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PREFACE TO THE SECOND EDITION

The preparation of a second edition of this book under present con-
ditions was not easy in view of other demands on the authors’ time.
Many of the good intentions made in peace-time had to be abandoned,
but it has been possible to carry out some improvements and it is hoped
that the result will justify the labour of revision.

In addition to the inclusion of new material in various sections of the
book, two completely new chapters have been added. One, dealing
with the voussoir arch, is largely the result of an experimental study
of this type of structure made by one of the authors and his associates
during the years immediately preceding the war. The other, which
deals with the elasto-plastic behaviour of structures, is based to a con-
siderable extent on researches made by the other author for The Institute
of Welding.

The treatment of the theory of reinforced concrete has been simplified
by the omission of a number of formulas which, though useful in the
preparation of design curves, tend to confuse, rather than help, the
study of fundamental principles.

The authors thank those readers who have taken the trouble to point
out errors. As a result, one or two serious mistakes and a number of
minor ones have been corrected. It is too much to hope that all have
now been eradicated and the continued help of readers will be welcomed.

‘ A. J. SUTTON PIPPARD.

J. F. BAKER.
Lo~pon, 1943.



PREFACE TO FIRST EDITION

The primary object of this book is to present to the student of
engineering a general outline of the theories upon which the design of
structures is based. Problems of practlcal design have been excluded
as we believe that this side of the engineer’s work cannot be effectively
taught by means of text-books and must be acquired by experience in
the shops and drawing office.

This point of view explains the omission of certain sections commonly
found in books dealing with the theory of structures, but we hope that
such omissions will be compensated by the inclusion of methods of
analysis which are not usually given and which in some cases appear
for the first time.

It is assumed that the student is reasonably familiar with simple
analytical and graphical statics since the study of these subjects forms
a normal part of an intermediate course in engineering or applied
mathematics. Descriptions of stress diagrams, vector diagrams ete.,
have therefore been reduced to the minimum consistent with a con-
tinuous treatment of the subject.

The work during the last six years of the Steel Structures Research
Committee of the Department of Scientific and Industrial Research has
completely modified the outlook on the design of steel building frames.
Both authors were members of this Committee, one of them being its
Technical Officer for the greater part of its existence, and the results
achieved are dealt with in sufficient detail to enable the student to
appreciate the modern aspects of this important branch of structural
engineering.

The authors are deeply indebted to Messrs. Longmans Green & Com-
pany, Limited, for their very generous permission to reproduce certain
portions of books published by them * especially in connection with
portions of Chapters 7 and 8 and those sections dealing with strain
energy analysis.

In the troublesome work of proof reading we have been helped by
Miss L. Chitty, M.A. ; in the working of examples by Mr. 8. R. Sparkes,
B.Sc., and in the preparation of drawings by Mr. T. Bryce, all of the
Imperial College and to them we offer our grateful thanks.

v

A. J. SUTTON PIPPARD.
J. F. BAKER.
September, 1936.

® « Aeroplane Structures ”’ (A. J. 8. Pippard and J. L. Pritchard) and ¢ Strain
Energy Methods of Stress Analysis ” (A. J. 8. Pippard).,
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THE ANALYSIS OF
ENGINEERING STRUCTURES

CHAPTER 1

DEFINITIONS AND GENERAL PRINCIPLES

1.1, Introduction.—Any assemblage of materials whose function is
that of supporting loads is a structure. The term may be applied
equally correctly to a large bridge or an aeroplane wing rib; to a
masonry dam or the steel frame of a building. The component parts
of a loaded structure are in a state of stress and the laws which govern
the distribution of these stresses must be studied with a view to their
calculation so that the different parts of the structure may be pro-
portioned to take them with safety.

In most cases there are several methods by which loads can be
supported, and the first stage in the design of a structure is to decide
the most appropriate way of solving the particular problem which is
presented. For instance, in choosing a bridge to carry a railway
across a river the safety of the structure is not the only criterion
cost and appearance must be considered so that the choice of the
best type is a matter requiring judgment, experience and taste.

When the general lines of the scheme have been settled the loads
which the structure has to carry must be estimated as accurately as
possible. The loads usually arise from a variety of causes and in the
case taken as an example will include the weight of trains, the
dynamic effects of the locomotive driving wheels, the dead weight
of the bridge itself and the pressure of wind on trains and structure.
When these loads have becn estimated the forces in the different parts
of the structure must be calculated and the dimensions fixed so that
the stresses will be everywhere within safe limits. This stage of the
design, for which a knowledge of the theory of structures is required,
will be dealt with in this book.

1.2. Classification of structures.—Structures are often classified into
the two main groups of framed structures and mass structures. The
former comprises arrangements of separate bars or plates pinned or
rivetted together as in a lattice girder or roof truss and such structures
depend on the geometrical properties of the arrangement to resist

1



2 ANALYSIS OF STRUCTURES

external loads. The latter group relies upon the weight of material in
the structure to provide this resistance as in the case of a masonry dam.
This classification is not complete or very satisfactory, but is some-
times useful as a broad division.

1.3. Factor of safety and load factor.—It is impossible to determine
exactly either the external loads or the internal forces to which a
structure is subjected. Moreover, the materials available are subject
to certain variations in quality, and workmanship at times will fall
below the average. It is therefore necessary in order to guard against
these contingencies to allow a margin of strength over and above that
which calculation indicates as being just right. Thig allowance is made
by the introduction either of a factor of safety or a load factor and the
distinction between these methods is important.

If the maximum stress which the material in any component of a
structure can withstand is denoted by f and that component is designed
so that at full load the working stress reaches f/n, n is known as the
factor of safety. The maximum stress is advisably taken as the yield
stress of the material and » is usually then about 2.

Another method however is to multiply the external loads by a load
factor N and to design the structure so that the stress under the action
of this factored load system reaches the maximum value f.

In other words when a factor of safety is adopted we ensure that
under full working loads the stress will nowhere exceed a safe working
limit : when a load factor is used we design so that under a specified
number of times the full load the structure will just reach the failing
point.

In many cases these two methods yield identical results but in
others there is a considerable difference.

It is impossible at the present stage to indicate how these differences
arise but the question will be dealt with more fully later and illustrated
with reference to particular problems.

1.4. Frameworks.—An arrangement of bars, connected by joints
incapable of transmitting bending moments, which is able to resist
geometrical distortion under the action of any system of applied loads
is known as a framework, pin-jointed frame, skeleton frame or truss.

When such a frame is loaded at the joints the internal forces in the
bars composing it are simple tensions or compressions : loads acting
on any member between its terminal joints will induce bending moments
and shearing forces in that member only. The effect of the axial
forces in the bars will be to elongate or shorten these bars to the extent
of their elastic strains but this elastic deformation, which is necessarily
very small, is the only alteration in the configuration of the frame.

It must be emphasized that to comply with the definition, the
arrangement of bars must be able to resist deformation under the action
of any load system. An arrangement which will resist a particular
load distribution but which will Geform or collapse under another is
not a braced frame.

A frame of which all the bars lie in one plane is known as a plane
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frame and will resist distortion only under systems of loads in that plane.
When the bars lie in more than one plane the frame is a space frame
and will resist distortion under loads in any direction.

1.5. Criterion for trameworks.—The simplest plane frame consists of
a triangle of pin-jointed bars. If extra points are to be braced to this
elementary frame each one will necessitate the addition of two extra
bars. Thus, the first 3 joints of any plane frame having j joints or
nodes require 3 bars to connect them, while the remaining j—3 joints
require 2j—6 extra bars. If then n is the total number of bars required

to brace j joints together,
n=2%—3 . . . . .. ...

The simplest space frame consists of 4 joints connected by 6 members

\4

B
k () \

} (5) \\

Fic. 1.1.

to form a skeleton tetrahedron. Additional nodes will each require
3 bars for connection to this tetrahedron, so that for this case,

n=3—6 . . . . . . . .. @

These equations give the minimum number of bars necessary for the
construction of frames with a specified number of joints and these are
termed essential bars. An arrangement of bars containing less than the
essential number cannot form a frame and will, except perhaps in special
cases, collapse under load. If it, contains more than the essential number
the frame is said to be overbraced or redundant. If it contains the
correct number of bars given by the appropriate criterion it is a simply
stiff or just-stiff frame.

This statement is made with certain reservations : it is assumed that
the disposition of the bars is satisfactory and that their character and
strength are adequate for the loads which they may have to carry.

For example, in Fig. 1.1 there are 6 nodes to be connected by bars
to form a plane frame. Equation (1) shows that 9 members are essential
and if less than this number is provided it is impossible to brace these
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points. The essential number of bars however can be disposed either
as shown at (a) or at (b). In the first case the disposition is satisfactory
but in the second, one panel is overbraced while the other is unbraced.
Further, although () has a satisfactory disposition of bars it is necessary
to ensure that these bars can fulfil the duties imposed upon them.
Under the loading shown AB will be in compression ; under another
system it may be in tension. All bars must therefore be capable of
taking such tensile or compressive forces as may be imposed by any
possible external load system.

In cases where a number of nodes have to be connected by bracing
bars to certain fixed points it is clear that these fixed points are equi-
valent to an already existing frame, and the number of bars necessary
to effect the bracing are 2n and 3n for plane and space frames re-
spectively, where n is the number of free nodes.

1.8. Reactive forces.—The usual function of a frame, as already
stated, is to transmit an external load system to a number of specified
‘points, e.g. the load on a bridge has to be transmitted to the abutments.
Since the external loading may vary, the supporting points must be
capable of exerting reactive forces which will statically balance any
such loading.

1f a plane frame is supported at two points the reactive forces at these
points together with the external loads form a system in static equili-
brium and the necessary conditions which must be satisfied are three
in number, as follows :—

1. The algebraic sum of the components of loads and reactions
parallel to any axis in the plane must be zero.

2. The algebraic sum of the components of loads and reactions
parallel to an axis perpendicular to the original axis and in the
plane must be zero.

3. The algebraic sum of the moments about any point in the plane
must be zero.

These conditions require three forces for their satisfaction and the
nature of the supports must be such as to provide these forces. If one
support is capable of exerting a force along one of the axes of resolution
only while the other can exert forces along both axes of resolution,
the necessary conditions are satisfied. Such supports may be provided
by a frictionless roller and a pin joint respectively and these supply
the statically essential reactive forces.

This arrangement is illustrated in Fig. 1.2 at (a) where the roof truss
shown is supported at A on a pin joint which can exert a reaction in
any direction and at B on a frictionless roller which can only exert a
reaction normal to the bearing.

If both the supports are pin joints both the reactive forces are
inclined and give components about the two chosen axes, thus in-
troducing four forces. Since only three equations have to be satisfied
the magnitude of these forces cannot be determined from purely
statical considerations. This case is one in which a number of nodes
are connected to two fixed points and the number of essential bars is .
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2n. In the example illustrated n=4 and 8 bars only are needed : a
suitable frame is shown at (b).

In the case of a space frame the conditions of static equilibrium
which ha.e to be satisfied are six in number ; the components of the
external loads and of the reactive forces along three mutually perpen-
dicular axes must be zero and the moments of the loads and forces
about those axes must also be zero. The essential reactions for a space
frame must thercfore provide six component forces suitably disposed.
If one support consists of a universal joint, this will account for three
of the six components. Another support should then be such that
movements of the supported point are restricted to a line ; this intro-
duces two restraints. The third support should be such that move-
ments are restricted to a plane, which only requires one restraint. The

PJ

PJ PJ
s |
/ ,l, @
Fic. 1.2.

simplest illustration of the arrangement is that of the ball, groove and
point used for mounting certain instruments. If more than the essential
six reactive forces are provided the frame will be statically indeter-
minate unless the number of bars in it is correspondingly decreased.

1.7. Primary and secondary stresses.—The axial forces in the bars
of a frame under loads applied to the nodes are known as the primary
stresses. In actual structures the joints are seldom of the pinned type
but are designed to transmit bending moments. The stresses in the
bars are then no ‘longer simple tensions and compressions but are
complicated by the effects of bending. The extra stresses induced by
the stiffness of the joints are known as secondary stresses ; not because
they are of secondary importance but because no estimate can be made
of their magnitude until the primary stresses based on the assumption
of pin joints have been calculated.

1.8. Self-straining.—If a just-stiff frame has one of its members
removed the remaining bars form a mechanism. It is evident therefore
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that the member which has been removed could within certain limits
be replaced by another of a different length without causing any
stresses in the remaining bars. The only effect would be an alteration
in the configuration of the frame.

If, however, a redundant bar is to be inserted into a just-stiff frame
without causing stresses in the existing bars it must be made of exactly
the right length since the two joints to be connected are already fixed
in position relative to each other. If by error or design the member
is not of the exact length, force will have to be exerted to get it into
position—the two points to be joined will have to be brought closer
together or forced apart. This means that before any external load is
applied to the frame its members are in a state of stress. This action
is known as self-straining and any forces in the members due to initial
stresses must be added to those caused by the action of the external
load system in order to determine the total stress condition.



CHAPTER 2

PRIMARY STRESS ANALYSIS OF STATICALLY DETER-
MINATE FRAMES

2.1. The general problem.—The first step in the analysis of any
braced structure is the determination of the stresses or forces in the
bars of the frame on the assumptions that they are all pinned at the ends
and that all loads are applied to the joints. Under these circumstances
the internal forces are purely tensile or compressive, and although this
ideal state of affairs does not completely represent the conditions in
an actual structure the determination of these primary stresses is an
essential preliminary to a more cxact analysis. In the present chapter
an account will therefore be given of the various methods in use for
calculating such forces. Since certain of these are dealt with adequately
in books on statics, which the student is presumed to have studied, it
should not be necessary to claborate them here : we shall be content
to give examples which will serve as indications of the treatment.

A simply stiff framework, which will alone be considered in this
chapter, can be completely analysed by the methods of statics since the
number of unknowns is the same as the number of equations obtainable
from the conditions of static equilibrium. The methods of stress analysis
in use are therefore only variations of the application of the same
fundamentai principles.

2.2. The stress diagram.--Onc of the most generally useful methods
is that of the stress diagram which is simply a continued application
of the well-known polygon of forces. This theorem states that if any
number of forces acting at a point are in equilibrium the vector diagram
representing these forces in direction and magnitude consists of a closed

"polygon. In its simplest form when only three forces are acting the
polygon becomes the triangle of forces.

In a braced frame every joint is in equilibrium under the action of
the forces in the bars meeting at the joint and the external loads applied
to the joint. Hence, a closed polygon can be drawn for every joint in
the frame provided that not more than two unknown quantities appear
at any joint. If the external loads are specified the unknowns may
consist of the internal forces in two bars of the frame. For example,
suppose Fig. 2.1 to represent a joint O in a frame carrying an external
load W, and OA, OB and OC the bars connected to O. If the force in
OA is known e.g. to be -8W the forces in OB and OC can be determined.
Using Bow’s notation, ab is set out parallel to the line of action of W
and equal to W to some selected scale. bc is then drawn parallel to
OA and its length is made ‘8W to the same scale. From ¢, cd is drawn

7
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parallel to OB and from a, ad is drawn parallel to OC. These lines
meet at d; cd and ad then represent to scale the magnitude of the
forces in OB and OC respectively. The direction of arrows on the
force polygon must be all in the same sense—in the present instance
clockwise—and these arrows, transferred to the joint diagram give the
direction of the force acting through the member on the joint.

Fia. 2.1.

The two unknowns may however consist of a magnitude and a
direction as in the case illustrated by Fig. 2.2, which represents the
joint at the point where a truss is pinned to a support. The forces in
0OA, OB and OC are known and the reactive force has to be found both
in magnitude and direction.

ab, bc and cd are drawn parallel to the lines of action of the three

Fic. 2.2,

known forces and proportional to their magnitudes. The closing vector
da then represents in magnitude and direction the reactive force at O.

This principle can be used to find graphically the reactions and
primary stresses in any just-stiff braced framework, but instead of
drawing separate polygons for each joint the work is simplified by
combining them into one stress diagram.

As an illustration the quadrangular truss shown in Fig. 2.3 will be
analysed. The truss is supported on rollers at the left-hand side, the
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reaction there being consequently vertical, and by a pinned joint at the
right-hand side where the reaction will be inclined.

The frame diagram is lettered in accordance with Bow’s notation.

The first step is to determine the magnitude and line of action of the
reactive forces and this may be done either by direct calculation from
the static equations or graphically by the use of the funicular polygon.
The process in the latter case is as follows. Set out the load line abe
. . . . k to some convenient scale so that ab represents the force of 1 ton
acting between A and B in magnitude and direction, bc the force between

Fia. 2.3.

Band Cand so on. Take any convenient pole O and join Oa, 0b . . . .
Ok, thus completing the vector diagram. Produce the lines of action
of all the forces on the frame diagram as shown.

Starting at the pinned support draw the line 01 1n the space J parallel
to Oy, cutting the line of action of HJ at 1. From 1 draw 12 in space
H parallel to Ok to cut the line of action of GH at 2. Similarly, 23,
34, 45, etc., are drawn in the spaces G, F, E, etc., parallel to Og, Of,
O, etc., until finally 89 in space A is parallel to Oa. Complete the
funicular polygon by joining 09.

From the pole O of the vector diagram draw Ol parallel to 09 of the
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funicular polygon to mecet the vertical from a at I. %l is then the
magnitude and direction of the reaction at the right-hand support.

To draw the stress diagram we start with joint ABM. ab has already
been drawn to represent the external force in magnitude and direction,
so from @ and b we draw lines am and bm parallel to forces AM and BM.
abm is then the triangle of forces for the joint considered and the lines
am and bm give the magnitudes of the forces in the bars AM and BM
and the direction in which these forces act on the joint. Thus ab is
drawn in the direction of the external force and following round the
triangle we see that bm acts towards the joint and BM is therefore in
compression. Similarly ma acts towards the joint and MA is also in
compression.

Proceeding now to joint AMNLA we find one external reaction and
three internal forces acting. Of these la and am are known so that
the polygon of forces could be drawn for this joint. la and am are,
however, already drawn to scale so, if mn and In are drawn parallel to
MN and LN respectively the polygon is completed by these two addi-
tional lines. Following round the diagram in a clockwise direction to
conform with the fact that le is an upward force we find am and mn act
towards the joint, but that nl acts from the joint. Thus, NL is in
tension. Joint BCONM and remaining joints are treated in the same
way in succession until the whole stress diagram is completed. The
test of accuracy is obtained when the line parallel to «8 in the frame
diagram drawn from « in the stress diagram gives 8 coinciding with j.
This gives a zero force in 38 which is obviously correct from an examina-
tion of the conditions at joint KBJ.

2.3. Ritter’s method of sections.---In many cases the method of
sections can be used with advantage in stress analysis, especially when a
knowledge of the forces in certain members only is required.

This method consists essentially of solving the equations of static
equilibrium for a section of the framework and by judicious choice of
such section the work is made very simple.

Fig. 2.4 shows a cantilever frame supported at A and D and carrying
loads at E and B. The necessary dimensions are shown on the diagram.

The section of the frame GCBF is kept in equilibrium by the external
load at B and the internal forces in GH, FH and FE which act on the
joints G and F in the direction of the arrows at those joints. These
four forces must therefore satisfy the conditions of static equilibrium
and so the algebraic sum of their moments about any point must be
zero. Now the lines of action of HG and FH meet at H and by taking
moments about this point we eliminate the moments of these two
forces and obtain

Ty x HE=5EB

or. TEF=5—>1102~0=10

where Tgy is the force in EF.
It is unnecessary to know the direction of Tye. If it is assumed to
be a tension and is actually a compression this will be indicated by a
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negative value in the result. Again by taking moments about F the
moments of the forces in EF and FH are eliminated and we obtain

Tye X Ff=50

where Ff is the perpendicular from F on the line of action of HG.
Ff can often, as in the present case, be obtained geometrically, but
if this is difficult it can be scaled from the frame diagram.

-—T—/o- »—/o’ | 30" ]
o "]‘ ¢ //’I

cwt. Scewt. ’
\ 7
N d
\ 4
AN /
N /
AN /
AN , /
N
e
AN , /
N ,
N
s
nx
Fig. 2.4.

If DC and AB be produced to meet at O we have from the similar
triangles FGf and ODA,

T/ _0A
GF OD
or Fj=~—_§:_x—§2—:=7-84.
V6024122
50
H 'gg=x—, =6-38.
ence Tae P 6-3

Suppose now that the force in GF is to be calculated.

The section GCB of the frame is in equilibrium under the action of
the external load at B and the internal forces GH, GF and BF.

The lines of action of GH and BF meet at O and so we take moments
about this point and obtain

or TGF=3'75.

To calculate the force in FH we again consider the section GCBF
and take moments about O where HG and EF meet.

Then TrpXn0=30Xb

It is best here to scale nO and so solve for Tgg.
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For the members DH, DE and AE the procedure is the same as
above, but both the loads at B and E now appear in the equations.
For example T,y is found by taking moments about D, the equation
being,
T g XDA=(10Xx10)4(30 X 5)
or T, g=20-83.

2.4. Method of resolution at joints.—In certain simple forms of truss
the forces in all the bars can be written down directly by considering
the equilibrium of each joint in turn. This is a method which with a
little practice is very quick and useful.

Suppose the forces n all the bars of the truss shown in Fig. 2.5 are
required.

The reactions at A and B are first calculated. Consider first the
equilibrium of joint A.

172

E C F (2]

! !

| 1

[ |

I i

I ]

o ! |

50\

A 1 B
A [3 C D , J
-8~ 8- 8
72 s 6
Frc. 2.5.

The vertical component of force in AE must balance the vertical
reaction and so,
T ,g=12 cosec 60°=13-85.

The horizontal component of T, is balanced by the force in AC or
T =T g cos 60°=6-925.

The problem may also be treated by taking AEe as the triangle of
forces for the joint A, where Ee is perpendicular to AC.

Then, B =&
12x8
or T,g=—==13-80
W3
T Ae
d —Ac__ Y
an Ty AE
i.e. TAC=%TAE=6.925'

Taking joint E next, the forces acting are 13-85 from AE and the
vertical load at E.
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These can be dealt with separately. A triangle of forces for AE,
EC and EF is the equilateral triangle EFC and due to the force in AE,
equal forces occur in EF and EC, EF being compressive and EC tensile.

For the vertical load at E we take ECc as the triangle of forces and
obtain as the total forces in the bars,

Tgc=13-85—12 cosec 60°=0

T op=—13-85-+3(13-85)=—6-925.
where the positive sign denotes tension and the negative sign com-
pression.

Alternatively if a section be taken cutting EF, EC and CA the total
shearing force across this section is zero, by summing forces to the left
orright. Since EC is the only bar of the three which can have a vertical
component of force, such component must be zero to balance the
shearing force. Hence Ty.=0.

Similarly, Tep=Tgp=0.

Therefore, by considering the equilibrium of joint F,

Ty =Ty =—6925.

Also from joint C, T =T p,=6-925.
Treating joint B in the same way as A,

Tpe=—06925
and Typ= 3-462.
Also Tep= 6925

and the forces are all determined.
2.5. Method of tension coefficients.—The methods described in the

previous paragraphs are not easily applicable to space frames and
although they may be adapted for
such cases analysis by their means
is laborious and liable to error. The
most satisfactory treatment of space
frames has been very fully described
by Professor R. V. Southwell* It
is equally applicable to plane frames
and is one of the simplest and most
accurate methods of stress determina-
tion for such frames. The general
case of the space frame will be con-
sidered first and its simplification
when applied to a plane frame dealt
with afterwards.

Let AB in Fig. 2.6 be any bar in a Fa. 2.6.
space frame,

T ,p the tension in this bar,
and L,p the length of the bar.

* “Primary stress determination in space frames.” R. V. Southwell,
‘¢ Engineering,” February 6th, 1920, p. 165.

This method is also used by Miiller-Breslau in ‘“ Die Neueren Methoden der
Festigkeitslehre ** (Leipzig, 1924, and earlier editions).
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The tension will be expressed in the form

Tip=Liaslan
where ¢, 5 is known as a tension coefticient.
Through A take threc mutually perpendicular axes, Az, Ay, Az, and
let the co-ordinates of A and B be (z,, y,, 24) and (zg, ¥g, 2g)-
Then, the component of T,y acting at A in the direction Az is

T,g cos BAz
or T, g2

which from the expression for T,p in terms of its tension coefficient can
be written

Lap(Tp—T4)-

Similarly, the components of T,y along Ay and Az are ¢,5(ys—Ya)
and ¢,g(zg—2,) respectively.

At B, the other end of the bar, the components along the three axes
will be

LaB(Ta—238), tap(ya—yp) and f,p(z4—25).

Suppose now that at a joint A in a space frame there are connected
any number of bars AB, AC' . . . . AQ, and that the components of
external load acting at this joint along the directions of the , ¥ and 2
axes are X,, Y, and Z, respectively. The equilibrium of the joint
requires that the components of all the forces along three mutually

perpendicular axes shall be zero so that the conditions for equilibrium
are

Lap(Tp—2p) Fac(@e—p)+ - - o Hlyolrg—iry) + Xy =0
Eas(Y—Ya)Haclle—ya)+ - - - - HaWo— 7/\ +YA”‘0‘ (1)
tan(zp —24) Hac(ee —24) + .+ . . Hlaglzq —24) %4 =0

Three equations such as these can be formed for each joint in
the framework. They involve the quantities (xg—2,), (Yu—Ya),
(z2g—2,), etc., which are the projected lengths of the bars on the z, y
and z axes respectively and therefore known from the drawings of the
frame, and the unknown quantities ¢4y, ¢,o, etc., which are to be
calculated.

For every term such as ¢,u(xy—x,) In onc cquation there will be a
term ,p(z,—y) in another equation, these being numerically equal

but opposite in sign since (zg—z,)=—(x --uy). [f, therefore, the
x equations for all the joints are added we ol)tam
X+ Xgt+ ... =0
and similarly, by adding the y and z equations, )
Y+ Yub ... =0,
and Zy+Zg+ . ... =0.

These equations express three of the cssential conditions for the
static equilibrium of the frame as a whole, viz., that the sum of the
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components of the external forces along three perpendicular axes must
be zero.

Again, if the first of the equations in (1) be multiplied by y, and the
second of these equations by —z, we obtain

LAB(TBYA—TaAYA) FeacZYA—TaYa) T - - - - Laq(@a—TaYs) + Xy, =0
LAB(—YBLatYaZA) Hacl—YTa+YaZa) 4 - - -+ Hao(—YaZaTYaZs)

—-Y,z,=0,
and adding these we get

LAR(TpYa—2aYB) HiacTha—ZaYc) T+ - - - - Hag(T¥a—TaYo) +Xuy
———YA:EA=0 .. (3)

If this is done for the corresponding equation for each joint we shall
obtain similar results to (3), and for every term such as {,5(xpy,—2Z,¥s)
there will appear another, numerically equal but opposite in sign,
tAB(TaYB~ TBYA)- ) ‘

Hence, by adding all these equations we obtain

(yaXa—2,Y )+ (ypXp—2pYp)+ . . . =0

and similarly from the other equations of (1) @)
(2aY A—Yalp)+(28Yp—ypZp)+ . .. =0

and (g Ziy—2, X )+ (@pZg—25Xg)-F . . . . =0

These equations express the remaining three essential conditions for
the static equilibrium of the frame as a whole, viz., that the moments
about three perpendicular axes shall be zero.

It has already been shown that the essential reactive forces for a
space frame are six in number. If the frame is supported at A, B and
C, for example, it is necessary for one point, say A, to be pinned, for
another, B, to be restrained to move along a line in one plane, and for
the third C, to be simply restrained in a plane. Thus, at A we shall
have three reactive forces X,, Y, and Z,, at B two reactive forces Xy
Zg, and at C, one reactive force only, Z,. The equations (2) and (4)
enable these six unknown forces to be determined.

Having found the reactive forces the equations corresponding to (1)
are used to find the values of the tension coefficients. It should be
pointed out that these equations do not all have to be solved simul-
taneously and the work is neither difficult nor involved. Once the
tension coefficients have been evaluated the loads in the members are
found by multiplying the coeflicients by the lengths of the appropriate
members, e.g.,

Tan=tanV (e —)2+(yp—Ya) 2+ (25— 20)%

In forming the equations the load in a member is always assumed to
be tensile and the terms in the equation are positive or negative as they
tend to move the joint in the positive or negative direction of x, ¥ or 2.
A negative result for the tension coefficient signifies that the force in
that member is compressive.

As an example of this method the space frame shown in Fig. 2.7 will
be analysed. It consists of a cantilever strueture formed of three
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longitudinal members ABC, GHJ and DEF braced together and
arranged so that at any section they lie at the corners of an equilateral
triangle.

As there are six points to be braced to the wall, eighteen members
are necessary. These are provided by the six longitudinal members,
six struts and six diagonal panel members.

The loading is as shown on the diagram.

Taking the co-ordinate axes positive in the directions indicated and
starting with point F, the equations of equilibrium are formed as
follows :—

The members meeting at this joint are FE, FC, FJ, FH, FB, and by

A\f Side Flevation ) £End Elevation .

=10

N

D
a
H
)
D 6

0 F P/aﬂ

Fia. 2.7.

considering first the equation for the z axis, it is clear that FC and FJ
have no components.
The projection of FE on this axis is —10, that of FB is —10, and that
of FH is —10, so that the equation is
_]'OtFE_]'OtFB—IOtFK:O'

Considering now the y axis, the members concerned are FC, FJ, FB
and FH. The projections on the y axis of FC and FJ are both 5-2,
and of FB and FH are 6:93. The load is 10 acting in a negative direc-
tion so that the equation is

5.2tFC+5'2tFJ+6'93tFB+6'93‘FH=10'
Similarly, for the zaxis we get
3ty —3tpct+4tyn—4tpp=0.
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Following the same procedure at every joint the necessary equations

are formed and are best set out as shown in Table 2.1.

TaABLE 2.1.
Joint Equations

x —10tpg —10tgg — 10ty =0.

F Y 5-2pc+5-2tpy +6-93tpg +6-93tpg —10-=0.
z tpy—tpc+4tyg —4tpg=0.
x —10tcg — 10t =0.

C y —*5’2&017-{-1‘73!03—} 1'73tcﬂ—6_70.
z 6tcy +Ttcr —tep +3tcp=0.
z —10ty5=0.

J Yy 1-73ty5 — 3-2typ —3=0.
z —6tyc+tym—3tyr=0.
x lOtEF - lOtED - lOtEA —_ lOtEG =0,

)] Y 6-93t;p+8-66t s +6-93tg g +8-66t5g =0.
4 4tgg —4tgp+5tpg —btga =0.
x lOtB(;——IOlBA—lOth-{—lOtBF:O.

B Y —6-93tgr+1-73tga+1-73tpg —1-73tgc—6-93tgr—=0.
z 8tpu+9fp;+tpc—tpa-t+4¢py+4tpr=0.
x 10t345 —10tgg +10tgc+ 10tgp==0.

H Y 1-73tge — 173ty —1-73tgc—6-93tyg —6-93tgr =0.
2z —8typ —Ttac—tay +tag —4gr —4gE=0.

TABLE 2.2,

Member Tension-coefficient ¢ Length L Load Lt
FC —1-15 6-0 — 69
FJ —0-576 6-0 — 346
FB 1-59 12-8 20-3
FE —275 10-0 —27-5
FH 1-16 12-8 14-85
CB —0-215 10-2 — 219
aJ 0-288 6-0 173
CH 0-215 12-3 2-64
JH 0 10-2 0
EB —1-194 8:0 — 955
ED —44 10-0 —44-0
EA 0-961 14-14 13-60
EG 0-684 1414 97
EH —0-86 8:0 — 7-08
BA 1-28 10-2 13-06
BG 0-133 13-56 1-80
BH —0-166 8-0 — 1-328
HG 1-375 10-2 14-02
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These equations must now be solved. In the present instance joint
J is taken first and the equation Jz for forces along the z axis gives
t;r=0. Substituting this value in Jy we find ¢;» to be —0-576 and
t;c=0-288 follows at once from Jz.

If joint C be now considered it will be seen from Cz that ¢{cg+teg=0
which can be substituted in Cy to obtain ¢ce=—1-15. If we use this
and the known value of ¢y in Cz, an equation in ¢og and {gg is obtained
which with Cz enables these two coefficients to be evaluated.

This process is continued until all the coefficients have been deter-
mined and these, multiplied by the respective lengths of the members,
give the loads in the members as set out in Table 2.2, p. 17.

When the method of tension coefficients is applied to the stress
analysis of plane frames the work is considerably simplified since there
are no components along the z axis, and all the data are contained in a
single view of the framework.

As an illustration the roof truss shown in Fig. 2.8 will be analysed.

A"

R.12.2 2 77 R;=R06
? L—s-o’ ¥ 75" i 75— ?

Fia. 2.8.

If Ry and R are the reactions at B and C respectively we obtain by
taking moments about B
20Rc=10+12-5—4.‘—;33—4-33
or Ry=0-8.

Therefore the vertical component of Rg=2-2 and the horizontal
component of Rgy=1-0.

The positive directions of x and y are indicated on the diagram and
the equations for the various joints in terms of tension coefficients are
given in Table 2.3, p. 19.

tcp i8 obtained directly from equation Cy and is —-1846 which is
entered in the Table.

From Cz and Fz, {gp=—{tcp=tgg and from Fy, t;n="981.

The values of ¢;; and tpp thus found are substituted in Dz and Dy
leaving simultaneous equations in (g and ¢, which give on solution
tDE=—.1488 and tDA=—.1025'

t,p i8 found directly from By and substitution of its value in Bz

gives tgp.
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TABLE 2.3.
Joint Equation Bar t L T
C z | —T7-6top—T-5tcp=0 CD | —-1846| 866 | —1-6
y |4.33tep+0-8=0 CF | +-1846| 75 +1-385
F z |tpo—tpg=0 FD | +-231 4-33 | +1-000
y |4:33tpn—1=0 FE | +-1846| 75 +1-385
D z |7-5tpc—T-5tpg,—7-5tpp —4 =0 BA | —254 | 100 —2-54
y | —4-33(tpr+tpct+ipe—tpa)=0 BE | +-054 5-0 +0-27
A x |7-5tsp—btap—3=0 DE | —1488| 866 | -1-29
y | —866t43—133t,p--866t,5=0| DA | —1025| 866 : —-888
B z |btgg+5tga+1=-0 AE | 4+-305 866 | +2:64
y |8:66tgp<-2:2=0
E x 7’5tEF+7'5tED -—-5!1,;1; =0
Yy 8‘66IEA+4‘33¢ED—~2=0
|

Ay then gives ¢ .

The remaining three equations Az, Ez and Ey afford a check upon
the accuracy of the work, since they are satisfied when the values of
the tension coefficients already found are substituted in them. Instead
of calculating the reactions directly they could have been dealt with as
uhknown forces, Vi, Vg and Hp.

The equations for B and C would then have been :—

Joint Equations

5tpg+5tpa+Hp=0
866t + V=0

< R

4-33tap+Vo=0

Q
<R

and there would be twelve equations to solve for the nine bar forces
and the three reactive forces, Hg, V5 and V.

EXERCISES
{1) Determine by inspection the forces in the truss shown in diagram 2a.
(F@=—-3; GH=HJ=—6; JK=—446;
AC=0; CD=3; DE=45; EB=0;
FC=GD=6; DJ=256; EK=75;
AF=CG=—4; HD+0,; JE=KB=—-6.)

(2) The frame shown at 2b is pinned at A, B and C to a rigid support. Comment
on the adequacy or otherwise of the bracing and if necessary modify it.
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Make a neat sketch of the frame and mark on it the internal stresses in all
members.

(AD=DG=CF=GH=- - W ;
EH=EF=-W ; BE - DE= 0
FH= —WV2; AE=WV2)

{3) The pin-jointed frame shown at 2c¢ is supported at A and D. The sides
AB, BC and CD are equal in length. Using the method of tension coeflicients,
find the forces in all members of the frame.

(AB- =578, (D—-—404; AD=202;
AC=:1-00 ;- B('--—2-89.)

(4) Determine by calculation the forces in all members of the pin-jointed frame
shown in diagram 2d.

(AB=-5-0; CD=-796; BC~=710; DE=11-07 ;
AC=0; CE=699 ; BD——I5 95; DF = —24 20)

(5) Using the method of tension coefficients, obtain the forces in all bars of the
frame shown in diagram 2e.

(AB=18-25; AC=—17-561 ; BC=—14-58 ;
BD:==18-00,; CD=3-33; CE=—26-98.)

4tons
_I, F G H YJ K
4 @
C D E B
]
3—t—3 3——3"
6tons
) w2 o
A 4 g ,_/:4*5
’ F tons l& tons
i 5 B ¢
B 1 E H (©)
S
s —= » 7
60° 60
c 4 A t _\p
20’ =.f

Diagram 2.




CHAPTER 3

THE STRESSES IN STRAIGHT AND CURVED BEAMS

8.1. Shearing force and bending moment.-—The theory of flexure is
- fully dealt with in standard text-books on Strength of Materials. Only
those portions of the subject, there-

fore, which are referred to in later F—a —b—~

chapters will be outlined here. A, B
For our present purpose a beam & x—

can be defined as a member sup- TRA TRB

porting transverse loads or subjected ¢l i

to other bending actions. Ry (22272222722 4
The shearing force or shear at any : 2 !‘;.8

section of a beam is the algebraic
sum of all the external forces, in-
cluding the reactions, acting on
either side of the section, resolved
normal to the axis of the beam.

The bending moment at any section
of a beam is the algebraic sum of the moments of all the applied forces,
including the reactions, on either side of the section.

Shearing force and bending moment diagrams for a freely supported
beam of length ¢-+b carrying a concentrated load P at a distance a
from the left-hand support are shown in Fig. 3.1.

§+6S 3.2. Relationship between load-

\ ing, shearing force and bending

A coooooocoosacoccococd B moment.—In Fig. 3.2, DA and CB

represent two sections of a beam .

M{ bM*‘fM under load separated by a small
: ¢ distance dz.

D The bending moment at AD is

l‘*——ffw——J‘ M, and at BC is M+8M. The

S shearing force at AD is S, and at
Fia. 3.2 BC is 8+4-88.

) The intensity of loading over
the small length 8x is w. Considering the equilibrium of the length of
the beam shown we have by equating vertical forces

S+wdr=8+388,
whence, on making 8z and 88 infinitely small,
) ds

—=w,

dz
21
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and by taking moments about D

Mam-4 402

NS —(888)8r—M=0

we. =8.

Putting these relationships into integral form we have
I wdx =IdS =8
and _[de =J'dM:——M,

t.e. the integral of the load diagram between any limits gives the change
of shearing force between those limits and the integral of the shearing
force diagram similarly gives the change of bending moment.

3.3. Theory of simple bending.—The relation must now be found
between the external forces acting on the beam and the internal stresses
which keep it in equilibrium.

The assumptions made in the theory of simple bending and through-
out this chapter are, except when otherwise stated,

(1) The beam is not stressed beyond the proportional limit of the

material.

(2) Young's modulus is the same for tension and compression.

(3) A plane cross-section at right angles to the plane of bending

before strain remains plane after strain.

(4) There is no resultant axial force on the beam.

(5) The cross-section of the beam is symmetrical about an axis

through its centroid parallel to the plane of bending.

In Fig. 3.3, let ED, BC be two adjacent cross-sections of the beam,
and after bending by pure couples applied to the ends of the beam let
them be as shown at E'D’, B'(".
They will clearly not be parallel
F since, due to bending, the fibres

E B parallel and close to CD will have
stretched, while those parallel and
close to EB will have shortened.
It is also clear that there is some
plane between CD and EB wherc
the material is neither stretched
nor compressed. This plane is
called the neutral plane or surface,
and its line of intersection with the
crosg-section of the beam is called
the neutral axis of the section.

Let the sections E'D’, B'C',
inclined after bending at a small angle 8 to one another, meet in a line
perpendicular to the plane of the paper. Let this line intersect the
plane of the paper in 0. Let NA be the line in which the neutral
surface cuts the plane of the paper before bending, and N'A’ be that

>
q
LA
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line after bending. Let y be the distance from the neutral surface of
any layer of the material FG parallel to that surface.
Then if R is the radius of curvature we have

G (R+y)0_R+y
N'A RO ~ R’
The strain at the layer I'G’ is
_FG—FG_FG-NA_(R{y)f—RO_y
T PG NA T Rl R

The longitudinal tensile stress intensity is

Ee=EY g =P 58y

This is equal to the compressive stress at the same distance below the
neutral surface, ¢.e. the intensity of the direct longitudinal stress at any
point in the cross-section is proportional to the distance of that point
from the neutral axis, reaching a
maximum at the boundary farthest
from the neutral surface.

3.4, Moment of resistance.-—The
longitudinal internal forces, which are
tensile on one side of the neutral
surface and compressive on the other,
clearly form a couple which must at
any section, since the beam is in
equilibrium, be equal and opposite to
the bending moment at that section.
This couple is called the moment of
resistance.

In Fig. 3.4, let the shaded area be
an elementary strip at a distance y
from the neutral axis. The total force on the elementary area is pxdy
and the moment of this force is prydy.

The total moment across the section is

M= j paydy= f El'{’ xydy

:_}Fé f xydy

Xl
s

where I is the second moment of area or the moment of inertia of the
section about the neutral axis;

therefore — —_~]_;“f =P
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The maximum intensities of stress occur at the outer boundaries of
the surface and if these are f, and f, respectively,

My,

I b
where 7, y. are the distances of the most distant tensile and com-
pressive fibres from the neutral axis.

The quantity I/y, where y is the distance of the neutral axis from the
most highly stressed fibre, is called the modulus of the section and is
usually denoted by Z, so that we have the relation f=M/Z. There are
two moduli for every section which is not symmetrical about the
neutral axis.

Since there is no axial load on the beam the sum of the forces on the
elementary areas must be zero, i.e.

Ip.rdy =0,
E
or RJ‘:rydy—-().

M
fi= {’-‘ and fo=

The term covered by the integral sign is the first moment of area about
the neutral axis and since this is zero the neutral axis must pass through
the centroid of the section.

3.5. Stresses when loads are not normal to the beam.—When a beam
is subjected to an oblique load the longitudinal stress at any point in

/2 the cross-section is made up of two
% :*—-‘I—ﬁ parts, one due to bending action and
4 _______ Fpp— the other to the effect of the component
/' ] of the oblique load along the axis of
é / the beam. Thus in the cantilever
P shown in Fig. 3.5 subjected to a load P,

Fia. 3.5. the line of action of which makes an

angle @ with the axis of the beam,

the stress at a section which is  from the point of application of
the load will be due to a bending moment Pz sin 6 and to a thrust
Pcosf. The maximum compressive and tensile stresses due to bending

. Pz sin 0 Pz si . g .
will be (ﬂ—iJch and (_:211;1_9)1/, respectively, while, if A is the
cross-sectional area of the beam, the stress due to the thrust will be
P . L .
% cos 6 uniformly distributed over the cross-section.

Therefore the total maximum compressive stress will be

(Pz sin O)y. | P
T +K cos 0,

“and the total maximum tensile stress will be

(.Pz sin GM_P

i i cos 0.
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This result assumes that the flexibility of the beam is not so great
as to cause secondary effects. The general problem, when this condition
is not fulfilled, will be dealt with in Chapter 7.

8.6. Unsymmetrical bending.—It was assumed in the derivation of
the expression for the bending stress at any point in a beam given in
paragraph 3.3 that the cross-section of the beam was symmetrical
about an axis through its centroid parallel to the plane of bending.
Such an axis of symmetry must be a principal axis of inertia of the cross-
section and the assumption (5) of paragraph 3.3 could, in fact, have
been expressed more generally as follows :

“The axis through the centroid of the cross-section of the beam
parallel to the plane of bending must be a principal axis of inertia of
the cross-section.”

If the plane containing the applied bending moment is not parallel
to a principal axis of inertia of the beam section the bending stresses
cannot be found by the direct application of the formula of paragraph 3.3.

Fig. 3.6 shows the cross-section of a beam in the shape of an unequal
angle, carrying vertical loads. The angle

is supported with its short leg horizontal y\\ lv A
o (x, Y

so that the plane of the applied bending g
moment is parallel to the vertical axis vv. v

The principal axes of inertia, about which ;\ | i P
the second moments of area of the section é

are a maximum and a minimum, are Iz = -
and yy respectively. Before the formula |
of paragraph 3.3 can be used to determine |
the bending stress at any point the applied [\
bending moment must be resolved into its |

|

|

components ubout the principal axes. If, \
at the section under consideration, the LA
applied bending moment acting parallel to v ¥

the vertical plane vv is M, then its com- Fig. 3.6.

ponents in the planes parallel to 2z and yy

will be M sin o and M cos o respectively. At a point A (, y) in the
cross-section the bending stress due to the first of these moments will be

Il/
and due to the second,

yM cos «
I, °
where I, and I, are the second moments of area of the section about
the axes 2z and yy respectively.

The total bending stress at the point A due to the applied moment M
is therefore

_Mzsin « _‘_My cos o,

I, 1
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Since the bending stress at the neutral axis is zero, the equation to the
neutral axis is :
asina yeosa
III ]I

In many cases of unsymmetrical bending there is a tendency for the
beam to twist. This is not, in general, a serious matter in practice as
a beam 1s usually constrained, for example, by the floor slab in the case
of a floor beam and by the roof covering in the case of a purlin and the
resulting torsional stresses are small. Where a beam is not so con-
strained particular care must be taken in its design, as even in a sym-
metrical section such as a solid steel I, subjected to what appears to be
symmetrical bending, large torsional distortions may occur due to a
small unintentional eccentricity of loading.

3.7. Distribution of shear stress.—The distribution and value of the
shear stress at any section of

a beam may be found as

-ﬁ:gx@id}’ ! R . follows :— y
F G In Fig. 3.7, let BE, CD be
] two cross-sections of the beam
N| N at a small distance dx from
one another, and let the
E D bending moments at these

Fic. 3.7. sections be M and M+4-dM
respectively. Let the breadth
of the section at any height y be z:=JK.
Then the longitudinal stress intensity at height y above the neutral
axis N’A’ is, as already shown,
_My,
where I is the second moment of area of the section about N'A’.
The longitudinal thrust on any element of cross-section at BF is pzdy,
where zdy is the area of this element, i.e.

M-’/zdy
I
and the thrust at (G on an element at the same height is
M +[d My zdy.

Therefore the excess of thrust on the element of area at CG over
that at BF is the difference of the above quantities,

dMy

re. [ zdy
and the total difference of thrusts on the areas C(i, BF is
[,
gy 1

where y,=BN.
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But since BFGC is in equilibrium, the excess of thrust must be
balanced by the longitudinal shearing force across the surface FG. Let
q be the intensity of the shear stress across FG.

The shearing force across FG is

qzdw:fuo dM?’ 2dy
|

::_dM vo yzdy,
I‘ Yy
dM 1 (% S (¥
t 7 = - — == - zd
herefore 9=, lzfy yzdy sz” yzdy
where 8 is the total shearing force on the cross-section of the beam.
Now J% yzdy
v

is the moment of the arca JRK about N'A’ and is equal to Ag, where A
is the area of JRK and § the distance
of its ceaatroid from the neutral axis. b

The shearing stress at the neutral |
axis is equal to 5 (Zy where b is the
breadth of the section at the neutral axis )

and A7 is the moment of the area of
the section above the neutral axis.

The distribution of shearing stress is
given for the two sections most com-
monly met with, ¢.e. rectangular and I <
section. Fie. 3.8.

Rectangular Section.—

d
S 2
q= I‘J ydy
v
since z=b=constant

_s(@_,
“a\z V)

_ 68 a2
T\ V)

bd3
127

This is a parabola the maximum shear stress being 2§b§:i at the neutral
axis (Fig. 3.8).

_ I Section.—Let dimensions be as in Fig. 3.9. Then the shear stress
intensity at any height y above the neutral axis is

since I=

EXmoment of area above height y about the neutral axis.
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The shear stress diagram is shown in Fig. 3.9.
On the inner edge of the flange

q._..,._(D d )

__S 2__ 2B
= (D22

At the neutral axis the maximum shear stress is
§ D2—q2 B, d
I\ 8 "bp'8)
3.8. Deflection of beams.—For a straight beam of uniform section
we have the relation

oo By
d
<64 | D
Pz
Fic. 3.9. Fic. 3.10.

under load  The co-ordinates of P and Q referred to rectangular axes
are (, ), (x4-8x)(y+8y), and the angles which the tangents at P and
Q make with the axis of z are ¢ and 748s.

The deflection 8y is so small that 8z and 8s may be taken to be equal.

1 & &
Th o
en R & &
but t=tan i=¢y,
dx
hence in the limit when 8z and 8y become infinitely small
1_d%
R™da?
dy 1 M
th f = =} - =] —
erefore P slqpe of beam fRdx jEIdz

between suitable limits ;
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. M
and y=deflection= f f BTIdxd:c

between suitable limits.
From this and the results of paragraph 3.2 the following relations are
obtained :—

_dS_dM_ ..d%y

W= =a=Blel (1)
_IM_ o1 %%
S—-—d—x _EI&?” . (2)
d%y

M=E1d—-w2, 3
slope=i= Mf_f, . 4)
deflection=y= f f M%%d—x N ()

These five relations are important. From them, for example, if the
loading on a beam is known, the shearing force, bending moment, slope
and deflection can be obtained by successive integration, the proper
constant of integration being added at each step. Alternatively, if the
bending momient is given for every point along the beam, the loading,
shear, deflection and slope may be deduced.

It should be noted that LY el %) is the rate of change of slope
dz? " de\dx

and is positive or negative in any particular case according to the
positive direction chosen for the measurement of y. Bending moments
which produce a positive change of slope must therefore be taken as
positive and vice versa in forming the equation (3). For example in
Fig. 3.11, y is measured positive downwards from the unstrained axis
of the beam and the slope, which is everywhere negative, increases with
z until it reaches its maximum value of zero at the fixed end. Hence,
positive bending moments are those which tend to produce concavity
downwards.

The deflection of beams loaded in different ways will now be considered
in some detail.

8.9. Unitormly loaded cantilever.—Fig. 3.11 shows in its unstrained
position, a cantilever of uniform cross-section and length I. If the z
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axis is taken along the unstrained axis of the beam, which is assumed
horizontal, and y is measured downwards, we shall have, when M is a
“ hogging ”’ bending moment, 7.e. one which causes the beam to become
concave downwards,

1Y
BIS=M. . . ... ...(Q

Under the action of a uniformly distributed load of intensity w per
unit length the bending moment at a distance x from the free end is

L, wex? od?y
M=-- _Eld:r—l

-

dy  wad

s S 4

therefore iz 6Ll+ A ... (2)
wrt

y B.... . ... ...@8

and 1= TAYT 3)

where A and B arc constants of integration, the values of which must
be found from a consideration of the end conditions of the beam.
Since the beam is a cantilever it will suffer no change of slope at the

fixed end, that is to say when «=l, dy _ and so from equation (2),

dx
wl3
A=k
and dy wed w3

dr 6Kl GEI’
There is, further, no deflection at the fixed end, i.e. y=0 when r=1
and equation (3) then gives
Vu'l‘
8El
uad _wl’*.l: wlt
T 24El 6Kl ' 8Kl

B=
and

which is the equation of the deflected form of the cantilever.

3.10. Simply supported beam carrying a concentrated load.—-Fig.
3.12 shows a beam of uniform

e —a- __l cross-section and length ! resting
! c —__x onsimple supports which offer no
0k q resistance to bending. A con-
Rl | Ra centrated load W is applied at a

y distance a from the left-hand sup-

Fic. 3.12. port which is taken as the origin

of co-ordinates. The supports

aar)ply to the bcam vertical reactions R, and Ry of magnitudes
(l—a)

—- and - l—(frespectlvely.
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It is convenient in the first place to form separate expressions for the

bending moments at sections to the left and right of the concentrated
load respectively, thus :

when z<a when z>a
=Rz M=—R,o+Wis—a]
a2 &
therefore EIJ;%:_—RH Elc'ﬁ‘il:*RAw-i-W[x——a]

where A and A’ are constants of integration.

The left-hand expression holds for all sections of the beam between
the left-hand support and the point of application of the load, C. The
right-hand expression holds for all sections between C and the right-

hand support. They will both, therefore, give the slope of the beam
under the load at (', that is when =« and we have

dyy _ ¢ dy\ _ . @y,
El(dl)c— R, +A EI( )c_ RS HA
it follows that A=A".

Using the same argument, on 1ntegratmg once more it will be found
that

Ely:—R‘\%}qLAx—H% e +wl_””_...i’-J +Az+B.

1f it is stipulated that the terms inside the square brackets are
omitted when w<<a, the right-hand expressions are capable of expressing

the bending moment, slope and deflection at any section of the beam
thus :

.

e Rt Wo—a] . . ..

bdw‘-' Ryx+W[z—a] (1)

Eldi‘/:.—RA"j‘+W[’*"]f+A. @
and Bly——R,> +WLE<‘;“(‘I‘] tAz+B . . . . . ()

The constants A and B are evaluated from a consideration of the end
conditions. If there is no sinking of the supports under load we have

y=0 when =0 and from (3), the term in the bracket being omitted
since x<<a, we obtain B=0.

When z=I, y=0 so that
2 W—aP _Wa(l—a)2l— -a)
A=R,-—
Bag= 6l

The deflection under the load is

Waz(l—a)?

Yo= El[ Ry +A] 3Rl
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The maximum deflection will occur at the point where g: =0 which,

ifa>é, will be found in the length of beam between the left-hand

support and C.
In this length
dy 1 x?
ey
and equating this to zero it follows that the maximum deflection occurs
at

_A/H2—aq)
3
Substituting this value of z in equation (3) we have
_ W(l—a)(2al—a?)3?
T TovEEL

The method outlined above, due to W. H. Macaulay,* can be applied
to a beam carrying any number of concentrated loads W,, W,, W3, etc.,
at distances a, b, c, etc., from the left-hand support. The expression
for the bending moment at any point in the beam, from which those
giving the slopes and deflections are derived, is best found by writing
down the bending moment at the section just to the left of the right-
hand support, taking moments to the left of the section, thus
d%y
dz?

El-Z=—R, 2+ W,[z—a)+W,y[z—b]+Ws[z—c]+ etc.

Care must be taken when integrating to retain intact the expressions
in the square brackets and to omit those which do not apply when
considering a particular section. Errors can be avoided if it is re-
membered that the term inside a bracket must be omitted when, on
substituting for z, it has a negative value.

3.11. Simply supported beam carrying a distributed load.—Macaulay's
method will now be used to determine the deflections of a beam carrying
a load of intensity w which extends from a point at a distance a from
the left-hand support to the right-hand support (Fig. 3.13).

|4_a_.l w

RAI ! Rp
y

Fic. 3.13.

* ‘“Note on the Deflection of Beams.” Messenger of Mathematics, Vol. 48
(1919), p. 129.
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With the stipulation set out in the last paragraph the equation which
holds over the whole length of the beam is

dy w "
Ela~2——RAx+2[x—a]~ B O
Upon integrating this twice we have
EIZZ_—RA—-I- [r—aP+A . . . . .. (@)
and DIy_—R + [a:— alt+Az+B . . . . . (3)
When 2=0, y=0 and so B=0.
When z=I, y=0
0er w(l—z—la)2 l+ ( )4+Al
l—a)2(l2+2al——a2)
d _ ),
an A 54

The final equation for the deflection at any point in the beam is then
_ 1] w(l—a)%3  w[z—alt +w(l—a)2(l2+2al—a2)a_v] )

EI 120 24 24l :
It will be realised that the method set out above can only be used
when the distributed load stretches to the right-hand support. The

| w, lU2 ----- x
‘m
an |
b—~
R e ———] | P

A, d | l B

Yy

Fic. 3.14

general case of a beam carrying a load distributed over a short length
only of the span can however be covered by the use of a simple artifice.
If the beam AB carries a load of intensity w per unit length extending
between points C and D which are a and b respectively from the left-
hand support the behaviour of the beam is the same as if it were loaded
uniformly to an intensity w over the length CB and to an intensity —w
over the length DB. By this arrangement the loads are made con-
tinuous to the right-hand support.
Macaulay’s method can be applied and the deflection derived as
before from the equation
d%y
EId'—x:Z:-"—' A +

w[ac—a] w[a::?—b]2 L. B)
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When loads of different intensities are distributed over two portions
of the beam as shown in Fig. 3.14 the cquation will be

BT _wfa—b_ wo—c_wjo—dft

d? 2 2 2

3.12. Simply supported beam subjected to a couple applied at a point.—
The slopes and deflections of a beam of uniform cross-section
subjected to a couple M applied to a point C at a distance a from the
left-hand support (Fig. 3.15) can be found without difficulty. The
reactions, R, supplied by the supports act as shown in the figure and

+ (6)

are of magnitude -

.

force W:-I;)—1 acting through C and an equal and opposite force acting

1f the couple is replaced by an upward vertical

through a point at a distance b to the right of C the equations can be
formed in the usual way. If, in the limit, b is made to approach zero
while keeping M=Wb, the required solution is obtained.

A more elegant method is obtained, however, by extending Macaulay's

M z
A IC B
——5
:
Yy
Fic. 3.15.

notation. The equation which holds over the whole length of the beam
can be written

Eld-’/ =Rz—[M]. . . . . . . . ()
the significance of the square bracket being, as before, that the term

inside it shall be neglected when r<Ca.
Integrating equation (1) we can write

dy Ra?
El?d="""— — Coe e e
Y= —Me—a)l+A o)
and EIy—Rgs_[M(z;a)z}_;_Az—{-B. L)
Since y=0 when =0 and when x=l we have

B=0

M

and A= (21 —6al+3a2).

The equation for the deflection at any point is then
1 [Ma3 M
=_J 2 —a)2] 4~ (202— 2
Y EI{ &l 3 M(z—a) ]+61(2l Gal+-3a )z} N ()]
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8.13. Simply supported beam subjected to transverse loads and end
couples.—General expressions for the slopes at the ends of a beam of
uniform cross-section subjected to any system of transverse loads and
to couples at its ends will be needed later and will be derived at this
stage.

Fig. 3.16 shows a beam subjected to any distribution of transverse
loads and to couples M, and Mg at its ends A and B respectively.

It the hogging bending moment at a section z from the left-hand
support due to the transverse loads alone is M;, then the total bending
moment at that point is

(— f)

M,+M, —|~ MB
We may, therefore, write
4y oy (—2)
EId2—M+M +lM N |

Multiplying equation (1) by # and integmting between the limits
2=0 and x=I, we obtain

dy , lr2 o3\ 3, 1¢
El[d—y]o JM de +[ (2 )+3lMB] @
A
Y
Fia. 3.16.

If it is assumed that there is no sinking of the supports, that is to say
y=0 when =0 and when =, equation (2) may be written

1 l
=. radr+ - Mg). . . . . @3
bon=py || M-+ g OV, 2My) ©)

where 05, is the slope of the beam at the end B where z=l.
Integrating (1) between the limits z=0 and x=I we have

!

El [dy]lzf M'dr+ [Mf(lw_ : ) +2lMB]
or Op— AB-EI_[ Midr +2EI(MA+MB) R € )]
where 0,5 is the slope of the beam at the end A where 2=0.

Substituting in this equation the value of 83, given by equation (3)
it will be found that

1 [ 1 !
—_——— 4 P ! L — - p M . . 5
Ow=—pgp L M,dz+EIJ0M,m oy (M M) ®)
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l
Now | M/dx is the total area of the bending moment diagram due to

0
the transverse loads alone and will be denoted by A.
fM,zdz is the moment of this area about the left-hand end of the

beam where =0, and will be denoted by AZ, ¥ being the distance of

the centroid of the area from the end where z=0.
Then

] l l ] ]
! f M. de— f M adr— J Midz—i f M. di=(—3) f M. dz
0 0 0 0 0

which is the moment of the area of the bending moment diagram about

the right-hand end of the beam, where 2==I and will be denoted by A%’,

#' being the distance of the centroid of the area from the end where z=I.
Equations (3) and (5) may then be written

6Az)

l
s =g (Mact 2 ()

and 0“:_@(2MA+MB+_Z21) L m
If the supports sink when the load is applied to the beam so that the

end B has a deflection 8 relative to A, then the slope everywhere on the

beam will be increased by an amount? and the slopes at the ends will be

l
03A=6EI( +2MB+
l

Y=g

6Ax)+?
(2MA+MB+7§,)+?. .

(8)

3.14. Encastré beams.—An encastré beam is one in which the ends
are built into the supports or otherwise fixed so that the slope of the
beam at those points cannot change. When load is applied the supports
exert restraining moments on the ends of the beams. The magnitudes
of these moments can be found directly from the expressions for the
slopes at the ends of a beam derived in the preceding paragraph and
the deflection at any point can then be determined by the method set
out in paragraphs 3.10-3.12.

An encastré beam is so constrained that no change of slope oceurs
at the ends hence, if the axis of the beam was originally horizontal and
the end B deflects under load a distance 8 relative to A, we may write
from equations (8) and (9) of paragraph 3.13

l 6AZ\ &
i (MA+2MB+ ——) + ] =0
6AZ’\ &

!
and o (2MA+M,,+——— ) °~0.
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Solving these equations we obtain
2A% 4AZ’  6EIS
MAZ_F—._l?‘—i-?_ e e & e + . e (1)

1A7 207 _OBI3

and MB:""'T{' 2 P e e e e . (2)

In the case of a beam carrying a uniformly distributed load of
intensity w over the whole span

P 2, wl
T=% =y A= 3><l/<~8 )
and the end fixing moments are
wi?  6RIS
My=—+-""" . . . . . . .. @
TR (3)
w2 6EIS
and MB_E_”ﬁ” N (3]

The effect of the downward deflection of the end B relative to the end
A is to increase the moment M,. The importance of this increase is
most easily appreciated from a consideration of a special case.

Suppose a total load of 12 tons uniformly distributed is to be carried
over a span of 20 feet by means of a steel beam having a relevant
second moment of area 1=220 (ins.)* and a depth of 12 inches.

If the beam were simply supported at its ends the maximum bending
moment, occurring at the centre of the span, would be M ,,m:?—lé«

=360 tons-ins. and the maximum longitudinal flexural stress would be

_360x6
pmx— 220

If the ends of the beam were encastré and it were assumed that no

relative deflection of the ends occurred the restraining moments exerted
on the beam at the supports would be :—

12
M,=My =% =240 tons-ins.

=9-8 tons/sq. in.

This is the greatest bending moment occurring in the beam as will be
seen if the bending moment diagram for the encastré beam is drawn,
and the resulting maximum longitudinal stress is 6-55 tons per square
inch.

It is interesting to determine what relative sinking of the supports
could occur before the maximum stress reached the permissible limit.

A stress of 8 tons per square inch would be produced by a bending

moment of 8—>‘<62_2-9 tons-inches so that, from equation (3), the limiting

detlection is given by

8% 220 6% 13,000 x 220
— =240 T PP
6 0+ 240 % 240 3 or 6=0-18 inch.
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This comparatively small deflection would produce in this particular
beam, with ends encastré, an increase in the maximum stress of more
than 20 per cent. No such increase in the maximum stress would have
been produced by the deflection had the ends of the beam been simply
supported.

3.15. Beams of varying section subjected to any load system.—The
formulas derived in paragraphs 3.2 to 3.8 have been applied so far to
beams of uniform cross-section throughout their length. They are
applicable, however, for all practical purposes, to beams in which the
cross-section is not uniform.

From equation (3), paragraph 3.8

ey _M
dz> EI
. . dy 1 (Mdx
Integrating this T -1—+A
and =%ff¥dzdx+Ar+B.

Where 1;—’1 is not an easily integrable function of x, recourse must be

had to graphical methods for the determination of

jl\Tadz and ffl-}idxdx.

When these integrals have been evaluated the constants of integration
A and B can be found and the equations for the slopes and deflections
follow as in paragraphs 3.9-3.13.

As an example we shall consider the case of a cantilever of length L
and constant depth d, which tapers linearly in plan view from a breadth
b at the fixed end to nothing at the free end and carries a concentrated
load W at the free end.

The relevant second moment of area at a section distance x from the

free end is ilé b—dl? and the bending moment there is Wz so that
@_M_MWL
dz?2” EI  bd3E
dy 12WLz
H y__
_Hence P +A
6WLx2
and y=m + AZ +B
d 12WL2
h =L —y == M P —
when x y iz cA "R
When Z::L, y= K B_12WL3 6W113_6WL3

bi3E  bdE - bdE "
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At the free end where the load is applied, z=0 and the deflection is

6WL3
bd3E’

A beam which is designed to be economical as far as weight of material
is concerned must vary in cross-section from point to point in a manner
dependent upon the variation of the bending moment to which it is
subjected. ‘

The design of a member of this type, particularly when it forms part
of a continuous structure such as one built of reinforced concrete,
presents no fundamental difficulty but is laborious. A general method
has been published in the Proceedings of the American Society of Civil
Engineers.*

3.16. Moment area and shear area methods.—There is a considerable
literature dealing with more specialised methods of determining the
slopes and deflections of beams.

The best known of these is the moment area method. If a beam
of uniform cross-section, initially straight, is subjected to any load
system so that M, is the bending moment at any section at a distance
x from the origin, which we have in earlier paragraphs taken as the
left-hand end of the beam, then A6, the change in angle between the
tangents at two points C and D on the beam, is given by

ro=L"m
=g, e

D
J M.,dz, sometimes called the moment area, is the area of the bending
C -

moment diagram between C and D and we have the theorem: If C
and D are any two points on a beam the change in angle between the tangent
at C and the tungent at D is equal lo the area of the bending moment
diagram between these points divided by EI, the constant flexural rigidity
of the beam.

If C is taken as the origin of co-ordinates so that z is measured from
C it will be scen from equation (2) of paragraph 3.13 that we may write

1 D
TuBp— Yo Yo=i57 J'C Mde.

The left-hand side of this equation is an expression for the deflection
of C relative to the tangent at D, while the right-hand side is equivalent
to the area of the bending moment diagram between C and D multiplied
by the distance of the centroid of this area from C. We thus have the
further theorem :—

The displacement of C relative to the tangent at I is equal to the moment
of the area of the bending moment diagram between C and D about the
ordinate through C divided by the flexural rigidity of the beam.

To find by this method the deflection at the centre of a beam of
span ! which carries a uniformly distributed load of .intensity w it must

* “Tapered Structural Members: An Analytical Treatment.” Weiskopf and
Pickworth, Proc. Am. Soc. C.E., October, 1935,
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be remembered that the tangent at the centre of the length is horizontal
so that the deflection there will be equal in magnitude to the displace-
ment of one end of the beam relative to the tangent at the centre of
length.

%he area of half the parabolic segment forming the bending moment
2 1 wl? wb
3'2°8 24

of this area from the end of the beam is % so that the required dis-

diagram of the beam 1s and the distance of the centroid

placement is
w51 subt
24 16" EI 384Kl

It will be seen that in applying this method to beams with uniformly
distributed loads a knowledge of the areas and the positions of the
centroids of parabolic segments is required. This has led to the
development of an analogous method * in which use is made of the
area of the shearing force diagram, which is usually a simpler figure
than the bending moment diagram.

While it is well for the student to be aware of the existence of these
methods, he will not usually find them of any great benefit in practice.
The straightforward method of determining slopes and deflections set
out in paragraphs 3.9-3.15 will in all cases give results with little, if
any, more labour and with much less liability to error.

Another special method is the Culumn Analogy, due to Professor
Hardy Cross.t It provides a simple means of determining the carry-
over and distribution factors, used in the moment distribution method
(paragraph 8.4), for members of varying cross-section. It is also
applicable to the stress analysis of arches and rings.

3.17. Bending stresses in curved beams.—The equations for bending
stress obtained in paragraph 3.3 are only valid if the beam is initially

Fic. 3.17.

straight. If it has an appreciable curvature the application of these

* “The Shear Area Method.” Compton and Dohrenwend, Proc. Am. Soc.
C.E., May, 1935.

t “The Column Analogy.” Hardy Cross, Bulletin No. 215. University of
Illinois Engineering Experiment Station. A simple account will also be found in
* Structural Theory,” by Sutherland and Bowman. 3rd ed. Wiley, New York, 1942.
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formulas may result in serious error and a more exact treatment, which
is due to Winkler, is necessary.

Fig. 3.17 shows a beam, initially curved, subjected to a bending
moment M tending to straighten it. BA and CD are two adjacent
cross-sections initially separated by a small angle 6. The radius of
curvature of the neutral surface nn over the small length of the beam
between these sections is assumed to be constant and equal to 7.

The same assumptions will be made as for the case of straight beams.

Under the action of M the section CD will rotate through a small
angle 86 relative to AB.

Let EF be any surface at a distance y from nn, y being assumed to
be positive when measured towards O, the centre of curvature of the
short length of beam under consideration. The strain of a fibre in
the surface EF is

_ yoh . (1)
(r—y)0
and, if lateral pressure between the fibres is neglected, the stress at

EF is

o Ey30
f»_Ee—(r—y)H . (2)

This is a hyperbolic curve of stress distribution as shown in Fig. 3.17
instead of the linear distribution obtained in the case of an initially
straight beam.

Since there is no axial force acting on the beam the sum of the
compressive forces in the fibres of the beam above the neutral axis
must be equal to the sum of the tensile forces in the fibres below the
neutral axis. If the beam is of constant width as shown in the diagram
this entails that the area of the stress diagram above the neutral axis
must be equal to the area of the diagram below it and so the neutral
axis does not, as in the case of the straight beam. pass through the
centroid of the section but is displaced towards the centre of curvature.

For equilibrium of the cross-section we have to satisfy two conditions :

(1) That already stated above, viz. that the total force on the cross-

section is zero.

(2) The sum of the moments of forces on the cross-section about

nn must be equal to the applied moment M.

If dA is an element of area of the cross-section at EF these conditions

may be expressed as

JfdA=0
[ fydA=M

and on substituting the value of f from (2) we obtain

F80 ydA _ )

— C
K36 A
6 Jr—y

and =M. . . . . . .. #
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The second of these equations may be rewritten in the form

e -

The second integral is zero from equation (3) and the first represents
the moment of area of the cross-section about nn, i.e. —Ah where A
is the total area of the cross-section and —# is the distance of the neutral
axis from the centroid.

So, ——O—Ath
ES6 M
—o=Lo. 0 . . . . .. . (b
or 0 Ak (5)
s . E36 .
Substituting this value of —in (2) we have
My
f—m . . . . . . . . . (6)

The maximum value of f occurs in the fibre AD and the minimum
value in the fibre BC, so that if the distances of these fibres from the
neutral axis are y, and —y, respectively, we have

f—_— My
e Ah(’“‘yl) (7)
_ My, 4
and Joa= Ah(r+y,)

These equations cannot be used unless & and r are known.

Let y’ be the distance of any element of cross-section from the axis
through the centroid parallel to nn so that y'=y-+h.

Substituting for y in eqnation (‘3) we have

where R is the radius measured to the axis through the centroid, cc.

Hence f (Rf’_'y)dA f (Rfy)dA_o 8

The first integral in this equation represents a modified area and will
be denoted by mA,

ve. J‘(R——:‘)dA_MA S )]

where m is a coefficient which must be calculated. The second integral
in (8) can be written in the form

f(Rﬁ )d —“J(1+ v )dA R(H-m). . . (10)
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Substituting (9) and (10) in (8) we have

mA—éé(l—l—m) =0

or R1+m (11)
The value of m may be found in some cases by direct integration, in
others a graphical construction is preferable.

Suppose the section of the beam consists of a rectangle of width B
and depth H.

Th 1 f M( y )dA
en m=_.
A) _mp\R—y’
where dA —de and A=BH.
H/2
So, m= f (-——--—l)dy'
HJ g \R—¥
9R+H
= —-1.. . . . . .. (2
or m= Hl ¢ oR_Ii (12)

In the case of a circular section the integration is rather lengthy but
gives the result
(1) e,
a* 2
where a is the radius of the circle.
The value of m may also be found by taking a sufficient number of

terms in the expansion of the expression Ry thus

f ’dA
TAJR—

2
P d;\.
= (1+ Yt )

If dA can be expressed as a function of %' this series can readily be
integrated. For a rectangle, for example, dA=de’ and

B [HZ g2y ) ,
_B Y
m=20 M( g y

B [y? y% y* 1z
AR[ 2 +3R F 4R2+ o ']_ng
The even powers of ' vanish and we obtain

_ 1 [H3 Hs ]

HR T2§+80R3+ T

1/H\2 H\4 1/H\®
o R E e

In the same way the value for a circle of diameter D is found to be

_1/D\2,1/D\4 5/D\8
"‘—1(21‘1') +§(2—R) +61(2'R) t ete.
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1f the integral cannot be evaluated readily a graphical construction
may be used as follows (Fig. 3.18) :

AGBG' is the cross-section; which is shown symmetrical about the
axis AB. This is not necessary, but is the usual condition. The centre
of curvature is O and G’G is the axis through the centroid. The length
(D of any line parallel to G'G is proportional to an element of area
dA at that level.  Also FE=y’ and EO==R—y%’. Join OD and produce
this line to cut G'G at J. From J draw JH perpendicular to EH.
Then the triangles JHD, OED are similar and

DH:ED::JH:EO,

: JH y
. DH=__ED=_". _ED
e 5 OE Ry E
so DH is proportional to R—?l—y,dA at this section.

Now consider another section KL which is above the axis G'G.
As before join OL and from N the point where this line intersects
G’G draw NM perpendicular to KL.

Then ML:@PL e ,dA.

op R—y
It will be noticed that when the value of ¥’ is negative, i.e. when the
section considered lies above the axis through the centroid, the point
on the derived figure lies inside the
4 original diagram instead of outside it as
~ for sections below the axis. This corres-
\\ ponds with the sign of the integral, which
K P 1s positive when 4’ is positive and negative

. when 7’ Is negative.
\ . . .
o If a number of points are obtained in

( SRR this way the derived figure is easily

| drawn and is indicated by dotted lines
1 in Fig. 3.18.

p The area included between this dotted
- line and the boundary of the original

. 1
B contour is a measure of } | .7

JAA since

one-half only of the symmetrical section
shown has been treated.
0. If the section is not symmetrical
about the line AO the diagram would
Fic. 3.18. of course be completed by a similar
process on the other side.

Once the value of m has been found, 4 is calculated from equation (11),
te. h=R( 1 rm) and 7=R—h. The stresses can then be found directly
from equations (6) and (7).

As an example suppose a steel bar 2 inches square in cross-section
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to be curved in a circular arc having a mean radius of 8 inches and to be
loaded by end couples of 10 inch-tons. It is required to calculate the
maximum and minimum stresses.
In the first place we will calculate m from the formula derived by
direct integration
R 2R+H
D
=(4X2513145)—1==-005258.
As a check we may use the expension

m=3 (12 LI

=-0052084--000048
=-005256.
Using the exact value we have
h=R _m_)
14+m
8 X -005258 .
=-04184 .
1005258 04184 inch
Then r=8—-04184=7-95816 inches
_ My,
and fmax —E(r_y‘)
where y1=1—-04184=-95816

10 x-95816

=8:18 tons per square inch.
mer 4 04184 x 7 persq

My,
Also =
o=z (r+ys)
where —yg=—(14--04184)=—1-01184.
I, mm:}igg%é%i%df:—&% tons per square inch.

If the stresses are calculated by the formulas derived for initially straight
beams we obtain
103
=
The error is rather over 8 per cent. on the low side, and this error
increases rapidly as the curvature is increased.

=T7-5 tons per square inch.
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EXERCISES

(1) A wooden cantilever 12 feet long is 10 inches deep throughout but is
tapered in plan in such a way that when a load is hung on the free end the maximum
fibre stress is the same at all sections.

If this fibre stress is 1,200 1b. per square inch, calculate the deflection under
the load.

E=1:5%10¢ 1b. per square inch.
. (1-66 inches)

(2) A cantilever of length L is propped at a distance L/4 from the free end to the
level of the fixed end. It carries a load W at the free end. Determine the ratio
of deflections at the free end for the prop in position and the prop removed.

(0-048)

(3) A cantilever of uniform cross-section and length L carries a load W at the
free end and a distributed load varying linearly from w at the free end to 3w at
the fixed end.

Calculate the deflection at the free end.
23wl )

3EI

(4) A vertical wooden mast 50 feet high tapers linearly from 9 inches diameter
at the base to 4 inches diameter at the top. At what point will the mast break
under a horizontal load applied at the top ?

If the ultimate strength of the wood is 5,000 lb. per square inch, calculate
the magnitude of the load which will cause failure.

(W+

(20 feet from top : 442 Ib.)

(5) A cantilever of length J. has a constant breadth B and a varying depth
given by Kv/z, where K is a constant and z is the distance from the free end.
The cantilever carries a load W at the free end which causes a maximum fibre

stress f in the material of the beam. Find the deflection at the free end if D
is the depth of the beam at the root.

SWL?
EB_D’)
(6) A beam in cross-section is an cquilateral triangle of 8-inch side, the line

of the loading being perpendicular to one side.

If the total shearing force at a section is 5 tons, plot the distribution of shear
stress across this section.

(Parabola with maximum value of -27 tons per squure inch at half depth)

(7) A beam freely supported over a span of 20 feet carries a load which varies
uniformly from an intensity of 1 ton per foot at one end to 3 tons per foot at
the other end. If the moment of inertia of the beam is 300 inch units and E is
30x 10¢ 1b. per square inch, calculate the deflection at the centre of the span.

(1-79 inches)

(8) A R.8.J. of 12" X 6" x } inch section is 12 feet long. It is fixed at one end
and pinned at the other. A moment is applied to the pinned end tending to bend
the beam in its strongest direction. If the maximum stress is 5 tons per square
inch calculate the magnitude of the moment and the angle of slope at the pinned
end of the beam.

(211-5 in.-tons ; 0-132 degrees)

(9) A beam AB of length L is freely supported at A and at a point C which is
kL from the end B. If the load on AC is a uniformly distributed one of intensity w,
find the value of k which will cause the upward deflection of B to equal the down-
ward deflection midway between A and C.

(0-238)
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(10) An encastré beam 20 feet span has a couple of 80 foot-tons applied at a
point 5 feet from one support. Draw the bending moment diagram.

(11) A straight horizontal beam rests on supports 20 feet apart and overhangs
each of these supports by 4 feet.

It carries loads of 10 and 8 tons at 5 and 14 feet respectively from the left-hand
support.

Calculate what concentrated loads applied to the extreme ends of the beam
will make it remain horizontal over both supports.

(9-55 tons ot L.H. end
8:22 toms at R.H. end)

(12) The ends ot a beam which carries a concentrated load at one-third of the
span are so constrained that they assume slopes one-half of those which would
occur if the beam were simply supported.

Sketch the bending moment and shearing force diagrams.

(End B.Ms. = ;WL and LWL
End 8.Fs. =—)"W and },W)

(13) An encastré beam of span L has a moment of inertia varying uniformly
from I, at the centre to I, at each end. It carries a load uniformly varying
from an intensity w at each end to 2w at the centre. Calculate the bending
moments at the centre and ends and the central deflection.

wlL?

BM nire ——
( at cenire 1

wL?
[ 1} ends + _‘1'2

. wLt
Deflection =72 oE)
(14) A circular link is made of square section steel bar of 1 inch side the junction
being left unwelded.
The internal diameter is 3 inches. If the maximum stress in the steel is not
to exceed 8 tons per square inch, calculate what diametrical pull the link can carry.
(+52 tons)



CHAPTER 4

THEOREMS RELATING TO ELASTIC BODIES

4.1. Elastic behaviour.—When loads are applied to a body—whether
it be solid or a framework—the shape of that body is slightly changed.
If, on the removal of the loads the body completely regains its original
shape it is said to behave elastically. The curve obtained by plotting
the displacements of any point against the loads causing these dis-
placements is in most cases a straight line, but for certain types of bodies
and for certain forms of loading the load-displacement curve is not'
linear although the behaviour is perfectly elastic.

Since many of the theorems relating to the behaviour of bodies under
stress are only applicable if the displacements are proportional to the
loads producing them, it is important to recognise the distinction
between the two cases.

A thin rod of elastic material used as a tie rod, i.e. subjected to an
axial tensile stress, will have a linear relationship between load and
displacement, but if the same rod is subjected to a compressive load
applied eccentrically the displacement of any point will increase at a
greater rate than the load although such displacement will be elastic,
1.e. it will disappear on the removal of the load.

4.2. Principle ot superposition.—If the displacements of all points in
a body are proportional to the loads causing.them the effect produced upon
such body by a number of forces is the sum of the effects produced by the
several forces when applied separately.

This is a most important consequence of a linear load-displacement
curve and renders possible the solution of many problems which would
otherwise be intractable.

Its truth is readily seen by considering the case of a rod subjected to
an axial tensile load of P4Q.

The extension of the rod under the load, if the material obeys Hooke’s

law, i.e. if it has a linear stress strain curve, is (?}g) L where L isf
the length of the rod, A its cross-sectional area and E is Young's
modulus for the material.
. . .. PL QL ... . .

But this extension is E+E which is the sum of the extensions
of the rod under the two separate forces P and Q.

Fig. 4.1 (a) illustrates the point with reference to the actual load-
extension diagram for the rod. Under tensions P and Q the extensions
are represented by OA and OB respectively. If P+Q be applied to

the rod the extension is represented by OC.
48
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Since the triangles OBE and FGH are identical we can write,
0C=0A+4FG=0A+40B

or extension due to P-+Q=extension due to P-}-extension due to Q.

Y |H N |H
I T :
Q e |
|
-1~ 3AE | -1 —gAE [
_]__%__F r===1G ~‘-- - '-: ———————— 1lG
1 | |
172/
Il I J Q :! i
] 11 | . 11 ]
0 AB C 0 AB C
() €)]
Fic. 4.1.

Next consider the case of a material which does not obey Hooke's
law : the load extension curve for such a material is shown in Fig. 4.1 (b).
As before, the extensions for loads P and Q are represented by OA
and OB respectively. Under the action of P+Q the extension will b
represented by OC and it is clear from the diagram that this is not equal
to OA-+0OB. We are therefore unable to determine the extension of the
rod under P+-Q by adding those due to P and Q when applied separately.

To illustrate the principle, lev Fig. 4.2 represent any body which
obeys Hooke’s law, carrying loads W; and W, as shown and supported
at the points A and B.

The load system is the sum of the two systems shown in (b) and (c),
and the stress at any point, such as D, which is produced by the load
system (a) is the algebraic sum of the stresses produced by the load
systems (b) and (c), whilst the displacement at any point due to (a) is
the algebraic sum of the displacements due to (b) and (c¢). For the
sake of brevity this statement will be expressed in the form

(@)=(b)+(c).
W

A @

A ®» A ©
Fic. 4.2.
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It is important to realise that the structures of (a), (b) and (c) are
identical ; no modification must be made. This warning is necessary
since a so-called method of superposition is sometimes used in which a
redundant structure is divided into two simply-stiff frames and the
loading is applied half to one and half to the other. A solution obtained
in this way is only approximate ; it may in some cases be a good approxi-
mation but it cannot, in general, be exact. This method must not be
confused with that now described, which furnishes exact solutions.

Suppose, for example, that the encastré beam shown in Fig. 4.3
carries a uniform load of intensity 2w over one-half of the span, and
that it is required to determine the values of the end fixing moments
M, and Mg. The usual method necessitates either the use of a plani-

Q zw ‘ \
AL/ SISSSS 7,

N L/2 L/ZA:—§

My

@ Mg
Dt =)
724 oLk VIS IO IS IIIIIIIIIISS PITIIOIIIIIIISS
> (b)
M) My,
M,
}W % II”/IQU — > ©
. ©) -w E
M)
Fia. 4.3.

meter or the mathematical integration of the free bending moment
diagram, and is unnecessarily lengthy. The load system (a) can,
however, be replaced by the two systems shown in (b) and (c) respectively
in Fig. 4.3 ; (b) consists of a uniform load of intensity w acting on the
whole span, while (c) consists of a downward load of intensity w over

one-half of the span and an upward load of intensity w over the other
half.

Then (@)=(b)+(c).
Now, the end fixing moment for (b) is
wL?
M= STl

It is clear from the skew-symmetry of the arrangement that in
(c) there is neither bending moment nor deflection at O, the centre of

F M)
w = N
Cwmp ﬁzzzmzzzzz@
-w
M) F

Fia. 4.4.
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the beam. - There is, however, a shearing force F, and the two halves
of the beam are in equilibrium under the actions shown in Fig. 4.4.

Considering the left-hand half, the upward deflection of O due to
F equals the downward deflection of O due to w.

That is, :"..IZ_I]:;I:WWSLI%I ;
whence F=I%WL,
and M(c)=wTL2 _?.’_';_’_;‘_?z'fg_
Hence M A=M(b)+1\1(¢)=1£1—121—2+qg—12‘2=119L:‘2 ,
and Mn=M<b)—M<c>='£112‘f“1g_I2‘2=%2

4.3. Strain energy.—When loads are applied to a body their points
of application are displaced and the energy due to their movements is
imparted to the body. If the strains

i . )
are perfectly elastic this energy is 8
stored in the body and is recover- _ ~
able—~-when the loads are removed JfF-—%
it is used in restoring the body to
its original shape. If the strains are
greater than those within which the
body behaves elastically, part of P
the energy is used in permanently
deforming the body and this portion
is not recoverable. In general we § Displacement
are only concerned with strains of an O, o Hldx
elastic type and the energy stored Fo. 4.5.
under these conditions is known as
strain energy. We shall also confine our attention to the case in
which the load-displacement curve is linear.

Fig. 4.5 represents the load displacement curve for a bar of material
which obeys Hooke’s iaw when subjected to a direct tensile or com-
pressive force. The ordinates represent the loads applied to the bar
and the absciss® the displacements. These loads are applied in such
a way that no kinetic energy is created, i.e. the bar does not vibrate
longitudinally. The work done by the load is then all stored as strain
energy in the bar.

Under a load P the displacement is = and under a load P+-3P the
displacement is z-+8z.

The work done by the load during the increment of strain is its average

value multiplied by the distance through which it moves, i.e. (P+82—P)8x.
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Since no kinetic energy is created this energy is stored in the bar and
the increment of strain energy is therefore

du=Péz
the second order term being neglected.
Since the load-displacement curve is lincar
5= 0P
~AE

where L is the length of the bar. A is the cross-sectional area and E is
Young’s modulus.

PL
Then Su= XESP .

Hence, the total strain emergy of the bar as the load is increased
from zero to Py is
L ™pap
u_AEfo

_Pil,
or u_ﬁE"""""(l)

If the load is applied in such a way that kinetic energy is created
the extra energy will cause the bar to vibrate. When these vibrations
have ceased, however, the energy of the bar will be the same as found
above. The strain energy does not depend upon the manner in which
the load is applied but only upon the final value of the load. It is
assumed that the strains during vibration are not such as to cause
permanent deformation, i.e. the maximum stress at no time exceeds
the limit of proportionality.

4.4. Force in a bar in terms of end displacements.—It is often
convenient to express the force in a bar of a framework in terms of the
displacements of its ends. Suppose P and Q are two nodes of a frame
connected by the bar PQ.

Let the co-ordinates of P measured from any origin be (zp, ¥p, =p)
and the co-ordinates of Q be (g, yq, 2q)-

When loads are applied to the frame P and Q will be displaced and the
new co-ordinates will be

(zp+oap, yp+Bp, 2ptve) and (zq+aq, Yo+Ba) 2a+va) Tespectively.
The initial length of the bar PQ is L, where

L =(zq—2p)?>+(yq—yp)?+(2q—2p)*
and the final length is L+3L, where
(L4-3L)2=(zq+aq—zp—ap)?+(Yq+Ba—Yyr—Bp)?*+(2q+Yo—2p—¥r)?
=(£Q—‘$P)2+(“Q—“P)g‘i‘z(xo—zp)(aq““r)
+(Ya—yr)*+(Ba- -Br)*+-2(yq—ye)(Ba—Pe)
+(zq—2p)? +(vq—ye)?*+2(2q—2p) (Yqa—7P)-

-Substituting for the appropriate terms from the equation for L2
and neglecting the second order terms (xq—ap)?, (Bq-—PBp)? and (yq—7yp)?
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this becomes,

(L+-8L)2=L2+2{(zq—xp)(«q—xp)+(yq—¥p)(Ba—Pe)+(2a—2p)(Ya—7r)}-
Neglecting the second order term (8L)2 this can be written in the
form,

e _OL_ (zq—=p)(%q—p)+-(¥a—¥r)(Ba—Br)+(2a—2p)(Ya—7¢)
L 1.2

where e is the strain in the bar.

The stress is then Ee, and the force in the bar is AEe where A is the
area and E is Young’s modulus.

4.5. Strain energy as a function of external loads.—If PQ is any bar
in a plane frame and Tpq is the force in it we can write from the result
of the previous paragraph

Tpoli_(2q—2p)(2q—2p) +-(¥a—Yyp)(Ba—Fe)

AE L
and multiplying both sides of this equation by }Tp, we obtain

AT =3tpql (zq—2p)(®q—tp)+ (¥a—¥p)(Bo—Be)]

where tpq 18 the tension coefficient for PQ.
This can be rewritten :

T2p,L 5 3
S ralstalea ) 4 PRy ) P+ ).

Similar expressions can be written for every bar of the frame: «q
and By will be common factors for all the bars connected to the joint Q
so that if all the expressions are added we shall obtain

T2L  «q A
2—2—@: é‘{tQA(xQ—"xA)'l'lQB(xQ'—TB)—!- e e —l—tQP(a;Q—zP)}
+%Q{toA(?/Q—3/A)+tQB(yQ—yB)+ oo oo Fep(yo—ye)}

~+similar éxpressions for every other joint of the frame. If Xg and Yq

are the components of external force along the « and y axes at joint Q
the equations of equilibrium for this joint are, from equation (1) ot

paragraph 2.5,
taa(®a—%a) Hop(@s—TQ)t+ - - - - Flap(®p—ug)+Xq=0
and toa(¥a—Ya) Has(¥s—Yya)+ - - - - Haelyp—ya) +Yq=0.
Substituting the values of X, and Y, from these equations in the
above we obtain,

N\ Iy B
Soug~ (3 3Ye)

the summation of the left-hand side including all the bars of the frame
and that of the right-hand side all the joints.

5
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The left-hand expression is the internal work or strain energy of the
frame produced by the action of the external loads, so that

U=§3(eqXq+BoYe): - - - - - . . (1)

If Wy is the resultant force at Q of which X, and Y, are the com-
ponents, and if A is the displacement of Q in the line of action of W,

we have,
Xarqt+YoBe=Walq

U=§xWA . . . . . . . . @Q

i.e. the internal work of a frame which has a linear load-displacement
relationship is half the sum of the products of the external forces and
their respective displacements in their own lines of action.

This result depends only on the final values of the external loads and
not upon the way in which they have been applied.

In the case of a space frame the same result is obtained in an exactly
similar manner by introducing displacements and loads along the 2 axis
of reference.

4.6. Strain energy due to bending.—Hitherto we have assumed that
the bars with which we were deal-
ing were subjected to pure tension or
compression only, but as any action
which stresses & body produces strain
energy we shall now obtain ex-
pressions for that due to other
actions.

Suppose an initially straight beam
to be subjetted to a uniform bending
moment M.

Fic. 4.6. Under the action of this moment

let two adjacent normal scctions

separated by a distance 8s be inclined to each other so that 8s subtends
an angle 30 at the centre of curvature as in Fig. 4.6.

Since M could be replaced by equal and opposite forces acting at the
outermost tensile and compressive fibres of the beam respectively and
the external work could be expressed in terms of these equivalent forces
it is clear that the result obtained in the previous paragraph holds true
and we can write

and (1) can be written,

SUZ=}M30

where 8Uy, is the strain energy of the element due to bending.
If R is the radius of curvature of the element due to the action of M,

R&6=38s
M3s
d =sn
an 8Uy SR
But from the ordinary theory of bending,
1 M L _ M23s
B H w0 T
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and in the limit when 3s is indefinitely decreased we can write
M2ds
U= Gmi
which is the expression for the strain energy due to bending.

4.7. Strain energy due to shearing force.—Let AC and BD in Fig. 4.7
be two adjacent sections of a beam, separated by a distance 8s, subjected
to a shearing force F which will be supposed

to be uniformly distributed over the cross- - B
section of the beam. ¢ ,
Due to F let the shear strain be ¢ so that =

B and D move through a distance $3s to B’
and D’ respectively.

Then 8Up=}F s, ¢ D
where 8Up is the strain energy of the element \ /4
due to shear. ——— &8 >

shear stress  F

But ¢= TN T TAN Fie. 4.7.

where N is the modulus of rigidity of the material and A is the cross-
sectional area of the beam.

F%
SUp=}

and if 3s is indefinitely reduced we have

F2ds
= |oan' B 0]
The shear stress is not in fact uniformly distributed over the cross-

section : in a rectangular beam, for example, the distribution is para-
bolic and so the correct form of the above equation is,

Fads
Up—_k[m )
where £ is a coefficient which depends upon the shape of the section and
the form of the loading.

4.8. Strain energy due to torsion.—Suppose that under the action
of a torque T, two adjacent sections of a circular shaft 8s apart are

l-—d's——*i " »\
T

Ur

Fie. 4.8.
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twisted through an angle 80 relative to each other as shown in Fig. 4.8.
If the outer radius of the shaft is R the shear strain ¢ is

_BC_R$f

$=BD ™ 55"
TR
Also, ¢—9/N_NTI

where ¢ is the shear stress at the radius R, N is the modulus of rigidity
of the material and J is the polar second moment of area of the shaft.

Henc R _TR
enee s NJ
T3s
or Bo_ﬁj .
The internal work of the element of the shaft is 3T860
T28s
=N
T2ds
To=1] =—
or Up f 3N

If the shaft is not circular in gection, J is not the polar moment,
but has a modified value which can be calculated * although in some
cases an experimental determination may be the simpler procedure.
For a general discussion of this problem reference may be made to text
books on ““ Strength of Materials.” t

4.9. The strain energy of curved beams.—When a beam has a large
initial curvature the expression for the strain energy previously
obtained for straight beams is not applicable.

Suppose ABCD in Fig. 4.9 is an element of a curved bar acted upon
by a bending moment M, a shearing force F and an axial tension T.

From paragraph 3.17 we have,
B _M
6 Ak
MO  Mss
so that 0= AFL"RAT
which is the decrease of angle between AB and CD due to M.
Hence, if 8Uy is the strain energy of the element due to bending,

M2,
8UB=§-R—A—_I%-’[ e e e e e e e e s (1)

Due to T the element elongates by an amount T3s and this increases

T

AE
* See for example, “ The determination of the stresses in a shaft of any cros

section.” Bsirstow and Pippard. Proc. Inst. C.E., Vol. CCXIV, 1921-22.

t E.g. “ Strength of Materials.” J. Case. Armold. Chapter XXX,
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3
the angle 6 by I'{%‘?E so that the work done by T if it acted alone would

Tés TR T28s
be RAEX 5~ 9AR

Part of this work, however, is done against the couple M and relieves

the strain energy already stored by M. The amount used in this way
i8 M1Tds and the net amount stored as st
RiE ed as strain energy in the element is

therefore
ZT_z_S_s_MTSS
TT9AE RAE
AEL TR (2)
The shearing force F will cause sliding of one section relative to the
other of an amount A_I(? where £ is a numerical factor depending on

the shape of the cross-scction.
So the strain energy of the element due to shearing force is

kF25s

SUF=m S S (3)

and the total strain energy of the element is
8U=8Ug+6Uy+8Uy
M28s | Tés (T M) +IcF28s

=3RAmATAE\2 R)T2AN

T (T kF2
" HARAE}; A}g(z R)+27m}ds @)

In many cases the effects of T and F are negligible compared with
that of M and we have with suflicient accuracy

M2ds
U —fm . . . . . - . . . (5)

4.10. Clerk Maxwell’s reciprocal theorem.—Suppose any elastic body,
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either solid or a framework, is supported in such a way that the reactive
forces do no work when loads are applied to the body. This result
may be obtained by fixing the points of supports in space or by allowing
them to rest on frictionless bearings. In the first case there is no move-
ment of the supporting points and in the second, any movement is at
right angles to the reactive force brought into action. The conditions
for the sufficiency of the reactive forces as described in Chapter 1 must
of course be observed. The body has a linear load-deflection relation
such that when loads W, and W, are applied separately in specified
directions to any two points A and B in the body,

Under the action of W, alone :—
A will move W, A, in the direction of W,.
B will move W, A’, in the direction of W,.

Under the action of W, alone :—
A will move W,A’; in the direction of W).
B will move W, A, in the direction of W,.

If these two loads are applied simultaneously at such a rate that no
kinetic energy is set up W, grows to its maximum value while A moves
through the distance W;A;+W,A’; and W, grows to its maximum
while B moves through W, A,+W; A’,.

Hence the total strain energy of the body is

U=AW (W1 A1+ W2 A")+HEW(Wo A+ W, A7)

When W, alone acts on the body the strain energy is §W,2A,.

If W, is then applied to point B it will move through a distance Wy A,
and the strain energy due to this will be }W,2A,. At the same time
it will cause the load W; to move through a further distance WA,
and since the value of W, is constant during this movement the work
done on it is W, W, A’;.

Hence the total strain energy is

U=tW 2 A +HEW,2 A, + W Wo A7)
It has been seen, however, that the manner in which the external

loads reach their final values does not affect the value of the strain
energy and the two expressions are therefore equal, 7.e.

WL (W1 A+ W, AT )+ Wy(W2 A5+ W, A7)
=tW2A, +4W,2 A, + W, W, A%

Whence {WIW2 A '2=%W1W2 A ,l
or l2= A’ 1
t.e. the deflection of B in the direction of W, when a unit load acts at
A in the direction of W) is the same as the deflection of A in the direction
of W, when a unit load acts at B in the direction of W.

This is the simplest form of Clerk Maxwell’s reciprocal theorem. In
its general form it may be stated as follows.*

Suppose that a number of forces Py, P, . . . Py, act simultaneously

* See “An introduction to the Theory:of Elasticity.” R. V. Southwell,
Clarendon Press. pp. 11-12. ’
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upon a body which obeys Hooke’s Law and that the displacements in
the lines of action of these forces are respectively A;, Ay . . . Aa. If
these forces are replaced by a second system P’;, P’y . . . P, acting
at the same points and in the same directions as those of the first system,
the corresponding displacements being A’;, A’y . . . A'p, then

PiA | +PoAs+ . . . +PaA =P 1A+ P3A+ . . . +PRAn

4.11. The first theorem of Castigliano.—Let any frame having a
linear relationship between load and deflection be supported in such a
way that the reactive forces do no work when loads are applied to the
frame. If a number of loads, W;, W, . .. . Wy, are applied to
points 1, 2, . . . . N of the frame let the movement of point ¢ in the
direction of Wq due to Wy be Wp(,8,) where ¢ and p are any loaded
points.

Thus the movement of point 3 in the direction of W3 due to the load

Wy is Wy(3y), ete.
" The total movement of W, in its own line of action is then

A =W,(8))+Wy(e81)+Ws(81)+ . . . . +Wx(xdy),
and the movement of W, in its own line of action is
As=W)(189)+W(e82)+Ws(89)+ . . . . +Wn(xDo).

Using the result of equation (2) in paragraph 4.5 we can write
%Wl A1+£‘W2A2+ P +§WNAN=2(G'WI +BW2'+2—‘A-E. . +VWN)2L

where aW;+8Wy+ . . . . +vWy is the load in any member due to
the external load system.
If W, is removed the deflections of points 1, 2, . . ., etc., are

A —Wy(:8))
Ay,—W,(;89)
Ax—Wy(13y)
and as before,
FWoA Ap— W, (182)}HEWa{ Ag—W (&)} - . . . +EWi{Ax—W,(10x)}
=2(,BW2+ ... +vWy)2L
2AE '
Subtracting this from the previous result we obtain
IW, A WL W (80) HAWs W (18g) 4+« . . +EWR W (43x)
=EGW1(¢W1+2BW2+ e +2va)L
2AE '

By Clerk Maxwell’s theorem we can put ;8,=43), 183=33,, ctc., and
on substituting for A, the expression becomes

WilEW1(181)+Wa(231)+Wi(s))+ WL +Wx(xd1)]
=432 AéL(aw,+2pw2+ e 20WY).
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1f W, acts alonc on the frame,
WL,

*W}(lsl):%z A'E—' .
Adding this to the last result we obtain

L
w,A1=wlz§E(awl+ﬁw2+ e YWY

ou
or, A 1 =23—“—’;
where u is the strain cnergy of a bar of the frame
oU
Hence Al_—a_\Vl

where U is the total strain energy of the frame or, extending the result
to a solid body, the total strain energy of the body.

This is the first theorem of Castigliano,* and states that if the total
strain energy expressed in terms of the external loads be partially differen-
tialed, with respect to any one of the external loads, the resull gives the
displacement of that load in its oun line of action.

The applications of this theorem will be dealt with in the next
Chapter.

4.12. The second theorem ot Castigliano.—Suppose an elastic frame-
work to be supported in such a way that no work is done by the reactive
forces, and further let this frame be subjected to a system of external
loads and to self-straining forces due to the presence of imperfectly
fitting redundant members.

Let A and B in Fig. 4.10 be two adjacent nodes of the frame, the
original distance between them before the application of either external
or self-straining forces being L.

Suppose forces P and Q to act on the joints A and B along the line
joining them as shown in the figure and let P and Q be functions of some
variable R. Then if U’ is the strain energy of the frame due to the
external loads and the self-straining forces we can write by the first
theorem of Castigliano :—

The movement of A in the direction of AB v and the movement

oP
. .. ou’
of B in the direction of BA=—-.

oQ
oU’_oU'dP , oU'dQ
oR  oPdR ' 2QdR

If we put P=Q=R this becomes ou’_ou +§g =total shortening

Also,

* This theorem and the next were enunciated and fully discussed by Castigliano
in his book “ Théoréme de I'équilibre des systémes élastiques et ses applications '’
(Paris, 1878). An English translation by E. S. Androws entitled * Elastic Stresses
in Structures "’ (Scott Greenwood) is now available.
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of AB.
Suppose now that A and B are connected by a redundant bar of the

Y
L\\>B

Fia. 4.10.

frame so that R is the load in this member. Also let the original length
of this bar be L—A where A is small compared with L.

The final length of the bar is (L——A)(l—!—?}—?), R being a tensile force.

But since the initial distance between A and B was L these points
have approached each other by an amount

R RL
—(L—=A =A==
LN+ 5) A
the second order term ;/\&RE being neglected.
RL_oU’
Hence AR R
Now B.:_[.Jz_a_ IEE =27_‘
AE 0R\2AE/ @R
where u is the strain energy of the bar AB.
ou’ | ou
Hence —a_R-+5-R =A.
oU’  ou_aU
But R TR ok
where U is the total strain energy of the frame including the bar AB.
ou .
5§—/\

or the partial differential coefficient of the total strain energy of a frame
teith respect to the load in a redundant member 1s equal to the initial lack
of fit of that member.

Attention must be paid to the signs in using this result. In order
to keep them correct the load in the member should always be made
consistent with the initial lack of fit: if the member is initially too
short the force R should be assumed to be tensile and if initially too
long it should be assumed to be compressive. If this rule is observed
the theorem will hold in all cases.
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This is the second theorem of Castigliano in its general form. If the
member AB were originally of just the correct length we put A=0 and
the result is

ou
oR

This gives the value of R which will make the strain energy of the
frame a minimum and in consequence this form of the theorem is often

called the principle of least work. It is, however, only a special case
of the more general result.

4.13. Differential coefficients of strain energy with respect to a
moment.—In the previous paragraphs the differentiation of the expres-
sion for the strain energy of an elastic body has been done with respect
to an axial force. It will now be shown that the theorems of Castigliano
can be extended to include the case when the action considered is a
moment.

Suppose two external loads, P, and P,, to act at any section of an
elastic body.

=0.

Then the displacement of P, in its line of action=8,=g—rg and the

1
displacement of P, in its linc of action==38,= :—ITU
2
If these loads are functions of P,
aU_oU by U P,
oP P, dP ' oP, dP
and if P;=P,=P we have
oU oU oU
opP aPlJraP2 =di+3s
If P, and P, are equal and opposite forces separated by a distance a
they apply a couple Pa=M to the body

10U 1

and - 5F_¢—1( 1+85).
10U oU oU
But a 9303’

Also ‘+82—0 is the angular rotation of the line joining the points
of a.pphcatxon of P, and P,.

Hence m __0

Or the differential coefficient of the strain energy with respect to an
external moment 18 the rotation of that moment in radians. This is the
first theorem of Castigliano when the applied external action is a
moment.

If P, and P, are internal redundant actions

o _oU_
oP, &P,
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and then a_U =0

oM
which is the second theorem of Castigliano when the redundant action
is a moment.

4.14. Principle of Saint Venant.—This principle, known as the “ elastic
equivalence of statically equipollent systems of load,” states that the
strains which are produced in a body by the application.to a small
part of its surface of a system of forces statically equivalent to zero
force and zero couple are of negligible magnitude at distances which
are large compared with the linear dimensions of the part.

Suppose such a system of forces is divided into two parts which we
will call A and B, these two parts being such that they produce equal
and opposite resultant actions on the small part considered.

By Saint Venant’s Principle the strain at any point some distance
from the part upon which A+B acts is very nearly zero. When A
acts alone let the strain at this point be e. Then clearly the effect of
B alone must be to cause a strain approximating to —e since by the
principle of superposition the effect of A+B must be the same as the
sum of the separate effects. Thus the system of forces B whose re-
sultant actions are equal in magnitude but opposite in sign to those of
A produces nearly equal and opposite strains to those produced by A.

The principle of Saint Venant can therefore be restated and we may
say that forces applied at one part of an elastic structure will induce
stresses which except in a region close to that part, uill depend almost
entirely upon their resultant action, and very httle upon their distribution.

The principle was originally stated without proof but having restated
it in the form just quoted Professor R. V. Southwell, from consideration
of strain energy,* gave a proof which is reproduced here in its original
form.

“Let us consider the case of a long girder, or braced framework,
which is loaded at its two ends by forces applied in any given way ;
and let us employ the symbol A to denote those regions which im-
mediately adjoin the parts at which the forces are applied, and the
symbol B for the remainder. The conditions of equilibrium require
merely that the resultant action transmitted by B shall have a definite
valua ; but the conditions of continuity (or of compatibility of strains)
will not be satisfied unless the total increase of the strain energy stored
in A and B has its minimum value. Evidently, then, the equilibrium
configuration may be regarded as in the nature of a compromise between
the requirements of A and B. To reduce to a minimum the strain
energy stored in A, the reactions between A and B would require to
distribute themselves in a manner which will depend upon the dis-
tribution of the forces applied to A ; the requirements of B, on the other
hand, will not vary, since there must be some definite distribution of
stresses, in an otherwise unloaded body, which will entail the minimum
storage of strain energy in transmitting a given resultant action.

* * Castigliano’s Theorem of Least Work and the Principle of Saint Venant.”
R. V. Southwell. Phil. Mag., Vol. XLV, January, 1923, p. 193,
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Thus, in the process of adjustment which results in the actual
distribution corresponding to equilibrium, we may picture a contest
between the unloaded portions,* which strive always after ¢ standardisa-
tion,” and the loaded portions, which demand a particular solution
for every specified distribution of the forces acting on them. As we
pass from the regions of application of load through successive sections
of the unloaded portion B, there will be a steady tendency for the claims
of standardisation to prevail. The theorem stated in italics is an
immediate deduction, and we may work back from this, by the principle
of superposition, to Saint Venant’s Principle.”

4.15. Strain energy equations in terms of tension coefficients.—In
some instances it is desirable to carry through a calculation in terms of
tension coefficients rather than in actual loads. The equations can
readily be recast into a suitable form, as follows :-—

Let Py be the load in any member of length L and ¢, the tension
coefficient for this member, so that

Po=t L.

Let R, be the load in any redundant member, ¢, its tension coefficient
and [, its length, so that
R=t]l,.
Then, Poy=f(W)+tatyl;+btolo+ . . . +qtl+ . . . + etc.

where f(W) is the contribution from the external load system.

Also =gl
or

so that e —_—q,l_a

Substituting these values in the expression
ou _PL 0P,

oR, AE 'oR,

u_tL?

R, AE !
L2 La,

AE "l a,
2 (1)
T AE\l) &,

In the general case therefore the second theorem of Castigliano can
be expressed in tension coefficients in the form,

U tL1\at,
o, am () o

we have

* I.e., portions of which the external surfaces are free from load.
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Since [, is a divisor common to all terms we can, if A is zero, v.e. if
there is no self-straining, put the equation in the form

t,L3ot,
> iEa,

The summation extends to all members of the frame as in previous
cases.




CHAPTER 5

DISPLACEMENTS OF ELASTIC BODIES

5.1. Displacement of the point of application of a single load.—If a
body having a linear relationship between load and displacement is
carried by supports which do no work when the body is loaded and
bears a single load at any point, the displacement of that point can he
calculated by a direct application of equation (2) of paragraph 4.5,
which connects the strain energy with the external loads.

Thus, if W is the external load and A is its displacement in the line
of action of W we have

or A=

where U is the total strain energy of the body.

2W2L

In the case of a framed structure U=2‘x AR where oW is the force

in any member.
2L
Th =WSs*Z,
en A=W3 iR

As an example consider the steel frame shown in Fig. 5.1, which
is pinned to a rigid support at A and D and carries a load of 20 tons

G

i F
30—~fe—30—t—30

20 Tons
Fic. 5.1.

at G. It is desired to calculate the vertical movement of the point G.

The work should be set out as shown in Table 5.1, p. 65.

Columns 1, 2 and 3 are self-explanatory. In column 4 is entered
the value of . Since the load in any member is «W it is evident that
a« is the force in the member when W is made equal to unity. The
required values of « may therefore be found by allowing unit load to
act in the direction of W and determining the internal forces by any

66
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TaBLE 5.1.
1 2 3 4 5

L A a?L

Member ins. sq. ins. o 2
AB 30 4 3 210
BC 30 2 b 148
DE 30 8 b A
EF 30 4 3 250
FG 30 2 -3 135
AE 50 5 5 250
BF 50 5 j 130
CG 50 5 i 230
BE 40 4 —1 180
CF 40 4 -1 160

of the methods described in Chapter 2. In the particular case under
consideration they can be written down by inspection but in a more

complicated example a stress diagram or tension coefficient analysis
would probably be advisable.

Column 5 is completed from the earlier columns. Since E is the
il b—
a
e

| |
42 iz
L ]

L
Fic. 5.2.

same for all members it has been omitted until the final calculation.
If the material were not the same throughout the frame the correct
value of E for each member would be entered in another column and

2
column 5 would be %%. Summing the results in column 5 we

2
obtain E?IL=2’12:5 and taking E as 13,000 tons per square inch,
Sﬁﬂ‘: 2,285
AE 16x13,000°
20x2,285 . .
H =_._——’-——-— =‘22 h.
ence A T6x13, inch inc

As an example of the application of this method to a beam we will
calculate the displacement of a load placed on a simply supported
beam at a point C which is a distance a from one support and a distance
b from the other as shown in Fig. 5.2.

The reaction at A is %W and in the length AC of the beam the bending
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moment at a distance x from A is ‘_‘%’f Using the result of paragraph

4.6, we have for AC

1 [
Use=ga j Meda
W2b2
~>E1L2f wde
W2h2a3
"~ 6EIL2’
Similarly for the length BC, taking the origin at B, we have
W2a2b3
PO 6EIL:
The total strain energy is therefore
W2a2h? W2a2h?
U= 6EIL2( atb)= 6EIL
and so _____le =V_be_2
W 3EIL’

which is a well known result obtainable by the mnethods of Chapter 3.

The method just described can only be used when a single load acts
on the body. If more than one load is carried it is not applicable
and deflections must be calculatcd by one or other of the methods now
to be described.

5.2. Displacements by the first theorem of Castigliano.—If the dis-
placements of a few points only are to be determined an application

Stons 4tons
Pl e 2 w
20’
Af i 5 il
. ——20" = -—20' -y —4'*‘—‘20
KA 1284 loﬁons W gWe2
W,
Fic. 6.3.

of the first theorem of Castigliano is probably the most satisfactory
method of obtaining the result. An example will best explain the
procedure and we will calculate the vertical deflection of points F and D
of the steel truss shown in Fig. 5.3.

Since the strain energy of the frame has to be differentiated with
respect to the external loads at the points F and D it is necessary
first of all to denote those loads by algebraic symbols and they will
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therefore be replaced by W, and W, respectively. The symbols will
be given their numerical valucs only after the expressions for the
deflections have been obtained. Since the movement of the point G
is not required there is no need to denote the load there by a symbol.
The required deflections will then be
PoLs 9P,
F_a “l B‘E 1\ OWl
§;POL 20
Ap= aw TESA W,
As in all calculations of this type, the work should be systematised
and Table 5.2 shows a suitable arrangement.

TABLE 5.2,
1 2 3 4 5 6
p P,LaP, P,LoP,
Lol ¢ AW, AW,
Bar{ e lins2|” 7
Other Other Other
W, W, Loads W, W, Loads W, W, Loads
AC| 240 | 2 3 3 2 675 | 45 180 45 30 | 120
CD| 240 | 4 3 by 2 (3375 225 90 22:5 | 15 60
DE| 240 | 4 1 3 2 375 75 .30 75 | 15 60
EB| 240 | 2 } 3 2 75 | 150 60 15 30 | 120
FG| 240 [ 4 | —} |[—1 [--4 |15 30 120 30 60 | 240
GH| 240 | 4 | -4 |—-1 |~4 [15 30 120 30 60 | 240
_ 349 9 _] N _ _ _ _ _
AF |240V2| 3 —_12 —3/2_2 —2V290V2| 60V2 | 240v2 | 60V2 |40V 2| 160V 2
FC| 240 | 2 — | = =] = — — — — —
¥D|240v32| 2 _.‘./“.2 1/23 2V2 | 16vV2 |—30V2|—120V3|—30v'2| 60V 3 | 240V/2
GD| 240 | 2 — — | —4 — —_ — — — —_
DH |{240V2| 2 1‘12 # 2v2 |15V2| 30V2 | 120vV2 | 30V2 |60V 2|240V2
HE| 240 | 2 T i B — — — — —
HB|240VZ| 3 —113 Jg —2v3[10VZ| 20vVZ | 80V3 | 20V2 | 40V2 | 160V'2
|

In the first place the force in every member must be calculated in
terms of W,, W, and the remaining loads, due regard being paid to signs:
tensions are positive and compressions negative. If this is done
graphically it will be necessary to draw three separate diagrams—one
for W, acting alone, one for W, acting alone and the third for the
remaining loads. These forces are entered in column 4 ; e.g. the force in
GH is found by using the method of sections to be PO———a}\Vl—W2——4
and the sub-divisions of column 4 are completed appropriately. It may

be n6ted here that ka3 and - Py for this bar are respectively —} and
. oW, T oW, -
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—1, i.e. the coefficients of W, and W, entered in the first two sub-
divisions of column 4.
Columns 1, 2 and 3 give particulars of the various bars.
Pol. 9P,

In columns 5 and 6 respectively are entered the values of ~ '~ ——
A W,
PoL 0

and —)- Py , calculated from the preceding columns. As an illustra-
A W,
L 0P,

. L P,
tion, for bar AC, A—LO and W =3, so that - i 6W

multiplied by Py which is tabulated in column 4 and the values entered
L oP, .

— =6
A oW, 0, which
again multiplied by P, gives the figures entered in column 6.

The table is completed and columns 5 and 6 are summed to give

PoL 3_13(1 nd ZPOL oP,

A oW, oW,
These summations give
326W,+-263W,+1,054

and 263W,4493W,4-1,971 respectively.

To obtain the deflection at points F and D these must be divided by
E which is taken to be 13,000 tons per square inch.

1 .
= 26 Y - 59 > ‘
Hence Ag H OOO(3 W, +263W,-+1,0564) inches,
and AD_F—(263W1+493W2+1 ,971) inches.

The numerical values of W, and Wy, viz. 5 tons and 10 tons re-
spectively, are now substituted and the actual deflections are found
to be

=90. This is

in column 5 are obtained. Similarly 8‘I”V =} and —

A =410 inch
and Ap=-632 inch.

5.3. Displacement of an unloaded point.—Since thé expressions for
Ag and Ay in the foregoing example are valid whatever the values of
W, and W, a method is at once evident for determining the displace-
ment of an unloaded point in a structure. Suppose for example that
there were no load at F and it was required to calculate the vertical
deflection at that point. A load Wy is placed at F and the previous
procedure is followed, leading to the general expression for Ay as
before. Wy is then put equal to zero and the vertical displacement of
F is obtained.

5.4. Displacements in terms of stresses in the members.—Since
I%:j is the stress in any bar the equation for the displacement of any

point can be rewritten
sz P,
E oW
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If then the stresses in the bars of a frame are specified it is un-
necessary to calculate the areas; the displacement of any point can be
found directly. If, for instance, in the previous example the frame is
so designed that the stress in every loaded bar is 8 tons per square inch,
the displacements of the points F and D respectively are

opP
‘ L2
l* E—tf dwl
and AD__EZ fLﬁ?O .

The calculations should be set out as in Table 5.3.

TABLE 5.3.
1 2 3 4 5 6
L oP oP oP oP
B . %o 9o o 0
ar ins. oW, oW, W, Low,
AC 240 i 3 180 120
CD 240 3 " 180 120
DE 240 1 3 60 120
EB 240 1 3 60 120
FG 240 —4 -1 —120 —240
GH 240 -1 —1 —120 —240
- V2 V2
AF 240V/2 3—4— — —22 —360 —240
_ V3 V2
FD 24012 -5 =3 —120 240
DH 240V/2 —\1—2- \g 120 240
_ .42 b
HB 240V'2 —1{-{ —\12— —120 —240

It must be remembered that since f is 1%0 it will have the same sign

as P,

When the specified values of W, and W, are substituted in Table 5.2,
it is found that the only bars in compression are FG, GH, AF and HB.
The figures for these bars in columns 5 and 6 of Table 5.3 must therefore
be multiplied by —8 tons per square inch and the remainder by 48 tons
per square inch to obtain the values of f L% nd f L 6P0

0
The summation of these columns then gives
9,600

= 2 =t = 1
Ay fLaW, 13000 738 inch,
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P, 15,360

22939 _1 18 inches.
5W, 13,000 nenes

and Ap= EZ'fL
If, as in paragraph 5.2, loads and not stresses are used, the question of
sign is not so important. For example the force in FD can be expressed

xf V2

either as a tension of ——~ l+—W2+2\/§ or as a compression of

‘_/?wl—l/_?‘w —2V2.

The terms which affect signs are Po-‘,;i‘%“l and POS\I)‘);; and it will be

seen that whichever of the two values of Iy are used the same final
result is obtained, since in the second case the signs of Py and both
differential coeflicients are changed simultaneously, leaving the product
unaffected.

5.5. Displacements of beams by strain energy methods.—The first
theorem of (‘astigliano gives an alternative method for calculating the
displacements of loaded beams to that described in Chapter 3 and in
some cases the strain energy analysis has a decided advantage in
simplicity.

The simple case of a beam carrying a single load has already been
dealt with by the process of equating internal and external work and
as a first example this same problem, illustrated in Fig. 5.2, will be
solved by applying the first theorem of Castigliano. The vertical
deflection of the point C is

dW EIfM

At 2 from A, MFW{;J:

dM, bx

dWw L’
and for the section AC of the beam,
[ du Wo2 e . Wa3b?
ol = | =
dW ] AC EIL2f0 3EIL?
Similarly for the section BC,
[JU ] Wa? J’ 2 Wa2h3

dM

aw| . EiLe), " TSR

Hence
dU Wa2b? Wazb?
Bo=w =SB Y =3

As a second example, suppose the simply supported beam shown in
Fig. 5.4 has a span L and carries loads W, and W, at distances L/3
and L/4 from the left- and right-hand supports respectively. It is
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desired to calculate the vertical deflections at the loaded points. These
will be
oU

C"é“; EI f M’aw1

d
an Ap= aw2 EIf Mesw, 0o

In the first place the reactions at A and B are found to be

wz +2wl
and RBZ%_W_“-’ EY_I.
4 3
w; 1"5
A YC D B
s fe—% —A
L
Fic. 5.4

Then, taking an origin at A, we have between A and C,

M,=—RA:$=—J( +2W1)

cM 2r oM T
th = T e ..l
so that oW, 3 and oW, i
Between C and D,
W,

M,=—R,z+ W (z—-L/3)=— 'S (L—2x)— -z,

and eM,  (L—ax) oM, =z
a“?l— - 3 ’ awg‘— 4.

For the section BD of the beam we take the origin at B and then

8M,=_a_; and oM ___32:.

so that W, 3 oW, 1

We can now write the expressions for Agand Ap,

oU _ L[ (1, (W 2Wy)
bo= v, =gl J, (T )‘“

T [T
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and

_BU 1 [[YB (W, 2W,
-l

+ fL/S {%’%@(L —) +\1N6:> q}d n J‘ (3W2 +W1) 22da ]

Upon integration these give
A=, 22
T 31104EI

and Ap=— (238W,+-243W,).

_(512W,+357W,)

Any values may now be assigned to W, and W, and the deflections
at C and D obtained.

As a final example of this method of calculation applied to simple

w
c L
< a— ]
Fia. 5.5.

beams we will determine the curve of deflection for a uniformly loaded
beam of span L, as shown in Fig. 5.5.

Assume that a concentrated load W is applied at any distance a
from A. Then the deﬂection at the load W is

dM,
dW T EI j M’dW
The reaction at A is -2 5 +(-r”)w,
. wL a
and at B is — + Ww.

Consider first the section AC of the beam and take A as the origin.
The bending moment at z from A is

M,=-——RAx+ —2—
wLr (L—a wx?
R (T)W 3
M L—a
80 that W ——(—L—)z

I
o ) ()5
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By replacing a and L—a by L—a and a respectively, we obtain

[‘?H] __(L—apafwl—a L) aW
dW | 3¢ LEI 2( 4 3) 3L/

Then the deflection at C is

dU dU
[JW] o [dv‘v]w

and if W is made zero the deflection at (' due to the uniformly distributed
load only is found to be

A __w(Li—a)jafa3 L | (L—a)® (L—a)L
°7 2LEI |4 3 " 4 3 ]
wa(L—a)(L*4+aLl—a?)

o Bo= UBI

This is true for all values of a between 0 und L and is therefore the
required curve of deflection for the uniformly loaded beam.

This method can be applied to any case of bending and further
examples of its use will occur in later chapters.

5.8. Calculation of reactions in continuous beams and girders.—A
knowledge of ‘the actual magnitudes of the deflections of a beam or

A 0.0/5.0.:0/0.6.0.0.00.00.000.00000000000000000e el
C
‘ L; L
R, RG Ry
Fig. 5.6.

girder is not often required but the methods just described are useful
for the calculation of reactive forces in continuous members.

Suppose, for example, that the beam ACB shown in Fig. 5.6 is
continuous over the support C and carries a uniformly distributed load
of intensity w over the whole length L;+L,. The reaction at C must
be found before the bending moment and shearing force diagrams can
be drawn.

Let the reaction be denoted by R, AB may then be considered
as a simply supported beam of span L,+L, loaded with a uniformly
distributed downward load w and an upward concentrated load Ry.

The vertical displacement at C is Edg but if the support is rigid this
C

displacement will be zero and the condition which determines R is
therefore
aU

dﬁ;ze'
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Consider first the section AC of the beam and take the origin at A.
The bending moment at any point is

Mz=——RA$+?-a—;—2
(Ly+Lg)wz | LRz | wa?
T o
M, Ly
and dRy L,+L,

aU] _ Ly Lif  (Ly+Lohea?  LoRea? | wad|
So, [dR]mL;:;Lz)EJO{ S T N

On ntegration and reduction this gives
awrp L
dR¢|ac 24EI(L,+L,)2

Similarly we can write for the span CB

{8RL3Ly—w(L§ +5L4L, +-4L3L2)).

du L, .
[ dRC] =L LBl (L L)

Adding these results we obtain

au L,L,

—_ 2 , ,
dR, = HEI(L, + Ly PRt Lo (L1 Ly + 1)

and equating this result to zero we find

_t(Ly+Lo)(Li4-3Ly L, + L)
8L,L,

If Ly=L, this gives Rc=§ W where W is the total load on the beam,
t.e. w(Ly+Ly). This is a well-known result easily obtained by the
methods of Chapter 3.

If the support at C instead of being fixed in position moves a certain
distance, this can readily be taken into account. Suppose for example
that C sinks a distance & when the load is applied. The movement of
R in its own line of action is then —3 and the condition to be satisfied
for the determination of R is

dU

@®,-

If the support is moved upwards by an amount 8 the condition is
4U
dR¢

This method is applicable to beams with any number of supports,

e.g. suppose a continuous girder supported at its ends A and B to have
a number of intermediate supports, (, D . . . . Q. The reactive forces

=8.
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at these supports are denoted by R, Ry, . . . . Rq. If the supports
are fixed these forces can be evaluated by forming the equations

ou _oU _au -0

Re R, 7 T aRq
and solving them simultaneously.

If any support moves under load the differential coefficient of the
strain energy with respect to the force exerted there is equated to the
movement of that support instead of to zero. Care must be observed
in the sign ascribed to this movement as shown in the previous example.

The same principle may be applied to the calculation of reactive
forces in a braced girder having more than two supports. For example,
the bridge shown in Fig. 5.7 is supported at A, B and (' and carries any

C
N

system of loads. The reactive force at B, denoted by Ry, may be
determined from the condition
I
au_s
dRy
where 8 is, as before, the movement of the support in the direction of
action of Ry. If the support is rigid, 8 is zere.
The structure is subjected to the known loads W;, W, etc., and the
unknown load Rgz. The force Py in any member can be expressed in
terms of these external loads and so

dU _SPoL dPy _

AR, 2AE 4R,

which yields an equation to determine Rg.

6.7. Calculation of the angle of rotation.—In paragraph 4.13 it was
shown that the angular movement of an external couple acting on an
elastic body was given by the first differential coefficient of the strain
energy with respect to the moment. As an example of the application
of this theorem we will calculate the slope at all points on a cantilever
of length L carrying a uniform load of intensity w ; the procedure is as
follows.

Apply a clockwise moment M, to the cantilever at a distance a from
the free end as shown in Fig. 5.8.
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Taking the origin at the free end of the cantilever the bending moment
at any point is

2
M, ==+ (Mg,

the second term appearing only when « 1s greater than «.

Zﬁo == =a and r=0.
1 a—‘-{
7 w
7
4 ' B
A
B L |, ke—x—]

Fia. 5.8.

If M, is made zero, ;TIIJ is the angle of rotation of the section at
*o

from the end due to the load w.

1 L,wxz
Therefore 0:—-E[ f ) -dx,
or, 0 ()I' (L —a?),

which is the curve of slopes for all values of ¢ from 0 to L.
This result may be checked by a direct calculation thus

d?y  wx?
T —
K dr? 2
EIZ? '-‘”-+A
3
when z=L, dy —0 therefore A—~-E)EJ -
" de 6
_dy _w 313

This is the same result as by the former method, the negative sign
corresponding to the same direction of slope as imposed by the clock-
wise moment My,

In this instance the second method is slightly more direct than the
first but in many cases the application of the first theorem of Castigliano
enables results to be obtained much more simply than by any other
means.

5.8. Williot-Mohr displacement diagrams.—For many purposes it is
convenient to determine the displacements of all points in a braced
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frame and a graphical method then has advantages over those already
described.

Let AC and BC in Fig. 5.9 represent two bars of a frame having
internal forces which shorten the former by an amount A, and lengthen
the latter by an amount A,.

Corresponding to our convention of calling tensile stresses positive,
increases in length will be treated as positive and decreases as negative.

The elastic straining of the frame will move the points A and B to
new positions denoted by A’ and B’.

Suppose the bars AC and BC to be disconnected at C and let AC
move to A'C, where A’C; is parallel to AC: similarly let BC move
to B'C, where B'C, is parallel to BC. If we now take account of the
strains of the bars, A’C; will shorten by A, to A’C," while B'C, will
lengthen by A, to B'C',. :

The displaced position of C can be found by striking arcs from A’

Fia. 5.9.

and B’ as centres with radii A’C’}, and B’C’, respectively, the point of
intersection being the required position.

Since however the strains are all small compared with the length of
the bars the arcs may be replaced by lines ¢',C’ and C’,C’ drawn per-
pendicular to A’C’; and B’C’, giving C’ as the displaced position of C.

Suppose now that o represents the original position of point C.
Draw oa, ob parallel to CC; and CC, and proportional to these
distances ; the points a and b then represent C, and C,.

From a draw az parallel to CA und proportional to A, and from
b draw by parallel to BC and proportionalto A,. Then x and y represent
the points C’; and C’y. Lines from z and y perpendicular to axz and
by meet at ¢’ and oc’ is the displacement of the point C of the frame
to the scale chosen.

Let Fig. 5.10 be any plane frame subjected to an external load system
which causes alterations in the lengths of the bars of amounts A,,
A,, etc., as shown in the figure. It is desired to determine the dis-
placements of all points of the frame.

These displacements must be relative to some datum so we shall
assume the point A to be fixed in space and the bar AB to be fixed
in direction. This choice is quite arbitrary.
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Let a represent the fixed point A. Draw ab parallel to AB and equal
to A,. Then ab represents the displacement of B relative to A. ab
is drawn from a in the direction of movement of B.

Now C moves away from A by an amount A3 so we draw ac’ equal to
A, and parallel to AC. Similarly C moves towards B so bc” is drawn
from b equal to A, and parallel to BC. From ¢’ and ¢’ draw lines ¢’c
and ¢’’c perpendicular to ac’ and b’ to meet at c.  Then cis the displaced
position of C relative to our datum point and direction.

To find the displacement of D the same procedure is followed. D
moves towards C and away from A so ¢d’ and ad” are drawn in the
appropriate directions parallel to CD and AD and equal to Az and A,
respectively. Perpendiculars d'd and d”d to c¢d’ and ad’ meet at d
which is the displaced position of D.

The point e is found in the same way from the previously determined
positions ¢ and d.

Thus ab, ac, ad, ae, the displacements of B, C, D and E, are found

F1a. 5.10.

relative to the fixed point A and the fixed direction AB. The resulting
diagram is known as a Williot diagram.

The fixed point and direction were, however, chosen arbitrarily and
a diagram to be of general use must give absolute displacements. If
A were actually fixed in space the true displacements of the various
points could be determined by superimposing upon the relative ones
found by the Williot diagram a suitable rigid body rotation to correct
for the inaccuracy of the assumption that the direction of AB was
unchanged. This correction is eftected by means of the Mohr diagram
now to be described.

Let ABCDEF in Fig. 5.11 be any frame which is supposed to rotate
about an instantaneous centre P through an angle . Any point on
the frame will then move in a direction perpendicular to the line joining
the point to P. The amount of the movement will be L6 where L is
the distance from P to the point. Hence the movements of all points
will be proportional to their distances from P. Take any pole o and
draw oa, ob, etc. parallel to the displacements of A, B, etc. and
proportional in length to these displacements.



ELASTIC DISPLACEMENTS 81

Join abedef and consider the triangles PAB and oab. Since oa
and ob are proportional to the displacements of A and B they are also
proportional to PA and PB. Further, they are drawn parallel to the
perpendiculars to PA and PB. Therefore the angle APB=aob and
the triangles are similar. Hence ab is perpendicular to AB and bears
the same ratio to it that oa does to PA.

This is true for all other corresponding lines of the two figures and
so the Mohr diagram, abedef, is similar to the frame diagram and is
rotated relatively to it through a right angle.

If therefore two points on the Mohr diagram can be fixed the whole

p Fra. 5.11. e

diagram may be drawn and can be superimposed on the Williot diagram
to give absolute displacements of all points in the frame.

The method is best illustrated by an example and we will consider
the king post truss shown in Fig. 5.12. This truss is assumed to be
pinned at A and mounted on rollers at B so that any movement of B
relative to A takes place along the line AB. The stress diagram is
drawn for the load system for which the displacements are to be
calculated and the elongations and shortenings of all members of the
truss are calculated from a knowledge of their internal forces and
sections. These are shown marked on the frame diagram of Fig. 5.12.
It will be noticed that these strains are symmetrical but we shall proceed
as would be necessary in the general case leaving until later the
simplification which may be introduced due to this symmetry.

First, since A is fixed, we need only to assume a reference direction
and for this purpose AD will be arbitrarily chosen. The Williot diagram
is drawn exactly as described earlier and gives the vector ab as the
displacement of B relative to A and AD. Actually the displacement
of B relative to A is known to be horizontal and so a Mohr diagram
must be superimposed on the Williot diagram to make the necessary
correction.

The instantaneous centre of rotation will be the fixed pin A and a rigid
rotation of the frame about A will cause a displacement of B per-
pendicular to AB.

From a draw a line perpendicular to AB and from & draw bb’ hori-
zontally to cut this line at b'.
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Then ab’ represents vectorially the displacement of B due to a rotation
of the frame about A and the vector sum of b’a and ab gives the

"“—-"'"'_7'1

———————aL
]
1

3]

g\

Fra. 5.12.

combined effects of the rotation and of the displacement obtained from
the Williot diagram.

The vector sum of b'a and ab is b'b and this being horizontal
complies with the necessary conditions that B
N A must move along the line AB. Hence b’ is fixed

e as a point on the Mohr diagram which is com-
pleted by drawing on b’ a figure similar to the
frame diagram.

The true displacement of any point, e.g. E, is
then the vector sum of «e, the elastic displacement
N and ac’ the rotational displacement. This sum
I\ is€eand is measured from the point on the Mohr
! \, diagram to the corresponding one on the Williot
[

I

diagram showing that E moves downwards.
‘f e d Due to the symmetry of strains we could
Q y obtain the results much more easily as follows.
3 Take C as the fixed point and CE as the fixed
Fia. 5.13. direction and draw the Williot diagram as shown
in Fig. 5.13. From the symmetry of the figure
and of the strains it is clear that CE is actually fixed in direction and
a Mohr diagram is not required. ac, ab, etc., give directly the true

displacements of ¢, b, etc. relative to A.
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In Fig. 5.12 project points A, C and B vertically to cut horizontal
lines from a, ¢’ and &’ at the pomts a”, ¢, " which will clearly lie on a
straight line.

Also let horizontal projections of the points a, b, ¢ cut the verticals
through A, B and C at a”, b", ¢,.

Then a”¢,b” is the displacement polygon for ACB and the vertical
intercept of this polygon at any point gives the vertical displacement of
that point, e.g. ¢”’c, is the vertical displacement of point C.

This polygon is useful in dealing with certain problems in braced
girders and will be referred to in later chapters.

EXERCISES

(E for steel may be taken as 13,000 tons per square inch.)

(1) A tripod is formed of steel tubes 2 inches outside diameter and -056 inch
thickness of metal. The feet of the tripod are at the apices of an equilateral
triangle of 4 fect side in the horizontal plane and the tubes are each inclined at
60° to this plane.

Calculate the deflection of the top of the tripod under a load of 1 ton hanging
there.

(0-0055 in.)

(2) A vertical steel mast of height L and flexural rigidity EI is firmly built
into the ground and at its centre point a steel stay of cross-sectional area A is
attached. This stay is led back at 45° to the mast and firmly attached to the
ground.

A load W is applied horizontally to the top of the mast in the plane of the mast
and stay.

If the stay is tightened so that its point of attachment is kept in the unloaded
position calculate the tension in the stay and the deflection at the top of the mast.

(25vaw, T00)
ZOVEN 96RT

(3) In the truss shown in diagram 5a¢ all members are of steel and are stressed
to 8 tons per square inch.  Cale ulate the vertical deflection under the load. Check
your answer by means of a Williot diagram.

(1-04 ins.)

(4) The steel frame shown in diagram 5b is so designed that the stress in all
members is 8 tons per square inch.

Calculate the vertical deflection of the point 1 under a load of 10 tons.

(0-540 in.)

(5) Calculate the deflection of the point C in the steel frame shown at 5c¢ if
all members are 2 square inches in cross-sectional area. Verify the result by
means of a Williot-Mohr diagram.

(0-11 1n.)

(8) The frame shown at 5d, simply pinned at A and B, is so designed that every
loaded member is stressed to 8 tons per square inch when 12 tons is carried at C.

Calculate the vertical deflection of C under this load.
(1-108 ins.)

(7) A rolled steel joist having a second moment of area of 300 inch units and a
cross-sectional area of 12 square inches is firmly attached to a rigid base and is
inclined at 60° to the horizontal. The length of the joist is 20 feet and from the
free end a load of 1 ton is suspended. Calculate the vertical deflection of the
load.

(0-296 n.)
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(8) A stecl beam of flexural rigidity EI and length L is pinned at one end to a
wall. It is supported in a horizontal position by a stecl wire of cross-sectional
area A and modulus of elasticity E which is attached to the centre of the beam

and to a point on the wall ;—J above the pinned end.

If a load is hung on the free end, calculate the deflection at the load. _
[WL( A 4\/2)]

AV A

(@

b
l0tons

12tons l

[

I’
10
i

e — 70—

(d)
Jtons
L 8 ’ 8 ’ 8 '___J
Y | |
6’ ©

C TB

N
—_—

Diagram 5.



CHAPTER 6
STRESS ANALYSIS OF REDUNDANT FRAMES

6.1. Introduction.— Suppose as in Fig. 6.1 a weight W is suspended
from two wires AD and BD which are attached to a rigid support AB.
The forces in these two wires are calculable simply from 2o knowledge
of the geometry ol the arrangement and provided the wires are capable
of carrying these loads it is immaterial what size they are made. The
movement of the point 1) will, however, depend upon their elastic
properties as well as upon the
geometry. fathicdwiceCD 4., 8.0 8,
be added to the suspension T
the problem of load distribu-
tion is considerably modified.
If we denote the force in AD
by T, we can determine the
forces in D and DB in terms
of W and T;, and since any
value can be assigned to T,
it is evident that there are
an infinite number of solu-
tions which will satisfy the
conditions of static equili-
brium of the point D, i.e.
the condition of compatibility Fie. 6.1
of stresses at D is not a
sufficient criterion for the determination of the force distribution.

For any of these possible solutions the amounts by which the three
wires will stretch due to the loads in them can be calculated.

If D' is the displaced position of I, the strained lengths must be
AD’, BD’ and CD’, .e. arcs struck from A, (* and B as centres and with
radii equal to the respective strained lengths must intersect at a common
point. This condition, which is known as that of compatibility of
strains, enables the correct solution to be selected from the infinite
number which satisfy the conditions of stress compatibility at D.
The strains can only be calculated from a knowledge of the elastic
properties of the wires and so the stress analysis of frameworks having
redundant bracing members depends upon a knowledge of the elastic
properties of all components of the structure. Several methods are
available for making such an analysis, but they are essentially the same
and differ only in application. The most widely used is probably
the method of least work, 2.e. an application of the second theorem

85
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of Castigliano, which was given in paragraph 4.12 and the present
chapter will be devoted to illustration of this method as well as others.
Objections have been made to this treatment on the ground that it
does not allow the calculator to visualise the physical significance of
his procedure at every step and that it is, in fact, something of a
mechanical device for obtaining results. While the authors do not
agree entirely with this view it is true that once the equations
have been formed the arithmetical work is a matter of routine and
many designers prefer to work by graphical methods. For this reason
a treatment involving the direct comparison of displacements is used

in some instances and a reference to it is therefore desirable at this
stage.

6.2. Stress analysis by direct comparison of displacements.—Suppose
a frame such as that shown in Fig. 6.2 (a) which has a single redundant

N

A

c
B lD l

, @ W ® W

A

C

R

R
B D

©
Fic. 6.2.

bar is to be analysed. In the first place any bar is chosen as the re-
dundant member, provided that when this bar is removed from the
frame the remaining or essential bars form a simply stiff structure.

In the present case it is convenient to treat CD as the redundancy
and it is assumed to be removed, leaving the frame shown at (b).

A Villiot-Mohr diagram is now drawn for this frame and the
separation of the points C and D is obtained. Let this displacement
be A.

If the force in the redundant member CD is denoted by R the effect
of this bar will be to apply loads at C and D as shown at (c) and a second
deflection diagram is drawn for this system and the approach of C
and D is measured from it. Let this be RS.
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The bar CD which applies the forces will itself stretch due to the

tension in it by an amount %I; where L is the length of CD, A is its

cross-sectional area and E is the value of Young’s modulus for the
material.

The total separation of C and D will clearly be A —R& which must
be equal to the stretch of the bar and so we obtain the relationship

RL
A—-RB—AE

A

L
S
(+11)
and can be calculated.

The method can readily be extended to cases in which there are more
than one redundant member and it then involves the solution of as
many simultancous equations as there are redundancies. This method
is developed further in Chapter 15 and no more need be said as to the
details at.this stage.

It should be noticed, however, that it involves the use of displace-
ments, which are vector quantities, and signs are therefore of funda-
mental importance. Strain energy, on the other hand, is a scalar
quantity and complications due to the sign of the quantities involved
do not occur. In the case of a plane frame this is perhaps not a
matter of serious importance, but in dealing with a space frame the
consideration of signs is difficult and the method of least work has
very considerable advantages over that just described.

6.3. Stresses in frames with one redundancy.---The application of
strain energy analysis to frames

will be illustrated by a number of ~ —5=—ste——/0—>
examples and in the first place Ayt CuiaiiziddP
. the simplest case involving a single
redundant member will be taken.
The three steel wires AB, ("B and
DB in Fig. 6.3 are attached to a
rigid beam at A, C and D and carry
a load of 5 tons at their junction B.

The dimensions of the frame and
the wires are shown on the diagram
and it is desired to know how the 5tons
load is distributed between the wires. Fia. 6.3.

There is clearly one redundant
wire and it is convenient to treat CB as this element. The tensile load
in CB is denoted by R.

In the first place it is necessary to find the forces in the two remaining
wires in terms of W and R and this is best done by the use of tension
coefficients. The equations for the point B are,

_5tA]‘)+10[BD =0 }
' 10(¢s5+tpp)=5—R

from which R=
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R 5—R

. . 5—
which give tap=- i and tm,—%-.

Multiplying these tension coefficients by the length of AB and BD
respectively we have

TAB— p— ><\/25+100 =3.725—-745R

and Tsp —-5-3 R

To determine the value of R we use the second theorem of Castigliano

" X V'100-+100=2-358 —471R.

dU
and put dR—-O.

dU_ZPOL dPo
dR™ “ AL dR

where P, is the load in any member, A is its area and L its length.
The summation includes all members of the structure.

It is advisable in all calculations of this type, even in simple cases
like the present, to arrange the work as in Table 6.1.

Now

TasLEe 6.1.
1 2 3 4 5 6
Member L .A Py P, PoL dP,
inches | sq. inches tons dR A dR
AB 1341 1 3-725 —-745R —-745 | —372:56474-5R
CB 120-0 0-5 R 1 240R
DB 169-6 1-5 2:358 —-471R —471 | —125-54+25-1R

This table is obtained as follows. In column 1 is entered the member
and in column 2 its length. This is given in inches to keep the units
consistent throughout, although in the present case it might have been
given in feet since the final expression being equated to zero a constant
multiplier does not affect the answer.

The area is entered in the third column, and in column 4 the force
in the member in terms of R and the external load. Column 5 is the
value of %’ which is the coefficient of R in the expression in column 4.
Column 6 is obtained by multiplication of the appropriate terms in
the preceding columns. Since E is the same throughout and the final
result is equated to zero it has been ignored.

Then, summing the three expressions in column 6 and equating to
zero we have

—498-+4-339-6R=0
i.e. R=1:466 tons

PoL dPo___
2 A @R
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and finally from column 4 of the table,

Force in AB=2-633 tons.
» 3 CB=1-466 tons.
»» 3 DB=1:667 tons.

As a second example of this type of problem we will consider the case
of a beam suspended by three rods as shown in Fig. 6.4 and loaded at
any point. The dimensions are shown on the diagram. The beam
is supposed to be so stiff that it may be considered to be rigid and
therefore to store no energy due to bending while the rods are capable
of taking either tensile or compressive loads.

There is one redundant support which we will assume to be BE.

w A Bl S
R Y

a, |2

l
e——— [, - L)
- ‘R
D) E F

a
& 3

Fia. 6.4.

Let the tensile force in this member be R. By taking moments about
D of the forces acting on the beam we obtain

or Ter=3kW—R)
-and so T ,p=4W(2—k)—R}.

To find the value of R we put Z—g=0, and tabulating as before we

obtain :—
TaBLE 6.2.
P, PLdP,
Member |Length} A P, R A R
l
AD 1| a HWE-h-R} | -} | —(W2-b-R}
1
e ,
BE 1| a R 1 R
as
CF U | a HEW—R) Y —4—;(kW—R)
3
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Summing the last column we find

Un(L L d) W) oo
4 a) do ag

2—k k
i)

or R= 1 ;4 1
a a, g

from which the loads in the other two rods may be found.

In both the cases just considered it has been assumed that the
redundant member is exactly the right length to fit into its place so
that no stresses are caused in the other members when it is inserted.

The next example shows how
A B stresses due to self-straining
Y \E RN2 Ry Y may be calculated.
’ The square frame shown in
Fig. 6.5 is formed of four
pin-jointed steel bars each
having a cross-sectional area
RAZ RAZ of 2 square inches, braced
diagonally by bars of the same
material each having a cross-
sectional area of 1 square inch.
The diagonal AC was 3!y inch

-
3

R too long before it was forced

0 RNZ 1 into posgition and it 18 required

D> ~<—\(C to find the forces in all the

b 60" »|  bars of the frame due to this
Fic. G.5. self-straining.

Since the bar AC was initially
too long it will after insertion be in compression and so we assume
that it finally carries a compressive force R. In order to determine
the value of R we use the second theorem of Castigliano in its general
form and evaluate

dU_ 1 inch
dR™ 90
where U is the total strain energy of the frame.
The forces in the other bars due to R acting at A and C are found
by resolution at the joints and their values are shown on the diagram.
The work is set out in Table 6.3, p. 89.

In this case since the value of Z_g is not equated to zero the modulus

E iust be included in the expression. The material being steel we
shall take E as 13,000 tons per square inch. Then, summing the last
column, we obtain

Pl PoL dP,_60R(1+2V2)_
AE dR 13,000 20
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13,000
20 X 60(14-2V/2)

Thus, due simply to the lack of fit of the bar AC, the compressive
force in each diagonal when it is inserted is 2:83 tons and the tensile

or =283 tons.

Member L A P, dr, P,L dP,
dR A~ dR
AB 60 2 | R/V2 v 15R
BC . . ” ” ”
CD . " ” » »
DA - " . .
AC 60v/2 1| -R -1 60v2R
BD ” o . .

force in each side of the frame is 2 tons. Thesc forces are additional
to any caused by external loads which must be calculated either
separately or at the same time as those due to self-straining.

Suppose, for example, that the same frame is simply supported on

7

A . RN2 5 B

A

g

\NNNNNN\N\N\N\N\N\WN

RAC+5
RfS2+5

R

R/2

~—C

.-

W=5 tons
Fic. 6.6.

a pin at A and on rollers at D and that a load W=b tons is suspended
from C as shown in Fig. 6.6. Assume also the same lack of fit as
before in AC. We may proceed in one of two ways. If the previous
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calculation has already been made we can assume that we have an
initially unstrained frame carrying the load W ; call R the force in the
redundant member AC and find the forces in all the bars of the frame

due to W and R. Then, putting %_0 we find the value of R due

to the load W alone and so the forces in all the other bars. These
forces must then be added algebraically to those arising from the initial
self-straining due to the lack of fit of AC and the sums will be the
total forces. This result follows at once from the principle of super-
position. Usually, however, it is unnecessary to make two separate
calculations and the procedure is as follows. Fig. 6.6 shows the forces
in the frame under the action of the vertical load of b tons, R as before
being the force in AC, due now, however, to the combined effects of the
external loud and of self-straining. The work is set out in Table 6.4.

TABLE 6.4.
ember | 1 A om | o | R 2
AB 60 2 §2+5 ;}; 30( 2+\/2)
CcD 7 60 2 \% - \}2 15R
ol w e sl
BD 60V'2 1 | —R-5V?2 -1 ' 60V2(R+5V'2)
vA_C‘ N ‘“60\/5 1 ——R—— N jl 60vV2R

From the last column, after inserting E=13,000 tons per square inch
as before, we have

du EPOLdPo 60R(1+24/2)+918_1

AE dR 13,000 20
1_3'2%09_918

or R=——— __ —_1-166 tons
60(14-21/2)

t.e. there is a tension of 1-166 tons in AC under the combined effects of
self-straining and the external load. An analysis of this result shows
clearly the legitimacy of making the calculations in two parts as
outlined earlier when it was stated that it could be done by calculating
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the forces due to self-straining alone and superposing the forces due
to the external load alone.

In the table just obtained, if we make the external load
zero and equate % vo the lack of

fit of AC, 7.e. to 3l; inch, we obtain
R=1-3%Q-0/60(1+2\/2), i. the first
term in the expression for R, agreeing
with the separate calculation of the
previous example.

" If we now assume R is due only to
the external load system we obtain
the same values in the last column
but must equate the sum to zero;
t.e. we get

60R(l+2\/2_)+918=0
13,000
918
R=—_ °° |
or 60(14 24/2)

This is the second term of our
combined expression and the justifi-
cation for superposing results is
evident.

As a further example, consider
the frame shown in Fig. 6.7, which
has one correctly fitted redundant
bar. This is taken to be BD and the load in it is assumed to be
tensile and of magnitude R.

Proceeding as before, the loads in all bars of the frame are found in
terms of R and the external force and the strain energy equations formed.
The calculations are set out in tabular form below :

-

Ve, ////////////////////////////////g(/////////////////////////////// (777
T

Fic. 6.7.

TaBLE 6.5.
L A dpP P,L dP,
Member inches | sq. in. Py ;iR'o _}f ﬁo P,
N R | 1| /5 Ry |
AB 20 2 ~5—m | = | W oty —~185
°"V3 V3 <\/3+3)
R 1 R
CD 20 2 0—— ——]  10{ 043 315
V3 V3 ( +3) +
2R 2 20 4
AD 20 1 —10- = | = 20 4 ) _37
V3 | V3 20(\/3+3R 370
AC 20v/3 1 5v3+R +1 | 20vV3(5v3+R) | 4321
BD | 20v3 1 0+R +1 | 20V30+R) | —546




94 ANALYSIS OF STRUCTURES

Summing the last column but one we obtain an equation in R which
gives the value R=—5-45 tons. The forces in all bars of the frame are
then entered in the last column of the table.

A slightly different type of problem which may be solved by stramn
energy methods is exemplified by the case of a number of columns
supporting a roof. For example, suppose a rectangular flat roof

p 20 feetx30 feet, which may be con-

T sidered to be rigid, is carried on
___{__d')_wi‘m_o 2. four similar stanchions placed at the

- 10 corners and is loaded by a concen-
20 trated weight of 2,400 lb. acting at
10 feet from a short side and 5 feet

from a long side of the roof. The

. c load in each stanchion is required.

e 30" % The arrangement is shown in Fig. 6.8.

Fio. 6.8 Denote the loads in the four stanchions

T by A,B,Cand D. By taking moments

about AB and CB in turn and equating vertical forces we obtain the
following conditions for the static equilibrium of the system :

30C+D)=10W. . . . . . . . . (1)
20(A4+D)=15W. . . . . . . . . (@2
A4BHCHD=W . . . . . . . . . @3

There is one redundant support and we will take this to be the
stanchion at A so that the fourth equation necessary for the solution
of the problem is

au
aa="
Now U= 2 (A2 BEC24D2)
2K
where a is the cross-sectional area and L is the length of each stanchion.
dU L dB dC  dD\

From equation (1) we obtain Cz‘;—!—D

and from equation (2) D:%W_
(=A—-2W
and from equation (3) B=2%-V— .
dB dc dD
Hence dA———l, ﬁ—'l and dA——].

So equation (4) becomes on substitution,

2W 5W 3W\
A (a5 J+(a=Tg)+(a-F) =0
or : A=%-}W.'
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Putting in the value W=2,400 Ib. the forces in the stanchions are
found to be :

A=1,100 Ib.
B= 500 Ib.
C= 100 Ib.
D= 700 .

As a final example of a structure with one redundant element we
will analyse the king-posted beam shown in Fig. 6.9.

This consists of a continuous beam AB strengthened by a king post
CD which is pinned to the centre of AB and braced by stays AD and
BD. The beam is simply supported at A and B. Dimensions are as
shown in the figure.

It is evident that if the beam consisted of two parts AC and CB

| L |
I~ 7 w 1
A | ' B
A ‘FO c A
a
r4
A A
D

R R
> cosect 3 cosect

Fic. 6.9.

pinned together at C the structure would be a just-stiff frame and
the loads in all the bars would be simple tensions or compressions.
The continuity at (', however, introduces a redundancy and the member
AB is subjected to bending moments as well as axial loads. This
bending must be taken into account in the analysis and differentiates
the treatment of this problem from the preceding ones.

It is convenient to take the compressive force in CD as the unknown
to be determined and if this is denoted by R the axial forces in the
bars are as given in Fig. 6.9. The shears at the ends of the beam

are then each

and at any point X in BC at a distance  from B

the bending moment is

7
M,=(“ 5 R)x.

-
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To determine R we have the relaﬁon 3—%:0 where U is the total

strain energy of the frame. If we neglect the strain energy due to
the axial force in the beam we have for the beam
aU 2 Lz dM,
el ISP B T i P
[JRL Egl)y " FdR
since it is symmetrical and symmetrically loaded.

I is the second moment of area of the cross-section of the beam and
Eg its Young’s modulus.

Since M, __e
N dR - 2
dU 1 L/2 .
| = — dx
@), 2E31f (W-R)o
- 48EBI(W R).

For the member CD
dU] _PoL"dPy__ R L
dR|s aEg dR aEg 2
U] _RLtanb
dR|s  2aE4
where @ and L’ are the cross-sectional area and length respectively of
the strut CD and Ejg its Young’s modulus.
[@} __RL cosec? § sec 8
dR|y 8AE,

tan 0

or

For each tie

So, for the two ties,

[@] _RL cosec2 ] ) sec 6 6
dR|,  4AE,

Thus the total value of % 18

dU_RLcosec?fsecf RLtan6 WL3 RL3

dR 4AR, + 2aEg 48EBI+48EBI=O
which gives
Wiz
48E,1
~Cosec? G sec 0 tan @
4AE, +2aEs+48EBI

Once this value has been determined the loads in all the bars can
be found and the bending moment diagram for the beam can be
plotted.
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6.4. Strain energy analysis for frames with more than one redundant
element.—When a frame has more than one redundant element the
procedure is similar to that already explained but must be repeated
for each redundancy. For example, if there are two redundant bars
we denote the loads in them by R; and R, and determine the forces
in the remainder of the bars in terms of R;, R, and the external load
system. Then U, the total strain energy, is a function of both these
unknown forces and the external load and to evaluate R, and Ry we
have the two simultaneous equations

aU 2POL &Py _
AE R, M
aU PoL 2Py,
and R, =248 iR, R, 2

where A; and A, are the initial lack of fit in the two redundant
bars.

As an illustration of the method of analysis the calculations for the
airship fin rib having three redun-
dant members shown in Fig. 6.10 500h. 4
are given in detail. The loading
is quite arbitrary and the cross-
sectional areas tabulated are those
arrived at by a direct design
method which will be explained
later. These values have been
chosen to serve as a check on the
accuracy of that method. The
calculation is arranged in tabular
form as before. In the first four
columns of the table are entered
the reference to the bar, its length,
cross-sectional area and value of
Young’s modulus respectively.
It will be noticed that E is not
the same throughout, some of
the bars being of stecl and the
remainder of duralumin.

The forces in all bars are deter- Fia. 6.10.
mined by resolution at the joints
in terms of the external loading and the forces in the three redundant
members which are taken to be R;, R, and Ry in BE, DG and FG
respectively.

The force in any member can thus be expressed in the form

Py=P +°ﬂR1+r3R2+)’R@

where P is the force due to the external load and «, 8 and y are numerical
coefficients. The values of P, a, B and y are entered for each member
in the sub-columns of column 5.
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Now the cquations to be formed are

oU _ GPoLi 8Py _Pol
iR, ~AE 7R, =235 +=0
U _ Pl 8Py P_OLB —0
&R, “AR R,

QU _Pol #Po_ Pl
¢R; —AL R, <~AE’

and

In column 6, therefore, we enter the values of f\l]‘i[; o obtained by multi-

plying the term i—%‘ for each member by the coeflicient of R, in Py,

c.g. for member BD by the value -892.
Simiilarly, columns 7 and 8 are completed by multiplying the same

terms TT}L by the coeflicients of R, and Ry respectively.

Columns 6, 7 and 8 are then severally summed to obtain ZP%Q’ ete.,
and this results in the three equations :

—293,900-+-930R, + 1-T5R, =0
= 261,160--1-75R ;+ 1060R,+5-6Ry =-0
— 24,700 4 561R, +22:8133—0

The solution of these cquations gives

R,=R,= 240 Ib.
Ry=1,030 ,,

6.5. Stresses due to changes in temperature. - 1f a structure made
of one material throughout, whether it be just stiff or redundant,
experiences & uniform change of temperature, every bar is shortened
or Jengthened in the same proportion and no stresses arc induced. The
structure is geometrically similar to its original configuration but slightly
smaller or larger.

If however a structure is made of more than one material which
have different coeflicients of expansion the effect of a temperature change
depends upon whether the structure is just stiff or redundant. In
the former case there will be no stresses induced since a just-stiff frame
cannot be self-strained but there will be a slight change in the geometry
of the structure. This, of course, is no more important than the small
changes in configuration due to the unequal stressing of the component
members when the structure is loaded but if the structure is redun-
dant this tendency to distortion may induce stresses of considerable
magnitude.

Suppose Fig. 6.11 (a) represents a rectangular frame in which all
the members except AC are made of the same material having a
coefficient of expansion «. AC is made of a different material, the
coefficient of expansion being 8.
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If AC is removed the remaining bars form & just-stiff frame and if
this frame has its temperature raised by ¢> each member will be increased
in length in the ratio 14z : 1. Thus the new lengths A’B’, A’'D’, D'C/,
C'B’ and D'B’ shown at (b) will be 14« times the lengths AB, etc.,
of those in (a) and the figure A'D'C'B’ will be geometrically sxmxlar to
ADCB.

Suppose now that the bar AC, of original length L, which was removed
is heated to the same temperature as the remainder of the structure.
Its new length will be L(1+pt) and not L(14o«f) which would be
necessary if it were to fit exactly into position in the heated just-stiff
structure. It is in fact short of the correct length by an amount
d=L{x—p)t. If it is forced into position the stresses in the structure

will be identical with those which

D ¢ would exist if the temperature of
the original redundant frame were
raised through ¢°.

To calculate these stresses the
procedure is exactly as for a redun-
dant frame in which the redundant
bar is initially too short. The tensile
4 @ B load in AC after heating is denoted
$ by R : the forces in all bars of the
’ <5 frame are found in terms of R and
D NN 514 . . .
then, if U is the strain energy, the
value of R is found from the relation

LB
Tewmperature stresses are induced
not only if the structure is re-
A s B’ dundant by reason of its having
Fie. 6.11. more than the essential number of
bars but also if the redundancy lies
in the number of reactive forces. For example, if a just-stiff roof
truss is supported on a pin at one end and on rollers at the other
over a span L, a rise of temperature ¢° will cause the free end to
move over the rollers a distance La®. If both ends are pinned,
however, this movement cannot take place and forces which stress the
truss are exerted by the pins.

To calculate these forces one end of the truss may be considered free
and to move a distance Lat. A load P is now supposed to act along the
line joining the pins, this load bemg of such magnitude as to restore
the freed support to its original position. P will then be the reactive
force between the pin and the truss when movement duc to the tempera-
ture rise is completely restricted. If U is the strain energy of the frame
in terms of P we have, by the first theorem of Castigliano,

movement of P in its own line of actnon:ﬂj—-Lat

dP
which enables P to be determined.
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This question is of considerable importance in connection with metal
arch ribs whose ends have to be fixed in position, and will be dealt
with when considering the stresses in such structures.

6.6. Distribution methods of stress analysis applied to pin-jointed
trames.—It will be seen that the methods of determining the forces
in the members of a redundant structure outlined above involve the
solution of as many simultaneous equations as there are redundancies.
While the solution of simultaneous equations presents no difficulty
mathematically the labour involved increases rapidly with the number
of equations. Redundant structures requiring the solution of as many
as fourtecen equations have been analysed by strain energy methods
but the resources of most calculating offices would be strained by such
a task. When dealing with highly redundant structures, therefore, it
is almost imperative to use other methods.

A process of successive approximation for determining the stresses
in rigidly jointed frames which are highly redvadant was described
by Professor Hardy Cross in 1930 * and since ther. considerable attention
has been given to such methods. Hardy Cross’s original work will be
discussed in a later section (paragraph 9.5), but it will be wel! here to
outline an extension of it and another method, analogous to it, due to
Professor Southwell, which are applicable to pin-jointed frames.

The first step taken in applying the strain energy method was to
remove all the redundant bars and to determine the forces in the
members of the resulting simple frame due to the external load system.
The redundant bars were then re-inserted in the loaded frame and
from energy considerations the forces arising in those bars were de-
termined. The Hardy Cross method, on the other hand, leaves all the
bars in place but it is assumed that before any external load is applied
all the joints are held fixed ; that is to say, in a pin-jointed structure
all the pins are held by external constraints so that they cannot move.
The external loads are then applied to the joints and, since all the pins
are fixed, no load can be transmitted to the members. One joint is
now released by removing the constraint which fixed its pin in position.
The external load applied to this joint then strains the members attached
to it, the joint moves and easily calculable forces are induced in these
members. The joint is now supposed to be fixed in its new equilibrium
position and an adjacent joint is released. The out-of-balance forces
acting on this second joint are the external loads applied to it and the
force in the member connected to the first joint which was induced by
the movement of the latter. The second joint moving into its equili-
brium position induces, as a result, forces in the members connected
to it. This procedure is repeated until all the joints have been released
and fixed again sufficiently often to ensure that the modification in
the forces brought about by further releases is small enough to be
neglected. It will be seen that the method is one of successive ap-
proximation but it is not, in the ordinary sense of the term, an approxi-

* “ Analysis of Continuous Frames by Distributing Fixed End Moments.”
H. Cross. Am. Soc. Civ. Eng., Proc. 1930. 56 (5), 919-28.
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mate method since by repeating the process sufficiently often any
desired degree of accuracy can be obtained.

The underlying principle and the detailed procedure will be most
easily appreciated from the study of a worked example but before giving
this example it will be useful to develop in gencral terms certain
expressions which are required in the analysis.

It will be seen from the outline already given that the method
requires a knowledge of the forces in such a group of members as is
shown in Fig. 6.12, due to horizontal and vertical loads H and V
applied at A. [f under the action of these loads the joint A suffers
horizontal and vertical displacements «, and B, then, since the other

Fra. 6.12.

ends of the members are prevented from moving, the tension set up in
member 1 will be, with the sign convention and notation used in earlier

paragraphs,

Fl:—]%}'(a,\ cos014+B,siny) . . . . . . (1)
and from a consideration of the equilibrium of joint A it follows that

H_—:}_:I%\ll(oc,‘ cos 0, +B,sinf)cosh, . . . . (2)
and szFE}I(aA cos 0;+B,sinb)sin, . . . . (3)

the summation in cach case extending to all the members.

By solving these two simultaneous equations the unknowns «, and
B. may be evaluated in terms of H and V and equation (1) then enables
the force in each member connected to A to be determined.

As an illustration of the procedure the stress analysis of the frame
shown in Fig. 6.7, already treated by strain energy methods, will be
given. The first step is to find, from equations (2), (3) and (1), or by
other methods, the forces developed in members AB, AC and AD when
the joints B, C and D are held fixed and loads are applied to the free
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joint A ; also the forces developed in members DA, DB and DC when
the joints A, B and C are held fixed and loads are applied to the free
joint D. These forces are given in Table 6.7.

TasLE 6.7.
Forces 1N MemBrrs MEETING AT A JOINT.
Horizontal . Horizontal .
load H at \",e;télc‘z! lgazl load H at \‘;ertlc'za,! loal.()i
joint A jom joint D at joint
FAB --0-978 H —0:206 V "hHo --0-978 H 4-0-206 V
Fac —0-310 H +0-357V Fpg -0-310 H —-0-357V
AD —0-220 H +0-588 V Fpa —0-220 H —0-588 V

The analysis of the stresses in the complete framework may now
be undertaken. It is advisable to adopt a tabular form for the calcula-
tions and a convenient arrangement is shown in Table 6.8, where the
three upper columns refer to the three members meeting at the joint A
and the three lower columns refer to those meeting at the joint D.

It is assumed initially that all joints are held fixed. The external
vertical load-+-10 tons at D, is then applied. The joint 1) is now
released, A still being fixed ; joints B and C are attached to a rigid
abutment and therefore, in this particular example, are never released.
Due to the external load acting at D, forces are developed in the
members DA, DB and DC. Their magnitudes, read from the last
column of Table 6.7, are entered in line «’, Table 6.8. The joint is now
in equilibrium and to indicate this a full line is drawn below the entries
so far made. It must not be forgotten that the member DA is attached
to joint A and therefore the force—5-88 tons developed in it must be
recorded also in the first of the upper columns, line ¢, where the forces
in the members meeting at joint A are entered. Since joints B and C
have not been released no forces have yet been developed in the
members AC and AB and so in the second and third columns of line @
the entries are zero. Joint D is now fixed in its new equilibrium
position and joint A is released. Since there are no external loads at
A the only force acting on the joint at its release is that duc to the
movement of D just recorded. Before A has moved into its equilibrium
position, therefore, the unbalanced force acting on it is a vertical
force of +5-88 tons and so the forces developed in the members AB,
AC and AD as A moves are obtained by substituting this value of V in
column 3 of Table 6.7. These forces are entered in line b, Table 6.8,
and at the same time the force of 4346 tons, developed in AD by this
movement of joint A, is ““ carried over ” to the other end of the member
and entered in line &’. Joint A is now fixed in its new equilibrium
position and joint D is once more released. This process of releasing
and fixing joints is continued until the unbalanced force remaining at a
joint is small enough to be neglected. In Table 6.8 the joints A and D
have been released five and six times respectively and the unbalanced
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TaBLE 6.8.

ForcEs (TONS) IN MEMBERS OF FRAMEWORK.

AD AC AB
a —588 0-00 0-00
b 4346 42110 —121
—2-04 000 000
+1-20 4073 042
- 071 0-00 0-00
+0-42 -+0-25 —0-14
—0-24 0-:00 0-00
+0-14 +-0-09 —0:05
—0-08 0-00 0-00
+0:05 +0-03 —0-02
—0-03 0-00 000
DA DB DC
@ —588 357 4-2:06
% +3-46 0-00 0:00
—2.04 123 +071
-+1-20 0-00 0-00
—0-71 —0-43 4025
+0-42 0-00 0-00
—0-24 —015 +0-09
4014 0-00 0-00
—0-08 —0-05 +0-03
+005 0-00 0-00
—003 —0-02 +001

force is ‘03 tons. The total forces in the members are the totals of
the entries in the various columns and are :—

AD=-3-71 tons.

AB=-1-8¢

AC=+4320

DB=—5456 ,,

DC=+4316 ,,

These values should be compared with those obtained by strain

energy methods given on p. 91.
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The forces in the members in this simple example were estimated
to within ‘01 tons of their true values after only eleven releases. The
same degree of accuracy could not have been obtained so easily if the
frame had been more complex as will be appreciated if the deformations
suffered by the structure are considered. The percentage errors in the
forces at any stage in the process are, in some degree, a measure of
the difference between the shape of the frame at that stage and its
final deflected form. If the frame can be so deformed before the
balancing process at the joints is begun that its shape approximates
to the final form fewer cycles will be necessary to obtain any desired
degree of accuracy and, if the deformation is so chosen that the loads
in the members produced by it are casily calculated, a considerable
saving of labour will result. Fig. 6.13 illustrates one method of pro-
ducing the deformation required. A two bay cantilever frame is shown

7

N
N
AN

Fic. 6.13.

by broken lines in its unloaded position. When the external loads are
applied, the joints of the frame are allowed to move, as shown by the
full line diagram, but they are so constrained that those in the first bay,
A, B, D and E, do not change their relative positions. Forces are
therefore developed in the members of the second bay only and, an
important point, their magnitudes are easily calculated. The joints
are now held in these deformed positions and the process of releasing
them one at a time, as described in the worked example, is begun.
The equations for the determination of the forces developed in the
members by this type of deformation are in no way complicated but
for a complete discussion of the method reference should be made to
a paper published by the Aeronautical Research Committee.*

6.7. Southwell’s relaxation method.—--A more elegant method than
that described in the previous paragraph, due to Professor R. V.

* A Distribution Method of Stress Analysis.”” J. F. Baker and A. J. Ockleston.
R snd M. No. 1667. H.M. Stationery Office.
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Southwell, avoids all simultaneous equations and is concerned primarily
with the determination of the deformations of the structure.

It follows from paragraphs 2.5 and 4.4 that the tension coefficient
of any member PQ is

tmz%g{(%—ftr)(“o_“r)+(;‘/Q"'?/P)(BQ"‘BP)+(zq—zr)(‘)’q—)’r)} - (1)

where zp, yp, 2p and Zq, Yq, 2q are the co-ordinates of P and Q in their
initial positions and op, Pp, yp and ug, By, Yo are the components of their
displacements due to strain.

As in the previous method we shall be concerned with the displace-
ments at one end of the member while the other end is held fixed in
space though free to rotate on its pin.

If the end Q is held fixed the tension coefficient of the member may
be written

IPQ_—__%; (@q—rptpt(Yo—yp)Bpt(zq—2zelye}. - . . (2)

As a result of the tension in PQ the joint P will be subjected to a
force having components :
Xp=tpo(rq—2p)
lP:tPQ(yQ_yP) j e s e+ e e e . (3)
p=tpq(2q—2p )
and the fixed joint Q will be subjected to forces equal and opposite to
these.

If the joint P has a number of members connected to it, their remote
ends being fixed as is Q, then when P is given a displacement ap in
the z-direction and no displacements in the directions of the other
axes, the components of the total force developed on the joint P are :—

in the z-direction

EA )

XIPQ(‘TQ-'TP) = E I:.Tz (IQ—TP)QGP,

in the y-direction

v
.

\EA
Ztpg(Yo—yp)=—X L3 (@q—Tp)(Ho—Yr)ap, (4)

in the 2-direction

EA
Ztpo(zq—2p)=— E_L_:’ (xq—p)(2q—2p)2p,

J

the summation including every member connected to P.

The forces developed by displacements Bp and yp may be found in
the same way and no other preparatory calculations are needed.

The analysis of the stresses in a framework is made by giving each
joint in turn that displacement in the direction of one of the co-ordinate
axes which has most effect in reducing the resultant force on the joint.
This process is continued until the resultant forces on the joints are
small enough to be neglected. The total displacements given to the
joints are then known and the forces in the members can be found
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from equation (1). The method will be illustrated by applying it
to the problem dealt with in the preceding paragraph, the framework
concerned being shown in Fig. 6.7.

The first step is to evaluate the constant %—: for each member, the

units of length and force adopted being inches and tons respectively
and E being taken as 13,000 tons/sq. in. These constants are
3-250 for members AB and CD, 1:625 for AD and 0-312 for DB and AC.

The forces on the joints due to unit displacements must next be
found. When joint D is given a unit displacement in the direction
of the z-axis and no displacement in the direction of the y-axis, ..
ap=1 and Bp=0, the forces exerted on the joint D by the member DC
are, from equation (3),

Xp=tpc(Tc—p)=—975
and Yp=tpc(yc—Yyp) =564

Due to the same displacement, forces are exerted by the other
members meeting at the joint and it will be found from equation (4)
that the total forces on D are, in the z-direction —1,068 and in the
y-direction +402. This information is set out in line 1 (a), Table 6.9,
where it is also stated that X, and Y,, the forces on the joint A due to
this displacement, ap,=1, are zero.

In the same way the forces on the joints are calculated due to a
unit displacement in the y-direction and no displacement in the -
direction, 2.e. Bp=1 and ap=0. These forces are set out in line 2 (a),
Table 6.9, and it will be seen that there is a force of 4650 in the
y-direction at joint A. This follows from equation (3) since, due to the
displacements under consideration,

Ya=tap(¥p—Ya) =%{(yn_%)ﬁn}(%—%\)

=1-625{—20 X —20}=-650.

It will be found a convenience in the later work if the largest force
at a joint due to each displacement is reduced to 1,000. This has been
done in Table 6.9 ; line 1 (), for instance, being obtained from line 1 (a)
by dividing throughout by 1-068.

The deformation of the framework as a whole can now be considered.
All the joints in the framework are initially fixed in space and the
external load is applied. Joint D will then be subjected to a force
Yp=+410. The joint must next be given a displacement, all other
joints being held fixed, which will reduce this force as much as possible.
A glance at Table 6.9 shows that a displacement of joint D in the y-
direction is the most efficient for the purpose and that if its magnitude
is one hundredth of the displacement recorded in line 2 (b), Table 6.9,
the force on the joint in the y-direction will be reduced to zero.

Table 6.10 shows a convenient way of setting out these facts. The
first line, p, in the table shows the conditions after the external load has
been applied but before any joints have been displaced. Line ¢ shows
the forces developed at the joints A and D, which in this particular
framework are the only ones to be given displacements, by a movement
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TABLE 6.9.
FORCES (TONS) AT JOINTS DUE TO DISPLACEMENTS.

Displacement Xp X, Yp Y.
1(a) ap -1 - 1,068 0 4 402 0
1) ap - 0:937 1000 0 4317 0
2 (a) Bp = + 402 0 1256 | 4 650
2(b) By 0797 + 320 0 —1000 | + 518
3 (a) ay -1 0 1,068 0 — 402
3(b) ay -0-937 0 1000 0 — 31
4 (a) By—1 0 — 402 | + 650 | —1,256
4(b) Ba=0-797 0 — 32 | + 518 | —1,000

of joint D in the y-direction of magnitude 0-00797. The type and
magnitude of this displacement are recorded in the first two columns
of Table 6.10, the éntry *“ 2 (b) ” in the first column referring to line 2 (b)
of Table 6.9. The forces at the joints after the displacement has
been given to D are found by adding lines p and ¢ ; they are entered
in line . While the force Y, has been reduced to zero it will be seen
that forces X, and Y,, of magnitudes +3-20 and +-5-18 respectively,
have been induced by the displacement. Of these the latter is the
greater and it will be seen from Table 6.9 that it can be made to dis-
appear by giving joint A a displacement 0-00518 times that recorded
in line 4 (b), Table 6.9. The forces at the joints induced by this
displacement are entered in line s, Table 6.10, and those remaining
after this second displacement has been completed, in line ¢. This
process is repeated until the displacements become small enough to be
neglected. In Table 6.10 a total of eighteen displacements have been
made. The forces in the bars have now to be calculated. This is
done by determining the total displacements given to the joints. It
can be seen from columns 1 and 2, Table 6.10, that the total displace-
ment in the z-direction suffered by joint D is
ap=0-937(0-00320--0-00124-+-0-00075-0-00020)
=0-937 %< 0-00539.

The other displacements are

Bo=0-797 X 0-01710
oy =—0-937 X 0-00311
B,=0-797 X 0-01003

These displacements being known the tension coefficients can be
calculated from equation (1), thus

EA
lpa= i3 (Ya—yp)(Bs—Br)

=1-625Xx20x0-797(0-01003—0-01710) =—0-183
and the force in member DA =t X 20=—3-66 tons.
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TABLE 6.10.
Operation Multiplier Xp X Yp Y,
0-00 000 | 41000 000 |p
2 (b) +0-01000 +3-20 000 | —10-00 +518 |q
+3-20 0-00 0-00 +518 |r
1(b) +0-00518 0-00 —1-65 +2-68 —518 |
+3-20 —165 268 0-00 ¢
1(b) 4000320 --3-20 0-00 +1-20 0-00
0-00 —165 -+3-88 0-00
2(b) +-0-00388 +1-24 0-00 ~3-88 +2:01
+1-24 —1-65 0-00 4201
4 (b) +0-00201 0-00 —0-64 +1-04 —201
+1-24 —-2:29 +1-04 0-00
3(b) —0-00229 0-00 +2-29 0-00 +0-86
+1-24 0-00 +1-04 +0-86
1(b) +4-0-00124 —1-24 0-00 +0-47 0-00
0-00 0-00 +1-51 +0-86
2(b) +0:00151 +0-48 0-00 —1-51 -+0-78
+048 0-00 0-00 +1-64
4(b) +4-0-00164 0-00 —0-52 --0-85 —1-64
+0-48 —0-52 085 0-00
2 (b) -+ 000085 40-27 0-00 —0-85 +0-44
+0-75 - 052 0-00 +0-44
1(b) +0-00075 —075 0-00 +0-28 0-00
0-00 —0-52 4028 +0-44
3(b) —0-00052 0-00 +0-52 0-00 +0-20
0-00 0-00 +0-28 +0-64
4 (b) +0-00064 0-00 —0-20 +0-33 -—-0-64
0-00 —0-20 +0-61 0-00
2 (b) +0-00061 +-0-20 0-00 —0-61 -+0-32
+0-20 —0-20 0-00 +0-32
1 (b) +0-00032 0-00 —0-10 +40-17 —0-32
+0-20 | —0-30 4017 0-00
3(b) —0-00030 0-00 4030 0-00 +0-11
+0-20 0-00 +0-17 +0-11
1(b) +0-00020 —-0-20 0-00 +0-08 0-00
0-00 0-00 +0-25 +0-11
2 (b) +0-00025 +0-08 0-00 —0-25 4013
+0-08 0-00 0-00 40-24
4 (b) +0-00024 0-00 +0-08 +0-17 —0-24
-4 008 -+0-08 +0-17 0-00

The forces in the other members are

AB=-—1-92 tons.
AC==+4314 ,,
DB=-536 ,,

DC=+317 ,,
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It will be seen that these values differ appreciably from those obtained
for the same framework in paragraphs 6.3 and 6.6. The reason for
this is that the work in Table 6.10 has not been carried far enough.

In this method, as in the one described in paragraph 6.6, it will be
found economical to deform the structure by ‘‘ block ’ displacements
and rotations before the process of displacing the joints one at a time
is begun. A full account of the procedure is given in Professor South-
well’s paper.*

6.8. Choice of method of stress analysis.—It is impossible to formulate
general rules which will govern the method to be used in any particular
case.

It is clear that less labour was involved in determining the forces
in the members of the framework shown in Fig. 6.7 by strain energy
methods than by either of the successive approximation methods and
it is probably safe to say that when analysing the stresses in redundant
structures having hinged ends the strain energy method will be found
most economical in those cases where the number of redundancies does
not exceed six.

There is little to choose between the two successive approximation
methods except that in the second all simultaneous equations are
avoided. It should be remembered, however, that in many cases it
may be simpler to solve groups of two or three simultaneous equations
as required by the first method than to obtain the same results by
successive approximation.

6.9. Design of redundant frames.—Since the stress analysis of a
redundant frame necessitates a knowledge of the cross-sectional areas
of all the members it is evident that ordinary methods of design are
not applicable to such a structure. The usual method is to guess
sizes for all members, analyse the frame by means of strain-energy
theorems, and if the stresses do not appear reasonable to make a sccond
approximation to the sizes and go through the operation again. By
this process of trial and error a suitable design can be achieved, but
the procedure is laborious, especially if there are a number of re-
dundancies, since each trial involves the solution of a number of
simultaneous equations.

By a modification of the equations obtained from the second theorem
of Castigliano, however, a method has been cvolved which enables a
much more direct approach to the problem to be made.t The results
obtained by this method are not always of direct practical use and
sizes obtained may have to be modified by conditions other than the
stresses to be met, but it does give a structure which fulfils the conditions

imposed by theoretical considerations and any necessary modifications
are easily made.

* * Stress Calculations in Frameworks by the Method of Systematic Relaxation
ovf (ll‘onstraints,” Iand II. R. V. Southwell. Proc. Royal Soc., Series A, No. 872,

ol. 151.

t ‘“On a Method for the Direct Design of Framed Structures having Redundant
Bracing,” A. J. S. Pippard, Reports and Memoranda, No. 793. Aeronautical
Research Committee.
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Suppose that the pin-jointed frame to be designed carries a number
of external loads Wy, W, . . . Wy, and that it contains a number of
redundant members the forces in which are R;, Ry . .. Ry. By
drawing stress diagrams the loads in all members of the frame can be
found and we can write

P0=aW1+bW2+ [ +nWN+aRl+BR2 e +,lLRM,

where P is the load in any member and a, b . . . n,«, 8 ... u are
numerical coefficients depending on the geometry of the frame.
The strain energy of the whole structure is

Py2L
U=4S-0_
258
and by the second theorem of Castigliano'we can write
oU aU _ou _ —0.
R, aR2 T Ry
GP()L
Now ; Rl E
and Py/A is the stress in the member:f
Hence o —-Zf La_
hindl __zfli@ =0
8R2 > e e e e . (1)
f L# -0,
“RM E )
If, as is common, E is the same throughout, these equations become
2fLla=%fLB= ... =XfLu=0 . . . . (2)

The procedure for design is as follows :—

Replace all redundant members in the structure by unknown forces
R;, Ry, ctc., acting along the axes of these members. Since each
member is connected to two joints of the frame, the force replacing
it must be applied at both joints. The structure is now reduced toa
just-stiff framework acted upon by R;, Ry, etc., and W), Wy, etc. A
stress diagram is drawn for the external load system, and this gives the
sum of the terms

an—f-ng—{— e +an

in the expression for P,,.

A stress diagram for the two equal forces R,, acting on the structure,
gives the values of « for all members of the frame, and similar diagrams
for Ry . . . Ry give valuesof B . . . u. Since the values of L and E
are known, the terms La/E, LB/E . . . Lu/E are readily calculated
for each member of the frame. The equations corresponding to (1) or (2)
are now formed. There are the same number of equations as there are
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redundant members, and each equation contains terms involving the
stress in one of the redundant members and the stresses in those members
of the truss affected by that particular redundancy : no other terms
occur. Thus the equations connect the stresses in the various members
of the structure and the next step is to select such stresses as will
satisfy the equations.

It will be found convenient to begin with the equation which contains
the smallest number of terms. The maximum permissible stress can be
substituted for the majority of terms occurring, the remainder—which
often need be no more than one—being adjusted to satisfy the equation.
This is a very easy matter, since there are any number of possible
variations, all correct, and it is not a question of determining a unique
solution.

Certain stresses which are fixed in the first equation will occur in
other equations and these values should be substituted. The re-
maining equations are then dealt with in the same way and all stresses
determined.

The stresses thus fixed should be tabulated and among them will be
the stresses in the redundant members. The next step is to fix the
load in each redundancy by assigning suitable areas to these members.
A study of the table of internal loads helps this decision, since it shows
the effect of the load in the redundant member upon the loads in the
other bars. Having fixed the sizes of the redundant members and so
the loads in them, the loads in all the other members of the frame
can be written down and by dividing these loads by the stresses already
fixed the cross-sectional areas of all members are determined.

It should be noticed that this method eliminates the solution of
simultaneous equations and further, that the stresses are controlled
by the designer during the process of calculation. As an example the
frame shown in Fig. 6.10 will be considered.*

The frame is fixed at J, H and K and assuming all diagonal braces
to be operative there arc three redundancies. These will be taken to
be FG, BE and DG.

The force in FG will be denoted by —Rjy, that in BE by —R,;, and
in DG by —R,.

The first step is to find the internal forces in all members of the
frame in terms of the external load system and R,, R, and R;. This
can be done by a stress diagram or by resolution at the joints. The
values obtained by the latter method are given in Table 6.11. These
loads and the length of each member having been tabulated, columns
4, 5 and 6 are obtained as follows :—

Since «, B and y are the coefficients of R;, R, and Ry respectively,
their values are known from column 3 and multiplying by the term
L/E we get the numbers in the columns 4, 5 and 6. The structure is
supposed to be made of duralumin, braced diagonally by steel, having
values of E of 10-5X 108 1b. per square inch and 30 X108 1b. per square
inch respectively. Consider first column 4 : this enables us to form

* This example is taken from *“ Report of Airship Stressing Panel,” R. & M.
800, Appendix IX. Aeronautical Research Committee.
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the equation 2.%_‘“ =0 and if we denote the stress in any member
AB by AB we obtain
543 BD-+-5-43 CE-+1-38 BC+1-38 DE—2-39 BE—2-39 (D=0, . . (3)
where BD, CE, etc., arc the members of the truss appearing in
column 4.
Similarly, from columns 5 and 6, we obtain the equations
5-82 DF—1-99 FJ+5-82 EG—1-99 GK +-2-46 DE
—2:90 DG—2-90 EF 4096 FH+0-96 HG=0 . . . . . (4)
—4-34 FJ—4-34 GK —5-35 FG+2:08 FH+2:08 HG=0 . . (5)
Since equation (5) contains the smallest number of terms, we begin with
that and select any stresses to satisfy it.

Assuming that the stress in duralumin is limited to 10,000 lb. per
square inch and in steel to 80,000 Ib. per square inch, we put

FH=—GK=8,000 lb. per square inch.

I_“J=10,000 9y E})
FG=-2,000 »
which gives HG=-8,970 ,, ”»

It should be noted that any other stresses which satisfy equation (5)
would be equally correct, but we have stressed four of these members
fairly equally which is reasonable.

The values above are entered in column 7, and we turn next to
equation (3). None of the stresses appearing here have been fixed
from (5), so we again select suitable values.

—BE=CD=80,000 Ib. per square inch.

BD =10,000 IT) N
CE=-8,000 , »
BC :DE=*~3,928 IY) $2]

and these are also entered in column 7.
Five stresses appearing in equation (4) have now been fixed and
substituting them, we obtain the cquation

5-82 DF4-5-82 EG—2-90 DG—2-90 EF =14,602.

Put DF=10,000 lb. per square inch.
“—‘DG=EF=80,000 i3} »
and then EG=-7,495 ,,

»

Since members AB and AC are unaffected by the redundancies, they
do not enter into the equations, so that the stresses in them can be made
anything we please. They are therefore put at the maximum allowable
stress,

i.e. AB=—AC=10,000 Ib. per square inch.

We now fix the absolute values of the loads in the redundant members,
and in doing so we consider the effect these members have upon the
loads in the other members.
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In this case, we take R;=R,= 250 Ib.
and Ry=1,000 Ib.
and enter in column 8.

We now write down the load in every member from column 3 and
these loads divided by the stresses in column 7 give the required areas
tabulated in column 9.

It should be emphasised that this is only one of an infinite number of
solutions of this particular problem, but we have by a direct process
produced a design which we know will have the stresses of column 7
when loaded as shown in Fig. 6.10 and this design has not involved the
solution of any simultaneous equations.

TABLE 6.11.
Italics denote negative values.

1 2 3 4 5 6 7 8 9
.§ Length LOAD La L8 Ly Stress | Load| Area
g E E E

& | Ins. | Lb. | R, | R, | Ry | x10%| x10%| x10° Sﬁ‘bm/ Lb. §g;
AB | 118 2,269 | — - — —_— — — 110,000 | 2,269 0-23
BD | 64 2,269 | 0-892 — — 543 | — — {10,000 | 2,492/ 0-25
DF | 73 4,182 — 0-838 — — 5-82 — 110,000 | 4,392{0-44
FJ 64 8,030 —_ 0-327 | 0-712 — 1-99 | 4-34 |10,000|7,236{0-72
AC | 118 2,269 — — — — — — 110,000!2,269|0-23
CE | 64 4,182 | 0-892 — — 543 — — | 8,000(3,959|0-49
EG | 73 7,140 — 0-838 e — | 582 - 7,495|6,931{ 0-92
GK | 64 5,815 — 0-327 | 0712 — 1-99 | £34 | 8,000!6,609|0-83
BC 26 1,200 | 0-559 — — 1-38 — — 3.928(1,060,0-27
DE | 401 | 2,278 | 0:362 | 0-645 — 1-38 | 2-46 — | 3,928|2,020|0-51
FG | 562 — — — 10 — — | 635 | 2,000|1,000|0-50
BE | 17| — 1-0 —_ — 2:39 — — 180.000| 250/0-003
CD 717 | 2,146 | 1-0 — — 239 — — 180,000 | 1,896| 0-024
DG 87-1 — — 10 - -— 2:90 —  180,000| 250|0-003
EF 87-1 | 3,526 — 10 — .- 2:90 — 80,000 | 3,276/ 0-041
FH | 39 3,910 — 0-258 | 0-561 0-96 | 2:08 | 8,0004,536|0-57
HG | 39 5,660 — 0-258 | 0-561 0-96 | 208 | 8,970|5,034|0-56

|

This example was used in paragraph 6.4 as an illustration of the
method of stress analysis for a structure having more than one re-
dundant member. The areas assumed in that analysis were those found
by the present method and given in Table 6.11 above. The values of
R;, R, and Ry were evaluated by an application of the method of
least work. This meant the solution of three simultaneous equations
which gave Ryj=R,=240 lb. and Ry=1,030 lb. These figures should
of course have agreed with the values assigned to R}, Ry and Ry above :
the small error is due to the fact that only slide rule accuracy was aimed
at in the calculations.

6.10. Eftect of curved bars in a framework.—In some cases certain
members of a framework are curved and not straight and if the structure
is redundant special treatment of these members is necessary.*

* «The Effect of Curved Members upon the Elastic Properties of a Framework,”
A. J. 8. Pippard, Phil. Mag., Vol. 1., January, 1926, p. 254.
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Let A and B in Fig. 6.14 be two nodes of a framework connected
by a circular arc of radius R and subtending an angle 2¢ at the centre.
If the frame is pin-jointed, any force transmitted between A and B
must act along the line AB. Let P be such a force.

Then if A is the amount by which the distance AB is shortened under
the action of P,

148}
AdP T Y|
where U is the strain-energy of the bar.
If I is the relevant second moment of area of the bar,
A is the cross-sectional area of the bar,
E is the modulus of elasticity of the material,
N is the modulus of rigidity of the material,

then at any point D on the arc where /COD =6 the resultant actions
are :

an axial compression=P cos 0,
a radial shear =P sin 0,
a bending moment =PR (cos §—cos ¢)

and the total strain-encrgy of the bar is

PRf'ﬁ PR ¢

g2 pa — 2
U= EA 0d0+ . (cos 8— cos ¢)2d0

+§I§ sin2 640 . (2)
where the first and second terms are the components due to axial load
and bending respectively and the third term is an approximation to
the unimportant component due to shear.

Differentiating and evaluating and giving N the value ;E we obtain

where k is the radius of gyration of the cross-section.

If the curved bar were replaced by a straight member of the same
cross-sectional dimensions, but with such a value of E that A remained
the same, the elastic properties of the frame would be unaltered.

Let E’ be the modulus of elasticity of such a member. Then, under
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2PR sin ¢
AR and for

the action of P its alteration in length would be

this to be equal to A we must have

2 sin ¢
E'=E| 7¢_ 3sin2¢ R2(, 3sin2g 9 .4
[3 e (12 P cos )

Any framework containing curved members can thus be simplified
by replacing all such members by straight bars of the same cross-sections
as the originals, but with modified values of E as given by equation (4).
Such a simplified frame will be elastically equivalent to the original
and the usual methods for calculating deflections and stresses can be
employed.

The above formulas apply strictly only to circular arcs, but very little

[ c’
D, L D F
J ]
F, H G F H' K G
A 3
A B
174‘1 f Ty
A (a) 15 (5
F1e. 6.15.

error is introduced if the arc is not circular provided the maximum bow
is the same.

As an example we will consider the case shown in Fig. 6.15 (¢) which
represents a roof truss of the simple hammer-beam type supported at
A and B on rigid walls. There are ten joints in the truss and seventeen
members are required to make it just-stiff. This number is actually
provided but since both the supports are formed by pins on rigid walls
a redundant reaction is introduced. This may be conveniently taken
as H,. The loading, which is not shown, will consist of dead weights-
and wind forces.

To determine the value of H, we must form the equation éi}llj— =0

and proceed as follows. i

The curved members of the truss are replaced by straight bars as
shown at (b) and the formula just deduced is used to calculate the
equivalent values of E for these straight bars. The force Py in each
member of the truss shown at (b) due to the external load system,
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H, and Hy, is found by any of the methods described in Chapter 2
and PoL dPy .
AE d]]
the bars A'H’,]-l'J', J’K’and K’B’ and not the real value for the material.
This work should be done in t.mbular form as shown in earlier examples

and results in an expression for 2 NG ;f{“ in terms of H, and the

external loads. Kquation of this expression to zero gives the value
of H, required. from which the forces in all the bars of the truss can be
calculated.

Further and more detailed exariples of analyses of this type of
truss will be found in a pwper published by the Dopqrtment of Scientific
and Industrial Research.*

6.11. Principle of superposition applied to redundant frameworks.—
When a structure which has a number of redundant bars exhibits
symmetry about a centre- line an application of the principle of super-
position considerably reduces the work of analysis.

is calculated for each, using the equivalent value of E for

fW
C D E F G
& N & 3]
) J
AT K J H AB
Fig. 6.16.

An example to illustrate this is shown in Fig. 6.16. It consists of a
four-panel truss with counterbracing in each panel, so *hat there are
four redundant bars. A load of'2W acts at joint D, and the bars CA,
DK, FH and GB are conveniently chosen as the redundant members,
the tensions in them being R}, Ry, Ry, and Ry respectively.

Using the second theorem of Castigliano, the conditions for the solution
of the problem are

The four resulting equations in the ordmary way must be solved
simultaneously.

Suppose, however, that the load system is split into the two systems
shown in Fig. 6.17. That shown in Fig. 6.17 (a) is symmetrical about
EJ, the centre-line of the truss, and corresponding bars on either side
of this axis must carry the same loads. It 1s only necessary, therefore,
to assume two unknown tensions R’;, and R’,, as shown instead of four
as in the case of unsymmetrical loading.

The second load system shown in (b) is skew-symmetrical, a load W
acting downwards at D and an equal load acting upwards at F. The

*  Primary Stresses in Timber Roofs.” A. J. S. Pippard and W. H. Glanville.

ﬁ:zigling Research Technical Paper No. 2. His Majesty’'s Stationery Office.
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reactions are as shown, and corresponding bars on either side of the
centre-line will carry equal but opposite loads. Thus. if CA has a

lW lW
C D E F G
\Q \Q SN N~
A
A) K J H TB
w (@) w
lW’ TW
c ‘D E F G
R S R~
& & G
A K J H B
lw |
2 b) 2
Fia. 6.17.

tension R”), GB will have a tension of —R”|; that is, a compression
of +R";. Here again the number of statically indeterminate forces
is two instead of four. If the load systems shown at (a) and (b) are
superposed the result is 2W acting at D as in Fig. 6.16, and the original
problem is thus reduced to the solution of two pairs of two simultaneous
equations instead of the solution of four simultaneous equations.

The saving in work is considerable even in the present simple case,
but in a problem with a larger number of redundant bars the method
enables solutions to be obtained which would otherwise be impracticable.
For example, twelve simultaneous equations would generally involve a
prohibitive amount of work, and it is only in very exceptional circum-
stances that a solution would be attempted ; if, however,.by the use of
the principle of superposition they can be reduced to two independent
sets of six each the problem, although still lengthy, is quite practicable.

The example shown in Fig. 6.16 has been solved both by the straight-
forward method and by using superposed load systems, and the working
is given for comparison.

Numerical values have been reduced to the simplest terms to keep
the arithmetical work as easy as possible.

In each case equations are formed of the type

oU_ PoL 0P, _

R AEeR
where the symbols have the same significance as previously in this
chapter. The material is supposed to be the same throughout.

(1) First dealing with the problem straightforwardly, the necessary
four simultaneous equations are formed, the work being set out in

Table 6.12.
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These equations are
9W+40R,—20R,— 2Rs+ 2R,=0
9W—40R, +44R,+ 4R;— 4R,=0
—9W— 4R,+ 4R,+44R3—40R,=0
9W+ 2R,— 2R,—20R,+40R,=0.
The solution is
R;=—0-59799W
Ry=—0-77006W
Ry=-+0-01434W
Ry=—0-22643W.
The negative signs denote that the forces are compressive.
(2) Using the method of superposition, and dealing first with the
case shown in Fig. 6.17 (a), the equations obtained are
—9W—42R’,+22R’,=0
22R’)—24R’,=0 }
which give
R’} =—0-41221W
R’y=—0-37786W. }

The detailed work is set out in Table 6.13.

TaBLE 6.13.
P,L &P, P,L &P,
P, A R, A R,
Bar | A | L
w | R, | R, |WIR,|R, | W IR, | R
CA 2| 1 1 3
DK 2| 1 1 3
cD 4| 1 1 3
DE 4 1 -1 -1 1 03 | -] —1] -2 2
AK 4! 1 1 1 3|4
KJ 4| 1 1 -1 1 =3+ | -] t|-%| %
CK V2 |v2 -2 2
DA | V2|+VZ2| —V2]| —v2 2] 2
DJ Ve | Vve 2| —Vv2 2 | —2 -2 2
KE |v2|v2 2| —v2 2 | —2 —2| 2
FENF@] 1 -1 1 1| -1 —-1|1

The skew-symmetrical case shown in Fig. 6.17 (b) yields the equations
19R”,— 9R";~=0
—9W-+36R", —40R" ;=0 }
the solution being
R, =—0-18578W
R y=—0-39220W. }
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The numerical work is given in Table 6.14.

The redundant forces under the original loading are then
R,=R’;+R",=—(0-4122140-18578)W=—0-59799W
Ry=R’,+R"y=—(0-37786+0-39220) W =—0-77006 W
Ry=R'y—R"3=—(0-37786—0-39220) W =4-0-01434 W
R,=R’|—R";=—(0-41221 —0-18578) W =—0-22643W

TABLE 6.14.
p RJL P, BL oP,

Bar A L ’ . A o0R", A oR”,

w R”, R’ | WIR" |R";|] W |R",|R"

CA 2| 1 1 3

DK | 2| 1 1 3

CD 4] 1 1 1

DE | 4| 1 -1 1 |-t - 1

AK | 4| 1 3 1 LA

KJ | 4| 1 i -1 U Bt B T B 3 IO B Bt S

CK |v2|+v2 —V2 2

DA | V2| V2| 7| —V2 1] 2

DJ | V2| V2 _\—% V2| —v2| -1} 2 |-2]1]|-2

KE | V2| V2 V2| —Vv2 2 | —2 -2

These results agree exactly with those obtained from the straight-
forward solution, but the work involved is considerably less.
It should be noted that the calculations are only required for one-

half of the truss under each of the two component systems.

In the

case of skew-symmetrical loading the centre-post JE is unstressed and
presents no difficulty ; in the symmetrical loading,

however, it is

2W; 2W; 2 20y
JLC F’ lm E’ lE D’ JF c’

A4 (a,)i B
fﬂ%"ﬁ"ﬁ' %J%%W
c JF’ D YE' Jz«: D’ YF_YC’

A »! B
Wru"i"?u"i! Wi\ Ve \W
'lo 11:" v le’| & Ip’yr ¢’

A ©| B
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necessary to take a post of one-half the actual area carrying one-half
the load when dealing with the half truss. This is indicated in Table 6.13
by the description } (EJ) in the first column.

In the foregoing case the truss carried only a single concentrated load.
There is, however, no difficulty in applying the same method to any
load system.

This is best illustrated by an example.

Suppose Fig. 6.18 (a) represents a structure carrying loads 2W),,
2W,, 2W; and 2W, at points C, D, E and F respectively. This system
is to be replaced by symmetrical and skew-symmetrical systems which,
when superposed, give the original system. Let C’, D', E’ and F’ be
the points corresponding to C, D, E and F on the other side of the
centre-line of the truss.

Consider first the load 2W,. This is replaced by a pair of downward
loads W, at C and C’ as shown in Fig. 6.18 (b), and by downward and
upward loads W, at C and C’ respectively as shown in Fig. 6.18 (c).
The other loads are dealt with similarly, and the two systems (b) and
(c) result. The stress-analysis is then carried out as illustrated in the
detailed case already given.

EXERCISES

(1) Three steel wires AB, CB, DB attached to points A, C and D on a rigid
horizontal beam are connected at the point B which is 10 feet vertically below C.
The distances AC and CD are each 10 feet.

If AB, CB and DB are respectively 1 square inch, } square inch and 1} square
inches in cross-sectional area, calculate what load each carries when a weight of
5 tons is hung at B.

(AB—BD— 42-22 tons ; BC=11-86 tons)

(2) Four equal wires OA, OB, OC and OD of length L and cross-sectional
area A support a weight W midway between two walls AD and BC which are
V2L apart. The wires OD and OB are in the same straight line and at right angles
to OA and OC. (See diagram 6a.)

If the wires are initially tensioned to remain taut under load find the deflection
of 0. WL

2AE

(3) The rectangular space frame shown in diagram 6b is pinned to a rigid wall
at the corners A, B, C and D, and a couple of 1,000 inch-lb. is applied to the
face EFHG, which is rigid in its own plane.

Each panel is braced and counterbraced with steel wires each of 1/100 square
inch cross-sectional area. These wires have no initial tension so that only one
of each pair is operative.

All other members are of steel, having cross-sectional areas of 1/10 square inch.

Determine the loads in all the members.

(DE=BH=352 Ib.
AF=CG=43-0 lb.
AE=CH=-2811.
BF=GD=—-3850b.)

(4) The pin-jointed structure shown in diagram 6c¢ .s simply supported at
L and J and carries suspended loads of 4 tons and 2 tons as shown.

The members are unstressed when the loadr 2re removed and have the following
areas :—

EA =F'A=HA=1-06 inch?
ED =EF =GH=1-78 inch?
FG =G'C=HB=FF'=2-09 inch?

Calculate the vertical deflection under each of the applied loads. ' (E=13,000
tons/square inch.)

(0-093 inch ; 0-071 inch)
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(5) The steel beam AB shown at 6d is strengthened by a steel king post CD
which is pinned to C, the centre point of the beam. The point D is braced by
steel rods to A and B which are simply supported.

Calculate the maximum central load which the beam can carry given the
following data :—

Beam : 1 =250 inch units.
Depth= 12 inches.

Strut CD : Cross-sectional area=4 square inches.

Rods AD, BD: Cross-sectional area=1 square inch.

Permissible flexural stress in beam=8 tons per square inch.

(36-3 tons)

(6) The pin-jointed steel frame shown in diagram 6e is attached at A, B and C
to a rigid wall.

AD and CF are each V/2 square inches and each diagonal is 1 square inch in
area. DE and EF are rigid. Calculate the loads in AD and CF when a load
acts as shown.

(AD=+2 tons ; CF——2 tons)

4
.}/Lo' 5 F
4! y

, o] (&
' 2z N/
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A,Ij D A B
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CHAPTER 7

STRUTS AND LATERALLY LOADED COLUMNS AND TIES

7.1. The behaviour of struts under load.—If a rod of perfectly uniform
shape, perfectly straight and of homogeneous material throughout were
loaded axially so that the point of application of the load coincided with
the neutral axis of the rod, failure would occur by direct compression.
In practice such an ideal set of conditions cannot occur. Small errors
in workmanship, slight variations in the material and the practical
impossibility of obtaining perfect test conditions all combine to give
what is equivalent to an eccentricity of loading. This equivalent
eccentricity, although small, exercises considerable influence upon the
behaviour of the strut, and since it cannot in any individual case be
measured, the problem of strut strength must of necessity be settled
by the help of experimental data.

Before proceeding to a discussion of formulas suitable for design
purposes it is necessary to consider further the behaviour of the ideal
strut described above and this will depend upon the proportions of the
strut, or the ‘ slenderness ratio.” This slenderness ratio is defined
as the ratio of the length of the strut to the minimum radius of gyration
(I/k) and appears in all rational strut formulas. The usual terms long
and short struts are misleading, since absolute length has no bearing
upon the behaviour of the member: a slender strut may be of any
length and the important factor is the slenderness ratio. Struts will
therefore be referred to as slender when the ratio I/k is large and stocky
when this ratio is small.

Suppose that a stocky strut is subjected to an axial load. The axial
strain will be elastic up to a certain value of the end stress, but when
this stress reaches the yield point there will be a comparatively large
permanent set and the strut will have failed. If the material is ductile
a further increase of stress will cause flattening of the strut, but if it is
brittle there will be an actual partition of the material along planes
approximately at 45° to the direction of the load, due to the shear
stresses induced along such planes.

If, on the other hand, a slender strut is subjected to an axial load a
different state of affairs is obtained. Under relatively small loads the
strut 1s in a stable state and if it is displaced by a small amount it will
straighten itself when the disturbing force is removed. For a certain
value of the axial force however, the strut is in a state of neutral
equilibrium and will remain deflected after the removal of a disturbing
force. A further increase in the axial load produces a state of unstable

equilibrium and any disturbing force will start a deflection in the strut
124
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which will increase in amount until the material is overstressed due to
the increasing curvature of the member. If the axial force be removed
before the fibre stress has reached the limit of proportionality, the strut
will become perfectly straight again and show no signs of distress. The
axial load which just induces this condition of elastic instability is
known as the critical load, the buckling load or the RKuler load, since
Euler first investigated the problem. It should be noticed that in the
absence of an external disturbing force all perfect struts, both slender
and stocky, will fail by direct compression.

7.2. The critical load for slender struts.—In Fig. 7.1 let AB be a
slender strut of length I, of uniform cross-section and of homogeneous
material. It is pin-jointed at A and B and is subjected to an axial
load P which just produces a state of neutral stability. The strut
under this load is deflected a small amount « at the centre and the

deflecting force is then removed. Since the strut is
l neutrally stable the deflection « remains.
A Take an origin at the centre of the deflected strut
and measure x and y as shown in the figure. Then at
any point

d’y P
de?

p Y

.. P
or writing u?=_"_, we have

TEI

TE The solution of this equation is

P y=A\ sin pr+1B cos pr+a
e, 7.1, . .
© where A and B are constants of integration.

When =0, y-=0 so that B=-—a.

dny and on differentiating we obtain

‘When =0, /-
" dx

di/zp,(A cos ur—B sin ux),
dx

from which A=0.
Then y=a(l— cos ux).

l TIN L
When T=, y=a and substitution in the above equation gives

acost l =0,

2
Since by our hypothesis a cannot be zero, the solution required is

wl
K 0.
cos”,
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The smallest value of pl/2 which satisfies this condition is /2 and so
for the critical load we have

pl_m
2 2
2
v.e. % =n?
mEl
or P =

If instead of being pin-jointed the strut is encastré at both ends
.(Fig. 7.2), since the slopes at the ends and at the middle
are zero, it is clear that there are points of inflection at
the quarter points of the strut, D and E. The portion
DE can be treated as a pin-jointed strut of length 1/2,
and for this method of fixing therefore the critical load
for AC is

_m2El _ 4x2KEI

0
2

This case as well as others may be obtained directly
by the same mathematical procedure as used for the pin-
jointed strut.

The critical loads for the common cases are given
in Table 7.1, the free condition in Case 3 means that
the end of the strut is not constrained in any way, v.e. . 7.9
it is a mast carrying an axial load. The results in
Case 4 are only approximate, but are sufficiently accurate for any
practical purpose.

TABLE 7.1.
End diti
Case | Lengthof | ne con@ibions 1 Gritical | Equivalent

ase strut 1 2 load length
] ! Pin Pin lz.fﬂ !

2
2 l Encastré Encastré &TFE_I ;_

2
3 ! Encastré Free ’14_;21 2
4 l Pin Encastré S8IEL 07l

| 402

7.3. Eccentrically loaded strut.—The case now to be considered is
that of a strut pin-jointed at the ends and carrying a load at a specified
distance from the neutral axis. For any value of the applied load the
strut assumes a definite shape and the stresses in it can be calculated.
We make no assumption as to slenderness but treat the problem’
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generally and so the result is applicable to members of any slenderness

ratio. It will be shown however that when the strut is stocky the
result can be simplified.

In Fig. 7.3, AB is a pin-jointed strut of length ¢ having a load P
acting at a distance e from the neutral axis.

It will be seen that for any value of P there will be a deflection of
the strut, since there is now a bending moment which
was absent in the axially loaded case.

/ With the same notation as in paragraph 7.2, we have’

ay_

d ‘)

or - —.,+u2(y—a—e) =0.
dx?

=u2(a-te—y)

The solution of this is
=(a—e)(1— cos px)
obtained in the same way as for the axially loaded strut.

s Since y=a when L=, we have on substitution

&

P _ ul )
Fic. 7.3. “ —(’(%cc

The maximum bending moment in the strut is at the centre and is

P(a+e)

. l
te. My=Pe scc

r
EI'
If I=Ak2 is the minimum second moment of area and / 1s the distance

of the compressive fibre farthest from the neutral axis of the section,
the maximum compressive stress in the strut is

P(. eh 1 [P
= (1 © 2,
Py A( sy El)
where k£ is the minimum radius of gyration and A is the area of the
cross-section.
This formula is not convenient for design purposes since P occurs in

the secant term and cannot be evaluated readily. The solution necessi-
tates either a process of trial and error or a graphical method.

7.4. Stocky struts.—In the {ormuld. of the preceding paragraph the

ok \/ APL and when l/k approaches 0

secant term can be written as sec

its value approaches unity.
Hence for stocky columns the formula for maximum compressive

stress becomes
= (1 +53)
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and the maximum load which can be applied to a stocky column without
permanent deformation is

P:-._P&
1 eh\’
)

where p, is the yield stress in compression.

7.5. General strut formulas.—-From the preceding work it is clear
that neither the very slender nor the very stocky strut presents serious
difficulty, but with few exceptions struts which are used in practice
do not fall into cither of these categories. They are intermediate and
the real problem is to find a formula which will be sufficiently accurate to
serve as a design basis for struts of any slenderness ratio.

Many such formulas for the axial load which a strut can carry have
been proposed, one of the best-known being that due to Rankine :

— P
P 1+a(ljk)?
This is definitely an empirical formula, and the constant ¢ should be
determined experimentally. Its value for different materials is given
in most books of engincering data.

If I/k is small the value of P approaches p,A as it should and by a
suitable adjustment of a, P can be made to approach the Euler value
as I/k approaches infinity.

’l‘hus _‘p”i\kd k"

e T
When %/l approaches zero, P should approach =2Kl/i2
ve. a= v .
w2l

This value gencrally differs somewhat from the experimental one but
in the absence of the more reliable figure it can be used for a rough
approximation.

The Rankine formula can be written

where p is the load per unit area on the end section of the strut.
1t has already been shown in paragraph 7.4 that when a strut which
is not slender is eccentrically loaded the ratio

P 1

“ 1)

t.e. the allowable end loading is reduced by this amount due to
eccentricity. If then a strut to which the Rankine formula is applied
has an eccentricity of loading, an approximation to the allowable load is

L
ke (147;)
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While the Rankine formula is still used to some extent it has largely
been superseded by more rational formulas for which the essential
empirical constants have been more accurately determined.

The Rankine formula makes no direct allowance for the eccentricity
of loading due to slight imperfections in workmanship and material
which have previously been mentioned although these would be dealt
with to some extent by the empirical constant a. Later investigators
however introduce such factors into their formulas and two methods
have been adopted with success. In the first method the sum of all
the departures from perfection is treated as an equivalent eccentricity
of loading and appears in the formula as such.

The second method is to treat the sum of the imperfections as being
equivalent to an initial curvature of the strut: this leads to a very
useful strut formula of general applicability.

7.6. Modified Smith formula for pin-jointed struts.—If in the formula
for an eccentrically loaded strut, as determined in paragraph 7.3, the
specified eccentricity is replaced by an equivalent eccentricity to be
found experimentally, a formula is obtained which is applicable to
normally straight axially loaded members. This is the treatment of
the problem adopted by Professor R. H. Smith and his formula was
modified by Professor R. V. Southwell by the substitution of the yield
stress, or more accurately the stress at the limit of proportionality, for
the ultimate stress suggested by Smith.

The formula of paragraph 7.3 can be rewritten

- eh 1 P
l'u“"P(l+k2 sec 2\/Ek2)’

or rewriting it in the more usual form, we obtain the modified Smith
formula *

O S A
L A
b o Se \/ B2
where P=The limiting load.

p=The limiting average intensity of loading on the cross-section
of the strut.
A =The area of the cross-section of the strut.
p,=The yield point of the material.
h=The greatest distance of any point on the section from the
centre line.
3=The equivalent eccentricity of loading.
k=Thke minimum radius of gyration of the cross-section.
E=Young’s modulus of the material.
l=Length of the strut.

A large number of measurements were made to determine the value
of 8 for tubes of circular cross-section used as acroplane struts. As

* « Report on Materials of Construction used in Aircraft and Aircraft Engines,”
C. F. Jenkin, p. 53, H.M. Stationery Office, 1920.
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a result of these measurements it was found that the equivalent
eccentricity of loading is the sum of three terms—

(1) The crookedness of the tube, 7.e. the maximum deflection of any
point on the centre line of the tube from the line through the centres
of the pin-joints.

In commercial tubes the crookedness need not exceed 0-02 inch per
foot run of tube. With careful manufacture it may be made much
less.

(2) A quantity representing the effect of the eccentricity of the bore
of the tube. This may be taken as 0-025 times the bore of the tube,
if the maximum cccentricity is due to a variation of thickness of the
wall of the tube of 410 per cent. (Total difference between thickest
and thinnest side==20 per cent. of mean thickness.)

(3) The radius of the friction circle of the pin-joint (i.e. the radius
of the pinXxcoeflicient of friction). This term may be omitted if the
tube is pinned to attachments which do not rotate so as to assist the
bending of the strut.

This formula cannot be used directly because p appears on both sides ;
but curves may be drawn and the results read from them.

7.7. To construct & curve representing Smith’s modified formula.—
The co-ordinates chosen are p, the limiting average stress and I/k, the

/é'/ast/c Limit
L £
M ¢ \D

T \<kt'u/er
P Curve

— Uk
Fie. 7.4.

ratio of the length to the least radius of gyration of the cross-section
of the strut.

First, draw Euler’s curve given by the equation

_m2Ek?
P——ﬁ‘—

also the horizontal line p=elastic limit or yield point (LS, in Fig. 7.4).

Next choose any value of A= sec lé \/ E% with its corresponding value
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2
of Il (l’ given by p:‘? ; ) from the following table, and mark off M

ll
so that
LM _ b
MO k2
and on the horizontal MD mark oft Q so that
MQ !
MDD I”

Then Q is a point on the required curve. Any number of points may
be found by selecting a series of values of A and I/I' from Table 7.2.

TaBLE 7.2.

VaLves oF A CoRRESPONDING TO DIFFERENT Ratios I/l

3w A o A n A oy A

0-0 1-000 0-25 1-082 0-50 1-414 075 2:613
005 | 1003 | 030 1122 | o055 1540 | 080 3-236
010 | 1012 | 035 1173 | 060 1-701 0-83 1284
015 | 1028 | 040 1236 | 065 1914 | 090 6-329
020 | 1051 | 045 1315 | o0 | 2203 | o095 | 12745

It will be noticed that the curve constructed in this way depends on
the values chosen for Young's modulus E, the elastic limit or yield point
and the equivalent eccentricity 8. For a given quality of steel (or for
tubes made in accordance with one specification) Young's modulus
and the elastic limit or yield point may be assumed to be constant but
the value of & will generally depend on the length of the strut.  The
curve as drawn above is only correct for one value of 8.

If a series of curves be drawn for a series of values of 8, then the
limiting stress may be read ofl one or other curve for any strut made
of the steel (determined by I and the elastic limit or yield point) for
which the curves are drawn.

I the value of & be assumed to be a definite function of the dimensions
of the tube, say, for commercial tubes—

8_longth internal diameter
600 40 ’

then a new curve may be drawn for a reasonably straight tube of any
selected size, giving the limiting stress for all lengths.
This method of expressing Smith's formula is due to Professor

R. V. Southwell.

7.8. Deflection of a strut.—A strut of large slenderness ratio may
have a large deflection under the limiting load ; it is, therefore, desirable
to calculate the deflection of such a strut.
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The deflection due to the limiting load is given by the expression
2k2 AB
A =" X2 0.
d ~BC
If the strut is initially crooked the total deflection will be the sum of the
initial deflection and the deflection due to the limiting load.
In the above expression AB and BC are to be measured off the

Yy /l Po/'lrt A

2
S
S

_§
8

. persg.inch.

Iy
%
/

S
g

Stress,

B %re fg/: .5;tfzw't A?%'ﬁd—ﬁr

20,000 <
\

10,000 e

-

LOmDression

~
L

l'
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F1a. 7.5.

strength curve corresponding to the strut. For example, suppose that
the curve in Fig. 7.5 corresponds with the tube in question, and let

OC="The length of the strut (56 inches).
(‘A=The yield point (28 tons per square inch).
CB=The ordinate to the curve at point B, i.e. the limiting stress
(13-1 tons per square inch).
8=The equivalent eccentricity of loading (0-2 inch).
d=The outside diameter of the strut (2} inches).
k=The radius of gyration of the cross-section (0-73 inch).

AB
=]1-13

Then ' B
2(1; =0-501 inch.

and
Therefore the deflectivn due to the limiting load=0-367 inch. The
figure shows clearly how the deflection increases with the length, by
the increase in the ratio AB
BC
7.9. Perry strut formula.—Professor Perry’s formula is based on the
assumption that the effect of imperfections in material and workman-
ship, unavoidable eccentricity of loading etc., can be represented by a
hypothetical initial curvature of the strut. The exact initial shape
which is assumed for the strut does not seriously affect the final results

and for ease of manipulation a cosine curve was used, as this leads to
simple equations.



STRUTS; LATERALLY LOADED MEMBERS 133

Let AB (Fig. 7.6) be a pin-jointed strut of length I. Take an origin
at O and measure z and y as shown. The initial shape of the strut is
assumed to be given by the equation

e
Yo=Co €08 7,

where ¢, is the initial departure from straightness at the centre.
Under a load P the deflection at @ is increased by y so that

E]d“y :——P(;I/ +-¢, cos ﬂ;)

du?
2, .
r.e. d 'Z—|—p.2(1/-|—(‘o cos 7”) =0,
dua? : l
where p.gz-?l.

The solution of this equation is

e, cos m*
y=A sin pr-+B cos pir+—ms—;
po)

ke

where A and B are constants of integration.

When :r=ig, y=0 and so A=B=0,
Pe, cos 7711

hence =g

where Q:’TL;E,I.

If A is the cross-sectional area of the strut,

put %;:p and %zp,.

Then y= {7 ¢, €08 7TTI

e

and the total deflection at any point is
(y+1 2(,1’_, —|—1)c cos 7%
¥ ./0) Pe—p 0 l
=P ¢, cos ™.
Pe—P l

The maximum deflection occurs at the centre where =0, and its value
is
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while the maximum bending moment is
M =Pco( P )
- Pe—P
The maximum compressive stress occurs on the concave side of the
strut and is

where a, is the distance of the most stressed compressive fibre from the
neutral axis.

If we put c,,g! = we obtain

k
NPe
(. )
P p(pe_p

Putting p,=p,, the yield stress in compression, and solving for p
we find

Pt Dpe_ /{1@:(7)_+1)_p¢}2 :
P= g N

2
which is the Perry formula for the intensity of end loading which will
cause the fibre stress to reach the yield point.

In a brittle material failure may occur on the tension side of the
strut and following the same procedure we obtain for
this case l

1—n"Vp,— 1’ 1_"/5_12 , A _
p’=( - 17——')2})6 py+ \/{(_7]__‘)2]) ]?v} +PyPer

where p’ 1s the intensity of end loading which will cause

—PyPe

]

.ﬂ

_..__f.\___

the fibre stress to reach p, the yield.point in tension I
and WIZC%?» where a, is the distance of the most stressed A rb—L l
tension fibre from the neutral axis. :
This formula, with others, has been subjected to a !
critical examination by Professor Andrew Robertson, who i
has made an exhaustive series of carefully controlled .
tests upon struts of various materials. As a result of 1-3
these and tests made by other experimenters, he has P

stated his conclusion * that for all materials having a  Fyq. 7.6.
real yield the Perry formula gives good results for pin

ended struts if 5 be taken as ‘001 I/k for an average value, and -003 I/k
for a lower limit. For materials with considerable ductility but no
real yield phenomena, as defined by a drop of stress, the value of p,
should be taken at the point in the stress-strain diagram where the

* *“The Strength of Struts,” Andrew Robertson, Inst. C.E. Selected Engineering
Paper, No. 28. i
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slope is three times that in the elastic region. 1 is then the same as for
materials with a real yield.

For materials having no yield (at any rate for cast iron) it is suffi-
cient to take the ultimate stress in compression as the value of p, and
n a8 ‘015 l[/k. In the particular case of cast iron this curve is slightly
below the one representing tensile failure. If the strut has end con-
ditions other than free these values of n require modification and
Robertson makes the necessary corrections by working on an equivalent

length of strut. The values he suggests for practical struts are given
in Table 7.3.

TanLe 7.3.
‘ End Equivalent n
Case conditions length v' R
Ductile Brittle
w03l ]
1 Free 14 . i 015 P
-5 .
2 Flat 51 006 03 i_’
-51 -5l
3 Fixed -51 008 X T -03 x T

Tt will be noticed that the numerical values of » are the same for flat
and fixed ends as for free ends. T'he correction on the results is intro-
duced by the fact that the Fuler crippling stress p, is calculated for a
strut of only half the length, 7.c. p, has four times the value in Cases 2
and 3 that it has in Case 1.

If a strut has a real eccentricity of loading, e,, it may be allowed for
in the way suggested by Ayrton and Perry by replacing the term c,,
t.e. the initial departure from the straight, by a term ¢, =c,4-{e,.

Let n" be the value of the constant for this case.

. r__a]cl
Then, since M o
/__al [
we have n'= ]l:,(cu+:-;€’o)
Ga,e
or 77'::7)_"" ‘.)k2os

where 7 is the value for the strut when there is no deliberate eccentricity
of loading.

The most satisfactory way of using the formula is to plot a curve of
p against I/k for the material to be used, from which the ultimate end
loading of the member can be read directly.

A load factor can be incorporated in this formula by writing Np
instead of p and in this form its use was recommended by the Steel
Structures Research Committee,* who suggested that the following

* “ First Report of the Steel Structures Research Committee.” H.M. Stationery
Office, 1931, p. 271.
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values of the various terms should be used when dealing with members
made of Quality A steel {British Standard Specification No. 15) :

Yield stress =18 tons per square inch.
Young’s modulus=13,000 tons per square inch.
N=2-36.

7=0-003 U/k.

Table 7.4, taken from the Report of the Committee, gives the values
of p, the permissible end load in tons per square inch of cross-sectional
area or working stress for different values of I/k when the above figures
are used.

TABLE 7.4.

Ik b ik P
20 7-2 130 2:6
30 6-9 140 2-3
40 6-6 150 2:0
50 6-3 160 18
60 59 170 1-6
70 54 180 15
80 49 190 1-3
90 43 200 1-2

100 3-8 210 1-1

110 33 220 10

120 29 230 09

; 240 09

The curve plotted from this table is shown in Fig. 7.7, p. 130.

In Chapter 1 two methods of strength specification by means of a
load factor and a factor of safety respectively were briefly mentioned
and the formula now under discussion serves as a useful illustration of
the fundamental difference between them.

The formula a8 used for design is

Np, <Pt P [Pt Dp|®
¢ 2 N 2
Since Np, is the intensity of end loading which will cause the

maximum fibre stress to reach the yield stress p,, N is a load factor.
The formula can be rewritten in the form

=p,(1+ NP )
B p( Pe—Pe

where p; i3 the maximum fibre stress produced by an axial compressive
load per unit area p,.

Substituting the adopted value of =003 [/k this becomes
-003 Uk

_ P (1)
~2E\k

—PyPe

=P, 1+
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The table quoted above gives values of p, for different values of I/k
and on substituting these values in the formula just obtained the actual
working fibre stress in the material is obtained.

The factor of safety is then p,/p, and Fig. 7.8 shows its relation to
k. Thus, with a constant load factor the factor of safety varies
greatly and the result emphasizes in a striking manner the difference
between the two methods of specifying strength.

If the design of struts were based on a constant factor of safety

8 8
7 ‘\ - 7 //
6 6 7
\ Factor of Safety /
S
g5 5
g /
<
& ’
\
923 3t £ —d
lmg!mr__
2 2
1 -1 S~ 7 -
00 50 oo 150 200 250 00 p7) 50 720 160 A0
Uk Uk
Fia. 7.7. Fia. 7.8.

instead of a constant load factor very different design curves would be
used. Fig. 7.9 shows the present standard curve with a constant load
factor of 2-36 and curves plotted from the same formula when the factor
of safety is kept constant. Two such curves are given, the factors of
safety corresponding to those in actual struts designed as at present
with ratios of 20 and 200 respectively.

7.10. Members with combined loads.—Any member carrying a
lateral load will deflect under such load, the amount depending upon
the magnitude of the load and the flexural rigidity of the member. If
in addition an axial thrust is applied to the member, it is in the con-
dition of a strut having an initial curvature and the bending moment
due to the axial load will still further increase the deflection. In cases
where the flexural rigidity is large compared with the loads it is often
sufficiently accurate to determine the deflection A due to lateral loads
and to add to the bending moment produced by such loads a term P A
where P is the axial load. The stress is then found from the net
bending moment in the usual way.

In some cases however, notably in aircraft construction, the members
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are so flexible that determination of the stress in this way would result
in serious error and more accurate treatment is necessary. The

8

N

N

/"actor' of Safety-2-36
Maux. Fibre Stress-
763 tons/sq.in

Load Ffactor -Zr%‘ \
Max Fibre Stress varies

\\
S~ \

— N
\

Factor of Safety=763|

! Max. Fibre Stress=2:36 tons/sq.in.

(<)

Working Stress, Tons per sq.in.
< ES

N

0 40 80 120 %0 20
Uk

Fiac. 7.9.

methods of dealing with such cases will be described in the succeeding
paragraphs.

7.11. The pin-jointed strut with a uniform lateral load.—Let AB
in Fig. 7.10 be a pin-jointed member carrying an axial load P and a
uniformly distributed lateral load of intensity w. Take an origin at O,

Fia. 7.10.

the centre of the undeflected strut and measure z and y as shown in

the diagram.

d2y w(l?
Then M=Eld_z~2=.._1) __é(z._xz)’
or M+Py =g(x2——§) ,
. M | d2y
t.e. Jz—2+PE2=w‘
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As before, putting pu2 =]—§-I, this becomes

2
and the solution is
M=A sin pz+B cos px+ 1{’
)

When x=i‘-§, M=0,

therefore A sin ’; l+B cos f:l_;_f“‘: -0
P4 IL"
and —Asin l +B cos* l—{— " .
2 5 2
From these equations A=0; B=— j“i see %l
I-L" V4
and so M:ilg(l—cos ML sec 'ul)
I 2

The maximum value of the bending moment occurs when =0 and is

M= 1-1:) (1 —see Id) .
J:

<)
-

G A

Substituting for p2 and putting Z;ib-I:Q, the Kuler critical load,

this reduces to

, 8M,Q w P

where Mg is the bending moment at the centre due to the lateral loads
only, i.e. wl2/8.

The maximum stress, at the centre of the member, is then

8y e m | P)
= 1— 3 -
2y sec 2N, +p

where p,, p, and p represent the stress due to lateral bending Joads
alone, the Euler stress and the intensity of end loading respectively.

A very general problem which arises in aeroplane design is that of
calculating the load factor of a given member of this sort when the
unit loadings are known. For example, in normal flight a wing spar
may carry a distributed load of intensity w and an axial load P. 1t is
required to know by what factor these loads must be increased so as
to stress the material to its allowable limit.

If we call this load factor N, then p, and p will be increased to Np,
and Np ; p, will be the yield stress p,, and p, which is only dependent
on the size and material of the spar will remain unaltered.
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The equation above can then be rewritten

8PoPe(| _qoo ™
Py= 172p —sec — 5 p + \Np
This can only be solved for N by a process of trial and error and is
very inconvenient for calculations of the type under discussion. To

overcome this difficulty an approximate formula due to Professor Perry
is generally used which will be discussed in a later paragraph.

P . .
If we write 0= ,\/ — and expand, the maximum bending moment can
-4

Q
be written as the series
6
1l\]umx == ‘\IO () 610 '+ . . .)’
8y Qm . _oﬂt P2
Mo = 0 .,
or Inmx ( 384 (2-’ )
. 5 ul P
Le. meu ( 0+ 381 LI e )

The first term in this series i1s the bending moment due to lateral loads
alone and the second is the deflection at the centre due to these lateral
loads multiplied by P. It will be scen therefore that the method
indicated in paragraph 7.10, which is often used for stiff members, con-
sists of taking two terms of an infinite series.  If P is small compared
with Q the third term is very small and can be justifiably neglected,
but in most acroplane work this is not the case, the factored load NP
often being a big [raction of the value of Q.

7.12. Pin-jointed strut with a concentrated lateral load.—Lct AB

w
r 4 ! n_p
. ’ ——
T- - e ——_— — - .T
L a
a+b u+b
Fra, 7.11.

be a pin-jointed strut under an end load P and a concentrated lateral
load W.

Let the dimensions be as in Fig. 7.11.

If the origin be taken at A we have for any point from =0 to z=a

d 2y _(®
1l du? +Hhy= (a+b)z“

The solution of this is

Wib
=A B
y=:Ay sin px+B) cos pr— (a+b)
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P
2t
) {
Since y=0 when z=0, B;=0.
At z=a we have

where

yw=A; sin ,u.a—-‘y b .

Pa+b

By taking the origin at B we have when 2=b, y,,=a similar expression

with @ and b interchanged, derived from the second span,

therefore A, sin ya—g -Ii)—b P aj—bb )
dy

The two values of 3z 2T equal and opposite since W is approached

a=A, sin ub—

from opposite sides and so

W b w
pnA, cos p.a—i;ﬂb {,u.A2 cos ub— P j—b} .. (2
Hence, from (1) al\l/d (2)
A _ Ay WP

sinub sinpa  psin platb)’ :
from z=0 to x=a

W sinpb Wb
= W sin p,(a+b) B (a+b
2
dy_ oW sinpb sin P«"

dez P w sin p(a+-b)

d"J W sin pub
M=EI-Y—=—- "
and El 22~ " sin p(atb] sin pa.

At o=a M=V sin pa sin b,

p sin p(a+b)

In the special case when the load is placed at the centre of the member
this becomes

.~

W,oou
max :"‘g“ t Y

"

M
since a—b—é-
2
Substituting for u this reduces to the well-known result
W JEI, I J‘P
RN I
As before, putting M, for the bending moment due to the lateral load

alone, 1.e. Wi/4 and Q for the Euler crippling load of the member, the
equation can be written

__2M, JQ ™ \/E
me—— —Tr-— Ftan 2 Q:
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or using the same symbols for stress as before,

n=2 /B [P 4.

7.18. Strut with end couples.—In Fig. 7.12 AB is a pin-jointed strut
with terminal couples —M, and —Mp as shown. Taking the origin at
A we have

M+P?/+MA+:';(MB—MA) =0
azM
or i +p2M=0.

The solution of this is
M=A sin pz+B cos pz.

Fic. 7.12.

When =0 and /, M is —M, and —Mgp respectively. Substituting these
values we obtain

A=M, cot ul—Mjy cosec pl,

B =—MA'
i : dM
For the maximum bending moment P =0,
i-e. tan 7% _%_M‘z‘(iqs_eg};\fl:MA (‘Ot p.l’

where z is the position of the maximum bending moment.

Then M, . =(M, cot ul—Mj cosec pl) sin pxg—M, cos ur,

ie. M, ..=—M, (tan px, sin pzy+-cos pxg)
=—M, sec px,.
— 2
Now  sec? pag=1+tan? MO:I—I—(N—[I}S(E%E;I -Ma 9.(_’_"’.!,‘_1) ,
A

from which

M, =—M, sec pty=—+/(M% +M3%) cosec? ul—2M My, cosec ul cot ul
When M, ==My=M, this becomes
My, =—M, sec ';l

7.14. Pin-jointed strut with two lateral loads.—In testing beams it
i8 convenient to adopt the four-point system shown in Fig. 7.13 for
the apolication of lateral loads.
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The member AB is a pin-jointed bar of length 2! subjected to an axial
load P and having two lateral loads, each of magnitude W, symmetrically
apnlied about the centre of AB and separated by a distance 2kl.

T &N

Fia. 7.13.

Taking an origin at the centre of the undeflected bar and measuring
z and y as shown, we have :—
For the central part of the bar between O and D,

d2y
EId?+Py=—Wl(1—k)

a?y o WYl—k)
or G Y= R
The solution of this is
y=A sin pz+B cos px-—\—!l(}l-):k)
dy .
and so o (Acospr—Bsinpz). . . . . . ..oy
When z=0, @zo andso A=0;
dz

then M=E1Y = _E1,?B cos po——PB (@

M=Rlrs=—Hp cos ur=—PBecospz. . . . (2)

Between D and B

By, AV
or PR o
The solution of this is
dy . W
%—C sin pz+D cos p.z+—I—) I )]
d2y .
or M=EId}—2=;¢EI(C cos pr—D sinpz). . . . . (4)
‘When z=l, M=0 andso C=D tan pl.

Since the slope at D is continuous we have, from (1) and (3),

—uB sin pkl=D(tan i sin pki+-cos ,dcl)Jr‘%'

or —uB=D(tan ul+-cot ukl)+ \—gcosec 72 N ()]
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Again, the bending moments at D are the same, hence from (2) and (4)
—uB cos pkl=D(tan pl cos pkl—sin pkl),
t.e. —uB=D(tan pl—tan pkl). . . . . . . (6)
From (5) and (6) D=—¥ cos pkl.

The maximum bending moment is at O and is —u2EIB and from (6)
we obtain

W x [P k‘n\/l_’ kﬂ\/P
M, .= |tans [%—tan — /= = /.
nax=", [ an2\/Q an 5 Q}cos 3 Q

Since the bending moment at the centre due to lateral loads alone is
Mo=—WI(1—k)
we can write

—M P kmr kar
u-u.,UQ[ NN AN

7.15. Encastré strut with a uniform lateral load.—When the ends of
the member are completely restrained in direction we have, with the
same notation as in paragraph 7.11 and Fig. 7.10,

2
M+Py=g(rc?—%)+1\/l’,

where M’ is the fixing moment at the ends,

M
s0 I — +pM=uw,

the solution of which is
M=A sin pz+B cos px+ ie;
pE:

When (L‘=j:?l).l, M=M’

and these conditions give

A=0 and B= (M’ )sec ’Ll
u? 2’

therefore M= (M’— E)sec wh cos pa+ .
pr 2 I
The shearing force at any point is

—_ , W ,ul .
i ,u(M ’:-z)sec g sinpw
which is %l when r=-

ul
Hence M="—"" cot —.
mn <)
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At the centre the maximum bending moment is

me—:B'*"u‘;‘

I
_wEL_ul osecp'l
TP 2’

which can be written
_qJ24Q 12 /Q o« [P
me—MO{;E '1') '; I)‘ cosec E'\/ Q}.
7.16. Encastré strut with a central lateral load.—With the notation

of paragraph 7.12 and Fig. 7.11, when a=>b=1I/2 we have, taking the
origin at the centre,

Py o W
Eld?z—}—Py_M (— r)

212
d2y . _Mf_W l_(
or a2 TFY =g m(z )

The solution of this is

y=A sin pr+B cos M+%{M'_‘%’(E_Z)}

2
and Z—Z: (A cos pz—B sin ;up)-}-;_;;
dy W
When =0, %:0 and so AZ_Q;J),
when «L"—-—‘é, ZZ =0 and so B:;': P(coscc ’;l——cot ’él) ;
when x:i, y=0,
W wh ph) M
80 0= m(coaecg coté-)—l-P,
W wul ply W ol
or M _2;(00500 5 cot -—2—) ~%n tan i
The bending moment at the centre is
which is —PB or _w tan ’Ll.
2 4

Hence the bending moment has the same numerical value at the ends
and the centre and

Wl
Mum—-j;-z# tan 4

4 w [P
=M0{ﬂ ,\/ g tan 4 \// Q }
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It should be noted that My is Wi/8 for an encastré beam with a central
lateral load. Q as before——l:‘]—I .

7.17. Perry’s approximation for a pin-jointed strut with uniform
lateral load.—The secant formula given in paragraph 7.11 is an incon-
venient one if it is desired to calculate the load factor from a knowledge
of unit loads and the following approximation due to Professor Perry
is much easier to apply. The results given by it are very close to the
exact results of the secant formula except when the end compression
approaches the Euler critical load for the member ; this case will be
considered later. It is assumed that the deflected form of the member
is a cosine curve, so that if the central deflection is ¢ we may write

y=ccos1—7;, R 0 )
where 7, y, etc., are as in Fig. 7.10.
Then Flj_‘!=m' R )

where M’ is the bending moment at & due to the lateral load alone.
Substituting for d2y/da2 from (1) we have

E}:m coq";:M’ —Py
or —Qy=M',—Py where Q=n?EI/iZ;
50 ~ M.
P—Q

Then in (2)
M (g (g T

The maximum bending moment at the centre of the member is

Mm,=M0(Q_%i)), B

2
where M is the central moment due to the lateral load alonc-f%.

The maximum fibre stress is then
_with( Q P
=" (o=e) *x

where A is the cross-sectional area of the strut and % is ‘he distance
from the neutral axis of the section to the outside compressive fibre.
If we write p, for the bending stress due to the lateral load alone, p for the
end load per unit area and p, for the Euler stress as before, we can, if
the material is to be stressed to the yield point p,, express the formula as

Pv=DPs ( 2. P) +p.
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In general, if w and P represent unit loads carried by the member, the
load factor N which will cause a stress p, in the material is found from

the equation
e Q)

=g ilew) T - @

A

This is a simple quadratic which is readily solved and the Perry equation
is therefore always to be preferred to the secant formula for this class
of calculation.

7.18. Approximate formulas for laterally loaded struts.—It has
been shown that an approximate formula for the laterally loaded strut
when the load is uniformly distributed can be obtained in the form

Q
Minae ”:MO(Q__'P)
If we modify this equation by the introduction of a constant C so that

we have
_ Q
Mmax —MO(Q_——‘CP)

it is possible by a suitable choice of constants to obtain very good
approximations to other cases of lateral loads acting upon struts.*
Table 7.5 gives the values of (" and the errors involved by the use of
these values.

TABLE 7.5.
Range of 5 -
values 858§
Ends Lateral load C QP £ES Remarks
examined -2 ® 2
Pin Uniform 1-:000 — — Perry formula, para. 7.17
Pin Central 0-894 2-:0-9-0 10 When g= 1-5, error=6 per
cent,
Pin Constant B.M. 1-110 2-0-9-0 2-1 —
Encastré Uniform 0-276 1:0-9-0 10 Centre of bay
0172 1-0-9-0 1-0 Fixing moment
Encastré Central 0-212 1-0-9-0 0-3 Centre and fixing moments
Two equal 1-064 2:0-9-0 10 k=4 in para. 7.14
Pin loads spaced 1-030 2:0-9-0 1-0 k=%
symmetrically | 1-000 2:0-9-0 10 k=}

7.190. Members with combined bending and end tensions.—In the
case of & member subjected to bending and axial tension the maximum
deflection at the centre is less than would be produced by the lateral
loads alone and the approximation referred to in paragraph 7.10 would
overestimate the stress.

* “Some Approximate Solutions for Laterally Loaded Struts,” A. J. 8.
Pippard, « Aircraft Engineering,” May, 1920, p. 149.
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In the exact solution of these problems the sign of P in the differential
equation is reversed and the solution appears in terms of hyperbolic
instead of trigonometrical functions. As an example, consider the case
of a pin-jointed bar with a lateral uniform load and an end tension P.
Then as in paragraph 7.11 we obtain

2 2
M by

dz?  dz2

and the solution of this is

M=A sinh pz+B cosh pr— ",
v

When o= :i:i’ M=0.
A sinh [lil+B cosh ’fl—f_' =0,
2 SR
and —A sinh ‘u—l+B cosh ’ilm Y 0.
2 2

From these equations A =0 and Bzy); sech ’gl.

The bending moment is

M:Tf;(sech ’;-l cosh ;Lx—l).
1 &

This is a maximum when =0 and its value is
w l
M ar =f-;—2(sech g—-—l).

Other cases of laterally loaded ties can be solved in the same way.

7.20. Initially curved strut with end couples.—In the practical
design of compression members allowance must be made for imper-

fections in material and workmanship which may be expected to exist
in the finished structure. It was pointed out in paragraph 7.9, where
the safe axial loads for pin-ended struts are tabulated, that these
imperfections can be represented by an initial curvature of the axis of
the member. In actual structures very few members satisfy the
requirement that the ends shall be free from restraint and it is neces-
sary, therefore, to consider the case of the initially curved strut
subjected to end couples.

Suppose a strut, of uniform cross-section as shown in Fig. 7.14, to
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bave ends which are fixed in position and to have an initial curvature
defined by the equation

y’=esin"—lz. N 1))
It is acted on by an axial compressive load P and clockwise end couples
M, and My in the same plane as the curvature. The bending moment

at any point at a distance z from the origin is

M, =M, —(M,+My)7—Py

ly—y
or Rl (szy-)—-—MA—(MA+IVIB);—E—Py @

where I is the relevant second moment of area of the strut.
The solution of this equation is

Myfl—z sinp(l—a)]  Mgfsin pr o en® . qx
Ay R 4T .3
P { l sin pl Plsinpl 1) ' m2—p2l2 s )
. P
where pi=

EI
Upon differentiating this expression the slope at any point is found
to be

: Qour
2a cO8 2a(1 ——a—r) 20 COS 3
dz/ M, { l ) _+MB { *]1_1_ e’ cos"x

dr Pl sin 2o Pl] sin 2a ] (72 -—fa2) l

where Qu=pl.

Adopting the sign convention that clockwise rotations are positive,
the changes of slope, 0, and g at the ends of the strut are given by

M My 4olemr
0,=— P’l‘(Zoc cot 20— ])———l;l(Za cosee 2«—1)—l(ﬂém§),

M, Mg dalermr
Op==— Pl( ® cosec Zawl)—ﬁ(h cot 20—1 )+[(;5——4};z?-’)'

Making use of the Berry functions * f(«) and ¢(a) these expressions
can be written in the form

41 em
M 4o2emr
and 03= g[ﬁ;f( )+3II§i¢( )+l‘(;2aj4zg) s e e e (6)
where f(a)= _6(2a 002102201——]) nd $(«) 3(1— 240;:011_2})

* See Paragraph 8.5.
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The solution of equations (5) and (6) gives

MA—_—“if_I(zyeﬁxoB_Z) R
and MB=6—l;]—I(X0A+2YOB+Z), L ®

S (Y
where X gt

. P

43 (o) —f*(e)

. doZemr |

and l(w2¥zla2) —2Y)

These expressions, which are more general forms of the slope deflec-
tion equations derived in paragraph 3.13, will be used later in the
stress analysis of frames having members which cannot be considered
perfectly straight and where the axial loads are sufficiently great to
affect appreciably the flexure of the members.

This stress analysis will enable the magnitudes of the end couples
and of the axial loads acting on the members of the frame to be deter-
mined. The next step in design procedure is the determination of the
maximum total stress developed in cach member. For this, the
distribution of bending stress in an initially curved strut subjected to
axial load and end couples must be studied.

From cquations (2) and (3) the bending moment, and therefore the
bending stress, at any section of such a member may be obtained and,
as in paragraph 7.13, the maximum values determined. A slight
variation on this method has however been found useful.

It has been convenient so far to assume the initial shape of the axis
of the member, which represents its imperfections, to be a sine curve.
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