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Chapter 3

Cluster Integrated Updation Strategies for ACO

Algorithms

3.1 Introduction

Data clustering is one of the most common and important human activities (Jain

et al., 1999). It involves discovering groups and identifying interesting distribution

and patterns in the underlying data. Clustering problem is about partitioning the

data objects into groups/classes, such that the objects within the group are very

similar and the objects across the groups are quite different. Clustering is an

unsupervised approach, where no labeled data will be available. The ultimate

goal of the clustering is to assign the unlabeled data to labeled classes. The label

of the classes are categorical in nature and are purely data driven; that is, they

are obtained from data. It is possible that, sometime even class labels may not

be defined, but still clustering process should identify the natural closeness among

the data and should group them. The data can belong to only one cluster or more

than one clusters. If data belongs to more than one cluster then its association

with particular cluster is determined by the degree of membership.

The above discussion leads to the conclusion that there is no universal way to

group the data and different clustering algorithms may provide different result to

the same data set. In general, selection of clustering algorithms depends on the

nature of data and the intended applications. In this chapter, an ant clustering

approach which looks close to the original ACO algorithms, but explicitly considers

particular clustering model will be discussed. Before we introduce new ant based

clustering models, a brief explanation on cluster evolution process and the existing

cluster algorithms is required.

67



3.1.1 Evolution of Clusters

The process of clustering typically comprises of four phases as shown in the Figure

3.1 (Xu, 2005).

1. Feature Selection - This phase involves selecting the appropriate features/

attributes that helps in distinguishing different groups present in the data.

2. Cluster Algorithm Selection - This phase involves selecting appropriate

clustering algorithm that provides good clustering scheme for the given data.

The clustering algorithm has two important characteristic features:

– Proximity Measure - A measure that quantifies the similarity between

two objects.

– A Criterion Function - A function expressed in the form of rules or cost

function that acts as a template for good partitioning scheme.

3. Validation - In this phase, quality of the clusters are validated based on a

specified criteria. A set of test functions ( Halkidi et al., 2001) are available

in the form of indices to validate the cluster. The clustering algorithms are

usually validated for sensitive to parameters like number of clusters, order

of presentation of data to algorithms etc. Based on the validation result,

an appropriate clustering scheme can be selected, that fits well to the given

data.

4. Result Interpretation - In this phase, a meaningful insight of data is

provided to the user by interpreting the evolved cluster structures. Often a

subject expert help might be necessary to interpret the partitioned data.
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Figure 3.1: Stages involved in the clustering process.

3.1.2 A Categorization of Clustering Methods

In literature, there exists a large number of clustering algorithms and all these

algorithms can be classified into the following categories (Han and Kamber, 2004):

• Partitional Methods - The Partitional methods create partition of original

data set. Given a set of n data, a partitioning method constructs k partitions

of the data, where each partition represents a cluster and k ≤ n. After parti-

tioning, these methods use an iterative relocation technique that attempts to

improvise the partition by moving the data from one group to another. The

algorithm terminates, when there is no movement of data across the parti-

tions. The k-means (MacQueen, 1967) and k-medians algorithms falls under

this category. Given a set of data X = {x1, x2, · · ·xn} the partitional clus-

tering creates K partition of X into C, where C = {C1, C2 · · ·CK}, K ≤ N ,

such that

1) Ci 6= ∅;

2) ∪ki=1Ci = X ;

3) Ci ∩ Cj = ∅; i, j = 1, 2, · · ·K and i ≤ j

• Hierarchical Methods - A hierarchical method creates a hierarchical de-

composition of the given set of data. The hierarchical methods can be clas-
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sified into agglomerative or divisive depending upon the approach used for

constructing the clusters. An agglomerative clustering approach initially

considers each data as a separate cluster and then merges the data/group

successively in each step depending upon the closeness, until it results in one

large group. The divisive clustering approach initially considers all the data

as one large group and in successive steps, cluster is split up into smaller

one, until each cluster contains single data or termination condition is met.

Hierarchical clustering constructs a tree-like nested structure that partitions

X into H , where H = {H1, H2 · · ·HQ}, Q ≤ N , such that Ci ∈ Hm, Cj ∈ Hl

and m > l imply Ci ⊂ Cj or Ci ∩ Cj = ∅ ∀i, j 6= i,m, l = 1, 2, · · ·m. The

BIRCH (Zhang et al., 1997) and CURE (Guha et al., 2001) algorithms fall

under this category.

• Density-Based Methods - The density based methods work on the notion

of density and view the clusters as dense region of data in the data space

that are separated by low density. These methods start with a random data

point and define a radius of a circle (in two dimension) to the selected random

point to support the notion of density. The circular radius should include

pre-specified number of data points and these included data points are called

neighbors of random data point. The neighbor data points include random

data point form the neighborhood sets. The neighborhood set is expanded by

adding neighbors of each element of the set and the expansion process stops,

when it is not possible to add data points to the set. The above process is

repeated until, all the data points belong to one of the neighborhood sets.

Thus, a collection of neighborhood sets are obtained and each one of them

can be viewed as a cluster. The DBSCAN (Martin et al., 1996) and OPTICS

(Ankerst et al., 1999) fall under this category.

• Grid-Based Methods - Grid-based methods quantize the data space into

finite number of cells that form the part of the grid structure. The clusters

are obtained by merging adjacent cells, if both of them contain the pre-

specified number of points. The notable differences between grid methods

70



and partition methods are:

– Evolution of Cluster - Grid methods follow divide and merge approach

where as, partition methods follow divide and distribute approach to

arrive at clusters.

– Size of the Partitioned Cluster - The size of the partition in grid method

is fixed, but in partition method it is variable.

STING (Wang et al., 1997) is a typical example for grid-based method.

3.2 Clustering Algorithms

In this section, we will discuss some of the important clustering algorithms avail-

able in the literature and these algorithms will be incorporated in ACO algorithm.

3.2.1 Statistical Information Grid (STING)

STING (Wang et al., 1997) is a grid based clustering technique. The grid based

approaches recursively divide the spatial area into rectangular cells. The parti-

tioned rectangular cells can be represented in hierarchical structure as shown in

Figure 3.2. The hierarchical structure represents layers of rectangular cells and

each layer represents the data at different level of resolution. The hierarchical

structure follows the parent - child relationship in which lower level cells are the

partitioned cells of higher level cells. The area of leaf level cells can be controlled

based on the density of the data. The parental cells store the statistical infor-

mation like maximum, minimum, mean and type of distribution etc of the child

cells.

The STING method is useful for query answering, where relevant cells are

considered for searching data. The statistical information guides the search process

and is used to compute the Confidence Interval (CI). The CI will reflect the cell’s

relevancy to the posed query. The cells with highest relevancy will be considered

for further processing. The process of finding relevant cells will continue until
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most relevant leaf cell is found.

The advantages of STING approach lies in the grid architecture that supports

parallel processing and hence it is fast in processing the queries. The STING

approach goes through the data points only once and hence its time complexity

is O(n), where n is the number of data points.

Level 1 has only

one cell

A cell of (i-1)th level

corresponds to 4 cells 

of  ith level

1st layer

(i-1)th layer

ith layer

Figure 3.2: Hierarchical structure of 2-D data space

3.2.2 k-Means Algorithm

The k-means algorithm is one of the simplest and most commonly used cluster

algorithms, proposed by MacQueen (1967). The algorithm creates k partitions

of the given n data points. The algorithm employs the square-error criterion

with the intension to minimize the variance within the clusters and to maximize

the variance across the clusters. Typically, squared-error criterion computes the

distance between the data points and the center (mean) of all the clusters and

then assign the data points to the nearest cluster. The pseudocode for k-means

algorithm is given by Algorithm 8:
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Algorithm 8 k-Means Algorithm

Initialize the number of clusters k.
Arbitrarily choose k data points as the initial cluster centers.
while there is no change for each cluster do
for j = 1, 2, ...N do
for i = 1, 2, ...k do
if ||xj −mw|| < ||xj −mi|| and i 6= w then
xj ∈ Cw

end if
end for

end for
Recalculate the cluster center (mean) for the current partition.

end while

where x = {x1, x2, ...xN} is the set of data points. Cw and mw represent the label

of the cluster and mean of the cluster w respectively.

The k-means algorithm is simple and easy to implement. The computational

complexity of the algorithm is O(Nkt), where N is the number of data-points, k

is the number of clusters and t is the number of iterations and normally k << N

and t << N . The advantages of k-means algorithm is that, it works well with the

compact and hyperspherical clusters. It is efficient in clustering large datasets,

since its computational complexity is linearly proportional to the size of the data

sets. The drawback of the algorithm includes sensitiveness to the initial centroid

selection for the clusters. The convergence of the algorithm depends on initial cen-

troids values and may converge to a local minimum of the criterion function, if the

initial centroids are not properly selected. The algorithm is sensitive to parameter

k. Ideally, there is no universal way to select the parameter k and its selection

affects the shape of the cluster. Often, many trials need to be conducted to select

the appropriate value for k, so that high quality of clusters can be obtained. The

k-means algorithm is also sensitive to outliers and noise data. If the data point

(outlier) is located far away from the cluster centroid, it might be forced to be

part of the cluster that affects the natural shape of the cluster.
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3.2.3 k-Medians Algorithm

The k-medians algorithm is a variant of k-means algorithm. The k-medians al-

gorithm creates k partitions of data points and each partition is represented by

the median that acts as a centroid for set of data points. The algorithm typically

employs the absolute-error criterion that minimizes the sum of the absolute dis-

tances of each data point with respect to centroid of the cluster. The pseudocode

for k-medians algorithm is given by Algorithm 9:

Algorithm 9 k-Medians Algorithm

Initialize the number of clusters k.
Arbitrarily choose k data points as the initial cluster centers.
while there is no change for each cluster do
for j = 1, 2, ...N do
for i = 1, 2, ...k do
if ||xj −mw|| < ||xj −mi|| and i 6= w then
xj ∈ Cw

end if
end for

end for
Recalculate the cluster center (median) for the current partition.

end while

where x = {x1, x2, ..., xN} is set of data points. Cw and mw represent the label of

the cluster and median of the cluster w respectively.

3.2.4 Density Based Spatial Clustering of Applications with

Noise (DBSCAN)

DBSCAN (Martin et al., 1996) is a density based clustering algorithm. The density

based approach treats the “clusters” as a set of points, such that each point can be

reached from every other point within the group and “noise” as a set of unreachable

points. The algorithm can be better understood with the following definitions :

Definition 1 (ǫ-neighborhood of a point). The ǫ-neighborhood of a point x is

defined as

Nǫ(x) = {y ∈ D : d(x, y) ≤ ǫ}
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where D is the set of data points, d(., .) is a certain distance function and ǫ

specifies the radius of the circle.

The ǫ-neighborhood of a point should contain minimum number of points say

Min pts, then the point is called a core point otherwise it is a border point. The core

points which are present inside the cluster and border points form the boundary

of the cluster.

Definition 2 (Directly density-reachable). A point x is said to be directly density-

reachable from a point y ( with respect to ǫ and Min pts) if

1. x ∈ Nǫ(y)

2. Nǫ(y) ≥ Min pts, where Nǫ(y) denotes the number of points (core point

condition).

If two core points x and y belong to the same cluster then x can be directly

density-reachable from y and vice versa. However, if x is a core point and y is a

border point then y is directly density-reachable from x but other way around is

not possible.

Definition 3 (Density-reachable). A point x is said to be density-reachable from

point y if there is a sequence of points x = x1, x2, · · · , xi = y such that xl is

directly density-reachable from xl+1 for l = 1, 2, ..., i− 1.

The density-reachability is an extension of directly density reachable. The

definition suggests that all the core points in a cluster C can be visited as a

sequence of points.

Definition 4 (Density-connected). Two points x and y are said to be density-

connected w.r.t ǫ and and Min pts if there exists a point z such that both x and

y are density reachable from z w.r.t ǫ and Min pts.

The border points of cluster C may not be density reachable to each other;

however there must exist a set of core points in C that is density reachable to

border points. The definition 4 specifies the condition for establishing the relation

between the border points of the clusters C.

Definition 5 (Cluster). Let D be the dataset. A Cluster w.r.t ǫ and Min pts is a

nonempty subset of D satisfying the following conditions:
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1. ∀x, y ∈ D, if x ∈ C and y is density-reachable from x w.r.t ǫ and Min pts

then y ∈ C.

2. ∀x, y ∈ C, x and y are density connected w.r.t ǫ and Min pts.

The DBSCAN defines the cluster as a set of density-connected points and noise as

an isolated point that do not belong to any of the cluster. The DBSCAN algorithm

works as follows: It starts with an arbitrary point x and finds all the points that

are density-reachable from x w.r.t ǫ and Min pts. If x is a core point, then a

cluster w.r.t ǫ and Min pts are formed. If x happens to be the border points, then

no points are density-reachable and DBSCAN visits the next unclassified point.

The pseudocode for DBSCAN algorithm is given by Algorithm 10:

Algorithm 10 DBSCAN Algorithm

Initialize ǫ and the minimum number of points Min pts.
Mark all the points as unassigned.
while there are some data points D need to be assigned to the cluster do

Select a unassigned point P in D and mark it as assigned.
Set N = neighbor(P, ǫ)
if sizeof(N) < Min pts then

mark P as Noise.
else

Create a cluster C and add the point P to it.
while there are some data points N need to be assigned do

Select the point P ′ in N and mark it as classified.
Set N ′ = neighbor(P ′, ǫ)
if sizeof(N ′) ≥ Min pts then
N = N ∪N ′.

end if
Add the point P ′ to cluster C.

end while
end if

end while

It should be noted, that DBSCAN needs two parameters ǫ and Min pts, but

identifying the best values for parameters is not easy. A simple heuristics called

k-dist graph have been developed to find the values for parameters. The DBSCAN

algorithm needs to compute the distance between point and the k nearest point.

These distances are sorted and then k-graph is plotted. The first “valley” in the
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graph is identified and the corresponding value is used to set ǫ. The value of

Min pts is set to k = 4, since k-dist graph will not vary much for higher values.

3.3 Integration of Clusters and ACO

The experimental simulation reveals the existence of correlation between the so-

lution’s quality and the distance from good or optimal solutions. In literature,

several measures to assess the solution quality can be found and one such measure

is Fitness-Distance Correlation(FDC) function. The FDC computes the correla-

tion coefficient (Jones and Forrest, 1995) and describes the goodness of the ob-

tained solutions with respect to global best solution. The high/ low positive value

indicates the smaller/ larger distance between obtained solution and the global

best solution. Infact, for the problems like TSP (Stutzle and Hoos, 2000), large

number of local optimum solutions are concentrated in a small region near the

global best solution. In order to exploit the regions near the global best solution,

a cluster based updation strategy has been proposed here, which reinforces the

toured paths in an unconventional manner. The cluster based updation strategy

has the following characteristics:

• It groups the nearby tour performances and each group will be reinforced

with the same amount of pheromone trial. This mechanism ensures the

exploitation of regions near the (best) solutions.

• The reinforcement is done for all the paths, thereby which supports the

exploration.

Ideally, best tour in a group will be selected and its performance will be taken as a

reference for updating the rest of the paths in the group. The following subsections

will discuss the incorporation of clustering mechanism in ACO algorithm. The

general outline of the cluster integrated ACO is given by Algorithm 11:
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Algorithm 11 Cluster Integrated ACO Algorithm

Initialize the parameter k number of cluster, τ , η, and ρ.
sbs ← ∅.
while termination condition not met do
χiter ← ∅
for j = 1, · · · , n do
s← ConstructSolution.
s← LocalSearch (Optional)
if (f(s) < f(sbs))) or (sbs = NULL) then
sbs ← s

end if
χiter ← χiter ∪ {s}

end for
Identify the clusters C1, C2, · · ·Ck in χiter.
for i = 1, · · · , k do
sbsi ← Ci

end for
for j = 1, · · · , k do
while there are some paths left in the cluster Cj need to be updated do
TLij ←

1
sbsj

end while
end for

end while

where χiter represent set of solutions in current iteration, sbs represent the best

solution in current iteration and sbsi is the best solution in cluster i used for

updating paths that belong to cluster i.

3.3.1 Grid Structured ACO (GS-ACO)

The GS-ACO sorts the tour performance in non decreasing order and place them

in grid structure. The grid structure is quantized into finite number of blocks.

Let G = {TL1, TL2 · · ·TLn} represents the grid structure containing n sorted

tour length TLi. The grid structure is divided into m equi-sized partition blocks

B = {B1, B2 · · ·Bm} and m ≤ n. Figure 3.3 shows the grid structure containing

four equi-sized blocks and eight tour performances. It can be observed that each

block contains variable number of tour performances and some blocks may be

empty as well. The GS-ACO treats each block as a cluster and updates the

individual tour paths in the cluster with same amount of pheromone trial as that
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of best tour path in the block. It should be noted that algorithm degenerates to

normal AS algorithm, when the number of blocks is equal to number of ants.

Best tour in the block

                                                                                   Grid Structure

B1                     B2                         B3                        B4

Figure 3.3: Grid structure containing tour lengths.

3.3.2 k-Means ACO (kM-ACO) and k-Medians ACO (kMed-

ACO)

In previous section, we discussed about GS-ACO that treats the partitioned blocks

as a cluster. Since, number of partitions are fixed as a part of parameter settings,

evolved blocks do not look like natural clusters. Consider two blocks B1, B2 and

two points in the Figure 3.3. The first point under consideration is the one located

at right end of the block B1 and the second one is located at the left end of the

block B2. The two points may be logically belong to the same group, but the

rigid partition scheme puts them in two separate blocks. This necessitates to use

the clustering scheme that places the logically near data into same groups. The

k-means and k-medians algorithms have been employed to cluster the data. The

updation strategy followed is similar to that of grid strategy, where all the tour

paths in the cluster will be reinforced with the same amount of pheromone trial

as that of best tour path in the cluster.
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3.3.3 Density Based Clustered ACO (DBC-ACO)

The problem with the k-means and k-medians algorithms is that the quality of

the cluster is influenced by exceptional/outlier data points. The outliers are the

set of points that may not logically belong to any of the clusters, but due to

logical nearness, they are forced to be part of one of the clusters. The reason for

assigning the outlier to one of the clusters is due to fixed number of clusters that

are specified as a part of parameter settings. The evolved clusters may not look

natural in presence of outliers. Inorder to assess the impact of natural looking

cluster, DBSCAN algorithm is integrated with the ACO algorithms. The number

of clusters that evolve purely depends on the distribution of data. The basic

DBSCAN algorithm was modified to suit the single dimension data space. The

modified DBSCAN algorithm has a single parameter called ǫ mean difference and

it is quite similar to ǫ. The ǫ mean difference is derived from the data and it will

be used as a distance measure for clustering process. The ǫ mean difference also

called as Average Sum of Difference (ASOD) is given by the equation:

ASOD =
1

n

n−1
∑

i=1

|Di −Di+1|

where n is the number of data objects Di and D1 ≥ D2 ≥ · · · ≥ Dn.

The modified clustering scheme places the adjacent data objects Di in one

group, if they are present within the ASOD distance. The pseudocode for modified

DBSCAN algorithm is given by Algorithm 12:

The Modified DBSCAN algorithm is integrated with the ACO to have a new

variant called DBC-ACO algorithm. The DBC-ACO groups the nearby tour

lengths that are with ASOD distance in order to evolve a set of clusters. The

number of clusters evolve will depend on the distribution of tour lengths.
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Algorithm 12 Modified DBSCAN Algorithm

Compute the ASOD.
Mark all the tour lengths D as unassigned to the cluster.
for i = 1, 2, · · ·n do

Create a cluster C.
Select a unassigned tour length Di in D and mark it as assigned.
C ← Di.
while |Di −Di+1| ≤ ASOD or i 6= n do
C ← Di+1.
Di ← Di+1.
Select the next unassigned tour length Di+1 in D and mark it as assigned.

end while
end for

3.4 Experimental Study

3.4.1 Parameter Settings

The cluster incorporated ACO algorithms have additional parameters pertaining

to cluster that need to be specified as a part of parameter settings. The GS-

ACO, kM-ACO and kMed-ACO need k, the number of clusters as a parameter

for clustering process. An extensive simulations were carried out by varying the

parameters α, β from 1 to 5, ρ from 0.7 to 1.0 with the increment of 0.03 and

number of ants m were varied in range from {10, n/2, n}, where n is the number

of ants in the system. The parameter k was varied in the range of 20-80% of the

number of ants and the total number of iterations was set to 1,00,000.

3.4.2 Primary Updation

In ACO, ants update the traveled path with the trials proportional to the qual-

ity of solution after the completion of tours and this process is termed as primary

updation. Since clustering mechanism is incorporated in ACO, nearby tour perfor-

mance will be clustered and then pheromone trial will be updated on the traveled

paths with the best performance within the cluster. Table 3.1 shows the com-

parative results of cluster integrated ACO for primary updation. The general

observation is that GS-ACO exhibits larger deviation from optimal solution com-
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pared to other variants. In GS-ACO, most of the obtained solutions deviate by

more than 1%. The solution obtained for kMed-ACO is slightly better than the

kM-ACO algorithm. The DBC-ACO algorithm provides better optimal solution

compared to other variants, but it constructs large number of clusters for updation

purpose.

Table 3.1: Performance comparison of cluster integrated ACO algorithms for pri-
mary updation.

Datasets Algorithms Best (Std Dev) Average (Std Dev)

bays29

GS-ACO 2046.4 (1.30%) 2061.2 (2.03%)

kM-ACO 2033.5 (0.66%) 2038.5 (0.91%)

kMed-ACO 2029.4 (0.46%) 2035.3 (0.75%)

DBC-ACO 2025.4 (0.26%) 2028.2 (0.4%)

att48

GS-ACO 10745.8 (1.10%) 10807.5 (1.68%)

kM-ACO 10685.6 (0.54%) 10704.4 (0.71%)

kMed-ACO 10665.1 (0.34%) 10688.6 (0.57%)

DBC-ACO 10651.6 (0.22%) 10673.4 (0.42%)

eil51

GS-ACO 432.7 (1.57%) 435.1 (2.13%)

kM-ACO 428.3 (0.53%) 432.9 (1.61%)

kMed-ACO 427.8 (0.42%) 430.5 (1.05%)

DBC-ACO 427.1 (0.25%) 429.5 (0.82%)

st70

GS-ACO 684.3 (1.37%) 688.2 (1.95%)

kM-ACO 681.6 (0.97%) 684.4 (1.39%)

kMed-ACO 678.2 (0.47%) 681.8 (1.00%)

DBC-ACO 677.4 (0.35%) 680.5 (0.81%)

eil76

GS-ACO 547.4 (1.74%) 552.3 (2.65%)

kM-ACO 543.7 (1.05%) 546.7 (1.61%)

kMed-ACO 540.3 (0.42%) 547.4 (1.74%)

DBC-ACO 539.4 (0.26%) 543.6 (1.04%)

82



Datasets Algorithms Best (Std Dev) Average (Std Dev)

Kroa100

GS-ACO 21397.4 (0.54%) 21439.9 (0.74%)

kM-ACO 21348.5 (0.31%) 21376.2 (0.44%)

kMed-ACO 21332.4 (0.23%) 21359.4 (0.36%)

DBC-ACO 21313.5 (0.14%) 21340.4 (0.27%)

kroa200

GS-ACO 29740.5 (1.26%) 29793.7 (1.44%)

kM-ACO 29545.6 (0.60%) 29580.4 (0.72%)

kMed-ACO 29466.4 (0.33%) 29503.2 (0.46%)

DBC-ACO 29408.1 (0.13%) 29443.5 (0.26%)

lin318

GS-ACO 42778.7 (1.78%) 42838.6 (1.92%)

kM-ACO 42434.2 (0.96%) 42516.9 (1.16%)

kMed-ACO 42221.2 (0.45%) 42278.2 (0.59%)

DBC-ACO 42146.7 (0.28%) 42091.8 (0.14%)

3.4.3 Secondary Updation

The proposed approach is extended by incorporating additional reinforcement

mechanism. The additional reinforcement is done after primary updation. The

additional/ secondary updation provides the diversification for the search process.

The primary updation mechanism updates the pheromone trial proportional to

the quality of solution found. The secondary updation mechanism uses cluster

based updation strategy to reinforce the traveled paths. Table 3.2 shows the com-

parative results of cluster integrated ACO for secondary updation. On comparing

Table 3.2 with Table 3.1, secondary updation strategy improvises most of the so-

lutions. The extended approach provides best solution for att48, eil76, kroa100

and kroa200 dataset for the DBC-ACO algorithm.
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Table 3.2: Performance comparision of cluster integrated ACO algorithms for
secondary updation.

Datasets Algorithms Best (Std Dev) Average (Std Dev)

bays29

GS-ACO 2040.4 (1.00%) 2055.1 (1.73%)

kM-ACO 2028.4 (0.41%) 2034.4 (0.71%)

kMed-ACO 2024.6 (0.22%) 2029.1 (0.45%)

DBC-ACO 2022.3 (0.11%) 2026.7 (0.33%)

att48

GS-ACO 10711.7 (0.78%) 10756.3 (1.20%)

kM-ACO 10672.6 (0.42%) 10680.1 (0.49%)

kMed-ACO 10654.3 (0.24%) 10671.2 (0.40%)

DBC-ACO 10630.5 (0.02%) 10644.3 (0.15%)

eil51

GS-ACO 430.3 (1.00%) 433.4 (1.73%)

kM-ACO 429.1 (0.72%) 431.6 (1.31%)

kMed-ACO 427.1 (0.25%) 431.4 (1.26%)

DBC-ACO 428.7 (0.63%) 432.7 (1.57%)

st70

GS-ACO 680.1 (0.75%) 685.5 (1.55%)

kM-ACO 679.4 (0.65%) 682.9 (1.17%)

kMed-ACO 677.3 (0.34%) 682.5 (1.11%)

DBC-ACO 675.7 (0.1%) 678.9 (0.57%)

eil76

GS-ACO 544.9 (1.28%) 548.8 (2.00%)

kM-ACO 541.4 (0.57%) 545.3 (1.35%)

kMed-ACO 539.4 (0.26%) 544.1 (1.13%)

DBC-ACO 538.4 (0.07%) 541.2 (0.59%)

Kroa100

GS-ACO 21355.7 (0.34%) 21381.3 (0.46%)

kM-ACO 21338.4 (0.26%) 21355.8 (0.34%)

kMed-ACO 21302.1 (0.09%) 21339.5 (0.27%)

DBC-ACO 21291.6 (0.04%) 21318.3 (0.17%)

kroa200

GS-ACO 29518.8 (0.51%) 29572.4 (0.69%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

kM-ACO 29478.1 (0.37%) 29508.8 (0.47%)

kMed-ACO 29423.6 (0.18%) 29478.6 (0.37%)

DBC-ACO 29378.5 (0.03%) 29406.4 (0.13%)

lin318

GS-ACO 42481.2 (1.07%) 42570.6 (1.28%)

kM-ACO 42360.6 (0.75%) 42394.9 (0.87%)

kMed-ACO 42115.6 (0.2%) 42171.6 (0.33%)

DBC-ACO 42076.1 (0.11%) 42131.9 (0.24%)

3.4.4 Performance Analysis of Algorithms

In this section, we will discuss the impact of various parameters affecting the

performance of the algorithms. A comparative graphs are drawn by varying num-

ber of ants, number of clusters and pheromone trial of different strength for each

variant.

Performance Analysis of GS-ACO

The Kroa100 dataset was used to assess the behavior of algorithm, since it provides

better result compared to other datasets. Figure 3.4 shows the comparative results

of primary updation for GS-ACO. It can be observed from the Figure 3.4(a) that,

better results are obtained, when number of ants are around 50-70% of the total

number of cities. Figure 3.4(b) shows the results for varying number of clusters.

The number of ants was set to 50 and the number of the clusters was set to {10,

23, 36, 47}. It can be observed that, as the number of clusters increases, quality

of solution improves and better solution was obtained, when number of clusters

was around 70% of the number of ants. The pheromone trial is responsible for

remembering the past experiences of the ants. In GS-ACO, lower persistent factor

leads to poor quality of solution and search stagnation occurs, when pheromone

trial strength was 0.7. Figure 3.5 shows the comparative results of secondary

updation for grid strategy. One can observe from comparison of Figure 3.4 and

3.5 that quality of solution has improvised across the variation in the number
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of ants, pheromone trials and for different cluster size. The secondary updation

provides better result for the same parameter values as that of primary updation.

It can be observed that secondary updation provides poor quality of solution for

lower pheromone strength and search stagnation did not occur.

Performance Analysis of kM-ACO

The eil51 dataset was selected to assess the behavior of the algorithm. Figure 3.6

shows the comparative results of primary updation for kM-ACO. Figure 3.6(a)

shows that kM-ACO provides better results, when there are around 30 ants. In-

order to assess the impact of varying number of clusters as shown in Figure 3.6(b),

the number of ants was set to 30 and number of clusters was set to {7, 14, 21, 28}.

The better results were obtained, when the number of clusters is 50% of the num-

ber of ants. Figure 3.6(c) shows that pheromone persistence has a greater effect

on the solution quality and solution quality sharply improvises with the increase

in pheromone trial strength and best result was obtained for ρ=0.99. Figure 3.7

shows the comparative results of secondary updation for kM-ACO. The best solu-

tion obtained by secondary updation is relatively inferior to the primary updation.

However, the Figure 3.7(a) reveals that obtained solutions exhibit least variation

for the varying number of ants and provide best solution 30 ants. Figures 3.7(b)

and 3.7(c) reveal that better result was obtained, when the number of clusters was

70% of the number of ants and for ρ=0.9.

Performance Analysis of kMed-ACO

The eil76 dataset was selected to study the behavior of the algorithm. Figure 3.8

shows the comparative results of primary updation for kMed-ACO. Figure 3.8(a)

shows that algorithm exhibits comparatively less variation in solutions for varying

number of ants and provides better results for smaller number of ants. The kMed-

ACO provides optimal result, when the number of clusters is 50% of the number

of ants as seen in Figure 3.8(b). Similarly, Figure 3.8(c) reveals that quality of so-

lution improvises with the increase in pheromone persistent factor and best result
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was obtained for ρ=0.9. Figure 3.9 shows the comparative results of secondary

updation for kMed-ACO. The kMed-ACO strategy marginally improvises the so-

lution across the varying number of ants and clusters, and provides good solution

for higher pheromone trial. The best solution was obtained when the number of

ants n=30, number of clusters is 14 and trail strength ρ=0.99.

Performance Analysis of DBC-ACO

The st70 dataset was selected to assess the behavior of the algorithm. Figure

3.10 shows the comparative results of primary updation for DBC-ACO strategy.

Figure 3.10(a) shows that DBC-ACO exhibits least variation in obtained solutions

compared to other strategies for varying number of ants and obtains best solu-

tion, when there are around 60 ants. The ASOD was varied from 0.75 to 1.25

with an increment of 0.25. It can be observed from Figure 3.10(b) that, better

results were obtained for smaller value of ASOD i.e., ǫ mean difference = 0.75.

Figure 3.10(c) shows that, quality of solution will improve by retaining most of

the past experiences and provides best result for ρ=0.99. Figure 3.11 shows the

comparative results of secondary updation for DBC-ACO. Figure 3.11(a) shows

that better solutions were obtained for large ants population compared to smaller

ant population and best result was obtained for n=45. Figures 3.11(b) and 3.11(c)

show that algorithm is not so sensitive to varying ASOD and pheromone trial. The

best result was obtained for ǫ mean difference = 1 and ρ=0.8.

Thus, we analyzed the performance of all the four variants and found that

number of clusters, number of ants will affect the performance of algorithm given

the higher values of trial strength. However, convergence time could be reduced in

special cases when the number of ants is larger like in DBC-ACO or when number

of ants is smaller like in kMed-ACO. In a broader sense, the usage or not of clusters

have strong impact on parameter settings for ACO algorithms.
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Figure 3.4: GS-ACO algorithm sensitivity to parameters for primary updation.

 21100

 21200

 21300

 21400

 21500

 21600

10 30 50 70 100

T
ou

r 
Le

ng
th

s

Population of ants

Kroa100 dataset

(a) Variation in number of Ants

 21100

 21200

 21300

 21400

 21500

 21600

10 23 36 47

T
ou

r 
Le

ng
th

s

Number of Clusters

Kroa100 dataset

(b) Variation in number of Clusters

 21100

 21200

 21300

 21400

 21500

 21600

 21700

 21800

 21900

0.7 0.8 0.9 0.99

T
ou

r 
Le

ng
th

s

Pheromone trials

Kroa100 dataset

(c) Variation in Pheromone trials

Figure 3.5: GS-ACO algorithm sensitivity to parameters for secondary updation.
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Figure 3.6: kM-ACO algorithm sensitivity to parameters for primary updation.
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Figure 3.7: kM-ACO algorithm sensitivity to parameters for secondary updation.
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Figure 3.8: kMed-ACO algorithm sensitivity to parameters for primary updation.
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Figure 3.9: kMed-ACO algorithm sensitivity to parameters for secondary updation.
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Figure 3.10: DBC-ACO algorithm sensitivity to parameters for primary updation.
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Figure 3.11: DBC-ACO algorithm sensitivity to parameters for secondary updation.
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3.5 Concluding Remarks

In this chapter, a different framework by coupling unsupervised learning and the

ACO algorithms has been established effectively. This technique is introduced

first time in the ACO literature. The unsupervised learning approach facilitates

the knowledge for ants that will be used for the path updation. The incorporated

knowledge guides the ants towards a region that contains the optimal solution and

better results were obtained, when it was used along with the normal updation

process.

The method exploits the ability of ants to explore the search space, which is

evident from the analysis done in the later sections of this chapter. Having heuris-

tics and cluster based procedures, this approach may be easily applied to many

combinatorial optimization problems. The computational experiments supporting

these variants will be done on train scheduling problem in chapter 5.
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