0.5 1 0.005 0.0025 
3 0.4 0.4 7 5 0.05 0.05 0.05 0.05 4 2.5 0.5 1 0.0025 0.005 
4 0.5 0.4 7 5 0.05 0.05 0.05 0.05 3.5 2 1 0.5 0.005 0.0025 
5 0.4 0.3 8 5 0.05 0.05 0.05 0.05 4 2.5 1 0.5 0.0025 0.0025 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 

251 0.4 0.4 7 6 0.1 0.1 0.1 0.1 4 2.5 0.5 0.5 0.0025 0.005 
252 0.5 0.4 7 6 0.1 0.1 0.1 0.1 3.5 2 1 1 0.005 0.0025 
253 0.4 0.3 8 6 0.1 0.1 0.1 0.1 4 2.5 1 1 0.0025 0.0025 
254 0.5 0.3 8 6 0.1 0.1 0.1 0.1 3.5 2 0.5 0.5 0.005 0.005 
255 0.4 0.4 8 6 0.1 0.1 0.1 0.1 3.5 2 0.5 0.5 0.0025 0.0025 
256 0.5 0.4 8 6 0.1 0.1 0.1 0.1 4 2.5 1 1 0.005 0.005 
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The chosen fractional factorial design will provide statistical significance of two factor 

interactions, which are not aliased with each other. Simulations are run for the task specified 

in Table 4.3, following cubic and quintic trajectories. 

Assumed Process Parameters 

(i) For simulation of performance of manipulator, different tasks are assumed. The task 

specifications are provided in Table 4.3. 

Table 4.3 Manipulator Task Specifications 

Case 
Coordinates of 

Start point 
)m,m( ii yx  

Coordinates of 
Destination point 

)m,m( ff yx  

Time to 
travel 
(sec) 

(i) (0.65, 0)  (0.4, 0.3) 2 

(ii) (0.65, 0.05) (0.4, 0.3)  2 

(iii) (0.65, 0.1)  (0.4, 0.3)  2 

(iv) (0.65, 0.05)  (–0.4, 0.3) 2 

(v) (0.65, 0.1)  (–0.4, 0.3) 2 

(vi) (0.4, 0.3)  (0.65, 0) 2 

(ii) Weight parameter for first order autoregressive process φ1 = 0.8. 

(iii) Time step for numerical integration, 0.001s. 

4.6 ANALYSIS OF PERFORMANCE AND DISCUSSION 

Using above numerical data, and discussed procedure, manipulator performance is 

simulated. Subsequently performance is analyzed using half normal plotting and ANOVA. 

Description regarding these methods and results are discussed next. 

(i) Analysis of Performance using Half Normal Plot  

For analysis of statistically significant parameters help of half normal plot proposed 

by Daniel [Daniel 1959] has been used. This analysis provides a simple way to examine 

the outcome of experiments i.e responses. As per Daniel, the responses that are 

negligible are normally distributed with zero mean and variance 2σ , and these tend to 

fall along a straight line on this plot, where as statistically significant effects will have 
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nonzero means and will not lie along the straight line. Thus, the preliminary model will 

be specified to contain those effects that are apparently nonzero based on the normal 

probability plot. In this plot absolute value of the response against their cumulative 

normal probabilities are plotted. The straight line on the half normal plot always passes 

through the origin and it should also pass close to 50th percentile data value. For 

plotting, help of freely downloadable software Design Expert Version 6 [Design  

Expert 6 1999] has been taken. 

The half normal plot of all the tasks with positional error )( iε as performance is presented. 

In this plot X-axis represent the positional error )( iε or effect, and Y-axis represent 

cumulative normal probabilities. These plots shows the statistically significant control and 

noise parameters contribute most to performance variations. The half-normal plot for cases 

(i), (ii), (iii), (iv), (v) and (vi) are provided in Figs. 4.1- 4.6 respectively. 

 
Fig. 4.1 Half Normal Plot of Performance for Cubic Trajectory - case (i) 
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Fig. 4.2 Half Normal Plot of Performance for Cubic Trajectory - case (ii) 

 

 

 

Fig. 4.3 Half Normal Plot of Performance for Cubic Trajectory - case (iii) 



 

101 

 

Fig. 4.4 Half Normal Plot of Performance for Cubic Trajectory - case (iv) 

 

 

 

Fig. 4.5 Half Normal Plot of Performance for Cubic Trajectory - case (v) 
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Fig. 4.6 Half Normal Plot of Performance for Cubic Trajectory - case (vi) 

From Fig. 4.1 for case (i) it is observed that factors A, G and H do not lie on straight line. 

Hence these factors, become statistically significant. For the case (ii) from Fig 4.2 

following cubic trajectory, factors A, G and H, are observed to be statistically significant. 

It is observed in Fig. 4.3 for case (iii) following cubic trajectory factors G, H, are 

statistically significant. From Fig. 4.4, for case (iv) following cubic trajectory factors A, 

B, D, G and factor interaction AB are statistically significant. It has been observed that in 

Fig. 4.5 for case (v) factors A, B, O and factor interactions AB, DEG are statistically 

significant. From Fig. 4.6 for case (vi) factor A, G and factor interaction AB are observed 

to be statistically significant. Similarly, the half normal plot for the manipulator 

performing task using quintic trajectory are provided in Figs. 4.7 - 4.12, which displays 

the factors responsible for the variations of performance i.e. positional error. In these 

graphs, the parameters which do not lie on straight line indicate they have statistically 

significant effect on performance variations. 



 

103 

 

Fig. 4.7 Half Normal Plot of Performance for Quintic Trajectory - case (i) 
 

 

 

Fig. 4.8 Half Normal Plot of Performance for Quintic Trajectory - case (ii) 
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Fig. 4.9 Half Normal Plot of Performance for Quintic Trajectory - case (iii) 

 

 

 

Fig. 4.10 Half Normal Plot of Performance for Quintic Trajectory - case (iv) 



 

105 

 

Fig. 4.11 Half Normal Plot of Performance for Quintic Trajectory - case (v) 

 

Fig. 4.12 Half Normal Plot of Performance for Quintic Trajectory - case (vi) 

Half normal plots of the performance obtained from the experiments are presented for the 

tasks following quintic trajectory. It is observed that from Fig. 4.7 for case (i) factors A, G, H 

and factor interaction BLM are statistically significant. Similarly from Fig. 4.8 for case (ii) 

factors G and H are observed to be statistically significant. It is observed from Fig. 4.9 for 
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task (iii) following quintic trajectory factors G and H are statistically significant. It has been 

observed that from Fig. 4.10 for case (iv) following quintic trajectory factors A, B, C, and 

factor interaction AB are statistically significant. From Fig. 4.11 for case (v), factors A, B, C, 

D and factor interaction AB, BEG are statistically significant. Similarly, From Fig. 4.12 for 

case (vi) following quintic trajectory factors G, H are statistically significant. It can be noted 

here that above figures indicate the factors that have strongest influence on performance 

variation, do not lie on straight line. However, to know exactly what is the contribution of 

each factor on performance variations, ANOVA technique is used for all the considered cases. 

(ii) Analysis of Performance using ANOVA technique 

The performance utilized for analysis of experiment using ANOVA is positional error )( iε . 

To investigate the impact of a particular trajectory on performance, same set of task 

specifications are used for the manipulator following cubic and quintic trajectories. Results of 

ANOVA for each case is provided in individual table. For analysis using ANOVA, 

corresponding half normal plot is referred. With the help of this plot statistically significant 

factors and factor interactions which do not lie on line are selected along with remaining 

individual factors. The main motive behind this selection is to asses the impact of all the 

considered control factors and noise factors on performance variations. 

To summarize the results of ANOVA clearly and in a compact form, statistically 

insignificant parameters are not indicated. In addition to above analysis, for mean positional 

error analysis is also carried out. The purpose of analyzing these performance measures are to 

obtain the factors contributing to mean performance variations. The results of ANOVA for 

significant parameters are presented in tabular form. 

Statistical analysis of the data obtained from the experiment is analysed using ANOVA. 

This analysis is carried out for positional error as the performance while carrying out a 

particular task following cubic and quintic trajectories. The summary of results of ANOVA 

for all the discussed tasks are provided in tabular form. The ANOVA of positional error as 

performance are provided in Tables 4.4-4.9. In ANOVA tables, a factor can be identified 

whether it is statistically significant or not. A statistically significant factors is determined by 

comparing observed oF  statistic value obtained in the ANOVA table against tabulated F  

statistic )(F  value. During analysis, the level of significance is kept at 0.05. The values of F  

tabulated is 4.0, i.e. 84.3,1,05.02032,1,05.0,,05.0 21
=≈= ∞FFF νν  [Montegomery 2001]. 
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Table 4.4 ANOVA of Performance for Cubic Trajectory - case (i) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.059983 1 0.059983 26.61713 Significant 
B 0.000673 1 0.000673 0.298494 – 
C 6.02×10–5 1 6.02×10–5 0.026735 – 
D 0.000339 1 0.000339 0.150332 – 
E 0.004347 1 0.004347 1.928909 – 
F 5×10–5 1 5×10–5 0.022176 – 
G 0.378029 1 0.378029 167.7483 Significant 
H 0.060371 1 0.060371 26.78938 Significant 
J 0.000895 1 0.000895 0.397174 – 
K 0.00668 1 0.00668 2.964344 – 
L 0.003065 1 0.003065 1.360079 – 
M 0.001004 1 0.001004 0.445679 – 
N 0.004469 1 0.004469 1.983 – 
O 0.001094 1 0.001094 0.485314 – 

LM 0.023017 1 0.023017 10.21385 Significant 
Residual 4.579207 2032 0.002254   

Corrected Total 5.123283 2047    

Table 4.5 ANOVA of Performance for Cubic Trajectory - case (ii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.044885 1 0.044885 21.15018 Significant 
B 0.000241 1 0.000241 0.11347 – 
C 0.001439 1 0.001439 0.677846 – 
D 0.002775 1 0.002775 1.307762 – 
E 0.0002 1 0.0002 0.094436 – 
F 1.16×10–5 1 1.16×10–5 0.005466  
G 0.339426 1 0.339426 159.9412 Significant 
H 0.123057 1 0.123057 57.986 Significant 
J 0.003437 1 0.003437 1.619729 – 
K 0.001077 1 0.001077 0.507311 – 
L 0.002811 1 0.002811 1.324687 – 
M 0.000864 1 0.000864 0.407044 – 
N 0.001741 1 0.001741 0.820444 – 
O 0.000489 1 0.000489 0.230507 – 

BC 0.002999 1 0.002999 1.413276 – 
BO 0.005604 1 0.005604 2.640584 – 
CO 0.002206 1 0.002206 1.039724 – 

BCO 0.019091 1 0.019091 8.996027 Significant 
Residual 4.30593 2029 0.002122   

Corrected Total 4.858285 2047    
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Table 4.6 ANOVA of Performance for Cubic Trajectory - case (iii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.01042 1 0.01042 4.994808 Significant 
B 0.002554 1 0.002554 1.224226 – 
C 0.000458 1 0.000458 0.21948 – 
D 0.000421 1 0.000421 0.201968 – 
E 0.000461 1 0.000461 0.220796 – 
F 0.003622 1 0.003622 1.73609 – 
G 0.41676 1 0.41676 199.772 Significant 
H 0.102138 1 0.102138 48.95951 Significant 
J 5.63×10–5 1 5.63×10–5 0.026998 – 
K 9.6×10–5 1 9.6×10–5 0.046035 – 
L 0.000227 1 0.000227 0.108894 – 
M 0.004051 1 0.004051 1.941592 – 
N 0.000254 1 0.000254 0.121579 – 
O 0.000598 1 0.000598 0.286538 – 

CL 0.018467 1 0.018467 8.852267 Significant 
GH 0.018069 1 0.018069 8.661114 Significant 

Residual 4.237027 2031 0.002086   
Corrected Total 4.815679 2047    

Table 4.7 ANOVA of Performance for Cubic Trajectory - case (iv) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 3.054097 1 3.054097 898.0368 Significant 

B 1.751592 1 1.751592 515.0439 Significant 

C 0.019943 1 0.019943 5.86409 Significant 

D 0.131779 1 0.131779 38.74869 Significant 

E 0.01149 1 0.01149 3.378425 – 

F 1.42×10–5 1 1.42×10–5 0.004166 – 

G 0.082211 1 0.082211 24.17369 Significant 

H 0.000843 1 0.000843 0.248016 – 

J 0.000645 1 0.000645 0.189777 – 

K 0.001084 1 0.001084 0.318795 – 

L 4.65×10–6 1 4.65×10–6 0.001367 – 

M 0.002512 1 0.002512 0.738743 – 

N 4.42×10–6 1 4.42×10–6 0.001299 – 

O 0.001315 1 0.001315 0.386732 – 

AB 0.337693 1 0.337693 99.29641 Significant 

Residual 6.910547 2032 0.003401   
Corrected Total 12.30578 2047    
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Table 4.8 ANOVA of Performance for Cubic Trajectory - case (v) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 2.439403 1 2.439403 691.7229 Significant 
B 1.657409 1 1.657409 469.9789 Significant 
C 0.019233 1 0.019233 5.453792 Significant 
D 0.032664 1 0.032664 9.262155 Significant 
E 0.006038 1 0.006038 1.712062 – 
F 0.004813 1 0.004813 1.364775 – 
G 0.035936 1 0.035936 10.18997 Significant 
H 0.032316 1 0.032316 9.163493 Significant 
J 0.00472 1 0.00472 1.338377 – 
K 6.18×10–5 1 6.18×10–5 0.017528 – 
L 9.12×10–5 1 9.12×10–5 0.025869 – 
M 0.001869 1 0.001869 0.529929 – 
N 0.000292 1 0.000292 0.082855 – 
O 0.013107 1 0.013107 3.716786 – 

AB 0.321191 1 0.321191 91.07767 Significant 
BE 0.001223 1 0.001223 0.346814 – 
BG 0.003509 1 0.003509 0.994904 – 
EG 0.000149 1 0.000149 0.042124 – 

BEG 0.045155 1 0.045155 12.80422 Significant 
Residual 7.151864 2028 0.003527   

Corrected Total 11.77104 2047    

Table 4.9 ANOVA of Performance for Cubic Trajectory - case (vi) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.566893 1 0.566893 110.6564 Significant 
B 3.61×10–6 1 3.61×10–6 0.000705 – 
C 0.002365 1 0.002365 0.461634 – 
D 0.000979 1 0.000979 0.191021 – 
E 0.001032 1 0.001032 0.201508 – 
F 0.006613 1 0.006613 1.290787 – 
G 0.293333 1 0.293333 57.25809 Significant 
H 0.010831 1 0.010831 2.114288 – 
J 0.003522 1 0.003522 0.687552 – 
K 0.034392 1 0.034392 6.713259 Significant 
L 0.000725 1 0.000725 0.141613 – 
M 0.010324 1 0.010324 2.015169 – 
N 0.017779 1 0.017779 3.47052 – 
O 1.07×10–7 1 1.07×10–7 2.09×10–5 – 

AB 0.077978 1 0.077978 15.2211 Significant 
BD 0.00335 1 0.00335 0.653827 – 
BN 0.001567 1 0.001567 0.305807 – 
CH 0.036228 1 0.036228 7.071686 Significant 
DN 0.005483 1 0.005483 1.070345 – 

BDN 0.039517 1 0.039517 7.713659 Significant 
Residual 10.38432 2027 0.005123   

Corrected Total 11.49723 2047    
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From the Table 4.4 for case (i) it is observed that factors A, G, H and factor interaction 

LM are statistically significant. And rest of the factors are insignificant because their 

computed oF  statistic values are less as compared to tabulated F  statistic value. It is 

important to mention here that in ANOVA table, tabulated F  statistic value used is 

equal to 3.84, though degrees of freedom for the tabulated F  statistic are different for 

different cases i.e., 84.3,1,05.02029,1,05.0,,05.0 21
=≈= ∞FFF νν . 

Therefore, throughout the analysis same F value is used for comparison. From 

Table 4.5 for case (ii) following cubic trajectories performance analysis is carried out. 

It is observed that factors A, G, H and factor interaction BCO are statistically 

significant. And rest of the factors are insignificant because their oF  statistic values 

are less as compared to tabulated F  statistic value. Similarly for the case (iii), from 

Table 4.6 factors A, G, H and factor interactions CL and GH are observed to be 

statistically significant. And rest of the factors are insignificant. From Table 4.7, for 

the case (iv) it is observed that factors A, B, C, D, G, and factor interaction AB are 

statistically significant. 

It is observed from Table 4.8 that for the case (v) following cubic trajectory, 

factors A, B, C, D, G, H and factor interactions AB, BEG are statistically significant. 

From Table 4.9, it is observed that for case (vi) following cubic trajectory, factors A, 

G, K and factor interactions AB, CH and BDN are statistically significant. Similarly 

the analysis using ANOVA technique for the manipulator performing task following 

quintic trajectory are provided in Tables 4.10-4.15. 

Similar procedure is adopted as discussed in the above case. Comparison of 

computed oF  statistic value is compared with tabulated F  statistic values to identify 

statistically significant factors. 
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Table 4.10 ANOVA of Performance for Quintic Trajectory - case (i) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.026478 1 0.026478 11.75528 Significant 
B 0.006593 1 0.006593 2.927079  
C 0.008715 1 0.008715 3.869159 Significant 
D 0.000815 1 0.000815 0.361666 – 
E 0.004967 1 0.004967 2.205382 – 
F 0.000141 1 0.000141 0.062618 – 
G 0.363438 1 0.363438 161.3541 Significant 
H 0.093932 1 0.093932 41.70272 Significant 
J 0.002496 1 0.002496 1.108161 – 
K 0.000327 1 0.000327 0.144966 – 
L 0.009892 1 0.009892 4.391542 Significant 
M 0.005605 1 0.005605 2.488253 – 
N 0.00072 1 0.00072 0.319765 – 
O 6.28×10–6 1 6.28×10–6 0.002788 – 

BL 0.002674 1 0.002674 1.187145 – 
BM 0.00315 1 0.00315 1.398475 – 
LM 0.000408 1 0.000408 0.181241 – 

BLM 0.023922 1 0.023922 10.62048 Significant 
Residual 4.570173 2029 0.002252   

Corrected Total 5.124452 2047    

Table 4.11 ANOVA of Performance for Quintic Trajectory - case (ii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.006012 1 0.006012 2.69184 – 
B 0.006365 1 0.006365 2.849962 – 
C 0.001413 1 0.001413 0.632667 – 
D 0.001289 1 0.001289 0.577334 – 
E 0.0012 1 0.0012 0.537127 – 
F 0.00061 1 0.00061 0.273152 – 
G 0.366809 1 0.366809 164.2393 Significant 
H 0.106979 1 0.106979 47.90006 Significant 
J 7.76×10–5 1 7.76×10–5 0.034768 – 
K 0.007197 1 0.007197 3.222459 – 
L 2.25×10–5 1 2.25×10–5 0.010067 – 
M 0.001654 1 0.001654 0.740397 – 
N 0.003103 1 0.003103 1.389551 – 
O 0.000257 1 0.000257 0.115285 – 

BD 0.002228 1 0.002228 0.997729 – 
BN 0.000233 1 0.000233 0.104138 – 
DN 0.002958 1 0.002958 1.324461 – 

BDN 0.020888 1 0.020888 9.35274 Significant 
Residual 4.531532 2029 0.002233   

Corrected Total 5.060828 2047    
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Table 4.12 ANOVA of Performance for Quintic Trajectory - case (iii) 
Source Sum of 

Squares 
Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.008744 1 0.008744 3.991303 Significant 
B 0.004659 1 0.004659 2.126677 – 
C 0.001223 1 0.001223 0.558434 – 
D 0.001281 1 0.001281 0.5848 – 
E 0.000918 1 0.000918 0.418853 – 
F 0.000436 1 0.000436 0.199041 – 
G 0.37498 1 0.37498 171.1659 Significant 
H 0.111268 1 0.111268 50.79024 Significant 
J 0.000146 1 0.000146 0.066469 – 
K 0.005946 1 0.005946 2.71416 – 
L 1.74×10–5 1 1.74×10–5 0.007954 – 
M 0.001476 1 0.001476 0.673671 – 
N 0.002892 1 0.002892 1.319966 – 
O 0.000289 1 0.000289 0.132117 – 

BD 0.002082 1 0.002082 0.950154 – 
BN 0.000304 1 0.000304 0.138716 – 
DL 0.018891 1 0.018891 8.623002 Significant 
DN 0.002665 1 0.002665 1.21655 – 

BDN 0.020822 1 0.020822 9.504352 Significant 
Residual 4.442823 2028 0.002191   

Corrected Total 5.001862 2047    

Table 4.13 ANOVA of Performance for Quintic Trajectory - case (iv) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 5.962904 1 5.962904 2389.953 Significant 
B 0.355509 1 0.355509 142.4892 Significant 
C 0.046508 1 0.046508 18.64048 Significant 
D 0.023415 1 0.023415 9.384907 Significant 
E 0.006025 1 0.006025 2.414771 – 
F 0.000995 1 0.000995 0.398849 – 
G 0.024138 1 0.024138 9.674527 Significant 
H 0.002988 1 0.002988 1.197597 – 
J 0.000382 1 0.000382 0.152978 – 
K 8.05×10–5 1 8.05×10–5 0.032247 – 
L 0.000436 1 0.000436 0.17473 – 
M 0.006082 1 0.006082 2.437635 – 
N 1.76×10–7 1 1.76×10–7 7.06×10–5 – 
O 7.25×10–5 1 7.25×10–5 0.029039 – 

AB 0.257749 1 0.257749 103.3067 Significant 
AO 5.31×10–7 1 5.31×10–7 0.000213 – 
BO 0.003684 1 0.003684 1.476615 – 
DF 0.000396 1 0.000396 0.158807 – 
DL 0.002458 1 0.002458 0.98507 – 
FL 0.004622 1 0.004622 1.852673 – 

ABO 0.03097 1 0.03097 12.41293 Significant 
DFL 0.034078 1 0.034078 13.65855 Significant 

Residual 5.052351 2025 0.002495   
Corrected Total 11.81584 2047    
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Table 4.14 ANOVA of Performance for Quintic Trajectory - case (v) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 3.776665 1 3.776665 1523.78 Significant 

B 0.653784 1 0.653784 263.7837 Significant 

C 0.025992 1 0.025992 10.48691 Significant 

D 0.022442 1 0.022442 9.054772 Significant 

E 0.008974 1 0.008974 3.620937 – 

F 0.001858 1 0.001858 0.74979 – 

G 0.049656 1 0.049656 20.03465 Significant 

H 0.008376 1 0.008376 3.379579 – 

J 0.005558 1 0.005558 2.242665 – 

K 0.000326 1 0.000326 0.131677 – 

L 0.000847 1 0.000847 0.341624 – 

M 0.002844 1 0.002844 1.147481 – 

N 0.001143 1 0.001143 0.461019 – 

O 0.01034 1 0.01034 4.171979 Significant 

AB 0.240784 1 0.240784 97.14965 Significant 

AF 0.007013 1 0.007013 2.829646 – 

AN 0.003345 1 0.003345 1.349569 – 

BE 0.000284 1 0.000284 0.114682 – 

BG 0.002557 1 0.002557 1.031582 – 

EG 0.000953 1 0.000953 0.384454 – 

FN 0.000351 1 0.000351 0.141814 – 

AFN 0.0267 1 0.0267 10.77256 Significant 

BEG 0.03509 1 0.03509 14.15788 Significant 

Residual 5.016451 2024 0.002478   

Corrected Total 9.902333 2047    
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Table 4.15 ANOVA of Performance for Quintic Trajectory - case (vi) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.029581 1 0.029581 8.32181 Significant 

B 0.004334 1 0.004334 1.219195 – 

C 0.001006 1 0.001006 0.283038 – 

D 0.004687 1 0.004687 1.318664 – 

E 1.22×10–5 1 1.22×10–5 0.003424 – 

F 0.000798 1 0.000798 0.224418 – 

G 0.736214 1 0.736214 207.1114 Significant 

H 0.07496 1 0.07496 21.08766 Significant 

J 0.00057 1 0.00057 0.16044 – 

K 0.001361 1 0.001361 0.382951 – 

L 0.003442 1 0.003442 0.968255 – 

M 0.000328 1 0.000328 0.092368 – 

N 1.36×10–5 1 1.36×10–5 0.003824 – 

O 0.000903 1 0.000903 0.254084 – 

Residual 7.226655 2033 0.003555   

Corrected Total 8.084866 2047    

It has been observed that from Table 4.10 for case (i) following quintic trajectory, factors 

A, C, G, H, L and factor interaction BLM are statistically significant. From Table 4.11 for 

case (ii) it is observed that, factors G, H, and factor interaction BDN are statistically 

significant. It is observed that from Table 4.12 for case (iii) following quintic trajectory, 

factors A, G, H, and factor interactions DL and BDM are statistically significant. Similar to 

all the previous cases discussed, for the case (iv) it is observed from Table 4.13 that, factors 

A, B, C, D, G and factor interactions AB and ABO, DFL are statistically significant. From 

Table 4.14 it is observed that for case (v) following quintic trajectory factors A, B, C, D, G O 

and factor interactions AB and AFN, BEG are statistically significant. It has been observed 

from Table 4.15 that for case (vi) following quintic trajectory factors A, G and H, are 

statistically significant. From all these tables following inferences can be drawn. Number of 

factors influencing the performance variation are more when the manipulator perform task 

(iv) and (v) as compared to task (i), (ii), (iii) and (vi). To summarize the results obtained from 

above analysis, factors responsible for performance variations are provided in tabular form. 

Table 4.16 presents the parameters responsible for performance variations for all six cases 

following cubic and quintic trajectories. 
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Table 4.16 Summary of Positional Error Analysis Using ANOVA 

Case Significant Factors using ANOVA 
for task following Cubic trajectory 

Significant Factors using ANOVA for 
task following Quintic trajectory 

(i) A, G, H, LM A, C, G, H, L, BLM 
(ii) A, G, H, BCO G, H, BDN 
(iii) A, G, H, CL, GH A, G, H, DL, BDN 
(iv) A, B, C, D, G, AB A, B, C, D, G, AB, ABO, DFL 
(v) A, B, C, D, G, H, AB, BEG A, B, C, D, G, O, AB, AFN, BEG 
(vi) A, G, K, AB, AB, CH, BDN A, G, H 

 
To add strength to the analysis performed, ANOVA of mean positional error of all the 

considered cases are carried out. The figures of half normal plot and ANOVA table, for mean 

positional error of each task are not provided to prevent the duplication of results. In most of 

the cases, parameters found to be statistically significant are same as compared to the analysis 

done using positional error. To represent the outcome of ANOVA analysis, results are put in a 

tabular form to observe the common parameters responsible for performance variations. 

Therefore, the control and noise parameters and interacting parameters responsible for 

performance variations are provided in Table 4.17. 

Table 4.17 Summary of Mean Positional Error Analysis Using ANOVA 

Case Significant Factors using ANOVA 
for task following Cubic trajectory 

Significant Factors using ANOVA for 
task following Quintic trajectory 

(i) A, G, H A, G, H, L, BLM  
(ii) A, G, H, LM, BCO G, H, DL, BDN, DGJ  

(iii) A, G, H, BH, CL, GH, AJN G, H, DL, FO, BDN, BJM, FGO  

(iv) A, B, C, D, E, G, AB, FGH, FGO A, B, C, D, G, AB  

(v) A, B, C, D, G, H, O, AB, DM, BEG, A, B, C, D, G, AB, BEG  

(vi) A, G, K, AB, DL, BDN A, G, H 

 
The objective of this chapter is to screen the parameters responsible for performance 

variations, from ANOVA results a consolidated table is prepared. It is always desired that the 

manipulator designed should perform all task specified with lesser performance variations 

while following different trajectories. To obtain robust design of manipulator, parameters 

should be selected which has prominient influence on performance variations. Therefore, to 
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indicate the parameters responsible for performance variations in all the considered cases, 

stars (*) are put against the individual parameters. The results are summarized in Table 4.18  

Table 4.18 Summary of Analysis Using ANOVA 

Case 
Traje 
-ctory 

A 

)( 1l  

B 

)( 2l  

C 

)( 1m  

D 

)( 2m  

E 

)(
1τσ  

F 

)(
2τσ  

G 

)(
1θσ  

H 

)(
2θσ  

J 

)( 1B  

K 

)( 2B  

L 

)(
1l

σ  

M 

)(
2l

σ  
N 

)(
1mσ  

O 
)(

2mσ
 

Cubic *      * *       (i) Quintic *  *    * *   *    
Cubic *      * *       (ii) Quintic       * *       
Cubic *      * *       (iii) Quintic *      * *       
Cubic * * * *   *        (iv) Quintic * * * *   *        
Cubic * * * *   * *       (v) Quintic * * * *   *       * 
Cubic *      *   *     (vi) Quintic *      * *       

From analysis, it is observed that statistically significant factors are different for different 

tasks in workspace indicating that each parameters have different contribution to performance 

variations as start and target position of task change. It has also been observed that the for the 

same task, parameters responsible for performance variations are different while following 

cubic and quintic trajectories. As a manipulator is supposed to perform different task in the 

workspace using different trajectories, for screening the parameters responsible for 

performance variations, union of all the cases i.e. tasks and trajectories are taken. In all cases, 

if the parameters are significant only once then those parameters are treated as unimportant. 

Before eliminating these parameters, half normal plots are referred once again to ascertain, the 

contribution to performance variations.  

To summarize whole analysis the parameter are categorized into three types. These 

classifications are given below.  

(i) The parameters not statistically significant even once in all the considered cases are E, 

F, J, M and N. Therefore, further investigation on these parameters should not be 

pursued.  

(ii) The parameters statistically significant only once are K, L and O. It is decided that the 

parameters which are significant only once should be treated as insignificant 

parameters. Further invetsigations should not be attempted. 
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(iii)The parameters A, B, C, D, G, and H are statistically significant in more than one 

cases. Therefore parameters A, B, C, D, G and H are selected for further analysis. 

The results of the analysis are provided in tabular form subsequently used to obtain the 

optimal parameter which will deliver the optimal performance. For computations of optimal 

parameters respose surface methodology is adopted. The approach used for the optimal design 

is discussed in Chapter 5. 

4.7 PARAMETRIC SENSITIVITY OF MANIPULATOR 

To provide insight to proposed investigation, the influence of individual parameters on 

performance variations of manipulator is studied. Exploration of individual parameter 

sensitivity will lead to large number of computation and figures. To keep number of 

computations and figures low, two dimensionless numbers are proposed. One of them is link 

length ratio 12 ll=β  and other one is link mass ratio 12 mm=α . 

While investigating parameter sensitivity, except considered factor all other factors have 

been kept at a particular value. To conduct the sensitivity study, sum of two link lengths are 

assumed to be constant. This imply comparison can be carried out for a family of robots 

which has same workspace. But by not assuming link length sum constant, the problem 

become difficult to draw valid conclusion. Moreover by increasing one link length and 

keeping other link length fixed may lead to situation where it may not be able perform the 

desired task. This sensivity study is nothing but conducting experiments by changing these 

ratio values one at a time or changing both values simultaneously in steps. 

To investigate the performance of manipulator, sum of link lengths and masses are kept 

constant i.e. m90.021 =+ ll , and kg1421 =+ mm . The parameters β  and α  are assumed 

to vary from 0.35 to 1.0 in step of 0.05. The noise factor tolerances are expressed interms of 

standard deviation of gaussian distribution. 

Assumed noise factor values for link length one and two are i.e. =
21

, ll σσ 0.0006 m, link 

masses variation =
21

, mm σσ 0.03 kg, joint torques variation =
21

, ττ σσ 0.3 Nm and joint 

clearance variation =
21

, θθ σσ 0.1 degree. To conduct experiments, methodology discussed in 

section 4.4 has been used for simulating the performance. For comparison of performances, 

same task have been considered following cubic and quintic trajectories. To have a thorough 
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understanding of the impact of parameter change on the performance, three independent studies 

are carried out. 

i) By changing β  value in steps and keeping all other parameters constant, 

ii) By changing α  value in steps and keeping all other parameters constant, 

iii) By changing both β  and α  values simultaneously and keeping rest of the 

parameters constant. 

For comparison, mean positional error has been used as performance measure. To get 

overall behaviour of manipulator, simulations are run for thousand times for the above 

discussed tasks in workspace. 

4.7.1 By changing Link Length ratio (β) 

For sensitivity of link length ratio investigation, dimensionless parameter has been 

incremented from 0.35 to 1.0 in a step of 0.05 and the performance observed are mean 

positional error. To explore the effect of time law of trajectory on β , simulations are carried 

out for manipulator following cubic and quintic trajectory. The results of simulations are 

shown in Figs. 4.13 and 4.14 respectively. 
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Fig 4.13 Link Length Ratio Sensitivity for Cubic Trajectory 
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Fig 4.14 Link Length Ratio Sensitivity for Quintic Trajectory 

From Fig. 4.13, change in performance measure i.e. mean positional error ( 210−× m) is 

represented for different cases. For cases (iv) and (v) performance is observed to be poor for 

the β  value 0.35. It is observed that in most of the cases with increase in β  value, 

performance variations reduce, though it is not that prominient in cases (i), (ii), (iii) and (vi) 

respectively. From Fig. 4.13 it is observed that poorest performance is m106.1 2−×  at β  

value 0.35. From Fig.4.14 it is observed that poorest performance is m1075.0 2−×  at β  value 

0.35. Similar to previous case it is observed that for case (iv) and (v) performance is poor for 

the β  value 0.35 and it improves as β  value increase. It is observed that performance 

improvement takes place with increase in β  value. But it is not that prominient in cases (i), 

(ii), (iii) and (vi) respectively. Comparing both the graphs, it can be clearly infered that the 

trend of improvement in performance is similar. Poor performance is observed in case of tasks 

following cubic trajectory. 

4.7.2 By changing Link Mass ratio (α) 

For sensitivity of link mass ratio, dimensionless parameter has been incremented from 0.35 to 

1.0 in a step of 0.05 and the performance observed is mean positional error. To study to effect 

of time law of trajectory on α , simulations are carried out for manipulator following cubic 

and quintic trajectory. The results of simulations have been presented in Figs. 4.15 and 4.16 

respectively. 
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Fig 4.15 Link Mass Ratio Sensitivity for Cubic Trajectory 

From Fig. 4.15 change in performance measure is represented for change in α  values. It is 

observed that for cases (i) (ii) (iii) and (v) there are almost no change in performance measure 

with increase in α  value. For case (iv) and (v) poor performance is observed with increase in 

α  value. Performance variations remain at lowest value for α  equal to 0.35. It is observed 

that poorest performance is m1025.0 2−×  at α  value equal to 1.0.  
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Fig 4.16 Link Mass Ratio Sensitivity for Quintic Trajectory 
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Similar to above, Fig. 4.16 represent the change in performance measure when manipulator performs 

tasks following quintic trajectory. It is observed that for cases (i) (ii) (iii) and (v) there are very less 

change in performance measure with increase in α  value. For cases (iv) and (v) performance are 

observed to be poor with increase in α  value. Performance variations remain at lowest value for α  

value 0.35. It is also observed that poorest performance is m1035.0 2−×  for α  value 1.0. 

The important inference drawn from this investigation is that, change in α  value has less 

influence on the performance variations. Range of change in performance measure is between 
2101.0 −× m to 21025.0 −× m for tasks following cubic trajectory and between 2101.0 −× m to 

21035.0 −× m for tasks following quintic trajectory. 

4.7.3 By changing β and α simultaneously 

The impact of simultaneous change of link length and link masse ratios, have been 

investigated. In this dimensionless parameter β  and α  have been incremented from 0.35 to 

1.0 in a step of 0.05 and the performance observed are mean positional error. To examine the 

effect of time law of trajectory on simultaneous change, simulations are carried out for 

manipulator following cubic and quintic trajectories. The results of simulations are presented 

with the help of contour plot. In this plot the performance measure is plotted in z-axis to 

understand the effect of parameters change (link mass ratio β  and link length ratio α ). The 

results has been presented in Figs. 4.17-4.22 and 4.23-4.28 respectively. 

 
Fig 4.17 Contour Plotting of Performance Measure for Cubic Trajectory - case (i) 
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Fig 4.18 Contour Plotting of Performance Measure for Cubic Trajectory - case (ii) 

 

 

 

 

Fig 4.19 Contour Plotting of Performance Measure for Cubic Trajectory - case (iii) 
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Fig 4.20 Contour Plotting of Performance Measure for Cubic Trajectory - case (iv) 

 

 

 

Fig 4.21 Contour Plotting of Performance Measure for Cubic Trajectory - case (v) 
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Fig 4.22 Contour Plotting of Performance Measure for Cubic Trajectory - case (vi) 

From Fig. 4.17 for case (i) following cubic trajectory, it is observed that performance measure 

improves as the value of link length ratio β  increase. Important thing observed in this graphs 

is the effect of change in link mass ratio. Performance measure does not change with change 

in link mass ratio α  which is the case in earlier investigation. From figure it is observed that 

poorest performance is m1025.0 2−× at β  value 0.35 and improved performance is observed 

in case of link length ratios of 0.8 to 1.0. In Fig. 4.18, for case (ii) following cubic trajectory, 

it is observed that performance measure improves as the value of link length ratio β increase. 

Similar to previous case, performance measure do not change with change in link mass ratio 

α . Which is the case in earlier study. From graph it is observed that poorest performance is 

m1022.0 2−× for β  value 0.35 and improved performance is observed in case of link length 

ratios 0.8 to 1.0. 

It is observed from Fig. 4.19, that for case (iii) mean positional error reduces as the value 

of link length ratio β  increase. Similar to previous case performance measure do not change 

with change in link mass ratio α . The poorest performance is m102.0 2−×  at β  value 0.35 

and improved performance is observed in case of link length ratios 0.8 to 1.0. From Fig. 4.20 

for case (iv) it is observed that performance measure improve as the value of link length ratio 

β  increase. Similar to case (iii) performance measure do not change much link mass ratio α . 



 

125 

But there is a remarkable change in performance measure with change in α  value at 

35.0=β . The poorest performance is m105.2 2−×  at β  value 0.35 and α  value 0.35 and 

improved performance is observed in case of link length ratios β  = 0.8 to 1.0 and α  value 

between 0.35 to 1.0. 

It has been observed that from Fig. 4.21 for case (v), mean positional error reduces as the 

value of link length ratio β  increase. Similar to previous case (iv) performance measure do 

not change much link mass ratio α . But there is significant change in performance with 

change in α  value at β  =0.35. The poorest performance is m102 2−× at β  value 0.35 and 

α  value 0.35 and improved performance is observed in case of link length ratio 0.8 to 1.0 and 

α  value between 0.35 to 1.0. 

From Fig. 4.22 for the task (vi), similar feature is observed as discussed in case (i) (ii) and 

(iii). Performance measure reduces as the value of link length ratio β  increase. The poorest 

performance is m1028.0 2−×  at β  value 0.35 and α  value 0.35, and lowest performance 

measure is observed in case of link length ratio β  = 0.8 to 1.0 and α  value 0.5. 

 

Fig 4.23 Contour Plotting of Performance Measure for Quintic Trajectory - case (i) 
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Fig 4.24 Contour Plotting of Performance Measure for Quintic Trajectory - case (ii) 

 

 

 

Fig 4.25 Contour Plotting of Performance Measure for Quintic Trajectory - case (iii) 
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Fig 4.26 Contour Plotting of Performance Measure for Quintic Trajectory - case (iv) 

 

 

 

Fig 4.27 Contour Plotting of Performance Measure for Quintic Trajectory - case (v) 
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Fig 4.28 Contour Plotting of Performance Measure for Quintic Trajectory - case (vi) 

From Fig. 4.23, for case (i) following quintic trajectory, performance measure observed 

(mean positional error) is quite intriguing. The performance obtained from the simulation 

does not provide clear indication, for optimum link mass ratio and link length ratio i.e. which 

will provide best performance measure. The range of performance varies between 

m1008.0 2−×  to m1012.0 2−×  for all parameter combinations. This indicates none of the 

combination is bad. There are quite a number of optimal combination which deliver better 

performance. 

Similar to previous case, it is observed that from Fig. 4.24 for case (ii) the change in 

performance measure, with change in parameter values are difficult to understand. The range 

of performance varies between m1009.0 2−× to m1011.0 2−× . This indicates all the 

combinations are equally good. From Fig. 4.25 for case (iii) following quintic trajectory, it is 

observed that the range of performance is between m1009.0 2−× to m1011.0 2−×  for all 

parameter combinations. It is difficult to say which combination will deliver very less 

performance variations. All the combinations considered are equally good. 

It has been observed that from Fig. 4.26 for task (iv) following quintic trajectory, range of 

performance varies between m102.0 2−× to m108.0 2−× . The best performance is observed 

for the combination having link length ratio β  = 0.8 to 1.0 and α  value 0.35 to 1.0. Change 
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in link mass ratio has very less influence in change in performance. This feature is similar to 

the trend observed in case of task performed following cubic trajectories. 

From Fig. 4.27 for case (v) following quintic trajectory, feature observed is similar to case 

(iv). It is observed that performance measure vary between m102.0 2−× to m108.0 2−× . The 

best performance is observed for the parameter combination having link length ratio β  = 0.8 

to 1.0 and α  value 0.35 to 1.0 like in previous case. Change in link mass ratio has very less 

influence in change in performance. In Fig. 4.28 similar feature is observed as discussed in 

case (i) (ii) and (iii). Unlike previous cases (iv) and (v), it is difficult to say which 

combination will deliver very less performance variations. For the case (vi), range of 

performance vary between m101.0 2−× to m1013.0 2−× . All the considered combinations 

considered are equally good or equally bad.  

4.7.4 Results and Discussion 

It has been observed that in Figs 4.13 and 4.14 link length ratio change has significant 

influence on performance in some cases and insignificant in some cases. For cases (iv) and (v) 

performance measure (mean positional error) decrease till β  is equal to 0.75. And remain 

stable with increase in β  value. Trends of mean positional error are same for cases (i),(ii),(iii) 

and (v). Similar trend is also observed in case of manipulator following cubic and quintic 

trajectory  

It can be seen that in Figs 4.15 and 4.16 link mass ratio change has insignificant influence 

on performance measure in some cases. In cases (iv) and (v) performance measure, increase 

with increase of α . Trends of mean positional error are same for cases (i),(ii),(iii) and (vi). 

Similar trend is observed in case of manipulator following cubic and quintic trajectories. The 

important thing to be observed in these figures are the contribution of link mass ratio and link 

length ratio on performance variations. Performance variations contribution has been less by 

link mass ratio change as compared to link length ratio change. 

It can be observed that simultaneous change of link length and link mass ratios have 

significant effect on performance variations of manipulator. For β  equal to 08 to 1.0 and α  

value between 0.35 to 1, have lowest performance variations. The trend of change is observed 

to be similar in Figs. 4.17-4.22 and Figs. 4.26-4.27 respectively. For considered cases 

performance variations have similar trend following cubic trajectory. The Figs. 4.23-4.25 
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indicate that link length and link mass ratios change have insignificant effect on performance 

variations. Therefore in these cases, drawing conclusion would be difficult.  

4.8 EPILOGUE 

This chapter presents a probabilistic approach to simulate the real life performance of 

manipulator. For simulating performance of manipulator different performance measures are 

defined. The methods adopted to simulate the performance for tasks following cubic and 

quintic path are discussed. Since numbers of control and noise factors considered are fourteen, 

the Fractional factorial design approach has been adopted to create the design matrix. Taking 

these fraction factorial combinations of design matrix performance of manipulator are 

simulated using the proposed probabilistic approach. Half normal probability plotting and 

ANOVA tables are used to determine statistically significant factors. This chapter discusses 

and explains an approach to screening the parameters responsible for performance variations. 

The focus of this investigation is the subsequent use of screened parameters for robust design. 

Uniqueness of above investigations are given below. 

(a) Development of approach to incorporate effect of noise for simulation of real life 

performance. 

(b) Use of both kinematic and dynamic models of manipulator for simulating the 

performances. Subsequently use of performance measure like positional error, mean 

positional error for analysis.  

(c) Application of combined array approach and Fractional factorial design technique  

214–6 of resolution V for generating combination of control and noise factors as 

prototypes and simulation of performance measures. 

(d) Use of ANOVA technique to analyze the statistical significance of control and noise 

parameters that contribute most to the observed performance variations. 

(e) Exploration of impact of parameter changes on performance measure by parametric 

sensitivity study. 

Present chapter emphasizes the performance variation problem of manipulator in robot 

manufacturer and designer’s perspective and identifies the parameter responsible for 

performance variations. 
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CHAPTER-5 
 

OPTIMAL MANIPULATOR PARAMETER SELECTION USING 
RESPONSE SURFACE METHODOLOGY 

 
 

5.1 INTRODUCTION 

This chapter deals with the selection of optimal parameters for optimal performance using 

response surface approach. In Chapter 3, search based heuristics method along with design of 

experiments approach is applied to obtain statistically significant manipulator parameters. 

However, to get rid of the limitations in this study, another investigation is initiated in Chapter 

4. The effect of control and noise parameters on performance are explored and factors 

influencing the most to the performance variations are identified. From selected fourteen 

control and noise parameters, only six control and noise parameters are identified to be 

statistically significant in previous chapter. 

Taking these factors and factor bounds into consideration, optimal manipulator design 

factor which is insensitive to noise factors and delivers optimal performance has been 

obtained. As the focus is to optimize the performance at destination while following a 

particular trajectory, the significant parameters selected from previous chapters are used to 

develop the design matrix. Using the probabilistic approach discussed in Chapter 4, desired 

performances are simulated taking parameter combinations of design matrix. The response 

surface approach is applied to develop an empirical model which connects simulated 

performance of manipulator with the design and noise factors of manipulator. Subsequently 

using the empirical model, response equation for mean performance and variance in 

performances has been computed. These empirical relations are finally used to obtain the 

optimal control parameter combination, which deliver minimum mean performance and 

performance variation less than the specified limit. 

Response Surface Methodology (RSM) is conventionally applied to problems where true 

functional relationship between performance and the independent parameters is unknown. As 

the mathematical relations relating manipulator performances and the control and noise 

factors are not available, therefore, application of RSM to this problem becomes pertinent. 

RSM has been used to develop the relationship between independent control and noise factors 
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with the performances. To optimize parameters that deliver optimum performance, an effort is 

made to apply robust design concepts to address this problem. 

The rest of this chapter is organized in seven sections. In section 5.2, robust design 

principles using RSM techniques have been discussed. In section 5.3 steps utilized for 

application of RSM to relate the factors and the performances are discussed. The application 

of RSM technique to a 2-DOF RR planar manipulator has been discussed in section 5.4. The 

methodology used to optimize the performances of the manipulator is discussed in section 5.5. 

The assumed manipulator data for simulation optimization and analysis of results of 

experiment are presented in section 5.6. 

5.2 ROBUST DESIGN PRINCIPLES 

Theoretically robust design principles can be applied at any stage of the product development 

processes. However, it is ideal to apply it in the conceptual stages. Early application of these 

techniques in the design process would allow grater flexibilities to make changes as well as 

larger amount of cost savings. The aim of robust design principle is to find the optimal setting 

of the control factors such that the variability in the performance (response) due to noise 

factors are minimized with mean performance achieving a specified target. Many methods for 

handling uncertainty or developing a robust design have been proposed. The best-known 

approach for robust design is that proposed by Taguchi [Park 1998]. However there have been 

many drawbacks in analytical techniques employed by him. Some criticisms include lack of 

flexibility in modeling design factors and the lack of economy in experimental design plan. 

Taguchi advocated highly fractionated designs that do not enable one to analyze control factor 

interactions. In response to these limitations, the use of response surface methodology has 

been chosen as a viable alternative for solving the robust design problem. To avoid 

inefficiency of cross array design of experiment approach proposed by Taguchi, a single 

experimental design for both control and noise factors was proposed by Welch et al. [Welch 

1990]. The design is known as a combined array in which the experiments are run at various 

combinations of control and noise parameters. The response obtained form these experiments 

are linked to the factors by the response equations. 
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5.2.1 Robust Design through Response Surface Methodology 

RSM is an important tool used in product design. This method is applied in many industrial 

settings where several variables influence the desired performance or outcome (e.g. 

performance of manipulator at destination). RSM consists of techniques from mathematical 

optimization and statistics. RSM is used for the parameter design of products or processes that 

may be sensitive to uncontrollable or noise factors. By developing a model containing both 

the noise and the controllable factors, a combination of control factor setting can be 

determined such that the response will be "robust" to changes in the noise factors. 

This methodology was developed by Box and his coworkers in late 50s and 60s [Box 

1987]. Traditionally, RSM application did not consider the existence of noise factors. It is 

after the introduction of Taguchi’s philosophy that RSM was extended to address robust 

design issues with noise factors included. Usually, the relationship between the dependent 

variables and the independent variables is too complex, or unknown. RSM provides a 

procedure, which solves this problem. It is assumed that the designer is concerned with a 

system involving some response variable Y that depends on the input variables ix  i.e. 

nxxx .,,........., 21 . It is assumed that each ix  is continuous and controllable. The functional 

relationship between the response and n inputs is written as: 

 ∈+= ).......,( 21 nxxxfY  (5.1) 

where, ∈  represent the error observed in response Y . A mechanistic model for such a 

relationship does not necessarily exist. Thus, the first step in RSM is to find a suitable 

approximation for function (.)f  using a low-order polynomial in some region of the 

independent variables (input variables). If the approximated function has linear variables, a 

first-order polynomial can be used and written in terms of the design variables. 
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where, ib ’s and ijc ’s are regression coefficients of quadratic and interacting terms 

respectively. 

In most of RSM applications second order model is used. The justification behind the 

selection is the ability of second order models to include the nonlinear behavior of the system. 

But the experimental designs for fitting a second order response surface require at least three 

levels of each factor so that the coefficients in the model can be estimated. When there are k  

factors it will lead to k3 factorial combinations. 

It is important for the second order model to provide good predictions through out the 

region of interest. One way is to define “good” that the model has a reasonably consistent and 

stable variance of the predicted response at points of interest x . Box and Hunter suggested 

that a second order response surface design should be rotatable. This means that variance of 

predicted response is same at all points x  that are at the same distance from the design center. 

That is the variance of predicted response is constant on spheres. A design with this property 

will leave the variance of ŷ  unchanged when the design is rotated about the center 

)0,.......,0,0( , hence the name rotatable design. Rotatability is a reasonable basis for the 

selection of a response surface design. Because the purpose of RSM is optimization and 

location of the optimum is unknown prior to running of the experiment. Hence, the orientation 

of the design is an important factor with regard to the response surface and will affect the 

collection of data and the fitting of the response surface.  

There are two experimental designs in the class of the k3  factorial designs that can be 

used for fitting a second order model to response surfaces. These designs are: Central 

Composite Design (CCD) and Box-Behnken Design (BBD) [Montgomery 2001]. Both the 

designs are a fraction of the k3  factorial design and rotatable. This property is important for 

the experimental design of a three factorial k3  design. For the experimental design, the levels 

of each factor are assumed to be equally spaced. A least-square approach is used to estimate 

the coefficients of the polynomials. The response surface analysis then proceeds in terms of 

the fitted response surface. The eventual goal of RSM is to determine optimal factor levels in 

the system that will deliver optimal performance. 

As discussed in the previous section, to get robust design control factor and noise factors 

needed are to be considered and then model should be developed with these factors. To 



 

135 

represent the relationship in terms of control and noise factors following notations are used. 

Where the control and noise variables are represented in vector form as x  and z , 

respectively. The set of control variables x  is assumed to vary within region of interest xR , 

and set of noise variables z  is varied within region of interest zR . By means of proper linear 

transformation on x  and z , the xR  and zR  are defined by 

{ }lixxR ix ....,.,2,1,11: =+≤≤−=  and { }mizzR iz .....,,2,1,11: =+≤≤−=  

For instance the linear transformation. 

iiorgitransi baxx /)( ,, −=  where transix ,  and origix ,  are the transformed and original values of ix  

respectively. and ia  , ib  are obtained using following relations, 

{ } 2/)min()max( iii xxa +=  { } 2/)min()max( iii xxb −=  

Assuming that a set of control variables is denoted by )......,( 21 lxxxx =′  and set of noise 

variables by )......,( 21 mzzzz =′ . 

The functional relationship in equation (5.2) is well represented by the first order 

polynomial regression model,  

 ∈+∆′+′+′+= xzzxzxy γββ 0),(  (5.4) 

where, 0β  is a unknown coefficient representing the intercept of the plane and β , γ  are 

unknown vectors of coefficients for the control and noise factors to be estimated from data, of 

size )1( ×l and )1( ×m  respectively. Similarly ∆  is matrix of size )( ml ×  representing 

coefficient of interaction terms. The, x′  is vector of control factors of size )1( l×  and 

l represent the number of control factors. Similarly z′  is the vector of noise factors of size 

)1( m×  and m  represent the number of noise factors. The error ∈  is random error associated 

with y . 

The response equation for second order model discussed in equation (5.3) is expressed 

explicitly in the following form, 

 ∈+∆′+′+′+′+′+= xzzRzzBxxxzxy γββ 0),(  (5.5) 

where B  is a matrix of size )( ll ×  whose diagonals are the coefficients for the pure quadratic 

effects of the control factors and whose off-diagonals are one-half of the interaction effects of 
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the control factors, R  is a )( mm ×  matrix and ∆  is a )( ml ×  matrix of the control factors and 

noise factor interaction effects. 

The empirically fitted second order model of equation (5.5) by least squares method is 

written as [Park 1998]. 

 xzrzzRzxBxbxbzxy ∆′+′+′+′+′+= ˆˆˆ),(ˆ 0  (5.6) 

where, ∆̂  and,ˆ,ˆ,),,(ˆ rRBbzxy are predicted or estimated values. Then to obtain the 

estimated mean response )(ˆ xm  at x  is the above equation (5.6) is averaged over the noise 

variables z , where z  is uniformly distributed over zR : 

 �=
zR

dzzxykxm ),(ˆ)(ˆ  (5.7) 

Integrating and simplifying the equation (5.7) will give )(ˆ xm as: 

 RxBxbxbxm ˆtr
3
1ˆ)(ˆ 0 +′+′+=  (5.8) 

where 
�

=

zR
dz

k
1

 and R̂tr is the trace of matrix R̂ . 

Similarly, the mean square variation about the mean response )(ˆ xm  i.e., variance )(ˆ xv  is 

estimated as 

 � −=
zR

dzxmzxykxv 2)](ˆ),(ˆ[)(ˆ  (5.9) 

Substituting )(ˆ xm  in equation (5.9) will result, 

 � +′+′+−=
zR

dzRxBxbxbzxykxv 2
0 ])ˆtr

3
1ˆ(),(ˆ[)(ˆ  

Simplifying the above equation will give the variance of response as 

 dzRxzrzzRzkxv
zR
� +∆′+′+′= 2])ˆtr

3
1ˆˆ[)(ˆ  

and finally, 

 Axrxrxv +∆+′∆+= )ˆ()ˆ()(ˆ  (5.10) 
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 and jkr  is the jth row and kth column element of the 

matrix R̂ . The detailed explanation is also available in Box [Box 1992]. 

The models for the mean and variance are derived in terms of the response variables of 

interest, which has following characteristics: 

(1) The mean and variance models involve only the control variables, meaning that 

potential set of the control variables can be chosen properly to achieve a target value 

of the mean and minimize the variability transmitted by the noise variable. 

(2) The variance model involves only the control factors. It also involves the interaction 

regression coefficients between the control and noise parameters. This is how the 

noise parameter influences the response. 

(3) The variance model is a quadratic function of the control parameters. 

(4) The variance model is simply the square of the slope of the fitted response model in 

the direction of the noise parameters. 

5.3 STEPS TO OPTIMAL PARAMETER DESIGN USING RSM 

As most of the mechanical systems show nonlinear behavior, to understand the relationship 

between the performance of manipulator and the parameters a second order model has been 

adopted. The key steps for obtaining the optimal parameter design through use of RSM have 

been outlined below. It can be observed that the steps provided are similar to design of 

experiment technique except few exceptions. The exceptions are discussed here. 

Step 1. Identify performances to be optimized 

This method used is same as discussed in previous chapter. 

Step 2. Identify the control and noise factors and their feasible ranges 

As the focus of the investigation is to obtain a robust design, control parameters and noise 

parameters and their level values are identified.  

Step 3. Construct experimental design 

Design of experiments is carried out to understand the influence of the control factors, noise 

factors and their interaction on the response. 

In experiments where the effects of noise are not considered, a single design array can be 

used to investigate the relationship between the response and the factors. However, in this 
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exploration, both the control and noise factors are studied together using combined array 

approach. The justification behind the use of combined array approach is the requirement of 

lesser number of experimental run. To generate combined array which will be useful for the 

RSM, the help of CCD approach is taken [Montgomery 2001]. 

5.3.1 Central Composite Design 

It was felt that the quadratic effects would be important for the analysis and thus a central 

composite Design (CCD) has been used to generate the design points. It is also known that 

CCD allows efficient estimation of the first and second-order coefficients. The resulting 

designs are usually very efficient in terms of the number of required runs, and they are 

rotatable or nearly rotatable. Where, rotatability is important for the second order model to 

provide good predictions throughout the region of interest. 

The CCD has following features; 

(i) A complete k2  or fractional pk −2  first order factorial design, where k  is the number 

of factors and p  is the thp  fraction. 

(ii) One or more center points 

(iii) Two axial points on the axis of each design variable at a distance, α  from design 

center. 

The factorial portion is used to estimate the linear and two factor interaction terms, the 

axial points (denoted by α± ) contribute to the estimation of both the linear and the quadratic 

terms, and the center points will give information about curvature and also contribute to 

estimation of the quadratic terms in the model. Using the standard ±1 scaling on the design 

variables, the axial points are chosen based on the region of interest and region of operability. 

The axial or spherical distance is k=α  where k  represents the number of variables in the 

model. The axial distance does not have to be k and can be chosen based on other criteria. 

Step 4. Conduct the experiments 

The experiment is run using CCD combined array i.e. design matrix and subsequently the 

response of the experiments are used to develop empirical model.  

Step 5. Construct the RSM models 

Depending on the order of the model chosen, response surfaces are developed. Developed 

model gives empirical relationship between the considered parameters and the response. 
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Step 6. Develop and evaluate the mean and the variance equation using the response 

equations 

Using procedure discussed in section 5.2, mean and variance of response equation in 

parametric form are developed for further use. 

Step 7. Formulate the optimization problem taking mean and variance equations and 

perform a constrained optimization 

Using mean and variance of response equation and optimization problem is formulated. These 

steps are explained in this section. With regard to the formulation of constrained optimization 

for performance, however, some explanation is needed. There are many ways of formulating 

the optimal parameter design problem. The following optimization measures proposed by 

Taguchi are used depending upon the type of quality characteristics. 

(a) Nominal-is-best case: 2])(ˆ[min τ−∈ xm
XRx  subjected to cxv ≤)(ˆ , where τ is the target 

of response required to be achieved, c  is some upper bound on the variance response. 

(b) Larger-the-better case: )(ˆmax xm
XRx∈  subjected to cxv ≤)(ˆ , 

(c) Smaller-the-better case: )(ˆmin xm
XRx∈  subjected to cxv ≤)(ˆ , 

Hence, it can be seen that the formulation adopted for a particular problem would vary 

depending on the problem at hand as well as the relative importance the designer places on 

these two statistics i.e. mean and variance. 

Step 8. Obtain the optimal designs 

This is the last step used in RSM. The optimization problem is developed using parametric 

model equations of mean and variance and subsequently solutions of the problem is obtained. 

In RSM the problem formulated is of nonlinear type; therefore, nonlinear optimization 

technique is used to solve the problem. 

5.4 ROBUST DESIGN OF MANIPULATOR USING RSM 

In Chapter 4, it was observed that the performance of manipulator at the destination while 

traveling along a trajectory is important. In this chapter parameter design of manipulator for 

the improved performance at the target has been attempted. For determination of robust 

parameters of manipulator RSM approach has been adopted. The optimal parameter levels 

values are selected for different tasks following different trajectories. 
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It has been observed that statistically significant parameters which contribute to the 

performance variation at the destination point are only six from the fourteen selected 

parameters. It is decided to conduct the experiment taking parameters, which are statistically 

significant during analysis of positional error as the performance. In this investigation, more 

emphasis is given to minimizing the response characteristics and reducing performance 

variations to certain limit. Normally the steps 1-3, are grouped under the general heading of 

experimental design, while steps 4 and 5 fall within the domain of model fitting.  

5.4.1 Experimental Design for RSM 

Factor information 

In Chapter 4, fourteen parameters control and noise factors were identified to be important. 

The design information of the factors is provided in Table 4.1. The factors considered in that 

investigation were continuous in nature. Factors A to D were control factors while factors 

from E to O were noise factors. After performing screening experiment statistically significant 

control and noise parameters were identified. 

In case of 2-DOF RR planar manipulator, the noise parameters i.e. variations of link 

lengths, variations in supplied joint torque, friction at two joints, and uncertainty in link mass 

distribution have been found to be statistically insignificant. For performing experiment using 

these parameters, which are not statistically significant, are kept at high level value. These 

factors have been allowed to vary as per explained procedure in section 4.4, during 

experiment. 

5.4.2 Design Array using Central Composite Design 

The focus of this investigation has been to optimize the performance of manipulator using 

RSM approach. Central Composite Design has been used to generate design matrix. Since the 

region of interest and operability is the same, the value of α  is set to unity to obtain the face 

centered cubical design (FCC). For the control and noise factors, it is altered between 1−  and 

1+  when the other control factors are at their axial settings. This design has (26) 64 factorial 

points, 12 axial points and 10 center points. Therefore, total number of combinations for 

which experiment to be carried out for the manipulator design problem are 86. 
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5.4.3 Conducting Experiments 

The design matrix generated using CCD method has been utilized to simulate the 

performances. While simulating the performance it has been ensured that the noise parameters 

which are not statistically significant do not change their level values but vary as per 

discussion in Chapter 4. The procedure discussed is used for simulating the performance. In 

this method effect of noise is simulated using probabilistic method. Assumption for the 

probability distributions kept same as discussed earlier. Subsequently numerical integration 

based method is used to simulate the performance at the target points. For simulation of 

performance probabilistic method discussed has been used. To analyze the performance of 

manipulator, performance i.e. positional error is used. The second order response surface 

model for the specified performance is built. After this a set of control parameters are 

searched for by which optimization of performance is achieved. 

5.4.4 Model Fitting 

The functional relationship between the performance and the factors was obtained using 

regression analysis. A second order polynomial has been fitted for the response using the 

regression approach. The regression approach is widely used for the model building. To judge 

the adequacy of the fitted model help of coefficient of determination (R2) is taken. In order to 

judge the significance of the model, the coefficient of determination R2 measure is widely 

used. This measure ranges between 0 and 1. A value of 0.8 implies that 80% of the variations 

in the response is explained by the model. One drawback of this measure is that as the number 

of variables in the model increase, the R2 measure will increase, until it reaches the theoretical 

maximum of 1. 

5.5 SIMULATION 

Developed computer programme in MATLAB, for Chapter 4 is used once again to simulate 

the performance of the manipulator. The numerical level values chosen for simulation of 

performance have been provided in Table 5.1. The parameters are selected at three level 

values i.e. low, medium, and high. The low and high values are same as discussed in  

Chapter 4. Medium level is found by taking average of the two levels. 
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Table 5.1 Level Values of Statistically Significant Control and Noise Parameters 

Control and Noise 
Factors 

Symbol used 
for ANOVA 

Low Level 
Value 

Medium 
Level Value 

High Level 
Value 

1l (m) A 0.40 0.45 0.50 

2l  (m) B 0.30 0.35 0.40 

1m  (kg) C 7 7.5 8 

2m  (kg) D 5 5.5 6 

1θσ  (degree) G 0.05 0.75 0.1 

2θσ  (degree) H 0.05 0.75 0.1 

During simulation except parameters shown in Table 5.1 and remaining noise factors are 

fixed at a particular value i.e., no change of level value. The assumed values of noise 

parameters for the simulation are provided in Table 5.2. 

Table 5.2 Values of Statistically Insignificant Noise Parameters 

Noise Parameters Values 

1τσ  (Nm) 0.10 

2τσ  (Nm) 0.10 

1B  (Ns) 4 

2B  (Ns) 2.5 

1l
σ  (m) 1×10–4 

2l
σ  (m) 1×10–4 

1mσ  (kg) 5×10–3 

2mσ  (kg) 5×10–3 

The tasks considered remain same as discussed in Chapter 4 and provided once again for easy 

reference in Table 5.3. 

Table 5.3 Manipulator Task Specifications 

Case  Coordinates of 
Start point 

)m,m( ii yx  

Coordinates of 
Destination point 

)m,m( ff yx  

Time to travel 
(sec) 

(i) (0.65, 0)  (0.4, 0.30) 2 
(ii) (0.65, 0.05) (0.4, 0.30)  2 
(iii) (0.65, 0.10)  (0.4, 0.30)  2 
(iv) (0.65, 0.05)  (–0.4, 0.30) 2 
(v) (0.65, 0.10)  (–0.4, 0.30) 2 
(vi) (0.40, 0.30)  (0.65, 0) 2 
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Assumed Process Parameters 

These parameters are used while simulating the performance of manipulator. The values 

chosen for the process parameters are kept same as discussed in Chapter 4. For easy reference 

it is provided below: 

(i) Weight parameter for first order autoregressive process 8.01 =φ . 

(ii) Time step for numerical integration, 0.001 s. 

Design Matrix using Control and Noise Parameters 

In this chapter focus is to obtain the robust deign: design which is insensitive to noise factors. 

The manipulator control parameters and noise parameters have been chosen at three level 

values. Six parameters are indicated by capital letters A, B, C, D, E, and F for easy reference. 

For design matrix CCD design is used and 86 design combinations are generated using this 

approach. Few combinations of CCD matrix are shown in Table 5.4. The design matrix 

showing all 86 combinations are provided in Appendix C1. 

Table 5.4 Central Composite Design Matrix for RSM 

Combination  
number 

1l  (A) 
(m) 

2l  (B) 
(m) 

1m  (C) 
(kg) 

2m  (D) 
(kg) 

1θσ  (E) 

(deg) 
2θσ  (F) 

(deg) 
1 0.4 0.3 7 5 0.05 0.05 
2 0.5 0.3 7 5 0.05 0.05 
3 0.4 0.4 7 5 0.05 0.05 
4 0.5 0.4 7 5 0.05 0.05 
       
       
       
       

76 0.45 0.35 7.5 5.5 0.075 0.1 
77 0.45 0.35 7.5 5.5 0.075 0.075 
78 0.45 0.35 7.5 5.5 0.075 0.075 
79 0.45 0.35 7.5 5.5 0.075 0.075 
80 0.45 0.35 7.5 5.5 0.075 0.075 
81 0.45 0.35 7.5 5.5 0.075 0.075 
82 0.45 0.35 7.5 5.5 0.075 0.075 
83 0.45 0.35 7.5 5.5 0.075 0.075 
84 0.45 0.35 7.5 5.5 0.075 0.075 
85 0.45 0.35 7.5 5.5 0.075 0.075 
86 0.45 0.35 7.5 5.5 0.075 0.075 
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5.6 OPTIMIZATION AND DISCUSSION 

For the task specified in Table 5.3 and combinations provided in Table 5.4, simulations 

are run following cubic and quintic trajectories. The performances obtained from 

simulation have been used to fit a response surface model. In this investigation response 

surface of second order has been chosen and for fitting this model help of Design Expert 

software has been taken. 

The performance utilized for analysis of experiment using ANOVA is positional 

error )( iε . To obtain optimal parameters of manipulator, mean and variance of response 

equations are developed and subsequently these parametric equations are used for 

optimization. To optimize, available fmincon subroutine in MATLAB is used  

Performance of Manipulator Following Cubic and Quintic trajectory 

Statistical analysis of the response obtained from the experiment has been analysed using 

ANOVA. This analysis is carried out for positional error as the performance, while 

manipulator performing a task following either cubic or quintic trajectories. The summary of 

results of ANOVA for all the discussed tasks are provided in tabular form. The ANOVA of 

performance for all the cases following cubic trajectory are provided in Tables 5.5-5.10. 

During analysis the level of significance is taken as 0.05 to identify statistically significant 

parameters. Statistically significant parameters are those for which oF statistic is greater than 

tabulated F  statistic. 

For assumed, level of significance, F  tabulated is equal to 4.0, i.e. 

00.458,1,05.0,,05.0 21
≈= FF νν , [Montegomery 2001]. The observed statistic oF values  have 

been provided in respective tables. The statistically significant parameter are indicated in 

the tables. 
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Table 5.5 ANOVA of Performance for Cubic Trajectory - case (i) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.28023479 1 0.28023479 6.796715469 Significant 

B 0.044384773 1 0.044384773 1.076492576 - 

C 0.00223738 1 0.00223738 0.054264614 - 

D 0.066320152 1 0.066320152 1.608505506 - 

E 1.46985314 1 1.46985314 35.64929807 Significant 

F 0.291292774 1 0.291292774 7.064911881 Significant 

A2 0.00215896 1 0.00215896 0.052362658 - 

B2 0.035678565 1 0.035678565 0.865335304 - 

C2 0.223857868 1 0.223857868 5.429369538 Significant 

D2 0.00277868 1 0.00277868 0.067393129 - 

E2 0.006331736 1 0.006331736 0.15356768 - 

F2 0.059447248 1 0.059447248 1.441812514 - 

AB 0.025761046 1 0.025761046 0.624799304 - 

AC 0.000567437 1 0.000567437 0.013762424 - 

AD 0.082317528 1 0.082317528 1.996500202 - 

AE 0.003170462 1 0.003170462 0.076895263 - 

AF 0.006614928 1 0.006614928 0.160436132 - 

BC 0.014926364 1 0.014926364 0.362018764 - 

BD 0.027521496 1 0.027521496 0.667496627 - 

BE 0.101118824 1 0.101118824 2.45250019 - 

BF 0.061824375 1 0.061824375 1.49946652 - 

CD 0.002851073 1 0.002851073 0.069148916 - 

CE 5.15303×10–6 1 5.15303×10–6 0.00012498 - 

CF 0.021979788 1 0.021979788 0.53309 - 

DE 0.179636911 1 0.179636911 4.356850085 Significant 

DF 0.007310279 1 0.007310279 0.17730091 - 

EF 1.88604×10–6 1 1.88604×10–6 4.57434×10–5 - 

Residual 2.391393007 58 0.041230914   

Corrected Total 5.378020412 85    
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Table 5.6 ANOVA of Performance for Cubic Trajectory - case (ii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.432608 1 0.432608 11.89585 Significant 

B 2.67×10–5 1 2.67×10–5 0.000733 - 

C 0.002083 1 0.002083 0.057281 - 

D 0.01258 1 0.01258 0.345922 - 

E 1.808514 1 1.808514 49.73045 Significant 

F 0.474973 1 0.474973 13.0608 Significant 

A2 0.011367 1 0.011367 0.312578 - 

B2 0.034441 1 0.034441 0.947046 - 

C2 0.077664 1 0.077664 2.135613 - 

D2 0.059783 1 0.059783 1.64392 - 

E2 0.001332 1 0.001332 0.036632 - 

F2 0.084537 1 0.084537 2.324593 - 

AB 0.072166 1 0.072166 1.984406 - 

AC 0.004187 1 0.004187 0.11514 - 

AD 0.000736 1 0.000736 0.020233 - 

AE 0.023197 1 0.023197 0.637865 - 

AF 0.007033 1 0.007033 0.193406 - 

BC 0.10631 1 0.10631 2.923304 - 

BD 0.049679 1 0.049679 1.366067 - 

BE 0.019449 1 0.019449 0.534803 - 

BF 0.01934 1 0.01934 0.531807 - 

CD 0.000421 1 0.000421 0.011589 - 

CE 0.0967 1 0.0967 2.659056 - 

CF 0.033892 1 0.033892 0.93197 - 

DE 0.082814 1 0.082814 2.277229 - 

DF 0.018188 1 0.018188 0.500138 - 

EF 0.071416 1 0.071416 1.963789 - 

Residual 2.109247 58 0.036366   

Corrected Total 5.69771 85    
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Table 5.7 ANOVA of Performance for Cubic Trajectory - case (iii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 8.17×10–5 1 8.17×10–5 0.424863 - 

B 3.79×10–6 1 3.79×10–6 0.019728 - 

C 0.000708 1 0.000708 3.684603 - 

D 0.000248 1 0.000248 1.289699 - 

E 0.012015 1 0.012015 62.51191 Significant 

F 0.002978 1 0.002978 15.49104 Significant 

A2 9.23×10–5 1 9.23×10–5 0.480283 - 

B2 5.16×10–5 1 5.16×10–5 0.268378 - 

C2 1.66×10–5 1 1.66×10–5 0.086564 - 

D2 0.000238 1 0.000238 1.240238 - 

E2 0.000148 1 0.000148 0.772045 - 

F2 2.35×10–5 1 2.35×10–5 0.01223 - 

AB 0.000777 1 0.000777 4.044232 Significant 

AC 4.78×10–7 1 4.78×10–7 0.002489 - 

AD 3.95×10–5 1 3.95×10–5 0.205682 - 

AE 5.35×10–5 1 5.35×10–5 0.278151 - 

AF 0.000163 1 0.000163 0.847661 - 

BC 0.000294 1 0.000294 1.52796 - 

BD 4.13×10–5 1 4.13×10–5 0.214709 - 

BE 3.7×10–5 1 3.7×10–5 0.192679 - 

BF 2.38×10–5 1 2.38×10–5 0.123587 - 

CD 3.97×10–5 1 3.97×10–5 0.206288 - 

CE 4.95×10–7 1 4.95×10–7 0.002574 - 

CF 0.000259 1 0.000259 1.346628 - 

DE 6.26×10–5 1 6.26×10–5 0.325591 - 

DF 5.36×10–5 1 5.36×10–5 0.278989 - 

EF 0.000201 1 0.000201 1.047896 - 

Residual 0.011148 58 0.000192   

Corrected Total 0.029744 85    
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Table 5.8 ANOVA of Performance for Cubic Trajectory - case (iv) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.081821209 1 0.081821209 339.9088934 Significant 

B 0.066501775 1 0.066501775 276.2675485 Significant 

C 0.000270459 1 0.000270459 1.12356479 - 

D 0.001549082 1 0.001549082 6.43533394 Significant 

E 0.000663716 1 0.000663716 2.75726625 - 

F 0.000352562 1 0.000352562 1.464642293 - 

A2 6.93816×10–5 1 6.93816×10–5 0.288231189 - 

B2 1.46057×10–7 1 1.46057×10–7 0.000606762 - 

C2 8.19093×10–5 1 8.19093×10–5 0.340274841 - 

D2 0.000343134 1 0.000343134 1.425477935 - 

E2 1.1954×10–5 1 1.1954×10–5 0.049660318 - 

F2 0.000398205 1 0.000398205 1.654259381 - 

AB 0.012338405 1 0.012338405 51.25729331 Significant 

AC 6.82792×10–5 1 6.82792×10–5 0.283651627 - 

AD 0.000404669 1 0.000404669 1.681109799 - 

AE 0.000136893 1 0.000136893 0.568692678 - 

AF 0.000316702 1 0.000316702 1.315671687 - 

BC 0.000549897 1 0.000549897 2.284429174 - 

BD 4.76324×10–5 1 4.76324×10–5 0.197878837 - 

BE 0.000174263 1 0.000174263 0.723939163 - 

BF 0.001127692 1 0.001127692 4.684757514 Significant 

CD 8.30172×10–5 1 8.30172×10–5 0.344877194 - 

CE 0.000226807 1 0.000226807 0.942223186 - 

CF 3.07169×10–6 1 3.07169×10–6 0.012760704 - 

DE 0.000722125 1 0.000722125 2.999913529 - 

DF 0.001296747 1 0.001296747 5.387061353 Significant 

EF 0.00056622 1 0.00056622 2.352240594 - 

Residual 0.013961477 58 0.000240715   

Corrected Total 0.183971574 85    
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Table 5.9 ANOVA of Performance for Cubic Trajectory - case (v) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.090186 1 0.090186 579.2061 Significant 

B 0.046283 1 0.046283 297.2465 Significant 

C 0.000267 1 0.000267 1.714127 - 

D 0.004688 1 0.004688 30.10623 Significant 

E 0.001782 1 0.001782 11.44144 Significant 

F 0.001815 1 0.001815 11.6541 Significant 

A2 0.000107 1 0.000107 0.687437 - 

B2 1.55×10–8 1 1.55×10–8 9.94×10–5 - 

C2 2.79×10–5 1 2.79×10–5 0.179149 - 

D2 0.00021 1 0.00021 1.347576 - 

E2 0.000554 1 0.000554 3.561173 - 

F2 5.4×10–6 1 5.4×10–6 0.03465 - 

AB 0.008959 1 0.008959 57.54005 Significant 

AC 0.000545 1 0.000545 3.499666 - 

AD 6.48×10–6 1 6.48×10–6 0.041647 - 

AE 0.001324 1 0.001324 8.505045 Significant 

AF 0.00021 1 0.00021 1.348951 - 

BC 0.00019 1 0.00019 1.219886 - 

BD 8.17×10–5 1 8.17×10–5 0.524555 - 

BE 8.44×10–5 1 8.44×10–5 0.542083 - 

BF 0.000666 1 0.000666 4.278045 Significant 

CD 0.000237 1 0.000237 1.519223 - 

CE 3.12×10–5 1 3.12×10–5 0.200507 - 

CF 2.28×10–5 1 2.28×10–5 0.146434 - 

DE 0.000473 1 0.000473 3.038876 - 

DF 0.000527 1 0.000527 3.382968 - 

EF 0.00053 1 0.00053 3.401196 - 

Residual 0.009031 58 0.000156   

Corrected Total 0.168802 85    
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Table 5.10 ANOVA of Performance for Cubic Trajectory - case (vi) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.018136896 1 0.018136896 26.15700368 Significant 
B 0.000793666 1 0.000793666 1.144623444 - 
C 0.002543281 1 0.002543281 3.667916078 - 
D 5.85754×10–5 1 5.85754×10–5 0.084477418 - 
E 0.007219869 1 0.007219869 10.41248365 Significant 
F 0.001153722 1 0.001153722 1.663895936 - 

A2 5.47808×10–5 1 5.47808×10–5 0.079004723 - 
B2 0.000311275 1 0.000311275 0.448920255 - 
C2 0.000195993 1 0.000195993 0.282660877 - 
D2 0.000213567 1 0.000213567 0.308006242 - 
E2 0.000191002 1 0.000191002 0.275463205 - 
F2 0.000816603 1 0.000816603 1.17770426 - 

AB 0.00252402 1 0.00252402 3.64013773 - 
AC 0.000369135 1 0.000369135 0.532365315 - 
AD 0.000203487 1 0.000203487 0.293468153 - 
AE 0.000182922 1 0.000182922 0.263810185 - 
AF 0.000837965 1 0.000837965 1.208511852 - 
BC 0.000113793 1 0.000113793 0.164111934 - 
BD 0.000104497 1 0.000104497 0.150705345 - 
BE 4.5816×10–7 1 4.5816×10–7 0.000660757 - 
BF 8.84423×10–5 1 8.84423×10–5 0.127551307 - 
CD 5.01246×10–5 1 5.01246×10–5 0.072289666 - 
CE 0.006001465 1 0.006001465 8.655304263 Significant 
CF 0.00070947 1 0.00070947 1.023196331 - 
DE 0.000365187 1 0.000365187 0.526672607 - 
DF 9.08471×10–5 1 9.08471×10–5 0.131019564 - 
EF 5.0355×10–5 1 5.0355×10–5 0.072621891 - 

Residual 0.040216378 58 0.000693386   
Corrected Total 0.08397218 85    

From Table 5.5, for case (i) it is observed that factors A, E and F , quadratic effect of 

factor C i.e. C2 and interactions DE are statistically significant. In Table 5.6, for case  

(ii) following cubic trajectory performance analysis is carried out. It is observed that factors 

A, E and F , are statistically significant. And single factors effects, quadratic factor effects and 

interacting factor effects are found statistically insignificant. From Table 5.7, for case (iii) it is 

observed that factors E and F and interacting factors AB are statistically significant. Similarly 

from Table 5.8, for case (iv) performance analysis is done. It is observed that factors A, B and 

D and interacting factors AB and BF are statistically significant. For this task, effect of other 

factors are observed to be statistically insignificant. Likewise in Table 5.9, for case (v) it is 

observed that factors A, B, D, E and F and interacting factors AB, AE and BE are statistically 
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significant and effect of other factors are statistically insignificant. From Table 5.10, for case 

(vi) following cubic trajectory, it is observed that factors A and E and interacting factor CE 

are statistically significant. 

Similarly the ANOVA table for the manipulator performing task following quintic 

trajectory are provided in Tables 5.11-5.16. During analysis the level of significance is 

assumed at 0.05 to identify statistically significant parameters. Statistically significant 

parameters are those for which oF statistic is greater than tabulated F  statistic. For assumed, 

level of significance, F  tabulated is equal to 4.0 i.e. 00.458,1,05.0,,05.0 21
≈= FF νν  [Montgomery 

2001]. The observed statistic oF values  have been provided in respective tables. The 

statistically significant parameter are indicated in the tables. 

Table 5.11 ANOVA of Performance for Quintic Trajectory – case (i) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 6.15×10–5 1 6.14821×10–5 0.280443275 - 
B 0.000223 1 0.000222902 1.01673947 - 
C 0.000604 1 0.000604401 2.756904604 - 
D 0.000123 1 0.000123426 0.562995203 - 
E 0.010408 1 0.010408246 47.47598924 Significant 
F 0.00321 1 0.003209979 14.64194011 Significant 
A2 0.002012 1 0.002012244 9.17861287 Significant 
B2 0.000555 1 0.000555138 2.532195719 - 
C2 1.96×10–5 1 1.95673×10–5 0.089253972 - 
D2 3.14×10–7 1 3.13503×10–7 0.001430005 - 
E2 8.35×10–5 1 8.3483×10–5 0.380798055 - 
F2 0.000462 1 0.000462173 2.108147804 - 

AB 1.04×10–5 1 1.03885×10–5 0.047386078 - 
AC 0.000154 1 0.000153714 0.701146042 - 
AD 8.3×10–5 1 8.30172×10–5 0.378672972 - 
AE 0.000261 1 0.000260536 1.188403897 - 
AF 1.68×10–5 1 1.6768×10–5 0.076485263 - 
BC 0.001298 1 0.001298386 5.922435262 Significant 
BD 0.000108 1 0.000107633 0.490954541 - 
BE 0.000561 1 0.000561033 2.559083752 - 
BF 5.38×10–5 1 5.37894×10–5 0.245353965 - 
CD 0.000161 1 0.000160963 0.734214409 - 
CE 0.000129 1 0.000128899 0.587958172 - 
CF 8.97×10–6 1 8.96628×10–6 0.040898638 - 
DE 0.00042 1 0.00042045 1.917832694 - 
DF 0.001262 1 0.001261733 5.755244472 Significant 
EF 3.89×10–9 1 3.89064×10–9 1.77467×10–5 - 

Residual 0.012715 58 0.000219232   
Corrected Total 0.034583 85    
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Table 5.12 ANOVA of Performance for Quintic Trajectory – case (ii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.033112 1 0.03311206 0.897823434 - 

B 0.135901 1 0.135901267 3.684921477 - 

C 0.001064 1 0.001064054 0.028851509 - 

D 0.020438 1 0.020437679 0.554161439 - 

E 2.074954 1 2.074953809 56.26174091 Significant 

F 0.640384 1 0.640384302 17.36382541 Significant 

A2 0.008121 1 0.008121494 0.220211835 - 

B2 0.030813 1 0.030812909 0.835482651 - 

C2 0.064677 1 0.064676615 1.753686736 - 

D2 0.007669 1 0.007668866 0.207938955 - 

E2 0.036573 1 0.036573412 0.991676921 - 

F2 1.31×10–5 1 1.31379×10–5 0.000356231 - 

AB 0.019508 1 0.019508004 0.528953583 - 

AC 0.054177 1 0.05417663 1.46898283 - 

AD 0.014024 1 0.014024255 0.380263408 - 

AE 0.003553 1 0.003552896 0.096335688 - 

AF 0.014912 1 0.014911519 0.404321293 - 

BC 0.003286 1 0.00328601 0.089099171 - 

BD 0.017288 1 0.017287855 0.46875492 - 

BE 0.021717 1 0.021717315 0.588858382 - 

BF 0.018754 1 0.018754318 0.508517613 - 

CD 0.01095 1 0.010949982 0.296905437 - 

CE 0.336736 1 0.336735511 9.130480878 Significant 

CF 0.046258 1 0.046257781 1.254265659 - 

DE 0.073798 1 0.073798362 2.001020123 - 

DF 0.011161 1 0.011160772 0.302620925 - 

EF 0.098473 1 0.098473166 2.670069917 - 

Residual 2.139061 58 0.03688037   

Corrected Total 5.976475 85    
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Table 5.13 ANOVA of Performance for Quintic Trajectory – case (iii) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.00016 1 0.00016 0.768577 - 

B 0.000193 1 0.000193 0.92799 - 

C 0.000257 1 0.000257 1.233651 - 

D 0.000118 1 0.000118 0.568072 - 

E 0.015809 1 0.015809 75.86714 Significant 

F 0.002166 1 0.002166 10.39536 Significant 

A2 6.75×10–5 1 6.75×10–5 0.324157 - 

B2 0.000386 1 0.000386 1.85017 - 

C2 0.000911 1 0.000911 4.371622 Significant 

D2 2.07×10–5 1 2.07×10–5 0.099547 - 

E2 0.000151 1 0.000151 0.722519 - 

F2 1.81×10–5 1 1.81×10–5 0.086809 - 

AB 4.31×10–7 1 4.31×10–7 0.002068 - 

AC 7.29×10–7 1 7.29×10–7 0.0035 - 

AD 4.12×10–6 1 4.12×10–6 0.019791 - 

AE 0.000889 1 0.000889 4.265308 Significant 

AF 0.000745 1 0.000745 3.577254 - 

BC 0.000102 1 0.000102 0.48825 - 

BD 1.97×10–6 1 1.97×10–6 0.009443 - 

BE 0.00038 1 0.00038 1.823225 - 

BF 0.000449 1 0.000449 2.15376 - 

CD 3.83×10–5 1 3.83×10–5 0.183601 - 

CE 1.33×10–5 1 1.33×10–5 0.063613 - 

CF 0.000131 1 0.000131 0.62676 - 

DE 5.31×10–6 1 5.31×10–6 0.025498 - 

DF 0.000357 1 0.000357 1.711163 - 

EF 0.000917 1 0.000917 4.400129 Significant 

Residual 0.012086 58 0.000208   

Corrected Total 0.036153 85    
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Table 5.14 ANOVA of Performance for Quintic Trajectory – case (iv) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.173937 1 0.173936943 684.8691003 Significant 

B 0.016114 1 0.016114063 63.44841578 Significant 

C 0.000157 1 0.000157448 0.619944114 - 

D 0.000605 1 0.000605109 2.382592029 - 

E 0.001084 1 0.001084413 4.269827097 Significant 

F 1.51×10–6 1 1.50547×10–6 0.005927722 - 

A2 0.000119 1 0.000118609 0.46701621 - 

B2 0.002468 1 0.002468214 9.718484208 Significant 

C2 0.000138 1 0.000138168 0.544028678 - 

D2 0.000521 1 0.000521095 2.051787005 - 

E2 7.16×10–5 1 7.1578×10–5 0.281835309 - 

F2 3.07×10–5 1 3.07204×10–5 0.120960378 - 

AB 0.004937 1 0.004936626 19.43774755 Significant 

AC 0.000262 1 0.000262306 1.032819838 - 

AD 0.000184 1 0.000184352 0.725877539 - 

AE 9.11×10–6 1 9.11059×10–6 0.03587254 - 

AF 0.000673 1 0.000672734 2.648862463 - 

BC 0.000586 1 0.000585815 2.306622744 - 

BD 0.000176 1 0.000176109 0.6934234 - 

BE 2.55×10–5 1 2.55467×10–5 0.100589039 - 

BF 0.000866 1 0.000865956 3.409662608 - 

CD 0.000145 1 0.000145326 0.572214916 - 

CE 5.62×10–5 1 5.61956×10–5 0.221267865 - 

CF 0.000256 1 0.000255876 1.007500609 - 

DE 0.000199 1 0.000198553 0.781792795 - 

DF 0.000498 1 0.000498367 1.962296504 - 

EF 0.000208 1 0.000208344 0.820345241 - 

Residual 0.01473 58 0.000253971   

Corrected Total 0.219318 85    
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Table 5.15 ANOVA of Performance for Quintic Trajectory – case (v) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.138 1 0.138 678.1193 Significant 

B 0.018561 1 0.018561 91.20753 Significant 

C 0.000774 1 0.000774 3.801765 - 

D 0.003149 1 0.003149 15.47513 Significant 

E 0.001601 1 0.001601 7.868047 Significant 

F 0.001044 1 0.001044 5.129201 Significant 

A2 2.18×10–6 1 2.18×10–6 0.010714 - 

B2 0.000492 1 0.000492 2.417406 - 

C2 1.09×10–5 1 1.09×10–5 0.053719 - 

D2 0.000295 1 0.000295 1.451612 - 

E2 0.000928 1 0.000928 4.562133 Significant 

F2 2.63×10–5 1 2.63×10–5 0.12924 - 

AB 0.005864 1 0.005864 28.81294 Significant 

AC 2.4×10–5 1 2.4×10–5 0.117887 - 

AD 4.48×10–6 1 4.48×10–6 0.021991 - 

AE 0.000677 1 0.000677 3.325897 - 

AF 0.000432 1 0.000432 2.122993 - 

BC 1.56×10–5 1 1.56×10–5 0.076543 - 

BD 0.000359 1 0.000359 1.763436 - 

BE 0.000143 1 0.000143 0.704453 - 

BF 0.001081 1 0.001081 5.310226 Significant 

CD 4.27×10–5 1 4.27×10–5 0.209662 - 

CE 1.07×10–8 1 1.07×10–8 5.26×10–5 - 

CF 0.000154 1 0.000154 0.754711 - 

DE 0.000196 1 0.000196 0.961821 - 

DF 0.000634 1 0.000634 3.115829 - 

EF 0.000117 1 0.000117 0.576295 - 

Residual 0.011803 58 0.000204   

Corrected Total 0.188122 85    
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Table 5.16 ANOVA of Performance for Quintic Trajectory – case (vi) 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.020076 1 0.020076 0.498822 - 

B 0.240127 1 0.240127 5.966273 Significant 

C 0.006853 1 0.006853 0.17027 - 

D 0.013245 1 0.013245 0.329098 - 

E 2.825707 1 2.825707 70.20845 Significant 

F 0.113018 1 0.113018 2.808073 - 

A2 0.110069 1 0.110069 2.734812 - 

B2 0.038762 1 0.038762 0.963096 - 

C2 0.409232 1 0.409232 10.16792 Significant 

D2 0.006068 1 0.006068 0.150765 - 

E2 0.000577 1 0.000577 0.014333 - 

F2 0.00651 1 0.00651 0.161759 - 

AB 1.15×10–7 1 1.15×10–7 2.85×10–6 - 

AC 0.028162 1 0.028162 0.699716 - 

AD 0.125204 1 0.125204 3.110859 - 

AE 0.045139 1 0.045139 1.121541 - 

AF 0.037491 1 0.037491 0.931515 - 

BC 0.00145 1 0.00145 0.036031 - 

BD 0.057805 1 0.057805 1.436254 - 

BE 0.025254 1 0.025254 0.627458 - 

BF 3.49×10–5 1 3.49×10–5 0.000866 - 

CD 0.007148 1 0.007148 0.177592 - 

CE 0.029364 1 0.029364 0.729594 - 

CF 0.105985 1 0.105985 2.633342 - 

DE 0.066306 1 0.066306 1.647471 - 

DF 0.027602 1 0.027602 0.685814 - 

EF 0.071242 1 0.071242 1.770114 - 

Residual 2.334348 58 0.040247   

Corrected Total 6.757714 85    
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Similarly, analysis of performance is carried out for the task following quintic trajectory. 

In Table 5.11 for case (i) it is observed that factors E and F and quadratic effect of factor A 

i.e. A2 and interacting factors BC and DE are statistically significant. From Table 5.12 for 

case (ii) following quintic trajectory it is observed that factors E and F and interacting factor 

CE are statistically significant. Similarly from Table 5.13 it has been observed that for case 

(iii) factors E and F and quadratic effect of factor C i.e. C2 and interacting factors AE and EF 

are statistically significant. 

From Table 5.14 for case (iv) factors A, B and E and quadratic effect of factor B i.e. B2 

and interacting factor AB are statistically significant. It is observed from Table 5.15 for case 

(v), factors A, B, D, E and F and quadratic effect of factor E i.e. E2 and interacting factor AB 

and BF are statistically significant. Lastly from Table 5.16 for case (vi) following quintic 

trajectory, factors B and E and quadratic effect of factor C i.e. C2 are observed statistically 

significant. Rest of the factor effects are found to be statistically insignificant. 

Subsequently the fitted second order response equations are provided in tabular form. The 

fitted emperical models are provided for the manipulator following cubic and quintic path to 

explore the impact of the time law on performance variations. While fitting the response 

equation using software, it gave informations regarding the requirement of any data 

transformations method and the suitable type of data transformation method. 

As suggested by the software the desired data transformation method has been adopted for 

some cases. In two to three cases it has been observed that natural logarithm is the data 

transformation method required. One advantage in the use of this transformation method is 

the improvement in R2 value. The responses are transformed and second order models are 

fitted. The response equations obtained for all six cases are provided in Tables 5.17(a)-(b) 

respectively. To present the finding conviniently two tables are used by which response 

equation of three case are accomodated in each table. The response equations for cases (i) to 

(iii) are provided in Table 5.17(a). 
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Table 5.17(a) Response Equation in terms of Coded Parameter for Positional Error at 
Destination - cases (i) to (iii) 

For case (i) to (iii) 

Case  Manipulator following Cubic trajectory Manipulator following Quintic trajectory 

(i) 

Lnε   = –2.512546483  
+0.065161198× A – 0.025932539× B 
+0.005822344×C +0.031699382 × D + 
0.149233046× E+0.06643438 × F 
–0.03006576× A2 +0.122223174 × B2 
–0.306151256× C2 –0.034109013× D2 
+ 0.051488621× E2 +0.157766845 × F2 
–0.02006281× A × B +0.002977618× A × C 
–0.035863789× A × D +0.007038357× A × E 
–0.010166526× A × F –0.015271688× B × C 
–0.020737005× B × D +0.039748983× B × E 
+0.031080635× B × F +0.00667443× C × D 
+0.000283754× C × E –0.018531977× C × F 
+0.052979493× D × E +0.010687521× D × F 
–0.000171667× E × F 

ε  = 0.079969599  
–0.000965167× A +0.001837742×B 
+0.003026152×C 
+0.001367515× D+0.012557894×E 
+0.006973955×F 
–0.029026198× A2 +0.015245802× B2 
+0.002862302 × C2+0.000362302× D2 
–0.005912198 × E2+0.013910802× F2 
+0.000402891 × A × B +0.001549766× A × C 
–0.001138922 × A × D–0.002017641× A × E 
–0.000511859 × A × F+0.004504141× B × C 
+0.001296828 × B × D–0.002960766× B × E 
+0.000916766 × B × F+0.001585891× C × D 
+0.001419172 × C × E–0.000374297× C × F 
+0.002563109 × D × E–0.004440109× D × F 
+7.79687E–06 × E × F 

(ii) 

Lnε   = –2.670878006  
+0.080960915× A +0.000635467× B 
+0.005618039× C 
 –0.013805974× D +0.165534658× E 
+0.084832572× F 
–0.068988817 × A2 –0.120084018× B2 
+0.180327048× C2 –0.158212193× D2 
+0.023617419× E2 +0.188136501× F2 
+0.033579562× A × B –0.008088595× A × C 
–0.003390696× A × D –0.019038119 × A × E 
–0.010483206 × A × F –0.04075648  × B × C 
–0.027860934 × B × D +0.017432374 × B × E 
+0.017383479 × B × F – 0.002566146× C × D 
–0.038870799 × C × E – 0.023012337× C × F 
–0.035971873 × D × E – 0.016857943× D × F 
–0.033404668 × E × F 

Lnε  = –2.51846141  
–0.022398613×A+0.045377418×B 
+0.004015225×C +0.01759721×D+0.177309599× E 
+0.098502754× F 
+0.058313328× A2 –0.113583753 × B2 
+0.164559707× C2–0.05666507× D2 
–0.123746408× E2+0.002345381 × F2 
–0.017458882× A × B –0.029094842× A × C 
+0.014803006× A × D +0.007450772× A × E 
–0.015264091× A × F –0.007165467 × B × C 
–0.016435411×B × D–0.018420995 × B × E 
+0.017118301×B × F+0.01308027× C × D 
+0.072536145×C × E+0.026884528×C × F 
–0.033957317×D × E+0.013205569×D × F 
–0.039225543×E × F 

(iii) 

ε  = 0.072863408  
+0.001112348× A +0.000239697 × B –
0.003275758× C +0.00193803 × D +0.013492667 × 
E +0.006716712 × F 
+0.006217083 × A2 –0.004647417 × B2 
–0.002639417 × C2 +0.009990583 × D2 
–0.007882417 × E2 +0.000992083 × F2 
–0.003485109 × A × B – 8.64531E–05× A × C 
+0.000785953 × A × D – 0.000913984 × A × E 
–0.001595547 × A × F – 0.002142172× B × C 
–0.000803016 × B × D – 0.000760703× B × E 
+0.000609234 × B × F – 0.000787109 × C × D 
–8.79219E–05 × C × E – 0.002011047× C × F 
+0.000988859 × D × E + 0.000915359× D × F 
–0.001774016× E × F 

ε  = 0.074069692  
–0.001557727×A –0.001711667×B +0.00197353× 
C +0.001339212×D+ 0.015476561×E 
+0.005728848×F 
–0.005317984× A2 +0.012705016×B2 
–0.019529484×C2 +0.002947016×D2 
+0.007939516×E2 +0.002752016×F2 
–8.20625E–05× A × B +0.00010675× A × C 
–0.000253844 × A × D –0.003726531× A × E 
+0.00341275 × A × F –0.001260813× B × C 
+0.000175344 × B × D –0.002436406× B × E 
+0.002648063 × B × F +0.000773156× C × D 
–0.000455094 × C × E +0.0014285  × C × F 
+0.000288125 × D × E –0.002360344× D × F 
–0.003784969 × E × F 
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The Table 5.17 (b) provides the response equation for the manipulator following the cubic and 

quintic trajectories.  

Table 5.17(b) Response Equation in terms of Coded Parameter for Positional Error at 
Destination - cases (iv) to (vi) 

For case (iv) to (vi) 

Case  Manipulator following Cubic Trajectory Manipulator following Quintic Trajectory 

(iv) 

ε  = 0.230935654  
+0.035209591× A –0.031742758× B – 0.002024318 ×C 
+0.004844682 × D+0.003171167 × E +0.002311242 × 
F 
+0.005389792× A2 +0.000247292 × B2 
–0.005856208× C2 –0.011986208 × D2 
–0.002237208× E2 +0.012912292 × F2 
–0.013884797× A × B +0.001032891× A × C 
+0.002514547× A × D –0.001462516× A × E 
–0.002224516× A × F –0.002931234× B × C 
–0.000862703 × B × D +0.001650109× B × E 
–0.004197641 × B × F +0.001138922× C × D 
–0.001882516 × C × E –0.000219078× C × F 
–0.003359047 × D × E –0.004501297× D × F 
–0.002974422× E × F 

ε =0.31610373  
+0.051336227× A –0.015625379× B – 0.00154453× 
C +0.003027924× D +0.004053455× E + 
0.00015103× F 
–0.00704706 × A2 –0.03214706× B2 
+0.00760594× C2 +0.01477094× D2 
+0.00547444× E2 +0.00358644× F2 
–0.008782641× A × B –0.002024484×A × C 
–0.001697203× A × D +0.000377297× A × E 
+0.003242141× A × F –0.003025453× B × C 
+0.001658828× B × D –0.000631797× B × E 
–0.003678391× B × F –0.001506891× C × D 
+0.000937047× C × E + 0.001999516× C × F 
–0.001761359× D × E – 0.002790516× D × F 
–0.001804266× E × F 

(v) 

ε  = 0.216931807  
+0.036965561×A –0.026481288× B –0.002010955× C 
+0.008427697×D + 0.005195424 ×E +0.005243485× F 
–0.006694514 × A2 –8.05136E–05× B2 
–0.003417514 × C2 –0.009373014× D2 
+0.015236986 × E2 +0.001502986× F2 
–0.011831719 × A × B –0.002917938× A × C 
+0.000318312 × A × D –0.004548844× A × E 
+0.001811594 × A × F +0.00172275× B × C 
+0.001129688 × B × D –0.001148406× B × E 
+0.003226156 × B × F +0.001922531× C × D 
+0.000698437× C × E –0.000596875× C × F 
+0.002719063 × D × E –0.002868875× D × F 
–0.002876594× E × F 

ε   = 0.288046123  
+0.045726424× A –0.016769864×B – 
0.003423788×C +0.006907667× D+0.00492547×E 
+ 0.003976848×F 
–0.000955446× A2 – 0.014351946× B2 
–0.002139446 × C2 – 0.011121446× D2 
+0.019716054 × E2 – 0.003318446× F2 
–0.009571719 × A × B +0.00061225× A × C 
–0.000264438 × A × D –0.003252× A × E 
+0.002598188 × A × F +0.000493344× B × C 
+0.002367969 × B × D –0.001496656× B × E 
+0.004109156 × B × F +0.0008165× C × D 
–1.29375E–05 × C × E –0.001549125× C × F 
+0.001748813 × D × E –0.003147625× D × F 
–0.001353688 × E × F 

(vi) 

ε  = 0.146836455 +  
0.016577136×A + 0.003467742× B + 0.006207621× C  
– 0.000942076×D + 0.010459061× E – 0.004180985× F 
– 0.00478921× A2 – 0.01141621× B2 
+ 0.00905879× C2 – 0.00945621× D2 
– 0.00894271× E2 + 0.01849079  F2 
– 0.006279953 × A × B – 0.002401609×A × C 
–0.001783109× A × D –0.001690609 × A × E 
–0.003618453× A × F + 0.001333422 × B × C 
+0.001277797× B × D +8.46094E–05 × B × E 
–0.001175547× B × F –0.000884984 × C × D 
+0.009683641× C × E +0.003329484× C × F 
–0.002388734× D × E + 0.001191422 × D × F 
–0.000887016× E × F 

Lnε  = –2.407953421  
+0.017440928 ×A +0.060318206×B –.010189802× 
C +0.014166405×D + 0.206914806 ×E 
+0.041381008×F 
+0.214675478 × A2 +0.127395308× B2 
–0.413937421 × C2 –0.050404465× D2 
–0.015541271 × E2 +0.052209876× F2 
+ 4.23152E–05 × A × B –0.020976831× A × C 
–0.044230209× A × D  –0.02655745 × A × E 
–0.024203259 × A × F –0.004760119× B × C 
–0.030053461 × B × D –0.019864202 × B × E 
–0.00073811 × B × F +0.010567933 × C × D 
–0.021420004 × C × E +0.040694199 × C × F 
–0.032187541 × D × E +0.020767388 × D × F 
–0.033364106 × E × F 
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To know whether the fitted model is able to predict the system behaviour or performance 

properly, R2 value has been computed. The R2  value for each case with different trajectories 

are provided in Table 5.18. 

Table 5.18 R2 Value of the Fitted Model 

Case Manipulator following 
Cubic trajectory 

Manipulator following 
Quintic trajectory 

(i) 0.56 0.59 

(ii) 0.63 0.59 

(iii) 0.63 0.67 

(iv) 0.93 0.94 

(v) 0.95 0.94 

(vi) 0.52 0.66 

To validate as to how the developed second order response equation predicts the performance 

of manipulator, a comparison between predicted values of performance and desired values of 

performance has been made. The positional error obtained from simulation and from the 

emperical model are plotted against the combination numbers. This comparison indicate the 

closeness between the desired and predicted values. Comparison of results are shown in Figs. 

5.1-5.6 for manipulator performing task while following cubic trajectory. 
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Fig. 5.1 Comparison of Desired and Predicted Performance for Cubic Trajectory - case (i) 
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Fig. 5.2 Comparison of Desired and Predicted Performance for Cubic Trajectory - case (ii) 
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Fig. 5.3 Comparison of Desired and Predicted Performance for Cubic Trajectory - case (iii) 
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Fig. 5.4 Comparison of Desired and Predicted Performance for Cubic Trajectory - case (iv) 
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Fig. 5.5 Comparison of Desired and Predicted Performance for Cubic Trajectory - case (v) 
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Fig. 5.6 Comparison of Desired and Predicted Performance for Cubic Trajectory - case (vi) 

It is observed that from Fig. 5.1 for case (i) following cubic trajectory trend both the 

performances are close. For the considered 86 combinations performance i.e. positional error 

vary between m1004.0 2−× to m1014.0 2−× . The predicted value differs from the desired 

values in few cases i.e. at combination numbers 30, 52 and combinations number from 78 to 

86. 

From Fig. 5.2 for case (ii) trend of desired performance and predicted performances are 

found to match closely. Similar to earlier case, considered 86 combinations performance i.e. 

vary between m1004.0 2−× to m1014.0 2−× . The difference in predicted value differs from 

the desired values is observed for combination number from 78 to 86. 
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It is observed that from Fig. 5.3 for the case (iii) trend of desired performance and 

predicted performances are not that close. The performance for the considered combinations 

varies between m1004.0 2−×  and m1012.0 2−× . Predicted performance of combination 

numbers 45, 54, 61 and combination number 78 to 86 are different as compared to observed 

performance. It is observed that from Fig. 5.4 for case (iv) predicted performance trend is 

matching closely with the desired performance. The range of performance is between 

m1012.0 2−×  and m1035.0 2−× . Predicted performances of combination numbers 78 to 86 

are different as compared to observed performance. 

Similarly from Fig. 5.5 for case (v) following cubic trajectory, predicted performance trend 

is observed close to the desired performance. The range of performance for the considered 

combinations lies between m1012.0 2−×  to m1032.0 2−× . It is found that from Fig. 5.6 for 

case (vi) predicted performance trend is close to the desired performance. The performance for 

the considered combinations vary between m10085.0 2−×  and m10205.0 2−× . Predicted 

performance of combination number 48 and combination number from 78 to 86 are observed 

to be different as compared to observed performance. Likewise the comparison between the 

simulated performance and the predicted performance for the manipulator performance 

following quintic trajectory are shown in Figs. 5.7-5.12. 
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Fig. 5.7 Comparison of Desired and Predicted Performance for Quintic Trajectory - case (i) 
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Fig. 5.8 Comparison of Desired and Predicted Performance for Quintic Trajectory - case (ii) 
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Fig. 5.9 Comparison of Desired and Predicted Performance for Quintic Trajectory - case (iii) 
 

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

1 6 1 1 1 6 2 1 2 6 3 1 3 6 4 1 4 6 5 1 5 6 6 1 6 6 7 1 7 6 8 1 8 6
c o m b i n a t i o n  n u m b e r

p
o

si
ti

o
na

l e
rr

or

D e s i r e d P r e d i c t e d

 

Fig. 5.10 Comparison of Desired and Predicted Performance for Quintic Trajectory - case (iv) 
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Fig. 5.11 Comparison of Desired and Predicted Performance for Quintic Trajectory - case (v) 

 

-3.5

-3.3

-3.1

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85

combination number

lo
g(

po
si

tio
na

l e
rr

or
)

Desired Predicted

 

Fig. 5.12 Comparison of Desired and Predicted Performance for Quintic Trajectory - case (vi) 

From Fig. 5.7 for case (i) following quintic trajectory predicted performance trend is found 

close to the desired performance. The ranges of performance for the considered combinations 

is between m1002.0 2−×  and m1012.0 2−× . Predicted performance of combination numbers 

63, 66 and combination numbers 78 to 86 are found to be different as compared to observed 

performance. 

It has been observed from Fig. 5.8 for case (ii) predicted performance trend is not matching 

with the desired performance. The ranges of performance for the considered combinations lie 

between m103.3 2−×−  to m101.2 2−×− . The negative value is due to the logarithmic data 

transformations method used. Predicted performance of combination numbers 14, 21, 42, and 
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66 are observed to be different as compared to observed performance. From Fig. 5.9, for the 

case (iii) the predicted performance trend is not close as compared to the desired performance. 

The range of performance is observed to vary between m1004.0 2−×  to m1014.0 2−× . 

Predicted performance of combination numbers 29, 49, 56 and combination number from 78 to 

86 are found to be different as compared to observed performance. Similarly it has been 

observed that from Fig. 5.10 for case (iv) predicted performance trend is close to the desired 

performance. The performance is observed to vary between m1022.0 2−×  and m104.0 2−× . 

Predicted performance of combination numbers from 78 to 86 are found to be different as 

compared to observed performance. 

From Fig. 5.11 for case (v) predicted performance trend is found close to the desired 

performance. The performance is observed to vary between m1018.0 2−×  to m1036.0 2−× . 

Predicted performance of combination numbers from 78 to 86 are found to be different as 

compared to observed performance. 

From Fig. 5.12 for case (vi) predicted and desired performance trend is observed to be 

close. The ranges of performance are observed between m10243.3 2−×−  and 

m10734.1 2−×− . Predicted performance of combination numbers from 78 to 86 are found to 

be different as compared to observed performance. In some combinations, the predicted and 

simulated performances are significantly different, because of the logarithmic transformation 

of the data. 

Using the equations (5.8) and (5.10), discussed in section 5.2 mean of predicted value of 

positional error and variance of predicted value of positional error, in parametric forms are 

obtained. The equations of mean and variances of performances in terms of control parameters 

are provided in tabular form. The mean performance of manipulator for specified task are 

provided in Table 5.19. The variance in performances equations obtained form the obtained 

response equation are provided in Table 5.20. The exact evaluation of the expected means and 

variances are computationally intensive. 
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Table 5.19 Mean of Response Equation for Positional Error  

Case  Manipulator following Cubic Trajectory Manipulator following Quintic Trajectory 

(i) 

))(L(ˆ εnm   = –2.512546483  
+0.065161198× A – 0.025932539× B +0.005822344× 
C +0.031699382 × D–0.03006576× A2 +0.122223174 
× B2 
–0.306151256× C2 –0.034109013× D2 
–0.02006281× A × B +0.002977618× A × C 
–0.035863789× A × D–0.015271688× B × C 
–0.020737005× B × D +0.00667443× C × D 

)(ˆ εm  = 0.079969599 
–0.000965167×A +0.001837742 × B +0.003026152× 
C 
+0.001367515×D –0.029026198× A2 
+0.015245802×B2 
+0.002862302× C2+0.000362302×D2  

+0.000402891×A× B +0.001549766×A×C 
–0.001138922×A×D +0.004504141×B ×C 
+0.001296828×B× D +0.001585891×C×D 

(ii) 

))(L(ˆ εnm  = –2.670878006  
+0.080960915× A +0.000635467× B +0.005618039× C 
 –0.013805974× D–0.068988817 × A2 –0.120084018× 
B2 
+0.180327048× C2 –0.158212193× D2 
+0.033579562× A × B –0.008088595× A × C 
–0.003390696×A × D–0.04075648  × B × C 
–0.027860934× B × D– 0.002566146× C × D 

))(L(ˆ εnm  = –2.51846141 
–0.022398613× A +0.045377418× B +0.004015225× 
C +0.01759721× D +0.058313328× A2 –
0.113583753×B2 
+0.164559707× C2–0.05666507× D2 
–0.017458882 × A × B –0.029094842× A × C 
+0.014803006 × A × D –0.007165467 × B × C 
–0.016435411 × B × D +0.01308027 × C × D 

(iii) 

)(ˆ εm  = 0.072863408  
+0.001112348× A +0.000239697 × B –0.003275758× 
C +0.00193803× D +0.006217083 × A2 – 0.004647417 
× B2 
–0.002639417× C2 +0.009990583 × D2 
–0.003485109× A × B – 8.64531E–05× A × C 
+0.000785953× A × D– 0.002142172× B × C 
–0.000803016× B × D – 0.000787109 × C × D 

)(ˆ εm  = 0.074069692  
–0.001557727× A –0.001711667× B +0.00197353× C 
+0.001339212×D–0.005317984× A2 +0.012705016× 
B2 
–0.019529484×C2 +0.002947016×D2 
–8.20625E–05×A× B +0.00010675×A×C 
–0.000253844× A× D –0.001260813×B× C 
+0.000175344×B× D + 0.000773156×C× D 

(iv) 

)(ˆ εm  = 0.230935654  
+0.035209591× A –0.031742758× B – 0.002024318 
×C +0.004844682 × D+0.005389792× A2 
+0.000247292× B2 
–0.005856208× C2 –0.011986208 × D2 
–0.013884797× A × B +0.001032891× A × C 
+0.002514547× A × D–0.002931234× B × C 
–0.000862703× B × D +0.001138922× C × D 

)(ˆ εm  = 0.31610373  
+0.051336227× A –0.015625379× B – 0.00154453× C 
+0.003027924× D–0.00704706 × A2 –0.03214706× B2 
+0.00760594×C2 +0.01477094× D2 
–0.008782641× A × B –0.002024484×A × C 
–0.001697203× A × D–0.003025453× B × C 
+0.001658828× B × D–0.001506891× C × D 

(v) 

)(ˆ εm  = 0.216931807  
+0.036965561× A –0.026481288× B –0.002010955 × 
C +0.008427697× D–0.006694514× A2 –
0.000080513×B2 
–0.003417514× C2 –0.009373014× D2 
–0.011831719× A × B –0.002917938× A × C 
+0.000318312× A × D +0.00172275 × B × C 
+0.001129688× B × D +0.001922531× C × D 

)(ˆ εm  = 0.288046123  
+0.045726424×A –0.016769864× B – 0.003423788 × 
C +0.006907667× D–0.000955446× A2 – 
0.014351946×B2 
–0.002139446× C2 – 0.011121446× D2 
–0.009571719× A × B +0.00061225× A × C 
–0.000264438× A × D +0.000493344× B × C 
+0.002367969× B × D + 0.0008165× C × D 

(vi) 

)(ˆ εm  = 0.146836455 +  
0.016577136×A + 0.003467742× B + 0.00620762× C  
– 0.000942076× D– 0.00478921× A2 – 0.01141621× 
B2 
+ 0.00905879 × C2 – 0.00945621 × D2 
– 0.006279953 × A × B – 0.002401609×A × C 
–0.001783109× A × D + 0.00133342 × B × C 
+0.001277797× B × D –0.000884984× C × D 

))(L(ˆ εnm  = –2.407953421  
+0.017440928×A+0.060318206× B – 0.010189802×C 
+0.014166405×D+0.214675478 × A2 

+0.127395308×B2 
–0.413937421× C2 –0.050404465× D2 
+ 4.23152E–05×A × B –0.020976831 × A × C 
–0.044230209×A × D  –0.004760119× B × C 
–0.030053461×B × D +0.010567933 × C × D 
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Table 5.20 Variance of Response Equation for Positional Error  

Case  Manipulator following Cubic Trajectory Manipulator following Quintic Trajectory 

(i) 

))(L(ˆ εnv  = 1/3 ((0.149233 + 0.007038×A  
+ 0.03975×B 
+ 0.0002838×C+0.0523×D)2 + (0.0664343 
– 0.01016653×A+0.03108×B 
–0.018532×C+0.01069×D)2)  
+ 1/45(4(–0.0514886)2+(0.1577668)2) 
+5/45(–0.0000858)2 

)(ˆ εv  = 1/3((0.012557894 –0.002017641×A 
 – 0.002960766×B 
+ 0.001419172×C + 0.002563109×D)2+(0.006973955 
–0.000511859×A+ 0.000916766×B–0.000374297×C 
–0.004440109×D)2) 
+1/45(4(–0.005912198)2  
+ (0.013910802)2)+5/45(0.000007)2 

(ii) 

))(L(ˆ εnv  = 1/3 ((0.16553–
0.019038×A+0.017432×B 
 – 0.038871×C–0.035971×D)2 
+(0.08483–0.010483×A+0.017383×B+0.0230123×C 
–0.016857×D)2) 
+1/45(4(0.02362)2+(0.18814)2)+5/45(–0.01671)2) 
 

))(L(ˆ εnv  = 1/3((0.177309599–
0.018420995×B+0.072536145×C –0.033957317×D + 
0.007450772×A)2 + (0.098502754–0.015264091×A 
+ 0.017118301 × B+0.026884528× C+0.013205569× 
D)2) + 1/45(4×(–0.123746408)2+(0.002345381)2 ) 
+ 5/45(–0.039225543)2 

(iii) 

)(ˆ εv  = 1/3((0.013493–0.000913×A 
–0.0007607× B–0.000087×C +0.000989×D)2  
+  (0.0067167–0.001596×A+0.0006092×B  
–0.0020114C+0.000915×D)2)  
+ 1/45(4(–0.007882)2+(0.000992)2)+5/45(–
0.000885)2 

)(ˆ εv  = 1/3((0.015476 – 0.003726×A – 0.002436×B  
– 0.000456×C + 0.0002881×D)2 
+(0.005729 + 0.003413×A + 0.002648×B + 
0.001428×C 
–0.0023602×D)2) + 
1/45(4(0.00794)2+(–0.00189)2)+5/45(–0.00189)2 

(iv) 

)(ˆ εv  = 1/3 ((0.003171–0.001463×A+0.0016501×B  
–0.0018825×C–0.003359×D)2+ (0.002311 
 –0.002224×A–0.0041976×B–0.000219×C 
–0.0045013×D)2)  
+1/45(4(–0.002237)2+(0.012912)2)+5/45(–0.001487)2 

)(ˆ εv  = 1/3((0.004053+0.0003772×A 
– 0.0006317×B+0.00094×C 
–0.001763×D)2+(0.000151+0.003242×A 
–0.003678×B+0.002×C–0.0027905×D)2) 
+ 1/45(4(0.00547)2+(0.003586)2)+5/45(–0.000902)2 

(v) 

)(ˆ εv  = 1/3((0.005195–0.004549×A  
–0.0011484×B+0.000698×C+0.002719×D)2  
+ (0.0052434+0.0018116×A+0.0032261×B 
 –.000567×C –0.002869×D)2) 
+ 1/45(4(0.015237)2+(0.0018116)2) +5/45(–
0.001438)2 

)(ˆ εv  = 1/3 ((0.004925–0.003252×A+0.002598×B 
 – 0.000013×C+0.0017488×D)2 
+(0.003976–0.00362×A–0.004109×B–0.0015491×C 
– 0.0003147×D)2) 
+1/45(4(0.0197161)2+(–0.0033184)2) +5/45(–
0.0006768)2 

(vi) 

)(ˆ εv  = 1/3 ((0.01046  
–0.00169×A+0.0000846×B+0.00968×C–
0.002389×D)2 + (–0.04181–0.00362×A  
–0.001176×B+0.00333×C+0.001191×D)2) 
+ 1/45{4(–0.00894)2+(0.01845)2}+5/45(–0.000445)2 

))(L(ˆ εnv  = 1/3((0.20691–0.026557×A–0.019864×B  
–0.02142×C – 0.0321875×D)2 

+ (0.041381–0.024203×A–0.0007381×B+0.040649×C 
–0.020767×D)2)+ 
1/45(4(–0.0155413)2+ (0.0152209)2)+5/45(–0.01668)2 

To evaluate maximum and minimum value of mean and variances of performance, 

equations provided in the Tables 5.9 and 5.10 are used. For computation, region of interest is 

taken as { }4,3,2,1,11,,,( =≤≤−= ixDCBAR ix . To evaluate these equations a computer 

programme is developed. The obtained results are provided in tabular form. For different 

cases the values are provided in Tables 5.21 and 5.22 respectively. The Table 5.21 provides 

the mean and variances of performances of manipulator following cubic trajectory. 
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Table 5.21 Maximum and Minimum Values of Mean and Variance from Predicted Model 

Case Manipulator following Cubic Trajectory 
 Mean 

)(ˆmax)(ˆ)(ˆmin xmxmxm
xx RxRx ∈∈

≤≤  
Variance 

)(ˆmax)(ˆ)(ˆmin xvxvxv
xx RxRx ∈∈

≤≤  

(i) 0.046904 ≤≤ )(ˆ xm 0.0976106 0.000362 ≤≤ )(ˆ xv 0.025826 

(ii) 0.0417258 ≤≤ )(ˆ xm 0.084078 0.0003175 ≤≤ )(ˆ xv 0.0030198 

(iii) 0.063164 ≤≤ )(ˆ xm 0.094417 0.002991 ≤≤ )(ˆ xv 0.00471 

(iv) 0.162317 ≤≤ )(ˆ xm  0.313646 0.00366 ≤≤ )(ˆ xv 0.0087 

(v) 0.13022 ≤≤ )(ˆ xm  0.288669 0.1018 ≤≤ )(ˆ xv 0.93 

(vi) 0.09509 ≤≤ )(ˆ xm 0.0171489 0.002814 ≤≤ )(ˆ xv 0.000887 

Where as Table 5.22 provides the mean and variances of performance of manipulator 

following quintic trajectory. 

Table 5.22 Maximum and Minimum Values of Mean and Variance from Predicted Model 

Case Manipulator following Quintic Trajectory 
 Mean 

)(ˆmax)(ˆ)(ˆmin xmxmxm
xx RxRx ∈∈

≤≤  
Variance 

)(ˆmax)(ˆ)(ˆmin xvxvxv
xx RxRx ∈∈

≤≤  

(i) 0.047595 ≤≤ )(ˆ xm 0.112058 0.0789 ≤≤ )(ˆ xv 0.136 

(ii) 0.0688121 ≤≤ )(ˆ xm 0.10644 0.05187 ≤≤ )(ˆ xv 0.035621 

(iii) 0.03977 ≤≤ )(ˆ xm 0.09259  0.000179 ≤≤ )(ˆ xv 0.00061 

(iv) 0.223981 ≤≤ )(ˆ xm 0.2187 0.0007 ≤≤ )(ˆ xv 0.00005 

(v) 0.27013 ≤≤ )(ˆ xm 0.192654 0.00036 ≤≤ )(ˆ xv 0.00109 

(vi) 0.0383091 ≤≤ )(ˆ xm 0.13701 0.03218 ≤≤ )(ˆ xv 0.004305 

It has been observed that for different tasks the response equations are different, therefore 

optimal solution for a particular task may not deliver the desired performance. The optimal 

solutions obtained from emperical models of different tasks and following different 

tarjectories have been provided in tabular form. The novelity of this approach is once the 

designer is able to model the performance of manipulator against the different design and 
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noise parameters, it becomes easier to search for the optimal parameter which will deliver 

performance insensitive of noise parameters. Therefore expectation of the performance i.e. 

mean performance, is considered to be relatively important than variance. As such the 

objective of the experiment is to minimize the performance while achieving an acceptable 

amount of variability 2
minσ  in performance. Hence the optimization problem is formulated as  

 2
min)ˆ(such that)ˆ(min σ=yVyE  (5.11) 

Since focus of the thesis is the design aspect of manipulator meant for different tasks 

following different trajectories, the optimal parameter combination which will deliver 

minimum performance with minimum variance is searched for. The corresponding models for 

each case have been used for optimization. To solve above constrained optimization problem 

fmincon routine available in MATLAB has been used. The optimal parameter values are 

provided in Tables 5.23 and 5.24 respectively. The results provided in Table 5.23 represent 

optimal control parameter values of manipulator performing task following cubic trajectory. 

Table 5.23 Optimal Solutions from Fitted Response Model 

Case Manipulator following Cubic Trajectory 

 A B C D Minimum value of 
positional Error 

Minimum 
Value of 
Variance 

(i) 0.4 0.365 7 5 –2.60217* 0.001725* 

(ii) 0.4 0.301 7.4 6 –2.63694* 0.003175* 

(iii) 0.467 0.40 7.94 5.4 0.073017 0.000047 

(iv) 0.403 0.40 8 6 0.162317 0.000005 

(v) 0.40 0.392 8 5.02 0.15706 0.000027 

(vi) 0.40 0.30 7.35 5.98 0.09618 0.000492 

* Logarithmic transformation 

Similarly Table 5.24 represents the optimal control parameter values of manipulator 

performing task following quintic trajectory. These tables provide corresponding minimum 

mean performance and variance at the optimum value of control factors. 
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Table 5.24 Optimal Solutions from Fitted Response Model 

Case Manipulator following Quintic Trajectory 
 A B C D Minimum Value of 

Positional Error 
Minimum Value 
of Variance 

(i) 0.5 0.3652 7.22 5.22 0.06155 0.000036 

(ii) 0.4373 0.30 7.38 6 0.05155 0.00523 

(iii) 0.4684 0.3332 7 5.89 0.06045 0.000062 

(iv) 0.4 0.4 7.58 5.46 0.23361 0.00001 

(v) 0.4 0.3911 8 5.04 0.19265 0.000037 

(vi) 0.4727 0.3606 8 6 –2.3454* 0.004305* 

* Logarithmic transformation 

Using ANOVA techniques, the statistical significance of individual effects, quadratic effects 

of parameters and interaction effect of parameters have been investigated. It is observed that 

for the considered cases while following cubic trajectory, link length one, clearances present 

in joint one and two have significant impact on performance variations. Except two cases, 

quadratic effect of parameters are observed to be insignificant. This indicate that the 

parameters have small nonlinear effect on the performance variations.  

In analysis of performance for the task following quintic trajectory it is observed that 

clearance in joint1 and joint 2 factors are statistically significant in five out of six cases. For 

cases (i), (iii), (iv), (v) and (vi) nonlinear effect of link length one, link mass one, link length 

two and clearance in joint 2 are observed to be statistically significant respectively. Apart 

from control factors and few two factor interactions effects are also observed to be 

statistically significant.  

To represent the ability of the developed emperical model to predict the performance of 

manipulator help of R2 is taken. It has been observed that R2 values are close to 0.90 for cases 

(iii), (iv) and (v) following cubic and quintic trajectories, which is ideal for any emperical 

model. The R2 values are found to be small in cases (i), (ii) and (vi) following cubic and 

quintic trajectories. This small value indicate that the emperical model is unable to fit the total 

variability present in responses. In addition to R2 values of emperical model comparison 

between the desired and predicted values of performances are provided in figures. In most of 
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cases the predicted values are closer to the desired value and trends are similar. Subsequently 

developed response equations for mean performance and variances in performance are used 

for optimization. For selection of the optimal parameter the problems are formulated as 

equation (5.8). It is desired that mean performance should be minimum and the variance in 

performance should take a predecided minimum value. Taking these conditions, optimization 

routine has been run and the results are provided in tables. It is observed that for different 

cases optimal parameters are different. Mostly manipulators perform repetitive tasks, 

therefore for robust design of manipulator above procedure can adopted to obtain the optimal 

parameter setting. This setting will provide the desired performance with minimum 

variability. 

5.7 EPILOGUE 

The present chapter discusses how optimal parameters of manipulator has been selected that 

will have minimum performance variations. A probabilistic method has been used to simulate 

the performance of the manipulator. Experimental design techniques are used to run 

experiments required for developing empirical models of the performance. The final model to 

predict the performance of manipulator has been obtained using regression analysis 

procedure. A response surface approach has been employed to minimize the performance 

variation while keeping its performance at minimum value. Solution to this optimization 

problem is expected to produce a reasonable improvement in performance of manipulator. 

Using the RSM approach, the design parameters of manipulator are allocated optimally by the 

approximated function. The suggestions for possible design improvement are obtained by 

referring to the results from the statistical analysis. This approach enables designers to have 

immediate feedback suggestions for design improvement. With the presented mathematical 

and statistical parameter design model, it is possible that a high quality and cost-effective 

manipulator design can be achieved during the early stages of design. 



173 

CHAPTER-6 
 

MANIPULATOR PARAMETER TOLERANCE DESIGN USING CROSS 
ARRAY DESIGN OF EXPERIMENTS APPROACH 

 
 

6.1 INTRODUCTION 

The next step to parameter design is tolerance design. In tolerance design, suitable tolerances 

on control factors are selected. The chapter discusses how design of experiment approach can 

be used to select the optimal control parameter tolerances to reduce performance variations. In 

Chapter 5, optimal control parameter values were obtained to give very low variations. In this 

chapter, an attempt has been made to further reduce the performance variations. As discussed 

in Chapter 2 Taguchi’s off-line quality control for product design method has three steps. 

These steps are system design, parameter design and tolerance design. In tolerance design, the 

quality of performance variation is reduced further as compared to whatever achieved in 

parameter design.  

Tolerance design identifies the quality sensitive parameters and applies tolerances to these 

parameters to meet the required level of variation of the output. In tolerance design, a trade 

off is usually made between reduction in quality variation and increase in manufacturing cost. 

That is selective specification of higher-grade parts, materials or components to reduce 

tolerances in order of their cost effectiveness. For selection of optimal tolerances, use of 

design of experiments technique becomes pertinent. Two conflicting criteria exist for the 

optimization of tolerances in mechanical systems: manufacturing cost and performance 

variations. Tightening tolerances decreases the performance variations, but increase the 

manufacturing cost and vice versa. So as to achieve tighter tolerances, a lot of manufacturing 

effort is spent in terms of machine tool, process and skill. 

Variations in both processes and materials, such as, setup errors, material property 

variations, environment, and so on, mean that parts cannot be produced to desired dimensions. 

The dimensional variations that occur, displace parts from their required dimension, location, 

and geometry, and negatively affect the assembly and performance of the product. The cost of 

production is exponentially proportional to the magnitude of the tolerance – smaller is the 



174 

tolerance higher is the cost. If optimal tolerances are determined to ensure assembly and 

function, the assembly will be acceptable and cost will be minimal. The study of the aggregate 

behavior of a series of individual factor variations on the tolerances is referred as “tolerance 

analysis”. In tolerance analysis, the cumulative effect of individual dimensional variations on 

the overall assembly is studied; the resultant assembly and function of the product are verified 

and checked against the design requirements. 

This chapter discusses offline simulation strategy by which real time performance is 

obtained without using a prototype and selection of optimum tolerance of robot parameters 

using cross array experimentation. By using cross array experimental strategy, the significant 

parameters and their interactions are identified and the performance is expressed as a function 

of tolerance. The results of the cross array experimentation are validated by Monte Carlo 

simulation and parametric tolerance sensitivity has been carried out to complement the 

statistical analysis. To illustrate the application 2-DOF RR planar manipulator has been used.  

The rest of this chapter is organized in seven sections. In section 6.2, tolerance design of 

manipulator is discussed. Cross array, design of experiment approach for tolerance design is 

presented in section 6.3. The steps utilized for cross array design of experiment approach are 

discussed in section 6.4. The application of cross array design of experiment approach to 

tolerance design of 2-DOF RR planar manipulator is discussed in section 6.5. The results of 

parametric tolerance sensitivity on performance variations are presented in section 6.6. 

6.2 TOLERANCE DESIGN OF MANIPULATOR 

Industrial robots have poor accuracy and repeatability for various applications because of 

inaccuracies present in geometrical, kinematic and dynamic parameters. Few researchers have 

investigated the effect of different parameters on performance variations of robot but, 

exploration and analysis of effect of parameter tolerances and their interactions on 

performance variations are rare. This investigation is carried out without imposing any 

constraints such as maximum torque, maximum angular velocity and angular acceleration of 

links. 

Conducting experiments on actual manipulator by varying tolerance of parameters and 

finding optimum values of tolerances for optimal performance is very tedious, time 
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consuming and uneconomical though not impossible. In this chapter a simulation approach 

has been adopted to conduct the experiments. A cross array experimentation strategy is 

employed to investigate the effect of tolerances of control factors systematically that contain 

the manipulator’s parameters at their different nominal values. To investigate the effect of 

noises due to kinematic and dynamic parameters tolerance on performance maximum positive 

and negative variations from nominal values are considered. After application of experimental 

design technique a performance measure signal to noise ratio (SN ratio) proposed by Taguchi 

[Park 1998] has been used. The response of the experiments has been analyzed using the 

analysis of variance (ANOVA) technique, and the manipulator parameters that contribute the 

most to the observed performance variations has been identified. 

6.3 CROSS ARRAY DESIGN OF EXPERIMENTS APPROACH FOR 

TOLERANCE DESIGN 

Design of experiment (DOE) technique has been used traditionally to design an experiment, 

analyze data and optimize processes or products. In this chapter, effect of control factor 

tolerances on performance of manipulator has been investigated. To obtain optimal tolerance 

of control factors that is insensitive to noise due to control factor variations, cross array design 

of experiments approach is utilized. Using this approach effect of systematic variations of 

control parameters on performance is studied. The procedure of cross array experimental 

design approach is similar to factorial design of experiment approach discussed in Chapter 3. 

The steps used in this study for selection of optimum tolerance of manipulator parameters, are 

discussed below. 

6.3.1 Identification of Control and Noise Factors 

The control factors and noise factors were identified in Chapter 3 and their effects have been 

studied extensively in Chapter 4. To study the effect of control factor tolerance on 

performance variations, the noise factors, which are considered in this investigation, are 

enumerated below. 

(a) Manufacturing tolerances, errors in manufacture and assembly leading to geometric and 

inertial parameter variations in link length and mass. 

(b) Variation in supplied joint torques at joints. 
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To incorporate these noise factors in experiments a novel approach has been proposed and 

is explained in next section. 

6.3.2 Design the Experiment 

For the tolerance design, the factors studied are the tolerance on kinematic and dynamic 

parameters, which are under control of the designer. The random deviation from nominal 

value of each kinematic and dynamic parameter within a given tolerance can be treated as an 

independent variable. This deviation is treated as an error due to noise. To capture the effect 

of this type of noise the experiments should be replicated large number of times as it is done 

in Monte Carlo simulation procedure. This approach is very computationally intensive. 

Therefore, cross array experimental strategy is adopted in which a limited set of discrete 

values of noise are considered to capture the effect of noise. But in Monte Carlo simulation 

effect of noise is studied randomly over the distribution space.  

For designing experiment, the factors and their levels need to be determined. In 

experimental design, two levels (low and high) are recommended, to reduce the number of 

experiments. Sometimes three levels (low, medium and high) are also used, when nonlinear 

effects need to be investigated. In this case, it is assumed that there are no nonlinear effects 

and hence, only two levels are considered.  

In the crossed array, experimental design approach control factor array and noise factor 

array are used to study the effect of noise factors on control factors. The control factor array is 

used to determine the significance of control factors, and to select the levels of significant 

factors to optimize the performance measure, while noise factor array is used to introduce the 

effect of noise into the experiment in a systematic manner. Thus, the results of crossed array 

experiment would be more “robust” against the noise of control factors. To incorporate the 

effect of noises, noises are taken as the deviations from a nominal value, corresponding to the 

specified tolerance value. These represent “worst case” tolerance deviations and satisfy the 3-

sigma limits of Gaussian variability. Each noise factor array is a noise combination that is 

treated as repetitive data in the control factor array. For each experimental run in the control 

factor array consisting of specific tolerance for each kinematic and dynamic parameter, the 

noise factor array provides noise for each kinematic and dynamic parameter. Thus, if the 
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noise factor array has O rows for each run of the control factor array with I rows, the size of 

the experiment becomes OI × .  

6.3.3 Performance Measure – The SN ratio 

The performance measure used for the study and analysis of manipulator are positional error 

and SN ratio. These performance measures are already defined in Chapter 3. As per, Clausing 

[Clausing 1989] SN ratio is a good performance measure and results found using SN ratio will 

be the “Best Set” of kinematic and dynamic parameter tolerances to get minimal performance 

variations. 

6.4 STEPS TO TOLERANCE DESIGN 

The key steps to obtain the optimal control parameter tolerances through use of cross array 

design of experiments approach is outlined below. These are similar to design of experiment 

technique except few exceptions.  

Step 1. Identify the number of control factors, (manipulator kinematic and dynamic 

parameters) 

Step 2. Select the nominal values and levels of control factors (tolerance level values of 

manipulator kinematic and dynamic parameters) 

Step 3. Design the control factor array.  

Step 4. Design the noise factor array.  

Step 5. For each combination of control factor tolerances, simulate the response i.e. 

position vector ),( ff yx  reached, for cross array experiment. 

Step 6. Compute the positional error iε  

Step 7. Calculate the SN ratio. 

Step 8. Test statistical significance. 

Step 9. Find the optimum set of parameter tolerances. 

The methodology adopted to simulate the manipulator performance is described next. 
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6.4.1 Simulation of Performance for Tolerance Design of Manipulator 

To simulate the performance of manipulator probabilistic approach discussed in Chapter 4 is 

used. The control parameters of manipulator identified in Chapter 3, i.e. link lengths and link 

masses, are considered to be independent random variables following Gaussian distribution, 

with assumed mean value µ  and standard deviationσ , and the torque vector is assumed AR 

stochastic process.  

To determine the torque vector required at the joints of the manipulator without effect of 

noise, following approach is used. Based on the trajectory chosen to perform the task, torque 

vector required at joints are determined. Therefore, influence of torque profile on performance 

variations of manipulator are also investigated. In this chapter two trajectories i.e. cubic and 

quintic are studied to investigate the influence of time law and end conditions on performance 

variations of manipulator. 

For the tolerance design, tolerance limits are specified by taking C±  multiples of 

standard deviation σ around the mean size µ . It is customary to take 3±  i.e. six sigma, 

spread for control parameters, by which the upper and lower tolerance limits become σµ 3+  

and σµ 3− , respectively.  

6.5 SIMULATION OF PERFORMANCE FOR 2-DOF RR PLANAR MANIPULATOR 

In Chapter 4 and 5 manipulator performances are simulated based on the design factor and 

noise factor changes. In this chapter effect of control factor tolerances on performance 

variations is investigated. The control parameters for the 2-DOF RR planar manipulator are 

same as already identified. To implement above discussed approach computer programme is 

developed using MATLAB commands. Subsequently numerical values are assumed to 

simulate the performance. 

Design Parameters 
To investigate the effect of manipulator tolerances, previously identified six control factors 

have been chosen at two level values. Thus, the level values of tolerance are set either at 

Loose (L) i.e. original value or Tight (T) i.e. half-the-original value. The assumed values of 

nominal parameter and parameter tolerances, which are at two levels for six control factors 

are given in Table 6.1. 



179 

Table 6.1 Robot Parameter Nominal Values and Tolerance Level Values 

Parameter Symbols  
Used for 
ANOVA 

Nominal 
Parameter 

Values 

Tight  
Tolerance 

(T) 

Loose 
Tolerance 

(L) 

1l (m) A 0.45 ±15×10–5 ±3×10–4 

2l  (m) B 0.30 ±15×10–5 ±3×10–4 

1m  (kg) C 6 ±75×10–4 ±15×10–3 

2m  (kg) D 4.5 ±75×10–4 ±15×10–3 

1τ  (Nm) E variable ±7.5×10–2 ±15×10–2 

2τ  (Nm) F variable ±7.5×10–2 ±15×10–2 

Process Parameters 

The numerical values assumed for the process parameters are same as used in Chapter 4. To 

maintain consistency of study, Cartesian coordinate of the task indicating the start point, 

destination point and time to reach the destination are kept same as provided in Table 4.3. 

Weight parameter for first order autoregressive process for torque simulation is taken as 

8.01 =φ . The time step used for numerical integration is assumed as 0.001s. 

6.5.1 Control and Noise Factor Arrays 

The six control factors at two level values give 26=64 possible combinations of parameter 

tolerances of the control factor array. All 64 combinations have been considered to avoid any 

alias structure that may be present in experimentations, if lesser number combinations are 

used. Few combinations of control factor array are shown in Table 6.2. For all the 64 

combinations of control factor array Appendix D1 can be referred. The combinations of 

control factor array are generated in such a way that increase in combination number indicate 

increasing order of tightness of parameter tolerances. 
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Table 6.2 Control Factor Array in terms of Tolerances for Tolerance Design 

Combination 
number 1

3 lσ  (m) 

(×10–2) 
2

3 lσ  (m) 

(×10–2) 
1

3 mσ  

(kg) 
2

3 mσ   

(kg) 
1

3 τσ  (Nm) 

(×10–2) 

2
3 τσ  

(Nm) 
(×10–2) 

1 0.03 0.03 0.015 0.015 15 15 

2 0.03 0.03 0.015 0.015 15 7.5 

3 0.03 0.03 0.015 0.015 7.5 15 

4 0.03 0.03 0.015 0.015 7.5 7.5 

. . . . . . . 

. . . . . . . 

. . . . . . . 

61 0.015 0.015 0.0075 0.0075 15 15 

62 0.015 0.015 0.0075 0.0075 15 7.5 

63 0.015 0.015 0.0075 0.0075 7.5 15 

64 0.015 0.015 0.0075 0.0075 7.5 7.5 

For this study six control factors are studied, therefore to incorporate the effect of noise 

due to control factors systematically, help of orthogonal array proposed by Taguchi has been 

taken. There are many orthogonal arrays proposed by Taguchi. For noise factor array L8 OA is 

chosen, which has 7 columns and 8 rows. The reason behind L8 OA, selection is the number 

of control factors for which effect of noise required to be studied. The selected OA is 

presented in Table 6.3, with 1’s for low level and 2’s for high level to account for the random 

variations about the nominal values. In the noise factor array only first six columns of Table 

6.3 are used for noise on parameters: length and mass of the two links, and torque at joint one 

and two respectively. 

Table 6.3 Noise Factor Array (L8 Taguchi’s Orthogonal Array) 

Experiment 
Number 

Column Number 

 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 
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Using Taguchi’s L8 array the noise factor array for cross array experimentation has been 

developed. For example, for combination number 64 of Table 6.2, i.e. Tight (T) tolerances, 

and based on values in Table 6.3, the noise factor array will be as shown in Table 6.4. 

Similarly, for each tolerance combination in control factor array, noise factor array is 

developed to simulate the outcome of the experiment.  

Table 6.4 Noise Factor Array for Combination Number 64 

Column Number Experiment 
Number 1 2 3 4 5 6 

1 Tl −1  Tl −2  Tm −1  Tm −2  T−1τ  T−2τ  
2 Tl −1  Tl −2  Tm −1  Tm +2  T+1τ  T+2τ  
3 Tl −1  Tl +2  Tm +1  Tm −2  T−1τ  T+2τ  
4 Tl −1  Tl +2  Tm +1  Tm +2  T+1τ  T−2τ  
5 Tl +1  Tl −2  Tm +1  Tm −2  T+1τ  T−2τ  
6 Tl +1  Tl −2  Tm +1  Tm +1  T−1τ  T+2τ  
7 Tl +1  Tl +2  Tm −1  Tm −2  T+1τ  T+2τ  
8 Tl +1  Tl +2  Tm −1  Tm +2  T−1τ  T−2τ  

6.5.2 Cross Array Experimentation 

The torque vector required at joints of manipulator is computed using nominal values of 

control factors and assumed process parameters, by inverse dynamics process. For a given 

tolerance of torque vector in control factor array and the desired direction of deviation in 

noise factor array, the torque vector actually available at joint has been modeled. For a given 

combination of control factor array and noise factor array torque vector are simulated and 

used in dynamic model equation of manipulator provided in Chapter 4 i.e. equations (4.3) and 

(4.4). Subsequently these equations are integrated numerically for time duration of 2 seconds 

with a time step of 0.001 seconds. The simulation is conducted, to get outcome of experiment 

i.e. joint coordinates. The obtained joint coordinates are used in kinematic model equation of 

manipulator to get the Cartesian coordinates of the point actually reached by end-effector. The 

positional error is computed using equation (3.17) and the simulation for same tolerance 

combination is run for 8 times and SN ratio is computed using equation (3.20). For all 64 

combinations of tolerances shown in Table 6.2, simulations are carried out for a task 

following cubic trajectory and SN ratios are obtained. 
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(i) Analysis of Performance using SN ratio 

To investigate influence of different task on performance, simulations are carried out and 

results are plotted in Figs. 6.1 to 6.6. Important features of these graphs are described below. 

9
10
11
12
13
14
15
16
17
18

1 10 19 28 37 46 55 64
combination number

S
N

 r
at

io

 

Fig. 6.1 SN ratio from Cross Array Experiments for Cubic Trajectory - case (i) 
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Fig. 6.2 SN ratio from Cross Array Experiments for Cubic Trajectory - case (ii) 
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Fig. 6.3 SN ratio from Cross Array Experiments for Cubic Trajectory - case (iii) 
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Fig. 6.4 SN ratio from Cross Array Experiments for Cubic Trajectory - case (iv) 
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Fig. 6.5 SN ratio from Cross Array Experiments for Cubic Trajectory - case (v) 
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Fig. 6.6 SN ratio from Cross Array Experiments for Cubic Trajectory - case (vi) 
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From Fig. 6.1, for case (i) it is observed that the SN ratio values fluctuate alternately and 

maximum SN ratio value is observed to be 16.66 dB at combination number 64 and minimum 

SN ratio is 10.79 dB at combination number 1. In Fig. 6.2 it is observed that for case (ii) 

following cubic trajectory, similar to above case SN ratio values fluctuate alternately. And 

maximum SN ratio value is observed to be 16.66 dB at combination number 64 and minimum 

SN ratio is 10.79 dB at combination number 1. It can be seen from Fig. 6.3 that case (iii) has 

similar trend and feature as compared to cases (i) and (ii). Maximum SN ratio value is 

observed to be 16.56 dB at combination number 64 and minimum SN ratio is 10.62 dB at 

combination number 1. From Fig. 6.4, for case (iv) trend is observed to be different as 

compared to previous three cases. But SN ratio fluctuates alternately. Maximum SN ratio 

value is observed to be 11.32 dB at combination number 52, 54, 64 and minimum SN ratio is 

9.55 dB at combination number 1 and 10. Referring to Fig. 6.5 for case (v) it is observed trend 

is similar to case (iv). And maximum SN ratio value is observed to be 9.95 dB at combination 

number 64 and minimum SN ratio is 8.33 dB at combination number 1. In Fig. 6.6 for case 

(vi) SN ratio values observed to fluctuate alternately. The maximum SN ratio value is 

observed to be 15.56 dB at combination number 64 and minimum SN ratio is 11.61 dB at 

combination number 1. One important feature of all these figures is the availability of number 

of equally competing solutions. 

Likewise for different tasks following quintic trajectory, SN ratios obtained from 

simulation are represented with the help of Figs. 6.7-6.12. Important features of all these 

graphs are discussed below. 
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Fig. 6.7 SN ratio from Cross Array Experiments for Quintic Trajectory - case (i) 
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Fig. 6.8 SN ratio from Cross Array Experiments for Quintic Trajectory - case (ii) 
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Fig. 6.9 SN ratio from Cross Array Experiments for Quintic Trajectory - case (iii) 
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Fig. 6.10 SN ratio from Cross Array Experiments for Quintic Trajectory - case (iv) 
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Fig. 6.11 SN ratio from Cross Array Experiments for Quintic Trajectory - case (v) 
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Fig. 6.12 SN ratio from Cross Array Experiments for Quintic Trajectory - case (vi) 

From Fig 6.7, for case (i) following quintic trajectory, SN ratio value is observed to 

fluctuate as combination number increase. Maximum and minimum SN ratio is found to be 

17.70 dB and 11.54 dB respectively. Similar to case (i) from Fig. 6.8 for case (ii) SN ratio 

value is observed to fluctuate alternately as combination number increase. Maximum SN ratio 

is found to be 17.05 dB at combination number 64 and minimum SN ratio value is 11.25 dB 

at combination number 1. 

In Fig. 6.9 for case (iii) it is observed that trend is similar as compared to previous two 

cases. SN ratio value is found to fluctuate alternately and range of variation is between 16.79 

dB and 10.93 dB. From Fig. 6.10 for the case (iv) it is seen that the trend is different as 

compared earlier three cases (i), (ii) and (iii). The SN ratio is observed to fluctuate alternately. 

And maximum and minimum SN ratio value is 9.26 dB at combination number 64 and 7.80 
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dB at combination number 1 respectively. In Fig. 6.11 for case (v) it is observed that the trend 

is similar to case (iv). The SN ratio is observed to fluctuate between 9.95 dB and 8.33 dB. 

From Fig. 6.12 it is found that SN ratio fluctuate alternately as combination number increase. 

The range of SN ratio is found to lie between 18.58 dB and 12.59 dB. 

(ii) Analysis of Performance using Half Normal Plot 

To represent the statistically significant parameters and parameter interactions 

graphically help of half normal plot is taken. Description regarding the half normal 

plot is provided in Chapter 4. For detailed explanation section 4.5 can be referred. 

Taking simulation results i.e positional error obtained from cross array experimental 

strategy for the manipulators performing the tasks following cubic trajectory the half 

normal plots are plotted. The plots indicating significant parameters are shown in Figs. 

6.13-6.18. 

 

Fig. 6.13 Half Normal Plot of Performance for Cubic Trajectory - case (i) 
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Fig. 6.14 Half Normal Plot of Performance for Cubic Trajectory - case (ii) 

 

 

 

Fig. 6.15 Half Normal Plot of Performance for Cubic Trajectory - case (iii) 
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Fig. 6.16 Half Normal Plot of Performance for Cubic Trajectory - case (iv) 

 

 

 

Fig. 6.17 Half Normal Plot of Performance for Cubic Trajectory - case (v) 
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Fig. 6.18 Half Normal Plot of Performance for Cubic Trajectory - case (vi) 

In this half normal plot it can be observed that the factors which have significant effect on 

performance variation lie away from the straight line. From Fig. 6.13 for case (i) it is observed 

that factors D and F are significant. Similarly in Fig. 6.14, for case (ii) factors D and F are 

observed to be statistically significant. 

From Fig. 6.15 it is found that results for case (iii) is same as discussed in cases (i) and (ii) 

respectively. It is observed that factors D and F are statistically significant. In Fig. 6.16 for 

case (iv) factor D is found to affect the performance variations. Similarly it is observed that 

factor D is statistically significant, from Fig. 6.17 for case (v). In Fig. 6.18 for case (vi) factor 

F is found statistically significant. 

As discussed in previous case half normal plots for the manipulators performing the task 

following quintic trajectory are provided in Figs. 6.19-6.24. 
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Fig. 6.19 Half Normal Plot of Performance for Quintic Trajectory - case (i) 

 

 

 
Fig. 6.20 Half Normal Plot of Performance for Quintic Trajectory - case (ii) 
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Fig. 6.21 Half Normal Plot of Performance for Quintic Trajectory - case (iii) 

 

 

 
Fig. 6.22 Half Normal Plot of Performance for Quintic Trajectory - case (iv) 
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Fig. 6.23 Half Normal Plot of Performance for Quintic Trajectory - case (v) 

 

 

 

Fig. 6.24 Half Normal Plot of Performance for Quintic Trajectory - case (vi) 
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From Fig. 6.19 for case (i) following quintic trajectory it is observed that factors D and F are 

statistically significant. It is observed in Fig. 6.20 for case (ii) factors D and F are statistically 

significant. It is found that in Fig. 6.21 for case (iii), factors D and F are statistically 

significant. This result is similar to cases (i) and (ii). 

It is observed that factor D is statistically significant from Figs. 6.22 and 6.23 for cases 

(iv), and (v) respectively. From Fig. 6.24 for case (vi), it is observed that factor F is 

statistically significant. 

(iii) Analysis of Performance using ANOVA technique 

Statistical analysis of the performance obtained from the cross array design of experiment 

strategy is analysed using ANOVA. For analysis, positional error )( iε is taken as the 

performance while manipulator performs a particular task following cubic and quintic 

trajectories. ANOVA technique provides the quantitative measure of degree of statistical 

significance. 

The results of ANOVA are presented in tabular form for cubic trajectory and quintic 

trajectory in Tables 6.5-6.10 and 6.11-6.16 respectively. As each tolerance combination is run 

for 8 times, it gave rise to 512 numbers of simulations. Therefore, available degrees of 

freedom for ANOVA is 511. 

The summary of results of ANOVA for all the discussed tasks are provided in tabular 

form and provided in Tables 6.5-6.10. In ANOVA tables a factor is considered to be 

statistically significant by comparing observed F  statistic value )( oF  obtained in the 

ANOVA table against tabulated F  statistic )(F  value. During analysis the level of 

significance is kept at 0.05, for all cases. The values of F tabulated is 3.84 i.e. 

84.3,1,05.0511,1,05.0,,05.0 21
=≈= ∞FFF νν  [Montgomery 2001]. 
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Table 6.5 ANOVA of Performance for Cubic Trajectory - case (i) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.001412 1 0.001412 0.191553328 - 
B 0.015563 1 0.015563 2.111163328 - 
C 0.001889 1 0.001889 0.256181392 - 
D 0.30113 1 0.30113 40.84855221 Significant 
E 0.006142 1 0.006142 0.833174473 - 
F 10.71367 1 10.71367 1453.319954 Significant 

AB 9.27⋅10–6 1 9.27⋅10–6 0.001257605 - 
AC 1.78⋅10–5 1 1.78⋅10–5 0.002410471 - 
AD 0.000105 1 0.000105 0.014279311 - 
AE 1.05⋅10–6 1 1.05⋅10–6 0.000141919 - 
AF 2.77⋅10–5 1 2.77⋅10–5 0.003751221 - 
BC 5.82⋅10–5 1 5.82⋅10–5 0.007892332 - 
BD 0.000144 1 0.000144 0.019545756 - 
BE 1.85⋅10–5 1 1.85⋅10–5 0.002508589 - 
BF 0.009758 1 0.009758 1.323706328 - 
CD 3.96⋅10–6 1 3.96⋅10–6 0.0005365 - 
CE 2.24⋅10–5 1 2.24⋅10–5 0.003045021 - 
CF 0.000469 1 0.000469 0.063636299 - 
DE 0.000168 1 0.000168 0.022828026 - 
DF 0.061859 1 0.061859 8.391217612 Significant  
EF 0.001308 1 0.001308 0.177482132 - 

Residual 3.61228 490 0.007372  - 
Corrected Total 14.72605 511   - 

Table 6.6 ANOVA of Performance for Cubic Trajectory - case (ii) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.001124 1 0.001124 0.16771 - 
B 0.01083 1 0.01083 1.615454 - 
C 0.001358 1 0.001358 0.202597 - 
D 0.206251 1 0.206251 30.7662 Significant 
E 0.005991 1 0.005991 0.893641 - 
F 12.76136 1 12.76136 1903.592 Significant 

AB 1.26⋅10–5 1 1.26⋅10–5 0.001875 - 
AC 3.08⋅10–5 1 3.08⋅10–5 0.004596 - 
AD 7.88⋅10–5 1 7.88⋅10–5 0.011753 - 
AE 3.39⋅10–6 1 3.39⋅10–6 0.000505 - 
AF 2.44⋅10–5 1 2.44⋅10–5 0.003638 - 
BC 6.54⋅10–5 1 6.54⋅10–5 0.009757 - 
BD 0.000452 1 0.000452 0.067419 - 
BE 5.28⋅10–5 1 5.28⋅10–5 0.007883 - 
BF 0.007844 1 0.007844 1.170055 - 
CD 3.17⋅10–6 1 3.17⋅10–6 0.000473 - 
CE 2.68⋅10–5 1 2.68⋅10–5 0.003998 - 
CF 0.000345 1 0.000345 0.051457 - 
DE 0.000165 1 0.000165 0.024671 - 
DF 0.049214 1 0.049214 7.341113 Significant 
EF 0.001391 1 0.001391 0.207509  

Residual 3.28496 490 0.006704   
Corrected Total 16.33158 511    
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Table 6.7 ANOVA of Performance for Cubic Trajectory - case (iii) 
Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.00085 1 0.00085 0.137452 - 
B 0.006897 1 0.006897 1.115602 - 
C 0.000939 1 0.000939 0.15196 - 
D 0.131602 1 0.131602 21.28675 Significant 
E 0.005705 1 0.005705 0.922727 - 
F 14.9238 1 14.9238 2413.941 Significant 

AB 1.06⋅10–5 1 1.06⋅10–5 0.00172 - 
AC 4.27⋅10–5 1 4.27⋅10–5 0.006901 - 
AD 5.99⋅10–5 1 5.99⋅10–5 0.009684 - 
AE 6.25⋅10–6 1 6.25⋅10–6 0.00101 - 
AF 2.9⋅10–5 1 2.9⋅10–5 0.004688 - 
BC 9.72⋅10–5 1 9.72⋅10–5 0.015717 - 
BD 0.000732 1 0.000732 0.118364 - 
BE 0.000109 1 0.000109 0.017582 - 
BF 0.005208 1 0.005208 0.842391 - 
CD 1.07⋅10–8 1 1.07⋅10–8 1.74⋅10-6 - 
CE 4.15⋅10–5 1 4.15⋅10–5 0.006714 - 
CF 0.000217 1 0.000217 0.035055 - 
DE 8.39⋅10–5 1 8.39⋅10–5 0.013577 - 
DF 0.033802 1 0.033802 5.46749 Significant 
EF 0.001319 1 0.001319 0.213373  

Residual 3.02918 490 0.006182   
Corrected Total 18.14073 511    

Table 6.8 ANOVA of Performance for Cubic Trajectory - case (iv) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.003888 1 0.003888 0.314443463 - 
B 0.01331 1 0.01331 1.076354423 - 
C 4.77⋅10–6 1 4.77⋅10–6 0.000385371 - 
D 1.16888 1 1.16888 94.52254516 Significant 
E 4.1⋅10–5 1 4.1⋅10–5 0.003319468 - 
F 0.01114 1 0.01114 0.900811477 - 

AB 1.26⋅10–6 1 1.26⋅10–6 0.000101815 - 
AC 2.06⋅10–6 1 2.06⋅10–6 0.000166706 - 
AD 0.000167 1 0.000167 0.013538809 - 
AE 9.52⋅10–6 1 9.52⋅10–6 0.000769892 - 
AF 1.66⋅10–5 1 1.66⋅10–5 0.001343828 - 
BC 1.26⋅10–5 1 1.26⋅10–5 0.001017059 - 
BD 0.001802 1 0.001802 0.145752192 - 
BE 8.38⋅10–6 1 8.38⋅10–6 0.000677849 - 
BF 1.06⋅10–7 1 1.06⋅10–7 8.53408⋅10–6 - 
CD 1.97⋅10–6 1 1.97⋅10–6 0.000158996 - 
CE 7.67⋅10–6 1 7.67⋅10–6 0.000620203 - 
CF 7.14⋅10–6 1 7.14⋅10–6 0.000577423 - 
DE 1.5⋅10–5 1 1.5⋅10–5 0.001210935 - 
DF 6.54⋅10–5 1 6.54⋅10–5 0.005287471 - 
EF 1.66⋅10–6 1 1.66⋅10–6 0.000133954 - 

Residual 6.059394 490 0.012366   
Corrected Total 7.258774 511    
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Table 6.9 ANOVA of Performance for Cubic Trajectory - case (v) 
Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.002767 1 0.002767 0.21626 - 
B 0.013173 1 0.013173 1.029472 - 
C 3.65⋅10–5 1 3.65⋅10–5 0.00285 - 
D 1.182802 1 1.182802 92.43601 Significant 
E 3.53⋅10–6 1 3.53⋅10–6 0.000276 - 
F 0.012939 1 0.012939 1.011216 - 

AB 1.68⋅10–5 1 1.68⋅10–5 0.001312 - 
AC 4.98⋅10–5 1 4.98⋅10–5 0.003896 - 
AD 0.000438 1 0.000438 0.034233 - 
AE 1.94⋅10–5 1 1.94⋅10–5 0.001517 - 
AF 2.76⋅10–5 1 2.76⋅10–5 0.002153 - 
BC 4.04⋅10–5 1 4.04⋅10–5 0.003156 - 
BD 0.0015 1 0.0015 0.117221 - 
BE 1.45⋅10–5 1 1.45⋅10–5 0.001135 - 
BF 9.87⋅10–5 1 9.87⋅10–5 0.007713 - 
CD 3.49⋅10–5 1 3.49⋅10–5 0.002729 - 
CE 4.35⋅10–5 1 4.35⋅10–5 0.003401 - 
CF 1.72⋅10–5 1 1.72⋅10–5 0.001345 - 
DE 2.36⋅10–6 1 2.36⋅10–6 0.000184 - 
DF 0.000471 1 0.000471 0.036838 - 
EF 2.42⋅10–5 1 2.42⋅10–5 0.001893 - 

Residual 6.27004 490 0.012796   
Corrected Total 7.48456 511    

Table 6.10 ANOVA of Performance for Cubic Trajectory - case (vi) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F Value Remark 

A 0.000206 1 0.000206 0.019722 - 
B 0.005061 1 0.005061 0.484454 - 
C 1.7⋅10–5 1 1.7⋅10–5 0.001625 - 
D 0.035788 1 0.035788 3.425746 - 
E 0.009336 1 0.009336 0.893645 - 
F 7.038495 1 7.038495 673.7442 Significant 

AB 5.82⋅10–6 1 5.82⋅10–6 0.000558 - 
AC 9.89⋅10–7 1 9.89⋅10–7 9.46⋅10–5 - 
AD 3.41⋅10–7 1 3.41⋅10–7 3.27⋅10–5 - 
AE 1.53⋅10–5 1 1.53⋅10–5 0.00146 - 
AF 7.42⋅10–5 1 7.42⋅10–5 0.007105 - 
BC 2.22⋅10–5 1 2.22⋅10–5 0.002128 - 
BD 9.06⋅10–5 1 9.06⋅10–5 0.008676 - 
BE 1.71⋅10–6 1 1.71⋅10–6 0.000164 - 
BF 6.13⋅10–5 1 6.13⋅10–5 0.005872 - 
CD 6.51⋅10–6 1 6.51⋅10–6 0.000623 - 
CE 3.53⋅10–6 1 3.53⋅10–6 0.000338 - 
CF 6.27⋅10–6 1 6.27⋅10–6 0.0006 - 
DE 1.75⋅10–5 1 1.75⋅10–5 0.001675 - 
DF 0.011619 1 0.011619 1.112225 - 
EF 4.87⋅10–5 1 4.87⋅10–5 0.00466 - 

Residual 5.11903 490 0.010447   
Corrected Total 12.2199 511    
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From Table 6.5 for case (i), it is observed that factors D, F and factor tolerance 

interaction DF are statistically significant. And rest of the factors are insignificant 

because their F  statistic values are less as compared to tabulated F  statistic value. 

Similarly from Table 6.6, for case (ii) factors D and F and factor interactions DF are 

found to be statistically significant. In Table 6.7 for case (iii), it is observed that factors D 

and F and factor interaction DF are statistically significant. And rest of the factors and 

two factor interactions are statistically insignificant. From Table 6.8 for case (iv), it is 

observed that factor D is statistically significant. And rest of the factors and two factor 

interactions are statistically insignificant. In Table 6.9 for case (v) following cubic 

trajectory, factor D is statistically significant. From Table 6.10 for case (vi) it is observed 

that factor F is statistically significant and rest of the factors and two factor interactions 

are statistically insignificant. 

Similar to above, performance obtained from experiments while following quintic 

trajectory are analysed using ANOVA technique. The results of ANOVA are summarized 

in Tables 6.11 to 6.16. 

Table 6.11 ANOVA of Performance for Quintic Trajectory - case (i) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.00152 1 0.00152 0.258236 - 
B 0.010847 1 0.010847 1.843052 - 
C 0.001936 1 0.001936 0.328977 - 
D 0.296437 1 0.296437 50.36817 Significant 
E 0.006084 1 0.006084 1.03382 - 
F 9.280937 1 9.280937 1576.94 Significant 

AB 9.23⋅10–6 1 9.23⋅10–6 0.001569 - 
AC 1.73⋅10–5 1 1.73⋅10–5 0.002942 - 
AD 0.000113 1 0.000113 0.019175 - 
AE 7.72⋅10–7 1 7.72⋅10–7 0.000131 - 
AF 2.34⋅10–5 1 2.34⋅10–5 0.003984 - 
BC 4.34⋅10–5 1 4.34⋅10–5 0.007371 - 
BD 9.4⋅10–5 1 9.4⋅10–5 0.015979 - 
BE 1.8⋅10–5 1 1.8⋅10–5 0.003062 - 
BF 0.006714 1 0.006714 1.140861 - 
CD 1.08⋅10–5 1 1.08⋅10–5 0.001835 - 
CE 1.72⋅10–5 1 1.72⋅10–5 0.002917 - 
CF 0.00047 1 0.00047 0.079833 - 
DE 0.000205 1 0.000205 0.034829 - 
DF 0.052088 1 0.052088 8.850447 Significant 
EF 0.001151 1 0.001151 0.195571  

Residual 2.88365 490 0.005885   
Corrected Total 12.54239 511    
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Table 6.12 ANOVA of Performance for Quintic Trajectory - case (ii) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.001205 1 0.001205 0.203592 - 
B 0.008371 1 0.008371 1.414031 - 
C 0.001405 1 0.001405 0.237381 - 
D 0.204703 1 0.204703 34.57914 Significant 
E 0.00606 1 0.00606 1.023749 - 
F 11.20947 1 11.20947 1893.542 Significant 

AB 1.54⋅10–5 1 1.54⋅10–5 0.0026 - 
AC 2.58⋅10–5 1 2.58⋅10–5 0.004363 - 
AD 7.49⋅10–5 1 7.49⋅10–5 0.012659 - 
AE 1.87⋅10–6 1 1.87⋅10–6 0.000316 - 
AF 2.33⋅10–5 1 2.33⋅10–5 0.00394 - 
BC 5.18⋅10–5 1 5.18⋅10–5 0.008749 - 
BD 0.000146 1 0.000146 0.024728 - 
BE 3.45⋅10–5 1 3.45⋅10–5 0.005826 - 
BF 0.005768 1 0.005768 0.974308 - 
CD 7.64⋅10–6 1 7.64⋅10–6 0.00129 - 
CE 1.9⋅10–5 1 1.9⋅10–5 0.003213 - 
CF 0.000324 1 0.000324 0.054799 - 
DE 0.000198 1 0.000198 0.033492 - 
DF 0.042237 1 0.042237 7.134745 Significant 
EF 0.001224 1 0.001224 0.206699  

Residual 2.9008 490 0.00592   
Corrected Total 14.38217 511    

Table 6.13 ANOVA of Performance for Quintic Trajectory - case (iii) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.000837 1 0.000837 0.139573 - 
B 0.00585 1 0.00585 0.975816 - 
C 0.000973 1 0.000973 0.162342 - 
D 0.140463 1 0.140463 23.42842 Significant 
E 0.005918 1 0.005918 0.987137 - 
F 13.40498 1 13.40498 2235.866 Significant 

AB 6.51⋅10–7 1 6.51⋅10–7 0.000109 - 
AC 4.55⋅10–6 1 4.55⋅10–6 0.000759 - 
AD 5.99⋅10–7 1 5.99⋅10–7 9.99⋅10–5 - 
AE 6.26⋅10–7 1 6.26⋅10–7 0.000104 - 
AF 7.1⋅10–5 1 7.1⋅10–5 0.011834 - 
BC 1.07⋅10–6 1 1.07⋅10–6 0.000178 - 
BD 0.000423 1 0.000423 0.070489 - 
BE 4.22⋅10–5 1 4.22⋅10–5 0.007043 - 
BF 0.005351 1 0.005351 0.892546 - 
CD 5.28⋅10–5 1 5.28⋅10–5 0.008804 - 
CE 1.16⋅10–7 1 1.16⋅10–7 1.93⋅10–5 - 
CF 0.000281 1 0.000281 0.046822 - 
DE 0.00011 1 0.00011 0.018306 - 
DF 0.030203 1 0.030203 5.03771 Significant 
EF 0.001339 1 0.001339 0.223363  

Residual 2.93755 490 0.005995   
Corrected Total 16.53507 511    
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Table 6.14 ANOVA of Performance for Quintic Trajectory - case (iv) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.01138 1 0.01138 0.752858 - 
B 0.014547 1 0.014547 0.962367 - 
C 0.000229 1 0.000229 0.01517 - 
D 1.318729 1 1.318729 87.23886 Significant 
E 2.75⋅10–5 1 2.75⋅10–5 0.001821 - 
F 0.004786 1 0.004786 0.316625 - 

AB 5.68⋅10–5 1 5.68⋅10–5 0.003756 - 
AC 4.44⋅10–8 1 4.44⋅10–8 2.94⋅10–6 - 
AD 2.33⋅10–5 1 2.33⋅10–5 0.00154 - 
AE 1.68⋅10–6 1 1.68⋅10–6 0.000111 - 
AF 1.16⋅10–6 1 1.16⋅10–6 7.68⋅10–5 - 
BC 1.21⋅10–7 1 1.21⋅10–7 8.01⋅10–6 - 
BD 0.001759 1 0.001759 0.116346 - 
BE 1.15⋅10–7 1 1.15⋅10–7 7.62⋅10–6 - 
BF 2.3⋅10–6 1 2.3⋅10–6 0.000152 - 
CD 9.26⋅10–7 1 9.26⋅10–7 6.12⋅10–5 - 
CE 1.65⋅10–6 1 1.65⋅10–6 0.000109 - 
CF 1⋅10–6 1 1⋅10–6 6.62⋅10–5 - 
DE 1.12⋅10–6 1 1.12⋅10–6 7.43⋅10–5 - 
DF 3.09⋅10–5 1 3.09⋅10–5 0.002044 - 
EF 8.76⋅10–7 1 8.76⋅10–7 5.8⋅10–5 - 

Residual 7.40684 490 0.015116   
Corrected Total 8.75843 511    

Table 6.15 ANOVA of Performance for Quintic Trajectory - case (v) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.012465 1 0.012465 0.844481 - 
B 0.020552 1 0.020552 1.392344 - 
C 0.000282 1 0.000282 0.019112 - 
D 1.444124 1 1.444124 97.83657 Significant 
E 2.68⋅10–5 1 2.68⋅10–5 0.001816 - 
F 0.006484 1 0.006484 0.439297 - 

AB 2.74⋅10–5 1 2.74⋅10–5 0.001858 - 
AC 1.98⋅10–7 1 1.98⋅10–7 1.34⋅10–5 - 
AD 6.08⋅10–5 1 6.08⋅10–5 0.004119 - 
AE 5.51⋅10–8 1 5.51⋅10–8 3.73⋅10–6 - 
AF 1.34⋅10–5 1 1.34⋅10–5 0.000908 - 
BC 1.43⋅10–5 1 1.43⋅10–5 0.000969 - 
BD 0.002535 1 0.002535 0.171728 - 
BE 2.09⋅10–7 1 2.09⋅10–7 1.41⋅10–5 - 
BF 3.38⋅10–6 1 3.38⋅10–6 0.000229 - 
CD 1.98⋅10–6 1 1.98⋅10–6 0.000134 - 
CE 3.06⋅10–7 1 3.06⋅10–7 2.07⋅10–5 - 
CF 1.48⋅10–6 1 1.48⋅10–6 0.000101 - 
DE 1.88⋅10–6 1 1.88⋅10–6 0.000128 - 
DF 8⋅10–6 1 8⋅10–6 0.000542 - 
EF 1.99⋅10–6 1 1.99⋅10–6 0.000135 - 

Residual 7.23289 490 0.014761   
Corrected Total 8.71949 511    
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Table 6.16 ANOVA of Performance for Quintic Trajectory - case (vi) 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square Fo Value Remark 

A 0.000132 1 0.000132 0.048502 - 
B 0.004007 1 0.004007 1.472162 - 
C 3.41⋅10–7 1 3.41⋅10–7 0.000125 - 
D 0.003941 1 0.003941 1.448138 - 
E 0.013385 1 0.013385 4.918022 Significant 
F 11.12709 1 11.12709 4088.359 Significant 

AB 9.22⋅10–9 1 9.22⋅10–9 3.39⋅10–6 - 
AC 1.69⋅10–6 1 1.69⋅10–6 0.000622 - 
AD 9.43⋅10–6 1 9.43⋅10–6 0.003465 - 

AE 8.05⋅10–7 1 8.05⋅10–7 0.000296 - 
AF 2.2⋅10–5 1 2.2⋅10–5 0.008096 - 
BC 5.8⋅10–6 1 5.8⋅10–6 0.002131 - 
BD 8.95⋅10–5 1 8.95⋅10–5 0.03289 - 
BE 5.72⋅10–6 1 5.72⋅10–6 0.0021 - 

BF 0.001077 1 0.001077 0.395707 - 
CD 8.97⋅10–6 1 8.97⋅10–6 0.003294 - 
CE 1.98⋅10–7 1 1.98⋅10–7 7.28⋅10–5 - 

CF 2.19⋅10–6 1 2.19⋅10–6 0.000803 - 
DE 9.58⋅10–5 1 9.58⋅10–5 0.035195 - 
DF 0.00127 1 0.00127 0.466786 - 
EF 0.00222 1 0.00222 0.815845 - 

Residual 1.33378 490 0.002722   
Corrected Total 12.4911 511    

From Table 6.11, it is observed that factors D and F are and factor interactions DF are 

statistically significant. And rest of the factors and factor interactions are insignificant 

because their computed F  statistic values are less as compared to tabulated F  statistic 

value. In Table 6.12 for the case (ii) it is observed that factors D and F and factor 

interaction DF are statistically significant and rest of the factors are found to be 

insignificant. From Table 6.13 for the case (iii) it is observed that factors D and F and 

factor interaction DF are statistically significant. Similarly analysis is carried out for the 

case (iv) and observed that factor D is statistically significant in Table 6.14. It is observed 

from Table 6.15 for case (v) factor D is statistically significant. From Table 6.16 for the 

case (vi) factors E and F are found to be statistically significant. 
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6.5.3 Monte Carlo Simulation for Validation 

For validating the results obtained in cross array experimentation strategy, the Monte 

Carlo simulation approach is used. In this approach simulations are run without using 

noise factor array. Depending on the tolerance combination of the control factors i.e. 

tolerances of kinematic and dynamic parameters, values are generated randomly as per 

the probability density functions assumption, for thousand runs. Using equation (3.20) 

Performance measure SN ratio is computed after getting the performance after 

simulations, for all 64 parameter tolerance combinations following cubic and quintic 

trajectories. The performance variations of manipulator in terms of SN ratio are shown in 

Figs.6.25 - 6.30 and Figs. 6.31 - 6.36 respectively, for both the trajectories. 
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Fig. 6.25 SN ratio from Monte Carlo Simulation for Cubic Trajectory - case (i) 
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Fig. 6.26 SN ratio from Monte Carlo Simulation for Cubic Trajectory - case (ii) 
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Fig. 6.27 SN ratio from Monte Carlo Simulation for Cubic Trajectory - case (iii) 
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Fig. 6.28 SN ratio from Monte Carlo Simulation for Cubic Trajectory - case (iv) 
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Fig. 6.29 SN ratio from Monte Carlo Simulation for Cubic Trajectory - case (v) 
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Fig. 6.30 SN ratio from Monte Carlo Simulation for Cubic Trajectory - case (vi) 

It is observed from Fig. 6.25 for case (i), Fig. 6.26 for case (ii) and Fig. 6.27 for case 

(iii) following cubic trajectories, the SN ratio ranges between 27 dB to 27.6 dB, 29.5 dB 

to 30.5 dB and 32.5 dB to 34 dB respectively. Similar to earlier cases, from Figs. 6.28 

and 6.29 for cases (iv) and (v) respectively SN ratio ranges between 12.04 dB to 12.2 dB 

and 12.7 dB to 12.85 dB respectively. In Fig. 6.30 for case (vi) SN ratio is observed to 

vary between 18.45 dB to 18.62 dB. Similarly, to validate the results obtained from cross 

array experimentation strategy, for the tasks following quintic trajectory, Monte Carlo 

simulations are carried out. The SN ratio values obtained corresponding to all 64 

combinations for different tasks are plotted in Figs 6.31-6.36. These graphs show the 

trend of change with increase of combination number and performance at a combination 

number. 
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Fig. 6.31 SN ratio using Monte Carlo Simulation for Quintic Trajectory - case (i) 
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Fig. 6.32 SN ratio using Monte Carlo Simulation for Quintic Trajectory - case (ii) 
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Fig. 6.33 SN ratio using Monte Carlo Simulation for Quintic Trajectory - case (iii) 
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Fig. 6.34 SN ratio using Monte Carlo Simulation for Quintic Trajectory - case (iv) 
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Fig. 6.35 SN ratio using Monte Carlo Simulation for Quintic Trajectory - case (v) 
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Fig. 6.36 SN ratio using Monte Carlo Simulation for Quintic Trajectory - case (vi) 

From Fig. 6.31 for case (i), Fig. 6.32 for case (ii) and Fig. 6.33 for case (iii) the SN 

ratio values are observed to lie between 27.8 dB to 28.6 dB, 28 dB to 29 dB, 28.6 dB to 

29.3 dB respectively. Similarly, in Figs. 6.34 and 6.35, it is observed that SN ratio values 

range between 9.84 to 9.9 dB and 10.64 to 10.68 dB for the cases (iv) and (v) 

respectively. From Fig. 6.36 for case (vi) the SN ratio values is observed to lie 

between32.72 dB to 35.2 dB. 

An important feature of all these graphs is that there is improvement in performance 

as combination number increase. Above all performances observed, for cases (iv) and (v) 

following cubic as well as quintic trajectories are poor as compared to the cases (i), (ii), 

(iii) and (vi). The reason being the SN ratios obtained in these cases are less as compared 

to rest four cases. 
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6.5.4 Discussion 

As it is known that, the use of tighter tolerance combinations for kinematic and dynamic 

parameter lead to very less performance variations but then manufacturing cost becomes 

prohibitively high. The strategy should be to tighten the tolerances of statistically 

significant parameters and widen tolerances of insignificant parameters. Once the values 

have been determined, the tolerances can be further fine-tuned to make the end effector 

performance better and reduce overall cost. The simulation results of different 

experiments are analyzed below. 

It important to observe that in almost all the cases the SN ratio values are close to 

each other. There are nearly 16 combinations that are almost same or close and more 

importantly all the 64 combinations can be categorized into four classes of performance. 

This indicates that the designer has multiple solutions available at hand and based on 

manufacturing considerations, designer can choose to tighten or loosen the parameter 

tolerance, rather than tightening all the parameter tolerances. Similar results are obtained 

for the tasks following quintic trajectory. Another feature which comes out from the 

analysis of cross array experimentation strategy is the similarities in the performance of 

cases (i), (ii), (iii) and (vi).The performances in cases (iv) and (v) are similar in both the 

trajectories. 

From analysis of experiment results it can be observed that irrespective of trajectory 

followed for cases (i), (ii) and (iii) computed F values are greater than tabulated values 

for 2222 ,, mm ττ  parameters and their interactions respectively. Similarly results are 

observed for the cases (iv) and (v) irrespective of trajectory followed, factor 2m  is 

statistically significant. Only exception is in case (vi) where factor 2τ is statistically 

significant when following cubic trajectory and factors 21   and ττ are significant when 

following quintic trajectory. This indicates that the motion following either cubic or 

quintic time law, has same impact on the performance variation, though the quintic time 

law is less jerky as compared to the cubic time law. The computed F values for (Fo) 

1121    and,, τmll  are found to be less as compared to tabulated F values and hence 

tolerance on parameters i.e. 1121    and,, τmll  are insignificant and can be widened in 

both the cases without affecting manipulator performance to get overall reduction in cost 
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of manipulator. These indications from ANOVA are amply clear in half normal plot. In 

half normal plot (Figs. 6.13-6.18 and 6.19-6.24) statistically significant parameters are 

clearly indicated. So results in plot complements the results provided in ANOVA. 

It is observed that there is an increase in SN ratio as combination number increases. 

For combination number 50 onwards performance measures are always best among all 

the combinations considered. It can also be observed that the ranges within which SN 

ratios vary are small. This low variation is indicative of a situation where only one or two 

parameters are responsible for performance variations. This validation procedure 

complements the conclusions drawn from ANOVA and half normal plots. The SN ratios 

obtained from cross array experimentation approach, are smaller and the reason for this is 

the worst-case strategy adopted to reduce the amount of computations. The numbers of 

evaluations in former case are 64×8 as compared to 64×1000 evaluations in latter case. 

However, considering competing optimal solutions, the optimal tolerance combinations 

numbers are observed to be same in both the cross array experimentation and Monte 

Carlo simulations. Summary of ANOVA and optimal SN ratio for cross array 

experimentation and Monte Carlo simulation are provided in Table 6.17. 

Table 6.17 Summary of ANOVA and SN ratio Results 

Trajectory Case Statistically Significant 
Factors from ANOVA 

Optimal SN ratio  
 by Cross Array 

Experimentation (dB) 

Optimal SN ratio 
by Monte Carlo 
Simulation (dB) 

(i) D, F and DF 16.54 27.6 
(ii) D, F and DF 16.57 30.5 
(iii) D, F and DF 16.58 34 
(iv) D 11.31 12.2 
(v) D 9.9 12.85 

Cubic 

(vi) F  15.56 18.6 
(i) D, F and DF 17.18 28.6 
(ii) D, F and DF 17.05 29 
(iii) D, F and DF 16.79 29.3 
(iv) D 9.26 9.9 
(v) D 9.95 10.68 

Quintic 

(vi) E and F 18.58 35.2 

Referring to the results in the Table 6.17, important conclusions which can be drawn are 

that irrespective of the trajectory followed same factors and factor interactions are 

statistically significant but from task to task, factors responsible for performance 
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variations are different. Assuming that the manipulator is intended to perform all the 

tasks, then designer can tighten the tolerances of factors D, E and F to achieve still lesser 

performance variations. 

6.6 PARAMETRIC TOLERANCE SENSITIVITY 

The statistical results obtained from simulation may be questioned for intentional 

incorporation of noise in control factors therefore; another study is conducted to 

corroborate the results. In this investigation, the contribution of individual parameter 

tolerances on performance variation of manipulator has been determined. The simulations 

are run independently for different tolerances of individual kinematic and dynamic 

parameters keeping all other parameters fixed at a particular value. It is similar to running 

experiment for one factor at a time. The tolerance set values assumed for parametric 

tolerance sensitivity are given in Table 6.18. The ten values of tolerance for a parameter 

are obtained as a multiple of tight tolerance of the parameter in Table 6.1. 

The performance measure chosen for sensitivity study is SN ratio. For simulating the 

performance procedure discussed in Chapter 4 was used with the exception that 

parameter tolerance combinations at different levels are replaced by tolerance sets for 

each kinematic or dynamic parameter. The performance variations contributed by each 

set of parameter tolerance is captured by running the simulation for thousand times, for 

manipulator following cubic and quintic trajectories. The influence of different parameter 

tolerance sets on manipulator performance following cubic trajectory are shown in Figs. 

6.37-6.42. Similarly, the influence of different parameter tolerances on manipulator 

performance following quintic trajectory are shown in Figs. 6.43-6.48. 
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Table 6.18 Tolerance Sets for Parameter Tolerance Sensitivity 

 
 

 Tolerance set 

Parameter 1 2 3 4 5 6 7 8 9 10 

1l  (m) ±7.5×10–5 ±15×10–5 ±22.5×10–5 ±3×10–4 3.75×10–4 4.5×10–4 5.25×10–4 ±6×10–4 ±6.75×10–4 ±7.5×10–4 

2l  (m) ±7.5×10–5 ±15×10–5 ±22.5×10–5 ±3×10–4 3.75×10–4 4.5×10–4 5.25×10–4 ±6×10–4 ±6.75×10–4 ±7.5×10–4 

1m  (kg) ±3.75×10–3 ±7.5×10–3 ±11.25×10–3 ±15×10–3 ±18.75×10–3 ±22.5×10–3 ±26.25×10–3 ±30×10–3 ±33.75×10–3 ±37.5×10–3 

2m  (kg) ±3.75×10–3 ±7.5×10–3 ±11.25×10–3 ±15×10–3 ±18.75×10–3 ±22.5×10–3 ±26.25×10–3 ±30×10–3 ±33.75×10–3 ±37.5×10–3 

1τ  (Nm) ±3.75×10–2 ±7.5×10–2 ±11.25×10–2 ±15×10–2 ±18.75×10–2 ±22.5×10–2 ±26.25×10–2 ±30×10–2 ±33.75×10–2 ±37.5×10–2 

2τ  (Nm) ±3.75×10–2 ±7.5×10–2 ±11.25×10–2 ±15×10–2 ±18.75×10–2 ±22.5×10–2 ±26.25×10–2 ±30×10–2 ±33.75×10–2 ±37.5×10–2 
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Fig. 6.37 Manipulator Parameter Tolerance Sensitivity for Cubic Trajectory - case (i) 
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Fig. 6.38 Manipulator Parameter Tolerance Sensitivity for Cubic Trajectory - case (ii) 
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Fig. 6.39 Manipulator Parameter Tolerance Sensitivity for Cubic Trajectory - case (iii) 
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Fig. 6.40 Manipulator Parameter Tolerance Sensitivity for Cubic Trajectory - case (iv) 
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Fig. 6.41 Manipulator Parameter Tolerance Sensitivity for Cubic Trajectory - case (v) 

18.4

18.45

18.5

18.55

18.6

18.65

1 2 3 4 5 6 7 8 9 10
Tolerance set

S
N

 r
at

io

T o rque1

T o rque2

Link Length1

Link Length2

Link M ass1

Link M ass2

 

Fig. 6.42 Manipulator Parameter Tolerance Sensitivity for Cubic Trajectory - case (vi) 

From Fig. 6.37 for case (i), it is observed that performance variations increase as parameter 

tolerances increase, resulting in decrease in SN ratio. The maximum SN ratio value is 27.6 

dB and minimum value is 26.4 dB. The variations in performance is pronounced when 

there is an increase in tolerance of link lengths. But increase in tolerance of joint torque has 
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less impact on performance variations. Except the increase of three factors tolerance value, 

rest of the three factors has negligible impact on performance variations. Similarly, from 

Fig. 6.38 for case (ii), it is observed that maximum SN ratio value is 30.5 dB and minimum 

value is 28.3 dB. As discussed the variations in performance is observed to be more for 

increase in tolerance value of link lengths. Increase in tolerance of torque at joint has 

moderate impact on performance variations. As shown in Fig. 6.39 for cases (iii), 

maximum SN ratio value is 35.05 dB and minimum value is 30 dB. The trends observed 

are similar to cases (i) and (ii). From Fig. 6.40 for case (iv), the maximum SN ratio value is 

found to be 12.10 dB and minimum value is 12.02 dB. The trends observed are totally 

different in comparison with cases (i), (ii) and (iii). Referring to graphs, it can be seen, all 

factor tolerances contribute significantly to performance variations. This is highlighted by 

low SN ratio values. But interestingly the range of SN ratio variations are less with increase 

in tolerance values for most of the factors. As shown in Fig. 6.41 for case (v), the 

maximum SN ratio value is observed to be 13.6 dB and minimum value is 12.08 dB. The 

trends observed are totally different in comparison with all the above cases. Increase of 

factor tolerance has very less influence on performance variations. From Fig. 6. 42 for case 

(vi), the maximum SN ratio value is observed to be 18.6 dB and minimum value is 18.41 

dB. The trends observed are similar to cases (i), (ii) and (iii). There is deterioration of 

performance variation with increase of link length tolerances. Similar to above, the impact 

of individual tolerances on performance variations is investigated while manipulator 

performs a task following quintic trajectory. 
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Fig. 6.43 Manipulator Parameter Tolerance Sensitivity for Quintic Trajectory - case (i) 
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Fig. 6.44 Manipulator Parameter Tolerance Sensitivity for Quintic Trajectory - case (ii) 
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Fig. 6.45 Manipulator Parameter Tolerance Sensitivity for Quintic Trajectory - case (iii) 
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Fig. 6.46 Manipulator Parameter Tolerance Sensitivity for Quintic Trajectory - case (iv) 
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Fig. 6.47 Manipulator Parameter Tolerance Sensitivity for Quintic Trajectory - case (v) 
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Fig. 6.48 Manipulator Parameter Tolerance Sensitivity for Quintic Trajectory - case (vi) 

As shown in Fig. 6.43 for case (i), the maximum SN ratio value is observed to be 28.6 dB 

and minimum value is 26.8 dB. Link length one and two show increase in performance 

variations with increase in tolerance values and link mass two show poorest performance 

amongst the factors considered. As seen from Fig. 6.44 for case (ii), the maximum SN ratio 

value is observed to be 29.2 dB and minimum value is 27 dB. It is seen from Fig. 6.45 for 

case (iii), the maximum SN ratio value is 29.5 dB and minimum value is 27.6 dB. This case 

show similar trend as shown in cases (i) and (ii). In Fig. 6.46 for case (iv), the maximum 

and minimum SN ratio value is observed to be 9.9 dB and 9.5 dB respectively. All the 

parameter tolerance value has high influence on performance variations. Amongst the 

parameters considered link mass two has significant influence. From Fig. 6.47 for case (v), 

the maximum SN ratio value is observed to be 10.675 dB and minimum value is 10.52 dB. 
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Link mass two has maximum influence on performance variations. In Fig. 6.48 for case 

(vi), the maximum and minimum SN ratio value is found to be 36.3 dB and 30.5 dB 

respectively. This case show similar trend in comparison with cases (i), (ii) and (iii). 

6.6.1 Discussion 

For the task following both cubic and quintic trajectories, link length tolerances have the 

maximum influence on performance variations (Figs. 6.37-6.39 and 6.43-6.45). Similar 

observation can be made for case (vi) (Figs. 6.42 and 6.48). It is observed that SN ratio is 

not significantly sensitive to increase in tolerances on link mass and torque individually. It 

is important to observe that in cases (iv) and (v) (Figs. 6.40-6.41 and 6.46-6.48) none of the 

factor tolerance increase leads to deterioration of performance. 

Therefore, from these graphs, it can be inferred that individual control factor tolerances 

do not contribute significantly to performance variations. This analysis points out to the 

possibilities of wrong conclusions drawn form one factor tolerance at a time 

experimentation analysis. The tolerances on link lengths contribute the most to the 

performance variation because of the direct sensitivity of geometric length parameter on 

the positional error. The values of SN ratios are less for cubic trajectory compared to 

quintic trajectory because the cubic trajectory is quite jerky compared to quintic trajectory. 

The reason for jerky motion is due to sudden acceleration and deceleration in case of cubic 

trajectory as compared to quintic trajectory. 

6.7 EPILOGUE 

This chapter discusses the methodology used to select tolerance of manipulator kinematic 

and dynamic parameters that give minimum performance variation. To investigate the 

dynamic behavior physical model error such as link lengths, link masses and joint torques 

are examined. To simulate the real life performance of manipulator discussed, probabilistic 

approach in Chapter 4 has been used to account for the effects of manipulator design 

parameters and process parameter uncertainties. The present work uses statistical technique 

to find optimum combination of tolerances for manipulator performing task using different 

trajectories. To validate the results obtained from the experimental technique, performance 

measure SN ratio is utilized. It can be noted that the proposed experimental technique is 
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computational in nature. This technique is useful for robot system engineering before initial 

construction of manipulator begins. The advantages of proposed method are that it does not 

involve any capital investment in equipment and in process. In addition, above 

experimental design technique requires fewer computations as compared to Monte Carlo 

simulation. One important conclusion drawn is that the statistically significant factors and 

interacting factors remain same irrespective of type of trajectory time law. The approach 

will assist robotic system designers in making decisions regarding the tolerances of 

parameters before a costly manufacture of manipulator is undertaken. 
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CHAPTER-7 
 

OPTIMAL MANIPULATOR PARAMETER SELECTION USING 
HYBRID DIFFERENTIAL EVOLUTION TECHNIQUE 

 
 

7.1 INTRODUCTION 

The optimal design of robotic manipulator parameters to satisfy the desired performance 

requirement to perform a task is complex. This chapter describes the optimization method 

developed for selecting optimal parameters of manipulator to perform a task with minimal 

performance variability under the real world uncertainties. This optimization problem is 

solved by making the search space finite through discretization. It is known that the order of 

the optimization problem is compounded by each parameter. Even for relatively low 

dimensional problems searches are difficult to complete in a reasonable amount of time if an 

all-inclusive search is attempted. Developed approach attempts to provide optimal solution 

with fewer computations. 

When optimization of robot parameters is attempted using conventional optimization 

techniques, major hindrance comes in form of the way these techniques work. The 

disadvantages are the requirements of objective function in terms of decision variables and 

use of point-to-point local information to decide which point to explore next. These 

disadvantages lead to the premature convergence of optimization process at a local optimum. 

In addition, many of the conventional search techniques require specific knowledge of the 

problem to be analyzed, for example, gradient-based techniques require derivative 

information and a good initial guess. However, there are many efficient search methods 

available, but most of them are incompatible and inapplicable to robot manipulator design for 

optimal performance problem. The formulations of objective functions in terms of decision 

variables are difficult and attempted by few researchers. Even the kinematic and dynamic 

models of manipulator, used to simulate the real life performance are coupled and non-linear. 

To overcome above shortcomings, evolutionary based techniques are employed in place of 

conventional optimization methods. Though evolutionary techniques do not require formal 

objective functions in terms of decision variables, but it is known for its inefficiency to handle 

stochastic nature of performance. Therefore, to optimize the performance a novel approach is 
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proposed. This chapter focuses on selection of parameter, namely the determination of 

optimum design such that the effects of noise factors on performance are less. To incorporate 

the effect of noise in performance a novel method was discussed in Chapter 4. The 

consequence of this simulation procedure is that the performances become random, therefore 

the performance measure to be optimized can not be called global optimum. For this reason, a 

novel approach is developed by which the optimization problem will have a global optimum 

and will not vary wildly based on number of simulation run. 

Evolution based techniques are employed to overcome the shortcoming of conventional 

optimization methods. Genetic algorithm and their variants are some of the evolutionary 

techniques and have been extensively used for modular robot design, inverse and forward 

kinematics, calibration and optimum motion and path planning. Differential Evolution (DE) is 

a recently developed evolutionary approach proposed by Storn [Storn 1997] for minimizing 

nonlinear and non-differentiable continuous space functions. Later Storn with other 

researchers [Price 2005] presented a generalized algorithm on DE to optimize variety of 

problems. It has been successfully applied to the optimum design of digital filter and 

communication control, and many other diverse domains such as batch fermentation process 

and many more. 

The proposed technique is a hybrid approach, which combines Differential Evolution 

(DE) optimization technique and orthogonal array (OA) of the Taguchi method. The OA 

helps in simulating and optimizing the performance incorporating effect of noise. The hybrid 

approach uses all genetic operators of differential evolution with one modification. The 

novelty in approach is the evaluation procedure used for the cost function. In this approach, 

evaluation of the entire population member is carried out with the help of hyper-rectangular 

design space created by OA. The improvement of parameter design in successive generations 

has been achieved by conducting OA experiments to reduce the mean positional error of a 

pool of candidate designs from one generation to the next. The proposed hybrid evolutionary 

optimization technique has been applied to optimal parameter deign of 2-DOF RR planar 

manipulator for determining optimum performance based on task specifications. The steps 

required to obtain the optimal parameters for optimal performance incorporating effect of 

noises are discussed and the results obtained are discussed. The objective of the developed 

parameter optimization problem is to minimize the mean positional error considering 
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kinematic and dynamic models of manipulator for a specified task subject to reachability 

constraints. 

The rest of this chapter is organized in five sections. In section 7.2, optimization 

approaches required in the chapter are discussed. Hybrid evolutionary technique for optimal 

parameter design of manipulator is presented in section 7.3. In section 7.4, optimal parameter 

design of 2-DOF RR planar manipulator using hybrid evolutionary technique are discussed. 

The design parameters assumed for the simulation and results of the simulations are presented 

in section 7.5. 

7.2 OPTIMIZATION APPROACHES 

The goal of optimization is to find the values of the variables of the product that delivers the 

best performance criterion. Typical real life problems have many solutions. Optimization is 

concerned with selecting the best among the entire set by efficient quantitative methods. To 

optimize design parameters for reduced performance variations, hybrid evolutionary 

optimization technique is used. The distinctive feature of technique is the way objective 

function (cost function) is evaluated. To develop optimization technique suitable for optimal 

parameter that delivers optimized performance, hybrid of DE with OA used in the Taguchi 

method are made. To explain the novelty of the proposed method, first important features and 

working principle of DE are explained and subsequently proposed hybrid approach is 

discussed. 

7.2.1 Differential Evolution Technique 

DE is a search and optimization technique, which works differently, compared to classical 

search and optimization methods. DE is increasingly applied to various search and 

optimization problems in the recent past. Unlike GA that uses binary coding for representing 

design parameters, DE uses real coding of floating point numbers. The advantage of DE is its 

simple structure, ease of use, speed and robustness [Storn 1995]. Storn gave the working 

principle of DE. The key parameters to be used for a problem are to be determined by trial 

and error. 

A cost function, C is used to rate the individual vector according to their capability to 

minimize the objective function. The genetic operation of mutation in the DE uses the vector 

differentiation method (adding the weighted difference between two population vectors to the 
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third vector) to generate a new vector. DE is a parallel search method that operates on D 

dimensional parameter vectors. The number of vectors is equal to user defined population size. 

The initial vector population is chosen randomly. The DE process starts from selecting a 

target vector. Then, it randomly selects two other vectors and generates a difference vector, 

which is multiplied with a user defined weighting factor F to obtain ‘weighted difference 

vector’. The weighted difference vector and randomly chosen mutation vector are added to 

create a noisy vector, which is subjected to crossover process with the target vector in order to 

generate the trial vector. The cost function of trial vector is then compared with the cost 

function of original target vector. The vector having low cost function is allowed into the new 

population. The algorithm used for the optimization is discussed below. 

7.2.2 Algorithm for Differential Evolution Technique 

The key parameters for differential evolution technique are selected by trial and error. The 

key parameters of control are: 

NP  - the population size, CR  - the crossover probability, F  - the weight applied to random 

differential (scaling factor). The detailed DE algorithm used for D  number of design 

variables, is given below. 

Step 1. Initialize the value of FCR,NP,D,  and Number of generation. 

Step 2. Initialize all the vector population randomly in the given upper and lower limit.  

Step 3. Evaluate the cost C  of each vector. 

Step 4. Perform mutation, crossover, selection and evaluation of the objective function for a 

specified number of generations. 

(a) For each vector tx  (target vector), select three distinct vectors ax , bx , and cx  

randomly from a current population other than vector tx . 

(b) Generate difference vector )( bad xxx −=  

(c) Multiply weighted factor F to difference vector to obtain ‘weighted difference 

vector’ i.e. dx×F  

(d) Perform mutation by adding weighted difference vectors to the third vector cx  to 

get noisy vector cban xxxx +−×= )(F  

(e) Perform crossover with probability CR  for each target vector with noisy vector 

to create a trial vector  
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(f) Perform selection for each target vector, tx  by comparing its cost with that of the 

trial vector. For minimization problem, vector with lower cost is selected for 

next generation. 

(g) Repeat the procedure by selecting the next target vector of the population. 

Step 5. Check for termination criteria, if satisfied stop or otherwise repeat the same 

procedure with the new generation  

In DE technique, the function f to be optimized is called an objective function, or cost 

function C . A cost function, C  is used to rate the individual vectors according to their 

capability to minimize/maximize the objective function f. 

7.2.3 Hybrid Differential Evolution Approach 

From the DE technique it is evident that, the cost function evaluation of members of 

population is carried out once indicating its suitability for deterministic optimization 

problems. Because this investigation focuses on reducing the performance variations of the 

manipulator due to noises while performing a task and the performances vary from one 

experiment to other. Therefore, to capture the variability of performance in optimization 

process a hybrid approach is proposed. In this hybrid approach, OA proposed by Taguchi for 

planned experimentation is coupled with the DE optimization technique which results in a 

hybrid DE approach. The proposed approach is described below and can be used to optimize 

the processes where the effect of noise is considered. 

The performance variations are attributed to noises in design and process parameters, and 

to model these noises it is assumed that noise factors follow particular probability distribution 

function. Therefore, the cost function to be optimized will follow a combined probability 

distribution function and finding its optimum will be difficult. For this reason, in place of 

probability distribution of noise parameters only uncertainties ranges (levels) are considered 

for the design and process parameters (factors). To incorporate effect of noise, tolerances 

associated with the nominal dimensions of each component in the assembly are considered. 

For instance, any deviation in design parameters would result not in single-point designs but 

rather in hyper-rectangular design region where each manipulator performance change over a 

finite set of values. As opposed to single point designs where every population member 

results in a particular performance, each candidate design produces a range of performance. 
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To make it possible, systematic use of OA is planned. By use of hyper-rectangular space 

created by OA, variability in that domain is captured. This evaluation procedure in hybrid 

evolutionary technique provides ‘worst case’ scenario for determination of performance 

variations. Design points (corner point) in hyper rectangular region are evaluated for 

performance and subsequently obtained performances are transformed to provide cost 

function. Successively the designs evolve by comparing cost function for each members of 

population. The strategy proposed to handle effect of noise is discussed below and shown 

with the help of a flowchart in Fig 7.1. 

 

*for incorporating effect of noise 

Fig. 7.1 Flow Diagram for the Proposed Hybrid Evolutionary Approach 
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The systematic method to incorporate effect of noises in design and process parameters by 

use of OA is discussed below. An OA is a fractional factorial design which assures a balanced 

comparison of levels of any factor or interaction of factors. It is a matrix of numbers arranged 

in rows and columns where each row represents the level of the factors in each run, and each 

column represents a specific factor that can be changed from each run. The array is called 

orthogonal because all columns can be evaluated independently of one another. The 

advantage in use of OA is that it allows the evolutionary technique to sample only a fraction 

of the design space which is efficient as compared to other stochastic optimization methods, 

such as Monte Carlo simulation, which depend on large number of sample point to ensure 

high accuracy. In the proposed method, each population member creates a hyper-rectangular 

space by use of OA. Thereafter, corner point of the hyper-rectangular space is evaluated for 

the performance. Subsequently all the performances obtained are transformed to mean 

positional error. This becomes the cost function of the population member. The choice of the 

cost function for the evolutionary technique is an important aspect, which directs the 

algorithm towards the desired target response region. Furthermore, the cost function should 

not only be able to asses the relationship exists between the nominal design specifications, but 

it should also consider variability associated with the simulated performances. Among many 

candidate designs in such feasible regions, the evolutionary approach attempts to evolve 

selectively for designs which have minimum performance variations. Therefore, to have 

minimum variability in performance mean positional error is chosen as the cost function. 

Finally, the mean positional error of the candidate design is sent to DE for further processing. 

There is no strong mathematical proof of convergence that the evolutionary technique will 

find the global optimum. In addition, it is not known yet, which is the best way to terminate 

the algorithm. In many cases, maximum number of generations are fixed in advance and the 

optimization process terminates when this criteria is meet. However, predetermination of 

maximum number of generations implies that the duration of the evolutionary search is fixed, 

irrespective of the search success. 

7.3 OPTIMAL DESIGN OF MANIPULATOR PARAMETERS 

Traditional methods of experimenting with various prototypes are often expensive and are not 

always successful in complex systems. The developed methodology is a viable alternative to 

the costly prototype testing because for optimal parameter design, help of kinematic and 
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dynamic models of manipulator are utilized to simulation real life performance. Using these 

mathematical models and optimization technique optimal design parameters are selected to 

minimize performance variability. 

In order to find optimum manipulator kinematic and dynamic parameters that give 

minimal performance variations for performing a task, specified as the required pose of the 

end-effector. Assuming ),,( fff zyxP  be the coordinate of the point which manipulator is 

required to reach by manipulator following a trajectory and ),,( aaai zyxP  be the actual 

coordinate reached in thi  experiment. To express this performance deviation at the destination 

for each experiment iε  defined in Chapter 3 is used. For computation of positional error ( iε ) 

equation (3.16) is used. To express the overall performance deviation for N experiments while 

performing a task the mean positional error ε  is defined in Chapter 3 is taken as the objective 

function. To compute ε  equation (3.18) is used. The mean positional error (ε ) from each 

design are to be minimized. Hence, the objective function is expressed mathematically as: 

 Minimize ε=)( xf  (7.1) 

The constraint on the optimization problem is to include physical constraints and the 

structural characteristics of each link. On this optimization problem the minimum and 

maximum values of the link parameters (link length and mass), and reachability of the 

manipulator constraints are imposed. The limits on the variables are specified as: 

 iuiil lll ≤≤  (7.2) 

 iuiil mmm ≤≤   (7.3) 

where, ilil ml ,  and iuiu ml ,  are the lower bounds and the upper bounds of the length and mass 

of link i, respectively. The constraints on the joint limits or range of motion of the 

manipulator are imposed due to physical constraints as:  

 max,min, iii θθθ ≤≤  (7.4) 

where iθ  is the joint variable for joint i and nR∈θ  is the real valued joint variable with n 

being the number of joints. Above all it is assumed that the required torque at the joints to 

perform the specified task is available without any restriction.  
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7.3.1 Procedure for Robot Parameter Optimization  

The formulation of the optimization problem is already discussed, where, objective function 

of the problem, the design parameters and the constraints are identified. For the manipulator 

parameter optimization problem, the desired start and destination point in Cartesian space, 

time for the motion and type of trajectory and control parameter bound are the information required. 

The design parameters are randomly generated in DE routine and values are checked for 

any constraint violation. If constraints are not violated then design parameters are used to 

evaluate the objective function (cost function). These evaluations are used in the optimization 

routine where new values for the design variables are generated. One function evaluation is 

completed when one set of design variables is analyzed. For evaluating the cost function 

discussed novel strategy in section 7.2.3, is used. With the help of orthogonal array, noises are 

incorporated in design parameter to generate several design combinations. Each design 

combination is equivalent to one corner point of the hyper-rectangular region created by OA.  

These designs points are utilized to simulate the performance i.e. positional error at the 

target point. For simulating the performance steps followed are inverse kinematics – where 

joint coordinates at the start and destination point are computed, joint space trajectory 

generation – where depending on trajectory joint positions, joint velocities and joint 

accelerations are computed, inverse dynamics – where torque required at the joints are 

computed, incorporate effect of noise  where control parameters with noise are computed, 

forward dynamics – where parameter with noise are used to compute the joint positions, joint 

velocities and joint accelerations with effect of noise, and lastly forward kinematics – where 

actual position reached by the manipulator is computed. Then this response is used for 

computation of positional error. By this process performance of one design combination i.e., 

one corner point of OA is evaluated. When all the corner point of OA is evaluated by the 

discussed process, taking all the responses of designs i.e. positional error, mean positional 

error is computed. Then the mean positional error obtained becomes the cost function for one 

population member. Subsequently all population member are evaluated to get cost function. 

And these cost functions provide value for comparison of design variables in optimization 

process. This process is repeated until criteria for number of generations are met. 

The implementation procedure for the manipulator performance optimization is discussed 

in Fig. 7.2. This figure provides the steps used to get optimal manipulator parameters. 
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Fig 7.2 Flowchart for Robot Parameter Optimization 
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7.4 PARAMETER DESIGN OPTIMIZATION OF 2-DOF RR PLANAR MANIPULATOR 

The applications of proposed hybrid approach for optimal parameter design of 2 DOF RR 

planar manipulator has been discussed. The manipulator models, kinematics, inverse 

kinematics and dynamic analyses for the manipulator considered are based on the DH 

parameters. The optimization problem for the 2-DOF RR planar manipulator has been 

formulated as given in equation (7.1). The positional error iε  of the above manipulator is 

computed using equation (3.17). For mean positional error computation equation (3.18) is 

used. Subject to constraints discussed in equations (7.2) and (7.3). For the discussed problem 

no constraint is posed on the required torque to perform the task, thus no minimum and 

maximum values are assumed. 

7.4.1 Check for Reachability of Manipulator 

In addition to the constraints discussed while searching for the optimal design it must be 

ensured that the task to be performed lie within the range of workspace. Thus, it should satisfy 

the conditions given below: 

 )( r 21 ll −≥  (7.5) 

 )( r 21 ll +≤  (7.6) 

where, )(r 22 yx += . If the Cartesian coordinates for a manipulator satisfies the above 

conditions, then it is considered reachable and the design parameter vector generated by DE 

participates in optimization process.  

7.4.2 Kinematic and Dynamic Models of 2-DOF RR Planar Manipulator 

Considering the 2-DOF RR planar manipulator in Fig. 3.1, the kinematic model given in 

Chapter 3 in terms of D-H notation for the homogenous transformation matrix is used. By 

using kinematic model coordinates of end-effector position ),( ii yx  are determined. While 

using forward and inverse kinematic model 21 and ll  are taken lengths of two links, and 

21 and θθ  are as joint coordinates respectively. Already available dynamic model of 2-DOF 

RR planar manipulator is used for computation of performance. For computation of 
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performance same procedure as discussed in section 4.4 of Chapter 4, is used with exception 

that number of noise parameters considered. 

7.4.3 Forward Dynamics  

The closed form solutions are difficult to obtain, the torque obtained from inverse dynamics 

are integrated to compute the joint coordinates, velocities and accelerations with effect of 

noise. In this work Euler numerical integration method [Craig 1989] has been applied, for 

obtaining angular velocities and angular positions from angular accelerations. The torque 

equation for the manipulator at the start point 0=t  is given by 

 )(),()( 00000 qGqqhqqM ++= ���τ  (7.7) 

From equation (7.7) joint acceleration can be computed as, 

 [ ])(),()( 00000
1

0 qGqqhqMq −−= −
��� τ  (7.8) 

Therefore, to obtain future positions and velocities equation (7.8) is integrated forward in time 

by steps of size t∆  using numerical integration technique. Iteratively the angular velocities 

and positions at the ( )thi 1+ instance are obtained using 

 tqqq iii ∆+=+ ���� 1  (7.9) 

 2
11 )(

2
1

tqtqqq iiii ∆+∆+= ++ ���  (7.10) 

For each iteration, equation (7.8) is used to compute the angular acceleration and 

subsequently equations (7.9) and (7.10) are used to compute the position, and velocity of the 

manipulator, caused by supplied torque. 

7.5 SIMULATION AND DISCUSSION 

To implement above discussed hybrid evolutionary optimization approach computer 

programme are developed using MATLAB commands. The numerical values for different 

parameters are provided below. The cubic and quintic polynomials have been used as joint 

trajectories specified in Chapter 4. The task specification for deterministic cases and cases 

with effect of noise are provided in Tables 7.1(a) and (b) respectively. The task specified in 

Table 7.1(b) is same as the task considered in Chapter 4, 5 and 6. For easy reference, the task 

is provided once again. 
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Table 7.1(a) Manipulator Task Specifications for Deterministic case 

Trajectory 

Coordinates of  
Start point 

)m,m( ii yx  

Coordinates of 
Destination point 

)m,m( ff yx  

Time to travel 
(sec) 

Cubic (0.65, 0) (0.4, 0.3) 2 

Quintic (0.65, 0) (0.4, 0.3) 2 

Table 7.1(b) Manipulator Task Specifications for case with Effect of Noise 

Case 

Coordinates of  
Start point 

)m,m( ii yx  

Coordinates of 
Destination point 

)m,m( ff yx  

Time to travel 
(sec) 

(i) (0.65, 0) (0.4, 0.3) 2 

(ii) (0.65, 0.05) (0.4, 0.3) 2 

(iii) (0.65, 0.1) (0.4, 0.3) 2 

(iv) (0.65, 0.05) (–0.4, 0.3) 2 

(v) (0.65, 0.1) (–0.4, 0.3) 2 

(vi) (0.4, 0.3) (0.65, 0) 2 

 
To determine the influence of task specifications on optimal parameter design, number of 

cases has been considered. The constraints imposed during deterministic and cases with effect 

of noise, for the optimization process are given in Table 7.2.  

Table 7.2 Parameter Constraints for Manipulator 

Case 
Link 1 length 

1l  range (m) 

Link 2 length 

2l  range (m) 

Link 1 mass 

1m  range (kg) 

Link 2 mass 

2m  range (kg) 

(i) 55.045.0 1 ≤≤ l  45.035.0 2 ≤≤ l  106 1 ≤≤ m  84 2 ≤≤ m  

(ii) 55.045.0 1 ≤≤ l  45.035.0 2 ≤≤ l  106 1 ≤≤ m  84 2 ≤≤ m  

(iii) 55.045.0 1 ≤≤ l  45.035.0 2 ≤≤ l  106 1 ≤≤ m  84 2 ≤≤ m  

(iv) 55.045.0 1 ≤≤ l  45.035.0 2 ≤≤ l  106 1 ≤≤ m  84 2 ≤≤ m  

(v) 55.045.0 1 ≤≤ l  45.035.0 2 ≤≤ l  106 1 ≤≤ m  84 2 ≤≤ m  

(vi) 55.045.0 1 ≤≤ l  45.035.0 2 ≤≤ l  106 1 ≤≤ m  84 2 ≤≤ m  
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It can be seen that the constraints are kept same for both deterministic optimization and 

optimization with effect of noise. Even for different tasks, constraints are assumed to remain 

same. The optimization of the deterministic case, while following cubic and quintic 

trajectories are carried out using method discussed in sections 7.2. The evolution control 

parameters used for optimization are provided in Table 7.3. 

Table 7.3 Evolution Control Parameters for DE Technique 

Control Parameter Value 

Population size (NP)  40 

Number of generations 50 

Crossover probability (CR)  0.5 

Weighting factor (F)  0.8 

 
In deterministic optimization, the evaluation of cost function for each population member 

is carried out once because during simulation of performance, effect of noise is not 

considered. By this process the positional error obtained from simulation is nothing but the 

computational error. Therefore, by application of DE optimization technique to the 

deterministic problem the design parameter which minimizes computational error is obtained. 

The evolution control parameters used for the DE optimization approach is specified in Table 

7.3. To arrive at these parameter values help of trial and error method is taken, by which 

optimal performance of DE is observed. The generation wise reduction in positional error i.e. 

computational error is provided in Figs. 7.3 and 7.4 respectively. 
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Fig. 7.3 Function History of Deterministic case for Cubic Trajectory 
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For the specified task following cubic trajectory, it is observed that the positional error 

reduces from m100965.0 2−×  to m100921.0 2−×  in 50 generations. 
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Fig. 7.4 Function History of Deterministic case for Quintic Trajectory 

Similarly from Fig. 7.4 for the task following quintic trajectory, it is observed that the 

positional error reduces from m100116.0 2−×  to m100101.0 2−×  in 50 generations. The 

optimal parameter values for deterministic cases are given in Table 7.4. 

Table 7.4 Optimal Parameters of Manipulator for Deterministic case 

Trajectory 
Link 1 length 

1l  (m) 
Link 2 length 

2l  (m) 
Link 1 mass 

1m  (kg) 
Link 2 mass 

2m  (kg) 

Function 
Value 

210−× (m) 

Cubic 0.4502313 0.44993491 6.255106 7.985928 0.092029 

Quintic 0.54994198 0.41548853 9.975794 4.014191 0.010061 

 
It can be seen that the optimal parameter value obtained using DE technique provide 

different solution for different trajectories. It is also observed that the function value for the 

task following quintic trajectory is quite less as compared to task following cubic path. This 

indicates that the task following quintic trajectory have high chance to get closer to target 

point as compared to other case. 

Subsequently, to obtain the optimal design parameters which delivers optimized real life 

performance, proposed hybrid technique is applied. For these cases, effect of noise is 

incorporated while simulating the performance, subsequently taken into consideration in 

optimization process. The tasks considered for this optimization process are provided in 

Table 7.1(b). The evolution control parameters for the hybrid DE optimization approach are 

provided in Table 7.3. It can be observed that parameters used in deterministic optimization 
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are same as in this case. It is also observed that these parameters provide optimal solution 

with lesser functional evaluations. Therefore, same parameters are used for both the case. 

As per discussion in Chapter 3 there are six control factors (lengths of the two links, its 

corresponding masses and fluctuations in joint torques). Correspondingly, for these control 

factors there will be six noise parameters. Since there are six noise parameters and two levels 

for each parameter (–3 sigma and +3 sigma), 62 combinations are possible and conducting all 

experiments are impractical and leads to increased computation time. To reduce the amount of 

computation and incorporate effect of noise systematically Taguchi’s OA is selected. The 

rational behind this selection is the number of factors for which effect of noise needs to be 

incorporated. In the present chapter only effect of link length and link mass variation is 

incorporated in the optimization process. Therefore, for the proposed technique, L8 OA [Park 

1998] is selected. This L8 array is same as discussed in Chapter 6. The array is provided once 

again for easy reference. For assumed tolerances of each design parameter and specific 

parameter values of each kinematic and dynamic parameter, the OA selected provides noise to 

each kinematic and dynamic parameter. The noises are deviations of the tolerance value from 

nominal parameter value. These represent ‘worst case’ tolerance deviations and satisfy the  

3-sigma limits of normal Monte Carlo variability. Each row of OA is a noise combination that 

is treated as repetitive data for each member of population. To incorporate effect of noise 1’s 

and 2’s of L8 array presented in Table 7.5 has been used. These numbers provide the direction 

in which population parameter vector deviate from the specified values. 

Table 7.5 L8 Orthogonal Array 

Column Number 
Experiment No. 

1 2 3 4 5 6 7 
1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

The assumed noises of six control factors are specified in Table 7.6. These noises are 

utilized in hybrid DE to incorporate noise in simulation and optimization process. 
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Table 7.6 Noise for Design and Process Parameters 

Parameters Tolerances 

Lengths of link 1l  and 2l  m)(  0003.0±  

Mass of link 1m  and 2m  (kg)  015.0±  

Torque at joint 1τ and 2τ  (Nm)  05.0±  

The detailed use of OA in hybrid DE has been provided in Tables 7.7, 7.8 and 7.9 

respectively. To explain the use of OA in hybrid DE approach, an example has been 

considered. In which all the eight possible combinations are generated for the set of four 

parameters 1l , 2l , 1m  and 2m . The assumed tolerances for link lengths 1l , 2l  and masses 

1m , 2m  are provided in Table 7.7 and assumed parameter vector value sent by DE for 

optimization are specified in Table 7.8. The resulting eight combinations with the use of L8 

array are given in Table 7.9. 

Table 7.7 Assumed Tolerances for Control Factors 

Parameters Tolerances 

Link Lengths 1l , 2l (m) 0003.0±  

Link Masses 1m , 2m  (kg) 015.0±  

Table 7.8 Assumed Population Member Values Sent by DE 

1l  (m) 2l  (m) 1m  (kg) 2m  (kg) 

0.425 0.375 6 4 

Table 7.9 Combinations Created from the Population Member Values Using OA 

Column number Parameter 
Experiment 

No. 1 

1l  (m) 
2 

2l  (m) 
3 

1m  (kg) 
4 

2m  (kg) 

1 0.4247 0.3747 5.985 3.985 
2 0.4247 0.3747 5.985 4.015 
3 0.4247 0.3753 6.015 3.985 
4 0.4247 0.3753 6.015 4.015 
5 0.4253 0.3747 6.015 4.985 
6 0.4253 0.3747 6.015 4.015 
7 0.4253 0.3753 5.985 3.985 
8 0.4253 0.3753 5.985 4.015 
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The experiment is conducted for each combination and the average of all the experiments 

is taken. This out come i.e. mean positional error, from experiments is sent for comparison in 

DE optimization process. It is important to mention, noise in supplied torque is modeled as 

Gaussian stochastic process with Markov property as discussed in Chapter 4. To incorporate 

the effect of noise similar approach discussed in Chapter 4 is used. Thus to incorporate effect 

of noise, assumed standard deviation (tolerance) of fluctuation in supplied torque is used in 

the simulation. And these parameters are not assigned to columns of L8 orthogonal array. 

The results of the optimization process utilizing the hybrid evolutionary technique are 

presented in Tables 7.10(a) and 7.10(b). 

Table 7.10(a) Optimal Parameters for Cubic Trajectory with Effect of Noises 

Case 
Link 1 
length 

1l  (m) 

Link 2 
length 

2l  (m) 

Link 1 
mass 

1m  (kg) 

Link 2 
mass 

2m  (kg) 

Mean 
positional 
error ε  

210−×  (m) 

Number of 
function 

Evaluations 

(i) 0.45115423 0.44025207 6.585616 7.886889 0.130762 698 

(ii) 0.4516324 0.44804167 7.843923 7.99053 0.120789 796 

(iii) 0.45044698 0.35094645 6.191169 7.998867 0.231646 812 

(iv) 0.45021022 0.35036626 6.257418 7.95036 0.236336 728 

(v) 0.45713918 0.44867156 6.727582 7.969148 0.111177 764 

(vi) 0.45083597 0.44943789 6.037671 7.714803 0.125251 735 

Table 7.10(b) Optimal Parameters for Cubic Trajectory with Effect of Noises 

Case 
Link 1 
length 

1l  (m) 

Link 2 
length 

2l  (m) 

Link 1 mass 

1m  (kg) 

Link 2 
mass 

2m  (kg) 

Mean 
positional 
error ε  

210−×  (m) 

Number of 
function 

evaluations 

(i) 0.53526522 0.44429454 9.728534 7.9974 0.120093 694 

(ii) 0.53052684 0.44841063 9.185676 7.976033 0.101264 812 

(iii) 0.52195604 0.44669770 9.498453 7.947742 0.097292 812 

(iv) 0.45139675 0.44965546 9.898766 7.609616 0.252178 726 

(v) 0.45054925 0.44976276 9.920583 7.85658 0.218845 754 

(vi) 0.45159362 0.44882879 9.955927 7.763131 0.054702 755 
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In this table, the optimal values of the design parameters, the functional value, and number 

of function evaluations are presented. It is observed that the hybrid DE approach consistently 

obtains smaller function value with less function evaluations. The number of function 

evaluations is an indication of the computing effort required in reaching the optimum function 

value for the same number of generations. In case of DE after the trail vector is computed 

each member of the trail vector is subjected to bound check and only those members who pass 

the bound check will have cost function evaluation. Thus the function evaluations of the 

members which fail the bound check have been avoided and this results in reduction of the 

number of function evaluations. 

The objective function history for tasks following cubic trajectory are shown in Figs. 7.5 to 7.10.  

0 . 1 2 5

0 . 1 3

0 . 1 3 5

0 . 1 4

0 . 1 4 5

0 . 1 5

1 8 1 5 2 2 2 9 3 6 4 3 5 0
G e n e r a t i o n  n u m b e r

M
ea

n
 p

o
si

ti
o

na
l 

er
ro

r

 

Fig. 7.5 Function History for Cubic Trajectory with effect of Noise - case (i) 
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Fig. 7.6 Function History for Cubic Trajectory with effect of Noise - case (ii) 
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Fig. 7.7 Function History for Cubic Trajectory with effect of Noise - case (iii) 
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Fig. 7.8 Function History for Cubic Trajectory with effect of Noise - case (iv) 
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Fig. 7.9 Function History for Cubic Trajectory with effect of Noise - case (v) 
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Fig. 7.10 Function History for Cubic Trajectory with effect of Noise - case (vi) 

From Fig. 7.5, for case (i) following cubic trajectory cost function i.e. mean positional 

error ε  reduces from m10149.0 2−×  to m10131.0 2−×  in 50 generations. It is also observed 

that mean positional error ε  reduces from m1014.0 2−×  to m,1012.0 2−× from Fig. 7.6 for 

case (ii). Similarly in Fig. 7.7 for case (iii) mean positional error reduces from m10128.0 2−×  

to m10112.0 2−×  while from Fig. 7.8 for case (iv) objective function value is observed to 

reduce from m10284.0 2−×  to m.10236.0 2−×  In Fig. 7.9 for case (v) mean positional error 

is observed to reduce from m10273.0 2−×  to m.10238.0 2−×  In all these cases objective 

fumction value reduces monotonically. From Fig. 7.10 for case (vi) mean positional error ε  

reduces from m10133.0 2−×  to m10125.0 2−×  in 50 generations. 

The objective function history for tasks following quintic trajectories are shown in Figs. 

7.11 to 7.16. It is observed that the DE converges in a monotonic fashion in all the considered 

situations. From Fig. 7.11 for the case (i) following quintic trajectory cost function i.e. mean 

positional error ε  is observed to reduce from m10101.0 2−×  to m10125.0 2−×  in 50 

generations. Simililarly from Figs. 7.12 and 7.13 mean positional error ε  is found to reduce 

from m101015.0 2−×  to m100972.0 2−×  and m101052.0 2−×  to m101015.0 2−× in 50 

generations for case (ii) and (iii), respectively. 
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Fig. 7.11 Function History for Quintic Trajectory with effect of Noise - case (i) 
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Fig. 7.12 Function History for Quintic Trajectory with effect of Noise - case (ii) 
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Fig. 7.13 Function History for Quintic Trajectory with effect of Noise - case (iii) 
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Fig. 7.14 Function History for Quintic Trajectory with effect of Noise - case (iv) 
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Fig. 7.15 Function History for Quintic Trajectory with effect of Noise - case (v) 

0.054

0.056

0.058

0.06

0.062

1 8 15 22 29 36 43 50
Generatio number

M
ea

n
 p

o
si

ti
o

n
al

 
er

ro
r

 

Fig. 7.16 Function History for Quintic Trajectory with effect of Noise - case (vi) 
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From Figs. 7.14 and 7.15 the manipulator performance is found to reduce from 

m10305.0 2−×  to m10255.0 2−×  and m10250.0 2−×  to m10220.0 2−×  for cases (iv) and 

(v) respectively in 50 generations. In Fig. 7.16 for case (vi) mean positional error is observed 

to reduce from m10061.0 2−×  to m10055.0 2−× . In all of the above cases cost function is 

observed to reduce in a monotonic fashion. This behaviour illustrates the power of the 

differential evolution strategy. Focus of the present investigation is to reduce the performance 

variation by proper selection of design parameters. Therefore, optimal results obtained after 

50th generation is certainly going to deliver the best performance i.e. minimum mean 

positional error. 

7.6 EPILOGUE 

A hybrid approach has been proposed which couples DE optimization techniques with OA of 

the Taguchi method to incorporate real world uncertainties into optimal parameter design. The 

design optimization process considered here uses the kinematic and dynamic model of the 

manipulator. The objective has been to minimize mean positional error, required to perform 

the defined motion subject to constraints on link parameters (length, and mass). In this 

chapter, developed hybrid DE optimization approach, has been applied to obtain optimal 

parameter design of 2-DOF RR planar manipulator. The results of above approach are 

presented to show the convergence and number of functional evaluations. The results indicate 

that the hybrid DE reaches to a ‘steady-state’ objective function quickly with smaller number 

of generations requiring less function evaluations. The proposed hybrid approach best suits 

the purpose of parameter design considering effect of noise. The fast performance of hybrid 

DE indicates that this approach can be a viable optimization technique, for processes where 

development of objective function is difficult. The results show that the evolutionary 

optimization technique is reliable, despite the fact that it is relatively slow. However, this is 

not a serious drawback, since the selection of optimal design is an off-line procedure. 
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CHAPTER-8 
 

CONCLUSIONS AND FUTURE PERSPECTIVES 
 
 

8.1 INTRODUCTION 

The robot performance problem has been dealt in this thesis, to get minimum manipulator 

performance variability by selecting control parameters and tolerances for optimal robust 

designs of manipulators. The solutions are developed for the corresponding problems 

formulated in section 1.3. Strengths and limitations of each proposed solution are summarized 

and recommendations for future research have been given in this chapter. 

8.2 CONCLUSIONS 

To meet increasing demands on improved robot performance, different design optimization 

techniques have been developed. For implementation of optimization techniques new 

techniques have been proposed and approaches have been developed. None of the considered 

design optimization techniques for performance improvement can be implemented easily as 

each required performance simulation while incorporating effects of noise. For simulation of 

performance for parameter and tolerance optimization, software has been developed and 

analysis of simulated results has been carried out using Design Expert software [Design 

Expert 1999]. Because of the dynamic model of manipulator is highly nonlinear and coupled, 

the robotic manipulators pose a significant challenge in achieving the objectives, namely, 

robust manipulator design for improved quality of performance.  

Application of design of experiments (DOE) technique for optimal design of parameters 

and their tolerances is a powerful concept, which contributes potentially to the improved 

quality of performance and helps in understanding the effect of different parameters on 

performance variability. By the use of proposed approaches, optimal design parameters have 

been computed. In addition, the required manufacturing tolerances and supplied actuator 

torque tolerances that will give the optimal manipulator performance with focus on 

optimizing cost, have been obtained. The performance of manipulator depends on both the 

errors in kinematic and dynamic parameters and joint parameters. In this thesis the kinematic 
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and dynamic parameters are treated as independent random variable and considering 

variations in joint variables, performance of the manipulator is simulated and subsequently 

effect of control and noise parameters are studied.  

Present thesis explores the objective i.e. to study the performance of robot to get a better 

evaluation of the performance of robot manipulators. Results of this thesis can be readily 

implemented in industry since there is a continuing need to improve product quality through 

the employment of better techniques. 

In Chapter 2, the chronological review of published literature is organized in two parts. 

The first part presents the review on approaches, techniques and design procedures to improve 

the performance of robot and the second part reviews the Taguchi method and taxonomic 

reviews on robust design techniques. This chapter highlights the development of 

methodologies and approaches, over the years to improve performance of both product and 

process design optimization. It has been observed that robust design is a multi-objective and 

non-deterministic problem. The objective is to optimize the mean and minimize the variability 

in the performance response that results from uncertainty represented through noise variables. 

Based on the study following conclusions can be drawn.  

There has been relatively little or not much work available to handle effects of noise and 

since, noise is rarely considered in design optimization of robotic manipulator. Therefore, 

methods to minimize the effect of uncertainties on manipulator design and performance are of 

paramount concern to researchers and practitioners. 

In Chapter 3 the first attempt was to establish the use of simulation methods for modeling 

and optimizing the performance of robot manipulators. The P-diagram was used to identify 

the key factors of a manipulator that influence the performance and these are classified as 

control factors and noise factors. A heuristic based search method to simulate various 

performance measures of manipulator and use of DOE technique to determine statistically 

significant parameters was carried out. In the chapter the strategies needed to incorporate 

effect of noise in both kinematic and dynamic models of manipulator for real life performance 

were developed. Subsequently the design matrix of DOE technique was used to simulate the 

performances. Finally the simulated performances of manipulator were analyzed using 

ANOVA technique for statistical significance of kinematic and dynamic parameters. 
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To understand the overall behavior of manipulator performance at the target point, four 

cases were used to simulate the performance. The simulated performances were analyzed 

case-by-case basis. To summarize the findings, it was observed that four control factors are 

statistically significant in all the considered cases. Control factor 1m  was observed to be 

statistically insignificant for only two out of four cases. Similarly, control factor 1l  was 

observed to be statistically insignificant in one out of four cases. Subsequently for all cases 

mean positional error, SN ratio and reliability were used to find the suitable control factor 

combinations for which performance were optimal. It was observed that statistically 

significant factors were different for different target points in workspace. This indicates that 

different factors have different contribution to performance variations as target point changes 

or in other words, performance is dependent on the target point and for each target point 

different control factors are significant. In addition to this, optimum combination of control 

factors required to perform task are different for different cases. This indicates that one set of 

parameters of manipulator for one task will behave differently for other type of task. Finally 

the optimum factor combinations obtained using mean positional error, SN ratio and 

reliability do not agree in all the cases considered. Possible reason for disagreement in optimal 

solution could be due to the transformation of positional error into the Taguchi’s SN ratio, 

which may not be same as the untransformed result obtained from reliability computation.  

In Chapter 4 probabilistic approach to simulate the performance of manipulator has been 

presented. The methods adopted to simulate the performance for tasks following cubic and 

quintic path were discussed. Because of large number of control and noise factors considered, 

the fraction factorial design approach was adopted to create the design matrix. Taking 

factorial combination of design matrix, performance of manipulator has been simulated. Half 

normal probability plotting and ANOVA tables are used to determine statistically significant 

parameters. The approach to screening the parameters responsible for performance variations 

and subsequent use of these parameters for robust design was developed. In addition to 

statistical analysis, to complement the investigation, parametric sensitivity studies were also 

carried out. Effect of change of dimension-less parameters β  i.e. link length ratio, α  i.e. link 

mass ratio and simultaneous change of β  and α  on performance were analyzed. From the 

analysis in the chapter it was concluded that as the task change, statistically significant factors 

also change. For the same task, parameters responsible for performance variations were 
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different while following cubic and quintic trajectories. Lastly, the most important outcome 

was the segregation of identified fourteen control and noise parameters into three categories. 

The first category consist of those parameters, which were not statistically significant even 

once in all the considered cases. Therefore, further study should not be pursued. The second 

category belongs to those parameters which were statistically significant only once in all the 

considered cases. To reduce the number of parameters for further study, it was decided that 

these parameters should be treated as insignificant parameters and should be switched to first 

category. Then third category consist of those parameters which were statistically significant 

more than once in all the considered cases. Therefore, further study was pursued taking all 

these parameters into consideration. It was observed that only six out of fouteen parameters 

fall into third category. Investigations on effect of dimensionless parameters on performance 

variations indicated that, contributions of parameters vary depending on tasks and the 

trajectories. It was observed that link length ratio increase, reduces performance variations i.e. 

specifically for β  value between 0.75 and 1 stabilizes the performance measure. But trend of 

variations was observed to be same for manipulator following cubic and quintic trajectories. 

Link mass ratio change was observed to have insignificant influence on performance measure 

in most cases. To conclude the important finding of this study, the performance variations 

contribution has been observed to be less by link mass ratio change as compared to link length 

ratio change. By simultaneous change of link length and link mass ratios, performance 

variations of manipulator were observed to be significantly different for the tasks and the 

trajectories.To generalize, for β  values between 0.8 to 1.0 and α  values between 0.35 to 1, 

performance measure was found to be lowest. Whereas in few cases following quintic 

trajectory, drawing similar type conclusions were difficult.  

The robust design approach to obtain optimal design parameters of manipulator, which 

will give minimum performance variations, was developed and described in Chapter 5. 

Experimental design techniques were used to run experiments to simulate the performance. 

Taking simulated performance, a model to predict the performance of manipulator was 

obtained using response surface approach. Taking these response equations, parametric 

models of means of performance and variances of performance were developed. Thereafter an 

optimization problem was formulated using these models. The objective of the formulated 

problem was to minimize the mean performance variation while keeping variance of 
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performance at a decided value. This constrained optimization problem was solved for 

optimal value using fmincon routine available in MATLAB.  

The simulated performances were analyzed using ANOVA techniques and it was 

observed that for the tasks following cubic trajectory, link length 1, clearances present in joint 

one and two, were statistically significant. Except two cases, quadratic effect of parameters 

were observed to be insignificant. This indicates that the parameters have small nonlinear 

effect on the performance variations. For the task following quintic trajectory it was observed 

that clearance in joint1 and joint 2 factors were statistically significant in five out of six cases. 

Similarly for five out of six cases, nonlinear effect of link length1, mass 1, length 2, clearance 

in joint2 and link mass 1 were observed to be statistically significant respectively. To know 

the ability of developed emperical model to predict the manipulator performance, help of R2 

was taken. It was observed that R2 values were close to 0.90 for three out of six cases, and 

were small for rest of the cases following cubic and quintic trajectories. In addition to R2 

values, comparison between the desired and predicted values of performances were shown 

with the help of figures, to observe the closeness of trend. In most of the cases, the predicted 

values were closer to the desired values and trends were similar. Subsequently developed 

response equations for mean performance and variances in performance were used for 

optimization. After solving the formulated optimization problem, it was observed that for 

different cases optimal parameters were different. 

In Chapter 6, the methodology to select optimal tolerance on manipulator kinematic and 

dynamic parameters i.e. tolerances on link dimensions, masses and joint torques that results in 

minimum performance variations and individual effect of these tolerances were investigated. 

In Chapter 4, for screening experiment, these factors were identified as noise factors, and 

effect of these factors on performance variations were investigated. This chapter attempts to 

further reduce the performance variations that have been achieved by robust design principle 

i.e. optimal solutions of Chapter 5. To obtain optimal tolerances of these parameters, cross 

array design of experiment approach was utilized. Uniqueness of this DOE approach is the 

ability to investigate the effect of noise due to kinematic and dynamic parameters. 

Subsequently using probabilistic approach, the performance of manipulator were simulated 

and analyzed to obtain the parameters that contribute the most to the observed performance 

variations. The results of this study may raise objections for intentional incorporation of effect 
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of noise in control factors; therefore, another study was conducted to investigate the influence 

of individual parameter tolerance on performance variations.  

One important conclusion drawn was that the statistically significant factors were 

independent of trajectory time law. But, from task to task, factors responsible for performance 

variations were different. Out of six only two factor tolerances i.e. tolerances of 2m  and 2τ , 

can be tightened to further reduce the performance variations. To validate the results obtained 

from the experimental design technique, Monte Carlo simulation approach was used and for 

comparison, performance measure SN ratio was utilized. The advantages of proposed method 

are that it does not involve any capital investment in equipment. This technique requires fewer 

computations as compared to Monte Carlo simulation. From parameter tolerance sensitivity 

study, it was observed that for the majority of the cases following both cubic and quintic 

trajectories, link length tolerances had significant influence on performance variations. It was 

observed that change in SN ratio values was not significantly sensitive to increase in 

tolerances on link mass and torque individually. In few cases, none of the factor tolerance 

increase leads to deterioration in performance. This analysis points out to the possibilities of 

wrong conclusions, from one factor tolerance at a time experimentation analysis. 

In Chapter 7, a hybrid approach has been proposed for optimal parameter design, which 

couples Differential Evolution optimization techniques with Orthogonal Array of the Taguchi 

method to incorporate real world uncertainties. For the design optimization process 

considered, the objective was to minimize mean positional error at destination point. The 

optimization problem was subjected to constraints on reachability and link parameters i.e. link 

lengths and link masses. The results obtained using hybrid approach has been presented for 

the convergence and number of functional evaluations. The results indicate that the hybrid DE 

reaches to a ‘steady-state’ objective function quickly requiring less function evaluations. The 

fast performance of hybrid DE indicates that it can be a viable optimization approach for 

processes for which development of objective function is difficult. Proposed hybrid DE 

technique can be used for the selection of optimal design, which is an off-line procedure. 

To consolidate the achievements of this thesis, it was observed that, out of fourteen 

parameters only six parameters were responsible for performance variations of manipulator at 

the target point. In these six factors, four were control factors and two were noise factors. By 

applying robust design technique, suitable control factors were chosen to make the design 
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insensitive to these two noise factors. To further reduce the performance variations at the 

destinations, tolerance design of control factors were carried out. It was observed that by 

tightening only two control factor tolerances, performance variations can be lowered. By 

doing so the cost of production or manufacturing would be less. In the entire thesis 

statistically significant parameters were observed to be different for different tasks. Optimal 

parameter values were different for different tasks, indicating that an optimal setting for one 

task would perform differently when task changes. Except Chapter 6, it was observed that 

statistically significant parameters were different for different type of trajectory followed to 

perform the task. To determine the optimal parameters of manipulator for minimum 

performance variations, an evolutionary optimization technique was used and it was observed 

that for different tasks the optimal solutions were different and even different for the 

trajectories followed. 

The results of the simulation experiment with robust design optimization techniques are 

important. The methodology for improving a robot performance also promises to be useful for 

robot manufacturers and users. A robot manufacturer can use this method to examine the 

influence of design parameters on robot performance.  

8.3 FUTURE PERSPECTIVES 

For testing the developed techniques a 2-DOF RR planar manipulator has been used 

throughout, as is the standard practice in the published literature. A more rigorous testing 

would require application of the developed techniques to manipulators with higher degrees of 

freedom and other industrial manipulators like SCARA, PUMA, STANFORD etc. 

An important subject for further research should be to consider the effect of other 

parameters i.e. control and noise parameters on performance of the manipulator at different 

speeds, process constraints, and trajectory time law.  

Immediate extension of the present work would be to develop a setup of 2-DOF RR planar 

manipulator to experimentally verify the results obtained in the present work. The exact 

probability distributions of various errors can be determined experimentally or analytically 

and utilized later to get accurate performance. The method utilized here will require very little 

modification because assumption is valid for many physical phenomena. This investigation is 

a comprehensive exercise. 
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Considering the work presented in the thesis, extensive research can be carried out in area 

of manipulator design and development of sophisticated robust design techniques to handle 

complex industrial manipulator design problems. For example development of a 

method/technique, that will optimize parameters and its tolerances simultaneously, for 

optimal performance. 

The links of the manipulator were assumed to have uniform cross section and fixed inertia. 

An attempt to investigate the effect of link cross section on performance of manipulator 

should be made. Along with this, effects of noise due to changes in moment of inertia of links 

on performance of manipulator also need to be investigated. Results of this simulation can 

further be experimentally verified to confirm the findings. 

While simulating performance of manipulator except fluctuation of torque, other factors 

influencing actuator dynamics have not been considered. Effects of parameters of 

transmission systems and transmission element on performance of manipulator can also be 

investigated. The dynamic model of manipulator including the effects of actuation system 

parameters and friction can also be studied further. 

Computer programs for the developed techniques are to be converted into manipulator 

performance simulation package to simulate the performance of manipulator considering 

effect of noise. The package should be able to provide the required information on optimal 

parameters, significant parameters and optimal tolerances required for the manipulator for a 

given task.  

Attempt can also be made to look for optimal parameters of manipulator, which will not 

only optimize performance but also optimize others like energy usage, stiffness and weight. 

Even explorations can further be extended to optimize the discussed performance measure of 

manipulator with kinematic and dynamic performance indices. 
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A-1 

APPENDIX - A 
Table A1 Design Matrix for Factorial Design 

Combination 
Number 1l  (m) 2l  (m) 1m  (kg) 2m (kg) 1τ  (Nm) 2τ  (Nm) 

1 0.40 0.30 7 5 –500 –100 
2 0.40 0.30 7 5 –500 –105 
3 0.40 0.30 7 5 –800 –100 
4 0.40 0.30 7 5 –800 –105 
5 0.40 0.30 7 6 –500 –100 
6 0.40 0.30 7 6 –500 –105 
7 0.40 0.30 7 6 –800 –100 
8 0.40 0.30 7 6 –800 –105 
9 0.40 0.30 8 5 –500 –100 

10 0.40 0.30 8 5 –500 –105 
11 0.40 0.30 8 5 –800 –100 
12 0.40 0.30 8 5 –800 –105 
13 0.40 0.30 8 6 –500 –100 
14 0.40 0.30 8 6 –500 –105 
15 0.40 0.30 8 6 –800 –100 
16 0.40 0.30 8 6 –800 –105 
17 0.40 0.40 7 5 –500 –100 
18 0.40 0.40 7 5 –500 –105 
19 0.40 0.40 7 5 –800 –100 
20 0.40 0.40 7 5 –800 –105 
21 0.40 0.40 7 6 –500 –100 
22 0.40 0.40 7 6 –500 –105 
23 0.40 0.40 7 6 –800 –100 
24 0.40 0.40 7 6 –800 –105 
25 0.40 0.40 8 5 –500 –100 
26 0.40 0.40 8 5 –500 –105 
27 0.40 0.40 8 5 –800 –100 
28 0.40 0.40 8 5 –800 –105 
29 0.40 0.40 8 6 –500 –100 
30 0.40 0.40 8 6 –500 –105 
31 0.40 0.40 8 6 –800 –100 
32 0.40 0.40 8 6 –800 –105 
33 0.50 0.30 7 5 –500 –100 
34 0.50 0.30 7 5 –500 –105 
35 0.50 0.30 7 5 –800 –100 
36 0.50 0.30 7 5 –800 –105 
37 0.50 0.30 7 6 –500 –100 
38 0.50 0.30 7 6 –500 –105 
39 0.50 0.30 7 6 –800 –100 
40 0.50 0.30 7 6 –800 –105 
41 0.50 0.30 8 5 –500 –100 
42 0.50 0.30 8 5 –500 –105 
43 0.50 0.30 8 5 –800 –100 

 



A-2 

(Table A1 contd…) 

Combination 
Number 1l  (m) 2l  (m) 1m  (kg) 2m (kg) 1τ  (Nm) 2τ  (Nm) 

44 0.50 0.30 8 5 –800 –105 
45 0.50 0.30 8 6 –500 –100 
46 0.50 0.30 8 6 –500 –105 
47 0.50 0.30 8 6 –800 –100 
48 0.50 0.30 8 6 –800 –105 
49 0.50 0.40 7 5 –500 –100 
50 0.50 0.40 7 5 –500 –105 
51 0.50 0.40 7 5 –800 –100 
52 0.50 0.40 7 5 –800 –105 
53 0.50 0.40 7 6 –500 –100 
54 0.50 0.40 7 6 –500 –105 
55 0.50 0.40 7 6 –800 –100 
56 0.50 0.40 7 6 –800 –105 
57 0.50 0.40 8 5 –500 –100 
58 0.50 0.40 8 5 –500 –105 
59 0.50 0.40 8 5 –800 –100 
60 0.50 0.40 8 5 –800 –105 
61 0.50 0.40 8 6 –500 –100 
62 0.50 0.40 8 6 –500 –105 
63 0.50 0.40 8 6 –800 –100 
64 0.50 0.40 8 6 –800 –105 



A-3 

APPENDIX - B 
Table B1 Design Matrix for 214-6 Fractional factorial Design 

Sl 
No. 

A 
(m) 

B 
(m) 

C 
(kg)

D 
(kg)

E 
(Nm) 

F 
(Nm) 

G 
(deg) 

H 
(deg) 

J 
(Ns) 

K 
(Ns) 

L 
(×10–4 m) 

M 
(×10–4 m)

N 
(kg) 

O 
(kg) 

1 0.4 0.3 7 5 0.05 0.05 0.05 0.05 3.5 2 1 0.5 0.0025 0.005 
2 0.5 0.3 7 5 0.05 0.05 0.05 0.05 4 2.5 0.5 1 0.005 0.0025 
3 0.4 0.4 7 5 0.05 0.05 0.05 0.05 4 2.5 0.5 1 0.0025 0.005 
4 0.5 0.4 7 5 0.05 0.05 0.05 0.05 3.5 2 1 0.5 0.005 0.0025 
5 0.4 0.3 8 5 0.05 0.05 0.05 0.05 4 2.5 1 0.5 0.0025 0.0025 
6 0.5 0.3 8 5 0.05 0.05 0.05 0.05 3.5 2 0.5 1 0.005 0.005 
7 0.4 0.4 8 5 0.05 0.05 0.05 0.05 3.5 2 0.5 1 0.0025 0.0025 
8 0.5 0.4 8 5 0.05 0.05 0.05 0.05 4 2.5 1 0.5 0.005 0.005 
9 0.4 0.3 7 6 0.05 0.05 0.05 0.05 4 2 0.5 1 0.005 0.005 

10 0.5 0.3 7 6 0.05 0.05 0.05 0.05 3.5 2.5 1 0.5 0.0025 0.0025 
11 0.4 0.4 7 6 0.05 0.05 0.05 0.05 3.5 2.5 1 0.5 0.005 0.005 
12 0.5 0.4 7 6 0.05 0.05 0.05 0.05 4 2 0.5 1 0.0025 0.0025 
13 0.4 0.3 8 6 0.05 0.05 0.05 0.05 3.5 2.5 0.5 1 0.005 0.0025 
14 0.5 0.3 8 6 0.05 0.05 0.05 0.05 4 2 1 0.5 0.0025 0.005 
15 0.4 0.4 8 6 0.05 0.05 0.05 0.05 4 2 1 0.5 0.005 0.0025 
16 0.5 0.4 8 6 0.05 0.05 0.05 0.05 3.5 2.5 0.5 1 0.0025 0.005 
17 0.4 0.3 7 5 0.1 0.05 0.05 0.05 4 2 0.5 0.5 0.005 0.0025 
18 0.5 0.3 7 5 0.1 0.05 0.05 0.05 3.5 2.5 1 1 0.0025 0.005 
19 0.4 0.4 7 5 0.1 0.05 0.05 0.05 3.5 2.5 1 1 0.005 0.0025 
20 0.5 0.4 7 5 0.1 0.05 0.05 0.05 4 2 0.5 0.5 0.0025 0.005 
21 0.4 0.3 8 5 0.1 0.05 0.05 0.05 3.5 2.5 0.5 0.5 0.005 0.005 
22 0.5 0.3 8 5 0.1 0.05 0.05 0.05 4 2 1 1 0.0025 0.0025 
23 0.4 0.4 8 5 0.1 0.05 0.05 0.05 4 2 1 1 0.005 0.005 
24 0.5 0.4 8 5 0.1 0.05 0.05 0.05 3.5 2.5 0.5 0.5 0.0025 0.0025 
25 0.4 0.3 7 6 0.1 0.05 0.05 0.05 3.5 2 1 1 0.0025 0.0025 
26 0.5 0.3 7 6 0.1 0.05 0.05 0.05 4 2.5 0.5 0.5 0.005 0.005 
27 0.4 0.4 7 6 0.1 0.05 0.05 0.05 4 2.5 0.5 0.5 0.0025 0.0025 
28 0.5 0.4 7 6 0.1 0.05 0.05 0.05 3.5 2 1 1 0.005 0.005 
29 0.4 0.3 8 6 0.1 0.05 0.05 0.05 4 2.5 1 1 0.0025 0.005 
30 0.5 0.3 8 6 0.1 0.05 0.05 0.05 3.5 2 0.5 0.5 0.005 0.0025 
31 0.4 0.4 8 6 0.1 0.05 0.05 0.05 3.5 2 0.5 0.5 0.0025 0.005 
32 0.5 0.4 8 6 0.1 0.05 0.05 0.05 4 2.5 1 1 0.005 0.0025 
33 0.4 0.3 7 5 0.05 0.1 0.05 0.05 3.5 2.5 0.5 1 0.0025 0.0025 
34 0.5 0.3 7 5 0.05 0.1 0.05 0.05 4 2 1 0.5 0.005 0.005 
35 0.4 0.4 7 5 0.05 0.1 0.05 0.05 4 2 1 0.5 0.0025 0.0025 
36 0.5 0.4 7 5 0.05 0.1 0.05 0.05 3.5 2.5 0.5 1 0.005 0.005 
37 0.4 0.3 8 5 0.05 0.1 0.05 0.05 4 2 0.5 1 0.0025 0.005 
38 0.5 0.3 8 5 0.05 0.1 0.05 0.05 3.5 2.5 1 0.5 0.005 0.0025 
39 0.4 0.4 8 5 0.05 0.1 0.05 0.05 3.5 2.5 1 0.5 0.0025 0.005 
40 0.5 0.4 8 5 0.05 0.1 0.05 0.05 4 2 0.5 1 0.005 0.0025 
41 0.4 0.3 7 6 0.05 0.1 0.05 0.05 4 2.5 1 0.5 0.005 0.0025 
42 0.5 0.3 7 6 0.05 0.1 0.05 0.05 3.5 2 0.5 1 0.0025 0.005 
43 0.4 0.4 7 6 0.05 0.1 0.05 0.05 3.5 2 0.5 1 0.005 0.0025 
44 0.5 0.4 7 6 0.05 0.1 0.05 0.05 4 2.5 1 0.5 0.0025 0.005 
45 0.4 0.3 8 6 0.05 0.1 0.05 0.05 3.5 2 1 0.5 0.005 0.005 
46 0.5 0.3 8 6 0.05 0.1 0.05 0.05 4 2.5 0.5 1 0.0025 0.0025 
47 0.4 0.4 8 6 0.05 0.1 0.05 0.05 4 2.5 0.5 1 0.005 0.005 
48 0.5 0.4 8 6 0.05 0.1 0.05 0.05 3.5 2 1 0.5 0.0025 0.0025 
49 0.4 0.3 7 5 0.1 0.1 0.05 0.05 4 2.5 1 1 0.005 0.005 
50 0.5 0.3 7 5 0.1 0.1 0.05 0.05 3.5 2 0.5 0.5 0.0025 0.0025 
51 0.4 0.4 7 5 0.1 0.1 0.05 0.05 3.5 2 0.5 0.5 0.005 0.005 
52 0.5 0.4 7 5 0.1 0.1 0.05 0.05 4 2.5 1 1 0.0025 0.0025 
53 0.4 0.3 8 5 0.1 0.1 0.05 0.05 3.5 2 1 1 0.005 0.0025 
54 0.5 0.3 8 5 0.1 0.1 0.05 0.05 4 2.5 0.5 0.5 0.0025 0.005 
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(Table B1 contd…) 

Sl 
No. 

A 
(m) 

B 
(m) 

C 
(kg)

D 
(kg)

E 
(Nm) 

F 
(Nm) 

G 
(deg) 

H 
(deg) 

J 
(Ns) 

K 
(Ns) 

L 
(×10–4 m) 

M 
(×10–4 m)

N 
(kg) 

O 
(kg) 

55 0.4 0.4 8 5 0.1 0.1 0.05 0.05 4 2.5 0.5 0.5 0.005 0.0025 
56 0.5 0.4 8 5 0.1 0.1 0.05 0.05 3.5 2 1 1 0.0025 0.005 
57 0.4 0.3 7 6 0.1 0.1 0.05 0.05 3.5 2.5 0.5 0.5 0.0025 0.005 
58 0.5 0.3 7 6 0.1 0.1 0.05 0.05 4 2 1 1 0.005 0.0025 
59 0.4 0.4 7 6 0.1 0.1 0.05 0.05 4 2 1 1 0.0025 0.005 
60 0.5 0.4 7 6 0.1 0.1 0.05 0.05 3.5 2.5 0.5 0.5 0.005 0.0025 
61 0.4 0.3 8 6 0.1 0.1 0.05 0.05 4 2 0.5 0.5 0.0025 0.0025 
62 0.5 0.3 8 6 0.1 0.1 0.05 0.05 3.5 2.5 1 1 0.005 0.005 
63 0.4 0.4 8 6 0.1 0.1 0.05 0.05 3.5 2.5 1 1 0.0025 0.0025 
64 0.5 0.4 8 6 0.1 0.1 0.05 0.05 4 2 0.5 0.5 0.005 0.005 
65 0.4 0.3 7 5 0.05 0.05 0.1 0.05 3.5 2.5 0.5 0.5 0.005 0.0025 
66 0.5 0.3 7 5 0.05 0.05 0.1 0.05 4 2 1 1 0.0025 0.005 
67 0.4 0.4 7 5 0.05 0.05 0.1 0.05 4 2 1 1 0.005 0.0025 
68 0.5 0.4 7 5 0.05 0.05 0.1 0.05 3.5 2.5 0.5 0.5 0.0025 0.005 
69 0.4 0.3 8 5 0.05 0.05 0.1 0.05 4 2 0.5 0.5 0.005 0.005 
70 0.5 0.3 8 5 0.05 0.05 0.1 0.05 3.5 2.5 1 1 0.0025 0.0025 
71 0.4 0.4 8 5 0.05 0.05 0.1 0.05 3.5 2.5 1 1 0.005 0.005 
72 0.5 0.4 8 5 0.05 0.05 0.1 0.05 4 2 0.5 0.5 0.0025 0.0025 
73 0.4 0.3 7 6 0.05 0.05 0.1 0.05 4 2.5 1 1 0.0025 0.0025 
74 0.5 0.3 7 6 0.05 0.05 0.1 0.05 3.5 2 0.5 0.5 0.005 0.005 
75 0.4 0.4 7 6 0.05 0.05 0.1 0.05 3.5 2 0.5 0.5 0.0025 0.0025 
76 0.5 0.4 7 6 0.05 0.05 0.1 0.05 4 2.5 1 1 0.005 0.005 
77 0.4 0.3 8 6 0.05 0.05 0.1 0.05 3.5 2 1 1 0.0025 0.005 
78 0.5 0.3 8 6 0.05 0.05 0.1 0.05 4 2.5 0.5 0.5 0.005 0.0025 
79 0.4 0.4 8 6 0.05 0.05 0.1 0.05 4 2.5 0.5 0.5 0.0025 0.005 
80 0.5 0.4 8 6 0.05 0.05 0.1 0.05 3.5 2 1 1 0.005 0.0025 
81 0.4 0.3 7 5 0.1 0.05 0.1 0.05 4 2.5 1 0.5 0.0025 0.005 
82 0.5 0.3 7 5 0.1 0.05 0.1 0.05 3.5 2 0.5 1 0.005 0.0025 
83 0.4 0.4 7 5 0.1 0.05 0.1 0.05 3.5 2 0.5 1 0.0025 0.005 
84 0.5 0.4 7 5 0.1 0.05 0.1 0.05 4 2.5 1 0.5 0.005 0.0025 
85 0.4 0.3 8 5 0.1 0.05 0.1 0.05 3.5 2 1 0.5 0.0025 0.0025 
86 0.5 0.3 8 5 0.1 0.05 0.1 0.05 4 2.5 0.5 1 0.005 0.005 
87 0.4 0.4 8 5 0.1 0.05 0.1 0.05 4 2.5 0.5 1 0.0025 0.0025 
88 0.5 0.4 8 5 0.1 0.05 0.1 0.05 3.5 2 1 0.5 0.005 0.005 
89 0.4 0.3 7 6 0.1 0.05 0.1 0.05 3.5 2.5 0.5 1 0.005 0.005 
90 0.5 0.3 7 6 0.1 0.05 0.1 0.05 4 2 1 0.5 0.0025 0.0025 
91 0.4 0.4 7 6 0.1 0.05 0.1 0.05 4 2 1 0.5 0.005 0.005 
92 0.5 0.4 7 6 0.1 0.05 0.1 0.05 3.5 2.5 0.5 1 0.0025 0.0025 
93 0.4 0.3 8 6 0.1 0.05 0.1 0.05 4 2 0.5 1 0.005 0.0025 
94 0.5 0.3 8 6 0.1 0.05 0.1 0.05 3.5 2.5 1 0.5 0.0025 0.005 
95 0.4 0.4 8 6 0.1 0.05 0.1 0.05 3.5 2.5 1 0.5 0.005 0.0025 
96 0.5 0.4 8 6 0.1 0.05 0.1 0.05 4 2 0.5 1 0.0025 0.005 
97 0.4 0.3 7 5 0.05 0.1 0.1 0.05 3.5 2 1 1 0.005 0.005 
98 0.5 0.3 7 5 0.05 0.1 0.1 0.05 4 2.5 0.5 0.5 0.0025 0.0025 
99 0.4 0.4 7 5 0.05 0.1 0.1 0.05 4 2.5 0.5 0.5 0.005 0.005 

100 0.5 0.4 7 5 0.05 0.1 0.1 0.05 3.5 2 1 1 0.0025 0.0025 
101 0.4 0.3 8 5 0.05 0.1 0.1 0.05 4 2.5 1 1 0.005 0.0025 
102 0.5 0.3 8 5 0.05 0.1 0.1 0.05 3.5 2 0.5 0.5 0.0025 0.005 
103 0.4 0.4 8 5 0.05 0.1 0.1 0.05 3.5 2 0.5 0.5 0.005 0.0025 
104 0.5 0.4 8 5 0.05 0.1 0.1 0.05 4 2.5 1 1 0.0025 0.005 
105 0.4 0.3 7 6 0.05 0.1 0.1 0.05 4 2 0.5 0.5 0.0025 0.005 
106 0.5 0.3 7 6 0.05 0.1 0.1 0.05 3.5 2.5 1 1 0.005 0.0025 
107 0.4 0.4 7 6 0.05 0.1 0.1 0.05 3.5 2.5 1 1 0.0025 0.005 
108 0.5 0.4 7 6 0.05 0.1 0.1 0.05 4 2 0.5 0.5 0.005 0.0025 
109 0.4 0.3 8 6 0.05 0.1 0.1 0.05 3.5 2.5 0.5 0.5 0.0025 0.0025 
110 0.5 0.3 8 6 0.05 0.1 0.1 0.05 4 2 1 1 0.005 0.005 
111 0.4 0.4 8 6 0.05 0.1 0.1 0.05 4 2 1 1 0.0025 0.0025 
112 0.5 0.4 8 6 0.05 0.1 0.1 0.05 3.5 2.5 0.5 0.5 0.005 0.005 
113 0.4 0.3 7 5 0.1 0.1 0.1 0.05 4 2 0.5 1 0.0025 0.0025 
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(Table B1 contd…) 

Sl 
No. 

A 
(m) 

B 
(m) 

C 
(kg)

D 
(kg)

E 
(Nm) 

F 
(Nm) 

G 
(deg) 

H 
(deg) 

J 
(Ns) 

K 
(Ns) 

L 
(×10–4 m) 

M 
(×10–4 m)

N 
(kg) 

O 
(kg) 

114 0.5 0.3 7 5 0.1 0.1 0.1 0.05 3.5 2.5 1 0.5 0.005 0.005 
115 0.4 0.4 7 5 0.1 0.1 0.1 0.05 3.5 2.5 1 0.5 0.0025 0.0025 
116 0.5 0.4 7 5 0.1 0.1 0.1 0.05 4 2 0.5 1 0.005 0.005 
117 0.4 0.3 8 5 0.1 0.1 0.1 0.05 3.5 2.5 0.5 1 0.0025 0.005 
118 0.5 0.3 8 5 0.1 0.1 0.1 0.05 4 2 1 0.5 0.005 0.0025 
119 0.4 0.4 8 5 0.1 0.1 0.1 0.05 4 2 1 0.5 0.0025 0.005 
120 0.5 0.4 8 5 0.1 0.1 0.1 0.05 3.5 2.5 0.5 1 0.005 0.0025 
121 0.4 0.3 7 6 0.1 0.1 0.1 0.05 3.5 2 1 0.5 0.005 0.0025 
122 0.5 0.3 7 6 0.1 0.1 0.1 0.05 4 2.5 0.5 1 0.0025 0.005 
123 0.4 0.4 7 6 0.1 0.1 0.1 0.05 4 2.5 0.5 1 0.005 0.0025 
124 0.5 0.4 7 6 0.1 0.1 0.1 0.05 3.5 2 1 0.5 0.0025 0.005 
125 0.4 0.3 8 6 0.1 0.1 0.1 0.05 4 2.5 1 0.5 0.005 0.005 
126 0.5 0.3 8 6 0.1 0.1 0.1 0.05 3.5 2 0.5 1 0.0025 0.0025 
127 0.4 0.4 8 6 0.1 0.1 0.1 0.05 3.5 2 0.5 1 0.005 0.005 
128 0.5 0.4 8 6 0.1 0.1 0.1 0.05 4 2.5 1 0.5 0.0025 0.0025 
129 0.4 0.3 7 5 0.05 0.05 0.05 0.1 3.5 2 1 1 0.005 0.0025 
130 0.5 0.3 7 5 0.05 0.05 0.05 0.1 4 2.5 0.5 0.5 0.0025 0.005 
131 0.4 0.4 7 5 0.05 0.05 0.05 0.1 4 2.5 0.5 0.5 0.005 0.0025 
132 0.5 0.4 7 5 0.05 0.05 0.05 0.1 3.5 2 1 1 0.0025 0.005 
133 0.4 0.3 8 5 0.05 0.05 0.05 0.1 4 2.5 1 1 0.005 0.005 
134 0.5 0.3 8 5 0.05 0.05 0.05 0.1 3.5 2 0.5 0.5 0.0025 0.0025 
135 0.4 0.4 8 5 0.05 0.05 0.05 0.1 3.5 2 0.5 0.5 0.005 0.005 
136 0.5 0.4 8 5 0.05 0.05 0.05 0.1 4 2.5 1 1 0.0025 0.0025 
137 0.4 0.3 7 6 0.05 0.05 0.05 0.1 4 2 0.5 0.5 0.0025 0.0025 
138 0.5 0.3 7 6 0.05 0.05 0.05 0.1 3.5 2.5 1 1 0.005 0.005 
139 0.4 0.4 7 6 0.05 0.05 0.05 0.1 3.5 2.5 1 1 0.0025 0.0025 
140 0.5 0.4 7 6 0.05 0.05 0.05 0.1 4 2 0.5 0.5 0.005 0.005 
141 0.4 0.3 8 6 0.05 0.05 0.05 0.1 3.5 2.5 0.5 0.5 0.0025 0.005 
142 0.5 0.3 8 6 0.05 0.05 0.05 0.1 4 2 1 1 0.005 0.0025 
143 0.4 0.4 8 6 0.05 0.05 0.05 0.1 4 2 1 1 0.0025 0.005 
144 0.5 0.4 8 6 0.05 0.05 0.05 0.1 3.5 2.5 0.5 0.5 0.005 0.0025 
145 0.4 0.3 7 5 0.1 0.05 0.05 0.1 4 2 0.5 1 0.0025 0.005 
146 0.5 0.3 7 5 0.1 0.05 0.05 0.1 3.5 2.5 1 0.5 0.005 0.0025 
147 0.4 0.4 7 5 0.1 0.05 0.05 0.1 3.5 2.5 1 0.5 0.0025 0.005 
148 0.5 0.4 7 5 0.1 0.05 0.05 0.1 4 2 0.5 1 0.005 0.0025 
149 0.4 0.3 8 5 0.1 0.05 0.05 0.1 3.5 2.5 0.5 1 0.0025 0.0025 
150 0.5 0.3 8 5 0.1 0.05 0.05 0.1 4 2 1 0.5 0.005 0.005 
151 0.4 0.4 8 5 0.1 0.05 0.05 0.1 4 2 1 0.5 0.0025 0.0025 
152 0.5 0.4 8 5 0.1 0.05 0.05 0.1 3.5 2.5 0.5 1 0.005 0.005 
153 0.4 0.3 7 6 0.1 0.05 0.05 0.1 3.5 2 1 0.5 0.005 0.005 
154 0.5 0.3 7 6 0.1 0.05 0.05 0.1 4 2.5 0.5 1 0.0025 0.0025 
155 0.4 0.4 7 6 0.1 0.05 0.05 0.1 4 2.5 0.5 1 0.005 0.005 
156 0.5 0.4 7 6 0.1 0.05 0.05 0.1 3.5 2 1 0.5 0.0025 0.0025 
157 0.4 0.3 8 6 0.1 0.05 0.05 0.1 4 2.5 1 0.5 0.005 0.0025 
158 0.5 0.3 8 6 0.1 0.05 0.05 0.1 3.5 2 0.5 1 0.0025 0.005 
159 0.4 0.4 8 6 0.1 0.05 0.05 0.1 3.5 2 0.5 1 0.005 0.0025 
160 0.5 0.4 8 6 0.1 0.05 0.05 0.1 4 2.5 1 0.5 0.0025 0.005 
161 0.4 0.3 7 5 0.05 0.1 0.05 0.1 3.5 2.5 0.5 0.5 0.005 0.005 
162 0.5 0.3 7 5 0.05 0.1 0.05 0.1 4 2 1 1 0.0025 0.0025 
163 0.4 0.4 7 5 0.05 0.1 0.05 0.1 4 2 1 1 0.005 0.005 
164 0.5 0.4 7 5 0.05 0.1 0.05 0.1 3.5 2.5 0.5 0.5 0.0025 0.0025 
165 0.4 0.3 8 5 0.05 0.1 0.05 0.1 4 2 0.5 0.5 0.005 0.0025 
166 0.5 0.3 8 5 0.05 0.1 0.05 0.1 3.5 2.5 1 1 0.0025 0.005 
167 0.4 0.4 8 5 0.05 0.1 0.05 0.1 3.5 2.5 1 1 0.005 0.0025 
168 0.5 0.4 8 5 0.05 0.1 0.05 0.1 4 2 0.5 0.5 0.0025 0.005 
169 0.4 0.3 7 6 0.05 0.1 0.05 0.1 4 2.5 1 1 0.0025 0.005 
170 0.5 0.3 7 6 0.05 0.1 0.05 0.1 3.5 2 0.5 0.5 0.005 0.0025 
171 0.4 0.4 7 6 0.05 0.1 0.05 0.1 3.5 2 0.5 0.5 0.0025 0.005 
172 0.5 0.4 7 6 0.05 0.1 0.05 0.1 4 2.5 1 1 0.005 0.0025 
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(Table B1 contd…) 

Sl 
No. 

A 
(m) 

B 
(m) 

C 
(kg)

D 
(kg)

E 
(Nm) 

F 
(Nm) 

G 
(deg) 

H 
(deg) 

J 
(Ns) 

K 
(Ns) 

L 
(×10–4 m) 

M 
(×10–4 m)

N 
(kg) 

O 
(kg) 

173 0.4 0.3 8 6 0.05 0.1 0.05 0.1 3.5 2 1 1 0.0025 0.0025 
174 0.5 0.3 8 6 0.05 0.1 0.05 0.1 4 2.5 0.5 0.5 0.005 0.005 
175 0.4 0.4 8 6 0.05 0.1 0.05 0.1 4 2.5 0.5 0.5 0.0025 0.0025 
176 0.5 0.4 8 6 0.05 0.1 0.05 0.1 3.5 2 1 1 0.005 0.005 
177 0.4 0.3 7 5 0.1 0.1 0.05 0.1 4 2.5 1 0.5 0.0025 0.0025 
178 0.5 0.3 7 5 0.1 0.1 0.05 0.1 3.5 2 0.5 1 0.005 0.005 
179 0.4 0.4 7 5 0.1 0.1 0.05 0.1 3.5 2 0.5 1 0.0025 0.0025 
180 0.5 0.4 7 5 0.1 0.1 0.05 0.1 4 2.5 1 0.5 0.005 0.005 
181 0.4 0.3 8 5 0.1 0.1 0.05 0.1 3.5 2 1 0.5 0.0025 0.005 
182 0.5 0.3 8 5 0.1 0.1 0.05 0.1 4 2.5 0.5 1 0.005 0.0025 
183 0.4 0.4 8 5 0.1 0.1 0.05 0.1 4 2.5 0.5 1 0.0025 0.005 
184 0.5 0.4 8 5 0.1 0.1 0.05 0.1 3.5 2 1 0.5 0.005 0.0025 
185 0.4 0.3 7 6 0.1 0.1 0.05 0.1 3.5 2.5 0.5 1 0.005 0.0025 
186 0.5 0.3 7 6 0.1 0.1 0.05 0.1 4 2 1 0.5 0.0025 0.005 
187 0.4 0.4 7 6 0.1 0.1 0.05 0.1 4 2 1 0.5 0.005 0.0025 
188 0.5 0.4 7 6 0.1 0.1 0.05 0.1 3.5 2.5 0.5 1 0.0025 0.005 
189 0.4 0.3 8 6 0.1 0.1 0.05 0.1 4 2 0.5 1 0.005 0.005 
190 0.5 0.3 8 6 0.1 0.1 0.05 0.1 3.5 2.5 1 0.5 0.0025 0.0025 
191 0.4 0.4 8 6 0.1 0.1 0.05 0.1 3.5 2.5 1 0.5 0.005 0.005 
192 0.5 0.4 8 6 0.1 0.1 0.05 0.1 4 2 0.5 1 0.0025 0.0025 
193 0.4 0.3 7 5 0.05 0.05 0.1 0.1 3.5 2.5 0.5 1 0.0025 0.005 
194 0.5 0.3 7 5 0.05 0.05 0.1 0.1 4 2 1 0.5 0.005 0.0025 
195 0.4 0.4 7 5 0.05 0.05 0.1 0.1 4 2 1 0.5 0.0025 0.005 
196 0.5 0.4 7 5 0.05 0.05 0.1 0.1 3.5 2.5 0.5 1 0.005 0.0025 
197 0.4 0.3 8 5 0.05 0.05 0.1 0.1 4 2 0.5 1 0.0025 0.0025 
198 0.5 0.3 8 5 0.05 0.05 0.1 0.1 3.5 2.5 1 0.5 0.005 0.005 
199 0.4 0.4 8 5 0.05 0.05 0.1 0.1 3.5 2.5 1 0.5 0.0025 0.0025 
200 0.5 0.4 8 5 0.05 0.05 0.1 0.1 4 2 0.5 1 0.005 0.005 
201 0.4 0.3 7 6 0.05 0.05 0.1 0.1 4 2.5 1 0.5 0.005 0.005 
202 0.5 0.3 7 6 0.05 0.05 0.1 0.1 3.5 2 0.5 1 0.0025 0.0025 
203 0.4 0.4 7 6 0.05 0.05 0.1 0.1 3.5 2 0.5 1 0.005 0.005 
204 0.5 0.4 7 6 0.05 0.05 0.1 0.1 4 2.5 1 0.5 0.0025 0.0025 
205 0.4 0.3 8 6 0.05 0.05 0.1 0.1 3.5 2 1 0.5 0.005 0.0025 
206 0.5 0.3 8 6 0.05 0.05 0.1 0.1 4 2.5 0.5 1 0.0025 0.005 
207 0.4 0.4 8 6 0.05 0.05 0.1 0.1 4 2.5 0.5 1 0.005 0.0025 
208 0.5 0.4 8 6 0.05 0.05 0.1 0.1 3.5 2 1 0.5 0.0025 0.005 
209 0.4 0.3 7 5 0.1 0.05 0.1 0.1 4 2.5 1 1 0.005 0.0025 
210 0.5 0.3 7 5 0.1 0.05 0.1 0.1 3.5 2 0.5 0.5 0.0025 0.005 
211 0.4 0.4 7 5 0.1 0.05 0.1 0.1 3.5 2 0.5 0.5 0.005 0.0025 
212 0.5 0.4 7 5 0.1 0.05 0.1 0.1 4 2.5 1 1 0.0025 0.005 
213 0.4 0.3 8 5 0.1 0.05 0.1 0.1 3.5 2 1 1 0.005 0.005 
214 0.5 0.3 8 5 0.1 0.05 0.1 0.1 4 2.5 0.5 0.5 0.0025 0.0025 
215 0.4 0.4 8 5 0.1 0.05 0.1 0.1 4 2.5 0.5 0.5 0.005 0.005 
216 0.5 0.4 8 5 0.1 0.05 0.1 0.1 3.5 2 1 1 0.0025 0.0025 
217 0.4 0.3 7 6 0.1 0.05 0.1 0.1 3.5 2.5 0.5 0.5 0.0025 0.0025 
218 0.5 0.3 7 6 0.1 0.05 0.1 0.1 4 2 1 1 0.005 0.005 
219 0.4 0.4 7 6 0.1 0.05 0.1 0.1 4 2 1 1 0.0025 0.0025 
220 0.5 0.4 7 6 0.1 0.05 0.1 0.1 3.5 2.5 0.5 0.5 0.005 0.005 
221 0.4 0.3 8 6 0.1 0.05 0.1 0.1 4 2 0.5 0.5 0.0025 0.005 
222 0.5 0.3 8 6 0.1 0.05 0.1 0.1 3.5 2.5 1 1 0.005 0.0025 
223 0.4 0.4 8 6 0.1 0.05 0.1 0.1 3.5 2.5 1 1 0.0025 0.005 
224 0.5 0.4 8 6 0.1 0.05 0.1 0.1 4 2 0.5 0.5 0.005 0.0025 
225 0.4 0.3 7 5 0.05 0.1 0.1 0.1 3.5 2 1 0.5 0.0025 0.0025 
226 0.5 0.3 7 5 0.05 0.1 0.1 0.1 4 2.5 0.5 1 0.005 0.005 
227 0.4 0.4 7 5 0.05 0.1 0.1 0.1 4 2.5 0.5 1 0.0025 0.0025 
228 0.5 0.4 7 5 0.05 0.1 0.1 0.1 3.5 2 1 0.5 0.005 0.005 
229 0.4 0.3 8 5 0.05 0.1 0.1 0.1 4 2.5 1 0.5 0.0025 0.005 
230 0.5 0.3 8 5 0.05 0.1 0.1 0.1 3.5 2 0.5 1 0.005 0.0025 
231 0.4 0.4 8 5 0.05 0.1 0.1 0.1 3.5 2 0.5 1 0.0025 0.005 
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(Table B1 contd…) 

Sl 
No. 

A 
(m) 

B 
(m) 

C 
(kg)

D 
(kg)

E 
(Nm) 

F 
(Nm) 

G 
(deg) 

H 
(deg) 

J 
(Ns) 

K 
(Ns) 

L 
(×10–4 m) 

M 
(×10–4 m)

N 
(kg) 

O 
(kg) 

232 0.5 0.4 8 5 0.05 0.1 0.1 0.1 4 2.5 1 0.5 0.005 0.0025 
233 0.4 0.3 7 6 0.05 0.1 0.1 0.1 4 2 0.5 1 0.005 0.0025 
234 0.5 0.3 7 6 0.05 0.1 0.1 0.1 3.5 2.5 1 0.5 0.0025 0.005 
235 0.4 0.4 7 6 0.05 0.1 0.1 0.1 3.5 2.5 1 0.5 0.005 0.0025 
236 0.5 0.4 7 6 0.05 0.1 0.1 0.1 4 2 0.5 1 0.0025 0.005 
237 0.4 0.3 8 6 0.05 0.1 0.1 0.1 3.5 2.5 0.5 1 0.005 0.005 
238 0.5 0.3 8 6 0.05 0.1 0.1 0.1 4 2 1 0.5 0.0025 0.0025 
239 0.4 0.4 8 6 0.05 0.1 0.1 0.1 4 2 1 0.5 0.005 0.005 
240 0.5 0.4 8 6 0.05 0.1 0.1 0.1 3.5 2.5 0.5 1 0.0025 0.0025 
241 0.4 0.3 7 5 0.1 0.1 0.1 0.1 4 2 0.5 0.5 0.005 0.005 
242 0.5 0.3 7 5 0.1 0.1 0.1 0.1 3.5 2.5 1 1 0.0025 0.0025 
243 0.4 0.4 7 5 0.1 0.1 0.1 0.1 3.5 2.5 1 1 0.005 0.005 
244 0.5 0.4 7 5 0.1 0.1 0.1 0.1 4 2 0.5 0.5 0.0025 0.0025 
245 0.4 0.3 8 5 0.1 0.1 0.1 0.1 3.5 2.5 0.5 0.5 0.005 0.0025 
246 0.5 0.3 8 5 0.1 0.1 0.1 0.1 4 2 1 1 0.0025 0.005 
247 0.4 0.4 8 5 0.1 0.1 0.1 0.1 4 2 1 1 0.005 0.0025 
248 0.5 0.4 8 5 0.1 0.1 0.1 0.1 3.5 2.5 0.5 0.5 0.0025 0.005 
249 0.4 0.3 7 6 0.1 0.1 0.1 0.1 3.5 2 1 1 0.0025 0.005 
250 0.5 0.3 7 6 0.1 0.1 0.1 0.1 4 2.5 0.5 0.5 0.005 0.0025 
251 0.4 0.4 7 6 0.1 0.1 0.1 0.1 4 2.5 0.5 0.5 0.0025 0.005 
252 0.5 0.4 7 6 0.1 0.1 0.1 0.1 3.5 2 1 1 0.005 0.0025 
253 0.4 0.3 8 6 0.1 0.1 0.1 0.1 4 2.5 1 1 0.0025 0.0025 
254 0.5 0.3 8 6 0.1 0.1 0.1 0.1 3.5 2 0.5 0.5 0.005 0.005 
255 0.4 0.4 8 6 0.1 0.1 0.1 0.1 3.5 2 0.5 0.5 0.0025 0.0025 
256 0.5 0.4 8 6 0.1 0.1 0.1 0.1 4 2.5 1 1 0.005 0.005 
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APPENDIX - C 

Table C1 Central Composite Design Matrix for RSM 

Combination 
number 

1l  (A) 
(m) 

2l  (B) 
(m) 

1m  (C) 
(kg) 

2m  (D) 
(kg) 

1θσ  (E) 
(deg) 

2θσ  (F) 
(deg) 

1 0.4 0.3 7 5 0.05 0.05 
2 0.5 0.3 7 5 0.05 0.05 
3 0.4 0.4 7 5 0.05 0.05 
4 0.5 0.4 7 5 0.05 0.05 
5 0.4 0.3 8 5 0.05 0.05 
6 0.5 0.3 8 5 0.05 0.05 
7 0.4 0.4 8 5 0.05 0.05 
8 0.5 0.4 8 5 0.05 0.05 
9 0.4 0.3 7 6 0.05 0.05 

10 0.5 0.3 7 6 0.05 0.05 
11 0.4 0.4 7 6 0.05 0.05 
12 0.5 0.4 7 6 0.05 0.05 
13 0.4 0.3 8 6 0.05 0.05 
14 0.5 0.3 8 6 0.05 0.05 
15 0.4 0.4 8 6 0.05 0.05 
16 0.5 0.4 8 6 0.05 0.05 
17 0.4 0.3 7 5 0.1 0.05 
18 0.5 0.3 7 5 0.1 0.05 
19 0.4 0.4 7 5 0.1 0.05 
20 0.5 0.4 7 5 0.1 0.05 
21 0.4 0.3 8 5 0.1 0.05 
22 0.5 0.3 8 5 0.1 0.05 
23 0.4 0.4 8 5 0.1 0.05 
24 0.5 0.4 8 5 0.1 0.05 
25 0.4 0.3 7 6 0.1 0.05 
26 0.5 0.3 7 6 0.1 0.05 
27 0.4 0.4 7 6 0.1 0.05 
28 0.5 0.4 7 6 0.1 0.05 
29 0.4 0.3 8 6 0.1 0.05 
30 0.5 0.3 8 6 0.1 0.05 
31 0.4 0.4 8 6 0.1 0.05 
32 0.5 0.4 8 6 0.1 0.05 
33 0.4 0.3 7 5 0.05 0.1 
34 0.5 0.3 7 5 0.05 0.1 
35 0.4 0.4 7 5 0.05 0.1 
36 0.5 0.4 7 5 0.05 0.1 
37 0.4 0.3 8 5 0.05 0.1 
38 0.5 0.3 8 5 0.05 0.1 
39 0.4 0.4 8 5 0.05 0.1 
40 0.5 0.4 8 5 0.05 0.1 
41 0.4 0.3 7 6 0.05 0.1 
42 0.5 0.3 7 6 0.05 0.1 
43 0.4 0.4 7 6 0.05 0.1 
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(Table C1 contd…) 

Combination 
number 

1l  (A) 
(m) 

2l  (B) 
(m) 

1m  (C) 
(kg) 

2m  (D) 
(kg) 

1θσ  (E) 
(deg) 

2θσ  (F) 
(deg) 

44 0.5 0.4 7 6 0.05 0.1 
45 0.4 0.3 8 6 0.05 0.1 
46 0.5 0.3 8 6 0.05 0.1 
47 0.4 0.4 8 6 0.05 0.1 
48 0.5 0.4 8 6 0.05 0.1 
49 0.4 0.3 7 5 0.1 0.1 
50 0.5 0.3 7 5 0.1 0.1 
51 0.4 0.4 7 5 0.1 0.1 
52 0.5 0.4 7 5 0.1 0.1 
53 0.4 0.3 8 5 0.1 0.1 
54 0.5 0.3 8 5 0.1 0.1 
55 0.4 0.4 8 5 0.1 0.1 
56 0.5 0.4 8 5 0.1 0.1 
57 0.4 0.3 7 6 0.1 0.1 
58 0.5 0.3 7 6 0.1 0.1 
59 0.4 0.4 7 6 0.1 0.1 
60 0.5 0.4 7 6 0.1 0.1 
61 0.4 0.3 8 6 0.1 0.1 
62 0.5 0.3 8 6 0.1 0.1 
63 0.4 0.4 8 6 0.1 0.1 
64 0.5 0.4 8 6 0.1 0.1 
65 0.4 0.35 7.5 5.5 0.075 0.075 
66 0.5 0.35 7.5 5.5 0.075 0.075 
67 0.45 0.3 7.5 5.5 0.075 0.075 
68 0.45 0.4 7.5 5.5 0.075 0.075 
69 0.45 0.35 7 5.5 0.075 0.075 
70 0.45 0.35 8 5.5 0.075 0.075 
71 0.45 0.35 7.5 5 0.075 0.075 
72 0.45 0.35 7.5 6 0.075 0.075 
73 0.45 0.35 7.5 5.5 0.05 0.075 
74 0.45 0.35 7.5 5.5 0.1 0.075 
75 0.45 0.35 7.5 5.5 0.075 0.05 
76 0.45 0.35 7.5 5.5 0.075 0.1 
77 0.45 0.35 7.5 5.5 0.075 0.075 
78 0.45 0.35 7.5 5.5 0.075 0.075 
79 0.45 0.35 7.5 5.5 0.075 0.075 
80 0.45 0.35 7.5 5.5 0.075 0.075 
81 0.45 0.35 7.5 5.5 0.075 0.075 
82 0.45 0.35 7.5 5.5 0.075 0.075 
83 0.45 0.35 7.5 5.5 0.075 0.075 
84 0.45 0.35 7.5 5.5 0.075 0.075 
85 0.45 0.35 7.5 5.5 0.075 0.075 
86 0.45 0.35 7.5 5.5 0.075 0.075 
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APPENDIX - D 

Table-D1 Control Factor Array in terms of Tolerances of Control Factors 

Combination 
number 

1
3 lσ  (m) 
(×10–2) 

2
3 lσ  (m) 
(×10–2) 

1
3 mσ  

(kg) 
2

3 mσ  
(kg) 

1
3 τσ  
(Nm) 

(×10–2) 

2
3 τσ  
(Nm) 

(×10–2) 
1 0.03 0.03 0.015 0.015 15 15 

2 0.03 0.03 0.015 0.015 15 7.5 

3 0.03 0.03 0.015 0.015 7.5 15 

4 0.03 0.03 0.015 0.015 7.5 7.5 

5 0.03 0.03 0.015 0.0075 15 15 

6 0.03 0.03 0.015 0.0075 15 7.5 

7 0.03 0.03 0.015 0.0075 7.5 15 

8 0.03 0.03 0.015 0.0075 7.5 7.5 

9 0.03 0.03 0.0075 0.015 15 15 

10 0.03 0.03 0.0075 0.015 15 7.5 

11 0.03 0.03 0.0075 0.015 7.5 15 

12 0.03 0.03 0.0075 0.015 7.5 7.5 

13 0.03 0.03 0.0075 0.0075 15 15 

14 0.03 0.03 0.0075 0.0075 15 7.5 

15 0.03 0.03 0.0075 0.0075 7.5 15 

16 0.03 0.03 0.0075 0.0075 7.5 7.5 

17 0.03 0.015 0.015 0.015 15 15 

18 0.03 0.015 0.015 0.015 15 7.5 

19 0.03 0.015 0.015 0.015 7.5 15 

20 0.03 0.015 0.015 0.015 7.5 7.5 

21 0.03 0.015 0.015 0.0075 15 15 

22 0.03 0.015 0.015 0.0075 15 7.5 

23 0.03 0.015 0.015 0.0075 7.5 15 

24 0.03 0.015 0.015 0.0075 7.5 7.5 

25 0.03 0.015 0.0075 0.015 15 15 

26 0.03 0.015 0.0075 0.015 15 7.5 

27* 0.03 0.015 0.0075 0.015 7.5 15 

28 0.03 0.015 0.0075 0.015 7.5 7.5 

29 0.03 0.015 0.0075 0.0075 15 15 

30 0.03 0.015 0.0075 0.0075 15 7.5 

31 0.03 0.015 0.0075 0.0075 7.5 15 
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Combination 
number 

1
3 lσ  (m) 
(×10–2) 

2
3 lσ  (m) 
(×10–2) 

1
3 mσ  

(kg) 
2

3 mσ  
(kg) 

1
3 τσ  
(Nm) 

(×10–2) 

2
3 τσ  
(Nm) 

(×10–2) 
32 0.03 0.015 0.0075 0.0075 7.5 7.5 

33 0.015 0.03 0.015 0.015 15 15 

34 0.015 0.03 0.015 0.015 15 7.5 

35 0.015 0.03 0.015 0.015 7.5 15 

36 0.015 0.03 0.015 0.015 7.5 7.5 

37 0.015 0.03 0.015 0.0075 15 15 

38 0.015 0.03 0.015 0.0075 15 7.5 

39 0.015 0.03 0.015 0.0075 7.5 15 

40 0.015 0.03 0.015 0.0075 7.5 7.5 

41 0.015 0.03 0.0075 0.015 15 15 

42 0.015 0.03 0.0075 0.015 15 7.5 

43 0.015 0.03 0.0075 0.015 7.5 15 

44 0.015 0.03 0.0075 0.015 7.5 7.5 

45 0.015 0.03 0.0075 0.0075 15 15 

46 0.015 0.03 0.0075 0.0075 15 7.5 

47 0.015 0.03 0.0075 0.0075 7.5 15 

48 0.015 0.03 0.0075 0.0075 7.5 7.5 

49 0.015 0.015 0.015 0.015 15 15 

50 0.015 0.015 0.015 0.015 15 7.5 

51 0.015 0.015 0.015 0.015 7.5 15 

52 0.015 0.015 0.015 0.015 7.5 7.5 

53 0.015 0.015 0.015 0.0075 15 15 

54 0.015 0.015 0.015 0.0075 15 7.5 

55 0.015 0.015 0.015 0.0075 7.5 15 

56 0.015 0.015 0.015 0.0075 7.5 7.5 

57 0.015 0.015 0.0075 0.015 15 15 

58 0.015 0.015 0.0075 0.015 15 7.5 

59 0.015 0.015 0.0075 0.015 7.5 15 

60 0.015 0.015 0.0075 0.015 7.5 7.5 

61 0.015 0.015 0.0075 0.0075 15 15 

62 0.015 0.015 0.0075 0.0075 15 7.5 

63 0.015 0.015 0.0075 0.0075 7.5 15 

64 0.015 0.015 0.0075 0.0075 7.5 7.5 

 


