
Chapter 1

Introduction

1

Chapter 1
Introduction

Optimization is an activity, in which we attempt to perform our best under the

given conditions and constraints. This activity is a reality in many different indus-

trial settings. In practice, optimization is a broad area in science and engineering

with many interesting subareas. In the modern day, the term ‘optimization’ is

widely being used when there is almost a clear mathematical representation of a

problem to be optimized. The classical definition of optimization is the process of

finding the highest or lowest ranked solution to a problem as measured by one or

more objective functions. Most of the times, we use the term optimization in the

sense that absolute optimum is not required. We can classify optimization into

two major types; single objective optimization and multi-objective optimization.

One of the most active current research areas in global optimization is deriving

the problem solving techniques specially for unstructured NP-hard problems aris-

ing from applications. Despite the inherent difficulty of most of these problems,

significant progress has been achieved in last twenty years in the development of

special solution strategies adapted to various mathematical and algorithmic struc-

tures. The design as well as analysis of such problem specific algorithms has been

extensively studied for a wide range of problems. The goal in this field of research

is to obtain an algorithm, that is provably optimal with respect to their run time

and convergence of the solutions.

While looking at the various results obtained in this field, one can observe the

following. Most algorithms, be it in optimization or any other fields, depend heav-

ily on parameters. These parameters may be required to remain between two pos-

sibly finite bounds or may be constrained in a different way. The overall behavior

of the algorithm is influenced by the numbers and the values of these parameters.

Unfortunately, for most practical cases it remains unclear, how a user should pro-

ceed to determine the values for these parameters. Over-parameterization may

play a negative role during the computation. The framework design of algorithm

relies on the observation that, measures of performance can be derived from the

2

dependencies of the algorithm on its parameters. These measures are context and

method dependent. For any formulated optimization problem, measure of per-

formance needs to be minimized as a function of parameters over a domain of

acceptable values.

This thesis will concentrate on one of the popular kind of bio-inspired algo-

rithms, Ant Colony Optimization (ACO). The need for unified introduction to

optimization problems is quite essential at this stage. The progress in the under-

standing of optimization problems has shown large amounts of diversity in their

runtime and approximability. In addition, natural optimization problems do seem

to exhibit noticeable special trends in their behavior. The literature has witnessed

many attempts to describe this behavioral trends but, it is hard to describe and ex-

tract these trends. To understand the formal basis of such approximation schemes,

we begin with the brief description of combinatorial optimization.

1.1 Combinatorial Optimization

A Combinatorial Optimization (CO) problem is an optimization problem, where

the set of feasible (satisfying a set of constraints) solutions is obtained from can-

didate solutions (Papadimitriou and Steiglitz, 1982). They are abundant in quite

a few areas, where resource constrained problems appear either naturally or when

a discretization of a continuous problem may be useful. Examples of well known

CO problems include the Vehicle Routing Problem (Clarke and Wright, 1964),

Traveling Salesman Problem (TSP) (Applegate et al., 2007), Knapsack problem

(Kelleres et al., 2004), Cutting Stock Problems (De Carvalho, 2002), Generalized

Assignment Problem (Ross and Soland, 1975) and Train Scheduling Problem (As-

sad, 1980), etc. The CO problems are conceptually easy to model, but quite hard

to implement and suffers from the curse of dimension i.e, selecting the best among

the possible number of solutions grows exponentially with the increase in size of

the problem instances.

The Combinatorial Optimization has reached the level of generalization based

on primary knowledge accumulated in the domain of this field. The researchers

3

started devoting more attention towards the refinement of existing techniques

and analyze the similarities, distinctions and conceptual characteristics inorder to

increase the performance efficiency. The similarities can be studied through for-

mulation of generalized search procedures, specifying components of which, one

will remain almost same for variety of algorithms. Usually, distinctions shall be

captured through a proper classification. The CO algorithms available in the

literature fall broadly into two main classes:

• Exact Algorithms - These methods enumerate all the possible candidate

solutions and return the best solution in the feasible solution set. However,

the computation time for these methods increases exponentially with respect

to the problem size, and often only small or moderate size problem instances

can be practically solved like Greedy method (Dijkstra, 1959) and Dynamic

programming (Bellman, 1958).

• Approximate algorithms - These methods provide relatively good solu-

tions in short computational time without enumerating all the possibilities,

but the obtained solutions may not be the optimal one. The basic approxi-

mate methods can be broadly classified as constructive algorithms (Dorigo,

1996) or local search algorithms (Croes, 1958). Constructive algorithms gen-

erate the solution from the scratch by adding-to an initially empty partial

solution-components, until a solution is complete. They are typically the

faster approximate methods, yet they often yield solution of lower quality

unlike local search algorithms. Local search algorithms begin from some ini-

tial solution and iteratively try to replace the current solution by a better

solution in an appropriately defined neighborhood of the current solution.

Thirdly, a new class of approximate algorithms has emerged in the eighties

of last century, called metaheuristics, which will be discussed in the next

section.

4

1.2 Metaheuristics

1.2.1 Introduction

Heuristics represent a class of methods for which, in general there is no formal

or classical proof of their performances. Most of the approximation methods are

based on some heuristic rules. One can also note that, most of the popular CO

problems are NP-hard (Korte and Vygen, 2006) and the best exact algorithms

known so far on these problems have exponential time complexity. Therefore ap-

proximate algorithms and in particularly heuristics may be the preferable way to

hunt the solutions of ‘better’ quality in a reasonable duration.

As mentioned earlier, a new kind of approximate algorithm has emerged, which

basically tries to combine heuristic methods in higher level frameworks aimed at

efficiently as well as effectively to explore the search space. These methods are

called metaheuristics. This term was first introduced by Glover (Glover, 1986).

Etymologically, metaheuristics is derived from two Greek words. The word heuris-

tic means “to search” and meta stands for “beyond a higher level”. A simple and

formal definition of metaheuristics is as follows (Osmen and Laporte, 1996): “ It is

an iterative generation process which guides a subordinate heuristics by combin-

ing intelligently different concepts for exploring and exploiting the search space,

learning strategies are used to structure information in order to find a efficiently

near optimal solution”.

In recent years, there has been splurge in new approaches belonging to meta-

heuristics class. These approaches can be seen as a general algorithmic framework

that can be applied to different optimization problems with relatively few modifi-

cations to mold them and adapt to a specific problem. Metaheuristics are typically

high-level strategies which guide an underlying, more problem specific heuristics

to increase their performances. The main goal here is to avoid the disadvantages

of iterative improvement and, in particular, multiple descent by allowing the local

search to escape from local optima. This is achieved by either allowing worsening

moves or generating new starting solutions for the local search in a more intelli-

5

gent way than just providing random initial solutions. Many of the methods can

be interpreted as introducing a bias (Blum and Roli, 2003) such that high quality

solutions are produced quickly. This bias can be of various forms and can be de-

scent bias (based on the objective functions), memory bias (based on previously

made decisions) or experience bias (based on prior performance). Many of the

metaheuristic approaches rely on probabilistic decisions made during the search.

The main difference to pure random search is that, in metaheuristics algorithm

randomness is not used blindly but in an intelligent, biased form.

We summarize the basic characteristics of metaheuristics as (Blum and Roli,

2003) follows:

• Metaheuristics are strategies that guide the search process. Their goal is to

efficiently explore the search space in order to find (near-)optimal solutions.

• Metaheuristics may incorporate mechanisms to avoid getting trapped in con-

fined areas of the search space.

• The basic concepts of metaheuristics can be described on an abstract level

i.e., not tied to a specific problem.

• Metaheuristics often use the experience gained in previous searches to guide

new searches.

• Metaheuristics may make use of domain-specific knowledge in the form of

heuristics that are controlled by the upper level strategy. Those strategies

must be chosen in such a way to balance dynamically the exploitation of

previously gained experience, called intensification and the exploration of

the search space, called diversification. This balance is necessary to quickly

identify the region in the search space where good solutions are present and

not to waste time in searching the regions that have already been explored

or that do not have good solutions.

6

1.2.2 Classification of Metaheuristics

There are different ways to classify the metaheuristic algorithms. Basically, all

numerical and computational approaches for solving CO problems can be char-

acterized as search algorithms (Hoos and Stutlze, 2005). For marking out the

characteristic features of CO methods, the classification is strongly suggested.

Stutlze (Stutlze, 1998) classified the metaheuristics by whether they are trajec-

tory or discontinuous, by the number of operated solutions, by the memory usage,

by the number of neighborhood structures, by the changes to the objective func-

tions and by the sources of inspiration. Vaessens (Vaessens et al., 1998) classified

more formally based on abstract algorithmic skeleton namely, the number of solu-

tions operated at a time and the number of neighborhoods. Another classification

of metaheuristics can be seen in the paper due to Talbi (Talbi, 2009). We briefly

summarize all these classifications below.

• Nature inspired and Non-nature inspired - One way to classify meta-

heuristics is based on the inspiration (nature or non nature) for the origin

of algorithms. Some of the examples for nature inspired algorithms are

Genetic Algorithm(GA) (Holland, 1962), Artificial Bee Colony(ABC) (Bas-

turk and Karaboga, 2006) etc and non nature inspired algorithms are Tabu

Search(TS) (Glover, 1989), Iterated Local Search(ILS) (Den Besten et al.,

2001). The resultant classification will lose meaning, if applied to recent

hybrid algorithms as they may belong to both the categories.

• Population based search and Single point search - Another character-

istic that can be used for classification is the number of solution components

used at the same time. The algorithms like GA (Holland, 1962) works with

population of points at a time and generates the set of possible solutions

whereas algorithm like ILS (Den Besten et al., 2001) works with single point

at a time and try to improvise the current best solution in successive interval

of time.

7

• Dynamic and Static objective functions - Metaheuristics can also be

classified according to the way they make use of the objective functions.

While some algorithms like GA (Holland, 1962) do not change the objec-

tive function, but some others like Guided Local Search (GLS) (Voudouris,

1998) modify the search landscape in order to escape from the local minima.

This modification results change in the objective function, incorporated with

information collected during the search process.

• One and Various neighborhood structures - Most metaheuristic algo-

rithms work on single neighborhood structure (Glover, 1989). The search

landscape does not change in the course of the algorithm. Some metaheuris-

tics like Variable Neighborhood Search (VNS) (Mladenovic and Hansen,

1997) defines a multiple set of neighborhood structures that helps in di-

versifying the search by swapping different landscapes.

• Memory usage and Memoryless methods - The search history is an-

other important feature that can be used for classification purpose. Memo-

ryless algorithms perform a Markov process, and their next move depends

on the current state of the search process (e.g. GRASP (Feo and Resende,

1995)). The memory based algorithms usually keep track of recent moves or

solutions in order to take decision regarding future moves (e.g. Tabu Search

(Glover, 1989)).

• Iterative and Greedy - Another way to characterize the metaheuristic

algorithms is based on solution generation process. The iterative algorithms

starts with a complete solution and transform it at each iteration using some

search operators. Greedy algorithms start from an empty solution, and at

each step, a decision variable of the problem is assigned until a complete

solution is obtained.

• Deterministic and Stochastic - A deterministic metaheuristics solve an

optimization problem by making deterministic decisions (e.g.tabu search

8

(Glover, 1989)). In stochastic metaheuristics, some random rules are ap-

plied during search (e.g., Simulated Annealing (Kirkpatrick et al.,(1983)).

Metaheuristics can also be classified by their special behaviors, such as struc-

ture, search process and performance characteristics. But, one important point

is, though the classification by the complexity of the structure is important, it

is hardly possible to distinguish algorithms strictly by the characteristics because

there is no precise, formal as well as universally accepted definition for the term

‘metaheuristics’.

1.3 Metaheuristic Algorithms

In this section, we will discuss some of the important and most commonly used

metaheuristic algorithms for solving the CO problems.

1.3.1 Evolutionary Computation

Evolutionary Computation (EC) is the general term for the collection of nature

inspired, population based algorithms. EC mimics the nature ability to retain the

best species in the evolution process. This corresponds to survival of fittest, that

can adjust to the ever changing environment. The evolutionary processes have led

to the development of several computational models to tackle CO problems in an

efficient manner. The basic structure of an EC algorithm is given by Algorithm 1.

Algorithm 1 Evolutionary Computation

P = GenerateInitialPopulation()
while termination condition not met do
P ′ = Recombine(P)
P ′′ = Mutate(P ′)
Evaluate(P ′′)
P = Select(P ′′ ∪ P)

end while

Each iteration of the algorithm corresponds to a generation, where certain

operators are applied to some / all individuals of the current population to generate

9

the individuals of the population of the next generation. The following are the list

of operators that are most commonly applied:

1. Recombination or Crossover - to recombine two or more individuals to

produce new individuals.

2. Mutation - to modify single individuals to obtain self-adaptation.

3. Selection - to select the individuals based on their fitness. Individuals with

higher fitness have a higher probability to be selected for next generation.

In literature, there are mainly three different categories of EC algorithms: Evo-

lutionary Programming (EP) (Fogel, 1962), Evolutionary Strategies (ES) (Rechen-

berg, 1965) and Genetic Algorithms (Holland, 1962). The algorithms that fall in

the EP and ES category mostly apply to continuous optimization problems, while

GA are more specific for discrete and combinatorial optimization problems.

1.3.2 Tabu Search

Tabu Search (TS) is the most commonly used metaheuristics for CO problems.

The basic idea was first introduced by Glover (Glover, 1989). TS is essentially an

improved version of local search and it is also known as Hill Climbing technique.

It generates the initial set of solutions and then selects the best one as the current

solution. The new set of solutions is generated by looking at the neighbors of cur-

rent solution and generation process is controlled by the neighborhood structure.

If neighbor set contains the better solution, then current solution will be replaced

with newly found best solution. TS maintains a tabu-list, also called as short term

memory to keep track of best-so-far found solutions. The list will be updated

in first-in first-out manner, when best solution evolves. The process of solution

generation and tabu-list updation is repeated until an improved solution is found

in the neighborhood of a current solution. This effectively leads to finding the

local optimum solution which might be much worse than the global optimum. In

practice, algorithm stops improving when local optimum is found. The strength of

the TS metaheuristic lies in employing three important strategies to escape from

10

the local optimum. The TS-specific strategies are: Best improvement, Tabu list

and Aspiration criterion.

Best improvement means that each current solution is always replaced by its

best neighbor, even if the best neighbor is worse than the current solution. This

ensures that, search won’t get stuck in local optima. The problem with best

improvement is possible cycling among already visited solutions due to situation

like, the best neighbor of a solution is indeed the last visited current solution. The

cycling can be avoided by keeping track of the most recently visited solutions in

tabu list and forbids moves toward them. The tabu list stores some attributes of

these solutions instead of whole solutions, which require large memory and effi-

cient management. The choice of attributes is yet another issue that need to be

resolved. Typically, tabu lists store the moves that need to be performed in order

to go from one solution to another or the differences between solutions. In this

way, the memory requirement of tabu lists becomes feasible, but another problem

arises: forbidding all solutions corresponding to a tabu attribute may also forbid

solutions that have not yet been visited, and possibly also very good or optimal

solutions. TS employs aspiration criteria for solving this problem. An aspiration

criterion is a condition, if satisfied, allows to replace current solution obtained

by performing a tabu move. A typical example of aspiration criterion requires

that a solution is better than the best solution found from the beginning of the

algorithm. The skeleton of Tabu Search is given by Algorithm 2.

Algorithm 2 Tabu Search

Generate a starting current solution x.
Initialize the tabu list.
for k = 1, 2, . . .n do

Set A(x, k) = {y ∈ S(x)\T (x, k) ∪ T̃ (x, k)}
Set x = arg miny∈A(x,k)g(y)
Update the tabu lists and the aspiration criteria.

end for

Here x, y are feasible solutions of the combinatorial optimization problem,

A(x, k) is the set of solutions among which the new current solution is chosen

at iteration k, S(x) is the set of neighbors of x, T (x, k) is the set of tabu moves at

11

iteration k, and T̃ (x, k) is the set of tabu moves satisfying at least one aspiration

criterion. In TS, typical stopping criteria may be a maximum number of consec-

utive iterations not producing an improved solution or the emptiness of the set

A(x, k).

1.3.3 Simulated Annealing

Simulated Annealing (SA) is the first metaheuristic algorithm that had an ex-

plicit strategy to escape from local minima. It derives inspiration from Metropo-

lis algorithm (Metropolis et al., 1953) and it was first proposed by Kirkpatrick

(Kirkpatrick et al., 1983). The algorithm starts by initializing the temperature

parameter T and generates an initial solution either randomly or heuristically. In

each iteration, a solution s is generated and if it is better than the current solution,

then it will be accepted as new current solution, otherwise its acceptance depends

on probability function computed using Boltzmann distribution. The pseudo-code

for SA algorithm is given by Algorithm 3:

Algorithm 3 Simulated Annealing

Initialize state x and temperature parameter T1

for k = 1, 2, . . .n do
if g(y) ≤ g(x) then

set x = y
else
if exp(g(x)–g(y)

Tk
) ≤ uniform[0,1]

set x = y
endif

end if
update Tk to Tk+1

end for

where, x and y are feasible solutions from S, g(x) and g(y) are objective functions

of x and y, T1, T2 , . . . is a sequence of values for the temperature parameter

and the update of values Tk is done according to cooling schedule, the sets S(x)

form the pre-defined neighborhood structure: to each feasible solution x ∈ S, a

set S(x) ⊆ S\{x} of neighbor solutions is assigned, uniform [α, β] is a procedure

selecting a uniformly distributed random number from the interval [α, β].

12

Normally the temperature T is decreased during the search process. At the

beginning of the search, the probability of accepting uphill moves is high and it

gradually decreases converging to a simple iterative improvement algorithm. This

process is analogous to the annealing process of metals and glass, which assume

a low energy configuration when cooled with an appropriate cooling schedule.

The cooling schedule controls the diversification and intensification factors, hence

appropriate choice is crucial for the performance of the algorithm.

1.3.4 Ant Colony Optimization

All the three metaheuristics described above are often applied to problems whose

structure is not known or lacks in information like time, cost, efficiency etc or

knowledge to obtain good specific algorithms. It has been widely acknowledged

that a strong theoretical foundation for such metaheuristics is necessary. In light of

this, another new kind of randomized search metaheuristics has emerged 21 years

ago namely, Ant Colony Optimization (ACO). Like evolutionary algorithms, this

also imitate the optimization process from nature, in this case the search for a

common source of food by a group of ants. Solving CO problems by ACO tech-

niques has become widely popular in recent years.

The conceiving of ACO is originally motivated by the attempt to solve the well

known TSP, the researcher recognized that their technique is applicable to a much

larger range of problems. In an explicit form, this insight was first established by

Dorigo (Dorigo and Di Caro, 1999). In subsequent years, more than hundred qual-

ity papers have been published on the successful applications of ACO in different

areas of diversity. This thesis deals with study along with original contributions to

the development of ACO. The objective of the thesis is to propose new techniques

in ACO that are useful in practice, which could yield a clear and well defined

gain in academia. Thus, a detailed, easily understandable and properly sequenced

introduction to ACO is essential at this juncture.

13

1.4 ACO: Algorithms, Theory and Applications

We present a detailed overview of the main concepts of ACO in three important

perspectives.

1.4.1 ACO: Algorithmic Perspective

Ant Colony Optimization (Dorigo and Stutzle, 2004) is a nature inspired, popu-

lation based algorithm, fascinated by the foraging behavior of the ants. The tiny

creature ants, which are almost blind, can establish the shortest path from nest to

the food source. The food hunting activity provides the formal framework to solve

the combinatorial optimization problems. While walking from food sources to the

nest and vice versa, ants deposit a substance called pheromone trial on the ground.

When they decide about which direction to proceed, they choose with higher prob-

ability, the paths that have strong pheromone concentration. The pheromone trial

has two important roles to play in ACO framework. Firstly, it acts as an indirect

medium of communication through which ants can share their journey experience.

The journey experience is expressed by the amount of pheromone trails present on

the traveled path and this helps the ants in making decision. The paths marked

by stronger pheromone concentrations have the highest probability to be chosen

for the journey. Secondly, being a volatile substance, it evaporates over a period of

time and this mechanism helps to forget the bad experiences of the journey. The

basic behavior of cooperative interaction and forgetting bad experiences through

pheromone leads to the emergence of shortest paths. The first algorithmic frame-

work that captures the essence of ant activity was given by Dorigo et al (Dorigo,

1992). In literature, there are several proposals to improvise and extend the basic

ACO algorithm (Stutzle and Hoos, 2000; Bullnheimer et al., 1999). The generic

pseudo-code that covers all of them is given in Algorithm 4:

CO problems addressed by ACO are usually encoded by a construction graph

G = (V,A), a completely connected graph whose nodes V are components of solu-

tions and arcs A are connections between components. Finding a solution means

constructing a feasible walk in G. For example, in the Traveling Salesman Prob-

14

Algorithm 4 Ant Colony Optimization

Initialize the pheromone values.
while termination conditions not met do
START ScheduleActivities
ConstructAntsSolutions
UpdatePheromone
DeamonActions
END ScheduleActivities

end while

lem (TSP), nodes correspond to cities, arcs correspond to paths connecting cities,

and a feasible solution is a Hamiltonian path on the graph.

The ACO algorithm essentially consists of three procedures (Dorigo et al.,

1999; Bianchi, 2006) ConstructAntsSolutions, UpdatePheromones, and Deamon-

Actions gathered in ScheduleActivities construct.

ConstructAntsSolutions is the process by which artificial ants construct the

solution in an incremental fashion by traversing the construction graph. An ant

construct the solution using pheromone trial and heuristic value information as-

sociated with each arc. UpdatePheromones is the process by which pheromone is

modified on arcs. The pheromone trail is decreased on all the arcs as soon as they

add a solution component to the partially constructed solution and this opera-

tion is called local update. The local update reflects the evaporation of chemical

substance that happens over a period of time and this action avoids the rapid

convergence of the algorithm to suboptimal solutions. Moreover, pheromone is

increased on selected good paths to have strong bias in subsequent iterations and

this operation is called global update. Since ACO is an iterative algorithm, the

best selected path for updation can be either Global best path or iterative best path

(Stutzle and Hoos, 2000). The path that is best from the start of the algorithm

is called global best path and the path that is best in the current iteration, called

iterative best path. The updation can be further classified based on number of

ants used: if all the ants get the chance to update the paths then it is called

Communism approach else, it is called Elitism approach, where only the best ants

are allowed to update the path. DeamonActions are centralized operations, such

15

as comparing solution values among ants in order to find the best solution or run-

ning a local search procedure. ScheduleActivities does not specify how these three

activities are scheduled, synchronized and it is left to the algorithm designer.

In the literature one can see several variants of ACO algorithms. Here, we

present the original Ant System and then some of its successful variants.

Ant System(AS)

The first ant algorithm proposed was Ant System(AS) (Colorni et al., 1991). The

algorithm was evaluated using TSP and Quadratic Assignment Problem (QAP)

as benchmark problems and it works as follows: during the solution construction

phase, ants are randomly placed and they are asked to complete the tour. A

transition probability function pij is defined for the ants to select the next city to

be visited. Suppose the ant is in city i and it selects the next city j based on the

probabilistic function given by the equation:

pkij(t) =
[τij]

α. [ηij]
β

∑

k/∈tabulist([τik]α. [ηik]β)
(1.1)

where τij is the pheromone strength on arc ij, ηij is the heuristic information

called visibility of the arc ij, α and β are parameters, which control the impor-

tance of pheromone strength and visibility. The algorithm follows the communism

approach and the pheromone updation is given by the expression:

τij = ρ· τij + ∆τij (1.2)

where ∆τij is

∆τij =
m
∑

k=1

∆τkij

and ρ is the pheromone persistent factor. ∆τkij is computed according to the

equation:

16

∆τkij =







Q/Lk if (i, j) ∈ kth ant’s tour list

0 otherwise

where Q is the algorithmic constant and Lk is the tour length of kth ant. There

are three variants of AS, namely ant-cycle, ant-density and ant-quantity, where

each of them has different pheromone updation strategies. An extension to ant

algorithm called Elitist strategy (Dorigo et al., 1996) has been proposed, where

best-so-far tours will be reinforced in addition to standard reinforcement. The

additional reinforcement is given by the equation:

e·Q/L∗ (1.3)

where e is the number of elitist ants and L* is the length of best tour. The

disadvantage of the ant system is that its performance suffers for larger problem

size and search stagnation occurs much earlier without proper exploitation.

Ant Colony System (ACS)

Ant Colony System (ACS) (Dorigo and Gambardella, 1996) is a modified version of

AS. In solution construction phase, ants select the next city to be visited based on

pseudo-random-propositional rule. Suppose the ant is in city r and probabilistically

would select the city s according to the equation:

s =











arg max
u∈Jk(r)

{

[τ(r, u)]· [η(r, u)]β
}

if q < q0 (Exploitation)

S otherwise (Exploration)
(1.4)

where q is a random number uniformly distributed between [0, 1], q0 is a parameter

in the range (0 < q0 < 1) and S is a random variable selected according to

the probability distribution given in equation (1.1), τ(r, u) and η(r, u) are the

pheromone and visibility on the (r, u) path and Jk(r) set contains available choices

to make a move from city r to the next city. The pheromone updation phase

17

consists of global updation and local updation. The global updation is given by the

equation:

τ(r, s)← (1− α)· τ(r, s) + α·∆τ(r, s) (1.5)

and

∆τ(r, s) =







(Lgb)
−1 if (r, s) ∈ global best tour

0 otherwise

where 0 < α < 1 is the pheromone decay parameter and Lgb is the global best

tour. Similarly, local updation is given by the equation:

τ(r, s)← (1− ρ)· τ(r, s) + ρ·∆τ(r, s) (1.6)

where 0 < ρ < 1 is a pheromone reinforcement parameter and ∆τ(r, s) is set to

value τ0.

Rank-based Ant System (RA)

The basic idea of elitist ant strategy has been incorporated in RA (Bullnheimer

et al., 1999). In Rank-based ant algorithm, each ant is assigned a rank based on

its performance. The solution construction phase is same as AS. The pheromone

updation combines elitist and rank strategy to update the selected best tours and

is given by the equations.

τij = ρ· τij + ∆τij + ∆τ ∗ij (1.7)

where

∆τij =

σ−1
∑

µ=1

∆τµij

and

∆τµij =







(σ − µ)Q/Lµ if the µth best ant travel on edge (i, j)

0 otherwise

18

and

∆τ ∗ij =







σQ/L∗ if edge (i, j) is a part of the best solution

0 otherwise

where ∆τij and ∆τ ∗ij specify the amount of pheromone increase due to ranking

mechanism and elitist ants. µ specifies the ranking index and σ is the number of

elitist ants.

In first updation, trial contribution by an ant on a traveled path will be

proportional to its rank and secondary updation will follow the elitist approach.

If ant finds a better solution, then its ranking will be better and it will make a

better trial contribution.

Max-Min Ant System(MMAS)

Max-Min Ant System is a modified version of elitist ant system (Stutzle and

Hoos, 2000). The solution construction phase is same as AS but it differs in

pheromone updation phase in two aspects. The first difference is, only the best

path is updated with pheromone in order to exploit the best solution. The second

difference is pheromone strength τij on all the edges will be in the range specified

by τmin and τmax, where τmin < τij < τmax. This is done to avoid the early search

stagnation. The updation of best path can be done with either global best or

iteration best tour. A new technique called branching factor was introduced to

determine whether algorithm has converged or not. The λ branching factor is

given by the inequality:

τ > τmin
il + λ· (τmax

ij − τmin
ij) (1.8)

where τmax
ij is the maximal, τmin

ij is the minimal and τmin
il is the minimal trial

intensity on arcs exiting from node i. The λ branching factor is the number of out

going edges having a trail intensity τ satisfying the equation (1.8). The average

branching factor is computed by considering all the edges. If τ ≈ 1, then there

exists only one edge for exiting node, an indication that ants have found a better

19

path. In order to explore the new tours, a new mechanism called smoothing of

trials have been proposed. The smoothing mechanism will adjust the trial intensity

on all edges by τmax − τij factor to facilitate the search in an unexplored region.

Further developments on MMAS can be seen in the recent papers (Matthews,

2008; Ivkovic et al., 2011).

Kcc ants and Exponential Local Update (ELU) ants

The Kcc ant and Exponential Local Update ant algorithms are interesting vari-

ations to the ant algorithms (Naimi and Taherinejad, 2009). It is based on the

following observation: ants have large and equal choice to select the next city at

the start of the iteration, but as the tour proceeds, choice to select the next city

will be restricted and will be forced to select the best in the available choices.

The algorithms consider the quality of decision taken for updating the pheromone

trial. The selection of cities at early stage of the tour will have more weightage

to pheromone contribution than the later stage and this mechanism have been

incorporated as a local update rule in the algorithm. The state transition rule for

the solution construction phase is given by the equation:

pkij(t) =
[τij]

α + [ηij]
β

∑

k/∈tabulist([τik]α + [ηik]β)
(1.9)

This method involves two new local updating rules namely Kcc and ELU. The

local updating rule for Kcc is given by the equation:

τ(r, s) = τ(r, s) +
K.cc.τ0

C
cc
η

1

(1.10)

where cc is the current city number, C1 is the length of the traveled path, K and η

are two parameters which determine the significance of cc and C1 in the updating

process. The local updating rule for ELU is given by the equation:

τ(r, s) = τ(r, s) + τ0· e
−

5cc
M (1.11)

20

where M is the number of cities. This method reported best optimal results for

some of the TSP datasets.

Table 1.1: An overview of the prominent ACO algorithms for NP-hard problems
available in the literature.

ACO Algorithms Contributors Year

Ant System Dorigo 1992

Elitist AS (EA) Dorigo 1992

Ant-Q Gambardella and Dorigo 1995

Ant Colony System Gambardella and Dorigo 1996

MMAS Stutzle and Hoos 1996

Rank-based AS Bullnheimer, Hartl and Strauss 1997

ANTS Maniezzo 1998

Best-Worst AS Cordon, Fernandez de Viana and Herrera 2000

Population-based ACO Guntsch and Middendorf 2002

Beam-ACO Blum 2004

One can find number of additional ACO algorithms available in the literature,

the descriptions of each and every one is not possible in the context of the relevance

of work involved in this thesis. The Table 1.1 shows the progress towards ACO in

chronological order achieved by the researchers over the years.

1.4.2 ACO: Theoretical Perspective

At the dawn and initial stages of the development of theory of ACO, it was driven

by experimental work with the aim of showing that ideas underlying these tech-

niques can lead to successful algorithms. But gradually researchers widened the

techniques by giving theoretical support.

The primary question coming to our mind is; will a given ACO algorithm yield

an optimal solution? The first convergence proofs were given by Gutjhar (Gutjhar,

2000), who proved the convergence to the optimal solution with probability 1− ǫ.

The convergence for ACS and MMAS algorithms has been proved (Dorigo and

21

Stutzle, 2004; Stutlze and Dorigo 2006). All these convergence results do not

have strong base to predict how quickly optimal solutions can be found. Recently,

Gutjhar (Gutjhar, 2006) came with an analytical framework that allowed theoret-

ical predictions about the speed of convergence of specific ACO algorithms.

Another portion of ACO theory deals with the establishment of formal links of

ACO to other techniques for learning and optimization. In this context, one focus

was on the relations between ACO and the fields of optimal control and reinforce-

ment learning (Birattari et al., 2002). A differently directed research activities

where conducted focusing on connections between ACO and probabilistic learning

algorithms such as stochastic gradient ascent (Mealeau and Dorigo, 2002) and the

cross entropy (Zlochin et al., 2004) techniques. Even though, these convergence

proofs exhibit some relevant mathematical features of algorithms, they usually do

not direct the user for the implementation of efficient algorithms.

More relevant research outcomes for practical applications are the ones which

aim at better understanding of the behavior of ACO algorithms. The papers due

to Blum (2004) and Blum and Dorigo (2005) showed that ACO algorithms in gen-

eral suffer from first order deception in the same way as genetic algorithms suffer

from deception. Blum and Dorigo (Blum and Dorigo, 2003) introduced the sec-

ond order deception, where some solution components on average, receive updates

from more solutions than others with which they compete (Blum et al., 2002). The

study on the behavior of ACO algorithms by analyzing the dynamics of pheromone

model is also an interesting area (Merkel and Middendoff, 2002). Other theoret-

ical issues related to ACO are pheromone updation strategies (Gambardella et

al., 1999, Guntsch and Middendorf, 2001), adaptive parameters (Randall, 2004;

Pellegrini et al., 2011) and pheromone evaporation strategies (Gambardella and

Dorigo, 1995; Gambardella and Dorigo, 1996).

22

1.4.3 ACO: Application Perspective

Over the years, many successful applications of ACO to a wide range of different

discrete optimization problems have been tried. The majority of these appli-

cations are on NP hard problems. It has been observed that ACO algorithms

are preferred choice to handle these problems. Other popular applications are

telecommunication networks (Schoondenwoerd, 1996; Di Caro and Dorigo, 1998;

Di Caro, 2004), forest planning (Zeng, 2007) and several subareas of civil en-

gineering (Christodoulon and Ellinas, 2010; Kumar and Reddy, 2006). These

applications have motivated the industry people to adapt ACO for solving indus-

trial problems, there by accepting the computational intelligence involved in ACO.

Table 1.2: Applications of ACO algorithms to standard NP-hard problems.

Problem Type Problem Name References

Routing

Vehicle Routing Problem (VRP) Bullnheimer et al., 1999

Gajpal and Abad, 2009

VRP with time windows Gambardella et al., 1999

Favaretto et al., 2007

VRP with loading constraints Doerner et al., 2006

Feullerer et al., 2009

Scheduling

Single Machine Den Bensten et al., 2000

Holthaus and Rajendran, 2005

Flow Schedule Stutzle, 1997

Yagmahana and Yenisey, 2008

Job Shop Blum, 2004

Huang and Liao, 2008

Subset

Multiple Knapsack Ke et al., 2010

Fidanova, 2008

Bin Packing Levine and Ducatelle, 2003

Brugger et al., 2004

23

Problem Type Problem Name References

Set Covering Lessing et al., 2004

Assignment

Quadratic Assignment Maniezzo et al., 1994

Tsutsui and Liu., 2007

Graph Coloring Costa and Hertz, 1997

Salari and Eshghi, 2008

MAX-SAT Pinto et al., 2007

Villagra and Baran, 2007

Machine Learning

Bayseian networks De Campos et al., 2002

Daly and Shen, 2009

Classification Rules Parpinelli et al., 2009

Otero et al., 2008

Clustering Azzag et al., 2003

Herrmann and Ultsch, 2008

Table 1.3: Applications of ACO algorithms to non-standard NP-hard problems.

Problem Type Problem Name References

Multiobjective

Portfolio Selection Doerner et al., 2001

Gutjahr et al., 2010

Orienteering Schilde et al., 2009

Tricoire et al., 2010

Knapsack Alaya et al., 2007

Ibanez and Stutlze, 2010

Continuous

Neural Networks Socha and Blum, 2007

Movahedipour, 2011

Test Problems Socha and Dorigo, 2008

Stocastic

Probabilistic TSP Bianchi et al., 2002

Bianchi et al., 2005

Vehicle Routing Bianchi et al., 2006

24

Problem Type Problem Name References

Donati et al., 2008

Screening Policies Brailsford et al., 2006

Dynamic

Network Routing Di Caro and Dorigo, 1998

Cauvery and Viswanatha, 2008

Dynamic TSP Guntsch and Middendorf, 2001

Rais et al., 2007

Vehicle Routing Montemanni et al., 2005

Donati et al., 2008

Even though, ACO is one of the youngest metaheuristics, the number of ap-

plications go far beyond we explained above. The Table 1.2 presents an overview

of some important applications of ACO algorithms over the years.

1.5 Research Objectives

The following are the main objectives of the thesis.

• To assess the performance of standard ACO variant algorithms by applying

punishment mechanism.

• To introduce the decision making ability in ants.

• To explore some unconventional but significantly useful pheromone updation

strategies.

• To develop mathematical expression for pheromone evaporation variable.

• To develop a model and solve the train scheduling problem using ACO al-

gorithms.

25

1.6 Structure of the Thesis

This dissertation is organized into six chapters.

• Chapter 1 contains the background and objectives of the study.

• Chapter 2 introduces the extension to Elitist Ant and Rank based ACO

algorithm. The first extension is the incorporation of punishment mechanism

and second extension is the integration of Machine Learning (ML) philosophy

in ACO algorithms. The classification task is employed to select the elite

ants.

• Chapter 3 discusses the unconventional pheromone updation strategies.

The nearby tour performances will be updated with the same amount of

pheromone trail with the aim to exploit the region near the best solution.

The integration of clustering mechanism in ACO algorithm is explained here.

• Chapter 4 presents some theoretical results on pheromone update mech-

anism and evaporation of pheromones. This chapter also includes runtime

analysis of a modified ACO variant.

• Chapter 5 demonstrates the applications of ACO described in the earlier

chapters to a popular CO problem, Train Scheduling Problem.

• Chapter 6 summarizes the major contributions of the dissertation and out-

lines the possible future work with enhancement.

26

