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Chapter 5

Application of ACO to Train Scheduling

Problems

5.1 Introduction

The railway traffic system forms a backbone transport system of a nation. The

rail transport system started with the invention of steam engine in 1785. Initially,

it was mostly used for commodity freight transportation and later it was extended

for passenger transportation. In the year 1825, for the first time steam-locomotive

hauled a passenger train and people were transported in open coal wagons. The

Railway transportation in the mid-eighteen century were quite different than to-

day. There was no timetable at all; the railway operators could run their trains,

whenever the trajectory was free; they literally fought for the right of using the

tracks. There was virtually no safety system and collision was avoided only by the

low speed of the trains.

The pioneers of passenger railways ( Maroti, 2006 ) would be quite astonished

to see what their dreams have evolved into. Railways are now part of our every-

day life. Trains operate according to carefully set-up timetables, safety has highest

priority and comfortable carriages make long journeys easily bearable. For over a

century, the development level of a country was directly measured by the density

of its railway network. Till today, passenger and freight railway transportation

play an important role in the economy of many countries.

For many years, railway transportation did not have to face much competi-

tion in public passenger and freight transportation. In the past two decades, the

railways have lost a large part of their market share to automobiles and in last

decade air traffic took over many middle and long distance train travelers. These

developments have forced the railway operators to raise their service level in order

to attract more customers and to cut their costs by working more efficiently. Rail

operators can reach these goals by improving their planning process.
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Railway companies have nearly inexhaustible sources of planning problems.

Most of them are dealt with manually and lack automation and optimization.

Railway applications have attracted the attention of mathematical research. Many

problems are combinatorial in nature and suitable for Operations Research meth-

ods. In the last decade, computer-aided tools turned out to improve the railway

planning process significantly and has contributed a lot to these successful ap-

plications. It shall be exciting to see, to what extent railway planning can be

automated and optimized in the coming years and decades.

5.2 Railway Transportation as an Optimization

Problem

The Railway transportation industry (Cordeau et al., 1998) is rich in terms of

problems that can be modeled and solved using mathematical optimization tech-

niques. However, the related literature has experienced a slow growth and most

contributions deal with simplified models or smaller problem instances failing to

incorporate the characteristics of real life applications. This situation was surpris-

ing, given the considerable potential savings and performance improvements that

may be realized through better resource utilization. In next subsection, we discuss

the steps involved in the planning process and provide a brief description on the

optimization problems that arise in each of these steps.

5.2.1 Railway Planning as an Optimization Problem

Railway transport planning is a very complex task, which needs to be carried

out keeping various stakeholder’s interest in mind. The complexity of railway

transport planning ( Ghoseiri et al., 2004 and Lindner, 2000 ) process can be

divided into several steps. Figure 5.1 shows this decomposition.

103



Demand Analysis

   Line Planning

  Train Scheduling

Rolling Stock Planning

    Crew Scheduling

    Crew Rostering

Strategic Planning

Tactical Planning

Figure 5.1: The hierarchical planning process in public rail transport.
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The following is a brief description on the hierarchical planning process.

1. Demand Analysis - In order to plan railroad services ( Bussieck et al., 1997

), one needs to have the information on the number of the passengers trav-

eling from each location to any other location in the network along certain

routes. Such information can be obtained by traffic counts and spot tests

of passenger interrogations on some stations of the network. This method

suffers from inherent inconsistencies like traffic counts that are not collected

simultaneously. The optimization problem in demand analysis involves in

deriving a reliable estimates for the origin-destination demands. Cascetta

and Nguyen (1987) suggested an estimation method based on least squares

and maximum likelihood. Sherali et al. (1994) proposed a linear program-

ming approach for the Origin-Destination (OD) -matrix estimation problem

considering all paths between an OD-pair.

2. Line Planning - Lines are the fundamentals of periodically scheduled rail-

way transport systems. A line is a route in the railroad network connecting

two terminal stations. The frequency of a line is the number of trains that

serve this route in a fixed time interval. The line optimization problem

consists in choosing a set of operating lines and its frequencies to serve the

passenger’s demand and to optimize some of the given objectives. Claessens

et al.(1995) worked on minimum cost line plans. Bussieck et al. (1997) sug-

gested a model for improving the comfort of the travelers considering the

line plan design.

3. Train Scheduling - A train schedule consists of arrival and departure times

for trains at each station. Each line l in the network is associated with the

events i.e., arrival and departure of trains with a certain frequency of basic

period T as described in a line plan. The consecutive events are subject to

several constraints, since trains have to share the resources of the network.

Hence, it is necessary to allocate enough time to enter and leave a line and

to provide a safety distance between subsequent trains on the same track

or platform. The usual objective for the evaluation of train schedules is to
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minimize the traveling time. More recently, the problem of finding a periodic

time table has received a lot of attention in the literature. Serafini and

Ukovich (1989) proposed the Periodic Event Scheduling Problem (PESP)

model to handle the periodic time table problem.

4. Rolling Stock Planning - The rail stock consists of locomotives and wag-

ons. These stocks are combined to have a train. The length of the train

depends on the number of the wagons. The coupling, decoupling opera-

tions are carried out at the station terminals depending on the operational

requirements. The rolling stock planning process consists of acquisition of

new rolling stock, assignment of different lines to the network, etc. The main

objective of the process is to find rolling stock schedules with low operational

costs and high service quality. Alfieri et al. (2006) focused on the determi-

nation of appropriate numbers of train units of different types together with

their efficient circulation on a single line. Abbink et al. (2004) proposed a

model to find an optimal allocation of train types and subtypes during peak

hours time.

5. Crew Scheduling - Crew Scheduling is a part of Crew Planning. The Crew

Planning is a typical problem arising in large transit system like railways.

The crew scheduling can be further decomposed into Crew Scheduling and

Crew Rostering. Crew Scheduling involves assignment of crew for various

train services (movements of passenger or freight trains between stations)

that need to be performed on a day to day basis. The crew assignment pro-

ceeds as follows: Each train service is first split into a sequence of trips also

called as train journey segments. Each trip is characterized by departure

station, departure time, arrival station, arrival time and the journey time.

After arriving at the various trips, crew scheduling involves assignment of

crew located at various depots to each of these trips ensuring all the oper-

ational constraints are met at the minimal cost. Although, the cost may

depend on several factors, the main objective is to minimize the global num-

ber of crews needed to perform all the train services. Kroon and Fischetti
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(2000) proposed a model based on set covering with additional constraints

for scheduling train drivers and conductors for the Dutch railway operator

NS Reizigers. Abbink et al. (2004) proposed a model for duty allocation

to drivers and conductors based on planning support system called TURNI.

TURNI is a set covering model that solves the problem by a combination

of dynamic column generation, Lagrangian relaxation, and heuristic search

methods.

6. Crew Rostering - The Crew Rostering Problem (CRP) aims at deter-

mining an optimal sequencing of a given set of trips into rosters satisfying

operational constraints that are derived from union contract and company

regulations. The main objective of the CRP is to evenly distribute the

workload among the crews and to use the minimum number of crews while

constructing the roster for the given period. Caprara et al. (1998) developed

a heuristic based on a mixed integer programming formulation to determine

a roster with a minimum number of weeks such that each duty is done once

every day. Hartog et al. (2009) proposed a method for solving the cyclic

crew rostering problem.

The planning process follows the top-down approach. The top-down approach

has the advantages like problem decomposition, in which problem can be broken

down to manageable size and can be individually solved. In addition, decomposi-

tion supports various planning interval that arise from other classical subdivision

consisting of Strategic, Tactical and Operational procedures ( Assad, 1980 ). In

strategic planning level, some decisions are made about infrastructure investments.

These decisions are long-term decision and require greater costs. These decisions

are greatly affected by political considerations. The infrastructure of the network

develops in this phase. The tactical planning level is in fact the resource alloca-

tion phase. Most of line planning details and train schedule planning are done in

this phase. Operational planning is just the day-by-day decisions. The decisions

regarding unexpected events like breakdowns, special trains or short-term changes

in the infrastructure caused by construction sites, certain parts of the schedule,
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Table 5.1: Planning levels in train transport.

Planning stages Time horizon Objective
Tactical level 1 - 5 years Resource allocation
Strategic level 5 - 15 years Resource acquisition
Operational level 24 hours - 1 year Daily planning

rolling stock, or crew assignment patterns will be taken. This work focuses on

time table generation and to arrive at the schedule order for the train that has

a minimal waiting time for the entire scheduled trains. Table 5.1 shows the time

horizon and objective of each planning stage.

The train timetable generation is a tedious and time consuming task. Tra-

ditionally, timetable is generated manually by trial and error method based on

experience and information. The advent of computer aided tools have helped the

planner to come up with the effective timetable ( Caprara et al., 2007 ,Kroon et al.,

2009 ) and to assess the effectiveness in terms of robustness in routing ( Zwaneveld

et al., 2001 ), revenue profitability etc. The aim of the train scheduling problem

is to come up with the ideal timetable that satisfies several objectives. The ob-

jectives can be; maximizing the number of passengers, minimizing the number of

conflicts, waiting time of the passengers, revenue maximization and so on. Hence,

scheduling is a multi-objective optimization problem. In next subsection, we will

discuss about the set of constraints related to the train scheduling problem.

5.2.2 Constraints in Train Scheduling Problem

The idealistic timetable (Tormos, 2008) needs to satisfy the following constraints

and these can be grouped into three categories.

1. User Requirements :

a. Interval for the Initial Departure - Users expect that each train should

leave the starting station within specified time bound.

b. Interval for the Arrival time - Users expect that each train should arrive

at the final station within specified time bound.
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c. Maximum Delay - Users expect that each train should complete its

journey within the specified upper bound journey time.

2. Traffic Constraints :

a. Journey time - The time needed to travel from one station to another

station.

b. Crossing - Two trains traveling in opposite directions cannot occupy

same track at the same time.

c. Commercial Stop - Each train is expected to stop in station for C units

of time.

d. Overtaking on the track section - Overtaking must be avoided between

any two trains going in the same direction on any double-track sections

of their journeys.

e. Delay for unexpected stop - When a train stops in a station to avoid con-

flicts with other trains (overtaking/crossing) and no commercial stop is

planned in that station, then a time delay needs to be incorporated in

the journey time of train to reflect the delay in the arrival time of next

station.

f. Reception Time - The difference between the arrival times of any two

trains in the same station.

g. Expedition Time - The difference between the departure and arrival

times of any two trains in the same station.

h. Simultaneous Departure - The difference between departure times of

two trains leaving from the same station moving in opposite directions.

3. Infrastructure Constraints :

a. Finite Capacity of Stations - A train can arrive at station, if at least

one track is available for stoppage.

b. Closing Time - The station will be closed during closing time for main-

tenance operations. The closing time imposes constraints over regular
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operations. During closing time, trains can pass but cannot stop in the

station or it may not be allowed neither pass nor stop.

c. Headway Time - If two trains are traveling in the same direction, then

∆ time difference need to be maintained in terms of departure of trains.

It is possible to deduce many more constraints to reflect the realistic railway

schedules. The constraints described above are generic constraints that need to

be satisfied by any idealistic timetable.

5.3 Literature Review

In this section, we will review the literature related to railway scheduling and ori-

enteering problem, which will be used as a benchmark program for train scheduling

problem.

5.3.1 Railway Scheduling

The train scheduling problem involves determining the arrival and departure at

each station, ensuring no collisions occur between the trains and all the opera-

tional constraints are satisfied. The train timetable design is carried for a larger

fragment of railway network, a longer time horizon and larger number of trains.

The physical railroad network is shared by a large number of trains; it is indeed

necessary to synchronize the use of the available resources. Also, the simultaneous

scheduling of freight and passenger trains has an important impact on the quality

and level of service provided to the public.

The earlier models for train scheduling considered only the set of stations con-

nected by a single line. Nemhauser (1969) developed the timetable for passenger

trains on a line of stations. The problem of finding a periodic train timetable that

minimizes the passenger waiting time in station has received a lot of attention in

the literature. Some of the optimization models are proposed for that purpose by

Cedar (1991), Nachtigall (1996), Nachtigall and Voget (1996) and Odijk (1996).

The strategy of choosing a set of operating lines and their frequencies to serve

110



demand and maximize the number of travelers on direct connections was studied

by Bussieck et al. (1996). Zwaneveld et al. (1996) and Kroon et al. (1997)

by developing models and algorithms for routing trains through railway stations.

Nachtigall and Voget (1997) proposed a model for choosing the track segments to

be upgraded so as to reduce train running times and to minimize total passenger

waiting time.

As already mentioned, the train scheduling problem belongs to a category of

NP-hard problems and it is complex for both modeling and solving. The huge

search space to explore, when solving real-world instances of scheduling problems

makes heuristic techniques a suitable approach to obtain a feasible time table.

Heuristic techniques provide the result in reasonable amount of time. These tech-

niques use the domain knowledge of the problem to arrive at the solution. Cai and

Goh (1994) used the greedy heuristic approach to resolve the conflicts. A set of

rules were devised to determine the best way to resolve the conflicts. The results

obtained using heuristics often deviate more from the optimal solution. Kraay et

al. (1991) proposed a heuristics based on Local Heuristics Search (LSH) that tries

to resolve the conflicts by looking into previous schedules. The LSH technique

replaces the existing solution with the better solution by searching in the neigh-

borhood region. The train conflicts that happens at sidings were shifted by one

position and solution is accepted, if it results in minimum conflict delay. Higgins

et al. (1997) proposed a methodology that combines LSH and tabu search to shift

more than one conflicts at a time with the intention to have a reduced total conflict

delay. Kwan and Mistry (2003) used the co-evolutionary approach to generate the

automatic timetable. Tormas et al. (2008) used genetic algorithms to solve the

train timetable problem. The chromosomes were encoded using the activity list

representation and genes are represented with a sequence of (train, section) pair.

The genes are organized to satisfy the feasibility constraint that ensures no two

trains occupy the same track at the same time. The problem involves generating

a population of chromosomes that satisfy the feasibility constraints and selecting

the best chromosome that results in minimum conflict delay.
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5.3.2 Orienteering Problem (OP)

The name Orienteering Problem (Vansteenwegen et al., 2011) originates from the

sport, game of orienteering. In this game, individual competitors start at a speci-

fied control point, try to visit as many checkpoints as possible and return to the

control point with-in a given time frame. Each checkpoint has a certain score

and the objective is to maximize the total collected score. The OP is a combina-

tion of vertex selection and determining the shortest Hamiltonian path between

the selected vertices. As a consequence, the OP can be seen as a combination of

Knapsack Problem and the TSP. The OP’s goal is to maximize the total score

collected, while the TSP tries to minimize the travel time or distance. Further-

more, not all vertices have to be visited in OP and determining the shortest path

between the selected vertices will be helpful to visit as many vertices as possible

in the available time. An OP can be stated as follows: given a set of n nodes and

scores for each node, the goal is to find the subset of nodes starting from vertex

1 to vertex n that maximizes the total score within the time Tmax. The edges

connecting the vertex are associated with time t and once a vertex is covered,

it should not be considered for further inclusion in journey. It should be noted

that, all the vertices may not be covered due to timing constraints Tmax. Hence,

problem of finding the multiple paths from source to destination vertex with the

timing constraints is an NP hard problem. The OP reduces to generalized TSP,

if Tmax is relaxed or sufficiently large with the possibility to cover all the vertices.

5.4 A Model for Train Scheduling Problem

In this section, we will discuss the generally used terminology, set of referred

notations and the input requirements of the model. The model is described by

objective functions and the constraints that are supposed to be satisfied.
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5.4.1 Definitions

1. Sidings - It is an unexpected stop that occurs on partially double track

section for crossing or passing of trains.

2. Conflict Delay - The amount of time spent by train due to sidings on the

track.

3. Minimum Headway - The minimum duration of time separating two trains

on a single track.

4. Train Conflict - It occurs under two circumstances on single track line:

a. When two trains approach each other.

b. When a fast train catches up the slow train.

5. Resolving a Conflict - If two trains are involved in conflict, then one of the

trains must be forced for sidings so that other train can cross or pass it.

6. Line Time - The time taken by the train to cover the line.

7. Dwell Time - The waiting time of a train in a station.

8. Station - A place where passengers will board or get down from the train.

l

UP                                                                                                                                            DOWN

Station Platform

321

0 1 32

S SS

t t t t

Figure 5.2: Train diagram.
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Figure 5.2 shows the single track which is divided into lines l. The partial

double lines {S1, S2, S3} repeat at every alternate line. It can be observed that,

one of the siding is present next to station. The train t0 can conflict with t1 and

conflict can be resolved by siding one of the trains, so that crossing can take place.

The UP trains move from left to right direction and the DOWN trains move from

right to left direction.

5.4.2 Notations

The following notations were used to represent the model:

• T : Set of trains {t1, t2, .., tn}.

• Tup ⊂ T : Set of n/2 trains moving in up directions.

• Tdown ⊂ T : Set of n/2 trains moving in down directions.

• T = Tup ∪ Tdown and Tup ∩ Tdown = ∅.

• L : Set of lines {l1, l2, .., lm}. Set of lines connecting a pair of stations.

• S : Set of stations { s1, s2, .., sj }

j ≪ m and S ⊂ L.

• pml : Set of partial multiple lines. It can be obtained by

pml = L mod k

k controls the re-occurrence of partial multiple lines.

• Φ : Time spent by the train to cover the line.

• ∆ : Specifies the minimum headway time.
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5.4.3 Variables

• A
tj
i : Represents the arrival of train tj on line i.

• D
tj
i : Represents the departure of train tj from line i.

• Υ
tj
i : Commercial stoppage or Dwell time of train tj on line i.

5.4.4 Objective function

The objective function is to minimize the total conflict delay that arises due to

unavoidable sidings.

Mincd =
∑

i∈T

∑

k∈DL

Ati
k −Dti

k (5.1)

subject to constraints:

• Line time constraints specify the minimum amount of time, the train

need to cover the line.

Di −Ai = Φ

• Headway constraints specify the minimum time difference need to be

maintained between the departure of a train and the arrival of another train

in the same direction on the same line.

Atm
i −Dtn

i = ∆

• Train dispatch constraints

– Train scheduled in up direction will use the lines in the following order:

{ li, li+1, li+2, ..., lk }

– Train scheduled in down direction will use the lines in the following

order:

{ lk, lk−1, lk−2, ..., li }
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where i ≥ 0, k ≤ n and i < k.

• Stop time constraints specify the minimum time, the train needs to stop

on a station line.

Atm
i −Dtm

i = Υ tm
i

5.4.5 Assumption

The model is designed, keeping Indian Railways (IR) in mind. However, model’s

robustness lies in its ability to expand beyond the scope of application. The

following assumptions are made with regard to the model and an attempt is made

to keep the assumptions as realistic as possible by considering the operational

activities of IR:

• All the stations are identified with respect to line numbers li and will have

partial double lines. These partial double lines are in addition to DL.

• All the trains will travel with the same speed, will have same length, dwell

time and have equal weightage, in the sense there will be only one type of

train.

• The train ti that starts its journey in up direction from source to destination

station will come back again to source station in its down journey, but with

the different train identifier say tj .

• All the trains will run on a daily basis.

• All the lines are of equal length. The length of line will be more than the

length of the train, which ensures crossing can be done without any problem.

• A train cannot be rescheduled in order to adjust the crossings with respect

to unscheduled train.

• At any time, line is occupied by only one train (to ensure operational safety).

• The time measurement is expressed in minutes. The range of time spans

from 1 - 1440 (24 X 60 ). We refer each minute as one time unit.
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5.4.6 Input

The following input parameters are considered for the model:

• Orgti = Origin station for train ti ∈ T expressed in terms of line number.

• Dstti = Destination station for train ti ∈ T expressed in terms of line num-

ber.

• n = Number of trains.

• L = Number of lines.

• S = Number of stations.

• ∆ = Headway time, expressed in terms of time unit.

• Φ = line time, expressed in terms of time unit.

• Υ = Commercial waiting time in station, expressed in terms of time unit.

5.5 ACO framework for Train Scheduling Prob-

lem

The train scheduling problem can be transformed into OP problem, since it gen-

eralizes the TSP. The train scheduling problem is a minimization problem with

an objective to minimize the conflicting time whereas OP is a maximization prob-

lem with an objective to maximize the collected scores. A complete graph G=(V,

E) called Train Schedule Order Graph (TSOG) is defined, where V is the set of

vertices {v1, v2, ..., vn} and E is the set of edges {e1, e2, ..., em}. V corresponds

to set of trains and ei ∈ E connecting ti with tj depicts the schedule order

(i.e., ti followed by tj or vice versa). Each edge is undirected, weighted, sym-

metric and associated with pheromone trail that stores the goodness of selecting

the edge in previous schedules. The ants will use TSOG representation to move

from one vertex to another vertex in order to construct the train schedule order.
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Figure 5.3 shows the TSOG representation consisting of 5 trains. If ant has se-

lected t0 as the starting train, then the possible schedule selection order can be

t0 → t2 → t4 → t3 → t1.

t0

t1

t2

t3

t4

Figure 5.3: Train Schedule Diagram.

The generic pseudocode for Ant Based Train Scheduling Problem is given by

Algorithm 13:

Algorithm 13 Ant Based Train Scheduling Problem Algorithm

Initialize the parameters relevant to ACO and train scheduling application
while termination condition is not met do
for i = 1, 2, ...n do
for j = 1, 2, ...m do

ScheduleTrain
end for
UpdatePheromone

end for
end while

The train scheduling problem is encoded with the TSOG G = (V, A), a com-

pletely connected graph whose nodes V represent the trains and arcs A represent

the schedule order between the train. Finding a solution means constructing a

feasible walk in G. The pseudo-code essentially consists of two procedure namely

ScheduleTrain and UpdatePheromone. The ScheduleTrain procedure constructs

the train schedule order by traversing TSOG. The UpdatePheromones procedure

modifies the pheromone on TSOG arcs. In subsequent sections, the solution con-

struction procedure followed by the ants will be described.
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5.5.1 Tour Construction

The solution construction proceeds as follows: The edges in TSOG will be initial-

ized with pheromone trail of quantity τ0 = 1
n∗η0

, where n is the number of trains

and η0 is the least time difference between two scheduled trains. Initially, each ant

will be randomly assigned the starting train. The selection of next train scheduled

by ant k will be based on probabilistic function of next nearest schedule time of

the train and the amount of pheromone trial present on the connecting path. The

probabilistic function is given by the equation:

pktitj =
[τtitj ]

α. [ηtitj ]
β

∑

k/∈tabulist[τtitj ]
α. [ηtitj ]

β
(5.2)

τtitj is the heuristic information, that specifies the amount of pheromone present

on the path between ti and tj and ηtitj is the visibility factor, computed as

1

D
ti
Orgti

−D
tj
Orgtj

. The two parameters α and β control the importance of previous

experience and the visibility factor. A tabu list is maintained for each ant k in-

order to keep track of selected trains and to ensure that no train is selected more

than once in a given iteration. After the selection, train will be scheduled ensuring

all the constraints are satisfied. If there are n trains, then each ant will make n−1

trains selection to come up with a single train schedule order.

5.5.2 Pheromone Updation

The train during its journey experiences the conflict delays in the form of crossing

and passing which affects its total journey time. The individual ants construct

the individual train schedule order and the selection experience can be expressed

as Total Conflict Time (TCT). The TCT time is defined as sum of all the conflict

delays experienced by all the trains in a single schedule order. The TCT will

be used for trial reinforcement along the selection path of the trains. The trial

reinforcement is done according to the following equation:

τtitj = ρ· τtitj + ∆τtitj (5.3)
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where ρ ∈ [0,1] is pheromone coefficient such that (1-ρ) represents the evaporation

rate.

∆τtitj =
m
∑

k=1

∆τktitj

where ∆τktitj is the amount of pheromone trial laid by the ant k on the edge(ti, tj)

and it is given by equation.

∆τkij =







Q/Lk if the kth ant travels on edge(ti, tj)

0 otherwise
(5.4)

where Q is a constant and Lk is the total conflict time of the kth ant.

5.6 Experimental Study

The proposed model is extensively simulated to identify the schedule that has

minimal conflict delay. The model was analyzed with basic ant variants available

in the literature as well as proposed algorithms which are listed in Table 5.2.
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Table 5.2: ACO variants used to analyze the train scheduling model.

Class of Algorithms Algorithms

Basic Ant Variants

AS

ACS

EA

RA

MMAS+GB

MMAS+GB+PTS

Punished Ants System
PEAS

PRAS

Performance Linked Influential Elitist Ant System

PLIEASMR

PLIEASM

PLIEASMed

PLIRASMR

PLIRASM

PLIRASMed

Punished Performance Linked Influential Elitist Ant System

PPLIEASMR

PPLIEASM

PPLIEASMed

PPLIRASMR

PPLIRASM

PPLIRASMed

Cluster Integrated ACO variants

GS-ACO

k-Means ACO

k-Medians ACO

DBSCAN ACO
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5.6.1 Parameter Settings and Input to the Algorithm

The parameters relevant to ACO were set as follows:

• α, β was varied from 1 to 5.

• ρ was varied from 0.7 to 1.0 with incremental value of 0.5.

• Number of ants m was set to 20.

• Number of punished ants were varied from 5 to 15.

The parameters relevant to train scheduling problem were set as follows:

• Number of trains n = 20.

• Number of lines L = 200.

• Number of stations S = 15.

• Headway time ∆ = 6.

• line time Φ = 3.

• Commercial waiting time Υ = 2.

• k that controls the repeatation of double line was set to 8.

The input to the algorithm were set as follows:

• The line number l = { 0, 17, 38, 47, 56, 72, 80, 95, 117, 126, 149, 163, 179,

190, 199 }, where li ⊆ L and each li represents the line number associated

with the station.

• The train origin station and destination station are expressed in line num-

bers. The train details are expressed in tuple TP =< Orgti, Dstti, DeptOrgti
>,

where Orgti, Dstti represents the origin and destination station of train ti

and DeptOrgti
represents the departure time of train ti from the origin sta-

tion. The train details considered for the experimental purpose is < {38,

117, 330}, {95, 190, 680}, {56, 149, 740}, {126, 199, 1120}, {17, 179, 445},
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{72, 190, 870}, {80, 199, 1300}, {38, 126, 540}, {0, 199, 1430}, {56, 163,

990}, {117, 38, 1202}, {190, 95, 475}, {149, 56, 670}, {199, 126, 1400},

{179, 17, 800}, {190, 72, 100}, {199, 80, 1350}, {126, 38, 340}, {199, 0,

550}, {163, 56, 1190} >.

5.6.2 Result Analysis of Algorithms for Fixed Commercial

Waiting Time

The experimental simulations were carried out in two parts. In first part, commer-

cial waiting time for all the stations was fixed as specified in the parameter settings

and in second part it was varied. In reality, commercial waiting time depends on

various factors like the importance of station, operational activities like loading of

parcel items, coupling and decoupling of locomotives etc to name a few. In the

second part comparative analysis will be done for both Fixed Commercial Waiting

Time and Variable Commercial Waiting time. The assessment was performed for

basic as well as newly proposed ant variants.

Basic Ant Variants

Table 5.3 shows the comparative analysis for some of the important ant algorithm

variants available in the literature. The model assessment was done with respect

to TCT by considering the fact that best schedule order paths will have smaller

TCT value. The smaller TCT value indicates the smaller waiting time for the

scheduled trains. Table 5.3 reports the TCT and the observed parameter val-

ues. The experiment was carried out for partial double lines (pml=2) and partial

triple lines (pml=3). For the partial double lines, best TCT was obtained for RA

and for partial triple lines, ACS provides the best result. The MMAS+IB and

MMAS+IB+PTS variants suffer from search stagnation and this may be due to

‘limiting the pheromone strength’ mechanism of algorithm. It can be observed

that, limiting mechanism overcomes the search stagnation for ACO algorithms

which use TSP as a benchmark problem, but for an OP problem, it leads to

search stagnation. The results obtained when pml=3 are better than the results
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when pml=2, demonstrating the fact that better availability of lines for sidings

results in lesser waiting time on stations/ partial multiple lines. The comparison

of best results for pml=2 and pml=3 parameter settings reveals that waiting time

for pml=3 has decreased by 8.56%. Another interesting observation can be made

with respect to ACO parameters for the obtained TCT values. The observed pa-

rameter values for α is predominantly high for both pml=2 and pml=3. Similarly,

lower β values are observed for pml=3.

Table 5.3: Performance of basic ant variants for fixed commercial waiting time.

pml = 2 pml = 3
Algorithms TCT Parameter details TCT Parameter details

AS 790 α=3 β=3 ρ=0.75 757 α=4 β=3 ρ=0.75
ACS 787 α=3 β=4 ρ=0.85 716 α=4 β=1 ρ=0.85
EA 792 α=4 β=1 ρ=0.75 751 α=5 β=1 ρ=0.7
RA 783 α=4 β=2 ρ=0.85 722 α=3 β=1 ρ=0.9

MMAS+IB 1023 α=1 β=4 ρ=0.70 1025 α=2 β=1 ρ=0.8
MMAS+IB+PTS 1023 α=1 β=4 ρ=0.85 1025 α=4 β=3 ρ=0.9

Figure 5.4 provides the comparative analysis of basic ant variants for pml=2.

It can be seen from Figure 5.4(a) that all the variants have lesser waiting time

for smaller ant population of size 5. RA variant provides consistently good result

in terms of lesser waiting time to the variation in number of ants. Similarly,

EA exhibits large variation for the observed waiting times. It is quite interesting

to see that AS, ACS and RA have nearby waiting time and show a converging

trend for ant population of size 20. Figure 5.4(b) shows the performance graph

for variation in pheromone trial. The RA variant exhibits lesser variation in the

observed waiting time. All the variants have least waiting time for ρ in the range

of 0.75-0.85.

Figure 5.5 provides the comparative analysis of basic ant variants for pml=3.

Figure 5.5(a) shows that ACS and RA have lesser waiting time than AS and

EA for varying number of ants. Infact, ACS and RA provide least waiting time

for n=15. The ACS variant has consistently outperformed and AS variant showed
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Figure 5.4: Performance comparison of basic ant variants for partial double lines
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125



worst performance in terms of waiting time across the variation in number of ants.

Similarly, 5.5(b) depicts the algorithms performance for variation in trial strength.

The graph looks quite interesting as relatively lesser deviation in waiting time has

been observed for lower pheromone strength and it increases after ρ=0.8 across all

the variants. RA variant exhibits comparatively smaller variations and AS shows

larger variation in waiting time for varying trial strength.

Punished and Performance Linked Ant Variants

The Chapter 2 discusses the integration of punishment mechanism and influential

ant selection mechanism in ACO variants. The punishment mechanism is charac-

terized by punishing the non-elite ants, in which specified amount of pheromone

trails will be taken out of the paths traveled by the non-elite ants and the number

of non-elite ants will be specified as a part of parameter settings. The chapter 2

also discusses the dynamic ant selection mechanism called Influential Ants (IA)

selection mechanism that identifies the elite and non-elite ants based on the IA

specification.

The IA selection mechanism was extended to EA and RA ant variants resulting

in PLIEAS and PLIRAS class of algorithms. The statistical tools like mean,

median and mid-range were integrated with these class of algorithms that resulted

in several variants. In PLIEAS, additional reinforcement will be done for the elite

paths proportionate to the quality of solution found by the ants and in case of

PPLIEAS, additional pheromone enforcement will be done for elite paths and non-

elite paths will be punished by additional pheromone evaporation proportional to

the quality of solution.

Inorder to demonstrate the superiority of proposed mechanisms; PEAS, PLIEAS

and PPLIEAS were applied to train scheduling problem. The TCT is used as a

measure to assess the performance of train scheduling problem and it will form the

basis for pheromone updation. In case of PEAS, PLIEAS and PPLIEAS, TCT’s

reported by elite ants will be a basis for additional reinforcement on the sched-

ule order paths and additional pheromone evaporation will be done for non-elite
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schedule order paths reported by non-elite ants for PPLIEAS. For the experimen-

tation purpose, number of non-elite ants nea were varied from 5 to 15 and in case

of PLIEAS and PPLIEAS, elite and non-elite ants selection will be done as per

algorithmic specification.

Table 5.4 shows the comparative results for PEAS, PLIEAS and PPLIEAS.

In Punished ant system, PEAS provides the best TCT value and its performance

is at par with basic ant variants (see Table 5.3 pml=2). Similarly, in PLIEAS

and PPLIEAS class, PLIRASM and PPLIRASM provide the best TCT value

with decrease in waiting time of 1.66% and 0.70% respectively, when compared

with the basic ant variants. Another interesting observation is that punishment

mechanism hasn’t improved the performance of IA selection mechanism and shows

an overall increase in waiting time of 0.90%. In general, it can be observed that

punished and performance linked ant variants provide improved TCT values than

the basic ant variants.

Figure 5.6 reveals the performance of the ants for Punished Ant Systems.

Figure 5.6(a) reveals that both the PEAS and PRAS variants provide the best

waiting time for smaller number of non-elite ants population nea size of 5. It

can be observed that, waiting time increased with the increase in the number

of punished ants indicating the negative effect of larger punished ants. Figure

5.6(b) shows the comparative analysis of algorithms for different trial strength.

The figure reveals that PEAS variant provides better waiting time for higher

trail strength than the lower trial strength and least waiting time is observed for

ρ=0.85. Similarly, for PRAS variant, trains experience more conflicts leading to

longer waiting time for ρ setting in the range of 0.8 < ρ < 0.9 and provides better

TCT values for ρ=0.95.
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Table 5.4: Performance of punished and performance linked ACO variants on Train Scheduling Problem for fixed commercial
waiting time.

pml = 2
Class Algorithms TCT Parameter details

PEAS 788 α=4 β=3 ρ=0.85
Punished Ant System PRAS 792 α=1 β=3 ρ=0.95

PLIEASMR 793 α=3 β=1 ρ=.75
PLIEASM 794 α=4 β=1 ρ=0.75

Performance Linked Influential Elite Ant Systems PLIEASMed 783 α=5 β=1 ρ=0.70
PLIRASMR 776 α=5 β=1 ρ=0.8
PLIRASM 770 α=3 β=1 ρ=0.7

PLIRASMed 776 α=5 β=1 ρ=0.8

PPLIEASMR 800 α=5 β=3 ρ=0.75
PPLIEASM 792 α=4 β=1 ρ=0.95

PPLIEASMed 800 α=5 β=3 ρ=0.75
Punished Performance Linked Influential Elite Ant Systems PPLIRASMR 805 α=5 β=5 ρ=0.85

PPLIRASM 777 α=5 β=1 ρ=0.85
PPLIRASMed 793 α=5 β=1 ρ=0.75
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Figure 5.7 shows the comparative performance of PLIEAS for train scheduling

problem. One of the interesting observations that can be made from Figure 5.7(a)

is that, PLIEASM, PLIEASMR and PLIEASMed have similar waiting times for

n=15. The PLIEASM, PLIEASMR and PLIEASMed provide least waiting time,

when the number of ants settings n is 20, 10, 20 respectively. Figure 5.7(b) shows

the performance of PLIEAS algorithms for varying pheromone trial. The variants

exhibit larger deviation in the observed waiting time for lower pheromone trial

compared to the higher pheromone trial and provide least waiting time for ρ in

the range of 0.7-0.75 for all the variants.

Figure 5.8 shows the performance of PPLIEAS variants, when applied to train

scheduling problem. Figure 5.8(a) shows that PPLIEASM has least sensitiveness

in waiting time variation compared to the other variants for varying ants popula-

tion. The PPLIEASMR variant has comparatively longer waiting time than the

other variants. The PPLIEASM, PPLIEASMR and PPLIEASMed provide min-

imal waiting time, when number of ants n was set to 20, 10, 15 respectively.

Figure 5.8(b) shows that PPLIEASMR is sensitive to the varying pheromone

trial. The waiting time increased rapidly with the increase in the pheromone

strength. The PPLIEASM variant is comparatively insensitive to the varying trial

strength compared to its other peer variants. The PPLIEASM, PPLIEASMR and

PPLIEASMed provide optimal waiting time, when trail strength ρ was 0.95, 0.75

and 0.85 respectively.

Figure 5.9 reveals the comparative analysis of PLIRAS variants. It can be

observed from Figure 5.9(a) that waiting time of PLIRASMed is comparatively

longer than the PLIRASMR and PLIRASM for varying number of ants. It is

interesting to see that PLIRASMR has a better waiting time for smaller ant pop-

ulation and PLIRASM for larger ant population. The PLIRASM, PLIRASMR

and PLIRASMed provide least waiting time for ants population size of 20, 10

and 15 respectively. Figure 5.9(b) shows that conflict among the trains increases

rapidly for PLIRASM variant compared to other variants with the increase in trial

strength. In general, it can be concluded that higher pheromone persistence factor
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Figure 5.6: Performance comparison of Punished Ant Systems for partial double
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increases the waiting time of trains for all the variants.

Figure 5.10 shows the comparative analysis of PPLIRAS variant. Figure

5.10(a) reveals that PPLIRASM provides the smallest waiting time for most of

the varying size of ants population. The PPLIRASM and PPLIRASMR variants

deliver best waiting time for smaller ant population size n of 5 and 10 respec-

tively. Similarly, PPLIRASMed provides least waiting time for larger population

of size 20. Similarly, Figure 5.10(b) reveals that, algorithms exhibit most of the

time a similar trend in the variation of waiting time for the varying pheromone

trial strength. The PPLIRASM, PPLIRASMR and PPLIRASMed provide least

waiting time for trail strength ρ of 0.85, 0.85 and 0.75 respectively.

Cluster Integrated Ant Variants

The Chapter 3 discusses the mechanism to integrate clustering philosophy and

the ACO algorithms. The basic purpose of integration is to group the nearby

tour performance and to update the paths in each group with same quantity of

pheromone trail. The cluster approach can be applied to train scheduling prob-

lem by grouping nearby TCTs and updating the scheduled order paths within the

group with the same amount of pheromone trial. The updation can be done in

two possible ways : primary updation and secondary updation. In primary up-

dation, clustering is done immediately after ants report the TCT values and then

pheromone is reinforced as mentioned above. In secondary updation, scheduled

order paths will be updated twice. Firstly, scheduled order paths will be updated

with pheromone trials proportionate to the solution quality found by the ants and

then followed by additional reinforcement using cluster based updation strategy.

Table 5.5 shows the comparative results for cluster approach to train scheduling

problem. The results obtained using cluster approach are comparatively inferior

to basic ant variants, PEAS, PLIEAS and PPLIEAS and upon comparison of best

results, one can notice the increased waiting time of 2.73%, 2.11%, 4.34% and

3.47% respectively.
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Figure 5.9: Performance comparison of PLIRAS variants for partial double lines
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Figure 5.10: Performance comparison of PPLIRAS variants for partial double lines
(fixed commercial waiting time).
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Table 5.5: Performance of cluster integrated ACO variants on Train Scheduling
Problem.

pml = 2
Class Algorithms TCT Parameter details

GS-pri 817 α=4 β=4 ρ=0.90
GS-ACO GS-sec 829 α=3 β=1 ρ=0.7

k-M-pri 814 α=5 β=1 ρ=0.85
k-Means ACO k-M-sec 798 α=3 β=1 ρ=0.70

k-Med-pri 810 α=4 β=3 ρ=0.80
k-Medians ACO k-Med-sec 817 α=3 β=5 ρ=0.90

DBC-pri 805 α=3 β=4 ρ=0.75
DBSCAN-ACO DBC-sec 810 α=3 β=5 ρ=0.80

Figure 5.11 shows the behavior of the cluster integrated primary updation

ACO variant applied to train scheduling problem. In the Figure 5.11(a) an inter-

esting fact about the GS-primary (GS-pri) updation variant of GS-ACO class was

observed. The variant gave consistently same waiting time for varying ant’s pop-

ulation. However, DBC-primary (DBC-pri) updation provided relatively shorter

waiting time compared to other variants and least waiting time among all the

variants for ant’s population of size 5. Figure 5.11(b) displays the behavior of al-

gorithm for different trial strength. It can be observed that GS-pri exhibit larger

volatility in observed waiting times compared to other variants. The least waiting

time for all the variants is observed in the range of 0.8 ≤ ρ ≤ 0.9.

Figure 5.12 shows the behavior of secondary updation in cluster integrated

ACO variants applied to train scheduling problem. It can be observed from Figure

5.12(a) that GS-secondary (GS-sec) updation exhibits a similar trend as that of

GS-pri primary updation and has a longer waiting time compared to other variants

for the varying ants population. The k-Median secondary (k-Med-sec) and DBC-

secondary (DBC-sec) show the same trend in waiting time variation for the varying

ants population. However, DBC-sec provides the smallest waiting time among all

the variants and best waiting time is obtained for population of size 10. Figure

5.12(b) shows the behavior of algorithms for varying trial strength. The waiting

times of k-Med-sec and DBC-sec are lesser than k-M-sec and GS-sec variants.
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Figure 5.11: Performance comparison of primary updation in cluster integrated
ant variants for partial double lines (fixed commercial waiting time).
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However, k-M-sec provides least waiting time compared to other variants and all

the variants provide least waiting time in the pheromone range of 0.7 ≤ ρ ≤ 0.8.

5.6.3 Result Analysis of Algorithms for Variable Commer-

cial Waiting Time

In Variable Commercial Waiting Time, trains dwell time duration varies for each of

the stations they travel as a part of the journey. The variable commercial waiting

time can be expressed as a tuple V T =< si, Υi >, where si is the station and Υi is

the commercial waiting time associated with the line i. The input considered for

this purpose is < { 0, 3 }, {17, 4}, {38, 8}, {47, 2}, {56, 6}, {72, 2}, {80, 5}, {95,

4}, {117, 2}, {126, 4}, {149, 3}, {163, 5}, {179, 10}, {190, 3}, {199, 2} >.

Basic Ant Variants

Table 5.6 shows the comparative results for the variable commercial time. The

algorithm simulation was carried for pml=2 and pml=3 settings. It can be ob-

served from table that RA provides best TCT values for both pml=2 and pml=3

parameter settings. The MMAS and MMAS+IB+PTS variants report search stag-

nation due to ‘limiting of pheromone’ mechanism. The results obtained for pml=3

are better than the results when pml=2, once again demonstrating the fact that

better availability of lines for sidings leads to lesser waiting time for trains with

decrease in waiting time of 2.55% for RA variant. However, AS variant reports

sharp decrease in waiting time of 3.65%.

Figure 5.13 shows the comparative graph of basic ant variants for pml=2.

It can be observed from 5.13(a) that AS and RA have better waiting times for

higher ants population and ACS, EA for lower ants population. Similarly, AS

variant has longer waiting time for most of the varying ants population compared

to other variants. Figure 5.13(b) shows the graph for varying pheromone trial

strength. The EA variant exhibits least variation in waiting times compared to
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Table 5.6: Performance comparison of basic ant variants on Train Scheduling
Problem with varying commercial waiting time.

pml = 2 pml = 3
Algorithms TCT Parameter details TCT Parameter details

AS 1395 α=3 β=1 ρ=0.9 1344 α=5 β=1 ρ=0.85
ACS 1388 α=2 β=2 ρ=0.75 1342 α=4 β=4 ρ=0.95
EA 1381 α=5 β=1 ρ=0.7 1339 α=5 β=1 ρ=0.9
RA 1372 α=5 β=2 ρ=0.7 1337 α=3 β=1 ρ=0.8

MMAS+IB 1594 α=1 β=4 ρ=0.70 1557 α=2 β=1 ρ=0.8
MMAS+IB+PTS 1594 α=1 β=4 ρ=0.85 1557 α=4 β=3 ρ=0.9

other variants. The graph depicts that ACS, EA and RA provide least waiting

time for lower trial strength ρ and in the range of 0.7-0.75. Similarly, RA provides

the least waiting time for ρ=0.9.

Figure 5.14 shows the comparative graph of basic ant variants for pml=3. It

can be observed from Figure 5.14(a) that except EA, all the other variants provide

the shorter waiting times for smaller ant population and that too in the range of

5 to 10. The trend analysis reveals that for AS, ACS and RA, increase in ants

population leads to increase in waiting time. Similar interesting observations can

be made from Figure 5.14(b). The graph reveals a larger deviation in observed

TCT values for all the ant variants and provides a least waiting time for wider

values of ρ in the range of 0.8-0.95.
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Figure 5.13: Performance comparison of basic ant variants for partial double lines
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Table 5.7: Comprehensive performance comparison of new ACO variants on Train Scheduling Problem.

pml = 2
Class Algorithms TCT Parameter details

PEAS 1372 α=4 β=4 ρ=0.9
Punished Ant System PRAS 1366 α=5 β=1 ρ=0.8

PLIEASMR 1376 α=5 β=1 ρ=0.75
PLIEASM 1371 α=5 β=1 ρ=0.95

Performance Linked Elitist Ant System PLIEASMed 1393 α=4 β=1 ρ=0.95
PLIRASMR 1376 α=4 β=3 ρ=0.7
PLIRASM 1372 α=5 β=4 ρ=0.7

PLIRASMed 1376 α=4 β=3 ρ=0.7

PPLIEASMR 1361 α=4 β=2 ρ=0.7
PPLIEASM 1366 α=4 β=3 ρ=0.85

PPLIEASMed 1361 α=4 β=2 ρ=0.7
Punished Performance Linked Elitist Ant Systems PPLIRASMR 1363 α=2 β=1 ρ=0.75

PPLIRASM 1360 α=3 β=4 ρ=0.90
PPLIRASMed 1368 α=5 β=1 ρ=0.85

GS-pri 1409 α=5 β=1 ρ=0.7
GS-ACO GS-sec 1393 α=3 β=1 ρ=0.9

k-M-pri 1378 α=4 β=2 ρ=0.7
k-Means ACO k-M-sec 1403 α=5 β=1 ρ=0.95

k-Med-pri 1374 α=3 β=5 ρ=0.85
k-Medians ACO k-Med-sec 1366 α=4 β=4 ρ=0.9

DBC-pri 1346 α=5 β=3 ρ=0.8
DBSCAN ACO DBC-sec 1355 α=4 β=5 ρ=0.75
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Punished and Performance Linked Ant Variants

Table 5.7 shows the comparative analysis of various algorithms discussed in the

Chapter 2 and Chapter 3 applied to train scheduling problem for variable com-

mercial waiting time. The performance of PRAS in punished ant system class is

slightly better than that of basic variants (see Table 5.6 pml=2) with decrease

in waiting time of 0.43%. Similarly, PLIEASM and PPLIRASM in PLIEAS and

PPLIEAS class show an improvement with decreased waiting time of 0.07% and

0.87% respectively. However, among the proposed approaches PPLIRASM shows

an improvement of 0.43% over PRAS and PLIEASM in terms of best results.

Figure 5.15 displays the performance of punished ant systems for the variable

commercial waiting time. Figure 5.15(a) reveals that observed TCT values of

PRAS is slightly better than PEAS variant. The PRAS variant has the best TCT

value for non-elite ant’s population nea of size 5. However, same waiting time

is observed for the higher number of non-elite ants population. Similarly, Figure

5.15(b) reveals that PRAS has comparatively shorter waiting time than PEAS

for varying trial strength. The PEAS variant has the least waiting time for trial

strength ρ=0.9 and PRAS for ρ=0.8.

Figure 5.16 displays the performance of PLIEAS for the variable commercial

waiting time. Figure 5.16(a) shows that PLIEASMed variant provides sub-optimal

TCT values compared to other variants for varying ant’s diversity. Figure 5.16(b)

reveals some interesting patterns for the varying trial strength. In general, all the

variants show increase in waiting time for the higher pheromone persistence factor

and shows sharp decrease in waiting time for ρ=0.95.

Figure 5.17 shows the behavior of PPLIEAS for the varying parameters. Figure

5.17(a) reveals that all the variants have nearby waiting times for smaller and

higher number of ant’s population n of size 5 and 20 respectively. However, shorter

waiting times were observed for ants population size in the range of 5 to 10.

Similarly, PPLIEASMR reacts sharply with an increase in waiting time, as the

number of ants in the system increases. The higher concentration of pheromone

trial has a bad effect on PPLIEASMR variant and waiting time increases with
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Figure 5.15: Performance comparison of Punished Ant Systems for partial double
lines (variable commercial waiting time).
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Figure 5.16: Performance comparison of PLIEAS variants for partial double lines
(variable commercial waiting time).
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the increase in the pheromone persistence factor as seen from Figure 5.17(b). The

shorter waiting time observed for varying ρ and for all the variants it is in the

range of 0.7 ≤ ρ ≤ 0.85.

Figure 5.18 depicts the behavior of PLIRAS class for train scheduling problem.

Figure 5.18(a) reveals an interesting behavior of PLIRASMR variant, which reacts

sharply to the varying ants population. However, PLIRASM and PLIRASMed

variants report lesser volatility in waiting time for varying ants population. The

trend analysis of Figure 5.18(b) reveals an increase in waiting time with the in-

crease in pheromone persistence factor for PLIRASM and PLIRASMed variants

and all the variants provide shorter waiting time for trial settings ρ in the range

of 0.7-0.75.

Figure 5.19 shows the performance of PPLIRAS class for parameter settings

pertaining to ACO algorithm. Figure 5.19(a) reveals that PPLIRASM variant has

consistently delivered larger TCT values compared to other variants for varying

ants population. Similarly, Figure 5.19(b) shows larger fluctuation in waiting times

for all the variants indicating their sensitiveness to the pheromone trial strength.

Cluster Integrated Ant Variants

Table 5.7 reports the comprehensive analysis of cluster integrated ant approaches

to variable commercial waiting time. The DBSCAN variant with primary updation

provides the shortest waiting time compared to all the other cluster integrated

variants with decrease in waiting time of 1.89%, when compared with basic ant

variants. Similar conclusion can be drawn upon the comparison with the waiting

times of PLIEAS and PPLIEAS class of algorithms. The decrease in waiting time

was to the tune of 1.82% and 1.02% for PLIEAS and PPLIEAS classes respectively.

Figure 5.20 reveals the behavior of cluster integrated primary updation for

variable commercial waiting time. Figure 5.20(a) shows interesting patterns of

nearby waiting times for smaller and larger ants population and larger difference

in the mid size ants population. It is interesting to see that performance of GS-

primary (GS-pri) provides consistently same waiting time for the variation in
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Figure 5.17: Performance comparison of PPLIEAS variants for partial double lines
(variable commercial waiting time).
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Figure 5.18: Performance comparison of PLIRAS variants for partial double lines
(variable commercial waiting time).
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Figure 5.19: Performance comparison of PPLIRAS variants for partial double lines
(variable commercial waiting time).
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population size. Similarly, Figure 5.20(b) displays that all the variants provide

shorter waiting time for lower pheromone strength ρ in the range of 0.7-0.8 and

shows an increasing waiting time trend for the increased pheromone presence.

Figure 5.21 shows the nature of cluster integrated secondary updated ant vari-

ants for variable commercial waiting time. Figure 5.21(a) reveals that waiting time

of GS-secondary (GS-sec) and DB-secondary (DBC-sec) are superior to k-Means-

secondary (k-M-sec) and k-Medians-secondary (k-Med-sec) for the varying ants

population. Similarly, 5.21(b) shows that k-Med-sec and DBC-sec have shorter

waiting times than k-M-sec and k-Med-sec for lower trial strength ρ which is in

the range of 0.7-0.85. The k-Med-sec and DBC-sec provide the least waiting time

for ρ settings 0.75 and 0.8 respectively. Similarly, k-M-sec and k-Med-sec provide

least waiting time for higher ρ values of 0.9 and 0.95 respectively.

5.7 Concluding Remarks

Railway train timetable problem is an important and challenging task in optimiz-

ing the performance and profit of the railway department. This chapter highlighted

the potential of using ACO techniques for applications to train schedule planning.

The problem is to arrive at train schedule order for a fixed timetable that has

minimum waiting time on sidings. The proposed model is flexible to incorporate

new rules (constraints) and policies (objectives) without any change to the existing

model and also make some realistic assumptions that suits to the Indian Railways

Systems. The ACO framework has been successful in providing the optimal result

in reasonable interval of time. The new concepts described in previous chapters

have been successful in intensifying the search in promising region to arrive at

the optimal solution. Hence railway department should consider using this model

with the suitable modifications. The model given in this thesis could be a basis

for future research on traffic related problems.
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Figure 5.20: Performance comparison of primary updation in cluster integrated
ant variants for partial double lines (variable commercial waiting time).
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Figure 5.21: Performance comparison of secondary updation in cluster integrated
ant variants for partial double lines (variable commercial waiting time).
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