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Abstract

Arthrospira platensis NIES-39 is non-nitrogen fixing photosynthetic, highly alkalophilic
prokaryotic cyanobacterium with high protein content (~65%) which is used as a protein
supplement in the human diet. However, about 22% of protein-coding genes of this
cyanobacterium are functionally unannotated (hypothetical proteins). These unannotated

proteins of this species could hold the vital information regarding its unique characteristic

features. Several pathways like mRNA degradation, tRNA synthetase and the nitrogen

assimilation pathway have been known to contribute towards the high protein content of a

cell. Out of these, the nitrogen assimilation pathway helps in the incorporation of nitrogen

into various cellular molecules like amino acids and DNA. However, how can these enzymes

in Arthrospira platensis NIES-39 play a differential role in the nitrogen assimilation pathway

is still not known.
In the present study, we could annotate 526 hypothetical proteins of Arthrospira platensis

NIES-39 including many functionally important proteins like ABC transporters,

transcriptional regulators, restriction endonucleases, metal ion binding, hydrolyzing enzymes,

oxidoreductases and helicases. Some of these annotated proteins are known to involve in

stress management and protein production pathways.

Sequence, structural and evolutionary analysis of nitrogen assimilatory enzymes of

Arthrospira platensis NIES-39 was carried out to understand the role of these enzymes on

some of the characteristics features of this organism. Sequence analyses have identified

conserved patterns in the domains of all the four enzymes. A C-terminal motif was identified

in NR of Arthrospira platensis NIES-39. Some key residue positions were also identified

which could be associated with the final protein ¢
as found that could be responsible for its differential functioning in

ontent. In NR of Arthrospira platensis

NIES-39, position 394 w
found that the position 408 switches the enzyme from

low-affinity NiR. In case of GOGAT

nitrogen assimilation. In NiR, it was

low to high affinity. Arthrospira platensis NIES-39 has

of Arthrospira platensis NIES-39, an insertion was detected in the GATase domain. Among

all the enzymes of nitrogen assimilation, GS was found to be highly conserved. Horizontal

gene transfer and speciation events were also detected through evolutionary studies.

This analysis will also help us to understand the unique features of nitrogen assimilatory

enzymes of Arthrospira platensis NIES-39 which could be related to unique features of this

cyanobacterium.
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1.1 Cyanobacteria

Cyanobacteria are one of the oldest groups of organisms found on earth (Schopf and Packer
1987). Initially, they were known as “blue-green algae™ due to their resemblance with the
cukaryotic green algae. However, later they were identified as prokaryotic organisms that can
perform photosynthesis. The blue colour of cyanobacteria is due to the pigment phycocyanin

I'hese ancient organisms are found in almost all the habitats on Earth (Henson et al. 2004)
dl. <

and are considered as one of the most important groups of photoautotrophic bacteria, which

have a significant role in natural carbon and nitrogen cycle (Zhang et al. 2018)
= o + o).

Cyanobacteria fall in the bacterial division but are very important from an evolutionary point

of view as they were present at that point of time in history when environmental and

molecular changes were abounding. Consequently, the evolutionary aspects have been

trapped into their sequence as well as structural features. These are the only prokaryotes that
C

can perform photosynthesis through flattened sacs called thylakoids and can produce oxygen
Xyg

(Hamilton et al. 2016). Due to their oxygen generating capacity during photosynthesis

cyanobacteria are credited for the oxygenation event which converted the primitive earth’s

environment from reductive to oxidative (Schopf 2014). Cyanobacteria are also attributed by

the presence of chloroplast in the photosynthetic eukaryotes through the process of

Endosymbiosis (Ponce-Toledo et al. 2017). Their unique cellular structure places them

between prokaryotes and eukaryotes. Thus, Cyanobacteria have both, the simplicity of a

prokaryotic cell and details of cellular machinery like that of eukaryotes making them an

ideal system to study.

Cyanobacteria are widely used in many processes in biotechnology (Thajuddin and

Subramanian 2005, Abed et al. 2009, Pisciotta et al. 2010, Quintana et al. 2011) (Figure 1.1).

These are of commercial importance (Mann and Carr 1992) and are widely used in daily

68). Further, cyanobacteria contribute to the water and soil fertility as

human life (Tiffany 19
a primary producer (Rai 2018) and have h
1 many ways as
called cyanotoxins. These cyanotoxins are chemically

igh nutritional value.

Though cyanobacteria are useful ir described above, it could be harmful as

some cyanobacteria produce toxins,

diverse compounds. This diversity also reflects in their targets: they could

and toxicologically
(from Nodularia), neurotoxins like anatoxin-a

ins like microcystin, nodularin R

be hepatotox
toxins and irritant toxins (Wiegand and Pflugmacher

and neosaxitoxin cytotoxins, dermato

siatoxin and domoic acid.
Anabaena, and Planktothrix.

2005). Other toxins are aply Some common species of

cyanobacteria that produce cyanotoxins are Microcystis,
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as harmful algal
roducing toxins (Blaha et al, 2009),

eported (Falconer et al.

meron 1993), Several

blooms (HAB) if the cyanobacteria involved in p

Some human poisoning cases have also been

1983 it als
1990, Soong et al. 3, Turner e

1992, Elsaad; and Ca

i, : studies suggest that
significantly high exposure to Ssome toxin =5

and Bartram 1999),

factors for Cyanobacterial growth. The
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nitrogen-containing bases as a nitrogen source. Cyanobacteria prefer some particular nitrogen
sources over others owing to their easy assimilation inside the cell. This process is known as
nitrogen control (Flores and Herrero 2005). Nitrogen acquisition in cyanobacteria consumes
photosynthetically generated ATP and reducing power (ferredoxin) (Flores and Herrero
2005).
Cyanobacterial classification had always been under debate. Due to the extensive
geographical presence of cyanobacteria, it is challenging to draw the right phylogenetic
relationship between them (Dvorak et al. 2015). Traditionally, morphological features are
used to infer a phylogenetic relationship among cyanobacteria (Rippka 1988). But nowadays,
16s rRNA gene sequences are the top choice for inferring a phylogenetic relationship (Woese
1987), but some studies also suggest the use of polyphasic approach where multiple genes are
used to draw the phylogenetic relationship (Komarek et al. 2014). Multi-Locus Sequence
Typing (MLST) like Internal Transcribed Spacer (ITS) and some housekeeping genes (gyrB,
rpoC1 and rpoB) are used for phylogenetic analysis (Gaget et al. 2015). Important genes like
nifH are also used (Singh et al. 2013) to classify cyanobacteria. Some species trees are also
made by concatenating several gene sequences (Gadagkar et al. 2005).
Three main schemes for cyanobacterial classification are:

. Taxonomic scheme according to Bergey's Manual of Systematic Bacteriology second

edition Volume I (Castenholz 2001).
2 Taxonomic scheme according to Cavalier-Smith (Cavalier-Smith 2002).

3. Taxonomic scheme according to the NCBI Taxonomy Browser.

In the Bergey's Manual of Systematic Bacteriology cyanobacteria were classified into five
subsections viz. Subsection 1 (formerly Chroococcales), Subsection Il (formerly
Pleucapsales), Subsection 111 (formerly Oscillatorials), Subsection IV (formerly Nostocales)
and Subsection V (formerly Stigonemateles). These subsections are distinguished based on
the  morphological or physiological ~ properties of cyanobacteria such as
ature, reproduction by binary fission or multiple fissions.

unicellular/filamentous n
Cavalier-Smith proposed another taxonomic system in which cyanobacteria are divided into
six orders which are Gloeobacterales, Chroococcales, Pleurocapsales, Oscillatoriales,
Nostocales, and Stigonematales.

National centre of Biological Information (NCBI) had increased the number of Orders as

more and more species of cyanobacteria have been discovered. Currently, all cyanobacteria

Page | 4
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are divided into nine orders which are

Chroococcidiopsidales, Gloeobacterales,

i i irulinales
Gloeoemargaritales, Nostocales, Chroococcales, Oscillatoriales, Pleurocapsales, Spirulin

and Synechococcales.

Arthrospira platensis is one of the cyanobacteria within the order Oscillatoriales whic

. . . oy o M h
posses quite a few unique features like tolerance of high pH, halophilic nature and hig
protein content.

1.2 Arthrospira Platensis NIES-39

Arthrospira (Spirulina) platensis NIES-39 is an edible cyanobacterium and has been a major
attraction due to its multiple uses as feed, dietary supplement, and functional food

(Castenholz 2001). It is a rich source of protein (60-70%) (Table 1.1) (Lochab et al. 2014)

and other constituents like vitamins, essentia] amino acids, minerals, and essential fatty acids

(Baylan et a. 2012). Arthrospirg Platensis has 3 higher

releasing more oxygen thus producing more fooq than h

igher plants. It would serve as
nutrients suppliers with their exhaled car

bon dioxide and recycled wastes (Oguchi et al

“ ~Protein content (% dry weight)
m 65
Aphanizomenop So0s-aguae 50
Anabaeng Ylindricq
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Arthrospira (Spirulina) 1s used as a food source since it was first reported in 1521 A.D.
Bernal Diaz del Castillo, a Spanish soldier in the troops of Hernan Cortez’s first saw
Spirulina maxima which was harvested and sold in the local markets of Mexico.

However, people might have used Spirulina as food for centuries, though the origin is not
known. The next report came from French phycologist P. Dangeard who saw a cake like
structure being consumed by the local people of Chad in Africa (Dangeard 1940). These
cakes were termed as dihe which were later confirmed to be Arthrospira platensis by J.
Leonard (Leonard 1966, Leonard and Compare 1967).

The first commercial production of Spirulina was started in the year 1970 in Lake Texcoco
(Gershwin and Belay 2008). Even today, people from Kanembu tribe of Chad consumes
Arthrospira on a daily basis (Abdulqader et al. 2000). Spirulina platensis is now being
considered as an edible alga for spacecraft crew in a Controlled Ecological Life Support
System (CELSS) (Godia et al. 2002). The World Health Organization thinks that Spirulina is
an excellent food for human consumption, and Spirulina has the Food & Drugs Authority

approval for being sold as natural food in the United States.

1.2.1 Arthrospira platensis NIES-39: Morphology and Taxonomy

Figure 1.2 Scanning electron micrograph image of'a trichome of axenic Spirulina platensis (adapted
from (Ciferri 1983).

Arthrospira platensis is a filamentous, non-Na-fixing cyanobacterium which lacks any
cellular differentiation like akinete, heterocyst or hormogonium. It is composeéd of
multicellular cylindrical trichomes which are arranged in a left-handed helical filament

(Figure 1.2). The filaments are solitary, free-floating and show locomotion through gliding.
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1 1 - ~t T > ~AC 2 OSS
The trichomes are covered by a thin sheath. and slight constrictions are present at the cr
1 citle 5 e geome f the
walls. The width of the trichome ranges from 6 to 12 um (Geitler 1925). The geometry o

n . . o 4 . F . (dri
helix could be affected by temperature, chemical and physical conditions (Bai and Sesha

1983, Bai 1985). However, the helix geometry also depends on different strains ot a specie

in tri >d in : - i onshak
Even variations in trichome geometry have been observed in a natural population (V¢

1997). The vegetative cell divides by binary fission in a single plane (Geitler 1925). The

cyanobacterial filaments undergo a helical to spiral tr

Eykelenburg and Fuchs 1980).

ansition in the solid media (Van

This cyanobacterium (Arthrospira) is also known as “Spirulina’ because of its spiral

[ i i {rthrospira and
morphology. However, according to the current taxonomic reframes both At/ 0S]

Spirulina belong to two different genera and the genus Spirulina is not used as a food

supplement (Fujisawa et al. 2010). However, the name Spirulina is still used for the trade

purposes. The most recent taxonomic evaluation of the species identifies Arthrospira as

follows (Castenholz 2001) (Table 1.2):

Table 1.2 The taxonomic classification of Spirulina (Arthrospirq) platensis (Taken from Castenholz
2001).

Morphological]

Y simple buyt metabolically complex and
Monera diverse organi

Sms, the bacteria. Lack of a nuclear
Kingdom n‘.lel‘n.brane, and Mmembrane-boung organelles absent — cell
(Prokaryotae) |division through binary fission — cel) simply pinches 1n
two.
.SUb— Eubacteria “True baf:teria’ All bacterig that are not archaebacteria are
kingdom Eubacteria.
. Photoautotrophic bacteria, photosynthesise, but lack
Cyanobacteria chloroplasts. The product of photosynthesis is glycogen
Cynonhve a't]}? released oxygen, The cells have no flagella or any|
a
Division (Cynophy Omer type  of

. locomotor organelle.  Thylakoids
c hytes) g}zllotosyhnthenc mem not arranged in stacks.
(Phylum) N cropyl a, d; cobilins, B-carotene, and

» Cyanophycean starch: The
omplex, four-layereq structure (consisting of

Sugars, aming acids and proteins).
Gl‘am-ne d p

] gative cell wa]|s ~2500 describeg species.
Single class i 1a;
Class

Formerly known as
(Blue-green algae)

Cyanophyceae |y .95 1N Cyanobacteria unicellular or multicellular
gae Wlthout 4 true nucleys o chromatophore. Sexual
feproduction not known or absent
N SR :
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Filamentous, with filament and trichome organisation,
hormogones present; heterocysts, akinetes, endospores,
hormocysts present; true branching absent, false branching
resent.
Filamentous (unbranched); producing hormogonia, many
showing a spiral movement by rotation along the]
longitudinal axis; binary fission; no specialised cells,
heterocysts and spores absent; ~1000 species.

Trichomes (filaments) multicellular, cylindrical, without
Arthrospira sheath, loosely and regularly coiled (spiralled), usually]
Genus comparatively short and fewer coils; cross-walls distinct,
(Spirulina) apices slightly or not all tapering, terminal cell rounded,
calyptra absent.
Thallus blue-green; trichomes slightly constructed at the
cross-walls, 6-8 mm broad, not attenuated at the ends on
only a little attenuated, more or less regularly spirally]
Species platensis coiled; spirals 26-36 mm broad, distances between the
spirals 43-57 mm; cells nearly as long as broad, or shorten
than broad, 2-6 mm long, cross-walls granulated; end-cells
broadly rounded.

Order Oscillatorials

Family Oscillatoriaceae

1.2.2 Genomic structure of Arthrospira (Spirulina) platensis NIES-39

The complete genome of Arthrospira platensis NIES-39 was sequenced by (Fujisawa et al.
2010). This genome is composed of a single, circular chromosome of 6.8 Mb, without any
plasmids. The genome comprises of 6630 protein-coding genes, with 49 RNA genes, two sets
of rRNA genes, 40 tRNA genes representing 20 tRNA species. Out of the total 6630 potential
in-coding genes, 5157 (78%) were found orthologous or had similarity to genes of

prote

previously known function or other hypothetical genes. However, the remaining 1473 (22%)

showed no significant similarity to any known genes.

1.2.3 Arthrospira platensis: The current research

Being a successful commercial species, a lot of research has been going on Arthrospira
platensis. The first area of research on Arthrospira platensis focuses on one fundamental
question: How to increase the biomass of the commercially produced Spirulina. A handful of
literature is available on the standardization of various growth conditions/parameters (light,
pH, temperature etc.) which could affect the final biomass of this species (Pandey et al. 2010,

Ajayan 2011, Godoy Danesi et al. 2011, Mohite and Wakte 2011, Markou et al. 2012,

Markou 2015, Devanathan et al. 2016).

Paco | R
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Arthrospira platensis is a halophilic - cyanobacterium and can sustain in high salt

concentrations (>30 g/l) (Vonshak et al. 1988, Zeng and Vonshak 1998, Habib et al. 2008). It

is also an alkalophile, i.e. it grows in water with high pH. The optimum pH for the growth ot

Arthrospira platensis is from 8.5-11 (Habib et al. 2008). Therefore, the second area of

research is to find out the possible genes/proteins or mechanisms in Arthrospira platensis

which are responsible for stress tolerance. This Cyanobacterium can tolerate such high

salinity due physiological mechanisms such as ap accumulation of several inorganic and

organic osmoregulators (Reed et al. 1986, Warr et al. 1988) and also by the active expulsion

of sodium ions from the cell (Gabbayazaria et g]. 1992, Peschek et al. 1994). It has been

shown that carbohydrates metabolism i Arthrospira platensis cells increases during

adaptation to salinity (Warr et al. 1985, Vonshak et a].

1988). All the cyanobacteria contain
some substances like sucrose, trehalose, glucosyl

glycerol or glycine-betaine which will

against salt stress (Reed et 3] 1986, Ferjani et al.
2003). During stress, there is an accumulation of ¢

protect membrane and cellular proteins

hese substances (Rentsch et al. 1996,
Kempf and Bremer 1998).

Another possible mechanism of adaptation to high s

alinity as wel] as high pH is the exclusion
of Na™ ions from the cells (Apse and Blumw

ald 2002, Wutipraditky] et al. 2005). Na'/H’
antiporters are present in al| the Cyanobacterj

a and facilitate the exchange of Na® and H’
2000, Padan et al.
Navarro 2001). In cyanobacteria] cells, the active export of

across the membrane (Blumwald et 4. 2001, Serranc and Rodrieuez-

Na' and accumulation of K is

involved in salt adaptation mechanism (Gabbayazaria et al

antiporters help in Na* efflux and prevent th
Na'/H" antiporters are also known tq enh

due to acidification of the Cytoplasm relat;

also important a5 they help the
$s (Allakhverdiey etal. 2001),

Researchers (Wang et al. 2013) have also identjfi



| ChapterlI

supplement particularly as a protein source, it is crucial to know about the molecular
phenomena lying behind the production of high protein content. However little is known

about the molecular basis of its high protein production.

1.3 The protein translational machinery

In the gene expression process, the information available in the DNA sequence is used for the
synthesis of gene products that could either be a protein or non-protein molecules like RNA
molecules (IRNA, rRNA or snRNA). The process of translation consists of many steps
involving an array of machinery (Figure 1.3). Each of these steps is regulated by different
regulatory mechanisms and hence determine the final protein content of the cell. Any changes
in this regulation might lead to severe consequences which can affect the proper functioning
of the protein. However, on a different note, this regulation can also help the cell in gaining
additional benefits regarding protein production efficiency. Some of these processes that can

affect the protein production efficiency are degradation of mRNA, tRNA synthetase and

nitrogen acquisition.

A Eukaryotic cell

Transcriptiopd
control

A Process Active

Primary
mRNA conyol protein

Post translational
control

Mature
mRNA

Protein

Nucleus i
ature Translational

mRNA control

Cytoplasm Transport
control mRNA stability
control

from a gene. There are different checkpoints in the

of making an active protein
ring process that ultimately affects the final protein content in a cell.

Figure 1.3 The process
protein manufactu
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1.3.1 Degradation of mRNA

Degradation of mRNA is a crucial process that enables organisms to rapidly change the

pattern/amount of protein synthesis in a changing environment. [t directly affects protein

synthesis by varying the amount of MRNA available for translation.

The first process that affects the amount of mRNA in a cell is its degradation by

Endonucleolytic enzymes. Endonucleolytic cleavage of a polycistronic mRNA can generate

different transcripts with different half-lives (Laalamj and Putzer 2011). As a result. different

amounts of protein can be produced as needed by the organism (Burton et al. 1983, Meinken

etal. 2003). However, in another study, mutants for endonucleolytic enzymes were generated

to see that the levels of more than 650 transeripts were altered and the relative amount of

more than 200 proteins were significantly changed (Mader et al. 2008). It has also been seen

that depletion of endonucleolytic enzymes increases t

he half-]jfe of bulk mRNA more than
two-fold (Shahbabian et al. 2009).

The second process which affects the mRNA concentration is its own §° end. The 5" end is an

depends on the structure and the phosphorylation State of this 5° epq. However, different

pathways and enzymes are involved in different prokaryotjc phyla. By replacing this 5° UTR

of a short-lived mRNA with 5° UTR of a highly stable MRNA [ike ompA (15-20 min half-

life), it has been observed that the half-life of the recipient hag increased
col

mpared to that of
the donor (Belasco et al. 1986).

1.3.2 Aminoacyl tRNA Synthetase
Aminoacyl tRNA synthetase (aaRS) or tRNA

. l ligase is AN enzyme that
to 1ts particular tRNA . The resultant molecy

attaches an amino acid
“tRNA. This process is
S charged tRNA carries
highl

. le is known gg aminoacy]
also known as “charging” the (RNA. Ty h h

i i e i id at the
translational site. The translation procesg is amino aci

y dEpendem 0 . S v or t
molecules like mRNA and tRNA. It has bee " the vallability of differen

N shown thay 5 . .
. ; Ny changes ip ion of

these molecules highly influence the qQuality anq quantity of 4 g the concentrat
1€ result

ant protein (Kudla et al.
t al. 2009, Gingold and

Pilpel 2011, Plotkin and

2009, Rosano and Ceccarellj 2009, Zhang e
Kudla 2011, Fedyunin et al. 2012)

Product is the availability of tRNA
Particular tRNA/total tRNA

But agaip ;
€ain, it hag been shown that under stressful
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conditions tRNA availability can significantly vary between different conditions and also
over time (Dong et al. 1996, Dittmar et al. 2005). This variability in the tRNA concentrations

can significantly affect the translational process in many ways resulting in a corresponding

effect in the protein concentration in the cell (Sorensen et al. 2005, Zouridis and

Hatzimanikatis 2008, Wohlgemuth et al. 2013).

1.3.3 Nitrogen acquisition

Protein manufacturing through the translation process relies on the availability of amino
acids. These amino acids are synthesised through their anabolic mechanisms (Nelson and
Cox 2017). However, these anabolic pathways again are dependent on the availability of

nitrogen in the cell as nitrogen is an integral element in the amino acids.

1.3.3.1 Nitrogen

Nitrogen is the most abundant element in the earth’s atmosphere with 78.1% present as its

dimeric form Na. Nitrogen is present in many compounds like nitric acid, ammonia, cyanide
and organic nitrates. Nitrogen is necessarily present and required by the majority of the living
organisms ranging from unicellular prokaryotes to multicellular eukaryotes. It is primarily
present in proteins, DNA, RNA and also in ATP. There are a number of ways in which this

nitrogen can be acquired depending on the individual and the environment. Different

chemical forms of nitrogen are present in the environment which includes nitrate (NOs7),

organic nitrogen, nitrite (NO27), ammonium (NH."), nitric oxide (NO) nitrous oxide (N20), or

inorganic nitrogen gas (N2).

1.3.3.2 Nitrogen cycle

The nitrogen in the atmosphere keeps moving from the atmosphere to biosphere and other

organic compounds and again into the atmosphere. This cyclic movement is known as the

nitrogen cycle (Galloway et al. 2004, Kuypers et al. 2018) (Figure 1.4). In this cyclic

movement, nitrogen is converted from one form to another by both physical and biological

processes. Four important processes involved in the nitrogen cycle are (1) Fixation (2)

Ammonification (3) Nitrification (4) Denitrification.
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habit it -
al can be divided ingq two categories V12

Page | 13



Chapterl

free-living and symbiotic. Free-living diazotrophs are those that are living freely in a medium
like soil, water etc. Examples of these free-living bacteria include Clostridium, Desulfovibrio.
Methanococcus, Klebsiella pneumoniae, Paenibacillus polymyxa, Azotobacter vinelandii etc.
Cyanobacteria are present in almost all the environments of the earth and play a significant
role in the carbon and nitrogen cycle. Some cyanobacteria are diazotrophic in nature
(Latysheva et al. 2012). Cyanobacteria fix Nitrogen in a coral reef which is about twice as on
land. The colony-forming marine cyanobacterium Trichodesmium is a highly efficient
nitrogen fixer. It fixes about half of the nitrogen in the marine system over the globe
(Bergman et al. 2013).

On the other hand, the symbiotic diazotrophic bacteria are associated with some plants
species. Examples of these types of bacteria include Rhizobia which are associated with the
plants from the legume family. There are also examples of symbiotic cyanobacteria. They are
known to have some association with fungi known as lichens, with liverworts, with a fern,
and with a cycad (Postgate 1983). These do not form nodules, but they have a specialised cell
called heterocyst which excludes the oxygen. The association with fern is important
agriculturally: the water fern Azolla harbouring Anabaena is an important green-manure for
rice culture (Postgate 1983).

The next process in the nitrogen cycle is the ammonification where any form of organic
nitrogen either from animal waste or dead animal or plant is converted into ammonium. This
process involves the decomposers that may be bacteria or fungi.

The third process in the nitrogen cycle is nitrification. In this process, the ammonium
generated from the above twO processes, i.e. nitrogen fixation and ammonification get
sequentially oxidised into nitrite and then to nitrate with the help of the nitrifying bacteria.
Ammonium is converted to the nitrite either by bacteria (Nitrosomonas and Nitrosococcus) or
umilus maritimus and Nitrososphaera viennensis). In the second step,

by archaea (Nitrosop

nitrite is converted into nitrate mainly by bacteria of the genus Nitrobacter and Nitrospira.

The nitrate produced in the nitrification process can either be converted back to atmospheric

dinitrogen by the process of denitrification. In the denitrification process, bacterial species

such as Pseudomonas and Clostridium anaerobically reduces nitrate to dinitrogen which

completes the nitrogen cycle. Or on the other hand, it can be absorbed by the non-nitrogen

fixing organisms for their nutritional requirements by the process of assimilation which we

will discuss in detail.
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The only pathway that can incorporate nitrogen into amino acids is the nilrogf:n a:ssimllatljo'n
pathway. Few studies have shown the role of nitrogen assimilation pathway in high protein
content of cyanobacteria (Jha et al. 2007, Ali et al. 2008, Lochab et al. 2009). In a
comparative study, it has been shown that the Arthrospira nitrate-assimilating enzymes (NR,
NiR and GS) have higher specific activities and are more stable than those of rice (Jha et al.

. - . - = p— Ay 7, iy '}4 ?
2007, Ali et al. 2008 Lochab et al. 2009). Again, in a Comparative study between Art/y ospire

imi i p " Arthospira
and rice, it has been shown that assimilatory enzymes (NR, NiR and GS) of 4 /
platensis are more thermotolerant than those of rice (Lochab et al. 2009).

1 i i " ni > . inside
In the assimilation process, the very first step 1s the intake of nirogenous compounds in

. ) s include
the cell. This intake is facilitated by various transporters. These transporters includ

ammonium transporters, nitrate/nitrite transporters or even yreg transporters in some cases.

1.4 Nitrogen transport

z . - 8 s . - 2 [‘O].
Different molecular forms of nitrogen like ammonia, nitrite or nitrate are available

nitrogen uptake during the nitrogen cycle. Hence organisms which rely on these molecules
=}

have specia] transporters w
molecules. The major transporters have been described here.

(non-nitrogen fixing organisms) hich help in the intake of these

1.4.1 Ammonium transporters
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1.4.2 Nitrate/nitrite transporters
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1.4.2.1 ATP-binding cassette transporters

ATP-binding cassette transporters (ABC transporters) is a superfamily of transporters which
is present in all the organisms ranging from prokaryotes to higher plants and even humans
(Jones and George 2004, Ponte-Sucre 2009). They can be divided into three main categories
viz. importers who are found only in prokaryotes, exporters who are found in both
prokaryotes and eukaryotes and a third category which is involved in DNA repair and
translation (Davidson et al. 2008, Goffeau and De Hertogh 2013). The importers transport a
wide range of molecules including nutrients, biosynthetic precursors, trace metals and
vitamins while the exporters are involved in the transport of lipids, sterols, drugs, and
metabolites. One kind of Nitrate/Nitrite transporter belongs to these ABC transporters. These
ABC type nitrate transporters (NRT) are found in freshwater species of cyanobacteria and
some heterotrophic bacteria (Omata et al. 1993, Wu and Stewart 1998). The cyanobacterial
ATP-binding cassette (ABC) type permeases are involved in nitrate uptake (Flores and
Herrero 2005). It consists of a periplasmic membrane-adhered substrate-binding protein, and
in the cytoplasmic side, it contains two transmembrane subunits and two ATPase subunits.
Two cytoplasmic subunits of ABC-type uptake transporter power the transport reaction and
are highly conserved throughout cyanobacterial genera (Flores et al. 2005). They were
initially identified in Synechococcus elongatus (Maduefio et al. 1988, Omata et al. 1989,

Sivak et al. 1989, Sazuka 2003).

In cyanobacteria, ABC type NRT are encoded by nrtABCD genes (Omata et al. 1993) (Figure
1.5). It is a bispecific transporter which transports both nitrite and nitrate with a high affinity
(Luque et al. 1994, Maeda and Omata 1997). This transporter contains four polypeptide
chains which are NrtA, NrtB, NrtC and NrtD. NrtA which is a high affinity periplasmic
solute-binding lipoprotein searches for nitrate/nitrite as it can bind both nitrate and nitrite
gen source (Maeda and Omata 1997). Now NrtA transfers

when nitrate is the primary nitro
this nitrate/nitrite to NrtB, which is an integral membrane permease. Nitrate/nitrite comes
inside the cell through this membrane protein. Cytoplasmic NrtC and NrtD helps in the
movement of the nitrate/nitrite molecules across the membrane through ATP hydrolysis as
both of them are ATPase and contain ATPase domain. In addition to the ATPase domain,

NrtC also has a solute-binding domain and hence it is a fusion protein. NrtC also regulates

this transport process (Omata 1995, Kobayashi et al. 1997, Koropatkin et al. 2006). The NrtC

shares 50% homology with NrtA.
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Spirulina platensis genes for ABC transporters are arranged in an operon (Ny1A-B-C-D)
(Omata et al. 1993, Fujisawa et al. 2010). ATP hydrolysis provides them energy for solute

transport across cell membranes, Membrane-spanning domains of the permease undergo

conformational changes induced by ATP binding and hydrolysis (Davidson and Chen 2004).
NrtA can bind both nitrate and nitrite in the periplasm. NrtA is 440 amino acids long protein
and is anchored to the cytoplasmic membrane (Maeda and Omata 1997). NrtB bears six

transmembrane segments, which are highly hydrophobic

(Wu and Stewart 1998). NrtD s also a conserved protein

and are about 280 amino acids long
of about 275 amino acids.

NrtA

Periplagm

SBP
Homolog

1.4.2.2 Major Facilitator Superfamily

The major facilitator superfamily (MFS) of m

cell membranes. They work accordj



Chapter I

like transporter is encoded by the nr7P genes (Sakamoto et al. 1999), and it is also found to be
bispecific (Wang et al. 2000, Allen et al. 2001). The MFS contains different proteins that are
about 500-600 amino acids in length. They have a membrane topology containing two sets of

six transmembrane helices which are connected by a cytosolic loop (Henderson 1991,

Baldwin 1993, Pao et al. 1998).

Figure 1.6 Crystal structure of NRTI.1 (PDB — 40H3). This structure shows 12 transmembrane
helices. Two chains are present in this structure, and only one chain is shown here.

1.5 Nitrogen assimilation
Nitrogen assimilation is one of the major processes of nitrogen acquisition in cyanobacteria
(Figure 1.7). The nitrogen assimilation process in cyanobacteria is initially described by

(Guerrero et al. 1981). Most of the cyanobacteria absorb nitrate through transporters and

assimilate this nitrate via assimilation pathway (Herrero et al. 2001, Garcia-Fernandez et al.

2004. Ohashi et al. 2011). In the process, nitrate is transported into cells by an active

transport system, and this absorbed nitrate (NO37) sequentially gets reduced to NH4™ by two

enzymes viz. assimilatory nitrate reductase (NR-1.7.1.1-3) and nitrite reductase (NiR-1.7.1.1)
respectively. Generated ammonium then enters the GS-GOGAT pathway (Merrick and

Edwards 1995, Reitzer 2003). In this pathway, there are two enzymes viz. Glutamine
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Synthetase (GS-6.3.1.2) and Glutamate Synthase (GOGAT-1.4.7.1) which helps 1n
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incorporating the nitrogen mitially into Glutamate and Glutamine and hence to the res

nitrogen-containing molecules.
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Figure 1.7 The nitrate assimilation system of fresh-water Cyanobacterj
or Anabaena sp. Strain PCC 7120. The process starts wj
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the biomass (Lin and Stewart 1998, Campbell 1999). Assimilatory NR of cyanobacteria is a
75 to 80 kDa single polypeptide that contains an iron-sulfur cluster (Ida and Mikami 1983,
Mikami and Ida 1984). In cyanobacteria, NR contains the bis-molybdopterin guanine
dinucleotide (bis-MGD) as a cofactor and a [3Fe-4S] cluster for electron transportation
(Rubio et al. 1998, Rubio et al. 1999, Rubio et al. 2002). Electrons are donated by ferredoxin
in the cyanobacterial NR (Mikami and Ida 1984, Rubio et al. 1996, Rubio et al. 2002). The
nitrite produced by NR is further reduced to either the end product ammonia or the

denitrification intermediate nitric oxide (Figure 1.8).

1.5.1.2 Nitrite reductase

The reaction which catalyses the reduction of nitrite to ammonium is mediated by nitrite
reductase (NiR). NiR is also found in all the domains of life, and unlike NR, NiR of
prokaryotes and Eukaryotes share high sequence homology (Luque et al. 1993). NiR can be
divided into dissimilatory and assimilatory categories. The dissimilatory group is again
divided into copper containing and multiheme containing (cytochrome cdl or cytochrome ¢).
The assimilatory group have siroheme [4Fe-4S] as the metal co-factor (Flores et al. 2005).
Based on the electron donor they are either NADH dependent (bacteria) or ferredoxin-
dependent (cyanobacteria). Cyanobacterial NiR is a monomer of 52-56 kDa molecular
weight. Two prosthetic groups, i.¢. [4Fe—4S] cluster and a siroheme are present. Ferredoxin
or flavodoxin acts as the electron donor (Manzano et al. 1976). NiR converts nitrite to

ammonium by 6 electrons reduction mechanism (Knaff and Hirasawa 1991) (Figure 1.8).
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Figure 1.8 Nitrate reductase (NarB) and nitrite reductase (Nir) proteins from Srncjc,’mwcc-u.s'
elongatus, along with their prosthetic groups (iron-sulfur centre and molybdenum cotacto‘r for NaFB;
iron-sulphur centre and siroheme for Nir) and their interactions with the substrates and ferredoxin
(Fd) Iron atoms are in red, and sulfur atoms in green (Adapted from Flores 2005).
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1.5.2 GS/GOGAT pathway for ammonium assimilation

GS/GOGAT pathway is the most prevalent pathway in organisms for ammonium assimilation

(Merrick and Edwards 1995, Reitzer 2003). There are two enzymes in this pathway which are

Glutamine Synthetase (GS) and Glutamate 2-oxoglutarate aminotransferase (GOGAT) also

known as Glutamate synthase (Figure 1.9). In cyanobacteria, this pathway has been shown to

be the major ammonia-assimilating route (Dharmawardene

1975, Wolk et al. 1976, Meeks et

et al. 1973, Stewart and Rowell
al. 1977, Rowel] etal. 1977).
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Figurel.9 GS/GOGAT Cycle involving ammonium
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1.5.2.1 Glutamine Synthetase (GS)

Glutamine synthetases (GS) (6.3.1.2) are an enzyme f;

amily of large oligomeric proteins that
catalyse the condensation of ammonj

¢ to form glutamine. Glutamine is the
main nitrogen source for protein and n

ucleic aciq synt

Prokaryotijc Organisms. They are

S 1 450 o 470 amino acid long
> Bro

Class ] enzymes (GSI1) are

found
Frankiaceae, ang Streptomycet

N both bacteriy (family Rhizobiaceae.
aceae) and

Cukaryoteg. GSll s algg 4 multimer of ten
les (Kumada et al.

identical subunits with 35() to 420 residy

1993, Krajewski et al.



| Chapter I

2008). In case of plants isozymes of GSII are present in both chloroplast and
cytoplasm.

Class 11 enzymes (GSIII) are newly discovered and have only been detected in

2

Bacteroides fragilis and Butvrivibrio fibrisolvens. It is a dodecamer formed by
double-rings of identical chains (Van Rooyen et al. 2011). Their size is about 700
amino acids.
Oligomers of all the classes are arranged into two rings lying face-to-face with each other
(Eisenberg et al. 2000, Krajewski et al. 2008).
Talking about prokaryotic GS, they are dodecamers which are arranged in two rings. The two
rings of this GS are being held together using hydrogen bonding and hydrophobic
interactions (Eisenberg et al. 2000). Each ring contains six monomers. An active site Is

present between two monomers, and hence a total of 12 active sites are present. Each active

O\Csite is a funnel like structure in which three distinct substrates namly a nucleotide, ammonium

\a

\o

&=

ion. and amino acid would bind (Liaw et al. 1995, Eisenberg et al. 2000, Krajewski et al.

2008). ATP occupies the top position of this bifunnel (Liaw et al. 1993, Liaw et al. 1994,
Liaw et al. 1995). Glutamate occupies the bottom position of the active site (middle part of
bifunnel) (Liaw and Eisenberg 1994). Space between the nucleotide and the amino acid

bindine site is the place where divalent cations (Mn'? or Mg'?) bind. These cations help in the

transfer of the phosphoryl group from ATP to glutamate, and it also provides stability to GS

and helps in the binding to glutamate (Eisenberg et al. 2000).

Cyanobacteria contain class 1 GS which is a homo dodecamer with 12 active sites where the

molecular weight of each subunit is = 55 K Da (Eisenberg et al. 2000).

GS combines glutamate with ammonia to yield glutamine through an ATP-dependent

condensation (Liaw et al. 1995). The hydrolysis of ATP is the first step in this process. ATP

transfers its phosphate to glutamate to form an intermediate which is y-glutamyl phosphate.

This intermediate reacts with ammonium to form the final product glutamine and inorganic

phosphate. Only after the glutamine is released ADP and Pi dissociate. Glutamine dissociates

from the enzyme’s active site through its bottom while the inorganic phosphate leaves the

active site from the top (Hunt et al. 1975).
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1.5.2.2 Glutamine 2-Ox0GlutarateAminoTransferase (GOGAT)

Glutamate synthase (glutamine: 2-oxoglutarate aminotransferase [GOGAT]) is the most
important enzyme in the nitrogen assimilation pathway. This enzyme transfers the amide
group of glutamine to 2-oxoglutarate and hence producing two molecules of glutamate (Forde
and Lea 2007). GOGATs are classified into two classes based on their electron donors
(Vanoni and Curti 1999). The first class of GOGAT derives its electron from NADPH. This
NADPH GOGAT is unique to bacteria and is often called as “bacterial GOGAT"”. The second
type of GOGAT is ferredoxin-dependent (Fd-GOGAT) and uses the ferredoxin coming from
photosynthesis as an electron donor. This type of Fd-GOGAT is found only in chloroplasts of
plants and cyanobacteria, and hence it is also known as “plant type GOGAT™.

Cyanobacterial GOGAT is a monomeric protein of 50 kDa while bacterial-GOGAT is a

hetero-octamer. Fd-GOGAT and the alpha subunit of NADPH-GOGAT are
each other (

homologous to

Kameya et al. 2007). Four domains are present in both Fd-GOGAT and the alpha

subunit of NADPH-GOGAT. The first one is the

glutamine amidotransferase (GATase)
domain at which

glutamine is hydrolysed, and ammonium is generated. The second is the

central domain which connects the GATase domain and the synthase domain. The

ammonium generated at the GATase domain gets translocated 1o the third domain which is

the synthase domain via an intramolecular ammonia channel, Thjs channel he

Ips the enzyme

in binding the ammonium, and both central ang fourth a-heljca] dom

ain’s residues contribute
to this channel. At the synthase domain, ammo

nium reactg with 2-0G to produce two
molecules of glutamate (Kameya et a. 2007).

1.5.3 Regulation of Nitrogen assimilatiop

1.5.3.1 Regulation through NtcA Protein

de of action (Figyre 1.10) (Zhao et al. 2010). The
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maintains the proper distance between the two F-helices for DNA recognition (Zhao et al.
2010). NtcA activates the expression of all the genes of nitrogen assimilation including the
nir operon (Vega-Palas et al. 1990, Vega-Palas et al. 1992, Frias et al. 1994, Luque et al.
1994, Luque et al. 2004). NicA mediated regulation of nitrogen control depends on

modifications of both enzyme activity and gene expression (Herrero et al. 2001).

*  Subunit B

Figure 1.10 Overall structures of NtcA homodimer with 2-OG. The secondary structure elements are
numbered sequentially (Adapted from Zhao et al. 2010).

1.5.3.2 Regulation through Pu protein

The next level of control in nitrogen assimilation in cyanobacteria is mediated by a signal
transduction protein, Pn (Burillo et al. 2004). They are another central molecule for
ionalling of the cellular nitrogen status, recognising ATP and 2-OG (Little et

2003, Burillo et al. 2004, Forchhammer 2004). ATP and 2-OG

perception and s
al. 2000, Smith et al.
control the reactivity of Pu towards various targets (Jiang and Ninfa 1999, Little et al. 2002).
Phosphorylation at Serd9 in response to the cellular nitrogen and carbon supply is the key

factor determining its activity (Figure 1.1T). Elevation in 2-OG levels signals this

phosphorylation (Forchhammer and Tandeau de Marsac 1995, Irmler et al. 1997). De-

phosphorylation of Pi-P depends on a protein phosphatase, PphA, which is highly sensitive
to 2-OG (even in sub-millimolar range) (Ruppert et al. 2002, Forchhammer 2004). Presence
of ammonium initiates dephosphorylation. Presence of a nitrogen source induces medial Py
phosphorylation, which is modulated by the inorganic carbon supply to the cells. Nitrogen

starvation induces the highest levels of Pu phosphorylation (Figure 1.11) (Forchhammer and

Tandeau de Marsac 1995, Forchhammer 2004).
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Figure 1.11 Py phosphorylation cycle in response to cellular 2

-Oxoglutarate levels (Adapted from
Forchhammer 2004).

Pu signalling mediates the NicA activated gene CXpression under conditions of nitrogen

starvation (Fadi Aldehni et al. 2003, Paz-Yepes et q]. 2003). However, other direct targets of
interaction with Py are stil] to be revealed. Ap N-acetyl-l—glulamale kinase (NAGK) was

recently identified as one of the targets

of Py signaling (Burillo et a]. 2004, Heinrich et al.
2004). NAGK, the key enzyme in argin

ine blosynthcsis, forms a tight complex with non-

phosphorylated Py, enhancing the catalytic activity of (hjg nzyme (Heinrich et al. 2004.
Maheswaran et al. 2004).

1.6 Gaps in the existing research

1ideal mode| System. As it is already
discussed that 22% of potential protein-coding genes are Un-annotated. The functional
annotation of these proteins could enrich ouyr understap

o ding régarding the molecular basis of
the observed characteristic features of this organism.

Arthrospira platensis is known for its h;
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shown that Arthrospira’s nitrate-assimilating enzymes (NR, NiR and GS) have higher
specific activities and are more stable than those of rice (Jha et al. 2007, Ali et al. 2008,
Lochab et al. 2009). The enzymes (NR, NiR and GS) are also shown to be more
thermotolerant than those of rice (Lochab et al. 2009). However, there is an apparent lack of
the identification of the molecular basis for the production of high protein content. Thus,
these findings further motivated us to look into the sequence and structural features of these
enzymes involved in nitrate assimilation of Arthrospira platensis. For this study, we have
compared all the completely sequenced genomes of cyanobacteria since there is a lack of

studies to compare the nitrogen assimilation pathway proteins across the cyanobacterial class.

In this study, we have compared the protein sequences and structures between all the
completely sequenced cyanobacteria. Sequence plays a key role in determining the function

of the protein, and hence any variation in the sequence could affect the function. We have

also modelled the protein structures to look into the various changes in the protein domains

and fold, various insertion/deletion/substitution in the protein core which can provide us with

important clues into its function.

Because Arthrospira platensis can serve as “complete food™ in itself, understanding how

Arthrospira has acquired these special abilities will become important and essential to know.

These findings will enhance our knowledge of the unique features of the enzymes of the

nitrogen assimilation pathway, which may then be extrapolated to agriculturally important

crop plants. Thus, the objective of the present works was:

1.7 Objectives of the study

|. Functional annotation of the remaining 22% of the potential protein-coding genes of

Arthrospira platensis NI ES-39 genome.

2. To look into the sequence and structural features of enzymes involved in the nitrogen

assimilation of Arthrospira platensis NIES-39 for their putative role in the high protein

content in the cell.
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2.1 Overview

This chapter describes the methodology that we have used for our studies with two broad
objectives: annotation of the unannotated proteins of Arthrospira platensis NIES-39 genome
and elucidation of the possible role of nitrogen assimilation proteins in the high protein
content of Arthrospira platensis NIES-39. The genome of Arthrospira platensis NIES-39 had
been sequenced and annotated in 2010 (Fujisawa et al. 2010). A total of 6630 protein-coding
genes along with 49 RNA genes and 40 tRNA genes were identified. However, Fujisawa et
al. could only be able to annotate 5157 (78%) of the genes while rest of 1473 (22%) are still
un-annotated. This is to be noted that the 78% of annotated genes also included the protein
sequences which were homologous to another hypothetical protein. So, the number of protein
sequences with no functional verification is more than 1473. In the study, we have
functionally annotated the hypothetical protein sequences of Arthrospira platensis NIES-39

using the available online tools and databases. Figure 2.1 depicts the general methodology

used for the annotation process.

Figure 2.1 Overview of the annotation procedure adopted in this study.

For our second objective, fully sequenced cyanobacterial genomes within the NCBI database

were selected. Nitrogen assimilation pathway protein homologs of all the selected
cyanobacterial species were retrieved using Arthrospira platensis NIES-39 protein sequence

. l .
as a query. Different database searching tools were used for homology searching.
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Functionally important residues were identified using sequence comparison. Functionally
conserved domains and motifs were identified using CD search and MEME  suite.

Conservation patterns of conserved residues were identified using Weblogo. Both neighbor-

Joining (NJ) and maximum likelihood (ML) methods were used to construct the phylogenetic

trees. If the rate of evolution between different taxa is not constant NJ is a better choice. ML

is more accurate when the species under study are more diverse in terms of their evolution.

Speciation and duplication event

algorithm in MEGA7.

among the species were inferred using the integrated

Species tree based on I6sribosomal RN A EENE sequences, gene tree based on the homologous

gene sequences of nitrogen assimilation pathway proteins and alse the protein tree based on

respective homologous protein sequences were generated using both NJ and ML methods.

All the above phylogenetic trees were compared among each other to understand the

Y proteins and to detect
that can explain the high protein content oi’Arf/n-o.s-pi;

evolution of nitrogen assimilation ; e
= pathw any possible mechanism

‘aplatensis N [ES-39.
Structural studies were performed on selected specie fi i ere

pecies from major orders. Structures were
generated using homology modeling which were furt

her analyzed for their structural quality.
Possible structural changes in these modelled stryct

ures were identified which could tell us
about the evolutionary pattern of these proteins and

Provide clues tq the high protein content
of Arthrospira platensis NIES-39.

2.2 Selection of the hypothetical proteing for Annotation

A complete list of hypothetical proteins of 4,4

oSpirg Platensis NIES-39 was downloaded
from the NCBI genome database (genome ID =

7!004). However, due to redundancy, these

the Manually Curated UNIPROT database.
for the annotation process,

hypothetical proteins were again screened using

d

and only the non-redundant Séquences were 5o

2.3 Sequence retrieval and analysis

To find close homologous, these Sequenceg
default parameters of BLASTp (Matrix
Slze = |, Gap Cost =
and reliable online tool to
%, query Coverage > 50%

STp is an online program
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databases. It performs a local alignment between the query and the sequences in databases
and shows those alignments. There are different versions of BLAST, like Protein BLAST that
compares a protein query to protein databases, Nucleotide BLAST that compares a nucleotide
query to nucleotide databases, blastx that translate a nucleotide query in all six reading
frames and then compares it to protein databases and a tblastn that compares a proteins query
to translated nucleotide databases. The reliability of the hits from BLAST is assessed in terms
of an E-value. This is the expected value which tells how many results we would get by

chance at any particular score.

2.4 Physicochemical Characterization

ExPASy-ProtPram server (Gasteiger et al. 2003) was used to calculate different

physiochemical properties such as isoelectric point, molecular weight and grand average of

hydropathicity (GRAVY) of all the hypothetical proteins. The GRAVY value is calculated by

adding the hydropathy value for each residue and dividing by the length of the sequence

(Kyte and Doolittle 1982). Increasing positive score indicates a greater hydrophobicity. It can
tell us about the possible working environment of the protein. For example, high values

indicate that the protein has more hydrophobic residues and could be a membrane spanning

protein.

2.5 Prediction of Functional Domains and Families

Conserved Domain (CD)-search tool of NCBI (Marchler-Bauer and Bryant 2004) was used

for domain identification. This tool searches a comprehensive collection of domain models

using BLAST heuristics and imports the domains from different available domain databases

like conserved domain database (CDD) (Marchler-Bauer et al. 2015), NCBI curated database,

SMART (Letunic et al. 2004), PFAM (Bateman et al. 2004), Clusters of Orthologous Groups

(COGs) (Tatusov et al. 2003)
erms of specific hits, non-specific hits and superfamilies.

and TIGR (Haft et al. 2001). CD-Search tool provides a

comprehensive result in t

2.6 Functional Protein Association Networks

Proteins mainly work in networks. The interactions between the proteins mainly define their

activity and function. Different proteins/enzymes coordinate with each other to regulate a

process/mechanism. Understanding these interactions will give us useful insights into protein

functioning. The STRING database (version 10.0) was used to predict protein interacting
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partners for the hypothetical proteins. STRINGS database can predict the interactions that are
direct (physical) and indirect (functional) associations, experimental or co-expression

(Szklarczyk et al. 2017). The confidence of the interaction was set to medium (0.40) with >10

interaction networks.

2.7 Pathway identification

KEGG database was used to identify the putative pathway in which the annotated

hypothetical protein could be involved in (Kanehisa and Goto 2000).

2.8 Selection of cyanobacterial species

NCBI genome database (https://www.ncbi.nlm.nih.gov/gcnome) lists all the cyanobacteria

which have been sequenced at a different leve] of sequencing (complete, chromosome,

scaffold and contig). During complete genome-leve] Sequencing, all the chromosomes are

sequenced without any gap with an ambiguity of less thap ten nucleotides. In this case, all the
possible chromosomes of the Species are present, Even plasmids are sequenced without any
gap. The second is the chromosome leve] in which the sequence from single or multiple
chromosomes is present. This chromosome May or may not have gaps in it. In scaffold level,

affolds w
sequencing, only sequences of contigs are reported. Oy

several contigs have been joined to form the g hich are unlocalized In contig level

U of these four levels, the genomes
which were present in the complete and th

€ a i I
good reference Point for genome annotation,

-

and mutationg| studies, gene
nalyses, Blastn and Blastp (Ba

. 8ENes, polymorphism

expression studies, and Comparative 4 ‘ t
i n

Search Tool) (Altschul ef 4 Sic Local Alignme

against organism CYanobacteria (taxid 1117)

pecific [terative BLAST) (Altschul et

arries oyt Multiple iterations of the
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results obtained by the first round of blast. From the highest scoring results of the first round,
it makes a multiple alignment and then calculates a matrix which is the Position Specific
Scoring Matrix (PSSM). This PSSM stores the conservation patterns of the homologous
sequences as the score. Now in the second round of PSI-BLAST, this PSSM is used as an
input to find more homologues. After the second round, identified new homologous
sequences (above the threshold) were added to the matrix and this process iterates for the
specified number of times or until no new significant sequences are added to the matrix. This
method is more useful in identifying distant homologues.

In addition to the gene and protein sequences of the proteins of study, we also downloaded

the 16s rRNA gene sequences for all the selected species from the respective genomes from

the NCBI genome database for the purpose of making species tree.

2.10 Sequence analysis

Pairwise Sequence Alignment is a method for comparing two sequences (DNA, RNA or

Protein). This gives us regions of similarity between the two sequences which is helpful in

identifying the functional, structural or evolutionary relationships. We used the EMBOSS

Needle programme (Rice et al. 2000) for the global pairwise alignment of the protein

homologues. This program is based on the Needleman-Wunsch algorithm (Needleman and
Wunsch 1970).
Multiple sequence alignments were pe

default parameters. Clustal Omega is a p

rformed with Clustal Omega (Sievers et al. 2011) with
rogram that uses seeded guide trees and HMM

profile-profile techniques to generate alignments between three or more sequences.

CD (Conserved Domain) search tool of NCBI (Marchler-Bauer and Bryant 2004) was used to

identify the domains in the homologous sequences.

For possible new motif detection, Multiple Expectation Minimization for Motif Elicitation

(MEME) program was used (Bailey et al. 2006). MEME is a tool for discovering motifs in a
group of related sequences. MEME represents motifs as letter-probability matrices which are

position-dependent. Gaps are not incorporated during the motif identification. Patterns having

gaps are divided into two or more motifs. It chooses the best motif based on the statistical

modelling techniques which depend on the width and number of occurrences of each motif.

The conservation of amino acids within the protein sequence was analyzed by sequence

logos. Weblogos 3.2 (Crooks et al. 2004) was used to generate sequence logos. Multiple

sequence alignments of DNA or protein sequences can be represented in terms of logos of
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nucleic acid or amino acids, Every stack in the logo represents the corresponding position in
multiple sequence alignments. Sequence conservation can be seen by the height of the stack

while the height of each nucleic acid or amino acid represents their frequency in DNA or

protein.

2.11 Phylogenetic tree construction

A phylogenetic tree is the pictorial representation of the relationships between organisms.

There are several algorithms for determining thijs relationship. Overall these methods are

divided into two categories based on their basic algorithm. First one is distance-based

methods which use the amount of dissimi]arity (distance) between the alioned sequences to

draw trees. Number of differences is called as evolutionary distance. Several algorithms are

available in distance-based methods like UPGMA (Unweighted pair group method with

Arithmetic mean) (Sokal and Michener 1958), N (Neighbor-joining) (Saitou and Nei 1987),

FM (Fisch-Margoliash) (Fitch and Margoliash 1967) and ME (Minimum evolution). The

second one is the character-based methods which gre based directly on the sequence
characters rather than a pairwise distance., Two methods

maximum parsimony (MP) and maximum Ljke
ML and MP methods.

fall in this category which is

lihood (ML). For this study we have used NJ,

2.11.1 Neighbor-joining (NJ)

NJ method (Saitou and Neij 1987) is the first chojce in the distance-based methods because of

its fast computing. It also works when different line

48Cs vary in their rate of evolution. It

2.11.2 Maximum Likelihooq (ML)

Maximum likelihood method

| . IS anp important method for
relationships when the sequenceg



Chapter 11

estimate the branch length of the tree. This procedure is repeated for all the possible

topologies and the topology that shows the highest likelihood is chosen as the final tree.

2.11.3 Maximum Parsimony (MP)
MP (Farris 1970, Fitch 1971) is a simple method used to infer a phylogenetic tree for a set of

taxa on the basis of some conserved data on the similarities and differences among taxa. MP
method searched for a tree that requires the smallest number of evolutionary changes to

explain the difterences observed among different Operational taxonomic units (OTU).

2.12 Tree evaluation (Bootstrapping)
Often, any method for tree construction (NJ, ML or MP) is followed by another method

called as bootstrapping. Bootstrapping is a statistical technique that tests the sampling errors
of a phylogenetic tree by repeatedly sampling trees through slightly changed datasets. The

robustness of the original tree can be accessed by this way. In the end, a consensus tree is

made which represent the results from all the changed datasets (Soltis and Soltis 2003).

Bootstrap gives us an idea about the parts of the tree which are strongly supported with the

given data. Normally a 70% bootstrap value represents strong support (Zharkikh and Li

1992).

For our study, we used both Maximum likelihood and Neighbor-Joining methods for the

construction of phylogenetic trees. We used MEGA 7.0 (Kumar et al. 2016) for tree

construction. Bootstrapping was also perfo
rved that the topologies of both ML and NJ trees

rmed with 1000 bootstrapping samplings of the

sequence data (Felsenstein 1985). We obse

are quite similar and the position of clades in the two trees was similar and hence only NJ

trees have been discussed in the further analyses.

In spite of taking care of all the necessary details like taking only full sequences, removing

the gaps and mismatched regions and trying different substitution models and also different

tree construction methods, a large number of nodes in our constructed phylogenetic tree is

giving low bootstrap support values. This might happen due to the highly conserved nature of

the cyanobacterial species. As cyanobacteria are a unique photosynthetic prokaryote, it might

be possible that its genome is highly conserved and hence cannot tell much on its relative

evolution within the cyanobacterial class. Again, this could be possible either because there

was a common ancestor from which all the genes of these proteins evolved and later become
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phylogenetically distinct or due to horizontal gene transfer which is quite common in

cyanobacteria (Raymond et al. 2002, Rocap et al. 2003, Zhaxybayeva et al. 2006).

2.13 Evolutionary distance calculation

Tamura-Nei (Tamura et al, 2004) method was used for the calculation of evolutionary

distances in the gene tree while Jones Taylor Thronton (JTT) method (Jones et al. 1992) was

used in case of protein tree.

2.14 Gene duplication and Speciation events

For possible gene duplication and speciation events among cyanobacteria, the algorithm

as used in MEGA 7.0. This algorithm infers

a gene tree by comparison o

described by (Zmasek and Eddy 2001) w

speciation and duplication even )
P P 1som a trusted species tree.

2.15 Protein structure prediction

All the structures in this study were predicted usin

g the homology modelling method. In

homology modelling, the protein sequence that g

to be modeled (target) shares some
similarity with an already known experimentally determined structure (template). The target
and template sequences are aligned and then ba

sed on the structural information of the

-
=

. aking the target protein
séquence as a query in the BLASTP program

and searchipg thi : ain
i g is query against the Protei
Databank using default parameters, The obta Y ag

med results were screened for high query

coverage and high sequence similarity, ang finally, 5 template was sel feed
’ @ selected.

For our model generation of nitrogen 4

Ssimilation Proteins, we used the stand

-sion of
Modeler 9v15 (Fiser and Sali 2003). alone version
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The quality of a modelled structure is accessed by various methods. These methods use
different strategies for the quality assessment. For example, some programs check the
stereochemical properties of the model like Ramachandran plot (Ramachandran et al. 1963),
PROCHECK (Laskowski et al. 1993), and WHAT-CHECK (Hooft et al. 1996). We have
used Ramachandran plot which calculates the overall stereochemical property of the energy
minimized model. WHAT-CHECK program was also used to check the protein residue-by-
residue and assesses many of its stereochemical properties.

We have also used Verify3d (Eisenberg et al. 1997) which uses a 3D profile to find the
relationship of an atomic protein model with its own amino acid sequence. VERIFY3D
process by assigning a structural class based on the location and environment of each residue
position and by comparing the results to good structures. Environments of residues
correspond to three parameters: the local secondary structure, the area of the residue that is
buried and the fraction of side-chain area covered by polar atoms.

We also used ERRAT (Colovos and Yeates 1993) which analyzes the non-bonded
interactions between the atoms and plots the error function with respect to the position. Errat
comparison includes statistics from highly refined structures.

The quality of the models was also evaluated using Qmean Z-score (Benkert et al. 2011) and
Qmean score (Benkert et al. 2008) available at Qmean server (Benkert et al. 2009). These
scores evaluate the deviations of the predicted model from the crystal structure. Qmean score
took into account six parameters (Pairwise, Torsion, All-atom, Solvation, ACC agree and
SSE agree) and based on the total score of these parameters a global score ranging from 0 to
dict the model reliability. A score near | predicts a good model. QMEAN Z-

I is given to pre

score compares a model with its reference crystal structure and provides the quality of the

model. A Z-score less than one is considered as a good quality model, while a score between
| and 2 and score above two are considered as medium and bad quality models respectively.

Structural analysis, as well as figures, were generated by Visual molecular dynamics (VMD)

version 1.9.2 (Humphrey et al. 1996). VMD is a molecular visualization program for

displaying, animating, and analyzing large biomolecular systems using 3-D graphics and

built-in scripting.

2.16 Identification of functionally important residues in modeled homologs

Arthrospira platensis NIES-39 protein sequence was used as a query in BLAST against the

PDB database (Berman et al. 2000) to find the nearest available 3D structure. The top hit with
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the least E-value was used as the reference, Important residues already identified in the PDB

structure were taken from the selected hit, and pairwise sequence alignment was done

between the selected hit and the query protein sequence to identify the corresponding

important residues in query protein. The identified important residues were compared with all

the cyanobacteria species within the MSA. Due to the high identity/similarity of the

0 e 5 . . . . .
sequences, a 90% cut off value was set to distinguish conserved and the variable positions.
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3.1 Introduction

Recent advances in high-throughput sequencing techniques like Next Generation Sequencing
has led researchers to sequence more genomes. These sequencing projects yield large
sequence data for various organisms, which become a part of multiple sequence databases.
However, these sequence data are of no use unless they are associated with a function and
hence providing a meaningful function to these sequences is a major challenge. Despite all
the scientific efforts only about 50-60% of sequences have been annotated in most of the
organisms (Goffeau et al. 1996). As most of the cell machinery depends on the proteins for
the normal functioning to associate these proteins with proper functions and to understand

that how these proteins function in making up a living cell will help the researchers in solving

the various aspects of cell functioning.
A genomic annotation normally provides three types of genes, i.e. (a) gene which is

functionally annotated (b) hypothetical genes conserved in several organisms and (c)

hypothetical genes specific to a genome. All these hypothetical genes give rise to

hypothetical proteins (HP) which are thought to be present inside the cell; however, no

supporting experimental evidence is available. Results show that these conserved

hypothetical proteins were encoded by a substantial fraction of a genome (Galperin and

Koonin 2004, Brenchley et al. 2012). Thes
as well as other essential signalling proteins viz. Biotic/Abiotic stress proteins (Zarembinski

e hypothetical proteins may be used as biomarkers

et al. 1998, Doerks et al. 2004). To get insights into the importance of these poorly

characterised hypothetical gene/

tolerance issues, it is necessary to annotate thes
_silico as well as experimental techniques available for the

proteins in various physiological developments and stress

€ sequences.

There are a number of i

annotation of the gene sequences and to find meaningful insights into the functional aspects

of the identified genes. However, the

would be time consuming and expensive. Hence, bio
| annotation (Desler et al. 2009). In silico methods provide fast and

functional annotation through laboratory experiments

informatics tools are the major choice

for large-scale functiona
quite reliable results; however, most of these annotation methods are based on the presence of

the previously identified sequences. The
protein structures etc. (Luo et a
). Based on the results of the above methods it assigns a

methods are based mainly on homology, any query

se methods focus on sequence similarity, co-

expression, interactions, 1. 2007, Horan et al. 2008, Doerks et

al. 2012, Schuller et al. 2012

particular function to a query. Since the

which does not give any significant results against the database has to remain un-annotated.
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To annotate these un-annotated sequences, we can try the laboratory methods, or we can

reuse the in-silico methods after some time to see whether some homologous

sequence/structure had been made available during that time or not.

The genome of Arthrospira platensis NIES-39 had been sequenced and annotated in 2010

(Fujisawa et al. 2010). A total of 6630 protein-coding genes along with 49 RNA genes and 40

tRNA genes were identified. However, Fujisawa et al. analysis could only be able to annotate

5157 (78%) genes while the remaining 1473 (22%) were still un-annotated. It is to be noted

that the 78% of annotated genes also included the protein sequences which were homologous

to other hypothetical proteins. So, the number of protein sequences with no functional

verification is more than 1473. The current total number of genes present in Arthrospira

platensis NIES-39 is 6666 (NCBI). Out of these, 2622 are hypothetical proteins. In the study.

we have tried to functionally annot

platensis NIES-39.

ate the hypothetical protein sequences of Arthrospira

3.2 Materials and methods

The general method for annotation starts with the scarching of homologous sequences for the
hypothetical proteins. Homologous Sequences give us an ide

a about the probable function.
The next step is the physiochemical characterisation of prot

ein sequences, Then functional
domains of proteins were identified which again provides an

. o idea about the putative protein
function. Protein interactions were identified using STRING

S database while pathways in

which the protein might be involved are identified using the KEGG datab
ase,

3.2.1 Selection of hypothetical proteins for annotation

The complete list of proteins downloaded from

genome database hasg 5872 proteins. Qut of
these 5872 proteins, 2622 were hypothetica] prot proteins.

eins. These 2622 hyp

(Uniprot archive).
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Table 3.1 List of UniProt Id of hypothetical proteins which were considered for the annotation

process.
D4ZMM5 | D4ZPN4 D4ZRZ9 D4ZUK2 | D4ZWJ0 D4ZYY8 | D3AIBS D5A3V0
D4ZMM6 | DIZPN8 D47500 D4ZUL3 D4ZWJ3 D4ZYY9 | D5AIBY D5A3V1
DAZMNO__| D4ZPN9 D4Z508 D4ZUM6 | D4ZWL1 | D4ZYZ3 D5AIBS D5A3V2
D4ZMP3 D4ZPQ9 D4Z516 D4ZUM9__ | D4ZWM4 | D4ZYZ5 DSAICO D5A3V3
D4ZMP6 | D4ZPR6 D4Z527 D4ZUNI D4ZWM7__| D4ZYZT DSAIC3 D5A3W0
D4ZMP7__| D4ZPSI D4ZS31 D4ZUN2__| D4ZWNO | D4ZZ02 DSAIC4 D5A3WI
D4ZMQO___ | D4ZPS2 D47532 D4ZUNG | D4ZWN4__| D4ZZ03 DSAICS D5A3X6
D4ZMQ6___| D4ZPS6 D4ZS35 D4ZUNS___ | D4ZWN5__| D4ZZ05 D5AID2 D5A3X7
D4ZMR4 | D4ZPS7 D4Z538 D4ZUP2 D4ZWR2 | D4ZZ06 DSAID4 D5A3Y0
D4ZMS+ | D4ZPS9 D4Z539 D4ZUP8 D4ZWR4__| D42Z07 DSAIEQ D3A3Y1
DZMS5__ | D4ZPT8 D4Z540 D4ZUP9 D4ZWS9___ | D4ZZ08 DSAIE3 D5A3Y2
| D4ZMS9 | DIZPT9 D4ZS41 DiZUQ4 | DaZWT5 | D4zZI9 DSAIE4 D5A3Z2
D4ZMTO D4ZPUI D4ZS42 D4ZUQ9 D4ZWUI D4z721 D5SAIE7 D5A3Z3
D4ZMT3 | D4ZPU4 D4Z543 D4ZURO __| D4ZWU2 | D4ZZ35 DSAIES D5A3Z4
D4ZMT5 | D4ZPU6 D4ZS44 D4ZUS2 D4ZWU3 | D4zZ32 DSAIFI D5A404
D4ZMT7 | D4ZPU8 D4Z545 D4ZUS3 D4ZWU4__| D4zZ34 D5AIGY D5A418
D4ZMT9 | D4ZPL9 D4ZS60 D4ZUS8 D4ZWUS | D4zZ35 D5AIHS D5A422
D4ZMUO__| D4ZPVO D47587 D4ZUS9 D4ZWU6___ | D42Z37 DSAIH6 D5A428
D4ZMU3 | D4ZPV4 D4ZSA6 D4ZUU3___| D4ZWU7 | D4ZZ38 DSAIH7 D5A430
D4ZMU4__| D4ZPYO D4ZSAT D4ZUU4 | D4ZWU8 | D4ZZ39 DSAIKS D5A431
D4ZMU6___| D4ZPY6 D4ZSBS D4ZUU7___| D4ZWV0 | D4ZZ58 DSAIK8 D5A434
D4ZMUS | D4ZPY7 D4ZSB7 D4ZUVO | DAZWVI | D4ZZ59 DSAIK9 D5A441
D4ZMU9 | DIZPZ0 D4ZSB9 D4ZUVI D4ZWV8 | D47Z64 DSAIL2 D5A450
DIZMV2 | D4ZPZI D4ZSC0 D4ZUWO | D4ZWV9 | D4ZZ65 D5AIM4___| D5A460
D4ZMV3 | D4ZPZ2 D4ZSC1 D4ZUW3 | D4ZWW3 | D4ZZ79 D5AIMS | D5A463
D4ZMVS | D4ZPZ4 D4ZSC6 D4ZUW7__| DAZWW5 | D4ZZ82 D3AIPI D5A478
| D4ZMWS | DaZPZ5 D4ZSD4 D4ZUX2 | D4ZWY2 | D4Zz87 DSAIPS D5A483
DIZMW9 | D4ZPZ8 D4ZSD5 D4ZUY7 | D4ZWZ0 | D4ZZ88 DSAIP8 D5A484
DaZMX2 | D4ZQ03 D4ZSD6 D4ZUYS | D4ZWZ8 | D4ZZ90 D5AIQ3 D5A486
D4ZMX3 | D42Q05 D4ZSD8 D4ZUZ0 | D4ZX0l D4ZZB! D5A1Q6 D5A489
D4ZMXS_ | D4ZQ07 D4ZSD9 D4ZUZ1 D4ZX08 D4ZZB3 D5AIR4 D5A496
DIZMX9 | D4zQl1 D4ZSE6 D4ZUZ3 D4ZX10 D4ZZB7 DSAIRT D5A499
DaZMY7 | D4zQ13 D4ZSE8 D4ZUZ4 D4ZX15 D4ZZB8 D5AIS3 D5A4AD
DizMys [ Dizozs | DizSE | Dazuzé | DezX2l [ D4ZzB | DSAISS [ DSAdAL
D4ZMZ0 | D4ZQ38 D4ZSF0 D4ZUZ7 D4ZX22 D4ZZC3 D5AI1S7 D5A4A2
D4ZMZ5 | D42Q40 D4ZSFI D4ZUZ8 D4ZX33 D4ZZC5 DSALTO D5A4A3
DizMzo | Dazo42 D4ZSF2 D4ZV00 D4ZX39 D4ZZD5 D5AIT4 D5A4B2
D4ZNO| D4ZQ43 D4ZSF6 D4Z VOl D4ZX42 D4ZZD6 DSAIT8 D5A4B4
; ; ; D4ZV07 D4ZX43 D4ZZD8 D5A1UO D5A4B6
D4ZNO5 D4ZQ44 D4ZSF9
D4ZN07 D4ZQ45 D4ZSG4 D4ZV12 D4ZX47 D4ZZE2 D5AIU5 D5A4B7
D4ZN14 D4ZQ46 D4ZSH6 D4ZV13 D4ZX59 D4ZZES D5A1W4 | D5A4B9
D4ZN16 D4ZQ47 D4ZSHS D4ZV24 D4ZX60 D4ZZE6 DSAIW5 | DSA4CI
Dazn 2 D4ZV25 D4ZX81 D4ZZF0 D5AIWS __| DSA4C6
D4ZN21 D4ZQ57 D4ZSH9
D4ZN29 D4ZSJ8 D4ZV3l1 D4ZX90 D4ZZF1 D5A1X0 D5A4D3
D4ZNs2 Dio0s D4ZSK3 D4ZV38 D4ZXA0 D4ZZF6 D5A1X3 D5SA4E7
D4ZNs4 Dizoed D4ZSL3 D4Z V4l D4ZXA3 | D4ZZGO D5A1X4 D5A4F0
2 D426 D4ZV42 D4ZXA7 __| D4ZZHO DSAIXT D5AJF7
D4ZN57 D4ZQ65 D4ZSL4
' D4ZV44 D4ZXB8 | DA4ZZH9 DSAIX9 D5A4G5
D4ZN72 D4ZQ68 DA4ZSL6
D4ZV46 D4ZXC5___| D4ZZ10 D5A208 D5A4G9
D4ZN73 D4ZQ70 D4ZSL7
: D4zZV47 D4ZXD0___| D4ZZJ3 D5A209 D5A4H3
D4ZN75 D4ZQ73 D4ZSL8
Z DAZV48 D4ZXDI D4ZZJ5 D5A215 D5A4H9
D4ZN76 D4ZQ84 D4ZSP5 -
D4ZV49 DAZXF5 D42ZJ6 D5A220 D5A4J9
D4ZNS| D4ZQI1 D4ZSP8
4ZV52 D4ZXGO___ | D4zZJ7 D5A221 D5A4K9
D4ZN82 D4ZQ99 D4ZSQ0 D
4ZV54 D4ZXGl D4ZZJ8 D5A223 D5A4L0
DIZNg D4ZQB6 DAZSQ! = 4ZXG5___ | DAZZ19 D5A229 D5A4L6
D4ZNA7 | D4ZQC2 D4Z5Q5 D4ZV55 D 3
| D4ZNB 17vs6 | DAZXH2___ | D4ZZKO | D5A23I D5A4L3
D4ZNBI D4ZQC7 D4Z5SQ6 D
V57 D4ZXI12 D4ZZK4 D3A233 D5A4M2
D4ZNBS D4ZQC9 D4ZSR4 D4Z
~ V59 D4ZXI3 D4ZZLS D5A237 D5A4MS
D4ZNC3 D4ZQDI D4ZSRS D4Z Dazz DA DoAdM
D4ZNC5 D4ZQES5 D4ZSTI D4ZV60 D4ZXK7
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D3ZP13 D4ZRC7 DIZTZ9 D4ZVV9 | D4ZYD7_| D5A0K2 D5A398 D5A5X4
D4ZP16 D4ZRDO D4zZUl1 D4ZVWO | D4ZYDS__ | DSAOMO | D5A3AI DSASX5
D4ZP17 D4ZRD6 DIZU12 D4ZVW4__| D4ZYE2 D5AOM4__| D5A3BS D5A5Y4
D4ZPI8 D3ZRF7 D4ZU17 D4ZVW9_| D4ZYF9 DSAOMS5 | D5A3B7 D5A5Y6
D4ZP26 D4ZRGlI D4ZU27 DIZVX1 D4ZYGO___| D5AOP3 D5A3C5 D5ASY7
D47P28 DIZRG5 D4ZU36 D4ZVX2___| D4ZYG3 DSAOP5 D5A3C6 DSASYS
D4ZP31 D4ZRH0 D4ZU38 D4ZVX4 D4ZYG4 D5A0Q0 D5A3CT D5ASZ3
D4ZP34 D4ZRHI D47U43 D4ZVX5 D4ZYG5 DSAORI D5A3C9 D5ASZ7
D4ZP37 D4ZR113 D4ZU44 D4ZVX9 | D4ZYG6___| DSAOR2 D5A3D2 D5A5Z9
D47ZP40 D4ZRHS D4ZU45 D4ZVYO D4ZYH4 D5AORS D5A3D4 D5A600
D4ZP33 D4ZRI1 D4ZU46 D4ZVY2 | D4ZYH7 __| DSAOR9 D5A3D7 D5A601
D4ZP63 DIZRI3 D4ZU47 D4ZVY6 | D4ZYI2 D5A0S2 D5A3D9 D5A604
D47P82 D4ZRI5 D4ZU49 D4ZVY7 | D4ZYI3 D5A0S3 D5A3EQ D5A608
D4ZP83 D4ZR17 D4ZU50 D4ZVZ5 D4ZYI8 D5A0S6 D5A3G0 D35A609
D47P87 D4ZRJ4 D47ZU53 D4ZVZ8 D4ZY19 D5A0S7 D5A3H9 D5A632
D4ZP90 D4ZRKI D4ZU56 DIZWI1 D4ZYJ3 D5A0S9 D5A310 D5A652
D4ZP94 D4ZRLI D4ZU62 D4ZW24 D4ZYJ6 D5A0T2 D5A3I1 D5A654
D4ZP9% DIZRL2 D4ZU64 D4ZW26 | D4ZY19 D5A0T6 D5A312 D5A656
D4ZP97 D4ZRL35 D4ZU65 D4ZW41 D4ZYK3 D5A0UO D5A313 D5A664
D4ZP98 D4ZRL7 D4ZU67 D4ZWa4 | D4ZYL3 D5A0W1 D5A314 D5A665
D47P99 DIZRLS D4ZUT3 DAZW45 D4ZYM3 | DSAOW3 | D5A3I8 D5A679
D37PAO DIZRLY D4ZU74 D4ZW47 | DAZYM4___| D5A0X2 DSA3I9 D5A630
DIZPAI DIZRM1 D4ZU77 D4ZW48 | DAZYM6 | DSA0X3 D5A3J1 D5A681
DIZPA2 DIZRN2 D4ZU8I D4ZW52 D4ZYM7 __| D5A0X6 D5A3)2 D5A682
D47PA3 D4ZRN3 D4ZU85 D4ZW6| D4ZYM8___ | D5A0Y2 D5A313 D5A68S
DiZPA4 D4ZRP5 D4ZU86 D4ZW68 D4ZYM9 | DSAOY3 D5A3J8 D5A6A0
DA7PA6 D4ZRQ9 D4ZU87 D4ZW70 | DAZYNO___| DSA0Z5 D5A3L5 DSA6AS
DiZPAT DIZRR7 D4ZU89 D4ZW73 D4ZYN2 D5A107 D5A3L6 D5A6B0
Di7PBS D1ZRT] D4ZU92 D4ZW75 D4ZYN4 D5A118 DSA3L7 D5A6B6
DAZPC6 D4ZRT6 D4ZU97 D4ZW79 D4ZYN7 D5A121 D5A3M2__| D5A6B7
DazZPCY D4ZRT7 D4ZUB4 D4Z W84 D4ZYN8 D5A130 DSA3MS D5A6C2
"DazPD5 D4ZRT8 D4ZUC?2 D4ZW87 D4ZYPO D5A136 D5A3M6 | D5A6C4
"DazPFI D4ZRV5 D4ZUC3 DIZW88 | D4ZYP7 D5A 144 D5A3M8 | D5A6DS
DazpPFo D4ZRV7T D4ZUC4 DIZW99 | D4ZYQ3 D5A 149 DSA3M9__| DSAGFO
"DazPF3 D4ZRV8 D4ZUCY D4ZWA4 __| D4ZYQS5 D5AI51 D5A3N9 D5AG6F2
D4ZPFS D4ZRW5 | D4ZUD2 D4ZWAS | D4ZYQ6 D5A152 D5A3P3 D5A6F3
"D4ZPFs DiZRW7 | D4ZUD4 D4ZWD4___| D4ZYQ7 D5A156 D5A3Q5 DSAGF4
D4ZPF9 D4ZRX6 D4ZUD6 D4ZWD9 | D4ZYQ9 | D5AISS D5A3Q6 D5A6F9
DZPl6 DiZRY 1 D4ZUD7 D4ZWF3__| D4ZYRS5 D5A162 D5A3Q7 D5A6G4
D4ZPJ8 D4ZRY2 D4ZUD8 D4ZWF7 _| D4ZYRS D5A165 D5A3Q9 D5A6GS5
B4ZPI0 DIZRY 7 D4ZUD9 D4ZWF8__| DAZYRY D5A170 D5A3S2 D5SAGHO
D47PK6 D4ZRY9 D4ZUEOQ D4ZWG5 | D4ZYU7 D5A183 D5A3S4 D5A615
DAZPLO D4ZRZ0 D4ZUFO0 D4ZWHS | D4ZYUS D5A184 D5A3T2 D5A6I8
DZPL2 D15RZ3 D4ZUF! DaZWH6 | DAZYW4 | DSA189 D5A3TS D5A6J4
D4ZPL7 D47RZ4 D4ZUF4 D4ZWHO | DAZYWT | D5A196 D5A3T9 D5A6K3
DazPL8 D4ZRZ5 D4ZUHO D4ZWI0 D4ZYW9__| DSAIA4 ggﬁg?
D4ZPM3 D4ZRZ6 D4ZUI2 D4ZWI2 D4ZYX7 32?:33 D5A3U3
DazPmM8 | DazRz7 | D4ZUI9 DiZWI3 | D4ZCTS AlB3___| D5A3U9
D4ZPN3 DizRzs | DAzuj2 | D4ZWI4 | DAZYYS =

3.3 Results and Discussions

3.3.1 Functional annotation using homolog searching
As mentioned. all the selected hypothetical protein sequences were searched using BLASTp

for any annotated homologous sequences. After successful searching, we were able to

annotate the sequences from 526 hypothetical proteins (Table 3.2). These annotated proteins
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can be categorised into ten different groups which

membrane proteins, endonuclease, recombinase,

Each of these groups has been discussed here.

Table 3.2 List of the hypothetical proteins along with the
properties. Functions were allocated by
Molecular weight and GRAVY ip

o

are enzymes, reverse transcriptase,
transcriptional regulators, biosynthetic

reactions, nucleic acid binding proteins, ATP binding proteins and other proteins (Figure 3.1).

ir annotated functions and physicochemical
searching the closest homolog of known function. pl,
dex are mentioned for al| the annotated proteins.

U.mProt D Protein ID Annotated Function Protein pl Molecular GRAVY
DAZW68 | WP 014273899, D~ " | S Weight -
DIZUEO | WP 006619028 | e 1k auigo.go 0.
D4ZX01 WP 0142763221 AP Biriding proreln 2L, LR -
D4ZR99 WP_006618313.1 ATP Binding proteic L2 132089 08 =\2
DIZNT2 | WP 0066162501 ATP Bl prc 321 52541 SULL
DSAILO | WP 006618697.1 | AAA family A poer—————— 339 sl e
DSAI83 | WP 006617671 1 AAA family ATPase 81, 217142 DL
D4ZQ05 | WP 0066202321 ATPose — 532 32770.5 04
D3ASI6 WP 014274952.1 | ——  pqpa o ——— | 654 S097 1.4 L1
D4ZQE7 WP 014277486, 1 ATPase 3.05 33684.53 0128
DSA2D8 | WP 014274593.] cell division protein ATPas il 56539.85 0.208 |
D5ASGI WP_006618299.| biotin carborylme 53 12202641 | -0416 |
D4ZYU7 | WP 006618552 1 cobyrinic acid a.c-diamids = 6.24 15862.19 0.03
DSAIFI WP_006616956.1 cobyrinic acid a.c-diamideapise 6.54 39179 16 0005 |
D4ZWF7 WP_014273963.1 CocE leIJI‘IDl‘\T;I ¢ synthase 6.61 32229.15 -0.293 |
D5A652 WP 014277147.1 dilamare bioganoso~ 46 6230891 [0.237
D4ZWY2 WP 006617559.] LPS biUS\.mL?%Mh r().[cm 8.89 67588.27 -0.192
D4ZVV7 WP _014276228.1 LPS bimv:mk‘s.fs. fotein 8.32 31242.79 0317 |
D47U97 WP 014275889, o M.’;""f rolein 5.06 82756.37 -0.333 |
D4ZN2| WP 0142750991 T S-\ﬂ“ha‘““ [ 465 | Toetesi 20,946
D4ZWM4 | WP 006618852, W\ 8.46 1577708 20,369
D4ZXT0 WP 006616153.1 arginyl IRNA eyrondse 449 §749.99 20343
D4ZRG1 WP_00661708] | \M—anum\ 9.18 15210.55 0.009
DSASU2 | WP 0066165761 \L),WAS-‘"”‘““SL\ 5.63 31363.6 0.155
D4ZNW9 | WP 006617453 1 s 5.38 25366.87 20.237
DSAJLO_ | WP 006620025 ] testin biosynthesis 447 36888.2 0.165
DSAOH7 | WP 014276679 | deihiop e diogencsis 9.5 S 0.739
D4ZTN2 WP 0066200111 zlucosyl 3 1;10_'0“11 synthase ({%o l?:)‘i’).; 0' |I1x
DaZY W7 WP 006618050 1 e m hoglycerate synthase i-(:)ﬁ —1:,:' ] -[]-’73
D47N52 WP 0142751141 W&*—_ 4832334 0,188
D47Z79 WP 014274203 | Tipid o eeharide synihetage _“UJL_(T@ET_-
D5A317 WP 014276877 | lszCC.hundcs ‘thetase 3 '-7 446_6'3? - T
D5A2N] WP 0066192961 \m”“.""_‘"c-i\mmse\-_%——‘——mm‘q} —UU_)?—"
D47P37 WP 014277373, \m"““""’%mtluxa\——(’—‘(’—_ 34627.53 20,399
D4ZVUI__ | WP 006618207 ] %_ﬂ‘—‘——mmm 038
D47ZUB4 WP 014275901 W__{L____mmu L 052
DSAIR7 | WP 0142767651 %‘_ﬁ—*‘——ﬁ%um e
D4ZPL8 WP 014275244 %__L | 340429 | -0.299
D4ZXAD WP 006619407, W&jmtcm\_—_ﬂ“_‘ 33560,03 vl
D4ZPN8 | WP 014275256 | %%M e
D4ZZHY WP 014274206 ] %——i&% 2873586 | -0.485 |
D4ZSE8 WP 006616607 | %ﬁi‘_‘ 0 018
D47SF6 WP 006617693 | \Smrm&muln\»—_ﬂ?‘__i 50545.88 0411
DIZUC3 | WP 014275906, (\W‘m!em\—_z_sl__ 6993.02 10498
DT | WP 006617689 M‘—ﬁi—— s -
D:;[}Z MMLW“#—— 90159.7 0515
D47.x59 WP 0066]6732.[ WT— 43-884.| -0.415
= Wp 006618778 USPR associateq rotein ————— | 4452697 | 0483 |
DS:*.{X(] WP 006619979 | COX family dehydro enase —__fﬁ-—- 628435 | 0216
DIZIML WP 006630505 | aeadsarase 08 | S7o3550 | 0363
M%%ﬁm"\% 19157.52 0.385
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DIA3Y0 WP 014274768.) DNA polymerase 4.97 11200.76 -0.398
D4ZWHo6 WP 0142739711 DNA polymerase |11 6.15 98452.34 -0.418
DSA341 WP 006618857.1 [DNA repair 5.76 45248.96 -0.661
DiA6F4 WP 0142772181 primosomal protein 543 33775.13 -0.566
D478Y1 WP 014275641.1 bstEll 8.27 25483.32 -0.41
47734 WP 006617952.1 endol) nuclease 9.67 21226.68 -0.389
D3AOB2 WP 014276648.1 hnh endonuclease 11 6115.24 0.174
DSA3B7 WP 006617505.1 hnh endonuclease 10.45 6506.58 -0.379
D3A6F9 WP 014277222.1 hnh endonuclease 6.01 24234.53 -0.795
D3ALX3 WP 014276798.1 hnh endonuclease 10.51 47317.41 -0.474
D3A2S87 WP 014274670.1 hnh endonuclease 10.49 47470.76 -0.465
D47PUY WP 014275287.1 hnh endonuclease 11.66 8096.43 1167
D47508 WP 014275466.1 hnh endonuclease 10.38 48183.16 -0.483
D4/S27 WP 014275479.1 hnh endonuclease 10.48 48795.83 -0.499
477635 WP 014274215.1 hnh endonuclease 11.46 8126.45 -1.118
D5A3UL WP 006616396.1 restriction endonucleases 391 16839.16 -0.182
D47P/8 WP 014277406.1 restriction endonucleases 6.28 45029.65 -0.319
D47NW2 WP 006617460.1 restriction endonucleases 6.16 11641.02 0.761
D47S5F2 WP 006617693.1 restriction endonucleases 4.77 24266.96 0.003
D477N1 WP 014274330.1 restriction endonucleases 544 128029.18 -0.421
DSALL2 WP 014276737.1 restriction endonucleases 5.04 53715.74 -0.284
D3A121 WP 006619157.1 ribonuclease Hl 4.77 10355.52 -0.597
DSALLY WP 006619154.1 SnaBI endonuclease 5.96 247722 -0.283
DIZMP7 WP 006616503.1 uma?2 family endonuclease 4.62 29938.7 -0.797
D4ZUFS WP 006617750.1 uma? family endonuclease 4.51 31145.09 -0.474
DIZVY6 WP 014276245.1 uma? family endonuclease 4.74 35077.73 -0.936
DIZU77 WP 006618015.1 uma2 family endonuclease 5 31478.1 -0.669
D4ZY D8 WP 014276435.1 uma? family endonuclease 4.94 30%24.22 -0.682
D47YD7 WP 014276434.1 uma? family endonuclease 4.82 28541.24 -0.571
D37759 WP 0142742111 uma2 family endonuclease 4.82 2885_%8.43 -0.752
D3ASL6 WP 014274975.1 uma2 family endonuclease 4.68 27454.85 -0.674
DSASLS WP 014274974.1 uma? family endonuclease 4.68 27381.8 -0.654
D47NK4 WP 014277276.1 uma2 family endonuclease 449 32921.77 -0.602
DSASKS WP 014274969.1 | umal familv endonuclease 4.66 28224.66 .0,207
D4ZNK6 WP 014277278.1 uma? family endonuclease 4.54 ?MﬂJ? 0.504
D5A086 WP 006615898.1 uma famil\' endonuclease 4.51 ;7679.39 0417
D3A130 WP 014274460.1 uma? l:amSI\' endonuclease 4.96 ;8606.-5 -0.669
D47ZNK1 WP 014277273.1 uma2 mmflv endonuclease 4.7 ;83l4.87 06_
DY7NKS WP 014277277.1 uma2 family endonuclease 4.62 29133.66 -0.625
1)4)NK'7 WP 014277279.1 uma? family endonuclease 4.69 27626.1 -0.6
1)4}1‘30 WP 006617803.1 uma2 family endonuclease -}.68 25951.98 -0.817
DaZTD7__|__ WP 006618570.1 uma2 family endonuclease 5.03 27094.69 -0.522
Z 4276157.1 yma2 family endonuclease 191 30687.27 0.957
1)4{‘\.”_[3 WP 0l YT 0.1 uma? family endonuclease 4.77 24602.02 .0.409
:);Mbii le 8::;;2;:41 uma? family endonuclease 4.55 31882.69 20.516
I;D/Q:gg wl[’ 014574515:! uma2 ::am:) cngonuc:ease :5(:1 331316‘:)42.878 -gg:é?
amily endonuclease . ] -0.
D5A220 | WP 0L4274310 e family endonuclease 2.63 2130439 0217
D5A4L6 wP 0062-3268-1 ——uma2 family endonuclease 4.67 30661.2 -0.813
g;ﬁgtg w:: 8:3;;4970'| uma2 family endonuclease 4.72 30675.23 -0.817
> T yma2 family endonuclease 4.72 30689.26 0.817
D5ASLA_| WP 0142197 A me-Tke acivity 376 3493846 | 0203
D470 wp 014274_82} 3.5 exonuclease 5.92 93527.65 20.345
D4(X.60 WP 0066]877(7'] dynamin protein 5.14 82767.72 -0.501
[)4(.X[3 WP 014274116, GTPase family protein 557 72249 .4 20157
D4ZVQ2 WP_006617250.1 dead/deah box helicase 6.82 11509.36 -0.177
D477C5 wpP 0066173111 Scad/deah box helicase 9.18 38666.2 0239
D477B8 WP 014274258.1 dead/deah box helicase 77 18826.26 -0.395
D47.7B9Y WP 014274259.1 dead/deah box helicase 0.36 11604.27 20.108
D477B1 wp 0142742511 = deah box helicase 6.57 11891.63 -0.388
DazZC3 | Wb 0142742632 ﬂiﬂﬂim box helicase 601 6903.76 0.558
| _D477B7 WP 0142742571 DNA helicase 10.36 38461.03 0.7
D4ZYR9 WP_014276503.1 DNA helicase 6.87 6787.81 -0.031
D5A269 WP _006618443.1 DNA helicase 5.71 118522.01 -0.515
D472Q79 WP 014275353.1 helicase 6 5585.24 0.643
D47ZNF7 WP_006616820.1 helicase 8.62 21016.21 -0.367
D4ZNF4 WP 014277254.1 helicase 6.08 59327.34 -0.121
D5A366 wP 0|4276897.| Tvdrogenase 541 47414.64 0373
DiZQGo | WP 014277438 aspartoacylase family 6.04 43160.03 -0.279
D4ZNQS WP _014277303.L_ Tucosamine 6 phosphate deaminase 9.25 7350.36 -1.283
DsA6ss | WP 0066196107 #= iycoside hydrolase 8.3 2921185 | 0.131
D4ZRL8 JL(MQL%L‘L-‘—-LJ——#L—
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DZST2
DaZWF: WP

‘WE3 014275
D4ZTU W 275603
l)47‘_{,[qjg \\-]l: 8:137395{: l
D47V = wp 275800.1 alycoside
D3SA6CY WP 01 ‘(:]82{)_{] ; glveosyl h\-dmhuc %
D5AS; WP 4276570.1 haloaci IAD fami rolase 87
L 577 s 01427 " (hlc]dd' 2 ily h\d 5.66 1651t
D17SW8 WP 0066 7198.| e chalogenase _Flll;l:;c . ‘) - 31942

p z SE . It ase L] J
D47P07 WP_0066 2631.1 inosine-uridi hvdrolas .lhn protease - \'D 3 3 :\hz':i U':W
DI7S60 WP 0 164211 ine nucle ¢ 8.43 2 144 87 0318
D37P WP 14277363 isocl oside N rib 444 $3328.0¢ 0.22

fi P 006617985 ] —&__thp__p_lid‘ @ -
D47NL3 wp 014)',’ 17989, 1 cleotide pyr natse folasg k] 17637.61 0.389
[)5,\3[{-0 wp 006-75182'1 OXO rhtr:_hnﬁ hatase 4.89 EL‘JH.’:}_?: -0.331
Da7ZR26 wp 0“6617933_1 lah(,s hoh ']iasc 5.52 ??'4114,7_“ -0.011
DSA4N3 WP 0142;7'344 e hotrans; rolase 193 37386.67 -0.383
S P 014275375 L0 550 ROE )
S*_“Nn :\vp UfJ(w(::(:;j?'l techaride dczl.\l‘m” -.;‘ I;{\.I"]q :]'I-”
DD-AEIS VP_0066169 -] ———_\m_h_{):L_ﬂ » TR -

47TG7 WP 0142 ’}EL\IM&M‘TN\ +.9 3236607 -0.147

DazNs T W uoﬁ;n?ém" \;“Ldﬂ;‘m\ i 414003 0332 |
o = = 2 n de ; ~ - :

B:"{VUT \’v.]l Uﬂﬁmz;z?'l dependent ],1.\ddmk‘5c .4‘7 ,‘M“’“--\\ 0128 |

panhs WP 014276033 e 317 21004 43 0,252

SA4A2 WP 01337 033.1 beta aluc lase 6.33 33687 .68 20499
D4ZUI2 WP 000;]4845_[ ___:L— 8.62 377573‘1 0183
D4ZYQ3 WP 0142 6032.1 et I 4.79 292874 0.079
D5A31 WP 275934.1 . amase o o 6 S
47 8 0142763 . hitinase 94 3835441 ).085
|)4-/'le WP 013277 0] ﬁj\ S ST 0401
D.{'}UW_] :’tp 014376;;8-' \mmls;td-m;\ 8.74 I80OL. 18 -0.356

47T ' 2703 - v 5 —— She
l)s,;-[-FS W[: 006619%6.1 di,h‘dmx”ﬂs- rotein 5.29 18546.04 0473
e P 01275705 | Clsuanylate e o7 14362.12 0.43
sztm ::/[p Ouﬁf’l?]g?'l i llmm"‘lh‘ t:c:;lsc | 635 | 13046.88 20,683

SA024 P_00 o T T P 775 37007 & 037

4ZX00 WP 0142 23| dincylglycerol Kinase 5.9 T 0.05¢
D47XG1 WP 0 2763991 2.5 cerol kin ¢ = - 49.99 039
D4ZTV wp 06617219, carboxs RNA lim-ns“ AL 63993.88 -0.394
e B 006617230 ﬂﬂmt\ o 51936.05 0214
D47 Gq WP 0066]9346'I \WBHMLL 6.07 77804 i- 0132
D5 3 0066175 A Bnnse 1gase | 473 ] 33838 )

SAICY WP 00 7597.1 s : 35838.19 077
D5A510 WP 016519234_| \ipm\-—;ﬂ__ 3042848 -0.052
T 4276692.] j—libase — | 61182.29 0.352
DSAD[}: wp 0[1)4274955:] ]’l;"PSLj chaperon 3.56 718047 0421
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H Enzymes

W Reverse transcriptase
@I Membrane proteins

/ B Endonuclease
2%

\

@ Recombinase |

® Transcriptional regulation

Biosynthesis ‘

I Nucleic acid binding
ATP binding

1 Others

divided into ten functional categories. Different
» Fecombinase are listed under enzyme category.

nzymes like aldolase, dehydrogenase like

sterol  desaturase, DNA helicase, peptidase, transferase  |ike acetylase transferase.
Oxidoreductases like methanol dehydrogenase, Hydrolases |jke serine hydrolase and
hydrolyzing enzymes | iti

y” yzing ymes like chitinase. All these Enzymes help in the normal functioning of the
éé

3.3.1.2 Reverse Transcriptase

Reverse transcriptases are €nzymes that

' converts RNA to cDNA. They a d for genome
replication in RNA containing viryg ¥ TS USE &

» L€, retroviryg,
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nalu e. Na./H ) i i
I antipor ters were shown to play a Slgniﬁcant role in alkali tolerance. Na'/H
T . INa

ip ! I i .

annotate i -
d membrane proteins belong to some important membrane proteins like ABC
transport i i e
porters, ompA protein, FtsX protein, transmembrane transport carbohydrate t rt
5 ransport,

a . « . . . .
ntiporter activity and proteins involved in cell communication

3.3.1.4 Endonuclease

E i ’
ndonucleases are important enzymes in a cell. They are used in wide applications like DNA
e

repai i i ' - .
pair and various biotechnological processes with restriction endonucleases. We
. annotated

end i icti
onucleases like HNH endonucleases, restriction endonucleases and Uma2 famil
amily

endonucleases.

3.3.1.5 Recombinase

Recombinases are the enzymes which facilitate
ase helps in the DNA repair mechanisms. We have also annotated

s the recombination process. In the case of

bacteria, the recombin

S i i i
everal recombinases 1n our annotation process.

3.3.1.6 Transcriptional regulators
rtant process in a cell’s life.
tion is one of the first types of regulation that a cell

R . . .
egulation is a very impo Every process in the cell is regulated

precisely. Transcriptional regula

1 .
mplements to ensure a smooth and error-free transcription.

3.3.1.7 Biosynthetic reactions
ules in a cell as old molecules get degraded. Biosynthetic

It is necessary to make new molec
generate a number of important molecules. Our

pathways play a key role in this regard. They
ein involved in biosynthet
ginyl {RNA synthetase and ATP synthase.

st .
udy revealed some prot ic pathways. These are biotin carboxylase

glutamate biogenesis protein, ar

3.3.1.8 Nucleic Acid binding proteins
and RNA come€ under this
arry out various functions. In our study, several functions

Proteins binding to DNA class. DNA binding proteins are the
proteins which bind to DNA and ¢
of these DNA binding proteins have been detected like methylation, DNA polymerase. These
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proteins help key cellular processes like DNA replication. RNA polymerase is an RNA

binding protein and helps in the transcription process.

3.3.1.9 ATP binding proteins

A cell cannot survive without energy. Many proteins and enzymes depend on the availability

of ATP for their normal function. We have also found some ATP binding proteins during our

annotation. These types of proteins have a domain(s) that specifically binds to ATP for

energy. In this study, we found proteins like ATPase, protease and kinase that depends on

ATP for energy.

3.3.1.10 Others

There are many other proteins which were annotated during this study but could not be

categorized under the above-mentioned categories. Those proteins were either few in

numbers, or only a single protein was annotated. However, many important proteins were

identified. These proteins include proteins like calcium ion binding, metal ion binding,
CRISPR related proteins, metal resistance, photosynthesis-related, signal transduction.

circadian clock protein and stress tolerance proteins.

3.3.2 Physicochemical Characterization

The physiochemical properties like pl, molecular weight and Gran

d average of hydropathy
(GRAVY)

of all the hypothetical proteins were calculated by

ProtParam server of Expasy and
are listed in table 3.2,

These properties aid in defining the function of a protein like with pl
we can think of the probable environment ip which an enzyme can work. In our study.
have found that many proteins have high pl valiies, ;

found that 1

we

L]

transcriptase has .
p a pl range from 9 1o 12, while Ltra protein (A reverse transcriptase) also

to 10. In case of low pl values Uma2 endonuclease

tells about the hydrophobic nature of the protein

In our study, we h i i
; , ave identified many
membrane proteins and transporters that have hj

gh GRAVY valyes which adds to our
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3.3.3 Pathway identification of the annotated proteins

All the annotated proteins were considered for the possible pathway assignment from the
KEGG database. However, very few were currently found to be associated with any possible
pathway. We found only 15 annotated proteins to be associated with a single or several
pathways (Table 3.3). We found a range of different pathways associations with our
annotated proteins. The highest association is found with Kinases which are involved in many
pathways like calcium signalling, sphingolipid signalling, carbon metabolism, antibiotic
biosynthesis and several others. Some other pathways found are lipopolysaccharide

biosynthesis, Phenylalanine biosynthesis, ABC transporters family and cell cycle pathways.

Table 3.3 Pathways were identified for the annotated protein. 15 annotated proteins could be related to
some pathway(s). KEGG database was used to find possible pathways associated with the annotated

proteins.
UniProt ID Annotated Function Associated pathways
Calcium signalling pathway
. _ Apelin signalling pathwa
D4ZTT8 diacylglycerol kinase Phospholipase Isgspignallirbllg pathway
Sphingolipid signalling pathway
D4ZTG7 beta-glucosidase Other glycan degradation
242279 Lipid-a-disaccharide synthetase Lipopolysaccharide biosynthesis
D4ZP07 oxopronilase Glutathione metabolism
Dioxin degradation
D4ZW68 aldolase Xylene degradation
Phenylalanine metabolism
D4ZRT8 oxidoreductase Seleno compound metabolism
D5A3S4 sugar transporter Biofilm formation
D4zZUI2 creatininase family protein Arginine and proline metabolism
| D4ZND5 carboxypeptidase ABC transporters
ABC transporters
DAZPC9 ABC transporter Quorum sensing
D5A121 ribonuclease HI DNA replication
Quorum sensing
D4zQS7 RNA binding protein hfq Biofilm formation
RNA degradation
D4ZQ65 DNA adenine methylase Mismatch repair
D5SA0B4 aspartyl protease Cell cycle
Carbon, Glyoxylate and
dicarboxylate metabolism
D35A2Q9 glycerate kinase Glycerolipid metabolism
Biosynthesis of antibiotics
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3.3.4 Protein interaction network

Proteins usually work in co-operation. They interact with each other for various functions to
work normally. The proteins that we have annotated in this study belong to various classes
and perform different functions. Hence it is highly likely that these proteins interact with each
other for their functioning. So, we generated a protein interaction network between these
annotated proteins using STRINGS database. This interaction network consists of 526
annotated proteins, however here we have only shown those proteins which are interacting

with other proteins. These proteins make 522 nodes connected with 241 ] edges (interactions).

The p-value for this network was 1.0e”'°. P-value is the probability value or significance

value for a statistical model. A low p-value indicates that there is a little chance that the

results have derived from a chance.

This protein interaction map was divided into two main clusters. The cluster on the right side

is a cluster of reverse transcriptase and LtrA proteins (a kind of reverse transcriptase). These

enzymes have a high pl values and thus might be clubbed together. The one on the left

contains other enzymes like restriction endonuclease, HNH endonucleases and other

enzymes, that have low pl values. It also contains other predicted functional categories.

Several pairwise interactions have been also seen in this interaction maps. Pairwise

interactions are easy to analyse and hence we have investio

gated a pairwise interaction I1.¢.
BAI93621.1 and BAI93619.1 from our protein interaction map. Our annotation linked

BAI93621.1 to tellurite resistance while BAI93619 | is linked to nucleotide pyrophosph
Tellurite resistance genes help in the efflux of tellurium ions from the cell

pyrophosphate might help in the hydrolysis of nucleotides like ATP
for the transport process.

atasc.
Nucleotide

which provides energy
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o ) : A ¢
. S ) e e )
&

E 39 Protein interaction networks of the annotated proteins. The thickness of the line indicates
“1gure 3.2 Pr . . .
ﬁh fidence of interaction. For these interactions, 522 proteins have been considered. These
e confide 77 nodes connected with 2411 edges (interactions). The p-value for this network is

proteins make 5 | 06,

3.4 Conclusions

Annotating a gene/protein sequence could lead us to a comprehensive understanding of the
g

cellular working in terms of functional parameters. In the present study, we have annotated

the currently un-annotated proteins of Arthrospira platensis NIES-39. Out of total 1364 un-

annotated proteins, we were able to annotate 526 proteins. These 526 proteins belong to 10

different functional categories viz. enzymes, reverse transcriptase, membrane protein.s,
endonuclease, recombinase, transcriptional regulators, biosynthetic reactions, nucl(.:ic acid
binding proteins, ATP binding proteins and other proteins. These categories Contalf'l s-ome
important proteins which we were able to annotate like ABC transporters, transcriptional
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regulators, restriction endonucleases, metal ion binding and many other functionally
important enzymes. Out of these 526 annotated proteins, few proteins are found to be stress
induced proteins like alpha crystalline family protein and nirD stress tolerance protein. While
somcle proteins were also associated with the protein production machinery like many
peptidases, chaperons, amino acids metabolism and a nitrate reductase associated protein.
Annotated proteins were also assigned to several pathways like calcium signalling pathway,
Apelin signalling pathway, biofilm formation, DNA repl ) ) ‘

ication, RNA degradation and cell

cycle. Protein interaction n ¢
etwork was also generated for the annotated proteins which

showed high level of interaction between these proteins
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cyanobacteria
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4.1 Introduction
All Nitrate Reductases (Prokaryotic and Eukaryotic) belong to the Molybdopterin-Binding

(MopB) superfamily of proteins. MopB domain binds molybdopterin as a cofactor and has
been reported in a variety of molybdenum and tungsten-containing enzymes, like formate
dehydrogenase-H (Fdh-H) and -N (Fdh-N), some nitrate reductase (Nap, Nas, NarG),
dimethylsulfoxide reductase (DMSOR), thiosulfate reductase, formylmethanofuran
dehydrogenase, and arsenite oxidase (Maia and Moura 2015). Depending on the functions
and organisms these proteins can exist in various forms like monomers, heterodimers, or
heterotrimers. Cyanobacterial nitrate reductases are molybdoenzymes that catalyse the two-
electron reduction of nitrate to nitrite. In cyanobacteria, NR contains the bis-molybdopterin

guanine dinucleotide (bis-MGD) cofactor and a [3Fe-4S] cluster (Rubio et al. 1998, Rubio et

al. 1999, Rubio et al. 2002).
Nitrite reductase belongs to the NIR_SIR_ferr superfamily. Sulfite and Nitrite reductases are

key to biosynthetic assimilations of both sulfur and nitrogen and dissimilation of oxidised
anions for energy transduction. Two copies of this repeat are found in Nitrite and Sulfite

reductases and form a single structural domain. NiR converts nitrite to ammonium by a six-

electron reduction mechanism (Knaff and Hirasawa 1991).

The main aim of this study is to find the putative role of nitrate reductase and nitrite reductase

in the high protein content of the cyanobacterium Arthrospira platensis NIES-39. In this

study, we are trying to decipher the sequence and structural features of these enzymes unique

to Arthrospira platensis NIES-39 by comparing it with the other species of cyanobacterial

class. In this comparison, we have considered the evolutionary approach as well as the

sequence motif and structural domains across all cyanobacteria. In an evolutionary approach,

we compared the 16s based species tree with that of gene/protein tree and looked that
whether the gene/protein has evolved in a similar or in a different fashion to that of species

evolution. We have also analysed the functionally important residues of these proteins in

Arthrospira platensis NIES-39 to look for possible variations that could lead to any
functional variation and hence contribute to higher protein content. Structural analyses were

also performed to investigate any possible structural variations.
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4.2 Materials and methods

4.2.1 Selection of cyanobacterial species

NCBI genome database (https://www.ncbi.nlm.nih.gov/genome) was used to list all the
cyanobacteria which have been sequenced. The genomes which were present in the complete
and the chromosome levels only were considered for further study. In the complete and the

chromosome level, a total of 124 cyanobacterial species were present (June 2017). These 124

species were reconsidered to remove different strains of the same species. For the final

selection of species, a species tree based on 165 rRNA gene sequences was constructed
(Figure 4.1) for the selected 124 i Ser . s
species. After implementing these changes, a total of 56

species had been selected for further analysis which belonged to 8§ orders of cyanobacteria.
An order-wise selection of initial as well as final species is given in table 4.1
= (e L.
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Figure 4.1 16s rRNA gene sequences-based species tree for 124 cyanobacterial

species were selected for further analysis. Coloured circle represent the order

colour represents Synechococcales; blue colour is Nostoc

AL A

et gictes o late © G

species. Highlighted
of the species. Red

ales, green colour is Oscillatorials, yellow

colour is Chrococcales, pink represents Gloebacterials, maroon represents Pleurocapsales, black and

grey represent C hroococcidiopsidales and Gloeoemargaritales resp

ectively.



Chapter IV

4.2.2 Retrieval of nitrate reductase and nitrite reductase protein homologs
i i ] ) NSIs -S-39 were
Nitrate reductase and nitrite reductase proteins from Arthrospira platensis NIES-3

in i selected 5 >cies from the
used as a query to retrieve the homologous protein in the selected 56 species |

: . ahace R last
National Center for Biotechnology Information (NC Bl) RefSeq database. Blastn and Blastp

sed acainst RefSeq protein
(Basic Local Alignment Search Tool) (Altschul et al. 1990) were used against RefSeq p
o
3 1 ¥ SMrevIno [hC
database, and the organism was set to Cyanobacteria (taxid 1117) for retrieving
] " - 5 . .~ _— s ~< 1 X
homologous sequences of genes and the proteins from NCBI (with E-value cut off of <

: : -ochlorococcts
10-%). In case of NR, 53 out of 56 homologs were retrieved. Sequences from Prochlorococc

' sa 1solate
marinus str. MIT 9313, Nostoc azollae 0708 and Atelocvanobacterium thalassa isc

ALOHA were not found. In the case of NiR 54 homologs were retrieved. The sequence

Nostoc azollae 0708 and Atelocy

s from

/ - - y The
‘anobacterium thalassa 1solate ALOHA were not found.

accession numbers of all the retrieved homologs are given in table 472,

. - - ey - i > \. \S
Table 4.1 The number of species selected from each of the ¢yanobacterial order. Total 56 specie
were selected for current analysis,

— Order Initial Number of Final Nun_ﬂber of
species species
1. Synechococcales 64 15
2. Oscillatorials 20 13
8 Nostocales 19 13
4, Chrococcales 13 09
5. Gloebacterials 02 02
6. Pleurocapsales _____0_2____ 02
7 Chroococcidiopsidales —____0_1____ 01
8. Gloeoemargaritales 01 01
9. Unidentified \_‘—ﬁ_—‘__—oo———ﬁ
TOTAL 124 56
____\\________________
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Table 4.2 Genome assembly number and the protein accession number of the selected NR and NiR enzymes.

S.No. Organism Name Order Assembly Protein Accession
NR NiR
! AC“"K;;Z%T?B??”*”” Synechococcales GCA_000018105.1 WP_012163416.1 | WP 041659830.1
2 Ch”"“““””gg;?”""“SPC(? Synechococcales GCA 0003171451 WP 015160099.1 | WP 015161463.1
3 Cvanobium gracile PCC 6307 Synechococcales GCA _000316515.1 WP 015109988.1 WP 043325795.1
4 Cyanobium sp. NIES-981 Synechococcales GCA_900088535.1 WP_087068507.1 WP_087068510.1
5 Dacodococcggﬁgsa“”“lnzc Synechococcales GCA_000317615.1 WP_015230744.1 | WP_015230746.1
6 Leptolyngbya boryana dg5 Synechococcales GCA_002142495.1 WP_017288929.1 WP 017288935.1
7 Leptolyngbya sp. PCC 7376 Synechococcales GCA_000316605.1 WP _015132957.1 WP_015134937.1
g | P "’"h"”"]f/l"lcT"gz ;’;"”"“s SU- 1 Synechococcales GCA_000011485.1 NA WP_011131603.1
9 Pr "Ch"”"f)‘gcoz“s sp- MIT Synechococcales GCA_000757845.1 WP_042851326.1 | WP_042850618.1
10 | Pseudanabaena sp. PCC 7367 |  Synechococcales GCA_000317065.1 WP_041699619.1 WP_015165563.1
o "e"’"’“’“%g"”g‘""s PCC 1 synechococcales GCA_000012525.1 WP_011377931.1 | WP_011242624.1
12 Synechococcus sp. CC9902 Synechococcales GCA_000012505.1 WP_011361006.1 WP _011361018.1
13 Synechococcus sp. PCC 8807 Synechococcales GCA 001693295.1 WP_065716331.1 WP_065716665.1
14 Synechocystis sp. PCC 6803 Synechococcales GCA_000340785.1 WP_010872118.1 WP _010873675.1
15 Thermosynechococcus Synechococcales GCA_000011345.1 NP_682145.1 NP_682139.1
elongatus BP-1

16 Arthrospira platensis NIES-39 Oscillatorials GCA_000210375.1 WP_014274817.1 WP_014275660.1
I7 | Arthrospira sp. PCC 8005 Oscillatorials GCA_000973065.1 WP_008049497.1 CDM94270.1

18 | Crinalium e’;g’;;’”’”’“’" PCC Oscillatorials GCA_000317495.1 WP_041226795.1 | WP_015204592.1
19

Cyanothece sp. ATCC 51142

Oscillatorials

GCA_000017845.1

WP_009544043.1

WP_012361573.1
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Cyanothece sp. PCC 7424

Oscillatorials

GCA_000021825.1

WP 015955450.1

WP_012599063.

Geirlerinema sp. PCC 7407

Oscillatorials

GCA_000317045.1

WP 015170822.1

WP 015170815,

Microcoleus sp. PCC 7113

Oscillatorials

GCA_000317515.1

WP 0151802281

WP 015180235,

WP 071103809.1

WP_071103805.3

[ 23 Moorea producens JHB Oscillatorials GCA_001854205.1
f 24 O“’”“"’""’é‘;f;‘:”’”‘”" PLK Oscillatorials GCA_000317105.1 WP 015152060.1 | WP 015152056.)
25 | Osciliaioria ’;’ﬁ’f"’”"d” PLE Oscillatorials GCA_000317475.1 WP 0151791031 WP 041623582,
26 Cactdateticies Oscillatorials GCA_000309945.1 WP 00955463 1.1 WP 009554639,
cvanobacterium JSC-12 — = -
27 | Planktothrix agardhii NIVA- : ; — AT EAQTR G '
/ ’ CYA 126/8 Oscillatorials GCA _000710505.1 WP 042154875.1 WP ()4_134884.‘[
/ 28 ’ n”"”o"eﬂ’ﬁg’;’oi’“’””'""’”’” l Oscillatorials GCA_000014265.1 WP_011610825.1 WP 011610823,
{ 29 , A”"b‘""”“;f’,’fd"""’ Lee , Nostocales GCA_000317695. 1 WP 096713173.1 | WP _015213651.]
[ 30] Anabaena'sp. 90 | Nostocales GCA_000312705.1 WP 015081557.1 | WP 015081559.]
[ 31 ‘ Anahdgns ,‘)’gg’gb"” At ( Nostocales GCA_000204075. 1 WP 0113212131 | WP 011321208.]
| 32| Calothrix sp. PCC 7507 | Nostocales GCA_000316575.1 WP 0423412661 | WP 015128366,
> ’ R e Nostocales GCA 000317535.1 WP 0412337041 | WP 015209003
PCC 7417 - -
| 34| Fischerella sp. NIES-3754 Nostocales GCA 001548455.1 WP 062247080.1 | WP 062247088,
35 Nodularia spumigena - i — > 00619619 WP 006196192
[ ’ ool s Nostocales GCA 000340565.3 WP 006196196.1 P 006196192,
L36 Nostoc azollae 0708 Nostocales GCA 000196515.1 NA NA
37 Nostoc piscinale CENAZ21 Nostocales GCA _001298445.1 WP 062289963.1 WP 062289979
38 N‘""’”"f"l;’;"l’i)f;’””" PCC Nostocales GCA 000020025.1 WP 012408233.1 | WP 012408235 |
39 Nostoc sp. PCC 7120 Nostocales GCA 000009705.1 WP 010994788.1 WP 010994783 |
H \ NOBIIREES e Saiariion Nostocales GCA 002163975.1 WP 087537922.1 | WP 087537929
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Rivularia sp. PCC 7116

Nostocales

GCA_000316665.

WP_015116720.1

WP (0442907321

Arelocvanobacierium thalassa

g s L b 27&£19<
isolale ALOHA Chroococcales GCA_000025125.1 NA NA
43 Cyanobacterium aponinum 3 S \ - < 5 095¢ L
PO [0505 Chroococcales GCA 0003176751 WP 041922971 | WP 015218171.1
; Cvanobacterium stanieri PC
44 | Llano “‘“‘;:g;’””“”'((? Chroococcales GCA 000317655.1 WP 015222182.1 | WP 015222811 ]
45 Ch""”"”““”g;ggd”“””'P(‘? Chroococeales GCA _000332235.1 WP_017294885.1 | WP 017292467.]
46 Geminocystis sp. NIES-3708 Chroococcales GCA_001548095.1 WP 0663447841 WP 066347786.1
47 Gloeocapsa sp. PCC 7428 Chroococcales GCA_000317555.1 WP 0151883861 WP 015188381.1
L 48 \ Halothece sp. PCC 7418 Chroococcales GCA_000317635.1 WP 015226432.1 WP 015224664.1
ﬂ 49 \ A4uvwxwwnsc;gggvnosui“lhs‘ Chroococcales GCA_000981785.1 WP 046662561.1 WP 046662719.1
50 Microcystis panniformis . ) . i A ) V690
L ‘ FACHB-1757 Chroococcales GCA 0012642451 AKV66046.1 AKV69016.1
Sl Pleurocapsa sp. PCC 7327 Pleurocapsales GCA_000317025.1 WP_015145301.1 WP 015142945.]
52 S““"e’““yﬁzgﬁ”hae”’P(I: Pleurocapsales GCA_000317575.1 WP 015192771.1 WP 015192765.1
33 | Gloeobacter kilaueensis JS1 Gloeobacterales GCA_000484535.1 WP _023175789.1 WP _023171581.1
o (”OQOb”C“;;ﬁﬁh“‘““ Pec Gloeobacterales GCA_000011385. 1 NP_924517.1 NP_924503.1
55 Chroococcidiopsis thermalis Chroococcidiopsidal GCA 000317125.1 WP 015155574, WP 015157292,
PCC 7203 es - .
36 | Cloeomargar MRS | oy scemarmariales | G 001870225,
Alchichica-D10 8 - o

WP 0714545701

WP 071454571.1

Page | 66




| Chapter IV

4.3 Results and Discussions
4.3.1Nitrate Reductase (NR)

4.3.1.1 Sequence and structural analysis

All the cyanobacterial NR proteins belong to the Molybdopterin binding superfamily. The
monomeric cyanobacterial NR protein comprises of two functional domains (Table 4.3) with
an average 735 amino acid residues. The first domain is MopB Nitrate R NapA like
(cd02754) and the second one is MopB CT Nitrate R NapA-like (¢d02791) domains. MopB
Nitrate R NapA-like domain contains an Iron-sulphur cluster binding region and a binding
site for Molybdopterin cofactor. The much smaller MopB CT Nitrate R NapA-like domain is

also involved in Molybdopterin cofactor binding. Molybdenum is coordinated by six ligands.
out of six, four are provided by the two dithiolene sulfur atoms from two molybdopterin

guanine dinucleotide (MGD) molecules, the fifth ligand is the Sulphur atom of Cys140 and
the sixth is a non-proteineous sulphur. This Molybdenum cofactor helps in the transfer of

electrons and i : . .
formation of the intermediate during the enzymatic reactions. We identified the

conserved signature pattern of these domains in cy

domain is hiehl anobacteria. MopB Nitrate R NapA-like

omain is highly conserved, and a 21 aming acids long pattern is present in all the
bacteri i . _ & :

c':yano ac .ena which also have functionally ‘mportant residues like G344 and Q345 which are

involved in MGD2 binding while A348, R357 and A358 "

—_ : are involved i iding the nitrate
towards the active site (Figure 4.2A). MopB CT N in guiding
Iltrate R N

'dp/-'\-likt, d()lll'dill i& l e
conse 3 l g l 1 ne. I lg atl.ll (% (
rwed a Ill()u ll €ss tha“ [lle i rst one ES s1gn € patt oI CO

; ; : - Gdues with
functionally importance such as T60( R602, Wo07 e nsists of 15 residues W1
3 = 08

acids for growth.
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Table 4.3 Domains boundary of NR protein in each of the cyanobacterial species shows conserved
nature of NR protein.

Gloeocapsa sp. PCC 7428

. MopB_Nitrate-R-NapA-like | MopB_CT_Nitrate-R-NapA-like
Domains (cd02754) (cd02791)
Species From To Length From To Length
Acarvochloris marina MBIC11017 6 589 584 597 715 119
Chamaesiphon minutus PCC 6605 6 584 579 591 711 121
Cyanobium gracite PCC 6307 16 590 575 ?98 717 120
Cvanobium sp. NIES-981 10 590 581 ?96 717 122
Dacrvlococcopsis salina PCC 8305 4 580 577 39(3 714 125
Leptolyngbya boryvana dg5 6 589 ?84 595 7;6 132
Leptolyngbva sp. PCC 7376 7 599 ?93 f_’Os 7-3 l;l
Prochlorococcus sp. MIT 0604 5 568 564 582 70; l;]
Pseudanabaena sp. PCC 7367 5 ?69 565 583 73_ 1;2
Svnechococcus elongatus PCC 7942 20 595 573 602 ;-]-;’] l;;
Svnechococcus sp. CC9902 9 590 582 2(9)2 774 : ;'l'
Svnechococcus sp. PCC 8807 7 597 591 = 7-]-4 I;O
Svnechocystis sp. PCC 6803 11 587 577 2 T 5 I.1-9
Thermosynechococcus elongatus BP-1 35 595 561 o3 7‘]-0 T
| Arthrospira platensis NIES-39 6 580 575 = o 2
Arthrospira sp. PCC 8005 6 580 575
il s 9333 6 597 592 605 723 119
Crinalium epipsammum PCC
; - < 42 6 594 589 600 718 119
| Cyanothece sp. ATCC 51142 o 500 AT 3 =
Cranothece sp. PCC 7424 6 684 75 o - ]7(-)
Geitlerinema sp. PCC 7407 6 2% 1 60; = 20
Microcoleus sp. PCC 7113 6 73 -
; 6 598 592 604 122
Moorea producens JHB 94 13 19
Y ia acumi 304 7 586 580 5 2
Oscillatoria acuminata PCC 6 4 70 e 201 150
Oscillatoria nigro-viridis PCC 7112 5 ” = o8 16 o
Oscillatoriales cvanobacterium JSC- 12 7 5 5
—— 126/8 | 5 585 581 592 70 118
|_Plankiothrix agardhii NIVA-C YA 12 — = <29 ~09 o
Trichodesmium erythraeum IMS101 2 = 74 93 5 120
Anabaena cylindrica PCC 7 122 ; — 7 =39 =10 177
Anabfzen.a.sp. 90 5503 6 578 573 592 711 120
|___Anabaena variabilis ATC . 502 597 609 726 118
Calothri sp. PCC 1507 6 | 608 | 603 615 | 135 121
Cvlindrospermun sagnele P P s | e0s_ | 615 | 735 121
Fischerella sp.. NIES-375 - — 1 2 583 601 721 121
Nodularia spumigena CCY941 — [ 536 581 600 719 120
Nost()CpiSCina[e CENAZI | 611 606 624 744 121
| Nostoc punctiforme PCC 73 102 __f%___ 597 ) 611 730 120
| Nostoc sp. PCC 7120 — 501 536 599 718 120
|__Nostocales cyanobacterium HT-58-2 _,%,_ 07 602 614 734 121
Rivularia Sp. PCC 7116 | 587 582 594 714 121
Mcwn‘um aponinum PCC 10605 “’%’——__‘777 572 534 704 121
Cyanobacterium stanieri PCC 7202 T <5 530 592 711 120
Geminotl'ystis /z?;-dmaniz' PCC 68308 -’T_ﬁ 585 580 592 712 121
Geminocystis sp. NIES-370 - 92 537 599 716 118
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Halothece sp. PCC 7418

4 580 577 592 712 121
Microcystis aeruginosa NIES-2549 6 596 591 602 723 122
Microcystis panniformis FACHB-1757 6 596 501 602 722 121
Pleurocapsa sp. PCC 7327 6 605 600 611 732 122
Stanieria cyanosphaera PCC 7437 6 608 603 615 735 121
Gloeobacter kilaueensis 1S 8 571 564 378 695 118
Gloeobacter violaceus PCC 7421 8 564 557 571 688 118
Chroococcidiopsis thermalis PCC 7203 __()—_53()— 584 597 715 119
Gloeomargarita lithophora Alchichica- |
D10 3 572 570 579 698 120

probability

é

350 355

probability
@)
L 11 I({II 1Ll

0.0

608 613
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ten major motifs in all the cyanobacterial sequences (Table 4.4). Interestingly, an extra motif
of 24 amino acids (SIVNPELLPTSQTQPNQQQLNPTI) (E value = 6.9e-005) was identified
in the genus Arthropsira at the C terminal and spans from residue 711 to 734. The sequence
conservation for this motif is shown in terms of sequence logo in figure 4.3A. Another motif
was identified in Microcystis aeruginosa NIES 2549 and Microcystis panniformis FACHB
1757 (WPDSIDEISAPKTANSGELLGNLVK[DN]|D[HD]K) (E value =2.3e-006). This motif
is 29 amino acids long and present from residue 536 to 564. The sequence conservation for
this motif is shown in terms of sequence logo in figure 4.3B. These motifs are important

regarding that these could be used as a potential marker to identify these Genera.

Table 4.4 MEME output showing the ten major motifs identified in the cyanobacterial species. Sites
represent the number of sequences in which a particular motif was identified.

Motif E-Value Sites Width
1 7.6e-3297 52 64
2 1.5e-5012 52 113
3 1.7e-2965 52 66
4 1.1e-3377 52 80
5 3.9e-2754 51 80
6 2.2e-2360 52 81
7 3.2e-2342 52 5@
8 2.9e-2075 51 57
9 5.6e-1294 52 29

— 10 | 9.6e-873 50 29

o

[ l DD
CRCAE AP LU LonE ARNELLOIK

probability
(=]
W

0.0 20
A
1.0
=
=
g 0.5
=4
o
0.0 P 10 15 20
B

Figure 4.3 Sequence conservations representing motifs in (A) Genus Microcystis of 41 amino acids
and (B) Genus Arthrospira of 24 amino acids.
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Arthrospira platensis NIES-39 protein sequence was used as a query to scara‘:h‘ l::;t;:;n(:))s;
Bank. Bacterial periplasmic NR (Nap) from Desulfovibrio desulfuricans ATCC 2 )

[D - 2JIO) (Najmudin et al. 2008) was the best hit with an identity of 35% :Lmd quulf)’
coverage of 95%. Pairwise sequence alignment was performed between the bacterial al']d the
cyanobhacleria] sequences and using the functionally important residues of bacteria the
corresponding functionally important residues were identified in Arthrospira p/u!-en.\'i.\' NIE:(—)
39. A total of 70 functionally important residues were found conserved (Table 4.5). ThLbL‘ )
residues can be divided into five categories viz. (1) MGDI binding — 26 residues (2) MGD2
binding — 25 residues (3) To guide nitrate into the active site — 9 residues (4) Iron Sulphur

cluster binding — 9 residues (5) Molybdenum binding — 1 residue.

; . 3 . ; . ~terial
Table 4.5 Sequence variations (functionally important residues of NR protein) among L}'anobatltlf y
' . ; ; ; > Neenlfovibric
species. Functionally important residues were identified by comparing the sequences of Desulfovi
desulfuricans ATCC 27774 and A4 rthrospira platensis NIES-39.

~——
Desuf’fovibrio Ar!;’rraspr.;"a Synechocystis Variations i Typc O_t
Cfe-flllﬁfgf;?;ii ATEC ﬁlfgsfgl; sp. PCC 6803 Cyanobacteria substitution
MGD | binding
R 14 P10 P P(52) S(1) Differ
Q111 Q119 Q
N 136 N144 N
GHE CHTI N —
E 416 Ad14 A
T 417 T4l | 1
N 418 N416 N
T 422 S420 | g
| 443 Q0 | o I o@oseiNG Similar__|
e D441 D D(5) E8) Similar
A 445 A442 A A(49) C(3) S(1) Differ
F 446 Y443 Y
401 A458 A AGO) C(HGT() Differ
A 462 A459 & A(43) T(é)()ll;@) S(1) o
F 463 460 Q
S615 T600 N T(28) V(12) N(7)1(5) Diffet
S(1
R617 R602 R S
W2 T wees W =
H®3 | hos T T R S
T 624 T609 _—T—__—_—__——:”:
I 7T Y S S S Y Y 77
— M67 1 "Re1z | g
F 689 M674 | ™M T —
L Neyr W A R - R e S
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MGD 2 bindin
K 49 K58 K
L173 TE] ' [(34)V(9) Similar
G174 G182 G
S 175 T183 T T(46) S(6) A(1) Similar
N 176 N184 N
E 179 E187 D E(46)D(6) A1) Similar
A 180 C188 C
D 204 D212 D
P 205 P213 P
R 206 R214 R
P 222 P230 P P(51) S(HL(1) Differ
G 223 G231 G
D 225 D233 D
C 307 S306 S
M 308 M307 M
G 309 G308 G
R313 S$312 S S(51) R(2) Differ
G 345 G344 G
0 346 Q345 Q
T614 T599 T T(52) I(1) Differ
M616 G601 G
V618 L603 L L(46) Y(5)V(2) Differ
1619 Y604 Y Y(49) L(4) Differ
H 621 H606 H H(49) Q(4) Differ
S 1715 A705 A A(52) S(1) Differ
A To guide nitrate into the active site
R 138 R146 R
R 354 R352 R
S 360 A 358 S A(33) S(14) C(6) Differ
2
H 396 N 394 S TGhH D(j\“&)sm NG) Differ
Y 533 C 529 C TR G®
- R 709 K 699 K RG)H(1) S(1) Q(1) Differ
P137 S145 S
M4l M149 M
A349 | A348 A
Iron Sulphur cluster binding
) C
(y: :g \(/:] | Y Y(52) F(1) Similar
Cl16 Cl12 C
G 19 Gl5 G
C 20 Cl6 [ CE—
C47 C56 ¢
G 50 G59 ‘____%______
Pl [P0 [ v | smi
Molybdenum bindin
i S S |

he MSA and searching for any type of

All the above residues were analysed by looking into t
d that residues at only six

Variation within all the selected cyanobacterial species. We foun
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positions were showing variations where the residue type was different in various spec

Two residues belonged to the MGD1 binding category (459 and 600), one to MGD2 binding
(603) while the remaining three belonged to the guiding nitrate tow

and 699) (Numbered according

ards active site (358, 394

o Arthrospira platensis NIES-39). The sequence

0.5+

probability

e
o
!

A358

Figure 4.4 Sequence conservations at the functionally

important residues in which variations were
nobacteria.

detected among cya

4.3.1.2 Phylogenetic analysis
4.3.1.2.1 Species tree

We generated 16s rRNA £Ene sequences-based Species tree for a]] the selected 56 species for

ure 4.5). Our species tree was divided into @

. ks T - Uscillatorials, Synechococealeg Gloeomargaritales

eobactenials. Thj IX-un | . >

and Gloeo This mix up 1s quite cOmmon as al| (he current species are assigned to 2
xonomical order base ) _

ta. ! d on morphologicy|, Physiological of biochemical data. [t seems that

this type of data is not sufficient tg deciphe

I the trye evolutionary history of cyanobacteriﬂ.
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Other studies have also shown mixed clades for cyanobacterial order (Gupta 2009, Singh et
al. 2015). Our species tree is coherent with previously made 16s rRNA species tree using
similar cyanobacterial genus (Seo and Yokota 2003, Shih et al. 2013). This species tree
suggests that the order Nostocales is the most conserved order as the species of this order are
confined to a single clade. Species within Oscillatorial is well conserved with a few
exceptions. Chrococcales and Synechococcales are diverse orders since these orders comprise
of species located within different clades in the tree with high bootstrap support values. This
suggests that these orders were constantly interacting at a gene level. This species tree also
indicates a general pattern of evolution of the cyanobacterial orders, i.e. constant gene
duplication and speciation events took place from the first common ancestor of

Cyanobacteria. We have considered our species tree as a reference tree and compared our

gene/protein trees to this reference to get a picture of the protein evolution.

4.3.1.2.2 Gene tree
Both Maximum likelihood (ML) and Neighbour-joining (NJ) methods were used to generate

the phylogenetic tree for the gene of NR (narB) using the 53 species (Figure 4.6). The
topology of both the trees was similar, so only NJ tree has been discussed here. Our gene tree
has been divided into 15 clades. Out of these 15 clades, 8 contain species from the same
order, i.e. clade | and 4 include Synechococales, clade 3 and 13 include Chroccocales, clades

6, 10 and 15 include Oscillatorials and clade 9 include Nostocales. The remaining 7 clades

contains species from different orders. For example, clade 11 has 4 species from 4 orders

which are Synechococales, Nostocales, Oscillatorials and Pleurocapsales. Presence of these
species from different orders in a single clade points towards a common evolution of this

gene due to a similar kind of environmental pressure. A horizontal gene transfer event likely

occurred between these species. To get a clear picture of the gene evolution, we compared

our species tree with the gene tree. Clade wise comparl
that while most of the species retained their clades with other co-species in gene tree as was

son of species and gene tree revealed

in species tree, some species moved to an entirely different clade with different co-species.

However. in most cases the bootstrap values of these branches are not significant. Only in the

case of Rivularia sp. PCC, we observed that the evolutio
from that of species. Arthrospira platensis NIES-39 was present in clade 10 with three other
ch are Arthrospira sp. str. PCC 8005, Trichodesmium

nary pattern of the gene is different

species of the order Oscillatorials whi

erythraeum and Cyanothece Sp- ATCC 51142 indicating the closeness of NR gene of
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. . _— S
Arthrospira platensis NIES-39 to NR gene of other Oscillatorials. Other members of tl

order Oscillatorials were present in different clades of the tree.

85 @ Prochlorococcus marinus MIT 9313
97 @ Prochlorococcus sp MIT 0604
100 @ Synechococcus sp CC9902

@ Cyanobium gracile PCC 6307
of L5
91

@ Cyanobium sp NIES 981

@ Synechococcus elongatus PCC 7942

@ Thermosynechococcus elongatus BP 1

@ Geitlerinema sp PCC 7407

@ Pseudanabaena sp PCC 7367

Gloeomargarita ithophora strain D10

@ Gloeobacter kilaueensis JS1

100 @ Gloeobacter violaceus PCC 7421

@ Acaryochloris marina MBIC 11017

@ Moorea producens JHB

Halothece sp PCC 7418

93— @ Cyanothece sp. PCC 7424 ]
@ Pleurocapsa sp PCC 7327

100 Microcystis aeruginosa NIES 2549
{ Microcystis panniformis FACHB 1757
@ Stanieria cyanosphaera PCC 7437

98 gmo: @ Cyanothece sp ATCC 51142

@ Synechococcus sp PCC 8807
Geminocystis herdmanii PCC 6308

@ Synechocystis sp PCC 6803
79 @ Leptolyngbya sp. PCC 7376 ?
100
_L—”:
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Figure 4.6 Gene tree based on NR gene sequences of 53 species. This tree has 15 distinct clades.
Colour coding is the same as figure 4.1.
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4.3.1.2.3 Protein tree

Protein tree is more reliable than gene tree as genetic code is degenerate and hence two
species which had used different codons for same amino acid could be far in gene tree. Hence
we had constructed phylogenetic tree using the available 53 protein sequences (Figure 4.7).
The protein tree also showed mixed clade architecture as it was found in the gene tree with
species of different orders coming in a single clade. Protein tree was divided into 13 clades.
Out of these 13 clades, 8 clades contain species from the same order, i.c. clade 1 and 7
contains species from Synechococales, clade 3 has Chroccocales, clade 4 includes
Gloeobacterials, clades 5, 9 and 11 comprises of Oscillatorials and clade 13 includes
Nostocales. The remaining 5 clades contains species from different orders. For example.
clade 10 has 7 species from 4 orders which are Chrococcales, Oscillatorials. Nostocales and
Pleurocapsales. This again points towards a horizontal gene transfer event between the
species of these orders. We compared this protein tree with that of the species tree, and we

observed that most of the species retained their original positions similar to the species tree.

some species followed a different path of evolution, a trend seen in the gene tree analysis. In

this case, there are a total of 2 species, Oscillatoria nigro-viridis PCC 7112 and Planktothrix

agardhii NIVA-CYA 126/8, which have changed their association. Both the species with
good bootstrap values belong to the order Oscillatorials which reconfirms the diverse pattern
of this order as is observed in the species evolution. This suggests that the evolution of these

species was influenced by some external environmental pressure which leads to a different

evolutionary pattern for this gene in these species. The high level of mixing of species of all

orders in protein tree suggests that the Cyanobacterial species had extensively communicated

with each other at a genetic level. In this tree, Arthrospirg platensis NIES-39 was present in

clade 9 with the same three species as observed in gene tree. Other members of the order
Oscillatorials shared different clades with other Orders
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4.3.1.3 Codon usages

The codon usages of NR protein in different cyanobacterial species is evaluated by
comparing gene and protein trees in a clade wise manner and selected those species which

have changed their respective position in the two trees. In gene tree. Glococapsa belongs 10

clade 8 with Crinalium epipsammum PCC 9333 with a bootstrap value of 31 while in protein

tree it was in clade 6 with Oscillatoriales cvanobacterium JSC-12 with a bootstrap value of
77. This data suggests that Gloeocapsa sp. PCC 7428 and Oscillatoriales cvanobacteriim
JSC-12 may have different codon usage. We have looked into the codon usages of these tWo
species and found that in most cases the two species have used different codons for the same

ami i indi ‘
mino acid. To confirm our finding, we created a gene tree based on only first two bases of
codon and leaving the third base. With the third b

observed that Gloeocapsa formd a ¢l

=]

ase degeneracy removed in this tree. W

ade with Oscillatoriales cvanobacterium 1SC-12 with #
bootstrap value of 70 (Figure 4.8).
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4.3.1.4 Gene Duplication and Speciation events

Gene duplication and speciation events are the key processes by which genes get transferred
from one species to the other. In this study, we used the species tree and the gene tree to
examine the possible gene duplication and speciation events in all cyanobacterial species.

The result is depicted within Figure 4.9. The figure indicates that many cyanobacterial
species underwent extensive gene duplication and speciation events, which is supported by a
good bootstrap value (275%). Gene duplication is one of the mechanisms that lead to
evolutionary changes. Novel functions or additional functionalities may emerge from the
duplicated genes (True and Carroll 2002). Same can be said about speciation events where
the same species evolves in different environments and can acquire some additional
functionalities to the same proteins.

In case of NR, while the basic functionality was preserved, additional functionality may have
come up for this protein in terms of specificity and efficiency. It is evident from the tree
(Figure 4.9) that in most cases duplication events happened initially in the evolutionary
process which was followed by speciation events. For example, Geitlerinema sp. PCC 7407
(soil and freshwater cyanobacteria) and Gloeobacter species (found in extreme conditions

like limestone and lava caves) which belong to different taxonomic orders but are present in

the same clade with high bootstrap support (85%). This gives an idea that both these species

have originated from a common speciation event. Similarly, Dactylococcopsis salina PCC

8305 and Halothece sp. PCC 7418 showed the same behaviour. Speciation events could

explain the relatedness of these species of the different orders. These observations further

reinforce the widespread diversity of cyanobacterial spe
environmental conditions. These duplication and speciation events which lead to the
y influenced the functionality of this protein.

cies arising from different

evolution of Nitrate reductase have certainl



Chapter IV

100 @ Cyanobium gracile PCC 6307
&E. Cyanaobium sp. NIES 981
< @ Synechococcus sp. CC9902
@ Prochlorococcus sp. MIT 0604

@ Synechocystis sp. PCC 6803
—E. Thermosynechococcus elongatus BP 1

Gloeomargarita lithophora strain D10

Cyanobacterium stanieri PCC 7202

99 Cyanobacterium aponinum PCC 10605
‘BE Geminocystis herdmanii PCC 6308
Geminocystis sp. NIES 3708
@ Leptolyngbya sp. PCC 7376

@ Synechococcus sp. PCC 8807

@ Oscillatoriales cyanobacterium JSC 12

@ Synechococcus elongatus PCC 7942
@ Geitlerinema sp. PCC 7407
@ Gloeobacter kilaueensis JS1

@ Gloeobacter violaceus PCC 7421
@ Planktothrix agardhii NIVA CYA 126/8
@ Osacillatoria nigro viridis PCC 7112

4

100

100 :

{. Pseudanabaena sp. PCC 7367
85

100

@ Leptolyngbya boryana dg5
Chroococcidiopsis thermalis PCC 7203
—————— @ Chamaesiphon minutus PCC 6605

{ Gloeocapsa sp. PCC 7428

@ Crinalium epipsammum PCC 9333

b

@ Anabaena cylindrica
@ Anabaena sp. 90

100 :
b ) :. Fischerella sp. NIES 3754
100
>

@ Nostocales cyanobacterium HT 58 2
@ Cylindrospermum stagnale PCC 7417

@ Nostoc punctiforme PCC 73102

@ Nodularia spumigena CCY9414
@ Calothrix sp. PCC 7507

— @ Nostoc piscinale CENAZ21

@ Anabaena variabilis ATCC 29413

@ Nostoc sp. PCC 7120

%

@ Arthrospira platensis NIES 39
@ Arthrospira sp. str. PCC 8005
@ Trichodesmium erythraeum IMS101

75

©® Cyanothece sp. ATCC 51142
@ Rivularia sp. PCC 7116

i. Stanieria cyanosphaera PCC 7437
‘LL"—-——— @ Moorea producens JHB

@ Acaryochloris marina MBIC11017

® Dactylococcopsis salina PCC 8305
Halothece sp. PCC 7418
Microcystis aeruginosa NIES 2549

100

Microcystis panniformis FACHB 1757
78

@ Cyanothece sp. PCC 7424

@ Pleurocapsa sp. PCC 7327

@ Microcoleus sp. PCC 7113

;

© Oscillatoria acuminata PCC 6304
Figure 4.9 Evolutionary relationships among taxa. There are 3 significant (with bootstrap value
>75%) gene duplications (closed diamonds)

. identified in the tree with |5 significant speciation (open
diamonds) events.



Chapter IV

4.3.1.5 Structural analysis

To look into the 3-Dimensional structure of the 6 identified residues and the new motif
identified in the genus Arthrospira, representative species of the clades obtained in the NR
protein tree were modelled using the Modeler v9.15 (Table 4.6). A total of eight species were
modeled which belonged to four major Orders of the cyanobacteria. The nearest available
crystal structure of nitrate reductase was from a bacteria (Desulfovibrio desulfuricans ATCC

27774) (PDB-2J10) which was used as a template. The query coverage was in the range of

3y ¥

95-99%, and the identity was in between 33-37%.

Table 4.6 Three dimentional structures of NR proteins of selected species (based on protein tree) were
predicted through homology modelling. Three dimentional structure of NR protein from bacteria
Desulfovibrio desulfuricans (2]10) is used as template.

. Query _
Species modelled T;ztg?hn Coverage 'dT;Lt)'tv
(%)

[ Arthrospira platensis NIES-39 736 95 35
Dactylococcopsis salina PCC 8305 739 95 36
}; Geminocystis sp. NIES-3708 715 99 33
L Microcystis panniformis FACHB-1757 736 97 37
B Nostoc sp. PCC 7120 746 96 36
Planktothrix agardhii NIVA-CYA 126/8 730 96 Bk
L Rivularia sp. PCC 7116 764 95 35
l Synechocystis sp. PCC 6803 714 98 36

All the models with validation score analysis are listed in table 4.7. All models were wel]
within the prescribed values for validation. All the modelled structures were superimposed,
and we again looked for any variations in each functionally important residue. Qur analysis
shows that the majority of the functionally important residues are conserved in the
cyanobacteria in terms of their orientation in 3-dimensional space. However, there is one
region in the protein which showed variation in terms of amino acid composition in various
Cyanobacteria. This is the region of nitrate entry site, i.e. nitrate enters into the protein and
makes its way to the active site. This is a very important site as this is the first point of
interaction between the enzyme and the substrate. Since nitrate is a negatively charged
molecule, most amino acid residues in this region are positively charged so that they can
interact with the substrate more efficiently. This site comprises of nine residues, i.e. S145,

R146, M149. A348. R352. A358, N394, €529 and K699 (numbered according to Arthrospira

Pacea | @9
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- Nz . 57 are i‘ H i

platensis NIES-39). Out of these nine, S145, R146, M149, A348, R352 and €529 are fully
) . N E— 358 1s

conserved in all the cyanobacterial species while the remaining three residues vary. A3dS 1
: hile is replaced

replaced with Ser and Cys, Asn394 is replaced with Asp, Thr and Ser while K699 is replace

with Leu and Arg. The variation at position 394 is shown in figure 4.10.

) ) . e .onsidered to
Table 4.7 The quality of predicted NR structure is estimated through various servers and conside

be good structure.

Species Verify3D Errat
Arthrospira platensis NIES-39 284.10 90.634
Dactylococcopsis salina PCC 8305 90.12 91.053
Geminocystis sp. NIES-3708 92.87 90.244
Microcystis panniformis FACHB-1757 88.86 86.060
Nostoc sp. PCC 7120 88.07 91.737
Planktothrix agardhii NIVA-CYA 126/8 92.33 93,285
Rivularia sp. PCC 7116 88.22 87.225
Synechocystis sp. PCC 6803 | 98.04 94.721

Figure 4.10 Sequence variations i !
» Asparag i i i e
(green) at residue position 394 in 4 gine (blue), aspartic acid (red), threonine (grey) and s

g 2 N2 O[‘le
Uperimposed modelled structures is shown. Part of the backP

of Arthrospira platensis NIES-39 (blue helix)

has been shown.
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However, looking deeply into the occurrences of these residues we found out that Asparagine
at position 394 is only present in 3 species out of the total 53 species in which NR was found.
These species were Arthrospira platensis NIES-39, Arthrospira sp. str. PCC 8005 and
Chroococcidiopsis thermalis PCC 7203. This could lead to a different specificity/rate of
reaction which in turn will provide more nitrate to the active site and hence more enzyme
action,

The three-dimensional structure of the identified motif in Arthrospira was determined by ab-
initio method using Quark server (Xu and Zhang 2012) and has been shown in figure 4.11. A
few functionally important residues like K699, L703, K704 and A705 are close to this motif.
Hence it might be possible that the presence of this extra motif could affect the functionality
of the protein. Also, the C-terminal region of a protein is involved in providing stability to the
protein. Hence it is possible that the NR from Arthrospira platensis NIES-39 is more stable in

terms of half-life and contributes towards the increased protein content.

the C-terminal motif identified in the Genus Arthrospira.

Fipy i i tructure of ) j
gure 4.11 Predicted tertiary s dicted in this region.

Two short helices were pre
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4.3.2 Nitrite reductase (NiR)

4.3.2.1 Sequence and structural analysis

The average length of this protein was found to be 3528. This protein belongs 10 the

Nitrite/Sulfite reductase ferredoxin-like half-domain superfamily. A total of three domains

was found in NiR sequences of cyanobacteria, i.e. “NIR SIR ferr™, “NIR SIR™ and “fer”,

the position and length of these domains are listed in Table 4.8. Out of these three domains.

the NIR_SIR _ferr and NIR_SIR are present in all the 54 species while fer2 is present only in

five cyanobacterial species (Acarvochloris marina, L

eptolvngbya borvana,

Crinalinm

epipsammum, Oscillatoria acuminata and Oscillatoria nigro-viridis). The five cyanobacterid

having fer2 extra domain is involved in intr

amolecular electron transfer to the [4FC-‘45]

cluster (Suzuki et al. 1995). We analyzed these domains and reported the signature pattern of

these domains in the cyanobacteria. The signature pattern of NIR SIR ferr domain has been

shown in figure 4.

12A. This pat i ; : : s atiognally
pattern 1s 12 amino acids long and contain some functionally

important residues like T100, T101, R102, N104, Q106 and R108. The signature pattern for

NIR_SIR domain is shown in figure 4.

C442, N444, 5445,

Table 4.8 NiR domains position and length. Two m
domain has been seen in Acaryochiori
epipsammum PCC 9333, Oscillatoria

12B. Functionally important residues are T440, Gaal,

C447 and Q448. They are involved in the siroheme binding and 1ron-
sulphur cluster binding.

jor domains were present in this protein. A third

S marin T
@ MBIC11017, Leptolyngbva borvana dg5, Crinalit!”

acuminata PCC 6304 and Oscillatoria nigro-viridis PCC 112

Domains NIR_SIR_ferr ‘—‘—'——._._‘
(plm03460) NIR SIR -
Species From [ To | Length | From Em—‘“’%m? fz:j—n 0207) =
g From T — T
|y | 5 : - o
Acarvochloris maring MBICT1017 53 13 63 303 T—_—— Length From To Length From -/
F hY9 Tl
et 96 123 5 -
Chamaesiphon minutus PCC 66035 61 123 63 T ——!___i“_ 154 381 513 133 357 ,—(‘—v-"‘/
“variohi CC Lo | 131 R I o
Cvanohium gracile PCC 6307 82 144 63 339 _{6_———______"___ 154 3RS 491 107 —
h 59 — I
Cvanobinm sp. NIES-981 70 132 | 63 i e 132 302 | s <75 | —
: P 324 PR | 15U | s 525 108 I I
| 14 ——
Dactylococeapsis saling PCC 8305 63 124 | &2 5 | dm o O |26 | 14 0 [a% | i //
hh E— T b
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7 et A I 132 | e T— e ] 303 1 ’:|/1
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6 137 : E 23
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= —— " | 66 140 ws | e T |1
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e 2 132 e — |
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hiriag accidiapsiy thermalis PCC 7203 62 130 oY 38 383 66 138 M 126 ’U? i 103
""'""'murg.m,..; ; S = 116 63 308 171 6 124 281 158 385 470 86
ithophora Alchichica-D 10 54
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(A) Conserved region of the NIR_SIR_fer domain. The
functionally important residues. T100, TI101,R102,N10
involved in the siroheme binding. (B) Conserved region

important residues are T440, G441, C442, N444, 5445

siroheme binding and Iron-sulphu

residues having a triangle on top are

4, Q106 and R108. These residues are
of the NIR_SIR domain. Functionally
447 and Q448 which are involved in the
r cluster binding.

some regions in MSA showed some insertions in few species. To identify any possible neW

motifs, we used MEME suite program. Due to the highly conserved nature of NiR sequences:

most of the motifs were of conserved natyre and are present in all the species. 11 major
motifs were identified in all the Cyanobacteria (Table 4.9).
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l'able 4.9 MEME output showing the 11 major motifs identified in NiR of the cyanobacterial species
All the identified motifs were highly conserved among cyanobacteria.

Motif E-Value Sites Width
1 2.4e-3207 54 77
2 1.2e-3253 54 Vil
3 6.4e-3083 54 80
4 1.5e-2879 48 80
5 1.2e-1823 49 44
6 2.1e-1237 53 35
7 2.5e-1087 54 29
8 1.0e-1056 54 29
9 5.1e-342 54 15
10 2.9e-231 48 15
11 1.9e-120 49 8

We have compared cyanobacterial NiR sequence with the tobacco root assimilatory NiR

(Nakano et al. 2012), the crystal structure of which is available (PDB ID: 3BOH). Using

sequence comparison, we identified 39 functionally important residues in cyanobacteria

(Table 4.10). These 39 residues can be divided into 5 categories viz. (1) Seroheme binding —

28 residues (2) Iron Sulphur cluster binding — 5 residues (3) potassium binding — 3 residues

(4) Chlorinel - 2 residues (5) Chlorine2 - 1 residue.
MSA of all cyanobacteria species was analysed for variations in these functionally important

residues. Only 4 residues were identified where the amino acid variation could lead to

functional efficiency of this NiR. Three positions belonged to the siroheme binding region

(226, 270 and 409) while one belonged to the chlorine 1 binding (134) (Numbered according

to Arthropsira platensis NIES-39). The sequence conservation at these identified 4 positions

Is given in figure 4.13 in the form of sequence logos.

Table 4.10 Variations found
Functionally important residues were identi

and Arthrospira platensis NIES-39.

LR Arthrospira
j\:l;mana platen{:is
abacum NIES-39

F 96 F56

R 98 R58

M 107 M66

R 109 R68

among functionally important residues of NiR in cyanobacteria.
fied by comparing the sequences of Nicotiana tabacum

Synechocystis f Variations irll
sp. PCC 6803 Cyanobacteria

Type of
substitution

Siroheme binding

F

R
M
R
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T 141 T100 T |
T 142 T101 T T(53)V(1) Difter
R 143 R102 R
N 145 N104 N N(53)S(1) Same
Q 147 Q106 Q Q(52)EQ2) Differ
R 149 R108 R
R 223 R182 R
K 224 K183 K
N 226 N185 N
F 264 Y223 I F(38) ¥(10) 1(3) Same
V)L(1) |
F 265 L224 F F(42) L(12) Same |
S 266 5225 S S(51) N(2) A(1) Same
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A 450 A410 A — e
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G 481 Ga4a G TGS §(3) Same
cw L cm | e T ——
Potassi L

[371 V332 v Slum%
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Figure 4.13 Sequence conservations around the functionally important residues (between residue 133-
135, 225-227, 269-271 and 407-409) are shown by sequence logo diagram.

4.3.2.2 Phylogenetic analysis

4.3.2.2.1 Gene tree
NiR gene (nird) sequences of 54 NiR species (same as in species tree) were used to generate

the NJ phylogenetic tree (Figure 4.14). The gene tree contains 13 distinct clades. Out of these
13 clades, 7 includes species from the same Order, ie. clade 2, 7 and 13 contain
Oscillatorials, clade 3 and 11 have Synechococales, clade 6 includes Chroccocales and clade
9 has Nostocales. The remaining 6 clades contain species from different orders. For example,
clade 5 has 4 species from Nostocales, Oscillatorials and Pleurocapsales. We found that the
NiR gene from Rividaria sp. PCC 7116 (56/26) showed a different evolutionary pattern as

was observed in NR. In the species tree, the Cyanobium species shared a common ancestor

100%) which is understandable as both the

With the Prochlorococus species (bootstrap =
ene tree, Cyanobium species shared a

Genus belong to the same order. But in case of g
p = 100%) which belongs to the order

€Ommon ancestor with Gloeobacter Species (bootstra
of genetic interaction between the two

Gloeobacterales. This suggests a high level
9 was present in clade 2 of gene tree along with

Gen us/Orders. Arthrospira platensis NIES-3
a sp. str. PCC 8005. Other species

the other species of the Genus Arthrospira, i.e. Arthrospir

oF the order Oscillatorials are present in different clades possibly indicating
y from other Oscillatorial species.

that NiR gene of

8ENUS Arthrospira could behave differentl

Page | 90
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4.3.2.2.2 Protein tree

Protein phylogenetic tree was made using the 54 protein sequences (Figure 4.15). The protein
tree was much more conserved than the gene tree. The protein tree was divided into 14 clades
with 11 clades having species from the same order, i.e. Chroccocales in clades 1 and 5,
Synechococales in clades 2,7, 9 and 12, Oscillatorials in clades 3, 10 and 11, Gloeobacterales
in clade 8 Nostocales in clade 14. The remaining 3 clades (4, 6 and 13) contained species
from different orders. For example, clade 6 contained species from Oscillatorials, Nostocales
and Pleurocapsales. A comparison of this protein tree with that of the species tree for
dii‘fering patterns of evolution did not reveal any species which satisfies the bootstrap cutoff
of >75%. However, a general comparison of the topologies of the two trees indicated that the
order Oscillatorials is much diverse than other orders for this protein. This is evident as the
order Oscillatorial is present in a total 5 clades. This suggests that the NiR gene for this order
Uunderwent gene duplication and speciation events. Arthrospira platensis NIES-39 shares

clade 3 with 4,140 spira sp. str. PCC 8005 and Cvanothece sp. PCC 7424 species of the same

order,

Page | 92



| Chapter IV

_91: Geminocystis herdmanu PCC 6308
95

Geminocystis sp NIES 3708 i
100 —_— Cyanobacternium aponinum PCC 10605

Cyanobactenum staniert PCC 7202

@ Leptolyngbya sp PCC 7376
90 [ - ptolyngby P 2
100l @ synechococcus sp PCC 8807

@ Cyanothece sp PCC 7424

@ Arthrospira platensis NIES 39 3

100 @ Arthrospira sp str PCC 8005

100 —— @ Dactylococcapsis salina PCC 8305 ]4
S Halothece sp PCC 7418

100——  Microcystis aeruginosa NIES 2549 ]5
o Microcystis panniformis FACHB 1757

—: @ Moorea producens JHB

@ Stanieria cyanosphaera PCC 7437

@ Rivulana sp PCC 7116 6

@ Cyanothece sp ATCC 51142
@ Pleurocapsa sp PCC 7327

Chroococcidiopsis thermalis PCC 7203

@ Chamaesiphon minutus PCC 6605
85 — @ Synechocystis sp PCC 6803 ]7

@ Thermosynechococous elongatus BP 1

.ﬁ:Q Gloeobacter kilaueensis JS1 ]8

@ Gloeobacter violaceus PCC 7421

Gloeomargarita lithophora strain D10
@ Synechococcus elongatus PCC 7942

\100:. Cyanobium gracile PCC 6307

@ Cyanobium sp NIES 981

100

@ Prochlorococcus sp. MIT 0604

100 @ Prochlorococcus marinus MIT 9313
100
@ Synechococcus sp CC9902

|__{: @ Trichodesmium erythracum IMS101
. 0
I\ @ Oscillatoria acuminata PCC 6304 t

® Planktothrix agardhii NIVA CYA 126/8
[ © Crinalium epipsammum PCC 9333 ]11
@ Oscillatona nigro-viridis PCC 7112

@® Acaryochloris marina MBIC11017 ]12
@ Pseudanabaena sp. PCC 7367

@ Geitlerinema sp PCC 7407

@ Leptolyngbya boryana dg5

@ Oscillatoriales cyanobacterium JSC 12

13

® Microcoleus sp. PCC 7113
—_—

Gloeocapsa sp. PCC 7428
100

= @ Anabaena cylindrica PCC 7122 W
@ Anabaena sp. 90

@ cCylindrospermum stagnale PCC 7417
98

@ Fischerella sp. NIES 3754
® Nostocales oyanobacterium HT 58 2 14
@ Nodularia spumigena CCY9414

® Calothrix sp PCC 7507
100 ® Anabaena variabilis ATCC 29413
@ Nostoc sp. PCC 7120

® Nostoc piscinale CENA21

® Nostoc punctiforme PCC 73102

-~



| Chapter IV

4.3.2.3 Codon usages

gene and protein trees to find any evidence of different codon usages. We

=
[=

We compared our

found that in the gene tree Cvanobium species shared a common ancestor with Gloeobacter
species (bootstrap = 100%) in clade 12 (Figure 4.16A), while in the protein tree Cvanobium
species shared the common ancestor with the Prochlorococcus species (bootstrap = 100%) in
clade 9 (Figure 4.16C). We constructed a gene tree based of the first two bases of the codon
and found that the position of the Cyanobium species was shifted relative to the
Prochlorococcus species (bootstrap = 98%) (Figure 4.16B). This analysis indicated the

importance of the 3" base in phylogenetic analysis and their role in evolution.

@ Geitlerinema sp. PCC 7407

b @ Cyanobium gracile PCC 6307
| @ Cyanobium sp. NIES 981
100 @ Gloeobacter kilaueensis JS1
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anobi } species (in (A) NiR gene tree (B) NiR gene

don and (C) NiR protein tree.

Figure 4.16 Codon usages by ()

1t . “<OC “0COCCU
Position of Cyanobium species and the Prochloroc

co
tree based on the first two bases of the
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4.3.2.4 Gene Duplication and Speciation events

In the case of NiR, we found extensive gene duplication and speciation events supported by a
good bootstrap value (275%) (Figure 4.17). For example, Leptolyngbya borvana dgs
(extremophile) and Oscillatoriales cyanobacterium JSC 12 (normal fresh water) are present
close to each other (bootstrap = 83%) despite belonging to the different orders there by
proving their common origin. Similarly, Dactyvlococcopsis salina PCC 8305 and Halothece
sp. PCC 7418 showed the same behaviour in this protein. These observations have proved the
widespread diversity of cyanobacterial species and the effect of evolutionary pressure on the
evolution of this protein. However, we have observed that the species that have undergone
speciation events in NR and NiR are remarkably similar. This indicates the speciation pattern

of both these enzymes, i.e. NR and NiR is similar, and both these enzymes have evolved
simultaneously.
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4.3.2.5 Structural analysis

We did homology modelling for 8 representative species of the clades obtained in the NiR
protein tree. Two templates were used, namely nitrite reductase from Spinach (PDB ID:
2AKJ), and nitrite reductase from Tobacco root (PDB ID: 3BOH) for 4 species each (Table
4.11). The query coverage for all the species was between 95 to 99% while the identity was
between 33-37%. Modelled species covered four major Orders of the cyanobacteria. The

results of the validations are shown in Table 4.12.

We superimposed all the modelled structures and looked tor any variations in individual
functionally important residues with emphasis on the three selected residues A226, Q270 and
N408 from Arthrospira platensis NIES-39. Our analysis shows that the majority of the
functionally important residues are conserved in the cyanobacteria in terms of orientation in
the 3-dimensional space. Out of the three, A226 is replaced with Ser, Pro and Gly while

Q270 is replaced with Gly, Met, Leu, His, Ala, Thr, Pro and Asp. These replacements are

quite similar and are unlikely to affect the protein function.

But analysing the N408 positions, we found out that different residues at this position have

different size and structure. Also, the orientation of the two amino acids is quite different

(Figure 4.18). Searching the literature, we found out that

this kind of substitution has been
reported in tobacco (Nakano et al.

2012) where Glutamine (Q) makes the enzyme loW-
affinity while Lysine (K) makes it high affinity. Arthrospira platensis NIES-39 has

Asparagine (similar to Glutamine) which makes i low affinity so that it can work rapidly t©
convert nitrite to ammonium. On the other hand, Lysine makes the enzyme high-affinity and

hence works slowly as in Synechocystic sp. PCC 6803

Table 4.11 The three-dimensional structures of NiR
protein tree) were predicted through homolo
protein from Tobacco (PDB ID-3 BOH) an

protein of selected species (based on clades of
gy modelling_ Three dimensional structures of NiR
d Spinach (PDB 1d — 2AKJ) are used as template.

T T T
Species Template _ Query | | gentity
used Organism | Protein Coverage (%)
(%)
Arthrospira platensis NIES-39 |
3BOH Tob TR TS - 1
Dactylococcopsis saling pcc 8305 2AK] —?O__HEO____N'_R_ 97 5
Geminocystis sp. NIES- T v Pinach NiR 97 50
p 3708 3BOH _mf——-—___ﬁ —1—
Gloeocapsa sp. pCC 7428 2AK] ﬁ“—ﬂL 97 ___g'z_/_
Nostoc sp. p | _-Phach | NiR 97
Planktothri : '-CC e 2AKI Spinach _NF 52
X agardhii NIVA-CYA 126/8 W—_STT“_‘ 97 ‘___T//
inac NiR 98 _/Q
T | NR
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Rivularia sp. PCC 7116 3BOH Tobacco NiR 97 49

Synechocystis sp. PCC 6803 3BOH Tobacco NiR 99 51

I'able 4.12 The quality of predicted NiR structure is estimated through various servers and considered
to be good structure.

Species Verify3D Errat Q-mean | WhatCheck
Arthrospira platensis NIES-39 89.77 92.531 -4.70 Pass
Dactylococcopsis salina PCC 8305 87.11 90.586 -4.56 Pass
Geminocystis sp. NIES-3708 91.47 94.366 -5.27 Pass
Gloeocapsa sp. PCC 7428 93.60 88.485 -5.30 Pass
Nostoc sp. PCC 7120 93.10 84.095 -5.20 Pass
Planktothrix agardhii NIVA-CYA 126/8 89.63 91.411 -4.25 Pass
Rivularia sp. PCC 7116 87.77 91.075 -5.28 Pass
Synechocystis sp. PCC 6803 86.85 93.644 -3.86 Pass

ed modelled structure of Arthrospira
ckbone structure of only Arthrospira
was present in Arthrospira platensis
stis sp. PCC 6803.

1 408 in superimpos
803. Partial ba
Asparagine (blue)
) in Synechocy

Figure 4.18 Variations at residue positio
Platensis NIES-39 and Synechocystis Sp- PCC 6
Platensis NIES-39 (cyan) has been shown.

NIES-39 while Lysine (green
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4.4 Conclusions

[n this study, Nitrate reductase and Nitrite reductase of Arthrospira platensis NIES-39, the
two enzymes of the nitrate assimilation pathway were compared within different
cyanobacterial species. These enzymes convert nitrate into ammonium which gets into
GS/GOGAT pathway and eventually into various nitrogen containing biomolecules. We have
compared the sequence and the structural features of these enzymes. The evolutionary
process of nitrogen assimilatory enzymes among cyanobacterial species is also examined.

In nitrate reductase, the signature patterns for the domains in cyanobacteria were identified.
Sequence analysis identified a 24-amino acid motif (SIVNPELLPTSQTQPNQQQLNPTI) in
the Genus Arthrospira at the C-terminal. The predicted helical structure of this motif may
influence the function of this protein by providing stability to this enzyme as the C-terminal
is known to enhance the stability of the protein. Phylogenetic analysis indicates that protein
evolution of two Oscillatorials species may be different from that of species evolution.
Significant speciation events have been detected in NR. Structural analysis identified a key
residue at position 394 in Arthrospira platensis NIES-39 sequence. This position is involved
in guiding the nitrate towards the active site. It has an Aspar

agine which is replaced with
Serine in Synechocystis sp. PCC 6803.

In the case of NiR, we identified the signature patterns of the domains. NiR Gene and protein

based phylogenetic analysis revealed the evolutionary process of this gene/protein among

cyanobacterial species with probable HGT and speciation events. Structural analysis revealed
that the nitrite reductase in cyanobacteria is a dual affinity protein. An amino acid mutation
from Asparagine (N) to Lysine (K) at position 408 of Arthropira platensis NIES-39 shifts this

protein from low affinity to high affinity respectively. This phenomenon was already

identified in Tobacco. Arthrospira platensis NIES-39 has Asparagine which makes it a low-
affinit tei : )

inity protein and hence it can work rapidly to convert nitrite to ammonium. This could
significantly affects the efﬁciency of assimilation process
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5.1 Introduction
Glutamine synthetase (GS) catalyses the ATP-dependent condensation of glutamate and

ammonia to yield glutamine (Liaw et al. 1995). The hydrolysis of ATP drives (Berg et al.
2012) the first step of a two-part concerted mechanism (Liaw et al. 1995, Eisenberg et al.
2000). ATP phosphorylates glutamate to form ADP and an acyl-phosphate intermediate, y-
glutamyl phosphate, which reacts with ammonia, forming glutamine and inorganic
phosphate. ADP and P; do not dissociate until ammonia binds and glutamine is released.
Hydrogen bonding and hydrophobic interactions hold the two rings of GS together. Each
subunit possesses a C-terminus and an N-terminus in its sequence. The C-terminus (helical

thong) stabilises the GS structure by inserting into the hydrophobic region of the subunit

across in the other ring. The N-terminus is exposed to the solvent. Also, the central channel is

formed via six four-stranded B-sheets composed of anti-parallel loops from the twelve

subunits (Eisenberg et al. 2000). The activity of the GSl-type enzyme is controlled by the

adenylation of a tyrosine residue. The adenylated enzyme is inactive (Ginsburg et al. 1970).

GOGAT belongs to the family of oxidoreductases, specifically those acting on the CH-NH:

group of donors with an iron-sulfur protein as acceptor. This enzyme synthesises Glutamate

from Glutamine and 2-oxoglutarate (2-OG
in two molecules of Glutamate (Forde and Lea 2007).

) by transferring the amide group of Glutamine to

2-oxoglutarate resulting
Cyanobacterial Fd-GOGAT is a monomeric protein while bacterial-GOGAT is a hetero-
octamer. Fd-GOGAT and the alpha subunit of NADPH-GOGAT are homologous to each
other (Kameya et al. 2007).

This study was aimed at finding the functional role of gl

Synthase in the production of the high protein content of Arthrospira
es were analysed between various cyanobacteria to

utamine synthetase and glutamate
platensis NIES-39,

Various sequence and structural featur
n content of Arthrospira platensis NIES-39.

find any possible explanation for the high protel
We have also considered the evolutionary approach whe

i t whethe
Species tree with that of gene/protein tree and looked tha .
n. Sequence motifs and structural domains across

re we compared the 16s based

r the gene/protein has

evolved i imi - a different fashio
@ similar or in # sis on Arthrospira platensis NIES-39. We

all cyanobacteria were analysed with special empha

Structural analyses were also performed to

of these proteins in Arthrospira
y functional variation
Platensis NIES-39 to look for possible va
and hence contribute to higher protein content.

look into any possible structural variations.
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5.2 Materials and Methods

5.2.1 Retrieval of Glutamine synthetase and Glutamate synthase protein homologs

Glutamine synthetase and glutamate synthase proteins from Arthrospira platensis N1ES-39
were used as a query to retrieve the homologs from 56 selected species (as discussed in
Chapter 1V) from the National Center for Biotechnology Information (NCBI) RefSeq
database. Blastn and Blastp (Basic Local Alignment Search Tool) (Altschul et al. 1990) were
used against Refseq protein database, and the organism was set to cyanobacteria (taxid 1117)
for retrieving the homologous sequences of genes and the proteins from NCBI (with E-value
cut off of < 1 X 107). We downloaded the GS-] sequences for 54 of the 56 species, and we

excluded the remaining two species not possessing a type I GS from our study. Although

these two species contain a type I GS (Table 5.1), it is not homologous to type I and hence
was excluded from our study. In the case of GOGAT, all the 56 homologs were retrieved.
The accession numbers of all the retrieved homologs are given in table 5.1

= ) able 5. 1.
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Table 5.1 Genome assembly number and the protein accession number for the GS and GOGAT protein of the 56 selected cyanobacteria.

S.No. Organism Name Order Assembly Protein Accession
GS GOGAT
1 Acaryochloris marina N . . <
MBIC11017 Synechococcales GCA_000018105.1 WP _012162050.1 WP 041660813.1
Chamaesiphon mi
2 ramaestp g’é’o';”"“"‘s PCC1 synechococcales GCA_000317145.1 Type IlI WP _015161811.]
Cyanobi ile P
L 3 yano Msor cc Synechococcales GCA_000316515.1 WP_015108123.1 | WP _015109445.1
L“' Cyanobium sp. NIES-981 Synechococcales GCA 900088535.1 WP _087067187.1 WP _087068089.1
5 Dactylococcopsis salina Synechococeales GCA_000317615.1 WP_015229242.1 WP_041235982.1
PCC 8305 i
L 6 Leptolyngbya boryana dg5 Synechococcales GCA_002142495.1 WP_017287165.1 WP_017288034.1
L 7 \ Leptolyngbya sp. PCC 7376 Synechococcales GCA_000316605.1 Type 1l WP_015133152.1
8 Prochlorococcus marinus
\ \ - MIT 9313 Synechococcales GCA_000011485.1 WP_011129980.1 | WP _011131144.]
9 | P "’“”’0’03"6%2‘5 sp- MIT Synechococcales GCA_000757845.1 WP_042850333.1 | WP_042851053.1
10| P S"“""”“g‘;g’;“ sp. PCC Synechococcales GCA_000317065. 1 WP_015164572.1 | WP_041698502.]
i1 | Synechococcus elongatus Synechococcales GCA_000012525.1 WP_011378345.1 | WP_011377778.1
PCC 7942 -
12 Synechococcus sp. CC9902 Synechococcales

GCA_000012505.1

WP _011360054.1

WP_041425197.1

13 Synechococcus sp. PCC

8807 Synechococcales GCA_001693295.1 WP_065716519.1 WP_065716969.1

14 Synechocystis sp. PCC 6803 Synechococcales GCA_000340785.1 WP_010871683.1 WP_041426073.1

15 Thermosynechococcus Synechococcales GCA_000011345.1 NP_682378.1 NP_682158.1
elongatus BP-1 -

16 | Arthrospira platensis NIES-

39

Oscillatorials

GCA_000210375.1

WP_006618330.1

WP_014276035.1
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CDM94459.1

CDMO97111.1

Arthrospira sp. PCC 8005

Oscillatorials

GCA_000973065.1

WP 015205278.1

WP 0152039621

) 18 | Crinalium epipsammum PCC Oscillatorials GCA 0003174951
9333 - '
| 19 | Cyanothece sp. ATCC 51142 Oscillatorials GCA_000017845.1 WP 009543512.1 WP 035857095.1
20 | Cyanothece sp. PCC 7424 Oscillatorials GCA_000021825.1 WP 015954231.1 WP 012598855.1
P ;
f 21 / Geitlerinema sp. PCC 7407 Oscillatorials GCA 000317045.1 WP 015171633.1 WP 041268472.1
|22 | icrocoleus sp. PCC 7113 | Oscillatorials GCA_000317515.1 WP 015181188.1 | WP 015185946.1
| 2| Mooreaproducens IHB | Oscillatorials | GCA_001854205.1 WP 008177966.1 | WP 071108092.1
/ 24 / 05"”"”0""’63‘6’;”””‘”" pce ’ Oscillatorials ’ GCA_000317105.1 WP 015148370.1 WP 015150330.1
/ 25 / OS"’”"E’E’(‘:’ ;’ﬁ’f"’”"d"" / Oscillatorials ( GCA _000317475.1 WP 0151787631 WP 015176256.1
26 Oscillatoriales Oscillatorials GCA_000309945. 1 WP 009555714.1 WP 009768838.1
cvanobacrerium JSC-12 - -
27 | Planktothrix agardhii NIVA- ; ; . e T IEN——
/ } CYA 126/8 Oscillatorials GCA _000710505.1 WP 042154436.1 WP 042151381.1
/ 28 ; T’""”"‘*’“{;’;g’;’O"I’“’””‘"’””’ / Oscillatorials l GCA_000014265.1 ’ WP 011613207.1 WP 0116103181
/ 29 ( -4’“’5’”"”“;l’[’{;f)""’""" PCE / Nostocales ! GCA 000317695.1 J WP 015212564.1 WP 0152145781
[ 30 / Anabaena sp. 90 I Nostocales J GCA 0003127051 ] WP 015080355.1 WP 0150781091
Nostocales ] GCA_000204075.1 [ WP 011317041, 1 WP 011318130.1

Anabaena variabilis ATCC
29413

WP 015129150.1

Nostocales

GCA 0003165751

WP 015131725.1

32 | Calothrix sp. PCC 7507

Cvlindrospermum stagnale

Nostocales

GCA 000317535.1

WP 015206299.1

WP 015210292.1

WP 0622429981

PCC 7417
34 Fischerella sp. NIES-3754

Nostocales

GCA 001548455.1

WP 0094537511

Nodularia spumigena

Nostocales

GCA 0003405653

WP 0061972731

WP 0061963921

WP 013190140.1

CCY9414
Nostoc azollae 0708 \

]

Nostocales

GCA 0001965151

. +—

WP 013192275.1
WP 062297509.1

Translated

\ 37 \ Nostoc piscinale CENA21 \

Nostocales

I

GCA 0012984451
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3 Nostoe puncriforme PCC

38 S ”’;’;‘lgﬁ,’”’" ¢ / Nostocales GCA 0000200251 WP 012411650. 1 WP 0124102321 |

39 Nostoe sp. PCC 7120 Nostocales GCA_ 000009705, 1 WP 0109964841 | WP 010998481 ]
Nostocales eyanobacteri

e HTosga Nostocales GCA 002163975.] WP 0875417371 | WP 087542698.1

41 Rivularia sp. PCC 7116 Nostocales GCA 0003166651 WP 0151193151 | WP 015117220.1

42 Atelocvanobacterium 5 e o R T —- S FAA G
Hialzsec. Teolbe ALGEHA Chroococcales GCA 000025125.] WP 0129545441 | WP 012953771.1

Cyanobacterium aponinum

e PCC 10605 Chroococeales GCA 000317675.1 WP 015219678, 1 WP 015218362.1
44 \ C“"’”"b[‘,’gg"?;”o’f’“”’e"’ \ Chroococcales GCA 000317655, 1 WP 0152241341 | WP 015222207.]
\ 45 \ ("’"“”Orf%"g‘z;’ggdm”m’ ‘ Chroococcales GCA 000332235.1 WP_017296376.1 | WP 0172936901
L 46 \ Geminocystis sp. NIES-3708 ‘ Chroococcales GCA 001548095.1 WP 066347139.1 WP 066347779.1
4T | Gloeocapsa sp. PCC 7428 Chroococcales GCA 000317555.1 WP 015188857.1 WP 041919318, 1
psa sp
ﬁ 48 \ Halothece sp. PCC 7418 Chroococcales GCA 000317635.1 WP 015226512.1 WP 015225651.1
L 49 \ M‘“"";"l“é’g_‘,’f;’;‘é"’”m“"’ Chroococcales GCA 0009817851 WP 046660834.1 WP 046662139.1
L 50 ‘ Mfc"‘;f;’-"éﬁ gf’;’;’g?‘”"”” Chroococcales GCA_001264245.1 AKV69377.1 AKV65402.1
l Sl Pleurocapsa sp. PCC 7327 Pleurocapsales GCA_000317025.1 WP 015143979.1 WP 015145655.1
§2 | Shanieris “-"‘.",ng]f”m""" RO Pleurocapsales GCA_000317575.1 WP 015193159.1 WP 0416199631
33 | Gloeobacter kilaucensis JS Gloeobacterales GCA_000484535.1 WP_023172799.1 | WP 041243627.1
54 | ¢l Oe"b“""’;;;";’ e PLC Gloeobacterales GCA _000011385.1 NP 923998, NP 924454,
55 Chm”m‘;gg”’;ﬁgi’he"m"““' Chroococcidiopsidales | GCA 000317125.1 WP_015156652.1 | WP 0151554621
FAVS)
56 Gloeomargarita lithophora

Alchichica-D10

Gloeoemargaritales

GCA_001870225.1

WP _071454993.1

WP 0714542941
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5.3 Results and Discussions

5.3.1 Glutamine Synthetase (GS)

5.3.1.1 Sequence and structural analysis

GS of Arthrospira platensis NIES-39 is a type | class of GS which is 473 amino acids long
homo dodecameric protein (47-56 KDa for a subunit). The average length of the protein was
found to be 471.85 amino acids. Two domains were found in GS of all species, i.e. Gln-
synt_N (beta grasp domain - pfam03951) and Gln-synt_C (catalytic domain - pfam00120).
The position and length of both the domains are listed in Table 5.2. Gln-synt N domain
adopts a beta-grasp fold and contributes to the substrate binding pocket of the enzyme while
the catalytic domain helps in the catalysis. We identified the signature patterns of both of the
above motifs among cyanobacterial species. For the beta-grasp domain, the signature pattern
is 10 amino acids long, that of the catalytic domain contains functionally important residues
spanning about 13 amino acids (Figure 5.1).

Except Cyanobium gracile, we found that this protein is highly conserved among all the

cyanobacterial species. MEME suite of program identified 8 major conserved motifs with

significant E-value (Table 5.3). The sequence and modeling analysis indicate that the region

between two secondary structure elements is truncated (Figure 5.2 and 5.3).

Table 5.2 Domains boundary of GS protein in each of the cyanobacterial species shows conserved
nature of GS protein.

' Gln-synt_N (beta grasp Gln-synt_C (catalytic domain)
— Domains | domain) (pfam03951) (pfam00120)
| Species o
Acaryochloris marina MBIC11017 Fr106m _zg__LeEnfﬂl F[r(());n ::;(:) —L%I_(\;EL
Cyanobium gracile PCC 6307 16 81 6; 111 421 311
Cyanobium sp. NIES-98 16 97 ]2 105 4;() 365
Dactylococcopsis saling PCC 8305 _—16_ 97 8; 10 : 367
Leptolyngbya boryana dgs _IS—__Té_ 85 > - 366
Prochlorococcus marings str. MIT 9313 T?__BT_ . 208 —:( 6
Prochlorococcuys sp. MIT 0604 TT__SE__ 105 2 j(:6
Pseudanabaena sp. PCC 7367 TTT L i : 6
Synechococcus elongatus PCC 7942 -—16—— 97 ‘_;—_ lO? 479 i6(-‘,
Synechococcus sp. CC9902 T—‘;—__i—__ Lt 70 1| ey
Synechococcus sp. PCC 8807 T_‘;T-——L_EL_JZL__EQL/
Synechocystis sp. PCC 6303 TT‘“L 105 470 360
Thermosynechococcu.s- elongatus BP-| —-—Iﬁ—-_____8_2__ 105 470 360
Arthrospira platensis NIES-39 TJS_““SO‘—TQQ}‘_&&
Arthrospira sp. PCC 8005 T‘_()?_“_—Sz——--—m_s___ﬂi——}-@”/
Crinalium epipsammum PCC 9333 TL_?L‘_‘S&_‘ 105 Al Jo
—= 1 97 | 8 | o3 470 | 366
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Cranothece sp. ATCC 51142 16 97 82 105 470 366
Cyanothece sp. PCC 7424 16 97 82 105 470 366
Geitlerinema sp. PCC 7407 16 97 82 105 470 366
Microcoleus sp. PCC 7113 16 97 82 105 470 366
Moorea producens JHB 16 97 82 105 470 366
Oscillatoria acuminata PCC 6304 16 97 82 105 470 366
Osciflatoria nigro-viridis PCC 7112 17 97 81 105 470 366
Oscillatoriales cvanobacterium JSC-12 15 96 82 104 469 366
Planktothrix agardhii NIVA-CYA 126/8 16 97 82 105 470 366
Trichodesmiunt ervthraeum IMS101 16 97 82 105 470 366
Anabaena cvlindrica PCC 7122 15 96 82 104 468 365
Anabaena sp. 90 15 96 82 104 468 365
Anabaena variabilis ATCC 29413 15 96 82 104 471 368
Calothrix sp. PCC 7507 15 96 82 104 468 365
Cvlindrospermum stagnale PCC 7417 15 96 82 104 468 365
Fischerella sp. NIES-3754 15 96 82 104 468 365
Nodularia spumigena CCY9414 15 96 82 104 468 365
Nostoc azollae 0708 15 96 82 104 474 371
Nostoc piscinale CENA21 15 96 82 104 468 365
Nostoc punctiforme PCC 73102 15 96 82 104 470 367
Nostoc sp. PCC 7120 15 96 82 104 471 368
Nostocales cyanobacterium HT-58-2 15 96 82 104 468 365
Rivularia sp. PCC 7116 15 96 82 104 468 365
Atelocvanobacterium thalassa isolate
ALOHA 16 97 82 105 470 366
Cyanobacterium aponinum PCC 10605 16 97 82 105 470 366
Cyvanobacterium stanieri PCC 7202 16 97 82 105 470 366
Geminocystis herdmanii PCC 6308 16 97 82 105 470 366
Geminocystis sp. NIES-3708 16 97 82 105 470 366
| Gloeocapsa sp. PCC 7428 18 99 82 107 471 365
Halothece sp. PCC 7418 16 97 82 105 471 367
Microcystis aeruginosa NIES-2549 16 97 82 105 470 366
Microcystis panniformis FACHB-1757 16 97 82 105 470 366
Pleurocapsa sp. PCC 7327 16 97 82 105 470 366
Stanieria cyanosphaera PCC 7437 16 97 82 105 470 306
Gloeobacter kilaueensis JS1 16 97 82 105 469 365
Gloeobacter violaceus PCC 7421 16 97 82 103 20 362
Chroococcidiopsis thermalis PCC 7203 16 97 82 195 470 366
oeomargart hlr)%phom e 16 | 97 82 105 | 470 366
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Figure 5.1 Signature pattern of the two domains of G§ protein

(A) beta-grasp domain and (B)
catalytic domain. Residues with triangle mark are fy

nctionally important.

. n . r
Table 5.3 MEME output showing the statistics for § major motifs identified in the GSbo "
. A . . B e
cyanobacterial species. Sites represent the number of sequences in which the motif has

identified.

| Motif | E-Value Sites Width
1 7.0e-3545 37 13
2 3.2e-3319 53 67
3 17e3184 [ g, 63
4 3.3e-4573 BT Ty
5 1.3e-2053 _%?3_—‘_——4_1—
3 2.1e-2363 R B
7 3.4e919 *‘_5-3_—‘__*?1—_
8 276171 E_Zz__—____s—i
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(A)

(B)

Figure 5.2(A) Portion of the multiple sequence alignment showing the first deletiop in Cyanobium
hgi'i’("'—; (B) Superimposed crystal structure of Synechocystic PCC 6803 (red) with modelled
e (B) ¢

Cyanobium gracile

Cnnom‘um_gmene_Pcc_ 6307/1-427
Cranobiun_so_miEs sgi1-472
Prchiomeoccus sp _MIT_0604/1-473
Proch lomcoceus_mariaus._ MIT_9313/1-473
Syﬂ!chococcus_.:p _CC9902/1-473
Gfoeobac:ef_m:ueem;_.;s1/1.4 72
S’Deubachr_ violaceus_PCC_7421/1-472
mwanabaena_m‘_PCG_ 7367/1-473
Glocomaranta_iithophors. strain_p1a/1-473

(blue). The deletion in Cvanobium results in a loop deletion.

%0 o

, W ' ' O PG wnee s = v e auEes IPEALHSELC
TSRADDLGCOCRY APWNTARLE EGGNLAYKIQLKEGYFPVSPNDTLQDMRTEM |
RYTSGSGSSFYSVDSIE PWNTGRVE EGGNLGYKIQYKEGYFPYSPNDTAGD | RSEML
RYDEKERSCEYSVRT ] 2 WNSGRIE EGGNLAYKIQLKEGYFPVPPNDTAQD | RSEML
RY"SGEGGEFYSVDT'EAZWNTGnl5 EGGNLAYKIQTKEGYFPVAPNDTAQD | RSEML
RYNSSEGGSFYSVDTIEA T EHAE GPNLAYKNRPKEGYFPVAPSDSQQDLRTEML
RFDDTQSSGYYY'DSVEAﬂxNTGRHE ...... GPNLGYKPRNKEGYFPVAPTDSMAD | RTEML
RFDQTONAGYYYLDSVEGNWNMGREE PGONLOYKLRNKAGYFPVAPLDTYQD | RTEML
AYDSSMNTGYYKngzEEEWHTGKKE EGGNLGYKPRYKEGYFPVPP | DSQAD | RTEML
RFDQKEHEGFYHV

(A)
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(B)

Figure 5.3(A) Part of the multiple sequence alignment showing the second deletion in Cvanobium
gracile (B) Superimposed crystal structure of Synechocystic PCC 6803 (red) with modelled
Cyanobium gracile (blue). The deletion in Cyanobium results in a deletion of a small helix and 100p
region,

To identify the functionally important residues in Arthrospira platensis NIES-39 that are

involved in the activity of this protein, its sequence was compared with Synechocys!is pCC

6803 whose three-dimensional structure (PDB ID — 3NGO) was available (Saelices et al.). A

total of 22 important residues were found conserved (Table 5.4). These 22 residues can L
divided into four categories viz. (1) ATP binding — 11 residues (2) Glutamate binding ~ i
residues (3) Mn1 binding — 3 residues (4) Mn2 binding - 3 residues

All the above residues were analysed by looking into the MSA and searching for any typ€ of

variation within all the selected cyanobacterial species. Our analysis revealed that the ATP

binding Isoleucine226 (Table 5.4) could be substituted with other hydrophobic side chain®

like Phenylalanine and Valine possibly without any functional alteration
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lable 5.4 Observed sequence variations among functionally important residues of GS in
cyanobacteria. Functionally important residues were identified by comparing the sequences of
Svnechocystis sp. PCC 6803 and Arthrospira platensis NIES-39.

Synechocystis | © 1"’;’;”" f:’-"!?f"_‘“ e Type of
sp. PCC 6803 [;Jﬁ:tsig!; ariations in Cyanobacteria substitution
{ ATP binding residues
k Y 128 F128 F(38) Y(15) R(1) Same
E 210 E210 E(53)R(1) Differ
K211 K211 K(52)L(DHQ(1) Differ
1226 1226 F(32) 1(15) M(4) L(2) V(1) Differ
K 227 K227 R(32) K(21) A(1) Same
F 228 F228 F(53)S(1) Differ
H 274 H274
S 276 5276
R 347 R347 R(53)A(1) Differ
1? K 356 K356 K(53)G(1) Differ
R 359 R359
Glutamate binding residues
G 268 G268 G(53)C(1) Differ
R 324 R324
[ E 330 £330 E(53)Q(1) Differ
R 342 R342 R(53)S(1) Differ
| R363 R363
Mn-1 Binding residues
kj E132 E132
H272 H272 H(53)A() Differ
E 361 E361 E(33)V(l) Differ
r; Mn-2 Binding residue
k134 £134 E(53)G(1) Differ
E215 E215 E(53)Q(1) Differ
E 223 E223 E(53)H(1) Differ

5-3.1.2 Phylogenetic analysis

35.3.1.2.1 Gene tree
The: pene trce (NJ tree) with 54 GlnA (GS gene) contains 11 distinct clades (Figure 5.4). Out

ofthese 11 clades, 5 included species from the same order, i.e. clade 1 contained species from

(Whroccocales clade 8 had species from Synechococales, clades 9 and 10 included

Oscillatorials and clade 11 contained Nostocales. The other 6 clades contained species from
clade 3 contained 3 species from 3 orders namely

different orders. For example,
occocales. Thus, a common evolution of genes has

Sl\mechococales, Oscillatorials and Chr

been predicted form this tree. A horizontal gene transfer eve
the cyanobacterial species. To get a clear picture of the gene guelutian, We Compared the

nt could have occured between
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species evolution with the gene evolution. Clade-wise comparison of species and gene tree
revealed that while most of the species retained their clades with other co-species in gene tree
similar to the species tree, some species moved on to an entirely different clade with different
co-species. In these cases, where the species has moved to a new clade, we have considered
only those species for which the bootstrap value was high in species as well as in gene trec
(>75%). Applying this condition, we found that Oscillatoria nigroviridis PCC 7112 had
changed its relative position in the gene tree. In the species tree, Oscillatoria nigroviridis
shared a clade with other species of the order Oscillatorials and particularly with
Trichodesmium erythraeum with a bootstrap value of 77. However, in the gene tree, it moved
away from the rest of the Oscillatorials and makes a clade with another Oscillatorials, i-¢.
Crinalium epipsammum with a bootstrap of 81. This phenomenon hints at the regular
exchange of genes at a genetic level between the cyanobacterial species which could be a
horizontal gene transfer event. Arthrospira platensis NIES-39 was present in clade 9 with
other 2 species of the order Oscillatorials which are Arthrospira sp. str. PCC 8005 and

Planktothrix agardhii NIVA CYA. Other members of this order are in different clades in the
tree.

5.3.1.2.2 Protein tree

. 7 . . ATe iith
The protein tree (Figure 5.5) was showing much more conserved architecture compared Wit

the gene tree. Protein tree consists of 10 distinct clades. Out of these 10 clades, 7 had species
from the same order, i.e. clade | had species of Nostocales, clades 2, 3 and 9 included

Oscillatorials species, clade 5 contained Gloeobacterials, clade 6 had Synechococales and

clade 7 included Chroccocales. The remaining 3 clades contained species from different

orders. For example, clade 8 was the most diverse clade and had 7 species from 3 orders
namely Chrococcales, Oscillatorials and ‘Synechococales. This mix of clades again points
towards a horizontal gene transfer event between the species of these orders. The compariso™

of the protein tree with the species tree reveals that most of the species retain their original

positions as in the species tree, some species have altered their respective clades. In the

rotein tree i = . . - - same
p » Arthrospira platensis NIES-39 was present in clade 2 along with the $3

species as found in gene tree, i.e. Arthrospira sp. str. PCC 8005 and Planktothrix agardht’

NIVA CYA 128/8. The other species o

; - the
f this order were spread along different clades I th
protein tree implying a different evoluti

on of the order Oscillatorials.
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5.3.1.3 Codon usages
[t is known : oy € es diff ' {
. tllét"zodon de?el‘mrauy c,nablc‘.s dltferer-lt‘speu.es to prefer different codons for the
no acid and hence show variable positions in a gene tree with respect to its
corrresponding protein tree. We compared our gene and protein trees in a clade wise manner
and selected those species which have changed their respective position in the two trees. We
found that Oscillatoria acuminata and Geitlerinema sp. PCC 7407 were the two spt;:cies
which came close in protein tree while residing in separate clades in the gene tree. Both the
species were present in clade 9 in the protein tree (bootstrap=85) but were in clade 6 and 7
respectively in the gene tree. These observations suggested that Oscillatoria acuminata and
Geitlerinema sp. PCC 7407 had used different codons for the same amino acid. We examined
the codon usages of these two species and observed that in most cases for the same amino
acid the two species have preferred different codons. To confirm our finding, we created a

gene tree based on only the first two bases of a codon and not the third base. In this tree

because the degeneracy due to third base had been removed Oscillatoria acuminata and

Geitlerinema sp. PCC 7407 formed a single clade with a bootstrap value of 89 (Figure 5.6).
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5.3.1.4 Gene Duplication and Speciation events

The GS gene based gene duplication and the speciation events are depicted in Figure 5.7. As

. . i ication
observed, a large number of cyanobacterial species has undergone extensive gene duplicatio

and speciation events supported by a good bootstrap value (275%). There are three

significant gene duplications events (closed diamonds) identified in the tree with 14

- : . g
significant speciation events (open diamonds). For example, Leprolyngbva borvana dg3

(terrestrial and freshwater cyanobacteria) and Oscillatoriales cyanobacterium JSC-12 species

(found in extreme conditions like hot water springs) belong to different taxonomic orders but

are present in the same clade with high bootstrap support (85%). This suggests that these W0

species originated from a common speciation event. Similarly, Dactviococcopsis salina pCC

8305 and Halothece sp. PCC 7418 showed the same behaviour. Speciation events could

explain the relatedness of these species of the different orders. These observations reinforce

the idea that diversification in cyanobacteria|

species can be driven by differences in
environmental conditions. These duplication and

.. .. e
Speciation events had definitely led to th
evolution of Glutamine Synthetase.

5.3.1.5 Structural analysis

used was the crystal structure of Glutamj
(PDB ID: 3NGO). The best model (based

validated using the Verify3D, ERRAT,

of these validations are shown in Table

3
ne Synthetage from Synechocvstis sp. PCC 680
on N-DOPE score) was energy minimised and %

Qmean score ang WhatCheck programs. The result
5.6.
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Table 5.5 Three-dimensional structures of GS proteins of selected species (based on protein tree) Wff"e
predicted through homology modelling. Three-dimensional structure of GS protein of Synechocystis
sp. PCC 6803 (PDB ID: 3NGO) is considered as a template.

Query :
: Target Identity
Species length Covoerage (%)
(%)

Arthrospira platensis NIES-39 473 100 81
Dactylococcopsis saling PCC

8305 474 100 80

Gloeocapsa sp. PCC 7428 474 99 76

Microcvstis iformis FACHB-

icrocysti pa;zf;sf_(lnmn 473 100 Q4

Anabaena cylindrica PCC 7] 22 471 99 80

Cyanothece sp. PCC 7424 473 100 84

Rivularia sp. PCC 7116 471 99 79

Cyanobium gracile PCC 6307 427 98 37

Table 5.6 Validation results for the modelled cyanobacteria] species of Glutamine synthetase. All the

models were validated using standard validation tools.

Species modelled VeriEE3D tCheck
Arthrospira platensis NIES-39 89.85 ;36”2; Q-3m ‘? 83 - Whill’;;’d
Dactylococcopsis saling PCC 8305 | 89.03 [ Roge——==
.03 89.45 -3.45 Pass
Gloeocapsa sp. PCC 7428 87 T
. . s 2.7 96.86 | -2.96 Pass
Microcystis panniformis FAC HB-1757 W\k
= : 8923 | 3.70 Pass
Anabaena cylindrica PCC 7122 W—W;? 2 Pass
Cyanothece sp. WW 95'95 _;.8‘- Pass
Rivularia sp. PCC 7116 8556 [ oyes 2 " Pass |
Cyanobium gracile PCC 6307 W&Q\w——-ﬁi’/
9227 | 94.49 -4.03 Pass
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Figure 5.8 Superimposed structures of modelled GS protein ofeight SpECies..a,IonI%gl;l; thedtempla[e
structure is shown. The colour code is as follows: Arthrospira platensis N {4- ‘ .(re ,)
Dactylococcopsis salina PCC 8305 (yellow), nge()capb'ﬂ.sp- ‘}’chézfl(;:n()l;lil;)uOC""M!'S
' panniformis FACHB-1757 (silver), Anabaena cylindrica PC bu'um rcr(::t'!e PCC 6307
Cyvanothece sp. PCC 7424 (orange) Rivularia sp. PCC 7116 (green)},]- RO
© (grey) and Synechocystic Sp- PCC 6803 (whire),
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5.3.2 Glutamate Synthase (GOGAT)

5.3.2.1 Sequence and structural analysis

GOGAT is a large monomeric protein of 1569 amino acids. The average length of the protein
in 56 selected species was found to be 1553. Four domains were found in GOGAT of all
species, i.e. GATase 2 (pfam00310), Glu_syn_central (pfam04898), Glu_synthase
(pfam01645) and a C terminal GXGXG (pfam01493). The position and length of all the
domains are listed in Table 5.7. GATase 2 has catalytically important conserved cysteine
residue. Central domain connects the amidotransferase domain with the FMN-binding
Glu_synthase domain and is highly conserved. FMN binding Glu_synthase domain is the
largest domain with a large number of conserved residues. The C terminal GXGXG domain

has a mainly structural role in protein function. We identified the signature patterns of these

domains. A pattern of 11 residues was identified in GATase 2 domain, a 15-residue long

pattern was identified in Glu_syn_central domain, a long pattern of 22 amino acids was

identified in the highly conserved Glu_synthase domain and g I1-residue pattern Was

identified in the GXGXG domain. Sequence conservations of t

hese patterns are shown in
fi

gure 3.9 in the form of sequence logos. Around 20 motifs were identified by MEME
program. The largest detected motif was of 113 residues.

GATase 2 Gl XG
u_syn_central GXG
(pfam00310 Y Olu_synthase 23—
i _ m014
Query From | T | (plam04sog) fam01645) Ly
O | Length | From | 1, L Fro To L/
Acaryochloris marina MBIC1 1013 3 [ | o T e | To | Length | From s A
: , 71 8
Chamaesiphon minutus PCC 6605 3 452 [ ane W-NL”\" 827 | 1212 | 380 | 1293 _,'is—b/ =
Cyanobium gracile PCC 6307 24 449 426 ?i 92 529 12 390 e JLT—I/S\
- —— 5 - 7
Cyan,,b,,,m.sp,p.jms_gg] 27 | 445 WT&—& 826 1212 387 1293 _.1.1‘—73/1/38
Dactylococcopsis salina PCC 8305 33 456 W\—m\l.i 839 1205 367 1286 —'I'JT I/S"
Leptolynghya b 30 T 3ec 182 775 : b
piomstya o a5 a5 TWT 294 | 83 [ 1219 | 387 | 1299 wﬁl/s"
Leptolyngbya sp. PCC 7376 32 | aa9 WT%& 841 | 1226 [ 386 | 1300 __1/7/ ‘/"q
Proch/orococc;; ;r;arinus str. MIT TW\&B 768 294 826 1219 394 1299 __I_‘,‘E/ 7
419 | 474 B
Prochlorococcus sp. MIT 0604 28 T‘S‘\\ s 290 821 1207 387 1287 —23/4
Pseudanabaena sp. PCC 7367 DR e RN TN T e 1205 | 387 | 1286 J—&%
Synechococcus elongarys PCC 7942 -\'42\2 479 | 769 | 291 Ik _ 2 Lo 4
27 a0 Bl 769 | 827 [ 1213 ] 387 [ 1294 | I
Synechococcus sp. CC9903 28 T\& 765 294 823 1291 1478 18
Synechococcus sp. PCC 8807 T 35—l 416 | 469 767 | 395 —T—a—t—2l0 | 388 T
. - 2 4 T s e T oo 1210 | 386 [ 1293 | —oq i
Synechocystis sp. PCC 6803 27 [ a4 3is——2> 1 768 | 294 g5 1208 | M0
Thermosynechomccus elongatus Bp-| T?& 471 764 294 ¥I 218 393 ;97 —’14{%
Arthrospira platensis NIES.39 45 i&w 766 299\_\82) | 1217 397 12 "14{ 4
rospira A9 1 435 506 Toot—22_ | 824 | 120 [ 3a7 | 1290 | WA TR0
ospira sp. PCC 8005 s TS 506 | Reo 0 |5
R 45 479 | o—t—2_ ] 295 858 1 1322 I ¥
| 435 506 | oo \%ﬂ 387 "]ﬂ{
oL 20 [ ¢ L 295 | 858 [Tizaa [ 3a7 | 1322 | M
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Crinalium epipsammum PCC 9333 35 460 426 486 | 778 293 836 1222 387 1302 | 1490 189
Cyanothece sp. ATCC 51142 28 445 418 472 767 296 825 1221 397 1301 1489 189
Cyanothece sp. PCC 7424 32 449 418 476 | 769 294 827 1223 397 1303 | 1490 188
Geitlerinema sp. PCC 7407 33 455 423 481 778 298 836 1222 387 1305 | 1490 186
Microcoleus sp. PCC 7113 35 480 446 506 | 799 294 857 1243 387 1325 | 1511 187
Moorea producens JHB 35 507 473 533 | 826 294 883 1303 421 1383 | 1570 188
' Oscillatoria acuminata PCC 6304 29 459 431 487 775 289 833 1224 392 1305 1493 189
Oscillatoria nigro-viridis PCC 7112 33 456 424 484 | 784 301 842 1253 412 1333 | 1521 189
Oscillatoriales cyanobacterium 1SC-12 32 458 427 484 | 782 299 840 1225 386 1306 | 1494 189
Planktothra agardhii NIVA-CY A sy | ga2 | a2t | 470 | 753 | 285 | sis | uss | 3m | 1265 | 1452 | iss
. 126 8
Trichodesmium ervthraeum IMS101 8 444 417 469 762 294 820 1219 400 1300 | 1488 189
Anabaena qr/in;lrim PCC 7122 36 450 415 494 | 795 302 853 1239 387 1319 | 1507 189
Anabaena sp. 90 36 453 418 502 [ 795 294 853 1239 387 1319 | 1507 189
Anabaena variabilis ATCC 29413 35 452 418 498 | 791 294 849 1235 387 1315 | 1503 189

36 | 462 | 427 507 | 804 | 298 | 862 | 1248 | 387 | 1328 | 1516 | 189

Cadlothrix sp. PCC 7507 5 5 42 387 322 5
| Colindrospermum swagnale PCC7417_| 36| 454 | 419|505 798 [ 294 ] 85 ] 1242 EE TN E
Fischerella sp. NIES-3754 36 458 423 506 799 294 857 1243 387 1329 1511 183
odlaria speooon (VT 6 353 | 319 | 292 | 788 | 297 | 846 | 1232 | 387 | 1320 | 1508 | 189
i 6 [ as0 | 415 | 994 | 799 | 306 | 857 | 1243 | 387 | 1323 | 1511 | 18
- ___Yostoc azollae 0708 J 294 833 1219 387 1299 1487 189
[ Nosioc piscinale CENAZ] B Jaa | 418 | 482 L7542 73 | 387 | 55 [ 15
Nostoc panctiforme PCC 73102 35 453 419 496 789 294 847 12 1501 189
\\}'"”C ;p T T30 33 452 418 495 788 294 846 1232 387 1312 1500 189
: Nostoe sp. 2 B o= - ; 3 2 5
Nostocales cvanobactorinm 1T-38-2 36 458 423 500 793 294 851 1237 387 1317 |.:005 189
\Riw’h;”‘u 5 PCCTTTG 3 153 423 563 865 303 923 1309 387 1389 | 1577 189
—___ Rivuduria sp.
Atelocyanobacterinm thalassa isolate 13 429 417 457 751 295 809 1204 396 1285 1472 188
ALOHA :
— 2 2
| Canohacterium aponinam PCC 10605 | 22| 442 | 421 | 472 | 776 iﬁ; :i? :5(3)? ;;: :3?? ::;: :53
%‘wlwﬂ:m stanieri PCC 7202 25 443 419 476 753 338 880 | 1270 391 1350 | 1538 189
Geminocystis herdmanii PCC 6308 31 449 419 485 | 822 ; S
| Geminocysii 1o 377 [ 767 | 291 | 825 | 1215 | 391 | 1295 | 1483 | 189

Geminocystis sp. NIES-3708 30 448 203 857 1244 388 1326 | 1512 187

Glococapsa sp. PCC 7428

:189 782 294 840 1226 387 1306 | 1494 189

—__{lalothece sp. PCC 7418 821 | 1210 | 390 1291 | 1477 187

- 2 763 292
Ycrocrstis eruginosa NIES-2549 EIN X BETURR B2 220 | 283 | 809 | 1179 | 371 | 1259 | 1a4d | 186
wrliﬁmnis FACHB-1757 | 22 | 440 | 419 467

476 770 295 828 1226 399 1306 | 1494 189

—__Pleurocapsa sp. PCC 7327 770 | 202 | 828 | 1214 | 387 [ 1294 | 1482 | 189

M‘phuem PCC 7437 34 | 451 418 178 | 769 | 292 827 | 1219 | 393 1298 | 1472 [ 175

_Glocobacter kilaueensis JS1 27| 431 :;; 60 [ 760 | 202 | 818 | 1210 | 393 | 1289 | 1471 | 183
Mﬂ’uwﬂs PCC 7421 18 :’:3 o5 [ 506 [ 799 | 204 | 857 | 1243 | 387 | 1323 [ 1510 [ 18
35 | 43 2

Yococcidiopsis th is PCC 7203
~———Cccidiopsis thermalis PCC 72 | 1196 387 1275 1462 188
CGlocomar, &arita lithophora Alchichica- 16 434 419 460 752 293 810

~—~— Do S
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A multiple sequence alignment (MSA) of 56 protein sequences identified relatively large
insertions in GOGAT proteins of Moorea producens and Rivularia sp. PCC 711. In Moorea
producens, two insertions were detected from position 297 to 345 and from 899 to 933, while
in Rivularia sp. PCC 7116 one insertion was detected from position 468 to 552 (Figure 5.10A
and 5.10B respectively). MEME analysis did not show any detectable motif within the
inserted region. This protein from several other species (Geminocystis herdmanii PCC 6308,

Cyanobacterium aponinum PCC 10605, Planktothrix agardhii NIVA-CYA 126/8,

Cvanobacterium aponinum PCC 10605 and Microcystis panniformis FACHB-1757) also
éontained several small INDELs (Insertion and Deletion) shown in Figure 5.10C-E.
Arthrospira species were detected with 15 amino acid long insertions (Figure 5.10F). This
insertion in Arthrospira appeared to be unique to this genus and could be attributed to the

identification of this genus. This insertion likely has some functional role in this protein.
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Figure 5.10 Part of the multiple sequence alignment showing the insertions and deletions in difterent
species (A) Two insertions in Mooreqg producens (B) Insertion of Rivularia sp. PCC 7116 (C)
Insertion of Geminocystis herdmanii PCC

6308 (D) Insertion of Cy
10605 (E) Two deletions of Planktothrix

agardhii NIVA-CYA 126
PCC 10605 and Microcystis panniformis FACHB-1757 (F)

anobacterium aponinum pCC
18, Cyanobacterium aponinum
Insertion of Arthrospira species.

(3) Alpha-ketoglutarate binding (5 residues)

All the above residues were analysed by looking inte the MSA and searching for any typ® of
variation within all the selected Cyanobacteria] -

. i0NS
oL . Species. We found that residues at 2 positio”
showed variations in which the residue type was different in various species. One residu€
belonged to Iron Sulphur cluster binding category (1206 of Arthrospira platensis N[ES-39)
while the other one to the alpha-keto : nap '
glutarate bingip, ; .0 platensts
g region (93 ‘ospira pa
NIES-39). The Séquence conservatiop at thes SO (932 of drihrosp

- . I
€ identified 2 pocitian : . figure 5-1
in the form of sequence logos. positions is shown in fig
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, T'c?ble 5.8.Variations found in the functionally important residues of GOGAT in cyanobacteria.
unctionally important residues were identified by comparing the sequences of Synechocystis sp. PCC
6803 and Arthrospira platensis NIES-39.

Arthrospira Variations in Type of
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o PCC 6803 | Platensis C ; e 0
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Figure 5.11 Sequence variations within functionally important residues at (A) Residue 932 and (B)
residue 1206.

5.3.2.2 Phylogenetic analysis
5.3.2.2.1 Gene tree

A gene based NJ tree (Figure 5.12) produced 12 distinet clades. Out of these 12 clades, 5

clades contained species from the same order, i.e. clade | contained Nostocales, clades 3 and

5 had Oscillatorials and clade 6 and & included species from Synechococales. The remaining

7 clades contained species from different orders. For example, clade 10 had 4 species from 4
orders namely Synechococales, Oscillatorials, Pleurocapsales and Chroccocales. Clade wis¢
comparison of species and gene tree revealed thag while most species retained their clades
with other co-species in the gene tree as in the species tree, some species moved on to an
entirely different clade with different species. We found that three species have changed their
positions in the gene tree with respect to the species tree. These were Planktothrix :,gm-dhif
NIVA-CYA 126/8, Cyanobacteriym aponinum PCC 10605 and Microcystis pm,,i.,'fbrmis
FACHB-1757. In the species tree, Planktothyiy agardhij o .

. shareed a clade with other species of
the Order Oscillatorials with a bootstrap value of 91 p

ade w Cyanobacteriyg ' hared @
i i n aponinum sha
cl ith other species of the Order Jé

ith a bootstrap value of 100, and the
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Figure 5.12 GOGAT gene—based NJ tree of 5

Color coding is same as

@ Thermosynechococcus elongatus BP 1
@ Synechococcus elongatus PCC 7942
@ Geitlerinema sp. PCC 7407

@ Gloeobacter kilaueensis JS1

100 @ Gloeobacter violaceus pPCC 7421

6 cyanobacterial species contains 12 distinct clades.

figure 4.1.
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5.3.2.2.2 Protein tree

Protein tree (Figure 5.13) is much more conserved than the gene tree. Among the 14 distinct
clades, 8 clades contain species from the same order, i.e. clade 1 had Nostocales, clades 4 and
5 included Oscillatorials, clade 7 contained Chroccocales, clade 8, 13 and 14 includ-ed
Synechococales and clade 11 of Gloeobacterales. The remaining 6 clades contained species
from different orders. For example, clade 9 had 6 species from 4 difterent orders namely
Oscillatorials, Chroccocales, Synechococales and Pleurocapsales. It was observed that in the

: e of rder
species tree, Planktothrix agardhii shared a clade with other species of the O

. . . vith
Oscillatorials with a bootstrap value of 91, Cvanobacterium aponinum shared a clade v

other species of the Order Chroccocales with a bootstrap value of 100, and the same Was
observed in the case of Microcystis panniformis which shared the clade with Microcystis
aeruginosa NIES-2549 with a bootstrap value of 100, However, in the protein tree, all three~
species came closer and formed a single clade (clade 12). This clade had a high bootstrap of
99 and 100 again. These results also confirmed a horizontal gene transfer event between the

Order Oscillatorials and Chroccocales. Arthrospira platensis NIES-39 was present in clade 5
with the same species as was observed in the gene tree.

3.3.2.3 Codon usages

We compared gene and protein trees to fj

. Se
nd any evidence of different codon usages. The
tWo trees were very similar regarding the

clades. lnterestingly,

and protein tree, We
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Figure 5.13 GOGAT protein tree with 4 disti
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5.3.2.4 Gene Duplication and Speciation events
Even in the case of GOGAT we found extensive gene duplication and speciation events
supported by a good bootstrap value (>75%) (Figure 5.14). For example, Leprolyngbya

borvana dg5 (extremophile) and Oscillatoriales cvanobacterium JSC 12 (normal fresh water)

were present close to each other (bootstrap = 100%) despite belonging to different orders,

hence proving their common origin. Similarly, Dactvlococcopsis salina PCC 8305 and
Halothece sp. PCC 7418, Cyanothece sp. ATCC 5|14 (photosynthetic) and

Atelocyanobacterium thalassa isolate ALOHA (non-photosynthetic) and also Planktothrix

agardhii NIVA-CYA 126/8 (fresh water), Cyvanobacterium aponinum PCC 10605 (thermal
springs) and Microcystis panniformis FACHB-1757 (freshwater) showed the same behaviour
in this protein. These observations support the widespread diversity of cyanobacterial species
and the effect of evolutionary pressure on the evolution of this protein. However, comparing
the speciation events of both GS and GOGAT, we observed that similar species are involved

in the speciation event in both the proteins, which indicates that these two proteins do not
contribute much in the speciation event.

5.3.2.5 Structural analysis

To look into the 3-Dimensional structure of two identified residues which showed variation

among cyanobacteria and to analyse the structure of the insertion identified in Arthrospird
genus, we modeled the representative species of the clades
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Table 5.9 Modeled species of the representative clades of GOGAT protein tree. Template used was
GOGAT of Synechocystis sp. PCC 6803 (PDB-1LLW).

. Query .
Species modelled Fl’rotem Coverage lde‘? tity
ength 0 (%)
)

Arthrospira platensis NIES-39 1569 96 66
Dactylococcopsis salina PCC 8305 1547 97 67
Geminocystis sp. NIES-3708 1538 97 71
Gloeocapsa sp. PCC 7428 1568 97 70
Anabaena variabilis ATCC 29413 1562 97 68
Planktothrix agirzrg/lgii NIVA-CYA 1531 97 45
Rivudaria sp. PCC 7116 1633 92 70
Cvanothece sp. PCC 7424 1551 98 73
Cyanobium gracile PCC 6307 1534 97 6l

Table 5.10 The quality of the predicted GOGAT structures was estimated through various servers
which were considered as good structures,

Species Verify3D Errat Q-mean Wh@]
Arthrospira platensis NIES-39 88.67 87.30 -2.79 Pass
Dactylococcopsis salina PCC 8305 89.63 87.26 -2.38 Pass
Geminocystis sp. NIES-3708 85.76 84.91 -2.04 Pass
Gloeocapsa sp. PCC 7428 87.59 85.09 -2.37 Pass
Anabaena variabilis ATCC 29413 88.87 86.54 -2.06 Pass
Planktothrix agardhii NIVA-CYA 126/3 88.34 83.96 -3.44 Pass
Rivularia sp. PCC 7116 90.27 85.99 -2.35 Pass
Cyanothece sp. PCC 7424 89.87 87.41 -2.21 Pass
Cyanobium gracile PCC 6307 88.95 89.29 -3.06 Pass
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platensis NIES-39). The variation among these two positions includes Alanine (47) and
Serine (9) at position 932 and Alanine (51) and Threonine (5) at position 1206 respectively
(in the bracket — the number of species having that amino acid out of total 56 species). In an
attempt to identify specific features of GOGAT of Arthrospira platensis NIES-39 that confer
it the ability to produce high protein content, we observed that Threonine at position 1206
a total of 56 species. These species were Arthrospira

Geitlerinema sp. PCC 7407,

was present in only 5 species out of
platensis NIES-39, Arthrospira sp. str. PCC 8005,

Pseudanabaena sp. PCC 7367 and Oscillatoria nigro-viridis PCC 7112. This observation

hinted that the Order Oscillatorials was diverse since four of the above species belonged to

the Order Oscillatorials. The variation at this position is highlighted in figure 5.15 as a

superimposition of modeled structures of Arthrospira platensis NIES-39 and Synechocystis

PCC 6803. The structural analysis revealed that the 15 amino acid long insertion in

Arthrospira platensis (Figure 5.16A) was present in the GATase2 domain. The ab-initio
method-based Quark tool (Xu and Zhang 2012) predicted a possible single helical structure

for the inserted region (Figure 5.16B). As the GATase2 domain is involved in the binding of

Glutamine. this insertion could play an important role in the GOGAT protein function of

Arthrospira platensis NIES-39.

803 (PDB-1LLW) and modeled
the two cyanobacterial species at
(pink) and Threonine (blue).

vrechocystic PCC o6

Figure 5.15 Superimposed Stmcmre.m Sh variation among
Arthrospira platensis NIES-39 showing the

. i ith Alanine
position 1206 of Arthrospird platensis NIES-39 Wi
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5.4 Conclusions

This study compares the GS/GOGAT pathway enzymes of Arthrospira platensis NIES-39
with other cyanobacteria in terms of sequence, structure and evolution. This pathway has two

enzymes, i.e. glutamine synthetase and glutamate synthase and helps in the incorporation of

nitrogen in various biologically important biomolecules.

For Glutamine synthetase, we identified the signature pattern of the domains present in this
enzyme within cyanobacteria. Functionally important residues were identified in the GS of

Arthrospira platensis NIES-39. This enzyme was highly conserved and showed very little

sequence or structural variations with respect to GS from other cyanobacteria. Phylogenetic
analysis also revealed the conserved nature of this enzyme. Codon usages were identified in

some species of GS. Significant speciation events were identified in this enzyme.

Signature patterns were also identified for the domains of glutamate synthase. Our sequence

analysis had identified a 15 amino acids long insertion in Arthrospira species. This insertion
in Arthrospira is present in the GATase 2 domain and is unique to this genus. An a-helix has
been predicted in this region and could be assigned a functional role in this protein.
Phylogenetic analysis revealed that GOGAT have a different evolutionary pattern in some
species like Planktothrix agardhii NIVA-CYA 126/8, Cyanobacterium aponinum PCC 10605

and Microcystis panniformis FACHB-1757. We have also identified deletions in these three

to the closeness of these species. Analysis of functionally

Species which could be related
esidue Threonine 1206 in Arthrospira platensis NIES-39.

important residues identified a key r .
cystis PCC 6803, a cyanobacterium with low protein

The corresponding position in Synechoc.

content is occupied by Alanine. These
-dimentiona

residues have different natures and also showed

different orientations in their 3 | structures which could result in differential
orientation

functioning of this enzyme in different Spectes-
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6.1 Conclusion

Arthrospira platensis NIES-39 is a non-nitrogen fixing and filamentous cyanobacterium. It is
3. Dh.ovlosynlhclic prokaryote with high photosynthetic efficiency and hence it Comrii-:)utes
Sl.gmllcamly to the nitrogen and carbon cycle. It is also used as a food supplement due to its
i?lgh nutritional values, particularity because of its high protein content. Apart from using as
tood. it is also used in many other fields of science like nanobiotechnology, biosenszrs
biofuel and biofertilizers which makes it a commercially important species. It is also an
all its features it is considered to be a connecting

alk e e .
alophilic and halophilic organism. Due to
akes an ideal system for study.

link betwee
between prokaryotes and cukaryotes and hence m
cies of study, we worked upon two

Hence. taki .

nce, taking Arthrospira platensis NIES-39 as our sp¢
obiectives e f . ; . . .

jectives, i.e. functional annotation of the hypothetical proteins of Arthrospira platensis

to look into the role of nitrogen assimilation pathway

N 2
[ES-39 genome and secondly,

cnz ag | b : g = .
ymes in the high protein content of this cyanobacterium.

es us information abou
possible mechanisms of action, pathway

Annotati . , ) ;
notating a protein is crucial as it g1V t various parameters like the
its physical parameters,
1er molecules. Arthrospira pla

ng species, it is of immense significance to

i,‘ < - .
unction, structure, location,
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olvements and interactions with otl
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IES-39 genome were
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We have us
eins with their respective fun
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computational methods
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ch play a vital role in different cellular
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Arthrospira platensis NIES-39. In addition, we have also annotated few p.ro.tems lha.ld:::
related to the translational machinery like amino acid-tRNA ligase activity, pepti .

activity, amino acids metabolism and a nitrate reductase associated protein. These prOTt?:':
could play a functional role in determining the protein content of a cell as n~1 Ar.zhr (.).sp S
platensis NIES-39. Protein-protein interaction is an important aspect of cell functioning a
most of the cellular proteins interact with each other. These interactions can tell us about the
probable pathway a protein may involved in. Qur annotated proteins highly interacted among

. . SR e ved to
each other indicating their role in stress tolerance as majority of the proteins belong

.. . St ation
membrane proteins and enzymatic activity. Finally, we can say that the functional annot

. . ing the
of hypothetical proteins of Arthrospira platensis NIES-39 may help in understanding

. : . . : high
various potential stress induced proteins and in understanding the mechanism behind the hig
protein content.

. . . i itrogen
proteins both contain nitrogen. Biosynthetic pathways of these biomolecules receive nitrog

. are
from the nitrogen assimilatory pathway. Four enzymes (NR, NiR, GS and GOGAT) a

. . i.e.
present in this pathway. This pathway can be broadly Categorized into two sub-pathways i

. T - . . . ate it to
on the nitrogen assimilation process. Thus, having different functionality, we could rel
the protein content of Arthrospirqg platensis NIES-39.

istic
. . . . . . acterls
Signature s€quences are g unique pattern of amino acid residues which are char

features of a group of sequences. In

. . . of the
this study, we have identified the signature pattern
domains of both the nitrate assimij]

C e uctas€
atory enzymes i.e. nitrate reductase and nitrite red

: : . : : itrate
alter the protein function and make it more efficient. In our analysis, the enzyme n )
: : o : inal of the
reductase was detected with a possible motif with a-helical geometry at the C-terminal 0



Chapter VI

protein. This motif could enhance this enzyme’s stability and its contribution towards the
final protein content.

Active site of a protein contains functionally important residues. These residues tend to
remain conserved in the homologous sequences. Any change/mutation in these residues will
affect the protein functioning. We analyzed these functionally important residues in NR and
NiR within cyanobacteria. Our analysis was able to uniquely identify the key residues in both
the enzymes which would affect the protein functioning. In case of NR of Arthrospira
platensis NIES-39, the position 394 is involved in guiding the nitrate towards the active site,
was mutated from Serine in Synechocystis sp. PCC 6803 to Asparagine in Arthrospira
platensis NIES-39. This replacement could enhance the capability of the enzyme to get more
substrate and hence more product. A similar kind of phenomenon was also observed in NiR,
where the active site residue position 408 has changed from Lysine in Synechocystis sp. PCC
6803 to Asparagine in Arthrospira platensis NIES-39. This position was already known to
switch this protein from high to low affinity in Tobacco. This is the first report of the dual
nature of NiR in cyanobacteria. Asparagine in Arthrospira platensis NIES-39 makes NiR a
low affinity enzyme increasing its turn over number.

Tertiary structures immensely help us in understanding the working of a protein. We used

h0mology modeling to model the representative species of each order from the protein trees
of both NR and NjR. This study helps us to look into the 3-dimentional structure of the

functionally important residues, particularly the ones which showed variations. From this

sidues identified in NR and NiR have different

analysis, we can tell that the key re
e enzymes.

s also studied through phylogenetic analysis.

6s rRNA gene-based species tree revealed

orientations and could functionally affect th
The evolutionary pattern of these enzymes wa
Species, gene and protein tree were constructed. 1
that there is a gap between the classical and mode

Species and gene tree predicted high speciation events a

rn approaches of taxonomy. Comparing
mong all cyanobacteria which support

omparison gives us the idea about

their wide geographical presence. Gene and protein tree C .
e of the species like Gloeocapsa

in som
the codon usages. Here also we found codon usages 11
iales cyanobacterium

ies shows different evolutionary
R and NiR. However, Arthrospira platensis NIES-39

in NR and Cyanobium and

Sp. PCC 7428 and Oscillator
P pattern when species

rochlorococcus in NiR. Some SPec
and protein tree was compared in both N

showed conserved evolutionary pattern-
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Sequence analysis of the GS and GOGAT in terms of signature patterns revealed that GS is a
highly conserved enzyme as compared to GOGAT. Motif analysis also hints at the same
conclusion with only 8 highly conserved motifs identified in GS as compared to 20 motifs in
GOGAT. Comparing the homologous sequences of cyanobacteria, an insertion was identified
in the GATase domain of GOGAT. This insertion has an a-helix. GATase domain is involved
in the Glutamine binding and presence of this insertion could affect the enzyme functioning.

Functionally important residues were identified and analyzed in both GS and GOGAT. As
expected, no variation was detected in highly conserved GS. While in case of Arthrospira
platensis NIES-39 GOGAT, a key functional residue at position 1206 was identified which is
involved in Iron-Sulphur cluster binding. The change from Alanine

position could affect the enzymatic activity of GOGAT.

to Threonine at this

The modeled species from representative orders of GS and GOGAT confirmed the conserved

nature of GS. GS of 8 modeled species were superimposed and the structures were highly
concurrent. In case of GOGAT, the amino acids at Position 1206 were different in terms of
their orientations and likely to affect the protein function.

Phylogenetic analysis revealed horizontal

L - However, the study of in-depth molecular
events functioning in this process is still at the research leve|

6.2 Future Perspectives

In this study, we have annotateqd 312 un-annotated

' . proteins of 4 rthropsira platensis NIES-37
Key proteins involved in stress management haye

. . L been identified, These proteins can further
be investigated for their individual contribution ip

. . ' the stresg tolerance. Experimental studies
like proteomics analysis can really help ys to und

€rstand the varjoyg mechanisms in Stress
tolerance.
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Proteins involved in translational process have also been identified. Experiments can be set

up to find the molecular mechanism behind the unique characteristic features of Arthropsira

 platensis NIES-39 like the high protein content.
This annotation process can be used in the annotation process of other newly sequenced

genomes using in silico approaches like holology searching.

With the annotation of new interacting proteins, metabolic pathway analysis using methods

like Flux Balance Analysis could be helpful i
towards protein content. These putative pathways can be validated usin

Nitrite reductase of Arthropsira platensis NIES-39 was identified as a dual-affinity enzyme.
mics and simulations can help to find the actual mechanism

n identifying novel pathways contibuting

g experiments.

More studies like molecular dyna

behind this process.

Several pathways have been known to affect the fin
A degradation and tRNA synthetase. Looking deeply into the working

perspectives to think about the high protein content of the

al protein content of a cell. These

pathways include mRN
of these pathways will give us new
cell.

Although we have tried to take as many species as pos
y day and hence including more sp
s chances of getting new insights into the current process

sible to include variations, new species

ecies would definitely enhance
have been sequenced ever

the variation among dataset and thu

will be more.
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