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Abstract

Since the first discovery in early 1990’s, the predicted and validated population
of microRNAs (miRNA) has grown significantly. These small (∼22 nucleotide
long) regulators of gene expression have been implicated and associated with
several genes in the cancer pathway as well. Globally, the identification and
verification of miRNAs as biomarkers for cancer cell types has been the area
of thrust for most miRNA biologists. However, there has been a noticeable
vacuum when it comes to identifying a common signature or trademark that
could be used to demarcate a miRNA to be associated with development or
suppression of cancer. In vivo identification and analysis of miRNA expression
profiles associated with various cancer cell lines are still laborious processes. On
the other hand, in silico procedures (particularly machine learning approaches)
are gaining in importance in miRNA-based studies by making the process faster
and economically favourable. However, most predictive algorithms suffer from
class imbalance problems and the techniques utilised to overcome the problems
need more optimisations. Utilising randomly generated dataset to overcome the
class imbalance problem may discard instances with strong discrimination and
increase the noise during the training process.

To answer these queries, we report an in silico study involving the
identification of global signatures in experimentally validated miRNAs which
have been associated with cancer. This study has thrown light on the presence
of significant common signatures, viz., sequential and hybridisation, which may
distinguish a miRNA to be associated with cancer. Based on our analysis,
we suggest the utility of such signatures in design and development of a
Machine Learning (ML) algorithm based model (MicRooN) for the prediction
of miRNAs involved in the cancer. Subsequently, a web-based user interface
was developed to query the predictions obtained from the ML-based model.
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ABSTRACT

In brief, the major highlights of the thesis are:

• Search for common signatures in miRNAs involved in the cancer pathway

• Training machine learning based models with features extracted from
miRNAs associated with cancer versus those that are not.

• Overcoming class imbalance problem with cost-sensitive approaches.

• Construction of an ensemble-based classifier from three learning
algorithms viz., kernel-based Support Vector Machine (SVM), decision
tree-based Random Forest (RF) and C4.5.

• Development of web-based user interface (MicRooN) to query prediction
obtained from ensemble classifier stored in MicRooNdb.
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Chapter 1

Introduction

1.1 MicroRNA - Discovery

MicroRNAs (miRNA) are a new class of non-coding RNAs which have been
a hotbed of research activities for the last two decades. Lee, Feinbaum and
Ambros first discovered miRNAs in 1993, during a study involving the various
developmental stages of Caenorhabditis elegans. Earlier work done by Ambros
with C. elegans had revealed the role of lin-4, in the larval development of the
nematode (Figure 1.1). Worms with mutated lin-4 could not repress the high
levels of another protein LIN-14 (which in turn regulates the transition of L1 to
L2 stage in the larval cycle) leading to developmental anomalies.

Figure 1.1: Regulation of miRNA in various stage of C.elegans larval
development [1].
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Chapter 1. Introduction

To their dismay and delight, Ambros and his colleagues (Ruvkun, in
particular) discovered that the RNA coded by the lin-4 gene did not code for any
protein. Rather, this RNA was found to bind to seven complementary sites in the
lin-14 3′UTR. Once bound to these specific sites, lin-4 regulates the production
of the nuclear protein (a putative transcription factor) encoded by lin-14. In
the post developmental stages, it was also found that lin-4 regulated lin-28 in
a similar fashion as that of lin-14 [2]. Similar mechanism exists between let-7

and lin-14 in the L4 stages of the larval development. However, it was still
considered that these small regulatory elements were worm-specific and not
global.

Later over a year, almost hundred such regulatory small RNAs were
reported in plants, human and other unicellular eukaryotes [2, 3]. Unlike in
let-4 and let-7, the gene expression of several newly found miRNA was specific
to cell types and possessed differential gene expression. miRNAs mediate
post-translational regulation by hybridising to target messenger RNA (mRNA).
These small RNAs either bind to 3′ Untranslated Regions (UTR) or coding
regions (CDS) or 5′ UTR of the mRNA [4–6] . By binding to these regions with
near or perfect complementarity, they may induce either translational repression
or complete cleavage of mRNA.

Systematic identification of miRNA by cloning and sequencing
experiments was adopted for over a decade. Recently several experimental
methods have been developed based on abundantly expressed miRNAs [7, 8].
Computational methods on the other hand, search for the location or homologs
of the sequence in the entire genome considering the fact that most miRNA
genes are present as tandem repeats separated by small distances. Methods
utilising conserved region search (not necessarily inside the protein-coding
region) were used to find several potential miRNA candidates [9–11]. With
high sensitivity and specificity of these computational methods, the number of
miRNA discovered in the recent years have contributed for 1% of the entire
genome, a fraction similar to other regulatory gene families.

3



Chapter 1. Introduction

1.2 MicroRNA Biogenesis

MicroRNAs are non-coding RNAs averaging 22 nucleotides which regulate
various steps in development, differentiation and physiological activities in a
cell. In animals, miRNA biogenesis starts with the pri-miRNA being transcribed
by RNA polymerase II, followed by processing by a microprocessor complex –
Drosha and DiGeorge Syndrome Critical Region Gene 8 (DGCR8) (Pasha in
invertebrates) to pre-miRNA (50-70nt long) with a 3′ overhang. Exportin 5
identifies 3′ overhang and transports the processed pre-miRNA to the cytoplasm
(Figure 1.2).

Figure 1.2: Biogenesis of human miRNA [12].
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In the cytoplasm, the RISC (RNA Induced Silencing Complex) loading
complex (RLC) mediates the miRNA processing and directs it to its target.
The RLC contains an RNase named Dicer, the double-stranded RNA-specific
Tar RNA Binding Protein (TRBP), Protein Activator of PKR (PACT) and
Argonaute-2 (Ago2). TRBP and PACT do not actively participate in miRNA
cleavage; rather they stabilise Dicer. Lower concentration of TRBP and PACT
result in poor post-transcriptional gene silencing. Dicer belongs to the RNase III
family that process miRNA with prominent double strand features. It recognises
the 3′ overhang on the double stranded miRNA and cuts ∼ 20 nt away to
generate a short RNA duplex [13]. The end loop of the pre-miRNA is truncated
and results in a duplex structure, containing a biologically active miR strand and
carrier strand or the miRNA star (miR∗).

Figure 1.3: Human Argonaute-2 - miR-20a complex [4F3T.pdb].
hsa-miR-20a (magenta) bound with AGO protein (green).

Strand selection by RISC is not a stringent process [14], however it is
entirely based on the inherent features of the duplex – usually the stability of
base pairing in the 5′ end determines the strand selection [15–17]. Additionally,
the thermodynamics of duplex formation also plays an important role. Shortly
after being processed by Dicer, the strands separate and the miR∗ is usually

5



Chapter 1. Introduction

degraded. The mature miR strand binds to miRNA-Argonaute (AGO) protein
complex, to form the final RISC. Mature miR bound to RISC mediates
post-transcriptional regulation by binding to 3′ or 5′UTR or coding sequence.
Once bound with AGO protein, this complex is more stable (half-life greater
than 14 hours) [18] (Figure 1.3). Due to non-random strand selection process,
it is also reported that some miR* mature with higher gene expression levels
[19]. miRNA stability mainly relies on the AU-richness in the sequence, a
phenomenon similar to that of mRNA. Higher AU-richness signifies shorter
miRNA half-life [20].

1.3 MicroRNA Regulation

In plants and animals, the regulatory activities of miRNA are highly dynamic
and they depend on specific factors in them. The regulatory intensity in plants
is dependent mostly on the sequence complementarity and target abundance.
In plants, miRNA binds to the site with high degree of complementarity and
initiates mRNA degradation. Once the mRNA degradation is complete, miRNA
is released from RISC and it may target another site with complementary
regions. However, in animals, the mechanism of regulation is entirely different.
The miRNA-bound RISC binds to multiple targets separated by certain distance
and induce translational regulation cooperatively.

Another important aspect of miRNA binding to mRNA in animals is
that they bind to the targets with imperfections forming bulges, loops and
mismatches [21]. Further, the translational intensity in animals is also based
on the distance between the target sites [22]. Perfect pairing of mRNA and
miRNA is not always sufficient for regulation. In certain cases a mismatch or
loop/bulge formation may also be highly preferred [23]. miRNAs are found
in clusters and may be sequence related – some miRNA clusters don’t share
sequence homology but still control the same functional process, suggesting the
clustering of miRNA to be important for coordinated regulation. Clustering of
genes is more common in case of animals than in plants, where ∼40% of the
miRNA are found to be clustered. These cluster arrangements reflect distinct
evolutionary style between plants and animals [24].
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Additionally, structural analysis reveals that animal miRNA comprises
highly variable size of stem and loop regions – these variations are mainly
due to location of the independent transcriptional sites and the architecture
of biogenesis (Figure 1.4). A reason for this may be the absence of Dicer
processing from pri-miRNA to pre-miRNA in plants. However, several reports
have suggested both plant and animals contain some degree of similarity in
the primary structure of miRNA independent of their length. Site-specific
nucleotide positions and the presence or absence of flanking regions confirms
that common primary structures exist in both plant and animal miRNAs.

Figure 1.4: (a) Pre-miRNA cluster of Oryza sativa (Osa-MIR395)
(b) Arabidopsis thaliana (Ath-MIR859-774). Mature miRNA are marked
in bold lines.

1.4 MicroRNA and Cancer

MicroRNAs are known to be fine tuners of gene regulation; scientists have
undertaken huge efforts in revealing the mechanism of these small non-coding
RNAs (ncRNA) over the years. It is well known that these small ncRNAs are
involved in various cellular pathways by interacting with their target mRNAs.
In most cases, miRNAs combine with certain Transcriptional Factors (TFs) to
alter the intensity of regulation. TFs are encoded by protein-coding genes and

7



Chapter 1. Introduction

contain domains that participate in DNA binding, protein-protein interaction
and transcriptional activation and repression.

Both TFs and miRNAs act in a highly coordinated fashion, the percentage
of TFs coded by a protein-coding gene and the number of miRNA synthesised
is entirely dependent on the organismal complexity. In case of binding, both
TFs and miRNA bind to cis-regulatory elements and regulate gene expression.
The jury is still out on the coordinated effects of TFs and miRNA. Only 5%

of the protein-coding genes code for TF in flies and nematodes, whereas it is
10% in case of mouse and humans [25, 26]. Computational and experimental
interaction data can be combined into functional network models to elucidate
the system-level mechanisms of these gene regulators. However, miRNAs are
known to function downstream of TFs, since their binding is possible only after
mRNA is transcribed. Binding of TFs and miRNA to their targets plays a vital
role in controlling the gene expression, particularly in development, apoptosis
and several diseased states suggesting miRNA to be highly related with various
stages of tumours [27] (Figure 1.5).

Figure 1.5: miRNA in cancer. Only experimentally validated interactions
are shown. miR-15/16a involved in homozygous deletion in B-cell chronic
lymphocytic leukemia and miR143/miR-145 cluster down-regulation in
colon cancer [28].
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1.4.1 MicroRNA as Oncogenes and Tumour Suppressors

Cancer is a complex network of gene alteration, representing uncontrolled
overgrowth of a particular cell type, initiated by either mutation or
environmental factors. This initiation is followed by accumulation of defects
in several other genes as a function of time progressively. Features related
to cancer are loss of normal signals to stop proliferation, loss of signals
for differentiation, sustained cell division and avoiding apoptosis. Inherently
defective genes and environmental factors causing permanent damage to DNA
are some of the main causes of cancer. These defective genes either sustain or
increasingly mutate over year and finally cause cell specific cancer.

The significant role of miRNAs in gene expression has been verified in
several tissue specific developments and in classification of tumours. However,
there are no simple generic approaches in identifying or classifying new class
of cancer with expression profile based studies. Gene expression is entirely
based on the type of miRNA-mRNA interactions and they are variable. In
human, miRNA do not bind with complete complementarity, rather they bind
with several imperfections leading to different types of regulation. This kind
of imperfect complementarity does not degrade the mRNA completely, but
results in translational regulation with reduced protein levels. miRNA which
cause increased gene expression can be loosely thought of as oncogenes and
usually negatively inhibit tumour suppressors that are involved actively in cell
differentiation and apoptosis. On the other hand, miRNA that down regulates
tumour activity by negatively inhibiting oncogenes can broadly be termed
tumour suppressors [21]. Infact, there are numerous instances which illustrate a
single miRNA acting as both oncogene and tumour suppressor by involving in
multiple molecular mechanisms and signaling pathways [29].

Most miRNA act as both oncogenes and tumour suppressors depending
on the specific cell environment. In miRNA-mRNA interaction involving
miR-135b and miR-147, there is down regulation in colorectal adenoma
whereas, in carcinoma they are up regulated. Regulation of miRNA as
oncogenes and tumour suppressors is mostly cooperative because of multiple
binding in target sites. For example, miR-155 is up regulated in Hodgkins
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lymphoma and targets genes such as ZIC3, AGTR1, ZNF537, FGF7 and IKBKE
[30]. Other than the number of target sites in the binding region, features like
local nucleotide context and regions around the target sites also contribute to the
regulation significantly [23].

1.4.2 MicroRNA as Biomarkers

Being involved in several cellular functions like differentiation, development,
metabolism and cell death, miRNAs are considered as powerful biomarkers.
Tissue-specificity and distinctive signature profiles of miRNA in various cancers
aid in sub-classifying cancer types and can be used as potential biomarker.
However, considerable evidence suggest that within the cancer types, the
expression profile varies during different stage of cancer and depends on
the molecular mechanism involved [31]. Generally, miRNA have distinctive
expression levels in normal and cancerous cells depending on the cell types they
are associated with. In 2008, Rosenfeld et al. utilised distinctive expression
profiles of 48 miRNAs in 22 different cancer types to associate miRNA with
specific tissue types and provided some rudimentary tumour taxonomy [32].
However, the study failed to analyze cancers with unknown origin. Till date,
this classification can account for only 2 to 5% of cancers of unknown origin
making the diagnosis and treatment for these cancer types unclear. Several
other groups utilised DNA microarray and gene signature to identify the origin
of unknown cancer types [33] . Based on their studies, an unknown cancer type
was classified with 80% accuracy based on site of origin and 73% accuracy for
tissue origin [34].

The choice of profiling methods is also important in identifying potential
biomarkers in cancer; mostly because they depend on the abundance of
miRNA isolated. Quantification methods include in situ hybridisation, northern
blotting, qRT-PCR, microarray, high-throughput sequencing and bead-based
arrays [35]. However, these methods are laborious and are not appropriate
for the fast prediction of involvement in cancers of unknown origin. For
example, in the qPCR and sequencing method, large volumes of sample
are required and runtime is higher. Similarly, in case of Next Generation
Sequencing (NGS), the methods require larger volume of miRNA sample and
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are inappropriate for miRNA with low abundance. Thus, the choice of miRNA
profiling methods depends on the specificity and sensitivity of expression profile
required. Computational methods along with various gene regulatory network
information can be utilised to identify miRNA, which could then be used as an
efficient candidate for cancer biomarkers.

1.5 Tools for MicroRNA Analysis

Mirnomics, the study of miRNA structure and functional characterization of
miRNA is gaining importance due to the involvement of miRNAs in several
diseases. With the upsurge in the number of discovered miRNAs, the need for
cataloguing and annotation of the miRNA is the need of the hour. Specialised
databases are being constructed for categorizing sequential, structural and
functional aspects of miRNA. Further, to process different user requests with
the database, several tools have been built alongside these specialised databases,
thus laying a fundamental support for identification, target prediction and
functional analysis of novel miRNA.

1.5.1 MicroRNA Databases - miRBase

miRBase is a sequential database with searchable miRNA entries; they include
both novel and computationally predicted miRNAs. miRBase follows a
unique identifier and nomenclature for naming miRNA identified from different
organism. miRBase includes both mature and stem loop sequence entries in it.
Usually each new novel miRNA or predicted entry is given a sequential number
as per submission (e.g. miR-181 is followed by miR-182). Usually the identifiers
are denoted by hsa-miR-181, where the first three letters signify the organism
and the next three letters signify mature or stem loop sequence. When the ‘miR’
is denoted as ‘mir’, as in hsa-mir-181, it indicates the stem loop sequence.

Identical miRNA sequences from different precursors will be assigned
the subscripts 1, 2 and so on (hsa-miR-181-1 and hsa-miR-181-2). Alphabets
at the end of the unique name indicate closely related mature sequences
(hsa-miR-181a, hsa-miR-181b). In some cases, both the miRNA duplex
sequence entries are cataloged, which will be denoted as miR-181 and miR-181*
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Figure 1.6: Naming nomenclature for (a) step loop and (b) mature
miRNA sequence [36].

indicating predominant product and product obtained from opposite arm.
Naming convention vary with the organism, for example plant miR are denoted
with capitalised letters (MIR-181). A similar pattern is also followed in case of
viral miRs. miRBase also have exceptional naming convention in case of let-7

and lin-4, because these names are retained for historical reasons. Homologous
sequences of these miRs will also attain the same naming convention [37].

With the advent of new computational prediction methods, the number of
miRNA entries has grown exponentially year-by-year. Currently, miRBase 21.0

holds a total high confidence∗ entry of 28645 miRNA from human, mouse,
fly, nematodes and Arabidopsis. MiRBase also provide links to experimental
evidences and references to published results, which further enhance the
confidence of predicted miRNA. Certain other repositories also contain some
miRNA sequences, but are not exclusively dedicated to miRNA. Ensemble
and National Center for Biotechnology Information (NCBI) Genbank contain
annotation including phylogeny, gene and transcript information and splice
variants. They provide annotation tools and hyperlinks to several other miRNA
resources and several output formats including FASTA format for further
analysis (Figure 1.7).

∗High con�dence sequences must either have atleast 10 reads mapping to each arm
or have at least 5 reads mapping to each arm and at least 100 reads mapping in total
using multiple deep sequencing data
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Figure 1.7: Categorical representation of miRBase entries [37]. The
inner cirlce represents the pre-miRNAs and outer circle represents mature
miRNAs.

Tools like miRDeep[7] predict novel miRNA from NGS data – they do so
by searching for homologous sequences and identifying them. The identified
homologous sequences obtained from precursor sequences are then folded into
hairpin structures using RNA folding algorithm from Vienna package [38] and
predicted sequences are further confirmed with PCR quantitatively.

Lately, some computational algorithms have been constructed and utilised
effectively to identify miRNA coding gene in sequenced organisms. Regardless
of the complexity within the organism, they consider hairpin secondary structure
as their main target for miRNA gene identification. RNAfold [38] – a secondary
structure-folding algorithm in Vienna package, folds pre-miRNA sequences into
hairpin structure based on sequence complementarity and thermodynamics of
folding. Structures are ranked based on a scoring system and/or the stability
and thermodynamics of folding. Finally, top ranking structures are confirmed
with in vivo experiments.

For the last decade, Machine Learning (ML) approaches are being used
effectively for identifying miRNA gene even with low sequence homology.
ML techniques utilise information from both experiments and knowledge
obtained from previous identification procedures. The process starts with
learning features being extracted from experimentally identified miRNA gene
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and followed by effective classification of real and pseudo miRNA structure.
The classification accuracy of the entire process is dependent on the knowledge
obtained from experimental procedure. With the vast amount of human genome
data and the complexity involved, the miRNA gene identification method still
needs improvements to make it accurate.

1.5.2 Target Prediction Tools and Databases

Predicting miRNA target is the primary step in functional analysis, involving
the binding of mRNA with miRNA conjugated in RISC. The number of
miRNA identified has grown exponentially with every new release of miRBase,
considered as the primary database for miRNA-related studies. However, targets
for several newly predicted miRNAs have not yet been identified and require
more reliable and faster methods. Identification of targets in plants and animals
vary significantly – in case of plants, sequence complementarity is the primary
identifier for target binding since most plant-based miRNA-mRNA interactions
show exact complementarity. On the other hand, animal miRNAs do not
bind with perfect complementarity. Numerous algorithms have been proposed
considering all the crucial parameters, but still they require improvement since
the binding nature varies significantly with cell types and also based on the
environment.

miRNA target multiple binding sites on mRNA, but not all binding would
be regulatory. In human, most sites are conserved regulatory targets and
additional regulatory function occurs through binding to non-conserved sites
[39]. Another important factor to be considered is the UTR context, i.e., at least
not less than 6nt binding in the 3′ UTR and also AU-richness in the particular
region [23]. Cooperative effect due to multiple binding is also dependent on
the distance between the binding sites [22]. Targets with rich A+U regions
are observed to be more regulatory in nature [23]. TargetScan, a popular
algorithm for target binding, considers all these parameters. The outcome of the
prediction is also supported by experimental results (if available). The algorithm
ranks all the miRNA-mRNA interactions based on total context scores, which
is generally calculated from on local AU contribution, position contribution,
target site abundance, seed pairing stability, site-type contribution and 3′ pairing
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contribution. The tool considers 3′ UTR as the most effective target-binding site
than others.

Recent evidence also suggests that binding occurs at the 5′ UTR and
in the CDS as well [4, 5]. In case of miRNA binding to CDS, studies
suggest that conserved sites occur in these regions and have been confirmed
by comparing 700 human genes in 17 species [40]. Binding regions occur
in CDS for certain miRs (hsa-let-7a-5p, hsa-miR-9-5p, hsa-miR-125a-5p, and

hsa-miR-153). Experimental results also confirm that let-7a-5p down regulates
Dicer, whose transcripts contain multiple target sites in CDS region for let-7

binding. However, studies concerning binding stability in CDS region are scarce
and more work needs to be done in this aspect.

Target prediction tools can be broadly categorised into sequence-based,
structure/thermodynamics-based and homology-based predictors. Generally,
most tools do not fit exactly into any single category because they consider
at least two parameters to find an efficient target for the given miRNA. Tools
like RNAhybrid (Vienna Package) consider both seed complementarity and
thermodynamics of binding. Considering only sequence complementarity for
target prediction may result in more non-functional miRNA target sites. Certain
tools like mfold which utilise libraries from Vienna Package follow more
stringent threshold values (i.e., threshold values can be chosen based on the
complexity of genome involved) in order to pick an accurate target. Most target
prediction tools consider both sequence complementarity and thermodynamics
of binding as the important parameters in predicting a miRNA target.

1.5.3 Filtering False Target Prediction

The approaches used for target prediction differ in the way they measure
conservation, thermodynamics etc. Results from target prediction tools
suffer from high false predictions; however, some filter algorithms have
been successful in identifying true miRNA targets. Earlier reports of target
filter algorithms employed machine learning approaches with experimentally
validated miRNA target to obtain a high degree of accuracy. MiRTif
(miRNA-mRNA interaction filter) utilised support vector machines to train
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models with real and pseudo-miRNA targets [41]. Only experimentally
validated dataset was used for training and hence the tool could achieve a
sensitivity and specificity of 83.59% and 73.68%, respectively. However, the
tool did not consider any specific parameters from miRNA-mRNA interaction
but learned from existing target interaction, thus resulting in poor performance
with newly predicted interactions.

Recent developments in filter algorithms have been optimised for either
seed conservation or thermodynamics of binding, but not for both. Prediction
of ACcessible and/or Conserved MIcroRNA Targets (PACCMIT), a target filter
algorithm combines all three parameters (conservation, thermodynamics, or
both) to obtain more precise miRNA targets [42]. RFMirTarget, a RF classifier
based algorithm employs classification of real and pseudo-miRNA, based on the
features extracted from structure, thermodynamics, conserved region and seed
position and has shown consistently better results over other target prediction
algorithms [43, 44].

1.5.4 Databases for miRNA-mRNA Interaction

With the growing number of target prediction tools, databases for storing the
predicted and validated results are also important. Many target interaction
databases have emerged using manual literature search for targets and based
on high throughput screening techniques. miRTarBase 4.5, a database
of experimentally validated miRNA-mRNA interactions provides 51,460
interactions for 1,232 miRNA with 17,520 target genes in 18 species. Over
2,636 published articles are linked with the validated result [45]. Similarly
miRecords provides systematic and structured documentation of experimentally
validated results, along with literature curation [46]. Additionally, miRecords
provides information on the experiments used for validation and contains mainly
animal miRNA entries. Certain databases like Argonaute [47] (upgraded to
miRWalk [48]), use data mining techniques intensively for literature survey
on mammalian miRNA and document them for easy access and referencing.
Argonaute also collects validated information like miRNA-origin and families,
tissue specific expression profiles and proposed function from other databases.
Currently the database accumulates prediction from eight different target
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prediction tools, viz., Diana-microT [49], miRanda [50], miRDB [51], PICTAR
[52], PITA [53], RNA22 [52], RNAhybrid [38] and TargetScan [54].

1.5.5 Methods for Functional Analysis

miRNAs are post-transcriptional gene regulators and identifying expression
profiles of miRNA reveal the molecular mechanism involved. Most functional
analysis involved in miRNA introduce interference at the level of the miRNA
or the target mRNA to restrict their interaction. This may result in the
consequent loss of function if there is functional regulation associated. Once
the interference is revoked, function is resumed and the relation of miRNA with
target is confirmed.

Experimental approaches to validate miRNA-mRNA interaction include
(i) Interference with miRNA levels by depleting pre-mirna followed by loss of
function analysis with mature miRNA (ii) Blocking target site with anti-sense
oligonucleotides and (iii) disruption of miRNA-mRNA base pairing through
point mutation [55]. The major drawback with these methods is that they require
a large amount of purified RNA and needs increased processing and handling.
Recently, computational tools like MMpred has been used for predicting
functional analysis [56]. The method requires miRNA-mRNA dataset and
related microarray data and is successful in predicting true miRNA-mRNA pairs
and approximate expression profile from microarray data.

1.6 Machine Learning in Biology

The term Machine Learning (ML) defines learning from existing data rather
than following an explicit human instruction or a program. Machine learning
has been employed for problems with complex relationships and provides a
new insight into how input variables are mapped to output leading to pattern
recognition or an effective classification process. ML starts with learning or a
training process, followed by a construction of model, evaluation and finally
optimisation of the constructed model for better performance (Figure 1.8).
During the evaluation process, the constructed models are tested with novel
inputs that are not a part of the training process.
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Advancement in high throughput sequencing and other identification
methods in biology have resulted deluge of data being generated. Introduction
of ML in biology has offered a number of efficient solutions for (i) Annotating
new genomic sequences, (ii) Functional analysis of macromolecules, (iii)
Domain analysis, (iv) Target site identification in non-coding RNAs, (v)
Biomarker identification and (vi) Genetic interaction networks. The initial use
of machine learning (known as perceptron) was utilised in studying neuron
behavior, and later Artificial Neural Network (ANN), one of the commonly
used ML method was constructed based on neuron behavior. ANN was found
to be efficiently used in identifying transcriptional start sites of microRNAs in
Escherichia coli (E.coli) [57].

Figure 1.8: General pipeline of machine learning approaches.

The core objective of ML is to obtain generalization from the training
process and to perform accurately on an unseen dataset. The construction of
an efficient model depends on the training process, which in turn depends on
the volume of the dataset. Training sets are stored in a feature-based format,
i.e. converted to observable quantities best suitable for training purpose. These
extracted features aid in mapping to the output in a much efficient way than
learning from an uncategorised entire dataset. Only closely related feature set
is considered for the training purpose because unrelated features may affect the
entire training process and suppress performance. Selecting appropriate feature
set is done iteratively and is considered an important process prior to training.
The performance of the model is always more accurate with the most optimum
feature set and with optimised algorithmic parameters. Fine tuning algorithm
parameters is another critical task in obtaining a higher accuracy.
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Additionally, based on the requirement of the training algorithm, data
preprocessing is done for identifying empty variables; this is because, certain
ML based algorithms do not identify empty variables and they may assign values
randomly thus affecting performance. As a rule of ML (no free lunch theorem),
there is no specific training algorithm available for a single problem. Mostly
the selection of algorithm depends on the expected outcome or in certain cases
depends on the complexity of the training dataset. Hence, in most cases, the
choice of model is obtained by comparing several ML algorithms.

1.6.1 Algorithms in Machine Learning

Machine learning algorithms are broadly classified into (i) Supervised Learning
and (ii) Unsupervised Learning algorithms.

1.6.1.1 Supervised vs Unsupervised Learning Algorithms

The choice of algorithm selection is entirely dependent on the type of input
variable i.e., either labeled or unlabeled dataset. In unsupervised learning, given
a set of unlabeled input variables, the learning algorithm does not classify into
individual classes; rather they cluster into groups. For example, in human eye,
more than 106 photoreceptors are present. These photoreceptors learn on the
basis of constantly changing environment and identify various parameters like
light condition, object recognition, etc. In this example, photoreceptors can
be assumed to learn through unsupervised methods. Neither there are prior
labels nor is the feature set mapped to the output. Photoreceptors identify the
object, cluster into groups and utilise them for future identification. In biology,
unsupervised learning is used in problems where there is unavailability of
feature sets to map input and output variables, e.g., in gene regulatory networks
and analysis of unknown gene expression. Additionally, in unsupervised
learning, human interference is completely absent – hence bias on the output
is completely eradicated and the output entirely is dependent on the algorithm
used for clustering.
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1.6.1.2 Performance Evaluation in Learning Algorithms

Class labeling is absent in unsupervised algorithms, therefore, they can
be used for large datasets where feature mapping to variable is laborious.
Direct evaluation of performance is not possible since there is no prior class
labeling, rather evaluation is done based on the quality of the cluster and
the cluster density – they are calculated based on the variance in the distance
between the centroid and the actual data (silhouettes). Silhouettes [58] are
graphical representations of how data is distributed within the clustering and
are represented as the Silhouette scores. The score describes the location of
each data point, whether they are located well within the cluster or in between
two/several clusters.

Figure 1.9: Calculation of silhouette score between three cluster A, B and
C, where DAB and DAC is the distance between the point of interest from
one cluster to the other.

Silhouette score is expressed in ratio scale as that of Euclidean distance.
Let us consider three clusters (A, B and C) obtained after unsupervised learning.
In figure 1.9, the distance of a point of interest from cluster A to B is denoted
by DAB. Silhouette scores start with calculation of average distance from all the
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points from cluster A to B and are denoted as AvgDAB. Similarly, scores are
calculated from all points in the cluster to the other clusters. If the ratio obtained
between Cluster A and B is minimum, then B is referred as the neighbour of
Cluster A, which indicates that data point may appear in Cluster A or B. The
ratio obtained between the average distances calculated between the clusters is
referred to as dissimilarity. If a cluster contains only a single point then the ratio
is set to zero.

For example in figure 1.10, an unsupervised learning involving
identification/clustering (k-mean algorithm) of species based on structure
related dataset is emphasised. The initial clustering starts with defining the
number of clusters (user-specific) and also the centroid of each cluster. The
number of clusters is equal to the number of species classification required and
the choice of centroid is usually a random process. Assigning closest centroid
is dependent on whether the species appear closely related to each other. Once
the number of clusters and closest centroid are assigned, the process starts. The
clusters obtained in the initial step are recomputed with different centroid values
iteratively until they obtain identical results.

Figure 1.10: Steps in k -mean algorithm; empty dots indicate training set,
dots �lled with green and red are centroids for respective clusters. If we
consider the number of clustering step as (k= 2); then in (k =1), centroid is
arbitrarily assigned for clusters in red and green. Clustering is done based
on the closeness to the centroid. In consecutive steps (k=2), centroid is
moved to a di�erent point and clustering is done until stable clusters are
obtained.
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Hierarchical clustering is applied in cases of closely related clusters.
The output of hierarchical clustering is usually a dendrogram and the process
of clustering is terminated at any point of time based on the user request.
Hierarchical clustering is usually employed to cluster closely related species
of unknown origin. Commonly used unsupervised algorithms are k-mean
algorithm, Neural Network and Hidden Markov Model (HMM). The main
disadvantage of unsupervised algorithms is they are sensitive to the number of
clusters assigned.

On the other hand, in a supervised algorithm, each training instance
is mapped with known output values. Training process results in either a
regression function (if the output is continuous) or a discrete model (a class
classifier) with a well-defined feature set. Performance evaluation is carried
out only with novel inputs and not with the dataset used in the training.
Identification of tumour subtypes from gene expression profile is a classic
example of supervised learning, where the input variables are mapped with the
known set of tumour types (output variable).

In certain cases, the origin of the tumour is completely unknown,
hence classification is done with semi-supervised learning. These algorithms
make use of certain available labels (supervised learning) and use mostly
unlabeled dataset (unsupervised learning). The main disadvantage of using
semi-supervised learning algorithm, particularly in biology, is that they consider
a hypothesis, which is not suitable for biological problems with large unlabeled
dataset [59].

Classifiers are generally binary, but the need for multi-class classifier has
also grown due to the complexity of the output. For example, the identification
of pre-mirna as real or pseudo is a typical problem solved by a binary classifier.
However in the case of tumour classification, where multiple subtypes are
involved, a binary classifier is not a suitable choice. ML algorithms like
decision trees can handle multi-class classification more efficiently than the
kernel-based methods. Recent advance in Support Vector Machines have
resulted in multi-class classification, where a multi-class problem is divided into
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several binary classifiers and results are accumulated either by averaging or by
majority vote.

1.6.1.3 Support Vector Machines (SVM)

Support vector machines [60], as formulated by Vapnik in 1992 is a kernel-based
binary classifier and used widely in biology for high dimensional data analysis,
viz., gene expression analysis and complex species classification. SVM is
applied to problems with unknown distribution whose class boundary is quite
unpredictable. To overcome the problem of class boundaries, SVM uses kernel
functions that compute a dot product of the data points and map them to higher
dimensional space. Construction of SVM is based on the type of dataset used
in the training process, i.e., either linear or non-linear dataset. For example,
in tumour classification, the problem is usually not linearly separable, because
most tumours share some common properties. Hence, a non-linear kernel
function is generally preferred to map the feature representation into higher
dimensional space where they are linearly separable. The choice of kernel
function plays a critical role in the classification process, which in turn depends
on the optimised kernel parameter, gamma (γ) and the soft margin parameter,
cost (c). Commonly used kernel functions are linear, Radial Basis Function
(RBF) and polynomial.

Most real world datasets are not separated by a single linear hyperplane
even after converting to higher dimensional space. Some data points may
fall just on the hyperplane or in close proximity within the hyperplane
identified. Generally, SVMs rely mostly on maximizing margin† and
minimizing classification errors to select the best hyperplane. Maximizing
the margin may accommodate data points that are close to the support vector.
Therefore, SVM is also called maximum margin classifier. Additionally, there
are situations when data points are misclassified by a linear hyperplane. The
concept of soft margin is introduced in such cases specifying a trade-off between
hyperplane violations (slack variable, ξ) and the size of the margin (b). For a
non-linear problem (Figure 1.11), with soft margin identified, the dot product of
weight vector (w) with the training set is replaced by kernel function (φ), which
†A margin is de�ned as the smallest distance from the decision boundary, on which

the data points (called as support vectors) are located.
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allows mapping of each non-separable data point from two-dimensional space
to higher dimensional space, making them linearly separable.

Figure 1.11: Applying kernel function for non-linear classi�cation �
mapping from low dimensional to higher dimensional space.

In an example of a linear case, where a simple hyperplane classifies ovarian
cancer and normal tissue, the discriminant function f(x) can be formulated as

f(x) = w.x+ b = 0 (1.1)

where w is the weight vector and b is the bias. However, in case of large margin,
the discriminant function is formulated as

Class1, f(x) = w.x(i) + b ≥ 1 (1.2)

Class2, f(x) = w.x(i) + b ≤ 1 (1.3)

For non-linear cases, soft margins are introduced with a bias in the
classification, thereby allowing misclassification of a point that does not fall
within the class boundary. Slack variable (ξ) (also called as the margin error)
allows to overcome the misclassification and is defined as, when (ξ>0), data
point is on the margin and if (ξ<0) then it is misclassified. After determining the
soft margin, dot product of the support vector with the kernel function (φ) aids
in constructing a maximum margin with minimum error in a higher dimensional
space (Figure 1.12). Choice of suitable kernel and optimising kernel parameters
is also an important process in obtaining lower misclassification error. Kernel
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Figure 1.12: Hyperplane construction with slack variable (ξ) in higher
dimensional space. ξ<0 indicates misclassi�ed data points, ξ>0 indicates
data points on the decision boundaries and w, b indicates weight vector
and the distance between the margins of hyperplane respectively [61].

parameters along with the soft margin parameters determine the flexibility of
the SVM boundary in fitting the dataset.

1.6.1.4 Decision Trees � Random Forest and C4.5

Decision trees (DT) are ensemble based methods involving the construction of
multiple decision trees during the training process and output is either obtained
by bagging [43] or majority voting [62]. Information entropy of individual
features extracted from training set plays a crucial role in constructing an
efficient tree. A decision tree has a structure consisting of internal nodes
(where a decision function is executed), external nodes, connected by branches
and finally end nodes or leaves populated with class labels. Trees are usually
constructed in a bottom-up approach, where a feature is selected at each node
and bifurcated into branches (starting at root and splitting until leaf node). The
output of a decision tree represents rules, used in any knowledge system to
predict new inputs. Decision trees can handle both numerical and categorical
datasets and provide a clear indication of variable importance in prediction or
classification. Generalization error during model construction is completely
reduced as the number of trees increases. Generalization error in decision
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tree-based algorithms is however dependent on the strength of the individual
tree and correlation between the trees. The main advantage of decision tree
is the ability to handle multi-class classification in an efficient way than the
kernel-based method.

Most popular decision tree algorithms are Random Forest (RF) [43] and
C4.5 [63]. Both algorithms work in a similar fashion except in the final decision
process. Random Forest algorithm involves two major steps: (i) random
selection of features and (ii) bagging. Given a training data of size N and
with feature subset Fn, RF starts with the random selection of features (M)
based on information entropy (M�Fn). The number of randomly selected
features for each tree construction is kept constant. During the actual training
process, a bootstrap selection of sample (with replacement) is done followed by
the propagation of the tree. Each tree is constructed based on the information
entropy of the feature selected. The depth of each tree and number of features
considered for tree construction (log M/log 2, where M is the number of
features selected) are optimised for best performance or kept as user-specific.
Generally, no pruning is done in Random Forest method – thus, when a test set
is supplied the decisions are obtained by majority voting from different trees.
Error estimates in RF are carried out by Out-Of-Bag error (OOB) [43]‡

C4.5 is an improvement of the previously used Interactive Dichotomiser 3
(ID3) developed by Quinlan owing to the sensitivity of ID3 to features with a
large population of values [63]. In C4.5, this limitation is accounted for by
pruning the outliers and achieving a hypothesis with higher accuracy. Tree
construction is similar to that of RF, depending entirely on the information
gain of the individual features. C4.5 works in two phases: (i) Growth phase,
in which the dataset is split into several small clusters segregated on the basis
of several attributes. Tree construction starts with the feature having highest
normalised information gain (to be labeled the root), and all the other features
are sublisted as aids in the splitting process. Each node holds the criterion for the
splitting and the leaves are populated with the labels (ii) Pruning phase, which

‡Out-of-bag error: Each tree is trained on about 2/3 of the total training data. As
the forest is built, each tree can thus be tested (similar to leave one out cross validation)
on the samples not used in building that tree. This is the out of bag error estimate - an
internal error estimate of a RF as it is being constructed.
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involves generalization of fully-grown trees and removing the outlier data.
C4.5 can handle continuous attributes by portioning values into discrete set of
intervals (called as discretization) but for most Decision Tree (DT) algorithms,
categorical attributes are the prerequisite for tree construction.

Over fitting of data (propagating much deeper into tree in a sense to
obtain perfect classification) is the main disadvantage with most DT algorithms.
Over fitting arises due to uncommon characteristics among the selected features
resulting in empty and insignificant branches. This is common in RF algorithm
and results in high variance trees with low prediction accuracy. RF entirely
depends on the dataset and the selected features during the propagation and
even one removal/addition of feature may change the entire prediction of the
tree. C4.5 avoids over fitting by pruning – initially the trees are allowed to
propagate until they reach a maximal point of perfect classification and then
a post-pruning step removes all the outliers and noise to obtain the best tree
[64]. Both decision trees can handle missing attributes – in RF, it is either done
with nearest neighbour imputation or mean substitution; in C4.5, probability
values are used rather than assigning existing most common value for that
attribute. Both DT algorithms can handle large datasets efficiently by allowing
parallelization for faster computation.

1.6.1.5 Ensemble Methods

Ensemble methods aggregate predictions of multiple classifiers with the goal of
improving accuracy. Predictions from multiple classifiers are pooled together
either by weighted or unweighted voting. Initial construction of ensembles
involved Bayesian averaging to combine the predictions, though bagging [65]
and boosting [66] techniques are being used recently. The performance of
an ensemble method is usually higher than that of a single model trained
from the entire dataset. In fact, prediction from a single classifier often
contains prediction errors (if the training dataset contains inequal distribution
of instances), which can be totally removed by ensemble construction.

Ensemble methods provide improved flexibility and accuracy in
prediction. Construction of ensembles involves (i) building individual
models from different learning algorithms and performance optimisation
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(ii) combination of constructed models to form an ensemble and the result is
obtained by either bagging or boosting (Figure 1.13). Boosting improves model
with high dimensional predictors, whereas bagging is prominent in improving
tree-based algorithms.

Figure 1.13: Framework of ensemble classi�er. Ensemble involves training
dataset simultaneously with k -classi�ers. Results obtained from classi�er
are aggregated either by averaging or by voting.

Bagging (Boostrap Aggregation) and boosting are useful techniques to
improve the predictive performance of models (Figure 1.14 (A) & (B)).

Creation of a bagging ensemble involves:

• Construction of bootstrap set of size N with replacement from training set
M (N�M).

• The training observations that are not chosen in a specific bootstrap set
are referred to as Out-Of-Bag (OOB) observations, NT . Each base learner
can report errors on the OOB observations.
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• Creation of base model T from each of the bootstrap training sets. Each
base model is allowed to make prediction.

• Majority vote is taken as the final prediction from the base model’s
prediction.

In boosting (Adapt[at]ive Resampling and Combining), a set of weak
learners are combined to perform as a strong learner. In the present context, a
weak learner does not imply a learning algorithm with poor performance, rather
they denote algorithms with prediction performance slightly more than random
guessing. Different types of boosting algorithms are available viz., adaboost,
logitboost, rankboost, coboost etc. These algorithms differ only on the way
they weigh each instance during training and hypotheses generation. Creating a
boosting algorithm involves the following steps:

• Drawing a bootstrap training set Dm from training set D according to the
weight wi

• Generation of a classifier Cm using training set Dm

• Measurement of error of Cm on D.

· For next iteration: Increasing weights for misclassified training
points and decreasing weights of correctly classified points

• Iteration is continued until (Cboost = ΣCm) has low error.

Overall classification is given by

Cboost(X) = ±(ΣmαmCm(X)) (1.4)

where α is the measure of quality of classifier Cm. Boosting algorithms do not
overfit and are highly sensitive to outlier/noise.
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1.6.2 Imbalance in Dataset

A dataset is imbalanced if the classification categories are not equally
represented [67]. Class imbalance or skewed dataset mainly arises when most
of the instances are labeled as one class (majority class), while very few are
labeled as the other class (minority class). Traditional classifiers utilising the
entire training set for prediction are not suitable to deal with imbalanced datasets
because they show bias towards the majority class due to over-prevalence.

Machine learning algorithms are evaluated mostly based on the prediction
accuracy but in imbalanced datasets, accuracy cannot be an absolute measure of
error. For example, prediction of cancer from mammography image dataset
[68] which contains 98% of the normal pixel and 2% of the abnormal pixels.
Measuring prediction accuracy of the trained classifier using a dataset like this
will result in 98% accuracy since the dataset is already skewed towards the
majority class. In order to achieve good performance for a classifier with an
imbalanced dataset, a high degree of error correction may be incorporated in the
minority class and fewer corrections in the majority class.

The main problem in training a classifier with an imbalanced dataset is
that the minority class is often considered a noisy dataset and hence suppressed
or overlooked by the majority class. Class imbalance in the dataset deteriorates
the performance of a classifier. To overcome the problem of imbalance
in dataset, machine learning algorithms utilise two major methods, viz., (i)
assigning cost to the training set and (ii) re-sampling the training set, i.e.,

either undersampling the majority class and/or oversampling the minority class
(Figure 1.15). These resampling methods work at the data level, hence the
choice of method is entirely data driven. Class imbalance is ignored at the
algorithm level by certain methods viz., adjusting the cost of the classes to
counter imbalance, adjusting the probabilistic estimates (in case of decision
trees) and adjusting decision threshold (in case of one class). In certain
situations, both resampling and cost based methods are used in combination,
i.e., individual models are adjusted with these methods and combined as an
ensemble to provide better performance.
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Figure 1.15: Over-sampling and undersampling to overcome imbalance
in dataset. In over-sampling methods, minority class is over-sampled to
generate duplicates and in under-sampling the instances are reduced in
majority class or only a subset of the training dataset is used.

1.6.2.1 Oversampling and Undersampling Methods

Over-sampling methods balance a training dataset by increasing the number
of minority class data points, while under-sampling methods balance a training
class by decreasing the number of majority class data points. The most common
method in over-sampling is Synthetic Minority Oversampling TEchnique
(SMOTE), in which the minority class is over-sampled with synthetic samples
as proposed by Chawla [69] and Japkowicz [70]. SMOTE centers more on
a specific region in the feature space as the decision region for the minority
class, than increasing the overall number of instances. New instances are
obtained by nearest neighbour method – the number of neighbours (Xi) are
chosen depending on the number of data points required.

Let us consider the mammography dataset in the previous example, where
the outcome of the study is a decision tree-based model. Majority class samples
are shown by blue squares and the minority class samples are shown by red

circles in the Figure 1.16. Decision region chosen for resampling minority class
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Figure 1.16: Generating synthetic samples using SMOTE [71].

is marked with a pink circle. Replicating the minority class in this area by
choosing the perfect nearest neighbour will result in more terminal nodes in
the final decision tree. The main disadvantage of this resampling method is
that it is sensitive to over-fitting because random samples are generated. On
the other hand, under-sampling methods utilise a subset of majority class to
train the classifier. Since only a part of the training set is utilised, the dataset
is highly balanced and the computation is faster than over-sampling methods.
Undersampling methods though ignore a large part of the training set thereby
making such methods vulnerable to miss many discriminative features present
in the ignored parts. To overcome this deficiency in under-sampling methods,
methods like easy ensemble and balance cascade as proposed by Liu et al., [72]
are widely used.

Easy ensemble is an unsupervised learning strategy and uses random
sampling with replacement, whereas supervised learning is applied in balance
cascade method. Both these methods use adaboost algorithm to train several
weak classifiers and combine them into a single ensemble.

In the Figure 1.17, an imbalanced training dataset (T) containing
positive (P) and negative (N) sample is considered, where (P � N). Random
sampling of Ni from P is done such that (Ni = N). For each subset, classifier
Hi is trained until (i = T). Finally instead of collecting votes from the weak
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Figure 1.17: Easy-ensemble method for imbalanced dataset.

classifiers (Hi,j), features are collected and an adaboost ensemble classifier (Si)
is constructed. Hence, the final prediction using easy ensemble is given by

H(x) = ±(
T∑
i=1

Si∑
i=1

αi,j hi,j(x)−
T∑
i=1

θi) (1.5)

where θ is the threshold of the ensemble generated.

Undersampling in balance cascade is carried out in a similar fashion, with
the exception being the removal of correctly classified Ni in each iteration. This
is followed till a state is reached where the majority class is classified to be the
minority class (achieved by calculating false positive rate at each iteration).
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False positive rate is given as

f = (T − 1)

√
|P |
|N |

(1.6)

The only disadvantage with the balance cascade method is the computation
time which is a little on the higher side. Additionally, the method is likely
to suffer from over-fitting since the number of minority samples are limited in
each iteration.

1.6.2.2 Cost-sensitive Methods

In most learning algorithms, there is an attempt to minimise error rate in
classification by ignoring the difference between types of misclassification
errors. However in real world problems, this assumption does not hold true. For
example, let us consider a cancer diagnosis containing an imbalanced dataset
of 99.5% positive instances (cancerous) and 0.5% negative instance (healthy or
non-cancerous). When the classification is carried out without considering the
imbalance, it was found that more healthy patients were predicted to be positive
for cancer. In cost-sensitive learning, models are constructed considering
misclassification costs and other costs (viz., instance and attribute cost, active
learning cost, computation cost). Among these, the misclassification cost is
most important in cost-sensitive learning.

Figure 1.18: Cost-matrix for imbalanced dataset; where C00, C11, C10 and
C01 are the cost associated with the prediction of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN) respectively.
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Misclassification cost can be applied to both binary and multi-class
classification problems. Considering a binary classification, in a cost-sensitive
learning, the costs of false positive (actual negative but predicted as positive),
false negative (actual positive predicted as negative), true positive (positive
predicted as positive) and true negative (negative predicted as negative) can be
given as a cost matrix (Figure 1.18).

Ci,j denotes the misclassification cost for classifying an instance from
its actual class j into the predicted class i (usually positives are denoted as
1 and negatives as 0) (Figure 1.18). Cost-sensitive methods are extension of
non-cost-sensitive methods with an addition of bias to error-based classification.
Common methods to introduce bias into the error-based classification are:

• Changing the class distribution by resampling, instance weights and
meta-cost (incorporates cost into the preprocessing steps).

• Modifying learning algorithms – requires cost calibration for each
dataset.

• Introducing boosting approaches viz., adaboost, costboost etc.,

• Applying direct cost-sensitive learning approaches (viz., Laplace
correction, smoothing) by introducing cost as a function of probability
estimates.

1.6.3 Performance Evaluation in Machine Learning

For a given machine-learning problem, n number of multiple models/hypotheses
can be trained and the performance of a specific model depends on various
parameters like complexity of the dataset (in terms of relationship between the
input and output variable), the size of the dataset used as training data and finally
the computational complexity involved (i.e., time and memory). To evaluate the
performance of the model, the entire dataset is divided into three subsets viz., a
training set (used to construct a generalized model or hypothesis), a validation
set (used to measure the complexity of the generated model) and finally a
test set (used to evaluate the performance of the model). The model with the
least misclassification error is considered the best. In addition, performance
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evaluation aids in comparing different learning algorithms used in construction
and to optimise the constructed model. Thus, performance evaluation is defined
as the trade-off of correctly classifying all the data points of the same class and
making sure that each class contains points of only one class.

1.6.3.1 Choice of Performance Metrics

The aim of constructing a machine based model is to obtain a generalised
prediction. In order to evaluate the generalization ability of the constructed
model, several performance metrics are widely used. The choice of performance
metrics is based on the type of the constructed model – whether it is a
discrete classifier (predicts either positive or negative) or a regression (predicts
continuous values). Most commonly used performance metrics for evaluation
are accuracy, precision, recall, Receiver Operating Curve (ROC) and Area
Under the Curve (AUC).

In machine learning, the output of the classification is given as a confusion
matrix, which contains four possible situations that can occur while classifying
data points (i.e., actual and predicted points)

Based on the confusion matrix (Figure 1.19), several other parameters
are also calculated, viz., accuracy, precision, recall etc. Accuracy (ACC) or
overall classification rate is the most commonly known performance metrics
and is defined as the ratio of instances that are correctly classified over the total
number of instances. Let us consider the following example involving cancer
diagnosis from mammography images. If the constructed discrete classifier
results in 100% accuracy in predicting healthy and diseased candidates, then
the model is considered best. If the model results in accuracy lower than the
threshold value then the model is not suitable for diagnosis.

Accuracy is given by the formula,

ACC =
(TP + TN)

N
(1.7)
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Figure 1.19: Prediction outcome in form of confusion matrix.

where TP is True positive,TN is true negative and N is the total number of
samples The error rate is given as,

Error rate = (1− ACC) (1.8)

Both accuracy and error rate are based on the overall generalization
performance of the dataset and they are not suitable for measuring the
performance of individual class distribution. Further, in case of a skewed
dataset, accuracy and error rate measurement are biased towards the dominant
class. In terms of misclassification costs, since the measurement is very
generalised, they have to limit all the misclassification errors equally and thus
fail to distinguish different cost during the classification.

On the other hand, precision and recall are used for measuring the
performance of the regression, where the output is continuous. Let us see what
happens for a model that performs query-based search from a cancer related
database that results in both relevant and irrelevant records. To measure the
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effectiveness of the search, precision and recall are used, which are given by the
formula

Precision =
|Relevant records ∩Retrieved records|

|Retrieved records|
(1.9)

Recall =
|Relevant records ∩Retrieved records|

|Relevant records|
(1.10)

Both precision and recall are inversely proportional. For the above example,
F-score can also be used as a single measure of performance and is given as

F -score = 2

[
(Precision×Recall)
(Precision+Recall)

]
(1.11)

In case of binary classification, precision is given as sensitivity or True
Positive Rate (TPR) and recall as specificity or False Positive Rate (FPR). Both
the metrics are calculated from confusion matrix and are given by the formulae:

Sensitivity =
(TP )

(TP + FN)
(1.12)

Specificity =
(TN)

(TN + FP )
(1.13)

Considering the limitations of accuracy and error rate in a skewed
dataset, both TPR and FPR provide a complete description of individual class
performance. However, they are dependent on the arbitrary choice of threshold
values. Hence, the Receiver Operating Curve (ROC) is used for imbalanced
datasets where the choice of threshold is critical.

In a binary classification, ROC aids in visualizing the performance of
the learning algorithm graphically over varying thresholds (or decision criteria),
usually drawn between TPR and FPR (Figure 1.20). ROC is used in identifying
the optimal threshold level, optimal behaviour region, model selection and
comparative evaluation of different learning algorithms. A ROC curve analysis
depicts the relationship between FPR and TPR. For a classification, ROC is
obtained by plotting FPR on the x-axis and TPR on the y-axis.
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Figure 1.20: Receiver Operating Curve (ROC) of a binary classi�cation.
fa and fb denote operational points of classi�er a and b. fa indicates the
best classi�er and fb indicates the worst classi�er.

For a binary classification identifying patients diagnosed with cancer,
TPR and FPR are calculated for all the instances predicted and plotted as ROC.
The point (0, 0) denotes that all instances are classified as negative instances
(TPR = FPR = 0) and the point (1,1) denotes that all the instances are classified
as positive instances (TPR = FRP = 1). The diagonal line connecting the
two points denotes random classification and hence (TPR = FPR). Thus in a
ROC space, the output of the classifier results as a single point (fa or fb). The
classifier whose prediction falls above the diagonal line are considered best
classifiers, whereas predictions below the diagonal line are considered the poor
classifications.

In order to obtain a comparison between various learning algorithms on
the same dataset, Area Under the Curve (AUC) is widely used (Figure 1.21).
AUC defines the probability that a randomly chosen positive instance has a
higher decision function value than a random negative instance [73]. AUC is a
single scalar value deduced from the ROC curve and it measures discrimination
i.e., the ability to classify the positives and negatives in a testset.
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The total area of the grid represented by the AUC is always 1 since TPR
and FPR ranges between zero to one. Thus, an AUC=1, indicates the best
classifier and AUC=0 indicates the prediction as purely random .

Figure 1.21: AUC of a classi�cation process.

1.6.3.2 Error Estimates in Classi�cation

The main drawback with disease-related classification processes is the
inadequate amount of data sources. In cancer-related studies particularly,
the sizes of experimentally validated positive and negative dataset are highly
imbalanced and inadequate. To overcome this, oversampling or undersampling
techniques may be used which generates a good amount of representative
dataset. Obviously, these dataset are representative and indicate random
instances generated by either averaging or from nearest neighbours. Thus
making error estimates in randomly generated dataset is complex. More
recently, k-fold cross-validation and holdout methods have been used for error
estimates. These methods are simple and use most of the data for error
estimates.

In holdout sampling method, one part of the entire dataset is used for
testing the performance of the classifier (called as testset). The classifier
is trained and a discrete classifier obtained; the performance and the error
estimates of the classifier is calculated based on the separate set reserved for
testing. The advantage of using the holdout method is that it gives a concrete
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generalization on the classifier. However, the main disadvantage of using
holdout method is that it requires a large dataset and does not consider the
whole dataset for generalization (i.e., considering that testset may contain some
amount of discriminative features), which may result in the loss of overall
performance or accuracy.

Figure 1.22: k-fold cross-validation method. In each training process, one
subset is considered as testset and others as training set. For each training
process cv -rate is calculated and �nally averaged over all the k-fold to give
the overall cross-validation rate. (cv -rates are just shown for illustration).

To overcome this, resampling methods (viz., k-fold cross-validation,
Leave-One-Out) are used commonly in classifications involving smaller
datasets, where a separate dataset cannot be reserved as testset. In k-fold

cross-validation method (k-fold cv), the entire dataset is divided into k subsets
of equal size from m samples. Each subset is called a fold. The training is
carried out on (k-1) subsets together and then tested on the kth subset. The entire
training process is repeated k times on different kth subsets, thus considering
all the k-fold subsets for testset as once. For each training iteration, the error
estimate is calculated and finally the averaged error estimates are obtained for
the entire k-fold training process (Figure 1.22). The default k-value is set to
k =10, considering all the computational complexity related with the calculation
involved in the training process.
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The Leave-One-Out method (LOO) is similar to k-fold cv method except
the fact that k-fold is equal to m samples (i.e., the training process is carried out
k = m times). The advantage of LOO method is that it utilises the entire dataset
for training and test set and hence an unbiased classifier is obtained. In case
of the cross-validation method, the final classifier may be biased since in each
iteration there is a high chance that the samples in the training set overlap.

1.6.4 Feature Selection and Training process

The aim of any feature selection process is to improve the prediction accuracy
of the classifier by choosing subset of features that are relevant to discriminate
the class labels. The process chooses the best subset of features, thus decreasing
the structure and complexity of the dataset without loss of overall performance.
In practice, there are four major steps involved in the feature selection process
as illustrated [74] in figure 1.23.

Figure 1.23: Feature selection process [75].

In generation step, optimal subset of features is selected for evaluation. In
general, the number of subsets that can be generated from a sample size of N
is given as 2N . Such an exhaustive number may increase the computation cost
significantly even with a medium sized dataset. Hence, generation step is done
using exhaustive or heuristic search or by using random selection of subsets. In
exhaustive search, complete search for optimal subset is done using evaluation
function. The method is considered as a complete search for features since it
allows backtracking techniques to guarantee the selected subset as optimal.

In heuristic approach (iterative method), the search is incremental based
on the performance of the selected features in the subset. In each step, a feature
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is added and evaluated subsequently. If there is a drop in performance, then
the feature is rejected and the iteration moves with the next set of features. In
heuristic search, a threshold value is set during the evaluation; features above
threshold value are considered for optimal feature set. The method works well
with both continuous and nominal datasets but results in a non-optimal subset
if the features are redundant. A random search for optimal subsets is possible
only if there are certain values assigned to the features. The number of features
chosen is always less in case of random search but utilise maximum number of
iteration for finding optimal subset.

Feature selection methods can be grouped into two categories (i) Filter
and (ii) Wrapper methods.

1.6.4.1 Filter Approach

In the filter-based approach, the learning algorithm is ignored completely during
the feature selection process and this may result in some amount of performance
degradation during the training process even with the optimal subset. Most
common algorithms using filter methods are FOCUS, Relief and decision
tree-based algorithms. In FOCUS algorithm, a minimal subset of features is
chosen such that it is sufficient to discriminate the labels in the training set. This
selection of minimalistic feature set may result in “MIN-FEATURES” bias. For
example, let us consider again the cancer infected patient dataset containing
Social Security Number (SSN) of patient as one of the labels. When FOCUS
method is applied for feature selection, it chooses SSN as one of the important
features reflecting the label in the training set. Thus, when classification is done
with subset containing SSN, it results in large misclassification error.

In Relief method, a weight representing the relevance of feature with
respect to the target label is assigned. The weight applied is based on the
significance between the nearest neighbours in the dataset. Relief method shows
good performance with weight-based learning algorithms and is not suitable
for large datasets with higher number of features representing the target labels.
Again, it results in poor performance when the feature set is redundant. In
most cases, it chooses the strongest features that discriminate the target labels as
their optimal subset. Decision tree-based approach is also employed for feature
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selection process and is mainly used along with nearest-neighbour algorithm.
The major drawback with this approach is that it results in data fragmentation
and results in only few splitting nodes (i.e., utilisation of only few features) for
constructing a decision tree.

1.6.4.2 Wrapper Approach

Wrapper approach utilises the learning algorithm itself as a part of the evaluation
function in selecting the optimal subset. The method considers the entire feature
space to select the optimal subset and evaluates the performance of the learning
algorithm with the selected optimal subset [76]. For an efficient feature selection
process, wrapper approach requires a state space — an initial state, a termination
condition and a search engine (Figure 1.24). For example, let us consider the
feature selection process, with n features in a state and each state consisting
of m bits, where a bit represents the presence or absence in the optimal feature
subset. Operators determine the connectivity between the state and for the given
problem the search space is given by O(2n). It is impractical to do an exhaustive
search for features unless the number of features is less. Hence, search engines
like hill-climbing and best-first search are utilised.

Figure 1.24: Wrapper approach for feature subset selection [76].

The hill-climbing (or greedy search or steepest ascent) starts with an
empty feature set and starts adding features sequentially. Adding new features to
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the already selected feature set increases performance of the learning algorithm.
The iteration continues to add new features until there is no improvement over
the performance even after addition/deletion of features. In the best-first search,
the process works similar to a decision tree algorithm. For each iteration, the
best features are added to empty feature space and evaluated. Iteration stops
when there are no further nodes generated or there is no further improvement
in the performance. Usually there is no difference in the accuracies obtained
between these methods, except the fact that the best-first method produces a
larger feature subset.

Utilising learning algorithms for searching optimal subset may reduce the
computational efficiency and slow down the classification process. To overcome
this, algorithm specific feature selection techniques are widely used. Among
them, Recursive Feature Elimination (RFE) [77] used along with SVM classifier
reduces the computational complexity by only ranking the individual features
based on the influence in the class assignment. RFE follows a simple iterative
process as given below (Figure 1.25).

Figure 1.25: Recursive Feature Elimination using Support Vector
Machines.

The iteration is continued until no further performance improvement is
obtained with the given set of optimal features. RFE was used initially in
handwritten digit recognition [78] and it is now used widely with several other
learning algorithms.
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1.6.5 Data Preprocessing

Several factors determine the generalization of a learning algorithm; the
foremost among them is the quality of the instances. The result of machine
learning is dependent on the structural complexity of the data associated with it.
If the data is too noisy or irrelevant for the learning algorithm, then the training
process is more difficult. Hence, data preprocessing is done meticulously before
the training process. The steps involved in data preprocessing are:

• Data cleaning: involves handling missing values, smoothening noisy data,
identification or complete removal of outliers and resolving redundancy in
dataset,

• Data transformation: involves normalization and aggregation,

• Data reduction: reducing the volume but producing same or similar
analytical results,

• Data discretization: part of data reduction, replacing numerical attributes
with nominal ones.

Outliers represent instances that deviate extensively containing too many
null feature values. Removal of outliers is a complex process associated with
initial data cleaning [79].

Data representation is yet another major issue associated with initial
cleaning, since in a dataset there may be n number of features that are unrelated
to the actual class labeling. Redundant features representing similar information
may also be neglected during the data cleaning process. Feature selection
process aids in distinguishing both the redundant and the non-redundant features
and reduces the dimensionality of the data. Reducing the complexity associated
with the data structure may reduce the training time significantly.

Incomplete datasets are unavoidable in most cases and they appear
because of forgotten values during data entry or represent values that are
irrelevant to the given instance. Some common methods employed in handling
missing values are:
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• Use of mean or median values to fill missing values. Usually for balanced
dataset, mean is employed and for skewed dataset, median is employed.

• Use of global constant for all missing values.

• Use of probable values as determined by regression, inference-based
tools, Bayesian formalism or using decision-tree induction.

Noise or the outliers indicate random error or wide variance in the instances.
Noise in the dataset may result in inefficient classification and can be handled by
the method of binning (i.e., smoothening a sorted data values based on nearest
neighbours). The process begins with sorting the entire data range in small
bins or buckets. Each noisy value is then replaced by the mean or the median
identified by the bin boundaries. This process is also called local smoothing
since it considers only the neighbouring values. Data smoothing can be done
using regression guided by a function. Both linear and multi linear regression
are used widely for data smoothing based on the dimensionality of the dataset.

In certain cases, there is a need for collecting data from multiple
datasets. In such cases, data integration should be done very carefully to avoid
redundancy and inconsistencies in the resulting dataset. The major concern
during the data integration process is the heterogeneity and the structure of
data, which result in an entity identification problem. Let us consider data
integration from two different miRNA databases where the primary key varies
between the database considered viz., miRID and miRnumber. During data
integration, difference in the field names will pose great risk of inconsistency
and redundancy of data. Hence, to avoid the problem, metadata attributes like
species name, primary miRname and other information are also considered
during integration to reduce errors. Another important concern with the data
integration is the difference in representation in databases and this is mainly
because of the dissimilarity in the scaling of data or in encoding.

The structure of the database is also a major concern while integrating
attributes from two different databases. Redundancy during data integration
is analysed using χ2 (chi-square) test for nominal datasets and correlation
coefficient and covariance are used for numeric datasets [80]. Both the methods
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aid in testing the attribute variation between the two databases considered for
integration. In many real world problems, the dataset is either complex or
huge, making data analysis quite impractical. Hence, data reduction is applied
to reduce the representation in the dataset without losing the integrity of the
original dataset. Data reduction involves dimensionality reduction, numerosity
reduction and data compression.

Dimensionality reduction methods include wavelet transforms [81] and
Principal Component Analysis (PCA) [82], which project the original dataset
into a smaller space. Attribute reduction is also done during the dimensionality
reduction, where irrelevant or weakly relevant attributes are removed.
Numerosity reduction involves representing the original dataset into smaller
representations. It includes both parametric (e.g., regression and log-linear
method) and non-parametric methods (e.g., histogram, clustering, sampling and
data cube aggregation [83]). In data compression, a transformation involving
compression or reduction of complete dataset is done. The compression may be
lossless or inferior based on the information loss during the compression. Both
dimension reduction and numerosity reduction is considered as a form of data
compression. Thus, the success of the machine learning algorithm relies on the
quality of data which in turn depends on adequate data and relevant features.
Thus, data preprocessing is an important step in machine learning process.

1.6.6 Machine Learning in miRNA studies

The discovery of miRNA have changed our perspective view on eukaryotic gene
regulation completely. However there is still a lot of work to do between the
discovery and functional annotation of the miRNA. In the past two decades, the
number of miRNA identified from several sequenced genomes have produced
a massive amount of data which in turn rely on several algorithms, particularly
machine based learning algorithms for functional annotation. On the other hand,
newly developed experimental protocols has influenced machine learning with
a large amount of validated dataset backed by experimental support. Initially,
these machine learning algorithms utilised only the most dominating features
obtained from experimental results for functional annotation but the results
obtained from such methods are rather susceptible and do not give a clear idea
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about the functional aspects of the miR being investigated. Hence, there is a
need for a robust machine learning model which will consider both experimental
results and other features (viz., structural, thermodynamics of binding).

1.7 Gaps in the Existing Research

With the deluge of miRNA numbers in miRBASE, the need for functional
analysis of miRNA is also growing rapidly. miRNA regulation is defined by its
binding with the target mRNA. Several target prediction tools are available to
predict potent functional and non-functional miRNA targets. In turn, these tools
rely on some specified characteristics obtained from previous annotation (viz.,

base pairing in seed region, thermodynamics of binding) to find the potential
miRNA target. However, there are no clear guidelines or a concrete algorithm
which might predict a miRNA to be involved with the cancer pathway. To
overcome this deficit the following objectives were proposed aiming for

• Identifying global signatures in miRNA associated in cancer pathway.

• Constructing and optimizing a machine-learning algorithm to predict
miRNA associated with cancer.

• Constructing a database of oncogenically involved miRNAs – Microondb
and design of web-based user interface – MicRooN.

50



Chapter 2
Search for Signatures in miRNAs
Associated with Cancer



Chapter 2

Search for Signatures in miRNAs Associated

with Cancer

Figure 2.1: Process pipeline for extracting signatures in miRNA
associated with cancer.

Globally, the identification and verification of miRNAs as biomarkers for
cancer cell types has been the area of thrust for several miRNA biologists.
However, there has been a noticeable vacuum when it comes to identifying a
common signature or trademark that could be used to demarcate a miRNA to
be associated with cancer or not. Additionally, studies aimed at identifying
cancer specific miRNA signatures are rather sketchy and specific to a group of
related cancerous cells. To answer these queries, we undertook an in silico study
involving the identification of global signatures in experimentally validated
miRNAs which have been associated with cancer. This chapter deals with the
first step in the process viz., the construction of a database and the search for
features that would distinguish miRNA associated with cancer from those which
are not.
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2.1 Materials and Method

2.1.1 Dataset Preparation

For the purpose of generating a classifier, the first step needed to be undertaken
is the construction of a miRNA dataset which has been experimentally validated
to be associated with cancer. To begin with, a list of genes involved in cancer
was downloaded from the Catalogue of Somatic Mutations (COSMIC)[84].
A total of 488 genes were thus listed, which could be further segregated
into oncogenes and tumour suppressors by cross-referring with the Tumour
Associated Gene database (TAG)[85]. Experimentally validated miRNA
interactions with target mRNA can be obtained from miRecords[46] and
miRTarBase[45]. Therefore, the list of genes obtained from COSMIC was
curated with miRecords and miRTarBase to obtain a list of experimentally
validated targets. This process finally yielded a set of targets for miRNA which
have been experimentally validated to be associated with cancer. A total of
2578 miRNAs were extracted from miRBase 20.0 (May 2013)[86], and these
were compared with the experimentally validated miRNA-mRNA interactions
obtained as above, yielding a final set of 239 microRNAs which have been
conclusively implicated in the cancer pathway (Appendix A). These 239
miRNAs were manually checked with their available literature and revalidated.
3′UTR mRNA sequences involved in the interaction of these 239 miRNAs with
their targets were obtained from BIOMART- Ensemble[87] (Figure 2.2).

Mature miRNa sequences were extracted from miRBase 20.0, a total
of 2578 miRNAs were extracted and were compared with the experimentally
validated miRNA-mRNA interactions obtained as above, yielding a final set
of 239 non-redundant miRNAs which have been evidentially associated in the
cancer pathway (Table 2.1). These 239 miRNAs were manually checked with
their available literature and revalidated.

2.1.2 Positive and Negative Dataset

The 239 experimentally validated miRNA sequences were considered as a
positive dataset and 100 randomly generated miRNA sequences with an average
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Figure 2.2: Data preparation work�ow for identifying sequence and
hybridisation-based signatures.

length of 22nt as negative set. Only non-redundant miRNA sequences were
considered for sequential analysis both the datasets (Table 2.1 & 2.2).

2.1.3 Search for Signatures

2.1.3.1 Multiple Sequence Alignment

Searching for signatures, we started by looking into the mature sequence of
miRNAs in the datasets. Multiple sequence alignment was done in search
of specific miRNA sequence signature in both positive and negative dataset.
miRNA sequences were aligned in MATLAB with Multialign function. Existing
Gap Alignment method was used for alignment to maintain the existing
sequence conservation. Regional position conservation scores were calculated
manually to recheck the signature obtained from the sequence alignment.
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Table 2.1: Positive instances - Experimentally validated miRNAs (239 instances)

hsa-miR-203a hsa-miR-1 hsa-miR-127-5p hsa-miR-20a-5p

hsa-miR-125b-5p hsa-miR-133b hsa-miR-146a-5p hsa-miR-26a-5p

hsa-miR-149-3p hsa-miR-204-5p hsa-miR-24-1-5p hsa-miR-103a-3p

hsa-miR-185-5p hsa-miR-335-5p hsa-let-7e-5p hsa-miR-107

hsa-miR-199a-3p hsa-miR-630 hsa-miR-195-5p hsa-miR-15b-5p

hsa-miR-451a hsa-miR-181a-5p hsa-miR-19b-1-5p hsa-miR-16-5p

hsa-miR-184 hsa-miR-21-5p hsa-miR-34b-3p hsa-miR-26b-5p

hsa-miR-708-3p hsa-miR-34c-5p hsa-miR-520b hsa-miR-424-5p

hsa-miR-122-5p hsa-miR-365a-3p hsa-let-7a-5p hsa-miR-503-5p

hsa-let-7b-5p hsa-miR-449a hsa-miR-15a-5p hsa-miR-124-5p

hsa-miR-7-5p hsa-miR-18b-5p hsa-miR-100-5p hsa-let-7g-5p

hsa-miR-125a-5p hsa-miR-193b-5p hsa-miR-99a-5p hsa-miR-98-5p

hsa-miR-331-3p hsa-miR-206 hsa-miR-138-5p hsa-miR-143-5p

hsa-miR-548d-5p hsa-miR-20b-5p hsa-miR-101-5p hsa-miR-663a

hsa-miR-559 hsa-miR-221-5p hsa-miR-197-5p hsa-miR-30a-5p

hsa-miR-205-5p hsa-miR-222-5p hsa-miR-200b-5p hsa-miR-146b-5p

hsa-miR-22-5p hsa-miR-29b-1-5p hsa-miR-324-5p hsa-miR-10b-5p

hsa-miR-19a-5p hsa-miR-302c-5p hsa-miR-326 hsa-miR-135b-5p

hsa-miR-302d-5p hsa-miR-199a-5p hsa-miR-17-3p hsa-miR-25-5p

hsa-miR-130a-5p hsa-miR-199b-5p hsa-let-7d-5p hsa-miR-181c-5p

hsa-let-7f-5p hsa-miR-378a-5p hsa-miR-27a-3p hsa-miR-183-5p

hsa-miR-151a-5p hsa-miR-224-5p hsa-miR-106a-5p hsa-miR-186-5p

hsa-miR-28-5p hsa-miR-497-5p hsa-miR-106b-5p hsa-miR-21-5p

hsa-miR-708-5p hsa-miR-31-5p hsa-miR-147a hsa-miR-1

hsa-miR-373-5p hsa-miR-183-5p hsa-miR-330-5p hsa-miR-124-5p

hsa-miR-30e-5p hsa-miR-569 hsa-miR-361-5p hsa-miR-204-5p

hsa-miR-150-5p hsa-miR-181b-5p hsa-miR-520h hsa-miR-101-5p

hsa-miR-29a-5p hsa-miR-192-5p hsa-miR-93-5p hsa-miR-34a-5p

hsa-miR-17-5p hsa-miR-144-5p hsa-miR-519a-5p hsa-miR-122-5p

hsa-miR-371a-5p hsa-miR-633 hsa-miR-29a-3p hsa-miR-141-5p

hsa-miR-34b-5p hsa-miR-145-5p hsa-miR-345-5p hsa-miR-214-5p

hsa-miR-34c-5p hsa-miR-146b-5p hsa-miR-363-5p hsa-let-7b-5p
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Table 2.1 Continued: Positive Instances

hsa-miR-25-5p hsa-miR-17-5p hsa-let-7g-5p hsa-miR-129-5p

hsa-miR-9-5p hsa-miR-182-5p hsa-miR-125b-5p hsa-let-7i-5p

hsa-miR-92a-1-5p hsa-miR-20a-5p hsa-miR-492 hsa-miR-107

hsa-miR-106a-5p hsa-miR-20b-5p hsa-miR-424-5p hsa-miR-223-5p

hsa-miR-106b-5p hsa-miR-28-5p hsa-miR-503-5p hsa-miR-27a-5p

hsa-miR-10b-5p hsa-miR-298 hsa-miR-137 hsa-miR-205-5p

hsa-miR-125a-5p hsa-miR-299-5p hsa-miR-181b-5p hsa-let-7f-5p

hsa-miR-132-5p hsa-miR-302a-5p hsa-miR-197-5p hsa-miR-224-5p

hsa-miR-429 hsa-miR-675-5p hsa-miR-19a-3p hsa-miR-222-3p

hsa-miR-373-3p hsa-miR-155-3p hsa-miR-19b-3p hsa-miR-25-3p

hsa-miR-106b-3p hsa-miR-130b-3p hsa-miR-204-3p hsa-miR-30d-3p

hsa-miR-17-3p hsa-miR-125b-1-3p hsa-miR-93-3p hsa-miR-559

hsa-miR-192-3p hsa-miR-324-3p hsa-miR-125a-3p hsa-miR-661

hsa-miR-20a-3p hsa-miR-326 hsa-miR-1285-3p hsa-miR-92a-3p

hsa-miR-23b-3p hsa-miR-338-3p hsa-miR-15a-3p hsa-miR-30a-3p

hsa-miR-26a-5p hsa-miR-21-3p hsa-miR-16-1-3p hsa-miR-212-3p

hsa-miR-145-5p hsa-miR-217 hsa-miR-200c-5p hsa-miR-200a-3p

hsa-miR-302a-5p hsa-miR-96-5p hsa-miR-192-5p hsa-miR-132-3p

hsa-miR-34a-5p hsa-miR-223-5p hsa-miR-146a-5p hsa-miR-532-5p

hsa-miR-34b-5p hsa-miR-218-5p hsa-miR-15a-5p hsa-miR-302b-3p

hsa-miR-126-5p hsa-miR-214-5p hsa-miR-16-5p hsa-miR-612

hsa-miR-155-5p hsa-miR-23b-5p hsa-miR-212-5p hsa-miR-335-5p

hsa-miR-140-5p hsa-miR-340-5p hsa-miR-24-1-5p hsa-miR-18a-3p

hsa-miR-18a-5p hsa-miR-449b-5p hsa-miR-103a-2-5p hsa-miR-221-3p

hsa-miR-200a-5p hsa-miR-562 hsa-miR-200a-5p hsa-miR-200b-5p

hsa-miR-18a-3p hsa-miR-23b-5p hsa-miR-24-1-5p hsa-miR-335-5p

hsa-miR-145-5p hsa-miR-340-5p hsa-miR-103a-2-5p hsa-miR-18a-3p

hsa-miR-302a-5p hsa-miR-449b-5p hsa-miR-138-5p hsa-miR-221-3p

hsa-miR-34a-5p hsa-miR-562 hsa-miR-155-5p hsa-let-7a-5p

hsa-miR-34b-5p hsa-miR-200a-5p hsa-miR-29a-5p hsa-miR-181a-5p

hsa-miR-126-5p hsa-miR-200b-5p hsa-let-7a-5p hsa-miR-124-3p

hsa-miR-155-5p hsa-miR-200c-5p hsa-miR-181a-5p hsa-miR-194-5p

56



Chapter 2. Search for signatures

Table 2.1 Continued: Positive Instances

hsa-miR-140-5p hsa-miR-192-5p hsa-miR-124-3p hsa-miR-200b-3p

hsa-miR-18a-5p hsa-miR-146a-5p hsa-miR-194-5p hsa-miR-200c-3p

hsa-miR-200a-5p hsa-miR-15a-5p hsa-miR-200b-3p hsa-miR-138-5p

hsa-miR-542-5p hsa-miR-16-5p hsa-miR-200c-3p hsa-miR-155-5p

hsa-miR-18a-3p hsa-miR-212-5p hsa-miR-200a-3p hsa-miR-29a-5p

hsa-miR-217 hsa-miR-96-5p hsa-miR-132-3p hsa-miR-542-5p

hsa-miR-218-5p hsa-miR-223-5p hsa-miR-532-5p hsa-miR-214-5p

hsa-miR-302b-3p hsa-miR-612
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Table 2.2: Negative Dataset - Randomly generated miRNA dataset (100 instances)

>Sequence1 UCCGGCUGCGGAACUAUAAUUU >Sequence51 GGUACGUAGCGUGGUCGCACAA

>Sequence2 GCCGUUGCAAUCCUUUAAUGGA >Sequence52 GCACGGUGGAUCCUCCCCGCGC

>Sequence3 CCCGCGAAAUAGAUUUGCGCUG >Sequence53 ACCCCACCUAUCGAGUCGGUCC

>Sequence4 CUGUCCGCGUGAGGAGUCCGGU >Sequence54 UAUGGCAGCACGGUCACACGCG

>Sequence5 GUAGCGAAGGAUGAGGGCGACC >Sequence55 GGCGGGCAGUGGCCGGCAGCCG

>Sequence6 CUAGGUGGCAACCGCCGGCUCC >Sequence56 CACGCCUGCCGCGGCGCUCAAC

>Sequence7 GGCGGCGAGGCAUCACUCAGGG >Sequence57 GGCCGGGGCUGGAGAGGCGGGG

>Sequence8 AGCAGGCGCGGAAAGGCACGGU >Sequence58 GCCAUGGCGUGUGACCCGUCAC

>Sequence9 CCAGCGGACCGUCUAUCGGCUG >Sequence59 GCUCGAGUUCGGUCAGGGCGUC

>Sequence10 GGCCAAAUGGGGCGCUCCGGUA >Sequence60 ACCGCGAGUGGUCGACUGCUUU

>Sequence11 UCAGCGUGUCCAGCCUUAGGAC >Sequence61 CCCAAUCUCCGAGCGAUUUAGC

>Sequence12 UCGGCCCAGCGCGCUGGCCUGG >Sequence62 GUGGCGGCCCCGGGGGACCCAC

>Sequence13 GUCGAGGUGAAAUCACCGGCGC >Sequence63 GAAAUGCGGUCGCAGCCCACCC

>Sequence14 CCAAGACCAGGCGGGCCCGCCG >Sequence64 GACCGUACACGGAAGGGAGGGU

>Sequence15 CGUUGGCCAACCCCGGUACACC >Sequence65 CCCCGUACGCCGACGCGCCUGC

>Sequence16 CUGUAAUCGGCGUUCAGGGGGA >Sequence66 UCGCACGUCGUAUGCAUAAACG

>Sequence17 AGCCCGUGCCAGGGGGACGAGC >Sequence67 GGCCGCACGAACCGGAGAGCGC

>Sequence18 CACCACGUGCCAGCGGCGGCAA >Sequence68 AGGGAGGACCCCUAGCUCCUUU

>Sequence19 CGAUCGGUCGGACUAUUCAUCG >Sequence69 ACAAAGCGCAGGCUCGCCCGCC

>Sequence20 CGGUGGUGGCGCUCGGAUCGCG >Sequence70 GCCGGGACGCCUUACCUAGACG

>Sequence21 CGGGAAAGGUGCCUGUGUCCCG >Sequence71 CGAUGACGGGCGCACUCCUCUG

>Sequence22 GCAGGCUAGGGCACGGCGCCGG >Sequence72 GCCUCAACGGUUCCUGCUCCCG
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Table 2.2 Continued: Negative Instances

>Sequence23 GGCGCUGCCCCAACCGUCCGGC >Sequence73 CUGGGAUCCAAGGUUGGCGGCC

>Sequence24 GUGGGGUUCGCUACGACUUCCG >Sequence74 GAGGCCGCCUCUCCGAAGUGAG

>Sequence25 AGUGCCGCGUGUGCGAGACCAC >Sequence75 UCCUUCGUCCGUGGCUAACCGU

>Sequence26 GUUAUGUGCGCACAAGGCCGGC >Sequence76 GCCAGAUCGCCUCGCAGACUCC

>Sequence27 AAUAGGACGUGGCCUUCGGGCU >Sequence77 CGACCCGGUUUAACCCGCCAGG

>Sequence28 CUAUAGCCGCACAGGCCCGAAU >Sequence78 GAAAGGGCUUGAGGCACGCCAA

>Sequence29 CCUGAGCCGUGUCGCGCGACCG >Sequence79 UUCGCACCGCCGGGGUCGCCUG

>Sequence30 GCCCCUGCUCAACUUCUGUGCC >Sequence80 GGUGUUUUGCGCCACCGUCGGG

>Sequence31 CGGGGGUUCUGGUCCGCCCGGG >Sequence81 UGCGCUGGCAUGCGCCCUUCCU

>Sequence32 CGGCGCAGCCGAUUGGGGCCAU >Sequence82 CCCAGGGGCAUGCGGCUGCGUG

>Sequence33 CUAGUGCACUUGCUGCAAGACU >Sequence83 GUCAAGGGUGCGGCAUUCGUAU

>Sequence34 CCUUUCGGACACCCUCUCCCUG >Sequence84 UUGCCCCCCGUGCUUGCUCUCA

>Sequence35 CCCAGUGGCGGAUGGUGGCGGC >Sequence85 CGAGCCCGACCUGGAGAUCGAG

>Sequence36 UGUUGCCAGCCGGCGUGGAAGG >Sequence86 GAGAUGCUUCCCGUGGAACCGG

>Sequence37 UAGCGGCACCGGCGCGAGCCUA >Sequence87 GCGGCGCGCCAACGCAACGGAU

>Sequence38 GCGCGCCGUCUCCACCAACACA >Sequence88 CUGCGCUACAGCGCGCAUAGCG

>Sequence39 GGGCCGUCCGGUCGCAUAGUGG >Sequence89 AGAGCGGAGUUGCCGACGACGA

>Sequence40 GGCCCCGCGACGGGGUUGGCAA >Sequence90 AGGCGACGCUGGGAUCCGUCCG

>Sequence41 GUGGCAGCCCAAACGAUGCCGG >Sequence91 CCGCCACCCGCGGAAAGCAUCC

>Sequence42 GGGCUCGCGACGCACACGCUCU >Sequence92 GCUCACGAGGCGGGCACCGAUU

>Sequence43 GGUCCAAUACACGCGUGACCCG >Sequence93 GACACGGUCUUGCAGAGGGUCA

>Sequence44 GCGGUUAUCCUGCACCGGAACG >Sequence94 GGGGGGUAGGUCAAAUUGGGUG
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Table 2.2 Continued: Negative Instances

>Sequence45 CCGAUCGUGCAUCGGGCCAGCG >Sequence95 GCUUGAAAACGCCGUGUCCGGG

>Sequence46 UGAUCGUGUCAUCUGGGAGGCG >Sequence96 GUUAGGGUGCAGUAGACCGCGG

>Sequence47 GCCGUAGGGUGGAUAGUUCAAC >Sequence97 GAGGAUGUCGUCCUGCCAGUGU

>Sequence48 GCGCCUGGGCGUCACCCGCCAU >Sequence98 CCCUGUGCGGGCGGGCCGGCGA

>Sequence49 GACGCUGCCCCUGAUCUCUCCG >Sequence99 CCGCUGAUAGCGCACACGGGGC

>Sequence50 AGUACCAGCACAAGCCAGUCUC >Sequence100 GCGGGGGCGCUCGUCAGCACAC
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2.1.3.2 miRNA-mRNA Interaction

In order to analyse the base pairing distribution between the two datasets, we
utilised miRNA-mRNA interaction data obtained from RNAhybrid program
(Vienna Package) [88]. For positive dataset, we utilised only experimentally
validated miRNA-mRNA interactions (Table 2.1). Negative dataset containing
genes not involved in cancer pathway was constructed by calculating Cancer
Linker Degree (CLD) [89]. A jack-knife selection of 100 genes from 1025 genes
obtained by CLD served as our negative dataset. For our analysis, we considered
miRNA binding in 3′UTR only; mRNA sequences involved in interaction for
both positive and negative were obtained from ENSEMBL-BIOMART [87].
In both dataset, miRNA sequence along with their specific 3′UTR sequences
were hybridised with RNAhybrid to obtain hybridised structure with lower
p-value. Generally, a single miRNA can bind to multiple mRNA targets
or to different positions in the same target. Thus, p-values are assigned to
individual hits or multiple hits of the same miRNA to one target or to multiple
targets. They provide a guide to confident target prediction. Small p-value
indicates good binding[90]. In a hybridised miRNA-mRNA structure, regions
of complementarity having atleast continuous four base pairing was considered
as ‘seed’ region and regions outside the seed were considered ‘outseed’ region.
GU wobble base pairing was allowed in hybrid structure since GU wobble
pairing is significant to miRNA function and are essential in preserving target
specificity[91–95].

2.1.3.3 Analysing miRNA-mRNA Interaction Data

For parsing a seed vs outseed region an indigenous perl script PairFinder,
which identifies seed, outseed regions, mismatches and bulges was scripted
(Appendix B). Using Pairfinder, we delimited the hybrids into regions of
matches and mismatches (Figure 2.3). The match regions were further
demarcated as seed pairs based on their constitution. Regions of matches where
the numbers of base pairings were less than four were not considered as seed
pairs.
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Figure 2.3: Formation of hybrids between hsa-miR-125a and Ataxia
Telangiectasia Mutated gene (ATM) indicating matches and mismatches
obtained from RNAhybrid.

All the hybridised results were parsed and analysed using PairFinder to give
a complete list – total number of base pairing (includes both Watson-Crick and
non-Watson Crick base pairing), number of seed and outseed region, number of
bulges, number of mismatches in seed and outseed region, minimum free energy
of binding (kcal/mol) and p-value of miRNA-mRNA binding. The hybrids were
classified based on the total number of matches – some appear as continuous
hybrid structures, whereas some possess upto six matches intercepted by
mismatch regions. To understand the effect on non-Watson-Crick base pairing
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in the hybridised structure, a scoring system was followed for both seed and
outseed region.

Scores (Hs) was obtained by the formula

Hs = (AU)n + (GC)n − (GU)n (2.1)

2.1.3.4 Thermodynamics of Binding

Most of the previous work concerning miRNA thermodynamics concentrated
on miRNA folding but such results were mostly predictive and did not account
for target acceptability[96]. Hence, we felt the need for a thermodynamic
signature that would distinguish an miRNA associated with cancer and those
that are not involved in cancer based on the minimum free energies (MFEs) of
hybridisation between the miRNA and the 3′UTR of the mRNA sequence, using
the RNAhybrid program[88]. The energy score for miRNA-mRNA interaction
was obtained according to the formula,

∆∆G = ∆Gduplex −∆Gopen (2.2)

where ∆Gduplex is the Minimum Free Energy (MFE) value obtained from
RNAhybrid and ∆Gopen is the energy required to make the target region
accessible for the miRNA. ∆Gopen is calculated by the RNAfold program of
the Vienna package[38].

2.2 Results and Discussion

For the present study, only experimentally validated miRNA-mRNA
interactions were considered. Predicted or non-validated miRNA-mRNA
interactions were removed during the dataset construction.

2.2.1 Sequence Analysis

Initial analysis was focused on the distribution of nucleotide in and around
the seed region in miRNA sequences. In positive dataset, it was observed
uracil was the most preferred base in the seed region whereas cytosine was
least preferred. Additionally, in positive dataset, AU-richness around the seed
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region increases and drops quickly proportional to the distance from the seed
(Figure 2.4). However, in negative dataset, it was observed that GC-richness
was prominent throughout the miRNA sequence.

Figure 2.4: Sequence conservation in positive and negative dataset. Each
stack of bases represents the relative frequecy of the bases at that position.
The letter at the top of the stack is also the tallest and implies the relative
abundance at that position.

Multiple sequence analysis with the MultiAlign function and
ExistingGapAdjust option showed that miRNA associated with cancer (positive
dataset) has a sequence signature that can be generalised as AG-UU-U-U–CU.
This result was verified manually with the regional percentage conservation
score data and found to be true (Figure 2.5). Additionally the region of
consensus falls exactly in the seed region within the position 2-13nt. Thus
confirming that consensus as a signature for positive dataset. However,
the sequence contents outside the seed region also plays a vital role in the
regulation, hence analysis of outseed region was also carried out for matches
and mismatches.
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Figure 2.5: Regional percentage conservation score of miRNA sequences
in positive and negative dataset.

2.2.2 miRNA-mRNA Interaction

2.2.2.1 Thermodynamics of miRNA-mRNA Binding

The average ∆∆G values for miRNAs associated with cancer and miRNAs
not associated with cancer do not show much deviation. Comparing the MFE
of both datasets revealed a common value around -25 kcal/mol. Therefore,
the values of individual seed pairs were compared for both the datasets. The
results of this comparison show that the ∆∆G values appear to be uniform
(-24.9 kcal/mol) in positive datasets, whereas in the case of negative dataset
it vary significantly (ranging from -27 kcal/mol to -23 kcal/mol) .

2.2.2.2 Analysing Base Pairing Interaction

Pairfinder was used to identify and categorise the seed, outseed, mismatches and
bulges in the miRNA interacting with the mRNA. Patches of complementarity
(PC) are demarcated as the seed regions, as well as the regions outside seeds
where base pairings can occur (but in less than four pairs). All bases outside
the PCs are unpaired bases. Quantitatively, the number of unpaired bases in
miRNAs not involved in the cancer pathway was quite higher than those in the
cancer pathway dataset (Figure 2.6). For a miRNA-mRNA interaction which
has a single patch of complementarity to those which have multiple PCs, it was
always observed that the number of unpaired bases is more in the interactions
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Figure 2.6: Comparison of average minimum free energies of individual
seed regions in positive and negative multi-seed hybrids.

involving miRNAs not associated with the cancer pathway (Figure 2.7). This
was a pointer to the better complementarity of the miRNA while binding to the
respective mRNA of genes associated with cancer.

Additionally, analysing the base pairing distribution in the datasets
emphasise some of the common signatures obtained by site depletion analysis
[23]. Prior to base pairing distribution analysis, average number of seed in both
the dataset was calculated. In positive dataset, the average number of seed
region formed is six whereas in case of negative dataset it does not extend
beyond four. This is a clear indication of poor complementarity binding and
lack of site efficacy. Base pairing in the outseed region also contribute to the site
efficacy, hence we calculated base pairing distribution in both the dataset[23].

Base pairing distributions were also analysed in context of Watson-Crick
(WC) and non-WC base pairs to study the effect of non-WC base pairing in the
hybridised structure (Figure 2.8). In positive dataset, the percentage of AU-base
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Figure 2.7: Variation in the number of unpaired bases in positive and
negative dataset. The �rst pair of bar stands for the variation in the hybrids
having a single patch of complementarity (PC), the second hybrids having
two patches and so on.

pairing with in the seed region was much higher, signifying functional binding
sites, which in turn indicate signs of complete miRNA destabilization and
protein expression level. On the other hand, in outseed region AU counts were
consistent throughout the sequence in case of negative dataset but in positive
dataset it was found that AU counts are higher around the seed region and drops
significantly.

The number of GC in the negative dataset was much higher when
compared to positive dataset. Seed sites with higher local GC content will
have better pairing with higher folding-free energy due to its stronger bonding
however, higher GC content do not signify higher site efficacy[23].
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Figure 2.8: Distribution of the Watson-Crick (WC) and non-WC base
pairings between positive and negative dataset. The panels on the left are
for the pairings in the seed region, while the panels on the right are pairings
in the regions outside the seed (OS).

Analysis on non-Watson-Crick pairs revealed that the number of GU pairs
is quite higher in positive than the negative. However, presence of wobble base
pairs in the hybridised structure does not have any impact on the site efficacy.
Consequently, seed score analysis between the two dataset shows higher seed
score in case of positive (Hs = 4.108 ± 1.67), which is a clear indication of

68



Chapter 2. Search for signatures

better stability of hybridisation compared to the negative dataset (Hs = 2.151
± 1.16). It was also observed that the final seed pair of each individual hybrid
shows a noticeable difference in the seed score between positive and negative
dataset. In other words, the seed score for the last seed of a multi-seed hybrid
is always higher in the case of miRNAs associated with cancer as compared to
the miRNAs not associated with cancer. The rise in seed score is accounted by
an increase in the number of AU/GC pairings rather than a significant decrease
in the number of GU pairs (Table 2.3). This may justify a progressive increase
in stability of binding between the mRNA and miRNA in the case of oncomiRs
and can be looked upon as a novel binding signature.
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Table 2.3: Frequency distribution of base pairs according to seed region in positive and negative hybrids. Frequency
distribution of negative dataset have been indicated in parentheses. Bp freq stands for base pairing frequencies

Bp Freq Seed 1 Seed 2 Seed 3 Seed 4
# Seeds AU GU GC AU GU GC AU GU GC AU GU GC SC

Single
3.1
(2.9)

1.4
(1.1)

4.1
(3.8)

- - - - - - - - -
5.6
(5.6)

Two
2.3
(2.2)

1.2
(0.9)

2.8
(3.1)

3.2
(2.6)

1.2
(1)

3.4
(3.3)

- - - - - -
9.4
(9.3)

Three
1.9
(1.9)

1.1
(0.9)

2.4
(2.6)

2.1
(2)

0.8
(0.8)

2.3
(2.3)

2.8
(2)

1.1
(1)

3.2
(2)

- - -
11.7
(15)

Four
1.7
(1.6)

0.9
(0.4)

2.4
(2.6)

1.7
(1.6)

0.8
(1.4)

2.2
(1.6)

1.7
(1.4)

0.7
(0.7)

2.2
(2.1)

2.6
(2.4)

0.9
(0.6)

3.2
(2.6)

14.2
(9.8)
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2.3 Chapter Summary

• It was observed that in miRNA associated with cancer (positive dataset),
uracil was the most preferred base in the seed region whereas cytosine
was least preferred.

• In terms of hybridisation, the average number of seed region formed in
miRNA associated with cancer is six whereas in case of miRNAs not
associated with cancer, it does not extend beyond four. This is a clear
indication of poor complementarity binding and lack of site efficacy.

• In terms of thermodynamics of binding with respect to ∆∆G during seed
formation, uniformity of the MFE in case of positive datasets. Randomly
varying free energies of binding generally tend to associate with the
appearance of sudden mismatches where non-Watson-Crick or wobble
base pairings dominate, a trend prevalent in miRNAs not associated with
cancer.

• Additionally, miRNA-mRNA interaction data reveals that AU bases are
more predominant around the seed region in miRNA associated with
cancer.

In this chapter, we obtained somewhat distinguishable signatures that
discriminate a miRNA associated with cancer from others. However,
verification of miRNA-mRNA test sets with these signatures did not always
result in a classification which matched the experimental data. The cause
attributed to the mismatch would probably be the consideration of a negative
dataset which was randomly generated. Secondly, the number of features chosen
for the classification seemed to be insufficient for discrimination. Hence, the
onus of the work was shifted to the generation of an unbiased negative set and
extraction of more features for the classification process. This prompted the
direction of the work to be integrated with a machine learning approach, as
documented in the following chapters.
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Identifying miRNAs Involved in Cancer

Pathway using Support Vector Machines

Figure 3.1: Process pipeline for constructing SVM model.

Owing to the shortcomings of the classification process experimented in the
previous chapter, the focus of the methodology was shifted to the application
of learning algorithms for our problem. The prerequisite would be the
construction or catenation of a negative dataset, and extraction of features
for the classification. Feature extraction and selection has been the primary
focus for most classification processes. Both these attributes are capable of
improving learning performance, lowering computational complexity in case of
large dataset and building a better classification model. However, unavailability
of experimentally validated miRNA dataset is often a limiting factor in finding
the most effective features and constructing an optimal classifier. Training on
a limited range of dataset introduces bias in the performance of the classifier
relative to that trained with a large dataset. Additionally, class imbalance in
the dataset results in skewed performance, in particular towards the samples
belonging to minority classes. Hence, this chapter deals with a two-step support
vector machine-based learning model utilising various features extracted from
the dataset of miRNAs associated with cancer versus those which are not
involved in cancer.
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3.1 Methods

3.1.1 Dataset Preparation

For the purpose of generating a classifier, the first step needed to be undertaken
is the construction of a positive and negative miRNA dataset which has been
experimentally validated to be associated with cancer (Figure 3.2).

3.1.1.1 Positive and Negative Dataset

Positive datasets for training and testing the classifier were carried over from the
previous chapter (the same 239 obtained from Chapter 2-Table 2.1 would serve
as the positive dataset). For negative dataset, we utilised the dataset employed
in TargetMiner [97]. We extracted 59 negative instances from TargetMiner
containing entries from Mus musculus, Drosophila melanogester and Homo

sapiens. Only human mature miRNAs were culled from the dataset and
finally, we obtained 32 non-redundant human miRNAs as negative instances
(Table 3.1). The negative dataset was constructed on the basis of specific
experimental evidence presented in literature for miRNAs whose binding to
a target mRNA does not involve gene regulation [35, 98–106]. Selection
of random samples for negative dataset was strictly avoided since they may
increase the false positives thereby decreasing the performance of the classifier.

To identify miRNAs associated with cancer, we constructed a two-step
classifier (i) miRSEQ – Identifies miRNAs associated with cancer based on
sequence-based features and (ii) miRINT – validates the prediction obtained
from miRSEQ based on features extracted from miRNA-mRNA hybrids.
Positive and negative dataset were constructed individually for miRSEQ and
miRINT. For miRSEQ, experimentally validated miRNAs (239 instances)
and 32 non-redundant human miRNAs (obtained from TargetMiner) served
as positive and negative dataset respectively. For miRINT, experimentally
validated miRNA-mRNA interactions were further segregated as oncogene
interactions (129 instances) and tumour suppressor interactions (110 instances)
and considered as the positive and negative dataset (Table 3.2 & 3.3).
Class imbalance in the datasets was overcome by applying Synthetic Minority
Oversampling Technique (SMOTE) [107] (Chapter 1 section 1.6.2.1).
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Figure 3.2: Flowchart for data preparation � miRSEQ and miRINT.

To obtain unbiased result in performance measurement, an independent test
dataset not utilised in training purpose is required for miRSEQ and miRINT.
For miRSEQ, non-validated miRNA dataset obtained from miRBase [37] is
considered as test dataset. For miRINT, non-validated miRNAs were allowed
to hybridise in RNAhybrid [88] with the list of cancer genes obtained from
COSMIC and only the most energetically favoured structures were considered.
False predictions were removed using a post-processing filter, MiRTif algorithm
[41] and then let into the classification process. MirTif serves as a target
interaction filter by providing SVM scores for each prediction obtained
from RNAhybrid that distinguishes true targets from false ones (chapter 1
section 1.5.3).
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Table 3.1: Negative instances: experimentally validated miRNAs for miRSEQ.

hsa-miR-429 hsa-miR-145-5p hsa-miR-126-5p hsa-miR-19b-3p hsa-miR-145-3p

hsa-miR-141-3p hsa-miR-124-3p hsa-miR-124-5p hsa-miR-155-5p hsa-miR-16-5p

hsa-miR-128-3p hsa-let-7e-3p hsa-miR-24-2-5p hsa-miR-103a-3p hsa-let-7b-5p

hsa-miR-29a-3p hsa-miR-138-5p hsa-miR-29a-5p hsa-miR-29c-3p hsa-miR-29c-5p

hsa-miR-375 hsa-miR-155-3p hsa-miR-16-1-3p hsa-miR-200a-3p hsa-miR-302a-5p

hsa-let-7b-3p hsa-miR-1 hsa-miR-16-2-3p hsa-miR-138-1-3p hsa-miR-15a-3p

hsa-miR-126-3p hsa-miR-103a-2-5p hsa-miR-200a-5p hsa-miR-19b-2-5p hsa-let-7e-5p

hsa-miR-19a-3p hsa-miR-128-2-5p hsa-miR-19a-5p hsa-miR-302a-3p hsa-miR-15a-5p

hsa-miR-24-1-5p hsa-miR-24-3p hsa-miR-19b-1-5p hsa-miR-141-5p hsa-miR-128-1-5p

hsa-miR-138-2-3p
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Table 3.2: Oncogene associated miRNAs: Positive dataset for miRINT.

hsa-miR-203a hsa-miR-19b-1-5p hsa-miR-125b-5p hsa-miR-34b-3p hsa-miR-149-3p

hsa-miR-451a hsa-miR-20a-5p hsa-miR-184 hsa-miR-26a-5p hsa-miR-708-3p

hsa-miR-103a-3p hsa-miR-122-5p hsa-miR-107 hsa-let-7b-5p hsa-miR-15b-5p

hsa-miR-1 hsa-miR-16-5p hsa-miR-133b hsa-miR-26b-5p hsa-miR-204-5p

hsa-miR-181a-5p hsa-miR-145-5p hsa-miR-21-5p hsa-miR-302a-5p hsa-miR-34c-5p

hsa-miR-127-5p hsa-miR-155-5p hsa-miR-146a-5p hsa-miR-140-5p hsa-miR-24-1-5p

hsa-miR-7-5p hsa-miR-200b-5p hsa-miR-125a-5p hsa-miR-324-5p hsa-miR-331-3p

hsa-miR-205-5p hsa-let-7g-5p hsa-miR-22-5p hsa-miR-98-5p hsa-miR-19a-5p

hsa-miR-18b-5p hsa-miR-146b-5p hsa-miR-193b-5p hsa-miR-10b-5p hsa-miR-206

hsa-miR-222-5p hsa-miR-18a-3p hsa-miR-29b-1-5p hsa-miR-217 hsa-miR-302c-5p

hsa-miR-100-5p hsa-miR-214-5p hsa-miR-99a-5p hsa-miR-23b-5p hsa-miR-138-5p

hsa-let-7f-5p hsa-miR-224-5p hsa-miR-151a-5p hsa-miR-497-5p hsa-miR-28-5p

hsa-miR-30e-5p hsa-miR-181b-5p hsa-miR-150-5p hsa-miR-192-5p hsa-miR-29a-5p

hsa-miR-378a-5p hsa-miR-106a-5p hsa-miR-106b-5p hsa-miR-520 hsa-miR-147a

hsa-miR-93-5p hsa-miR-330-5p hsa-miR-519a-5p hsa-miR-361-5p
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Table 3.3: TSG associated miRNAs: Negative dataset for miRINT.

hsa-miR-29a-3p hsa-miR-92a-1-5p hsa-miR-183-5p hsa-miR-106a-5p hsa-miR-186-5p

hsa-miR-21-5p hsa-miR-10b-5p hsa-miR-1 hsa-miR-125a-5p hsa-miR-124-5p

hsa-miR-204-5p hsa-miR-145-5p hsa-miR-101-5p hsa-miR-146b-5p hsa-miR-34a-5p

hsa-miR-122-5p hsa-miR-182-5p hsa-miR-141-5p hsa-miR-20a-5p hsa-miR-200a-5p

hsa-miR-200b-5p hsa-miR-28-5p hsa-miR-200c-5p hsa-miR-298 hsa-miR-192-5p

hsa-miR-146a-5p hsa-miR-302a-5p hsa-miR-15a-5p hsa-miR-345-5p hsa-miR-16-5p

hsa-miR-212-5p hsa-let-7g-5p hsa-miR-24-1-5p hsa-miR-125b-5p hsa-miR-103a-2-5p

hsa-miR-34b-5p hsa-miR-424-5p hsa-miR-34c-5p hsa-miR-503-5p hsa-miR-25-5p

hsa-miR-9-5p hsa-miR-181b-5p hsa-miR-197-5p hsa-miR-17-3p hsa-miR-214-5p

hsa-let-7b-5p hsa-miR-20a-3p hsa-miR-129-5p hsa-miR-23b-3p hsa-let-7i-5p

hsa-miR-107 hsa-miR-335-5p hsa-miR-223-5p hsa-miR-675-5p hsa-miR-27a-5p

hsa-miR-205-5p hsa-miR-130b-3p hsa-let-7f-5p hsa-miR-532-5p hsa-miR-224-5p

hsa-miR-138-5p hsa-miR-324-3p hsa-miR-155-5p hsa-miR-326 hsa-miR-29a-5p

hsa-let-7a-5p hsa-miR-21-3p hsa-miR-181a-5p hsa-miR-18a-3p hsa-miR-124-3p

hsa-miR-194-5p hsa-miR-19b-3p hsa-miR-200b-3p hsa-miR-204-3p hsa-miR-200c-3p

hsa-miR-200a-3p hsa-miR-93-3p hsa-miR-429 hsa-miR-125a-3p hsa-miR-373-3p

hsa-miR-106b-3p hsa-miR-15a-3p hsa-miR-132-3p hsa-miR-16-1-3p hsa-miR-221-3p

hsa-miR-222-3p hsa-miR-92a-3p hsa-miR-25-3p hsa-miR-30a-3p hsa-miR-30d-3p
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Table 3.3 Continued: TSG associated miRNAs.

hsa-miR-612 hsa-miR-559 hsa-miR-106b-5p hsa-miR-132-5p hsa-miR-20b-5p

hsa-miR-299-5p hsa-miR-363-5p hsa-miR-492 hsa-miR-137 hsa-miR-192-3p

hsa-miR-26a-5p hsa-miR-155-3p hsa-miR-125b-1-3p hsa-miR-338-3p

hsa-miR-302b-3p hsa-miR-1285-3p hsa-miR-661 hsa-miR-212-3p

hsa-miR-19a-3p
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3.1.2 Feature Extraction

Construction of an efficient classifier depends on meticulous feature extraction,
since the quality of the feature reflects upon the effective performance of the
classifier. For our classifier, features were identified and extracted based on a
survey of previous studies and our own indigenous parameters [44, 108–110].
For miRSEQ, 26 features were considered, which included nucleotide positions
and repeat information (Figure 3.3). The maximum length of the miRNA used
in training was restricted to 22nt.

Figure 3.3: Flowchart for feature set preparation � miRSEQ. Only
miRNA of length 22 nt is considered for feature selection, where P1 to
P22 are the respective nucleotide position in a miRNA sequence and AA,
UU, GG, CC are the repeat information of 2w size.

For miRINT, a total of 34 features based on the hybridisation profile
(miRNA-mRNA interactions) were utilised. miRNA-mRNA hybrids having the
best fit in terms of free energy, were obtained using RNAhybrid – ViennaRNA
package [88]. A total of 2926 hybrid structures were generated and considered
for feature extraction. miRNA-mRNA hybridisation using RNAhybrid may
contain false target site predictions. Hence, a post-processing filter was applied
to miRNA-mRNA interactions in order to remove the false predictions. An
indigenous Perl script, PairFinder was used to parse and analyse the hybrids
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for seeds, regions outside seeds, mismatches and bulges (Appendix B). Seed
regions have been defined according to the convention followed in Lekprasert et

al., [96] and our previous work [109]. A detailed list of all the 60 features has
been presented in Table 3.4 & 3.5.

Table 3.4: miRSEQ - feature set.

Features Description

Position 1 -22
miRNA nucleotide
position

AA, UU,GG,CC
Nucleotide repeat
information in miRNA

Table 3.5: miRINT - feature set.

Feature 1
Minimum Free energy of the hybridised structure in kcal/mol.

Feature 2
TB, Total number of base pairing in hybrid structure.

Feature 3
G+C%, Percentage of GC base pairing in the hybridised structure.

Feature 4-9
AU% UA% UG% GU% GC% CG%

Percentage base pair composition in all combination in hybridised structure.

Feature 10-12
|A−U |

L
, |G−U |

L
, |G−C|

L

Base Composition per length of the miRNA with which mRNA is hybridised.

Feature 13
Average base pair per stem region.

Feature 14-19
%AU
S

, %UA
S

,%GU
S

,%UG
S

,%GC
S

,%CG
S

Percentage of base pair per seed.

Feature 20
Number of bulges in the hybridised structure.

Feature 21
Unpaired bases in the hybridised structure.
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Feature 22
Minimum Free Energy Index 1, MFEI1 = dG

(G+C%)

Feature 23
Minimum Free Energy Index 2 , MFEI2 = dG

Number of seeds

Feature 24
Minimum Free Energy Index 3, MFEI3 = dG

Number of bulges

Feature 25
Minimum Free Energy Index 4, MFEI4 = MFE

Total base pairing

Feature 26
Minimum Free Energy

(G+C)%

Feature 27
Normalised Minimum free energy of folding, dG = Minimum Free Energy

Length of the miRNA

Feature 28
Normalised base pairing propensity, dP = Total bases

L

Feature 29
Normalised Base Pairing Probability, dQ =

∑ (p. log(p))
L

Feature 30
Normalised Base Pairing Distance, dD =

∑ (p−p2)
L

Feature 31
Z-score = (MFE−MeanMFE)

SDMFE

Feature 32 Number of Mismatches in the hybridised structure.

Feature 33 Number of Watson-crick base pairing in the hybridised structure.

Feature 34 Number of Wobble base pairing in the hybridised structure.

3.1.3 Feature Selection

Features extracted were ranked based on F-score and eventually prioritised
for training miRSEQ and miRINT (Figure 3.4). F-score (Fisher score) is the
measure of discrimination between the feature and the label (Equation (3.1)).
For a given instance xi = {1....n}, the F-score of the jth feature is calculated as

F (j) =
(x̄

(+)
j − x̄j)2 + (x̄

(−)
j − x̄j))2

1
n+−1

∑n+

i=1(x
(+)
i,j − x̄

(+)
j )2 + 1

n−−1
∑n−

i=1(x
(−)
i,j − x̄

(−)
j )2

(3.1)
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where, n+ and n− are the number of positive and negative instances, x̄j , x̄
(+)
j ,

x̄
(−)
j are the average of jth feature, positive-labelled and negative-labelelled

instances. The numerator denotes the interclass variance and the denominator
is the sum of the variance within each class. A larger F-score indicates that the
feature is more discriminative [111].

Figure 3.4: Feature selection with F-score ranking. Radial Basis Function
(RBF) is used to convert data from low dimensional to high dimensional
space with SVM training. Only features with F-score > mean(F-score) of
all the features are selected for training process.

Two sets of features for miRSEQ and miRINT were finalised as described
before. Additionally, for miRINT, models were built based on the number
of seeds (viz., Seed1, Seed2 and Seed3 models), since a miRNA may form
a completely complementary hybrid with target miRNA or form Patches
of Complementarity (PC) with mismatches or bulges in its hybrid structure
(Section 2.2.2.2). If the pattern of hybridisation is not accounted for and
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all binding considered together, a realistic picture would not encourage. We
considered a maximum of three-seed hybrids for the training. Feature ranking
was done individually for each of the models and individually trained. To
find the optimum subset for the classifier, we followed Recursive Feature
Elimination (RFE) for both miRSEQ and miRINT during the training process.
Low ranking features were removed one by one iteratively and the performance
of the classifier measured until saturation. Removing all the low ranking
features at a glance may degrade the performance of the classifier completely;
hence the process of optimum feature subset selection was carried out iteratively
[78].

3.1.4 Training � miRSEQ and miRINT

In this study, we used LibSVM package for constructing classifier models
[112]. Radial Basis Function (RBF) was chosen as the kernel function for the
classification process. Parameters for RBF (cost (c) and gamma (γ)) were found
using a grid search, which involved the construction of a mesh grid allowing a
search for best c and γ (= 1

N
), where N is the number of features. The main

disadvantage of training a disease related dataset is the inadequate number of
training instances that are experimentally validated and it is important that the
same training set should never be used as a test set in any of the experiment
because they may lead to over fitting in the model generated. In order to
circumvent these problems, a 10-fold cross validation (cv) method was used
to evaluate the performance of the classifier during training process.

3.1.5 Performance Evaluation

Due to the difference in numbers between the positive and the negative sets,
class imbalance existed in the dataset; so, accuracy could not be chosen as
a direct measure of performance for such sets [113]. Hence, performance
measures were chosen in compliance with the cross validation rate (cv-rate)
and Matthew’s Correlation Coefficient (MCC). MCC ranges from -1 to 1; a
MCC value of 1 indicates the best prediction and a negative value indicates
imperfect classification. Matthew’s correlation co-efficient (Equation (3.2))
can be calcualted from confusion matrix
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.2)

3.2 Results and Discussion

Dataset preparation was carried out individually for the classifiers miRSEQ and
miRINT (Figure 3.2). Consequently, a total of 271 miRNAs were used in the
miRSEQ training. Class imbalance problem in the dataset was overcome by the
SMOTE (k-Nearest Neighbour (kNN) algorithm with no replacement)) method
which generated sufficient number of negative instances for the training set.
Like most SVM classification problems related to miRNAs, our dataset was
also not linearly separable as it was too complicated in nature. RBF was applied
to convert all non-linear data from lower dimensional space to linearly separable
higher dimensional space.

For miRSEQ, nucleotide position conservation was used initially as the
main feature set. However, poor performance of the classifier (cv-rate of 45%)
prompted us to use nucleotide repeat information with appropriate window
size to boost the performance. Selection of appropriate window size (w) for
nucleotide repeat information was done by measuring the performance of the
classifier keeping a sliding window size ranging from 2 to 5. Performance was
measured from the plot between cv-rate and window size, depicting a clear drop
in cv-rate when the window size exceeded (w = 2) (Figure 3.5). Hence, a 2w

sized repeat was considered for training miRSEQ.
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Figure 3.5: Decrease in performance and cv-rate with increase in window
size(w) for miRSEQ. Accuracy (ACC) has been depicted as bars while the
cv-rate is the curve.

The 26 features chosen were ranked by F-score method and Recursive
Feature Elimination was performed to find the best subset of features for the
dataset as well as retain all the features with very low classification error,
respectively (Table 3.6). Optimum subset of features which were finally selected
has been depicted in Figure 3.6. Judging by the thickness of the bands in
the Circos diagram, the following features yielded the best subset for the
classification – Position 1, GG repeat, CC repeat, Position 6, Position 19 and
Position 10, in sequence of their relative importance. These features were
prioritised to construct the optimal feature subset for miRSEQ and performance
measures were carried out which yielded a cv-rate of 91.15% and MCC of 0.803
(Table 3.7). Model generation and performance estimation were carried out with
the training set (only experimentally validated miRNA sequences) with a 10-fold

cross validation method. The model generated was used on an unseen test set
for a primary prediction of the association of those miRNAs with cancer.
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Figure 3.6: Overlap between features subsets (ranked by F-score) selected
for miRSEQ. The outer ticks denotes the maximum accuracy of the
classi�er (in the scale of 100%). The inner ticks denote the accuracy of
individual features in the subset in combination with other features. The
width of the ribbon denotes the individual accuracy in those combinations.
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Table 3.6: F-score ranking with miRSEQ feature set

Features F-score Ranking Features F-score Ranking
GG 0.011026 Position 17 0.001587

Position 10 0.0107 AA 0.001517
UU 0.010417 Position 3 0.001297

Position 22 0.006124 Position 2 0.000924
Position 6 0.005507 Position 19 0.000838
Position 1 0.004927 Position 4 0.000596
Position 13 0.003754 Position 14 0.000496
Position 5 0.002739 Position 20 0.000408
Position 12 0.002508 Position 9 0.000303
Position 11 0.002007 Position 18 0.000289
Position 21 0.001982 Position 16 0.000138
Position 15 0.001788 Position 8 0.000124
Position 26 0.001685 Position 7 0.000089

Table 3.7: miRSEQ - Performance measurement with 10-fold cv-rate

RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 AVERAGE
TP 160 160 160 160 160
TN 77 77 77 77 77
FP 15 11 12 11 14
FN 11 11 11 11 12
MCC 0.7809 0.8106 0.803 0.81 0.7805 0.803
ACC 90.11 91.505 91.153 91.505 90.11 91.153

For the second classifier miRINT, the choice of features were initially
centered around the results of the hybridisation – number of unpaired bases,
Watson-Crick and non-Watson-Crick base pairing in and around the seed region,
to name a few. The generated model had a very poor performance with low
cv-rate (<40%). Addition of normalised base pairing and normalised free energy
features raised the total number of features to 34 for miRINT and showed a
marked improvement in the performance of the classifier, but not to expected
levels.

88



Chapter 3. Identifying miRNAs involved in cancer using SVM

Table 3.8: F-score ranking with miRINT feature set

Seed 1 Seed 2 Seed3
Features F-score Features F-score Features F-score

MFE2 10.04584 dQ 590.7773 |G−C|
L

5.81492
|G−C|

L
0.731177 Z-score 12.85279 %CG

S
0.524597

|A−U |
L

0.571601 %UG
S

0.697078 CG% 0.524597
MFE3 0.281471 MFE3 0.25297 AU% 0.504312
|G−U |

L
0.103704 CG% 0.013531 AU%

S
0.504312

GU% 0.102834 %CG
S

0.013531 MFE3 0.261375
%GU
S

0.102834 GC% 0.008815 Z-Score 0.05433

nWC 0.049696 %GC
S

0.008815 dQ 0.024891
dQ 0.044225 UG% 0.007426 dD 0.02484

Z-score 0.044181 WC 0.006423 dP 0.009802
dD 0.035635 AU% 0.005979 GU% 0.008921

It was therefore, decided to have different models for hybridisation
structures with different numbers of seed formation. For each of the different
classes, the method of ranking by F-score and prioritisation (as with miRSEQ)
was carried out to achieve three different optimal feature subsets (Table 3.8).
Precaution was taken to utilise only the non-redundant informative features for
model construction. This improved the performance of all the three models of
the classifier with good cv-rate of 92.19% for single seed (MCC 0.821), 89.54%

for two seed (MCC 0.765) and 87.61% for three seed (MCC 0.722) hybrids.
The effect of number of features versus the accuracy measurement is given in
the graph for all three models (Figure 3.7). Feature selection not only improved
the classification but also optimised the total time taken for training the model.
The resulting classifier model not only predicts the association of a miRNA
with cancer, but also gives an output about that association with either a tumour
suppressor gene or an oncogene. Performance measurement carried out on the
independent test dataset for miRINT is shown in the Table 3.9.
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Figure 3.7: Feature selection and e�ect on cv-rate for miRINT for various
seed types.

Table 3.9: miRINT - Performance measurement with 10-fold cv-rate

RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 AVERAGE
Seed 1 MCC 0.747 0.7977 0.8258 0.8258 0.8211 0.8211

ACC 88.05 90.76 92.187 92.187 92.187 92.187
Seed 2 MCC 0.765 0.777 0.8244 0.752 0.752 0.765

ACC 89.54 90.1315 92.255 88.961 88.961 89.54
Seed 3 MCC 0.722 0.712 0.7301 0.782 0.722 0.722

ACC 87.61 87.224 88 90.41 87.61 87.61
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3.3 Chapter Summary

• A new negative dataset was constructed and a Support Vector Machine
based binary classifier was employed to predict a miRNA associated with
cancer.

• The imbalance in the positive and negative datasets was offset by using
Synthetic Minority Over-sampling Technique.

• A two-step classifier was developed on the basis of features extracted
from mature miRNA sequences and miRNA-mRNA interactions, named
miRSEQ and miRINT.

• Initial classification process was quite complex mainly due to the unique
behaviour of miRNA-mRNA interactions. So in order to suppress the
complexity, we considered features both from within and outside the seed
regions. Features extracted outside the seed region along with several site
specific features provided quite a good classification performance.

• A non-validated miRNA would go through the two-step classifier, first
through miRSEQ and then through miRINT, before a final prediction.

With the available training datasets, the LIBSVM model constructed
performed satisfactorily. However, during the feature selection process it was
observed that several low ranking features have been eliminated completely –
which may possess a better discrimination when combined with other features.
Expectedly, the accuracy of predictions derived from the kernel-based LIBSVM
left more room for improvements. Hence, in Chapter 4, work involving a search
for better learning algorithm that utilises all the informative features and also
provide a better prediction accuracy is undertaken.
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MicRooN - An Ensemble Classi�er for

Identifying miRNAs Associated with Cancer

Figure 4.1: Process pipeline for comparing three di�erent algorithms and
construction of ensemble.

Performance of a constructed model depends on the nature of the dataset
used for training and the choice of the learning algorithm. Apart from selecting
a suitable algorithm for training, feature subset selection is also important since
the features selected not only represent discrimination in the dataset but also
provide a path for scaling the performance of the classifier. Class imbalance
in the miRNA dataset and the methods utilised to overcome it affected the
prediction performance of the previously constructed SVM classifier. Average
performance with the independent test dataset, high computational complexity
(kernel transformation) associated with SVM and resampling at the data level
to overcome class imbalance in the miRNA dataset collectively left room for
improvement and search for a better learning algorithm. In this chapter, we
provide an in-depth analysis in terms of comparing three different algorithms
viz., Support Vector Machines (SVM), Random Forest (RF) and C4.5 to
subsequently construct an ensemble-classifier for the prediction of miRNAs
associated with cancer.
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4.1 Methods

4.1.1 Dataset Preparation

For the present study, we utilised both the training and test datasets from
Chapter 3.

4.1.2 Feature Extraction

For miRSEQ, we utilised positional information of experimentally validated
miRNAs involved in cancer. Additionally, a 2 window (2W) repeat information
was also utilised to train miRSEQ. For miRINT, we utilised 34 features extracted
from miRNA-mRNA hybrid structures. Complete feature extraction process
was discussed elaborately in Chapter 3.

4.1.3 Optimal Feature Selection

In the previous Chapter, features were ranked solely based on the information
entropy and several low-ranked features were neglected during the actual
training process. Abruptly removing several low ranking features may degrade
the performance of the classifier, hence we employed Recursive Feature
Elimination process (RFE) [78] to obtain optimal subset of features for the
training process (Figure 4.2).
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Figure 4.2: Optimal feature selection with Recursive Feature Elimination
(RFE).
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Finding the optimal subset includes generation of feature subset,
evaluation of the feature subset, stopping criterion, and result validation [114].
Initially, features extracted were ranked based on F-score, later RFE was
employed in two stages for identifying the optimal subset of features. The steps
involved are :

Let {M} be the feature subset extracted from training dataset. Initially
features were ranked {Rank $M} and divided into two subsets viz., {M1} and
{M2}. Let {M1} contain the most discriminative features and the rest in {M2}.
Information gain in F-score for individual feature is calculated based on the
entropy formula:

H(X) = −
n∑

i=1

p(xi) logb p(xi) (4.1)

In stage I, an optimal subset {N} was constructed by removing lowest
ranked discriminative feature in each iteration from {M1} until {N} reaches
ACCmax. In stage-II, optimal subset {N+} was constructed from {M2}. These
are features that boost the performance of optimal subset {N}. Finally, an
optimal subset {O} containing features from {N} and {N+} is obtained and
utilised for training. For both miRSEQ and miRINT, we employed the above
described feature selection process to obtain optimal subset of features.

4.1.4 Class Imbalance

In chapter 3, we employed SMOTE to oversample the training set, which
obtained quite a good accuracy but with a increase in the False Negative Rates
(FNR). In this chapter, we employed cost-sensitive methods for reweighing
instances rather than randomly resampling the entire dataset. A cost-matrix was
constructed prior to each training process based on the total cost assigned to
each class. We constructed a 2×2 cost matrix for both miRSEQ and miRINT.
Cost matrix employed during training process to overcome class imbalance in
miRSEQ and miRINT is given in Table 4.1.
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Table 4.1: Example of a cost-sensitive matrix

Predicted class
+ve -ve

Actual
class

+ve C (0,0) C (0,1)

-ve C (1,0) C (1,1)

where C(0,0) is the cost associated to the prediction of TP, C(1,1) to the
prediction of TN, C(1,0) to the prediction of FP and C(0,1) for prediction of
FN. Cost is calculated by assuming the condition C(1,1) = C(0,0) = 0 (i.e., the
costs associated to predict TP and TN is zero).
(A).

Costmatrix employed inmiRSEQ =

(
0 32

239 0

)

(B).

Costmatrix employed inmiRINT − Seed 1 =

(
0 17

41 0

)

(C).

Costmatrix employed inmiRINT − Seed 2 =

(
0 86

189 0

)

(D).

Costmatrix employed inmiRINT − Seed 3 =

(
0 61

131 0

)

Total Cost = FNrate× C(0, 1) + FPrate× C(1, 0) (4.2)

where C(1,0) and C(0,1) are the costs associated to the prediction of FP and FN
respectively.
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4.1.5 Algorithm Selection and Training

Selection of the learning algorithm is dataset specific. In our study, we
employed three learning algorithms viz., the kernel-based SVM and the
tree-based Random Forest and C4.5. Learning algorithms were compared
and implemented in WEKA (Waikato Environment for Knowledge Analysis)
environment [115]. C4.5 was implemented as J48 in WEKA.

4.1.5.1 Hyperparameter Selection

Hyperparameters for the three learning algorithms were optimised individually
(Table 4.2). In order to find the best optimised hyperparameters as well as
to lower the computational cost, we employed random search method rather
than dimension-based grid search. In case of LIBSVM, we chose Radial Basis
Function (RBF) as kernel function; hyperparameters cost (c) and gamma (γ)
were obtained from random search method [116]. A similar random search
method was employed for both RF and C4.5 to identify the optimum number
of trees constructed per training process and the number of attributes utilised
during individual tree construction. In C4.5, pruning was enabled (by default)
to avoid overfitting during training.

Table 4.2: Parameters used in training algorithms � SVM, RF and C4.5

Algorithm Parameters
Support Vector Machines (SVM) Kernel Type = Radial Basis Function (RBF)

C = 32; Gamma (γ) = 0.01; Degree (for kernal) = 3
coe�0 = 0.0; Shrink = True
Replace Missing Values = True; Loss = 0.1
Normalize = False; Probability Estimates = False

Random Forest (RF) Maxdepth = 0
Numfeatures = 0 (Utilises all features for bootstrapping)
Numtrees = 100
Printtrees = False (Optional)

C4.5 Binary Split = False
Con�dence Factor = 0.25; minobj = 2 ; numfold = 3
Sub-tree Raising = true ; unpruned = False ; use Laplace = False
use MDL Correction = True

4.1.6 Comparing Algorithms

Initially we compared all three learning algorithms to assess the performance
of an individual algorithm with selected features and training set. Later, an
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ensemble model was constructed by aggregating results with majority voting
technique.

4.1.6.1 Kernel-based Classi�er SVM

Kernel methods are known to learn from instances — these methods learn from
the training process, rather than from fixed parameters [117]. Construction
of Support Vector Machines (SVM) was pioneered by Vapnik et al., [60],
generalising on the previously derived hyperplane method. Linear hyperplane
method separates training instances based on their weights and stores them
as subsets; when a test dataset arrives, it is either classified above or below
the hyperplane. Construction of the SVM is based on the type of dataset
used in the training process i.e., either linear or non-linear. Most cancer
related datasets are not linearly separable, hence optimal hyperplane is not
always obtained. Therefore, introducing a non-linear kernel function to map
the feature representation into higher dimensional space and separation with
a maximum margin hyperplane (soft margins) were undertaken. Generally,
these soft margins classify the testset based on the nearest mapped feature
representation obtained from the training set [118]. The choice of kernel
function plays a critical role in the classification process, which in turn depends
on the optimised kernel parameter gamma (γ) and the soft margin parameter
cost (C). Optimisation of γ and C is usually done using a random search, each
combination of parameters validated using 10-fold cross validation (cv) methods
and then selected.

4.1.6.2 Decision Trees

Decision trees, a very commonly used method to classify a dataset, use
a set of binary rules applied to calculate a target value based on several
attributes obtained. The classification is carried out based on the weights of the
attributes. A decision tree has a structure consisting of internal nodes (where a
decision function is executed) and external nodes, connected by branches. Two
decision tree methods, viz., Random Forest [43] and C4.5 [63] were considered
for comparison with the kernel methods. Although both these algorithms
are decision tree-based, the process of constructing the trees are completely
different (Section 1.6.1.4).
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4.1.6.3 Adaboost-meta Classi�er

In order to obtain a good performance measure with the existing algorithms,
we boosted the classifier with Adaboost algorithm [66]. Adaboost is employed
when the trained base classifier performs poorly with the optimal feature set and
optimising the hyperparameters for the respective algorithm leads to saturation.
Adaboost trains a given weak or a base classifier repeatedly in series of iterations
say i = {1... n} with user-defined weights. Initially, the weight for all instances
are kept constant and in the consequent steps, weight of the misclassified
instance is increased so that the weak classifier is trained more on misclassified
instances only. Thus the overall classification of an adaboost algorithm is given
by

Cboost(X) = ±(ΣmαmCm(X)) (4.3)

where α is the measure of quality of classifier Cm. Boosting algorithms do not
overfit and are highly sensitive to outlier/noise (Section 1.6.1.5).

4.1.6.4 Evaluating Classi�er Performance

The performance of the classifier was evaluated using various measures,
given that our main concern was to identify the best classifier with low
misclassification error. Training and testing process was carried out with a
10-fold cross validation (cv) for both miRSEQ and miRINT in WEKA. Cross
validation method was also employed during feature selection and ranking.
Since our dataset used for training process was highly imbalanced, utilising
Accuracy (ACC) would not project the actual classification performance.
Hence, in our study we utilised precision, recall, Area Under the Receiver
Operating curve (AUC) and F-Measure [69].

In general, F-measure is defined as the harmonic mean of precision and
recall and it is derived as

Precision =
(TP )

(TP + FP )
(4.4)

Recall =
(TP )

(TP + FN)
(4.5)
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F-measure =
2 ×Recall × Precision
Recall + Precision

(4.6)

AUC is calculated by

AUC =

∫ 1

0

(1− f(y))dy = 1−
∫ 1

0

f(y)dy (4.7)

4.1.7 Ensemble Classi�er

One major concern with miRNA dataset is the class imbalance problem.
Training individual classifier with cost-sensitive based approach and optimising
hyperparameters may boost the performance of the classifier to a certain extent.
However, bias due to class imbalance plays a critical role in deteriorating
the performance. Additionally, the misclassification error generated by the
three individually optimised algorithms are not common [119]. To address
the problem, we employed ensemble-based classifier approach to obtain a
generalised prediction and low misclassification error. An ensemble generates a
hypothesis that is not necessarily within the hypothesis generated by individual
learning algorithm. Majority voting technique was used as a final predictor to
aggregate the results obtained from the three classifiers [120].

4.2 Results and Discussion

4.2.1 Optimal Feature Selection

Recursive Feature Elimination (RFE) process was employed in two-stages
to select the optimal subset of features for both miRSEQ and miRINT.
Revalidation was done concurrently with 10-fold cv to observe the effect of
feature removal on the performance of the classifier (Figure 4.3)

For miRSEQ, we ranked 26 sequence-based features initially with
F-score. Ranked features were divided into two subsets {M1} and {M2}.
Search for optimal subset initiated with {M1} containing most discriminative
features, whereas {M2} contained all the low ranked features. Features from
{M2} were considered in the later stage in the feature selection process for
boosting the performance of the classifier obtained as a result of optimal feature
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Figure 4.3: E�ect on performance with feature removal during optimal
feature selection with 10-fold cv. Only features with maximum accuracy
variation are shown.

from {M1}. Features were removed iteratively one at a time until ACCmax

was reached. We employed meta-cost-sensitive Adaboost-LibSVM algorithm
for training and evaluating the performance during the entire feature selection
process (Figure 4.3). We obtained an optimal subset of features containing
position {P2, P3, P5, P6, P7, P9, P11, P13, P15, P16, P18, P20, P21} and
base repeat of {AA, GG, CC}.

For miRINT, a similar two-step RFE method was employed. However,
due to difference in the number of seed, presence or absence of imperfection
in the structure (viz., bulges, mismatches etc.,) different optimal feature subsets
were obtained for different hybrid models. Although, 60 features were identified
and extracted from the miRNA dataset, it was observed that the features were
highly correlated. Generally, correlated features do not add any discrimination
to the classification process but enhance already existing information in the
feature set. Reinforcing the same information may boost or degrade the
performance of the classifier, depending on the context of the information.
Hence, features with negligible class discrimination were manually removed.
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The optimal feature set chosen (after manual culling) for training the three
different classifier models are given in (Table 4.3). Meta-Adaboost algorithm
was employed to improve the prediction obtained from several weak classifiers.
In order to overcome class imbalance in the miRNA dataset, we employed
cost-sensitive approach by constructing a 2×2 cost matrix [119] as per the
Equation (4.2).

Table 4.3: Optimal feature subset for di�erent seed-based hybrid.

Seed 1 Seed 2 Seed 3
(G+C)% MFE MFE
GC% (G+C)% (G+C)%
CG % UA% UA%
|A−U |

L
UG% GC%

|G−C|
L

GU% CG%
%AU
S

GC% |A−U |
L

%GC
S

CG% |G−U |
L

%CG
S

|G−C|
L

|G−C|
L

MFE1 %AU
S

UA
S

MFE2 %UA
S

GC
S

MFE4 %UG
S

CG
S

MFE
GC%

%GC
S

UP

dQ %CG
S

MFE2
Z-score MFE3 MFE3

Z-score MFE
GC%

dQ
Z-score
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4.2.2 Comparison of Learning Algorithms

For the kernel-based SVM, we used Radial Basis Function(RBF) as a kernel
function. Both kernel parameters gamma (γ) and the soft margin parameter
(C) were found using random search and revalidated with a 10-fold cv method.
Pruning was set to be true in case of C4.5 by default to avoid over-fitting of
data. whereas, in the case of RF, trees were naturally grown without pruning.
Total cost was calculated using the Equation (4.2) and utilized for training the
imbalanced dataset. Since there are no specific rules suggested for applying the
cost ratios on imbalanced dataset [121], we applied cost only for misclassified
instances (rare cases). Rare instances were identified and segregated manually.
Applying cost for correctly classified instances did not have any effect on the
performance of the classifier. In our present study, misclassified instances
generally belonged to the negative class and imbalance in the dataset occurred
due to the scarcity of experimentally identified miRNAs not associated with
cancer. Total cost assigned for miRSEQ and miRINT is given in Table 1.
Adaboost was needed to boost the performance of the prediction models, to
further improve performance with the ranked features and the cost matrix
utilized [119].

4.2.2.1 Performance metrics for miRSEQ

A comparative analysis of the performance of the three classifiers (Table 4.4)
revealed that the model generated for miRSEQ with RF during the training
process performed better than the other two learning algorithms (with less False
Negative prediction). While precision for the RF method (0.8) was better than
those obtained with SVM (0.7) and C4.5 (0.7), the AUC curve also returned
the best measures for RF as well. However, the difference between the two
decision trees was not so pronounced when compared with the SVM method.
The reason for the comparatively better prediction efficacy of RF than the
other two classifiers may be due to its inherent ensemble method. The AUC
curve (Figure 4.4) in this instance was constructed between the False Positive
Rate (FPR) and True Positive Rate (TPR) in order to achieve an unbiased and
non-parametric measurement. AUC curve is typically a function, that explains
how much evidence is necessary for the model to predict a response, and what
is the outcome of these responses.
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Figure 4.4: Area under the Receiver Operating Curve for miRSEQ and
miRINT. For miRSEQ, AUC of all three classi�ers with (A) training set
(B) test dataset is plotted. For miRINT, AUC of RF classi�er with (C)
training set and (D) test dataset is plotted; the other two classi�ers showed
a poor performance with an average AUC of 0.5 for all seed models.

Table 4.4: Performance evaluation with 10-fold cv for miRSEQ.

Precision Recall F-measure AUC
Training set - miRSEQ

SVM 0.804 0.713 0.750 0.645
RF 0.805 0.797 0.801 0.602
C4.5 0.801 0.762 0.780 0.626

Test set - miRSEQ
SVM 0.71 0.680 0.693 0.548
RF 0.802 0.778 0.780 0.780
C4.5 0.748 0.747 0.692 0.751

The efficacy of the RF method is primarily due to its inherent majority
voting process. RF involves random selection of features to split each node,
growing an ensemble of trees and voting for the most popular class and there
is a considerable reduction of error rates. In case of C4.5, the classification
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efficiency is slightly lower in terms of precision and AUC, which may be due to
the abrupt labeling method followed during model generation by this algorithm.
The feature with the highest information gain is chosen as root and other branch
splits are based on the search for the next higher information gain attribute [43].
For a non-linear dataset (like ours), decision tree building is halted when a single
instance can fit into more than one of the attributes. The pause in the decision
tree building process results in the final branch being given the classification
label neglecting rest of the features, therefore, leading to marginally lower
performance when compared to RF.

For the kernel-based SVM, non-linearity is handled quite easily by
plotting non-linear data to a higher dimensional space with Radial Basis
Function (RBF) or any other kernel function that suits the dataset. Even
when the features are not very discriminative, mapping them to a higher
dimensional space increases performance of the classifier. However, SVM is
often beleaguered with the problem of over-fitting of data, which might have
been the reason behind the precision (0.71) and very low AUC of 0.548.

4.2.2.2 Performance metrics for miRINT

In case of miRINT, performance measure was evaluated individually for seed
based models. This was done to avoid generalization of the classification
process which results from variation in hybridization patterns in different seed
models [122]. Hence, hybrids which formed a single seed were considered
differently from those that form two or three seed regions. Even after accounting
for the correlated parameters, the performance of all three learning algorithms
was not discernible and moderate overall.

On closer inspection, the values of precision for the three algorithms show
a comparative edge for RF over the other two classifiers. AUC values though
vary significantly; for seed 1 and seed 2 models, RF reported an AUC of 0.627
and 0.62 respectively (Figure 4.4), whereas the AUC values did not have any
distinction in case of seed 3 models. Low precision and AUC are attributed
to the number of correlated features. Among the three learning algorithms,
C4.5 performed very poorly in all the seed models (Precision 0.365, 0.414 and
0.173), while SVM performed marginally better (Table 4.5). Though the feature

106



Chapter 4. MicRooN - An Ensemble Classifier

selection was extensive, and the method of oversampling rational to the best
possible limits, none of the classifiers in isolation seemed to return gold standard
performance. This is a pointer to the fact that a single learning algorithm might
not be efficient in predicting the association of miRNA with cancer.

Table 4.5: Performance evaluation with 10-fold cv for miRINT.

Precision Recall F-measure AUC
Seed 1 - Training Set

SVM 0.500 0.707 0.580 0.540
RF 0.657 0.638 0.646 0.629
C4.5 0.526 0.534 0.530 0.428

Seed 1 - Test Set
SVM 0.562 0.426 0.485 0.520
RF 0.637 0.554 0.593 0.627
C4.5 0.558 0.557 0.557 0.484

Seed 2 - Training Set
SVM 0.794 0.705 0.749 0.559
RF 0.889 0.884 0.878 0.921
C4.5 0.558 0.557 0.557 0.484

Seed 2 - Test Set
SVM 0.414 0.644 0.504 0.500
RF 0.539 0.624 0.0.578 0.620
C4.5 0.414 0.644 0.504 0.500

Seed 3 - Training Set
SVM 0.569 0.374 0.331 0.497
RF 0.663 0.662 0.641 0.562
C4.5 0.521 0.369 0.500 0.444

Seed 3 - Test Set
SVM 0.341 0.584 0.431 0.500
RF 0.541 0.574 0.556 0.500
C4.5 0.173 0.416 0.244 0.500
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4.2.3 MicRooN - an Ensemble Model

An ensemble classifier was constructed by aggregating three individually
optimized learning algorithms with majority voting technique as final predictor.
The performance of the classifier thus constructed was evaluated with
independent test dataset. It was observed that in case of miRSEQ, the ensemble
classfier performed marginally equal to that of RF; whereas in case of miRINT,
ensemble classifier constructed outperformed all the three learning models
(Table 4.6).

Comparison of three learning algorithms along with ensemble model for
individual seed-based models are illustrated (Figure 4.5).

Table 4.6: Performance measures of miRSEQ and miRINT ensemble
models with independent test dataset

Precision Recall F-measure AUC
miRSEQ-Ensemble 0.802 0.778 0.790 0.780

Seed 1 0.703 0.672 0.687 0.648
miRINT -Ensemble Seed 2 0.927 0.900 0.913 0.930

Seed 3 0.584 0.618 0.601 0.531

The list of novel miRNA to be associated with cancer and their predicted
interaction obtained from ensemble classifier is given in Appendix C.
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Figure 4.5: Comparison of performance measures � individual learning
algorithm and ensemble model. (A) miRSEQ model (B) miRINT - Seed1
model (C) miRINT - Seed2 model and (D) miRINT - Seed3 model
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4.3 Chapter Summary

• Comparison of kernel-based and Decision Tree-based learning algorithms
revealed that RF algorithm performed better with miRNA dataset,
irrespective of the number of seeds formed with target mRNA. The major
reason for higher performance in RF is due to its inherent ensemble-based
prediction.

• C4.5 algorithm performed the worst due to its abrupt labelling followed
during the training process. SVM performed marginally lower than the
RF and the computational cost to transform non-linear data from lower to
higher dimensional space was quite higher, when compared to tree-based
algorithms.

• An ensemble classifier was constructed from three different learning
algorithms viz., Support Vector Machines, Random Forest and C4.5.
Majority voting technique was employed to aggregate the results obtained
from individual classifiers.

• A two-stage RFE was employed to obtain optimal subset of features and
the selected features showed more discrimination in terms of increased
performance when compared with models generated solely with F-score
ranking.

• Cost-sensitive methods utilised to overcome class imbalance increased the
performance of the constructed ensemble classifier significantly. Random
sample generated to overcome class imbalance with SMOTE performed
poorly when challenged with independent test datasets.

Although the data resampling method employed in the previous chapter
reported a higher performance measure, the number of FN predicted with
independent test dataset was much higher when compared with cost-sensitive
method utilised. Thus, we conclude that for miRNA dataset with high class
imbalance (like ours), resampling at the algorithm level (cost-sensitive methods)
performs better than data-level resampling (SMOTE) and an individual learning
algorithm is inefficient in predicting miRNA associated with cancer, hence
ensemble classifier is preferred.
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Chapter 5

MicRooN - A Webserver for Identifying

miRNAs Associated with Cancer

Figure 5.1: Process pipeline for identifying miRNAs associated with
cancer using MicRooN.

Predicting potential miRNA function from the vast amount of biological
data is an important problem for the miRNA biologist. This is compounded
by the unique behaviour in miRNA-mRNA binding and the economically
unfavourable experimental studies associated with miRNAs. On the other hand,
existing algorithms to unwind the function of miRNA are guided by certain
parameters/functionalities and additionally involve several manual processes
which are time consuming. Hence in this chapter, we present a machine learning
based model MicRooN, which predicts miRNAs associated with cancer. The
predictions obtained from MicRooN are sorted and documented in a database,
MicRooNdb. The tool provides a minimalistic web-based user interface and
offers two search modes – simple miRNA-based search and an advanced
miRNA-mRNA based search. The database is customized based on the number
of seeds in the hybrid structure. Currently the database contains miRNA entries
for Homo sapiens binding to 3′UTR only.
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5.1 Methods and Results

5.1.1 MicRooN

The MicRooNdb is constructed based on the predictions obtained from
MicRooN – a machine based ensemble learning model. In brief, MicRooN
predicts miRNA associated with cancer based on several features extracted
from mature miRNA sequences and miRNA-mRNA interactions. Predictions
obtained from MicRooN are sorted based on the number of seeds formed in the
hybrid structure and are recorded in MicRooNdb.

Predictions are obtained from trained ensemble model constructed with
60 features including sequence, thermodynamics and miRNA-mRNA based
interactions. Sequence features mainly include nucleotide position and repeat
based information (Section 3.1.2) and miRNA-mRNA interaction features
include features extracted from base pairing frequencies in the entire hybrid
structure, base-pairing in the seed region and outseed region, thermodynamics
of binding, minimum free energy based features and normalized free energy
parameters (Figure 5.2).

Currently, the tool is constructed based on the binding of miRNA to
3′UTR region only and considers a maximum of three seed regions. Hybridized
miRNA-mRNA structures are obtained from RNAhybrid – a Vienna Package.
Only hybrids with best fit in terms of binding energy are considered for feature
selection and for further analysis. MicRooN allows GU wobble base pairing
(non-Watson-Crick) in seed and outseed regions since they are essential in
preserving target specificity in miRNA-mRNA interactions [91–95].
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Figure 5.2: Flowchart for prediction of miRNAs associated with cancer using MicRooN
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5.1.2 MicRooNdb

5.1.2.1 Data Sources

Mature miRNA sequences and miRNA-mRNA interaction data were retrieved
from public database only. Mature miRNAs were extracted from miRBase
20.0 [37]. List of genes involved in cancer was extracted from COSMIC
[84]. miRNA-mRNA interaction data were retrieved from miRecords [46]
and miRTarbase [45]. TargetMiner [97] provided us with a list of miRNA
not associated with cancer. List of 60 features utilized for training classifiers
were obtained based on a survey of previous studies and our own indigenous
parameters [44, 108–110].

Currently, the tool is built with dataset obtained from the following
database version only (Table 5.1). Regular updates will be done as per the
release of datasets.

Table 5.1: Dataset used in construction of MicRooN.

Data Extracted Database Version
Mature miRNA miRBase 20.0
Cancer Genes COSMIC v70

Validated miRNA-mRNA targets
miRecords (April 27, 2013)
miRTarBase (Release 4.5: Nov 1, 2013)

5.1.2.2 MicRooNdb � Database Design

MicRooN database was built using MySQL – an open-source database
management system. MySQL provides a fast, flexible, secure and stable
medium for retrieving, updating and entering information into the database
by an authorized user. The database houses information about the various
miRNA-mRNA interactions and their associations with cancer in the form two
tables as shown in the flat files (Figures 5.2 & 5.3). The table “GENE”, stores
details of Ensemble ID, target name, gene length, miRNA binding, position at
which interaction occurs and finally the prediction as either oncogenes or tumor
suppressor genes. Since, a single miRNA can bind to multiple positions on
a mRNA, we considered ensemble ID along with miRNA to be the primary
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key. Considering either miRNA or ensemble ID as primary key will result in
data redundancy and hence we assigned both fields as primary key. The table
“MIRNA”stores ensemble ID, miRNA, miRNA Length, Minimum Free Energy
(MFE), p-value (confidence of binding) and Number of seeds formed during
a miRNA-mRNA interaction. Similar to table “GENE”, in this table also we
assigned primary key as ensemble ID and miRNA.

Figure 5.3: MicRooNdb - Flat �le for table GENE and MIRNA

5.1.2.3 Database Normalization

The basic goal of database normalization is to ensure that the key data elements
are maintained without redundancy from table to table within the database [123].
Generally, database normalization is done to obtain an internally consistent and
accurate records. In our study, 1NF normalization was achieved by segregating
gene and miRNA based information to construct two distinct tables of uniform
size i.e., related information were grouped together (Figure 5.4).

Multiple value column indicating target ID were parsed as ensemble
ID, database ID and target name. Ensemble ID along with specific miRNA
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Figure 5.4: MicRooNdb - tables GENE and MIRNA

was considered as the primary key. In order to achieve 2NF normalization,
we removed fields that are not dependent on the primary key. We removed
database ID which was irrelevant and also introduced a large data redundancy.
To achieve 3NF, the database should meet the requirements of both 1NF and
2NF. Usually, columns that are not fully dependent upon the primary key were
removed. However, in our study there were no such irrelevant fields. The Entity
relationship diagram for the two tables is shown in Figure 5.5

5.1.2.4 Database Access and Web Interface

The MicRooN is designed and developed on an Apache webserver with
PHP-HTML. User query is processed by MySQL and is passed as HTML output
to user interface. The user interface connects with the MicRooNdb through
mysqli function, a prepared statement used in PHP– a must for web application
security as they protect it from MySQL injection vulnerability.
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Figure 5.5: MicRooNdb - Entity Relationship (ER) diagram for table
GENE and MIRNA.

The web interface connects to the MicRooNdb database via mysqli

function as shown below

$mysqli = new mysqli("localhost", "root", "password", "mysql");

The web interface is extremely user friendly with two search option
(Figure 5.5). The user can either enter the miRNA ID to query targets to which
the miRNA binds. Usually, a miRNA can bind to multiple positions in mRNA,
hence the result is always more than one hit and they are ordered based on the
best p-value. p-value indicates the confidence of binding in a miRNA-mRNA
interaction and is obtained from RNAhybrid hybridization.
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Figure 5.6: MicRooNdb - User interface with two search options. User
can search based on miRNA ID or based on target name.
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5.1.2.5 Querying MicRooNdb

For a given miRNA based search, the web interface displays details about
ensemble ID of the target it binds, target name, position at which the interaction
occurs, miRNA ID, miRNA Length, miRNA-mRNA prediction to be either
oncogenes or TSG and the number of seeds it forms during the interaction
(Figure 5.7). The total number of hits obtained is also provided for a user query.
In case, if the user is more specific about the interaction i.e., if user requires a
particular miRNA binding to a specific mRNA target, then the target name can
be provided in the search option. A more precise miRNA-mRNA interaction is
displayed with all the additional features describing the interaction (Figure 5.8).

Figure 5.7: MicRooNdb - miRNA ID based search. An user query with
hsa-mir-576-3p results in 124 hits.

In certain cases,if the user provides a invalid query i.e., if the miRNA ID
or target is not found in the MicRooNdb, then the result will be displayed as
miRNA record not found (Figure 5.9)
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Figure 5.8: MicRooNdb - target based search. User query with
hsa-miR-576-3p with target AURKA.

Figure 5.9: Query results obtained when miRNA ID or target name do
not match any record.
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The query constructed to retrieve a particular record from MicRooNdb is
shown below.

<?php

$a = $_REQUEST["miRNA"];

$b = $_REQUEST["target"];

$mysqli = new mysqli("localhost", "root", "password", "mysql");

$a = $mysqli -> escape_string($a);

$b = $mysqli -> escape_string($b);

$a = $mysqli->query("SELECT * FROM GENE INNER JOIN MIRNA

on GENE.Ensemble_ID = MIRNA.Ensemble_ID

WHERE MIRNA.miRNA = '$a' anTarget LIKE '%$b'

ORDER BY MIRNA.pvalue

for($a=0;$a<sizeof($result);$a++){

print '<tr>

<td>'.htmlentities($result[$a]["Ensemble_ID"]).'</td>

<td>'.htmlentities($result[$a]["Target"]).'</td>

<td>'.htmlentities($result[$a]["Gene_Length"]).'</td>

<td>'.htmlentities($result[$a]["position"]).'</td>

<td>'.htmlentities($result[$a]["miRNA"]).'</td>

<td>'.htmlentities($result[$a]["miRNA_Length"]).'</td>

<td>'.htmlentities($result[$a]["mfe"]).'</td>

<td>'.htmlentities($result[$a]["pvalue"]).'</td>

<td>'.htmlentities($result[$a]["no_of_seeds"]).'</td>

</tr>';

?>

The complete code for constructing the MicRooN – web interface with
MySQL query is given in Appendix D.
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5.2 Chapter Summary

• MicRooNdb is currently constructed with miRNA from miRBase 20.0,
experimentally validated miRNA-mRNA interaction from miRecords
(April 27, 2013) and miRTarbase (Release 4.5, Nov 1, 2013) and cancer
genes from COSMIC (v70).

• Ensemble model generated in chapter 4 was employed for prediction
of miRNAs associated with cancer. Predictions are recorded with their
miRNA-mRNA interaction data in MicRooNdb.

• MicRooN - a web-based user interface was constructed with minimalistic
design and utilised potentially for querying MicRooNdb.

• MicRooN allows user to query both on miRID and miRNA targets and the
results are sorted based on the p-value (a measure of confident binding in
miRNA-mRNA hybrids).
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Conclusions

Identifying the involvement of miRNA in cancer is a major obstacle for
researchers striving to understand the basis of the disease and to generate
new therapies against particular cancer types. miRNAs regulate the molecular
pathways in cancer by either upregulating or downregulating various oncogenes
and tumour suppressors, and sometimes acting as oncogenes themselves. The
functional annotation of miRNAs in cancer is still a painstaking process, though
cancer therapies using miRNA has been picking up lately. So in an attempt to
aid cancer biologists, we employed a machine learning based binary classifier
to predict miRNAs associated with cancer. During this thesis work, several
observations were documented and it is being summarized as chapter-wise.

In chapter 1 (Introduction), a detailed description about miRNA
biogenesis, regulation, miRNA and cancer, miRNA as biomarkers and
experimental strategies employed for identifying miRNA involved in cancer
pathway has been described. The chapter also focuses on the existing problems
faced by cancer biologists due to massive growth of miRNA data in the
recent decades. In terms of various approaches to achieve the objectives, we
have discussed about the machine learning algorithms employed in biology,
their pitfall, class imbalance problem, data preprocessing and finally the
present situation in miRNA studies with machine learning approaches was also
described.

In chapter 2 (Search for signatures in miRNAs associated with
cancer), the study was aimed at search for signatures in miRNA associated
with cancer. We utilised experimentally validated miRNAs as positive dataset
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and randomly generated as negative dataset. Within the two datasets, a search
for sequence and hybridization-based signature was carried out. It was observed
that in miRNAs associated with cancer, uracil is the most preferred base in the
seed region whereas cytosine was least preferred, a result which is in complete
agreement with the experimental result obtained from site depletion analysis
[23]. In terms of hybridization, the average number of seed regions formed in
miRNAs associated with cancer is six whereas in case of miRNAs not associated
with cancer, it does not extend beyond four. This is a clear indication of poor
complementarity of binding and lack of site efficacy. Additionally, we observed
AU base pairing was more predominant around the seed region in miRNAs
associated with cancer [109, 110]. Thus, in chapter 2, signatures discriminating
miRNA associated with cancer and those that are not associated with cancer
was obtained. However, utilising randomly generated miRNAs as negative
dataset may mimic several miRNAs in the positive dataset. When trained
with distinguishable signatures/features obtained from this dataset, it was
observed that the trained model had a good performance, but when challenged
with an independent test dataset, the model performed very poorly due to
overfitting problem. Hence, utilising randomly generated dataset for identifying
miRNAs associated with cancer was strictly avoidable and extensive search for
experimentally validated miRNAs not involved in cancer was undertaken.

In chapter 3 (Identifying miRNAs involved in cancer pathway using
Support Vector Machines), construction of a two-step SVM based binary
classifier, utilising 60 features extracted from miRNA involved in cancer and
those not involved in cancer was carried out. Radial Basis Function (RBF)
was used as a kernel-function to map instances from low dimensional to higher
dimensional space (since non-linearity exists). Features were extracted from
mature miRNA sequences, free-energy of miRNA-mRNA binding and their
interaction profiles. Out of the 60 features extracted, 26 features contain
nucleotide position information and a 2-window size (2W) sequence repeat
information for training miRSEQ. The remaining 34 extracted features were
utilised for training miRINT which contains free-energy of miRNA-mRNA
binding and their interaction profiles.
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Features were initially ranked based on information gain and utilised for
training. During the training process, it was observed that the performance
was skewed towards the positive instances due to class imbalance in the
dataset. To overcome imbalance in the dataset, we employed Synthetic Minority
Over-Sampling Technique (SMOTE). The model constructed in this chapter is
based on the experimentally annotated interactions of a miRNA when bound to a
particular mRNA only. Since either the oncogene or TSG may switch invariantly
between each other depending on the cell stimuli, the tool considers a training
set with experimentally validated data only. The two step classifier model –
miRSEQ and miRINT had reasonably good performance measures with fairly
high values of Mathew’s Correlation Coefficient (MCC), ranging from 0.72 to
0.82.

The major pitfall with the constructed model is that only features with
higher order (i.e., higher discrimination) was utilised during the training
process. Several low ranking features were completely eliminated – which
may have boosted the performance of the model constructed. Additionally, to
overcome class imbalance in the dataset, we utilised SMOTE – an oversampling
technique. Utilising oversampling for disease related prediction may result in
speculative predictions. Expectedly, the constructed classifier’s performance
with an independent dataset, left room for further improvement.

In chapter 4 (MicRooN – an ensemble classifier for identifying
miRNAs associated with cancer) precautionary steps were taken to involve all
the informative features identified. We employed Recursive Feature Elimination
(RFE) in two-stages to select optimal subset of features for training process.
It was observed in miRSEQ training that features corresponding to nucleotide
position {P2, P3, P5, P6, P7, P9, P11, P13, P15, P16, P18, P20, P21} and base
repeat {AA, GG, CC} are the features with higher discrimination. In miRINT,
the features varied based on the number of seeds the miRNA formed with the
mRNA. To overcome class imbalance in the dataset and to avoid oversampling
of instances, we employed cost-sensitive approaches for both miRSEQ and
miRINT. The performance of each learning algorithm was evaluated with
precision, recall, AUC and F-measure to adapt the cost-sensitive learning
approaches employed. We compared three learning algorithms viz., Support
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Vector Machines, Random Forest (RF) and C4.5 to subsequently construct an
ensemble-based system for predicting miRNA associated with cancer. It was
observed in terms of prediction efficacy that the RF algorithm outperformed
kernel-based SVM and decision tree-based C4.5. We observed that SVM
classified about 25.6% of the total instances as False Negative, whereas C4.5
misclassified more than one third of the entire instances. Thus, we concluded
that RF is the best of the three due to its inherent ensemble prediction.

Additionally, we concluded that, for miRNA datasets with high
class imbalance, cost-sensitive based approaches perform better than the
oversampling methods. While considering the performance of individual
learning algorithms, although RF performed with higher precision (miRSEQ
0.802 and miRINT(average of seeds) 0.738) and lower FN, the AUC of all three
learning algorithms were found to marginally equal except for seed-2 based
models. This, emphasizes the fact that a single learning algorithm is inefficient
in generalising a model for predicting miRNAs associated with cancer. Hence,
an ensemble for miRSEQ with precision 0.802, AUC 0.780 and for miRINT
(Precision 0.703, AUC 0.648), (Precision 0.927, AUC 0.930) and (Precision
0.584, AUC 0.531) for seeds 1, 2 and 3 hybrid model respectively.

In chapter 5 (MicRooN – a web server for identifying miRNAs
associated with cancer), construction of database (MicRooNdb) for
documenting predictions from ensemble models and a web based user interface
(MicRooN) was carried out. MicRooN allows user to query based on miRID
and mRNA target. Along with miRNAs associated with cancer, it also
provides a detailed description about the mRNA target, minimum free energy
of miRNA-mRNA binding, position of binding in 3′UTR and the type of
association they posses with the mRNA. MicRooN will be updated with the
number of novel miRNAs identified and documented in miRBase. MicRooN is
particularly helpful for cancer biologists for screening miRNAs associated with
cancer rather than employing time-consuming and economically unfavorable
experimental procedures.
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Future scope of the work

• Search for tissue specific oncogenic signatures in human.

• Protocols for identifying experimentally validated negative instances i.e.,

miRNAs not involved in cancer for improvising predictive performance.

• Search for oncogenic signatures in virus infecting humans.
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Appendix A

miRNA-mRNA Interaction Data

Source: https://sites.google.com/site/sumitslab/tools/

miR-mRNAInteractionData.zip

miRNA-mRNA interaction dataset are segregated as oncogene interaction
data and tumour suppressor gene interaction data
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Appendix B

PairFinder - code for calculating basepairing

in seed and outseed regions in hybrid

structures

CODED BY RAM KOTHANDAN & MALVIKA SUDAHAR

print "Enter file name";

#### Takes filename to be read and parsed

chomp ($file=<STDIN>);

open (FD, $file);

@contents=<FD>;

close FD;

#####change value for line no to 1 if you want it to be

#####printed to the file

$lno1=1;

$lno2=1;

$lno3=1;

$lno4=1;

##### Create output file

$filename=$file;

$filename=~s/txt$/xls/;

open (HD,">$filename");

print HD "\t\t\t\t\t\t\t
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Seed 1\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t

Seed 2\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t

Seed 3\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t

Seed 4\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t

Seed 5\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t

Seed 6\n";

print HD "Target\tGene length\tmiRNA\tmiRNA

length\tmfe\tp-value\tposition\tAA\tAU\tAG\tAC

\tUA\tUU\tUG\tUC\tGA\tGU\tGG\tGC\tCA\tCU\tCG\tCC\t

Gap in mRNA\tGap in miRNA\tAA\tAU\tAG\tAC\tUA\tUU

\tUG\tUC\tGA\tGU\tGG\tGC\tCA\tCU\tCG\tCC\t

Gap in mRNA\tGap in miRNA\tAA\tAU\tAG\tAC\tUA\tUU

\tUG\tUC\tGA\tGU\tGG\tGC\tCA\tCU\tCG\tCC\t

Gap in mRNA\t

Gap in miRNA\tAA\tAU\tAG\tAC\tUA\tUU\tUG\tUC\tGA

\tGU\tGG\tGC\tCA\tCU\tCG\tCC\t

Gap in mRNA\tGap in miRNA\tAA\tAU\tAG\tAC\tUA\tUU

\tUG\tUC\tGA\tGU\tGG\tGC\tCA\tCU\tCG\tCC\t

Gap in mRNA\tGap in miRNA\tAA\tAU\tAG\tAC\tUA\tUU

\tUG\tUC\tGA\tGU\tGG\tGC\tCA\tCU\tCG\tCC\t

Gap in mRNA\tGap in miRNA\n";

#####initialise count

$AA=0;

$AU=0;

$AG=0;

$AC=0;

$UA=0;

$UU=0;

$UG=0;

$UC=0;

$GA=0;

$GU=0;

$GG=0;

$GC=0;
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$CA=0;

$CU=0;

$CG=0;

$CC=0;

$GapmRNA=0;

$GapmiRNA=0;

@range=();

#### Reads each line of the file and parses it

foreach $line(@contents)

{

if ($line=~/\$target\:\s(.*)/)

{

$targetname=$1;

$t1=1;

chomp($targetname);

}

elsif ($line=~/length\:\s(.*)/)

{

if ($t1==1)

{

$genelength=$1;

chomp($genelength);

$t1=0;

}

elsif ($m1==1)

{

$mirnalength=$1;

chomp($mirnalength);

$m1=0;

}

}

elsif ($line=~/miRNA\s\:\s(.*)/)

{

$m1=1;
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$miRNA=$1;

chomp($miRNA);

}

elsif ($line=~/mfe\:\s(.*)/)

{

$mfe=$1;

$mfe = substr($mfe,0,6);

chomp($mfe);

}

elsif ($line=~/p\-value\:\s(.*)/)

{

$pvalue=$1;

chomp($pvalue);

}

elsif ($line=~/^position\:\s(.*)/)

{

$position=$1;

chomp($position)

}

elsif ($line=~/^target\s5'\s/)

{

#print "target";

$target=1;

$targetnonseed=$line;

$targetnonseed=~s/^target\s5'\s//;

$targetnonseed=~s/\s3'//;

# if ($lno1==1)

# {print HD $targetnonseed;}

}

elsif ($line=~/^miRNA\s\s3'\s/)

{

#print "mirna";

$mirnanonseed=$line;

$mirnanonseed=~s/^miRNA\s\s3'\s//;

$mirnanonseed=~s/\s5'//;
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#if ($lno4==1)

#{print HD $mirnanonseed;}

####### Creating arrays

@targets=split('',$targetseed);

@targetns=split('',$targetnonseed);

@mirnas=split('',$mirnaseed);

@mirnans=split('',$mirnanonseed);

###### calculating length

$totallen=length($targetseed);

###### creating line to be printed

$printline="$targetname\t$genelength\t$miRNA\t

$mirnalength\t$mfe\t$pvalue\t$position\t";

#######Count the bases

$i=0;

while($targetseed=~/\s*([AUGC]{4,})\s*/g)

{

$len=length($1);

$start=(index($targetseed,$1));

$end=$start + $len -1;

$range[$i][0]=$start;

$range[$i][1]=$end;

for ($j=$start;$j<=$end;$j++)

{

if ($targets[$j] eq 'A' && $mirnas[$j] eq 'U')

{$AU++;}

if ($targets[$j] eq 'U' && $mirnas[$j] eq 'A')

{$UA++;}

if ($targets[$j] eq 'U' && $mirnas[$j] eq 'G')

{$UG++;}

if ($targets[$j] eq 'G' && $mirnas[$j] eq 'U')

{$GU++;}

if ($targets[$j] eq 'G' && $mirnas[$j] eq 'C')

{$GC++;}

if ($targets[$j] eq 'C' && $mirnas[$j] eq 'G')
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{$CG++;}

}

$printline=$printline."$AA\t$AU\t$AG\t$AC\t$UA\t$UU

\t$UG\t$UC\t$GA\t$GU\t$GG\t

$GC\t$CA\t$CU\t$CG\t$CC\t$

GapmRNA\t$GapmiRNA\t";

$AA=0;

$AU=0;

$AG=0;

$AC=0;

$UA=0;

$UU=0;

$UG=0;

$UC=0;

$GA=0;

$GU=0;

$GG=0;

$GC=0;

$CA=0;

$CU=0;

$CG=0;

$CC=0;

$GapmRNA=0;

$GapmiRNA=0;

$i++;

}

print HD "$printline\n";

}

elsif ($line=~/\s{10,}/)

{

if ($target==1)

{

$targetseed=substr($line,10);

$targetseed=~s/\s{3}$//;

$target=0;
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#if ($lno2==1)

#{print HD $targetseed;}

}

else

{

$mirnaseed=substr($line,10);

$mirnaseed=~s/\s{3}$//;

#if ($lno3==1)

#{print HD $mirnaseed;}

}

}

}

close HD;
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Novel miRs predicted to be associated with

cancer by MicRooN

Source: https://sites.google.com/site/sumitslab/tools/

NovelmiRNAPredictions.zip
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Appendix D

MicRooN - Codes for Web Interface Design

<!CODE - MICROON - WEB INTERFACE>

<! INPUT EITHER MIRNA_ID OR TARGET NAME>

<! HOSTED VIA AN APACHE SERVER>

<style type="te<td>xt/css">

.style29 tr tbody tr td p strong {

font-family: "Courier New", Courier, monospace;

}

</style>

<TABLE class=style29 cellSpacing=0 cellPadding=0 width=600

bgColor=#fdf7f2 border=0 align = "center">

<TR>

<form name="MicRooN">

<tr> <td align ="center" bgcolor = #f6cece>

<h1><big><big><strong>

<B style = "COLOR:#FF0000">Mi</B>c<B style = "COLOR:#FF0000">R</B>oo

<B style = "COLOR:#FF0000">N</B>&nbsp;</strong></big></big></h1>

</td>

<! this is for the about the tool >

<tr >

<td >

<!--

<fieldset><legend><B>About the Tool</B></legend>

MicRooN (an acronym of miRNA), a tool for identification

of miRs associated with cancer.
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Its a ensemble based classifier[LIBSVM,C4.5 & Random Forest],

built on experiementally validated set of miRs associated with cancer.

The tool aims in identifying novel miR associated in cancer pathway.

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;&nbsp;&nbsp;

-->

<br></fieldset>

<! this is for the Input>

<tr>

<td><fieldset><legend><B>Input</B></legend>

<p align = "center">

<form method = "post" action="/">

<center>Input miR ID :<input name = "miRNA" id ="textfeild"

type = "text" placeholder="hsa-mir-532-3p" /></p>

Input Target :<input name = "target" id ="textfeild"

type = "text" placeholder="RCN2" /></p></center>

<p align="center"> <input id="Submit" value="Submit" type="submit" />

</form>

<button onclick="window.location.assign('http:\\')" />Clear</button>

<br><br>

<p style="text-align: center;">Format for miR ID :

hsa-mir-6793&nbsp;<br />

(As per <A href = "http://www.mirbase.org">miRBASE </A>format)</p>

</fieldset> </td>

</tr>

<! this is for the output>

<?php

if (isset($_REQUEST["miRNA"])){

$dummy = true;
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}

else{

goto foot;

}

?>

<tr>

<td align="center" ><fieldset><legend>Output</legend><br>

<style>

#output tr td{

border:1px solid black;

}

.bold{

font-size:18px;

text-decoration:bold;

}

</style>

<table id="output" style="border:1px solid black;">

<tr class="bold">

<td>Ensemble_ID</td>

<td>Target</td>

<td>Gene_Length</td>

<td>position</td>

<td>miRNA</td>

<td>miRNA_Length</td>

<td>mfe</td>

<td>pvalue</td>

<td>no_of_seeds</td>

</tr>

<?php

$a = $_REQUEST["miRNA"];

$b = $_REQUEST["target"];

// $result = db::table("`table`") -> pluck("*")

-> where("miRNA",$a) -> select() -> get();
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$mysqli = new mysqli("localhost", "root", "password", "mysql");

$a = $mysqli -> escape_string($a);

$b = $mysqli -> escape_string($b);

$a = $mysqli->query("SELECT * FROM GENE INNER JOIN MIRNA

on GENE.Ensemble_ID = MIRNA.Ensemble_ID

WHERE MIRNA.miRNA = '$a' aTarget LIKE '%$b'

ORDER BY MIRNA.pvalue ASC;");

$i = 0;

while ($row = $a -> fetch_assoc()) {

$result[$i] = $row;

$i++;

}

$mysqli->close();

for($a=0;$a<sizeof($result);$a++){

print '<tr>

<td>'.htmlentities($result[$a]["Ensemble_ID"]).'</td>

<td>'.htmlentities($result[$a]["Target"]).'</td>

<td>'.htmlentities($result[$a]["Gene_Length"]).'</td>

<td>'.htmlentities($result[$a]["position"]).'</td>

<td>'.htmlentities($result[$a]["miRNA"]).'</td>

<td>'.htmlentities($result[$a]["miRNA_Length"]).'</td>

<td>'.htmlentities($result[$a]["mfe"]).'</td>

<td>'.htmlentities($result[$a]["pvalue"]).'</td>

<td>'.htmlentities($result[$a]["no_of_seeds"]).'</td>

</tr>';

}

?>

</table>

<style type="text/css">

table{

text-align: center;

}

td{

min-width: 100px;
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}

</style>

<?php

if(sizeof($result) == 0){

print "<h3 style='color:red;'>miRNA record not found</h3>";

}

?>

<br><br></fieldset> </td>

</tr>

<?php

foot:

?>

<! this is for the reference>

<tr>

<td>

<fieldset><legend><B>Reference</B></legend>

<ul>

<li> "Search for signatures in miRNAs

associated with cancer", Kothandan R,

Biswas S, Bioinformation, Vol.9(10)

<A href = "http://www.ncbi.nlm.nih.gov/pubmed/?term=23861569">

<B> [PMID:23861569] </B></A> </li>

<li> "Sequence Trademarks in oncogene associated microRNAs",

Sharma S, Biswas S, Bioinformation,

Vol.6(9)

<A href = "http://www.ncbi.nlm.nih.gov/pubmed/?term=21814397">

<B> [PMID:21814397] </B></A> </li>

</ul>

<br></fieldset>

</td>

</tr>

</table>
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<footer align = "center">

&#169 Vista Lab Copyright 2013-2014, Sumit Biswas

& Ram K. All righs reserved.

| Disclaimer </footer>

<?php

$x = file_get_contents("./view/counter");

file_put_contents("./view/counter", $x+1);

print "<center>page view = $x<br>";

$ip = $_SERVER["REMOTE_ADDR"];

print "you ip is".$_SERVER["REMOTE_ADDR"]."</center>";

file_get_contents("./view/ip");

$str = "Access from ".$ip."\n";

$log = file_get_contents("./view/ip");

$log = $log.$str;

file_put_contents("./view/ip", $log);

?>
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A B S T R A C T

Since Ambros’ discovery of small non-protein coding RNAs in the early 1990s, the past two decades have
seen an upsurge in the number of reports of predicted microRNAs (miR), which have been implicated in
various functions. The correlation of miRs with cancer has spurred the usage of this class of non-coding
RNAs in various cancer therapies, although most of them are at trial stages. However, the experimental
identification of a miR to be associated with cancer is still an elaborate, time-consuming process. To aid
this process of miR association, we undertook an in-silico study involving the identification of global
signatures in experimentally validated microRNAs associated with cancer. Subsequently, a support vector
machine based two-step binary classifier system has been trained and modeled from the features
extracted from the above study. A total of 60 distinguishing features were selected and ranked to form the
feature set for classification – 26 of these extracted from the miR sequence itself, and the remainder from
the thermodynamics of folding and the hybridized miRNA–mRNA structure. The two step classifier
model – miRSEQ and miRINT had reasonably good performance measures with fairly high values of
Matthew’s correlation coefficient (MCC) values ranging from 0.72 to 0.82 (availability: https://sites.
google.com/site/sumitslab/tools).

ã 2015 Elsevier Ltd. All rights reserved.

1. Introduction

miRNA (miR) are small non-coding, single stranded RNAs
(about 22 nucleotides in length) involved in several regulatory
pathways in the cell cycle. They bind to the untranslated regions
(UTRs) of mRNA, (particularly the 3'UTR) and play an important
role in the post-transcriptional regulation of gene expression
(Bartel, 2004; Filipowicz et al., 2008). Recent studies suggest that
these noncoding RNAs can bind to 5'UTRs (Ragan et al., 2009) and
coding regions (Hausser et al., 2013) of mRNA as well, but little is
known about the mechanism of binding and their regulation.
Binding of a miR to a specific target in an UTR with complete
complementarity either leads to degradation of the mRNA itself or
induce translational repression (Esquela-Kerscher and Slack,
2006). In tissues associated with various tumors, it has been
observed that the expression pattern of miRs is altered consider-
ably (Cummins et al., 2006; Zhang et al., 2006). Additionally, gene
mapping reveals that most of the human miRs are located in
chromosomal positions which are susceptible to rearrangements
(Calin and Croce, 2007). Hence, it can be asserted that miRs in
humans play a major role in the cancer pathway.

Previous studies by several authors have investigated the
involvement of different types of base pairing in miR–mRNA
interactions and target prediction algorithms have been formulat-
ed based on these precincts. These algorithms predominantly
considered Watson Crick base pairing between the miR and its
respective mRNA – especially with the 2nd to the 8th nucleotide
positions of miR – as the potential target sites. However, in later
studies, it was found that animal miRs do not bind to mRNA with
perfect complementarity (unlike in plants); rather their binding
leaves several imperfections like loops, mismatches or bulges and
often involves GU(non-Watson Crick) base pairing as well (Axtell
et al., 2011; Didiano and Hobert, 2008). Other than these
determinants, AU richness around the seed regions and folding
of mRNA play a vital role in target binding (Grimson et al., 2007;
Robins et al., 2005). All these factors need to be considered, not in
isolation but together to hypothesize miR:mRNA interactions.

Some of the computational methods used in the functional
annotation of miRs involved in cancer mainly rely on the
expression profile of various cancer cell types and statistical
analysis for further classification (Jayaswal et al., 2011). These
methods utilize the expression profile but they fail to consider the
fact that a single miR can bind to several mRNA target sites and
regulate the cell differently. Our aim at feature selection was,
therefore, to embrace all these redundancy checks. Other attempts
to classify miRs into oncogenes and tumor suppressor genes (TSGs)

* Corresponding author. Tel.: +91 832 2580178.
E-mail address: sumit@goa.bits-pilani.ac.in (S. Biswas).

http://dx.doi.org/10.1016/j.compbiolchem.2015.01.007
1476-9271/ã 2015 Elsevier Ltd. All rights reserved.

Computational Biology and Chemistry 55 (2015) 31–36

Contents lists available at ScienceDirect

Computational Biology and Chemistry

journal home page : www.elsevier .com/ loca te /compbiolchem



were based on functional and evolutionary features (Wang et al.,
2010) like conservation, expression levels, chromosome distribu-
tion, etc.

The present study involved a search and analysis of features
involved in the interaction of a miR:mRNA associated with cancer.
These features encompassed sequential, hybridization and ther-
modynamics of validated miR:mRNA interactions only. Based on
the curated and prioritized features, we developed a two-step
machine based classifier model – miRSEQ and miRINT, which will
identify a miR to be associated with cancer and also classify the
type of its association, i.e., either with an oncogene or a tumor
suppressor. Prioritization of the features and a diversification of
the models according to the number of seed regions drastically
improved the performance of the classifier, as compared to
generalized features and holistic hybridization. The incorporation
of seed based classification in the determination of features is a
novel approach in our algorithm. The final classifier thus developed
had good performance with experimentally validated datasets
giving good prediction accuracy (cross validation (cv-rate) ranging
from 92% to 87%).

2. Methods

2.1. Dataset preparation

For the purpose of generating a classifier, the first step needed
to be undertaken is the construction of a microRNA dataset which
has been experimentally validated to be associated with cancer. To
begin with, a list of genes involved in cancer was downloaded from
the catalog of somatic mutations (COSMIC) (Higgins et al., 2007). A
total of 488 genes were thus listed, which could be further
segregated into oncogenes and tumor suppressors by cross-
referring with the tumor associated gene database (TAG) (Chen
et al., 2013). Experimentally validated miRNA interactions with
target mRNA can be obtained from miRECORDS (Xiao et al., 2009)
and miRTARBASE (Hsu et al., 2011). Therefore, the list of genes

obtained from COSMIC was curated with miRECORDS and
miRTARBASE to obtain a list of experimentally validated targets.
This process finally yielded a set of targets for miRNA which have
been experimentally validated to be associated with cancer. A total
of 2578 miRNAs were extracted from miRBASE 20.0 (May 2013,
(Griffiths-jones et al., 2006)), and these were compared with the
experimentally validated miR–mRNA interactions obtained as
above, yielding a final set of 239 microRNAs which have been
conclusively implicated in the cancer pathway (Supplementary
data S1). These 239 miRNAs were manually checked with their
available literature and revalidated. 30UTR mRNA sequences
involved in the interaction of these 239 miRNAs with their targets
were obtained from BIOMART – Ensemble (Kinsella et al., 2011)
(Fig. 1).

Positive and negative datasets for training and testing the
classifier were built separately for miRSEQ and miRINT. For
miRSEQ, experimentally validated mature miR sequences (the
same 239 obtained as above) would serve as the positive dataset.
The negative dataset was built in accordance with the method
employed in (Bandyopadhyay and Mitra, 2009) (Supplementary
data S3). The negative dataset was constructed on the basis of
specific experimental evidence presented in literature for miRNAs
whose binding to a target mRNA does not involve gene regulation
(Hebert et al., 2007; Kiriakidou et al., 2004; Lewis et al., 2003;
Musiyenko et al., 2008; Robins et al., 2005; Schultz et al., 2008;
Sethupathy et al., 2007; Skalsky et al., 2007; Visvanathan et al.,
2007; Zhao et al., 2005). Selection of random samples for negative
dataset was strictly avoided since they may increase the false
positives thereby decreasing the performance of the classifier. For
miRINT, experimentally validated miRNA:mRNA interactions,
further segregated as oncogene interactions (129 instances) and
tumor suppressor interactions (110 instances) were considered as
the positive and negative datasets, respectively (Supplementary
data S7). Class imbalance in the datasets was overcome by applying
the synthetic minority over sampling technique (SMOTE)
(Chawla et al., 2002).

Fig. 1. Flowchart for the process representing the generation of dataset for miRSEQ and miRINT.
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2.2. Feature selection

Construction of an efficient classifier depends on meticulous
feature extraction, since the quality of the feature reflects upon the
effective performance of the classifier. For our classifier, features
were identified and extracted based on a survey of previous studies
and our own indigenous parameters (Batuwita and Palade, 2009;
Kothandan and Biswas, 2013; Mendoza et al., 2013; Sharma and
Biswas, 2011). For miRSEQ, 26 features were considered, which
included nucleotide positions and repeat information. The maxi-
mum length of the miR used in the training was restricted to 22
nucleotides (Supplementary data S4 and S5).

For miRINT, a total of 34 features based on the hybridization
profile (miR:mRNA interactions) were utilized. miR:mRNA hybrids
having the best fit in terms of free energy, were obtained using
RNAHybrid – ViennaRNA package (Krüger and Rehmsmeier, 2006).
A total of 2926 hybrid structures were generated and considered
for feature extraction. miR:mRNA hybridization using RNAHybrid
may contain false target site predictions. Hence, a post-processing
filter was applied to miR–mRNA interactions in order to remove
the false predictions. An indigenous Perl script, “PairFinder”
(https://sites.google.com/site/sumitslab/tools) was used to parse
and analyze the hybrids for seeds, regions outside seeds,
mismatches and bulges (Kothandan and Biswas, 2013). Seed
regions have been defined according to the convention followed in
(Lekprasert et al., 2011) and our previous work (Kothandan and
Biswas, 2013). A detailed list of all the 60 features has been
summarized in the supplementary files (Supplementary data
S5 and S6).

For the construction of test datasets, a non-validated miR is
allowed to hybridize in RNAHybrid with the list of genes obtained
from COSMIC and the most energetically favored structure was
considered. False interactions were removed using the same post
processing filter and then let into the classification process.

2.3. Training – miRSEQ and miRINT

In this study, we used LibSVM package for constructing
classifier models (Chang and Lin, 2011). Radial basis function
(RBF) was chosen as the kernel for the classification process.
Parameters for RBF (cost and gamma) were found using a grid
search, which involved the construction of a mesh grid allowing a
search for best cost (c) and gamma (g = 1/number of features). The
main disadvantage of training a disease related dataset is the
inadequate number of training instances that are experimentally
validated and it is important that the same training set should
never be used as a test set in any of the experiment because they
may lead to over fitting in the model generated. So in order to
overcome these hassles we used 10-fold cross-validation step (by
default) to evaluate the performance of the classification.

Features extracted were ranked based on F-score (Supplemen-
tary Tables T1 and T2) and eventually prioritized. The F-score
method has been described in detail in Supplementary section S9.
Two sets of features – for miRSEQ and miRINT – were finalized as
has been described before. Additionally, for miRINT, models were
built based on the number of seeds they form in the hybrid (Seed 1,
Seed 2 and Seed 3 model). This is because the parameters which
play crucial roles for miRNA binding to mRNA differ when the
interaction involves the formation of a single seed compared to the
interaction where more than one seeds are formed. We considered
a maximum of three-seed hybrid for the training. Feature ranking
was done individually for each of the models and individually
trained. This was done to prevent the dilution or extrapolation of
some features when all the differently-seeded hybrids were taken
together. To find the optimum subset for the classifier, we followed
recursive feature elimination (RFE) for both miRSEQ and miRINT

during the training process. Low ranking features were removed
one by one iteratively and the performance of the classifier
measured until saturation. Removing all the low ranking features
at a glance may degrade the performance of the classifier
completely; hence the process of optimum feature subset selection
was carried out iteratively (Zeng et al., 2009). As a result of the
difference in binding parameters, the features that dominate in the
optimal feature set for each seed model differ as well (Supple-
mentary Table 2).

Due to the difference in numbers between the positive and the
negative sets, class imbalance existed in the dataset; so, accuracy
could not be chosen as a direct measure of performance (Batuwita
and Palade, 2010) for such sets. Hence, performance measures
were chosen in compliance with the cross-validation rate (cv-rate)
and Matthew’s correlation coefficient (MCC). MCC ranges from
�1 to 1; a MCC value of 1 indicates the best prediction and a
negative value indicates imperfect classification.

3. Results

Dataset preparation was carried out individually for the
classifiers miRSEQ and miRINT (Fig. 1). Consequently, a total of
263 miRs were used in the miRSEQ training. Class imbalance
problem in the dataset was overcome by the SMOTE (k-nearest
algorithm with no replacement) method which generated suffi-
cient number of negative instances for the training set. Like most
SVM classification problems related to miRNAs, our dataset was
also not linearly separable as it was too complex in nature. RBF was
applied to convert all non-linear data from lower dimensional
space to linearly separable higher dimensional space.

For miRSEQ, nucleotide position conservation was used initially
as the main feature set. However, poor performance of the
classifier (cv-rate of 45%) prompted us to use nucleotide repeat
information with appropriate window size to boost the perfor-
mance. Selection of appropriate window size (W) for nucleotide
repeat information was done by measuring the performance of the
classifier keeping a sliding window size ranging from 2 to 5.
Performance was measured from the plot between cv-rate and
window size, depicting a clear drop in cv-rate when the window
size exceeded 2 (Fig. 2). Hence, a 2-window sized repeat was
considered for training miRSEQ.

The 26 features chosen were ranked by F-score method and
recursive feature elimination was performed to find the best subset
of features for the dataset as well as retain all the features with
very low classification error, respectively. Optimum subset of
features which were finally selected has been depicted in Fig. 3.

Fig. 2. Decrease in performance and cv-rate with increase in window size (W) for
the classifier miRSEQ. Accuracy (ACC) has been depicted as bars, while the cv-rate is
the curve. The value for the same has been included in the graph.

R. Kothandan, S. Biswas / Computational Biology and Chemistry 55 (2015) 31–36 33



Judging by the thickness of the bands in the Circos diagram, the
following features yielded the best subset for the classification –

Position 1, GG repeat, CC repeat, Position 6, Position 19 and Position
10, in sequence of their relative importance. These features were
prioritized to construct the optimal feature subset for miRSEQ and
performance measures were carried out which yielded a cv-rate of
91.15% and MCC of 0.803. Model generation and performance
estimation were carried out with the training set (only validated
miR sequences) with a 10-fold cross validation method (Table 1).
The model generated was used on an unseen test set for a primary
prediction of the association of those miRs with cancer.

Fig. 3. Overlap between features subsets (ranked by F-score) selected for miRSEQ. Outer ticks denote the maximum accuracy of the classifier (in a scale of 100%). The inner
ticks denote the accuracy of individual features in the subset in combination with other features. The width of the ribbon denotes the individual accuracy in those
combinations. Example: For Position 1, the inner ticks total 390, which when divided by the number of overlapping features gives an accuracy of 78% (390/5).

Table 1
miRSEQ – performance measurement using 10-fold cross validation.

Run 1 Run 2 Run 3 Run 4 Run 5 Average

TP 160 160 160 160 160
TN 77 77 77 77 77
FP 15 11 12 11 14
FN 11 11 11 11 12
MCC 0.7809 0.8106 0.803 0.81 0.7805 0.803
ACC 90.11 91.505 91.153 91.505 90.11 91.153
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For the second classifier miRINT, the choice of features were
initially centered around the results of the hybridization –

number of unpaired bases, Watson–Crick and non-Watson–Crick
base pairing in and around the seed region, to name a few. The
generated model had a very poor performance with low cv-rate
(<40%). Addition of normalized base pairing and normalized free
energy features raised the total number of features to 34 for
miRINT and showed a marked improvement in the performance
of the classifier, but not to expected levels.

It was therefore, decided to have different models for
hybridization structures with different numbers of seed formation.
For each of the different classes, the method of ranking by F-score
and prioritization (as with miRSEQ) was carried out to achieve
three different optimal feature subsets. As with miRSEQ, the
highest ranked feature was not exclusive, but considered in
conjunction with other features as well during the construction of
the optimal feature set. Precaution was taken to utilize only the
non-redundant informative features for model construction. This
improved the performance of all the three models of the classifier
with good cv-rate of 92.19% for single seed (MCC 0.821), 89.54% for
two seed (MCC 0.765) and 87.61% for three seed (MCC 0.722)
hybrids. The effect of number of features versus the accuracy
measurement is given in the graph for all three models (Fig. 4).
Feature selection not only improved the classification but also
optimized the total time taken for training the model. The resulting
classifier model not only predicts the association of a miRNA with
cancer, but also gives an output about that association with either a
tumor suppressor gene or an oncogene. Performance measure-
ment carried out on the independent test dataset for miRINT is
shown in Table 2.

4. Discussion

Identifying miR involvement in cancer is a major obstacle for
researchers striving to understand the basis of the disease and to
generate new therapies against particular cancer types. miRNAs
regulate the molecular pathways in cancer by either upregulating
or downregulating various oncogenes and tumor suppressors, and
sometimes acting as oncogenes themselves. The functional
annotation of miRNAs in cancer is still a painstaking process,
though cancer therapies using miRNA has been picking up lately.
So, in an attempt to aid the cancer biologist, we employed a
support vector machine based binary classifier system to predict a
miR associated with cancer.

The tool described in this study is based on the experimentally
annotated interactions of a miRNA when bound to a particular
mRNA only. Since either the oncogene or TSG may switch
invariantly between each other depending on the cell stimuli,
the tool considers a training set with experimentally validated data
only. Cross verification performed on test datasets with our
classification model proved to be consistent with experimentally
validated data.

During the initial training process, although a number of
features have been extracted and used, performance improved
only after systematic ranking and prioritization were introduced.
Of these features, some again could be used to discriminate
binding against oncogenes and TSG while the rest, in combination
with the above features boosted the discrimination. Initial
classification process was quite complex mainly due to the unique
behavior of miR:mRNA interactions. So in order to suppress the
complexity, we considered features both from within and outside
the seed regions. Features extracted outside the seed region along
with several site specific features provided quite a good
classification performance. With the available training datasets,
the tool performed satisfactorily and prediction performance
should improve as the number of experimentally validated data
increases. Further work involving a multiple algorithm based
model (apart from SVM), in order to utilize all the informative
features extracted from the validated dataset is being undertaken
to check for better performance efficiency.
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Abstract: 
Since the first discovery in the early 1990’s, the predicted and validated population of microRNAs (miRNAs or miRs) has grown 
significantly. These small (~22 nucleotides long) regulators of gene expression have been implicated and associated with several 
genes in the cancer pathway as well. Globally, the identification and verification of microRNAs as biomarkers for cancer cell types 
has been the area of thrust for most miRNA biologists. However, there has been a noticeable vacuum when it comes to identifying 
a common signature or trademark that could be used to demarcate a miR to be associated with the development or suppression of 
cancer. To answer these queries, we report an in silico study involving the identification of global signatures in experimentally 
validated microRNAs which have been associated with cancer. This study has thrown light on the presence of significant common 
signatures, viz., - sequential and hybridization, which may distinguish a miR to be associated with cancer.  Based on our analysis, 
we suggest the utility of such signatures in the design and development of algorithms for prediction of miRs involved in the cancer 
pathway. 
 
 
Keywords: MicroRNA, Signatures, Matches, Seeds, Hybridization. 
 
 

 
Background:  
The discovery of a short RNA product regulating the expression 
of the lin-14 gene in C. elegans [1] opened the door to a new 

family of biologically important RNAs that proved to be crucial 
in fine-tuning the expression patterns of genes. MicroRNAs 
have later been identified as short sequences (18-22 nucleotides) 
of RNA, which act as post-transcriptional regulators by binding 
to complementary sequences on target messenger RNA 
transcripts, in both the plant and animal kingdoms [2–6]. The 
mature miR binds to the 3’Untranslated Region (UTR) [7], 5’ 
UTR [8] and CDS [9] of target mRNA sequences, thereby 
downregulating or upregulating the translation of these genes. 
This downregulation is achieved either by translational 
inhibition, or increased mRNA de-adenylation and 
degradation, or mRNA sequestration [10–12] and upregulation 
by translational enhancement [8]. Recent evidence however 
suggests that the target mRNA may also regulate the level and 
function of miRNAs [3].  

The extent of complementarity of the so-called “seed” region – 
generally positions 2-7 [13,14] of the miR, was thought to be the 
basis for identification of potential mRNA targets by a miR [15, 
16]. However, Chi, Hanon and Darnell [17] present a new 
alternative mode for miRNA target recognition involving 
transitional nucleation, which allows for bulge formation and 
consequent seed propagation. Recent studies [18] also suggest 
that the regions outside the so-called “seed” may also be 
important to consider while ascertaining miR-mRNA binding.  
 
Several reviews and articles have been published relating the 
complicity of certain miRNAs to some cell types [19–21]. Most 
studies aimed at identifying cancer specific miR signatures are 
rather sketchy and specific to a group of related cancerous cells. 
However, there is no literature or work on common 
“signatures” to distinguish a miR to be associated with cancer.  
In an attempt to fill up this void, we have undertaken an 
extensive exercise, involving all the experimentally validated 
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mRNA targets and their corresponding microRNA interactions, 
where the mRNA has an established role in cancer 
development. This dataset was analysed with an aim to 
discover sequential, structural or hybridization properties to 
identify microRNAs associated with the cancer pathway. We 
infer that there are distinct signatures or trademarks that can 
enable us to demarcate a miR to be involved in the cancer 
pathway – features that are present in the mature sequences 
and in the selective arrangement of the seed regions as well. 
 
Methodology:  
For the purpose of the present study, construction of an 
extensive dataset is a prerequisite. A list of genes involved in 
cancer was obtained from Cancer Gene Census Database 
(COSMIC) [22]. From the listed 488 genes, it was observed that 
they contained both oncogenes and tumor suppressors. List of 
genes which were not involved in cancer were obtained by 
calculating their Cancer Linker Degree (CLD) [23]. A jack-knife 
selection of 100 from the total list of 1025 genes would serve as 
the negative dataset. Further, a list of gene targets which have 
documented miR interactions was obtained from miRTARBASE 
(release 2.5) [24], which is accepted as the curated database of 
experimentally validated miRs. A comparison of the list 
obtained from COSMIC with the interaction data from 
miRTARBASE yielded the final list of miRNAs involved in 
cancer. MicroRNA sequences thus filtered were retrieved from 
miRBASE version 17.0 [25], and checked for redundancy. The 
final size of this dataset came to 2926 microRNAs, which were 
experimentally validated and unique. Since the 3'UTR regions 
of genes is the major site for microRNA interaction, we 
obtained the 3'UTR regions for all the 488 genes in question 
from the ENSEMBL-BIOMART portal [26].  
 
A multiple sequence alignment was done using "MultiAlign" 
function of MATLAB with “ExitingGapAlignment” method to 
search for sequence signatures, following our previously 
published method [27]. To find the hybridized structure with 
the best fit in terms of free energy, the miR sequence along with 
their specific 3’UTR sequence were hybridized using the 
RNAHybrid program [28]. Hybridization results obtained from 
RNAHybrid were parsed and analyzed using an indigenous 
Perl script, “PairFinder”, which identifies seed, regions outside 
seeds, mismatches and bulges [http://universe.bits-
pilani.ac.in/goa/sumit/Research]. Regions of complementarity 
having atleast four bases at a stretch were considered to be 
“seed” regions [14]. Since regular Watson-Crick base-pairings, 
especially AU are found to be abundant in functional sites of 
miR-mRNA interactions [18], we wanted to investigate the 
nature of the base pairing both in the seed regions as well in the 
regions outside seed. Finally, seed scores, which are indicators 
of the relative stability of the miR-mRNA interaction were 
obtained by the formula n(AU)+ n(GC) – n(GU), where AU and 
GC are assigned positive scores and GU was assigned a 
negative score.  
 
Results & Discussion: 

Construction of the miR dataset was strictly based on the 
premise that predicted miR will not be, and only experimentally 
validated miR sequence will be considered. Similarly, all miRs 
which do not have an experimentally validated target were also 
excluded from the dataset. Looking for sequence preference in 

the dataset of oncogenically involved miRs, it was evident that 
Uracils are the most preferred nucleotides, whereas Cytosines 
are the least preferred (Figure 1A)  a result which is in complete 
agreement to our previous work with a pilot dataset [27]. Each 
stack of bases in the figure represents the relative frequency of 
the bases at that position [29]. The letter at the top of the stack is 
also the tallest and implies its relative abundance at that 
position. However, the sequence preference for the negative 
dataset (Figure 1B) shows a relative abundance of mainly 
Guanines, Cytosines are fairly represented as well, while 
Uracils are least preferred. 
 

 
Figure 1: Sequence Conservation in miRs associated with cancer 
(A) and in the negative dataset (B). 
 

 
Figure 2: Variation in number of unpaired bases in miRs 
associated with cancer and the negative dataset. The first pair of 
bars stands for the variation in the hybrids having a single 
patch of complementarity (PC), the second for hybrids having 
two patches, and so on. 
 
Multiple sequence analysis with the ‘MultiAlign’ function and 
‘ExistingGapAdjust’ option showed that mature miRs 
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associated with cancer have a sequence signature which can be 
generalized as ‘AG-UU-U-U--CU’. This result was verified 
manually with the regional percentage conservation score data 
and found to be true.  Additionally the region of consensus lies 

exactly in the seed region within the position 2-13 nt. This 
sequence pattern does not have any semblance to the sequences 
in the negative dataset. 

 

 
Figure 3: Distribution of the regular Watson – Crick (WC) and the non-WC base pairings between miR associated with cancer and 
the negative dataset. The panels on the left are for the pairings in the seed region, while the panels on the right are pairings in the 
regions outside the seed (OS). 
 
Pairfinder was used to identify and categorise the seed, regions 
outside seeds, mismatches and bulges in the miRNA interacting 
with the mRNA. Patches of complementarity (PC) are 
demarcated as the seed regions, as well as the regions outside 
seeds where base pairings can occur (but in less than four 
pairs). All bases outside the PCs are unpaired bases. 
Quantitatively, the number of unpaired bases in miRs not 
involved in the cancer pathway was quite higher than those in 
the cancer pathway dataset (Figure 2). For a miRNA-mRNA 
interaction which has a single patch of complementarity to 
those which have multiple PCs, it was always observed that the 
number of unpaired bases is more in the interactions involving 
miRNAs not associated with the cancer pathway. This was a 

pointer to the better complementarity of the miRNA while 
binding to the respective mRNA of genes associated with 
cancer. Looking for the distribution of the regular Watson – 
Crick (WC) and the non-WC base pairings, it was evident that 
AU pairs in the patches of complementarity were much higher 
in the miRs involved in the cancer pathway than in those which 
were not (Figure 3A). Higher average of (A+U) % contents have 
already been cited as an indicator of higher stability [18]. 
However, the scenario is reversed when we considered GC 
pairs. These are more abundant in the interactions of miRNA 
not associated with cancer (Figure 3B), with the difference 
being more pronounced in the regions of complementarity 
outside seeds. The non-WC base pairing, again shows relative 
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abundance in the seed regions of the negative dataset, but are 
negligible in the regions outside the seed when compared to the 
dataset of the miRs associated with cancer (Figure 3C). 
Consequently, the seed score of the cancer associated 
microRNAs is higher on an average (4.108 ± 1.67) than for those 
microRNAs which are not involved in the cancer pathway 
(2.151 ± 1.16). This provides a further confirmation to the 
stability of interactions of those miRNAs which have been 
experimentally validated to be involved with cancer. 
 
Conclusion:  

The work presented in this manuscript highlights the presence 
of trademarks or signatures that can be used to distinguish 
between a microRNA which is associated with cancer from one 
that is not. While sequence signatures show a clear bias towards 
Uracil usage and against Cytosine in cancer associated miRs, 
the trend is reversed in the case of non-oncogenically involved 
miRs. The regions of mRNA-miRNA interaction were 
categorized using the script “Pairfinder” and Patches of 
Complementarity were ascertained to distinguish between 
paired and unpaired regions. Unpaired bases, which contribute 
to weaker binding, were decidedly more abundant in the 
negative dataset. So, by the corollary, the miRs associated with 
the cancer pathway, were found to have stronger interactions 
with their binding mRNAs. To further augment this hypothesis, 
the nature of base pairings in the PCs was investigated and the 
number of AU pairs (which contribute to stability) in both the 
seed regions and the regions of complementarity outside the 
seeds was found to be higher in the cases of miRs involved in 
cancer. 
 
The hypothesis is further strengthened by the seed score – again 
an indicator of stability of interactions – which is found to be 
significantly higher for miRNAs with oncogenic associations. 
Thus, we can safely conclude that miRNAs associated with 
cancer have more stable and stronger interactions with their 
mRNAs, as compared to those which are not associated with 
cancer. While this study was based on the interactions between 
the 3’UTR region of the gene and the microRNA, it is also true 
that some interactions in the 5’UTR and coding sequence of the 
genes need to be analysed as well, and work is being 
undertaken for the same. These findings, along with other 
ongoing searches for thermodyanamic signatures would be 
beneficial to the ultimate goal of constructing an algorithm for 
identification and validation of microRNAs which could be 
associated with cancer. 
 

References:  
[1] Lee RC et al. Cell. 1993 75: 843 [PMID: 8252621] 
[2] Ambros V, Nature. 2004 431: 350 [PMID: 15372042] 
[3] Reinhart BJ et al. Nature. 2000 403: 901 [PMID: 10706289] 
[4] Nelson P et al. Trends Biochem Sci. 2003 28: 534 [PMID: 

14559182] 
[5] Jones Rhoades MW et al. Annu Rev Plant Biol. 2006 57: 19 

[PMID: 16669754] 
[6] Sevignani C et al. Mamm Genome. 2006 17: 189 [PMID: 

16518686] 
[7]  Zhang R et al. J Genet Genomics. 2009 36:1 [PMID: 19161940] 
[8] Orom UA et al. Mol Cell. 2008 30: 460 [PMID: 18498749] 
[9] Hausser J et al. Genome. Res. 2013 23: 604 [PMID: 23335364] 
[10] Bagga S et al. Cell. 2005 122: 553 [PMID: 16122423]. 
[11] Cannell IG et al. Biochem Soc Trans. 2008 36: 1224 [PMID: 

19021530] 
[12] Wu L et al. Proc NIPR Symb. 2006 103: 4043 [PMID: 

16495412] 
[13] Lewis BP et al. Cell. 2003 115: 787 [PMID: 14697198] 
[14] Lekprasert P, Plos One. 2011 6:e20622 [PMID: 21674004] 
[15] Baek et al. Nature. 2008 455: 64 [PMID: 18668037] 
[16] Bartel DP, Cell. 2009 136: 215 [PMID: 19167326] 
[17] Chi SW et al. Nat Struc Mol Biol. 2012 19: 321 [PMID: 

22343717] 
[18] Grimson et al.  Mol Cell. 2007 27: 91 [PMID: 17612493]. 
[19] Schickel R et al. Oncogene. 2008 27: 5959 [PMID: 18836476] 
[20] Croce CM, Nat Rev Genet. 2009 10: 704 [PMID: 19763153] 
[21] Ørom UA & Lund AH, Nature. 2010 451: 1 [ PMID: 

19944134] 
[22] Forbes SA et al.  Nucleic Acid Res.  2009 D38: D652 [PMID: 

19906727] 
[23] Aragues R et al. BMC Bioinformatics. 2008 9: 172 [PMID: 

18371197] 
[24] Hsu SD et al. Nucleic Acid Res. 2011 39: D163 [PMID: 

21071411] 
[25] Griffiths-Jones S et al. Nucleic Acid Res. 2008 36: D154 

[PMID: 17991681] 
[26] Kinsella RJ et al. Database. 2011 [PMID: 21785142] 
[27] Sharma S et al. Bioinformation. 2011 6: 364 [PMID: 21814397] 
[28] Krüger J et al. Nucleic Acid Res. 2006 34: W451 [PMID: 

16845047] 
[29] Schneider TD & Stephens RM, Sequences. 1990 18: 6097 

[PMID: 2172928] 

Edited by P Kangueane 
Citation: Ram & Biswas, Bioinformation 9(10): 524-527 (2013) 

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, 
for non-commercial purposes, provided the original author and source are credite 

 
 
 
 
 



 
open access www.bioinformation.net Hypothesis 

 Volume 11(1)  
 

ISSN 0973-2063 (online) 0973-8894 (print)   

Bioinformation 11(1): 006-010 (2015) 6  © 2015 Biomedical Informatics 

 

Handling class imbalance problem in miRNA 
dataset associated with cancer 
 
 

Ram Kothandan 
 
Department of Biological Sciences, BITS PILANI K K Birla Goa Campus, Zuarinagar, Vasco Da Gama, India; Ram Kothandan – 
Email: mailram1986@gmail.com 

 
 
Received January 09, 2015; Accepted January 23, 2015; Published January 30, 2015 
 
 
Abstract: 
MiRNAs are small (~22nt long) non-coding RNA sequences; binds to the complementarity target sites in 3' Untranslated Region 
(UTR) of mRNA sequences but not restricted to other mRNA regions viz., 5' UTR and Coding sequences (CDS). Complementarity 
binding of miRNA to mRNA target sites either results in complete degradation of the mRNA itself or it may regulate the mRNA as 
an oncogene or as a tumor suppressor gene. However, the exact mechanism involved in identifying a miRNA to be associated with 
cancer is still unclear. Further, with the outburst in the number of miRNAs sequences recorded every year in miRBase, the gap is 
still widening mainly due to the laborious and economically unfavorable experimental procedures associated with the functional 
annotation. Motivated by the fact, we constructed a two-step support vector machine-based predictive model - miRSEQ and 
miRINT. However, the major pitfall during the construction of the model is the class imbalance problem. Hence, in order to 
overcome class imbalance problem, in the present study we empirically compare the effectiveness of two different methods viz., 
Synthetic Minority Oversampling Technique (SMOTE) and cost-senstive learning method. Performance measures were evaluated 
in terms of Precision and Recall. Based on our result, it was observed that for miRNA dataset with high class imbalance utilized for 
predicting association of cancer, cost-sensitive method outperformed the oversampling method.  
 
 

Keywords: Cost-sensitive, SMOTE, miRNA-mRNA interaction, Support Vector Machines.  
 
 

 
Background 

A dataset is imbalanced if the classification categories are not 
equally represented [1]. Class imbalance or skewed dataset 
mainly arises when most of the instances are labeled as one 
class (majority class), while very few are labeled as the other 
class (minority class). Traditional classifiers utilizing the entire 
training set for prediction are not suitable to deal with 
imbalanced dataset because they show bias towards the 
majority class due to over-prevalence. Particularly in case of 
disease related dataset (like ours) - miRNA dataset associated 
with cancer, the number of experimentally validated miRNAs 
are much higher than the number of miRNAs not associated 
with cancer. The main problem in training a classifier with 
high imbalanced dataset is that the minority class is often 
considered as noisy dataset and hence overlooked by the 
majority class. 

Performance of the classifier constructed with a certain level of 
class imbalance is always unpredictable or deteriorating in 
many cases. Hence, to overcome the problem of class 
imbalance, machine learning algorithms generally utilize two 
methods viz., resampling at the data level i.e. either 
oversampling the minority class e.g. Synthetic Minority 
Oversampling Method (SMOTE) [2] or under sampling the 
majority class e.g. Easy Ensemble and Balancing Cascade 
method [3]. Utilizing a resampling method is entirely a data 
driven process. On the other hand, class imbalance is ignored 
at the algorithm level by adjusting the cost of the classes to 
counter imbalance, adjusting the probabilistic estimates (in 
case of decision trees) and adjusting the decision threshold. In 
certain cases, both cost and resampling methods are used in 
combination, i.e. individual models are adjusted with these 
methods and combined as an ensemble to provide better 
performance [4].  
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Figure 1: Comparison of SMOTE and cost-sensitive method to overcome class imbalance in the miRNA dataset associated with 
cancer: A) Comparison of SMOTE and cost-sensitive method with miRSEQ classifier trained with sequence based features only; (B, 
C & D) Comparison of SMOTE and cost-sensitive method with miRINT trained with miRNA-mRNA interaction based features. In 
both the classifier, SMOTE method tends to overfit the test dataset. SMOTE and cost-sensitive methods were tested with five 
independent test datasets (Run 1 to 5). 
 
Generally in oversampling technique, class imbalance is 
overlooked by generating new instances with replacement 
from the minority class. But, generating similar instance at a 
specific region will overpopulate the minority class and results 
in bias during actual prediction [5]. Hence, in SMOTE, new 
synthetic samples are generated based on two parameters – the 
nearest neighbors (k) and the number of instance (n) required. 
In undersampling, multiple subset of majority class similar in 
size to the minority class is generated and trained. Since only a 
part of the dataset is utilized the computation cost and the time 
associated with this training is very less and efficient than the 
oversampling methods. However, undersampling methods 
ignore a large part of the training set making them vulnerable 
to miss many discriminative features present in them [3]. 
 
Most learning algorithms attempt to minimize the error rate in 
the classification by ignoring the difference between the types 
of misclassification errors. However, for real world problem 
this assumption wont hold true. Hence, to overcome the 
problem, cost-sensitive method is preferred generally over 
other class imbalance methods. Cost-sensitive method along 
with misclassification cost considers other cost like instance 
and attribute cost, active learning cost and computational cost. 
Among the cost, misclassification cost is more important in 
cost-sensitive learning and it can be either stationary 
(assigning a cost matrix) or dataset dependent. Thus, in the 
present study, we compare the effectiveness of two methods to 

overcome class imbalance in terms of precision and recall to 
construct an efficient classifier in predicting miRNAs 
associated with cancer.  
 
Methodology: 
Dataset Preparation 
Dataset preparation was carried out for positive and negative 
set individually. For training purpose, 239 experimentally 
validated miRNAs obtained from our previous work would 
serve as positive dataset [6]. For negative dataset, 
precautionary steps were undertaken to avoid randomness in 
the dataset, i.e. randomly generated and predicted dataset 
were completely avoided. Only experimentally validated 32 
miRNAs obtained from TargetMiner were considered as 
negative dataset [7]. For evaluating the effectiveness of the two 
methods compared in the study, we constructed an 
independent test dataset not utilized in training purpose. A 10-
fold cross-validation method is used as a standard method for 
revalidation during training [8]. 
 
Feature Extraction  
A list of 60 features were extracted from experimentally 
validated miRNA sequences, miRNA-mRNA interaction data 
and thermodynamics of miRNA-mRNA binding as obtained 
from RNAhybrid [6, 9, 10]. We utilized Pairfinder, a perl script 
to parse the various features from the miRNA-mRNA 
hybridized structure [6].  In this present study, a two-step 
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classifier (viz., miRSEQ and miRINT) was constructed. 
MiRSEQ preliminarily predicts the miRNA associated with 
cancer based on 26 sequence-based features; whereas miRINT 
utilized 34 miRNA-mRNA interaction-based features to 
confirm the association of miRNA with cancer.   
 
Learning Algorithm 
The choice of learning algorithm plays a critical role in 
overcoming class imbalance. In this present study, we 
employed Support Vector Machines (SVM) with Radial Basis 
Function (RBF) as kernel function for training the miRNA 
dataset [11]. In a binary classifier, SVM classifies two classes by 
constructing a hyperplane in three dimensional space 
separated by margins. We utilized LIBSVM package in 
Waikato Environment for Knowledge Analysis (WEKA) [12]. 
Random search method was employed to identify optimum 
algorithm parameter cost (c) and gamma (λ) rather than 
computationally expensive grid based method.  
 

Both SMOTE and cost-sensitive method packages available 
within the WEKA environment were utilized to handle the 
class imbalance during the training process. For SMOTE, we 
considered the nearest neighbor to be five (k=5) and the 
percentage of instances generated (n) in each iteration to be 
100. The number of iterations was limited till there is a shift in 
the class distribution. In a typical class imbalanced problem, 
cost-sensitive algorithms require a cost-matrix to represent 
costs for different misclassification types. The method tends to 
minimize the number of high cost error and then further 
generates a model with low misclassification cost. 
Misclassification cost can be assigned to both binary and multi-
class classification problems. We constructed a 2x2 cost matrix 
for reweighing the data space. Cost for the correctly classified 
instances are assumed zero (i.e., the cost associated with the 
True Positive (TP) and True Negative (TN) is zero) [13]. The 
main aim of utilizing cost-sensitive method is to construct a 
model with minimum misclassification cost and is given by the 
equation (1) 

           
(Equation 1) 
Where, C(0,1) and C(1,0) are the costs associated in prediction 
of False Positive (FP) and False Negative (FN) respectively.   
 
Performance Evaluation 

                    (Equation 2) 

 

                            (Equation 3) 

 
Results & Discussion: 
The focus of the study is to obtain an efficient method for 
handling class imbalance in miRNA dataset associated with 
cancer. MiRSEQ and miRINT classifiers were constructed with 
both SMOTE and cost-sensitive method with SVM as the 
learning algorithm. Only experimentally validated miRNA 
were used for training purpose. Randomly generated, 
predicted miRNA sequences were neglected completely in 
order to avoid randomness in the dataset during the training 
process. Prior to training process dataset was normalized, since 
significant difference in the variance will dominate the RBF 
function and does not allow learning the dataset from other 

features. Utilizing mean value for missing attribute during the 
feature extraction was also avoided. 
 
The performance of the constructed models were evaluated 
based on precision and recall. Usually in training machine 
learning algorithms, performance is evaluated using confusion 
matrix. However, for problems with high class imbalance, 
evaluating the performance of the classifier directly based on 
confusion matrix is not preferred. Alternatively, measures like 
precision and recall would reveal the actual predictive 
performance of the classifier. In disease related dataset, 
particularly miRNA dataset associated with cancer (like ours), 
precision would provide an exact measure of predictive 
performance of the constructed model since a single false 
prediction in disease related dataset would be catastrophic. 
 
The predictive performance evaluated during the training 
process was marginally similar between the two methods 
being compared. However, when challenged with test dataset, 
cost-sensitive method performed better than the SMOTE. The 
underlying problem for poor predictive performance with 
SMOTE is due to overfitting (precision > 0.9 in all independent 
test runs are shown in Table 1 See supplementary material). 
One possible reason for overfitting with SMOTE is that the 
method centers more on the specific region in the feature space 
as the decision region for the minority class, than increasing 
the overall number of instances. Further, new instances are 
synthesized based on the number of the nearest neighbors 
chosen and also based on the number of new instances 
required per iteration.  Thus SMOTE overpopulates a specific 
region rather than increasing the overall instances. Further, the 
classifier constructed with SMOTE method misclassified every 
instances as the minority class due to over-prevalence in the 
specific region during the independent test dataset prediction.  
 
On the other hand, cost-sensitive method seamlessly 
performed better than SMOTE because it considers 
misclassification cost based on the dataset utilized in the 
training (precision 0.52 for miRSEQ and average precision 0.4 
in all seed based models for miRINT)  (Table 1). From (Figure 

1), it is evident that SMOTE method tends to overfit the dataset 
in both miRSEQ and miRINT classifier, whereas cost-sensitive 
showed significantly a steady performance in all test runs. 
Further, in order to boost the performance of classifier with 
SMOTE method, we reduced the number of instances 
generated per iteration. This will avoid over populating the 
minority class in a specific region. However, it was observed 
that there was no significant improvement in the performance 
measurement. For miRINT, the dataset was segregated based 
on the number of seed region formed in the hybridized 
structure. Similar to miRSEQ performance, the SMOTE method 
did not show much improvement in terms of precision, rather 
they tend to overfit (precision > 0.9) the dataset and thus left 
no room for further improvement.  
 
Conclusion: 

The work presented in this paper gives an empirical 
comparison of two methods to overcome class imbalance (viz., 
SMOTE and cost-sensitive method) in prediction of miRNA 
associated with cancer. Among the two methods compared the 
SMOTE handles class imbalance at the data level and cost-
sensitive method at the algorithm level. Handling class 
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imbalance at the data level for disease related prediction (like 
ours) would induce several synthesized instances. Even 
though, oversampling method provide a good performance 
measure at the training step, when challenged with 
independent test datasets the performance of the classifier 
deteriorated completely. To further support the hypothesis, the 
prediction obtained from classifier constructed show 
overfitting of the test dataset.  
 
On the other hand, cost-sensitve method provided a steady 
performance measure in each of the independent runs and 
thus acts as an effective method in handling class imbalance in 
miRNA dataset. The performance of cost-sensitive method can 
be further enhanced by utilizing appropriate feature selection 
method like Recursive Feature Elimination method (RFE) prior 
to the training process. Prioritizing most discriminative 
features would increase the performance of the classifier with 
cost-sensitive method. Further, utilizing different learning 
algorithm along with cost-sensitive method would boost the 
performance significantly and such a work is under progress 
in our group. Thus, we conclude that for prediction of miRNA 
associated with cancer with high class imbalance in dataset, 
cost-sensitive method performs better than the oversampling 
method.  
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Supplementary material: 
 
Table 1: Comparison of SMOTE and cost-sensitive method in terms of Precision and Recall. Only average value of five 
independent runs are tabulated. For miRINT, miRNA-mRNA hybrid structures were segregated into seed 1, seed 2 and seed 3 
models based on the number of seed region formed in their structures and trained individually.  

MiRSEQ  Precision Recall 

Cost-sensitive  0.52 0.521 

SMOTE  0.927 0.9345 

MiRINT Number of Seeds Precision Recall 

Cost-Sensitive Seed 1 0.562 0.426 

Seed 2 0.414 0.644 

Seed 3 0.341 0.584 

SMOTE Seed 1 0.9627 0.9042 

Seed 2 0.9181 0.931 

Seed 3 0.908 0.9141 

* Models with Precision > 0.9 misclassified all instances as minority class in SMOTE 
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