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Chapter 4

Updation and Evaporation of Pheromone Trials

4.1 Introduction

A fundamental fact in ant trial formation is the indirect interaction and com-

munication of ants through the environment by deposited chemical pheromones

(Dorigo and Blum, 2005). It enables ant colonies to make choices based purely

on local knowledge. Besides the travel time experience (Badr and Fahmy, 2004),

it leads individual ants to use the shortest among several paths to transport food

from distant places into their nest. This stigmergy concept in general allows for a

complex collective behavior of relatively simple agents (Dorigo and Stutzle, 2004)

and inspired a large number of new algorithms and applications especially in the

field of combinatorial optimization problems (Stutzle and Hoos, 2000).

4.2 Preliminaries

Before moving on to the main results, some description on the preliminary notions

on the ‘theory of pheromone’ is necessary. It has been observed that a colony of

ants is able to find the shortest path to a food source. As an ant moves and

searches for food, it lays down a chemical substance called pheromone along its

path. As the ant travels, it looks for pheromone trails on its path and prefers to

follow trails with higher levels of pheromone deposits. If there are multiple paths

to reach a food source, an ant will lay the same amount of pheromone at each

step regardless of the path chosen. However, it will return to its starting point

quicker when it takes the shorter path which contains more pheromone. It is then

able to return to the food source to collect more food. Thus, in an equal amount

of time, the ant would lay a higher concentration of pheromone over its path if it

takes the shorter path, since it would complete more trips in the given time. The

pheromone is then used by other ants to determine the shortest path to find food

as described.
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During the process, another factor affects on the amount of pheromone de-

position namely, evaporation of pheromone, which can be seen as an exploration

mechanism that delays faster convergence of all ants towards a suboptimal path.

The decrease in pheromone intensity favors the exploration of different paths dur-

ing the whole search process. In real ant colonies, pheromone trail also evaporate,

but as we have seen, evaporation does not play an important role in real ant’s

shortest path finding. But on the contrary, the importance of pheromone evapo-

ration in artificial ants is probably due to the fact that the optimization problems

tackled by artificial ants are much more complex than those real ants can solve.

A mechanism like evaporation helps in forgetting of errors or poor choices done

in the past plays the important function of bounding the maximum value achiev-

able by pheromone trails. In S-ACO (Gutjahr, 2000) the pheromone evaporation

is interleaved with pheromone deposit of ants. After each ant has moved to a

next node according to ant’s search behavior, pheromone trails are evaporated by

applying the following equation to all arcs;

τij ← (1− ρ)τij , ∀i, j ∈ A

where ρ ∈ (0, 1] is a parameter, A is the set of all nodes in the problem and

τij is the artificial pheromone trail associated with each arc(i, j). The value of

pheromone evaporation lies between 0 and 1.

4.3 Temporal Effects on Evaporation Mechanism

As pheromone evaporation plays some role in the efficiency of the algorithm, an

effective formula for finding the rate at which the evaporation occurs is needed. A

new formula is proposed, which improves all such attempts done by the researchers

in the past. This section discuss in detail about the mathematical aspects and

also more importantly, the convergence of the formula to authenticate its validity.

Theorem 4.3.1 Let the pheromone evaporation at time t be ρt, where the value

of ρt, lies in the closed interval [0, 1]. Now the recurrence relation for the evapora-
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tion of pheromone at time t + 1 is given by

ρt+1 = α ρt + β(1− ρt) = kρt + β (4.1)

where α, β are two constants such that 0 ≤ α, β ≤ 1 and k = α− β.

Proof. It is obvious that the formula given above is well defined at t + 1. By

hypothesis, ρt at time t must lie in the interval [0, 1]. Thus if we show the value

of ρt+1 is always in [0, 1], the proof is done.

We write f(ρt) = ρt+1. Then from formula (4.1) it follows that f ′(ρt) = α− β.

But then f ′(ρt) = 0 if α = β which leads us to conclude that the maximum value

of ρt+1 is just β, which is less than 1. It is quite obvious that the minimum value

of ρt+1 is achieved only at α = β = 0, in which case ρt+1 = 0. Thus we have

0 ≤ ρt+1 ≤ 1.

Now we establish a new expression for the pheromone evaporation through

exponential generating function.

Theorem 4.3.2 Let the pheromone evaporation at time t be ρt, where the value

of ρt, lies in the closed interval [0, 1] and the rate at which the evaporation occurs

be given by the formula (4.1) with the additional condition α ≥ β. Then

ρt =
β(1− kt)

(1− k)
if k 6= 1 (4.2)

Proof. The exponential generating function for ρt is given by,

f(x) =
∞
∑

t=0

ρt
xt

t!

= ρ0 +
∞
∑

t=1

(kρt−1 + β)
xt

t!

= ρ0 + k
∞
∑

t=1

ρt−1
xt

t!
+ β

∞
∑

t=0

xt

t!
− β

= ρ0 + k

∞
∑

t=0

ρt
x(t+1)

(t + 1)!
+ βex − β
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But then

f ′(x) = k
∞
∑

t=0

ρt
x(t)

t!
+ βex = kf(x) + βex.

Thus we have a first order, first degree, linear differential equation in x as follows;

dy

dx
− ky = βex. (4.3)

where y = f(x). One can easily find its general solution which is given by y =

βex

1−k
+cekx, where k 6= 1 and c being an arbitrary real constant. By taking c = − β

1−k
,

we get a particular solution of (4.3) as

y =
β

1− k
(ex − ekx).

Hence, by using the series expansions for ex and ekx we get,

f(x) =
∞
∑

t=0

ρt
xt

t!
=

β

1− k

∞
∑

t=0

(1− kt)
xt

t!
.

The comparison of corresponding co-efficients in the above two power series yields

the desired formula(4.2).

Remark 1. The value of ρt must be taken as the initial pheromone evaporation

value ρ0, if α = 1, β = 0 or in other way if k = 1. It should be observed that the

above conclusion is not arbitrarily drawn and can be verified by substituting the

values α = 1, β = 0 in identity (4.1).

Remark 2. One can easily see that the theorem 4.3.2 and the remark 1 can be

combined to get the expression for all values of k such that 0 ≤ k ≤ 1 as follows:

ρt =
β(1− kt)

(1− k)
if k 6= 1

= ρ0 if k = 1. (4.4)
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Theorem 4.3.3 The value of ρt given by (4.4) converges.

Proof. From the theorem 4.3.2, we have, ρt = β(1−kt)
(1−k)

if k 6= 1. We are

aware of the fact that t→∞⇒ kt → 0, if k 6= 1. Therefore

lim
t→∞

ρt =
β

(1− k)
if k 6= 1.

If k = 1, it is obvious that the sequence {ρt} converges to ρ0.

Remark 3. By giving appropriate values for the parameters α, β, we can get

the limit of convergence of ρt equal to zero or close to zero. Then the pheromone

evaporation becomes almost nil which is expected during the implementation of

ACO. Therefore the formulae given above shall enhance the performance quality

of the ACO algorithms.

4.4 Runtime Analysis

We now do comparative runtime analysis between 1-ANT and a simple evolution-

ary algorithm called (1 + 1) EA, which has been extensively studied with respect

to its runtime distribution. Even though it is already done for a particular range

of the value of the evaporation ρ we verify it for the new formula given in the paper

(Prasanna and Raghavendra, 2011). The (1 + 1) EA starts with a solution x0

that is chosen uniformly at random and produces in each iteration a new solution

x from a currently best solution x0 by flipping each bit of x1 with probability 1/n.

Hence, the probability of producing a certain solution x with Hamming distance

H(x, x1) to x0 is (1/n)H(x,x0)(1 − 1/n)n−H(x,x0). In the following, we consider the

1-ANT with values of ρt = β(1−kt)
1−k

if k 6= 1 in the theorem 4.3.2. Here one can see

that the 1-ANT behaves as the (1+1) EA on each function. This also means that

the 1-ANT has the same expected optimization time as the (1 +1) EA on each

function. Before going to our prime theorem we state an important lemma due to

Neumann and Witt, (2009).
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Lemma 4.4.1 For all ρ ≥ n−2
3n−2

, the 1-ANT has the same runtime distribution

as the (1+1) EA on each function.

For large values of n, lemma is true for ρ ≥ 1
3
. With the help of this, we show that

the new formula proposed in theorem 4.3.2 for ρt also makes 1-ANT algorithm to

have the probability to produce a specific solution that has a Hamming distance

as same as in the case of (1+1)EA.

Theorem 4.4.2 Choosing the values of α, β in ρt such that α + 2β ≥ 1, the

1-ANT has the same runtime distribution as the (1+1) EA on each function.

Proof. Note that ρt ≥
β

(1−k)
. In view of the lemma 4.4.1, it suffices to show that

β

(1− k)
≥

1

3

We have α + 2β ≥ 1 ⇒ 2β ≥ 1 − α ⇒ 3β ≥ 1 − α + β = (1 − k). Simple

rearrangement yields the desired inequality.

The below theorem is on the relative change of pheromone values before and

after the pheromone updation. The part of this theorem has appeared in Neumann

and Witt (2009) and we acknowledge the paper for motivating us to come up with

this theorem.

Theorem 4.4.3 Let e1 and e2 be two edges of connected graph of a combina-

torial problem and let τ1 and τ2 respectively be their current pheromone values in

the 1-ANT. Let τ ′1 and τ ′2 respectively be their updated pheromone values for the

next accepted solution x. If e1 and e2 are in the path P(x) of the accepted solution

x then

|τ ′1 − τ ′2| = |τ1 − τ2|[1−
β

1− α + 2nβ
] (4.5)

Proof. The pheromone values in 1-ANT are updated if edge (u, v) is contained

in the path P (x) of the accepted solution x. The pheromone value updation

formulae are given by Neumann and Witt (2009) as follows;

τ ′1 =
(1− ρ)τ1 + ρ

1− ρ + 2nρ
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τ ′2 =
(1− ρ)τ2 + ρ

1− ρ + 2nρ

But then,

τ ′1 − τ ′2 =
(1− ρ)(τ1 − τ2)

1− ρ + 2nρ

Thus by taking ρ = β
(1−k)

and considering both the possibilities τ1 ≥ τ2 and

τ2 ≥ τ1 we will arrive at the expression (4.5).

4.5 Concluding Remarks

In this chapter, an investigation on pheromone update mechanism is discussed.

The modification we suggested for the pheromone evaporation, refines the exist-

ing algorithm. But in any case our results show that the efficiency of the ACO

algorithm is vulnerable with respect to the choice of ρt.

The description on theoretical runtime analysis of ACO algorithms comprising

of some formal techniques might be helpful for further investigations of this type

with the available results. Moreover the results established in section 4.4 give

some hints on the appropriate choice of rate of evaporation.
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