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ABSTRACT

Analytical procedures which can accurately determine internal
stress and strain distributions in the concrete and reinforcing steel
elements of reinforced concrete members are lacking for many cases.
Among the most serious difficulties to the development of such
analytical procedures is the non-homogeneous and nonlinear behaviour
of concrete. The evaluation of stress and strain, deflection and cracking
of reinforced concrete members by means of the finite element analysis
is an approach currently receiving increasing attention as a possible
method capable of greatly intending the scope of the problems that can
be treated numerically. Finite element analysis of material nonlinearity is
still under intensive research. One of the principal limitations in this area
is the difficulty of adequately representing material properties. In other
words, better techniques of computing material parameters and of
utilizing experimental data must be devised. To represent the realistic
behaviour of reinforced concrete incorporating material nonlinearity and

stress-strain relationship, an appropriate finite element model has to be

developed to get the load-deflection curve.

Xi



This thesis presents the modified stiffness method of finite
element model to analyse the post-cracking behaviour of reinforced
concrete slabs. In the analysis, the nonlinear vanation of matenal
properties, through the slab depth is taken into account by numerical
integration. The steel reinforcement in the element is considered as
uniformly distributed. The smeared crack approach with rotating strain
based orthogonal cracks is applied in the analysis. For this an

incremental orthotropic model has been used.

The softening phenomenon of concrete in compression and
tension, bond between steel and concrete have been considered. In
addition, the complex crack interface behaviour known as aggregate

interlock is included in the analysis.

To examine the overall behaviour of the cracked element,
combining all the above said factors, a software integrated finite element

model is developed. Numerical results so obtained are ih good

agreement with the experimental results.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The behaviour of reinforced concrete members in o structural system,
specifically their response to loads and other actions, has been the subject of
intensive investigation since the beginning of the present century. The study is still
under progress because of its highly complex material behaviour. It has been the
constant endeavor of structural engineers to improve their concepts of analysis and

design so that an economical structure is obtained with safety and serviceability.

During the first half of this century, various methods of elastic analysis were
developed in this direction to analyse beams, rigid frames, trusses, plates, shells,
etc. for strength and stability. Consequently in the theory of elasticity three

important assumptions have been made. These are:

(a) The material is assumed to be isotropic and homogeneous,
(b) The material is taken as linearly elastic, and

) . Yoke |
(c) The stress at all points of an elastic body * us taken , within the elastic limit of

the materials constituting the body.



These assumptions were made realistic for material such as steel subjected
to relatively small loads. Accordingly, the actual performance of structural systems
tallied with the theoretical predictions and great confidence was placed on these
theories and their applications. However, the stress-strain relations are generally
nonlinear for the various grades of concrete and accordingly the use of the elastic

leads )
theory fo: i5 & concrete structureyto an approximate solution.

Moreover, the orthodox method for designing concrete structuresis based
on suitable factor on the stress in each of materials constituting the structure and
analysis is done with straight line theory in the case of reinforced concrete. In this
elastic method the relationship between load and deflection or stress and strain is
assumed to be linear upto the collapse of structure. But concrete and steel both
cease to be fully elastic after a certain stage of loading. The inelastic behaviour of
concrete starts right from very low stresses, while steel shows inelastic

a Corcrele
deformations after elastic limit has reached. So behaviour of structure cannot
remain elastié at higher loads as the failure approaches. Consequently, ultimate load
theory is used to evaluate the collapse load on structure which is the outcome of
inelastic or plastic strains that occur in material before it fails. Yield line analysis is
an ultimate load method, in that the load at which slab will fail is assessed, and is
invaluable as a design technique for finding the solution for the behaviour of the

slabs. In most of the cases, a structural member designed by ultimate load theory is

t00 slender to be adopted. Also it may exhibit new problems like excessive



deflection, excessive crack width etc. at service condition.

As a remedial measure limit state analysis‘ibeing used to control maximum
deflection and maximum crack width. However, this analysis fails to incorporate
nonlinear variation of materials and effects due to cracking of concrete. The finite
element method which takes care of different elements ofgtructure with different
elastic properties'fgfegant\ , 15 an approach currently receiving increasing attention
as a possible method. In addition, in finite element method the requirement of
homogeneity is relaxed, which is a restriction imposed by the theory of elasticity.
As the structure is loaded progressively, the reinforcement at some points can yield,
the concrete can get crushed locally at several points and cracking can be extensive.
During the load increments, based on well established failure criteria the finite
element method can progressively modify the structural properties of the various
elements constituting the body, and trace the nonlinear load-deformation

relationship till the failure or collapse load is identified.

The finite element method is very versatile to carryout nonlinear analysis of

structural systems to any desired level of accuracy. The finite element method is
clearly related to the power and versatility of modemn digital computers. This new
tool is ideally suited for computer simulation of complex structural behaviour. It is
important to note that stresses, strains, deformations and displacements can all be

predicted by this method at any point in a body even in the nonlinear stage, just as



the theory of elasticity can do the same at the elastic stage of behaviour.

Structures may exhibit nonlinear behaviour due to material nonlinearities or
geometric nonlinearities. Geometric nonlinearities are associated only with certain
special structural elements and systems in which the effect of displacements on
internal forces must be considered in the analysis. Long columns, flexible arches and
some thin shell structures are examples of such special cases. On the other hand,
material nonlinearities occur in all reinforced concrete structures and should be

considered in any accurate rational analysis. Only material nonlinearities in

reinforced concrete will be considered hereafter.

1.2 Motivation

Subsequent studies were undertaken predominately to study overall
behaviour of reinforced concrete slabs. The objectives of these studies were to
determine the basic failure mechanisms for complex reinforced concrete slabs. The
basic failure hechmism for a number of these structures were not well defined.
Physical experiments to determine the sequence of crack formation and the
locations of the failure modes were not easy to conduct. The scaling of these
structures were demanding but expensive. The construction of physical models of
the size to fit into the laboratories were very difficult. Some of the attempts to
actually construct reduced models proved to be unsatisfactory. This prompted the

us of numerical experiments. A numb_er of these early studies using smeared crack model



within layered plate element produced reasonable values of nonlinear behaviour.

From this background active movements have appeared to rearrange the
present status and [ook over the future prospect'ss of rational analysis of reinforced

concrete slabs.
1.3 Objectives of Thesis

1. Material nonlinearity of reinforced concrete should be considered for any
accurate rational analysis, i.e., considering nonlinear stress-strain relations for

concrete and steel.

2. Reinforced concrete members and structures are subject to tensile concrete
cracking at relatively low loads. These cracks propagate gradually with
increasing loads. They have a profound effect on local stresses and
diSplacements, as well as overall behaviour and strength. In terms of a finite
element analysis, progressive cracking means that the structure being analyzed

experiences a continuous topology of cracking as the load is increased.

3. Progressive destruction of bond between concrete and reinforcement occurs as
load is increased, permitting some longitudinal slip between the steel and the

concrete. This starts almost with the initiation of flexural cracking at loads well



below service load, with local bond failure immediate adjacent to the cracks

The increase of slip with load is highly nonlinear.

4. Certain force transfer mechanisms in cracked concrete members, namely.
interface shear transfer across cracks by aggregate interlock is difficult to
incorporate into a general analytical model.

5. Representation of rational finite element model for incorporating constitutive
relations of the above to reinforced concrete slab cracking and its overall

behaviour.

1.4 Organisation of Thesis
Chapter 1 gives an introduction to material nonlinearity and thereby finite
element analysis. The motivation and object of the present investigation has also

been emphasised.

Chapter 2 deals with the literature review of earlier conventional design
methods and classical elastic theory of plates used for slab analysis and their
limitations. The development and limitations of yield line analysis and strip method
are also described. In addition it discusses the versatility of finite element analysis of
reinforced concrete members. The investigations of various authors and their

limitations regarding nonlinear analysis of reinforced concrete slabs are also



incorporated here. The chapter concludes with further investigations required for

post- cracking behaviour of reinforced concrete slabs.

The subject matter of Chapter 3 contains the finite element methodology
and the selection of plate bending element for slab analysis. Nonlinear solution
techniques are discussed to represent the non-linear material behaviour and the

corresponding constitutive relations.

Chapter 4 explains the various models of reinforced concrete materials and
the adopted models for nonlinear analysis of slabs and corresponding stress-strain

relations.

The importance of tension-softening, tension-stiffening and rough crack
behaviour has been explained in Chapter 5. The stress-strain relations for bond
between steel reinforcement and concrete are derived. Aggregate interlock resulting

from rough crack behaviour has been modeled and corresponding constitutive

relations are developed for the analysis of slab.

The methodology of analysis and the solution procedure for reinforced
concrete slabs have been described in Chapter 6. Flexural stiffness matrices
developed for bond and aggregate interlock are also incorporated in the analysis

here.



Chapter 7 presents the experimental investigation of simple supported
rectangular slabs with and without central openings, when subjected to uniformly
distributed load Materials like cement. sand. coarse aggregate and steel bars were

tested to get the required parameters Concrete mix was designed according to
Road Note method. A solid slab and five slabs with different size of central openings
were cast and tested to failure Cracking of concrete, vieiding of steel
reinforcement, crushing load and patterns of yield line were observed while testing

of slabs. Slab deflections were measured at pre-specified points along the predicted

yield line.

Slabs are modeled for proposed finite element analysis and the numerical
results are compared with experimental load-deflection curves. The effects of bond

and aggregate interlock are analysed in Chapter 8.

Conclusions are drawn in Chapter 9 based on the comparisons of
experimental and proposed analysis results. By incorporating tension-stiffening
effect due to bond between steel and concrete, it is found that the results are
improved and giving more closer approximation towards exact values. The
aggregate interlock effect is almost negligible. The tension stiffening model is

observed effective from cracking of concrete to yielding of steel reinforcement.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Slabs are the most widely used structural elements of modern structural
complexes and the reinforced concrete slab is;%ost useful discovery for supporting
lateral loads (perpendicular to the horizontal plane) in buildings. A reinforced
concrete slab istbroad, flat plate, usually horizontal, with top and bottom surfaces
parallel or nearly so. It may be supported either by reinforced concrete beams
(usually monolithic construction), by masonry or reinforced concrete walls, by
structural steel members, directly by columns, or continuously by the ground. Slabs
may be viewed as thin or moderately thick plates that transmit loads to the
supporting walls or beams and sometimes directly to the columns by flexure, shear
and torsion. It is difficult to decide whether the slab is a structural element,

component or structural system in itself. Slabs are viewed here as  structural

elements.

Slabs may be visualised as intersecting, closely spaced, grid beams and
hence they are seen to be highly indeterminate. Slabs, being highly indeterminate,
are difficult to analyse by elastic theories. Since slabs are sensitive to support

restraints and fixities, rigorous elastic solutions are not available for many practical



important boundary conditions. Their structural behaviour in the elastic, inelastic
and ultimate stages is complicated. The deflection and cracking of slabs are
important since they affect the performance of slabs and the comfort of the
occupants. Still adequate information on these aspects have not been acquired.
Since large volume of concrete go into slabs, the slightest reduction in the design
depth will lead to considerable economy. The study of behaviour of slabs is indeed
a challenge, particularly when precise technical information is not readily available
. and an intuitive feel is still the basis for the design of slabs. The presentation of the

performance of slabs will be made infgraded manner, from the simple to complex.

2.2 Literature Review

Research on various types of slabs has been in progress since 1920. Earlier,
construction of flat slabs and flat plates were popular because of simplicity,
structural elegance and economy. An attempt has been made to understand
theoretical basis and structural behaviour of flat slab by Westergaard and Slater[1].
A serni-empiﬁcal direct design method and an approximate elastic analysis known
as the equivalent (building) frame method were developed on the basis of satisfying
the conditions of equilibrium and geometrical compatibility. In either case the slab
panel is divided into column strips and middle strips for design purpose. The
equivalent (building) frame analysis for the design of buildings was first introduced
byf‘Stasio[Z]. Analysis of two-way reinforced concrete slabs by the coefficient

method was introduced in the United States by Rogers[3]. Distribution factors for

10



moments were developed based on three-dimensional elastic analysis and
experimental results[4,5,6]. Rice[7] and Zweig[8] have represented various design
aids and simplifications for the direct design method of flat slabs. According to ACI
Code[9], special attention must be given for providing the proper resistance to
shear as well as to moment, when designing by the direct method. An excellent

review of this historical development has been given by Park and Gamble[10].

During this period the beam and slab construction (called the two-way slab
system) was being established on a sound theoretical basis using classical theory of
plates. When two-way slabs are supported by columns, as in flat slabs and flat

plates or when slab carry concentrated loads as in footings, shear near the column is

of critical importance.

These elasticity-based methods have the following important limitations.
Slab panels must be square or rectangular. They must be supported along two
opposite sidés (one-way slabs), two pairs of opposite sides (two-way edge
supported slabs) or by a fairly regular way of columns (flat plates and related
forms). Loads must be uniformly distributed, at least within the bounds of any
single panel. In practice many slabs do not meet these restrictions for example,
slabs with large openings, slabs supported on two or three edges only, slabs

carrying concentrated loads and non rectangular slabs. Yield line analysis provides

solution for such problems.

11



The plastic hinge was introduced as a location along a member in a
continuous beam or frame at which, upon overloading, there would be large
inelastic rotations at essentially a cbnstant resisting moment. For slabs, the
corresponding mechanism is the yield line. For the overloaded slab, the resisting
moment per unit length measured along a yield line is constant as inelastic rotation
occurs. The yield line serves as an axis of rotation for the slab segment. It discusses
the yielding of the slab reinforcement at several critical sections and the eventual

collapse of the slab under the conditions of ultimate load.

The yield line theory was innovated by Danish engineer, Ingerslev[11] and
greatly extended by Johansen. Early publications were mainly in Danish, and it was
not until Hogenstad's English language summary[12] of Johansen's work that the
method received wide attention. Since that time, a number of important publications
on the method have appeared[13-19]. One can find literally hundreds of
publications on yield line theory and yet research is progressing in unexplored

avenues and development of yield line theory.

The yield line is a line in the slab about which plastic rotations occur when
the reinforcement bars are yielding. The ultimate moment 'mu’ Of resistance about a

yield line has been assumed as

Mus = Max COS20L + MaySin’oL @20

12



where ¢ 1s the angle of inclination and mw, me are ultimate moments in X,y

directions respectively. Similarly, the torsional moment mun along the yield line are
Mun = (Mux - Muy) SINECOSQL (2.2)

The failure occurs when the computed normal moment exceeds the ultimate

moment of resistance, which is called the yield criterion.
2 .2 .2 2 . 2
MxCOS ¢t HmySIn ¢ +MyySIN ¢ = MuxCOS ¢+ MuySIN ¢ ..(2.3)

where mx, my and mx, are bending moments and twisting moment per unit length

respectively.

Tt has been assumed that at the yield lines, no torsional moments exist since

Mue and muy are principal moments. The value of mun is generally neglected.

Often, the yield lines occur at directions that are not parallel to the
reinforcement direction. Consider the case of a rectangular slab which has been
reinforced orthotropically (that is, the reinforcements in the short span and long
span directions are spaced differently). The cracks first develop perpendicular to the

short span direction at the mid-region of the slab. As the load is further increased,
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these cracks continue to grow and fork to join the corners and form failure

mechanism.

In isotropically reinforced concrete slabs, usually in the case of square slabs

(i.e., reinforcements in both the directions are same) Mux = Muy condition exists.

Therefore,
Mun = Mux (cosza + sinza) ..(24)
gives
Mun = Mux = Muy ... (2.52)
and mum =0 ... (2.5b)

Thus the ultimate moment of resistance in any direction of an isotropically
reinforced slab is the same and torsional moments are zero. Hence all directions are
principal directions by analogy with "principal stress directions". It is important to
note that when the mx and muy values are not the same in two directions
(orthotropicaily reinforced slabs), torsional moments are present along the yield

lines, in addition to normal moments.
However, the recent research on cracking of concrete states that cracking

criterion is strain based rather than stress conditions, i.e., principal curvatures are

important in flexural problems than principal moments.
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Yield line theory is an upper bound method. It will predict a collapse load
that may be greater than the true collapse load. The actual capacity will be less than
the predicted if the selected mechanism is not the controlling one or if the specific
locations of yield lines are not exactly correct. Yield line theory never specifies the
spacing of reinforcement, other than a uniform lateral spacing along the yield line. It
is possible that the required rotation will exceed the available rotation capacity, in

which case the slab will fail prematurely.

The yield line analysis focuses entirely on the flexural capacity of the slab. It
is presumed that failure will not occur due to shear or torsion and that cracking and
deflections at service load will not be excessive. The yield line analysis neglects any
consideration of strain compatibility along the yield line and assumes that the
displacements at the level of the steel during yielding, which are essentially
perpendicular to the yield line, are sufficient to produce yielding in both sets of bars.

Yield line analysis assumes that at the yield lines no shear and torsional moments

exists.

The strip method was introduced by Hillerborg[20]. He included the
practical design of slabs on columns and L- shaped slabs. Important contributions
have been made by Kemp[21] and Wood and Armer[22]. Load tests of slabs

designed by the strip method were carried out by Armer[23] and confirmed that the

method produces safe and satisfactory designs.
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In contrast to the yield line analysis, the strip method is a lower bound
approach, based on satisfaction of equilibrium requirements everywhere in the
slab[24]. While searching for a lower bound solution, one must find a solution to

the governing equilibrium equation for slabs which is

..... b oom = emeee = .. (2.6)

where 'q' is load per unit area on the slab. The basis for the simple strip method is
that the torsional moment is chosen equal to zero, i.e., no load is assumed to be
resisted by the twisting strength of the slab.

Mgy =0
The equilibrium equation then reduces to

62 My azmy

...... F e = o
5 q

o oy

@27

This equation can be split up into two parts, representing twistless beam strip

action
&’msx
_.;(.2.- = -gq ... (2.823)
azmy
Y = -(1-g)q ... (2.8b)
oy

where the proportion of load taken by the strips is § in the x-direction and (1-g) in
the y-direction.
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Apparent discontinuity in torque or deflection may be disregarded, but a
discontinuity in moment or shear is not permitted. Advanced research on strip
method had been carried by number of investigators. Important publications

pertaining to the design of slabs were made.

The strip method may be simple and safe in its final application, but the
basis for the method is rather subtle. While searching for lower bound solution to
governing equilibrium equation for slabs, twisting moment myy being deliberately
taken equal to zero. As in any flexural member, a load any where on a strip

produces a shear along the entire strip. Zero shear lines are assumed while treating

the strips as beams.

Neither the strip method nor the yield line approach provide- any
information regarding cracking or deflections at service load. Also there is need for
evaluation of the stress conditions around the supports in relation to shear and

torsion as wéll as flexure. Two-way slabs, even single- panel simply supported,

require a three-dimensional approach for analysis. Such slabs are rarely statically

determinate in their internal moments and shears.

Cracking of one-way slabs is very similar to cracking of beams. Significant
work has been done by Gergely and Lutz[25] and Beeby[26] on the general topic of

cracking in concrete and has been the basis for various code clauses[27].
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Cracking of two-way slabs has become important since cracking patterns of
an orthogonal nature or yield line patterns can predominate in a slab depending on
the nature and magnitude of reinforcement in a slab. Significant contributions have

been made by Desai and Kulkarni[28] in  this direction.

The prediction and control of deflections of reinforced concrete structural
elements has always been difficult due to cracking, shrinkage, creep and
non-homogeneity of such elements. The problems become acute in the case of
slabs, and in spite of significant research and development by Brason[29] and Park

and Gamble[10], a consensus to the approach to the deflection of slabs has not been

reached.

The most comprehensive studies of reinforced concrete slab deflections

have been recorded by Joftiet[30] who studied elastic and post-cracking

behaviours. Further work has been done by Desai and Kulakamni[31,32] to take into

account the tensile membrane action in predicting crack width and deflection. Moy

and Mayfield[33] made additional investigation regarding the arrangement of

reinforcement in two-way slabs and its influence on cracking, deflection, and

ultimate failure load.

It is unfortunate that having included 'cracking and deflections' as an

important limit state, the IS Code has not provided adequate computational

procedures on the crack widths and deflections of slabs.
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The essential difficulties in estimating the slab deflections is the estimation
of crack width and crack pattern, estimation of creep and shrinkage coefficients,
and above all, the estimation of the flexural stiffness EI which is representative of

the varying stiffness along the short and long directions.

Finite difference and finite element methods are extremely useful in this
direction. The finite difference methods have been extensively used for the study of

continuous plates[34,35] until the more versatile finite element method came into

excessive use[36,37].

The first model of finite element method to reinforced concrete was

developed by Ngo and Scordelis[38]. The discrete crack model with predefined

crack patterns was developed to determine the principal stresses in the reinforced

concrete and bond stresses. Simple beams were analysed in which the concrete and

steel reinforcement were represented by two-dimensional triangular elements.

Special bond link elements were used to connect the steel to the concrete.

Soon there after a second and basically different approach of smeared crack

model was developed in the design of containment structure for a gas cooled

nuclear reactor by Rashid[39]. This second approach looked at a problem in a more
global sense.
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Nilson[40] introduced nonlinear material properties and a nonlinear
bond-slip relationship into the analysis and used an incremental loading technique to
account for these nonlinearities. Improved quadrilateral plane stress finite elements
were used. Cracking was accounted for by stopping the solution when an element
indicated a tensile failure, and hence redefining a new cracked structure, which was
again input into the computer and reloaded incrementally. The method was applied
to concentric and eccentric reinforced tensile members, which were subjected to
loads applied longitudinally through the reinforcing bars. Then the results were

checked against experimental results.

The research by Cedolin and Dei Poli[41] on studies of reinforced concrete

beams clarified many points regarding behaviour of concrete.

A number of additional papers have ... appeared dealing with the finite

element analysis of reinforced ~concrete systems made up of plane stress finite

elements. Tﬁe more important papers are of Valliappan and Doolan[42], Colville

and Abbassi[43], Nam and Salman[44]. The solutions generally are similar except

the use of finite elements or different constitutive relationships and failure criteria

for the concrete.

The fracture energy based finite element model for reinforced concrete

capable of following strain-softening process both in tension and compression is
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presented by Gajer and Dux[35] The performance of the model is demonstrated by

comparing with experimental behaviour of panels and deep beams.

Yamaguchi and Chen[46] studied finite element method for reinforced
concrete structures with regard to various important aspects such as constitutive

modeling and tensile cracking.

One of the first applications of finite element method to elastic-fracture
behaviour of reinforced concrete slabs is reported by Joffiet and McNiece[47].
Later . similar approach called 'modified EI' or 'modified stiffness' is presented by
Bell and Elms[48]. Triangular and quadrilateral plate bending elements are used to
study the behaviour of reinforced concrete slabs. The slab with a known distribution
of reinforcing steel is divided into elements. For each element, the stiffness matrix is

derived using a rigidity Matrix based on uncracked section geometry.

\U

' conditions are applied. A unit load is applied and scaled down until only one region

/

The elements are then assembled into the total slab structure and boundary
cracks. This is governed by the maximum principal moment. The flexural rigidity

after cracking is taken as product of reduced modulus of elasticity (0.57 Ec) and the

moment of inertia of the cracked transformed section.
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The effect of steel and crack orientation on the rigidity matrix relative to the
element coordinates system are determined. The stiffness matrix then changed
appropriately to the cracked region. The unit load is applied again and results scaled
to the next crack observation. This procedure is repeated until the desired load
level is reached. The analysis allowed cracking in two orthogonal directions if the
minor principal moment in an element reached the cracking moment value. It is
assumed that once a crack forms at right angles to a principal moment direction, its
orientation is unaltered during any increase of load. The cracking in each element
by using changing orthotropic flexural rigidities attempts to account for tension

stiffening.

Post yield behaviour is not included in the analysis. This approach is
restricted by the limitations due to assumptions of a macroscopic equivalent
moment - Curvature relationship. This method does not evaluate progressive

cracking through the thickness of slab.

In layered finite element approach the slab element is assumed to be a
number of parallel layers of material. Each concrete layer is assumed to be in a state
of plane stress with properties defined through biaxial stress-strain relations and
failure criteria. Reinforcing steel is introduced as a layer of material with
orthotropic properties consistent with the amount and placement of steel. This

approach is based on idealized stress-strain relations for concrete and steel together
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with some assumptions regarding compatibility of deformation between the two

constituent matenals.

Hand et al[49] applied layered finite element approach to analyse reinforced
concrete plates and shells. The steel is considered as an elastic-plastic material. The
concrete is considered as an isotropic bilinear elastic-perfectly plastic material with
a limited tensile strength. A 20 degree of freedom rectangular doubly curved
shallow shell layered finite element is used. The material properties varies through
the thickness of slab or shell as loading progresses. It produces a coupling in the
constitutive  relations between mid-surfaces strains and curvatures and thus
between in-plane and normal displacements. The implication of this coupling is that
even for plate bending problems, in-plane boundary conditions must be specified for
a complete description of problem. The structural stiffness matrix is updated at the

beginning of each load increment. The incremental variable elasticity technique is

used to obtain the load-deflection curve.

The rough cracks are realized and the shear strength along the crack should
be function of the crack width. Therefore, the need for shear retention factor to
provide the torsional and shear stiffness for cracked concrete is demonstrated. A
constant value of 40% was assumed for shear retention factor. Neglecting tension
stiffening effect of the concrete between cracks is the major limitation. The

analytical results are too small with respect to experimental values.

23



For concrete in tension, the important concept of tension stiffening to
account for the participation of the concrete between cracks was first introduced by
Scalon and Murray[50] in study of slabs. The study also included the time

dependent effect of creep and shrinkage.

Wanchoo and May[51] developed a model for post-elastic bending
behaviour of reinforced concrete slab. The variation of stress through the thickness
is permitted by using a layered model. The analysis is restricted to small
deformation theory and perfect shear bond is assumed between layers. Transverse
shearing deformations are neglected. The concrete is modeled by an elastic-cracked
behaviour in tension and elastic-plastic behaviour in compression. The reinforcing

steel is modeled by a two-dimensional layer —obeying Von Mises criterion and

associated flow law.

Wheﬁ the maximum principal stress o1 reaches the uniaxial tensile strength

of concrete, cracking is initiated in 2 direction perpendicular to this stress. As the

cracking forms, stress transfer across the crack is reduced to zero, i.e. g1 =0. The

assumption is also made that there is no shear stress across the crack once it has
formed. Abrupt drop in the principal stress o1 t0 Zero rises the unbalanced stress in
the model. To restore equilibrium, this unbalanced stress is distributed to the rest of

the structure by an initial stress process. A rectangular element with 16 degrees of
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freedom is adopted for analysis. The solution is in the nature of an upperbound on

loads.

Lin and Scordelis[52] presented a nonlinear finite element analysis of
reinforced concrete shells of general form. Some of the basic approaches adopted
are similar to those of Hand's work[49]. A flat triangular element with 15 degrees
of freedom, five at each corner node is used for the study. The steel is assumed to
be elastic-plastic in both compression and tension. The concrete is assumed to be
elastic-plastic in compression. The tension stiffening effect of the concrete between

cracks, neglected in Hand's work[49] is included. Significant influence of this effect

on the post-cracking load-deflection response of under reinforced concrete

structures is observed. The concrete is considered to release its stress gradually

after cracking. Therefore, the stress-strain curve for concrete in tension is

considered to have an uncracked elastic portion and a cracked unloading portion.

Shear retention factor is assumed to account for dowel action and aggregate

interlock. It is stated that inelasticity of the concrete is not by actual plastic flow,

but by the cumulative effect of micro crack propagation. Incremental iteration

procedure is used for the solution of nonlinear analysis.

Vebo and Ghali[53] presented an analytical method to  derive the

moment-curvature relationship for a slab element orthotropically reinforced and

subjected to a general state of applied moment. The numerical procedure takes into
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account the nonlinear behaviour of the materials and the effect of stiffening due to
tensile stress in concrete between cracks. It is stated that, the effect of biaxial
compression on the moment curvature relationship will be relatively small. Since the
main characteristics of this relationship for under reinforced concrete sections
depend mainly on the characteristics of the reinforcing steel. Therefore, uniaxial
stress-strain relationship for concrete in compression is assumed. The elasto-plastic
relationship is assumed for reinforcing steel. The bilinear descending relationship is
considered for concrete in tension to include tension stiffening effect. Failure of the
slab section is considered as the crushing of concrete at ultimate strain. No relative

displacement (bond) is assumed to take place between the concrete and reinforcing -

steel. Poisson's ratio effects are neglected.

Bashur and Darwin[54] presented nonlinear model for reinforced concrete

slabs that includes the nonlinear variation of material properties through the depth

,of slab. Reinforced concrete slabs are modeled as incrementally elastic, anisotropy

plates. Concrete is modeled as a nonlinear material in compression and as a linear

brittle material in tension. Steel is represented as a uniaxial material and idealized

as an elastic-plastic material. The concept of equivalent uniaxial strain used to

represent strain on the material axis: The moment-curvature equations are

expressed in terms of "equivalent uniaxial curvature" which is analogous to

equivalent uniaxial strain. Orthotropic material properties are used in the differential

stress-strain relations.

26



A four node rectangular plate bending element with 16 degrees of freedom
is used for the analysis. Material properties are calculated at the centre of each
element. Loads are applied incrementally, and the solution is corrected using
successive iterations (initial stress method). The analytical results are compared
with experimental results of two beams and three slabs. Membrane stresses and
strength variations due to biaxial stresses are not included. Since the effect of
biaxial stresses on concrete stiffness and strength is insignificant in modeling the
behaviour of reinforced concrete slabs under monotonic load. Tension stiffening

effect and bond slip between steel and concrete are not included in the study. Also

shear retention factor is not considered for analysis.

Gilbert and Warner[55] studied a layered discrete element method to

investigate the behaviour of reinforced concrete slabs by taking into account the

tension stiffening effect. The concrete is assumed to carry no stress normal to the

crack but an 5dditiona] stress will be carried at the steel level. This additional stress

represents the total internal tensile force infact carried by the concrete between the

cracks. conveniently lumped at the level of the tensile reinforcement and oriented in

the direction of the bar. After cracking the stress-strain relationship of steel is

modified to account for this effect. The reinforcing  steel is assumed to be

elastic-plastic in both tension and compression with stiffness only in the bar

directions. Concrete is assumed to be elastic-plastic in compression.
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Shear retention factor is assumed as 0.6 to account for aggregate interlock
and dowel action. A layered 16 degree of freedom rectangular plate bending
element is selected for the study. Incremental iterative procedure (initial stress
method) is applied for analysis. Comparisons of different tension stiffening models
were made. Perfect shear bond is assumed to exist between adjacent layers and

perfect bond between steel and concrete within the layer.

Cope and Rao[56-58] developed space element modelling in which a
certain numberf!gauss points are used for integration through the thickness of the
slab. Zarris[59] presented a theory regarding the stresses of reinforced concrete
shear walls and slabs under service loads. Stresses are determined before and after
cracking. The reinforcement provides forces and moments that compose tensors.
These tensors, together with the corresponding concrete tensors, constitute the

reinforced concrete tensors. After cracking, the force and moment tensors of

reinforcement appear in their complete form, i.e., not only with the axial forces but

also with the shear forces of steel bars. The existence of these shear forces is

proved theoretically, and their magnitude is determined by the compatibility

conditions of the strains at the crack. The angle of cracks, the steel stresses and the

forces or moments of concrete between the cracks are obtained by equating the
tensor of the internal forces or moments of plate with the tensor of reinforced

concrete forces or moments respectively. Plates subjected to simple bending or pure

torsion is analysed. It had been concluded that after cracking, the reinforcing bars
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have shear stresses apart from the axial stresses. The relation between axial and
shear stresses result from the compatibility conditions of strains at the crack.
Aggregate interlock phenomenon is recognised but the effects are not considered in

the analysis.

Lewiski and Wojewodzki[60] developed integrated finite element model for
reinforced concrete slabs by simple numerical integration through the total
thickness. The total strain description for the concrete under biaxial stresses is
adopted. The concrete is assumed totcelastic—plastic and brittle cracking in tension. It
is assumed that concrete carries no stress normal to cracks. The steel is assumed to
be elastic-plastic in both compression and tension. The tension stiffening effect is
taken into account on the assumptions that additional stress is carried by the steel

reinforcement. The steel stiffness is increased due to bond between the bar and

surrounding concrete. Stiffening factors having values between 0.25 to 1.0 are listed

to increase the steel stiffness. Shear retention factor due to the aggregate interlock

in rough cracks as well as to the dowel action is assumed equal to 0.4 for concrete

cracked in one direction and 0.2 for concrete cracked in two directions. A 20

degree of freedom plane rectangular element is used having five degrees of

freedom at each node.

Sathurappan et al[61] presented analysis for reinforced and pre-stressed

concrete plates. A four node isoparametric quadrilateral plate shell element with
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reinforcement as a_discrete integral part of the element is used for the study. Five
degrees of freedom at each node (u, v, w, O, By) is considered. The steel bars are
assumed as elasto-plastic to have only axial stiffness. An elasto-plastic material
model is used for the compressive behaviour of concrete. Yield function and
associated flow rule has been used. In tension, concrete is assumed to behave as a
linear elastic material and the smeared crack approach is used. Both material and
geometric nonlinearities are considered. The position and the orientation of the
reinforcement bar within an element is arbitrary in plan and parallel to the reference
surface. Gaussian Integration is used in the thickness direction to evaluate concrete
stiffness and internal loads equivalent to stresses in concrete. The contribution of

each individual reinforcement bar to the stiffness of the element is evaluated as a

line integral by using Gaussian integration.

o
Di and Cheung[62] developed,laminated curved shell element and applied to

the analysis of reinforced concrete plates and shell problems. The plate or shell is

divided intb several layers. Both geometrical and material nonlinearities are

considered. The strain-hardening plastic approach is employed to model the

compressive behaviour of the concrete. A dual criterion is considered for yielding

and crushing in terms of stresses and strains, which is completed with a tension

cut-off representation. Both the crack interface effects and dowel action are
accounted for by using an average shear modulus. An incremental and iterative

modified Newton-Raphson method is used for the nonlinear solution. An energy
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criterion in terms of both forces and displacements is implemented for convergence.

A full bond is assumed at the steel-concrete interface.

2.3 Conclusions:

Cracking criterion is strain based rather than stress conditions. That is
principal curvatures are important in flexural problems than principal moments. The
contribution of steel reinforcement towards flexural stiffness before cracking is
neglected in earlier studies of finite element slab models of modified stiffness
approach. All these models considered smeared crack approach with fixed direction
of crack or along the principal moment direction. Tension - stiffening effect
considered to account for the concrete between cracks in few models is in fact
tension-softening which is property of plain concrete in tension. The real stiffening

effect is due to bond-slip and bond-stress between concrete and steel reinforcement.

None of the slab models considered this effect in the analysis.

The ﬁeed for shear strength analysis of slab is strongly explained by Hand et
al.[49] to account for aggregate interlock and dowel action. Also Zarri's theory of
plates[59] in equilibrium and compatibility conditions emphasise the importance of
shear friction and shear stresses. Di and Cheung[62] further emphasised on shear

transfer across crack interface. The slab models discussed so far implemented these
effects in terms of simple shear retention factor which may not adequately represent

the behaviour of cracked concrete. The major difficulties in the nonlinear analysis
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of reinforced concrete slabs arise in selecting appropriate finite element models,
constitutive relations for elastic and inelastic response under combined stress states
and failure criteria for the concrete representation of steel, bond and aggregate

interlock.

Therefore, this prompts further investigation of slabs for the following

aspects:

1. Contribution of steel in flexural stiffness matrix before cracking of concrete.
2. Cracking criterion based on principal curvatures or principal strains.
3. Tension-stiffening effect due to bond between steel reinforcement and concrete.

4. Aggregate interlock due to rough crack behaviour.
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CHAPTER 3

FINITE ELEMENT ANALYSIS

3.1 Introduction

An analytical solution is a mathematical expression that gives the values of
the desired unknown quantity at any location in a body, and as a consequence it is
valid for an infinite number of locations in the body. Analytical solutions can be
obtained only for certain simplified situations. It is not possible to obtain analytical
mathematical solutions for many engineering problems. For problems involving
complex material properties and boundary conditions, the engineér resorts to
numerical methods that provide acceptable approximate solutions. In most of the
numerical methods, the solutions yield approximate values of the unknown
quantities only at a discrete number of points in the body. The process of selecting
only a certain number of discrete points in the body can be termed discretization.
One of the ways to discretize a body or a structure is to divide it into an equivalent
system of sm.aller bodies or units. The assemblage of such units then represents the

original body.

The best known earlier numerical method is Finite Difference. In the finite
difference approximation of a differential equation, the derivatives in the equations
are replaced by difference quotients which involve the values of the solution at

discrete mesh points of the domain. The resulting discrete equations are solved,
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after imposing the boundary conditions. for the values of the solution at the mesh
points. Although the finite difference method is simple in concept, it suffers from
several disadvantages. The most notable are the inaccuracy of the derivatives of the
approximated solution, the difficulty in imposing the boundary conditions along
nonstraight boundaries, the difficulty in accurately representing geometrically
complex domains and the inability to employ non-uniform and non rectangular

meshes.

In the variational solution of differential equations, the differential equation
is put into an equivalent variational form. Then the approximate solution is assumed
to be a combination (Zajd;) of given approximation functions ¢;. The parameters a;
are determined from the variation form. The variational method suffer from the
disadvantage that the approximation functions for problems with arbitrary domains

are difficult to construct.

The ﬁnite—element method overcomes the difficulty of the variational
methods because it provides a systematic procedure for the derivation of the
approximate functions. Finite element method is a numerical technique for
approximating the governing differential equations for a continuous system with a
set of algebraic equations relating a finite number of variables. The method is
endowed with two basic features which account for its superiority over the

competing methods. First, a geometrical complex domain of the problem is
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represented as a collection of geometrically —simple subdomains, called finite
elements. Second, over each finite element the approximation functions are derived
using the basic idea that any continuous function can be represented by a linear
combination of algebraic polynomials. The approximation functions are derived
using concepts from interpolation theory, and are therefore called interpolation
functions. Thus, the finite element method can be interpreted as a piecewise
application of the variational methods, in which the approximation functions are
algebraic polynomials and the undetermined parameters represent the values of the
solution at a finite number of pre-selected points, called nodes, on the boundary and

in the interior of the element.

The finite element method has developed simultaneously with the increasing
use of high-speed electronic digital computers and with the growing emphasis on
numerical methods for engineering analysis. Although the method was originally
developed for structural analysis, the general nature of the theory on which it is

based has also made possible its successful application for solutions of problems in

other fields of engineering.

Although the approach shares many of the features common to the previous
numerical approximations, it possesses certain characteristics that take advantage of
the special facilities offered by the high-speed computers. In particular, the method

can be systematically programmed to accommodate complex and difficult problems
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such as non homogeneous materials, non-linear stress-strain behaviour and

complicated boundarv conditions.

3.2 Development of Finite Element Method

The idea of representing a given domain as a collection of discrete elements
is not novel with the finite element method. 1t was recorded that ancient
mathematicians estimated the value of n by noting that the perimeter of a polygon
inscribed a circle approximates the circumference of a circle. They predicted the
value of r to accuracy of almost 40 significant digits by representing the circle as a

polygon of a finitely large number of sides.

An approach similar to the finite element method, involving the use of
piecewise continuous functions defined over triangular regions, was first suggested

by Courant[63] in 1943 in the literature of applied mathematics.

The ﬁnite element method as known today has been presented in 1956 by
Turner et al[64]. This paper presents the application of simple finite elements
(pin-jointed bar and triangular plate with inplane loads) for the analysis of aircrafi
structure and is considered as one of the key contributions in the development of
the finite element method. However, the term "finite element" was first used by
Clough[65] in 1960. Since its inception, the literature on finite element applications

has grown exponentially, and today there are numerous journals which are primarily
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devoted to the application of finite element method. The book by Zienkiewicz[37]
presents the broad interpretation of the method and its applicability to any general

field problems

3.3 General Description of Finite Element Method
The solution of a general continuum problem by the finite element method
always follows an orderly step-by- step process. With reference to static stiuctural

problems, the step-by-step procedure can be stated as follows:

Step (i): Discretization of the Structure

The first step in the finite element method is divide the structure or solution
region into subdivisions or elements. Hence, the structure that is being analyzed has
to  be modeled with suitable finite elements. The number, type, size and

arrangement of the elements have to be decided.

Step (ii) Selection of a Proper Interpolation or Displacement Model

Since the displacement solution of a complex structure under any specified
load conditions cannot be predicted exactly, assume some suitable solution within
an element to approximate the unknown solution. The assumed solution must be
simple from computational point of view, but it should satisfy certain convergence
requirements. In general, the solution or the interpolation model is taken in the form

of a polynomial.
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Step (iii) Derivation of Element Stiffness Matrices and Load Vectors
From the assumed displacement model, the stiffness matnx [k'] and the
load vector [P*], of element "e" are to be derived by using either equilibrium

conditions or a suitable variational principle.

The element strains { ¢ ) and nodal displacements {5} can be related by
the [B] matrix

{e“} =[B] {6} (1)

The general stress-strain relation for an element is expressed as

{c“}=[D]{c*“} ..(3.2)

in which [D] reflects any material behaviour of an element. Equilibrium between

the external loads [P*] and stresses {c} is represented by the volume integral.
P = I B]" {cV}dv ..(3.3)

substitution of equations (3.1) and (3.2) into equation (3.3) results in the well

known stiffness relationship

[P = (K] {6} ..(3.4)
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in which the element stiffness matrix is given by

SE _[ (B]" [D][Bldv | ..(3.5)

Step (iv): Assemblage of element equations to obtain the overail equilibrium
equations

Since the structure is composed of several finite elements, the individual
element stiffness matrices and load vectors are to be assembled in a suitable manner

and the overall equilibrium equations have to be formulated as

[K1{8} = [P] ...(3.6)

Where [K] is called the assembled stiffness matrix, {8} is the vector of nodal

displacements and [P] is the vector of nodai forces for the complete structure.

Step (v): Soluticn for the Unknown Nodal Displacements

The overall equilibrium equations have to be modified to account for the
boundary conditions of the problem. After the incorporation of the boundary
conditions, the equilibrium equations are solved for unknown nodal displacements.
For linear problems, the vector {§} can be solved very easily. But for nonlinear
problems, the solution has to be obtained in a sequence of steps, each step involving

the modification of the stiffness matrix [K] and/or the load vector [P].
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Step (vi): Computation of Element Strains and Stresses from the known nodal
Displacements, if required. The element strains and stresses can be computed by
using the necessary equations of solid or structural mechanics such as equations

(3.1)and (3.2).

(The terminology used in the above six steps has to be modified to extend
for field problems e.g., use the term continuum or domain in place of structure, field
variable in place of displacement, characteristic matrix in place of stiffness matrix,

and element resultants in place of element strains).

3.4 Selection of Plate Bending Element

One of the first tasks facing a potential practitioner of the finite element
method is element selection. At this stage, one is confronted with the bewiidering
array of elements that has resulted from over forty years of research activity. An
area for which this problem is particularly difficult is that of plate bending where the

number of available elements is large and no one particular element has emerged as

the so called "best" element.

Interest in plate bending elements came very early in the history of the finite
clement method. At the beginning of 1960, number of elements were proposed by
researchers such as Melosh[36] and Clough and Tocher[66]. These elements, as

with most others developed in that period, were of the displacement type.
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By the middle of 1960s, the vanational basis for finite element method has
become better understood, and coupled- with this, came the realization that inter
element compatibility or conformity was an important property. Without it element

convergence might not always be obtained.

The conformity requirement for plate problems proved to be particularly
problematic in that inter element continuity is required for both the transverse
displacement and the slope normal to the element boundary. Most early plate

bending elements were of the non-confirming type.

The derivation of suitable triangular element proved to be considerably
more difficult than rectangular elements. Clough and Tocher[66] discussed three of
the early non- conforming triangular elements. One of these is an element which
violates the constant strain requirement and does not converge. The second
converges but is not geometrically isotropic and cannot be derived for certain
shapes. The | third does not pass the patch test and was found to converge to
incorrect results. Therefore, satisfying the conformity requirement for triangular

elements was found to be particularly difficult.

Conforming plate elements were not only difficult to obtain, but with the
exception of the higher order elements, they were found to be too stiff. There was

considerable scepticism about the need to meet the C : continuity requirement and
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many researchers looked for alternate formulations. The subsequent research

followed several different paths.

Success in achieving full conformity came easiest in the case of rectangular
elements. Bogner et al.[67] developed 16 and 36 degree of freedom conforming
rectangles that exhibited good convergence properties. It was necessary, however,
to use second derivatives of displacement as degrees of freedom. It was explained
later by Irons and Draper[68] that it is not possible to derive a conforming element

using simple polynomials and only three geometric degrees of freedom.

A large number of plate bending elements have been developed and
reported in the literature. A survey of these elements has been presented by Hrabok
and Hrudey[69]. According to thin plate theory, the deformation is completely
described by the transverse deflection of the middle surface of the plate (w) only.
Thus, if a displacement model is assumed for w, the continuity of not only w, but
also its deri.vatives have to be maintained between adjacent elements. The
polynomial for w must be able to represent constant strain states.This means that the
assumed displacement model must contain constant curvature states &wiox’,
&wigy* and constant twist &wioxoy. Also the polynomial for w should have
geometric isotropy. Thus it becomes evident that it is much more difficult to choose

a displacement model satisfying all these requirements.
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The finite element used in this study is a four noded, rectangular plate
bending element with sixteen degrees of freedom developed by Bogner et al.[67].

The displacement field is in terms of local coordinates & and 1 assumed as

w=oa1tok taznt a4£;2+ asén + occn2 + ou&3 + asézn
+ owé;n2 + ouon3 + an§3n + ouzF,n3 + ans&znz

+onE’n? +ausE’n’ +oueE (3.7)

It may be seen that the above equation is a 'complete polynomial' for the
terms of the expression correspond to the product (1+ & + §2+ g3) (1+n+ nz + 1'13)-
This displacement function results in a cubic polynomial for the displacements and
the slopes along the edges of the elements. It can be proved that the normal slope
along any edge is completely defined, because of the choice of o*wi ox Oy asa
degree of freedom at each node. Thus the element is fully compatible element. The
nodal degree of freedom at each node is given by w, Ox, Oy and Oxy. Where w is the

transverse displacement and 0x, Oy and Oy are rotations respectively.
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Fig.31c Element nodal forces [P(e)]16x1
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The interpolation functions are Cubic (Hermitian) polynomials which are

listed below:

f(S) = 1-38°+28’
£x(S) = 38°-28°
g1(S) = 5-28°+8’

gx(S) = §*-§°

The shape functions related to 16 degrees of freedom are written as below:

N; = fi( €) fi(n)
N: =a gi(€) fi(n)
N3 =bfi(¢ ) gi(n)
Na = ab g:(&) g1(n)
Ns = f2(¢ ) fi(n)
Ne = g:(8) fin)
- N7=bf(8) gi(n)
Ns = ab g2(£) gi(n)
No= (&) fm)
Nio = a g2(€) fa(n)

Nn = bf2(€ ) g2(n)
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Ni2 = ab g2(£ ) 82(n)
Niz = i€ ) fa(n)
Nis =agi(€) fa(n)
Nis = bfi(§) g2(n)

Nis = ab gi(&) g2(n) .(3.8)

where £ and ) are local coordinates.

If a distributed loading q is acting per unit area of an element in direction of

w then the contribution of these forces to each of the nodes is

{Q9}= [N]' qdxdy

n n N1

=q I I Wiw N

i=1 j=1 :
Nis| 16x1 (3.9)

Gauss quadrature with 4x4 sampling points is used to evaluate the above shape

functions.
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The strain-curvature relationship for plate is

"Gq [ 62W/5X2 ]

-2 2
leyb = {cwloy ..(3.10)
Yo L 26°WIoxdy

The corresponding 'stresses' are infact the usual bending and twisting moments per

unit lengths in x and y directions.

(¢ = 1Myt .(3.11)

The [B] matrix will be determined in the form of shape function as

[ & N:/ 6&2 |
[Blsxis = FNi/ on’ .(3.12)

25" Ni/ agon |

where N; represents shape functions from N to Nae.

The material behaviour matrix [D] is involved in the usual form.

(6] =[M®]=[D] ({e} - { € o}) *+ [o0]
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Where { £ o} and [co] are initial strains and initial stresses correspondingly.

For an isotropic plate, the material behaviour matrix is

Eh’ 1 v O
[D] = = e v 1 0
12(1- v*) 0 0 (1-v)/2 .(3.13)

Once the [B] matrix and [D] matrix are calculated, the element stiffness

matrix can be computed using equation (3.4).

For each element the stiffness and load matrices are calculated. They are
assembled to give global stiffness and load matrices. Then the boundary conditions
are applied and unknown nodal displacements are calculated using Gauss-
elimination method. These global nodal displacements are converted to element
nodal displacements, to calculate curvatures [C(°)] and moments [M(‘”] at the centre

of each element.

[C(c)] = [B] {8(0)} (314)
[M®] = [D] [C] +3.19)
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9
The principal curvatures correspond,to maximum and minimum  curvatures

are given by

C.+Cy C«-Cy Cy
Ci = --mmem- + (— ------- - ( ----- ) fori=1,2
2 2 2 (3.16)

These fall in the principal planes of curvature whose directions are given by

angle '9' such that

T R — (3.17)

Linear elastic analysis of slabs is performed using the developed software
for linear elastic solutions. The solutions are based on classical plate theory
assumptions[70]. The validity of the approximate, numerical treatment is therefore
tested against plate theory solutions. For linear elastic analysis of structural
problems the flow chart is given in Appendix — A. The convergence of selected

plate bending element is seen from the obtained results (Appendix-A).
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3.5 Nonlinear Material Behaviour

Application of the finite element method to problems involving materials
that obey linear constitutive laws is straight forward, because the material
parameters are constant. Only one application of the solution process is required to

obtain results for a particular loading case.

The physical or material nonlinearity, encompasses problems in which the
stresses are not linearly proportional to the strains, but in which only small
displacements and small strains are considered. Displacements refer to the changes
in overall geometry of the body, where as strains are related to internal
deformations. The word "small" wusually implies infinitesimal changes in the
geometry of the body. Hence, the areas of the original, undeformed element can be
used in computing stresses. Therefore, a separate solution process is required for

nonlinear analysis.

The étiﬂiless matrix for the nonlinear analysis is computed from the usual

relationship,
(k] = | [BI'ID(@)IB] dv

The matrix [D(c)] is now variable and may need updating at each step of

the procedure.
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For nonlinear elastic behaviour the material parameters depend upon the
state of stress or strain. An incremental approach often used for nonlinear analysis
requires a separate solution process for each of the several increments of the load.
Essentially the incremental technique approximates the behaviour as piecewise
linear. In other words, during the application of each load increment, the matenal is
considered to be linear and elastic. but different material properties are used for
different increments. Hence, the principles developed for linear elastic behaviour

become applicable in the range of each small increment.

Once the increments of displacements are obtained, the increments of the
strains and stresses may be evaluated by using the proper strain—dispiacement
equations and the current stress-strain law. For the small displacement, small strain
case of nonlinear elasticity, for instance, the increﬁnental forms of the

strain-displacement equation, and the stress-strain equation are

{ Asi} = [B] {A&i} ..(3:19)

{ A ci} = [D({oi1})] {Asi} -.(3.20)

For small displacements, the stresses and strains may be cumulatively added,

so at the end of the ith stage
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i
{ei} ={eo} + Z{Asj} .(3.21)
=1

1
{ci} = {oo} + £ {Acj} .(3.22)
=1

where {go} and {co} are the initial strains and stresses at {80}, {Po}. Usually {3}
and {Po} are null vectors because of undeformed state of the body. These values

will be specified from the equilibrium state.

Once the current state, ({ci}, { &}), is computed, enter the given
constitutive law, such as a uniaxial test curve or an equivalent stress-strain curve, to

compute the appropriate moduli.

In the piecewise, linear approximation, suitable elastic constants, such as E
and v for the isotropic case, may be obtained in one of two ways. The tangent

modulus at any point A is defined as the slope of the stress-strain curve at point A.

do

E = .(3.23)

de |a

Alternatively, a secant modulus can also be defined in terms of the total

stress and strain at a given stage such as

53



E. = — (3.24)

A secant modulus computed between two points is known as chord

modulus when neither of the points is the origin of the stress-strain curve.

3.6 Material Characterization

Usually the behaviour of real materials is highly complex and is influenced
by factors such as the physical properties, the magnitude and nature of the loads,
the temperature, the time, the rate of. loading, and the previous history of the
material. A constitutive relation is generally derived from field and/or laboratory
experiments on the material. Ideally, these tests should simulate all significant

factors and conditions existing in the actual body or prototype.

The results from any numerical or analytical technique are valid only to the
extent that the constitutive model is accurate. Hence for realistic results from finite
element analysis, it is imperative that the constitutive relations be carefully

determined from proper tests.

In physically nonlinear problems the material properties vary. Therefore, an

important aspect of analysis is a knowledge of the stress-strain curves or the

constitutive laws.
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{o} =fl{c}, {c })=[D{c})] {e} -(3.25)

There are two common procedures for incorporating a nonlinear stress-strain
law into a finite element formulation for digital computation. The stress-strain law
derived from a laboratory test can be used directly in a tabular or digital form.
Several points on the curve are selected and are input in the form of number pairs
denoting stress and strain at these points. The variable parameters such as E and
are obtained from such curves by suitable interpolation. If the behaviour is
represented by a single stress-strain curve, obtain strains by interpolation for a
calculated state of stress. If the behaviour is represented by several curves, also

interpolate between two curves for different values.

In the alternative procedure, the laboratory stress- strain curve is expressed
in the form of a suitable mathematical function. This later procedure has been

adopted for present study to analyse reinforced concrete slabs.

3.7 Nonlinear Solution Techniques

The solution of nonlinear problems by the finite element method is usually
attempted by one of three basic techniques. Incremental or stepwise procedures,

iterative or Newton methods, and step iterative or mixed procedures.
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The principal advantage of the incremental procedure is its complete
generality. It is applicable to nearly all types of nonlinear behaviour, with the
possible exception of softening materials. Because of this generality, the stepwise
procedure is the method often employed in finite element analysis. The other
advantage of this technique is that it provides a relatively complete description of
the load-deformation behaviour. Useful results are obtained at each of the

intermediate states corresponding to any increment of load.

The incremental method is usually more time-consuming than the iterative
technique. In addition, it is difficult to know in advance what increments of loads

are necessary to obtain a good approximation to the exact solution.

The iterative method is easier to use and program than the incremental
method. It is faster, provided we need to analyze only a few different loadings It has
been found useful in the case in which the materials have different elastic properties
in tension ahd compression, the so-called bi-modular materials. Finally, the iterative
procedure, combined with the secant stiffness approach, may prove successful for

the analysis of bodies with work softening material properties, for which the

incremental method fails.

The principal disadvantage of the iterative method is that there is no

assurance that it will converge to the exact solution. Furthermore, the technique is
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not applicable to materials with path dependent behaviour. A third limitation of the
iterative procedure is that the displacements, stresses, and strains are determined for
only the total load. Hence, no information concerning the behaviour at intermediate
loads is obtained. Finally, the iterative method requires an initial estimate of a

nonzero displacement vector in some situations.

The mixed method or step iteration combines the advantages of both the
incremental and iterative procedures and tends to minimize the disadvantages of
each. Therefore, step- iteration procedure is being utilized increasingly. The
additional computational effort is justified by the fact that the iterative part of the

procedure permits one to assess the quality of the approximate equilibrium at each

stage.

A common solution procedure for elastic problems is the incremental
method utilizing the tangent stiffness concept. The iterative technique is
occasionally employed in conjunction with the secant stiffness approach. In either‘
case, the solution procedure is straight forward if no unloading or hysteric elasticity

occurs. If they do occur, the incremental method must be used and special

modifications to the procedure may become necessary.

These special methods are basically mixed method in which the stiffness

matrix is modified for each increment but is held for the iterations within the

increment.
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In initial stress method, the stress increment {Aci} will not generally be the
correct stress necessary to equilibrate the loads {APi} because of the nonlinearity. If
the correct stress increment is {Ac}, the difference between the computed and

correct stress is treated as the ‘"initial stress" and a revised correction load vector

{AP.i} is calculated from
(aPc} = [[BI" {(& o) - (Ace) Jdv. (3.26)

This process is repeated until convergence is obtained, usually in three or
four iterations. However, it requires more computational time. The initial strain
method reduces the computational time. Initial strain method is used in practice for

locking materials in which the strain has importance over stress level. Iterations are

continued till the convergence in strain occurs.
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CHAPTER 4

MATERIAL MODELS

4.1 Introduction

The basic information required in any finite element calculations for
reinforced concrete is the multi- dimensional stress-strain relations. These
constitutive relations adequately describe the basic characteristics of reinforced
concrete materials subjected to loading. The rapid advancement of computer
technology made the use of a sophisticated constitutive law possible. Since then,
the constitutive modeling of concrete has been an attractive subject of many
researchers[71,72]. Various models thus proposed can be pursued quite well to
study the behaviour of concrete upto failure. However, the simulation of post-
cracking behaviour is still under development. The post- cracking behaviour of
concrete cannot be neglected in the simulation study of the response of concrete
structures to. loads. Thus this subject has received a wide attention and is currently

being studied very actively.

The response of reinforced concrete structures under static loading is shown
in Figure 4.1. The load-displacement curve has three turning points. Within two
points the relationship between displacement and loading is approximately linear

These points depend mainly on the properties of materials used i.e. concrete and
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Fig.41 Behavior of Reinforced Concrete Structures. (62)
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steel reinforcement. Therefore, the material models to be adopted should able to

represent these characteristics as close as possible.

To discuss the mathematical modeling of materials for non-linear reinforced

concrete behaviour, three areas to be examined are:

(a) The behaviour of concrete in compression,
(b) The behaviour of concrete in tension and

(c) The response of steel reinforcement.

4.2 BEHAVIOUR OF CONCRETE IN COMPRESSION

The earliest finite element models for reinforced concrete utilized linear
representations for the concrete in compression. Non-linear behaviour i the form
of cracking and compression softening were incorporated to improve the realism of
the solution. Softening refers to any material response where the rate of change of
incremental work is negative, in other words, where the slope of the stress- strain
curve is negative. Over a period of time, the state- of-the-art progressed, and at

present, many typical aspects of the experimental behaviour of plain concrete can

adequately be represented.

The behaviour of concrete can be classified into three stages:

(a) Linear elastic behaviour
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(b) Inelastic behaviour

(c¢) Localized behaviour

These three stages are seen in a stress-strain relationship of plain concrete
shown in Figure 4.2. The boundaries are not always obvious since it depends on
strength of concrete. Hence, it is essential that all these three stages be embedded in

the constitutive modeling to pursue a simulation of the complete behaviour.

4.2.1 Elasticity-based Models

A large number of elasticity-based constitutive models have been developed
to represent the behaviour of concrete under general types of loading. The field of
elasticity-based models is quite broad and can be broken down into sub- categories.
Based on the form of the constitutive relations it can be modeled as incremental or
total stress-strain models. Also based on the state of stress the concrete is modeled

as uniaxial or biaxial or triaxial models.

The elasticity-based models have in common a Hook?s formulation on either
the total or the incremental stress- strain level. That is, the stress-strain behaviour
can be expressed as either {c} = [D] {e} or {do} = [D] {de}, where [D]
represents either the secant or tangential constitutive matrix; {g} and {g} are the
stress and strain  vectors; and {dc} and {dg}are the stress and strain increment
vectors, respectively. The majority of the models are of the non-linear elastic type

and are used primarily t0 represent concrete behaviour under monotonic of
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proportional loading only. In general, two different approaches are employed in the
formulation of the nonlinear elastic models for characterizing the degradation of

concrete stiffness under loading. These are:

(a) Finite (or total) material characterization in the form of secant stress-strain

formulation.
(b) Incremental (differential) material descriptions in the form of tangential

stress-strain models.

In the total (secant) stress-strain models, the current state of stress {c} is
determined as a function of the current state of strain {g¢} or vice versa. The
obvious limitation is that the behaviour is path-independent which is certainiy not
true for concrete in general. Thus, the range of application of such models is

restricted primarily to monotonic or proportional loading regimes.

The 'incremental elasticity-based formulations belong to the class of
constitutive relations known as hypoelastic. This type of formulation is often
utilized to describe the behaviour of materials in which the state of stress depends
on the current state of strain as well as on the stress path followed to reach that
state. In a hypoelastic material model, the stress and strain increment tensors {do}
and {dg} are linearly related through material response moduli that depend on

stress {c} or strain {g} or both. Due to their path-dependent behaviour
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characteristic, incremental (hypoelastic) models provide more realistic descriptions
of concrete behaviour under general loading conditions than the total stress-strain
models. However, under general stress histories involving unloading and when a
loading criterion is introduced to distinguish loading from unloading, both the

above models fail to satisfy the continuity condition at or near neutral loading.

In the simplest approach of formulating hypoelastic models, the constitutive
relations are restricted to be incrementally isotropic. The tangential stiffness matrix
[D] is then expressed in the same (isotropic) form as for the isotropic linear elastic
models, with the tangential elastic moduli taken as functions of the stress or strain
invariants. In an alternative approach, the incremental models have been
constructed based on an assumed orthotropic form of the incremental stress-strain
relations with the principal stress directions coinciding with the directions of

orthotropy.

4.2.1.1 Uniaxial Behaviour

For a heterogeneous brittle material like concrete, cracking is a dominant
factor for its behaviour. The development of microcrackings is closely related to the
characteristics of stress-strain relation. In the uniaxial compression case, a
comprehensive study has been made by Hsu et al [73], Shah and Chandra [74] and

Krishnaswamy [75]. For about 30% of its uniaxial compressive strength (fe)

concrete behaves essentially as a linearly elastic material. However, it is known that
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microscopic cracks or microcracks, begin forming at the mortar, coarse aggregate
interface at stress as low as 30% of f. At about 70% of f' microcracks begin to
propagate through the mortar. The bnset of mortar cracking occurs at the
“discontinuity stress" and coincides with the increase in the Poisson's ratio of
concrete. When subjected to increasing compressive strain, damage continues to

accumulate and concrete enters the descending portion of its stress-strain curve.

Typical complete stress-strain curves for concrete under monotonic uniaxial
compressive load are shown in Figure 4.3. The shape of the stress-strain curve is
similar for low, normal and high strength concrete, with the high strength concrete
exhibiting a slightly higher strain at the peak stress. On the descending portion of
the stress-strain curve, high strength concrete tend to behave in a more brittle
manner, with the stress dropping off more sharply than it does for concrete with
lower strength. The initial modulus of elasticity of concrete (Ec) can be calculated

with reasonable accuracy from the empirical equation

E. =33 W i (4.1
For normal weight concrete,
E. = 57000F:
where
W is unit weight of concrete in pounds per cubic foot. E. and f. are

expressed in pounds per square inch.
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The Poisson's ratio for concrete under uniaxial compressive stress ranges
from about 0.15 to 0.22, with 0.19 or 0.20 being a representative value. Under
uniaxial loading the ratio of lateral strain to principal compressive strain remains
constant till 80% of f. and later the apparent Poisson's ratio begins to increase, as

may be evident from Kupfer et al [76] and Darwin and Pecknold [77].

A number of useful, special purpose material uniaxial models have been
developed for use in modeling reinforced concrete structures in which the concrete
can be represented as being in a state of uniaxial stress[78,79]. These
representations fall under the general heading of fibre or filament models and have
been successfully used for members under primarily flexural and/or axial load. For
uniaxial models, there is not an important distinction between incremental and total
stress-strain relations. Since the models are uniaxial, they are relatively simple to
handle, even for complicated behaviour, because the stiffness and stress are
functions of a single strain value.
4.2.1.2 Biaxial Behaviour

Figure 4.4 illustrates a typical biaxial strength envelope for concrete
subjected to proportional biaxial loading. Under conditions of biaxial compression,
concrete exhibits values of increased compressive strength upto about 1.25 f.
[76,80,81,82]. Under biaxial tension, concrete exhibits a constant, or perhaps a
slightly increased, tensile strength, compared with values obtained under uniaxial

loading[76].
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Under combinations of tension and compression, concrete exhibits a
noticeably reduced strength. For biaxial compression, concrete exhibits an increased
initial stiffness that may be attributed td the Poisson effect and an increased degree
of ductility at the peak stress, which is an indication of the reduction in the degree

of internal damage as compared to uniaxial loading as shown in Figure 4.5.

The maximum strength envelope seems to be largely independent of the
loading path, although there is some indication that non-proportional loading
produces a lower strength than proportional loading for light weight concrete. For
proportional loading, the failure of concrete under various combinations of biaxial

loading appears to be based on maximum tensile strain criteria[82].

Reinforced concrete structures can be adequately modeled by considering
the concrete to be in a state of plane stress. The earliest and probably the most

popular models have been of the biaxial type. Under the category of biaxial models,

the most widely used representations are the isotropic total stress-strain models, the

incremental isotropic and incremental orthotropic stress-strain descriptions.

In the earliest realistic finite element models of concrete, concrete has been
represented as a linear isotropic material. Nonlinearity in the concrete was limited
to cracking. In one case, the cracking was represented by a redefinition of the

element topology after the concrete tensile strength had been attained[38]. While
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this procedure is reasonably realistic, it is quite cumbersome to use in practice. The
second procedure, in which the cracked concrete is treated as an orthotropic
material, has proved to be more versatile[39,40]. The nonlinearity in these models
was added by modifying the modulus of elasticity of the concrete as the stress in the
concrete changed. None of these early models took into account the effect of

biaxial stresses on the strength of concrete.

An isotropic total stress-strain model studied by Kupfer and Gerstle [83]
based on monotonic tests of concrete under biaxial stress obtained a good match

with experimental values of stress, but a poor match at high values of stress.

Another isotropic total stress-strain model for concrete under biaxial
loading was developed by Romstad et al.[84]. Rather than utilizing continuous
curves to represent the degradation of concrete, their model uses a number of
damage regions, in which the material properties are altered to match the softening
caused by iﬁcreased stresses. Within each region the modulus of elasticity and
Poisson's ratio are constant. The regions were developed in stress space and then
transformed to strain space to avoid non-uniqueness of representation for the

descending portion (softening) of the stress-strain curve.

Assuming the behaviour of concrete to be incrementally isotropic,

Gerstle[85] has developed a tangential stress- strain model for concrete under
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biaxial stresses. This formulation is based on the decoupling of the hydrostatic
(volumetric) and deviatoric (shear) components of the response, which may be
reasonable at low stress levels, but certainly not at high stress levels and particularly
near failure. The constitutive relations are expressed in terms of tangential bulk and
shear moduli (K: and Gi), which are assumed to vary linearly as functions of the
Octahedral normal and shear stresses respectively. The results of several biaxial
test programs have been used to verify the effectiveness of the model, and for most

of the cases considered, a good match with test data has been observed.

Parallel to the development of the isotropic biaxial models, a number of
models were developed based on the observed behaviour characteristic of stress or
strain induced anisotropy of concrete under biaxial stresses. Only a particular type
of stress-induced anisotropy is, however, considered in these models since the
concrete is represented as a biaxial orthotropic material, in which the moduli of
elasticity along the principal axes of orthotropy, E1 and Ez, vary as a function of the
state of stfess and strain in each of the principal stress directions. Two

representative models of this type are discussed below.

The model developed by Liu et.al. [80,81] controls the material properties
based on total strains. The model originally developed for proportional loading

express the principal stresses as closed form functions of the principal strains, the

ratio of principal stresses and Poisson’s ratio.
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Referring to the principal axes of orthotropy (which are assumed to coincide
with the current principal stress axes), the incremental constitutive equations take

the following form:

[do | [ YEV/E: 1 0 1 [de i

do2 = Y 0 de2 .(4.2)
E\+E2

dti2 Sym.  smmmmeeemeee dyn

L B E\+Ex+2Eavy| | ]

in which Y = E/(EVE2 - Vlz), and vi = Poisson's ratio associated with the
principal compressive stress direction. The equations represent the shear modulus,
G (lower right hand term in the constitutive matrix), such that the shear flexibility
1/G remains invariant with respect to the rotation of the coordinate axes. Minor
errors in the stress obtained using E; are corrected at each load step based on the
total strains. A more serious objection is the requirement that principal stress axes
coincide with principal strain axes, which does not hold for concrete under general
loading. - An incremental orthotropic model has been proposed by Darwin and
Pecknold[77] based on the concept of equivalent uniaxial strain. The effects of
biaxial stresses on internal damage in concrete are represented by equivalent
uniaxial stress-strain curves for each of the principal stress axes. For a differential
(incremental) change in principal stress (doi) the change in equivalent uniaxial strain
(dsw), is dov/E;, or for finite changes, Agw = Aci/Ei. The total equivalent uniaxial

strains (accumulated in principal stress directions) are given by integration (or
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summation) of dgiu (Or Aeiu) over the loading path; i.e., fori=1,2.

doi
Eiv = I -—-
Ei

or

gw= XY - .(4.3)
all load Ei
increments

The equivalent uniaxial strains are not real strains, and do not transform
under the rotation of axes, as do true strains. They are fictitious (except in a
uniaxial test) and are only significant as a measure on which to base the variation of

material properties.

Referring to the principal axes of orthotropy, the incremental constitutive

relations are written as:

_do'J [ E wWEE2 0 1 [des '}
doz | = 1(1+) E: 0 de2 (4.4
dti2 LSym %(E1+E2'2V‘E;E2) dyn
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in which v Poisson's ratio, and dg1, de2 and d yi2 are increments in the strain
components in the current principal stress directions. In equation (4.4), the shear
modulus, G, rather than 1/G as in equation (4.2), is invariant with respect to axes

transformation.

The principal stress axes may rotate and do not, in general coincide with the
principal strain directions.  Potential weaknesses of the model may be the
requirements that the equivalent uniaxial strains must be accumulated in the
principal stress axes and, for monotonic loading, the values of the material
parameters E; are controlled by the principal stresses without regard to the rotation
of the principal axes. For a proper objective formulation, the incremental
constitutive relations for an (initially) isotropic concrete, such as equation (4.4)
must be form invariant under any transformation of the coordinate axes. To
achieve such invariant formulation for situations involving rotation of the principal
stress directions, the equivalent uniaxial strain equation (4.3) might have

scalars (not vectors or tensors) providing invariant measures of the strain history.

These aspects of the model have not appeared to affect its practical
usefulness. The model is bound to be capable of modeling concrete behaviour
under cyclic, as well as monotonic loads, and, to date, is the only elasticity-based
model that provides this capability for conditions of plane stress. This model and its

adoption have been applied to a wide variety of practical finite element problems.
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Quite good agreement between the theoretical and available experimental test

results has been obtained in several of the cases investigated.

4.2.1.3 Triaxial Behaviour

When subjected to triaxial loading, concrete appears to generate a fairly
consistent failure surface, as that shown in figure 4.6, which is a function of the
three principal stresses. Experimental studies have indicated that the
three-dimensional failure surface for concrete can be defined in terms of the three
stress variants ¢ , p and A that can be interpreted as the cylindrical geometric
coordinates of the surface in the three-dimensional principal stress space. Some
analyses indicate that failure under triaxial stress states may be represented by two
stress invariants only i.e., the Octahedral normal and shear stresses, which are
related to the invariants ¢ and p. The most general formulation involves a third
stress invariant '9' to represent the complete three dimensional failure surface in
stress space [86,87]. While some investigators find the failure surface to be
independent ‘of the loading path [88], others have found a significant dependence on
the loading path [89]. Two of the most significant triaxial inelastic properties of
concrete are the increase of volur-ne due to large deviatoric strains, called inelastic

dilatancy, and the large increase of ductility and strength caused by hydrostatic

pressure.
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Bazant and Tsubaki [89] have recently developed, albeit at the cost of
greater complexity, a total stress-strain model for triaxial compression with a
broader range of applicability, which includes stress peaks, strain- softening, and
inelastic dilatancy due to shear with its hydrostatic pressure sensitivity. The
formulation is further extended by path-dependent terms which vanish for

proportional loading. It results in the non-coincidence of the principal directions of

stress and strain.

The majority of the triaxial models utilize isotropic total stress-strain
material representations [90,91,92]. These models are designed to represent the
behaviour of concrete under monotonic triaxial loading. The accuracy and
Sensitivity of the models range from those which are satisfactory for stresses upto

about 70% of the ultimate load to those which are satisfactory right through failure.

Elwi and Murray [93] have developed an incremental orthotropic model for
concrete under triaxial loading. Uniaxial strain approach is combined with the three-

dimensional failure surface to represent concrete behaviour under three-dimensional

axisymmetric loading.

Based on the classical hypoelastic formulation, Coon and Evans [94] have
developed a first order (grade one) hypoelastic (incremental) model and applied it

to describe concrete behaviour under the stress conditions in several tests (uniaxial
and triaxial compression, and combined compression-torsion tests).
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The triaxial elasticity based models have not been used widely because of
the relative difficulty of three- dimensional finite element analysis compared to two

dimensional analysis.

4.2.2 Plasticity-based Models

For typical stress-strain behaviour under compressive stresses, experimental
results have indicated that the nonlinear deformations of concrete are basically
inelastic, since upon unloading only a portion of the total can be recovered.
Therefore, the stress-strain behaviour of concrete materials may be separated into
recoverable and irrecoverable components. Attempts have been made to treat each
component individually. The recoverable behaviour is treated within the framework
of elasticity theory, while the irrecoverable part is based on theory of plasticity.
Plasticity-based models have been used extensively to describe the behaviour of
concrete [95-98]. In general, models based on the theory of plasticity describe
concrete as an elastic-perfectly plastic material (perfect plasticity), or, to account
for the ﬁardening behaviour upto the ultimate strength, as an

elastic-plastic-hardening material (strain-hardening plasticity).

The application of plasticity concept to concrete is criticised in that the
inelastic behaviour predicted by a plasticity-based model is not accompanied by the
degradation of elastic moduli, i.e. the decrease of the unloading stiffness. This

degradation is sure to be observed in experiments. Also much more computational
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efforts are required in finite element analysis since the stiffness matrix is no longer

symmetric.

4.2.3 Plastic-Fracturing Models

In the plastic-fracturing theory the inelastic behaviour is attributed to two sources.,
plastic slip and micro cracking (or faulting). The former is formulated by the
conventional plasticity concept while the latter is modelled by using the potential
function in strain space. This second concept was initiated by Dougill [99]. Very
good reproduction of the nonlinear multi-axial behaviour of concrete has been

reported by Bazant and Kim [100]. However, much complexities in defining two

loading functions are inevitable.

4.2.4 Endochronic Models

The endochronic theory was first applied to concrete by Bazant and Bhat
[101]. The basic concept in this theory is that of intrinsic time, playing a similar role
of effective plastic strain in the plasticity theory. The intrinsic time is the
non-decreasing scalar variable representing the evolution of the measure. of
irreversible damage. This model ~can cover many phenomena like nonlinear
behaviour, inelastic volume dilatancy, hydrostatic pressure sensitivity, etc. This can
be achieved, however, only at the expense of greater complexity and increasing

number of material parameters.
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There is no basic difference between elasticity-based models and the plastic,
plastic-fracturing and endochronic models. They all result in variable incremental
material stiffness matrices (incremental "elasticity" matrices) applicable for certain
ranges of loading directions. By "elasticity-based models", the tangential
constitutive matrix is obtained or deduced directly by intuitive or approximate
considerations that avoid the use of more sophisticated concepts such as loading

functions, flow rules, intrinsic time, etc.

4.2.5 Comparison of Models

The strong point of most elasticity-based models is their conceptual
simplicity in relation to other types of constitutive models. Most elasticity-based
constitutive models do a reasonably good job of representing overall concrete
behaviour, but a sizeable number do not give a close representation near ultimate
stress. This drawback, however, has not seemed to cause major problems in the
utilization of these models in finite element analysis. This apparent inconsistency is
probably due to the fact that, even near the ultimate load, only a small portion of
mOst  structures is subjected to a high value of compressive stress, and the great
majority of the nonlinear behaviour of the structure is controlled by cracking of
concrete and yielding in reinforcing steel in tension. Current analysis procedures
for two-dimensional reinforced concrete structures, such as plates and shells are
essentially one- dimensional. A currently popular approach uses an equivalent

uniaxial stress-strain relation for the biaxial stress- strain behaviour of concrete
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Hence various empirical stress-strain relations expressed in terms of their respective
principal stress and strain values have been established from the curve-fitting of
large amounts of biaxial test data. This approach is very appealing because of its
broad data base and its conceptual simplicity. Multi- dimensional analyses are
usually made by assuming the concrete behaviour to be incrementally elastic with
variable moduli. However, it is not possible to describe 'accurately the
three-dimensional stress-strain behaviour of concrete materials under . general
loading conditions in the framework of an incremental Hooke's law with variable

moduli which are functions of the maximum stress and strain.

4.2.6 Modeling of Concrete in Compression

It is established that the presence of biaxial compression results in increased
ultimate compressive strength, increased ductility and increased stiffness[76]. This
increase depends upon the ratio of two applied stresses. The significance of these
findings is that each fibre within the compression block and each direction at a point
in the slab subjected to biaxial compression are governed by a different stress-strain
relationship. The biaxial compressive effects may be included in the moment
Curvature computations if 2 numerical integration procedure is used in the
computation of the section forces it is possible to include a different compressive
stress-strain curve at each integration point. In the present approach, however, it
would involve considerable additional computation effort to incorporate different

compressive stress-strain curves. Besides, the effect of biaxial compression on the
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moment-curvature relationship will be relatively small since the main characteristics
of this relationship for under reinforced cross sections depend mainly on the
characteristics of the reinforcing steel[53]. Therefore, no attempt is made to include

the effect of biaxial compression.

The empirical stress-strain relationship for concrete in uniaxial compression
proposed by Saenz[102] is generally accepted to model the nonlinear behaviour of
concrete in compression zone of flexural members, and is therefore adopted here.
The stress-strain relationship of concrete in compression is shown in Figure 4.7.

The variables required to define the graph are peak strain gp and corresponding

! . . . . -
compressive strength of concrete f., ultimate strain gu to describe the descending

branch of the graph (softening of concrete in compression) and initial tangent

modulus of concrete Ec as determined from uniaxial compression tests.
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€
{c'(e)} = -memmmmmemomeoee (4.5)
A+Bg +C¢’ +Dg’
The conditions to be fulfilled are:
foreg =0 o =0 or point of origin

!
& o =op = fc or point of maximum stress

for ¢

’
for £= €f =&u o = or = 0.85 f. or point of maximum strain

for £= 0 do/de = Ec or value of initial elastic modulus.

for £= &p do/de = 0 or maximum of the curve.

Fulfilling these conditions the value of the parameters are

A = -
Ec
(Re+R-2)

B = -
Reop
-(2R-1)

C = —emememm
REO'p €p
R

D = mermm—m———
REO'p Ep
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Where

R = cocmmcmmme = meeee is the ratio relation

Rr = EJEs is the modular ratio.
E.= op/ g is the secant modulus
Ri = gp/or is the stress ratio

R. =g gp Iis the strain ratio.

4.3 Behaviour of Concrete in Tension

The tensile weakness of concrete and the ensuing cracking that results
therefrom, is a major factor contributing to the nonlinear behaviour of reinforced
concrete elements. The tensile strength of concrete is receiving an increasing
amount of attention since the loading capacity and durability of structures are being
studied more thoroughly. Numerical methods require a comprehensive material
behaviour i.e., complete stress deformation relation.

Tensile behaviour in concrete has been neglected until recently, since it

usually does not significantly affect the ultimate strength of members. However, the

effect of tensile stress in concrete must be taken into account when the load
deflection characteristics of a member are needed, whether the member primarily

carries tensile force or combined tensile and compressive stresses, as in flexural
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problems, and when the ultimate strength is affected by the cracking history. In this
case the effects of tension - softening or tension-stiffening become important and a

realistic model should be used in the analysis.

4.3.1 Tensile Strength of Concrete

The magnitude of the tensile stress which causes the cracking to develop in
roughly a direction perpendicular to the principal tensile stress is not a precisely
defined quantity. There is significant scatter in test results. Further more, there are
considerable experimental difficulties in conducting an experiment that produces the
true tensile strength of the concrete. The direct ten;ile strength of concrete is

difficult to measure and is normally taken as approximately 4~F.. Many times, either

the modulus of rupture or the split cylinder strength are used to approximate the

tensile strength of concrete. The bending test of plain concrete beams establishes

the modulus of rupture f;. The numerical value of this strength is

£, =7.5f. ..(4.6)

where f‘:. in PSi.

The direct tension test such as that by Kupfer et al[76] yields results which
are more direct measure of the tensile strength. The test results are slightly smaller

than the split cylinder test values and smaller than those from the rupture test.

These results are not as influenced by shrinkage, cracking, etc. as would be the
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values established by the rupture test The rupture test is, however, still the
accepted method for the determination of the cracking moment in a beam because
of the presence of the strain gradient. Of these wvalues it would seem more
appropniate to use the rupture values when a plane stress concrete element is being
used to predict the behaviour of a member subjected primarily to flexure. However,
when the problem is biaxial as with plates and shells, the Values are normally

quoted but adjusted in some manner to reflect more closely the modulus of rupture

values.

4.3.2 Tension-Softening

The tension-softening phenomenon is associated with the crack-process

zone development observed in plain concrete members after the tensile strength has

been reached. Strain softening refers to any material response where the rate of

change of incremental work is negative, in other words, where the slope of the

stress-strain curve is negative.

On inspecting the stress-elongation diagram of a deformation-controlled

uniaxial tensile test of concrete, few features can be distinguished from Fig. 4.8.

The stress increases linearly with deformation upto about 60% of the maximum

attainable stress, then the deformation increases more than proportionaily with

respect to the stress. The stress reaches the maximum, and finally a steep fall in

stress occurs with increasing deformation until a certain deformation is reached
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where the two parts of the specimen are separated. This behaviour means that after
the tensile strength is reached, a large deformation can occur where stress transfer
is still possible. Of course, it is not as pronounced as for an elastic-plastic material
like steel. but it is certainly different from an elastic-brittle material. Concrete is a
type of softening material. The softening takes place in a crack (or crack band) and
s therefore a discrete phenomenon. The opposite term to 'strain hardening' would

be 'strain softening' which is not unrestrictedly applicable to concrete.

Reinhardt et al [103] performed more than 100 deformation controlled
uniaxial tensile tests. The aim of these tests was to provide an accuraie description
of the tensile behaviour of concrete, simple enough for application to numerical

analysis. Fig. 4.9 shows two typical results, one for normal weight concrete and the

other for light weight concrete.

4.3.3 Modeling of Concrete in Tensicn

The uniaxial stress-strain relationship developed by Vebo and Ghali [53],

shown in Fig. 4.10, is adopted in this study. The ascending branch of the curve is

linear upto 0.9 fr, where fr is modulus of rupture with a slope of Eu. The
descending branch is a bilinear curve which has a slope Ex and the second has a

slope E upto zero stress. The equation for stress for a concrete tensile strain g: has

the following form
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ot = Eugt e <eu
ot = 0.90 f; + Ex(ei-eu1) gense e

ot = 0.45 f; + Es(er-en) en<a<en _ ...(4.7a)

Where g, g2 and gi are three distinctive strains that define the curve levels. The

values of the slopes for the three linear parts are

Eu=0.75 Ec
Eex= -0.5 Ec
Eu = -0.05 E _(4.7b)

Where E. = modulus of elasticity of concrete in compression. The strain limits

eu, g2 and gi are defined as follows:

Et] = ==mmmeme

D — ...(4.7¢)
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4.4 Representation of Steel Reinforcement

In developing a finite element model of a reinforced concrete member, the
following alternatives can be used for representation of reinforcement.

(a) distributed,

(b) embedded and

(c) discrete.

For a distributed representation, the steel is assumed to be distributed over
the concrete element, with 2 particular orientation angle 8 as shown in Fig. 4.11a. A
composite concrete-reinforcement constitutive relation is used in this case. To

derive such relation, perfect bond must be assumed between the concrete and steel.

An embedded representation as shown in Fig. 4.11b may be used in
connection with higher order isoparametric concrete elements. The reinforcing bar
is considered to be an axial member built into the isoparametric element such that

its displacements are consistent with those of the element. Perfect bond has to be

assumed.

A discrete representation of the reinforcement using one-dimensional
element as shown in Fig. 4.11¢ has been most widely used. Axial force members or
bar links may be used and assumed to be pin connected with two degrees of

freedom at the nodal points. Alternatively, beam elements may be used, assumed to
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be capable of resisting axial force, shear and bending. In this case, three degrees of
freedom are assigned at each end. A significant advantage of the discrete
representation, in addition to its simplicity, is that it can account for possible
displacement of the reinforcement with respect to the surrounding concrete. A
combination of representations may be used for particular types of problems. In
beams, for which bending has a significant effect, discrete beam elements for the
main steel might be employed. For slabs and shells, a distributed mode! might be

used for the steel throughout the surface.

4.4.1 Modeling of Steel Reinforcement

Typical stress-strain curves for mild steel loaded monotonically in tension,

are shown in Fig. 4.12a. The stress-strain curves for steel are characterized

normally by the following features:

i) An initial elastic region up to the yield strain, sy

ii) A yield plateau (i.e., a yield point beyond which the strain increases with
little or no increase in stress) from €sy to the hardening strain, ga,
iii) A strain hardening region from e to the ultimate strain, g, to the
fracture strain, gfr.
In addition to specifying a minimum required yield strength, fs, a minimum
ultimate tensile strength, f, and a minimum fracture strain related to a gage length

are also specified. Figure 4.12b shows the stress-strain curve for deformed bars.
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The stress-strain curves for steel are assumed to be identical in tension and
compression. For simplicity in design calculations, it is necessary to idealize the
steel stress-strain curve. Three different idealizations shown in Fig. 4.13 have been
used depending upon the accuracy required. For each idealization, it is necessary to
determine experimentally the values of stress and strain at the onset of yield, strain
hardening and the ultimate tensile strength. For present study the steel
reinforcement is idealized as elastic-perfectly plastic both in compression and

tension.

4.4.2 Constitutive Relationships for Steel Reinforcement

The degree of sophistication of the constitutive relationships for steel that is
implemented into a finite element analysis depends to a large extent on the special
purposes of the analysis. Generally, it is advantageous to use the simplest
constitutive relationship that models the essential behaviour for the particular
application. Since steel reinforcement elements in concrete construction are mostly
one-dimensidnal, it is not necessary to introduce the complexities of multiaxial
constitutive relationships. For applications to problems where the response is purely

elastic, steel stress may be determined by the standard linear-elastic relationship

{c’} =Exgs for 0< &< &y ...(4.82)
{6’} =Ea gy for €52 &y ...(4.8b)

in which s is the total steel strain, and E« is the modulus of elasticity of steel
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For surface-type reinforced concrete structures such as plates and shells. it
is often convenient to use the distributed representation of reinforcement. in
conjunction with the cassumption of a state of plane stress in the structure. The
material stiffness of the composite concrete- steel element is obtained by
superposition of the stiffness of the concrete and that of each set of reinforcing

bars. A stress-strain relation for the element can be written in the form:

(c}=[D]{e} ..(4.9)

Where {c} = [ox Oy txy]T is the total stress vector, [D} is the composite material
T. . .
stiffness matrix, and { € } =[ex & vxy] 18 the strain vector. The strains are common

for all component materials, while the total stress vector is the sum of the

component stress vectors.
{c}={c"} + {c} .(4.10)

where {o°} is the concrete stress vector and {c} is the reinforcement stress vector.
Stresses {c}, {c"} and {c’} act ona unit area of the composite cross section of the

slab. The total stresses {c} do not represent real stresses but internal forces acting

on a composite element.

These stresses can be found from the strains by
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{c'} =[D] {e} (411)

{c’} =[D]{¢e} (4.12)

in which [D°] and [D’] are the concrete and reinforcement material matrices
respectively. Substituting equations (4.11) and (4.12) in equation (4.10) and
comparing equation (4.9) and (4.10), the composite material matrix can be formed

by superposition of component material matrices as follows:

[D] = [D] + [D] (4.13)

The behaviour of concrete in compression represented by uniaxial stress —
strain relation ship is considered for present study. The tension — softening
phenomenon of concrete in tension adopted for present study is trilinear stress —

strain relation. Steel is treated as elastic — perfectly plastic and distributed material.
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CHAPTERS

POST-CRACKING BEHAVIOUR

5.1 Introduction:

The tensile stress field which induces the cracking in concrete has major
influence on the basic behaviour of the reinforced concrete member. Number of
early studies to predict numerically the behaviour of reinforced concrete structures
by finite element techniques focussed on the inclusion of the cracking behaviour in
the mathematical model. As lustrated in a report by the ACI Committee [104],
there are various approaches to model the post- cracking behaviour of reinforced
concrete slabs in finite element analysis. Crack analysis of reinforced concrete
structures is a subject that has been extensively studied and extensive experimental

investigations have been carried out to understand the cracking mechanism.

The factors t0 be considered in the post-cracking behaviour of reinforced
concrete slabs are tension - softening, tension-stiffening and aggregate interlock.
The stiffness within the cracked element normal to the crack direction has allowed
to decay to zero value over a finite strain interval rather than drop abruptly to zero
value referred as tension-softening has been discussed in Chapter 4. Where as
tension stiffening results from crack formation and bond slip between steel
reinforcement and surrounding concrete. The resulting rough crack has an ability to

transmit shear forces across the crack by aggregate interlock. All these factors
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affects the service behaviour of reinforced concrete members by significantly

increasing the bending stiffness in the post cracking range.

The aim of this chapter is to develop a rational method to define the
post-cracking behaviour of reinforced concrete element. It is presented in three
stages. First models to represent cracking are discussed. Next the tension stiffening
effect of reinforced concrete members is considered. Finally, the rough crack

behaviour of cracked element is studied.

5,2 Cracking Models

This section is devoted to a discussion of the major categories of cracking
models. Each model is composed of a suitable combination of three basic
components, crack initiation, crack representation and a criterion for crack
propagation. Most models rely on a strength criterion for crack initiation. There is,
therefore, little difference between the various models in regard to this first
component. Two methods of crack representation (discrete crack or smeared crack)

and two approaches for crack propagation (strength or fracture toughness) are

available.

Over the past 30 years a number of models have been developed to
Tepresent cracking in finite element analysis of a reinforced concrete member. The

particular cracking model to be selected depends upon the purpose of the finite
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element study and the nature of output desired from that study If overall behaviour
is desired, regardless to completely realistic crack patterns and local stresses, the so
called "smeared" crack representation is probably the best choice. If detailed local
behaviour is of interest, adaptions of the discrete cracking model are useful. For the
special class of problems in which fracture mechanics is the appropriate tool, a

specialized fracture model may prove to be necessary.

5.2.1 Discrete Cracking Models

The first finite element model of reinforced concrete to include the effect of
cracking was developed by Ngo and Scordelis[38]. The cracks were modeled by
the separation of nodal points. The crack location was successively redefined at the
pre-selected locations. This model was designed to investigate local behaviour
within reinforced concrete beams. The view point of the discrete cracking model is
still macroscopic in principié, with the basic behaviour characteristics lumped in the

elements. With the cracking passing along element boundaries, the use of simplex

elements such as the constant strain triangular element is best suited to concept and

application. However, these elements do not adapt to sharp strain gradients except

With a fine mesh. The stresses in the vicinity of the crack tip are mesh dependent.

Nilson[40] modified this approach to allow the finite element model to
generate the location of the cracks. Here cracking is based on the average stress in

two adjacent elements. When the average stress exceeds the tensile strength of the
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concrete (taken as the modulus of rupture) for these flexural dominant problems,
the elements are disconnected at their common corners. For cracks at the exterior
of the beam, the outside nodal points are separated. For cracks at the interior of the

beam, both nodal points are separated.

Successive extensions of the crack are simulated by sequentially
disconnecting single nodal points. The crack locations are restricted to the sides of
the finite elements and are formed along the side of the element most nearly normal
to the direction of the maximum principal stress. After each crack forms, the
structure is unloaded, and the newly defined structure is reloaded. Compression

zone behaviour is assumed to remain linear, thereby allowing path independence on

reloading.

For problems that involve a few dominant cracks, it offers a more realistic

representation of those cracks, i.e., a crack represents a strain discontinuity. This
discontinuity is correctly represented by a discrete cracking model. Aggregate
interlock can be represented with the discrete cracking representation. For those

problems in which dowel forces are important, discrete cracking appears to be a

natural tool.

The use of discrete cracking representations has received only limited

acceptance due to the difficulty involved in providing for an economical redefinition
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of the structural topology following the formation of a crack. In finite element
analysis the trend has been to use higher order elements. These elements,
particularly the isoparametric versions yield somewhat poor quality corner  stress

definitions which do-~ not blend well with the edge cracking associated with the

discrete crack concept.

With the changing of the topology in these models, the redefinition of the
nodal points destroys the narrow band width in the structural stiffness matrix and
greatly  increases the computational effort required for the solution. The
non-automatic method of defining cracks and the lack of generality in possible

crack directions has made discrete cracking models unpopular.

The need for a cracking model that offers (a) automatic generation of cracks
without the redefinition of the finite element topology and (b) complete generality

in possible crack direction has led a vast majority of investigators to adopt the so

called "Smeared" cracking model.

5.2.2 Smeared Cracking Models

The procedure, introduced by Rashid[39], represents cracked concrete as an
orthotropic material. After cracking has occurred (usually defined when the
principal tensile —stress exceeds a tensile strength criterion for the material), the

modulus of elasticity of the material is reduced to zero. In its earliest version, the
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constitutive matrix was defined for plane stress, as follows:

[ doi | "0 0 0] Cder
doz | = 0 E O de> (5.1
dn 0 0O dyi2

_ | _ i L i

The shear modulus was reduced to zero and the Poisson's ratio effect was
neglected due to lack of interaction between the two orthogonal directions after
cracking. Rather than representing a single crack, this procedure has the effect of

representing many finely spaced (or smeared) cracks perpendicular to the principal

stress direction.

The cracking model represented in equation (5.1), served a number of

investigators adequately[105,106], but as it was applied to a wider range of

problems, its use resultedin a number of numerical difficulties and in some cases a

distortion in the crack patterns formed in the finite element models[49,52]. For this

reason investigators[49,52,107] represented the shear modulus (G) usually with a

retention factor, p as

(do | 0 0 O [ de1 ]
do2 = 0 E O de2 ..(5.2)
dti2 0 0 BG dyn

— - L J | -L
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The use of a shear modulus, BG (with 0 < f < 1)not only removes most of
the numerical difficulties but also improves the realism of the cracking phenomenon
generated during the finite element study. This shear factor may also be used as
one way to suppress the real singularity that results when all the elements
surrounding a particular node have cracked in the same direction. The other
alternative would be to eliminate computation in the direction normal to the crack
system. However, it is computationally very inconvenient to alter the equation

solver to respond to the continual change in the number of equations being solved.

The particular value chosen for B (between 0 and 1) does not appear to be
critical[108], but values greater than zero are necessary to prevent numerical

difficulties. The presence of shear modulus is realistic since it represents the

aggregate interlock that occurs across an open crack. However, the shear modulus

in equation (5.2) more nearly represents a number of springs parallel to the crack,

rather than the physical reality of a rough crack in concrete.

A number of variations on equation (5.2) are in use. Some investigators

have retained the Poisson's effect in the modulus of elasticity parallel to the

" ‘ . . 2 . % .
uncracked direction replacing Ec with EJ(1- v'), and some constitutive equations

are designed to automatically retain a shear modulus term that is a function of the
stiffness in the remaining uncracked directions. In others, the shear modulus is

taken as a function of the tensile strain perpendicular to the crack. In order to avoid
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numerical problems the B factor cannot however be reduced to zero. Slabs are

essentially plane stress problem, therefore smeared crack approach is used for the

study.

The use of the orthotropic constitutive matrix equations (5.1) and (5.2) to
represent cracked concrete may not be totally realistic. In the case of real crack, the
surface itself is rough and any sliding parallel to the crack will have a tendency to
generate some local stresses (or movement) normal to the crack to properly
represent this behaviour, the off-diagonal terms in the constitutive matrices

(relating shear strain with normal stress) should be non-zero. The relative

magnitude of these off-diagonal terms would be expected to decrease with respect

to increase of crack opening.

To improve the realism of the representation of the crack, rough crack

behaviour and tension-stiffening effect are identified to describe the post-cracking

behaviour of concrete.

5.3 Tension-Stiffening Effect

The tension-stiffening effect is a complex phenomenon in reinforced

concrete members and is related to crack distribution and the tensile capacity of the

intact concrete between the cracks. The tension-stiffening phenomenon can be
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defined as the increase in stiffness in a reinforced concrete member due to the
interaction between concrete and reinforcement, as illustrated in Fig. 5.1. As a
member cracks, concrete between the cracks tends to rebound its original
(unstressed) state but is restrained by the reinforcement, resulting in some tensile
stresses in the concrete. This ability to restrain the unloading of concrete is a
function of the bond between reinforcement and concrete. With perfect bond, no

slip occurs between reinforcement and concrete, where as with poor bond, relative

displacement can occur. Good bond properties increase the stiffening effect. The

tension stiffening decays as the load increases beyond the cracking load and

proportionally is more significant for low reinforcement ratios than higher ones.

The tension stiffening effect has been represented using various methods.

The first method of representing the stiffening effect is to increase the steel stiffness

as illustrated in the modified stress-strain diagram in Fig. 5.2. The additional stress

in the steel represents the total tensile force carried by both the steel and the

concrete between the cracks. The added stress is lumped at the level of the steel

and oriented in the same direction for reasons of convenience. In the other

approach, the stress-strain relationship of reinforced concrete is constructed based
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on a bond stress distribution function or a bond-slip function. The tension stiffening

effect can be more appropriately considered in this approach.

5.3.1 Bond-Slip phenomenon: s

The bond between concrete and reinforcement is one of the most important
conditions for the functioning of reinforced concrete. The load-carrying behaviour
of reinforced concrete is influenced by the interaction between both of its
components, plain concrete and steel reinforcement. The transfer of load between
these two materials at the crack interface is called bond. The bearing mechanism of
bond can be conceived as being comprised of three components: Chemical
adhesion, friction and mechanical interlock between steel and concrete. Bond
stresses in reinforced concrete member result from the change of the bar force

along its length. Therefore, the effect of bond becomes evident in regions near

cracks.

In the simplified analysis of reinforced concrete structures, complete
compatibility between concrete and reinforcement is usually assumed, that means,
perfect bond is presumed. But this assumption is only valid in those regions where

no or only negligible stress transfer between the two components occurs. In regions

of high stresses in the contact interfaces, near cracks, the bond stresses are related
to relative displacements between concrete and reinforcement. The assumption of

perfect bond in cracked zones would cause infinitely high strains to explain the
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existence of finite crack width. In reality, there are different strains in the adjacent
regions of the connections between concrete and reinforcement. As a result of this
and of the crack propagation, relative displacements, which are usually called

bond-slip, occur between these two components.

5.3.2 Measurement of Bond Slip

Bond force-displacement relations have been developed based on two type
of tests; (a) anchorage tests, and (b) transfer tests. In an anchorage test such as the
standard ASTM pullout test, Fig. 5.3a, force is applied to the projecting end of a
bar embedded in a cylinder of concrete, and is progressively and totally transferred
to the concrete. For a transfer test, Fig. 5.3b, self-equilibrating forces are applied
to the two ends of a bar projecting from a concentrically-cast concrete block or
cylinder. Tests of this second type are intended to simulate conditions in the
tension zone of a concrete beam, between primary flexural cracks. For either type
of test, bond stress may be calculated either as an average value or a local value,

and slip may be determined externally or internally.

Local bond stress at an internal location on the interface may be found
based on the change in steel stress per unit length along the bar, using steel strains
measured at close intervals along the embedded bar by electrical resistance strain
gages. These are placed in a hollow core formed by sawing the bar longitudinally in

diametrical plane, milling a slot along the bar centre line of each cut surface, and
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tack welding the bar together in its original configuration after fixing the gages in
the grooves. The steel stress variation is easily obtained from these strains. Local
bond stress is then calculated as the change in steel stress per unit length, divided by

the bar penimeter.

Local bond slip is more difficult to determine. A practical method is to
calculate the slip at specific locations along the interface, based on the difference
between steel displacement and concrete displacement at each location. The steel
displacement is found by numerical integration of steel strains, as given by the strain
gages described above. To determine concrete displacement, special electrical
resistance strain gages, Cemented between two sheets of poiyester resin having a
roughened outer surface, are used. A number of such gages are embedded in the
concrete a short distance from the steel. Concrete interface, spaced along the
interface, to obtain the concrete strain as 2 function of distance along the bar.
These strains are integrated numerically to obtain the concrete displacement.

Analysis based on stress-slip curves found in this way indicated that results are

quite good.

5.3.3 Bond Stress-Slip Relationships

For use in finite element analysis it is necessary to develop a constitutive
relationship between local bond stress and local bond slip at representative locations

along the interface using either the pullout test or the concentric transfer type test.
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Various formulations have been proposed to represent these experimental derived
bond stress-slip. Nilson[40] evaluated the result of Breslar and Bertero[109] (using

average slip values) in the form of a third order polynomial.
ob = 3.606x10%8 - 5.356x10°5,” + 1.986x10'°8s" (5.3)

in which ov is the bond stress in Psi and &b is the slip in inches.

Mirza and Houde[110] derived the following fourth order empirical bond
stress-slip relationship from the results of tests ‘on sixty two axially reinforced

tension members and thirty two beam end specimens.
o = 1.95x10%s - 2.35x10%8"+ 1.39x10'%8s - 0.33x10"°8'  ..(5.4)
The parameters studied included the total load level, the thickness of the

concrete cover and the concrete strength. The bond stress at the steel-concrete

interface reached the maximum value at an average of 12x10” inches as shown in

Fig. 5.4.

The initial modulus of bond stress-slip relations is of the order of 2x10° Psi.

Interface bond stiffness can be obtained by differentiation.
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Equation 5.4 is considered for present study because of its adaptability and
accuracy. Then by differentiation with respect to slip 8, the incremental slip

modulus (slope of the bond slip curve) is

dov
—=1.95x10° - 4.7x10%8 + 4.17x10'%6s% - 1.33x10° &°  ...(5.5)
ddv

where dow/dds represents the slip stiffness in Psi per inch units.

To evaluate bond modulus, the following procedure is proposed to relate

bond stress and bond strain.

The steel reinforcement tributary surface area per unit width is

Ac=7tds ...(5.6)

where dy represents the diameter of steel bar

If equation (5.5) is multiplied with tributary surface area, then bond

modulus (Eb) will be
dov
By = - A ~(5.7)
dss

The strains at bottom fibre of concrete, steel reinforcement level and crack width

are shownin Fig. 5.5. The incremental slip d§, is derived as
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L
ddb = [ (gs- &) dx ...(5.8)
0

where | is length of steel reinforcement bar, s is strain in steel reinforcement and esi

is strain of concrete in tension.

- 1 -

T

| ki
Ca

1 A\ ¥
—C-

Figure 5.5 Flexural Crack Element
ddb = (gs- &) | .(5.9)
where | is equivalent to unit value.

This bond modulus is required for incorporating tension stiffening effect due

to bond between steel reinforcement and surrounding concrete.

The above relation is valid with the following assumptions:

(2) No crushing of concrete under the steel reinforcement.
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(b) No plastification of the steel reinforcement.
(c) The influence of crack width on the free length of steel reinforcement is

neglected.

Using the bond stress-slip relationship in non-linear finite element analysis
program and an incremental load approach, the load-displacement response could

be predicted with reasonable accuracy.

5.4 Rough Crack Behaviour

The shear transfer for cracked slab is incorporated by means of shear
retention factor(B). Different values were used for shear retention factor in the
analysis of reinforced concrete slabs in earlier studies. Hand et al[49], Lin and
Scordelis[52] assumed to be 0.4, Suidan and Schnobrich[107] assumed that shear
retention factor to be 0.5 and Gilbert and Warner[55] assumed this value to be 0.6.
Lewinski et al[60], the cracked shear transfer coefficient is assumed to be a
constant valﬁe equal to 0.4 for cracked concrete in one direction and 0.2 for

cracked concrete in two directions.

The need for the shear retention factor, f is best described by Hand et

al[49]. Without the shear retention factor, an unstable cracked configuration of slab
was attained when the load was approximately one-fourth of the experimental

ultimate. The cracked configuration at this load indicated that a series of cracks had
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just reached the middle surface from the top, and a similar series of cracks had

approached from the bottom. This effect is due to assuming no shear transfer across

the crack.

If shear retention factor is not considered in the analysis would imply that
cracked concrete behaves as a bundle of uniaxial fibres capable of sustaining only a
tensile or compressive load parallel to the direction of the crack. With the
introduction of the shear retention factor, a shear force can be transferred across
the cracked planes. The surface of the crack that develop due to excess tensile
stress in concrete are usually rough. The cracks follow generally irregular path not
a plane surface as shown in Fig. 5.6a. Further this irregular path is disturbed as the

crack pass around the coarse aggregate inclusions in the concrete. As these cracks

are inclined to flexural reinforcement, then a certain amount of shear will be

transferred. Thus the possibility of shear transfer by aggregate interlock and dowel

actions arises. Shear strength along crack is a function of shear displacement and

crackwidth. An idealized model of rough crack is shown in Fig. 5.6b. In assessing

the mechanism of shear transfer, variables of importance include width of crack,

size of aggregate, reinforcement ratio and bar size, and concrete strength. The

Mmechanism of shear transfer just described has been termed as rough crack

behaviour or interface shear transfer or shear friction theory
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In the case of flexure, the maximum strain criterion is the basis for the
computation of collapse loads. Such a simple criterion has not been feasible in the
case of shear failure. Mohr's envelope, which is based on stresses, is perhaps the

most satisfying for homogeneous bi-strength material such as plain concrete.

In a reinforced concrete member, flexure and shear combine to create a
biaxial state of stress. The cracking load originating from flexure and shear is
usually much smaller than would be expected from principal stress analysis and the
tensile strength of concrete. This condition is largely due to the presence of
shrinkage stresses, the redistribution of shear stresses between flexural cracks, and

the local weakening of a cross section by transverse reinforcement.

S.4.1 Aggregate Interlock

The transfer of stresses through the crack faces, generally designated as
aggregate interlock, has been the subject of several experiments from which
empirical rélationships have been proposed essentially in terms of resistance to
shear displacement of concrete interfaces. Hardly any attention has been given to
the coupling between normal and shear stress on the one hand, and crack opening
and shear displacement on the other hand. An adequate simulation of aggregate
interlock includes this wedging phenomenon[110, 111]. Therefore the simple shear

retention factor usually adopted for a cracked element cannot take into th led
e coup

nature of the phenomenon.
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In no case the aggregate interlock action was observed of breakdown.
These tests clearly indicated that the shear stiffness of the specimen increased with

decreasing initial crack width, and increasing concrete strength.

From a regression analysis of the test results the fundamental shear stress

displacement relationship for shear transfer across cracks by aggregate interlock
action was determined for the type and proportions of aggregate used. This

relationship expressed in terms of the inverse of the crack width and the square root

of the compression strength of the concrete.

467

A -
s

_ 8410)(0.0225 e - 0.409) (6s- 0.0436C)  ..(5.10)

where
V. = interface shear stress transferred across crack (Psi)

C = initial crack width (in.)

. si
f. = concrete compressive strength (Psi)

8s = shear displacement (in.)

. sestigation 10 determine the behaviour of
an 11

6] conducted ;
pj'e—foaCkEd specimens subjected to

White and Holley[11
aﬂjsm on Jarge

: | mech
N ol cest results; the accumulated maximum slip
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is found to be a linear function of applied shear stress. Houde and Mirza[117]
performed direct shear tests on pre-cracked concrete block specimens. After the
concrete blocks were cracked along the shear plane and the initial crack width was
set to a predetermined value, the specimens were sheared monotonically to failure.
The fest program evaluated the effect of the initial crack width, the concrete
strength and the aggregate size. Within the range of the maximum aggregate size
tested (3/8 - 3/4 in.), the influence of the maximum aggregate size was found to be
negligible compared to the effect of crack width and the concrete strength. For the

range of crack width tested (0.002 in. - 0.020 in), Houde and Mirza suggested the

followings shear displacement relation.

V. =57 (1/C)" (5.11)

Pauley and Loeber[118] also studied the interface shear transfer using the

direct shear specimens. The crack width was kept constant while the specimen was

monotonicall-y loaded to failure. No reinforcement crossed the crack. Upto an

. 2 oy
average shear stress of approximately 1000 Psi (6.9 N/mm”), a bilinear response

was observed as shown in Fig. 5.8. No significant difference in the response of the
investigators used different coarse aggregates, with

specimens was noted when the
s. The following equation, obtained

3/8 in. (9mm) and 3/4 in. (19 mm) nominal size
from a regression analysis of the experimental results, was proposed.
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V,=73.0+509x 10" (8)°
(8:) (5.12)

Observati
ations clearly show that where beam action predominates shear

l . . f . .
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oa i
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resisted 73% of moment induced by the bond force.

S.4.2
Aggregate Interlock Stress-Strain Relationships

Cracked concrete can still transfer shear through aggregate interlock. Finite

element i
s which do not allow the representation of shear are not suitable when

ost- : o
post-cracking shear transfer 18 important.

Bazant and Gambarova[110], Frantzekakis and Theillout[111] have
dev .

eloped a stress-displacement constitutive relation for rough cracks. The material
ed concrete plate with a parallel set of continuous

tem of reinforcing net of bars is shown in Fig. 5.9.
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As an
average over large crack areas and many cracks, the relation between
G"na Gnt, and 1 1 1
n &n, & is considered to be a material property, similar to stress-strain

relations, in the following form:

B Bir dsa

[ dom |

= 15,13
LdOm J Bm Bu d6l ( )

This model is used for analysis of shear walls and beams. Moreover, it may

b
e useful for layered approach. For present study this model may not be suitable.

T )
hereﬁ)re, a new approach has to be developed to incorporate aggregate interlock

in . )
the analysis of reinforced concrete slabs.

r present study to derive the simplified

Equation (5.12) is adopted fo
stiffness of cracked

S . . : .
tress-strain relationship for aggregate interlock. The shear

concrete (Ka) can be obtained by differentiating equation (5.12) with respect to

shear displacement (5s), as

dVa (5.14)

Ka = . = 101.8x10°&s

h and 8s in inches. The shear displacement

Ty _ o
which Ka is expressed in Psi per 1€

Frantezeskabis and Theillout[11 1] as

May be calculated as prOPOSed by
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8:=sCi (5.15)

Where S 1 : . .
is spacing of cracks and Ci1s principle curvatures.

Assumi o
ming cracks forms at 45 t0 the global axis, the spacing of crack for four node

rectan o ;
gular element as shown in Fig. 5.101 expressed as

.(5.16)

s=0.5 V(a'+b)

The important factor t0 be considered for aggregate interlock is crack width

Cw 1
- This can be represented as
Cw=Ci Ca (5.17)

where C; is principal curvature and Ca in depth of crack.

&i 4 /w,r

Y

|

10 Spa

Figure 5.
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For simpl '
ple calculations the crack width is assumed as constant value of

0.025 inch i
es. since only one curve shown in Fig. 5.8 can be traced easily

MOIGO
VEI, the a 1 r 1 i r
ggregate inte lOCk 18 CffeCtIVC Oﬂly aﬂer the ¢ acks crosses the steel

reinforcem ;
en i i
t and yielding of steel reinforcement. At this stage the strains in

concrete
are more and therefore the crack width will be more.

Th i
e modulus of aggregate interlock can be obtained by ~multiplying shear

stiffness with crack depth.

E.=
a=ka.Cq ..(5.18)

whe i
re E, is expressed in Psi.
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CHAPTER 6

METHOD OF ANALYSIS

6.1 Introduction

In the analysi ]
alysis of reinforced concrete slabs, it is important to consider the
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Under rot _— ~ . i A
progress of loading. These are softening phenomenon of concrete in tension

and con -1 -
wpression,  the bond between steel reinforcement and concrete and the

complex . g .
plex crack interface behaviour of concrete.

6.2 Assumptions

1 . _
. The lateral deformations are assumed small compared o the thickness of

slab. No geometrical nonlinearity is considered for the analysis.

ng, membrane Stresses and strength variation

2. Long term loading, cyclic loadi

due to biaxial stresses are not included.

3. Time dependent effects such as creep, shrinkage, temperature, etc. are

neglected in the analysis.

4. Kinking of steel reinforcement at crack is neglected.

5. Change of Poisson's ratio effects are neglected

6.3 Material Axes
th uniformly and sufficiently densely distributed

Concrete slabs reinforced wi
nforcement

us but anisotropic due to the rei

b
ars may be considered as homogeneo
ctions the

Material. When the steel reinforcement . arranged 10 tWO orthogonal dire
COmpound material is orthotropic. ropic properties of reinforced concrete
Slabs are primarily due to cracking of concrete and yielding of steel reinforcement.
For reinforced concrete slabs, the crack directions do not necessarily coincide with

h the reinforcing steel.

the prnn: .
 principal moments of Wit
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axes during the solution procedure.

two cracks can form at a point.
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eared cracks are assumed and only

the direction of principal strains.

Cl‘ack
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rain based rotating crack model

concr
ete be 2 . .
haviour. Therefore, progressive cracking and ~changes in the crack

cracking model. The crack direction is

tion are accounted for in the
urvature at the beginning of

determ;
mi _— . e
ned as the direction of maximum principal ¢

€ac ;
h load increment.

The orientation of the crack directions are shown in Figure 6.1, 10 terms of
petween global axis X and principal

Princ
pal curvatures. Where 0 is the angle
axes X and steel orientation X.

ature C, and o is the angle between global

6.4
Flexural Stiffness:
and the uniaxial steel representations are

n anisotropic plate in which the

The orthotropic concrete
ns to forma

C(}m . . i
bined in the plate bending equatlo
nisotropy and

pth of the plate- The axis of @

Mater
trial properties vary through the de
cide with the crack directions along the

the )
Orthotropic axis of the concrete coln

emental
ntal change
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changes in curvatures on the axis of anisotropy as follows:

- = ~ ] .
AM, “nZ[:dZ [ 112712247 [11:21Z,12dZ I AC:
AMa| =| []21Z1z2dZ [1227%d7 [ J23Z2Z12dZ iAQ
AM: [11:2,Z12dZ [J23Z2Z12dZ [1:22°dZ j ACi2
or

E\Ml— an D12 D:3—“ |_AC1-A

AM:2 = D21 D22 D23 AC2 ..(6.1)

HAMQ— _Dsl Ds2 Ds3J _ACnJ

Jij represent the coefficients of the anisotropic constitutive matrix and 1s

location in the plate. Z1, Z2 (Z12 = (Z1+Z2)/2) are

functions of depth as well as
2 directions respectively as shown in

measured from the neutral axe€s in 1 and

Fig. 6.2.

trix of reinforced concrete slab may be expressed as
ess ma

The flexural stiffn '
materials. AlsO the flexural stiffness matrix due

the sum of separate contributions of

- ension- stiffening and aggregate
ens1on- ;

: softening, t
to post-cracking behaviout of t
1 is.
interlock are proposed for the analy$

delled as an -ncrementally orthotropic
mo

' jon is
Concrete 1 compressio

142



L]

-+
=t

Z
Neutral _ _ +
Axis d h

Si

Steel .-.-‘ 4

Fig.6.2 Cross section of slab per unit width

i lexure
Fig.6 3 Cross section of slab in f




material It is repres ' T i
is represented using the differential stress-strain relations developed by

Darwin and Pecknold [77].

dcﬂ !, Ei vVEIE2 0 de1
I
l

'/s(E|+Ez-2V‘jETE2) dyi2
I

iSym.

L 0
=viva),

The tangent moduli E1, E, and the equivalent Poisson's ratio v (

are strain dependent.

nding problems, the state of stress is essentially two dimensional.

In plate be
not only of the stress in that direction but

The strain in one direction is @ function,
ection, due to the Poisson

o material directions

's effect. For the

also of the stress in the orthogonal dir
Proposed nonlinear model it i convenient tO analyze the tw
independently. Keeping the track of the portion of the strain in each direction that
controls the nonlinear behaviour of the concreteé:

nt this portion of the strain on the

The principal curvature s used to 1€prese

Material axes.
(6.2)



6.4.1 Flexural Stiffness of Concrete:

c 1
Du = - [ Eiz/’dZ
(1- v%)
c
Diz = - fNEIEZ1Z2dZ
(1- Vo)
c
D =0
C C
Da1 = D2
] 1 ,
Dyn = --—---- [E2Z2 dZ
(1-v)
c
Ds =0
c
Dy =0
c
D2 =0
Dclz = ..-.1_-..- I(E1+E2'2V \@::-Ez)zzlzdz ..(6.3)
4(1- V)

oduli along material axis. v 18 the equivalent

in which E, and E2 ar€ tangent m
= 0.5 (Z1tZ2) are depths measured from neutral

Poisson's ratio. Z1 , Z2 and Z12

axes in compression Zone-
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6.4.2 Flexural stiffness of Steel

S
Dii = (AxExC0s'0+AsExSin’0)S:

S
Diz =(AxEx+ AgEx)Sin’0Cos 05152

S
Diz = (-A“EgCosze+A;yEsySin26)Sin6 S, Cos@ 312

S
Dn = (AgEgSin“e-*-AsyEsyCos"e)Sz 2

S
Dy = (-AgEscSinze‘meEsyCOSzO)SinG Cos@ S2S12

S
Dss = (AxEx+ AsyEsy)SinZOCOSZGSn)'

S0 (64)

Di = Dj

f tensile steel in the X and Y (steel

in which As, Asy are areas per unit width 0
moduli of elasticity of steel in tensi

ral axes and S2 = (S1 + S2)/2.

. S1, S2 depth
coordinates). Ex and Esy are the on. 51, 52 dep

of tension steel layers measured o neut

6.4.3 Effect of Bond -
etween steel and concrete to flexural stiffness is

The contribution of pond b

Proposed as:
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b 2
D = Ey As COSSG S

b
Diz=Epr AsCos 0 Sin9 Si Si2

b 2
D = Ey A.Cos' 0 S
b
D23 = Eh As COS 8 S]n 8 S2 SIE
b 2
D:: = Ep AsSin’0 Siz
b b
D; = Dj ..(6.5)

in which Ey is the moduli of bond, As 1s area of steel, S1, Sz and Si2 are depth of

tension steel layers measured from neutral axes.

ween steel and concrete known as bond

The longitudinal interaction bet
constitutive law is similar to the steel constitutive law. This modifies the steel
erefore, bond effects aré

al stiffness in tension zone which

added to the steel flexural

stress-strain relationships. Th
Stiffness matrix in tension. This increases flexur.
ffening effectively in the analysis of

Incorporates the effect of tension sti
Post-cracking behaviour of reinforced concrete slabs.
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6.4.4 Effect of Aggregate Interlock:

The contribution of aggregate interlock towards flexural stiffness of slab is

proposed as

a
Dis = IEaZIEIEdZ
a a
D:i = Dis
a —
D = [EiZ2ZndZ
a a
Di2 = Da2s
a a a a a
=Ds; =0. ...(6.6)

Dy =Di2 =Da =Dz

in which E, is moduli of Aggregate interlock. Z1 , Z» are depths measured from

neutral axes in tension Zone. Ziz = 0.5 (Z1 + Z2)

Combining all these flexural stiffness matrices gives the total flexural

stiffness along the material axes 1 and 2 in the following form

bond ags.
+ Dj + Dj ..(6.7)
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6.5 Transformation of flexural rigidity matrix.

The stiffness matrix of an element is expressed by

(k1= [[B]'[D][B]dV

v

in which [D] is a 3x3 matrix of flexural plate rigidity properties with respect to the

coordinate system X ,Y of the element.

Dealing with a cracked region of a concrete slab the elastic properties are
not the same in all directions. In case where the cracking direction coincides with

either the X or Y directions, the problem is simply one of special orthotropy.

er | [ D D2 0— r82W/ x>

My = | Du D2 0 awl oy’ ...(6.8)
Mny 0 0 D 2azw/axayj

or [M]=[D] [c].

In case where cracking direction does not coincide with either the X or Y

direction the problem is one of the general orthotropy resulting in a fully populated

D matrix. The terms of this matrix can no longer be derived directly from the
atrix. The te

i direction.
Material and sectional properties when viewed along the x and y ion
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For a cracked regions, the normal, n, to the cracking direction makes angle

6 with the X axis. The n and t axes are now the principal axes of orthotropy with

the moment curvature relationship given by

M, | D, D 0] [ &w/on® |
M | = D, D O owil ot ..(6.9)
Ma lo o Du 2 5°w/ én ot

in which Ma and M, are the bending moments in the n and t directions; M is the

twisting moment; and w is the transverse displacement. The terms in the D matrix

are calculated by replacing x with n and y with t.

The relationship in above equation may be rewritten in matrix algebra form

as

M1 = (D¢ ..(6.10)

y directions are related to the moments M’ in the n

The moments M in the X and

and t directions by the transformation

2 g? -2CS
[Ml] = (S:2 C2 2CS ) [M]
CS _CS (CZ’S )

Cosp and Sin® respectively. The above relationship may
0

in which C and S refer t0
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be written in simple for as
[M1] = [T:][M] ..(6.11)
Similarly for the curvatures |
cc s -CS

[]=|s ¢ CS | [c]
2CS -2CS  (C-S?)

or [c']=[T2][c] ....(6.12)
Substituting equations (6.14) and (6.12) into equation (6.10) gives
[T:] (M] = [D] [T2] [¢] (6.13)
In the X,Y coordinate system
[M] = [D] [c]
is obtained, from which it follows that
..(6.14)

[T1] (D] [c] = [D] [T2] [€]

uation with the square matrix [Ti1]" yields

..(6.15)

pre-multiplying both sides of eq
[D] [¢] = [T4J" D7 [T2] [€]

B -1 .
sides of equation with the square matrix [D]" gives

.(6.16)

Again pre-multiplying both
(] = 1" [T" D7 [T2] - [c]
from which it follows that

o1 [T [P [T2] = 1]

.(6.17)
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The inverse of [T1] is the transpose of [Tz2), thus the above equation becomes

[D] = [T2]" [D'] [T3] | .(6.18)

Consequently a simple congruent transformation of [D'] gives the [D] with
respect to the X, Y coordinate system required in the analysis. It can now be

incorporated directly in equation for the stiffness matrix.

6.6 Solution Procedure:

To obtain the load-deflection behaviour of slabs to failure, loads are applied

incrementally. At first load increment the initial values of principal curvatures are

assumed zero. That is the slab is treated as homogeneous, isotropic and &

linear-elastic material. At the end of first load increment the displacements are

calculated using finite element analysis. Principal curvatures and angle of principal

planes are calculated using equations (3.16) and (3.17) at the centre of each

. i me fibres of unit wid
element. At each load increment, concrete strains at extreme th

cross section as shown in Fig. 6.3 are calculated by usual relationship of
strain-curvatures.

g =Cikh
..(6.19)

eni=Ci(hkh) fori=12
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where
= depth of the slab

kh = depth of the neutral axis.

e = uniaxial strain at the extreme top fibre of concrete section

evi = uniaxial strain at the extreme bottom fibre of concrete section

6.6.1 Uncracked Element:

If concrete strain value of an element in tension zone is less than the

cracking strain of the concrete then the flexural stiffness matrix for an uncracked

element will be treated as elastic as given below:

1 v 0 T
E.h’
[Dconc] _______ . v 1 0
12(1-
(1-v) o 0 (-2

The angle of crack 6 = 0.

rAstfi“Sl2 0 0
2
D™ = 0 AgEsyS? 0 ..(6.20)
0
0 0 |
L

6.6.2 Cracked Element o
finess matrix will have the

al sti
Where as for cracked element the flexur
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contributions of tensile strength of concrete, bond between steel reinforcement and

surrounding concrete and aggregate interlock as expressed in equation (6.7).

For cracked element the internal forces as shown is Fig. 6.4 are calculated
on the material axes in terms of concrete stresses, uniaxial strains, principal

curvatures and steel forces using the following equations which are similar to those
used by Vebo and Ghali [53].

Etl
Fi=1l/lci  Joi(g)de +i'-fi=0
Ebl

A
Fa=1/c2 [oxe)de +2'-£2=0 ..(6.21)

€b2

in which ¢ = uniaxial strain at distance Z from the neutral axis. e, g2 are uniaxial

strains at the extreme top fibre of section. b1, gz aré uniaxial strains at bottom fibre

of section. fi, f> are components of tension steel forces. fi, f2 are components of
- b

compression steel forces per unit width.
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In reinforced concrete slabs, the material axes in general do not coincide
with steel reinforcement. Therefore, the steel forces must be transformed to the

material axes.

fi = fCos’0 + £,Sin’0
f> = iSin’9 + £;Cos’0
f1 = fxCos’9 + f,Sin’0

f2 = £,Sin’g + f‘yCosze ..(6.22)

in which fi, f, are components of tension steel forces per unit width in the direction

of steel coordinates x and y respectively. fx and fy are components of steel forces in

compression per unit width in the direction of steel coordinates x and y

respectively. gu, g2

My, = 1/ei’ fac;'ll(s ) dg + 1 (kh-d%) + fi[(1-k)h-ds)].
£b1

My, = 1/c2° E;‘22(8 ) dg + f2 (kh-ds) + £[(1-k)h-ds)]. ..(6.23)
£b2

in which d, and ds are distance from extreme fibres to the centroids of the tension
S s
h is depth of slab, kh is depth of the neutral axis

and compression steel respectively.

and M;, and Mg are the resisting moments along material axes respectively.
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The unknown in the above equation is concrete strain at the extreme
compressive fibre g. =gi or gbi, which together with the curvature establishes the

: ' b :
location of neutral axis. The integrals are evaluated numerical, using the three point

Gaussian quadrature.

For an iteration, the components of steel forces fi and f2 (f: and f2) along
the material axes which are functions of fx and fy (fx and fy) must be known. The

values of steel forces are calculated using the following procedure.

The steel strains &= and es at the steel level are related to by geometry to

the g; and g2. That is transferred to the steel coordinates.

Exx (:2 S2 €1

. - ¢ | e ..(6.24)
sy

Similarly, the curvatures in the two coordinates systems are related.

C C? g2 Ci

X

. = @ & G ...(6.25)
y
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The strains vary linearly with the depth of slab, the values of ¢, gy and Cx, Cy are

sufficient to define the strains in steel reinforcement.

.g&x = Cx(h-ds)
gy = Cyh-ds)
g'x = Cx(h-d%)
gsy = Cyh-dy) ...(6.26)

The stresses in steel reinforcement are

Oxx = Ex &x
oy = Ey &y
o'x = E'x €'
oy = Ey gy ...(6.27)
and correspoﬁding steel forces are
fi = Axox
fy = Agowy
fx = Axox
..(6.28)
fy = Alyox
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The steel forces are transformed back to the material axes to solve the

equation. The most recent values of steel forces are calculated with aforementioned

procedure at each iteration.

During each iteration the concrete strain at the extreme compressive fibre g

in the principal curvature directions is solved independently using Newton-Raphson

technique.

F

ENew = €O - -

oF

...(6.29)

till the change in strain is small. The convergence criterion for strains considered as

. . . -7
change in strain gcis less than 10 .

These strains are used to calculate the updated steel forces. These updated

steel forces are transferred back to the material axes which are again used to
calculate the concrete strain in the extreme compressive fibre. The iterations are

ence is obtained when the ratio of change in steel force in each

carried till converg
an 1%. In most cases convergence is

direction to the original value is less th

erations are required when excessive

obtained in less than ten iterations, but more 1t

i inforcement.
Strains occur in the concrete Of steel reinfo
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6.7 Failure Criterion

In order to terminate the computation of incremental iterative procedure, it

is necessary to adopt a criterion representing failure of the slab. In normal

reinforced cross section (under reinforced), failure will occur due to crushing of
the concrete, when the concrete compressive strain reaches the ultimate strain. A

limiting value for this strain 0.35%, therefore is adopted as the failure criterion.

The related failure stress of concrete is 0.85% f.. The flow chart of software

developed for nonlinear analysis of slabs is given in Appendix — C.
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CHAPTER 7

EXPERIMENTAL INVESTIGATION

7.1 Introduction

Reinforced concrete slabs with and without openings supported on four
edges and loaded transversely are usually seen in civil engineering structures.
Transverse loads can be hydrostatic forces, point loads or uniform pressures. The
objective of present experimental investigation is to provide a better understanding

of the behaviour of rectangular slabs with and without openings. The behaviour of

slender reinforced concrete slabs supported along four edges and loaded

transversely is then studied through a limited parametric study.

Reinforced concrete slabs supported on four edges and subjected to

transverse loads are encountered in many structural applications. However, few

experimental data exist about their behaviour. The variable in the experimental

he percentage area of central opening in the slab. Evaluation or

investigation is t
analytical predictions of the test results are presented later.

7.2 Test Specimens

ar slabs were cast wit
d 40 mm as effective dept

h side dimensions of 1000 mm by 750

Six rectangul
h. The dimensions of

mm with 60 mm overall depth a0

- consideration the available loading arrangements,
into

slab were chosen keeping

frame and the loading facilities.

dimension of the loading
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7.3 Testing of Materials

The materials required for casting of slabs are ordinary Portland cement,
sand, coarse aggregate and steel. These materials were tested before designing the

concrete mix. The properties of the cement are presented in Table 7.1.

Table 7.1

Properties of Cement

SNo. Pérameter Value
1. Consistency 32%
2. Initial Setting Time 36 min.
3. Final Setting Time 4 hours
4. Specific Gravity 3.146

The specific gravity of sand and coarse aggregate were found as 2.5 and

2.71 respectively.

7.3.1 Testing of Steel:
steel bars. More than 6

sed were 6 mm diameter mild

The reinforcing bars u
s kept 8 inches. The extensometer was

samples were tested. The gauge length wa

ns and readings were taken at 1 kN increments.

used to take the readings of extensio
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Fig. 7.2 Testing of Steel bar
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I'he stress-strain curve for steel is shown in Fig. 7.1. The yield strength and
i . _ . .
dulus of elasticity of steel were calculated from Fig. 7.1 as 495.15 N/mm” and

25 x10° 2 . ;
5 x 10° N/mm" respectively. The testing arrangement is shown in Fig. 7.2.

7.4 Mix Design’

The concrete was made with ordinary Portland cement, local available sand

and i
coarse aggregate. The proportion of the cement, sand and coarse aggregate

was designed according to Road-Note No. 4 method [119] for Mis concrete mix.

The designed proportions obtained are given below:

Aggregate cement ratio = 5.7

Water cement ratio = 065

Fine aggregate to coarse aggregate ratio = 0.5
=1:1.9:3.8

Cement: Fine aggregate : Coarse aggregate

For Im? of concrete, the quantity of cement required is calculated as below:

000 fWa + . 4. 4 .. |= I-Pescentage of air voids

SC SS SA
(7))
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CE is cement,

FA is fine aggregate,

CA is coarse aggregate,

SC is specific gravity of cement,
SS is specific gravity of sand, and
SA is specific gravity of aggregate.

Assuming 2% of air voids and substituting values in equation (7.1) gives

0.65CE + -—-—- +

—> CE = 313.03Kg.

Therefore, for 1m’ of concrete the materials required are calculated as:

Cement = 313.03 Kg.
Sand} = 594.75 Kg.
Coarse aggregate 1189.52 Kg.
Water = 203.45 lts.

bes of 150mm X 150mm X 150mm were made and kept for the curing
12 cubes O

tested for 3 days,
given in Table 7.2.

7 days and 28 days for compressive

in water. These cubes Were

g areé
strength of concrete. The test result
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Table 7.2.

Compressive Strength of Concrete Cubes

F ’ 3 Days 7 Days 28 Days

SNo Load Strength | Load Strength | Load | Strength
(kN) (MPa) (kN) (MPa) (kN) (MPa)

1. J 190 8.44 240 11.78 360 16.00

2. 170 7.56 230 11.33 300 13.33

3. 160 7.11 240 11.78 380 16.89
R

4. 160 711 280 12.78 355 15.78

7.5. Slab Design:
Dimensions of the slabs are fixed with respect to available size of loading
The overall depth of slab and percentage of

frame and loading arrangements.
ement of deflection criteria and

reinforcement were calculated meeting the requir
minimum spacing of steel reinforcement according to 1.S. Code 456:1978 [120].

The design calculations are given in Appendix B.

and effective depth were kept as 60 mm and 40 mm

Overall depth
teel reinforcement as 100 mm ¢

entre to

respectively. Keeping the spacing of S
diameter bars Were provid

s of solid slab and slab with 5%

ed along long and short

Centre, 11 and 8 number of 6 mm
. _ ;
directions of slabs. Plan and cross sectlonal detal

n Fig. 7.3 and Fig. 74

Central opening are shown i
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7.6. Casting of Slabs

The slabs were cast In wooden form work. A clear cover of 20 mm was

provided, placing cement mortar pallets of 20mm x 20mm X 20mm. The materials

required for slabs were calculated with designed mix proportions as given in Table

1.3
Table 7.3
Materials Requirements for Slabs
S

Slab No. Cement Fine Aggregate Coarse Water

Kg. Kg Aggregate Litres
-_____q________—________afdﬁg,-,— S
‘ 18.21 34.60 69.20 11.84
__,___‘___________’___________________________________
g 18.07 3433 68.67 11.75
____"______________________________________________________
G 17.78 33.78 67.56 11.56
— L e e
4 17.50 T 66.50 11.38
] o s RS
5 1722 T 65.44 11.19
- /____,,__—__________—————___________-——
6 16.94 32.19 64.38 11.01
_____d__’______g/_f_______tf,/

mixed by concrete mixer and placed in the
d. After 24

e was uniformly
as properly compacte

s Each layer w

d. Curing of slabs wa

The concret

ork in twWO layer

Wwooden form W
s done by placing

rk was remove

hours of casting, the form WO
bs,

rinkling of wate
169

r twice in @ day. While casting the sla
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three 150mm cubes of same material were also prepared and placed in water tank

for curing after 24 hours

7.7 Testing of Slabs

The slabs were tested on SOOkN loading frame. The slabs were placed over

a rectangular frame made of I-sections to provide simple supported boundary

conditions. The uniformly distributed load was applied by symmetrical loading

arrangement as shown in Fig. 7.5. Loads were applied on slab with hydraulic jack in

small increments till the failure occurred. Fig. 7.6 shows the number of I-sections to

transfer the load from hydraulic jack to the slab. It took about 45 minutes for failure

from the time of critical loading. Six dial gauges were used to measure deflections

at six different points of slabs. The deflections of slabs were recorded by dial

gauges at 20 kN load increments.
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esting a slab

6 Load Arrangement fort

Fig <4
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7.8 Behaviour of Slabs

For solid slab. first crack appeared at the centre of slab at about 70 kN load.

As the loading increased, cracks magnified and at the load of 150 kN cracks were

sufficiently deep. Ultimately the cracks had gone to all four corners and failed due

to crushing at 290 kN load.

For slab with 1% central opening the first crack appeared at 70 kN load and

for the slab with 3% central opening the first crack appeared at 60 kN load

respectively. For other slabs the first crack load was observed at about 50 kN load.

These cracks magnified further and reached the four corners of slabs. Slabs wer

failed due to crushing of concrete.
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Figures 7 7 to 7.12 shows the crack pattern of all six slabs. The obsen ed

ultimate load values are given in Table 7.4

Table 7.4 Experimental Ultimate Load Values

._‘-'_‘—'—-_; -
Slab | % opening Size of Cube Initial Ultimate
No. opening strength | crackload | load (KN)
(mm x mm) (Mpa) (kN)
L. ; . 15.41 70 290
2 1.0 100x75 15.83 70 280
3. 3.0 150150 1591 60 270
4. 5.0 250x150 16.01 50 250
5. 7.0 250x210 16.24 50 240
’“'-,________
6. 9.0 260x260 16.45 50 220
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Ei
ig.7.7 Crack pattern of Solid Slab

ith 1% Central opening

n of Slab W

175



Fig.7.9 Crack pattern of Slab with 3% Central opening

Central opening

Fig.7.10 Crack pattern of Slab with 5%



Fig.711 Crack pattern of Slab with 7% Central opening

al opening

th 9"[._-, Cen’cr
Fig.7.12 crack pa‘ttz"" of Slab ¥!
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CHAPTERS

RESULTS

{ central openings Were prepared and

Six rectangular labs with and withou

7 These slabs were studied numericaily by

teste : :
d to failure as discussed in Chapter

Pro . o _ o
posed nonlinear finite element analysis. The proposed analysis incorporated the

effect of material nonlinearity by different appropriate models of concrete and steel
reinforcement  Slabs were analysed for eftects of tcnsion-soﬁening. tension-
Stiﬁe“ing and aggregate interlock. Comparisons were mace between.the load
deflection curves of experimental values and qumerical results obtained by finite

el )
tment analysis.

ar Stress gtrain curve of concrete 1N compression, linear
nt are
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f steel reinforceme
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the slab and loading

Slab
The cor
ner supported two-way slab, tested under a central point ioad by Mc

idity of developed models and proposed

Niec
el4 .
[47], is used to investigate the val

aﬂa]ys'
1s fi : :
or treating post- cracking behaviour of slab.

A plan of the slab is shown in Fig. 8 1. together with the material properties

assumed j
e . ;
d in the analysis and the finite element mesh.

quare and 1.75 in. (44.5 mm) thick. with an

s 36 in. (914 mm) $
ive depth of 1.31 .

teel at an effect

(V8]

The slab wa
(33.

IS0trop;
ropic mesh of 0.85% reinforcing S

Mm)_

perimentation at node 2 in Fig. 8.1 are used

orded during €X
risons are made

Deflections rec
Fig. 8.2, compa

ped here. In

ode 2 of Mc Neices' glab and the

to t

est the validity of the models develo

be .
tween the exPerimental load deflection curve at

Numery )
erical results obtained bY using the V4

The load deflection curves

ph
€nomenon signiﬁcantl
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Nge. The tension-soﬁe g pheno



¢
| 1 28 35 4249
‘ %——— T 14 2_____1_____]___— F
s——T—TT | |
fc =55 Ksi ST
18" Ee =435 x103 ksi 4____.--—--——-"“ |
fsy =50 000 ksi |
E 3 [
st =29000 ksi L —
1. - o
d (-
l Point Load
h =175" |
d =1 i
| r
YV =0.15
. .
x=0,0111 Corner support
Asy=0.0111 /

% 7

V\__//
R 18

.‘\ 18” /"")
y Mc NeiCe [47]

lap Tested 2

F.
lg.8'1 —way °

Corner supported T°



load - kN

—_ Simple Nonlinear
itial Steet fl€
ftening Effect

+
2 Effectof I
-3 Tension—S9°

— 4 Bond Effect

qate Interte
curve

O 5 Aggre ok EffBCt

= Eup, EX l"”imenml



15—
]
K 10} ]
! 4
-U \
o
- 5

0

0 5 10
deflections - mm

15 — |
=
¢ 10
i v
g
9

5

% g 10

deflections - mm
B -l

>
<
|
!
Q
S

0 5
deflections - MM

F.
'2.8.2 1 LoAD-DEFLECT!

load -kN

load- kN

\load -kN

10']
|
1
5
OO 5 10
deflections - mm
e S
15

10

5
deflections - mm




dUIi
ne [hC . .
o L‘XI)C[‘]I]]L’I]I" . T
{1 T
r ation ]hC dCVClOpCd mode] Of‘ tCIISi()'I tﬁ o erre
C | | n st eninu f
] du Cd resull% 1 )
s CI(’NC agr i [
b L’,ICCI]]CI'I[ \Vlﬂ] l} X 1 v
¢ experlmental
curve as ShOWr 1 i
: n i rig.

82 A
L. AN Ov(:r SI. .
estimation of stiffi
ifiness for the i
cracked slab 1S observ 1
S ’ed by mcor ]
) poratmg

agar 1
gregate interlock eftect

Slab 1-
A sir
nple s
- supported rectangular two-way slab tested under uniformly
ioad is investi ;
a is investigated for the post-cracking behaviour. The slab is modeled
$ 5x5
rectang 2 € -
gular mesh with uniform S1z€ of elements as shown in Fig. 8.3.

progressive transverse load.

t about 70 kN of

i
nitial cracks were observed a
¢ 150 kN of the appli

ed load.

was recorded a

Initia] vialq:
yielding of steel reinforcement
recorded

4 during the experimentation. The

1, 8, 15 21,23 and 28 of
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1
ng load of 290 kN was observe
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m
ental values of deflections ot node numbers

Fig
.83
are presented in table 8.1-

nonlinear analysis nder estimates the stiffness of
too large.
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f deflections are

al results ©
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orded values fo
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ed :
concrete. Therefore the numerc
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nalysis slightl
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rcent more
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Thege values are 75 and 99 pe
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by these two methods of anal
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less :
as givenin T
g in ;i @3 T - : 75 -
I'able 8 2 The analytical ultimate load is 75 6% of actual ultimate
73.33% of the recorded

IOad
and initi R ) o
nitial yielding of steel reinforcement is

exper
penmental value.

Table 8.1
Expcrimen[al deflections of Solid Slab
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LO ! » . -
ad Deflections (mm)
(KN) '__——ﬁ___],_f__f_4_4_;__‘_______._____‘_____________________
Node | Node Node Node | Node | Node
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. J000 | 00D 0.00 000 000 000
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Table 8.2

Salient Results of Investigation

I S—
I Method of - __77-f —*'---*-——-——’r——*'_——————-—‘
;&al}’sig ‘ load value of [_oad value of initial Ultimate load
P __;_U}lyilg@gk;(kN) vielding of steel (kN) (kN)
| I o e
| 70 110 220
{2 #H—!‘_F’*———/—_J————_————_
S 70 110 220
- _J__f______________“________————
[ 3
L 70 150 270
) .__W___ﬁ_ﬁ_r_f__#_____________‘d________——
N 7 150 290
n ________________________,_______——
S
S 70 150 290
Exp P_—————p-“__—_——f——_‘_—_—
| 70 150 20
_________/L,_,__,—————————‘

which incorporates tension-softening phenomenon,

ab stiffness of crac

ded deflections and

Third method of analysis

tal values. The sl

ked concrete

fair] )
y predicts the experimen
The difference in recor

o this effect.
] and node 28 at 270 kN.
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nu : &

Mmerical results varies from 27 to 42.5 peT cent for node
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e .
Xperimental load.

of ¢
r .
acked concrete 1ncre

eXpear .
Perimental values. The pumericd
| and node 2

the
measured deflections at node
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The aggregate interlock slightly decreased the stiffness of cracked concrete

further and difference in deflection values are observed as 1.8 and 4.6 per cent less

point difference between

t : . . .
han the recorded values of selected points. The point to

he experimental and proposed analysis is clearly shown in figure 8.4 10 8.9. Figure

perimental curve and proposed analvtical

8.4.1 shows the difference between the ex

results considering the effects of all models one after the other for central node of

the slab. The maximum difference of 12.5 percent in deflections 18 observed
immediately after the yielding of steel reinforcement for central node. The minimum
ons 1S observed at ultimate load for central

difference of 1.58 per cent in deflecti

node.

It is observed that the numerical value of initial crack load is well 1n
e of experimentation. The concrete is failing in

agreement with the recorded vall
tension at 24.1 percent of ultimate Joad. Also the analytical yielding of steel
with the observed value, which s about 51.7 per cent of

r 1 . . - -
einforcement is coinciding
88, it is clearly evident

il _ ‘ t
ltimate [oad. From the Ioad-deﬂecﬂon curves of F1& g.410
sion-stiffening effects signiﬁcantly increases the

ening and ten
er 10 expenmental

t }
hat the tension-soft

ections near
slab stiffness of the concrete and calculates the defl

Values_
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Slab 2:

K &
. simple supported rectangular two-way slab with one percent central
ening
N g of size 100 mm x 75 mm tested under uniformly distributed load is analysed
_—
ow the behaviour of slab after cracking. The slab i modelled as shown in fig.
ant Size of elements.

8.10 wi
vith 5x5 fini
5x5 finite element mesh of differe

nt were observed at 70 kN and

“steel reinforceme
ached 280 kN. The

Inity
tial cracks and yielding of
o the load has ¢

7 14,21 and 28 of fig.

150 kN
N | :
oad respectively. The slab crushed whe
de pumber /

t nO

ured
experimental values ofdeﬂectloﬂs a
predicted

ints Were pre-S selected along the

8.10
are presented in table 8.3-
yield lines of slab.
The initial value of crack load W8S

Steg] .

was initially yielded at §3.
Ult[ma

te load of slab 1s rec:lucecl by 10

of So]id slab.

The predicted yalue
Teinf;
orcement and crushing loa

Table_ 8 4
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xperimental Deflections of Slab with 1

Table 8.3
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Table 8.4

Salient Results of Investigation

Method __IT-_V —ﬁ—4‘f—__ﬂ——————
of LLoad v 3
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shows . - . ) .
the comparison between cxpenmental and analytical load deflection curves.

Th v i . _
e maximum difference of 897% to 19.69% was found berween aggregate

experimental values of deflections for selected

inte g ]
nterlock values of deflections and

points at 280 kN. Fig. 8 10 1 shows the effect of each model incorporated in the

a ot ~
nalysis for node 7 of slab model.

The analytical load deflection curves of bond and aggregate interlock are

crossi , .
rossing the experimental load deflection curves due to OVEre

stiffness.

Slab 3:
d rectangular slab with 39 central opening Ot size
e

under uniformly distributed load

A simple support
ated. The slab 18

is investig

150mm x 150mm tested
x5 finite element mesh.

modeled as shown in Fig. g.15 with 5

reinforcement were 60 kN

has reached 270 kN. The initial cracking of

; 0/p an
Teinforcement were Obsef"ed as 2228 umbers 7, 14,21 and 28
; re n Z
dial gauge points along the prediCted yueld s ple 8.5 -
] e
. £ these points are given 1 Ta
nva u

of Fig. 8.15. The deflectio
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Table 8.5

Experimental Deflections of Slab with 3% Central opening

Load Deflections (mm)
(kN) W,—TF Node Node
No.7 No.14 No.21 No.28
0 0.00 0.00 0.00 0.00
20 021 0.13 0.07 0018
40 0.39 0.28 0.14 0.036
60 0.59 0.41 0.22 0.068
80 0.85 0.59 0.33 0.09 -
100 1.21 0.91 0.51 0.15
120 1.75 1.31 0.74 0.21
140 2.55 1.85 1.04 0.24
160 3.64 L 1.38 0.39
180 485 if»’——"’ 1.78 0.52
200 599 _4Iol//—~_333__~—-—-—-—" 0.66
220 7.01 jf_s,/——-* 2.62 0.78
240|829 44 2.92 087
260 923 ff,s,,/—’ 3.36 0.98
270 | 9.64 o2 P f: Chaa—

The predicted load values of initial cracking of concrete, vielding of steel
rushing of concreté by proposed analysis are presented in

reinforcement and ¢C

Table 8.6.
206



Table 8.6

Salient Results of Investigation

mm T)“;)f
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yielding of steel (kN)

analysis | initial crack (kN)
1_77____________——‘
| |
S _—_L_ /1/01’/4 2
I s S
2 l
D -
i e e
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4 | e |
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EXP. 60 140 o
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07% of actual values of
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steel and crushing of ©
7.5% to

e in the range of 9

deﬂection yalues ar

gation. The

experimental investi
kN. The tension-

4 values of deﬂections at 200

112.5% more than the recorde

proposed analy

sis predicted the ultimate load 96% of

softening phenomenon of

he difference i ged from 31.13

experimental value. T o deflections ran
ion—stiﬁ"ening offect of bond model

kN joad. Tens

nd 28 at 250
deflections

calculated the deflection values 2.43% an

han the measured

node points 7 2
d g.22% less t

at node point7 and 28 respectively.
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Aggregate interlock i
ggregate interlock model predicted these values 2.17% and 8.07% less

t R )
han the experimental values. [ oad-deflection curves of 8.16 to 8 19 compares the

experimental and analytical investigation of the slab.

Slab 4

A simple supported rectangular slab with central opening of size 250mm X

and analytical investigations. The finite

150mm is studied for both experimental

is 5x5 mesh of different size of elements as

element mesh used for the analysis

shown in Fig. 8.20.

1 and 28 are presented in Table 8.7.

ues of nodes 7, 14, 2

Load deflection val
given In Table 8.8. F

ig. 8.21 and 8.24

of proposed analysis are

The salient values
alytical load-deflection

n experirnental and an

clearly shows the comparison betwee

curves.

concrete and initial yielding of steel

The load values of initial cracks 10

' 0 kN and 1
reinforcement Were experimentally observed a5 5

i concrete occurred

e of 250 kN. T

30 kN respectively. The

at 20% of

slab crushed at load val!
timate Joad.

ding of steel

observed at about 52% of ul

ultimate load. Initial yiel
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Experimental Deflection of Slal

flections mmn)

Table

8.7

y with 5% central opening

::)Ifd - Deflections (
ARN) Node No.7 Node No.14 Node No.21 Node No.28
0 0 00 0.00 0.00 000
_____W_r_’_____f________f__ |
20 019 013 007 0.02 %
L= | e
40 038 0.26 0.15 0.05 |
60 057 039 0.22 0.07 5
RS /,/r—/"//’i
80 0.84 0.61 0.34 ff?i/'ﬁ
“*—-———__‘_______—f// |
100 125 0.98 0.51 _9’161/‘/
Lo ///
e ram — 33
140 2 71 1.92 ’1’01//,._(3_’/
--__—__'__,,,,,// 0.45
160 3.73 2.62 _Lf///
‘"“““‘“"‘// 0.56
180 ° |4.84 3.28 __lj,;i//
0.67
200 594 4.04 fﬁ///
__________// 0.79
E___._// 0.92
18 R
240 8.14 iﬁ/”i/
- — 0.99
3.41 [
250 8.87 LEEZ///



Table: 8.8

Salient results of Investigation

nlinear analysis of

The simple no
the recorded value

values 102% to 123% more than

load. The second method of analysis predicted

than the experimental values of node 7

analysis gave 26.8% t
The fourth method of analysis

to 6.49% less than the 2

analysis with aggregate interlock

deflection values at ultimate load.

216

proposed method
s of node 7 and 2

7% to 122.5% more

sured deflections

Met} . S
ana]log‘ of _ !A.Oad value of Load value of initial Ultimate load
ysis | initial crack (kN) | yielding of steel (kN) (kN)
s =i [
1
M 50 100 190
4____—,__—________—————‘,_____————————”
2
i 50 100 190
- 4__‘_____,//,_/—-—___________——————
J
S 50 130 240
_//———————"”‘——_-
4
f_—________/d__________————
5
LA 50 130 250
r___—————‘—"-/“"’/
Bo. i 130 250
__________J/L,,.//

calculated the deflection .

8 at 190 kN

at 240 kN load.

ultimateé load as 7.79%
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Slab =

S 1 / V 1

y distributed load. The slab is modeled

210 .
<iumm 1s . .
s studied when subjected to uniforml

fOrf’ .
Init ;
e element analysis as shown in Fig. 8.25.

ete and initial yielding of steel

es of cracking of concr

The initial load valu
The slab failed du

e to crushing at

were .
observed as 50 kN and 120 KN respectively:
0.83% of ultimate load

failed in tension at 2

ab()ut .
240 kN. Therefore, the concrete
load. The record

t 50% of ultimate

ed load

and :
steel yielded initially at abou
21 and 28 of Fig.

g.25 aré presented in Table 8.9.

deflect;
ection values at node 7, 14,

ues 109.5% to 131% more

redicting the val

od of analysis P
corporating steel

The first meth
ctions at 60 kN load. By in
n the

tha
n the recorded values of defle
24.2% more tha

h increases

Stiffn n
e i
ss before cracking
henomenon whic

ob
served values at 160 KN
o tO 30% incred

25.48
redicting 3.07

pond effect P

the i
slab stiffness predicting

% tO 7 72% decrease in
oad, ageregate

to
node 28 at 210 kN load. The
At ultimate |

0 node 28 at ultimate Joad.

he recorded values at

d ;
eflection values of node 7t
e values 3.31

6% less than t

in
terlock predicting thes

Node 7 and node 28 respectivel}’-
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E; i
xperimental Deflections

8 .
.10. Fig. 8.26 to0

calculated values.

Table 8.9

of Slab with 7% Central opening

Coma || e
(kM) ... - (mm)
[ Node T ol J—
' No.7 N Node Node
0o Noad | Noll
| 0.00 -
20 000 1 0.00
— 0.16
40 ______————L__ 0.02
L
0 | ——————‘——”‘__'_______#
— = - 0.25 0.07
‘ ——_—_.__'____.———’_'_—_.- .
0 s [0 |
_‘_—-_-__E_._.__—____‘
1 | - B_Ei_,___,,.d 0.43 0.12
00 o8
O S i B 1.28 0.65 021
LB bty .
120 o021 |
e s SR 1.89 0.95 g
/"”"_'_,____f__-________,
140
M—Lﬁ/ 1.32 0.41
12—
160
“‘"—————Ljﬁ/ 173 0.54
13 L
18
e 5.72 4.38 221 0.68
f////
2
B 6.82 5.11 2.73 0.85
////
___23_0__ 7.85 6.01 3.23 0.96
B o
L 8.75 6.78 3.69 1.09
////
proposed ethod of analysis ar¢ pre
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Table 8.10

Results of Investigation

Salient
- -
M
a(;I;od_ of | I.“'.Oad value of | Load value of initial Ultimate load
ysis | initial crack (kN) | yielding of steel (kN) (kN)
B e .
]
" 0 i 160
2 ——————‘____————-///
g — . R4 160
__////
3
——— 59 120 oA
////
: >0 120 240
_\—_///
: 50 120 240
_______,///—
Slab G
' 9 ntral S
Simple supported rectwgular slab with 9% ¢¢€ q
merical investigat

260mm x 260mm i
slab is modeled as shOW" in Fig. 830
£ 50 and
Initial cracks were obserVed at load value © '
The slab failed du€ to crushing at abou

steel reinforcement at 1

load, Therefore, the slab faile

initially yielded at 50% of

230
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a -
re presented In Table 8.11

Exoeri - Table 8.11
perimental Deflections of Slab with 9% Central opening

o |

. : )d W/_ Deflections (11m1)

, MM/’JM/
160 4.68 201 -

y////
220 Wﬁ/ﬂ M

curves.
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ftening phenomenon in the analysis, the

Without considering the tension-soO

calcul Alivac ¢ . to'oe
ated values of deflections at 160 kN found 127% sfoer th athe experimental

deflecti
clio / . : :

n values. These deflection values reduced 1n case of second method of
s flexural stiffness of steel 1 material matrix before

analviie. wiieh: |
nalysis which incorporate
re still 110% ppre tha'i

the measured

cracking. However, the Jeflection values @
values. The effect of tension softening which increases the slab stiffness and thereby
reduces the deflection values prcdicted 28% and 37% more than measured values of
10 kN. The developed bond model

node numbers 7 and 27 respectively at 2
predicted deflection values as 4.14% and 1.3% less than the experimental values at
rlock model

qumber 7 and

27. The proposed aggregate inte

measured values of

220 kN load for node
further predicted t

deflections.

y—ﬂ/’/ﬂ

ethod of Load yalue of e

analysis initial crack (kN) Y/l//,

S —— 160

1 50 */

3
——-—-————'/ 110 e
/ 220




Finally 1
y it had been observe i o )
served that ultimate load is reduced as S1z€ of the % of opening

incrca_‘ =9 T ' e . . .

ses. The analysis without softening phenomenon predicted the loads less than
the a .

ctual and calculated deflections larger than the easured values. Moreover the

tension-sofien ) _

sion-softening phenomenon increases the stiffness of the slab and thereby reduces
the difft : , ‘

e difference deflections. The bond effect further increased the stiffness of the

the deflections mo

concrete and calculatet

values. The difference in e,\‘perimental and analytical deflection at ultimate load
found as 3 to 5.5%. However the maximum difference observed immediately after
the yielding of steel reinforcement in the range of 10 to 20%.



CHAPTER?Y

CONCLUSIONS

which were supported on four

Six i
rectangular reinforced concrete slabs

sides. wi
s, with ] i
and without central openings were tested under transverse loads

d line patterns are in good agreement. More

d observed yiel

Theoretical an
of central

at the vield line

over, it |

_it is observed th patterns do not change with the sizé
central opening the yield lines proceeds from the four
s as shown in Figs. 7.71t0 712

O -
penings. For slabs with
e slab corner.

corn .
ers of the openings towards th

offected by central
3.45,

he ultimate Joads ar€

The test results indicat
Spen ion 1 j loads aré found as
penings as given in Table n n pltimateé

with respect t0 1,3, % 7 and 9 percent of

b. The failure of slabs

6
9, 13.79, 17.24 and 24.1

ce . . .
ntral openings 11 compaﬂSOﬂ
of concrete:

distributed load is

tested under uniformy

The finite clement
plate bending element:

Iy &
ectangular reinforc®
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: .i] [] b
C ( LI\.dIIO 1 C f 1 -
Y

tOUl’]d
that the ] 1
prop()scd C()nStllUllVC mode?s can GCTCSCI][ the essentia] behaviou f
ro

the crack o
cked re ,
ed reinforced concrete sJabs and agree well with experimental results The
. €
s to be a powerf’uf tool for the nonlinear

proposed method of analysis appear

analysi .
ysis of rectangular reinforced concrete slabs.

ively realistic model used for representing the

The results of the relat
the direction of the

rei . :
inforced concrete slabs aré encouraging. Before cracking.
maximum stress of concrete is that of the maximum principal stress. After cracking,
ess of concrete i along the pn'ncipal curvature dictated

t 2 :

he direction of maximum Stf
b - e

y the compatibility and equ1hbnum of the crack.
greement

loads of glabs are in good 2

y observed 1
i It is found that these

EXperimentall

with the calculated first
sve slabs.

1 .
oud valies ate intheral!

agreement with the calculat®

values are in the range ©

to be almost negligible:
240



» nL. - l

soften ect |
ning effect in the concrete betwe
rge In comparison with the experimental

the cz )
calculated slab deflections are too la

val ' ;
ues in post-cracking range

Th 1C ' T i

he tension softenng effect nearly predicts the cracking of concreté yielding
2 o

at of e.\'perimemal values.

d values with th

of reinf .
einforcement and ultimate loa

The tension stiffening model of uniaxial tension members 01 the basis of
bond slip mechanism petween the reinforcing bars and surrounding concrete 1S
d to the analysis of slabs. It 1S observed that the results are

developed and extende

more interesting.
further increases the stiffness of concrete slabs

e nearer to th

The tension stiffening effect
e experimental deflections.

deﬂectiOI‘lS
rved by

ost crackin

frectively obse

dicts the
g range is €

ng of reinforcem

and thereby pre
The behaviour of slabs in the P
yieldi ent and
cracking of concrete

incorporating this offect, 1-€
model is efl®

ultimate load of slabs.

reinfofcemem'
is that it can be
|inkages

r element like bond

to the vielding of
d_slip model

dr

of propOSe ;
The advantag® o -6 additiorla] int€
the and Y

easily implemented in

elements.
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”k‘ agy 1
;lrrc‘._';uc-lmcrlnck t 1
! CﬁCCl rctcrrcd 1o II Ticti
1e Irlctlonal contact i
sh model
taken 1 ‘ e
mnto consider: ' i { 0
sideration 15 t()und 1o be gl i
s neuilwlble 1heref re. 1
ghg ) _ it appears that

Siun“‘lC' 1
S ant s > C
ll[) d()LS not occur bC[\VCen the adjaCCnI CI'aCk Surfaces.

The implcmcmcd and developed models of concrete 11 compression;
concrete in tension. bond-slip and aggregal® interlock of uniaxial members when
extended to the slab analysis predictS deflections more clos€ to the experimemal
to 97%. The maximum difference petween the

val i 2
ues with in the range of 94
al curves are observed after the yielding of steel.

analvti
alytical and experiment
Ioad-deﬂection

The difference between the xpenmeﬂtai a
Curves may be due tO the following reasons:
Experimental Errors:
I Non-uniform rating of load t0 the slab-
2. The loads applied t© the slabs s within the jimitations of availabl® Joading frame
and loading arrangemen” s
. of slab surtac
3. Improper Compaction {acement of remforc—ernen finishing
during the casting sl
emell
. iy Of joading rans _
4. Pprobable slight eccel city of oxperim 2l vestigatio
dial gauges der the Pomts

5. Slight dislocation® o



Analytical Errors

The analysis 1S

restricted to small deformation bending theory, i.e. no

geometrical nonlinearity is considered for the analysis.

d strength variation due to biaxial stresses are neglected.

2. Membrane stresses an

3. Time dependent effects such as creep, shrinkage and temperature, etc. are not
included.

4. Kinking of reinforcing bars and dowel forces are neglected.

5. It may be due to round off errors which can be climinated by using double
precision in the software.

6. Finite element is an approximate analysis and it never attains the true solution.

7. Steel is assumed as perfectly elastic-piastic, trilinear stress-strain response of
steel may reduce the difference ;mmediately after the yielding of steel.

8. The analysis Stops immediately, once the extreme compression fibre reaches the
strain value as 0.0035 and above.

pmater e is not guitable for slabs with

L.

i d her
Although the plate bending clement USE i

nonrectangular b
n be applied without added difficulty, 0!

ca ,
y the use€ of a

irregularly placed reinforcement b
hasa quadrilateral plate bending element.
uch a

element S
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Les to provide bond between steel and

he bending of bars at end and opening

[§]

concrete is di - . 5
crete 1S difficult to consider 1n the model The reinforcement is assumed

as rectangular mesh.
alid only for transverse loading on slabs. No provision has

(&8 )

[he analysis 1S V

been made for axial loads.

Future Investigation Needed
. 20 degree Of freedom

I. The present analysis can be further extended by taking 2
per node) | element OF shell element 10 investigate
n be used

(U:V-)W,e.\:-, e\
ing. Also it ca

the slabs subjected 10 both

bs with irre
e further

for analysis of sla
nlinearity €20 b

metrical no

2. The overall effect of both materi
i“"‘3Stigiitcd by in corporatmg higher order terms 10 strain-disp!acement
relations.
jve i i h can
3. The aggregat® interlock may b€ more offective 1 case of thick slabs, ch ca
be further investigated. o
tudy the therm octs of slabs
4. Moreover the analysis © can extend to study
Aing thermal load yectors! the analys!



Appendix - A

Read Input Data

*Nodal Coordinates

* Element connectivity
« Physical parameters
#[_oading information

*Boundary conditions

d and Characteristic Matrices (P}.[K]

Construction of Global Lod

for each element:
* ExtraC

t element informa
) { (e)




Tal

e: Al

Central Deflection of a Simple Supported Square Plate,
Subjected to Uniform Distributed Load.

__ina quadrant

1

4 (2x2 mesh)

9 (3x3 mesh)
’v——-——————_,
16 (4x4 mesh)

—

I

Exact |70
i sl

[ No oi:élcmeni; R -Fh?dtaiﬂ—(} 0":’

ion of a Simple

Total ’\oio—fdi _ Maximum
~ nodes ~d.of . deflection
4 16 o 0.004147
9 36 | 0.004065
16 64 : 0.004063
25 100 | 0.004062
I S t
f 0.004062
e | |
Table A2

Supported Square Plate

| Deflect
CentraSubjeclted to Concentrated Central Load.
N oF oo —ants | Total No. of Maximum
No of elements Total No of .
in a quadrant | nodes | d.o.f deflection
4 16 0.00774
1 R B
0.01147
4 (2x2 mesh) ’,/2/’_ /’ff’_’____,
0.011543
9 (3x3 mesh) /1’6__’/ 64 )
] 0.011568
16 (4x4 mesh) {//15_’/’/_@3__,__ ~
0.011
25 (5x5 mesh) 36 #/_li“/‘, o
e 196 0.011595
49 T
36 (6x6 mesh) | T =
|
Exact [70] L//I‘/’/___




7'_)/.8 Exact | 70 |
I8 | TP 1 0.00486
1.2 | 0.7005’.64 B —B'(;o#s;;
1-3 :000&38 - @639 o
" oomis o 0.00708
e - A_‘_fﬂ,______,r,________f——
1.5 0.00772 0.00772
[ I Ll
1.6 o 00080 | 0.00830
oy fM 0.00883
— 0.00931

Table A3

Simple Supported Rectangular Plate
U/niformly Distributed Lo

— .
| Calculated

—q——————”"’"’."’_— 0.00974
1.9 0.00974
_____________//,_
013
2.0 0.01013 0.0
I
01223
3.0 0.01223 _(_)________—
A=
0.01281
4.0 0.01282
e
0.01297
5.0 0.01297

Subjected to
ad (4x4 mesh)




Table A4

Simple Supported Recta
Concentrated Load

ngular Plate Subjected to
at Centre (6x6 mesh)

-
| . ol eI
l‘,.b/a Exact [ 70] Calculated I
! - | S I
R 0.01265 0.012645
13 I ' — I i
| & 0.01353 0.01352
‘ l i = e ,_,.]*
4 0.01484 0.01483 |
e w— I e
1.6 0.01570 0.01568
e ——————— - — e — S e ,{____——__‘ —
1.8 1 0.01620 10.01619
- st
30 - | 0.01690 10.01688
Table AS
Clamped Square P!ate Subjected t0
Uniform pistributed Load
o g
\_/,fj/ﬂ No. of Maximum
No of elements Total;m of TOtE:]l 0 i(" /wiqn//—
a quadrant ” 0.00132
1 4 IR
__ﬁ______ﬁ____;/
4 5 36 0.001265
(2x2 mesh) //
S 64 0.001261
9 6 |
o Emet) | 00 po0126
16 25 | e
16 phed )| 000126
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Table A6
Clamped Square Plate Subjected to
Concentrated Load at Centre

| No of elements Total No of i Total No. of Maximum |
|__in a quadrant nodes | d.o.f l deflection I
| — e _ —t g — - — e e e ___]‘
! 4 ‘ 16 | 0.00530 |
T ' — ]
I 4 (2x2 mesh) 9 1 36 j 0.00545 I
!"‘ — ) = - _I, - e i e
f 9 (3x3 mesh) 16 } 64 0.00552 1
fi=—e . | S & B —
16 (4,\4 l"CSh) 25 100 | 0.00558 |
25 (5x5 mesh) 36 144 0.60559 ‘;
36 (6x6 mesh) | 49 196 - 0.00560
g o B TSN o
Exact| 0] | | 0.00560
Table A7 .
Clamped Rectangular Plate Subjected to
Concentrated Central Load.
_____‘___________./a
Iculated
b/a ’ Exact [70] Citler
e
0.00646
12 [
i SR 0.00690
— | 0.00711
—— | b 0.007195
1.8 000720
e 2 0.00721
N
2.0 000722 ——
e




Table AS
gular Plate Subjected to

(lamped Rectan

Uniform Distributed l.oad

Exact | 70| Calculated
0.00150 0.00150
10.00172 0.00172 |
L o —
1000191 0.00191 |
e
0.00207 0.00207 |
HF_______,;______________—E_,___
0.00220 0.002196
| ° i
0.00230 0.002299
/___________,,_____
0.00238 0.00238
A e
e e
0.00254 0.00253
: o



Appendix — B

Slab Design

Dimensions of slab
I =0.75m
I, =1Im
concrete. Mis

steel Fe-250

Span ratio =
I 0.75

o. Therefore the slab is two way slab.

The span ratio is less than tW

Minimum depth calculations:
irement tO meet deflection criterion according to LS

Minimum depth requ

Code 456:1978.

Minimum span/ effective depth 35
750
effective depth = 77~ =21.42 mm
35
Let the effective depth = 55mm
16 = 75mm

Therefore overall depth=557 4+



Live load on slab =20 kN/m’

Total load on slab = 3 875 kN/m*

I,
For --=1..
I

-
.

S

the valuesof 0x =0.0949, 0y = 0.05368

2

Moment in <-direction = M, = otx Wilx

~ 00949 x 3.875X 0.75% x 1000 = 206.852N-m

Moment in y-direction = My = Oy wil’x
_ 0.05368 x 3.875X 0.75% = 117.005 N-m

factor of safety X maximum bending moment

Ultimate moment =
=15X 206.852 = 310.278 N-m

310.278 x 1000
----------------- =11.82 mm

2
;= 33.36 mMm
252



C (

Area of steel in longer direction
effective depth = 55 - 8 = 47 mm
15 x 117.005 x 1000 =0.87 X 250 x Aqz X 47 (1-0.42x0 53)

A =22.108 mm-.

Iherefore, the number of 8 mm diameter bars required per meter width is less t
1an

one

Redesigning slab for reading room in library, the design calculations follows as:

Effective span lx = 750-70 = 680mm

|, = 1000-65 = 935mm

Live load _ 4KkN/m’
Overall depth = 60mm
Effective depth 60-15-5 =40mm

Minimum depth according t

d =135
680
_ .. =1942mm
35
Self weight of slab = 0.06% 257 1.5 kN/m



Live load 10 kN/m*
é (N/m”

Total load 5 5 kN/ :
5 kN/m”*

|, 680

wn

For I/1, = 137

o = 0975 and o. = 0052

—0.0975x55X 0.68% x 1000

T\Ax == ax \%IA.\'

—247.962 N-m

wit, =0052X 5.5 x 0.687 x 1000

MV = Oy X
d Y s
—132.246 N-m

_15x247962= 371.943 X 10° N-mm

Mu lim
371 943 X 1000

= 12.9 mm

——————— =

254
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k 27 £ A
h 0871 Aal 0 87x250x453 5
0 04386

0 36x15x1000x40

- '
d 036f. bd

YOI | e
Providing minimum reinforcement = 0.1 5% lsh
Q15
----- x 1000 x 60 = 90 mm’
100
Using 6 mm diameter bars,
90
No. of bars required =~ =13 18 = 4 bars
/46"

Slab design meeting minimum spacing reguirement:

et the spacing of reinforcement be 100 mm ¢/C

Spacing Sp ~
A_qt/'ﬂ/4 dzr

Using 6 mm diameter bars and spac
2100 = 28274 mm’

]=1000xar/4x6

A
50% 282.74

kh: 087” ............. _ 02819

4 036% 15 X 1000 X 4



Ml = 08T £, K A 1= =ermsmes]

282.74x250

0 87 % 950 x 282 74 x 40 [ |- =e==ommm="" ]
15x 1000x40

2151 8 N-m
M.
M = 1.5 o Wy B => Wi = -
g -.(a)
.50 I%x
21518
W = asmmmmmmsmemm _ 31819 kN/m’
1 5x0.0975x(0. 68)°
My
M. = 1.5 oty W2 I'x =2 Wy = - (b)
.50y s
21518
Wy = T — 59.66 kN/m
1.5x0 052x(0.68)
19 kN/m’

The collapse load 18 minimum of eq. (8) and eq. (b), that is 31.8

Percentage Of steel

.....--..-—.-.--

mild steel bars along
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| Read Inputdata ]
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e Nodal Coordmatcs IJ
e Elements Connectivity
o Boundary Conditions l

| ]

Apply Incremental Load

Constitunve NModecels
| Form Elcnent Suffness
Assemble 1o Global stiffness Matrix

obal Load vector

Calculate Gl
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