
 89

Chapter 6

Parallel Multiplier Implementation

Ten different architectures for designing parallel multipliers are discussed in previous

chapters. The delay analysis for different operand sizes of parallel multipliers has also been

done on the basis of their topology using normalized gate delay. In the present chapter VHDL

coding of parallel multipliers and their synthesis is discussed. The delay, area, power and cell

counts obtained from synthesis are presented. A detailed analysis of all the multiplier

synthesis results is done.

6.1 VHDL coding of multipliers
Multipliers of operand sizes 8, 16, 32, 54 and 64 bits are designed using all the ten

architectures discussed in the previous chapter at gate level using VHDL coding. Each

multiplier design is divided into three components. The first component is partial product

generator, the second component is partial product accumulator and the third component is

the final adder. These three components are instantiated in the main multiplier architecture.

For partial product generation, a uniform code with slight modifications as per the

requirements is used for all architectures except the two using radix-64 encoding. This code

uses radix-4 Booth encoding. This code is used to generate partial products for different

operand sizes of multipliers, by changing the operand size through a generic statement. For

radix-64 architecture, a different code is developed.

 Coding for partial product accumulation was the most challenging. For coding of all

architectures, delay minimization and regularity in code is considered as the main objective.

 90

As the accumulation stages are complex, effort is made to have a common code for a specific

architecture, so that it can be used for all operand sizes with only slight modifications as per

the requirements.

In the final adder or RB to NB conversion stage CLA or CLEBC adders are used.

Their performances are already discussed in chapter 4. For coding of higher length adders,

bottom up approach is followed. Initially an 8-bit CLA is coded. This 8-bit CLA is

instantiated in a 16-bit CLA. The 16-bit CLA is used as a component in the 32-bit CLA. The

32-bit CLA is again used as a component in the 64-bit CLA and the 64-bit CLA is used as a

component in 128-bit CLA. Same methodology is also used for coding of all the CLEBCs.

Thus for all the ten multiplier architectures discussed in chapter 5, multiplier codes for

bit sizes 8x8, 16x16, 32x32, 54x54 and 64x64 are written. The functionality of all these 50

multipliers is verified with sufficient random input patterns using ModelSim simulator.

6.2 Synthesis of multipliers

Given the functionally correct multiplier codes, the implementation objective is to synthesize

multipliers at ASIC level using Magma EDA tool. But before that, the codes are tested for all

dangling wires, unused variables, signals and all other warnings using FPGA Advantage 5.2.

Codes are modified to remove such warnings. Such warnings can also be obtained using

Magma tool but Magma tool cannot indicate the locations of the causes of warnings in the

code. So we have used FPGA Advantage 5.2 for this purpose.

The synthesis-ready code is used by Magma tool for synthesis. Magma is an EDA tool

suitable for highly complex integrated circuits while maximizing quality of results with

respect to area, timing and power, and at the same time reducing overall design cycle time and

cost. Magma provides a complete RTL-to-GDSII design flow that includes prototyping,

 91

synthesis, place & route, and signal and power integrity chip design capabilities in a single

executable, offering “The Fastest Path from RTL to Silicon”.

In the first step of synthesis, a standard cell library is imported, which is used for

mapping to the gates present in the code. Then the VHDL codes for all the units of a

multiplier are imported. Among the imported ones, the main entity is elaborated to check for

errors in the code. In this stage, the code can be corrected for any errors or warnings. Once the

code is elaborated successfully, a dataflow graph of the architecture is created, which can be

viewed in schematic editor. Then a fix RTL command is used to map the data flow graph to

technology independent generic primitive cells of Magma. In case of any unbounded cell in

the RTL design to the library cell, they are bounded using run bind logical command. As the

multiplier design is made for delay minimization, the design is constrained by time. The

multiplier cells are added with timing information of the super cell models of library. A super

cell model is a model abstraction. It contains a number of models of different sizes for a

single entity. It has fixed delay but variable size, and it scales linearly with the load it drives.

These super cells are later mapped back to actual standard cells with driving strength suitable

for load in the physical optimization stage using fix cell command. A fully synthesized

multiplier of operand size 8 implemented using WM42CLA architecture is shown in

Appendix B. Once a model is synthesized, using check model command checks the

correctness of the synthesized model.

For all multiplier implementations only four metal layers are used. In a four-layer

design layers 1 and 3 are for horizontal routing layer and 2, 4 are for vertical routing. Out of

these four layers, usually layer 1 is used by standard cell geometry and is unusable for

routing. Metal layer 2 is 20% obstructed by vias connecting layer 1 and layer 2. Layer 3 is

 92

horizontal and fully available and layer 4 is vertical and fully available. For this reason there

is 80% more vertical routing resource than horizontal resource. So the ratio of horizontals to

vertical routing resource is 1/1.8 = 0.56. Because of these reasons we have chosen the aspect

ratio of the core of all the multipliers as 0.56. The standard cell library available and used is

tcb013 (130-nm silicon process technology library of Toshiba). The process technology

details are summarized in Table 6.1.

Table 6.1 Process technology used in the synthesis of multipliers

Technology
0.013�m CMOS, 4-metal

layer

Supply voltage 1.08V

METAL1

Routing/Width/pitch/spacing
Horizontal/0.15u/0.4u/0.17u

METAL2

Routing/Width/pitch/spacing
Vertical/0.19u/0.45u/0.2u

METAL3

Routing/Width/pitch/spacing
Horizontal/0.19u/0.4u/0.2u

METAL4

Routing/Width/pitch/spacing
Vertical/0.19u/0.45u/0.2u

6.3 Hardware and operating system used
The synthesis of complex and large multipliers using Magma requires huge computational

resources. For this SUN Solaris 8 operating system with 1.28 GHz Ultra SUN SPARK IIIi

computers available in OLAB are used. The size of RAM is 8GB. With this computation

facility, a typical 64x64 WM32CLA multiplier takes 8 hours and 23 min for completing

synthesis.

 93

6.4 Criteria in Evaluating Multipliers

The most important criterion taken for comparison is delay. The other quantities i.e. area,

power and cell count are also taken into consideration for comparison.

Delay

It is the worst-case delay for entire multiplication of a synthesized multiplier. This is obtained

by using the command “report timing path”.

Power

It is the combination of leakage, swcap and internal power. Leakage power is the power

dissipation through leakage current, when the signal is stable. swcap is the power dissipated to

charge and discharge any capacitance of input load and wire. The internal power dissipation

is because of the short circuit current that flows through the PMOS and NMOS parts, when

both are conducting. This is obtained by using the command “report power analysis”.

Area

This is the core area of synthesized multiplier. This is obtained by using the command “report

model”.

Cell count

This gives the total number of cells used in multiplier architecture. The cell count is obtained

by using “report model” command.

6.5 Simulation results

The coding and synthesis of multipliers with operand sizes of 8, 16, 32, 54 and 64 bits using

different architectures has been discussed in the previous sections. The performance of

synthesized multipliers is measured in terms of the delay, area, power, and cell count and is

listed in tables A.1 to A.10 in appendix-A.

 94

6.6 Comparison of architectures

The theoretically calculated delays for different multiplier architectures and for different

operand sizes are discussed in chapter 4. All the multipliers are also implemented and the

delay, power and area for each multiplier are summarized after synthesis in Tables A1 to A10

in appendix A.

The theoretical delays and the post synthesis delays, areas and leakage powers for the

8x8 multiplier using different architectures are summarized in Table 6.2. The theoretical

architectural delay in terms of TXOR for 8x8 multiplier is maximum using WMRBCLA and is

20.84 TXOR. This is considered as 1 and all other delays are normalized with respect to this

and are noted. Similarly the synthesized multiplier delay (T), area (A), power (P), TAP

(product of delay, area and power) and AT2 (product of area and square of delay) are also

normalized and noted in Table. 6.2. Now all these normalized values are plotted in Fig 6.1 for

performance comparisons of different architectures. From the figure the theoretical and post

route delay estimates indicate that the WM42CLEBC is the fastest architecture for an 8x8

multiplier. For all the other figures of merit, the WM42CLA is the best as it has the smallest

A, P, TAP and AT2.

Using the same method the normalized performance in terms of different figures of

merit of all the architectures are plotted for operand sizes of 16, 32, 54 and 64 bits in Fig. 6.2

to Fig. 6.5. The plot for 16x16 multiplier shows that the WM42CLEBC has the second best

theoretical delay and smallest post route delay. The AMCLA architecture has the smallest

area. In terms of power, ATP and AT2 the WM42CLEBC architecture outperforms the others.

The next plot corresponding to 32x32 multiplier in Fig. 6.3 shows that the

WM42CLEBC is practically as well as theoretically the fastest. The AMCLA architecture is

 95

most compact and AMCLEBC has the smallest value of P and TAP. Finally AT2 is smallest

for the WM42CLEBC.

The comparison plot corresponding to 54x54 multiplier in Fig. 6.4 shows that, the

WM32CLA has the smallest post route delay. For area and power the AMCLA out performs

others. WM32CLA has the smallest AT2. In terms of ATP also it is very close to the smallest

value.

 The performance plot of 64-bit multipliers is shown in Fig. 6.5. It shows that the

WM42CLEBC is the best for delay, TAP and AT2. For area and power AMCLA is the best.

 96

Table 6.2 Summary of performance of a 8x8 multiplier using different architectures

Multiplier
architectures

Performance
measuring
parameters

AMCLA

AMCLEBC
 WM32CLA WM32CLEBC WM42CLA WM42CLEBC WMRBCLA WMRBCLEBC Radix64CLA Radix64CLEBC

Theoretical
dealy in terms
of Txor

17.68 11.98 18.68 12.98 18.68 12.98 20.84 15.14 20.58 14.88

Normalized
theoretical
dealy

0.848369 0.574856 0.896353 0.622841 0.896353 0.622841 1 0.726488 0.987524 0.7140115

Post route
delay in psec
(T)

2659 2570 2835 2656 2593 2312 3376 3367 3446 3558

Normalized
post route
delay(T)

0.74733 0.722316 0.796796 0.746487 0.72878 0.649803 0.948848 0.946318 0.968522 1

Area in mm2
(A)

0.015 0.018 0.009 0.009 0.008 0.012 0.014 0.064 0.040 0.036

Normalized A 0.234375 0.28125 0.140625 0.140625 0.125 0.1875 0.21875 1 0.625 0.5625
Cell count 770 833 558 538 580 686 771 931 1541 1204
Power in
micro watt (P) 149.4 209.9 105 123.5 112.4 150.1 174.2 221.2 340.3 263.1
Normalized P 0.439024 0.616809 0.308551 0.362915 0.330297 0.441081 0.511901 0.650015 1 0.7731413
ATP 5958.819 9709.974 2679.075 2952.144 2331.626 4164.374 8233.389 47665.95 46906.95 33699.95
Normalized
ATP 0.125015 0.203713 0.056206 0.061935 0.048917 0.087368 0.172734 1.00002 0.984096 0.707017
AT2 106054.2 118888.2 72335.03 63489.02 53789.19 64144.13 159563.3 725548.1 474996.6 455737.1
Normalized
AT2 0.146171 0.16386 0.099697 0.087505 0.074136 0.088408 0.219921 1 0.654673 0.628128

 97

Figures of merit of different architectures for 8x8 multiplication

0

0.2

0.4

0.6

0.8

1

1.2

Delay in terms of
Txor

Post route delay Area power T * A * P AT2

Figures of merit

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

AMCLA
AMCLEBC
WM32CLA
WM32CLEBC
WM42CLA
WM42CLEBC
WMRBCLA
WMRBCLEBC
Radix64CLA
Radix64CLEBC

Fig. 6.1 Figures of merit of different architectures for 8x8 multiplication

 98

Figures of merite of different architectures for 16x16 multiplication

0

0.2

0.4

0.6

0.8

1

1.2

Delay Txor Post route delay Area Power A*T*P AT2

Figures of merit

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

AMCLA
AMCLEBC
WM32CLA
WM32CLEBC
WM42CLA
WM42CLEBC
WMRBCLA
WMRBCLEBC
Radix64CLA
Radix64CLEBC

Fig. 6.2 Figures of merit of different architectures for 16x16 multiplication.

 99

Figures of merit of defilement architectures for 32x32 multiplication

0

0.2

0.4

0.6

0.8

1

1.2

Delay Txor Post route delay Area Power A*T*P AT2

Figures of merit

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

AMCLA
AMCLEBC
WM32CLA
WM32CLEBC
WM42CLA
WM42CLEBC
WMRBCLA
WMRBCLEBC
Radix64CLA
Radix64CLEBC

Fig. 6.3 Figures of merit of different architectures for 32x32 multiplication.

 100

Figures of merit of different architectures for 54x54 multiplication

0

0.2

0.4

0.6

0.8

1

1.2

Delay in terms of
Txor

Post route delay Area Power ATP AT2

Figures of merit

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

AMCLA
AMCLEBC
WM32CLA
WM32CLEBC
WM42CLA
WM42CLEBC
WMRBCLA
WMRBCLEBC
Radix64CLA
Radix64CLEBC

Fig. 6.4 Figures of merit of different architectures for 54x54 multiplication.

 101

Figures of merit of different architectures for 64x64 multiplication

0

0.2

0.4

0.6

0.8

1

1.2

Delay in terma of
TXOR

Post route delay Area Power A*T*P AT2

Figures of merit

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

AMCLA
AMCLEBC
WM32CLA
WM32CLEBC
WM42CLA
WM42CLEBC
WMRBCLA
WMRBCLEBC
Radix64CLA
Radix64CLEBC

Fig. 6.5 Figures of merit of different architectures for 64x64 multiplication.

