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Abstract

The study of low dimensional systems has been significantly enriched

by the novel behaviors observed when these systems are studied in the

presence of periodic driving or non-trivial geometry. These have of-

fered a means of modifying the gauge couplings in such systems which

may, in certain cases, result in the breaking of key symmetries, thereby

opening up new avenues of investigation. The role played by the devel-

opment of optical lattices of cold atoms in the experimental validation

of such phenomena has been influential. In this thesis we consider the

effects of periodic driving on Hall systems both of the square lattice and

Graphene types. Begining with a relatively straight forward study of

the Landau-Fock-Darwin confinement of a spinless charged particle on

a space with a conical disclination defect. Where we show the non-local

effects of defects in the metric on the specturm and thermal properties

of the system. We proceed to examine the lattice problem of driving

the Aubry-André-Hamiltonian with a high frequency periodic magnetic

field and study the modifications to the nature of the metal-insulator

transition in the system. This is followed by a study of the Haldane

model, essentially Graphene in tight binding form with complex valued

next-nearest neighbour interactions, under a periodic sequence of delta

function kicks. The emphasis being on the changes to the band topology

under kicking. Finally, we discuss a ‘Floquet Engineering’ scheme to

simulate curved Graphene in a cold atom setup using a specific periodic

drive.
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Preface

About the thesis The thesis considers certain specific low dimen-

sional systems such as the Landau level problem in a disk geometry i.e.

Landau-Fock-Darwin confinement, the square lattice in a perpendicular

magnetic field as the 1-D Harper/ Aubry-André-Harper Hamiltonian,

cold atom Graphene analogues and the Haldane model of Landau levels

without a magnetic field, under the influence of background curvature or

application of periodic driving schemes. The central technique to analyze

driven systems being Floquet theory, which is used to obtain an effective

time independent Hamiltonian to some approximation from a perturba-

tion series. Aspects such as localization- delocalization transitions and

conductance quantization are visited in the presence of driving. In cases

where band topology is of interest the formalism for computing Chern

numbers is used.

To the reader

The topics discussed in this thesis fall under the broad purview of theo-

retical condensed matter physics. Those actively engaged in this area are

likely to peruse it with relative ease, especially those associated with the

subdomains of driven quantum systems and Quantum Hall phenomena.

Nevertheless, a general background of graduate level quantum, statisti-

cal and solid-state physics should suffice to grasp the core ideas discussed

here. With its unusually large appendices, an effort has been made to

make the thesis as self-contained as possible.

Thesis outline

This thesis comprises of six chapters and three appendices. The first

chapter is an introduction followed by chapters (2-5) which discuss the

viii



main body of research work that has been carried out. Here is a brief

overview of the thesis’ organization.

• Chapter 1 Introduces specific aspects of low dimensional systems

and driven quantum systems as they pertain to our studies and puts

them in the context of the current research initiative in this area.

• Chapter 2 elaborates the thermal properties of a charged spin-less

particle in a Landau-Fock-Darwin potential in a background metric

with conical disclination defect.

• In Chapter 3 we study a metal-insulator phase transition in a

magnetic-field driven Aubry-André-Harper Hamiltonian.

• Chapter 4 looks at Floquet topological phase transitions in a Hal-

dane model with periodic kicking.

• In Chapter 5 we discuss a Floquet engineering technique to sim-

ulate curved Graphene in an optical lattice of ultra cold atoms.

• Chapter 6 on Conclusions and Future Scope detailing a discussion

of the conclusions drawn and future problems of interest.

• Appendix A provides a detailed introduction and discussion on

certain basic aspects of the problem of spinless, tight binding elec-

trons on a square lattice in a magnetic field.

• Appendix B is a step by step review of Floquet theory and its

application to the study of time periodic quantum systems, intro-

ducing and deriving basic results and terminology.

• Finally, Appendix C provides a whirlwind tour of an interest-

ing kinematical formulation of the geometric phase and its use in

calculating topological inavriants of the Chern variety.
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Chapter 1

Introduction

1.1 Aspects of Low Dimensional Systems

The physics of low dimensional systems, 0, 1 and 2-dimensional quantum structures,

has been a promising and intense field of theoretical research for several decades now

[1–4]. Prominent examples are 0-D quantum dots [5, 6], 1-D carbon nanotubes as

quantum wires and 2-D planar Graphene [4, 7, 8]. The study of such systems has

thrown open an entire domain of Mesoscopic and Nanoscale physics, which forms a

major portion of present day condensed matter physics [9]. Interesting properties

of such systems emerge when they are subjected to external fields, which could be

time dependent or independent. For the most part, the early literature in the area

regarded constant electric and magnetic fields to examine electronic and optical

properties of these systems [10–14].

The study of low dimensional systems witnessed a turning point with the dis-

covery of the Quantum Hall Effect (QHE) by Klitzing, Dorda and Pepper (1980).

Prior to this, the subtle intricacies of the problem of Landau levels on a lattice had

engaged pioneers like Peierls, Wannier, Luttinger and Kohn, in the decades follow-

ing the development of quantum mechanics. The system was found to sustain a

metal-insualtor transition, put forth by Aubry and André (1980), which highlighted
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the significance of self-duality in the 1- dimensional effective Harper form of the

Hamiltonian. QHE opened diversified perspectives on the problem where the works

of Thouless, Haldane and others introduced notions of topology into the band theory

of solids. An actual material lattice that could potentially realize such topological

features remained a far fetched notion until the discovery of Graphene by Geim

and Novoselov (2004). Introducing its own revolution in the domain, Graphene

expanded the scope of condensed matter physics to include notions from quantum

field theory, high energy physics and even cosmology while putting an end to long

held skepticism about the existence of a perfectly 2-dimensional solid. Its relativistic

low energy regime and the role of symmetries in protecting the massless fermionic

excitations that describe the ground state, have, made Graphene a crucible for ideas

from gauge theory, geometry and topology.

In the last two decades the study of light-matter interactions has led to the

development of a versatile quantum simulator in the form of ultra cold atoms in

an optical lattice. This has given a new direction to research in low dimensional

systems by allowing their physics to be replicated in a highly tunable apparatus that

has allowed a controlled examination of various phenomena. This has further led

to the development of periodic driving techniques to simulate gauge field couplings

in such systems and the domain of ‘Floquet Engineerig’. Which aims to design

effective static Hamiltonians with desired properties by driving a chosen system.

The techniques of Floquet theory and their application to periodic quantum systems

enable the analysis of such novel systems as Floquet topological insulators. Where

one has the flexibility of modifying the topological nature of the bands in the system.

In this chapter we shall introduce the studies we have performed in the context of the

current trends that prevail in the domain of low dimensional systems and mesoscopic

physics.
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1.1.1 The Quantum Hall System and Landau Level Problem

A remarkable phenomenon to emerge from this milieu was the Quantum Hall Effect

(QHE) from the experiments of Klitzing, Dorda and Pepper [12] which revealed

robust integer quantization of the transverse Hall resistivity of an inversion layer at

the interface of a semiconductor heterojunction. The appearance of perfect integers,

which were revealed in the plateaus of the resistivity curve when plotted against the

applied magnetic field, was shown to be resilient even in the presence of disorder

and independent of the geometry of the sample. Theoretical explanations of the

effect soon followed [15–19] and introduced entirely new areas of mathematics, such

as topology, in the study of condensed matter systems. Though the effect was

observed in what was effectively a 2-D gas of electrons Thouless et. al. [15] were able

to derive the quantization by considering the electrons to be on a 2-D square lattice

to which a strong magnetic field had been applied in a direction perpendicular to

the plane of the lattice. They were able to show that the Kubo-Greenwood formula,

from linear response theory, when used to calculate the transverse conductance gave

values in integer multiples of e2/h where e is the magnitude of electronic charge

and h the Planck’s constant. A result which follows from, as they showed, the

similarity between the way the Kubo-Greenwood conductance is calculated and the

calculation of a topological invariant called a Chern number for a manifold with a

fibre bundle [17]. The tight binding model of electrons considered by Thouless et.

al. is itself a rich system and exhibits a subtle interplay of the electron’s interaction

with a magnetic field as well as a periodic potential. The reader may take a look

at Appendix A for a detailed exposition of this system. For a detailed development

of topological notions from their origins in ideas of Berry’s phase one may refer

to Appendix C. It charts a path to the calculation of invariants like the Chern

number through the slightly unconventional formalism of kinematical arguments

and Bargmann invariants as introduced by Mukunda and Simon [20].
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Another feature of this square lattice Hall effect Hamiltonian, that appears on

its reduction to an effective 1-D tight binding model due to P. G. Harper [21], is

that this effective version offers an exceptional instance of a metal-insulator transi-

tion in a 1-D system. This reduced Hamiltonian known as the Harper Hamiltonian.

When the multiple of the flux quantum through each plaquette of the square lattice

happens to be irrational, the reduced 1-D form of the Harper Hamiltonian, is found

to belong to a class of almost periodic Schrödinger operators, vigorously studied by

mathematicians, called the almost Mathieu operator [22–24]. The Harper Hamil-

tonian now shows a variation in the on-site energy term which is incommensurate

with the corresponding 1-D lattice site, imparting to it quasicrytalline properties and

making a reciprocal space construction a formidable challenge. This is a delicate

pursuit since conventional notions of band structure and the Brillouin zone have to

be abandoned and the validity of the plane wave basis set is called into question for

a significant portion of the system’s spectrum. The main physical interest in this

particular variant of the model is the theoretically demonstrated metal-insulator

transition, due to Aubry and André [25], which draws parallels with the famed An-

derson localization-delocalization transition [26], a phenomenon otherwise shown to

be restricted to 3-D systems [27]. These myriad contributions to the model’s anal-

ysis have led to the Hamiltonian being dubbed the Aubry-André-Harper (AAH)

Hamiltonian. A crucial feature of this model, which lends significant insight into

both the rational and irrational cases, is its duality property. This is found to sur-

face time and again in the study of the system with perhaps its most significant role

being in arguing the existence of the metal-insulator transition and the appearance

of extended states in this effective 1-D model.

An aspect of study regarding these systems that has recieved relatively little

attention in the literature is the effect of making the magnetic field in the problem

time dependent. It would be natural to expect that such a modification should have
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a profound impact on the general phenomenon of the Hall effect and on the nature

of the transition from localized (i.e insulating) to extended (i.e. metallic) behaviour

of the wavefunctions. The dearth of such studies is, however, justified since making

the magnetic field time dependent severly complicates the problem especially in the

tight binding AAH formulation. Since the subband structure that results from the

presence of the magnetic field is dependent on the flux quantum which, if it changes

with time, would lead to a reciprocal space Hamiltonian of varying dimensions for

the case of rational flux quanta. Thus making an analysis in the reciprocal space

almost impossible. An important starting point is to regard the magnetic field as

oscillating periodically with time, as such an assumption allows a simpler route to

analyze the system using the tools of Floquet theory (see Appendix B). Some works

have tried to look at this problem in the context of the Hall effect and topological

phase transitions [28, 29]. In [28], the authors consider a continuum version of the

Hall problem in the presence time-periodic electric and magnetic fields. Of these, the

magnetic field is regarded as a driving force in a kind of ‘heterodyne’ or frequency

mixing device that the system mimicks. A modified version of the Hall conductivity

called the heterodyne Hall conductivity is derived and shown to have quantized

values for certain parameter regimes. The bulk of the system, which is a 2-D plane

of the rectangular Hall geometry, is shown to support a current with frequencies

that are shifted in integer multiples of the driving frequency from the input electric

field value. Various classical cyclotron orbits of the electron are considered in the

presence of the time dependent magnetic field and special closed loops are identified,

that arise for certain values of the cyclotron and driving frequencies, for which the

effective electronic mass diverges.

The work in [29] treats a bosonic cold atom system in an optical lattice which

is coupled to synthetic gauge fields. This, contrary to the previous example, is a

lattice model where the coupling of the gauge field takes the form of the Peierls
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modification to the nearest neighbour hopping terms in the form of complex phase

factors, in a tight binding model. The authors also consider an on-site Hubbard

like repulsive interaction. The key feature of interest in this work is the authors’

attention to making the gauge field dynamic by introducing a site dependence in

these complex phase factors. This they acheive by proposing the use of a density-

dependent gauge field which is sensitive to the occupation numbers at various sites

in the optical lattice and hence introduces the site dependence. They find that for

weak on-site interactions and a dynamic gauge field the system shows a topological

phase transition in its ground state which is absent for the static field case. This

argues in favour of investigating topological properties of lattice models with U(1)

gauge symmetry where the gauge field is made time-dependent, despite the inher-

ent difficulties involved in doing so. In Chapter 3 we discuss a method based on

an effective time independent Hamiltonian for the AAH Hamiltonian with a time

dependent magnetic field, as a possible way of circumventing these issues. Where

an exact diagonalization may be used to obtain the spectrum of the new effective

Hamiltonian under the approxiamtion of a large driving frequency. Though the fo-

cus of our attention here is on the metal-insulator transition in the system and not

on its topological properties. And the question of topological properties of the 2-D

square lattice in the presence of a time dependent magnetic field is still an unat-

tended open one. The available formalisms of calculating Chern numbers especially

of the Thouless et. al. variety fall short of this task and even the high frequency,

time independent effective Hamiltonian schemes are of no avail. The only recourse

could possibly be a full time dependent perturbation theory approach using the

Dyson series but this too relies on the magnetic field behaving perturbatively and

ultimately the issues of developing a suitable band/Brillouin zone description of the

system and avoiding inter-band transitions may complicate matters to no end.

An interesting variation of the Hall effect problem or the general single particle
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Landau level problem [30] is to consider the system on a surface or space with

non-trivial background geometry. The behaviour of the Landau level wavefunctions

and the specturm show interesting properties in such problems. The spherical, disk

(Fock-Darwin) and torus geometries have been considered [31], even in the presence

of Coulomb interations and, the magnetic field , for the torus geometry is observed to

have certain allowed values such that an integer number of flux quanta intercept the

sample. In the spherical case several advantages are obtained over the conventional

planar geometry of the Landau level problem such as the degeneracy of the Landau

levels becomes finite in this case and one can have the notion of a filled Landau level

for a finite number of particles. As opposed to the rectangular planar geometry

where the levels are infinitely degenerate. The sphere being a compact manifold

without an edge the system is purely bulk in nature and this frees it from the

complications of finite size and edge effects.

The disk geometry is of special interest since it finds experimental realization in

the form of quantum dot systems and allows an exact solution. The model consists

of a parabolic confining potential over the normal planar Landau level problem, in

general known as a Fock-Darwin potential as they first introduced it the context of

this problem [32]. In this geometry the electrons in a plane are further confined to

a disk or dot like region and translational symmetry is absent in both directions.

Thus the infinite degeneracy of the Landau levels in the normal case gets lifted and

the spectrum now depends on the relative values of the oscillator quantum numbers

and the angular momentum quantum numbers corresponding to the component of

the angular momentum normal to the plane.

Thus, this has generated some interest in the study of the Landau level problem

in the presence of a background space with some defect in its metric or just the

consideration of electromagnetic interaction between charged particles in a non-

trivial geometry [33–36]. The objective is to generally look at such features as the
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spectrum and the density of states in the presence of the backgroud topological

defect. It is seen in such cases that the degeneracy of the spectrum does get affected

depending on the symmetry of the defect and further various physical quantities

show the imprint of the background geometry. A fact that highlights the role of

non-local quantities in the physics of the electrons, even though the Hamiltonian

description is local and the local nature of the metric may be flat. In Chapter 2

we look at the Landau Fock Darwin problem in a background space which has a

conical disclination defect. There we focus on obtaining the thermal properties of a

single particle in this confined system and observe interesting correlations between

the defect quantifying prameter and the temperature of the thermal bath in which

the system is considered.

We now proceed to a discussion of another important 2-D system which has

garnered monumental interest in the condensed matter physics domain, i.e. planar

(mono layer ) Graphene [4, 7, 13, 14]. First isolated by Andre Geim and Kon-

stantin Novoselov [37], at the University of Manchester in 2004, for which they were

awarded the 2010 Nobel Prize in Physics, this material has enamoured theoretical

and experimental physicsts alike with its astounding properties. From being the

perfect realization of a 2-D solid to having remarkably high thermal and electrical

conductivities and being one of the strongest known materials yet surprisingly flex-

ible, Graphene has found widespread applications. In the following section we shall

consider some aspects of the material as are relevant to this thesis.

1.2 Graphene : Non-Trivial Geometry and Band

Topology

An important and interesting feature concerns the low energy dispersion relation

in Graphene which happens to be linear [7, 8, 38]. Since the lattice has a hexag-
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onal structure viewed as the interpenetration of two triangular sublattices it has

two inequivalent sites per unit cell and hence the single band tight binding model

for Graphene gives two subbands. A valence band and a conduction band, thereby

giving the Hamiltonian a 2× 2 structure in reciprocal space and the wavefunctions

permit a spinor representation at the high symmetry points in the Brillouin zone.

A pair of such points are called the Dirac points at which the valence and conduc-

tion bands touch giving Graphene its semi-metallic nature. It is around these Dirac

points that the dispersion relation is linear and permits a comaprison to the disper-

sion of a particle in relativistic quantum mechanics [39]. This allows a continuum

description of the system at low energies by the relativistic (2+1)-dimensional Dirac

equation. This is an aspect of Graphene that has attracted high energy physicists

and even cosmologists as Graphene now offers a table top system to study a variety

of physics ranging from quntum electrodynamics, where it exhibits phenomena such

as Klein tunneling [40] to such cosmological phenomena as the Unruh effect [41].

The relativistic structure of the equation allows a field theoretic description where

various effects can be incorporated as gauge field couplings to the Dirac equation to

model the changes to the spectrum and various electronic properties. Several works

in the literature follow this line of treatment [41–55]. The approach allows one to

study the electronic properties of a Graphene sheet which is curved in a manner

that this curvature may be described using some conformal metric. Then one has

to write the (2 + 1)-D Dirac equation with this as the choice of spatial metric and

from there obtain the Hamiltonian by breaking covariance and ensuring hermiticity

in the resulting non-relativistic Hamiltonian description. A point to note is that the

gaplessness at the Dirac points ensures that the low energy excitations are massless

fermions and that one has to work with the massless Dirac equation in such a case

[38]. In general for describing the effects in a curved geometry the massless Dirac

equation has to be written in curved space and this requires the introduction of the
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spin connection term in order to write the covariant derivative from the momentum

operator and the veilbein formalism from general relativity to transform the Dirac

gamma matrices.

Other interesting treatments that this formalism allows is the consideration of

stresses or defects in the Graphene sheet within the formalism of gauge fields and

curvature [43–45]. In fact it is even possible in cases to model the curvature effec-

tively as a potential applied to the flat space Dirac equation. Experimentally such

systems are difficult to realize flexibly in actual Graphene samples but the advent of

optical lattices of ultra cold atoms have offered a quantum simulation tool to study

these interesting effects. The hexagonal lattice and Graphene like analogues have

been realized using cold atoms in a variety of contexts [56–65]. In this context there

have been attempts to realize optical lattice setups that simulate curvature in a

Graphene like lattice geometry to study relativistic electrodynamics in the presence

of gravity. In Chapter 5 we offer another method of simulating a curved graphene

system by methods derived from periodic driving of optical lattices and the newly

emerging technique of ‘Floquet Engineering’. We shall elaborate the features and

scope of this method in the following section.

In the context of band topology Graphene has shown itself to be rich in topo-

logical features even though not exactly a bulk-insuator, with its semi-metallic,

Dirac-like linear dispersion at low energies [66, 67]. Besides the Quantum Spin Hall

Effect in the presence of strong spin-orbit coupling [68–71], the manifestation of Zak

phase and edge states in Graphene ribbons has been studied [72], experimental val-

idation of the QHE and Berry’s phase for Graphene has been peformed and various

topological features of the honeycomb lattice have been investigated in cold-atom

and photonic-crystal setups [64, 65, 73–75]. In gapless Graphene the Chern number

evaluates to zero and the system is topologically trivial in the bulk. This is so due

to the fact that the Dirac points are stable and protected by the time reversal and
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inversion symmetries. As long as these symmetries remain unbroken a gap may

not be opened at the Dirac points [66, 76, 77]. Even the presence of perturbations

that respects these discrete symmetries can only move the Fermi points but not

create a gap [78]. The presence or absence of these symmetries is determined by the

nature of the hopping terms in a tight binding model of Graphene and the point

group symmetries of the hexagonal lattice. Thus time reversal is ensured by the

hopping elements to the nearest neighbours being real and it is not sensitive to any

asymmetry in the strengths of the hoppings to the three nearest neighbouring sites.

Inversion symmetry on the other hand would require the hoppings to be symmetric

under an inversion operation which may be peformed about any center of a hexagon

in the lattice or at either of the sublattice points. Another manner in which this

symmetry may break is through a staggering of the on-site energies at the two sub-

lattice sites within a unit cell. Whenever any such symmetry is broken the gap

at the Dirac point appears due to the introduction of a non-zero σz Pauli matrix

term in the SU(2) representation of the Hamiltonian in reciprocal space. This is

known as the mass term since it gives the low energy Dirac fermions a mass and

for a constant value is also at times referred to as a ‘Semenoff’ mass. In essence

the time reversal and inversion symmetries impose constraints on the spectrum at

each wavevector or pseudomomentum value such that this term disappears from the

Hamiltonian and a gap does not arise. In such a case the calculation of the Berry

curvature [79] around the two Dirac points gives singular ‘vortex’ like values and the

integral of this curvature gives +π and −π which cancel over the Brillouin zone to

give zero Chern number and hence trivial topology. It was Haldane who was the first

to note the role of breaking symmetries to make a Graphene like hexagonal lattice

topologically non-trivial [66]. He identified the need to break time reversal symme-

try by making the hoppings to next nearest neighbours complex valued. Although

done in the context of studying a parity anomaly in a lattice model that supported
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relativistic fermionic excitations in (2 + 1)-D, the model later acquired significance

as a prototype for a Chern insulator which could exhibit Hall quantization even in

the absence of a magnetic field. In Chapter 4 we study the effects of periodic kicking

on the topological properties of the Haldane model and exhibit a topological phase

transition in the resulting system.

1.3 Floquet Engineering

A term of recent coinage but gaining rapid acceptance, Floquet Engineering signi-

fies the set of methods or practices which make use of an appropriately chosen form

of external driving or forcing, which could be either mechanical or electromagnetic

in nature, to influence the properties of a substrate or target system Hamiltonian

in such a way as to give rise to an effective time independent Hamiltonian for the

driven system that mimics any desired static Hamiltonian [80–82]. The theoretical

basis for this approach is provided by Floquet Theory, a well founded mathematical

result that explains the structure of solutions for differential equations with peri-

odic coefficients. Further the formalism may be extended to give rise to the idea

of a time independent hermitian effective Hamiltonian, that describes the long time

dynamics relative to a period of driving, and a unitary micromotion operator that

accounts for the short term dynamics. The scheme relies on the availability of con-

vergent expansions that allow the effective Hamiltonian and the micromotion to be

calculated upto some degree of approximation. The usual way is to assume a high

frequency limit in which these expansions can be treated perturbatively to various

orders in the inverse of the frequency and thus provide leading order corrections

to the expressions of the effective Hamiltonian and the micromotion. For a thor-

oughly detailed account of this method starting from the fundamentals of Floquet

theory to the treatment of the Schrödinger equation with a periodic Hamiltonian

and the development of the Floquet Hamiltonian in an extended Floquet Hilbert
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space upto the idea of the effective Hamiltonian and high frequency perturbative

approxiamtions to it, the reader is advised to refer to Appendix B.

The theoretical origins of the idea of an effective description of a system driven

by a high frequency periodic force was initially formulated in the classical problem

of the Kapitza pendulum and solved by Landau [83, 84] where it was observed that

the fast oscillations behave like a potential for the slow moving part. Extension of

these ideas to quantum dynamics has been performed by several workers [85–89]

with the development of a new extended Floquet space description and the notions

of quasienergies and Floquet states as an effective stationary state description of

a periodic time dependent problem [90, 91]. The recent trend has been the de-

velopment of various high frequency expansions that attempt to get rid of various

spurious contributions arising in the Floquet Hamiltonian say from an initial phase

dependence or the artefactual breaking of symmetry in the Floquet band structure

of a driven system [80, 82, 92, 93].

The experimental basis for the application of Floquet Engineering methods has

largely been provided by the rapid advances in the area of ultra cold atoms in optical

lattices [94]. These have provided an experimantal tool box for simulating various

many body effects [95] and condensed matter systems where periodic driving has

played a significant role in simulating effective fields that generate effects analogous

to those found in the presence of magnetic fields and spin-orbit couplings [96–103].

Significant progress has been made in the methods that allow the coupling of artifi-

cial gauge fields to the bosonic or fermionic optical lattices. Such fields may be both

abelian or non-abelian [104–114]. Even in realizing such couplings the use of peri-

odic driving is important as several techniques use periodic ‘shaking’ of the optical

lattice to achieve this [101, 102, 115, 116].

Floquet engineering techniques have also been developed in conjunction with

the emerging field of Topological Insualtors to open up a new domain of ‘Floquet
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Topological Insulators’ which has enabled the creation and manipulation of a wide

range of topological phases and edge state phenomena such as Majorana modes [117–

131]. Imparting non-trivial topology to trivial systems with new emergent Floquet

topological phase transitions [132–139]. This includes two types of schemes where

the driving may either be applied as light irradiating a material substrate such as

Graphene or the periodic driving of cold atom and photonic crystal setups. In the

former case the noteworthy initial step was taken by Oka and Aoki [140] where they

study the effects of driving Graphene using circularly polarized light leading to the

breaking of time reversal symmetry and opening of gaps in the Floquet spectrum

which make the system topological and give rise to a kind of photoinduced Hall

effect. This has spearheaded several works which have used irradiated Graphene as

the setting for studying the hierarchy of Floquet band gaps and resulting edge modes,

realizing tunable Floquet topological insulators in driven Graphene and inducing

topological phase transitions via the merging of Dirac points [140–149]. In the

case of cold atom systems and photonic crystal setups the Floquet methods have

enabled the study of topological phase transitions by allowing the fine tuning of

various system parameters [150–158].

A popular means of periodic driving is the use of delta-function kicks, or a

periodic train of delta functions, which has been widely studied in the contexts

of quantum chaotic behavior, non-linear dynamics and localization-delocalization

transitions, when applied to quantum top, rotor or Harper Hamiltonians [159–161].

This kind of kicking is also known to impart interesting topological properties in

the form of new Floquet topological phases such as semi-metallic phases in Harper

models [162], chiral edge modes in Quantum Hall systems [163], appearance of un-

expected topological equivalence between spectrally distinct Hamiltonians [164] as

well as generation of Majorana end modes in 1-D systems [165]. This has led to

interest in studying Dirac systems especially Graphene, its nano-ribbons and other
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hexagonal lattice models such as the Kitaev model under periodic driving or kicking.

[166–168].

We shall like to make mention of the fact that the traditional classification

schemes which have been found to apply to ordinary Topological Insulators [169–171]

do not always apply identically to the effective static Floquet topological Hamilto-

nians for periodically driven systems. This is because the Floquet quasienergies and

hence the Floquet bands for driven lattice systems have a periodic structure and

can, in a reduced zone kind of depiction, be compactified to a circle. Thus if a static

Hamiltonian has N subbands with N − 1 gaps then for a similar Floquet subband

structure, N subbands have N gaps. An additional gap, between the topmost and

bottom band, results from a folding back of the spectrum in a reduced Brillouin zone

like representation for the quasienergies. It is the gap closing transitions in this gap

that give rise to anomalous edge state behaviours often seen in Floquet topological

insulators. This necessitates the definition of new winding number invariants that

correctly capture the bulk-edge correspondence in these systems. Several such in-

variants and various classification schemes have been suggested in the literature and

presently form an ongoing research effort [172–180].

1.4 Organization of the Thesis ∗

The thesis contains a total of six chapters, including this introduction, and three

appendices. Here, we would like to give a brief outline of each of these, besides the

introduction,

• Chapter 2 : The thermal properties of a system, comprising of a spinless non-

interacting charged particle in the presence of a constant external magnetic

field and confined in a parabolic quantum well are studied. The focus has been

∗Summaries of the chapters on published results are adapted from the abstracts of the respective
publications.
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on the effects of a topological defect, of the form of conical disclination, with

regard to the thermodynamic properties of the system. The study shows an

interplay between magnetic field, temperature and the degree of conicity by

setting two scales for temperature corresponding to the frequency of the con-

fining potential and the cyclotron frequency of external magnetic field. The

defect parameter is found to affect the quantitative behaviour of the thermo-

dynamic quantities. It plays a crucial role in the competition between the

external magnetic field and temperature in fixing the values of the thermal

response functions.

• Chapter 3 : We investigate a variant of the AAH model corresponding to a

bosonic optical lattice of ultra cold atoms under an effective oscillatory mag-

netic field. In the limit of high frequency oscillation, the system maybe ap-

proximated by an effective time independent Hamiltonian. We have studied

localization/delocalization transition exhibited by the effective Hamiltonian.

The effective Hamiltonian is found to retain the tight binding tri-diagonal form

in position space. In a striking contrast to the usual AAH model, this non-dual

system shows an energy dependent mobility edge - a feature which is usually

reminiscent of Hamiltonians with beyond the nearest neighbour hoppings in

real space.

• Chapter 4 : We move from the AAH type systems to hexagonal lattices.

We consider a periodically δ-kicked Haldane type Chern insulator with the

kicking applied in the ẑ direction. This is known to behave as an inversion

symmetry breaking perturbation, since it introduces a time-dependent stag-

gered sub-lattice potential. We study here the effects of such driving on the

topological phase diagram of the original Haldane model of a Hall effect in

the absence of a net magnetic field. The resultant Floquet band topology is

again that of a Chern insulator with the driving parameters, frequency and
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amplitude, influencing the inversion breaking mass M of the undriven Haldane

model. A family of such, periodically related, ‘Semenoff masses’ is observed

to occur which support a periodic repetition of Haldane like phase diagrams

along the inversion breaking axis of the phase plots. Out of these it is possible

to identify two inequivalent masses in the reduced zone scheme of the Floquet

quasienergies, which form the centres of two inequivalent phase diagrams. Fur-

ther, variation in the driving amplitude’s magnitude alone is shown to effect

the topological properties by linearly shifting the phase diagram of the driven

model about the position of the undriven case. A phenomenon that allows

the study of Floquet topological phase transitions in the system. Finally, we

also discuss some issues regarding the modifications to Haldane’s condition for

preventing band overlaps at the Dirac point touchings in the Brillouin zone,

in the presence of kicking.

• Chapter 5 : The low energy continuum limit of graphene is effectively known

to be modeled using the Dirac equation in (2+1) dimensions. We consider

the possibility of using a modulated high frequency periodic driving of a two-

dimensional system (optical lattice) to simulate properties of rippled graphene.

We suggest that the Dirac Hamiltonian in a curved background space can also

be effectively simulated by a suitable driving scheme in an optical lattice.

The time dependent system yields, in the approximate limit of high frequency

pulsing, an effective time independent Hamiltonian that governs the time evo-

lution, except for an initial and a final kick. We use a specific form of 4-phase

pulsed forcing with suitably tuned choice of modulating operators to mimic

the effects of curvature. The extent of curvature is found to be directly related

to ω−1 the time period of the driving field at the leading order. We apply the

method to engineer the effects of curved background space.

• Chapter 6 : The important results of the work carried out in the preceeding
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chapters is briefly summarized and some future avenues of investigation are

discussed.

• Appendix A: In this appendix we discuss the problem of spinless electrons

on a 2-D square lattice in a magnetic field perpendicular to the lattice plane.

This is a compilation of results and discussions found in various places in the

literature collected here for easy reference and book keeping. Detailed deriva-

tions of the effective 1-D AAH Hamiltonian are provided. The various gauge

arguments involved in defining the magnetic translation group are highlighted.

We also provide a detailed account of the reciprocal space picture of the prob-

lem and the self-dual nature of the AAH Hamiltonian. The use of duality

arguments in diagonalizing the reciprocal space Hamiltonian is illustrated and

the subband structure for the case of rational values of flux quanta motivated.

• Appendix B : This appendix deals with the key results and formalism asso-

ciated with Floquet theory adapted from relevant sources. Their application

to the problem of the Schrödinger equation with a periodic in time Hamilto-

nian and the development of the extended Floquet Hilbert space picture. The

distinctions between the Floquet Hamiltonian and the effective Hamiltonian

are delineated and the relation between them discussed. Two high frequency,

perturbative expansion schemes are derived and their use in approximating

the effective Hamiltonian is shown.

• Appendix C : Here we review a kinematical formalism, due to Mukunda and

Simon [20], which captures the notion of the Berry or geometric phase and

offers a means of deriving quantities like the Berry curvature that are essential

to compute topological invariants, such as the Chern number, for periodic

systems.
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Chapter 2

Thermal Properties of a Particle

Confined to a Parabolic Quantum

Well in 2D Space with Conical

Disclination∗

2.1 Introduction

In recent decades, advances in nanotechnology, semiconductor device fabrication

and micro-fabrication techniques have thrown open the rich field of two dimensional

electron systems (2DES) [1–3]. There is a special focus on systems with confinement

along all three spatial dimensions [5, 6, 11, 181]. Several experiments aimed at

understanding the electronic [2] and optical properties [182, 183] of such systems,

commonly referred to as quantum dot [5, 184], have been undertaken [10, 11, 185,

186]. In some of these experiments the quantum dots are exposed to magnetic fields

∗This chapter is adapted from the paper “Thermal Properties of a Particle Con-
fined to a Parabolic Quantum Well in 2D Space with Conical Disclination” by Mishra,
Guha Sarkar and Bandyopadhyay (2014).
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of varying strength and their response is studied in terms of electron transport and

inter-band tunneling properties [10, 11, 187, 188].

A reasonable model to describe such non-relativistic quantum dot systems re-

quires a parabolic quantum well as the confining potential [189]. However, theoret-

ical exploration of such models is far from exhaustive and presents several potential

situations for study. One such aspect is the response of a charged particle confined

to a quantum well in an applied magnetic field [190] and constrained to a surface

with non-trivial geometry. An often studied topological defect is a conical discli-

nation [33, 191–194], which has been the focus of quantum mechanical problems in

curved space [33–36] of the Landau level type [30]. Another dimension of investi-

gation [189, 195–197] looks into the thermodynamic properties of confined systems

of the Landau-Fock-Darwin [32] type in ordinary Euclidean space. These lines of

examination can be brought to converge on the issue of thermodynamic behavior of

single electron confined in the presence of a conical disclination, a situation which

has the potency to reveal the physics of quantum dots with novel geometry. The

presence of topological defects in the constraining surface is expected to affect the

thermodynamic characteristics of such a system and their asymptotic behavior.

In this chapter we analyze the properties exhibited by a charged particle con-

strained on a surface with a defect of the nature of conical disclination. The system

comprises of the particle subjected to a magnetic field, while it is trapped in a

parabolic Fock-Darwin potential. The approach is, to first calculate the energy

spectrum and then use the canonical partition function to uncover the thermody-

namic properties of the system. We have used the Schrödinger equation to obtain

the energy eigenspectrum. This is motivated by the fact that spectroscopic studies

of electronic states of quantum dots (such as InSb quantum dot) indicate that a

Schrödinger Hamiltonian with a Fock-Darwin confining potential gives reasonable

agreement with experiments [11]. We introduce a conical disclination defect in such
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systems through the Volterra process [193] (discussed in the next section). The

approach here borrows an idea from gravity, whereby the defect appears as a mod-

ification of geometry of the underlying space. We also note that a similar approach

maybe adopted for graphene [4, 7] like 2D systems. However, the spectrum there is

linear at the band minima and thereby the Dirac Hamiltonian has to be adopted. We

have studied the variations of the thermodynamic quantities of interest like internal

energy, specific heat and entropy with magnetic field, temperature and extent of the

defect. The asymptotic limits of these are checked for confirmation with expected

results.

The chapter consists of five sections. Sec. 2.2 gives a brief introduction to

the Landau level problem and its Fock Darwin variant. Sec. 2.3 is dedicated to

developing the mathematical formalism. The defect is introduced as a modification

of the metric from its otherwise Euclidean form. Beginning with a suitable choice

of coordinates, the Hamiltonian of the system is constructed. The Schrödinger

equation is then solved for this Hamiltonian to obtain the energy spectrum. This

is followed by obtaining the various thermodynamic variables of the system using

the canonical partition function. The expressions for these quantities are recast in

terms of dimensionless parameters and their behavior is studied. The asymptotics

are checked for consistency. In Sec. 2.4 we present the results of our study. Finally

we conclude with a discussion and summary in the last section.

2.2 Landau Level Problem

The fundamental, quantum-mechanical problem of a 2-dimensional gas of electrons

(spin ignored) in a magnetic field perpendicular to their plane of motion is referred

to as the Landau level problem, after L. D. Landau who first provided its solution

[30]. Here we briefly survey the essential features of this system. The Hamiltonian
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for this is, in general, given by [31]

H =
1

2m

�
p− e

c
A(x, y)

�2

(2.1)

where m is the electronic mass and e the magnitude of its charge, p its momentum

and A(x, y) the position dependent vector potential giving rise to a constant mag-

netic field B in the ẑ direction, B = Bẑ. The problem is usually solved in a certain

gauge choice. Two common choices are the Landau gauge A = −B(y, 0, 0) and the

symmetric gauge B/2(−y, x, 0). One may be guided by the geometry of the problem

to prefer one over the other but the essential physical results are independent of this

choice.

In the Landau gauge the Hamiltonian takes the form

HL =
1

2m
(−ih̄∂x +

e

c
By)2 +

1

2m
(−ih̄∂y)

2 (2.2)

where through a set of transformations, and a wavefunction ansatz ψL(x, y) =

eikxψLy, the quadratic term in the y coordinate becomes a harmonic oscillator poten-

tial with its frequency as the cyclotron frequency ωc = eB/mc. Thus the spectrum

is given by that of a 1-D oscillator

�n = h̄ωc

�
n+

1

2

�
(2.3)

with the quantum number n denoting the Landau level. The wavefunction is given

by

ψL(x, y) = CeikxHn(y + kxl
2
B)e

(y+kxl2B)2/2l2B (2.4)

where C is the normalization constant, Hn is the usual Hermite polynomial which

enters as the quantum harmonic oscillator solution, and lB is the characteristic

magnetic length scale lB =
�

h̄c
eB
. Given that the solution is a free particle in the x

22



coordinate the Landau levels have an infinite degeneracy labelled by kx.

The Landau Fock-Darwin [32] problem is an extension of Hamiltonian in eq.(2.1)

by the addition of a 2-D harmonic oscillator potential in the following way

HLD =
1

2m

�
p− e

c
A(x, y)

�2

+
1

2
mω2

p(x
2 + y2) (2.5)

where ωp is the frequency of the confining potential. Due to the radial symmetry

of the potential above, the symmetric gauge is the preferred gauge of choice while

solving this problem. Details of which can be found in [31]. In the remaining portion

of this chapter we shall be considering this system on a space with a defect in its

metric and studying its spectrum and thermal-statistical properties.

2.3 Formalism

The topological defect being introduced in the current chapter is a conical disclina-

tion. This entails a two-dimensional (2D) conical space which is locally flat at all

points except for the origin [34]. The construction of this space is to be visualized as

the consequence of cutting out a sector with a certain apex angle called the deficit

angle, from the ordinary 2D flat space and subsequently welding together the newly

revealed edges [198]. The metric for such a space, in the usual polar coordinates

(r,φ) is given by gµν = diag(1, r2). However, it has to be kept in mind that φ here

has an incomplete angular range [0, 2πκ] with κ �= 1. This, being a consequence

of the surgical procedure performed previously. The parameter κ is a measure of

the deficit angle. It quantifies the conicity of the surface and shall henceforth be

referred to as the kink parameter. The kink here represents a singular deformity of

the 2D conical surface at the origin. The metric described above can be expressed
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in terms of the complete angular coordinate θ as follows

ds2 = κ−2dρ2 + ρ2dθ2. (2.6)

where, θ varies in [0, 2π]. The transformation from plane polar coordinates to

the new coordinate system, i.e. from (r,φ) → (ρ, θ) is achieved via the set of

transformation equations

ρ = κr θ = κ−1φ. (2.7)

The curvature is measured by the quantity

2π
κ− 1

κ
δ(2)(ρ),

where δ(2)(ρ) is the Dirac delta function in two dimensions [36]. Hence, for 0 < κ < 1

we have negative curvature and for 1 < κ < ∞ the curvature at origin is positive.

We note that the metric described here in the context of 2D condensed matter

system also arises in the description of space-time around a cosmic string [199].

In the above described space we consider a charged spin-less quantum particle (

for our purposes it has electronic mass and charge). This particle is subjected to a

constant magnetic field B which is normal to the conical surface. The appropriate

choice of magnetic vector potential that yields such a magnetic field is given in the

symmetric gauge by

A(ρ) =
Bρ

2κ
êθ (2.8)

where B = |B|. This gives rise to the standard quantized single particle Landau

level states [30].

In order to model the confinement of the particle within a small region on the

surface, we subject the particle to a parabolic potential of the Fock-Darwin type

24



[32] given by

V (ρ) =
1

2
Mω2

p

ρ2

κ2
(2.9)

where M is the effective mass of the particle and ωp is a measure of the steepness

of the confinement. The appearance of the kink parameter indicates that the back-

ground space is conical. The choice of such a potential is motivated by symmetry

considerations and its frequent appearance in the modeling of quantum dots with

low occupancy [200].

The Hamiltonian for the particle of mass M , assumed to be carrying a negative

charge of magnitude e under minimal electromagnetic coupling, is given in the cone

space coordinates (ρ, θ) as

H = − h̄2

2M

�
κ2

ρ

∂

∂ρ

�
ρ
∂

∂ρ

�
+

1

ρ2
∂2

∂θ2

�
− i

2

h̄ωc

κ2

∂

∂θ

+
1

8
Mω2

c

ρ2

κ4
+

1

2
Mω2

p

ρ2

κ2

(2.10)

where the parameter ωc introduced here is the cyclotron frequency ωc = eB/Mc.

Note the appearance of the kink parameter κ �= 1 when one expresses the Hamilto-

nian in the cone space.

The general form of eigenfunctions for this Hamiltonian can be guessed from

symmetry arguments. Separation of the Schrödinger equation into radial and angu-

lar components yields such a general form

ψ(ρ, θ) =
1√
2π

eimθRnm(ρ) (2.11)

The quantum numbers n and m are to be defined using the appropriate boundary

conditions. Here, Rnm(ρ) stands for the radial component of the wave function.
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The condition on m is readily obtained by requiring ψ to be unique under a rotation

of 2π, ie ψ(ρ, θ) = ψ(ρ, θ + 2π). This implies that m has to be an integer. The

Schrödinger equation Hψnm = Enmψnm yields the following equation for the radial

wave function Rnm(ρ).

− h̄2

2M

�
κ2

ρ

∂

∂ρ

�
ρ
∂

∂ρ
Rnm(ρ)

�
− m2

ρ2
Rnm(ρ)

�

+

�
1

2

h̄ωcm

κ2
+

1

8
Mω2

c

ρ2

κ4
+

1

2
Mω2

p

ρ2

κ2

�
Rnm(ρ)

= EnmRnm(ρ)

(2.12)

The procedure to solve the above equation is through a set of standard transfor-

mations, which involves the introduction of a new parameter Ω with dimension of

frequency. The parameter Ω is given by

Ω =

�
ω2
p +

�ωc

2κ

�2

. (2.13)

Following the formalism in [33] eq. (2.12) can be transformed to a form which

permits solution in terms of the confluent-hypergeometric function. Our primary

interest lies in the energy levels which are given by

Enm =

�
2n+ 1 +

|m|
κ

�
h̄Ω+

mh̄ωc

2κ2
(2.14)

To solve the radial eigenvalue equation (2.12), we introduce ζ = ρ2MΩ/h̄. This

transformation yields the following equation

ζ
∂2R(ζ)

∂ζ2
+

∂R(ζ)

∂ζ
+ Ξ(ζ)R(ζ) = 0 (2.15)
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where we have used

Ξ(ζ) =
β

κ2
− ζ

4κ4
− m2

4κ2ζ
and β =

1

2

�
Emn

h̄Ω
− ωcm

2κ2Ω

�
.

Using variables ζ � = ζ/κ2 and m� = m/κ we have

ζ �
∂2R(ζ �)

∂ζ �2
+

∂R(ζ �)

∂ζ �
+ Ξ�(ζ �)R(ζ �) = 0 (2.16)

where the new function Ξ� is

Ξ�(ζ �) = β � − ζ �

4
− m�2

4ζ �
, with β � =

1

2

�
Emn

h̄Ω
− ωcm

�

2κΩ

�
.

Assuming R(ζ �) to be of the form

R(ζ �) = e−
ζ�
2 ζ �

|m�|
2 Y (ζ �),

the equation (B.58) reduces to

ζ �
∂2Y

∂ζ �2
+ (|m�|+1− ζ �)

∂Y

∂ζ �
(2.17)

+

�
β � − |m�|

2
− 1

2

�
Y = 0.

The solution to this equation is given in terms of the confluent-hypergeometric

function as

Y (ζ �) = F

�
−
�
β � − |m�|

2
− 1

2

�
, |m�|+1; ζ �

�
(2.18)

The requirement of boundedness of R(ζ �) as ζ � → ∞ is met if

β � − |m�|
2

− 1

2
= n, (2.19)

where n is a non-negative integer. From this boundary condition (after substituting
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m/κ in place of m�) the eigenenergies are given by

Enm =

�
2n+ 1 +

|m|
κ

�
h̄Ω+

mh̄ωc

2κ2
(2.20)

The eigenfunctions corresponding to these eigenvalues are obtained after imposing

the requirement that for integral values of n, the confluent hypergeometric function

reduces to Laguerre polynomials given as

Lα
n(ζ

�) =
Γ (α + n+ 1)

Γ (α + 1)n!
F (−n, α + 1; ζ �) (2.21)

here Γ(n) = (n−1)! is the usual gamma function.Thus the eigenfunctions are of the

form

R(ζ) = Ce−
ζ

2κ2

�
ζ

κ2

� |m|
2κ

L
|m|
κ

n (ζ) (2.22)

where C is the constant of normalization.The first term in the product represents a

Gaussian in the variable ρ whose spread is now determined by the degree of disclina-

tion. The localization of the wave function is hence sensitive to κ and consequently

all probability densities are affected by the degree of conicity.The appearance of

|m|/κ indicates the deficit/surplus of the polar angle quantified through κ.

2.3.1 Computation of Thermodynamic Quantities

If we consider the system to be at equilibrium with a heat bath at temperature T ,

the canonical partition function shall be given by

Z =
�

n,m

e−β(2n+1)h̄Ω e−β [ |m|
κ

h̄Ω+mh̄ωc
2κ2

]. (2.23)
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where β = 1
kBT

and kB is the Boltzmann constant. The sum is over the discrete

energy levels given in Eq. (2.14). Introducing dimensionless variables χ1 =
βh̄Ω
κ

and

χ2 =
βh̄ω c

2κ2 the above expression maybe simplified to

Z =
sinhχ1

4 sinh

�
χ1 + χ2

2

�
sinh

�
χ1 − χ2

2

�
sinh(κχ1)

. (2.24)

It is now possible to compute thermodynamic quantities from this expression of the

partition function.

The internal energy U for the system is given by

U = −∂ lnZ

∂β

= −
�
χ1 coth(βχ 1)−

χ1 + χ2

2
coth β

�
χ1 + χ2

2

�

− χ1 − χ2

2
coth β

�
χ1 − χ2

2

�
− χ1κ coth βκχ 1

�
(2.25)

Similarly one can obtain the specific heat capacity Cv

Cv = kB β
2∂

2 lnZ

∂β 2

= kB β
2

�
(χ1 + χ2)

2

4
csch2 β

(χ1 + χ2)

2
+ χ2

1κ
2csch2 βκχ 1

+
(χ1 − χ2)

2

4
csch2 β

(χ1 − χ2)

2
− χ1

2csch2 βχ 1

�
. (2.26)

The Helmholtz free energy F = − lnZ/β may be used to calculate the entropy S as
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S = (U − F )/T . This yields the following expression

S =
1

T

�
−χ1 coth(βχ 1) +

χ1 + χ2

2
coth

�
β
χ1 + χ2

2

�

+
χ1 − χ2

2
coth

�
β
χ1 − χ2

2

�
+ χ1κ coth(βκχ 1)

�

+ kB

�
ln sinh(βχ 1)− ln sinh

�
β
χ1 + χ2

2

�

− ln sinh

�
β
χ1 − χ2

2

�
− ln sinh(βκχ 1)− ln 4

�

(2.27)

We shall now study the variation of these quantities with the external magnetic

field B and temperature T . In order to facilitate this, it is helpful to choose certain

special units which render the physical quantities U , Cv and S dimensionless. We

introduce a parameter α = ωc/ωp to quantify the magnetic field strength in units of

Mωpc/e and ξ = kBT/h̄ωp to represent temperature measured in units of h̄ωp/kB.

We also introduce �α =
�
1 + α2/4κ2 and α± = �α± α/2κ.

Using these new dimensionless parameters, we have the internal energy U , en-

tropy S and specific heat Cv may be expressed as

Internal energy :

U

h̄ωp

=
1

κ

�
−�α coth

� �α
ξκ

�
+

α+

2
coth

�
α+

2ξκ

�
+

α−
2

coth

�
α−
2ξκ

�
+ �ακ coth

��α
ξ

��

(2.28)

Specific heat :

Cv

kB
=

�α2

ξ2
cosech2

��α
ξ

�
+

α+
2

4κ2ξ2
cosech2

�
α+

2κξ

�
+

α−2

4κ2ξ2
cosech2

�
α−
2κξ

�
− �α2

ξ2κ2
cosech2

� �α
κξ

�

(2.29)
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Entropy :

S

kB
=

1

ξκ

�
−�α coth

� �α
ξκ

�
+

α+

2
coth

�
α+

2ξκ

�
+

α−
2

coth

�
α−
2ξκ

�
+ �ακ coth

��α
ξ

��

+

�
ln sinh

� �α
ξκ

�
− ln sinh

�
α+

2ξκ

�
− ln sinh

�
α−
2ξκ

�
− ln sinh

��α
ξ

�
− ln 4

�
.

(2.30)

The asymptotic behaviour of the above expressions in the low temperature limit is

instructive to look at. The internal energy U in the low temperature limit is given

by U → h̄Ω, where Ω is defined earlier in eq.(2.13). The low temperature asymptotic

form (ξ → 0) of entropy S is given by

S ≈
�
1 +

α+

ξκ

�
e

−α+
ξκ +

�
1 +

α−
ξκ

�
e

−α−
ξκ +

�
1 +

2�α
ξ

�
e

−2�α
ξ −

�
1 +

2�α
ξκ

�
e

−2�α
ξκ (2.31)

The specific heat in the low temperature limit, is approximated by the following

function of temperature.

Cv ≈
4�α2

ξ2
e

−2�α
ξ +

α2
+

ξ2κ2
e

−α+
ξκ +

α2
−

ξ2κ2
e

−α−
ξκ − 4�α2

ξ2κ2
e

−2�α
ξκ (2.32)

2.4 Results and Discussion

2.4.1 The Energy Spectrum

The Landau-Fock-Darwin energy spectrum is given by Eq. (2.14). Fig. (2.1) shows

the variation of Enm with the external magnetic field parameter α, for a few chosen

values of the kink parameter κ = 0.75, 1.0, 1.5. The behaviour of the energy levels

is different for positive and negative values of the quantum number m. The figure

shows the variation of Enm with α for n = 1, 2. In the upper panel we show the

case when the integer m is assumed to take positive values 2, 3, 4 and 5 for each
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Figure 2.1: The low lying energies of the Landau-Fock-Darwin energy spectrum for
various values of the kink parameter κ. The upper panel (a-c) shows the spectra
for positive values of the quantum number m = 2, 3, 4, 5 (lower to the upper) and
the lower panel (d-f) corresponds to negative values of m = −2,−3,−4,−5 with
decreasing magnitude |m| from upper to the lower curves.

n. The behaviour at very low magnetic field shows that Enm is independent of α

for α � 10−2. In this low magnetic field regime one finds the usual degeneracies of

(n,m) pairs since Enm ≈ (2n+1+ |m|/κ)h̄ωp. In our case with κ = 1.0 this occurs,

for example between (n,m) pairs like [(2, 2), (1, 4)], [(2, 3), (1, 5)] and [(2, 4), (1, 6)].

These degeneracies starts to get lifted when the external magnetic field is sufficiently

high (α ≈ 1). At very high magnetic fields (ωc >> ωp) and for m > 0, we have

E → [(2n + 1)/2κ + m/κ2]h̄ωc leading to new degeneracies. In the relatively high

magnetic field region of α ≈ 10 one can readily observe that curves for all (n,m)

are monotonically increasing with nearly fixed slopes. The transition between these

extreme behaviours occurs in the intermediate field region of α ≈ 1. We note, that in

the intermediate and large magnetic field regions the difference between the energy

levels with the same value of n but different values of m is larger as compared to the
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Figure 2.2: The first few levels of the Landau-Fock-Darwin energy spectrum as a
function of the kink parameter κ. The upper panel corresponds to negative values of
the quantum number m = −1,−3,−5. The lower panel shows the same for positive
values ofm = 1, 3, 5. Three magnetic field values are chosen with α = 10−3, 1.0, 10.0.

low field region. This is owing to the fact that ωc is larger for higher magnetic fields.

For example the level corresponding to (1, 3) is higher than (2, 2). The energy levels

shift in magnitude for changing κ which implicitly affects the degeneracy pattern.

The figures in the lower panel 1(d)-1(f) shows the spectrum for negativem values.

The low magnetic field behaviour is the same as for the positive m case. However

at large magnetic fields the term mh̄ωc/2κ
2 starts to play an important role and

cancels the term |m|h̄Ω/2κ in this regime. The spectrum becomes independent of m

and only depends on n. The increase of Enm is approximately linear with magnetic

field α. The transition between the two regimes occurs again at α ≈ 1.

Figure 2.2 shows the variation of energy with the kink parameter κ for three

different values of the applied magnetic field. Fig 2(a), (b) and (c) show the variation

for negative m values (m = −1,−3,−5) corresponding to n = 1, 2. The curves show

a monotonic decrease of Enm with κ in all the three regimes of magnetic field α.
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The value κ = 1 corresponds to the case with no topological defect. We note an

asymmetry in the nature of variation of Enm about this value of κ. The energy

levels are a decreasing function of κ for both κ ≥ 1 and κ < 1 showing that positive

and negative deficit angles point towards fundamentally different physical situations.

The expression for Enm diverges as κ → 0. This, however is of no real consequence

since κ = 0 corresponds to an unphysical divergent curvature at the origin.

The vertical dotted line indicating the case without any defect (κ = 1) passes

through the point of intersection of the energy levels. These points correspond to the

degenerate energy levels at low magnetic field. The degeneracy of the (n,m) levels

for κ = 1 are seen to get lifted for κ �= 1 as the energy levels for different m vary

differently with κ. In Fig. 2(c) the different m levels for a given n are degenerate

and remain so, irrespective of κ. The figures 2(d)-2(f) show a similar variation for

positive m values. Whereas the degeneracies at weak magnetic field ( Fig. 2(d))

gets lifted for κ �= 1 there are new degeneracies that are created at higher magnetic

fields. This is seen in Fig. 2(e)-2(f) where non-degenerate energy levels at κ = 1

intersect each other at κ �= 1 showing the emergence of accidental degeneracies that

did not exist in the defect free theory.

2.4.2 Thermodynamic properties

The non-interacting spinless charged particles are assumed to be in equilibrium

with a heat reservoir at temperature T . The starting point of the thermodynamic

analysis is the evaluation of the partition function for the energy spectra given in

Eq. (2.14). The Landau-Fock-Darwin Hamiltonian has two energy scales associated

with the two frequencies ωp (which fixes the strength of the parabolic confinement)

and ωc, the cyclotron frequency related to the external magnetic field. The relative

strengths of these frequencies are expected to govern the equilibrium behaviour of the

system. The thermodynamic properties of interest, depend on the temperature ξ and

34



external magnetic field α, expressed in our chosen convenient energy unit h̄ωp. The

parameters in the Hamiltonian (ωp,ωc,κ) have a crucial interplay in determining the

responses of the system. The κ = 1 case with no defects has been studied in earlier

works [189, 195–197]. It is important to note that for κ = 1, the limiting behaviour of

the system for ωp → 0 (or equivalently ωc >> ωp) and ωc → 0 are entirely different

and describe two completely distinct physical situations. The former describes a

pure Landau problem of a free particle without any confinement, whereas the latter

describes a particle in a two dimensional parabolic well without a coupling to an

external magnetic field. The ωp → 0 limit has a pure quantum mechanical Landau-

level spectra of a one-dimensional oscillator and has the degeneracy that depends

on the size of the system. The energy spectra for the case ωc → 0 mimics that

of a 2D oscillator. The translational symmetry of the pure Landau level situation

is lost completely in the other extreme limit of a pure confinement problem. The

general Landau-Fock-Darwin solution interpolates between these extreme cases. In

the presence of κ �= 1 the same qualitative features are expected. However, the role

of κ needs to be explored and is subsequently discussed in this chapter.

We follow the Gibbs formalism to compute thermodynamic quantities like free

energy, entropy and specific heat. In this approach, the thermodynamic response

functions are obtained as derivatives of the partition function. The canonical parti-

tion function (see Eq. 2.23) is obtained for the Hamiltonian in Eq. (2.10). In the

final form, this partition function (see Eq. (2.24)) is seen to diverge in the limit

ωc >> ωp (or α >> 1) since, χ1 and χ2 are equal in this limit. This singularity

of the partition function, when the confinement strength is vanishingly small, has

been addressed in [195–197] and maybe regularized by putting certain cutoffs to the

smallest value that ωp can take. This cutoff depends on the temperature and the

degeneracy of the pure Landau level. The thermodynamic quantities like F, U, S

and Cv however, manifest no such singularity. Figure 4.5 shows the variation of Cv
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Figure 2.3: The Cv shown here is in units of kB. The upper panel shows
the variation of Cv with magnetic field for various values of temperature ξ =
0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 2.0 (curves from lower to upper). At high magnetic fields
Cv attains the value 1.0 as the spectrum reduces to the free Landau levels with no
confinement. The high temperature value of Cv for moderate to low magnetic fields
is 2 as the confinement term dominates at these regimes. The Lower panel shows
the variation of Cv with temperature for α = 0.001, 1.0, 2.0, 5.0, 10.0, 50.0 (left to
right in the upper right corner of the figures). Here again the plateau in Cv is seen
for the high magnetic fields and only at high temperatures Cv attains the value 2.0.

with magnetic field α and temperature ξ for different values of the kink parameter

κ. The variation of Cv with α shows that for weak external magnetic field and low

temperatures Cv asymptotically approaches zero. However, in this weak α regime,

at high temperatures Cv → 2kB asymptotically. This is in consonance with the

equipartition principle. The low α end behaves like a 2D oscillator (hence the factor

2). In the high magnetic field regime (α large), Cv saturates to kB. This region

corresponds to the pure Landau level with the energy spectrum of an 1D oscillator.

The qualitative features are similar when κ �= 1. However, we see that changing

κ from 0.75 to 1.5 continuously, leads to a shift of the curves from the lower end

towards the upper. This can be qualitatively ascribed to the fact that κ appears
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Figure 2.4: The contour map for specific heat Cv in the (ξ,α) phase plane, for three
values of the kink parameter (a) κ = 0.75 , (b) κ = 1.0, (c) κ = 1.5.

as a multiplicative factor to ξ in the expression for Cv and a change of κ roughly

amounts to a recalibration of the temperature scale.

The variation of Cv with temperature ξ is shown in the lower panel of Fig. 4.5.

When the value of α is small, the rise of Cv with temperature is steep, and in a very

small temperature range, Cv rises from zero to a stable value of 2kB. Beyond the

transition temperature, Cv remains flat at this value. In this situation the system

is essentially dominated by the parabolic confining potential and the physics of the

Landau levels is missing. The situation is considerably different when α is large.

Here the effect of confinement is weak and Cv attains a plateau like level when

temperature is increased. The value of Cv remains constant at kB for a range of

temperatures after which it rises to 2kB only at high values of ξ. The formation of

the plateau can be ascribed to the dominance of the Landau 1D oscillator spectrum

at high magnetic fields as opposed to the 2D oscillator spectrum of the parabolic

well when the magnetic field is weak. The extent of the plateau region is found to

be sensitive to κ. We shall discuss this κ dependence later. Figure 2.4 shows the

contour map of Cv in the (α, ξ) plane. At very low temperatures, Cv → 0 except,

when the external magnetic field is large. The lower left corner of the (α, ξ) plane

corresponds to this phase where Cv is small. Increasing the temperature at small

values of α leads to a monotonic increase of Cv to its saturated value of 2kB (upper
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Figure 2.5: The dependence of Cv on the kink parameter κ for different val-
ues of external magnetic field α and temperature ξ. For the upper panel ξ =
2.0, 1.0, 0.7, 0.5, 0.4, 0.3, 0.2 (top to bottom).

left corner of the phase diagram). At such low values of α there is hardly any

Landau coupling to the magnetic field. The Landau plateau occurs at large α when

the energy spectrum approaches the Landau levels. This is the forked region of the

contour map, where, for a considerable range of intermediate temperatures the value

of Cv remains at the kB level, and only increases to 2kB at still higher temperatures

(this is not seen in the phase diagram and occurs for values of ξ even above the

upper right corner). The extent of the forking region (plateau in Cv depends on

the kink parameter. Infact, it is seen to decrease with increasing κ. This can be

understood by noting that a changing κ can be equivalently seen as changing ξ with

a fixed κ. The qualitative features of the phase diagram remain the same when κ is

varied. However, there are quantitative changes which we shall discuss now.

Figure 2.5 shows the variation of Cv with κ. At high temperatures, Cv is not

sensitive to κ unless the magnetic field α is also very high. This is seen in the

figures 5(a)-(c). The specific heat is however very sensitive to κ at low temperatures.
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Increasing κ can be equivalently interpreted as a scaling of α and this explains the

plateau (characteristic of large α) when κ is large. At large α (figure 5(c)), all the

low temperature curves cluster around the kB level and stabilizes at the 2kB level

only for high temperatures. Figure 5(e) shows that there is a cross over of Cv at a

certain value of κ. This implies that at some intermediate low temperatures Cv is

not much sensitive to the changes in the magnetic field for certain values of κ. At

higher temperatures, however, Cv saturates to 2kB. This growth is slower for the

curves corresponding to large α values which tends to stay in the plateau region as

compared to the case when α is small. Here, we see that κ essentially re-calibrates

the temperature scale.

Figure 2.6 shows the behaviour of the entropy as a function of magnetic field and

temperature. The competition between the variables ξ and α decides the degree of

order in the system. We find that the asymptotic form of S in Eq. (2.31) is valid

for a certain value of ξ that depends on the magnetic field and κ. This region of

validity of this limiting form of entropy is shown by broken lines in Fig. 2.6 (a)-(c).

The third law of thermodynamics is respected and we have S → 0 as ξ → 0. The

growth of entropy from the low temperature ordered regime to the disordered state

at high temperature, depends on the magnetic field. The growth is steeper for higher

magnetic fields. However at very high temperatures the magnetic field dependence

keeps decreasing. Figures 6 (d-f) shows the variation of entropy with magnetic field.

At very high magnetic field there is a slowing down on the rate at which S increases.

This feature is seen for a wide range of temperatures. The effect of κ here is clearly

that of a scaling parameter that re-calibrates the temperature scale ξ.

2.5 Summary and Conclusion

In this chapter, we have carried out a study of the thermodynamic ramifications of

a conical defect, in the context of Landau-Fock-Darwin problem. The competing
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behaviour of the temperature and magnetic field is noted, and how a change in the

kink parameter influences this. The variation of quantities like specific heat and

entropy with the kink parameter illustrates the physical effect of the disclination to

be a sort of recalibration of the temperature scale. Also of note are the essential

non trivialities inherent in the Landau-Fock-Darwin which are recovered here in the

presence of the conical defect as is illustrated by the step in the specific heat curve

at high magnetic fields, which reflects the interpolation of the behaviour between a

1D and a 2D oscillator.

We conclude by noting that it is possible to extend this analysis to further

studies which could incorporate discrete lattice structure and interactions in the

presence of this class of topological defects. In the following chapter we shall indeed

move to a lattice description of the Landau level problem and study the effects of

making the magnetic field a rapidly oscillating function of time. Though no non-

trivial geometry is introduced we shall see that the driving suffices to modify the
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localization-delocalization behaviour of the electronic wavefunctions from what is

usually observed in this system.
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Chapter 3

Phase transition in a

Aubry-André system with rapidly

oscillating magnetic field∗

3.1 Introduction

Proceeding from a continuum description of the Landau level problem as a confined

2-D gas of spinless electrons in the previous chapter, we now move to another sig-

nificant version which incorporates the effects of a discrete square lattice. Appendix

A discusses the effects of this choice in great detail as far as the case of rational flux

quanta is concerned, where a energy band description is permitted. In the current

chapter we shall consider the physics of the system in the presence of irrational flux

quanta that give rise to anomalous spectral properties and , of chief interest to us,

a metal-insulator transition with a modualtion of the on-site lattice potential in the

effective 1-D Aubry-André-Harper form of the Hamiltonian. To see how one goes

from a square lattice to this 1-D form in the tight binding, nearest-neigbor approx-

∗ This chapter is adapted from the paper “Phase transition in a Aubry-André
system with rapidly oscillating magnetic field” by Mishra, Sashidhara, Guha Sarkar
and Bandyopadhyay (2016).
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iamtion one is referred to Appendix A. Here we shall study some aspects of the

changes to the metal-insulator transition that are observed on making the irrational

flux quantum a high frequency, periodic function of time.

Ever since its proposal by Anderson [26], localization, and transitions between

localized and extended states, have been studied in a variety of systems [201]. Exten-

sive analysis has been undertaken to understand various aspects of metal-insulator

transitions, localization as well as existence of mobility edges in quasi-periodic or

disordered 1D lattices using scaling and renormalization techniques [202–209]. A

system which has served as a rich prototype for such studies is the Hamiltonian,

originally due to Harper [21], and investigated for phase transitions by Aubry and

André [25].

An important feature of the Harper Hamiltonian is the existence of a metal-

insulator transition [25] reminiscent of Anderson transition. However, a notable dif-

ference is the absence of an energy dependent mobility edge separating the localized

and extended states, which is a distinguishing feature of the Anderson transition in

3D. The Aubry-André-Harper (AAH) Hamiltonian exhibits a sharp, duality driven,

transition at a unique critical value of the lattice modulation strength for all energies

[22–24, 210]. An ensuing trend in recent works has been to develop variations on

the model which manifest a Anderson-transition like mobility edge [211–214].

The quest is legitimized further by the substantial progress made by the cold

atom community in reproducing complex condensed matter phenomena including

Anderson localization [215, 216].

The experimental investigation of localization in 1D systems, especially of the

quasiperiodic/incommensurate crystalline variety has witnessed a sustained interest

ever since such lattices could be realized using ultra cold atoms,in a bichromatic

optical potential, or photonic quasicrystals [216–223]. These studies have ranged

from direct experimental demonstration [216, 218, 224–227] to numerical calculations
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[219–221] with accompanying proposals for observing the appearance of localized

phases and the Metal to Insulator or superfluid to Mott insulator transition (in

the presence of interactions). Here, the control on the degree of commensurability

has helped to identify the point of transition which, in the AAH model is the self

duality induced critical point [223]. The Hofstadter variant and the AAH model in

a 2D optical lattice have also been successfully realized [113, 114], in the context of

simulating homogeneous magnetic fields in optical lattices. The effects of periodic

driving on localization phenomena in 1D disordered systems as a possible means

of weakening localization and arriving at extended or non local states has shown

encouraging results [228, 229]. Similar pursuits in AAH systems with a view to

analyzing diffusive transport behaviour and wavepacket dynamics in the presence of

driving, have been promising in terms of appearance of delocalized states [230–232].

The technique of ’shaking’ of ultracold atoms in optical lattices has risen to

prominence as a flexible means of generating new effective Hamiltonians which may

replicate the effects of disorder, curvature, stresses and strains, and several other

phenomena as synthetic gauge fields both abelian or non abelian [102, 217, 233, 234].

Some recent studies in driven cold atom setups have looked at induced resonant cou-

plings between localized states thereby making them extended [235] or at localization

through incommensurate periodic kicks to an optical lattice [236]. In these models,

the phase transition instead of being driven by disorder, is a consequence of delib-

erate incommensurate periodicity. Demonstration of this behaviour has also been

sought in a phase space analysis of the transition [237–239].

However, conspicuous by their absence have been works which look at the AAH

model with a rapidly oscillating magnetic field, using the extensive tunability of cold

atom setups. The existing study of AAH systems assumes the magnetic field to be

static in time. If the magnetic field is periodic, then one may find a perturbative

solution in the limit of high frequency driving. We address this neglected aspect by

44



employing a formalism based on Floquet analysis to obtain an approximate effective

time independent Hamiltonian for the system [80, 81, 86–89]. A pertinent enquiry

about the effective system would be to look for a metal to insulator phase transition

with an energy dependent mobility edge.

In this chapter, we consider a high frequency, sinusoidal effective magnetic field

which couples minimally to the AAH Hamiltonian. The effective Hamiltonian is

obtained for this system and its localization characteristics are compared with the

usual self-dual AAH model in real and Fourier space. An energy dependent mo-

bility edge has already been studied in the context of an AAH Hamiltonian with

an exponentially decaying strength of hopping parameters (beyond nearest neigh-

bor coupling) [211–213]. We explore the possibility of a similar mobility edge in

our physically motivated effective Hamiltonian with only nearest neighbor hopping.

The non self-dual nature of our model is analysed and some general features are

investigated.In the section on Discussions, we attempt to reconcile our findings for

the specific case with generic features of such non-dual models thereby putting the

results in perspective. Finally, we discuss some possible experimental techniques

that could be adapted to realize a version of the model presented here. Here, we

highlight the difficulties involved in doing so and compare our model to some other

driven cold atom AAH models in the literature.

3.2 Formalism

Recent successes in synthesizing tunable, possibly time-dependent, artificial gauge

fields for systems of ultra cold neutral atoms in optical lattices [101, 240, 241] has

opened a gateway to the strong field regime required for Hofstadter like systems

[242]. The system to be studied here may also be realized as an incommensurate

superposition of two 1D optical lattices [223], with the laser beams for one of them

undergoing a time-dependent frequency modulation. This shall be discussed in detail
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later, under Experimental Aspects.

We consider a tight binding Hamiltonian with nearest neighbor coupling that

can be expressed as a time dependent Aubry-André-Harper Hamiltonian of the form

H(t) = H0 + V (t), where

H0 =
�

n

|n��n+ 1|+|n��n− 1|

V (t) =V0

�

n

cos[2πα0n cos(ωt) + θ] |n��n|.
(3.1)

The summation here runs over all lattice sites. The time-dependent parameter

α(t) = α0 cos(ωt) denotes the flux quanta per unit cell. An irrational value of α0 shall

render the on-site potential to be quasi-periodic. The harmonic time dependence

of α(t) owes its origin to a time dependent magnetic field B = B0 cos(ωt)ẑ. The

other parameter θ is an arbitrary phase. The |n�’s are the Wannier states pinned

to the lattice sites which are used as the basis for representing the Hamiltonian

and V0 denotes the strength of the on-site potential. The time dependence in the

argument of the cosine modulation of the on-site potential is different from usual

time dependent AAH models where it is in the overall magnitude of the on-site

potential. The periodic time-dependent operator V (t) can be expanded in a Fourier

series as

V (t) = �V0 +
�

1≤j<∞

�Vje
ijωt +

�

1≤j<∞

�V−je
−ijωt. (3.2)

In order to obtain the effective time independent Hamiltonian one writes the time

evolution operator as

U(ti, tf ) = e−iF̂ (tf )e−iHeff(tf−ti)eiF̂ (ti), (3.3)

where, one introduces a time dependent Hermitian operator F̂ . The idea is to push

all the time dependence to the initial and final “kick” terms and render the main
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time evolution to be dictated by a time independent Hamiltonian. The systematic

formalism yields in the limit of large ω the following perturbative expansion for the

effective time independent Hamiltonian given by [80]

Heff = H0 + �V0 +
1

ω

∞�

j=1

1

j
[�Vj, �V−j]

+
1

2ω2

∞�

j=1

1

j2

��
[�Vj, H0], �V−j

�
+ h.c.

�
+ O(ω−3),

(3.4)

where, ω−1 is the small perturbation parameter, and the series is truncated at

O(ω−2). In order to find the effective approximate Hamiltonian representing our

system in the large ω limit, one needs to compute the Fourier coefficients in Eq.(3.2).

This is done by using the following commonly valid expansions [243]

cos(r cos x) = J0(r) + 2
∞�

p=1

(−1)pJ2p(r) cos(2px)

sin(r cos x) = 2
∞�

p=1

(−1)p−1J2p−1(r) cos[(2p− 1)x], (3.5)

where, Jn(r) ’s are Bessel functions of order n. The Fourier coefficients of V (t) may

be obtained by inverting Eq.(3.2) using these expansions. We obtain

�Vj =(−1)
j
2V0 cos θ

�

n

J
j
(2πα0n) |n��n|; j = ±2, 4, 6...

�Vj =(−1)
j+1
2 V0 sin θ

�

n

J
j
(2πα0n) |n��n|; j = ±1, 3, 5...

�V0 =V0 cos θ
�

n

J0(2πα0n) |n��n|. (3.6)

We find that [�Vj, �V−j] = 0 owing to the symmetric nature of the Fourier coefficients

(for real V). Therefore the O(ω−1) correction to the effective Hamiltonian vanishes

and the first non-trivial correction is at O(ω−2). The O(ω−2) term of the effec-
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tive Hamiltonian would require the commutator bracket

�
[�Vj, H0], �V−j

�
, which on

evaluation yields

�
[�Vj, H0], �V−j

�
=





�

n

−V 2
0 cos2 θ

��
J

j
[2πα0(n+ 1)]− J

j
(2πα0n)

�2

|n��n+ 1|

+

�
J

j
[2πα0(n− 1)]− J

j
(2πα0n)

�2

|n��n− 1|
�

if j = ±2, 4, 6...

�

n

−V 2
0 sin2 θ

��
J

j
[2πα0(n+ 1)]− J

j
(2πα0n)

�2

|n��n+ 1|

+

�
J

j
[2πα0(n− 1)]− J

j
(2πα0n)

�2

|n��n− 1|
�

if j = ±1, 3, 5...

(3.7)

Using the above expression in Eq. (3.4) we obtain the effective Hamiltonian,

Heff , for our system. We find that up to O(ω−2), the effective Hamiltonian yields

a nearest neighbor tight binding model with a zeroth order Bessel function modu-

lating the site energies, and higher order Bessel functions make their appearance in

the hopping terms. There have been works which have looked at inhomogenities in

the hopping of the AAH model, arising not from driving but from the choice of next

nearest neigbour hoppings in the corresponding 2D quantum hall model[244–247].

However, these models consider situations where the off-diagonal modulations are

quasiperiodic through incommensurate modifications of cosine kind of terms. In our

case above, the incommensurability is embedded in higher order Bessel functions,

thereby variations in hopping strength are far more erratic and with signatures

bordering on those of disorder. This is expected to have ramifications for the local-

ization/extended behaviour of the eigenstates. This has been discussed in the next

section and illustrated through localization phase plots.
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Figure 3.1: (Upper Panel)The metal to insulator transition of the AAH Hamiltonian
for the lowest order eigenstate. Plot (a) shows the IPR versus V0 in real space for
L = 144, 1597 and 10946 (top to bottom). The inset shows the variation of D2 with
V0 which also exhibits a transition. Plot (b) exhibits the mirror behaviour in the
dual space. (Lower Panel) The transition seen in the IPR versus V0 curve for the
Heff . Plots (c) and (d) are the real and dual space plots for the lowest state with
phase θ = 0.

3.3 Results

The simple AAH model has a well studied transition from localized (insulating) to

delocalized (metallic) phase which occurs at a critical value V0 = 2. To quantify

the localization property we use the inverse participation ratio (IPR) defined as

IPR =
L�

n=1

|an|4/
�

L�

n=1

|an|2
�2

where an’s are the expansion coefficients of the energy

eigenstates in a local discrete site basis and L the number of lattice sites [248–250].

The IPR takes a value in the range 1 to 1/L with 1 indicating a perfectly localized

state and 1/L for completely extended states. Figure 3.1(a) shows the transition

in the real space IPR for the lowest order eigenstate with choice of irrational α0

as inverse of the golden mean (
√
5 − 1)/2 and L = 144, 1597 and 10946 . The

inset in this plot indicates variation in the magnitude of the quantity |D2| with V0,
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where IPR ∝ L−D2 . For a given V0, D2 is obtained by fitting a linear regression line

between log IPR and logL and thereby obtaining the slope. The regression fitting

is done using several values of L, taken to be large Fibonacci numbers. In all the

plots discussed here the transitions depicted are for some finite choice of system size

and hence not exactly ’step’ changes but ramp up or down over some finite range

of V0 values. Further, the references to such transitions as abrupt or occuring at a

critical value have to be interpreted within such numerical constraints. D2 values

shows an abrupt transition from 1 to 0 at the critical value irrespective of lattice

size. This establishes the transition to be a integral feature of the model even in

the thermodynamic limit of infinite lattice size and the critical point is protected in

this limit. In order to switch to states in the Fourier domain, i.e, |m� ’s from the

position space kets |n� we use the transformation

|m� = 1√
L

�

n

exp(−i2πmα0n)|n�. (3.8)

This enables one to write the AAH Hamiltonian in Fourier space and compute the

IPR in this space. Figure 3.1(b) shows the transition in Fourier space for a set of

parameters identical to those in plot (a). Here, again the characteristic transition

occurs at the critical point V0 = 2 and the curves in plot (a) are a mirror reflection

of the curves in plot (b) about V0 = 2. This is due to the exactly self dual nature of

the AAH Hamiltonian. Thus, an extended regime in real space implies a localized

one in Fourier space and vice versa. The inset for D2 in Fourier space accordingly

mirrors its real space counterpart.

In the case of our effective model, the IPR for the lowest order eigenstate exhibits

a similar trend, as shown in Fig.3.1(c). The transition in this case for this state

occurs at a new critical value V0 ≈ 4.6, all parameters being kept the same as in

former plots. Another distinguishing feature of this transition for the driven case

is the manner in which the IPR values approach the critical value and depart from
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it, relative to the behaviour in the standard AAH model. In the extended regime,

instead of the perfectly flat value of IPR ≈ 0, a slow positive gradient is observed

indicating weak localization that progressively gets stronger until a sharp surge

occurs at the critical point. Even beyond the transition there is a fall in the IPR

due to the still imperfect nature of the localization. This unique behavior can be

partially attributed to the non self-dual nature of the effective Hamiltonian which

shall be discussed later. D2, in the inset, continues to retain its scale invariant

attributes and manifests the imprint of the transition. The difference, from the

simple AAH model, lies in the fall in its value from 1 to a lower plateau before the

transition. An indication of the existence of a parameter regime where the state is

neither purely localized nor extended but a sort of composite. This is due to the

unusual behavior of the wavefunction in the case of α0 being a Liouville irrational

number whereby, for some lattice modulations, no finite localization length may be

found over which the state could be said to appreciably decay [22, 210]. Plot (d)

which shows the Fourier space IPR for our model exhibits reciprocal behavior of

the kind seen in the simple AAH model but with the major difference that plots

(c) and (d) are not mirror reflected about the same critical value. This deviation

is expected on grounds of the non self dual nature of our system’s Hamiltonian. In

Fourier space, D2 analogously is not an exact mirror image of its real space version

but all other qualitative characteristics remain the same. There are features in the

driven system’s Fourier space IPR which stand in contrast from the AAH model,

as seen in plots (b) and (d) of Fig.3.1. Most notably, the driven model shows a

discrimination between the different lengths as the curves in plot (d) transition

from localized to extended regimes at different rates. This is not the case in the

ordinary AAH model, where all lengths transition together, as seen in plot (b). This

difference is an indicator of non-nearest neighbor couplings in our dual space effective

Hamiltonian and the accompanying anomalous behavior of the wavefunctions in a
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Figure 3.2: The localization phase diagram with IPR in the (E,V0) phase plane, for
lattice size L = 4181 three values of the variable θ (a) θ = 0 , (b) θ = π/4, (c)
θ = π/2.

certain parameter range.

In order to understand how the properties of the transition are related to the

normal modes of the effective driven system, we look at the localization phase dia-

gram, i.e. the variation of IPR with V0 and the low energy region of the spectrum

at each V0 . Figure 3.2 shows the IPR in the V0 −E plane. We consider three such

plots for values of the phase, θ = 0 , θ = π/4 and θ = π/2 in Eq.(3.1) and lattice

size L = 4181. The nature of the variation of IPR reveals a sharp energy dependent

mobility edge for our model. The portion of the energy spectrum for which the IPR

variation has been illustrated is chosen to clearly indicate the appearance of localized

states . The choice of values for the phase is intended to isolate and compare the

relative effects of the modified onsite term and the site dependent hopping terms.

In all three plots the sector corresponding to low V0 values and near to E = 0 shows

a dense region of extended states which, (see eq.(3.1)), reflects the bare hopping

structure.

The features in the these phase diagrams owe their origin to the relative domi-

nance of different terms the driven effective Hamiltonian for a given θ. The anisotropy

of the zero-order Bessel modulated on-site energy adds impurity/disorder like effects
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on top of the inherent quasiperiodicity of the model. The fall off of this on-site energy

with lattice sites diminishes the actual system size to a reduced one. The modified

hopping strengths are also site dependent and vary in an oscillatory manner, with

a damping with increasing site index. When the onsite potential damps out, the

hopping terms from H0 survive. This is expected to contribute to an increase in the

IPR as the behaviour tends to one of a lattice with disorder. These factors collec-

tively influence the spectral spread and density alongwith the loclalized/delocalized

behaviour of the various eigenstates.

Plot 3.2 (a), for θ = 0, depicts the appearance of quasi-localized states (yellow

fringes) at the boundaries of the extended (deep blue) region. As V0 increases, the

dense region of extended states near E = 0 begins to manifest traces of localization in

IPR values, introducing the mobility edges. This can be noted from the bifurcations

of the phase boundary that begin to show up in with increasing V0 with localized

eigenstates piercing into portions of the spectrum which at lower V0 were dominated

by extended states. For higher energy the IPR values vary primarily between critical

and extended behaviours. This is notably absent in the plots for θ = π/4 and θ =

π/2 where critical behaviour is hardly observed and that too in a very narrow region

around the phase boundary. The wider gapping in the eigenvalues as compared to

the other two cases can be accorded to the overall stronger influence of the on-site

term as compared to the hoppings.

Plot (b), for θ = π/4, includes the effects of all the terms of the effective Hamil-

tonian. The appearance of localized states around E = 0 takes place as before.

However, there is a notable lack of appearance of well localized states in the higher

energy regions as compared to plot (a). This indicates a closer competetion between

the on-site and hopping terms of the driven model. The significant localization ef-

fects, hence mobility edges, appear distinctly in a band around E = 0 and that too

at higher V0. This may be accounted for by the fact that for θ = π/4 both the sine
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and cosine modulations are present in the modified hopping (see eq.(3.7)), unlike

the previous θ = 0 case. Apart from contributing to the predominance of extended

states in most of the spectrum, this more influential hopping part also makes the

spectrum relatively less gapped.

Plot (c), for θ = π/2 has been specifically shown to illustrate how the hopping

terms in the driven AAH model behave in the absence of any on-site term. For this

choice of θ the �V0 in eq.(3.6) goes to zero. As expected in the presence of just the

hopping, the IPR values show an extended behaviour everywhere in the phase plot.

However, one can still note a phase boundary differentiating the region of the purely

extended states from somewhat less extended ones. The appearance and nature of

the bifurcations in the boundary of this dense part of the phase plot with changing

V0, indicates the qualitative effects of the inhomogeneities in the hopping terms.

Looking at plots (a) (b) and (c) it is clear that the role of the modulated onsite

has the effect of enhancing the localization of states as well as creating a sharper

mobility edge.

This indicates that the driven model shows a strong sensitivity to the phase θ

in terms of the localizaton behaviour and the appearance of mobility edges. The

number of these edges, as can be seen, is more for the θ = π/4 case and is almost

absent in the phase plot for θ = π/2. A recent work [251], looks at a topological

classification of AAH models with cosine modulated hoppings which differ by a

phase factor from the onsite modulation. This helps to realize topologically distinct

families of AAH Hamiltonians with the possibility of topological phase transitions

between the different classes via a modification of the lattice modulations. Similar

behaviour would be interesting to study in our driven context.
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3.4 Discussion

In order to qualitatively analyze some of our results we consider a simplified model

comprising of a trivial constant hopping term and an on-site potential T which is

aperiodic or quasi-periodic. The Schrödinger equation is given by

an+1 + an−1 + ΛT (α0n+ φ)an = Ean (3.9)

where, Λ is the strength of on-site energy and E are the energy eigenvalues. One

can go to the dual space for the above system by defining an expansion, as follows

an =
eikn√
L

�

m

ãme
im(α0n+φ) (3.10)

where, the ãm’s are the dual space amplitudes, and k is a wave vector from the

Bloch wave expansion ansatz. This allows T to be expressed as

T (α0n+ φ) =
1√
L

�

ḿ

Tḿe
i ḿ(α0n+φ). (3.11)

Equations (3.10) and (3.11) yield an on-site term in the dual space from the the

hopping terms of Eq.(3.9) as

an−1 + an+1 =
eikn√
L

�

m

ãme
im(α0n+φ) cos(α0m+ k) (3.12)

with a cosine modulation of the on-site energy (as seen in the Aubry and André

model). Interestingly, the real space on-site energy term transforms as

ΛT (α0n+ φ)an =
Λeikn

L

�

ḿ

�

m

Tḿãme
i (m+ḿ)(α0n+φ). (3.13)
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The RHS can be slightly rearranged to give

Λeikn

L

�

ḿ�=±1

�

m

Tḿãm+ḿe
im(α0n+φ)+

Λeikn

L

�

m

(T1ãm−1 + T−1ãm+1)e
im(α0n+φ)

(3.14)

In the above form, the second term clearly indicates the apparent nearest neighbor

hopping terms in the dual space whose strength is modulated by the Fourier com-

ponents of T . It is the first term in the above expression which explicitly breaks the

exact duality. The form of Tḿ determines the extent to which different m values in

the dual space are coupled. It is well known that for decaying oscillatory functions

like Sinc and Bessel function of the zeroth order Tḿ is a rectangular function, with

possibly a ḿ dependent modulation, symmetric about the origin. Thus, in our case,

we expect a truncation effect in dual space which restricts the range of couplings.

This deviation from exact duality is expected to have some impact on the probability

of an “analytic accident” along the lines of [25]. The appearance of localized states

(real eigenfunctions) happens when there are superpositions of counter-propagating

plane waves with wave vectors of near-commensurate magnitude. This would mean,

in our model, some harmonics from the expansion of T shall scatter the wave with

wave vector k by an amount commensurate with 2nπ. This has to be considered

together with the fact that for a rational approximation of α0 as a ratio of two

large successive Fibonacci numbers, the true momentum(Fourier) space eigenvalues

κ are related to m as κ = mFi−1modFi, where Fi−1 and Fi are successive Fibonacci

numbers [204, 237]. Thus, what appear to be close neighbors in m could possibly be

well separated in the actual wave vector space. Further, the range of m values that

shall remain coupled in the dual space will be dictated by the extent of T in the

real lattice for example the first zero in the Bessel function. The set of m’s which

conspires with a given k value to yield a localized state shall be dictated by V0 and
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E(k). This explains the energy dependent mobility edge in Fig.3.2.

In the dual space, where k acts as a phase (see Eq.(3.12)), a state localized at

few m values could be shifted by large amounts for a small change in k. This allows

for the interpretation that a small change in φ could in effect cause a state localized

around some lattice site to localize about a far off site. In terms of symmetry, the

absence of translational invariance in Euclidean space of quasi-periodic structures

with two incommensurate periodicities can be restored in an extended space using

the φ dimension [252, 253]. This effect of φ on localization properties leads to the

differences between the three plots in Fig.3.2.

3.5 Experimental Aspects

The experimental realization of our system may be achieved in several different

ways, with ease and feasibility of implementation being the guiding criteria in the

choice of method. We will explore two options here, from recent literature, which

seem more or less promising. One way is to begin with a 2D optical lattice and

then proceed in the manner described in some recent realizations of the Harper-

Hofstadter Hamiltonian [113, 114]. The notion of simulating a synthetic magnetic

field by means of generating effective flux per plaquette of the lattice is a generic

feature. However, the true appeal of these methods compared to others for gen-

erating artificial magnetic fields for ultracold neutral alkali metal atoms in optical

lattices, is the absence of coupling between different hyperfine states of the atoms.

It is possible therefore to proceed with a single internal state and far detuned lasers

to achieve homogeneous magnetic fields by a laser assisted hopping process. A pair

of far detuned Raman lasers is employed, while tunneling in a particular direction

is obstructed by means of a gradient/ ramp in the site energies using gravity or

magnetic fields, to restore resonant tunneling between sites. The AAH Hamiltonian

is obtained in a time independent effective way by averaging over the high frequency
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terms and the hopping energy is modified by a complex position dependent phase.

We suggest using Raman lasers of frequencies close to those of the optical lattice,

as prescibed by the authors, and to use the tunability of the flux per plaquette α0

offered by such choice, to set it to an irrational value by adjusting the angle between

the Raman beams. Introducing the time dependence is admittedly tricky. This

is due to the fact that the static Harper Hamiltonian in the above technique is

itself achieved by time averaging and we need it to have a further residual time

dependence. For this one would have to vary α0 periodically by say, modifying the

angle between the Raman lasers periodically with time together with simultaneous

time modulations of the detunings and the gradients in a fashion that the overall

effect is of a periodic change that is of a rate slower than the oscillations to be

averaged over while resonant tunneling occurs, but fast enough to remain detuned

from the energy gap between the ground and excited bloch bands of the trapped

atoms in the lattice potential. This yeilds a time scale which survives the first

averaging and gives one a time dependent AAH Hamiltonian effectively being driven

by an oscillating magnetic field. There are some obstacles to be overcome here

such as arranging the time dependent detunings and the angular variation of the

Raman lasers so as to vary α0 sinusoidally as a function of time effectively, since

there is a good chance of getting high frequency noisy components that have to

be averaged over. Another issue is that ’the scheme does no realize the simple

Landau gauge for a magnetic field’. We use this gauge in our analysis but the

results, essentially the nature and existence of the Metal-insualtor transition, are

independent of any such choice through the gauge freedom embodied in the choice

of θ in the AAH Hamiltonian[25]. The analysis then would be modified only upto

a gauge transformation. It would indeed be interesting if the method could be

modified to include the Landau gauge.

On account of the multiple time dependent modulations in the realization just
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discussed, heating and spontaneous photonic emission processes are a legitimate

source of concern. We would like to outline another approach using a quasiperi-

odic 1D optical lattice which may have better characteristics as regards dissipative

processes. Here we suggest using the bichromatic 1D optical lattice realization of

the AAH model as described in [223] and suitably modifying it to implement our

model. Essentially, a bichromatic optical lattice setup is one with a pair of su-

perposed standing waves wherein one provides the tight binding structure to the

Hamiltonian and the other, a weak secondary perturbing potential which, through

adjustable non-commensurability of its wavelength with that of the first, offers a

quasiperiodic/pseudorandom potential for the ultracold gas of atoms even to the

extent of mimicking quasidisorder in the lattice [216]. The two standing waves have

wavelengths in the ratio of two consecutive Fibonacci numbers. This helps to realize

a workable notion of incommensurability in a finite lattice system by tending the

value of the α0 to near the inverse of the golden mean. As suggested in [223] this is

the key requirement for the observation of a transition from extended to localized

states i.e. to keep a large number of lattice sites in a single period of the on-site

potential for finite systems.

The next step is to systematically introduce the driving. This is done by intro-

ducing a time dependence in the ratio of the wavelengths of the two standing wave

lattices. More precisely, to do this we suggest generating the two standing waves

using beam splitting and retro reflection by mirrors. If now the reflecting mirror

corresponding to the primary tight binding lattice is shaken according to a proto-

col which mimics a sinusoidal drive say, by mounting it on a piezoelectric motor,

it should be in principle possible to generate a sinusoidal time dependence in the

irrational flux term. It would be preferable to use actuators that move the mirrors

so as to produce acceleration effects on the lattice such that one may achieve time

dependent Doppler shifts in the frequency and hence wavelengths of the station-
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ary waves (where one averages over the fast oscillations in the amplitudes to get

the hopping terms) which could be controlled in a sinusoidal fashion. This may

be technically demanding under the present capabilities of shaking in optical lat-

tice systems but is definitely worth exploring as a powerful instrument for studying

effective Hamiltonians in a new time dependent regime.

In the two approaches highlighted above, the respective works [113] and [223]

provide a clear map between the parameters of the simulated model and the exper-

imental parameters such as laser intensities, recoil energies of the trapped neutral

atoms and the energy gap between the ground state and lowest excited bloch band

in the lattice. This mapping translates readily to the formalism of calculating the

effective Hamiltonian. For instance in the case of the bichromatic construction the

mapping of the continuous optical potential to a tight binding picture has been car-

ried out in [223] using a set of local Wannier basis states. As per this construction

our time dependent model, see eq.(3.1) would have V0 to be a ratio of product of

the height of the weak perturbing lattice with the time dependent ratio of the wave-

lengths of the two standing waves and an integral term, to the hopping element of

the primary optical lattice. The term α0 is just the ratio of the wavelengths of the

two standing waves, made time dependent by shaking, which are two consecutive

Fibonacci numbers. From the expressions in eqs. (3.6) and (3.7) it can be readily

seen how the experimental parameters enter into the modified on-site and nearest

neigbour hopping energy terms of the high frequency effective static Hamiltonian

for the driven system.

Thus the relation between parameters of the setup and the derived model Hamil-

tonian can be traced in a straightforward manner. It is true that this manner of

constructing the system will make the strength of the on-site modulation (or its

ratio with the hopping energy) also a sinusoidal function of time but this is not ex-

pected to alter the system’s features studied here in any significant way. We propose
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studying this more general form of time dependence, with the strength of the on-site

to off site energy also taken to be a function of time alongside the periodicity in α0,

as a future line of work.

Briefly, we would like to survey how our work contrasts with other early and

recent work, which has emphasized periodic driving through additional potentials

[235] and shaking [217] in AAH systems. In [217], shaking introduces a time depen-

dent phase in the cosine term of the on-site energy. This phase is seperate from the

incommensurate position dependence. The effect is a renormalization of the hopping

energy so as to make it a function of the driving amplitude. This enables one to

tune across the metal-isulator transition by varying the amplitude of the driving.

Whereas in our system the driving is provided through an oscillatory effective mag-

netic field which manifests itself through the periodicity in α0, hence present in the

incommensurate position dependent term.

This is again different from [235] which employs a driving that is a weak space

quasiperiodic and time periodic perturbation onto the AAH system modeled as a

quasiperiodic optical lattice. Here, the driving is a weak perturbation to the original

AAH Hamiltonian. In our case, however, the manner in which the AAH model is

driven is non-perturbative by its very nature. An oscillating magnetic field, even of

small amplitude, is in no way a weak perturbation and cannot be treated as such, it

has to be looked upon in the Floquet picture of periodic time dependent Hamiltoni-

ans. The high frequency nature of the driving permits a Floquet theoretic treatment

of a slightly analytical variety through the high frequency expansion available for

the Floquet Hamiltonian. Only here, in the parameter 1/ω, is one allowed to use a

perturbative treatment. This is formally different from [235] in that our modifica-

tions significantly alter the AAH model for which there is limited analytical footing

in the high frequency regime. It would do well to regard the newly obtained static

effective Hamiltonian as an independent system in its own right, with features that
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are not to be expected in the undriven or weakly driven AAH models. This in fact

merits looking into, as it would not be unjustified to anticipate exotic modifications

to the traditional AAH Metal Insulator transition under these circumstances.

Also worth noting are the differences between the model in [235] and our system

from a reciprocal space point of view. While our model is also non self dual it

has an exact 1D structure with couplings that are beyond the nearest neighbour.

In [235], the dual Hamiltonian is not exactly 1D and the extended states appear

due to resonant couplings of localized states that are driving induced. This differs

considerably from the mechanism (discussed in the previous section)that causes

localization/delocalization behaviour in our driven system. In fact, the non self

duality of our model sets it apart even from undriven variations on the AAH model

(with mobility edges) which are self dual by construction [211–214], irrespective of

the real space couplings being nearest neighbour or beyond it.

3.6 Conclusion

In this chapter we have studied the Aubry- André-Harper problem with an oscilla-

tory magnetic field in the promising cold atom- optical lattice scenario. The problem

is significantly simplified by going into an effective Hamiltonian which approximately

represents the system in the limit of high frequency magnetic field. We find that

this effective Hamiltonian is non-self dual, and though it exhibits a metal-insulator

transition, it differs from the classic Aubry-André model in the emergence of an

energy dependent mobility edge. The nearest-neighbor coupling form of the effec-

tive Hamiltonian yields this feature which is commonly observed in disordered 3D

systems or Aubry-André like models with hoppings extending beyond the nearest

neighbor.

The other significant phenomenon besides the onset of a metal-insulator in lat-

tice systems of dimensions less than 3, in the presence of a magnetic field, is the
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emergence of quantized values for the Hall conductance and topological properties

in the band structure. We shall proceed in the next chapter to consider these fea-

tures in a protoypical hexagonal lattice system, initially conjectured by Haldane and

which has since become plausible given the discovery of Graphene. This system is

a well known example of a Chern insulator and has the interesting property that it

can exhibit Landau levels in the absence of a magnetic field. We shall see how the

application of a periodic kicking scheme modifies the topology in such a system.
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Chapter 4

Floquet topological phase

transitions in a kicked

Haldane-Chern insulator∗

Topology and notions intrinsic to it were introduced into the band theory of solids

through the work of Thouless, Halperin and others [15–19] while theoretically ex-

ploring the remarkable phenomenon of the Integer Quantum Hall Effect (IQHE)

[12, 254]. Many such exotic features were predicted and identified for other associ-

ated phenomena, which went beyond conventional time-reversal symmetry breaking,

such as the Quantum Spin Hall Effect (QSHE), in graphene and other topological

materials [68–71].Experimentally, this has sparked off a flurry of activity directed

towards the synthesis of materials and nano structures which exhibit such novel

features [255–260]. As such shaping the field of ‘Topological Insulators’. From a

theoretical perspective, the broad objective has been to achieve a comprehensive

classification scheme for these insulators [169–171].

Graphene, beyond its much touted mechanical and transport properties [4, 13,

∗This chapter is adapted from the pre-print “Floquet topological phase transi-
tions in a kicked Haldane-Chern insulator” by Mishra, Pallaprolu, Guha Sarkar and
Bandyopadhyay arXiv: 1709.08354 (2017).
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14], has shown itself to be rich in topological features [67, 72] and various topological

aspects of the honeycomb lattice have been investigated in cold-atom and photonic-

crystal setups [64, 65, 73–75]. Studies of graphene irradiated or periodically driven

by circularly polarized light have revealed rich topological textures beyond those

seen in the undriven case [140–149]. An entire sub-domain of “Floquet Topological

Insulators”[261] has emerged as a result, which has offered unprecedented control

and freedom to engineer new topological phases and edge state(in some cases Ma-

jorana modes) behaviors [117–119, 121, 123, 124, 126–139] as well as a knob to

study topological phase transitions in cold-atom or photonic crystal setups [150–

152, 155–158]. The theoretical classification of Floquet topological insulators and

the identification of valid topological invariants that correctly characterize the bulk-

edge correspondence for these systems is an on-going effort [172–174, 176–180].

Of late, the use of delta-function kicks has also been shown to impart interesting

topological properties in the form of new Floquet topological phases such as semi-

metallic phases in Harper models [162], chiral edge modes in Quantum Hall systems

[163], appearance of unexpected topological equivalence between spectrally distinct

Hamiltonians [164] as well as generation of Majorana end modes in 1-D systems

[165]. This has led to interest in studying Dirac systems especially graphene, its

nano-ribbons and other hexagonal lattice models such as the Kitaev model under

periodic driving or kicking [166, 168, 262]. In this chapter we shall be considering a

form of kicking which is found to introduce a Semenoff like mass, hence no topological

nontivialities (in the absence of time reversal symmetry breaking) in the spectrum

of planar Graphene but, shows some promise as far as manipulating the topology of

Haldane-like Chern insulators is concerned.

The recent success in realizing the Haldane model experimentally [65] within the

framework of ultracold atoms in optical lattices has opened a doorway to engineering

various kinds of Chern insulators, using the paradigm of shaken optical lattices and

65



the Floquet formalism, and studying topological transitions in them [156, 158, 263].

These realizations offer an appreciable degree of tunability and provide an encourag-

ing platform for the study of Haldane systems under periodic driving. We consider

these setups as possible avenues for realizing the kind of delta-kicked Haldane model

which is the centrepiece of our study. Beyond the cold atom setups, an interesting

recent experiment [149] drives graphene itself using ultrafast, short-duration low fre-

quency laser pulses of circularly polarized light which open local gaps in the Floquet

quasienergies of the irradiated graphene. This procedure hints at the creation of

local Haldane like band structures but their topological classification has issues that

need to be addressed. A more viable candidate for an actual material realization of

the Haldane model is presented in [264] where, a honeycomb lattice, specifically Sil-

icene, with out-of-plane staggering of sublattice sites, effectively realizes Haldane’s

prescription of a staggered magnetic field upon being subjected to an in-plane mag-

netic field which could be made very weak. Other interesting proposals exist, that

realize Chern insulators either using electron correlations at low dimensions, in say

double perovskite heterostructures [265], or the notion of in-plane magnetic fields,

such as in perovskite monolayers [266] and laterally patterned p-type semiconductor

heterostructures with low-symmetry interfaces [267]. The proposal in [264], along

with the suggestions in [168] that outline methods to implement a kicking using

hexagonal boron nitride over graphene [268–270], provide the broad experimental

context in which our system has some hope of being realized. This motivates our

academic interest in the study undertaken here.

In this chapter, we begin with an overview of various features of the Haldane

model, broadly describing its spectral and topological aspects in Sec.4.1. This is

followed by the description and analysis of our choice of a kicked Haldane model

in Sec.4.1.2 and a brief introduction to the computation of the Chern topological

invariant in Sec.4.2. A detailed exposition of the various properties and behaviour of
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the kicked model is provided in the Sec.4.3, on results and discussion. We see that,

the kicking scheme incorporates itself into the effective Hamiltonian in a way that it

provides a means of manipulating the inversion symmetry breaking parameter of the

Haldane model which is essentially the staggered off-set to the on-site energies at the

two closest neighboring sites of the two interpenetrating triangular sublattices A and

B. This and various other aspects are discussed therein, followed by a conclusion

comparing our work to related studies.

4.1 The Kicked Haldane Model

4.1.1 The Undriven Haldane Model

The Haldane model [66] is a perfectly 2-dimensional Quantum Hall insulator with

the unique property of exhibiting Quantum Hall behavior in the absence of any

net magnetic field through any of its unit cells. It is one of the most elementary

realizations of a Chern insulator as its band topology, under certain conditions, can

be shown to belong to a non-trivial first Chern class. The way Haldane envisioned

it was as a 2-D hexagonal lattice of atoms, much as is the case in Graphene, with a

single tight binding orbital at each of the two lattice sites within a unit cell. These

are the two distinct sites belonging to the A and B triangular sublattices as shown in

Fig. (4.1) by filled and hollow points respectively. Normally, such a lattice shows a

semimettalic band structure which is well known from Graphene. However, to realize

an insulator, the degeneracies at the Dirac points in the 2-D Brillouin zone need to be

lifted by breaking the inversion and time-reversal symmetries in the system. In the

Haldane model these are broken to ensure Quantum Hall behaviour. The inversion

symmetry is broken by giving an off-set to the on-site energies at the two inequivalent

nearest neigbour sites A and B by an amount −M and +M respectively. Breaking

inversion symmetry opens a gap at the band touchings in the Brillouin zone and
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Figure 4.1: Schematic illustrating the honeycomb lattice with vectors to the nearest
and next nearest neighbors of an A sublattice site. A flux configuration, where φa

and φb are fluxes through the triangles that bound each of the labelled regions, is
also shown which can make the next to nearest neigbour hoppings phase dependent
with zero net flux in the hexagon i.e. (φa + φb) = 0.

makes the system a semiconductor/normal insulator. In order to get a topological

insulator it is further required to break time-reversal symmetry which is done here

by making the hoppings to the next to nearest-neighbor sites complex valued as,

t2e
±iφ, t2 being real. The nearest neigbour hoppings t1 on the other hand remain

real valued. An ingenous choice of magnetic field helps to ensure this by making

the overall magnetic flux through any of the hexagons (unit cells) of the lattice

zero and hence realizes a globally vanishing magnetic field while at the same time

breaking time-reversal symmetry. Though this does require the local existence of a

spatially periodic magnetic field everywhere, perpendicularly applied to the lattice

plane, following the periodicity of the lattice. Giving rise to a flux arrangement that

collectively disappears over a unit cell. One such choice is illustrated in Fig. (4.1),

where the condition (φa + φb) = 0 fulfills this requirement. Several such choices
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are permitted by gauge freedom and since traveling along the sides of any hexagon

encloses zero flux the t1 hoppings acquire no phase contribution. The hopping term

t2 for the next to nearest neigbour sites acquires phases in hops around triangular

cells which enclose non-zero flux. For the case in Fig. (4.1) this phase φ comes out

to be 2π(2φa + φb)/φ0 expressed in units of the flux quantum φ0.

The need to break time-reversal invariance arises from the familiar requirement

encountered in the IQHE [12, 15, 16, 254] that for the transverse conductance σxy

to show quantized non-zero values time-reversal invariance must be absent in the

system as otherwise σxy is an odd function and amounts to zero. It is the behavior

of the gap that opens at the Dirac points also called the mass term from the low

energy, (2+1)-D relativistic linearization approximation, that crucially determines

the existence of the Hall conductance. In the presence of just broken inversion

symmetry this mass term (M) is a Semenoff mass which has the same sign at

both Dirac points and yeilds σxy = 0 which follows from the definition for the Chern

invariant, in this case. However if time reversal invariance is absent the mass term (φ

dependent) has opposite signs at these points and leads to a non-zero σxy.When both

parameters M and φ are zero the bands touch at points in the Brillouin zone called

Dirac points owing to the linear dispersion in the vicinity of these degenracies. These

are high symmetry points in the Brillouin zone in addition to the band centre. In this

situation the system is semi-metallic and allows a two-dimensional representation

at these high symmetry points. When the symmetry breaking parameters take on

other combinations of values the system is found to belong to insulating regions with

the Chern number C, for the valence band (lower band with the Fermi energy in the

gap at zero temperature) taking values ±1, 0 depending on the relative strengths of

the two parameters. These regions of different conductance values σxy = Ce2/h are

seperated by a boundary where the gap closes at either one of the Dirac points in

the Brillouin zone. These touchings are the transition band configurations where C
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’s for the two bands can rearrange themselves by assuming values that add up to

zero thereby ensuring the standard requirement that the total band bundle remains

topologically trivial [17]. These and other properties of the model follow from its

Hamiltonian and the linear approximation to it at the band touchings. We now

take a closer look at this Hamiltonian which will serve as the target system for the

intended driving scheme.

The two dimensional Haldane Hamiltonian in reciprocal space, as obtained from

its real space tight binding form is

H(k) =2It2 cosφ
�

i

cos(bi · k) + t1

��

i

{σx cos(ai · k) + σy sin(ai · k)}
�

+ σz

�
M − 2t2 sin(φ)

�

i

sin(bi · k)
�

(4.1)

Here, the quasi-momentum k is a good quantum number since the choice of

magnetic field preserves the original translation symmetry of the lattice, I is the

2 × 2 identity element and σx, σy and σz are the Pauli matrices. From Fig.(4.1)

the vectors a1 ≡
�√

3a
2
, a
2

�
, a2 ≡

�
−
√
3a

2
, a
2

�
and a3 ≡ (0,−1) are the vectors from

an A sublattice site to the nearest neighboring B sublattice sites. The a stands

for the length of the bond joining nearby A and B sites. This choice is a matter

of convention here and is defined by these vectors forming a closed right handed

system with the cross product of any two in increasing sequence of the indices being

aligned out of the plane in the direction of positive ẑ. While, as seen in the same

figure, the vectors to the next nearest neigbour sites are chosen as b1 = a2 − a3,

b2 = a3−a1 and b3 = a1−a2. Thus the summation index in the above Hamiltonian

extends over these three possibilities for both kinds of vectors. The reciprocal space

lattice for this system is also hexagonal and therefore first Brillouin zone (FBZ) is

a hexagon with band touchings occuring at the zone corners. The FBZ comprises
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of two inequivalent band touchings or Dirac points K and K�. It is possible to

rearrange this hexagonal FBZ into an equivalent rhomboidal one by shifting regions

of the former by reciprocal lattice vectors. Within this description the Dirac points

lie inside the FBZ and are given by K =
�

2π
3
√
3a
, 2π
3a

�
and K� =

�
4π

3
√
3a
, 0
�
. The two

band energy dispersion that follows from the above Hamiltonian is

EH
±(k) = 2t2 cos(φ)

�
2 cos

�
3aky
2

�
cos

�√
3akx
2

�
+ cos(

√
3akx)

�
±
�
t21

�
2 cos

�
aky
2

�

× cos

�√
3akx
2

�
+ cos(ky)

�2

+ t21

�
2 sin

�
aky
2

�
cos

�√
3akx
2

�
− sin(ky)

�2

+

�
M − 2t2 sin(φ)×

�
−2 cos

�
3aky
2

�
sin

�√
3akx
2

�
+ sin(

√
3akx)

��2� 1
2

(4.2)

On substituting the coordinates for either of the Dirac points K or K� in the

above expression one gets M − 3
√
3t2 sin(φ) and M + 3

√
3t2 sin(φ) respectively.

From this we arrive at the condition for the bands to touch at these points as

M = 3
√
3νt2 sin(φ) where ν = ±1 depending on the particular Dirac point under

consideration. Touching at both points occurs only when both inversion and time-

reversal are present i.e both M and t2 sin(φ) are zero. The touchings at individual

Dirac points occur in Haldane’s Chern number phase diagram at the transition

boundaries where C undergoes a discrete step in its value.

An important condition included by Haldane in his description of the model is the

constraint on the relative strengths of the hopping parameters given by |t2/t1|< 1/3

that ensures that the bands of the model do not overlap. This is useful for a clear

observation of the band touchings in any physical realization of the model as it

ensures that the upper and lower bands are always well seperated by a gap unless

they touch with the energies at these touchings being extremal points or maximas

if one considers the lower band. We will discuss this condition in the context of

71



kicking later on to see how it gets modified for the kicked system and also ascertain

how it may be used to define a magnitude scale for the strength of the driving. Now,

we move on to the model of interest in the present chapter which is the Haldane

Hamiltonian under kicking.

4.1.2 Driven Haldane Model

The choice of driving the Haldane model using a periodic train of delta function

kicks allows an exact Floquet treatment of the stroboscopic kind without recourse

to a high frequency approximation of the kind used in [132, 271]. Central to such

approaches, and the marked rise of interest in Floquet topological insulators, is the

possibility of having a controllable parameter whose variation helps to tune the sys-

tem from a normal to a topologocal insulator, or through different topological phases.

Thus a system may be designed where, by sweeping an experimentally controllable

parameter across a prescribed range of values, one could transition the total Chern

number of the filled bands of the system between trivial and non-trivial values. Much

like the different quantized conductance values assumed by the system in the IQHE

when the magnetic field is swept adiabatically. The added advantage driving has to

offer here, is that it achieves all this in relatively simpler, non-interacting effective

static Hamiltonians. Since, in general, topological charaterisitics are robust features

of a system and are unaffected by perturbations to a large extent, having systems

which do show transitions from normal to topological insulators (and vice-versa) in

a discrete manner is of considerable interest. This is so because interesting proper-

ties of the valence band Bloch functions are known to occur at the transitions such

as, lack of a maximally localized Wannier representation in the Chern insulating

phase and anomalous localization behaviour of the wavefunctions [272, 273]. Thus

the transitions merit some attention in various systems where they can be realized

in a manner which permits a simpler analytical/numerical approach to their study.
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Our kicked model belongs to this category of systems.

Prior to expressing the Hamiltonian in the presence of kicking it would be useful

to adopt some notation to denote terms in Eqs. (4.1) and (4.2). The structure of

the Hamiltonian in Eq.(4.1) is of the general form H(k) = h0(k)I+ h(k) ·σ, where

σ = (σx, σy, σz) is the vector of Pauli matrices and

h0(k) = 2t2 cos(φ)
�
2 cos

�
3aky
2

�
cos

�√
3akx
2

�
+ cos(

√
3akx)

�
.

The h(k) here, is the vector [t1L(k), t1F (k),M − 2t2 sin(φ)N(k)] with

L(k) = 2 cos
�

aky
2

�
cos

�√
3akx
2

�
+ cos(ky)

F (k) = 2 sin
�

aky
2

�
cos

�√
3akx
2

�
− sin(ky)

N(k) = −2 cos
�

3aky
2

�
sin

�√
3akx
2

�
+ sin(

√
3akx)

.

It follows that

|h(k)|=
�

t21L
2(k) + t21F

2(k) + (M − 2t2 sin(φ)N(k))2.

The driving scheme is chosen to be a train of delta function kicks which are seperated

by fixed time interval T . Such a scheme was introduced in the context of driving

a hexagonal lattice, in particular graphene, as a platform for synthesizing novel

dispersion relations and wave packet dynamics [168]. Here we propose using a kicking

which is applied as the following perturbing term to the Hamiltonian

Hkick,k(t) = (αxσ
x + αyσ

y + αzσ
z)

m=∞�

m=−∞
δ(t−mT ) (4.3)

and represents a general 2×2 kicking protocol with the SU(2) pseudo-spin structure
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of the 2-dimensional Haldane Hamiltonian. The αx, αy and αz stand for kicking

amplitudes in the respective directions. Since we are consistently expressing the

Hamiltonian and the perturbation to it in k-space, the kicking is applied uniformly

to every unit cell of the lattice to have the reciprocal space representation of the

above form. The dynamics of the system over a period T , under such a perturbation,

are governed by an evolution operator UXY Z = UkickUstatic = e−iα.σe−iH(k)T where,

UXY Z = e−iHXY Z(k)T with HXY Z(k) as the Floquet Hamiltonian and, α and σ are

(αx,αy,αz) and (σx, σy, σz) respectively. Using the algebra of Pauli matrices and

some standard results associated with them, it is possible (as illustrated in [168])

to obtain the exact form of HXY Z(k). In particular, we are interested in a kicking

scheme where αz �= 0 while αx = αy = 0 and henceforth assume these parameter

values in the perturbing Hamiltonian in eq.(4.3). Thus we are interested in the ẑ-

kicked Haldane model whose Hamiltonian we denote HZ(k) which is obtained from

HXY Z(k) by putting in the requisite conditions. The calculation of HXY Z(k) in

the manner outlined in [168] will involve considering only the vector h(k) projected

along the Pauli matrices. The diagonal part due to h0 remains unmodified and

finally shows up in the expression for HZ(k) which is again of the structure h0(k)I+

�z(k)h
�(k) · σ. The vector h�(k) is represented by components (h�

x(k), h
�
y(k), h

�
z(k))

which are

h�
x(k) =

1

sin(T �z)

�
−t1L(k)

|h(k)| sin(T |h(k)|) cos(αz) + sgn(αz)
t1F (k)

|h(k)| sin(αz) sin(T |h(k)|)
�

h�
y(k) =

1

sin(T �z)

�
−t1F (k)

|h(k)| sin(T |h(k)|) cos(αz)− sgn(αz)
t1L(k)

|h(k)| sin(αz) sin(T |h(k)|)
�

(4.4)
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h�
z(k) =

1

sin(T �z)

�
−sgn(αz) sin(αz) cos(T |h(k)|)−

M − 2t2 sin(φ)N(k)

|h(k)| sin(T |h(k)|) cos(αz)

�

The energy eigenvalues of HZ(k), i.e the ẑ-kicked Haldane model, without the offset

due to the h0(k)I term of the undriven Haldane model, denoted by �z, is given by

�z(k) = ± 1

T
cos−1

�
cos(αz) cos(T |h(k)|)−

sgn(αz)

|h(k)| (M−2t2 sin(φ)N(k)) sin(αz) sin(T |h(k)|)
�

(4.5)

and sgn(αz) in both the equations above is the sign of αz function.

This completes a description of the model Hamiltonian we are interested in.

We now give a brief overview of the mathematical formalism that shall be used to

compute the topological invariant for this model.

4.2 Computing the Chern Invariant and Hall con-

ductance

The Chern invariant or Chern number for 2-D systems is the topological invari-

ant that captures and quantifies the topological non-trivialities associated with the

bands of a periodic system. The general definition involves treating the Bloch func-

tions of the filled bands in any solid as defining a principal fibre bundle over the FBZ

which is a torus. The Chern invariant is then calculated for any given band as the

integral of the Berry curvature, which may be obtained from the Berry connection

defined on this bundle over the FBZ [15, 79, 274]. This integral may be written in

the following manner

C =

�

BZ

Fkx,ky(k)dkx ∧ dky (4.6)

where Fkx,ky is an antisymmetric tensor denoting a curvature 2-form, the Berry

curvature or field. Haldane’s work [66] suggests a simplified route to calculating the
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Chern number for the various topological phases by an effective linearization of the

spectrum at a Dirac point where the gap is like a mass term and coefficient of the

σz matrix in the linearized Hamiltonian around this point. The total Chern number

for the lower band is then given by the signs of the masses at the two inequivalent

Dirac points in the FBZ as

C =
1

2

�

ν=±1

ν sgn(mν), (4.7)

where mν is the mass term at the corresponding Dirac point indexed by ν. Both

the expressions are demonstrably equivalent and one can in principle derive eq.(4.7)

from eq.(4.6). In our calculations we use both methods to develop the Chern number

phase diagram in the presence of driving. The integration is performed numerically

to validate the Hall conductivity quantization expected from the second definition.

We intend here to give a brief overview of the mathematical formalism adopted

by us to compute the Berry curvature required in the above integral. This formalism

is based on the concept of Bargmann invariants, first developed by V Bargmann,

and later adapted to calculating differential geometric quantities on fibre bundles by

Simon and Mukunda [20, 275, 276]. It essentially involves the use of U(1) invariant

pure state density matrices ρ = |ψ��ψ| denote physical states or rays in a complex

projective ray space. Then, the Bargmann invariants, are products of these density

matrices, ρ1ρ2 · · · ρj with the j states forming the vertices of a j-sided polygon in

ray space. In more explicit terms a Bargmann invariant of order j for a set of as

many normalized states |ψj� such that �ψj|ψj+1� �= 0, is

Ωj(ψ1, · · · ,ψj) = �ψ1|ψ2��ψ2|ψ3� · · · �ψj−1|ψj��ψj|ψ1� (4.8)
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The phase of the Bargmann invariant in Eq.(C.2) is obtained as,

Fαβ (x) =
1

2i
Tr(ρ(x)[∂αρ(x), ∂β ρ(x)]) (4.9)

i.e. the Berry curvature. The x = (x1, x2, · · · , x2N−2) denotes coordinates of

points in ray space under some suitable parametrization, ray space being 2N − 2-

dimensional for an N -level quantum system. In the case of lattice systems and

Bloch functions these coordinates are k-space coordinates (kx, ky, · · ·). The indices

α and β run over the ray space dimensions. It is interesting to note that one can

recover the customary expression for the Berry curvature, over the Brillouin zone,

for 2× 2 systems with translational invariance of the kind H(k) = σ.n̂(k), which is

in general given by Ω(k) = 1
2|n̂(k)|3 n̂(k).[∂kxn̂(k)× ∂ky n̂(k)] upon making the substi-

tution ρ(k) = 1
2
(1+σ.n̂(k)) in Eq.(4.9), k serving the role of x. This is drawn from

a general analogy to the spin- 1
2
Bloch sphere construction for 2-level systems with

Dirac structure. We use Eq.(4.9) with the same analogy for our ẑ-kicked Haldane

Hamiltonian HZ(k).

4.3 Results and Discussion

We shall now take up the discussion on (1) the range of driving parameters and

their effects on the band structure, (2) effects of periodic kicking on the topologi-

cal properties of the Haldane model and (3) the modification to Haldane’s overlap

criterion due to kicking.
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Figure 4.2: The plots of the spectrum, i.e. zero photon sector Floquet bands, for
the driven Haldane model as seen for different driving frequencies. We consider a
driving period of the form T = 1/vt1 where v = 0.5, 1 and 2. The fixed parameters
for all plots are φ = 0, t1 = 3, t2 = 1 and αz ≈ 0. Plots (a1) and (a2) are for v = 0.5
and M = 2 and 4 respectively. In these we note that, for zero driving amplitude,
the band structure is very much different from that of the undriven case. At this
low frequency the distortions are due to overlaps with Floquet sidebands. Plots
(b1) and (b2) are for v = 1 and M values 2 and 5 respectively. Here, the choice of
frequency works for the lower M value without any higher band interference but for
the larger M , sideband overlaps occur. This is seen from the near flat truncation of
the conductance band peak and the bump at the centre of the valence band in plot
(b2). Plots (c1) and (c2) are for v = 2 and M values 2 and 5 respectively. They
clearly indicate that this choice of frequency preserves the features of the Haldane
spectrum when the driving is taken to zero.

78



4.3.1 Range of Driving Parameters and Effects on Band

structure

The Floquet Hamitlonian we have calculated is obtained stroboscopically in an exact

manner. Hence, there is in principle no restriction on the chosen driving frequency.

However, there are still bounds as to how low one can go. The behavior of the band

structure of the driven model requires this lower limit to be set by the convergence

of the spectrum of the driven model to the undriven Haldane spectrum in the limit

of αz → 0 (i.e. taking the driving to zero). We observe that one can go to a driving

frequency of the order of energy ≈ t1, if the undriven Haldane model, has parameter

values t2 = 1 and t1 = 3. This choice of parameters satisfies the overlap prevention

requirement.

To put this lower limit in perspective we note when M = 0 and t2 sin(φ) = 0, the

bandwidth of the Haldane model is ≈ 6t1 and hence one can work with a frequency

up to this order. In this situation neither inversion nor time-reversal are violated

and the system allows bands to touch at both Dirac points in the FBZ. The presence

of M alters the bandwidth but is of no substantial influence if considered smaller

than the nearest neighbor hoppings t1.

For larger M > 3.5, there are overlaps of the ground state Floquet bands with

the Floquet sidebands for driving period ≈ 1/t1. In this case it is observed that an

upper limit to the driving period T = 1/2t1 resolves this issue for all M choices.

The issue with larger M s in the 1/t1 limit case can be resolved at non-zero driving

amplitudes which remove the overlap to the sidebands but this does not hold true

when one goes all the way down to zero driving amplitude. Thereby by making

1/2t1 the more favourable choice of upper limit for the period. These features are

illustrated in Fig.4.2.

So, in a driving scheme based on periodic kicking we are able to free the analysis

of the constraint of limiting the driving to high frequencies and instead go to com-
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paratively lower values. This feature is absent in the schemes involving continuous

drives, such as circularly polarized light, that require the photons of the driving

radiation to be of energies larger than the bandwidth [132].

This brings us to the question of how the amplitude of driving influences the

features of the driven system. We restrict ourselves to a discussion of how the driving

amplitude affects the band structure for a fixed choice of the hopping energies and at

some particular choice of M and φ. As already mentioned, the driving accentuates

the inversion symmetry breaking and the gap that opens in the spectrum increases

as the amplitude is increased. There are however effects on the band curvature. It

is known that the kicking when applied to graphene leads to flat band structures

at driving amplitudes of the magnitude αz = π/2 [168]. In the Haldane model one

of the crucial differences in the band structure from that of ordinary graphene is

the absence of particle hole symmetry due to the next nearest neighbor hoppings

governed by t2. A feature loosely understood in terms of the greater number of B

sites than A sites in any finite bounded version of the system. Thus, for this model,

when the amplitude of kicking is similarly increased, the band structure does not

become completely flat, especially for the valence band. The conduction band does

show nearly perfect flatness when the hopping energies are in the ratio satisfying

|t2/t1|< 1/3.

The choice of φ here is kept fixed at 0 and M could be non-zero but within

the range that shows topological behavior in the undriven case, i.e [−3
√
3, 3

√
3].

Though one may be cautioned that even in going upto this magnitude of driving

the undriven overlap condition begins to break down in favor of a newer one hinted

at earlier, but the signatures of flatness can be observed to occur well before this

threshold is reached. In going beyond the αz = ±π/2 limit the band structure is

found to invert its curvature and as one proceeds to increase the driving to αz = π

the conduction and valence exchange their structure from what is seen near zero
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Figure 4.3: These plots indicate the behavior of the Floquet spectrum at relatively
large driving amplitudes for the fixed parameters φ = 0, t1 = 3 and t2 = 1 . Plot (a)
is for αz = π/2 and M = 2. It shows the appearance of the tendency to flatness in
the band structure especially in the conduction band. Changing the M value does
affect this behavior but the flatness can be found to occur at a suitable corresponding
αz value. Plot (b) is for αz = π and M = 0. We see that the conduction and valence
bands have completely exchanged their structures from the undriven case. Important
to note that the conduction band now shows almost complete flatness with slight
bumps at the Dirac point locations which touch with the minima of the valence
band when one accounts for the folding of the Floquet quasienergies. Toplogically
this has the effect of exactly exchanging the Chern numbers for the bands from the
undriven case. This is discussed in detail in Sec.4.3.2.

driving. The interplay of the magnitude of M and αz is found to effect the degree of

flatness of the bands, especially the conduction band. These features are illustrated

in Fig.4.3. We will see that due to the periodicity in the mass term stemming from

the nature of the kicking, changing the magnitude of the driving causes the system

to undergo transition in and out of topological phases in a periodic manner. In order

to observe the full array of non-trivial topological behavior it suffices to work in the

driving amplitude range of αz ∈ [−(2n+1)π/2, (2n+1)π/2] and further within this

range, the original condition to avoid overlap of bands when touchings occur i.e.

|t2/t1|< 1/3 is valid almost within αz ∈ [−1, 1]. This range is sufficient to observe

the competition between M and the driving in terms of influencing the topological

phase, for a fixed choice of hoppings satisfying the above criterion.

However, to maintain sufficient generality in our discussion we will look at topo-
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logical behaviour at large driving amplitudes and the new overlap condition that

comes into play in these regimes. A point to note here is that though we fix hopping

values while discussing the topological properties at large drivings thereby falling

out of the criterion to avoid overlap of bands at these large driving amplitudes, this

effect may be ignored so far as knowledge of the topological phases is concerned.

If one is indeed interested in a realization of the driven model at high amplitude

kicking and in observing the band touchings in the spectra an adjustment in the

choice of hoppings, especially t2, is necessary. Speaking in these terms necessarily

assumes that one is working with a system where such parameters as the hopping

energies and the site energies are free to be controlled and varied, this seems possible

only in optical lattice setups where lattice depths and occupation densities of the

ultracold atoms can be manipulated.

4.3.2 Topological features of the kicked model

4.3.2.1 Analytical Deductions

We now come to a discussion of the topological properties of the driven Haldane

model. Here, we analyze the effects of periodic kicking on the Chern number phase

diagram originally obtained by Haldane for the Hamiltonian in eq.(4.1) [66]. After

the manner of the analysis presented there, we look at the mass term of our driven

model, which is the coefficient of the σz matrix in 2D systems, for the various

topological phases the system could exhibit. Thus we make use of the definition for

obtaining the Chern number C given in eq.(4.7). To apply this we consider �z(k)h
�
z(k)

from eq.(4.4), which is the coefficient of σz in the driven Haldane Hamiltonian. The

technique requires one to consider the gap at the Dirac points K and K�, hence look

a the sign of h�
z(k) in the vicinity of these points. On doing so C is given by the
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expression

C =
1

2

�

ν=±1

νsgn

�
�z(k)

sin(γν)

�
−sgn(αz) sin(αz) cos(T |M − 3

√
3νt2 sin(φ)|)

− sgn(M − 3
√
3νt2 sin(φ)) sin(T |M − 3

√
3νt2 sin(φ)|) cos(αz)

��
(4.10)

where,

γν = cos−1

�
cos(αz) cos(T |M − 3

√
3νt2 sin(φ)|)− sgn(αz)sgn(M − 3

√
3νt2 sin(φ))

× sin(αz) sin(T |M − 3
√
3νt2 sin(φ)|)

�
(4.11)

The denominator in the above expression for C goes to zero for certain values of

the driving (αz, T ) and the Haldane model parameters (M,φ, t1, t2). Out of these

the hopping parameters will usually be considered to be fixed for a given realization

of the model. Here, we are interested in the general conditions that can be deduced

from the form of the Chern number and the behavior of the mass term at the Dirac

points under various choices of the driving and model parameters.

Thus the condition for the denominator to go to zero, the mass terms to van-

ish, and hence Berry curvature to diverge at either of the Dirac points, is given

by γν = nπ, with n = 0,±1, 2, 3 . . . . This essentially reduces to the condition

cos(|αz|+T
�
M − 3

√
3νt2 sinφ

�
) = ±1 which implies |αz|+T

�
M − 3

√
3νt2 sinφ

�
=

nπ. The numerator of the expression for C (see eq.(4.10)), apart from the �z(k) term

which does not play a role in determining the sign of the term (at the locations for

the two Dirac points once one has chosen the valence band for calculating C), go to

zero for sin(|αz|+T
�
M − 3

√
3νt2 sinφ

�
= 0 . The appearance of the indeterminate

0/0 form which seems to occur is regulated in a limiting manner, by the presence

of the �z(k) in the numerator. Thus what we have obtained is the condition for the

bands to touch at either one of the Dirac points depending on the value of ν (±1)
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Figure 4.4: Plots of the Chern number in the M/t2 and φ plane for different αz

values. The plots (a),(b),(c) and (d) are for αz values 0, π, π/4 and π/2 respectively.
The darkest regions indicate a Chern number of −1, the lightest ones 1 and the
intermediate shade is for 0 Chern numbers. The choice of undriven Haldane model
hoppings, for these plots, is fixed at t1 = 3.5 and t2 = 1. The driving period is taken
to be T = 1

2t1
.

in the equation |αz|+T
�
M − 3

√
3νt2 sinφ

�
= nπ. This is the modified condition

for the boundary sinusoids which enclose the topologically non-trivial phases in the

case of the Haldane model under kicking.

A couple of features become apparent from this condition. We observe, that the

periodic kicking has the effect of modifying the inversion breaking parameter M to

M − (nπ−|αz |)
T

which depends on the driving parameters αz and T . Thus for different

values of n, there is a specific set of values for (M,αz, T ) which would satisfy phase

boundary conditions similar to the conditions satisfied by the Chern number in the
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Haldane model. In this case we have a periodic recurrence of the phase diagram

plotted between M/t2 and φ along the M/t2 axis, as manifested in repeated copies

of the original Chern diagram for the undriven model on moving along this axis.

Thus, the broad topological behavior of the undriven model is preserved in the

driven model but now extends to newer regions of M values for a fixed choice of t2.

The system under driving begins to explore a larger space of parameters in terms of

the occurrence of topological phases. Another feature that comes across is that the

new condition for the phase boundaries depends on the magnitude of the driving |αz|

and is independent of its sign. In fact, the modification to the inversion breaking

factor is such that it depends on the ratio αz/T which encapsulates the complete

effect of the driving. The appearance of the ratio indicates that the amplitude of

the driving can be made to scale with the frequency in a linear fashion to obtain

a class of driven models with identical topological behavior. There is even the

possibility of choosing the amplitude of the kicking to gradually increase, in a linear

fashion with time, on a scale adiabatic in comparison to the driving, so as to be

effectively regarded as constant over several driving periods. With this one may

realize a linear-in-time variation of the inversion breaking term and hence travel

from a topologically non-trivial to a topologically trivial phase. This could be of use

in schemes looking to quench Chern insulators across a topological phase boundary

with a normal insulator to study various properties of dynamical topological phase

transitions at the quantum critical point[277].

The effect of increasing the driving amplitude from zero (in either positive or

negative sense), i.e. the undriven situation, is to shift the Haldane Chern number

phases (pair of lobes due to the intersecting sinusoidal phase boundaries) vertically

downwards, from their undriven position, along the M/t2 axis. This effect applies to

all the periodic copies of the phase diagram along this axis. LetM � be used to denote

the new effective inversion breaking parameter in the presence of driving. Thus what
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Figure 4.5: Various sectional views that indicate how the topological phase diagram
varies with change in driving amplitude keeping one symmetry breaking parameter
fixed and varying the other. Plot (a) indicates such variation for a fixed φ = π/3
and illustrates the linear variation of the phases for different M/t2 as αz is changed.
One notes the sharp turn the phases take at αz = 0, a clear consequence of the
dependence of the phases on the driving magnitude |αz|. Plots (b) and (c) illustrate
phase regions for varying φ and αz, with M/t2 choices fixed at 2 and 10 respectively.
The Chern number convention for the shaded regions is the same as that for Fig.4.4.

we are effectively witnessing is a renormalization of the ‘Semenoff mass’ component

M in the Haldane mass. In the undriven case there was a unique inversion breaking

site energy M with the phase diagram center at (M = 0,φ = 0). This then had

corresponded to a graphene like semi-metallic band structure with touchings at both

Dirac points. In the driven model this admits multiple values as seen from M � ≡

M − (nπ−|αz |)
T

and hence multiple semi-metallic centres M − (nπ−|αz |)
T

= 0,φ = 0. for

the different n and αz values. The n values define a set of several ‘Semenoff Masses’

at a give non-zero kicking all of which are valid choices around which topological

phases can manifest. There is now a multiplicity of possible undriven Semenoff

mass choices M which yield M � = 0. The period of driving T , which we fix with a

specific t1, decides the separation between the centres for a given driving. Thus the

zero driving case does not collapse to a single M value topological phase structure

( the original Haldane model) but still shows a multitude of such phase diagrams

which may be regarded as a consequence of the folding or periodicity in Floquet

86



quasienergies. This hints that the topological phase diagrams repeat identically at

a separation of 2π/T in the M values which is exactly the width of a quasienergy

Brillouin zone.

Varying the driving αz on the other hand, for a fixed choice of n and M , is

a more physically plausible and interesting as that would take a chosen undriven

model (M,φ) through a topological transition.This is very much like quantum Hall

plateau transitions with adibatically varying magnetic field. An interesting feature

that shows up is that for a given kicking amplitude atM values (nπ−|αz |)
T

, for different

n say, 0 and 1 the Chern number phases are reflected about the φ = 0 line in the

phase diagram. This is of more significance when one varies the driving amplitude

αz to the relatively high regime of π or −π. Then the Semenoff mass M � post driving

is equal to the undriven one M for n = 1 which is clear from the relation. So the

Chern number phase diagram with its phases reflected about φ = 0 now occupies

the region of the phase diagram where earlier the undriven Haldane Chern number

diagram was valid and thus in this extreme driving condition the topological phases

undergo an exact inversion. This indicated that even an inversion breaking taken

to a certain extreme may alter the band topology of a Chern insulator atleast in

the presence of driving. However, physically there are issues with such large kicking

amplitudes some of which have been discussed earlier.

Again one has to exercise some caution here, on account of the folding of the

quasienergies. There is always the possibility of band touchings which occur at the

extreme ends of the spectrum (quasienergy Brillouin zone boundaries), besides the

conventional ones at the middle of the spectrum which occur in the undriven and

driven cases. This could cause the Chern numbers to invert for the two bands.

Indeed, what we see here is that, the inversion in phases is due to these band

touchings at the ±π/T limits of the folded spectrum and hence the gap closing at the

edges of the quasienergy Brillouin zone. These arguments sit well with the previous
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discussion of the appearance of flat band behavior in the conduction band as driving

amplitude is increased. As it starts to acquire the curvature characteristics which

are present in the valence band in case of zero driving. Thereby an exact reversal of

structure occurs between the valence and conduction bands and the Chern numbers

flip due to this new closing opening transition. The band structure is shown in Fig.

4.3(b).

4.3.2.2 Evidence from Phase Diagrams

To illustrate the various aspects of the topological phase diagram for the driven

Haldane model we refer Fig.(4.4). These figures are for parameter values t1 = 3.5 and

t2 = 1 that satisfy the band overlap prevention condition. Again, we caution that

variation to this condition in the presence of driving which has been hinted on several

earlier occasions and so t2 has to be changed beyond a certain driving amplitude

regime but here this is ignored as the broad topological behavior is unaffected by this.

The driving period is fixed at T = 1
2t1

. This choice, as stated earlier, ensures that

the limits of the Floquet quasienergy Brillouin zone remain beyond the bandwidth

of the undriven model and thus manifests in the phase diagrams as avoided overlaps

between the different replicas of the intersecting sinusoids that are seen one below

the other in Fig.(4.4). Other previously discussed features that become apparent

include, for instance, one can look at the the plots in Fig.(4.4) (a) and (b) which are

for αz = 0 and αz = π respectively and note that when the driving is taken to such

extremes the band topology inversion spoken of earlier occurs. Additionally, though

αz is zero for the plot (a) and one does indeed see the undriven Haldane model

phase diagram around the (M = 0,φ = 0) centre, there are still copies of similar

non-trivial topological phases along the M/t2 axis which are absent in the original

Haldane model. This indicates that the stroboscopic Floquet Hamiltonian does not

converge to the unperturbed Hamiltonian simply by taking the driving amplitude
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to zero. One also has to take the limit of the driving period becoming very small

and ideally going to zero. It is in this limit that one recovers the undriven model

and this is true for the phases in plot (a) of fig.(4.4) as the other topological phase

regions will get pushed out to infinity and one obtains Haldane’s original phase

diagram. An observation that is consistent with the fact that, in the limit of driving

frequencies being infinitely large, one is precisely left with the undriven Hamiltonian

as the exact description of the system. This is so as the separation between two pairs

of intersecting sinusoids that delineate two topological phase regions is decided by

the corresponding driving renormalized Semenoff masses and the difference between

these masses can be seen to depend on the driving frequency. Thus one can easily

see that the effect of varying the driving frequency, say decreasing it in our model,

would be to bring the adjacent topological regions, enclosed between their respective

pair of sinusoids, nearer to one another. Eventually, for the lower driving frequency

limit , of which we have spoken earlier, the Haldane-like topological phase diagram

copies are close enough for the sinusoids of adjacent diagrams to just touch each

other. Going lower in the frequency would take one into the forbidden limit where

these non-trivial regions begin to overlap.

Further, if one looks at plots (c) and (d) of fig.(4.4) we see that at the cor-

responding driving amplitudes of αz = π/4 and π/2 respectively have the effect of

shifting the topological phases away from the parameter regions which were topolog-

ically non-trivial in the undriven situation. Thus in plot (c) one can clearly see the

new topolgical region shifted with respect to the phase boundary for the undriven

model, which is the pair of sinusoids intersecting at the origin in the phase plane.

In particular the upper half of the region enclosed between the undriven model’s

phase boundaries is now topologically trivial. Thus the driving, as it is increased,

shifts the phases in a linear fashion. One may consider some choice of undriven

model parameters M and φ for which the system is in a topological phase and after
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a certain magnitude of driving the model enters a topologically trivial phase. Thus

the change in the driving amplitude can, as discussed earlier, bring a plateau tran-

sition in the Chern number. This effect is more pronounced in plot (d), where, the

entire parameter range which was topological in the undriven case is now trivial and

hence the driving does offer a path to transition the model between non-zero and

zero Chern numbers and is hence a medium to study the normal to Chern insulator

transition in such simple non-interacting systems.

Fig.(4.5) illustrates the topological phases of the kicked model when looked at

from different cross-sectional views of the solid three dimensional structure that

would result if the various phase plots for the αz values , such as those in fig.(4.4),

were stacked in proper sequence, one above the other, along an out of plane αz

axis. In this figure, all the parameter values that need specification to obtain the

plots therein, are chosen to be the same as those used for fig.(4.4). Plot (a) in the

figure depicts the behaviour of the topological regions for a φ value fixed at π/3 and,

M/t2 and αz being varied. The linear variation of the phases in this picture reveals

the linear shift in the sinusoidal lobes seen in the plots of fig.(4.4), with change

in driving. Additionally, the sharp turn in slope, as if a reflection, of these linear

phase regions, which are basically tubes with sinusoidal cross-sections, at αz = 0 is

indicative of the driving depnedence being purely on the magnitude i.e. |αz|. Once

this picture is established it becomes easier to interpret the other two plots (b)

and (c), which show the φ − αz phase plane for M/t2 values 2 and 10 respectively.

Since a constant M/t2 can be understood as a plane that slices a kind of Pan flute

structure of the tubes of intersecting sinusoids. Thus on the plane one expects to

get the projections of the tubes that are cut and this naturally depends on where

one chooses to slice. So, where such flutes of different inclination meet, which is at

the turning point i.e. αz = 0 or, if one considers the full periodicity, nπ, they form

an intersecting sinusoidal edge. If the slice is chosen that it cuts above or below
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the exact centre of this ridge i.e. M �= 0 then the projection on the corresponding

φ− αz plane will have a pair of non-touching sinusoids at the centre. This is what

shows up in the middle of plot (b). Of course the slice may be so chosen that it lies

outside this intersecting sinusoid edge in which case it will cut the nearest sloping

flute tubes and result in a projection with touching sinusoids, as is the case in plot

(c). Due to the inherent periodicity in the phase diagram structure, as one goes

through a complete period of the M/t2 choices, the projections begin to show the

undelying periodicity.

4.3.3 Modifications to Haldane’s overlap criterion due to

kicking

This broadly concludes our discussion of the topological features of the kicked Hal-

dane model. We now turn our attention to the issue of avoiding band overlap in

the presence of driving, a concern which has been repeatedly expressed at various

points in the above discussion under different contexts. The prime consideration is

to have the bands touch in a way that the spectrum allows these touchings to be

detected without ambiguity. This imposes a relation on the hopping parameters.

As the relative magnitude of t1 and t2 has the effect of influencing the degree of

particle-hole symmetry breaking in the system, and hence, the nature of the touch-

ings. Along lines similar to the arguments for Haldane’s criterion we obtain the

following condition that needs to be satisfied

9t2 < cos−1

�
cos(αz) cos

�
T
�

9t21 +M2

�
− M sin(αz) sin(T

�
9t21 +M2)�

9t21 +M2

�

− cos−1

�
cos(αz) cos(T |M |)− sgn(M) sin(αz) sin(T |M |)

�
(4.12)

In the above inequality one notes that a condition is imposed on the suitable

values for t2 once t1 has been chosen. This is accompanied with the effects of
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driving also having a role to play in the determination of this value. Both the

driving amplitude αz and the driving period T appear in the above expression.

Since we have already done so in our earlier analysis T can be taken to dependen

in an appropriate way on the nearest neigbour hoppings t1. The M can be written

in terms of the driving amplitude using the previously derived expressions for the

new Semenoff masses M � depending on which n-th order semi-metallic center one is

looking at to observe the band touchings, by putting that particular choice of M �

to zero or nπ. Thus the condition can be reduced to depend solely on αz and t1.

Another feature of this condition is that unlike the ordinary one given by Haldane

which has a simpler reciprocal relationship between the two hopping energies, the

above relation is not easily invertible to a case where one fixes t1 and calculates the

condition on t2. In the context of varying αz for a fixed n in the choice of M � or

changing n for fixed αz the variation in the choice of t2 will have the effect of altering

the boundary sinusoids of the corresponding phase diagrams in the parameter space.

Thus if one were to rigorously enforce this condition, which we have ignored for now

in the phase diagrams in fig.(4.4) where t2 is fixed at unity, we would observe a

flattening or broadening of the pair of intersecting sinusoids. This follows from the

fact that changing t2 say in the diagram of a given αz for different M and hence n

values would rescale the vertical axis of the diagram. We would like to point out

that adjusting t2 is a freedom available only in certain realizations, as mentioned

earlier, hence, if one is interested in driving the system across a topological transition

it would be reasonable to do so in the previously suggested range of αz ∈ [−1, 1].

Since within this domain the ordinary haldane condition is a workable choice and

one need not be concerned too much about the effects of driving in this regard.
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4.4 Conclusion

We consider a ẑ-kicked Haldane model and examine the topological properties of

this system. The effects of driving on the topological phase diagram of Haldane’s

originally proposed model are illustrated. We find that, besides introducing a peri-

odicity in the phase diagram where the Haldane phase diagram is repeated at regular

intervals along the inversion breaking axis M/t2, a signature of the periodicity of

the Floquet quasienergy spectrum, the driving magnitude is solely responsible for a

linear shift in the topological phases of the driven model relative to their undriven

counterparts. This suggests the use of this driven model to study Floquet topological

phase transitions.

This is different from the optically driven Haldane models of [132, 271] where

the tunable parameter toys with the time-reversal symmetry breaking by modifying

those terms of the effective Hamiltonian which depend on the phase of the complex

valued next-nearest neigbour hoppings of the undriven Haldane model. Although

the overall effect is to still traverse between topological and non-topological regions

of the Haldane Chern number phase plot as drawn against the symmetry break-

ing parameters, yet this is brought about in a different manner. To be precise

this distinction becomes fully apparent when one considers the effective Hamilto-

nian post-driving in the vicinity of a Dirac point which of course would be usually

gapped in the given case. Also, the driving at sufficiently large amplitudes causes

a modification of the band overlap avoidance criterion as originally suggested by

Haldane in his model.

Finally, we would like to mention that this kicking scheme could be also applied

to the Kane-Mele model for spin orbit coupling in hexagonal lattices [70, 71] to study

the effect of driving on the Z2 topological index which characterizes the topology in

such QSHE systems. This is proposed as a future work that we intend to undertake.
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Chapter 5

Floquet analysis of pulsed Dirac

systems: A way to simulate

rippled graphene∗

5.1 Introduction

The previous chapter considered modifications to topological aspects of the band

structure in the hexagonal lattice of the Haldane model under a periodic kicking

scheme. We now proceed to illustrate the use of Floquet engineering techniques

to modify the geometry of a hexagonal lattice system such as an optical lattice

realization of Graphene. We propose the use of a periodic pulsing sequence that

would replicate the physics of a curved or rippled Graphene sheet by introducing

curvature as a gauge field in the low energy continuum Dirac equation description

of Graphene. The study builds on the established progress in the simulation of

condensed matter systems in optical lattices of ultracold atoms.

Quantum systems subjected to high-frequency periodic driving have become a

∗This chapter is adapted from the paper “Floquet analysis of pulsed Dirac systems:
A way to simulate rippled graphene” by Mishra, Guha Sarkar and Bandyopadhyay
(2015).
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prominent feature of quantum simulation studies [95, 240]. These studies are mostly

aimed at modelling various unique condensed-matter systems [278, 279]. Floquet

theory and its applications have been extensively studied [280]. Field induced driving

[111], or that generated through mechanical straining, for instance, in graphene [43–

47] have demonstrated their ability to create novel gauge structures and modify

the energy spectra. Such driving schemes have hence become increasingly popular

in cold atom and ion-trap systems as a means of implementing effective potentials

that could simulate magnetic fields or spin-orbit couplings [96–103]. The theoretical

formalism underlying these driven quantum systems relies on a time dependent

forcing that synthesizes an effective approximate time independent Hamiltonian [85–

91, 281]. A recent trend in these investigations has been inclined towards looking

at a variety of driving schemes to explore potentially interesting Hamiltonians [80].

In much of the last decade two areas have witnessed rapid progress, namely,

the physics of graphene with its applications [4] and ultra cold atoms in optical

lattices [94]. Interest in the former is driven by the realization of a perfectly flat

two-dimensional (2D) system and the unique physics observed in the material due

to its relativistic dispersion relation [8, 38, 282]. Optical lattices, on the other hand,

has offered an indispensable simulator for realizing many-body condensed matter

phenomena and noting their response to a highly controllable variation of system

parameters. This has motivated a significant advancement in the efforts to simulate

graphene like systems in optical lattice [56–65]. Graphene systems have been studied

in the presence of time dependent potentials [283, 284]. Further graphene is noted

to show exotic properties, either under mechanical strain, curvature or possessing

defects such as dislocations [41–55]. These studies often use a continuum model of

Dirac fermions in curved (2+1) dimensions in the limit of low energy excitations.

This has also been investigated in the cold atom/optical lattice setup with the

objective of studying relativistic electrodynamics in the presence of gravity [285].
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The experimental realization of such systems has presented technical difficulties

arising from the spin-like and position dependent nature of the nearest-neighbor

hopping amplitude in their Fermi-Hubbard Hamiltonian. The essential requirement

is the coupling of an artificial non-abelian gauge field to the ultra cold fermionic

atoms in the optical lattice (near half-filling) giving rise to the appropriate effective

dynamics [104–112].

A key ingredient of all such simulations involves the generation of artificial gauge

fields in optical lattices through periodic driving or ‘shaking’ [101, 102, 115, 116]. We

propose the use of a certain driving scheme to obtain an effective curved graphene

model in the optical lattice setup. The key distinction of our proposed scheme from

similar works [285] is our use of pulse sequences with suitably chosen modulating

operators, as described in [80], to generate the effects of smooth driving. This is

suggested as an alternate scheme to circumvent difficulties arising from the com-

plicated form of the effective tunneling parameter in conventional treatments. An

added advantage of this method is the easy correspondence afforded by it between

the continuum and the lattice using a suitable map relating the operators in the two

pictures.

In this chapter, we outline a scheme for the generation of an approximate effec-

tive Hamiltonian using periodic time dependent forcing on a fermionic 2D optical

lattice having the Bloch band topology of flat graphene such that the resulting static

effective system mimics the features of a curved background. To compare with the

Dirac equation in curved (2+1) dimensional background we consider a metric with a

conformally flat spatial part. The Dirac equation in this curved background is cast

in a Hamiltonian form to allow easy comparison with the lattice Hamiltonian in the

continuum limit. The effects of background curvature are noted. We have found an

effective approximate time-independent Hamiltonian which is obtained from a spe-

cific high frequency time-periodic driving of the flat space Dirac Hamiltonian. This
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effective Hamiltonian is found to be identical to the Dirac Hamiltonian in curved

space at the leading order.

We also note the direct correspondence between the nature and the periodicity

of the driving to the form and the extent of curvature. The modification of the

electronic properties, specifically Local Density of States (LDOS) is studied in low

energy regimes near the Fermi points.

5.2 Formalism

5.2.1 Massless Dirac Equation in curved (2+1) D space

We consider the effects of curvature of the background space on the massless Dirac

equation. The curved space Dirac Hamiltonian is believed to govern the quasi-

particle (i.e., the massless Dirac fermion) dynamics in the continuum limit of the

low energy approximation for graphene sheets with curvature. In the subsequent sec-

tions, we shall elaborate upon our intent to replicate such systems in the framework

of optical lattice simulation.

The Dirac equation in (2+1) dimensional space-time has been studied in various

contexts and has a well defined formalism [286–294]. This section provides a brief

overview of this as relevant to the problem studied in this chapter. We consider

a (2+1) dimensional space-time as the backdrop for our analysis. We choose a

space-time metric of the form

ds2 = dt2 − e−2Λ(x,y)(dx2 + dy2). (5.1)

where t represents the time coordinate, x and y are the spatial isothermal Cartesian

coordinates, and e−2Λ(x,y) denotes the conformal factor. We note here that the two-

dimensional spatial part of this metric diag (1,−e−2Λ(x,y),−e−2Λ(x,y)) is completely
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general in representing two-dimensional curved surfaces. This metric has been used

in the context of studying Dirac equation coupled to curved space-time [295] with

a distribution of defects, for instance, in the case of corrugated graphene sheets

[43–45].

In order to write the curved space Dirac equation we make use of the vielbein

or triad formalism in (2 + 1) D space [296]. This is required to appropriately write

special relativistic equations, originally formulated in a flat spacetime, in curved

spacetime. The idea is to write all quantities and hence the equations in locally

inertial frames i.e Lorentz frames at each point of the curved spacetime manifold.

Veilbeins help to transform vectors, tensors and spinors between the local Lorentz

coordinates and the global curved spacetime coordinates. The veilbeins eaν(x) are

defined by the way they relate the local flat Mikowskian metric to the global metric

of curved spacetime,

gµν(x) = eaµ(x)e
b
ν(x)ηab (5.2)

and hence, the vielbein field can be interpreted as the square root of the metric.

While going from flat to curved spacetime the general approach involves replacing

Lorentz tensors by quantities that transform like tensors under general coordinate

transformations, ηab by gµν , and the ordinary derivative by the covariant derivative.

For the case of invariance under Lorentz transformations this method suffices with

the covariant derivative containing the affine connection, whose components are

given by the Christoffel connection coefficients Γα
νµ, as an addition to the ordinary

derivative. This gives the correct change to a vector under parallel transport over

any Riemannian manifold. However the case of invariance under spinorial transfor-

mations requires the introduction of the vielbein field and the covariant derivative

in this case has what is called as the spin connection term included in its definition.

This is required to correctly account for the change in spinors as they are translated

in the presence of gravity. In the following paragraphs we illustrate the use of this
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formalism for the purpose of writing the curved space Dirac equation.

The Dirac equation in curved space-time takes the form

iγµ(x)(∂µ + Γµ(x))ψ = 0 (5.3)

The spin connection term, Γµ(x), is given by [295]

Γµ(x) = gλα(e
i
ν,µE

α
i − Γα

νµ)s
λν + aµI (5.4)

where eiν and Eα
i denote the usual vielbeins and their inverses respectively, Γα

νµ are

the Christoffel connection coefficients and sλν are the generators of spinor trans-

formation in curved space-time. This expression illustrates the indeterminacy of

the connection term to upto a constant aµ. Hence Γµ has an arbitrary trace [295].

This offers a gauge freedom which can be exploited depending on the nature of the

problem. We take the standard choice for Γµ as

Γµ(x) =
1

2
gλα(e

i
ν,µE

α
i − Γα

νµ)s
λν (5.5)

with,

sλν(x) =
1

2
[γλ(x), γν(x)]. (5.6)

The γ matrices with curved space-time indices are related to the usual Dirac matrices

in flat space by γµ(x) = Eµ
i (x)γ

i. We choose the following representation using the

Pauli matrices for the γis

γ0 = σz γ1 = iσy γ2 = −iσx. (5.7)

In our choice of representation, σz is diagonal and σy is complex.
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The spin connection components, for our metric [see Eq.(5.1)], are given as

Γ1(x) =
i

2

∂Λ(x, y)

∂y
σz, Γ2(x) = − i

2

∂Λ(x, y)

∂x
σz. (5.8)

The massless Dirac equation in curved (2+1) space-time, can hence be written as

�
iσz ∂

∂t
− eΛ(x,y)

�
σy ∂

∂x
− σx ∂

∂y

�

+
eΛ(x,y)

2

�
∂Λ(x, y)

∂y
σx − ∂Λ(x, y)

∂x
σy

��
ψ = 0,

(5.9)

where we have used eqns. (5.3) and (5.5). This equation can be recast in an explicitly

Hamiltonian form by breaking the manifestly covariant form as

i
∂ψ

∂t
= eΛ(x,y)

�
−iσj∂j −

i

2

�
∂Λ(x, y)

∂y
σy +

∂Λ(x, y)

∂x
σx

��
ψ. (5.10)

The entire operator acting on ψ in the RHS of the above equation may be interpreted

as the Dirac Hamiltonian in curved space. This Hamiltonian is required to be

synthesized using the driven optical lattice. As will be shown later it is possible

to formulate a driving scheme which does exactly this. In the following section

we discuss a procedure for obtaining an effective time-independent Hamiltonian for

periodically driven systems. This shall find appropriate implementation in optical

lattices.

5.2.2 Periodic Pulsing and Effective Hamiltonians

In the study of quantum systems having periodic time dependent Hamiltonians

[90, 91], a special category is devoted to the class of systems where the system is

subjected to high frequency periodic forcing [85]. The theoretical treatment of such

systems has its roots in the study of similar classical systems [83, 84]. The literature

suggests various routes to arrive at an effective time-independent Hamiltonian [86–

100



89]. The traditional practice of using the Cambell-Baker-Hausdorff (CBH) expansion

or Trotter expansion to study Floquet systems has certain inherent defects [87, 281].

A recent approach [80], inspired by [87], forms the basis of our formalism. It uses

the idea of engineering effective Hamiltonians by applying carefully selected periodic

driving schemes to quantum systems, geared towards generating desired effective

static systems.

To start with, we consider a time-periodic Hamiltonian H(t) that can be written

as

H(t) = H0 + V (t), (5.11)

where H0 is time independent and V (t) is the periodic time dependent part such

that V (t+T ) = V (t). The periodic time-dependent operator V (t) can be expanded

in a Fourier series as

V (t) = �V0 +
�

1≤n<∞

�Vne
inωt +

�

1≤n<∞

�V−ne
−inωt. (5.12)

In order to obtain the effective time independent Hamiltonian one writes the time

evolution operator as

U(ti, tf ) = e−i �F (tf )e−iHeff (tf−ti)ei
�F (ti), (5.13)

where, one introduces a time dependent Hermitian operator �F . The idea is to push

all the time dependence to the initial and final “kick” terms and render the main

time evolution to be dictated by a time independent Hamiltonian. The systematic

formalism (see appendix) yields the following expression for the effective Hamilto-
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nian [80]

Heff = H0 + �V0 +
1

ω

∞�

n=1

1

n
[�Vn, �V−n]

+
1

2ω2

∞�

n=1

1

n2

��
[�Vn, H0], �V−n

�
+ h.c.

�
+ O(ω−3).

(5.14)

The correction terms that appear in the effective Hamiltonian depend on the

commutator of the Fourier coefficients �Vn with each other and with the unperturbed

Hamiltonian H0. It is worth noting, that, for potentials which have time-reversal

symmetry (V (t) = V (−t)) Eq. (5.12) imposes restrictions on the coefficients so that

the commutator [�Vn, �V−n] vanishes. For such potentials the leading order correction

is O(ω−2). The appearance of the O(ω−1) term with a non-zero coefficient is a feature

of potentials with dependence on momentum operators in addition to position and

time. Time reversal symmetry is broken in these cases. Several possible choices for

such potentials are worked out in [80]. Our choice of driving potential, discussed in

the latter portion of this chapter, falls into this category. This serves as a helpful

reminder of the occasional deviations from the intuitively expected O(ω−2) leading

order correction in the effective Hamiltonian, which is expected for potentials with

time reversal symmetry.

We shall now focus on a specific kind of forcing potential. The driving potential

V (t) shall be considered to be a sequence of pulses that repeat periodically. The

choice of the number of phases in a given pulse sequence dictates the form of the

effective Hamiltonian. This offers a wide variety of possibilities up to a given order

ω−1 in the perturbation expansion.

Let us consider a general N -phase pulse sequence, with period T , of the form

V (t) =
N�

r=1

fr(t)Vr (5.15)
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where fr denotes a square profile such that

fr(t) =





1, (r − 1)T/N ≤ t ≤ rT/N,

0, elsewhere.

(5.16)

Here, Vr are arbitrary operators that are free to be chosen as per ones requirement.

Each phase lasts for a duration of T/N . We also impose the condition
N�
r=1

Vr = 0.

The time-dependent Hamiltonian for such a choice of driving is then

H(t) = H0 +
N�

r=1

fr(t)Vr. (5.17)

Using the Fourier series expansion this can be written as

H(t) = H0 +
�

n�=0

�Vne
inωt, (5.18)

where

�Vn =
1

2πi

N�

r=1

1

n
e−2πinr/N (e2πin/N − 1)Vr. (5.19)

It is possible to use Eq.(5.14) at this stage to obtain a generic expression for the

time-independent effective Hamiltonian for the kind of driving given in Eq. (5.15)

(refer Eq. (30) in [80]).

Given the flexibility of choosing the number of phases and also the modulating

operators, a wide variety of effective Hamiltonians can be generated. The next

section deals with one such choice that enables us to design the required gauge field

to simulate the physics of curved graphene in optical lattices. The usefulness of such

a pulsing scheme is demonstrated by showing its equivalence to an optical lattice

shaken/modulated by a smooth driving.

The modulation scheme used in standard optical lattices does not consist of such

pulsing and instead uses smooth driving. The effective Hamiltonian obtained for
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smoothly modulated optical lattices carries an imprint of the modulation frequency

through the renormalized hopping term (which is a function of ω). On Taylor

expanding the hopping parameter as a series in ω−1, this effective Hamiltonian

matches with the one obtained by a pulsing scheme at the leading orders [80].

5.2.3 Simulating rippled graphene: Optical Lattice Scheme

As mentioned previously, the use of fermionic optical lattices to simulate Dirac cones

and massless Dirac fermions is well established. In such a system the application of

a time-dependent sinusoidal modulation can be used to obtain novel gauge effects in

an artificial time-averaged manner. The possibility of doing this using the method

discussed in the previous section is elaborated here.

Among the wide range of choices that do exist, our problem lends itself rather

neatly to a 4-phase pulse sequence with modulation of the Hamiltonian given by

P4 : {H0 + A,H0 + B,H0 − A,H0 − B} (5.20)

This compares to Eq.(5.15) for N = 4 with V1 = −V3 = A and V2 = −V4 = B, where

A and B are suitable operators. As discussed in the last section, this is equivalent

to a smooth driving of the form

V (t) = A cos(ωt) + B sin(ωt). (5.21)

This choice of the time-dependent potential yields the following effective Hamilto-

nian [80]

Heff = H0 +
i

2ω
[A,B]+

1

4ω2
([[A,H0], A] + [[B,H0], B]) + O(1/ω3)

(5.22)
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It is significant in our context to note that the expression for Heff has both first

order and second order terms in ω with the appropriate commutator brackets. The

freedom in the choice of A and B allows us to engineer the desired effective Hamil-

tonian.

The periodic driving scheme has a small parameter ω−1, the time-period of forc-

ing. It is our contention that it is possible to use the formalism of generating effective

approximate Hamiltonians, through a choice of suitable operators A and B as men-

tioned in Eq.(5.20), to reproduce a Dirac Hamiltonian in curved space. This would

involve choosing an appropriate pulsing scheme.

We note that the low energy limit of a continuum approximation of graphene,

as simulated in the lattice, has the Hamiltonian of the form [4]

HG = −ivFσ
j∂j (5.23)

in units of h̄, where vF is the Fermi velocity and ∂j = (∂x, ∂y) is the gradient

operator in 2-dimensions. We shall subsequently work in units where vF = 1. This

motivates us to consider the primary Hamiltonian in our analysis as −iσj∂j. The

discussion here solely employs the continuum formalism for the operators and the

mapping to the second quantized forms for the operators and the Hamiltonians are

only introduced later in the section on results and discussion.

Let us consider a driving scheme with H0 = −iσj∂j, the Dirac Hamiltonian in

flat space and choose the operators A and B of the form

A = σjαj B = σk β k (5.24)

where, αj = [i∂y,−i∂x, 0] and β k = [0, 0,−f(x, y)]. With this choice, Eq.(5.22)
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yields an approximate effective Hamiltonian Heff up to order ω−1 given by

Heff =
1

2

�
−i

�
1 +

f(x, y)

ω

�
σj∂j

�

− 1

2

�
iσj∂j

�
1 +

f(x, y)

ω

�� (5.25)

For large ω this is a good approximation. The term of O(ω−2) is significantly sup-

pressed and manifests as non-trivial couplings and maybe ignored for our present

analysis. With a substitution

eΛ(x,y) =

�
1 +

f(x, y)

ω

�

we have

Heff =
1

2
[−ieΛ(x,y)σj∂j − iσj∂j e

Λ(x,y)] (5.26)

such that the entire expression is in terms of Λ(x, y) instead of f(x, y). The Hamil-

tonian in Eq.(5.26) can be further simplified and explicitly written as follows

Heff = eΛ(x,y)
�
−iσj∂j −

i

2

�
∂Λ(x, y)

∂y
σy +

∂Λ(x, y)

∂x
σx

��
(5.27)

We seek to map this effective time-independent Hamiltonian that is obtained from

the original time-dependent Hamiltonian to the Dirac Hamiltonian in curved space.

The function Λ(x, y) appearing here is expected to be mapped to the metric in some

fashion in the equivalent curved space description.

Comparing Eq.(5.27) and Eq.(5.10) we establish the correspondence between the

periodically driven effective system and a curved space description. The function

Λ(x, y) that depends on the periodic driving scheme is now seen to appear in the

conformal factor of the metric in the curved space picture. A quantity of geometrical
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interest describing 2D curved surface is the Gauss curvature K(x, y) given by

K(x, y) = e2Λ∇2(Λ) (5.28)

This scalar function has complete information about the curved 2-D surface. Since

Λ = ln
�
1 + f(x,y)

ω

�
depends on the driving scheme f and driving frequency ω, the

curvature shall depend on these directly. It is hence possible to reproduce the effects

of curvature (K �= 0) by suitably manipulating the driving scheme. This completes

the mapping between the two equivalent pictures.

In order to confirm that our model suitably mimics the properties of curved

graphene, it is required that some physical quantity associated with it be computed

and obtained experimentally. We regard the Local density of states (LDOS) to be

a suitable candidate. In the following we briefly recapitulate its significance and

prescribe a method for determining it theoretically.

The LDOS is a quantity of interest in the study of electronic and transport

properties of various condensed matter systems. It offers information regarding

the spatial variation in the density of states over a region, arising out of local dis-

turbances, that can be verified experimentally using scanning tunneling microscopy

(STM) techniques. It is therefore a physically relevant parameter for our study. Our

analysis suggests that the electronic properties for a periodically driven graphene

like optical lattice system, describable by a Dirac Hamiltonian, shall be the same as

one expects for the same system in a curved background without any periodic forc-

ing. To compute the LDOS [297] one first needs to calculate the Green’s function

for the system, for the case of non-interacting electrons, as follows.

G(z, r, r�) =
�

n

ψn(r)ψ
∗
n(r

�)

(z − En)
(5.29)

where, z denotes a complex energy variable, ψn are energy eigenstates in coordinate
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representation, En represents the energy eigenspectrum and the sum ranges over the

n eigenvalues of energy. The expression for the LDOS is given as

ρ(�, r) = − 1

π
Im

�

n

|ψ(r)|2
(�+ iδ − En)

(5.30)

which may be written as

LDOS = ρ(�, r) = − 1

π
Im[G(�+ iδ, r, r�)] (5.31)

We shall compute the LDOS numerically using the spectrum of the Hamiltonian in

Eq. (5.27) and compare it with the flat space case where Λ = 0.

5.3 Results and Discussion

The study of alterations to the electronic properties of graphene sheets as a result

of deformation, curvature, defects or impurities focuses chiefly on the modifications

to the LDOS or the appearance of a gap at the Fermi points [46, 48, 49, 282, 298–

303]. These works discuss the possibility of opening a band gap in graphene at the

Dirac point, which is known to be topologically protected by inversion and time

reversal symmetries [66, 76, 77]. The presence of perturbations that respects these

discrete symmetries can only move the Fermi points but not create a gap [78]. A

hybridization of the Fermi points with opposite topological charge (winding number)

allows a subsequent opening of gap [304].

In our present analysis we attempt to examine the effect on the LDOS for

graphene-like optical lattice under a periodic driving. The approach has similar

motivations to earlier studies on LDOS in rippled graphene [48, 49]. The principal

difference being that our system does not involve taking a graphene sheet with any

curvature or defects but imparting curved-graphene properties to an optical lattice
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via pulsing. The choice of the driving scheme function f(x, y) that maps to the

conformal factor in the metric is taken as

f(x, y) = x2 + y2. (5.32)

This choice of the driving scheme is used to compute the curvature according to Eq.

(5.28) and yields a constant Gaussian curvature K(x, y) = 4
ω
. Thus the curvature

turns out to be inversely proportional to the driving frequency ω. Hence, with our

high frequency driving scheme (high frequency is a necessary condition required for

the convergence of the perturbation series in Eq.(B.55)(see Appendix B, section

B.4.2.1) we are able to model a small positive constant curvature.

The deep significance behind the similarity between the Dirac Hamiltonian in

curved space and the effective time independent Hamiltonian needs to be addressed.

This can be understood by acknowledging that the effects of both curvature and

driving find expression through the unifying formalism of effective gauge fields. In

the case of a rippled graphene sheet [48, 49, 51–54] it has been well established

that the effect of curvature manifests in the curved space Dirac equation through

an artificial magnetic vector potential giving rise to a pseudo- magnetic field. This

is a reinterpretation of the contribution coming from the spin connection and the

curved space gamma matrices, which characterize the changes to the ordinary flat

space derivatives (giving the correct form of the covariant derivatives in curved

space). The modification gets carried over into the lattice picture through a phase

factor that modulates the hopping term (Peierls phase). This is the usual way to

couple a gauge field to a tight binding Hamiltonian.

It is also a matter of fact that periodic driving can indeed replicate gauge struc-

tures [80]. A landmark approach [101] maybe used to simulate complex valued

hopping parameters with a tunable value for the Peierls phase in the effective time

independent lattice Hamiltonian. Thus a scheme for simulating a vector poten-
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tial that amounts to a finite pseudo-magnetic flux through a 2D lattice is avail-

able. Mathematically, the slow part of the eigen states of the Floquet Hamiltonian

−ih̄ ∂
∂t

+ H are the object of study in the time independent picture. The use of a

unitary gauge transformation eiF (t) (see appendix B Sec.B.4.2.1) to map the states

of the system to a projective space where the evolution of the system is governed by

a time independent Heff , essentially involves a transformation of the time evolution

operator in a manner similar to the transformation of the momentum operator (i.e.

the operator for translation) in the presence of a minimally coupled gauge field.

The equation Eq.(B.54), in appendix B Sec.B.4.2.1, is very similar to a gauge trans-

formation. Thus, from a differential geometric point of view, the periodic driving

defines its own connection due to which arises a holonomy in the line bundle over the

projective space of rays of the Hilbert space [305]. In this manner a gauge invariant

time dependent phase appears as corrections to the quasi-energies of the system over

time periods large compared to that of the high frequency periodic driving.

It is possible to write down the operators A and B of the driving in the con-

ventional second quantized notation. To do so we adopt a convention in which the

fermionic optical lattice Hamiltonian reads

H0 = J
�

�k,j�
Ψ†

k+1,jσ
xΨk,j +Ψ†

k,j+1σ
yΨk,j − h.c.+Hon−site (5.33)

where, J is the plain hopping parameter, a the lattice spacing, Ψ†
k,j = (â†k,j , b̂

†
k,j)

creates a particle at the site (ka, ja) in some spin state. The operators âk,j and b̂k,j

stand for the two triangular sub-lattices of the optical lattice. The operators A and

B in this convention, for the choice of f(x, y) in Eq. (5.32), becomes

A = − i

2a

�

�k,j�
Ψ†

k,j+1σ
xΨk,j −Ψ†

k+1,jσ
yΨk,j − h.c.

B = −σz a
2

2

�

�k,j�
k2Ψ†

k+1,jσ
xΨk,j + j2Ψ†

k,j+1σ
yΨk,j + h.c.

(5.34)
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In the above expressions, we make use of the following map between continuum

operators and those on the lattice as [80]

− iσx∂x ≡ i

2a

�

�k,j�
Ψ†

k+1,jσ
yΨk,j − h.c.

− iσy∂y ≡
i

2a

�

�k,j�
Ψ†

k,j+1σ
xΨk,j − h.c.

(5.35)

and

x2 + y2 ≡ a2

2

�

�k,j�
k2Ψ†

k+1,jσ
xΨk,j + j2Ψ†

k,j+1σ
yΨk,j + h.c. (5.36)

The mapping between the continuum operators and their lattice counterparts en-

ables the actual possibility of simulation of the Hamiltonian on the lattice.

The issue of experimentally realizing the system as described above is contingent

on successful implementation of the lattice operators A and B, followed by a design

of the driving which would ultimately yield the desired effective Hamiltonian in

the time independent approximation. This has to be approached in an incremental

fashion. The operators A and B are themselves constructed from operators for

position and momentum in a 2D, fermionic optical lattice. Experimental realization

of these operators uses pulsed directional hoppings i.e. time dependent modulation

of tunneling [96] by varying the laser intensity in a certain direction. However, in

our case the 2 × 2 character of the Hamiltonian is also to be accounted for. This

requires a periodic drive capable of imparting such features.

A scheme, recently suggested, in an effort to simulate spin-orbit coupling (SOC)

through periodically driving a tight-binding lattice of neutral ultra-cold atoms [306]

may enable this. This uses a spin-dependent periodic driving force, achieved through

a time periodic magnetic field coupled to opposite spin states, to generate complex

valued tunneling parameters. There is an additional radio frequency coupling be-

tween adjacent spin states. The cumulative effect when viewed from the perspective
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of a time independent effective Hamiltonian is that of an optical lattice with a spin-

dependent renormalization of the hopping term. This technique is accompanied with

the added advantage of generating a site dependent phase associated with the terms

of the Hamiltonian which are associated with tunneling between adjacent sites (this

being an essential feature of our Hamiltonian). It must be noted here that this work

[306] deals with a 1D lattice, whereas we require the scheme to be adapted for the

2D case.

The procedure, upto this point, manages to realize the operators A and B in a

time averaged manner. In order to further set up our curved space Hamiltonian we

have to resort to alternating between the two operators in the manner of the 4-phase

pulse sequence discussed in Sec. 5.2.3. Thus another layer of time averaging will be

required to arrive at our desired Hamiltonian. The pulsing may be devised such that

during the phase when A is supposed to act we use a combination of laser tuned

tunneling and radio frequency tuning and for B just the SOC modelling technique be

used. The need to work with multiple time scales is apparent here and one is required

to average through these to get at the desired Hamiltonian over a prolonged duration.

The issues related to cooling and the spontaneous emission of photons are claimed to

be partially overcome in the SOC modelling technique discussed above as compared

to near-resonant Raman laser coupling schemes. However, periodic driving does

create excitations in the system which may lead to spontaneous emission. This is

influenced by the driving frequency, lattice modulation and interactions between

particles (see references in [306]). The experimental viability of sustaining multiple

time scales in the system to obtain the desired dynamics over a reasonable duration

of time without undue heating and excitations has to be further looked into and is

beyond the scope of the study in this chapter.

It also remains to be seen how the approach suggested above compares with the

purely spatial techniques elaborated in [285]. One of these is to use the magnetic
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Figure 5.1: Correction to the LDOS given by ρ
ρo

− 1 with ρ being the LDOS for
pulsed graphene and ρo that for ordinary graphene.

field induced Zeeman splitting of the hyperfine levels and design the system as a

bichromatic spin-independent super-lattice. The fermi gas of atoms used can be

made to populate various sublevels and transition between them via laser induced

tunneling. The spatially dependent nature of the tunneling is ensured by making the

Raman laser detunings hence Zeeman splittings spatially dependent. This method

however, besides its inherent technical complexity, has to contend with issues of

stability and the lifetime of atomic excitations owing to spontaneous emission of

photons. An alternative method, also put forward in the same work, considers using

the waist spread of laser beams to generate tunneling terms. Here the variation

of the laser intensity over the dimensions of the lattice created spatially dependent

hopping terms. The drawback of this method is the restriction to only a Gaussian

variation of the tunneling operators and no control over this feature can be exerted.

This significantly limits the freedom of realizing various metrics for the curved space

Hamiltonian.

We investigate the nature of the LDOS for the Hamiltonian in Eq. (5.27) and

look for the imprint of spatial curvature in its behavior. The LDOS computations are

performed for the choice of the driving scheme given in Eq. (5.32). The expressions
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in Eq. (5.29) and Eq. (5.31) are evaluated numerically to estimate the LDOS. The

Fig. C.1 shows the modification to the LDOS for our system over that of normal

graphene in flat space. The figure shows the quantity (ρ/ρ0)−1 plotted in the color

contour map against the spatial coordinates x and y. As seen in the figure, a large

positive correction is centered at the reference origin indicating maximum increase

in the number of available states per unit energy. This is a clear indication that

electronic properties are significantly altered in our system. An 80% correction is

observed at the maxima for our choice of driving frequency which yields a ω−1 of

∼ 0.01. We note that a similar behavior of the LDOS has also been observed in the

study of graphene in curved space with positive curvature [51–54].

5.4 Conclusion

We conclude by noting that the use of periodic forcing to generate the effects of

curved space on 2D quantum systems has a far reaching influence in theoretical

studies and technological applications. The traditional Floquet analysis of peri-

odically driven systems uses the CBH/Trotter expansion to find the effective static

Hamiltonians. We use an alternative perturbative formulation using a pulsed driving

scheme and find an effective approximate Hamiltonian. We show that the driving

scheme can be chosen to simulate tunable geometric properties of curved space. The

massless Dirac equation and Hamiltonian in curved space, that model electronic be-

havior in curved graphene, are derived for a conformal metric. The same is shown to

be obtained in a periodically driven fermionic optical lattice having chosen the ap-

propriate modulating operators. We go on to analyze the geometrical and physical

features of the system, namely, the Gauss curvature and LDOS. These are com-

puted for a particular choice of metric and deviations from the unperturbed system

are noted. This opens up the possibility of synthesis of new systems in quantum

simulators and the study of their physical properties.

114



Appendix A

The Aubry-André-Harper Model

A.1 Introduction

The physical model essentially comprises of spin-less non-relativistic electrons, free

to move on a 2-dimensional square lattice under a tight-binding approximation with

a spatially uniform magnetic field applied perpendicular to the lattice plane. In a

way it may be regarded as the continuum Landau level problem, of electrons in a

plane subjected to a perpendicular constant magnetic field, formulated on a lattice.

This is an old classic problem with a rich history, dating back to the very begin-

ings of quantum mechanics. The Peierls-Onsager substitution and the introduction

of the effective Hamiltonian [21, 307–310] for Bloch electrons in a magnetic field

were some of the initial proposals towards its solution. However, for the longest

time the problem has eluded capture in a complete analytical picture [311–316].

Though, substantial progress has been made in making it more amenable to nu-

merical approaches [242, 317], the accuracy and validity of the Peierls substitution

and consequent calculations of the diamagnetism of strongly bound electrons on the

lattice have been questioned time and again [312, 318–321]. Nonetheless, the Peierls

substitution has been proven to be remarkably resilient and has given a profound

insight in situations where a single-band approximation is valid and no field-induced
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inter-band transitions occur. Interest in the model intensified when it was found to

harbour certain remarkable and unexpected phenomena of a subtle nature. These

include predominantly, the experimental discovery of the QHE [12] and the theoret-

ical prediction of a metal-insulator transition [25]. Such fascinating features of this

innocuous looking system are underpinned by anomalous properties of its spectrum

which, as a function of the magnetic field strength, shows an intricate butterfly-like

fractal structure in certain field regimes [242, 315]. An explanation for the metal-

insulator transition may be obtained from the spectral features of the system at

certain field values, however, the quantized values of the Hall conductance are more

profoundly encoded in non-trivial topological aspects of the band structure.

The key parameter in the system, as shall be discussed in detail later in this

appendix, is the flux of the magnetic field through an individual plaquette of the

square lattice, in units of the flux quantum, denoted by α. The interesting behaviour

of the spectrum shows up at high values of the magnetic field, of the order of

thousands of tesla. The nature of the dependence of α on the field B and the

lattice constant a (order of angstroms) necessitates this for a reasonable range of its

values, say α approaching unity. The structure of α may be interpreted, according

to Hofstadter [242], as a ratio of two inherent scales or periodicities of the system.

These are, the period associated with an electron in a Bloch state of wavevector

2πh̄/a and the period of a cyclotron orbit due to the field i.e. eB/mc, where m is the

electron’s mass and e its charge. It would be instructive to regard these as competing

energy scales in the system, which in the case of length scales is prescribed by the

lattice constant a and the magnetic length lB =
�
ch̄/eB appearing in the Landau

level problem, under the applied magnetic field. This bears hints of the recursive,

nested butterfly fractal that results when one looks at the energy eigenvalues as a

function of α, since a trade-off between length scales is a signature of fractals. In

a heuristic manner one may try to understand this as a sort of truce between the
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solutions of two distinct problems, both vying to be the principal candidate for the

ground state solution of the problem. They are, the Bloch waves for the electron in

a periodic potential and the Landau levels for electrons in a plane with a magnetic

field perpendicularly applied. Nature resolves the dilemma by weaving these two

solutions together in an infinite hierarchy of level-splittings where both the band

structure and the Landau levels have their degeneracies lifted to yeild the complex

structure that one sees. Even the wavefunctions are versatile in that they show

the full gamut of extended (Bloch-wave like), localized (cyclotron-orbit) or critical

(multifractal) behaviour depending on the nature of α and the ratio of the on-site

to hopping energies of the square lattice.

These aspects make the problem an inevitably complex one and to approach it on

some firm analytical footing requires one to consider it in either one of two opposite

asymptotic limits. At one end is the strong potential limit where the lattice periodic

potential dominates. This limit justifies the tight-binding approximation and one

proceeds to construct a set of generalized wavefunctions satisfying the Bloch condi-

tions in the presence of the field. These wavefunctions are derived, as we shall see,

by defining a group of operators that commute with the Hamiltonian in the presence

of the magnetic field, called the magnetic translation operators. A more general ap-

proach however, is based on the use of a basis of site-localized atomic-orbital like

functions to expand the state of the system. The electronic band structure of the

‘zero field’ case is now observed to split into finer subbands in the presence of rela-

tively weak magnetic fields . The other extreme is the strong field regime where the

periodic potential is treated as a weak perturbation to the harmonic-oscillator like

Landau levels of almost free electrons, causing their degeneracies to lift by broad-

ening and splitting into sublevels. Both these limits are important stepping stones

to a fuller understanding of the problem but traditionally the tight-binding (and

nearest-neigbour) single band approximation has recieved greater attention in the
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literature. We shall also focus our attention on this limit as one can use it to derive

both the metal-insulator transition and the quantized Hall conductance. It may

be noted that both the limits yeild identical secular equations for the Schrödinger

eigenvalue problem with B going to B−1 on going from one limit to the other[322].

In this appendix, we look at the strong potential limit of the problem for the two

related but distinct physical situations of α being rational i.e. of p/q form, where

p and q are relatively prime integers, and α being an irrational number. In the

first case the spectrum is characterized by the existence of bands and hence allows

a continuous spread of eigenvalues interspersed with gaps. This gap structure was

the subject of Hofstadter’s work [242] that led to the butterfly fractal. The case of

irrational α on the other hand has a singular continuous spectrum where the ‘bands’

are elements of a Cantor set and exhibit scaling properties [204, 209]. In either case,

the analysis of the system is assisted by an effective simplification of the Hamiltonian

from a two dimensional to a one dimensional form as introduced by Harper [21] in

his study of metallic diamagnetism. This shall also be our manner of treatment

in the following sections. The case of rational α offers a route to the topological

properties of the system which manifest themselves in the quantized values of the

Hall conductance for the various bands in the spectrum. These ‘quantum numbers’

or integers are found to be associated with an integer valued topological invariant,

the Chern number, which is defined for the fibre bundle of the eigenfunctions for the

system on the 2-torus constituting the Brillouin zone in reciprocal space [15, 19, 274].

A broader account of the origins of non-trivial topology in the band structure of

systems, starting from fundamental ideas of the geometric or Berry’s phase, is offered

in appendix C.

This and the other features, mentioned above, are elaborated in the following

portion of the appendix. We begin with an explicit derivation of the discretized 1-D

tight binding, nearest neighbor form i.e. the AAH Hamiltonian from the continuum
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model. Once this has been firmly established, we move on to discussions of the

rational α case.

A.2 2-D Continuum to the 1-D Discretized Hamil-

tonian

The discussion in this section borrows largely from a similar analysis in H. J. Stöck-

mann’s Quantum Chaos [323]. It is revisited here solely for the purposes of ready-

reference and to make the thesis reasonably self-contained.

The continuous real space Hamiltonian for AAH system may be written as follows

H =
1

2m

�
p− e

c
A(x, y)

�2

+ Vo(x, y) (A.1)

where m and e are the electronic mass and charge. The effect of the magnetic field is

incorporated via the Peierls-Onsager substitution by transforming the canonical free

electron momentum as p → p− e

c
A(x, y), with A being the vector potential in some

suitable gauge which results in a constant magnetic field B = ∇×A = Bẑ normal

to the plane of the lattice. The scalar potential Vo models the two dimensional

periodic lattice potential as seen by the electrons. In explicit terms it may be cast,

for example, in the following harmonic fashion

Vo(x, y) = Vo

�
cos

πx

a
sin

πy

a

�n

(A.2)

where Vo is the strength of the lattice potential modulation, with n controlling the

depth or steepness of the potential and a being the lattice constant. In order to

obtain a finite-dimensional discretized version of the problem one needs to define

a choice of basis for the Schrödinger eigenvalue problem for the Hamiltonian H.

A suitable choice can be made based on the standard approach to tight binding
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calculations for the zero field case where the only effect to be accounted for is due

to the periodic lattice potential Vo(x, y). One begins by choosing a set of localized

atomic orbitals called Wannier functions, which are peaked at the lattice sites and

decay rapidly in amplitude away from them. In order to simplify matters we regard

just a single valence orbital or Wannier function at each site denoted by φ(x, y). It

follows that the Wannier function for an electron at a lattice site Rnm, where Rnm =

na+mb is the Bravais lattice vector for the site indexed (n,m), is φ(x−na, y−ma)

or in the Dirac ket formalism simply, |n,m�. Let Ψ(x, y) represent the state of an

electron in the lattice which, as is well known, has to satisfy the Bloch criterion.

Then the procedure is to expand Ψ(x, y) in the basis of the φ(x, y)’s which form

a complete orthonormal set over the lattice sites, with �n�,m�|n,m� = δn�n,m�m or

equivalently
�∞
−∞

�∞
−∞ φ∗(x− n�a, y −m�a)φ(x− na, y −ma)dxdy = δn�n,m�m, in the

following manner

Ψ(x, y) =
�

n,m

cnmφ(x− na, y −ma) (A.3)

The reader may be reminded here that the requirement of fulfilling the Bloch con-

dition is met in the above construction by allowing the following for the expansion

coefficients

cnm ∝ 1√
N
ei(kxn+kym). (A.4)

Where N is the total number of lattice sites and (kx, ky) an arbitrary vector in the

Brillouin zone of the problem. This imparts the required periodicity with reciprocal

lattice vectors in reciprocal space. Such an ansatz when supplied to the Hamiltonian

without the magnetic field, Ho =
p2

2m
+ Vo(x, y), in the the Schrödinger eigenvalue

equation gives

HoΨ(x, y) = EΨ(x, y). (A.5)

On a pedagogical sidenote, the unperturbed periodic potential problem has an ex-

act solution in terms of the Bloch functions so this procedure may seem entirely
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redundant. However, the Wannier functions are historically [309, 324] a construct

derived from the Bloch functions which provide a basis of site-localized functions

that prove useful in dealing with problems where perturbations are applied to the

periodic potential situation. This was shown to be true when the perturbing fields

in question are varying slowly enough for one to neglect contributions arising from

different bands. For the purposes of our discussion here, they help to illustrate

how tight binding Hamiltonians are constructed and prove their real worth when we

come to the description of the electrons in a combination of the periodic potential

and the magnetic field.

Now, in order to obtain a set of secular equations for the coefficients cnm, we

first take the expectation value of Ho in the eq.(A.5) with respect to Ψ. This yields

a matrix representation for the system as

�� ∞

−∞
Ψ∗(x, y)HoΨ(x, y)dxdy = E

�� ∞

−∞
Ψ∗(x, y)Ψ(x, y)dxdy

⇒
�� ∞

−∞

�

k,l

c∗klφ
∗(x− ka, y − la)Ho

�

n,m

cnmφ(x− na, y −ma)dxdy

= E

�� ∞

−∞

�

k,l

c∗klφ
∗(x− ka, y − la)

�

n,m

cnmφ(x− na, y −ma)dxdy

⇒
�

k,l

�

n,m

c∗klcnm

�� ∞

−∞
φ∗(x− ka, y − la)Hoφ(x− na, y −ma)dxdy

= E
�

k,l

�

n,m

c∗klcnm

�� ∞

−∞
φ∗(x− ka, y − la)φ(x− na, y −ma)dxdy

⇒
�

k �=n,

�

l �=m

c∗klcnm

�� ∞

−∞
φ∗(x− ka, y − la)Hoφ(x− na, y −ma)dxdy

+
�

k=n,

�

l=m

c∗nmcnm

�� ∞

−∞
φ∗(x− na, y −ma)Hoφ(x− na, y −ma)dxdy

= E
�

k,l

�

n,m

c∗klcnmδkn,lm (A.6)

This equation can be written more concisely by introducing some notation for the
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space integrals of the form

E0
nm =

�� ∞

−∞
φ∗(x− na, y −ma)Hoφ(x− na, y −ma)dxdy

Wkl,nm =

�� ∞

−∞
φ∗(x− ka, y − la)Hoφ(x− na, y −ma)dxdy (A.7)

with these the matrix equation becomes

�

k �=n,

�

l �=m

Wkl,nmc
∗
klcnm +

�

n,m

c∗nmcnmE
0
nm = E

�

n,m

c∗nmcnm

Finally after an exchange of indices in the first summation on the left, interchanging

k with n and l with m, and collecting the coefficients of c∗nm on either side one gets

the secular equation under tight-binding

�

k �=n,

�

l �=m

Wnm,klckl + cnmE
0
nm = Ecnm (A.8)

Solving this system of equations for the coefficients cnm ultimately gives the com-

plete information regarding the state of the system. The eigenvalues of the matrix

described here give the information on the spectrum i.e E values. This requires

however, for one to specify certain values like E0
nm and Wkl,nm, which are input

parameters that characterize the system.

In the situations where a magnetic field is present i.e. for the Hamiltonian H

in eq.(A.1), the procedure outlined above applies as such with certain modifications

to the solution ansatz on account of the A(x, y) which modifies the canonical mo-

menta. It is straightforward to see that in this case in general H does not have

the periodicity with Bravais lattice vectors of Ho. This results from the position

dependence of A which does not possess such periodicity. A way around this is

discussed later while considering the case of rational α. At present, to approach the

tight binding form of the eigenvalue equation in the presence of a field, we consider a
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gauge transformed version of the solution above, i.e. �Ψ = exp(− ie
h̄c

�
A.dl)Ψ. Such a

�Ψ is expected to be a solution for the system since the U(1)-gauge invariance of the

Schrödinger equation implies that one is able to gauge away the effects of an A with

such a transformation and hence, relating the solution in the absence of the field, Ψ

to the one in its presence, �Ψ. This statement however, conceals a significant caveat

concerning the fact that once the lattice translation periodicity is lost, the Bloch

functions are no longer viable candidates for the solution to the problem, atleast

not without some additional conditions. This implies that the gauge transformation

argument cannot be directly applied to the Bloch functions as a whole unless one

revises the periodicity. We shall see that this can be done in the case of rational

α, by introducing the magnetic translation operators. While, in a completely inde-

pendent approach, the transformation can be suitably applied to the set of localized

position space basis functions that are free of the periodicity requirement. This

basis is suited for developing the tight-binding and 1-D AAH Hamiltonian, when

used for expanding the state of the system. The fact that Wannier functions give

a precise convergence to Bloch functions when appropriately superposed justifies

their use as an expansion basis for the lattice perturbed with a magnetic field. The

concomitant issues of convergence and the phase modification that might assure this

are mentioned later. As we shall find out, in the case of rational α, where a modified

version of the lattice periodicity is found to exist, this expansion converges to a set

of Bloch functions satisfying the more generalized periodicity criterion. In the case

of irrational α however, the complete absence of the periodicity condition may result

in a faliure of convergence in certain cases. The fact remains that, with this choice of

a basis, one is already working with an approximation and the eigenvalues we arrive

at finally will only be as good as our choice of basis. This is to be interpreted in

the numerical/computational sense that, in the absence of knowledge regarding the

energy eigenbasis of the system one is left with an off-diagonal symmetric Hermitian
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matrix, tri-diagonal at best, and the problem becomes one of finding its eigenvalues.

The choice of the vector potential made here is A(x, y) = B(0,−x, 0), consistent

with a constant B in the ẑ direction. A Landau gauge choice of this form is analyti-

cally convenient and offers a simplified path to the reduced 1-D form of the problem.

�Ψ for such a potential is Ψ along with an additional phase acquired on travelling

along the ŷ-direction, while none is collected on moving in the x̂-direction. Thus,

for a shift in the ŷ-direction by a lattice constant the phase change in �Ψ amounts

to −2πiαx
a

. Where,

α =
eBa2

hc
, (A.9)

is the flux through a plaquette or unit cell of the square lattice in units of the flux

quantum hc/e i.e the number of flux quanta. As mentioned earlier this could be

a rational or an irrational number leading to distinct spectral behaviour in both

cases. In the event that it is rational, it is customary to denote it in the form of a

ratio of coprime integers as p/q. This fraction is usually used for the case when the

periodic potential is considered to be strong with respect to the magnetic field(weak

field). One begins with a single tight binding energy band and proceeds to study its

splitting into subbands. This happens to be the case that interests us in this section.

Alternatively, in the strong magnetic field limit when the periodic potential behaves

like a perturbation, α is understood as the number of unit cells that intersect a

single flux quantum and α = q/p. The case where Landau levels form the primary

structure that splits into finer bands. In both cases however, as long as α is rational,

p/q denotes the number of flux quanta through each plaquette of the square lattice.

The construction of the solution ansatz for this gauge choice is done in a manner

similar to the one in eq.(A.3), by expanding �Ψ in the basis of the φ’s but now with

the gauge transformation applied to the localized Wannier states themselves

�Ψ(x, y) =
�

n,m

cnme
−2πimαx/aφ(x− na, y −ma) (A.10)
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This choice of expansion has been used advantageously by Luttinger [309] in an early

work to generalize a theorem due to Wannier [325], expanded upon by Slater [324],

on the electron’s energy eigenvalues in perturbed periodic potentials. This theorem

was restricted to position dependent potentials while Luttinger sought to extend it

to velocity-dependent perturbing potentials, which accompany the introduction of

a magnetic field into the Hamiltonian via the Peierls substitution.

The theorem implies, that given E0(k) i.e. the energy eigenvalues in the unper-

turbed periodic potential, where k is the crystal momentum, the eigenvalues in the

presence of a perturbing potential of the form e�V (r), are given by the eigenvalue

equation

[ �E0 + e�V (r)]ψ = Eψ

where E and ψ are the eigenvalues and eigenstate of the perturbed system and

�E0 = E0(−ih̄∇) now is the same operator function of −ih̄ ∂
∂x
, −ih̄ ∂

∂y
and −ih̄ ∂

∂z
as

it was of kx, ky and kz . The validity of the theorem was shown for the case of a slowly

varying potential �V (r). Luttinger demonstrates how this theorem can be made to

accomodate the case of a slowly varying magnetic field provided one considers the

phase modified expansion for the system’s state as in eq.(A.10) and assumes the

Wannier functions, φ’s, to be infinitely localized (an assumption which Luttinger

shows has significant bearing on the gauge freedom arguments made previously).

The eigenvalue equation to be solved in this case becomes

[ �E0 + e�V (r)]ψ = Eψ (A.11)

where �E0 = E0(−ih̄∇− e
c
A). It is easily seen that the previous form of the eigenvalue

expression has undergone a Peierls like modification. This is an important feature

of Luttinger’s result, accurate in so far as the approximations that yeild it hold well.

It manages to extend the Peierls substitution from the Hamiltonian in position

A11



space to the band energies E0, which are a function of the crystal momentum k, by

making them depend on A. Though derived in the presence of a position dependent

perturbing potential �V (r), the result holds independently of it. As a stronger or

more generalized version of Peierls’ result, this theorem is more sophisticated in the

sense that it suggests a means of obtaining the spectrum in the presence of magnetic

field perturbations using the known band structure of the translationally symmetric

unperturbed problem. This assumes that the perturbations respect such a band

structure by not giving rise to any interband transitions. In fact it would be precise

to restate the result as the transformation of the band structure, E0(k) ≡ E0(
p
h̄
) →

E0(
p−eA/c

h̄
). Since the ∇ operator in eq.(A.11) is a gradient operator with respect

to the lattice sites and not over continuous space and it is just a position space

operator representation of crystal momentum k. Such a modification is also the

basis of Harper’s work on the problem [21] that initially arrived at a tri-diagonal,

tight binding model under a single-band approximation, which is our objective also

in this section.

An observation that may be made regarding the system in general, in the light

of the above discussion on the lattice version of the Landau level problem, as well

as in the continuous translational invariance case, concerns the modification of the

commutation algebra of the position and momentum variables. The components of

the mechanical momentum fail to commute with each other due to the appearance of

the position dependentA as is familiar in the standard Landau level problem. In the

case of a system with discrete translational invariance this feature surfaces in com-

mutation properties of the components of the crystal momentum k as is apparent in

the description of the theorem mentioned previously. The change of k → 1
h̄
(p− e

c
A)

indicates that the wavevector, which initially constituted a good quantum number is

now transformed into an operator thus giving the Hamiltonian matrix off-diagonal

terms in reciprocal space. Thus the plane wave basis or conventional Bloch basis
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ceases to offer an exact solution and the Fourier reciprocality between the discrete

position set in real space and the reciprocal lattice vectors is not entirely sufficient

to solve the matter. At first glance it appears as though both position and momen-

tum space are now on an equal footing and neither is better off as an avenue to

the solution of the problem. This is not entirely true though, since for the case of

rational α, certain momentum space manipulations exist which exploit residual peri-

odicity of the system to define a new subband structure and Brillouin zone with the

Hamiltonian reduced to a finite dimensional symmetric tri-diagonal form. However,

there is no denying that the presence of the vector potential through some particular

choice of gauge fundamentally alters the clear seperation between position and mo-

mentum variables. Where earlier a straightforward Fourier relationship prevailed,

now a particular direction in position/momentum space may acquire operator like

features with respect to the other and become related to it by Fourier like trans-

forms. These become inseparable now from gauge transformations. With a certain

choice of coordinate basis amounting to a gauge choice and such transformations

begin to fall under a special category of duality transformations. This, in a subtle

manner amounts to the fact that what used to be representations in either position

or momentum space with the respective components of each commuting amongst

themselves, are no longer so. This is far more intricate now, in the sense that the

introduction of a non-commuting algebra between the configuration space variables

themselves, gives it its own canonical structure such that say, in position space itself

both coordinates form a canonical pair. One may choose an effective representation

of the problem in either one of them. This is well illustrated in the Landau gauge

as we will note, where one may attribute a non-zero phase to a translation either in

the x̂ or ŷ directions. These situations are related through a gauge transformation.

For either of these one may obtain the 1-D effective Hamiltonian. These would in

turn be related by dual transformations in position and reciprocal space. It then fol-
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lows that there is a blurring of the distinction between the real space and reciprocal

space representations of the Hamiltonian atleast in terms of notational appearance

and mathematical structure. This gives rise to the powerful notion of duality in

this system which forms the basis of several arguments about the band structure,

existence of degeneracies and the occurance of a metal-insulator transition in the

model.

Prior to proceeding further with the derivation of the effective 1-D tight binding

nearest neigbour AAH Hamiltonian, it would be worthwhile to go over certain results

in Luttinger’s work [309] which offer some perspective on the remarks made about

the gauge aspects in the choice of expansion in eq.(A.10). The argument proceeds

in the following manner, since the presence of the magnetic field gives rise to terms

of the form A · p in the Hamiltonian. Luttinger makes the case for an expansion of

the state of the system in the Wannier basis of the kind in eq.(A.10). In a general

fashion, without reference to a particular gauge choice, this may be written as

�Ψ(x, y) =
�

n,m

cnme
ie
h̄c

Gnmφ(x− na, y −ma) (A.12)

where setting

Gnm =

r=(x,y)�

Rnm=(na,ma)

A(r̄)dr̄, (A.13)

which represents the integral of the vector potential along a straight line from the

lattice site (n,m) to an arbitrary point in space (x, y), has the desired effect of

eliminating the complicating A · p term, upto some approximation. As per the

procedure adopted by Luttinger it is advisable to reparametrize the above integral

in the form

Gnm =

� 1

0

(r−Rnm) ·A(Rnm + ζ(r−Rnm))dζ (A.14)

where ζ is the new parameter, ranging in [0, 1] that parametrizes the line joining
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Rnm and r. This choice makes it convenient to express the gradient of Gnm which we

shall need later. The effect of this phase modification becomes clearer on subjecting

the �Ψ to action under the continuum Hamiltonian H (see eq.(A.1)), as

H�Ψ(x, y) = H
�

n,m

cnme
ie
h̄c

Gnmφ(x− na, y −ma)

=
�

n,m

cnm

�
1

2m
(p− e

c
A)2 + Vo

�
e

ie
h̄c

Gnmφ(x− na, y −ma) (A.15)

If one cares to compare with Luttinger’s original work they will note that the position

dependent perturbation e�V (r), which was discussed in the context of Wannier’s

theorem, has been dropped from the Hamiltonian for simplicity as all the arguments

apply even in its absence. The non-trivial term required to be evaluated in the

above expression is the action of 1
2m

(p− e
c
A)2 on e−

ie
h̄c

Gnmφ(x− na, y −ma), which

proceeds as follows, where for the moment we drop the argument of φ for compact

representation and call it simply φnm,

1

2m
(p− e

c
A)2e

ie
h̄c

Gnmφnm

=
1

2m

�
−ih̄∇− e

c
A
��

−ih̄∇− e

c
A
�
e

ie
h̄c

Gnmφnm

=
1

2m

�
−ih̄∇− e

c
A
��

e

c
(∇Gnm)e

ie
h̄c

Gnmφnm − e
ie
h̄c

Gnmih̄(∇φnm)

− e

c
Ae

ie
h̄c

Gnmφnm

�

=
1

2m

�
−h̄2

�
ie

h̄c
(∇2Gnm)e

ie
h̄c

Gnmφnm − e2

h̄2c2
(∇Gnm)

2e
ie
h̄c

Gnmφnm+

ie

h̄c
e

ie
h̄c

Gnm(∇Gnm) · (∇φnm)

�
− h̄2

�
ie

h̄c
(∇Gnm)e

ie
h̄c

Gnm(∇φnm)
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+ e
ie
h̄c

Gnm(∇2φnm)

�
+

ih̄e

c

�
(∇ ·A)e

ie
h̄c

Gnmφnm +
ie

h̄c
A · (∇Gnm)e

ie
h̄c

Gnm

× φnm + e
ie
h̄c

GnmA · (∇φnm)

�
− e

c
A · (∇Gnm)e

ie
h̄c

Gnmφnm

+
ih̄e

c
e

ie
h̄c

GnmA · (∇φnm) +
e2

c2
A2e

ie
h̄c

Gnmφnm

�

= e
ie
h̄c

Gnm
1

2m

�
− ieh̄

c
(∇2Gnm) +

e2

c2
(∇Gnm)

2 − 2ieh̄

c
(∇Gnm) ·∇

− h̄2∇2 +
ieh̄

c
(∇ ·A)− 2e2

c2
A · (∇Gnm) +

2ih̄e

c
A ·∇+

e2

c2
A2

�
φnm (A.16)

The expression in parentheses in the final stage of the above simplification is iden-

tified as
�
p− e

c
(A− (∇Gnm))

�2
. It may be noted here that the operator ∇ is the

gradient operator over continuous space variables and is used in the position space

representation of p, by −ih̄∇, as the generator of continuous translations. Thus,

we can now rewrite eq.(A.15) in the following way

H�Ψ(x, y) =
�

n,m

cnme
ie
h̄c

Gnm

�
1

2m

�
p− e

c
(A− (∇Gnm))

�2

+ Vo

�
φnm (A.17)

From the above expression it is apparent that the quantity ∇Gnm is well situated

to compensate the influence of the gauge field A and an exact compensation will

require certain approximations which shall be arrived at shortly. This is a crucial

simplification afforded by the expansion in eq.(A.12) or, for a specific gauge choice,

in eq.(A.10) that one is able to reduce to what is essentially an eigenvalue problem

for the unperturbed periodic lattice, with Hamiltonian Ho, atleast approximately.

At first, however, one is required to evaluate ∇Gnm in a manner such that the final

form of the Hamiltonian is hopefully a function of a gauge independent quantity

allowing us to make the required physical approximations. In order to achieve this

we use the parametrized version of Gnm in eq.(A.14), for which the gradient operation

A16



yields

∇Gnm =

� 1

0

dζ∇[(r−Rnm) ·A(Rnm + ζ(r−Rnm))]

=

� 1

0

dζ[((r−Rnm) ·∇)A(Rnm + ζ(r−Rnm)) + (A(Rnm + ζ(r−Rnm)) ·∇)(r−Rnm)

+ (r−Rnm)× {∇×A(Rnm + ζ(r−Rnm))}+A(Rnm + ζ(r−Rnm))× (∇× (r−Rnm))]

(A.18)

This integral can be simplified by making use of the identities,

∇×A(Rnm+ ζ(r−Rnm)) = ζB(Rnm+ ζ(r−Rnm)), ∇× r = 0 and A · (∇r) = A.

This brings us to

∇Gnm =

� 1

0

dζ[((r−Rnm) ·∇)A(Rnm + ζ(r−Rnm)) +A(Rnm + ζ(r−Rnm))

+ (r−Rnm)× ζB(Rnm + ζ(r−Rnm))] (A.19)

The integration of the second term in the integrand i.e.
� 1

0
dζA(Rnm+ ζ(r−Rnm)),

can be shown to be equal to

A(Rnm+ζ(r−Rnm))−
� 1

0
dζ((r−Rnm)·∇)A(Rnm+ζ(r−Rnm)) on using integration

by parts. This on being inserted into eq.(A.19) produces a cancellation with the first

term in the integrand and one is left with

∇Gnm = A(Rnm+ ζ(r−Rnm))+

� 1

0

dζ(r−Rnm)× ζB(Rnm+ ζ(r−Rnm)) (A.20)

In this form, upon insertion into eq.(A.17), the explicit A dependence in the Hamil-

tonian operator is made to disappear completely and is replaced by the appearance

of the gauge indepedent B, as

H�Ψ(x, y) =
�

n,m

cnme
ie
h̄c

Gnm

�
1

2m

�
p− e

c
(

� 1

0

dζ(r−Rnm)× ζB)

�2

+ Vo

�
φnm

(A.21)
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The appearance of the magnetic field B explicitly in the Hamiltonian enables one to

clearly determine the kind of physical approximation that needs to be made in order

to get rid of the gauge coupling term in the mechanical momentum. This prompts

Luttinger to invoke a strong localization for the Wannier functions φnm, such that

r ≈ Rnm, under which the
� 1

0
dζ(r−Rnm)× ζB term goes to zero. A consequence

of the fact that, as the φnm’s tend to a Dirac delta distribution any space integrals

containing them, such as the one above, and in general expectation values of quan-

tities will have support only at exactly the lattice sites. Thus, effectively reducing

the operative Hamiltonian in this case to simply the periodic lattice problem’s Ho.

A sequence of steps from here on, accompanied at appropriate points by this ap-

proximation, leads to Luttinger’s generalization of Wannier’s theorem to magnetic

field perturbations. The nature of the localization approximation, however, merits

closer examination. The physical import of this is the requirement that the mag-

netic field be slowly varying over space and the truer this is the more accurately the

assumption works for a given set of Wannier functions. A feature that can be viewed

as a competing interplay between the rapidity of field variation and the spread of

the Wannier functions in space, since under the approximation, an extremely slow

field variation allows the localization constraint to apply less restrictively thereby

allowing a finite, though small, spread in the Wannier functions, whereas for a fast

varying field this condition has to be more stringently enforced. The surmise here

is essentially that restrictions on the Wannier functions translate directly to con-

straints on the Bloch functions that give rise to them. Which, in turn, is tantamount

to a certain choice of periodic potential(s) which may differ from the actual one de-

fined for the lattice giving rise to errors in the approximation. Thus, it becomes

apparent that, the strong localization argument by its very nature shifts the regime

of examining the problem towards the strong periodic potential limit. Though in

the author’s own assessment any estimate of the errors involved in making this ap-
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proximation and hence also the domain of validity of the theorem being proven, is

extremely difficult to ascertain within this framework itself. Nonetheless, this does

not prevent one from inferring the relationship between limiting the spread of a set

of localized orbitals, being treated here as a basis, and achieving gauge field inde-

pendence (upto a phase) in the set of secular equations representing the eigenvalue

problem. Shown here to be a consequence of discretizing the system Hamiltonian

by sampling position space only at the lattice sites as is the case when the Wannier

functions are considered to be exactly localized. It is a remarkable feature of this

line of reasoning that choosing to work in a convenient gauge for the problem can

be cast as a localization/discretization condition once one chooses to examine it in

a suitably selected basis of phase modified functions under the simplifying situation

of slowly varying fields.

It, therefore, seems to follow from the strong localization limit discussed above

that, the tight binding description with just nearest neigbour interactions taken

into account serves to simplify the problem atleast under certain approximations.

We now derive this 1-D form of the Hamiltonian in the following. Considering the

space integrals of eq.(A.7) but now with an expansion of the kind in eq.(A.10), they

become

E0
nm =

�� ∞

−∞
φ∗(x− na, y −ma)Hoφ(x− na, y −ma)dxdy

�Wnm,kl =

�� ∞

−∞
φ∗(x− na, y −ma)e2πi(m−l)αx/dHoφ(x− ka, y − la)dxdy (A.22)

The tight binding equations, see eq.(A.8), have now to be modified to account for

this as
�

k �=n,

�

l �=m

�Wnm,klckl + cnmE
0
nm = �Ecnm (A.23)

where they represent the tight binding system in the presence of a magnetic field

with the vector potential in the Landau gauge as chosen before and �E denotes the
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eigenvalues for the perturbed system. The above results are readily obtained by

following the same steps as were employed for the case of the unperturbed lattice

in eq.(A.6). The E0
nm integral in eq.(A.22) denotes the on-site energy at a lattice

site for the unperturbed Hamiltonian Ho. Since this is a translationally invariant

Hamiltonian, it is a constant for all sites that could be assumed to be zero without

any loss of generality, as this would just be akin to a shift in the energy reference.

Translational symmetry also permits us to write the integral �Wnm,kl after a coordi-

nate displacement by primitive lattice vectors, i.e x → x+ ka and y → y + la, and

is now denoted by

�Wnm,kl = e2πi(m−l)αk�Wn−k,m−l,

where

�Wrs =

�� ∞

−∞
φ∗(x− ra, y − sa)e2πisαx/dHoφ(x, y)dxdy

This modification helps to introduce a reference point in the lattice such that one

can speak in terms of near and far neighbors with the differences n − k and m − l

behaving as a set of neighborhood indices. Thus, the tight binding equation of

eq.(A.23) after limiting the range of interactions to the nearest neigbors, becomes

�W10(cn+1,m + cn−1,m) + �W01(cn,m+1e
−i2πnα + cn,m−1e

i2πnα) = �Ecnm (A.24)

Something that has been implicitly assumed here is that �W01 = �W0−1 and �W10 =

�W−10, relationships that arise out of the known parities of atomic wavefunctions.

Further, the coefficients in the above equation can be seen to be independent of the

m index in a way that is not true for n. As mentioned previously in the context of

nature of coefficients cnm in relation to assuring conformity with Bloch conditions in

the unperturbed case, the requirement cnm = eimθcn models the lattice periodicity

which still holds in the ŷ-direction under the gauge choice. The θ here, is simply the

Bloch phase acquired on translating the wavefunction by a primitive lattice vector
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in the ŷ-direction where, the wavevector ky corresponding to this shift relates to it

as θ = ky/a. After incorporating these relations in eq.(A.24) the 1-D effective form

of the tight-binding equation is obtained as

�W10(cn+1 + cn−1) + 2�W01 cos(2παn+ θ) = �Ecn (A.25)

this may be cast in the more familiar and customary form of the equation by dividing

throughout by �W10 and denoting �E/�W10 by �E0 and 2�W01/�W10 by ζ,

cn+1 + cn−1 + ζ cos(2παn+ θ) = �E0cn (A.26)

This is the Harper equation for ζ = 2 and is the general AAH 1-D tight-binding

equation. The model is 1-D but with the special feature that the on-site energy is

now periodically modulated with site i.e. ζ cos(2παn+ θ). It is now possible to read

off the 1-D AAH Hamiltonian from the tight-binding equation above and express it

in the Dirac ket notation

H0 =
�

n

|n��n+ 1|+|n��n− 1|+ζ cos(2παn+ θ)|n��n| (A.27)

Here the kets |n� are a choice of canonical basis such that if the cn’ s are regarded

as the components of the column vector |c�, then cn = �n|c�.

This concludes the derivation of the 1-D effective Hamiltonian for the problem

of Landau levels on a lattice. It is interesting to note this particular limit of the

problem with its tight-binding, nearest-neighbor description and the fields being

assumed to vary slowly enough. Though it may seem that these are restrictive ap-

proximations they are, surprisingly, powerful enough to capture several important

physical features of the system. So much so that the phenomenon of Hall conduc-

tance quantization [12], originally observed for a 2-D inversion layer of electrons at
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the interface of a semiconductor heterostructure modelled as an electron gas was,

in fact, first theoretically well justified for such a discretized lattice version of the

problem [15]. Such instances adduce the usefulness of studying this model.

A.3 The case of rational α of the form p/q

Hofstadter was the first to point out that the Bloch electron problem in a magnetic

field makes a spectral distinction between the two possibilities of rational or irra-

tional values for the system parameter α [242]. He notes, besides the self-similar

hierarchical nature of the magnetic energy levels or bands, that one should in prin-

ciple be able to deduce the nature of the spectrum for the irrational case from what

one sees for rational α. Since, as he argues, any physical system that distinguishes

between the raional and irrational values of any of its parameters can do so only in

a mathematical sense because were this distinction allowed to manifest in the phys-

ically observable properties of the system it would lead to their being everywhere

discontinuous as one varied the parameter(s) over the real line. Indeed an algorithm

that performs this deduction is also offered by him. This insight coupled with the

fact that for rational α one is able to exploit certain periodicity conditions which

permit a Bloch like analysis, makes it an important case to study.

In the previous section an effective 1-D Hamiltonian was worked out for the

system of tightly bound electrons on a square lattice in a magnetic field. The

approach used there made no recourse to symmetry arguments for defining the

structure of solutions to the eigenvalue problem. However, when α is of the form p/q,

a modified version of the lattice translation symmetry exists, that is, if one agrees to a

redefinition of the lattice unit cell so as to enlarge it in such a way that it accomodates

a single flux quantum of the normally incident magnetic field. This allows one to

define a set of translation operators called the magnetic translation operators which

commute with the Hamiltonian of the problem. We shall, in this section, lay out the
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manner in which these operators are defined, derive the generalized Bloch functions

that follow the revised periodicity criterion and generally illustrate how one may go

about using the various features of this model to simplify the calculations required

to obtain its spectrum and other observed properties. Another key difference is that

the discussion in this section, unlike in the previous one, has no initial intent to arrive

at an effective 1-D description, since, as we shall see, we begin with a Hamiltonian

in the full 2-D picture. Although, it does so happen that one inevitably ends up

with such a description simply on going to the reciprocal space picture of the system

even when the position space Hamiltonian is 2-D.

A.3.1 The Continuum picture and generalized Bloch solu-

tions

The discussion in this section is a coherent compilation of two of M. Kohmoto’s

pedagogical papers on the diamagnetism of lattice electrons [274, 326]. The choices

of notation made here may, at times, reflect this provenance. Looking back at the

position space continuum Hamiltonian for the problem, see eq.(A.1), certain general

observations may be restated. The periodicity of the crystal potential Vo, such that,

Vo(x+ a, y) = Vo(x, y + a) = Vo(x, y) does not automatically imply such periodicity

for H which also depends on A(r). The position dependence of A is aperiodic for

the currently considered case of a magnetic field constant over all space. Thus, as

mentioned earlier, one has to refrain from a straight forward application of Bloch’s

theorem. We circumvented this difficulty in the previous section by selecting a site-

localized basis of Wannier functions to expand the state of the system. Presently,

we shall elaborate the alternative approach of magnetic translation operators that

makes use of the rationality of α.

From the group theoretic approach to Bloch solutions for the Hamiltonian Ho, of

lattice electrons without the field, one is familiar with discrete translation operators.
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An operator of this kind denoted by T translates any function of position space

coordinates by some Bravais lattice vector Rnm, depending on the choice made in

its definition. This action on some general function u(r) is given by

Tu(r) = u(r+Rnm).

Where explicitly one may denote T = e−
i
h̄
Rnm.p. Such a T commutes with Ho and

the Bloch functions turn out to be the eigenbasis that simultaneously diagonalizes

Ho and T. When T acts on H, however, it effects the transformation A(r) →

A(r+Rnm). Here in general A(r) �= A(r+Rnm). Thus in its present form T does

not commute with H and this is where magnetic translation operators come into

the picture. The objective is to construct a translation operator �T that commutes

with H, i.e. [�T,H] = 0, in a particular gauge. One is assisted in this task by the

observation that for a uniform magnetic field, values of the vector potential at points

seperated by Bravais lattice vectors can be related as

A(r) = A(r+Rnm) +∇χ(r) (A.28)

where χ(r) is a scalar field. Thus, when the ordinary translation operator T is made

to act on H we obtain

TH = T

�
1

2m
(p− e

c
A(r))2 + Vo(r)

�

=

�
1

2m
(p− e

c
A(r+Rnm))

2 + Vo(r+Rnm)

�
T (A.29)

=

�
1

2m

�
p− e

c
(A(r)−∇χ(r))

�2

+ Vo(r)

�
T

The modification in the gauge coupling term that results from this action reminds

us of the modification which was found to occur as a result of the action of H on the

transformed basis of Wannier functions in eq.(A.17). There the term
�
p− e

c
(A− (∇Gnm))

�2
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stemmed from the action of H on the exponential factor e
ie
h̄c

Gnm . This suggests the

use of such a phase factor in redefining the translation operator so as to compen-

sate the additional ∇χ(r) that appears in the translated Hamiltonian and is the

main cause for inadequacy of the conventional lattice translation operator T. Let

us consider the action of H on the term e
ie
h̄c

χ(r),

He
ie
h̄c

χ(r) =

�
1

2m
(p− e

c
A(r))2 + Vo(r)

�
e

ie
h̄c

χ(r)

= e
ie
h̄c

χ(r)

�
1

2m

�
p− e

c
(A(r)−∇χ(r))

�2

+ Vo(r)

�

and from eq.(A.29) we may write

He
ie
h̄c

χ(r) = e
ie
h̄c

χ(r)

�
1

2m

�
p− e

c
(A(r)−∇χ(r))

�2

+ Vo(r)

�
T T−1

= e
ie
h̄c

χ(r)T

�
1

2m
(p− e

c
A(r))2 + Vo(r)

�
T−1

= e
ie
h̄c

χ(r)T H T−1

⇒ He
ie
h̄c

χ(r)T = e
ie
h̄c

χ(r)T H

If now one were to define �T = e
ie
h̄c

χ(r)T the desired magnetic translation operator re-

sults which commutes with H. A more rigorous analysis that derives such operators

can be found in [327]. From the above sequence of steps the crux of the reasoning

applied to solve the problem seems to rest on how one chooses Gnm, in Luttinger’s

approach, or what we have now as χ(r). While in the previous section the choice

of Gnm in eqs.(A.13) and (A.14) was motivated by the possibility of compensating

the vector potential term in H, arguments for which were offered in a retrospective

manner once it became clear how the transformation affected the Hamiltonian. The

structure of χ(r) is similar but derives from the condition in eq.(A.28). In the end

both are essentially the same and one is just shifting from a passive to an active view

of the transformation so to speak. Since in the previous section we chose to apply a
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gauge transfrormation to a discrete basis and study the action of the Hamiltonian

of the system on the state expanded in this basis. While in the present section

the emphasis has shifted to actively transforming the Hamiltonian and determining

those translatory transformations that leave the Hamiltonian invariant. The object

as always is to reduce the problem to an eigenvalue equation for which solutions

are known which in this case is the periodic potential problem of lattice electrons

without the field.

Another feature that will help to connect the current treatment with Luttinger’s

presented previously is that, choosing to work with discrete translation operators

blends nicely with the strong localization constraints that were mentioned while try-

ing to eliminate gauge dependence. As the result in both cases is the discretization

of the system which happens to be germane to its solution. This discretization in

the previous section mapped the problem to the zero field case and in the present

context of translation operators will be seen to have a similar effect by allowing the

construction of a lattice of magnetic cells which can be treated as a new periodic

lattice with just the unit cells having multiple sites compared to the original square

lattice. A convergence of the two approaches therefore, becomes easier to imagine in

this limit. With this understanding we might use some more of the machinery made

available in [309] to write down �T in a form that reinforces the Peierls substitution.

To do this we use the association between χ(r) and a difference version of Gnm i.e.

Gn−n�,m−m� which in the parametrized notation of eq.(A.14) can be expressed as

χ(r) = Gn−n�,m−m� =

� 1

0

(r−(Rnm−Rn�m�))·A(Rnm−Rn�m�+ζ[r−{Rnm−Rn�m�}])dζ

(A.30)

This is no different from Gnm in that just a reformulation of Bravais lattice vector for

the reference site (n,m) is made in terms of a difference of lattice vectors. It works

like the replacement r → r +Rn�m� in the integral in eq.(A.14) so as to extend the
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domain of integration in eq.(A.13) from the neighbourhood of a single lattice point

to that around another lattice point. This in a clever manner helps to non-trivially

enforce the localization criterion in a way that makes the phase depend only on

discrete lattice sites. This can be seen by putting r = Rnm in eq.(A.30) as

Gn−n�,m−m�(r = Rnm) =

� 1

0

Rn�m� ·A(Rnm − (1− ζ)Rn�m�)dζ

=

� 1

0

Rn�m� ·A(Rnm − ζRn�m�)dζ (A.31)

This structure of χ(r) is useful to us in proving an identity which helps to express

�T in a compact manner that hints at a Peierls like modification of the canonical

momentum in the definition of T. Thus taking an ordinary translation operator

to a magnetic translation one. The identity in question is that for the magnetic

translation operator which is now

�T = e
ie
h̄c

χ(r)T = exp

�
ie

h̄c

� 1

0

Rn�m� ·A(Rnm − ζRn�m�)dζ

�
exp{−Rn�m� ·∇} (A.32)

one is allowed to write

�T = exp{−Rn�m� · [∇− (ie/h̄c)A(Rnm)]} = exp{(−i/h̄)Rn�m� · [p− (e/c)Anm]}

(A.33)

To show that the right hand side of both the equations is indeed the same one can

begin by proving the following result which is a continuum version of the identity

i.e.

exp{−R · (∇− (ie/h̄c)A(r))} = exp

�
ie

h̄c

� 1

0

R ·A(r− ζR)dζ

�
exp{−R ·∇}

(A.34)
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A short proof (due to Luttinger) may be sketched as follows. Consider the operator

F (η) = exp

�
ie

h̄c

� η

0

R ·A(r− ζR)dζ

�
exp{−ηR ·∇} (A.35)

then,

dF

dη
=

d

dη

�
exp

�
ie

h̄c

� η

0

R ·A(r− ζR)dζ

��
exp{−ηR ·∇}

+ exp

�
ie

h̄c

� η

0

R ·A(r− ζR)dζ

�
d

dη
[exp{−ηR ·∇}]

=
ie

h̄c
R ·A(r− ηR)exp

�
ie

h̄c

� η

0

R ·A(r− ζR)dζ

�
exp{−ηR ·∇}

+ exp

�
ie

h̄c

� η

0

R ·A(r− ζR)dζ

�
exp{−ηR ·∇}(−R ·∇)

In the first term on the RHS of the equation above it is possible to rearrange the

ie
h̄c
R ·A(r− ηR)exp{−ηR ·∇} portion as exp{−ηR ·∇} ie

h̄c
R ·A(r) by recognizing

that exp{−ηR ·∇} is the displacement operator that shifts functions of position by

an amount ηR. After doing so one is able to write

dF

dη
= F (η)

�
−R ·∇+

ie

h̄c
R ·A(r)

�
= F (η)

�
−R ·

�
∇− ie

h̄c
A(r)

��

This is a differential equation in F (η) and can be solved for it, yeilding upon inte-

gration

F (η) = exp{−ηR · (∇− (ie/h̄c)A)}

where the constant of integration is decided using F (0) = 1 as is required by its

definition in eq.(A.35) and one can recover the identity by putting η = 1 in the

above since the RHS above equates to that of eq.(A.35) thereby establishing the

continuum version of the required relationship implied in eqs.(A.32) and (A.33).

We have thus devised a means of representing the magnetic translation operator �T

in a form that appears as a Peierls modification of the ordinary translation operator
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T. So for instance, if working in the symmetric gauge, �T becomes

�T = exp

�
i

h̄
R ·

�
p+ (e/c)

r×B

2

��
= Texp

�
(ie/h̄c)

(B×R) · r
2

�
(A.36)

The above can be shown to commute with H in the symmetric gauge i.e. A(r) =

B× r

2
. Though we have managed to fulfill the requirement of defining translation

operators that commute with the Hamiltonian of lattice electrons in a magnetic

field, one runs into the difficulty that translations along x̂ and ŷ directions no longer

commute. Let us, for the purposes of all discussions here, assume that the primitve

unit vectors of the square Bravais lattice that forms the scaffolding of our system,

are aligned along the cardinal directions of the reference coordinate system. If we

denote the operator for translations by a lattice constant, in the x̂ direction, by �Tx

and for those along ŷ by �Ty then using eq.(A.36) one may write

�Tx = Txexp

�
(ie/h̄c)

yBa

2

�
�Ty = Tyexp

�
−(ie/h̄c)

xBa

2

�
(A.37)

where we have used B = Bẑ, r = (x, y) and R = ax̂ or aŷ for �Tx and �Ty respectively,

with a being the lattice constant as defined before. Tx and Ty are the ordinary

translation operators for translating by a in the corresponding directions in the

absence of the field. They naturally commute with each other. Now it is easy to

show, using the above representations, that

�Tx
�Ty = e2πi

eBa2

hc �Ty
�Tx

= e2πiα�Ty
�Tx (A.38)

We use eq.(A.9) to identify the term in the exponent as a function of the num-

ber of flux quanta crossing a single plaquette of the square lattice. The magnetic

translation operators for directions orthogonal to each other lying in the plane per-
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pendicular to the applied field do not commute upto the phase factor as shown above.

If one is to take the traditional route of finding the eigenbasis that simultaneously

diagonalizes H and �T, as is the case with ordinary Bloch solutions, one is required

to first resolve the non-commutativity just discussed. Since we are concerning our-

selves with the case of rational α i.e. of the form p/q (p and q being relatively prime)

it is possible to extract a subset of orthogonal magnetic translation operators that

do commute with one another. A situation that arises when the condition e2πiα = 1

is met. This requires α to be an integer and is most trivially satisfied for α = p

which is the case when a single unit cell of the square lattice is so chosen that it

intersects p flux quantua of the magnetic field. Therefore an enlargement of the unit

cell is called for with new Bravais lattice vectors to be defined, which form a subset

of the original set of Bravais lattice vectors, as R�
nm = nqax̂ +maŷ. Such a redef-

inition is not unique in the sense that one could as easily have gone on to enlarge

the unit cell to include q cells and it would have the same effect as far as ensuring

commutativity is concerned. This is true atleast in the case of the symmetric gauge

example treated here. If one were to go with a Landau gauge choice for the vector

potential then one is forced to make a choice out of the two extensions. What it

boils down to is, as we shall see, how the position dependent phase , determined by

the gauge choice, gets allocated to shifting the wavefunction along the sides of the

newly conceived magnetic unit cell. Though this may change the appearance of the

resulting generalized Bloch functions, the essence of the physical situation lies in

the number of flux quanta that cross the magnetic unit cell and this depends purely

on the magnetic field strength. This quantum number, it will be seen, is a more

fundamental constant of the problem and can be shown to be related to topological

properties of the system.

Let the new, commuting translation operators be denoted by �T�. These operators

also commute with H by definition. Consider a function ψ which is a simultaneous

A30



eigenfunction of both H and �T�. It is possible now to use the arguments applicable

to the T ’s for Bloch electrons governed by the pure lattice Hamiltonian Ho, in the

context of H and �T�. Thus, using ideas from group theory and by the relations

obtained from successive applications of translation operators one may arrive at the

eigenvalue equations for the �T� s when made to act on ψ. To write these equations

we note that �T�
x ≡ �Tx=qa and �T�

y ≡ �Ty=a provide the correspondence between

translations along the new primitive unit cell sides and the older magnetic translation

operators. Thus, expressing the action of unit translations �T�
x and �T�

y on ψ in this

parlance gives us

�T�
xψ = �Tx=qaψ = eikxqaψ

�T�
yψ = �Ty=aψ = eikyaψ (A.39)

Where kx and ky are reciprocal-space coordinate variables that arise in a fashion

similar to that in the derivation of Bloch solutions for the periodic lattice problem.

The functions ψ here are the Bloch like solutions for the network of magnetic unit

cells which form a periodic structure over the original square lattice. Since the prim-

itive unit cell has undergone a redefinition this also manifests in the reciprocal space

picture as a resizing of the Brillouin zone. So under the new periodicity conditions,

0 ≤ kx ≤ 2π/qa and 0 ≤ ky ≤ 2π/a. ψ here, is the generalized Bloch function or

magnetic Bloch function and can be written in a form similar to that of the ordi-

nary Bloch functions by expicitly denoting the band index n and k-space coordinate

dependence and resolving into the plane wave factor and the corresponding periodic

modulating component as follows

ψn
kx,ky

(x, y) = eikxx+ikyyun
kx,ky

(x, y) (A.40)

The band index n has a different interpretation from the simple periodic potential
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case as in the presence of a magnetic field the bands undergo a splitting and reorga-

nization. There are indications of this in the fact that the magnetic unit cell contains

several sites as compared to the primitive unit cell of the square lattice and from a

reciprocal space perspective, in the observation that the reconstituted first Brillouin

zone (FBZ) of the lattice of magnetic cells is a fraction of the earlier Brillouin zone.

We shall discuss aspects of the new band structure and its origins soon when we

consider the tight binding picture. The functions un
kx,ky

(x, y) are counterparts of

the periodic real functions that are an essential component of Bloch solutions. In

the case of ordinary Bloch solutions these functions follow the periodicity of the

Bravais lattice exactly without the accumulation of any phase on translations by

Bravais lattice vectors. However, in the presence of a magnetic field, and with a

redefinition of the unit cell the properties of these functions are modified subject to

the eigenvalue equations in eq.(A.39) and using eq.(A.37) can be shown to be

�Tx=qaψ = eikxqaψ

⇒ Tx=qaexp

�
(ie/h̄c)

yBqa

2

�
ψn

kx,ky
(x, y) = eikxqaψn

kx,ky
(x, y)

⇒ exp

�
(ie/h̄c)

yBqa

2

�
Tx=qae

ikxx+ikyyun
kx,ky

(x, y) = eikxqaeikxx+ikyyun
kx,ky

(x, y)

⇒ e(ie/h̄c)
yBqa

2 eikxqaeikxx+ikyyun
kx,ky

(x+ qa, y) = eikxqaeikxx+ikyyun
kx,ky

(x, y)

⇒ un
kx,ky

(x+ qa, y) = e−iπpy/aun
kx,ky

(x, y) (A.41)

Where we have used the fact that e(ie/h̄c)
yBqa

2 can be written as e−iπpy/a using α =

eBa2

h
= p/q, taking c = 1 units. In a similar way one can treat the second eigenvalue

equation for the ŷ translation and arrive at the following

un
kx,ky

(x, y + a) = eiπpx/qaun
kx,ky

(x, y)

Thus we observe that the translations of these functions along the edges of a mag-
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netic unit cell i.e. in effect translating by the modified unit lattice vectors has the

effect of accumulating a certain amount of phase. These are in fact the general-

ized Bloch functions satisfying the new periodicity criteria in the presence of the

field. While for the simple Bravais lattice or periodic potential problem without the

field these functions tend to be real, with the applicaton of the field this feature

no longer necessarily holds. This is in part due to the phase constraints imposed

in the equations above. In the evaluation made above the choice of the symmetric

gauge is implicit. This brings us to comments made earlier on the role played by

the gauge choice in the form and appearance of these phase factors. A different

choice of gauge in which to write the vector potential would indeed alter the quan-

tity of phase change accompanying individual translations. Therefore to extract a

physically meaningful quantity one has to look at the overall phase change that the

wavefunction undergoes on going around the magnetic unit cell in a full circuit.

This amounts to 2πp which is gauge independent. In a general manner one could

consider writing the un
kx,ky

’ s in complex notation with magnitude and phase denoted

explicitly as follows

un
kx,ky

(x, y) = |un
kx,ky

(x, y)|eiϑkx,ky
(x,y)

In this form it becomes easier to give a geometric interpretation for the flux quanta

through a magnetic unit cell in terms of the total change in the phase of the complex

phasor above. This can be thought of as a vector whose orientation is specified by

ϑ
kx,ky

(x, y) which itself is a function of position and hence the arrow representing

the complex quantity above rotates accordingly. In case one is interested to quantify

the number of complete rotations this oriented quantity makes as one traverses with

the function on a closed path around the magnetic unit cell, it is possible to do so
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with an integral of the form

p = − 1

2π

�
ds

∂ϑ
kx,ky

(x, y)

ds
(A.42)

Here, the integral is performed in a counterclockwise fashion with ds being the line

element along the path of integration. An important fact to realize here is that the

integration takes a gauge dependent quantity ϑ
kx,ky

(x, y) to a gauge independent

one, p. This is because accumulating the tangent to the phase function along the

path in this manner is effectively a line integral of the vector potential around a

loop and this through Stoke’s theorem is related to the curl of the vector potential

and hence the magnetic field. What one is actually computing here is a topological

quantity which is independent of the choice of gauge potential. Kohmoto in [274]

chooses to understand p as the number of zerores of the generalized Bloch function

un
kx,ky

(x, y) lying inside a magnetic unit cell. This is based on the view that going in a

circle around a zero of the wavefunction either clockwise or anticlockwise contibutes

a 1 or −1 to the integral above. As the arrow representing the function completes

one full rotation on encircling a zero. Thus we can imagine a sort of epicyclical

rotation of the arrow as the circuit around the magnetic cell is covered. And now

there are multiple rotations (p in number) as several zeros coincide at the same

point. These zeros are also called vortices and the associated topological number, p

here, is called the vorticity.

This brings us as far as we can come with a continuum analysis, ignoring the

topological details for now. In this framework it became possible to give a general

definition of magnetic translation operators and identify a commuting subset of these

which allows modified solutions of the Bloch variety to be defined. However, apart

from the changes to the size of the Brillouin zone, so far no mentions of the band

structure and the modifications to it in the presence of the field have been made.

This is to be addressed in the following section where we shift to the tight binding
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perspective.

A.3.2 Tight Binding and Band structure

The tight binding method within the single band limit has the advantage of providing

the energy explicitly as an analytical function of k which describes a single band of

the system, usually in a nearest neighbour approximation. This is true when one

uses this technique in tandem with a knowledge of the exact energy eigenfunctions

of the system. Such an approach leads to the following function for the energy band

of the square lattice, as is familiar from fundamental solid state physics

E0(k) = 2E0[cos kxa+ cos kya] (A.43)

This function results on writing the eigenvalue problem for the square lattice with

a nearest neigbor tight binding Hamiltonian for the lattice electrons and the eigen-

functions chosen to be plane waves satisfying the Bloch criterion. In section A.2 we

derived a 1-dimensional tight binding nearest neighbour Hamiltonian for the system

of electrons on a square lattice in a magnetic field. In the process we came across

a glimpse of the 2-D tight binding Hamiltonian of the system that can be captured

from eq.(A.24), where the secular equation of the corresponding eigenvalue problem

is expressed. Since we are interested in aspects of the band structure it would help

to see how such a Hamiltonian emerges from the eigenvalue function in eq.(A.43).

This would require us to invoke the theorem due to Luttinger discussed in section

A.2. Where we may recall that a transformation of the kind k → k� = 1
h̄
(p− e

c
A),

which promotes the E0(k) to an operator �E0 as discussed earlier, is called for. We

return to to the Landau gauge choice A(x, y) = B(0,−x, 0) to maintain consistency

with previously obtained expressions.

Under this transformation the following replacements have to be made kx →
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k�
x = −i∂/∂x, ky → k�

y = −i∂/∂y + eBx/h̄c in the eigenvalue equation

�E0(k
�)u(r) = �Eu(r)

2E0[cos k
�
xa+ cos k�

ya]u(r) = �Eu(r)

2E0

�
cos

�
−ia

∂

∂x

�
+ cos

�
−ia

∂

∂y
+

eaBx

c

��
u(r) = �Eu(r) (A.44)

where u(r) is chosen to denote the position dependent state function in reciprocal

space basis. If in the above the cosines are written in the exponentaited notation

of Fourier components and we use the fact that exp{±a∂i} with i = x, y is just the

generator of translations along coordinate directions by ±a, the eigenvalue equation

assumes the familiar tight binding form in position space

[u(x+a)+u(x−a)+e
ie
h̄c

Baxu(y+a)+e
−ie
h̄c

Baxu(y−a)] = �E/E0u(r) = �E0u(x) (A.45)

Substituting here u(r) = eikyyu(x) gives us the 1D form that we had earlier derived

u(x+ a) + u(x− a) + 2 cos

�
eBax

h̄c
+ kya

�
u(x) = �E0u(x)

⇒ un+1 + un−1 + 2 cos(2παn+ kya)un = �E0un (A.46)

This, it is easy to see, is exactly the secular equation in eq.(A.26) with the minor

exception that ζ is missing on account of the fact that we have taken the hop-

ping energies to be identical along both coordinate directions in the square lattice.

Also �E0 here, which is basically �E/E0, is in good agreement with its anologue in

eq.(A.26). Along side this, the equivalence between θ and kya, soundly establishes

the correspondence between the two equations.

The above exercise shows an alternate means of setting up the 1-D tight bind-

ing nearest neighbor Hamiltonian for the system which is firmly rooted in a 2-D

reciprocal space single band formulation, hence quite different from the localized
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basis technique of section A.2 . The brief description made here illustrates, facts

earlier noted, that an important switch occurs when the magnetic field is turned

on and originally real eigenvalues change to operators. An instance of the non-

commutativity of k-space coordinates brought on by a modification of the energy

band function in the spirit of Peierls’ substitution as affirmed by Luttinger’s ex-

tension to Wannier’s theorem. A Hamiltonian defined with these non-commuting

variables is hardly expected to be diagonal. So a diagonal H(k), which is a feature

of periodic lattice systems and what makes the reciprocal space such an appealing

basis to solve the eigenvalue problem, is absent as can be seen from eq.(A.44).

This difficulty however, does not entirely rule out a k-space approach to the

solution. Rather we shall see that, if approached in the right manner, one does

achieve considerable simplification of the system of secular equations in this domain

due to the favourable boundary conditions available here alongwith the deep duality

properties of the system. In order to fully exploit this it is important to note that the

eigenvalue problem in k-space and hence the Hamiltonian H(k) are not restricted

to a 2-D description of the kind in eq.(A.44). Which is more of a continuum variety

in reciprocal space just as the Hamiltonian H of eq.(A.1) is in position space. This

invites the consideration that one could in principle explore, just as was done for

position space, the possibility of a 1-D description of H(k). Thus, as it turns out,

such a description greatly simplifies the problem when used in conjunction with the

reciprocal space implications of the commuting magnetic translation operators in

position space. The method that we shall use to obtain the Hamiltonian in this 1-D

form needs some justification.

It is a remarkable feature of this model that, within the reciprocal space picture,

a discretized 1-D tight binding like, nearest neighbour Hamiltonian can be obtained

by pursuing much of the same reasoning that applies to the position space picture.

In the vein of remarks made earlier the gauge field causes both the real and Fourier
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domains to have the same formal structure and the duality of the model resides

in this homogenity. What becomes apparent is that the gauge modified hoppings

in real space translate to couplings between different wavevectors/crystal momenta

in k-space. A consequence of using a localized basis in this space much like a

Wannier basis on the sites in position space, except here the basis vectors are indexed

continuously by the k values. By choosing to localize in reciprocal space it is implicit

that one is adopting extended Bloch wave functions in position space of which the

generalized variety of eq.(A.41) are a special case. Reasoning that serves us well for

the case of rational α since working with such extended states is more in line with

an energy band description. The couplings in reciprocal space yeild off-diagonal

terms in the Fourier transformed Hamiltonian and the effort centers on trying to

minimize these terms by choosing appropriate sets of k values that do not couple.

As a result of this we obtain the 1-D Hamiltonian which is a symmetric tridiagonal

matrix that offers the easiest path to the eigenvalues of the system. This can be

thought of as the reciprocal space implication of the real space exercise of defining

commuting magnetic translation operators. The Brillouin zone restructuring and

reinterpretation that follows, yields the new band structure with finer subbands

appearing.

At this point it proves useful to shift to a formalism that captures and illustrates

the above features in the most economical fashion. For this purpose the notation

of second quantized operators to write the translation operators the Hamiltonian is

immensely helpful. We choose to abstract the 2-D nearest neighbour tight binding

Hamiltonian form the eigenvalue equation in eq.(A.45) and model the translation

and phase multiplication of the wavefunction u(r) seen there using covariant trans-

lation operators. Note that these translation operators have no precedent in our

discussions so far and do not originate in a continuum picture as was the case with

the ones defined in the previous segment. They emerge rather from the discretized
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tight binding model of the Hamiltonian and are defined only at the lattice points

in space. However, an earlier expression that does come close may be found in the

equations (A.32) and (A.33) where the discretization is enforced by the strong lo-

calization requirement. In the continuum discussion there these operators commute

with the Hamiltonian H and strong localization is a useful simplification. If one goes

to a tight binding picture though, these operators in terms of their non-commuting

orthogonal x̂ and ŷ components enter into the structure of the Hamiltonian and

hence fail to commute with it. Thus, whereas in the continuum case commuting

with the Hamiltonian did not depend on the commutation of the translations along

the orthogonal components, it does so in case of the discretized tight binding de-

scription. Here we shall make no reference to any particular gauge choice unlike in

eq.(A.45). So shifts in the wavefunction along either primitive lattice vector of the

square lattice may, most generally, acquire phase. The tight binding Hamiltonian

thus, in an arbitrary U(1) guage choice, is written as follows using these translation

operators

H = −t(�Tx + �Ty) + h.c. (A.47)

where, �Tx =
�
n,m

b†n+1,mbn,me
iθxnm and �Ty =

�
n,m

b†n,m+1bn,me
iθynm are the translation

operators for moving the electrons by a lattice constant in the x̂ and ŷ directions

respectively, t being the corresponding hopping energy. The covariant translation

operators are written in second quantized notation using the site-indexed creation

and annihilation operators, b† and b, respectively . The phases here are consistently

given by θxnm = e
h̄c

n+1�
n

Axdx and θynm = e
h̄c

m+1�
m

Aydy, Ax and Ay being the x and y

components of A. These choices are a result of considering the summation to range

over the nearest-neigbours of the given lattice site and so one need only integrate the

vector potential over branches of the lattice connecting to these neighbouring sites.

Since this is the most general depiction of the problem where moving along either

branch of the square lattice contributes a phase to the electron’s wavefunction. Once
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again these translation operators suffer from the same non-commutativity issues that

plagued their brethren. This can be illustrated by considering the successive action

of translations in orthogonal directions on a site-localized state |n,m� = b†n,m|0� by

flipping the ordering as follows

�Tx
�Ty|n,m� = �Txb

†
n,m+1e

iθynm |0� = ei(θ
y
nm+θxnm+1)b†n+1,m+1|0�

�Ty
�Tx|n,m� = �Tyb

†
n+1,me

iθxnm |0� = ei(θ
x
nm+θyn+1m)b†n+1,m+1|0�

�Ty
�Tx|n,m� = ei2πϕnm �Tx

�Ty|n,m� (A.48)

Here, we have a result similar to that in eq.(A.38) with 2πϕnm = θxnm + θyn+1m −

θxnm+1 − θynm which is exactly 2πe
hc

�
A.dr i.e. line integral of the vector potential

around a cell of the square lattice, which follows from the way these phases have

been defined. This makes the ϕnm equivalent to α in eq.(A.38) since the integral

just evaluates to the flux of the magnetic field through an individual cell of the

square lattice. As already understood, to move in the direction of a Bloch-like

analysis, the task is to construct operators that commute with the Hamiltonian and

amongst themselves, structural cues for doing which are taken from the form of the

operators above. Something which can be achieved by defining magnetic translation

operators in a spirit similar to that of the �T ’s derived earlier but this time in the

second quantized formalism. To do this we consider

�Tx =
�

n,m

b†n+1,mbn,me
iχx

nm �Ty =
�

n,m

b†n,m+1bn,me
iχy

nm

We now determine the conditions on the phases χx
nm and χy

nm for the operators de-

fined above to commute with the Hamiltonian in eq.(A.47). One of the commutation
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relations that must be satisfied for this to happen is [ �Tx, �Tx] = 0 which implies

[�Tx, �Tx] =
�

n,m

b†n+2,mbn,me
i(χx

nm+θxn+1m)[e(χ
x
n+1m+θxnm−χx

nm−θxn+1m) − 1] = 0

⇒ χx
n+1m + θxnm − χx

nm − θxn+1m = 0

⇒ Δxχ
x
nm = Δxθ

x
nm (A.49)

Similarly one could work out the remaining constraints from the commutators

[�Tx, �Ty] = 0, [�Ty, �Tx] = 0 and [�Ty, �Ty] = 0. They yeild Δyχ
x
nm = Δxθ

y
nm =

Δyθ
x
nm + 2πϕnm, Δxχ

y
nm = Δyθ

x
nm = Δxθ

y
nm − 2πϕnm and Δyχ

y
nm = Δyθ

y
nm re-

spectively. Solving these relations for χx
nm and χy

nm we obtain

χx
nm = θxnm + 2πmϕnm χy

nm = θynm + 2πnϕnm

In this manner one is able to derive operators that commute with the Hamilto-

nian in eq.(A.47) but these operators still do not commute amongst themselves i.e.

[�Tx, �Ty] �= 0. This is a matter that has already been considered where we shifted

from the �T to the �T� operators by arguing an enlargement of the unit cell. As was

apparent there, this introduction of operators with an Abelian Lie algebra, is a

gauge dependent procedure. We showed that for the Landau gauge the commuting

subset of the magnetic translation operators is formed by �T�
x ≡ �Tx=qa = �Tq

x and

�T�
y ≡ �Ty=a = �Ty. This applies identically in the current formalism. A quick way to

see this is that in eq.(A.38), where the commutation is off by a phase with α and

ϕnm already shown to be identical, if one hits both sides of this equation with �Tx

successively ‘q’ times for α = ϕnm = p/q then

�Tq
x
�Ty = ei2πqϕnm�Ty

�Tq
x

�Tq
x
�Ty = �Ty

�Tq
x (A.50)
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With these operators one can find a set of good quantum numbers for the system that

label the energies unambiguously. As can be surmised from the eigenvalue equations

of eq.(A.39) these quantum numbers are the momentum space wavevectors like the

ones known for lattice electrons without the field but, to be precise a subset of them.

Note that, as stated formerly, this is because not all values of the original Brillouin

zone serve as good quantum numbers, atleast not altogether at once, as will become

clearer when we obtaint the Fourier transformed Hamiltonian H(k). Only that

subset of wavevectors or pseudomomenta is useful in this regard which corresponds

to translations along the sides of the magnetic unit cell. As is dictated by the

Abelian translation group obtained above that commutes with the Hamiltonian, the

new Brillouin zone is defined within the limits 0 ≤ kx ≤ 2π/qa and 0 ≤ ky ≤ 2π/a.

If one looks back at the generalized Bloch functions of eq.(A.41) it is clear that it is

the displacements along the sides of the magnetic unit cell that allow a certain set

of continuous k-space values to qualify as good quantum numbers. Even when this

is true one sees that the functions un
kx,ky

still do not have the exact periodicity seen

in Bloch functions but have phases attached to their translations by magnetic cell

vectors. Although one may in principle get rid of these by making certain choices

for p and q and, most importantly, by imposing localization through fixing x = qa

and y = a in the relations there. This reinforces what has been a recurrent theme

in attempting to solve the problem of lattice electrons in a magnetic field by placing

localization in the position space site-based functions as a foremost requirement to

obtain a band like solution for the system. Under the present gauge choice only

the ŷ direction translations have phase contributions given by θynm = e
h̄c

m+1�
m

Aydy =

e
h̄c
aBn(m+ 1−m) = 2πnϕnm. Therefore in the present formalism the operators in

eq.(A.47) become �Tx =
�
n,m

b†n+1,mbn,m which is just an ordinary translation as if the

field were absent and �Ty =
�
n,m

b†n,m+1bn,me
i2πnϕnm being appropriately covariantized.

With the knowledge of a commuting subset of magnetic translations and the
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existence of corresponding momentum quantum numbers it is possible to use a de-

scription of the eigenstates indexed by these momenta to draw certain conclusions

regarding the spectrum of the case being considered. For instance, consider a mo-

mentum space ket |k� = |kx, ky�, which is a localized function of reciprocal space

coordinates, as satisfying the requirements of being an eigenstate of the system.

We have seen that the operators �Tx and �Ty commute with the Hamiltonian so a

state �Tx|kx, ky� is also an eigenstate of the system. Again, since �Tx and �Ty do not

commute with each other it turns out that this state does not have the same set

of quantum mumbers as |kx, ky�. This can be seen with the help of the eigenvalue

equations in eq.(A.39) where one is called on to replace ψ with |k� to put them

in the present notational context of states labelled by the crystal momenta. Their

remaining structure is unchanged and one may use them to illustrate

�Ty
�Tx|kx, ky� = e−i2πϕnm�Tx

�Ty|kx, ky� = ei(ky−2πϕnm)�Tx|kx, ky�

where we have used the eigenvalue equation �Ty|k� = eiky |k�. Thus, the quantum

numbers associated with the state �Tx|kx, ky� are (kx, ky − 2πϕnm) as opposed to

those for the state |kx, ky� given by (kx, ky) although both the states have the same

energy. The steps illustrated in the above equation may be repeated ‘q’ times by the

application of �Tx and hence one can have ‘q’ distinct ky values implying ‘q’ different

quantum numbers corresponding to the same energy. The system therefore has a

q-fold degeneracy in its spectrum when ϕnm = p/q i.e rational and written as a ratio

of coprime integers.

For a fuller understanding of the spectral properties and hence the band structure

we need to shift to a complete momentum space description of the system. This

is brought about by Fourier transforming the Hamiltonian H in eq.(A.47). Let us

write the position space version of this Hamiltonian in the Landau gauge chosen
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above. This happens to be

H =
�

n,m

−tb†n+1,mbn,m − tb†n,m+1bn,me
i2πnϕnm + h.c. (A.51)

In order to obtain the Fourier transform of the above Hamiltonian denoted by H(k)

which is defined by the following transform integral

H =
1

(2π)2

� π

−π

dkx

� π

−π

dkyH(k) (A.52)

it becomes necessary to define first the Fourier transforms of the creation and anni-

hilation operators as

b†n,m =
1

(2π)2

� π

−π

dkx

� π

−π

dkye
i(kxn+kym)b†kx,ky

bn,m =
1

(2π)2

� π

−π

dkx

� π

−π

dkye
−i(kxn+kym)bkx,ky (A.53)

Here, b†kx,ky and bkx,ky are the momentum space creation and annihilation operators

respectively. The k-space coordinates, −π ≤ kx ≤ π and −π ≤ ky ≤ π, are

considered to be folded up into a 2-torus representing the FBZ of the square lattice

such that kx ≡ kx + 2πj and ky ≡ ky + 2πl, j and l being integers. Also from the

manner in which the limits of the Brillouin zone have been defined we are working

in units scaled such that the lattice constant a is taken to be unity. The idea is

to substitute these expansions in the Hamiltonian above and arrange the resulting

expression to enable comparison with eq.(A.52) such that H(k) can be read off

from there. On a slightly more pedantic note, an additional factor of
√
N , N

being the number of sites in the square lattice for a finite system, is required in the

denominator of the transform integrals to satisfy certain normalization requirements.

It will also play a role in an identity that shall be used to simplify the expressions

while computing H(k) but since it gets cancelled on the whole and does not affect
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the final result we may as well regard its presence as implicit. On substituting the

above expansions in H we get for the x̂ direction translation term
�
n,m

−tb†n+1,mbn,m

and its hermitian conjugate

=− t
�

n,m

1

(2π)4

π�

−π

dkx

π�

−π

dky

π�

−π

dk�
x

π�

−π

dk�
y

�
b†kx,kye

i[kx(n+1)+kym]bk�x,k�ye
−i[k�xn+k�ym]

+ b†kx,kye
i[kx(n−1)+kym]bk�x,k�ye

−i[k�xn+k�ym]

�

=− t
�

n,m

1

(2π)4

π�

−π

dkx

π�

−π

dky

π�

−π

dk�
x

π�

−π

dk�
y

�
b†kx,kybk�x,k�ye

ikxei[(kx−k�x)n+(ky−k�y)m)]

+ b†kx,kybk�x,k�ye
−ikxei[(kx−k�x)n+(ky−k�y)m)]

�

At this point an identity for periodic systems that is helpful is
�
Rnm

eik̄·Rnm = Nδk̄,0

which holds for any Bravais lattice where N , as before, is the total number of

sites, Rnm stands for any Bravais lattice vector and k̄ is any vector in the first

Brillouin zone which is consistent with the Born-von Karman boundary conditions.

For a proof one may refer to Appendix F of Solid State Physics by Aschcroft and

Mermin. The reason this is helpful is that in the above expression one may harm-

lessly move the summation
�
n,m

past the integrations and apply it on the exponential

ei[(kx−k�x)n+(ky−k�y)m)] which yields the following application of the identity

�

n,m

ei[(kx−k�x)n+(ky−k�y)m)] = Nδ(kx−k�x,ky−k�y),0

Note that using this relation will necessarily bring N into our expressions but, as

mentioned before, cancels with the N that implicitly resides in the denominator

with (2π)4. Thus we may neglect it without loss of generality. We may now use this

result to simplify the combination of integration and summation calculated earlier
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to

1

(2π)4

π�

−π

dkx

π�

−π

dky

π�

−π

dk�
x

π�

−π

dk�
y

�
b†kx,kybk�x,k�ye

ikxδ(kx − k�
x)δ(ky − k�

y)

+ b†kx,kybk�x,k�ye
−ikxδ(kx − k�

x)δ(ky − k�
y)

�

where it is possible to use an identity known to be valid for Fourier integrals,

1
(2π)2

π�
−π

dk�
x

π�
−π

dk�
yδ(kx − k�

x)δ(ky − k�
y) = 1, representing the integration of a 2-D

Dirac distribution over a 2-torus and the fact that the ditribution samples any func-

tion of k being integrated with it at k�
x = kx and k�

y = ky. With this one can

immediately write

�

n,m

−tb†n+1,mbn,m + h.c. = −t
1

(2π)2

π�

−π

dkx

π�

−π

dkyb
†
kx,ky

bkx,ky(e
ikx + e−ikx)

=
1

(2π)2

π�

−π

dkx

π�

−π

dky[−2t cos(kx)b
†
kx,ky

bkx,ky ] (A.54)

A similar series of steps can be applied for the ŷ direction translation term
�
n,m

−tb†n,m+1bn,me
i2πnϕnm and its hermitian conjugate but this analysis is made slightly

more interesting by the presence of the phase term. In this case we have

=− t
�

n,m

1

(2π)4

π�

−π

dkx

π�

−π

dky

π�

−π

dk�
x

π�

−π

dk�
y

�
b†kx,kye

i[kxn+ky(m+1)]bk�x,k�ye
−i[k�xn+k�ym]ei2πnϕnm

+ b†kx,kye
i[kxn+ky(m−1)]bk�x,k�ye

−i[k�xn+k�ym]e−i2πnϕnm

�

=− t
�

n,m

1

(2π)4

π�

−π

dkx

π�

−π

dky

π�

−π

dk�
x

π�

−π

dk�
y

�
b†kx,kybk�x,k�ye

ikyei[(kx−k�x+2πϕnm)n+(ky−k�y)m)]

+ b†kx,kybk�x,k�ye
−ikyei[(kx−k�x−2πϕnm)n+(ky−k�y)m)]

�
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=
1

(2π)4

π�

−π

dkx

π�

−π

dky

π�

−π

dk�
x

π�

−π

dk�
y

�
b†kx,kybk�x,k�ye

ikyδ(kx − k�
x + 2πϕnm)δ(ky − k�

y)

+ b†kx,kybk�x,k�ye
−ikyδ(kx − k�

x − 2πϕnm)δ(ky − k�
y)

�

Thus, finally we have

�

n,m

−tb†n,m+1bn,me
i2πnϕnm + h.c. =

1

(2π)2

π�

−π

dkx

π�

−π

dky − t[e−ikyb†kx+2πϕnm,ky
bkx,ky

+ eikyb†kx−2πϕnm,ky
bkx,ky ] (A.55)

So from the equations eq.(A.54) and eq.(A.55) whose sum gives the complete Hamil-

tonian one can compare to eq.(A.52) and it is possible to read off H(k) as the

following expression

H(k) = −2t cos(kx)b
†
kx,ky

bkx,ky − t[e−ikyb†kx+2πϕnm,ky
bkx,ky + eikyb†kx−2πϕnm,ky

bkx,ky ]

(A.56)

From this structure of the Fourier transformed Hamiltonian a couple of things can

be readily seen. Firstly, though the Hamiltonian is defined for a unique ky value

throughout, this is not true for the kx value as it couples to kx + 2πϕnm and kx −

2πϕnm thereby leading to off-diagonal terms in the reciprocal space Hamiltonian.

At this point we may recall the comments made earlier about how to simplify the

structure of the Hamiltonian to such an extent in reciprocal space that the eigenvalue

problem becomes reasonably solvable. In order to do so we must recognize that

the Fourier variables as presently defined are inadequate to fulfill the role of good

quantum numbers since they have been defined keeping the translational symmetry

of the bare lattice, without the field, in mind. The presence of the field then makes

itself felt in this picture through the couplings between the different kx sectors, as

mentioned before. To find a region of k-space in which the momenta do not couple
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becomes pivotal in obtaining a diagonal Hamiltonian in this space. This requires us

to identify the correct translational symmetry in the presence of the field which, for

the case of rational flux p/q, happens to be that of the magnetic unit cells introduced

earlier. Since this implies a reduction in the Brillouin zone by a factor of q along the

kx component this diminished region of momentum space offers the useful quantum

numbers with uncoupled momentum values. This we as may recollect from prior

statements is is closely linked to the enlarged magnetic unit cell which is constructed

by fusing q cells of the square lattice in accordance with the gauge choice. If we

define the new variable k0
x within this new Brillouin zone sector and wish to write

the Hamiltonian in eq.(A.56) in terms of it such that we now work with a diagonal

H(k0
x, ky) defined by H = 1

(2π)2

� π/q

−π/q
dk0

x

� π

−π
dkyH(k0

x, ky). It is required that we

use the substitution kx = k0
x + 2πjϕnm and write the Hamiltonian as a sum over

j ranging from 1 to q to address all the kx values in the FBZ of the bare square

lattice. Thus, what has effectively occured, is that the original Brillouin zone has

been split up into sectors within which the Fourier Hamiltonian is diagonal and all

the far off couplings get resolved into simple couplings between states of the nearest

neigbouring sectors in momentum space. To see this let us first write H(k0
x, ky)

following the definition outlined above

H(k0
x, ky) =

q�

j=1

�
−2t cos(k0

x + 2πjϕnm)b
†
k0x+2πjϕnm,ky

bk0x+2πjϕnm,ky

− t[e−ikyb†k0x+2π(j+1)ϕnm,ky
bk0x+2πjϕnm,ky + eikyb†k0x+2π(j−1)ϕnm,ky

bk0x+2πjϕnm,ky ]

�

(A.57)

The seperation of the Brillouin zone into q sectors is necessary also, because for

ϕnm = p/q and −π/q ≤ k0
x ≤ π/q, to cover all the kx ∈ [−π, π] one uses the

intervals k0
x + 2πjϕnm ∈ [−π/q + 2πjϕnm, π/q + 2πjϕnm] whose union is taken over

j = 1, . . . , q. Thus we have the original single band of the bare square lattice split
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up into q subbands. In this way a reduced Brillouin zone of −π/q ≤ k0
x ≤ π/q

ensures that no distinct k1
x and k2

x belonging to this interval can ever be coupled

by the Hamiltonian in eq.(A.57). Because if it were the case that these momenta

are coupled then they have to satisfy k1
x + 2πj1ϕnm = k2

x + 2πj2ϕnm which implies

k1
x−k2

x ≥ 2πϕnm but this cannot be true since k1
x−k2

x = 2π/q at most. An interesting

feature of the above Hamiltonian has to do with its periodicty in reciprocal space.

From solid state physics in general it is well known that the FBZ uniquely determines

the properties of a periodic system in a reduced zone scheme and that rest of the

momentum space is related to the points in here by some combination of reciprocal

lattice vectors. This shows up as a periodicity in the H(k) as H(k +K) = H(k),

K being a reciprocal lattice vector. For the conventional Brillouin zone of the bare

square lattice such a reciprocal lattice vector is Kx = 2π. However, for H(k0
x, ky)

one observes a considerably different periodicity since the Hamiltonian at k0
x = 0

repeats again at k0
x = 2πϕnmq i.e after a shift of 2πp and so is true for all the other

momenta belonging to the reduced Brillouin zone in the presence of the field. Thus

the new reciprocal lattice vector 2πp is p times the older one. This works as, though

H(k0
x, ky) couples momenta from k0

x to kx values that are technically outside the

FBZ of the bare lattice one can always reflect these intervals via a reciprocal lattice

vector of the bare lattice to some set of adjacent intervals that cover [−π, π]. Thus

the couplings that extend the dependence of the Hamiltonian to a region p times

the FBZ of the original square lattice can be rolled into a region of width 2π by

this method. This then effectively ensures that the Hamiltonian in k-space repeats

itself after cycling once through the q subbands and though this folding may have no

otensible effect on the energies it does have an impact on the topological properties

of the corresponding wavefunctions satisfying the generalized Bloch criteria as seen

earlier.

A clearer way to see the q subband structure is by using this Hamiltonian in an
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eigenvalue equation. We expect that since the ky values do not couple at all the

Hamiltonian has the possibility of an effective 1-D description, just as in position

space but this time with the added advantage that the number of sites is limited to

q. To see this let us write the eigenvalue equation in momentum space as

H(k0
x, ky)|Ψk� = Ek0x,ky

|Ψk� (A.58)

The dimensionality of H(k0
x, ky) may be inferred in some sense from the position

space translationally symmetric modification of the simple unit cell to a q times big-

ger magnetic unit cell. This is akin to having multiple sites per unit cell and hence,

if viewed generally from the perspective of such lattices, the wavefunction for such

a unit cell is considered as a superposition of the contributing local orbitals at each

site whose overlap gives the correct valence configuration of electrons as required

for a tight binding description. This then gives a reciprocal space Hamiltonian of

corresponding dimensionality, so for q sites the Hamiltonian is q× q dimensional for

a given k value. Usually in the simplest case one is concerned with the same single

orbital at each site which is also true here. In cases where multiple orbitals have

to be considered at each site the reciprocal space Hamiltonian may have non zero

off diagonal terms due to the Hamiltonian coupling distinct orbitals at the same

k value. However, for H(k0
x, ky) such terms arise within the same orbital for dif-

ferent k values hence ruling out an exact diagonal description in momentum space

with energies characterized by unique pseudomomenta. So, as we shall see, one is

at best able to reduce to a system of equations that couples neighbouring sets of

otherwise uncoupled k values. These features of the reciprocal space Hamiltonian

can be conveniently embedded in the above eiegnvalue equation by a basis which is

the set of plane waves one from each of the q sectors and indexed by momenta which

are coupled. Each of these q states can be thought of as the Fourier counterpart of

corresponding position space orbitals at the q inequivalent sites when transformed
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to momentum space using their periodicities with the appropriate lattice vectors.

This slightly simplified picture is achieved if the state |Ψk� is constructed as

|Ψk� =
q�

j=1

ψjb
†
k0x+2πjϕnm,ky

|0� (A.59)

where |0� denotes the vaccum state from which other occupied states of various

energies may be obtained by the action of the creation operator as shown above.

Thus, we see that in this form the state is a q component wavefunction for a given k0
x

and ky. In this choice of basis when one expressesH(k0
x, ky) in the eigenvalue relation

of eq.(A.58) with some additional simplifications such as the feature thatH(k0
x, ky) is

diagonal in the annihilation operators. Thus their presence can be absorbed into the

vaccum state as they may contribute at best as phases and not affect the eigenvalues.

The creation operators on the other hand do involve couplings which as seen in the

basis choice above can be used to generate states from the vaccum. This helps to

translate these couplings to the coefficients ψj’s of the various momentum sectors

resulting in a nearest neighbour tight binding like description, for the eigenvalue

eq.(A.58), as follows

− t[e−ikyψj−1 + eikyψj+1]− 2t cos(k0
x + 2πjϕnm)ψj = Ek0x,ky

ψj (A.60)

This sets up a set of secular equations that yeild q eigenvalues when ϕnm = p/q

by splitting a single band of the bare square lattice to q subands in the presence of

the field. As can be seen this is again a Harper equation but now formulated in a

complete momentum space description and with an additional boundary constraint

on the coefficients given by ψj+q = ψj. At various points in our discussion so far,

of the problem of Bloch electrons in a magnetic field, we have made mention of the

duality property of this system. Any coordinate transformation in the presence of

the magnetic field is tantamount to a gauge transformation. Also as the field causes

A51



position space coordinate variables and reciprocal space variables to fail to com-

mute amongst themselves the gauge/coordinate transformation within a particular

representation also acquires a Fourier transformation like character. The duality

manifests as an identical exchange of the variables in terms of how they occur in

the expressions of various gauge independent functions of these variables when for-

mulated in the interchangable gauge choices. This can be seen more explicitly if we

choose to apply a transformation of the form

ψj =

q�

l=1

ei2πϕnmjlg
l

(A.61)

to eq.(A.60). This yields the following

−t[e−iky

q�

l=1

ei2πϕnm(j−1)lg
l
+ eiky

q�

l=1

ei2πϕnm(j+1)lg
l
]− 2t cos(k0

x + 2πjϕnm)

q�

l=1

ei2πϕnmjlg
l

= Ek0x,ky

q�

l=1

ei2πϕnmjlg
l

⇒− t[

q�

l=1

ei2πϕnmjl(e−i(2πϕnml+ky) + ei(2πϕnml+ky))g
l
]− t(ei(k

0
x+2πϕnmj) + e−i(k0x+2πϕnmj))

×
q�

l=1

ei2πϕnmjlg
l
= Ek0x,ky

q�

l=1

ei2πϕnmjlg
l

⇒− t[

q�

l=1

2 cos(ky + 2πϕnml)e
i2πϕnmjlg

l
]− t[

q�

l=1

eik
0
xei2πϕnmj(l+1)g

l
+

q�

l=1

e−ik0xei2πϕnmj(l−1)g
l
]

= Ek0x,ky

q�

l=1

ei2πϕnmjlg
l

⇒− t[e−ik0xg
l−1

+ eik
0
xg

l+1
]− 2t cos(ky + 2πϕnml)gl

= Ek0x,ky
g
l

(A.62)

The final equation above is termed the dual of eq.(A.60) and we see that the trans-

formation has exchanged k0
x and ky between the two expressions. In obtaining it

a symmetry transformation that has also been used is k0
x → −k0

x, since this leaves

the spectrum unchanged as it has reflection symmetry about k0
x = 0. The duality
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transformation as defined above affects this exchange without making any alter-

ations to the definition of the magnetic unit cell, the newly defined Brillouin zone

hence, essentially the band structure. Thus the duality transformation belongs to

the class of unitary basis changing transformations that leave the physical aspects

of the model unchanged. Now if one chose to begin with an alternate gauge choice

right from the start with a non zero Ax instead of Ay in the Landau gauge it would

lead to phases along translations in the x̂ direction unlike what was the case earlier.

In this gauge the eq.(A.60) comes out to be

− t[e−ikxg
l−1

+ eikxg
l+1

]− 2t cos(k0
y + 2πϕnml)gl

= Ekx,k0y
g
l

(A.63)

We note that the above equation when compared with eq.(A.62) shows them to be

identical except that in eq.(A.63) the range of the k-space variables comprising the

Brillouin zone is −π ≤ kx ≤ π and −π/q ≤ k0
y ≤ π/q. This has exactly exchanged

the ranges for k0
x and ky in eq.(A.60). Since both the dual form of the secular

equations in reciprocal space and the gauge transformed ones are identical in their

formal structure and as they both have to give the same physical features of the

model, this fact can be used to make certain comments about the spectrum and

eigenvalues which would otherwise be quite difficult to deduce. One such property

can be determined from the fact that in eq.(A.62) the spectrum Ek0x,ky
has q subbands

due to q coupled kx sectors while in eq.(A.63) the subbands of Ekx,k0y
are due to

couplings between q ky sectors. So as −π ≤ ky ≤ π and −π/q ≤ k0
y ≤ π/q,

Ek0x,ky
= E

kx,k0y+
2πn�
q
, with n� = 1, . . . , q which means that the spectrum due to Ek0x,ky

is q-fold degenerate. This can be thought of as say for a given k0
x or k0

x + 2πjϕnm

belonging to its particular sector all ky values belong to the same subband and

further from the gauge transformed secular equations which give the splitting of the

ky into sectors of k0
y + 2πn�ϕnm one knows that groups of such q coupled momenta

from these sectors belong to the same energy value and hence the degeneracy must
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exist.

Since we began with the objective of obtaining the best route to an efficient

diagonalization of the momentum space Hamiltonian, there is a further simplification

that can be made over the secular equation in eq.(A.60) that facilitates this aim.

To do this we make the substitution ψj = hje
−ikyj in that equation. This gives us

− t[hj−1 + hj+1]− 2t cos(k0
x + 2πϕnmj)hj = Ek0x,ky

hj (A.64)

From its appearance it seems we have gotten rid of the ky dependence but this

is superficial since the boundary conditions still contain the dependence on it as

hj+q = eikyqhj. Yet the above set of secular equations offer a q × q tri-diagonal

matrix with no k dependence on the diagonal and upper and lower diagonals which

considerably simplifies the diagonalization. The only dependence on ky is present

at the upper right and lower left corners, this is to take into account the stated

periodic boundary conditions. Thus the eigenvalues of the problem are obtained by

diagonalizing the governing matrix M(E, k0
x, ky) of the above secular equation which

is done by solving the following determinant equation for its roots,

Det(M(E, k0
x, ky)) = Det

����������������

ν1 − E −t 0 0 · · · −te−iqky

−t ν2 − E −t 0 · · · 0

...
...

...
. . .

...
...

0 · · · 0 −t νq−1 − E −t

−teiqky 0 · · · 0 −t νq − E

����������������

= 0

where, νj = −2t cos(k0
x +2πϕnmj). The usual method is to solve for the eigenvalues

numerically using routines for symmetric tri-diagonal matrices since the matix in the

above determinant can be considered a sparse enough version of this kind with slight
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offset due to the corner terms. Though this in general does not affect the quality

of the numerically obtained eigenvalues much. There are certain gauge indepedent

relations such as the charateristic polynomial from the above determinant whose

dependence on kx and ky can be determined using duality arguments of the kind

used to reason the degeneracy of the spectrum. We shall not enter into these details

here. For these and other details the reader is advised to peruse the references

mentioned earlier. This concludes our discussion of the spectrum of the AAH model

in so far as it permits an analytical approach.
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Appendix B

Floquet Theory and high

frequency perturbative expansions

B.1 Introduction

In this appendix we shall consider the motivation and description of various aspects

of Floquet theory as applied to the study of quantum systems with time-periodic

Hamiltonians. Although this is merely a compilation of well known results and

techniques belonging to this, by now, significant topic in the literature, it is hoped

that collecting them here will provide a ready reference for their use in different

portions of the thesis, making it to some degree self-contained. We will also look

at some high frequency perturbative expansions for the time-independent Floquet

Hamiltonian that have gained recent popularity in the literature, from their use in

a wide range of applications that have come to be termed as ‘Floquet engineering’

[80–82].

The problem of the Schrödinger equation with a periodic in time Hamiltonian has

been of considerable interest as a subset of the general time-dependent problem in

quantum mechanics. Since, most applications involving time dependence arose in the
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context of systems, of atoms or spins, interacting with oscillating electric and mag-

netic fields, consequently giving rise to spectral transitions [85, 86, 88, 90, 91, 328].

While looking at transitions in discrete quantum systems caused due to interactions

with an oscillating field modelled as a classical harmonic sinusoid, Shirley [329], was

led to compare the effectiveness of time-dependent perturbation theory (TDPT)

techniques in determining the transition probabilities between various states of a

system. He discusses, through the most elementary example, that of a two-level sys-

tem, the various limitations of results obtained via the conventional time-dependent

perturbation methods. These include the apparent violation of unitarity of the fa-

mous Fermi Golden rule for the transition probability rate at large times, obtained

to a first order in perturbation. The ad hoc procedures required to avoid secular

and singular terms in these probability amplitudes at resonance and the ineffective-

ness of the theory in capturing multiple quantum transitions. Further, the method

is burdened with the assumption of a weak field strength. To circumvent these,

Shirley suggests making use of phase factoring methods, which take the form of a

rotating frame/wave approximation, in the case of say a spin- 1
2
system in a rotating

magnetic field, and seperating the time dependent Hamiltonian into a constant part

and one with a comparatively higher frequency time dependence. This higher fre-

quency term is neglected in calculating the transition probabilities and one is able

to obtain the same Lorentzian distribution or Rabi line for the transition probability

as obtained from TDPT. Furthermore, this expression preserves unitarity and gives

the correct form of the Golden rule for large times. This, in a very basic manner,

demonstrates the advantages that a time independent approxiamtion has to offer

given that one goes about formulating it correctly. Form this one draws the moti-

vation for a more rigorous approach to obtaining a time-independent Hamiltonian

for the driven system and Floquet theory enters as a viable formalism to achieve

this objective. Essentially, the significant advantage offered by this framework is
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the possibility of incorporating the effects of time-dependence to different frequency

scales in a perturbative manner to improve the accuracy of the results, where the

effects of including the ignored time dependent part begin to be felt. That too in

a method that is, in most cases, analytically and computationally simpler than the

alternative TDPT methods.

Shirley generalizes the analysis to systems with multiple quantum levels and

suggests their reduction to two level systems, for the purpose of studying resonant

transitions, via the use of degenerate time-independent perturbation theory, once

the constant portion of the Hamiltonian has been seperated out. This finds use in

the Floquet formalism as well, since the approach transforms a finite Hamiltonian for

a time dependent interaction to an infinite dimensional time-idependent one. The

perturbation theory allows to project to a subspace of dimensions equal to those of

the undriven Hamiltonian, by accounting for the effects of interactions with the other

excluded levels to various orders. As we shall see, the perodicity intrinsic to Floquet

systems also helps to simplify the analysis of these systems. Therefore, a general

structure for the theory has emerged, where the complete time evolution of the time-

periodic system is modelled using a time independent effective Hamiltonian upto a

micromotion governed by a periodic-in-time unitary operator. Thus the method

concerns itself with employing various means to obtain the effective Hamiltonian, if

not exactly, then at least to some reasonable appoximation. A high frequency limit

facilitates the calculation of such a Hamiltonian and its concomitant micromotion

operator by allowing the use of perturbative expansions that can compute both these

operators upto higher orders of accuracy. Various such perturbative schemes have

been used in the literature, each with its own merits and demerits [80, 82, 87, 92, 93].

Here, we shall begin by outlining and developing the rudimentary principles of

Floquet theory and illustrate their application to the general problem of the time-

periodic Schrödinger equation. The notions of the Floquet operator, quasienergies
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and Floquet states shall be elucidated and we shall look at various formulations

of the time-independent Floquet Hamiltonian and the micromotion operator. We

shall also regard some of the more commonly used perturbative expansions in the

high frequency driving regime. Along the way the construction of a Floquet Hilbert

space becomes apparent [91], denoted by H⊗T, which is a composite of the standard

Hilbert space H of the time dependent quantum system and the space of periodic

in time functions (with a given time period, say T ), denoted by T.

B.2 Basic Floquet Theory

In this section we shall give a brief overview of the various results and conditions

associated with Floquet theory. These are all well established mathematically. This

will provide the necessary background for applying the theory to the periodic Hamil-

tonian bearing Schrödinger equation. As regards the notation, all bold uppercase

Roman letters denote matrices, lower case ones are vectors and greek indices are

used to identify individual components of these matrices or vectors.

The theory addresses a system of differential equations of the form

ż = A(t)z (B.1)

where, A(t + T ) = A(t) is of size N × N , periodic with period T , and z turns out

to be of the form eqtp(t). This is further known to satisfy the requirement that for

the N values q1, q2, . . . , qN ,

eq1T eq2T · · · eqNT = exp

�� T

0

Tr(A(t�))dt�
�
. (B.2)

We shall now proceed to justify these results using certain ideas from linear al-

gebra and applying them to the theory of differential equations with periodic co-
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efficients. Looking at eq.(B.1), one might express its N solutions as the vectors

z1(t), z2(t), . . . , zN(t). From these it is possible to construct a matrix Z(t) of the

form

Z(t) =

��
z1

��
z2

�
· · ·

�
zN

��
(B.3)

thereby giving a N ×N matrix whose columns are the N linearly independent solu-

tions of the system of N simultaneous first order differential equations represented

in matrix form in eq.(B.1). Such a solution matrix itself satisfies the differential

equation Ż = AZ, with Z being called the fundamental matrix if it is non-singular.

Which is usually the case since the z1(t), z2(t), . . . , zN(t) are linearly independent for

all cases of interest. In the special case that a boundary condition is satisfied such

that Z(t0) = I, I being the identity element, Z is called the principal fundamental

matrix. We shall see that it is this matrix which has a key role to play in the deter-

mination of the eigenvalues of the effective time independent Floquet Hamiltonian.

Thus it is important to note that the fundamental matrix is decided by the system

of differential equations that it satisfies and is characteristically associated to them.

Due to the linearity of the differential equations and hence the fact that any linear

combination of the independent solutions should also be a solution of the system, it

is of interest to observe that multiplying Z by a constant non-singular matrix again

yeilds another fundamental matrix for the same system of equations. Hence for any

constant, non-singular C a Y�(t) = Z(t)C is nothing but another solution matrix

with its columns now being linear combinations of those of Z. This makes Y� also

a fundamental matrix. This may be regarded as a defining property of fundamental

matrices. From what we have discussed so far, it would be good to keep in mind that

this property of fundamental matrices of the system in eq.(B.1) is to be exploited

in identifying the principal fundamental matrix for the Schrödinger equation with

periodic coefficients. This, we shall see, plays a crucial role in determining the

quasienergies of the driven system.
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Another useful property of the solution matrix Z occurs when its determinant is

the same as its Wronskian given by W(t). When this is true it can be shown that

W(t) = W(t0)exp

�� t

t0

Tr(A(t�))dt�
�
. (B.4)

To see this, we can expand Z(t) in a Taylor series expansion about t = t0 with

Δt = t− t0, and retain terms upto first order in Δt,

Z(t) = Z(t0) +Δt Ż(t0) + O((Δt)2)

= [I+Δt A(t0)]Z(t0) + O((Δt)2)

Using the above linearized approximation, it follows that the determinant of Z(t),

and from the assumption made earlier, the Wronskian can be written as

det(Z(t)) = det [I+Δt A(t0)] det(Z(t0))

W(t) = det [I+Δt A(t0)]W(t0)

An identity of use at this point is the series expansion of a general determinant of the

form encountered above, i.e. det (I+ �C) = 1 + �Tr(C) +O(�2). This result follows

from there being a term in the determinant which is a product of the diagonal entries

and the zeroth and first order in � contributions come from it. Applying this to the

expression for the Wronskian gives

W(t) = W(t0) [1 +Δt Tr(A(t0))]

This may be compared to the Taylor series expansion of W(t) upto first order in Δt

and reading off the first order coefficients from this gives the following differential
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equation for W(t)

Ẇ(t) = W(t)Tr (A(t))

where, the t0 dependence of the equation has been generalized to all times t as there

have been no assumptions made regarding any fixed choice of t0. The solution to

the above equation given by

W(t) = W(t0)exp

�� t

t0

Tr (A(t�)) dt�
�

(B.5)

is a useful relation that will help to prove the identity in eq.(B.2). Soon we shall

need this result to obtain a condition on the quasienergies that is dependent on the

time average of the trace of the periodic time dependent Hamiltonian.

So far we have not made use of the periodicity property of the system of differ-

ential equations in determining the behaviour of their solutions. It is natural from

the discussion so far, that if Z(t) is a solution matrix for the system then Z(t + T )

must also be one. Since this too satisfies the matrix differential equation defined for

the system in eq.(B.1). This is easily shown by translating the matrix differential

equation, Ż(t) = A(t)Z(t), by the period T and using the periodicity of A(t). The

question that arises then is how are these two fundamental matrices related to one

another.

To understand this let us define Y(t) = Z(t+T ) and assume a non-singular C(t)

such that C(t) = Z−1(t)Y(t). Now, since

Y(t) = Z(t)Z−1(t)Y(t)

= Z(t)C(t)

one can write Y(t0) = Z(t0)C(t0) where we may denote C(t0) = C0. If we choose to
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write Y0(t) = Z(t)C0, which as we know from the property of a fundamental matrix

when multiplied by a constant non-singular matrix is also a fundamental matrix, it

results in Y0(t) also being a solution matrix. At t = t0, Y(t0) = Y0(t0) and from

the theory of linear ordinary differential equations it is known that they possess a

unique solution for a given set of bounadary conditions, therefore it must hold that

Y0(t) = Y(t) at all times. Equivalently, C(t) = C0 i.e. a constant for all times

hence time independent. Thus we arrive at an important property for the solution

matrix while applying Floquet theory to a periodic system,

Y(t) = Z(t)C0

⇒ Z(t+ T ) = Z(t)C0. (B.6)

Here, we note that the solution matrices for the system which are seperated in time

by a period are related through a transformation by a constant matrix. This result

is significant as it is an important step towards obtaining some time independent

component from the time dependent equations. The constant matrix C0 is unique

to the given system whose solutions over an interval of period duration are related

by it and it will be shown that its eigenvalues will define the quasienergies for the

time periodic quantum problem. For the periodic-in-time Schrödinger equation the

physical implications of this result stem from, as we shall see, the intimate relation

between the unitary evolution operator over a period and the constant matrix C0.

The periodicity of the Wronskian may be used to show how the result in eq.(B.5)

may be extended to the non-singular constant matrix C0, as follows

W(t+ T ) = W(t0)exp

�� t

t0

Tr (A(t�)) dt� +

� t+T

t

Tr (A(t�)) dt�
�

⇒ W(t+ T ) = W(t)exp

�� t+T

t

Tr (A(t�)) dt�
�
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⇒ W(t+ T ) = W(t)exp

�� T

0

Tr (A(t�)) dt�
�

The last step above makes use of the time translation symmetry of the integral over

the trace by equating the integral over any interval of a period’s length to that over

the interval (0, T ). From eq.(B.6) it is apparent that taking the determinant of the

expression on either side leads us to

det(Z(t+ T )) = det(Z(t))det(C0)

W(t+ T ) = W(t)det(C0)

Comparing the two expressions for W(t) obtained above, one finds

det(C0) = exp

�� T

0

Tr (A(t�)) dt�
�

(B.7)

The time independence of C0 allows it to be determined by setting t = 0 in its

definition as C0 = Z−1(0)Y(0) = Z−1(0)Z(T ). We see that for a boundary condition

of the form Z(0) = I, in which case Z(t) is a principal fundamental matrix, C0 =

Z(T ). In mathematical parlance C0 is referred to as the monodromy matrix for

the system of linear differential equations, obtained by evaluating the fundamental

matrix at the period of the system.

The properties of the constant matrix C0 are of interest as it provides a form of

invariant for the discrete time translation invariance of the system represented by

Ż(t) = A(t)Z(t). The eigenvalues of this matrix are called the characteristic mul-

tipliers, denoted by b1, b2, . . . , bN , for the system. By definition, a set of exponents

q1, q2, . . . , qN that satisfies

b1 = eq1T b2 = eq2T · · · bN = eqNT (B.8)
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are termed as the characteristic exponents or Floquet exponents and they turn out

to be the best effective static description of the energies of ‘quasi’-stationary states

that might be had for a time periodic quantum system. These exponents could in

general be complex valued. We shall see, that for the case of quantal evolution,

there are restrictions of unitarity and hermiticity that constrain these values to be

purely imaginary. From eq.(B.7) the product of the characteristic multipliers which

is nothing but det(C0) is established. Another feature of these multipliers is that

they are not uniquely defined as bα = eqαT and bα = e(qα+
2πm
T

)T are both valid

multipliers for a given α and m ∈ Z, the set of integers. They are fundamentally

associated to the system of periodic differential equations used to derive them and are

independent of the choice of fundamental matrix. This can be shown as the following

sequence of steps, let Ź(t) be another fundamental matrix with Ź(t+ T ) = Ź(t)Ć0

where by definition one is allowed to write Ź(t) = Z(t)B ,Ć0 and B being constant

non-singular matrices, then

Ź(t+ T ) = Z(t+ T )B

(Ź(t)Ć0) = (Z(t)C0)B

Z(t)BĆ0 = Z(t)C0B (B.9)

BĆ0 = C0B

BĆ0B
−1 = C0

Thus, the eigenvalues of Ć0 are the same as those of C, which shows that the

characteristic multipliers are unique for a given system of differential equations.

It is useful to note that the final expression above has the form of a similarity

transformation which allows one the freedom to choose a B such that it diagonalizes

Ć0 to C0.

Now we come to deriving the properties of the individual solutions z(t), the
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column entries of the fundamental matrix Z(t), from our understanding of Floquet

systems so far. Consider some characteristic multiplier b of the system with the

corresponding exponent given by q as in b = eqT . If c represents an eigenvector of

C0 corresponding to the eigenvalue b, then one may write a solution of the form

z(t) = Z(t)c. This is nothing but another solution vector formed out of a linear

superposition of the column vectors of Z(t) weighted by the components of the

vector c. Naturally, such a z(t) satisfies the differential equation ż = Az. It would

be useful to note here that as one can see from the property of the fundamental

matrix Z(t) in eq.(B.6), there is an implicit choice of a particular column vector

in defining z(t) of the form chosen here. Since this would dictate the particular

characteristic multiplier choice from a diagonalized C0 and the corresponding choice

of c. We would like to see how this vector translated in time by a period relates to

its initial form. This may be known from the following, where we use results derived

previously,

z(t+ T ) = Z(t+ T )c = (Z(t)C0) c = bZ(t)c = bz(t) (B.10)

One obtains z(t + T ) = bz(t) which shows that solutions seperated in time by a

period are related by the characteristic multipliers. Another important property

has to do with the form of the solution i.e z(t) , as was postulated at the beginning

of this section, of the kind eqtp(t) with p(t) being periodic with T . Let there be a

p(t) such that p(t) = z(t)e−qt. We wish to show that this has the periodicity of the

system of differential equations as follows

p(t+ T ) = z(t+ T )e−q(t+T ) = bz(t)e−q(t+T ) = z(t)e−qt = p(t) (B.11)

where we have made use of the earlier assertion that b is a characteristic multiplier

of the form eqT hence, be−qT = 1. Thus, a solution exists of the form z(t) = eqtp(t),
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with p being T -periodic. Note that, as mentioned earlier, a column choice is implicit

in z(t) so the multiplier b and the exponent q are correspondingly fixed and this

attributes the same column index to p(t). This enables one to write in a complete

matrix formulation the fundamental matrix Z(t) as

Z(t) = eQtP(t) (B.12)

where,Q is theN×N matrix with its diagonal entries as the characteristic exponents

q1, q2, . . . , qN and P(t) is the matrix, of the same dimensions, with column entries

being the vectors p(t).

There are some general properties of the solutions which are determined by the

nature of the characteristic multipliers. Since these multipliers are most generally

complex, they can fall into three categories based on their magnitude. These are

|b| < 1, |b| = 1 and |b| > 1. In the first and the last case the solutions are

exponentially decaying and rising respectively. However, for the second case, the

Re(q) = 0 and the solutions are pseudo-periodic and in case b = ±1 the solutions

are exactly periodic with period T . This is the case that we shall be interested

in throughout the discussions in this appendix and the study of Floquet quantum

systems in general. This concludes our outline of the basic notions of Floquet theory

that form the mathematical framework for the following discussion.

B.3 Schrödinger equation with a periodic Hamil-

tonian and the Floquet Hamiltonian

The content of this section is adapted from the discussion in Chapter 6 of J.H.

Shirley’s thesis [329]. This provides, by far, the best treatment known to us of the

application of the fundamentals of Floquet theory to periodic quantum systems. It
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is reproduced here for the purposes of clarity and continuity. Here we treat the

special case of the Schrödinger equation with a periodic in time Hamiltonian using

the formalism developed so far. The periodic time dependent Schrödinger equation

is given by

ih̄Ψ̇(t) = H(t)Ψ(t) (B.13)

where, H(t + T ) = H(t) is the T -periodic, N × N dimensional Hamiltonian of the

periodic system and Ψ(t) is the N × 1 dimensional column vector representing the

the time dependent state of the quantum system. We deviate slightly from our

chosen notational convention here, of designating vectors with lower case bold face

Roman letters, by denoting the state vector with a greek symbol. This and the

fact that we do not use bold face notation for the time dependent Hamiltonian and

later, the Floquet Hamiltoniain, are the only exceptions made. The N independent

solutions of eq.(B.13) may be represented as the columns of the N×N matrix Ψ(t),

which happens to be the fundamental matrix for the given system of equations just

like Z(t) in the previous section.

From the properties of fundamental matrices that have been discussed, it is

possible to define a fundamental matrix Ψ(t)Ψ−1(t0), where Ψ−1(t0) is a constant

non-singular matrix, denoted by U(t; t0). This is a construction of the kind used to

define Y�(t) earlier with the additional feature that at t = t0, U(t0; t0) = I. Thus

making it a principal fundamental matrix under the given initial conditions. This

matrix is is of particular interest since it gives the time evolution of the solutions to

the system in eq.(B.13) as

Ψ(t) = U(t; t0)Ψ(t0) (B.14)

The elements of this evolution matrix can be directly interpreted as the transition

probability amplitudes for going between the states of the system. So the element

Uβα (t; t0) represents such a probability amplitude for an intial state α, at time t0,

A68



going to β at time t. The requirement that the total probability adds up to one

is fulfilled by the hermiticity of H from which it follows that Ψ†(t)Ψ(t) and hence,

more generally Ψ†(t)Ψ(t), is constant and allows for normalization. In the specific

case of U this constant is unity as evaluated for the given initial condition. This

makes U unitary for all times. This unitary property imposes its own conditions

on the results derived from the application of Floquet theory and hence enables

a quantum mechanical interpretation of the characteristic quantities as a sort of

stationary state picture of the system.

Now, the application of the techniques of Floquet theory discussed in the previous

section, to the system in eq.(B.13) allows us to write, as in eq.(B.6)

Ψ(t+ T ) = Ψ(t)C0. (B.15)

One can diagonalize C0 above, using the freedom from the uniqueness of characteris-

tic multipliers shown in eq.(B.9), usually with a constant unitary matrix say B such

that B−1C0B = e−iQ�T . This exponential matrix is just like the one in eq.(B.12)

and its diagonal entries are again the characteristic exponents q �1, q
�
2, . . . , q

�
N related

to those of the previous section as qα = −iq�α. We have seperated out the i in an

attempt to make explicit the purely imaginary nature of the q ’s which followed from

the requirement for the multipliers that |b| = 1 and b = ±1 for periodic solutions, as

discussed in the last section. That the q� ’s are real will be shortly shown via the uni-

tarity of U just discussed. Coming back to the above equation this diagonalization

can be performed and we have

Ψ(t+ T ) = Ψ(t)Be−iQ�TB−1

Ψ(t+ T )BeiQ
�(t+T ) = Ψ(t)BeiQ

�t

The second step involves multiplyingBeiQ
�(t+T ) on either side of the first. Looking at
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the RHS of the second expression one notes that from the property of fundamental

matrices, Ψ(t)B is also a solution matrix. If this RHS is denoted by P�(t) then

P�(t+ T ) = P�(t) i.e. periodic and the solution Ψ(t)B can be expressed in terms of

it as P�(t)e−iQ�t. We may recall that P� here is nothing but an analog of the P(t)

matrix of the previous section. Thus, we have shown that, for the time dependent

Schrödinger equation with a periodic Hamiltonian, the matrix form of the solution

has the general form of the Floquet theory solution. The components of the solution

are given by P �
αβ (t)e

−iq�β t.

The choice of Ψ(t) above is arbitrary and one could as easily have chosen the

matrix of linearly independent unitary solutions, U, for this purpose. This would

require that the corresponding C0 be a constant unitary matrix also and basically

turns out to be the evolution matrix over a period i.e. U(t0+T ; t0). As by definition,

it has the property of taking a matrix of solutions at some instant t0 to one a

period apart at t0 + T . The composition property of the time evolution operator,

well known from quantum mechanics, can be used to illustrate this. We can write

U(t + T ; t0) = U(t + T ; t)U(t; t0) and map to the notation of the previous section

as Z(t) = U(t; t0), Y(t) = U(t + T ; t0) and C(t) = U−1(t; t0)U(t + T ; t0). Then,

following the same sequence of steps that lead up to eq.(B.6), we can show the

correspondence C0 = U(t0 + T ; t0). The diagonalizing transformation B in this

case can also be chosen to be unitary as a result imparting the same property to

the matrix e−iQ�T , thereby making Q� hermitian. From this it follows that the

eigenvalues of Q� must be real making q�α ’s real. A feature that is consistent with

the previous statements regarding the nature of the characteristic exponents for

periodic systems. Thus, here we see that the eigenvalues of the unitary evolution

matrix over a period are the characteristic multipliers. Since Ψ(t) = U(t; t0), B

and e−iQ�t are all unitary it can be reasoned that P�(t) is also unitary. With this it

is possible to write a general unitary solution for the matrix Schrödinger equation
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ih̄Ψ̇(t) = HΨ(t) of the form Φ(t) = P�(t)e−iQ�t. This may then be used to express

the special solution U as

U(t; t0) = Φ(t)Φ−1(t0) = P�(t)e−iQ�(t−t0)P�−1
(t0) (B.16)

The above equation is an important result and offers a useful decomposition of the

time evolution matrix or operator. The exponential term e−iQ�(t−t0) has a hermitian

time independent Q� which provides the motivation for developing a time indepen-

dent description of time-periodic quantum systems. This matrix or operator may

be thought of as giving the time evolution of the system as in a stationary quantum

system. Therefore lending the interpretation of stationary quasi-energies for the

characteristic exponents. While this operator evolves the system over any given du-

ration, the time dependence of the evolution is accounted for by the periodic, time

dependent unitary operators P�(t) and P�(t0), at the terminal points of the interval

of evolution. This formulation forms the basis of much of the discussion in future

sections.

A property that we can apply here from our general discussion on Floquet theory

is the one derived in eq.(B.5) where from the condition that the Wronskian of the

linearly independent solutions is identical to the determinant of the fundamental

matrix, one can write the determinant of the evolution operator as

det(U(t; t0)) = det(U(t0; t0))exp

�
−i

� t

t0

Tr (H(t�)) dt�
�

= exp

�
−i

� t

t0

Tr (H(t�)) dt�
�

(B.17)

From what we have in eq.(B.7), and the correpondence between the C0 there and
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U(t0 + T ; t0) which has just been discussed, one can write

det(C0) = det(U(t0 + T ; t0)) = exp

�
−i

� t0+T

t0

Tr (H(t�)) dt�
�

=
�

α

e−iq�αT = exp

�
−iT

�

α

q�α

�
(B.18)

where we have used the fact that det(C0) can be written as a product of eigenvalues

i.e the characteristic multipliers. Comparing the terms in the exponent of both the

expressions gives an important constraint on the characteristic multipliers or the

quasienergies
�

α

q�α =
1

T

� t0+T

t0

Tr (H(t�)) dt� (B.19)

with their sum (upto some integral multiple of the driving frequency ω = 2π/T )

being equal to the time average of the trace of the Hamiltonian over a period. Since

the determination of the characteristic exponents forms the central problem while

applying Floquet theory to periodic quantum systems, any condition that helps to

restrict the number of such independent unknowns is of great help. The above

condition is one such identity. The trace of the Hamiltonian , as it so happens, is of

no particular physical significance and hence can be fixed to suit our convenience.

In fact this is effectively like fixing a reference for measuring the energies. This

feature combined with the above identity helps to reduce the number of independent

multiplier values.

It is possible to gain a more insightful understanding of the unitary solution

Φ(t) by means of Fourier analysis, where it shall become apparent that a complete

description of the periodic quantum problem in a time independent picture requires

one to deal with inifinite dimensional matrices. Let us begin by writing Φ(t) in its

component form

Φαβ (t) = P �
αβ (t)e

−iq�
β
t

(B.20)
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The periodicity of P �
αβ (t) allows for it to be expanded in an infinite Fourier series,

with the coefficients represented by Φn
αβ , where lower case Roman letters are used

to denote the Fourier indices,

Φαβ (t) =
�

n

Φn
αβ e

i(nω−q�
β
)t

(B.21)

Similarly one can write for the elements of the periodic H

Hαβ (t) =
�

n

Hn
αβ e

inωt (B.22)

The summations all range over −∞ to ∞. Substituting these expansions in the

Schrödinger equation ih̄Φ̇ = HΦ gives

ih̄
∂

∂t
Φαβ (t) = (HΦ)αβ =

�

γ

Hαγ(t)Φγβ (t)

ih̄
∂

∂t

�

n

Φn
αβ e

i(nω−q�
β
)t
=

�

γ

�

n

Hn
αγe

inωt
�

m

Φm
γβ e

i(mω−q�
β
)t

ih̄
�

n

Φn
αβ i(nω − q�

β
)e

i(nω−q�
β
)t
=

�

γ

�

n

�

m

Hn
αγΦ

m
γβ e

i((n+m)ω−q�
β
)t

where introducing a shift in the summation indices by replacing n in terms of n� =

n+m, and then relabelling n� by n again in what results, we get

�

γ

�

n

�

m

Hn−m
αγ Φm

γβ e
i(nω−q�

β
)t
=

�

n

Φn
αβ (−h̄nω + h̄q�

β
)e

i(nω−q�
β
)t

�

γm

Hn−m
αγ Φm

γβ + h̄nωΦn
αβ = h̄q�

β
Φn

αβ

�

γm

�
Hn−m

αγ + h̄δαγδnmnω
�
Φm

γβ = h̄q�
β
Φn

αβ (B.23)

Here one could choose to work in units of h̄ and drop it from the eigenvalue equation

in the final step above. In interpreting this as an eigenvalue equation one is led
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to recognize q�
β
as an eigenvalue and Φn

αβ as the corresponding eigenstate. It is

important to note that the equation has both greek and roman indices denoting

the system states and the Fourier components respectively. The description of the

eigenstate here requires both of these and for a given α i.e. system state there are

infinitely many possibilities for n i.e. a Fourier component. Thus a state vector

as a column or row requires two indices to be described uniquely much like two

quantum numbers are needed in several examples of quantum systems. This is also

revelaed in the structure of the eigenvalue equation where the summation extends

over a pair of greek and Roman indices i.e. γ and m respectively,thus indicating that

both together represent the components of a column vector for the state Φm
γβ . Thus

form the RHS it is apparent that a tuple of the form (α, n) indexes the elements

of a column and hence for a particular value labels a row. While reading the the

operating matrix or operator from this eigenvalue equation the (α, n) lables the

rows and (γ,m) labels the columns. This operator is referred to as the Floquet

Hamiltonian for the corresponding time dependent H, and may be denoted HF . By

virtue of the Fourier components this is an infinite matrix. It can be ensured while

writing the Floquet Hamiltonian and the state vectors that the components are so

ordered that they cycle through all the system states before a change in the Fourier

index occurs.

From the above discussion it appears natural to turn to the Dirac bra-ket no-

tation to denote the vectors that form an orthonormal basis for representing the

eigenvalue equation in (B.23). Thus one may write |αn� to denote an infinite col-

umn vector with a possible representation involving all zero entries except for a 1 at

the particular choice of (α, n) values. With such a choice of basis the components of

the Floquet Hamiltoniain HF become �αn|HF |γm� = Hn−m
αγ + δαγδnmnω. In a more

formal sense these basis vectors may be thought of as spanning an extended Hilbert

space or Sambe space [91], F = H ⊗ T, which is a direct product of the Hilbert
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space of quantum states of the system and the space of square integrable functions

periodic with period T . The Fourier basis einωt is a natural orthonormal basis in

T. In explicit terms one may express |αn� = |α�einωt. Thus, HF is an operator in

such an extended Floquet Hilbert space and its eigenvectors are also vectors in this

space, as is Φ in the discussion above. These states in Sambe space are not physical

states of the periodic quantum system in any sense but exhibit similar traits.

Since H is hermitian it follows that so is HF , thus it must admit an orthonormal

system of eigenstates and real eigenvalues. The eigenstate Φn
αβ in (B.23) is essentially

the column β of the periodic part of the unitary solution Φ(t), i.e. P �(t), but

now represented in the extended Floquet Hilbert space. These columns of P�(t)

shall henceforth be called the Floquet modes and the elements Φn
αβ stand for the

components of the ‘β’-vector of this set or the β Floquet mode, as represented in the

basis, |αn�, of the Floquet Hilbert space. So although in the space H the colummns

of Φ(t) are linearly independent vectors with a definite normalization, this may no

longer be true once one moves to F by including the Fourier indices. Moreover the

state vector given by the components Φn
αβ in the |αn� basis does not generally give

an exactly diagonal representation ofHF , as the non-zero Fourier componentsHn−m
αγ

contribute to off-daigonal terms. So let us then define a normalized basis for HF in

F denoted by the kets |τ
βk
� and corresponding eigenvalues by �

βk
. Thus satisfying

the eigenvalue relation

HF |τβk � = �
βk
|τ

βk
� (B.24)

Introducing the completeness of states
�

γm

|γm��γm| = I in the LHS of the above

equation and taking the inner product with �αn| on both sides gives

�

γm

�αn|HF |γm��γm|τ
βk
� = �

βk
�αn|τ

βk
� (B.25)

The above eigenvalue equation may be compared to eq.(B.23) to get a better un-
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derstanding of the structure of the matrix HF and its eigenstates, since now it is

possible to interpret components of column vectors in Φ as the projections �αn|τ
βk
�.

Before exploring the representation of the eigenstates it is important to understand

the construction of HF . An element of this matrix has the form �αn|HF |γm� =

Hn−m
αγ + δαγδnmnω, where as we know (αn) denotes a row and (γm) a column and

for given values of n and m all the entries for the finite set of α and γ values are

grouped together and ordered. This gives rise to a structure where any pair of (n,m)

values corresponds to a block of N × N dimensions i.e. equivalent to those of H.

The blocks are laid out such that the one corresponding to n = m = n−m = 0 lies

at the centre of the infinite matrix occupying the middle of the diagonal. Its neigh-

bours, from the chosen row and column convention, are the blocks n = 0, m = 1 to

the right and n = 0,m = −1 to the left, n = 1, m = 0 up top and n = −1, m = 0

down below, and along the left and right diagonals (n = 1,m = −1; n = −1, m = 1)

and (n = 1, m = 1;n = −1, m = −1) respectively. This scheme extends in all these

directions infinitely. The matrix element of HF also tells us that the factor nω gets

added to all the diagonal elements of the block in the n-th ‘block’ row lying on the

main diagonal of HF . The blocks with n − m = 0 lie along the main diagonal of

the matrix and these blocks are identical except that between any two blocks the

corresponding diagonal elements differ by some integer multiple of ω. This sort of

periodicity can be expressed as

�αn+ s|HF |γm+ s� = �αn|HF |γm�+ sωδαγδnm (B.26)

for some integer s. The effect of this property on the eigenvalues and eigenvectors

of the matrix merits some attention. If one looks at the matrix elements of HF , one

sees the property that one could add or subtract an infinite diagonal matrix with

sω as the diagonal entries for some integer s and the matrix remains unchanged

with a shift of the diagonal entries which is ultimately indistinguishable. Very much
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like the translation symmetry of an infinite lattice in its lattice vectors the Floquet

Hamiltonian shows this symmetry in translations by multiples of ω atleast for its

diagonal. The eigenvalues reflect this freedom as is apparent from the eigenvalue

equation in (B.23) where any number of ω s may be adjusted with the q�
β
by a

shift in the Roman summation index and so if � is an eigenvalue then so is � + sω.

Thus it is possible to interpret an eigenvalue as �αn = �α0 + nω which highlights

the fact that as far as the Floquet quasienergies, �α0 = q�
α
are concerned, the truly

distinct eigenvalues are finite and indexed, as written here, by α and all others are

related to this set by multiples of ω. Therefore the quasienergies can be thought

of as belonging to a sort of Brillouin zone wich can be folded to form a circle in a

reduced zone scheme for the spectrum. The q�
α
or �α0 represents the eigenvalue with

the lowest magnitude in the set containing it and the various energies related to it

by all possible integer multiples of ω.

Similarly we can analyse the effect this periodicity property has on the com-

ponents �αn|τ
βk
� of the eigenvector for the eigenvalue �

βk
. Let us see the effect of

ω-translation on the eigenstates i.e. to find out how are |τ
βk
� and |τ

βk+s
� related given

that we now know �
βk+s

= �
βk

+ sω. Writing the eigenvalue equation in eq.(B.24)

for the shifted state |τ
βk+s

� one gets

HF |τβk+s
� = �

βk+s
|τ

βk+s
�.

Adopting manipulations similar to the ones used in obtaining eq.(B.25) we have

�

γm

�αn+ s|HF |γm+ s��γm+ s|τ
βk+s

� = �
βk+s

�αn+ s|τ
βk+s

�

Using our knowledge of the matrix element on the LHS from eq.(B.26) and the
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periodic relation for �
βk+s

the above equation becomes

�

γm

[�αn|HF |γm�+ sωδαγδnm] �γm+ s|τ
βk+s

� = (�
βk

+ sω)�αn+ s|τ
βk+s

�

�

γm

�αn|HF |γm��γm+ s|τ
βk+s

� = �
βk
�αn+ s|τ

βk+s
�

The second step follows from the first after cancelling sω from both sides of the first

equation. Thus we see that the components �αn + s|τ
βk+s

� satisfy the same set of

homogeneous equations as those satisfied by the �αn|τ
βk
� in eq.(B.25). They are

both normalized by definition and could be assigned arbitrary relative phase based

on how we choose, so it follows that we can write

�αn+ s|τ
βk+s

� = �αn|τ
βk
� (B.27)

Hence the components of the eigenvectors show a periodicity similar to what is

observed in the case of the eigenvalues. It shows that the same eigenvector holds

for all the eigenvalues which are related by some integer multiple of ω. One can

therefore define, just like for the quasienergies, a set of distinct, unique eigenvectors

for HF that correspond in a one is to one fashion to the these quasienergies in the

reduced Brillouin zone.

We may now proceed to analyse the relationship between Φn
αβ and �αn|τ

βk
� both

of which denote components of the eigenstates of HF . There are differences in the

choice of representation of the eigenvectors in both cases and more importantly in the

nature of their respective normalizations. However one expects a close correlation

between the two given the fact that one is attempting to preserve unitarity and that

the eigenvalue to which they both correspond is the same, i.e. q�
β
= �

β0
. So it is
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possible to write as an ansatz the following relation

Φn
αβ = Rβ �αn|τβk � (B.28)

where Rβ is a scalar, may be real or complex, which needs to be determined. The

significance of the above equation lies in the opportunity that it offers to solve the

periodic time dependent problem using a time independent formalism. Since we are

required to obtain the unitary solution Φn
αβ or more generally the columns of Φ(t)

for a complete solution of the problem, the above equation helps to transform this

search into one of computing the eigenstates, |τ
βk
� of the time independent, infinite

dimensional HF .

To determine Rβ in the above we use the unitarity of Φ i.e. Φ†Φ = I, which in

component form can be expressed as

�

γ

Φ∗
γα(t)Φγβ (t) = δαβ

then,

�

γ

��

m

(Φm
γα)

∗e−imωteiq
�
α
t

���

n

Φn
γβ e

inωte
−iq�

β
t

�
= δαβ

Since the RHS dictates that the LHS has to be a diagonal matrix with all 1 s along

the diagonal, it is required that α = β be imposed on the elements of the LHS to get

the non-zero values. Thus e
i(q�

α
−q�

β
)t
may be set to unity and it also helps to modify

the summation index m to l with l = n−m,

�

γ

�

l

�

n

(Φn−l
γα )∗Φn

γβ e
ilωt = δαβ

�

γ

�

n

(Φn−l
γα )∗Φn

γβ = δαβ δl0
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The second step follows from the fact that as the RHS is time independent the LHS

should be too, and is ensured by putting l to 0. The final expression above can be

rewritten using the component form in eq.(B.28) as

�

γ

�

n

�τα0 |γn− l�R∗
αRβ �γn|τβ0 � = δαβ δl0

where we can make use of the complex conjugate of eq.(B.27) to write �τα0 |γn− l� =

�τ
αl
|γn�, and putting this back gives

�

γ

�

n

�τ
αl
|γn��γn|τ

β0
�|Rβ |2 = δαβ δl0

�τ
αl
|τ

β0
�|Rβ |2 = δαβ δl0

|Rβ |2 = 1 (B.29)

In the above we make use of the completeness of the basis states |γn� and the

orthonormality of the eigenstates |τ
βk
� of HF . From the above Rβ is determined to

be a unit complex number in general, where it basically represents a phase and can

be taken to be 1. Thus the relation in eq.(B.28) becomes

Φn
αβ = �αn|τ

βk
� (B.30)

and we have acheived our stated objective of converting the problem of finding time

dependent solutions to the periodic in time Schrödinger equation to one of finding

the eigenstates of the time independent HF .

It is instructive also to look at the structure of the time evolution operator

U(t; t0) = Φ(t)Φ−1(t0) in this formalism of the eigenstates of HF . In this basis the
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components of the evolution operator become

Uαβ (t; t0) =
�

γ

�

k

�βk|τ γ0�eikωte−iq�
γ
t
�

l

�τγ0 |α− l�eilωt0eiq�γ t0

in which the second sum is conducted by transforming the summation variable

l → −l. Next is to eliminate the variable k by using a new variable n = k + l and

use eq.(B.27) of translating the eigenvectors in the Roman index, in this case n− l

to n, to project onto the same vector |τγl� as follows

Uαβ (t; t0) =
�

n

�

γl

�βn|τ
γl
�e−i(q�

γ
+lω)(t−t0)�τ

γl
|α0�eiωnt

=
�

n

�

γl

�βn|τ
γl
�e−i�

γl
(t−t0)�τ

γl
|α0�eiωnt

Note that the portion |τ
γl
�e−i�

γl
(t−t0)�τ

γl
| in the above expression with the summation

running over γl is nothing but writing the exponentiated matrix e−iHF (t−t0) in its

own eigenbasis formed by the |τ
γl
� and hence diagonal with the eigenvalues �

γl
. With

this we can write the elements of the unitary evolution operator as

Uαβ (t; t0) =
�

n

�βn|e −iHF (t−t0)|α0�eiωnt (B.31)

Looking at the equation above, describing the components of the special, unitary,

matrix solution to the Schrödinger equation that governs the time evolution of the

state vectors for a given initial condition, we observe the similarity in structure

to eq.(B.16). Except that there one was writing in the time dependent notation

and within the space H of the system’s time dependent quantum states. Here, on

the other hand, the same quantum evolution is described in the extended Floquet

Hilbert space F. The states which are now used to represent the operator U are

the orthonormal set |αn�. It can be gathered from the manner of expressing the
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matrix elements in the above equation that they represent states that are evolved by

the time independent HF through the Schrödinger equation. Essentially HF can be

thought to connect states |at0
� at time t0 and |at� at t via ih̄ d

dt
|at� = HF |at�. Where,

it may be noted that |at0
� = |α0� and more interestingly, |at� =

�
n|βn�e −inωt. So,

while earlier Uαβ (t; t0) represented the transition probability of the system going

from the single physical state |α� at time t0 to another one |β� at time t, a sightly

more elaborate picture emerges when the Fourier indices are made explicit and

one attempts a description of the time dependent quantum processes in a time

independent picture. In this manner of viewing the system dynamics, as is apparent

from the above expression, the transition probability connects states in F such that

the system beginning in the state |α0� has the option of transitioning to a multiplicity

of states |βn�, indexed by n, and then one defines the transition amplitude as the sum

of the amplitudes corresponding to all these possibilities weighted by the factor eiωnt.

Though we have no qualms about transitions between the physical states |α� and

|β� of the system, the present scenario confronts us with the proper interpretation of

the states in F. One could regard the Floquet picture as merely a calculational tool

without any physical significance and the finally computed transition probabilities

correspond to observed values irrespective of this choice. There is however the some

what physical interpretation of the periodic system as a static system interacting

with a classical oscillating field and the Floquet states being the quantized states of

this field. If indeed this is the actual nature of the system , which happens to be

the case in most physical problems, then the application of Floquet theory acheives

a quantization of the interaction of the static system with the field in a manner

similar to quantum field theoretic approaches. This has led to the introduction of

terminology which reflects this, with the Fourier indices being called the photon

number of the Floquet space state and the multiple transition possibilities in this

formalism now portraying multi-photon processes. Thus getting from one physical
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quantum state to another involves several paths through the absorption and emission

of various number of photons, which, in the Floquet Hamiltonian HF as well as

its eigensvalues (quasienergies) and eigenstates, is incorporated in the freedom of

translating by integer multiples of ω while keeping physical quantities unchanged.

In those situations where the physical picture does not exacty contain an oscillating

field and the periodicity has alternative origins, the multi-photon processes stand

in for other time dependent dynamics the system might exhibit. For instance, in

the case of periodically driven lattice systems this dynamics may take the form of

hopping to far off neigbours where only nearest neighbour hoppings were considered

in the static lattice Hamiltonian for the Bloch electron. In a more general sense

the Floquet conception of the time evolution operator may be analogized to the

propogator in the path integral approach to quantum mechanics. Where, instead of

summing transition amplitudes over all possible paths or histories, the sum is over

all possible photon processes that connect the two end states at the begining and

end of the evolution. There is also the exponential weight factor associated with

each of these possibilities just like the exponential of the classical action in path

integrals.

The discussion so far prepares a sound base for understanding the terminology

and techniques of Floquet theory in quantum mechanics by clarifying the the nature

of HF and the Floquet Hilbert space F. We also saw the role of the orthonormal

basis in F and its connection with the eigenstates of HF as well as the periodicity

of the eigenstates and eigenvalues of the Floquet Hamiltonian. Since the final shape

the problem takes is that of diagonalizing an infinite matrix, the following section(s)

shall focus on how to acheive this in the most computationally efficient manner. We

shall also shift to more contemporary notation and terms to denote various, by now,

familiar quantities, to enable greater correlation with present usage in the literature.
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B.4 Diagonalizing the Floquet Hamiltonian: Ef-

fective Hamiltonians, Micromotion and Per-

turbative Expansions

Before getting into the business of diagonalizing the Floquet Hamiltonian, it would

be useful to collate the major ideas that have thus far emerged and to cast them in

terminology and notation that brings them semantically closer to familiar concepts

from time independent quantum mechanics. Our previous discussions have brought

to light the significance of the time evolution operator over a period, U(t0+T ; t0), in

determining certain time independent characteristics of periodic quantum systems

which allow their effective static description. We saw that the eigenvalues of this

operator could be used to determine the quasienergies of the periodic time dependent

system from these characteristic multipliers which are independent of the choice of

initial conditions i.e t0. This independence can be shown by the same reasoning

as that used to demonstrate their uniqueness in eq.(B.9). If there one were to

make the set of correspondences of the form, Z(t) = U(t; t0), Z�(t) = U(t; t�0),

C0 = U(t0 + T ; t0) and C�
0 = U(t�0 + T ; t�0), then it is possible to show that the

evolution operators over a period for two distinct starting times, t0 and t�0 are related

by a similarity transformation using a constant unitary matrix as

U(t�0 + T ; t�0) = U−1(t0; t
�
0)U(t0 + T ; t0)U(t0; t

�
0) (B.32)

An additional useful property of this operator relates to its eigenstates. From the

arguments leading up to eq.(B.16), in the previous section, we can write

U(t; t0)Φ(t0) = Φ(t) (B.33)
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where we have already shown that Floquet theory dictates Φ(t) = P�(t)e−iQ�t. In

the above, on making the substitution t → t0 + T we see,

U(t0 + T ; t0)Φ(t0) = Φ(t0 + T )

= P�(t0 + T )e−iQ�(t0+T ) = e−iQ�TP�(t0)e
−iQ�t0 = e−iQ�TΦ(t0)

Thus Φ(t0) is a matrix of eigenstates of U(t0 + T ; t0) with the eigenvalue matrix

given by e−iQ�T . Since these steps are independent of the choice of t0 the matrix

eigenvalue equation observed above can be said to hold at all times. Thereby making

the columns of Φ(t), denoted from here on as |φβ (t)�, the eigenstates of the general

U(t+T ; t), with the corresponding eigenvalues given by the characteristic multipliers

e
−iq�

β
T
. The |φβ (t)� are henceforth referred to as the Floquet states or the complete,

time dependent solutions to the periodic problem, expressed in Dirac notation as

|φβ (t)� = |p�
β
(t)�e−iq�

β
t
. (B.34)

Here the |p�
β
(t)� denotes a column of the unitary periodic matrix P�(t), hence is

itself periodic, and will be called a Floquet mode. This terminology is borrowed

from recent usage in the literature [82]. The development in [82] also motivates the

structure of the discussion in this section.

The Floquet states form a complete orthonormal set since they are eigenvectors

of a unitary operator. In terms of these states the general time evolution operator

connecting two instants ti and tf can be written as

U(tf ; ti) =
�

β

|p�
β (tf )�e

−iq�
β
(tf−ti)�p�

β (ti)| (B.35)

which harks back to the form of the operator in eq.(B.16), being made more explicit

here. Using these properties of Floquet states one may write for the time evolution
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of any arbitrary state vector |ψ(t)�

|ψ(t)� = U(t; t0)|ψ(t0)� =
�

β

c
β
e
−iq�

β
(t−t0)|p�

β (t)� (B.36)

with c
β
= �p�

β (t)|ψ(t0)�. We note that being the eigenstates of the evolution opera-

tor, the time evolution of pure Floquet states is fairly trivial and is almost completely

determined (upto the global phase e
−iq�

β
t
) by the corresponding Floquet mode and

is consequently periodic. However for a state that is initially made up of several

Floquet states, as in the equation above, the time evolution is much more involved

and usually not periodic. There are two factors whose interplay will determine the

nature of the temporal evolution in such a case. One is the periodicity of the the

Floquet modes and the contribution coming from these is termed as the ‘micromo-

tion’. The other are the phases that accompany these modes, the e
−iq�

β
t
, which could

interfere in a manner that detrimentally affects the periodicity. The quasienergies ,

q�
β
, impart the same complex exponential contribution to the evolution of the time

dependent system state as the eigen-energies of a time independent Hamiltonian do

for its stationary states.

Between eqs.(B.15) and (B.16) we had established C0 = U(t0 + T ; t0) and that

C0 and hence U(t0 + T ; t0) could be diagonalized using constant unitary matrices

to give e−iQ�T . Thus we have

U(t0 + T ; t0) ≡ e−iQ�T (B.37)

where the hermitian matrix Q� may be regarded as the generator of unitary evolu-

tion over a period and hence a time independent Hamiltonian for the system over

the duration of a period with the initial time at t0. This choice of initial instant

is subjective and though the characteristic multipliers are independent of this, the

expanded zone spectrum of quasienergies has multiple values that apply to a given
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multiplier (as was seen for the �
βm

in the previous section) and hence the represen-

tation of the operator is sensitive to it. So one could make this sensitivity explicit

by denoting this Hamiltonian as Q�
t0
. From eq.(B.35) one can write

Q�
t0
=

�

β

q�
β
|p�

β (t0)��p�
β (t0)| (B.38)

It is clear from the above that a diagonal representation follows from the choice

of Floquet modes, at the intial instant t0, as basis to represent the operator. Due

to the periodicity of these modes the Q�
t0

are periodic in the initial time param-

eter t0 as Q�
t0+T

= Q�
t0
. The operators Q�

t0
therefore, can be distinct upto the

instants lying within a period and, as this stems from the non-trivial relation be-

tween Floquet modes defined at different instants within a given period, it follows

that this is a property from the micromotion. These operators at different initial

times may be related by the same transformation which was used in eq.(B.32) as,

Q�
t�0

= U−1(t0; t
�
0)Q

�
t0
U(t0; t

�
0) .Since the micromotion is the part of the evolution

with periodicity originating in the Floquet modes, it may be quantified as the fol-

lowing unitary operator by isolating it from the general form of U(tf ; ti) in eq.(B.35)

as

M(tf , ti) =
�

β

|p�
β (tf )��p�

β (ti)| (B.39)

The operator Q�
t0

may be called the stroboscopic Floquet Hamiltonian as it

describes the system for a period of the evolution and is like looking at the system

after intervals of T -length and hence stroboscopic. Its diagonalization gives the

quasienergies just like the infinite dimensional HF of the previous section but one

overlooks the effects of the micromotion here, whereas HF accounted for that as

well. This operator is of interest when the system behaviour is looked at over

durations much larger than the period T and the micromotion can be ignored.

Often times, as in [82] itself, Q�
t0

is referred to as the Floquet Hamiltonian though
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we refrain from this here to avoid confusion with HF . As we saw earlier, HF offers

the most complete time independent description of the periodic system yet it involves

diagonalizing an infinite matrix. We do always have the option of calculating the

time evolution operator for a period and then from it obtaining the quasienergies and

the Floquet modes. This knowledge may be used to write down the operators Q�
t0

and M(tf , ti) also. However the true advantage offered by seperating the evolution

into the stroboscopic part and the micromotion lies in the possibility of computing

these operators using certain perturbative approximation schemes which need no

prior knowledge of the quasienergies or Floquet modes. This forms the central

approach in most of the ‘Floquet Engineering’ applications in the literature and is

the main theme of the discussion to follow.

In fact in most cases where Floquet theory is used this is the method of choice

and once Q�
t0
and M(tf , ti) have been computed, in an effective approximate manner

using convergent expansions, they may be used to write the time evolution operator

as

U(tf ; ti) = e
−i(tf−ti)Q

�
tf M(tf , ti) = M(tf , ti)e

−i(tf−ti)Q
�
ti (B.40)

and the quasienergies and Floquet modes may be obtained by solving the eigenvalue

equation

Q�
t0
|p�

β (t0)� = q�
β
|p�

β (t0)� (B.41)

Where a Floquet mode at any arbitrary instant may be obtained from the one at t0

by |p�
β (t)� = M(t, t0)|p�

β (t0)�.

B.4.1 Effective Hamiltonian

At present we have two means of reaching the solution of any time periodic quan-

tum problem. One is via the direct diagonalization of the Floquet Hamiltonian

or operator HF which, in the space of time dependent states H, is denoted by
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�HF (t) = H(t)− i d
dt
. This operator may be called the quasienergy operator, a term

borrowed from [82], as it has the action �HF (t)|p�
βn (t)� = �

βn
|p�

βn (t)�. Where the �
βn

are the eigenenergies of HF itself and hence have the quasienergies in the expanded

scheme which goes beyond a period. The states |p�
βn (t)� are the H couterparts of the

vectors of components �αn|τ
βk
� in F. They are related by |p�

βn (t)� = �αn|τ
β0
�|α�einωt.

The other approach is using the stroboscopic Q�
t0

and the micromotion M(tf , ti).

But each of these is not without its own limitations or difficulties be it the infinite

dimensional nature of HF or the parametric dependence on the initial instant in

Q�
t0
.

We may yet refine our attempts at a time independent description of the periodic

system by introducing the notion of an effective Hamiltonian, Heff , which is time

independent and related to HF and Q�
t0

by suitable unitary transformations, as

we shall see. In this section we shall motivate the existence and usefulness of this

operator before proceeding in the next to discuss perturbative methods that allow

a direct, to various orders approximate, calculation of this operator under certain

assumptions.

Going back to the representation of HF in the Floquet Hilbert space F that made

use of the basis |αn� of orthonormal states in F with |αn� = |α�einωt , and using the

relationship from Fourier analysis that helps to compute the Fourier components

from their time dependent counterparts, we may show the relation between the

operators HF and �HF (t) as follows

�αn|HF |γm� = Hn−m
αγ + δαγδnmmω

Hk =
1

T

� T

0

e−ikωtH(t)dt

Hn−m =
1

T

� T

0

e−i(n−m)ωtH(t)dt

Hn−m
αγ = �α|Hn−m|γ� = 1

T

� T

0

e−i(n−m)ωt�α|H(t)|γ�dt
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Similarly it may be shown that

�αn|mω|γm� = δαγδnmmω =
1

T

� T

0

e−inωt�α|−i
d

dt
|γ�eimωtdt (B.42)

It is now possible to write down

�αn|HF |γm� = 1

T

� T

0

e−inωt�α|H(t)− i
d

dt
|γ�eimωtdt

=
1

T

� T

0

e−inωt�α| �HF (t)|γ�eimωtdt (B.43)

A few remarks are in order looking at the above relationship between the Floquet

Hamiltonian in F and the quasienergy operator in H. We see that the matrix ele-

ments �α|Hn−m|γ� of the H-space operatorHn−m, itself determined from the integral

giving the Fourier components of the H-space operator H, depend on the difference

n −m in the photon number index and hence HF in F is invariant under transla-

tions in photon number. This is a general property of the F-space counterparts of

T -periodic operators in H which have a purely functional dependence on time in-

stantaneously and are hence called ‘time-local’ [82]. Which means to say that they

do not have any differential or integral operators with respect to time. This, as seen

above, is not the case with the H-space operator −i d
dt

which is a part of �HF (t) and

from its matrix elements in Floquet space, see eq.(B.42), it is clear that its F-space

version is not translationally invariant in the photon number. It is a natural conse-

quence of the Fourier relations that Hermitian or unitary time dependent operators

in H retain these characteristics in going over to their corresponding opertors in F.

We can now outline the broad approach to diagonalize or block diagonalize HF

using unitary operators U in F which are translationally invariant in the photon in-

dex such that �αn|U|γm� = �α|Un−m|γ�. Un−m are operators in H which can be re-

lated, using a Fourier series, to the T -periodic unitary operator �U(t) =
�

k e
ikωtUk.

Applying this transformation on the Floquet Hamiltonian HF and on any arbitrary
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state in F would imply

HF → H�
F = U†HFU

|uαn� → |u�
αn
� = U†|uαn�

This, in the time dependent picture of H, translates into a time dependent gauge

transformation for the periodic Hamiltonian H(t), under �U(t), as can be seen by

feeding the transformed operator written explicitly in terms of the untransformed

one into the Schrödinger equation as follows

H(t) → H�(t) = �U†(t)H(t)�U(t)− i�U†(t)

�
d

dt
�U(t)

�

|ψ(t)� → |ψ�(t)� = �U†(t)|ψ(t)�

Thus, one can write the matrix elements of the transformed Floquet Hamiltonian,

H�
F as

�αn|H�
F |γm� = �α|H�n−m |γ�+ δαγδnmmω (B.44)

where H�k = 1
T

� T

0
dtH�(t)e−ikωt i.e. the operators H�n−m

are Fourier components of

H�(t), the gauge transformed periodic Hamiltonian.

With this knowledge of the effects of unitary transformations on the operators

in H and F and how the relationship between the representations of an operator,

in the two spaces, is preserved by such transformations, we may define a unitary

operator U in F such that it diagonalizes the Floquet Hamiltonian with reference to

the |αn� basis,

�αn|U†HFU|γm� = (�α|HD

F |γ�+mω)δαγδnm
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in such a manner so as to makeH
D

F time independent. WhereH
D

F , of course, satisfies

the gauge transformation relation

H
D

F = �U†(t)H(t)�U(t)− i�U†(t)

�
d

dt
�U(t)

�
(B.45)

and is diagonal in the basis |α� of the time independent part in H(t)

�α|HD

F |γ� = δαγq
�
α

(B.46)

It is interesting to note that we may relate the stroboscopic time independent Hamil-

toniain Q�
t0

to the H
D

F above, again by the unitary transformation, but now a time

independent one, specific to the instant when one begins to observe the stroboscopic

evolution,

Q�
t0
= �U(t0)H

D

F
�U†(t0) (B.47)

The Floquet Hamiltonian eigenstate |ταn� = U|αn� with eigenenergy �αn = q�
α
+ nω

has the corresponding Floquet mode |p�
αn(t)� = �U(t)|α�einωt and so the micromotion

in the transformed picture becomes

M(t, t�) = �U(t)�U†(t�) (B.48)

With the machinery of gauge transformations put in place so far, and its use

in the diagonalization of HF , we have a route to obtain the stroboscopic Floquet

Hamiltonian and the micromotion, as sketched in eqs.(B.47) amd (B.48), without

the need for the quasienergies and Floquet modes. The exact diagonalization of

HF is, however, not necessary and it suffices to obtain a transformation that block

diagonalizes it in the photon number index. This works because, referring to our

earlier discussion on the structure of HF in the previous section, what such a block

diagonalization does is to make the n−m �= 0 blocks of HF zero which is equivalent
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to transforming the transition amplitudes from the higher Fourier coefficients ofH(t)

, the Hn−m
αγ

, into the time independent digonal blocks. The corresponding operator

in H, which is naturally time independent, is called the effective Hamiltonian, and

we choose to denote it as Heff .

A unitary operator UF may be introduced that block diagonalizes HF in the

following way

�αn|U†
FHFUF |γm� = δnm(�α|Heff |γ�+ δαγmω) (B.49)

with the time independent Heff acting on the system Hilbert space H and satisfy-

ing the gauge transformation of the kind in eq.(B.45). The time periodic unitary

operator, that affects this transformation, in this case being, �UF (t). These trans-

formations, UF and �UF for that matter, are not unique in that their multiplication

by constant unitary operators from the right leads to an intermixing of elements in

the diagonal blocks while preserving the block diagonal form of U†
FHFUF .

Each of the diagonal blocks of U†
FHFUF , which are essentially the matrix Heff

with different integer multiples of ω being added to the diagonal elements of the

block, depending on its position along the diagonal, is a possible candidate for the

stroboscopic Floquet Hamiltonian. This becomes apparent by writing HF in its

eigenbasis as HF =
�∞

n=−∞
�

β |τβn �(q�
β
+ nω)�τ

βn
|, and comparing this with the

structure of the Q�
t0

matrix in eq.(B.38). Let us consider the basis of states, in F,

in which HF is block diagonal to be denoted by |αn�� ≡ UF |αn�, i.e. a transformed

basis. In the explicit time way of writing where |αn�t = |α�einωt, the new basis

allows, |αn��
t
≡ UF |αn�t = �UF (t)|α�einωt. This for t = t0 and zero photon number

yeilds |α0��
t0

= |α��
t0

= �UF (t0)|α�. Expressing Q�
t0

as the n = m = 0 block of

U†
FHFUF , which may be called the zero photon sector, onto which we are projecting

using states that span this subspace, is equivalent to the following representation in
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the new basis

Q�
t0
=

�

αγ

|α0��
t0
(
��α0|HF |γ0�

�
)

�
t0
�γ0|

=
�

αγ

UF |α0��α0|U†
FHFUF |γ0��γ0|U†

F

=
�

αγ

�UF (t0)|α0��α0|U†
FHFUF |γ0��γ0|�U†

F (t0)

= �UF (t0)

��

αγ

|α0��α|Heff |γ��γ0|
�

�U†
F (t0)

= �UF (t0)Heff
�U†

F (t0) (B.50)

Where in the final stages we have used eq.(B.49), thus we see that the strobo-

scopic and the effective Hamiltonians are related by a unitary transformation. The

micromotion operator in this case becomes

MF (t, t
�) = �UF (t)�U†

F (t
�) (B.51)

From eqs.(B.50) and (B.51), the time evolution operator can be calculated using

the expression in (B.40). In fact the time evolution operator can be directly written

using the effective Hamiltonian as follows

U(t2; t1) = �UF (t2)e
−i(t2−t1)Heff �U†

F (t1) (B.52)

The above manner of computing the evolution operator may be compared to the

one presented in eq.(B.40) to illustrate the relative merits and demerits of the two

techniques. The above method clearly constructs the evolution operator as a prod-

uct of three operators instead of just the two required in eq.(B.40). However the

micromotion in the formulation here is just dependent on single time instants i.e.

�UF (t), unlike the micromotion operator M(t, t�). Most imporantly the use of the
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effective Hamiltonian, Heff , gets rid of the initial time sensitivity that was encoun-

tered with the stroboscopic Q�
t0
. A key property of the micromotion, that shall be

useful in the perturbative expansion methods to be discussed shortly, is that being

a unitary operator it may be expressed as the exponential of a hermitian operator,

�F (t), as

�UF (t) = ei
�F (t) (B.53)

This �F (t) has, of late, acquired the moniker ‘kick operator’ in the literature [80].

It is worth noting here that we can compute the Floquet modes and quasienergies

by diagonalizingHeff which essentially means diagonalizing with respect to the states

|α� of the time independent part in H(t). Then one may write down the eigenvalue

equation for Heff ,

Heff |aβ
� = q�

β
|a

β
�

from which the Floquet modes and extended quasienergies can be computed

|p�
βn
(t)� = �UF (t)|aβ

�einωt

�
βn

= q�
β
+ nω

|p�
β
(t)� ≡ |p�

β0
(t)�

|p�
β
(t)� =

�

α

Φ0
αβ
|α��

t

where it holds that

|α��
t
= �UF (t)|α0� = �UF (t)|α�

and

Φ0
αβ

= �α|a
β
� = �α0|a

β
� = �α0|τ

β0
�
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Here we make the association to the eigenstates |τ
βk
� of the Floquet Hamiltonian

HF which were discussed in the previous section. We note, it is in fact true that the

eigenstates of Heff , the |a
β
�, are nothing but the finite N -tuple vectors |τ

β0
� which

span the N -dimensional zero photon subspace of the infinite dimensional Floquet

Hilbert space F. This follows from the fact that diagonalizing Heff must take one

to the same basis as that in which HF is diagonal in its zero photon sector. Since

U†
FHFUF is also translationally invariant in the photon index the same transforma-

tion diagonalizes the entire HF as the one that does so for the zero photon subspace.

Also we see above that as �UF (t) is the operator that defines the micromotion, it

plays a role in evolving the Floquet modes and also completely accounts for the

initial time dependence while transforming from the effective Hamiltonian to the

stroboscopic one.

In the process of obtaining Heff , using photon number translation invariant UF

and T -periodic �UF (t), operators which block diagonalize HF assimilated the con-

tributions arising from the Fourier coefficients of the higher order harmonics and

hence are concerned with changes occuring within the duration of a period. They

acheive the equivalent of a phase factoring/rotating frame coordinate transformation

to seperate out the effects of short term dynamics. Thus the micromotion which

is determined by these operators is also of significance over intervals of evolution

tf − ti < T . This is one part of the periodic evolution problem. Once Heff has been

obtained it may be used as an effective static system that describes the evolution

over durations tf−ti � T , such that the system states are stationary states given by

the eigenstates of Heff and the evolution is of the trivial unitary phase kind. This is

the long term dynamics which is granted by the diagonalization of Heff . The choice

of the zero photon sector projection to express Q�
t0

in eq.(B.50) ensures that the

evolution is observed over just one period. Observing the evolution in multiples of

the fundamental period still renders the system periodic but then one is bound to
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consider the blocks of HF with the quasienergies lifted by multiples of ω. The evo-

lution operator as segregated in eq.(B.52) addresses both the long term and short

term dynamical components using the effective Hamiltonian to give a stationary

state description which is more dominant at long times. The ‘kicks’ due to �UF (t)

at the ends of the evolution, help to adjust for the portions that remain after the

integer multiple of the period T nearest to the duration under consideration has

been subtracted from it, hence the short term dynamics.

We shall now proceed to a discussion of certain perturbative expansions which

can be used to compute the effective Hamiltonian in the limit of the driving frequency

becoming very large, in principle, infinity. These are a useful tool which may be used

to compute the effective Hamiltonian atleast to a suitable approximation. In cases

where other means of solving the periodic problem are not analytically accessible,

these techniques come to the rescue by allowing an infinite frequency limit of the

problem to be obtained in an approxiamte analytic manner.

B.4.2 High Frequency Expansions

In this section we shall look at two high frequency expansion schemes, both of

which approximate the effective Hamiltonian, and the micromotion or a quantity

analogous to it. Both of these use the inverse powers of the frequency as the vanishing

parameter in the expansions. The first scheme we look at is the Van Vleck like

expansion for the effective Hamiltonian as discussed in [80, 86, 87]. The other makes

use of the Brillouin-Wigner method of perturbation theory as developed in [92].

The following contains only prescriptions on how these schemes may be applied to a

given periodic time dependent Hamiltonian and we make no attempt to compare the

accuracy of these schemes or explore the relation between the effective Hamiltonians

obtained from each of them.
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B.4.2.1 Van Vleck Expansion for Heff and �F

Let us consider

H(t) = �H0 + �V (t)

where �H0 is the time independent part of the Hamiltonian and �V (t) = �V (t + T )

is the periodic time dependent potential that makes the Hamiltonian periodic. We

know from the previous section that the effective Hamiltonian Heff must be related

to H(t) by a time dependent gauge transformation of the kind in eq.(B.45), hence

Heff = ei
�F (t)He−i �F (t) + i

∂

∂t

�
ei

�F (t)
�
e−i �F (t) (B.54)

where we have used �UF (t) = ei
�F (t) from eq.(B.53) in the previous section.

From eq.(B.52) we have seen that the entire solution is divided into

a. Initial Kick (ei
�F (ti))

b. Evolution under a time-independent Hamiltonian Heff(e
−iHeff (tf−ti))

c. Final Kick (e−i �F (tf ))

We assume the period T to be small and ω = 2π
T

to be large and make the

following perturbation ansatz.

Heff =
�

0≤n<∞

1

ωn
�H(n)

�F =
�

1≤n<∞

1

ωn
�F (n) (B.55)

Convergence of these expansions is not guaranteed.

The prescription is as follows:

a. Write eq.(B.54) for Heff as an expanded perturbation series in ( 1
ω
).
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b. At each order of perturbation, which corresponds to a specific power of ( 1
ω
)

retain the time-independent average in Heff and adjust �F to annhilate any

time dependence.

c. Repeat the procedure at each order in perturbation.

Except for special cases Heff cannot be obtained from (B.54) in a closed form. We

use the following identities:

ei
�FHe−i �F = H + i[ �F ,H]− 1

2

�
�F , [ �F ,H]

�
− i

6

�
�F ,

�
�F , [ �F ,H]

��
+ ......

and

�
∂

∂t
e
�F
�
e−i �F = i

∂ �F
∂t

− 1

2
[ �F ,

∂ �F
∂t

]− i

6

�
�F , [ �F ,

∂ �F
∂t

]

�
+ ......

Substituting Heff =
�

0≤n<∞

1

ωn
�H(n) and �F =

�

1≤n<∞

1

ωn
�F (n) in eqn.(5) and only

retaining upto O
�

1
ω2

�
we have

Heff = �H0 + �V (t) + i

�
�F (1)

ω
,H

�
+ i

�
�F (2)

ω2
,H

�
− 1

2

�
�F (1)

ω
,

�
�F (1)

ω
,H

��
− 1

ω

∂ �F (1)

∂t
− 1

ω2

∂ �F (2)

∂t

− 1

ω3

∂ �F (2)

∂t
− i

2

�
�F (1)

ω
+

�F (2)

ω2
,
1

ω

∂ �F (1)

∂t
+

1

ω2

∂ �F (2)

∂t

�
+

1

6

�
�F (1)

ω
,

�
�F (1)

ω
,
1

ω

∂ �F (1)

∂t

��(B.56)

The operator �F is periodic with period T and has zero mean.

⇒ 1

T

T�

0

�Fdt = 0

. ⇒ �F (n) are all periodic and have zero mean or
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� �F (n)� = 0 �F (n)(t+ T ) = �F (n)(t)

At each order in perturbation, the time independent average is retained in Heff

and �F is used to nullify the time dependent part.

ORDER ω0 :

�H0 + �V (t)− 1

ω

∂ �F (1)

∂t

�H(0) =

�
�H0 + �V (t)− 1

ω

∂ �F (1)

∂t

�

= � �H0�+ ��V (t)� − 1

ω

�
∂ �F (1)

∂t

�

=
�H0

T

T�

0

dt+
1

T

T�

0

�V (t)dt− 1

ωT

T�

0

∂ �F (1)

∂t
dt

�V (t) = �V (t+ T )

�V (t) may be expanded in a Fourier series as

�V (t) = �V0 +
�

1≤n<∞

�Vne
inωt +

�

1≤n<∞

�V−ne
−inωt

�F (1) can be expanded similarly but �F (1) has zero mean. So ∂ �F (1)

∂t
also has zero

mean.

�H(0) = �H0 + �V0
�V0 =

1

T

�

0≤t≤T

�V (t)dt

The time dependent part is
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�H0 + �V (t)− 1

ω

∂ �F (1)

∂t
−
�

�H0 + �V (t)− 1

ω

∂ �F (1)

∂t

�

⇒ �V (t)− �V0 −
1

ω

∂ �F (1)

∂t

(equating this to zero)

or
�

1≤n<∞

�Vne
inωt +

�

1≤n<∞

�V−ne
−inωt =

1

ω

∂ �F (1)

∂t

⇒ �F (1) = ω

t�

0

� �

1≤n<∞

�Vne
inωt́ +

�

1≤n<∞

�V−ne
−inωt́

�
dt́

⇒ 1

i

�

1≤n<∞

1

n

�
�Vne

inωt − �V−ne
−inωt

�

or at order ω0

�H(0) = �H0 + �V0

�F (1) =
1

i

�

n

1

n

�
�Vne

inωt − �V−ne
−inωt

�

ORDER ω−1

i

�
�F (1)

ω
,H

�
− 1

ω2

∂ �F (2)

∂t
− i

2

�
�F (1)

ω
,
1

ω

∂ �F (1)

∂t

�

�H(1) =

�
i

� �F (1)

ω
,H

��
−
�

1

ω2

∂ �F (2)

∂t

�
− i

2

�� �F (1)

ω
,
1

ω

∂ �F (1)

∂t

��

The second bracket in the above expression is put to zero. Hence,
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�H(1) = i

�� �F (1)

ω
,H

��
− i

2

�� �F (1)

ω
,
1

ω

∂ �F (1)

∂t

��

= i

�� �F (1)

ω
, (�V (t)− �V0)

��
− i

2

�� �F (1)

ω
, (�V (t)− �V0)

��

=
i

2

�� �F (1)

ω
, (�V (t)− �V0)

��

�V (t)− �V0 =
�

n

1

n

�
�Vne

inωt −
�

n

�V−ne
−inωt

�

�F (1) =

t�
(�V (t́)− �V0)dt́

�F (1)

ω
=

�

n

� �Vne
inωt

inω
−

�V−ne
−inωt

inω

�

�
�F (1)

ω
(�V (t)− �V0)

�
=

1

T

t�

0

�

n,m

� �Vne
inωt́

inω
−

�V−ne
−inωt́

inω

��
�Vme

imωt́ + �V−me
−imωt́

�

=
1

T

T�

0

dt́
�

m,n

�Vn
�Vm

inω
ei(n+m)ωt́+

�Vn
�V−m

inω
ei(n−m)ωt́−

�V−n
�Vm

inω
e−i(n−m)ωt́−

�V−n
�V−m

inω
e−i(n+m)ωt́

=
�

n

�Vn
�V−n

inω
−

�V−n
�Vn

inω
(B.57)
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�
(�V (t)− �V0)

�F (1)

ω

�
=

�

n

�V−n
�Vn

inω
−

�Vn
�V−n

inω
(B.58)

Subtracting (B.58) from (B.57) we get,

⇒
�

n

2

inω
[�Vn, �V−n]

or

�H(1) =
i

2

�

n

2

inω
[�Vn, �V−n]

=
�

n

1

nω
[�Vn, �V−n]

i

� �F (1)

ω
,H

�
− 1

ω2

∂ �F (2)

∂t
− i

2

�
�F (1),

∂ �F (1)

∂t

�
−
�

n

1

nω
[�Vn, �V−n] = 0

⇒ �F (2) =
1

i

�

n

1

n2

�
[�Vn, �H0+�V0]e

inωt−h.c.

�
+

1

2i

∞�

n,m=1

1

n(n+m)

�
[�Vn, �Vm]e

i(n+m)ωt+h.c.

�

+
1

2i

∞�

n�=m=1

1

n(n+m)

�
[�Vn, �V−m]e

i(n−m)ωt + h.c.

�

Finally, we have in the same manner

Heff = �H0 + �V0 +
1

ω

∞�

n=1

1

n
[�Vn, �V−n] +

1

2ω2

∞�

n=1

1

n2

��
[�Vn, �H0], �V−n

�
+ h.c.

�

+
1

3ω2

∞�

n,m=1

1

nm

��
�Vn, [�Vm, �V−(n+m)]

�
− 2

�
�Vn, [�V−n, �V(n−m)]

�
+ h.c.

�
. . .

(B.59)
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and

�F (t) =
1

iω

∞�

n=1

1

n

�
�Vne

inωt − �V−ne
−inωt

�
+

1

iω2

∞�

n=1

1

n2

�
[�Vn, �H0 + �V0]e

inωt − h.c.

�

+
1

2iω2

∞�

n,m=1

1

n(n+m)

�
[�Vn, �Vm]e

i(n+m)ωt − h.c.

�

+
1

2iω2

∞�

n�=m=1

1

n(n−m)

�
[�Vn, �V−m]e

i(n−m)ωt − h.c.

�
. . .

(B.60)

Thus, in this way we obtain the series expansions for the effective Hamiltonian Heff

and the kick operator �F (t) from which the micromotion can be calculated. In the

high frequency limit one can expect convergence to be fast enough and then one

may treat it as a regular perturbation series with finite order corrections.

B.4.2.2 The Brillouin-Wigner Method

First we provide a general outline of this perturbation theory method as it is used

in time independent quantum mechanics. Given a Hamiltonian Ĥ = Ĥ0 + V̂ where

Ĥ0 is exactly solvable and V̂ is the perturbation term, and the eigendecomposition

of Ĥ0 —

Ĥ0|α� = �α|α�

�β|α� = δ βα

�

β

|β��β| = I

using Brillouin-Wigner (BW) perturbation theory, we try to obtain {|ψα�, . . . } and

{Eα , . . . }, such that Ĥ|ψα� = Eα|ψα�, in terms of V̂ and {|α�, . . . }.
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To obtain the BW perturbative expansion, we begin with the eigenvalue equation.

Ĥ|ψα� = (Ĥ0 + V̂ )|ψα� = Eα|ψα�

The wavefunctions |ψα� are normalized as �α|ψα� = 1. On contracting with �α|,

�α|(Ĥ0 + V̂ )|ψα� = Eα�α|ψα�

�α�α|ψα�+ �α|V̂ |ψα� = Eα�α|ψα�

Eα = �α + �α|V̂ |ψα� (B.61)

Rewriting the eigenvalue equation as

(Eα − Ĥ0) |ψα� = V̂ |ψα�

= I V̂ |ψα�

=
�

m

|m� �m| V̂ |ψα�

= |α� �α|V̂ |ψα�+ (I− |α� �α|)V̂ |ψα�

(B.62)

Using eq. (B.61),

= (Eα − Ĥ0) |α�+ (I− |α� �α|)V̂ |ψα�

(Eα − Ĥ0)(|ψα� − |α�) = (I− |α� �α|)V̂ |ψα�

|ψα� = |α�+ (Eα − Ĥ0)
−1(I− |α� �α|)V̂ |ψα�

Defining the resolvent operator as R̂α = (Eα − Ĥ0)
−1 =

�
α |α� (Eα − �α)

−1 �α|,

|ψα� = |α�+ R̂α(I− |α� �α|)V̂ |ψα� (B.63)
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The above equation is the main result of BW perturbation theory. Peculiarity of

the above equation is that it depends on the undertermined parameter Eα, and

this is unlike the Rayleigh-Schrödinger perturbation theory. Solving Eq. (B.63)

self-consistently with Eq. (B.61), solutions to the eigenvalue equation are obtained.

Using the equation, we obtain an iterative solution to the Schrödinger equation. In

each iteration, we obtain a new estimate of |ψα� by substituting the old estimate of

|ψα� on the righthand side of Eq. (B.63)

|ψ(j)
α � = |α�+ R̂(Eα) (I− |α� �α|)V̂ |ψ(j−1)

α � (B.64)

|ψ(0)
α � = |α�

lim
j→∞

|ψ(j)
α � = |ψα�

No approximation has been used until this point, and exact solution can be obtained

if iterated infinitely. In practice, approximate solution is obtained by truncating the

iteration.

Further, eq. (B.63) can be simplified by expanding the recurrence relation

|ψα� = |α�+ R̂αQ̂αV̂ |ψα�

where Q̂α = I− |α� �α| ,

= |α�+ R̂αQ̂αV̂ |α�+ R̂αQ̂αV̂ R̂αQ̂αV̂ |α�+ . . .

=
∞�

k=0

{R̂αQ̂αV̂ }k |α�

= (I− {R̂αQ̂αV̂ })−1 |α�

When higher order term contributions are diminishingly small, truncating the series

produces approximate solutions to the problem. The operator Q̂α appearing in the

series is essentially a projection operator onto the eigenstates of Ĥ0 that are orthog-

onal to |α�. This motivates the idea that the BW scheme can be formulated in terms

A106



of projection operators which also leads to the notion of an effective Hamiltonian in

BW perturbation theory. In the following we shall develop this notion and apply it

to the solution of the eigenvalue problem of the infinite dimensional HF .

Also known as the model space approach, in this way of looking at the pertur-

bation problem, the eigenbasis of the uperturbed Ĥ0 is chosen as an orthonormal

basis for the Hilbert space of the problem. The idea is to regard one of the states of

this basis as the model space and the rest of the basis as constituting the orthogonal

space. One is free to choose multiple basis states for the model space in which case

it is multidimensional. Here, for the time being, we restrict to a single state as the

model space to derive the essential results regarding the effective Hamiltonian.

Let R ≡ {|φα� . . . } is the set of reference states, |φ0� ∈ R is the model state,

then P = |φ0� �φ0| is the corresponding projection operator of the model space and

Q = 1 − P is the projection operator corresponding to orthogonal space. A state

|ψ� in the Hilbert space can be projected onto the model space using operator P ,

|φ� = P |ψ� and a wavefunction |φ� in model space can be reconstructed in Hilbert

space using the wave operator Ω as |ψ� = Ω |φ�.

Some useful relationships between operators P , Q and Ω are

a. P +Q = 1 (by definition)

b. P 2 = P and Q2 = Q (property of projection operators)

c. PQ = QP = 0 (using Property 1)

d. Ω2 |φ� = Ω |φ� (by definition)

e. ΩP |φ� = Ω |φ� and PΩ |ψ� = P |ψ� (by definition)

Provided the eigenvalue equation Ĥ |ψ� = E |ψ�, then |φ� = P |ψ� satisfies the

equation Ĥeff |φ� = E |φ�, where

Ĥeff = PĤΩP (B.65)
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Ĥeff |φ� = PĤΩP |φ�

= PĤΩPP |ψ�

= PĤ |ψ�

= E P |ψ�

= E |φ�

The derivation of Ĥeff can be illustrated via the following sequence of steps. We

begin with the complete eigenvalue equation of the problem, for an eigenstate |ψ�

and eigenvalue E, and apply a series of manipulations as shown

Ĥ |ψ� = E |ψ�

Ĥ(P +Q) |ψ� = E(P +Q) |ψ�

QĤ(P +Q) |ψ� = QE(P +Q) |ψ�

QĤ(P +Q) |ψ� = EQ |ψ�

QĤP |ψ�+QĤQ |ψ� = EQ |ψ�

QĤP |ψ�+QĤQQ |ψ� = EQ |ψ�

(E −QĤQ)Q |ψ� = QĤP |ψ�

Q |ψ� = (E −QĤQ)−1QĤP |ψ� (B.66)

where we have used the properties of the projection operators mentioned earlier.

We also have,

Ĥ |ψ� = E |ψ�

Ĥ(P +Q) |ψ� = E(P +Q) |ψ�

PĤ(P +Q) |ψ� = PE(P +Q) |ψ�

PĤ(P +Q) |ψ� = EP |ψ�
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PĤP |ψ�+ PĤQ |ψ� = EP |ψ�

PĤP + PĤ(E −QĤQ)−1QĤP |ψ� = EP |ψ� (B.67)

In the last step above we use eq.(B.66), and we may now define the effective Hamil-

tonian as

Ĥeff = PĤP + PĤ(E −QĤQ)−1QĤ (B.68)

and so we get the already defined eigenvalue equation Ĥeff |φ� = E |φ� ⇒ ĤeffP |ψ� =

EP |ψ�, and P |ψ� is naturally an eigenstate of Ĥeff . Interestingly, with the eigen-

value E which is the eigenenergy of Ĥ for the state |ψ� and thus the effective Hamil-

tonian has the same eigenvalues as those of Ĥ but for the corresponding eigenstates

projected onto the model space.

From the property of the wave operator , |ψ� = ΩP |ψ�, we can write ĤΩP |ψ� =

EΩP |ψ� and similarly for the Ĥeff

ΩĤeffP |ψ� = EΩP |ψ�

By acting with P from the left on both sides of we have ĤΩP |ψ� = EΩP |ψ�

PĤΩP |ψ� = EPΩP |ψ� = EP |ψ�

Now, eq.(B.67) is nothing but

PĤ[P + Ĥ(E −QĤQ)−1QĤ]P |ψ� = EP |ψ� (B.69)

and comparing with the previous equation we can identify the wave operator Ω as

Ω = [I+ (E −QĤQ)−1QĤ]P (B.70)
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The inverse operation in the wave operator can be expanded to obtain the pertur-

bative expansion.

Usually, the effective Hamiltonian is parameterized by energy. To obtain the

solutions, we must diagonalize the effective Hamiltonian by treating E as a free

parameter to obtain the eigenvalue expressions Ei(i = 1 . . . dim(Ĥ)), and solve the

equations E = Ei to obtain the numerical values of energy eigenvalues.

We now apply the above formalism of the effective Hamiltonian and the wave

operator to the Floquet Hamiltonian and its eigenvalue equation to treat it as per-

turbation problem in the limit of large frequencies. The approach outlined here is

adopted from [? ] which the reader may refer to for details regarding the application

of this technique to various periodic/driven quantum systems.

We begin by considering the Floquet space eigenvalue equation of (B.23), where

we introduce ket notation from the Floquet modes to denote Φn
αβ as |p�

β �, the photon

number index being suppressed and the implicit assumption that one is working in

the |αn� basis of F, we may write

(HF −Mω) |p�
β � = �

β
|p�

β � (B.71)

Hm−n =
1

T

� T

0

H(t)ei(m−n)ωtdt = Hm,n (B.72)

Mmn = mδmn (B.73)

where HF is used to denote the matrix operator whose elements are the Fourier

coefficients of H(t).

The seperation into the model space and orthogonal space is done with the op-

erator Pmn = δmnδm0, which essentially maps the eigenfunctions into a space devoid

of the micromotion information, or simply the n = m = 0 photon subspace. As a

result, we may define Qmn = 1−Pmn = δmn(1− δm0), with the resulting properties,

(PM)mn = kδmkδm0δkn = 0 and (QM)mn = kδmk(1− δm0)δkn = mδmkδkn(1− δk0) =
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(MQ)mn. The operators P and Q are the projection operators of the kind P and Q

discussed earlier, and act in the extended Floquet Hilbert space. The BW effective

Hamiltonian, from what we already know, is defined as

Heff = P(HF −Mω)ΩP (B.74)

We determine the Ω wave operator as follows, acting with Q from the left on eq.(B.71)

and using the properties of the projectors,

Q(HF −Mω) |p�
β � = �

β
Q |p�

β �

QHF |p�
β � = QMω |p�

β �+ �
β
Q |p�

β �

QHF |p�
β � = MωQ |p�

β �+ �
β
Q |p�

β �

(�
β
+Mω)Q |p�

β � = QHF |p�
β �

Q |p�
β � =

Q

�
β
+Mω

HF |p�
β � (B.75)

and

|p�
β � = P |p�

β �+ Q |p�
β �

= P |p�
β �+

Q

�
β
+Mω

HF |p�
β �

P |p�
β � = |p�

β � −
Q

�
β
+Mω

HF |p�
β �

|p�
β � =

�
1− Q

�
β
+Mω

HF

�−1

P |p�
β � (B.76)

We recognize the wave operator from the above expression as

Ω(�) =

�
1− Q

�+Mω
HF

�−1

(B.77)
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and consequently the effective Hamiltonian as

Heff (�) = P(HF −Mω)

�
1− Q

�+Mω
HF

�−1

P

= PHF

�
1− Q

�+Mω
HF

�−1

P− ωPM

�
1− Q

�+Mω
HF

�−1

P

= PHF

�
1− Q

�+Mω
HF

�−1

P (B.78)

We look to extend this theory by defining an �-independent effective Hamiltonian.

Ω(�) = Ω(�)P =

�
1− Q

�+Mω
HF

�−1

P

�
1− Q

�+Mω
HF

�
Ω(�) = P

Ω(�)− Q

�+Mω
HFΩ(�) = P

(�+Mω)Ω(�)− QHFΩ(�) = �P+MωP

Ω(�)�− P�+MωΩ(�)− QHFΩ(�) = MωP

Ω(�)�− PΩ(�)�+MωΩ(�)− QHFΩ(�) = MωP

(1− P)Ω(�)�+MωΩ(�)− QHFΩ(�) = MωP

QΩ(�)�+MωΩ(�)− QHFΩ(�) = MωP

MωP+ QHFΩ(�)− QΩ(�)� = MωΩ(�)

Ω(�) = P+
Q

Mω
HFΩ(�)−

Q

Mω
Ω(�)� (B.79)

We can replace the � in the above equation with Heff .

Ω(�) = P+
Q

Mω
HFΩ(�)−

Q

Mω
Ω(�)PHFΩ(�)P

We omit the P in the last term, as it Ω is anyway acted on P |p�
β �.
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� independent wave operator is defined by the recursive relation

Ω(�) = P+
Q

Mω
HFΩ(�)−

Q

Mω
Ω(�)PHFΩ(�) (B.80)

and the � independent effective Hamiltonian is obtained from the solution ΩBW , of

the preceding equation.

HBW = PHFΩBWP (B.81)

ΩBW is obtained by substitution of the 1/ω series,

ΩBW =
∞�

N=0

Ω
(N)
BW (B.82)

where Ω
(N)
BW corresponds to order 1/ωN coefficient in the iterative solution to ΩBW ,

in the eq.(B.80). Similarly, the effective Hamiltonian is also expanded in a series

HBW =
∞�

N=0

H
(N)
BW

and H
(N)
BW = PHFΩ

(N)
BWP.

This prescription may be implemented as follows. Substituting the series in

eq.(B.82) in the iterative solution for the wave operator in eq.(B.80) one gets

∞�

N=0

Ω
(N)
BW = P+

∞�

N=0

Q

Mω
HFΩ

(N)
BW +

∞�

N=0

∞�

M=0

Q

Mω
Ω

(N)
BWPHFΩ

(M)
BW (B.83)

Equating terms from both sides of the same order O(1/ωN)

Ω
(0)
BW = P

Ω
(1)
BW =

Q

Mω
HFP

Ω
(N+1)
BW =

Q

Mω
HFΩ

(N)
BW −

N�

M=0

Q

Mω
Ω

(M)
BWPHFΩ

(N−M)
BW
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Using HBW = PHFΩBWP, we obtain

H
(0)
BW = PHFPP = H0,0

H
(1)
BW = PHF

Q

Mω
HFPP =

�

n1 �=0

H0,n1Hn1,0

nω

H
(2)
BW = PHFΩ

(2)
BWP =

�

n1 �=0,n2 �=0

H0,n1Hn1,n2Hn2,0

n1n2ω2
− H0,n1Hn1,0H0,0

n2
1ω

2

H
(N)
BW = PHFΩ

(N)
BWP

The higher order terms in the above sequence may be found in [92] and we see that

using the above expansion coefficients we may expand the effective Hamiltonian to

various orders in ω−1. Thus under the high frequency limit ω → ∞, the operators

tend to their 0th order terms, ΩBW → P and HBW → H0,0. This guarantees that the

eigenvalues of HBW are in the first brillouin zone, as the contributions from higher

order terms in the series is very small to transport the eigenvalues to the higher

photon number sectors.

This concludes our discussion of the high frequency expansion schemes that

may be used to approximate the Floquet eigenvalue problem such that one reduces

the dimensionality of the operational Hilbert space to the finite ones of the time

dependent problem yet retaining the eigenvalues of the original problem.
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Appendix C

Geometric Phase and Topological

Invariants

In this appendix we shall present the ideas associated with the Berry Phase [79],

or Pancharatnam phase [330], in a generalized framework, originally worked out by

Mukunda and Simon [20, 275, 276], which is a culmination of the efforts of several

predecessors [305, 331] to bring out the fundamental nature of the phase by freeing

it of the originally imposed constraints of cyclicity, adiabaticity and even unitarity.

Mukunda and Simon’s work, key aspects of which are essentially summarized here, is

a kinematical take on the geometric phase, as the quantity is deservedly named. Be-

sides exposing the fundamental, and hence, universal qualities of the phase we shall

see that one may trace a path from this framework to the calculation of toplogical

invariants for quantum systems.

A major portion of this appendix is a cogent summarization and amalgamation

of portions of two key references, [20] and lecture notes, very generously provided

by Prof. N. Mukunda, of the series of talks delivered by him at IMSc Chennai.

Similarities in tone and notation were not entirely avoidable due to the axiomatic

nature of the discussion.
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C.1 Formalism

Let us begin by considering an N -level quantum system, where N in principle could

be infinite, in the complex Hilbert space H of pure quantum states. It follows that

such a Hilbert space has N complex dimensions or 2N real dimensions. The states

being complex valued vectors with real and imaginary parts. These vectors are

represented by Greek letters φ,ψ, · · ·. Using the notion of an inner product on this

complex space we may define, two subsets of H, the space of non-zero vectors N and

the space of unit vectors B as follows

N = {ψ �= 0|ψ ∈ H} ⊂ H

B = {�ψ|ψ� = 1|ψ ∈ H} ⊂ H (C.1)

Thus B can be thought of as the set of points on a unit (2N − 1)-sphere in H. The

normalization constraint reduces the dimensionality of the representative space for

the states by 1. B though a subset of H, is not a subspace. These subsets obey

B ⊂ N ⊂ H.

Consider the fact that the action of the unitary, single parameter group, U(1),

on H and B leaves them invariant. So,

ψ ∈ B −→ ψ� = eiαψ ∈ B 0 ≤ α ≤ 2π (C.2)

With this it is possible to define an equivalence class of all state vectors which are

related by a U(1) transformation of the above sort and differ upto a phase. The

set of all such equivalence classes is a space in itself and is called a ray space or

projective space in general. It is customary to denote the operation of grouping

elements into equivalence classes as taking the quotient of the set in question with

the group used to define the equivalence relation. So if the ray space is denoted by
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R, then

R =
B

U(1)
= {ρψ = |ψ� �ψ| or ψψ† |ψ ∈ B} (C.3)

Where we denote the points in R as the pure state density matrices, ρψ, which

represent the set of all ψ� related to ψ by a phase. The density matrix representation

works here as these are U(1) invariant quantities themselves and the ray space is so

called as it is the space of true physical states of the system, or rays, as they are also

known. At every point in ray space one can conceive an entire U(1) worth of states

along an infinitely extended mathematical object called a fibre which is based at

that point in R. Thus the differential geometric structure is that of a U(1) principal

fibre bundle, and B is such a fibre bundle over ray space. We define a projection

map using a projection operator which takes any point in B along a given fibre to

its corresponding base point in R as follows

π : B −→ R : ψ ∈ B −→ ρψ = ψψ† ∈ R (C.4)

Similarly one may define the inverse of the projection operation which naturally is

a one to many map that takes the ray space point to the members (in B) of the

equivalence class that it dentoes, being related by phase differences to one another,

ρψ −→ π−1(ρψ) = {ψ� = eiαψ ∈ B| for fixed ψ, 0 ≤ α < 2π} ⊂ B (C.5)

The ray space is not a linear vector space and it has 2(N − 1) real dimensions.

As a complex space it is N − 1 dimensional and is technically denoted as CPN−1

i.e. complex projective space of N − 1 dimensions. Intutively, the ray space is one

complex dimension lower than B due to the projection of an entire fibre of states

onto a single point.

We now introduce the notion of Bargmann invariants which is central to the

Mukunda-Simon formulation of the geometric phase.
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C.2 Bargmann invariants

From our introduction of density matrices and appeal to U(1) invariant quantities

it is apparent that invariants under unitary transformations in general, especially

since we are interested in invariance on the set B, are of interest to us. One such

class of invariants was introduced by V. Bargmann in proving Wigner’s theorem

on the representation of symmetry operations in quantum mechanics [332], and are

hence called Bargmann invariants.

A simple invariant making use of only two state vectors ψ1 and ψ2 is the norm

of their inner product

|�ψ1|ψ2� |=
�

�ψ1|ψ2� �ψ2|ψ1� (C.6)

which remains unchanged if one were to make the transformations, ψ1 → ψ�
1 = eiα1ψ1

and ψ2 → ψ�
2 = eiα2ψ2 where α1 and α2 are real scalars. Thus this is a U(1)× U(1)

real valued invariant. The one which can be created with the least number of states

and happens to be the only real valued invariant constructed out of pure states.

Bargmann’s idea was to generalize to higher order invariants with more number of

states which could even be made infinite. The simplest example of this is the 3-state

or 3-point invariant of the form

Ω3(ψ1,ψ2,ψ3) = �ψ1|ψ2� �ψ2|ψ3� �ψ3|ψ1� (C.7)

Important to note here is that these invariants are now complex valued, the above

being the simplest example of one and happens to be invariant under transformations

of the group U(1) × U(1) × U(1). Similarly one could define a general N -point

invariant ΩN which would be invariant under U(1) × U(1) × U(1) · · ·Ntimes. We

shall see the use of these invariants in defining the geometric phase later on in this

appendix. For now we proceed with the definiton of gauge and reparametrization

invariant quantities in B and R and pay heed to the fact that with the kind of
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discrete invariant described above only algebraic approaches are avialble. In order

to perform analytical and infinitesimal calculations ideas of the continuum have to

be brought in their definition and application. This we do in the following section.

C.3 Gauge and reparametrization invariance

Let us consider C to denote the set of all vectors ψ(s), parametrized by a real contin-

uous variable s, that lie on a smooth (i.e. continuous and sufficiently differentiable)

curve in B,

C = {ψ(s) ∈ B|s1 ≤ s ≤ s2} ⊂ B (C.8)

No assumptions are made as to wether the curve is closed or open and it may extend

even beyond the specified range of s. Since the ψ(s) are normalized to unity for all

s we have

Re{�ψ(s)|ψ̇(s)�} = 0

⇒ �ψ(s)|ψ̇(s)� = iIm{�ψ(s)|ψ̇(s)�} (C.9)

where the dot is used to donate derivative w.r.t s i.e. ψ̇(s) = dψ(s)
ds

. Like we saw for

the case of the Bargmann invariants where we defined discrete N -point invariants,

we would like to do the same here but for a continuous set of points such as the

ψ(s) ∈ B at each value of s. This set of independent unitary transformations at each

point along the curve in the set of unit vectors is a form of gauge transformation

performed using the real function α(s). It takes every point on C to points on a

C� ⊂ B

C� = {ψ�(s) = eiα(s)ψ(s)|ψ(s) ∈ C, s1 ≤ s ≤ s2} ⊂ B (C.10)

A119



Such a transformation affects the term identified in eq.(C.9) as follows

Im{�ψ�(s)|ψ̇�(s)�} = Im{�ψ(s)|ψ̇(s)�}+ α̇(s) (C.11)

This allows us to construct a functional of C which obeys gauge invariance such that

it has the same value for both the curves C and C�. The following is such a quantity

arg{�ψ�(s1)|ψ�(s2)�}− Im

� s2

s1

ds �ψ�(s)|ψ̇�(s)�

= arg{�ψ�(s1)|ψ�(s2)�}− Im

� s2

s1

ds �ψ(s)|ψ̇(s)� −
� s2

s1

α̇(s)ds

= arg{�ψ(s1)|ψ(s2)�}+ α(s2)− α(s1)− Im

� s2

s1

ds �ψ(s)|ψ̇(s)� − (α(s2)− α(s1))

= arg{�ψ(s1)|ψ(s2)�}− Im

� s2

s1

ds �ψ(s)|ψ̇(s)� (C.12)

and as can be seen from the steps performed it does indeed exhibit such invariance.

Where the arg{�ψ�(s1)|ψ�(s2)�} represents the phase difference between the vectors

at the two ends of the curve. To understand the fundamental nature of this quantity

it shall be useful also to look at it from a ray space perspective. So far we have been

looking at curves in B however, by virtue of the projection operator defined earlier,

we may project any such curve onto its image curve C ∈ R, such as

C = π[C] = {ρψ(s) = |ψ(s)� �ψ(s)| = ψ(s)ψ†(s) ∈ R|s1 ≤ s ≤ s2} ⊂ R (C.13)

C itself is a smooth curve in R and allows for a continuous parametrization. We

may note that given the definition of points in R, any curve C� obtained by gauge

transforming C also projects to the same C ∈ R. Thus we have C = π[C] = π[C�]

and C and C� are called different lifts of C ∈ R. The quantity defined in eq.(C.12)

therefore, is in a true sense a functional on the ray space curve C.

Another important property of this gauge invariant functional is its invariance
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under reparametrization. A fact that may not seem altogether surprising given the

linear dependence on the velocity i.e. the tangent ψ̇(s) in the integrand within

eq.(C.12). It is possible to prove this by replacing s in the previous expressions by

s� which, again a real valued parameter, has a monotonically increasing dependence

on s. Under this transformation s ∈ [s1, s2] → s� ∈ [s�1, s
�
2] and C → C̄ with,

C̄ = {ψ�(s�) ∈ B|s�1 ≤ s� ≤ s�2}

ψ�(s�(s)) = ψ(s)

ψ�(s�1) = ψ(s1) ψ�(s�2) = ψ(s2)

In this manner it becomes apparent that both C and C̄ traverse the same set of

points in B the difference being only in the rate at which this curve is traversed

in the two cases. By implication the same holds for the ray space curves C and C̄

which are related to the C and C̄ as C = π[C], C̄ = π[C̄]. Once again we see an

invariance of the functional in eq.(C.12) as below

arg{�ψ�(s�1)|ψ�(s�2)�}−Im

� s�2

s�1

ds �ψ�(s�)|ψ̇�(s�)�

= arg{�ψ(s1)|ψ(s2)�}− Im

� s2

s1

ds �ψ(s)|ψ̇(s)� (C.14)

Thus we obtain a functional of ray space curves which is invariant under both gauge

and reparametrization transformations and we denote it by Θg,

Θg[C] = arg{�ψ(s1)|ψ(s2)�}− Im

� s2

s1

ds �ψ(s)|ψ̇(s)� (C.15)

This happens to be the geometric phase that is acquired on traversing the smooth

curve C ∈ R. The gauge invariance property makes this phase a ray space quantity

and associates it with a C in ray space i.e. the space of density matrices. The

geometric character of the phase is a consequence of its reparametrization invariance,
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since it becomes a fundamental property of the curve irrespective of how fast or

slow it is travelled. The right hand side of the functional involves operations with

states from B belonging to some C ∈ B, given the invariances just discussed it

is possible to calculate the functional using any such lift C of the ray space curve

C. Also due to the nature of the functional this lift could be performed under

any monotonic parametrization of C which gets lifted to some C, which is itself

parametrized suitably.

A few properties of the geometric phase become apparent from the form of the

functional in eq.(C.15). Firstly, the fact that it is defined only modulo 2π which

follows from the first term on the right hand side. Then there is the restriction

that the states at the end points ψ(s1) and ψ(s2) should not be orthogonal to each

other as in this case both arg{�ψ(s1)|ψ(s2)�} and Θg[C] are undefined. All such

cases are excluded from consideration. This acts as a condition on the terminal

points of the curve C. A distinguishing feature of curves in B and R is that they

are defined completely by specifying a choice of parametrization, as far as Θg[C]

is concerned. Since, although Θg[C] is independent of any pair of choices related

monotonically to each other, there are still the cases of multiple traversala around

closed loops, path crossings and overlaps which affect the value of the phase and

require the parametrization to be specified clearly.

Focusing on the RHS in eq.(C.15) the two terms appearing may be designated

as follows

arg{�ψ(s1)|ψ(s2)�} = Θtot[C] = total phase

Im

� s2

s1

ds �ψ(s)|ψ̇(s)� = Θdyn[C] = dynamical phase (C.16)

Θtot is by definition non-local as it depends on the end points of the choice of C

used to calculate it and its value ofcourse comes out to be modulo 2π. Θdyn on the
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other hand is an integral of a locally defined quantity, independently evaluated at

each point along the curve, which under the integral accumulates additively along

the path. Both of these components depend on the particular choice C ∈ B but

their difference does not and is purely a property of C = π[C] ∈ R. We can thus

write

Θg[C] = Θtot[C]−Θdyn[C] (C.17)

Having the freedom to choose between different lifts C ∈ B for a given curve

C ∈ R as a consequence of the infinite gauge degree of freedom permitted by Θg[C],

one has the option of making any one of the terms in the above expression vanish.

So it is possible to choose a lift where Θtot[C] = 0 i.e. Θg[C] = −Θdyn[C]( a case

known as the states at the ends of the path being Pancharatnam in-phase with each

other) i.e. ψ(s1) and ψ(s2) are in phase with their inner product being real and

positive. The only thing to be kept in mind while selecting such a lift is that while

performing the gauge transformation, α(s) has the same value for both s1 and s2,

and it is easy to notice that there still remains infinite gauge freedom in the choice

of lift.

Another possibility involves choosing a lift that makes Θdyn[C] = 0 which implies

Θg[C] = Θtot[C]. Such a lift C� in B of a C in R is called a horizontal lift and states

along it satisfy

C� horizontal ⇔ Im{�ψ(s)|ψ̇(s)�} = 0

�ψ(s)|ψ̇(s)� = 0

In order to find out the gauge freedom available in the above case one would require

a condition on the continuous gauge parameter α(s). This we may find by regarding

the lift C� to be the result of a gauge transformation on some arbitrary lift C and
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combining the above condition with the one obtained in eq.(C.11), we get

α̇(s) = −Im{�ψ(s)|ψ̇(s)�}

α(s) = α(s1)− Im

� s

s1

ds� �ψ(s�)|ψ̇(s�)� (C.18)

The above expression specifies the condition on the gauge transformation or the

allowed transformations for which the resultant curve is a horizontal lift. If we were

to impose the additional requirement that C� and C have the same starting points

at s1, the transformation is completely determined as

α(s) = −Im

� s

s1

ds� �ψ(s�)|ψ̇(s�)� (C.19)

With this it is clear that having chosen a C� ∈ B satisfying the above requirement

and starting at a state ψ(s1) which projects onto the starting point of C, there is

no further gauge freedom available and the said choice of horizontal lift is a unique

one for C ∈ R.

The dynamic phase Θdyn[C] allows an interpretation in terms of differntial ge-

ometric objects. The idea is to consider a one form A on B which is defined as a

real-valued functional on tangent vectors at each ψ ∈ B. This allows us to define

those vectors in H at ψ ∈ B as horizontal for which A becomes zero. Prior to exactly

defining the one form we would need the idea of a tangent space TψB to B at ψ

which may be defined as the collection of those vectors in H which are tangent to

any curve ψ(s) ∈ B at the point ψ where ψ(s) passes through ψ at s = 0. Thus

ψ ∈ B : TψB = {φ ∈ H | Re{�ψ|φ�} = 0 or �ψ|φ� = purely imaginary} ⊂ H

(C.20)

The purely imaginary condition follows from the fact that along any curve in B it

must be true that �ψ(s)|ψ(s)� = 1 and differentiating this condition gives the general
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relation between vectors in B and vectors in tangent space. Further the tangent

space is a real linear space since any vector φ� = φ1 + iφ2, where φ1,φ2 ∈ TψB,

has an inner product with ψ ∈ B with a non-zero real part and therefore does

not belong to the tangent space at ψ. So the multiplying scalar field on which the

vector space is defined has to be real. We can use the U(1) group action to define

the vertical subspace, VψB, to the tangent space, which is nothing but the fibre of

U(1) -transformation related equivalent states in B projecting to a fixed π(ψ) ∈ R

and the action of the group is to push states along the fibre. We can define

ψ ∈ B : VψB = {iaψ | a being real} ⊂ TψB (C.21)

This again is a real linear space. It can be thought of as the inifitesimal limit of

a being very small in a transformation of the kind ψ → ψ� = eiaψ such that one

may approximate to first order as ψ� = ψ + iaψ, thus giving the element of the

vertical subspace. Another important element of the tangent space is its horizontal

subspace, HψB. This is basically what remains after removing the vertical subspace

from the complete tangent space. It follows from the need for a connection over the

principal fibre bundle of U(1) fibres over R to establish notions of continuity and

differentiability in the orthogonal complement to the fibres. It satisfies the following

requirements:

• TψB = VψB⊕HψB

• HψB has a one to one projection map onto the tangent space to R at π(ψ).

• eiα ∈ U(1), φ ∈ HψB ⇒ eiαφ ∈ HeiαφB. This is known as the push forward

of the horizontal space under the group action. It applies here because U(1)

is an abelian group and the horizontal
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Thus with these properties the horizontal subspace HψB at any ψ is defined as

ψ ∈ B : HψB = {φ ∈ TψB | �ψ|φ� = 0} ⊂ TψB (C.22)

and it is a complex linear space since any vector which is a complex linear com-

bination of vectors in HψB also lies in it. Such as a vector φ� = φ1 + iφ2, where

φ1,φ2 ∈ HψB, has an inner product with ψ ∈ B which is zero and therefore belongs

to HψB.

The one form Aψ at ψ, introduced earlier, acts on vectors in TψB and can be

defined as

ψ ∈ B, φ ∈ TψB : Aψ(φ) = Im{�ψ|φ�} = −i �ψ|φ� belongs to reals (C.23)

We can now use this one form to redefine the horizontal subspace of eq.(C.22) as

HψB = {φ ∈ TψB | Aψ(φ) = 0} (C.24)

and the horizontal subspace can be said to constitute all those tangent vectors that

are mapped to zero by the action of the one form. Even the condition for the

horizontal lift obtained from the case Θdyn[C] = 0 implies that the tangent vectors

ψ̇(s) along the curve are elements of the horizontal subspace. So using the present

definitions it is possible to characterize a horizontal lift as the curve whose tangent

space at every point is the horizontal subspace and hence the curve of which the

tangent space when acted on by the one form gives a null result everywhere along

it. In fact the dynamical phase can be entirely formulated using the above defined

one form as

Θdyn[C] =

�

C

dsAψ(s)(ψ̇(s))
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=

�

C

Aψ(dψ) (C.25)

In the second step above, the one form is expressed in a parameter independent

form. A general remark regarding lifts of curves C ∈ R in B may be worth making.

An arbitrary lift of a closed C, in which case Θtot[C] = 0, may be closed or it could

be open. However, for a horizontal lift there is no such ambiguity and the lift is

closed if Θtot[C] = 0, i.e. a closed c and open if Θtot[C] �= 0, i.e. an open C.

Next we consider the idea of geodesics in ray space, which we shall be needing to

make the connection between the Bargmann invariants and the geometric phase. In

order to define geodesics it is first necessary to define a functional for the length of

curves C ∈ R, denoted by L[C] which itself should be gauge and reparametrization

invariant. Begin by considering how the tangent vector ψ̇(s) transforms under a

gauge transformation, precisely what was used to derive the relation in eq.(C.11).

Thus if the transformed ψ̇(s) is denoted by ψ̇�(s) = u(s), and ψ�(s) denotes the

gauge transformed curve as usual, we may write

u(s) = eiα(s)(ψ̇(s) + iα̇(s)ψ(s)) (C.26)

which is a linear but inhomogeneous transformation. In order to get a simpler

transformation rule under the gauge transformation it is advisable to consider the

projection of ψ̇(s) orthogonal to ψ(s), dentoted by ψ̇⊥(s), and write its transforma-

tion law, as

ψ̇⊥(s) = ψ̇(s)− ψ(s) �ψ(s)|ψ̇(s)�

u⊥(s) = ψ̇�
⊥(s) = u(s)− ψ�(s) �ψ�(s)|u(s)� = eiα(s)u⊥(s) (C.27)

With this we may write down the length of curve functional L[C] for any C in ray
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space as

L[C] =

� s2

s1

ds(�u⊥(s)|u⊥(s)�)1/2

=

� s2

s1

ds(�ψ̇(s)|ψ̇(s)� − �ψ(s)|ψ̇(s)� �ψ̇(s)|ψ(s)�)1/2 (C.28)

This functional is a ray space quantity as it is gauge and reparametrization invariant.

Hence any lift of C in B may be used to evaluate it for the path joining the states

ψ(s1) and ψ(s2) which project to the end points of C ∈ R. Geodesics are curves in

R for which L[C] is minimum given two end points. All lifts of any geodesic curve

in ray space are also geodesics in B. The reader is recommended the references

[20] and [331] for details on obtaining the expressions for such curves as various

special lifts and discussions regarding their properties. For us, the central result

concerning geodesics, of use, was derived by Samuel and Bhandari [331] in trying

to generalize the notion of geometric phase to non-cyclic evolutions and defining it

for such a Schrödinger equation dictated evolution under a hermitian Hamiltonian.

They found that for a general lift C0 of a geodesic C0

�

C

Aψdψ = Im

� θ

0

ds �ψ(s)|u(s)� = Im

� θ

0

ds �ψ0(s)|ψ̇0(s) + iα̇(s)ψ0(s)� = α(θ)− α(0)

⇒ arg{�ψ(0)|ψ(θ)�} =

�

C

Aψdψ (C.29)

The ψ0(s) here correspond to states on a special geodesic lift C�
0
of C0 (see [20]) for

which the end points of C0, ρψ0(s1) and ρψ0(s2), have inverses, ψ0(s1) and ψ0(s2), under

the projection map π such that they satisfy the condition �ψ0(s1)|ψ0(s2)� = cos θ

where, 0 < θ < π/2. A choice that gauge freedom permits. It can be shown that

this special lift has the property that L[π[C�
0
]] = θ and hence we may mark off points

along the geodesic with θ as a parameter starting from 0. In the calculation of the

dynamic phase above, using the notion of the one form, such a parametrization is
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used to evaluate the integral and the lift chosen is a general one, denoted by its

states ψ(s), obtained by gauge transforming C�
0
. Such that ψ(s) = eiα(s)ψ0(s) and

u(s) = ψ̇(s) in the above. This generalization of the lift ensures that the result holds

generally for all lifts of a geodesic C0. The essential content of the very significant

result above, as can be seen from the definiton of the geometric phase, is that for

geodesics,

Θdyn[C0] = Θtot[C0] ⇒ Θg[C0] = 0. (C.30)

Samuel and Bhandari ingeniously used this property to define the geometric phase

for open paths of quantal Schrödinger evolution. Let ψ(t) be the set of solution

states, for the Schrödinger equation at each instant in ti ≤ t ≤ tf , which form an

open curve in B connecting ψ(ti) and ψ(tf ). One may think of closing this curve

using a geodesic going from ψ(tf ) back to ψ(ti) to use the, at the time, prevalent

cyclic definition of the phase. In which case the geometric phase of the closed path is

nothing but Θg[open path Schrödinger evolution] + Θg[closing geodesic]. From the

property of geodesics just discussed the second part vanishes and since the curve is

closed the Θtot = 0, thus leaving

Θg[open path Schrödinger evolution] =

�

closed path

dψAψ (C.31)

This was the central result of their work on generalizing the geometric phase to non-

cyclic quantal evolution. We shall use the property of the geometric phase vanishing

for geodesics to establish the link between Bargmann invariants and the geometric

phase. This shall form the basis for calculating various important differential ge-

ometric quantities of ray space that finally relate to topological ideas. It is worth

noting that the import of Mukunda and Simon’s work is the purely kinematical de-

velopment of ideas related to the geometric phase which makes no special reference

to the Schrödinger equation or any particular choice of Hamiltonian.
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C.4 Bargmann Invariants and Geometric Phase

From the introduction to Bargmann invariants in Sec.C.2 we may conclude that the

inner products used to construct the invariants might very well be expressed in the

Von Neumann density matrix formulation as the trace operation on the product of

pure state density matrices for the two states involved in writing the inner product.

In this notation the simplest i.e. the 3-point Bargmann invariant can be written as

Ω3(ψ1,ψ2,ψ3) = �ψ1|ψ2� �ψ2|ψ3� �ψ3|ψ1� = Tr(ρψ1ρψ2ρψ3) (C.32)

This makes manifest the fact that the invariant is a ray space quantity. Let us

connect the ray space points ρψ1 , ρψ2 and ρψ3 by geodesics in R such that C12 joins

ρψ1 and ρψ2 , C23 joins ρψ2 and ρψ3 , and C31 joins ρψ3 and ρψ1 . Also a general lift of

these curves in B could be chosen, with C12 connecting ψ1 and ψ2, C23 connecting

ψ2 and ψ3 and C31 connecting ψ3 and ψ1. With this we have the closed curves

C12 ∪ C23 ∪ C31 in R and C12 ∪ C23 ∪ C31 in B. Using the property of geodesics

mentioned in eq.(C.30) it can be shown

arg{Ω3(ψ1,ψ2,ψ3)} = arg{�ψ1|ψ2�}+ arg{�ψ2|ψ3�}+ arg{�ψ3|ψ1�}

= Θdyn[C12] +Θdyn[C23] +Θdyn[C31]

= Θdyn[C12 ∪ C23 ∪ C31] = −Θg[C12 ∪ C23 ∪ C31] (C.33)

This gives the relation that the phase of a 3-point Bargmann invariant is the negative

of the geometric phase of a geodesic triangle in R. One could just as easily go ahead

and show this result for an N -point Bargmann invariant and an N -sided geodesic

polygon. This generalization allows us to write, for ψj ∈ B, j = 1, 2, . . . , N such
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that �ψj|ψj+1� �= 0,

ΩN(ψ1,ψ2, . . . ,ψN) = �ψ1|ψ2� �ψ2|ψ3� . . . �ψN−1|ψN� �ψN |ψ1�

arg{ΩN(ψ1,ψ2, . . . ,ψN)} = −Θg[C ≡ N-sided geodesic polygon with vertices

ρψ1 , ρψ2 , . . . , ρψN
] (C.34)

Armed with this general connection between the phase and Bargmann invariants

we may now proceed to exploit the density matrix formalism to compute expressions

for differential geomatric quantities such as the metric and curvature 2-form in ray

space and illustrate the relation to toplogical invariants.

C.5 Ray space metric, Berry curvature and

Topology

The notion of distance and hence a metric in ray space can be defined using the

inner product for a pair of non-orthogonal states, ψ1 and ψ2 belonging to B, in the

following way

ds2(ψ1,ψ2) = 1− |�ψ1|ψ2� |2= 1− �ψ1|ψ2� �ψ2|ψ1� = 1− Tr(ρψ1ρψ2) (C.35)

It is apparent that this distance is a ray space quantity given its U(1) invariance

and it qualifies as a distance function as it satisfies the general properties required

of any distance function in a metric space. We also introduce a coordinate system in

ray space with each point being denoted by the tuple x = (x1, x2, . . . , x2(N−1)) given

that R is of 2(N − 1)-dimensions for an N -level quantum system. Using this we

may shift to a continuous description of ray space in terms of the density matrices

by making them functions of the coordinates as ρ(x). Thus we drop the subscript
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notation of explicitly writing the state and instead denote a density matrix operator

field over R which is defined at each point. This allows an easier route to introduce

the differential and infinitesimal notions required to obtain the differential geometric

quantities. With this it is possible to write the distance between two infinitesimally

seperated points x and x+ δx, as

ds2(x,x+ δx) = 1− Tr(ρ(x)ρ(x+ δx)) (C.36)

The expression inside the trace on the right hand side may be expanded by using a

Taylor series to write ρ(x+ δx) as

Tr(ρ(x)ρ(x+ δx)) = Tr(ρ(x)[ρ(x) +
∂ρ

∂xa
δxa +

1

2

∂2ρ

∂xa∂xb
δxaδxb + . . . ] (C.37)

where we go upto only the quadratic order to retain the bilinear terms that are

significant to define the metric tensor for a Riemannian manifold. The Einstein

summation convention is assumed here of regarding implicit sums over repeated

indices such as a and b which run over the ray space dimensions. When the trace

operation is applied on the expanded series upto the considered order, and using the

general properties of density matrices along with the following ones,

Tr(ρ2) = 1

Tr(ρ
∂ρ

∂xa
) = 0

Tr(
∂ρ

∂xb

∂ρ

∂xa
) + Tr(ρ

∂2ρ

∂xa∂xb
) = 0

the metric can, after simplifications, be written as

ds2(x,x+ δx) =
1

2
Tr

∂ρ

∂xa

∂ρ

∂xb
δxaδxb = gabδx

aδxb (C.38)
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Here,

gab =
1

2
Tr∂aρ∂bρ (C.39)

denotes the symmetric metric tensor for the ray space manifold. We may make

an observation regarding 2-level systems such as a spin- 1
2
particle in a magnetic

field in the above context. For such a system the Hilbert space is two dimensional

in complex dimensions, the set of unit vectors B � S3 i.e. the 3-sphere and the

ray space R � S2 i.e. a Poincaré sphere. The ray space in such a case may be

‘coordinatized’ by the angular variables (θ,φ) and from the spin- 1
2
analogy this is

nothing but the Bloch sphere. The density matrix in this case is known to be

ρ(θ,φ) = (1 + σ · n(θ,φ))/2 where σ is the vector of Pauli matrices and n(θ,φ) =

(sin θ cosφ, sin θ sinφ, cos θ) denotes the unit normal vector to the states on the Bloch

sphere. Then the application of eq.(C.39) to this density matrix gives the metric on

the Bloch sphere which is also known as the Fubini-Study metric.

The other important ray space quantity of interest is its curvature tensor or

2-form which we shall see has deep connections to the geometric phase. First we

consider a geodesic triangle in ray space, as shown in fig.(C.1),

Figure C.1: A partitioned geodesic triangle in ray space.

whose lift is cornered at the states ψ1 at 1 , ψ2 at 2 and ψ3 at 3 respectively.

We also consider a partitioning of this triangle again by a geodesic connecting 1 to

the state ψ4 at 4 on the opposite side. The ray space geodesics between the various

points are C12, C23, C31 and C14 respectively. Now it is easily seen that one may
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relate the argument of the Bargmann invariant of corners of the 123-triangle with

that of the 124 and 423 triangles as

arg{Ω3(ψ1,ψ2,ψ3)} = arg{Ω3(ψ1,ψ2,ψ4)}+ arg{Ω3(ψ4,ψ2,ψ3)} (C.40)

And now using the relation derived in eq.(C.33) between the phase of Bargmann

invariants and geometric phases for geodesic triangles we may write from the above

equation

Θg[C12 ∪ C23 ∪ C31] = Θg[C12 ∪ C24 ∪ C41] +Θg[C42 ∪ C23 ∪ C34] (C.41)

The above result could be easily generalized to N -sided polygons. This gives us a

very useful result that for any geodesic polygon which is subdivided into smaller

geodesic polygons, the geometric phase going around the larger polygon is the sum

of the geometric phases for going around each of the constituent ones. This allows

a Stokes’ Theorem like interpretation where the curl of a vector field around a path

can be transformed to the integral of its flux over the enclosed surface by regarding

the total curl to be the sum of the curl around infinitesimal tiles in an infinite

tesselation of the enclosed area. Here too, one may consider the geometric phase

for an infinitesimal geodesic triangle and then the phase over a curve enclosing any

finite region of ray space may be obtained by an integration of the phases of all such

triangles that fill up the said region.

We employ the continuum density matrix formulation, introduced earlier to de-

rive the metric, to express the Bargmann invariant for an infinitesimal geodesic

triangle cornered at x, x + δx1 and x, x + δx2. Thus the corners in ray space for

such a triangle are given by ρ(x), ρ(x+δx1) and ρ(x+δx2). If we consider the large

triangle in fig.(C.1) for reference, with the same corner states of the lift taken before

,we may write the Bargmann invariant for the states at the corners in clockwise and
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anti-clockwise fashion as follows

Ω3(ψ1,ψ2,ψ3) = eiθ123 = Tr(ρ(x)ρ(x+ δx1)ρ(x+ δx2))

Ω3(ψ1,ψ3,ψ2) = eiθ132 = Tr(ρ(x)ρ(x+ δx2)ρ(x+ δx1)) (C.42)

Note that here we have regarded the normalized versions of the invariants and thus

they are just phases of unit modulus. Clearly the phases θ123 and θ132 are just

geometric phases for the two paths C12 ∪ C23 ∪ C31 and C13 ∪ C32 ∪ C21 and are

related by θ123 = −θ132 This is clear if one thinks of the two paths differing in the

ordering of the limits for the dynamic phase integrals along each of the component

geodesics. Thus being related by a change of sign. Thus we may now write the ratio

of the clockwise and anti-clockwise Bargmann invariants as

Ω3(ψ1,ψ2,ψ3)

Ω3(ψ1,ψ3,ψ2)
= ei2θ123 (C.43)

Now since the triangle is considered infinitesimal one expects the phase θ123 to be

small also and hence one can expand the RHS above to first order and get

ei2θ123 ≈ 1 + i2θ123 = 1 + iθ123 − (1− iθ123) = 1 + iθ123 − (1 + iθ132)

≈ eiθ123 − eiθ132 = Ω3(ψ1,ψ2,ψ3)− Ω3(ψ1,ψ3,ψ2)

Where we see that the phase may be related to the difference of the Bargmann in-

variants in the infinitesimal case. This difference may be written in the continuously

parametrized density matrix formulation as follows

Ω3(ψ1,ψ2,ψ3)− Ω3(ψ1,ψ3,ψ2) = Tr(ρ(x)ρ(x+ δx1)ρ(x+ δx2))

− Tr(ρ(x)ρ(x+ δx2)ρ(x+ δx1))

=⇒ Ω3(ψ1,ψ2,ψ3)− Ω3(ψ1,ψ3,ψ2) = Tr(ρ(x) [ρ(x+ δx1), ρ(x+ δx2)]) (C.44)
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where the [ , ] denotes a commutator bracket. We proceed to expand the density

matrices ρ(x+ δx1) and ρ(x+ δx2) in Taylor expansions as follows,

ρ(x+ δx1) = ρ(x) +
∂ρ

∂xa
1

δxa
1 +

1

2

∂2ρ

∂xa
1∂x

b
1

δxa
1δx

b
1 + ..

ρ(x+ δx2) = ρ(x) +
∂ρ

∂xa
2

δxa
2 +

1

2

∂2ρ

∂xa
2∂x

b
2

δxa
2δx

b
2 + .. (C.45)

These may be now fed into the commutator in eq.(C.44) and on expanding the

action of the trace across the commutator bracket, where we use the properties of

the density matrix expressions under trace as mentioned while deriving the metric

tensor with an additional property Tr(ρ[ρ, ∂ρ]) = Tr(ρ2∂aρ− ρ∂aρρ) = 0, we obtain

2iθ123 = Tr(ρ(x) [ρ(x+ δx1), ρ(x+ δx2)])

= Tr

�
ρ

�
∂ρ

∂xa
1

∂ρ

∂xb
2

δxa
1δx

b
2 −

∂ρ

∂xb
2

∂ρ

∂xa
1

δxb
2δx

a
1

��
(C.46)

In the expanded expression of the RHS above, the term inside the trace that is

multiplied with ρ may be written in a fully antisymmetrized form by adding to it

the following term which is essentially zero

∂ρ

∂xb
2

∂ρ

∂xa
1

δxb
1δx

a
2 −

∂ρ

∂xa
1

∂ρ

∂xb
2

δxb
1δx

a
2

This then gives us the following expression inside the trace

ρ

��
∂ρ

∂xa
1

∂ρ

∂xb
2

− ∂ρ

∂xb
2

∂ρ

∂xa
1

�
(δxa

1δx
b
2 − δxb

2δx
a
1)

�
(C.47)

We consider this expression in two parts. Let us take the term (δxa
1δx

b
2 − δxb

2δx
a
1)

which is antisymmetric like a cross product of coordinate vectors and we may trans-

form the infinitesimal displacements therein to a new set of coordinates or parame-

ters, chosen as x(s1, s2) along the geodesics to the vertices x+ δx1 and x+ δx2, as
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δxa
1 =

∂xa

∂s1
ds1 and δxa

2 =
∂xa

∂s2
ds2. This allows us to write the term in a cross product

form with a set of complete differentials

�
∂xa

∂s1

∂xb

∂s2
− ∂xb

∂s1

∂xa

∂s2

�
ds1ds2 = dxa ∧ dxb

which takes the form of a wedge product where the term in brackets on the left is

the Jacobian of the transformation. The remaining part of the expression for the

phase is the antisymmetric tensor or curvature 2-form

Fab = Tr

�
ρ

�
∂ρ

∂xa
1

∂ρ

∂xb
2

− ∂ρ

∂xb
2

∂ρ

∂xa
1

��

= Trρ[∂aρ, ∂bρ] (C.48)

where the [ , ] again dentoes commutator brackets. The expression for the infinites-

imal geometric phase can therefore be written as

θ123 =
1

2i
Fabdx

a ∧ dxb (C.49)

We could assume the 1/2i factor to be implicit within the definition of the tensor

Fab and then the geometric phase over a curve enclosing any finite region of ray

space, given by say S, is the integral of this 2-form over this area as follows

Θg =

�

S

Fabdx
a ∧ dxb (C.50)

Fab it so happens, is the Berry field or curvature derived by Sir M.V. Berry [79] while

considering the geometric phase in the parameter space of an adiabatically time

dependent, cyclic Hamiltonian. The link to topology follows from the fact that the

above expression is the integral of a curvature over a manifold and can be analogized

to the integral of the Gauss-Bonnet curvature giving the genus of a manifold which
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is a topological invariant. Similarly the above integral over a compact ray space

manifold, say a Bloch sphere for the case of spin- 1
2
systems, evaluates to an integer

(in multiples of the solid angle 4π) for whole coverings of the sphere by any 2 × 2

Hamiltonian which is mapped to such a system using the SU(2) representation with

Pauli matrices. For systems invarant under discrete translations such as periodic

lattice systems, the ray space is defined as the space of the density matrices of Bloch

functions that exist over the first Brillouin zone which is a torus. In case of say

Graphene where the reciprocal space Hamiltonian is 2-dimensional the problem gets

mapped from the torus to the Bloch sphere. In this case the evaluation of the above

integral for the wave vector varying over the torus and the corresponding density

matrices constructed of Bloch states of a given band, yields the integer topological

invariant called the Chern number for the band. Thus the topological invariant of

Thouless et. al. [15] popularly known as the TKNN invariant can be obtained from

the formalism discussed here. In this manner the general kinematical notions of

Bargmann invariants can be applied to the calculation of topological quantities for

quantum systems.
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[121] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev. Lett. 112, 156801 (2014).

[122] Z. Zhou, I. I. Satija, and E. Zhao, Phys. Rev. B 90, 205108 (2014).

[123] C. He and Z. Zhang, Physics Letters A 378, 3200 (2014).

[124] L. Zhou, H. Wang, D. Y. Ho, and J. Gong, The European Physical Journal B 87, 204

(2014).

[125] Z. bo Wang, H. Jiang, H. Liu, and X. Xie, Solid State Communications 215216, 18 (2015).

[126] E. Anisimovas, G. Žlabys, B. M. Anderson, G. Juzeliūnas, and A. Eckardt, Phys. Rev. B

91, 245135 (2015).

[127] M. Benito and G. Platero, Physica E: Low-dimensional Systems and Nanostructures 74, 608

(2015).

A143



[128] A. Farrell and T. Pereg-Barnea, Phys. Rev. B 93, 045121 (2016).

[129] L. Zhou, C. Chen, and J. Gong, Phys. Rev. B 94, 075443 (2016).

[130] T.-S. Xiong, J. Gong, and J.-H. An, Phys. Rev. B 93, 184306 (2016).

[131] K. Saha, Phys. Rev. B 94, 081103 (2016).

[132] J.-i. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010).
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[299] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

[300] I. Snyman, Phys. Rev. B 80, 054303 (2009).

[301] R. P. Tiwari and D. Stroud, Phys. Rev. B 79, 205435 (2009).

[302] C. Coletti et al., Phys. Rev. B 81, 235401 (2010).

[303] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, Nature 483, 306 (2012).

[304] R. de Gail, J.-N. Fuchs, M. O. Goerbig, F. Piéchon, and G. Montambaux, Physica B
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Chapter 6

Conclusions and Future Scope

We are now prepared to summarize the essential results of the various studies un-

dertaken in the different chapters of this thesis. We shall list some broad inferences

from these and sketch the possible avenues of further inquiry into the systems stud-

ied here. In Chapter 2 we looked at a charged particle in a Landau-Fock-Darwin

environment with conical disclination defect in the background metric. Besides the

splitting expected due to Fock Darwin confinement, the spectrum showed the im-

print of the defect by manifesting a modification of the energy eigenvalues by an

amount quantified by the defect parameter. We observe an interplay between the

magnetic field and temperature in the study of thermodynamic variables and quan-

tities like the entropy and specific heat indicate the defect as having modified the

temperature scale in the system. In the presence of a defect that has a local pres-

ence in the background the properties of the Landau levels problem are seen to be

modified in a non-local manner. This provides the general rationale behind studying

the problem in novel geometries.

Chapter 3 looked at the modifications to the metal-insulator transition in a 1-D

bosonic optical lattice realization of the Aubry-André-Harper Hamiltonian which is

driven by a high frequency oscillating magnetic field. Here we observe that the ef-

fective time independent Hamiltonian for the driven system has a nearest neighbor,
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tight binding form upto O(ω−2) corrections and exhibits a mobility edge along with

slight modifications to the transition. The duality of the AAH model is lost as the

driven model couples far off sites in reciprocal space. The driving is seen to impart

properties commonly attributed to a disordered system. A key feature, though not

the focus of attention in the chapter, that appears is the large critical region of wave-

functions in the phase plot of the inverse participation ratio in the plane of energies

and lattice modulation strength. This highlights the role of periodic driving in the

generation of critical/multifractal wavefunctions in Fibonacci and quasicrystalline

1-D structures. Though in this study we used the effective Hamiltonian derived in

[80], we propose as a future work the use of the Brillouin-Wigner method of calcu-

lating the effective Hamiltonian [92], discussed in appendix B, to study the Floquet

topological properties of the AAH Hamiltonian driven by the application of linearly

and circuarly polarized light. A more difficult problem would be to consider the

topological features of the AAH Hamiltonian for a magnetic field induced driving.

The present formalism used to derive the spectrum and topological aspects of the

AAH model would be woefully inadequate for this purpose.

In chapter 4 we considered topological properties of the periodically δ-kicked

Haldane model. The kicking was chosen such that it modified the inversion break-

ing parameter of the model by the action of a time dependent, periodic, staggered

sub-lattice potential. It was seen that the effect of the kicking was to shift the

topological phase diagram of the driven model about its undriven position, linearly

with respect to the driving amplitude, for a given choice of driving frequency. The

resulting driven model was also seen to be a Chern insulator similar to the Haldane

model. This allowed for the possibility of driving a topological choice of Haldane

model parameters to a topologically trivial region by adiabatically changing the

driving amplitude. A freedom that could be exploited to study Floquet topological

phase transitions in a simple non-interacting model. This allows a controllable pa-
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rameter that can be used to tune across the normal to Chern insulator boundary

of the phase diagram. Another application of this feature could be in the study of

dynamical quantum or topological phase transitions wherein the kicking amplitude

may be used as the linear quenching parameter to go across the quantum critical

point. An extension of this scheme could be made to the Quantum Spin Hall Hamil-

tonian for Graphene, where the effects of kicking on the Kane-Mele model could be

examined. This is proposed as a future study to be undertaken, with the objective

of studying the effects of kicking on the Z2 topological index. Chapter 5 discussed a

possible Floquet engineering technique to simulate curved Graphene in a cold atom

optical lattice setup. A general pulsing sequence was identified that could be used

to generate any conformal geomerty for the simulated 2-D monolayer Graphene ana-

logue. The method offers a scheme to study the behaviour of the massless Dirac

fermion excitations in various curved spaces and hence contributes to the panoply

of such lattice systems which may be used as table top experimental setups to study

relativistic quantum electrodynamics in (2 + 1)-dimensions. The technnique could

also be used to simulate various gauge fields in Graphene which are customarily

introduced via strain engineering in actual samples. The behavior of curvature as

an effective gauge potential could be used to simulate Graphene with strains and

defects that would ordinarily be difficult to study using experimentally synthesized

samples.

We have, in the different chapters of this thesis, explored the effects of periodic

driving on the properties of low dimensional Hamiltonians and observed that driving

offers an exceptional tool to modify various properties in a controlled and desired

manner and is a highly flexible and promising instrument for this purpose. There

are aspects associated with the non-equlibrium nature of the physics of such systems

which we have not carved out in the discussions here as our suggested methods of

realizing these systems were drawn from the existing literature which prescribed the

117



suitable parameter ranges where non-equilibrium quasistatic states were realized on

suitable time scales. The reason being that the experimental details and theoretical

modelling of dissipation mechanisms at play lay beyond the scope of our theoretical

investigations at the time. Other physical features that were neglected in the models

considered were the role of spin and interactions. It is hoped that in future work

we can incorporate the effects of both and obtain non-trivial physics of the kind

which is currently being observed in the many body localization and thermalization

phenomena.
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