
Modeling and Analysis of Single

and Two-phase MHD Blood Flow in

a Stenosed Artery with Heat and

Mass Transfer

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

BY

BHAVYA TRIPATHI

Under the Supervision of

Prof. BHUPENDRA KUMAR SHARMA

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE,

PILANI

2018





To My Parents and Teachers





BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis entitled “Modeling and Analysis of Single and Two-

phase MHD Blood Flow in a Stenosed Artery with Heat and Mass Transfer”

and submitted by Bhavya Tripathi, ID No.2013PHXF0435P for award of Ph.D.

Degree of the institute embodies original work done by her under my supervision.

———————————

Signature of the Supervisor

Name : Bhupendra Kumar Sharma

Designation : Associate Professor

Department : Mathematics

Date :





Acknowledgments

Firstly, I would like to thank my supervisor Prof. Bhupendra Kumar Sharma for his

support and constant encouragement during the tenure of my Ph.D. work. He always

motivated me to learn new techniques, knowledge of which really helped in my Ph.D..

Under his supervision I improved my presentations skills as well as my writing skills, his

personal generosity helped my time at BITS Pilani enjoyable.

I would like to extend my gratitude towards my DAC committee members Dr. Ashish

Tiwari and Dr. Sangita Yadav. Their valuable comments and suggestions during various

progress seminars have significantly enhanced the quality of my research work. Whenever

I contacted them, they were very kind, patient and were always available to clarify my

doubts despite their busy schedules.

I owe a debt of gratitude to former HODs of Mathematics department Prof. P. H.

Keskar, Prof. Dilip Kumar Maiti, Prof. Chandra Shekhar and Prof. Balram Dubey for

providing me with requisite facilities to carry out my research. I also gratefully acknowl-

edge all the faculty members of the Department of Mathematics, BITS Pilani for paying

their attention and genuine interest during my end semester seminars and non-teaching

staff of the Mathematics Department for their help. I express my special gratitude to Vice

Chancellor, Director, Deputy Directors, Deans, BITS Pilani, Pilani Campus for providing

me the opportunity to pursue my doctoral studies. I extend my thanks to SRCD and

AGSRD staff for their helpful support.

I would like to thank Prof. Sangeeta Sharma, Department of Humanities and Social

Sciences, BITS Pilani, Dr. Amit Kumar Verma former faculty at BITS Pilani-Pilani

campus (currently he is faculty in IIT Patna) and Prof. Suresh Kumar, Department



vi Acknowledgments

of Mathematics, BITS Pilani, Pilani Campus, they guided me during my coursework at

BITS Pilani, Pilani Campus. They inspired me by their teaching skills and their in-depth

knowledge of subjects.

I take this opportunity to thank Prof. Alfio Quarteroni, Professor of Mathematics,

EPFL, Lausanne, Switzerland who recommended and sent me some good books related

to my research field which really helped me of doing my work. His humble nature towards

students inspired me in many ways.

A special thanks to my master’s advisor Prof. Shiv Prasad Yadav, Department of

Mathematics, IIT Roorkee who motivated me to pursue doctoral studies. I am really

thankful to all the professors of the mathematics department at IIT Roorkee who taught

me various courses during my master degree.

I sincerely acknowledge the financial support provided by UGC(BSR) and DST New

Delhi, India during the tenure of my doctoral research work.

I also extend my heartfelt thanks to my all friends at BITS Pilani as well as at

IIT Roorkee, who have been a part of this long journey. I enjoyed the evening with my

badminton teams, It was one reason I never felt down at any moment at BITS Pilani.

I will cherish all the fun-filled moments during my entire stay at BITS Pilani, Pilani

Campus.

Word would not be adequate to express how much I am thankful to my parents Saroj

Tripathi and Ved Prakash Tripathi and to my brother Manas Tripathi and to my sisters

Kavita Mishra, Bhumika Shukla and brother-in-law, Vaibhav Mishra, Vishwas Shukla for

their love, encouragement and support, without that it could not be possible to complete

this long journey.

Lastly, I am very grateful to God for all the blessings in my life.

Bhavya Tripathi



Abstract

This thesis presents a mathematical analysis of the phenomenon of blood flow through

a stenosed artery under the influence of the magnetic field with heat and mass transfer.

Study on the narrow artery considering the two-phase flow behavior of blood flow is also

a part of the thesis work. The major part of the thesis work includes variable viscosity

of blood flow which depends upon hematocrit, temperature or pressure of the artery as

occurs in real situations. The thesis is divided into eight chapters and the chapter wise

summary is as follows:

The first chapter of this thesis provides a brief background of the biomechanics and

describes the aim and objectives of the thesis as well as gaps in existing research followed

by the literature survey.

In the second chapter, the effects of heat transfer on MHD blood flow through a

stenosed inclined porous artery with heat source have been analyzed. The viscosity of

the blood is assumed to be varying radially with hematocrit throughout the region of the

artery. The governing equations have been solved using Homotopy perturbation method

(HPM). Variation of flow rate and shear stress for different values of inclination angle and

hematocrit parameter along the diseased part of the artery have been discussed.

In the third chapter, a mathematical study of heat and mass transfer effects on the

arterial blood flow under the influence of an applied magnetic field with chemical reaction

has been done. The variable viscosity of the blood is considered varying with the hema-

tocrit ratio. For having an adequate insight of blood flow behavior through a stenosed

artery, an analysis has been done to study the behaviour of wall shear stress, velocity,

temperature and concentration profiles with varying values of the applied magnetic field,

chemical reaction parameter and porosity parameter.

vii



viii Abstract

Effects of heat and mass transfer on two-phase pulsatile blood flow through a nar-

rowed stenosed artery with radiation and the chemical reaction have been investigated

in chapter 4. Exact solutions have been found for momentum, energy and concentration

equations of the blood flow. In order to validate our result, a comparative study has

been presented between the single-phase and two-phase model of the blood flow and it is

observed that the two-phase model fits more accurately with the experimental data than

the single phase model data.

The study of heat and mass transfer effects on the two-phase model of the blood

flow through a stenosed artery with radiation has been presented in chapter 5. The major

characteristics of the blood flow such as flow resistance, total flow rate and wall shear

stress are calculated for different values of the magnetic field and radiation parameter.

In the presence of variable magnetic field, effects of both heat and mass transfer on

an unsteady two-phase blood flow through a stenosed artery with simultaneous effects of

viscous dissipation and Joule heating have been investigated in chapter 6. The viscosity of

the cell-free plasma layer is assumed to be constant while the viscosity of the core region

is considered as a function of the hematocrit level. To understand the flow pattern in the

diseased narrowed artery, velocity contours have been plotted which alters significantly in

the downstream of the stenosis under the influence of the magnetic field.

Further, in chapter 7, the MHD mixed convection problem of two-phase blood flow

through a stenosed inclined artery having viscous dissipation and Joule heat effect with

kth order homogeneous chemical reaction and radiation effect has been discussed. The

viscosity of the core layer is considered as temperature dependent, while, the viscosity of

the plasma layer is assumed as constant. In both core and plasma regions geometry of

the stenosed artery is considered as elliptic shaped. Graphs have been plotted to examine

the effects of different physical quantities of interest on flow rate, wall shear stress and

impedance profile of blood flow.

In chapter 8, we summarized the main findings of the thesis and propose future

scopes of the thesis.
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Chapter 1

Introduction

“Biomechanics has been defined as the study of the movement of living

things using the science of mechanics.”

- Hatze,

In science, mechanics is a branch of physics which is concerned about the description of

motion and how forces create motion. Biomechanics is the scientific study of the motion

of living structure as in living things how muscles, bones, tendons, and ligaments work to-

gether to produce movement. To improve human movement, biomechanics provides major

information on the most effective and safest equipment, movement patterns and relevant

exercises (Knudson, 2007). On the other hand, biofluid mechanics explains the mecha-

nism of biological fluids and their interrelationship with physiological processes, in health

and in diseases/disorder with the use of liquids, gases. As the human body is composed

of approximately 65% water and each cell of the body is dipped within an extracellu-

lar water compartment, these cells feel some forces that are distributed and transmitted

through this water layer. Under non-pathological conditions, some nonadherent cells as

red blood cells, white blood cells and platelets through the body blood stream experience

many types of fluidic force such as shear and pressure forces which directly change their

functions. Hence, biofluid mechanics also focuses on the study of the circulatory system as

well as respiratory systems such as animal flight, fish swimming and blood flow in arteries.

Biofluid dynamics is so critical to study as the report presented by the American Heart

1
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Association in 2014, declare that in the United States approximately 16 million people

had suffered from some coronary heart disease (Rubenstein et al., 2015). All over the

world cardiovascular disease is a major cause of death of the people. Therefore, nowadays

the area of biofluid mechanics has gained serious attention by many researchers and phys-

iologists person due to its vast applications in the field of diagnosing, treating the certain

surgical procedures related to the disorders/diseases which originate in the body relating

to cardiovascular, synovial, pulmonary systems etc. (Chandran et al., 2006; Mazumdar,

2015; Schneck, 2013).

1.1 Aim and Objective

The cardiovascular disease refers to situations that include narrowed or blocked blood

vessels which can cause heart attack, stroke or chest pain (angina). To fully understand

this behavior many theoretical as well as experimental studies on blood flow through

narrowed, blocked blood vessel have been the subject of scientific research (Vlachopoulos

et al., 2011). We have proposed and analyzed some mathematical model which describes

the heat and mass transfer effects on blood flow through a constricted region for inclined,

horizontal and vertical vessels considering variable viscosity of blood flow. Effects of

different physical parameters such as magnetic field, radiation, chemical reaction, Joule

heating and viscous dissipation which directly affects the flow of blood have been discussed

through our study. Some important objectives which are addressed to develop blood flow

models in this thesis are:

• To analyze the effect of heat transfer on blood flow having hematocrit dependent

viscosity through the inclined stenosed porous artery in the presence of an external

magnetic field.

• To study both heat and mass transfer effects on blood flow through an inclined

arterial segment with chemical reaction.

• To investigate the heat and mass transfer effects on the two-layered model of pul-

satile blood flow (consists central core region of suspended erythrocytes and cell-free
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plasma region) through a narrowed stenosed vertical artery with radiation and the

chemical reaction.

• To examine the effects of heat and mass transfer on two-phase blood flow through

a stenosed horizontal artery with radiation in the presence of an external magnetic

field.

• To analyze the influence of heat and mass transfer with Joule heating and viscous

dissipation effect on two-phase blood flow having variable viscosity in the presence

of radially variable magnetic field.

• To examine the mathematical model of a mixed convection problem of heat and

mass transfer on magnetohydrodynamics two-phase blood flow having temperature

dependent viscosity considering the geometry of an elliptically shaped stenosis.

The system that operates in a medium of fluid is analyzed using the fluid mechanics

principles. Therefore, to understand the modeling of blood flow dynamics, it is necessary

to have a clear idea about fluid dynamics. Basic definitions which help to do mathematical

modeling on blood flow are discussed in the following section.

1.2 Fundamental Concept of Fluid Dynamics

A fluid is a substance that deforms constantly under the action of shearing stress, even

if the tension is small. The fluid dynamics which is a sub-discipline of fluid mechanics

describes the flow of fluids such as liquids and gases. In fluid dynamics, liquids are

fluid which contain the molecule of mean free paths of order 10−7 to 10−8 cm and do

random motion under an adequate resistance to compression. While gases consist of

molecules having mean free paths of order 10−3 which move over much larger distances

and are readily compressed. As a result, material properties of matter are directly related

to its molecular structure and intermolecular forces. These forces not only depend on

the structure of the molecules but also their intermolecular distances. Although in this

case the molecules always undergo random motion/vibration, the bulk material exhibits
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a stable behavior at the macroscopic level. Therefore, fundamentally the deformation

behavior of matter can be analyzed in two ways:

1. Statistical mechanics: In statistical mechanics, molecules are treated as discrete

particles.

2. Continuum mechanics: In continuum mechanics, the bulk material is treated as a

continuous medium and the time function is defined with continuous space function

with the matter.

The concept of a continuum is the basis of classical fluid mechanics. Under the assump-

tions of the continuum hypothesis, we assume the fluid to be continuously distributed in

a given space by considering the macroscopic behavior of the fluid. The given hypothesis

directly allows us to identify with each point a “fluid parcel”, or “fluid particle” or “fluid

element” and then consider the volume of fluid as a whole to be a continuous aggregation

of these particles by subdividing them indefinitely.

1.2.1 Velocity Field

A very important property described by field is the velocity field, given by

−→
V =

−→
V (x, y, z, t).

The velocity field is a vector field which requires magnitude and direction for complete

description as similar to the velocity. It can be written in terms of its three scalar com-

ponents u, v, and w (in the directions of x, y and z, respectively) as

−→
V = ûi+ vĵ + wk̂,

where each component u, v, and w are the function of x, y, z and t. In Eulerian sense,

here
−→
V (x, y, z, t) measures the velocity of fluid particle passing through the point x, y, z

at a time t.

The flow is termed as steady flow if all fluid properties at every point in a flow field do

not change with time. Mathematically, we define a steady flow as

∂η

∂t
= 0,
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where η represents any fluid property. So for a steady flow, all the fluid properties vary

from point to point but they remain constant with time at every point in the field.

1.2.2 Timelines, Pathlines, Streamlines and Streaklines

In fluid, flow field can be visualized by using timelines, streaklines, pathlines or stream-

lines. In flow field, a timeline pattern is generated when at a given instant a number of

adjacent fluid particles are marked and form a line in a fluid at that instant.

A pathline is a trajectory traced by a moving fluid particle. These trajectories are used

to visualize the path of contaminant leaving smokestack.

In flow field, streamlines are lines for a given instant of time which are tangent to the

direction of flow at every point of the flow field. Furthermore, there is no flow across the

streamlines because these lines are tangent to the velocity vector at every point in the

flow field. These trajectories are the most commonly used visualization technique. For

steady flow, streamline shape do not vary with time as the velocity at each point in the

flow field remains constant from one instant to the next.

On the other hand in Streakline, we focus our attention on a fixed location in space and

identify all fluid particles passing through this point. As time passes, we have a number

of identifiable fluid particles in the flow, all of which at some time had passed through

one fixed location in space. The line drawn through those fluid particles is defined as a

streakline. For steady flow, all steaklines, pathlines and streamlines are identical. On the

other hand all these lines show different shapes for unsteady flow.

Velocity field is used to derive the shapes of pathlines, streaklines and streamlines. Stream-

lines for two dimensional flow by using velocity field can be derived as(
dy

dt

)
streamline

=
v(x, y)

u(x, y)
,

where V̄ = ûi+ vĵ. As streamlines are obtained at an instant in time, for unsteady flow

time t is treated as constant.

In two dimensional flow to derive the expression for pathlines, we assume x = xp(t) and

y = yp(t) which represent the instantaneous coordinates of a specific particle. We then
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get (
dx

dt

)
particle

= u(x, y, t),

(
dy

dt

)
particle

= v(x, y, t). (1.2.1)

Solution of the eq.(1.2.1) provides the path of a particle in parametric form xp(t), yp(t).

To compute the streakline, first we compute the pathline of a particle that releases from the

streak source point at time t0 of coordinate(x0, y0), in the form xparticle(t) = x(t, x0, y0, t0)

and yparticle(t) = y(t, x0, y0, t0). Now, we write the equations for streaklines as

xstreakline(t0) = x(t, x0, y0, t0), ystreakline(t0) = y(t, x0, y0, t0). (1.2.2)

At point (x0, y0), the eq.(1.2.2) gives the line originated from a streak source. In this

equation to show the instantaneous positions of all particles t0 varies from 0 to t.

1.2.3 Stress Field and Viscosity

In fluid mechanics, there is a different kind of forces act on fluid particles such as surface

forces (pressure, friction) which are produced by interaction with other fluid particles or

solid surface, and body forces (electromagnetic and gravity) which act on all over the

particles. A stress field is defined by the distribution of internal forces in a body that

balance a given set of external forces.

Viscosity is the property of the fluid which is manifested only if the fluid is in motion.

The concept of the viscosity is realized through the motion of the fluid and it is nothing

to do when fluid is at rest. The velocity profile as shown in fig.1.1 displays the one-

dimensional parallel flow. In the fluid in between two adjacent fluid layers, upper layer

tries to drag the lower layer in the direction of flow with a force F . By Newton’s third law

of motion, the upper layer due to high velocity tries to accelerate the lower layer while

the lower layer tries to decelerate the upper layer in the opposite direction. Therefore,

shear stress develops between the layers. Newton found that in these types of fluid, shear

stress depends upon the velocity gradient as

τ ∝ du

dy
, (1.2.3)
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and direction of shear stress depends upon
(
du
dy

)
. Relation as given in eq.(1.2.3) results

that if the value of the gradient
(
du
dy

)
is going to be less then the shear stress will go to a

very low value and the curves as shown in fig.1.1 becomes flat. Therefore, from eq.(1.2.3)

τ = µ

(
du

dy

)
. (1.2.4)

In eq.(1.2.4), µ represents the coefficient of viscosity or viscosity.

Figure 1.1: One dimensional parallel flow (source: Biswas (2003))

1.2.4 Classes of fluids

The constitutive equations of the fluid are the functional relations between the shear stress

τ and the shear strain
(
du
dy

)
, which depend upon the fluid under consideration. Therefore,

fluids are categorized in the following two classes which are given as:

Newtonian Fluids

In continuum mechanics, a Newtonian fluid is a fluid in which at every point the viscous

stresses arising from its flow and which are linearly proportional to the local strain rate

(Panton, 2006). By Newton’s law of viscosity

τ(
du
dy

) = Constant. (1.2.5)
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In the physical sense, the factor
(
du
dy

)
is treated as the rate of the shear strain. The fluid

which follows this linearity law between shear stress and velocity gradient are Newtonian

fluids. All gases and most liquids such as water, benzene, ethyl alcohol, hexane and most

solutions of simple molecules which have a simpler molecular formula and low molecular

weight are Newtonian fluids.

Non-Newtonian Fluids

In fluid mechanics, non-Newtonian fluids are those which do not follow Newton’s law

of viscosity and for which the constitutive relationship between the shear stress and the

velocity gradient is non-linear through the origin. In non-Newtonian fluids, viscosity µ

is the property of the fluid and treated as apparent viscosity. A non-newtonian fluid

is classified into two different time-independent and time-dependent behaviours. The

relation between τ and du
dy

for time-independent fluids can be represented by the power

law model for one-dimensional flow as

τ(
du
dy

) = m

(
du

dy

)n−1

. (1.2.6)

In eq.(1.2.6), n is the flow consistency index and m is the flow behaviour index. A fluid

in which apparent viscosity decreases as values of deformation rate increases,(n ≤ 1) is

called as pseudoplastic fluid. The fluid is termed as dilatant if deformation rate increases

with increasing values of the apparent viscosity deformation. Subsequentially, Bingham

plastic is the limiting case of a plastic which requires finite yield stress before it starts

to flow as shown in fig.1.2. There is a growing importance of non-Newtonian fluids in

geophysical fluid dynamics, chemical technology and the petroleum industry.

1.2.5 Types of Flow

Fluid mechanics is subdivided in terms of whether or not viscous effects and comprehen-

sibility effects are present as well as it is classified in terms of whether a flow is laminar

or turbulent and internal or external. Now we discuss each of these sequentially:
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Figure 1.2: Shear stress and deformation rate relationship of different fluids (source: Pinto

and Meo (2017))

Viscous and Inviscid Flows

Flows in which flow patterns are dominated by the viscous properties of the fluid are

viscous flows. This occurs in the fluid where the velocity gradients are large. On the

other hand, flow in which viscous properties are not dominant or viscosity of the fluid is

zero is called as an inviscid flow. In these types of fluids, the Reynolds number approaches

infinity as the viscosity approaches zero.

Laminar and Turbulent Flows

In fluid mechanics, Laminar are those flows in which each fluid particle traces out and

a definite curve and the curves traced out by any two different fluid particles do not

intersect. While turbulent flows are those in which each fluid particle does not trace out

a definite curve and the curves traced out by fluid particles intersect.

Compressible and Incompressible Flows

Incompressible flows are those in which variations in density are negligible. On the other

hand, incompressible flows density variations within the flow are not negligible. Gases are

the example of compressible flows and their density changes readily with temperature and

pressure. Generally, liquids are treated as incompressible flows, which are rather difficult

to compress. Only some exceptions such as sound propagation in liquids do one need to
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consider their compressibility.

1.2.6 Governing Equations of Fluid Dynamics

Fluid flows obey the laws of conservation of mass, momentum, energy and mass flux.

Equations of Continuity or Conservation of Mass

According to the law of conservation of mass, fluid mass can neither be created nor

destroyed. In a mathematical form, the law of conservation of mass is expressed with the

help of the equation of continuity. This law states that the increase in the mass of fluid

within any closed surface in any time interval must be equal to the excess of mass that

flows in over the mass that flows out. This law gives rise to the equation of continuity

and when expressed in vector notation, it can be written as

∂ρ

∂t
+5.(ρ−→q ) = 0, (1.2.7)

where ρ is the density of the fluid, −→q is the velocity vector and 5 is the vector differential

operator defined as.

5 =
∂

∂x

−→
i +

∂

∂y

−→
j +

∂

∂z

−→
k .

The eq.(1.2.7) is known as the equation of continuity or the conservation of mass. The

equation holds at all points of fluid free from sources and sinks.

The equation of continuity can be written in three different forms as

1st form:

∂ρ

∂t
+ ρ5 .−→q +5ρ.−→q = 0, (1.2.8)

since 5.(ρ−→q ) = ρ5 .−→q +5ρ.−→q .

2nd form:

Dρ

Dt
+ ρ5 .−→q = 0, (1.2.9)

3rd form:

D(logρ)

Dt
+5.D−→q = 0. (1.2.10)
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If the density of any fluid particle is invariable with time, the fluid is considered as

incompressible and heterogeneous and for that fluid the term Dρ
Dt

= 0, where D is the

material derivative. Then eq.(1.2.9) is termed in to

5.−→q = 0, i.e. div−→q = 0. (1.2.11)

For homogeneous and incompressible fluid as ρ is constant. Therefore, eq.(1.2.7) is

changed into the form

5.(ρ−→q ) = 0, i.e. 5 .−→q = 0. (1.2.12)

Conservation of Momentum

The flow behavior is governed by the Navier-Stokes equations of motion which are obtained

from the second law of motion, which states that the total forces acting on a fluid mass

enclosed in an arbitrary volume fixed in space is equal to the time rate of change of linear

momentum. This law gives rise to the equation of motion and when it is expressed in

vector notation it can be written as

ρ

(
∂−→q
∂t

+ (−→q .5)−→q
)

= −5 p+ ρg + µ52−→q , (1.2.13)

where 5p is the pressure gradient due to normal stress, ρg is the buoyancy force and

µ52−→q is the viscous force due to tangential force.

The gradient is the vector operator which is operated on the scalar quantity. The gradi-

ent of the pressure, physically is the negative of the surface force, per unit volume due to

pressure. Here, (−5p) is the pressure magnitude which is not related to the net pressure

force while it counts the rate of change of pressure with distance.

Eq.(1.2.13) is known as the Navier-Stokes equation. This equation was first set up by

Navier and Sur (1827) on the basis of consideration on the action of the inter-molecular

forces. Later the same equations were derived without such hypotheses by Stokes (1966),

using a basis that the normal and shear stresses are linear functions of the rate of defor-

mation which had already been introduced via Newton’s law of viscosity.
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Conservation of Energy

This law states that the rate of increase of energy of the fluid in the volume V is equal to

the negative of the outward flux of the energy plus the energy generated due to the work.

if present. This law gives rise to the equation of energy and when expressed in vector

notation for an incompressible fluid it can be written as

ρcp

(
∂T

∂t
+ (−→q .5)T

)
= k52T +

∂Q

∂t
, (1.2.14)

where T is the temperature, k is the thermal conductivity of the fluid, cp is the specific

heat at constant volume and Q is the heat due to external source or sink.

Conservation of Concentrated Species

In the case of conservation of mass (or continuity through) of a fluid of density ρ, fluid

might very well have been a mixture of two or more fluids and the principle of mass

conservation is applied to each component of the constituent in the mixture. Mass transfer

is the net movement of mass from one place to another place. The statement for this law

is

DC

Dt
= −5 .

−→
J +R, (1.2.15)

where D
Dt

= ∂
∂t

+ (−→q .5) is the material derivative, C is the concentration of the com-

ponents in the mixture and
−→
J is the diffusion flux vector and R is the volumetric rate

of constituent generation. This term must be taken into account in reactive flows which

generate constituent as a product of the reaction. If the constituent is consumed by the

reaction, the species generation rate R is negative. The diffusion flux vector
−→
J driven by

the concentration gradient5C in the same manner that the conduction heat flux is driven

by the local temperature gradient. This idea was put forth by the German Physiologist

Fick [34]. It is responsible for the analytical development of the fluid of mass transfer

in the same way that Fourier’s idea on heat conduction in the thermal boundary layer.

Fick’s law of mass diffusion is

−→
J = −Df5C. (1.2.16)
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The mass diffusivity Df , is a transport property whose numerical value depends, in general

on the mixture pressure, temperature and composition. Substituting eq.(1.2.16) in the

mass conservation statement (eq.(1.2.15)), we get

DC

Dt
= D52C +R. (1.2.17)

1.2.7 Dimensionless parameter

In dimensional analysis, dimensionless parameters are those to which no dimension is

assigned and these quantities are very much useful in characterizing many types of en-

gineering systems. In fluid dynamics, dimensionless parameters tend to be very useful

for either scaling fluid properties or connecting important parameters that govern fluid

flows. In fluid dynamics, use of dimensionless parameters does not change any of the

fluid properties or the analysis of the problem while under these conditions it becomes

easier to report the data or analyze the problem. There are numbers of dimensionless

parameters which help us to rescale the problem as needed. Description of some of them

are as follows:

Reynolds Number(Re)

In biofluid dynamics, the Reynolds number (Re) is the very important dimensionless

quantity to study. It connects both the viscous forces that impede the flow to the overall

inertial forces that govern the flow. It helps to determine the flow characteristics as well.

For the low value of Reynolds number, flow is considered as laminar flow and on the other

hand, one can notice the turbulent behavior of flow for higher values of Reynolds number.

The Reynolds number basically, gives a measurement in which the force dominates the

change in fluid velocity (Rott, 1990). The Reynolds number is defined as

Re =
inertial forces

viscous forces
=
ρvd

µ
, (1.2.18)

where v is some characteristic velocity, d is a characteristic length of the flow, ρ is the

density of the fluid, µ is fluid viscosity.
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Schmidt Number(Sc)

Schmidt number is defined as a dimensionless number which is the ratio of momentum

and mass diffusivity. Schmidt number helps to characterize the flow of those fluids in

which momentum and mass diffusion-convection process take place. It was named after

the German engineer Ernst Heinrich Wilhelm Schmidt. The formula for the Schmidt

number is expressed as

Sc =
viscous diffusion rate

molecular or mass diffusion rate
=

ν

Df

,

=
µ

ρDf

, (1.2.19)

where Df is the mass diffusivity, ν is the kinematic viscosity, µ is the dynamic viscosity

and ρ is the density of the fluid.

Eckert Number (Ec)

In continuum mechanics, the Eckert number is the dimensionless number which is used

to characterize heat dissipation. It is named after Ernst R. G. Eckert. Eckert number ba-

sically shows the relationship between the boundary layer enthalpy difference and kinetic

energy of the flow. The formula for Eckert number is defined as

Ec =
Heat dissipation potential

Adective transport
=

u2

cp∆T
, (1.2.20)

where u is the fluid velocity, ∆T is the difference between wall temperature and local

temperature and cp is the specific heat at constant pressure.

Prandtl Number (Pr)

The Prandtl number is the ratio of viscous force to the thermal force and defined as

Pr =
µcp
κ
. (1.2.21)
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Peclet Number

The peclet number plays a significant role when as compared to inertia force the thermal

force is large and the viscous force is small. It is defined as

Pe = PrRe. (1.2.22)

Grashof Number

In fluid dynamics, Grashof number is the dimensionless number which is used frequently

for the case involving natural convection. Value of Grashof number is equal to the ratio of

the buoyancy force to viscous force acting on fluid. It is named after the Franz Grashof.

Thermal Grashof Number (Gr)

Thermal Grashof number is the form of Grashof number which is used when in fluid, free

convection is produced by a change in density of the fluid due to a temperature gradient

and given by

Gr =
gβ(Ts − T∞)L3

ν3
. (1.2.23)

Solutal Grashof Number (Gm)

Solutal Grashof number takes in to the place when natural convection is caused due to a

concentration gradient.

Gm =
gβ∗(Ca,s − Ca,a)L3

ν2
. (1.2.24)

In eq.(1.2.23) and eq.(1.2.24), g is acceleration due to Earth’s gravity, ν is the kinematic

viscosity, L is the length, and β is the coefficient of thermal expansion, Ts is the surface

temperature, T∞ is the bulk temperature, Ca,s is the concentration of surface and Ca,a is

the concentration of species a in ambient medium. In eq.(1.2.24), β∗ is defined as

β∗ = −1

ρ

(
∂ρ

∂Ca

)
T,p

,

where Ca is the concentration of species a.
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Brinkmann Number

Brinkmann shows the relationship between heat transported by molecular conduction to

heat produced by viscous dissipation (Khonsari and Booser, 2017). It holds in such a way

that with high value of Brinkmann number the heat generation due to viscous dissipation

reduces and influence of which directly increases the temperature of the fluid.

Br =
µu2

κ(Tw − T0)
= Pr Ec, (1.2.25)

where κ is the thermal conductivity, T0 is the bulk temperature of the fluid, Tw is the

wall temperature, Pr is the Prandtl number, Ec is the Eckert number, u and µ are the

velocity and viscosity of the fluid, respectively.

Nusselt number (Heat transfer coefficient )

For the case of heat transfer at a boundary (surface) within a fluid, the Nusselt number,

which is known as heat transfer coefficient is the ratio of convective to conductive heat

transfer across the boundary (Cengel et al., 2004).

Nu =
Convective heat transfer

Conductive heat tranfer
=
h′

k
l

= −
(
∂θ

∂y

)
y=0

, (1.2.26)

where L is the characteristic length, κ is the thermal conductivity of the fluid and h′ is

the convective heat transfer coefficient of the flow.

Sherwood number(Mass transfer coefficient)

The dimensionless Sherwood number (Sh) is calculated with the ratio of the convective

mass transfer to the rate of diffusive mass transport (Welty et al., 2009). It is named in

honor of Thomas Kilgore Sherwood.

Sh =
Convective mass transfer rate

Diffusion rate
=

h
Df
L

= −
(
∂σ

∂y

)
y=0

, (1.2.27)

where Df is mass diffusivity, L is a characteristic length and h is the convective mass

transfer film coefficient.
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1.3 The Cardiovascular System

In the circulatory system of our body, heart, blood and blood vessels make up the car-

diovascular component. The system that operates in a medium of fluid is analyzed using

fluid mechanics principles. Blood is a bodily fluid in humans and other animals and it

has great importance in physio-pathology. In components of blood, plasma is an aqueous

solution for the suspension of cells. There are about 5 ∗ 109 cells in a milliliter of human

blood. About 5% of these are “platelets” which perform a function related to blood clot-

ting. About 0.2% of the cells are ‘white cells’ which play a role in the resistance of the

body to infection. Most of the cells in the blood are ‘red cells’ the erythrocytes. The red

cells make up about 45% of the blood volume in the average man. The volume fraction of

red cells is known as the ‘hematocrit’ (Desjardins and Duling, 1987). Plasma is composed

of 90% water and about 7% protein. Among the major protein constituents of plasma are

albumins and globulins which maintain osmotic balance and thereby control the move-

ment of water between blood and various tissues. The arterial blood flow provides a way

for glucose, oxygen and hormones to reach various organs around the body. Blood leaves

the heart from the left ventricle into the biggest artery called the aorta. It is important

that fresh blood from the aorta goes directly to the brain because the brain needs oxygen

constantly to avoid irreversible damage to its (Faber, 1995; Fung, 1993).

Blood Vessel

Blood flows in blood vessels which include arteries, capillaries and veins. These vessels

are the part of our circulatory system and by forming the closed network of tubes they

transport blood throughout the body. Different types of blood vessel which are found in

our body are as follows

Arteries and Arterioles

Arteries are the most strong, flexible, and resilient blood vessels of our body. They carry

blood away from the heart and bear the highest blood pressures as the blood they carry

being pushed from the heart by applying a great force. As they are elastic in nature they
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help to maintain the blood pressure by narrowing passively between the beats when the

heart is relaxing. The arteries branch into a very small vessel called arterioles. Arteries

and arterioles have muscular walls and they can increase or decrease blood flow to a

particular part of the body by adjusting their diameter.

Figure 1.3: Circulatory system of the body (source: Gabryś et al. (2006))

Venules and Veins

In our body, blood flows from the capillaries into very small veins called venules, then into

the veins which bring back blood to the heart. Veins act as the blood return counterparts

of arteries and are the large return vessels of the body. Veins and venules feel very low

blood pressures as compared to arteries, arterioles, and capillaries because they absorb

most of the force of the heart’s contractions. Therefore, walls of veins are much thinner,

less elastic, and less muscular as compared to arteries.

Capillaries

Capillaries connect both arteries (which carry blood away from the heart) and veins (which

carry blood back to the heart) and those have tiny, extremely thin-walled vessels. They

almost work in every tissue of our body and keep the limit on the edges of the body’s

unwanted tissues. Their thin walls composed of only a thin layer of endothelium and



1.4 Review of Literature 19

hence they allow waste products to pass from tissues into the blood and simultaneously

allow oxygen and nutrients to pass from the blood into tissues.

The circulatory system is a vast network of organ and vessels in which the significant

part of the blood functioning is to circulate through our body and transport essential

nutrients and oxygen to the body’s cell as well as remove metabolic products and carbon

dioxides from the body as shown in fig.1.3. Human life majorly depends on the ability of

the blood to carry oxygen. Any kind of obstruction, blockage, or diseases can affect the

proper functioning of the blood vessels and in that situation, it would be impossible to

preserve life. These types of situations can appear due to the different type of factors from

genetics to lifestyle. We will discuss here one of the diseases named as atherosclerosis and

how it is manifested within the arterial system.

1.4 Review of Literature

Mathematical modeling is an application of mathematics to explain and predict real-world

behavior. The mathematical model, which describes the dynamics of blood flow, has been

playing an important role in a better understanding of the behaviour of blood flow when

it flows through a diseased artery. These are really useful in decision-making policies for

public health.

The flow of blood through arteries is an important physiological problem and is

of considerable interest for biomedical researchers, physiologists, and clinicians. In this

regard, Olufsen et al. (2000) with the help of one-dimensional Navier-Stokes equations,

modeled the phenomenon of blood flow in the large systemic arteries. They numerically

solved the model and validate the results with the experimental data.

1.4.1 Atherosclerosis or Stenosis

Atherosclerosis disease which is also known as stenosis is characterized by the thickening,

narrowing and stiffening of an arterial wall. The disease grows inside the artery when the

endothelium is damaged by causing harmful cholesterol inside an arterial wall. Thrombo-

sis also is known as clotting, is the medical term in which a blood clot is formed inside the
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blood vessel, which inhibits the flow of blood through the circulatory system (Ross Jr and

Braunwald, 1968). All steps of stenosis formulation are shown in fig.1.4. In the context

of the heart the accumulated material which restricts the path of the blood flow mainly

consists of debris or macrophage cells containing lipids, calcium and a variable amount of

fibrous connective tissue, is known as plaque. Stenosis is a common occurrence in human

Figure 1.4: Stenosis growth inside conronart artery (source: Marcus et al. (1982))

arteries in which hemodynamic factors play an important role in the formation and dis-

semination of this disease. Due to abnormal intravascular growths, stenosis can develop

at various locations in the arterial system. Presence of stenosis inside an arterial wall

can have multiple effects in the body. Inside the blood vessel, flow is increased around

the constriction part of the artery which affects the shear stress or pressure gradient by

increasing their values within the fluid. A diet with high cholesterol, high blood pres-

sure, cigarette smoking, diabetes create more risk factors for arteriosclerosis (Frank et al.,

1973).

The mechanical hydrodynamic factors like turbulence, wall shear stress and lateral

wall pressure affect the growth of the stenosis. Once stenosis is formed inside an artery,

due to gradual deposition of the pearly substance such as cholesterol, lipid and other

substance at the same place, it may advance further. As fatty substance continuously

deposits at the stenotic place it undergoes many different forms such as mild stenosis,
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moderate or serves stenosis. The high growth of stenosis inside an artery creates high

chances of the heart stroke inside the body (Wren et al., 1990).

As the presence of stenosis inside an arterial wall causes serious consequences such as

cerebral strokes and myocardial infarction leading to heart failure, hence it is believed to

be one of the most serious physiological problems. The flow behavior in the stenosed artery

is different from the normal artery and resistance and stresses to flow are also much higher

in the stenosed artery as compared to the normal artery. For a proper treatment (surgery)

of such disease, it is very important for the medical personnel to have a clear and proper

idea about the flow parameters in the stenosed artery such as stress, flow rates and velocity

patterns. Many mathematical models have been developed which describes the case of

single and multiple stenosis. Young (1968) presented a mathematical analysis for axially

symmetric, time-dependent stenosis which grows inside the lumen of a tube of the constant

cross-section through which a Newtonian fluid is steadily flowing. With the help of his

analysis, he suggested that by neglecting time-dependent boundary condition as for quasi-

steady flow, growth of the stenosis plays no role in the fluid mechanics analysis while the

rate at which variables such as shear stress and pressure are altering play an important role

in certain cellular processes. Chakravarty and Mandal (1994) define the time-dependent

geometry for overlapped stenosis. Further, considering the Newtonian behavior of blood

flow, Misra et al. (2011b) developed a mathematical model which describes the case of

double stenosis having the same size.

1.4.2 Variable Viscosity of Blood Flow

We have already discussed the viscosity of fluids, further in this section we explain the

factors which affect the viscosity of blood. It is observed that blood viscosity is not

constant in real physiological systems. It alters either with the hematocrit ratio or with

temperature or pressure. The function of viscosity variation with hematocrit ratio is

defined as

µ(r̄) = µ0(1 + λ~(r̄)), (1.4.1)
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where

~(r̄) = H

[
1−

(
r̄

d0

)m]
,

and Hr = λH, in which λ is a constant having the value 2.5 and H is the maximum

hematocrit at the center of an artery. Where m is the parameter that determines the

exact shape of the velocity profile of blood and Hr is the hematocrit parameter (Shit and

Majee, 2015; Sinha and Misra, 2014).

The temperature dependent viscosity of the blood is given by

µc(T̄ ) = µ̄pexp

[
λi

(
1

2
− T̄ − T̄f
T̄w − T̄0

)]
,

where Tf is the temperature of the fluid and Tw is the temperature of the wall and

the λi is the variable viscosity parameter (Siddiqa et al., 2017a, 2018). Many scientific

studies have been done considering variable viscosity of blood. Bali and Awasthi (2007)

investigated the effect of an external magnetic field on blood flow through a stenosed artery

considering radial co-ordinate dependent blood viscosity. Layek et al. (2009) studied

the effects of variable viscosity on unsteady viscous fluid flow through a vascular tube

with overlapping stenosis. In a typical situation when a large temperature difference

exists, most of the fluids have temperature dependent viscosity and this property varies

significantly (Çinar et al., 2001). Nadeem and Akbar (2010a) presented the mathematical

model to analyze the effects of variable viscosity of blood on the peristaltic flow of a Jeffrey-

six constant fluid by defining the viscosity parameter. They solved the model using the

homotopy analysis method and resulted that as values of the viscosity parameter increase,

the temperature of flow also increases. Recently Siddiqa et al. (2017b) studied the effects

of strong temperature-dependent viscosity on bio-magnetic fluid flow under the action of

the localized magnetic field with viscous dissipation. In their study, they explained that

variable viscosity of blood greatly influence the flow field and creates a lot of vortices

within the vicinity of the walls.

1.4.3 Magnetic Effects on Blood

Nowadays, it has gained serious attention to study the magnetohydrodynamics (MHD)

behavior of blood flow through the blood vessel due to its wide application in the area
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of medical science. Magnetohydrodynamics includes studying the magnetic properties

of an electrically conducting fluid. Fluid in the living creature which is affected by the

presence of an external magnetic field is known as Bio-magnetic fluid. Blood behaves as

bio-magnetic fluid due to red blood cells, in which iron oxides are present at a uniquely

high concentration in the mature red blood cells in the form of hemoglobin molecules.

Therefore, the principle of the magnetic field is applied when the human body undergoes

in the high static magnetic field such as during radiology technique named as Magnetic

Resonance Imaging (MRI). The high strength of an applied magnetic field reduces the rate

of blood flow in the human arterial system and the given result is very much applicable

to treat many types of cardiovascular diseases. In this field Chen and Sana (1985) in

the theoretical analysis investigated the effect of magnetic field on blood flow considering

blood as an electrically conducting fluid. Habibi et al. (2012) presented a mathematical

model to numerically investigate the flow of blood through a channel under the influence of

the magnetic field. With the help of their result they found that as values of the magnetic

field increase, the velocity of blood flow also increases as attaining maximum value at the

center of the artery and zero at the arterial wall. Further, Misra et al. (2011a) presented

a mathematical model for second-grade viscoelastic electrically conducting blood flow

through a channel having oscillatory stretching walls under the influence of the magnetic

field. Bhatti et al. (2017a) developed a mathematical model to study the effects of the

blood clot on non-Newtonian Jeffrey fluid through an annulus under the influence of an

external radially variable magnetic field. With the help of their study, they resulted that

under the effect of magnetic field velocity profile significantly reduce for r < 0.6 while it

shows converse attitude for r > 0.6.

1.4.4 Chemical Reaction

In the chemical reaction, two or more chemicals interact and generate one or more new

chemical compound. Heat and accelerator work as a catalyst for the processing of any

chemical reaction. The chemical reaction is of two types (Misra and Adhikary, 2016)

• Homogeneous catalytic reaction: These are the chemical reactions in which

reactant and catalyst are in the same state of matter (i.e. in the same phase).
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• Heterogeneous catalytic reactions: In these types of chemical reactions reactant

and catalyst are not in the same phase.

The chemical reaction with heat and mass transfer effect has many applications in engi-

neering as well as in industrial processes. Many industrial processes which involve heat

and mass transfer over the flow surface by producing/absorbing the diffusing species,

exists due to the chemical reaction with the ambient fluid. This event which happens

within the fluid directly influence the heat and mass characteristics of the flow. A chem-

ical reaction is known as a first-order reaction if its reaction rate is directly proportional

to the concentration. On the other hand, if consumption caused by the reaction rate

is directly proportional to the kth order concentration difference is known as kth order

chemical reaction, where k is any natural number (Mythili et al., 2015). Effects of first-

order homogeneous chemical reaction on the fluid flowing through a vertical plate are

discussed by Muthucumaraswamy and Ganesan (2001). Further, considering the reac-

tion entirely in the stream, Muthucumaraswamy (2002) analyzed the effects of first order

homogeneous chemical reaction on the viscous fluid flowing through a vertically moving

surface. With the help of their study, they concluded that the concentration profile of

fluid decreases with increasing values of the chemical reaction parameter. Recently, Kan-

dasamy et al. (2005) presented the model to show the effects of heat and mass transfer

with heat source under the influence of the chemical reaction of the first order. In their

study Singel and Stamler (2005) discussed chemical physiology of blood flow regulation

by red blood cells. Influence of reaction rate on the transfer of chemically reactive species

in a laminar, non-Newtonian fluid immersed in a porous medium over a stretching has

been studied by Prasad et al. (2003). Koriko et al. (2018) described the effects of heat

and mass transfer on viscoelastic fluid through a vertical surface with thermophoresis

and variable fluid properties considering the influence of nth order of chemical reaction

in the fluid. They resulted that taking positive values of chemical reaction parameter,

concentration boundary layer thickness decreases with an increase in shear stress for both

cases of n = 1, 2.
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1.4.5 Porosity

It is more physically realizable to consider the porous nature of the medium during the

flow. The model related to porosity nature of the pulmonary system and blood vessels

comes into the picture for the case of arterial blockage when fatty substance deposits on

the arterial wall. Presence of porous media cooled or heated the fluids and enhance the

thermal conductivity of fluids. Normally, to model the flow through a porous medium un-

der high-pressure gradients a Darcy model is used while for the case where inertial effects

dominate the viscous effects such as in highly porous regime this model is insufficient.

To analyze the porosity effect, Khaled and Vafai (2003) gave a rigorous review of heat

and fluid dynamics applications in porous (biological) media. Further, Ogulu and Amos

(2007) presented a study to analyze the effects of temporally varying wall mass flux on

hydromagnetic pulsatile Newtonian blood flow in a Darcian porous model of the cardio-

vascular system, solving it by applying a regular perturbation technique. The popular

approach to simulate drag forces experienced at higher velocities employs the Forchheimer

extension to Darcian model and thus known as Darcy-Forchheimer drag model. Using the

approach of this model, various researches have been presented in the context of porous

media heat transfer, as described by Pop and Ingham (2001). Significant works include

those by Preziosi and Farina (2002) who investigated mass exchange using an extended

Darcy model. Recently, Ozgumus and Mobedi (2015) studied the effects of porous media

on the Newtonian fluid flowing through in between the inline array of rectangular rods

and calculated the effects of the pore to throat size ratio on heat transfer coefficient. Kr-

ishna et al. (2018) in their study discussed the heat and mass transfer effects on unsteady

MHD oscillatory blood flow through porous arteriole.

1.4.6 Inclined Artery

There are so many mathematical models that have been developed to show the effects of

an inclined artery on blood flow. Considering the case of an accelerated body, Srivastava

(2014b) analyzed the effect of an inclined tapered artery on Casson fluid in the presence

of an external magnetic field. Further, Srivastava (2014a) investigated the flow character-
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istics of blood flow through an inclined tapered porous artery under the influence of an

external inclined applied magnetic field and resulted that as values of an inclined angle

(made by artery from the horizontal axis) increase from 0 to π
3
, velocity profile of the

blood flow decreases, respectively. Chakraborty et al. (2011) analyzed the effects of an

inclined artery on blood flow considering a case of axially non-symmetrical but radially

symmetrical mild stenosis inside an artery and noticed that impedance decreases with

increased angle of inclination of the artery. Garcia and Riahi (2014) presented a study

on two-phase blood flow through an inclined stenosed artery with or without a catheter.

Sharma et al. (2014) studied the effects of the inclined catheterized stenosed artery on

pulsatile MHD flow with slip on the wall. Slip effects on unsteady non-Newtonian blood

hydro-magnetic flow through an inclined catheterized overlapping stenotic artery have

been done by Zaman et al. (2016b). With the help of their study, they concluded that

the flow rate increases with an increase in the magnitude of an inclination angle.

1.4.7 Viscous dissipation and Joule Heating

In capillary circulation where associated Reynolds number has a value less than 0.01, vis-

cous dissipation in the blood is of considerable importance (JW, 1962). Brinkman (1951)

presented an analysis of heat transfer with viscous dissipation and explained the viscous

heating in Newtonian fluids. Effect of viscous dissipation on thermal entrance heat transfer

region in the laminar pipe flow with convective boundary has been discussed by Lin et al.

(1983). Effect of viscous dissipation on magnetohydrodynamics incompressible viscous

fluid over the porous stretching surfaces has been presented by Devi and Ganga (2009).

Hussain et al. (2017) presented a computational analysis to show the effects of viscous

dissipation and temperature dependent thermal conductivity on magnetohydrodynamics

Sisko fluid flow over a stretching cylinder. With the help of their study, they resulted that

enhancement in the values of Eckert number increases the advective transportation i.e.

kinetic energy, in resultant fluid particles collide more frequently and this trend directly

transforms the kinetic energy into thermal energy and hence the temperature of fluid

increases.

It is well observed that Joule heating is generated when an external electric field
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is applied to conductive fluids. The produced Joule heating not only cause an increase

in the temperature distribution but also create the temperature gradient. Joule heat-

ing effect control temperature rises in the flow and characterizes the thermomechani-

cal/thermophysical properties of an electro-osmotic flow (Horiuchi and Dutta, 2004; Shit

et al., 2016). There have been lots of scientific studies which show Joule heating effect

on fluid flow (Bhatti and Rashidi, 2017; Pal and Talukdar, 2011). In this regard, Abbasi

et al. (2015) presented a study to explain the effect of Joule heating and inclined magnetic

field on non-Newtonian fluid for the problem of mixed convective peristaltic transport.

Asghar et al. (2014) investigated the effects of Hall and ion slip with Joule heating on

peristaltic flow. Simultaneous effects of slip and wall properties on peristaltic transport

of nanofluid with Joule heating have been done by Hayat et al. (2015). Further, Abbasi

et al. (2016) studied the Joule heating effects with slip-on Carreau–Yasuda Nanofluid

through an asymmetric channel. They solved the model numerically and with the help of

the result concluded that due to the Joule heating effect as the strengths of an external

applied magnetic field increase, the temperature of flow also increases.

Figure 1.5: F̊ahræus effect (source: Minasyan (2016))

1.4.8 Two-phase Blood Flow

Blood flow shows various features. Its one of the basic characteristics is its volume content

of erythrocytes (hematocrit level). Depending upon that various rheological properties of

the blood flow have been observed through in vivo and in vitro analysis and those are as

follows:
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1. F̊ahræus effect The effect explains that as blood flows from a wide diameter of a

blood vessel to a smaller diameter of blood vessel level of hematocrit decreases.

2. F̊ahræus– Lindqvist effect The effect gives the idea about the blood viscosity

when it flows through the narrow blood vessel. According to this effect of blood

viscosity also decreases as vessel diameter decreases in size as shown in fig.1.4.7.

Two-phase behavior of blood flow through a small diameter blood vessel can be

clearly understood by the Haynes’ marginal theory (Haynes, 1960), which explains that

in the two-layer model of blood flow RBC collects towards the center of the blood vessels

while RBC free plasma collects at the outer region of the vessel. Many mathematical mod-

els have been developed which discuss the two-phase behavior of blood flow. Medvedev

and Fomin (2011) presented their study for both large and small blood vessels by tak-

ing the varying diameter of the blood vessel from 4.5 to 1000µm. In their study, they

explained the known characteristics of the blood flow such as viscosity of blood which

depends upon the hematocrit level and blood vessel diameter. Chebbi (2015) in his study

extends the work of Haynes’ marginal theory. He presented a mathematical model for

two-layered blood flow and compared his result with the experimental data of Haynes’

marginal theory without using any fitting parameter for computation. With the help of his

study, he resulted that the decrease in apparent viscosity decreases the microvascular re-

sistance to blood flow and results in lower blood pressures. Further,Ponalagusamy (2016)

presented a mathematical model to study the combined effects of plasma layer thick-

ness, heat transfer and magnetic field on the two-phase flow of blood through a stenosed

artery considering Newtonian characteristics of the fluid in both core and plasma regions.

With the help of their study, they resulted that the shear stress and flow resistance both

decrease in the stenosed artery as the thickness of the plasma layer increases.

1.4.9 Heat Source

There are so many studies in the literature which describe the effect of an external heat

source on blood flow. Presence of heat source leads to affect the heat transfer rate of the

flow by changing the temperature distribution over the region. In this regard, Petrofsky



1.4 Review of Literature 29

et al. (2009) investigated the effect of the moisture content of the heat source on the skin

blood flow response and concluded that the total rise in skin temperature is matched with

moist and heat sources. In their study, Hayat et al. (2016) analyzed the effects of the heat

source with homogeneous-heterogeneous reactions and the influence of Newtonian heating

on MHD peristaltic flow of micropolar fluid through a curved channel. They described

that enhanced values of heat source parameter increase the temperature profile of the

blood flow. Fetecau et al. (2017) presented a general study of magnetohydrodynamic

(MHD) natural convection flow with the heat source, radiative effects and shear stress on

the boundary. In their study, they discussed different cases for heat absorption and heat

generation and resulted that for the case of heat absorption temperature decreases for

increasing values of heat source parameter and for the case of heat generation it shows

the opposite effect.

1.4.10 Heat Transfer

In the physical system, heat transfer includes the transport as conversion and exchange of

thermal energy due to the level of temperature difference. The laws of thermodynamics

process the heat transfer although a separate science is required to quantify the process

of heat transfer. The reason for this is that the heat transfer falls in a non-equilibrium

state while on the other hand classical thermodynamics concerns itself with an equilib-

rium state. The heat can be transferred by one, or by a combination of three separate

mechanisms as thermal conduction, convection and radiation.

Thermal Conduction

Thermal conduction takes place in a stationary medium. Heat conduction is the movement

of heat by the microscopic collisions of the particle and motion of electrons within the

body. Heat conduction is governed by Fourier’s law and states that “the rate of conduction

is proportional to the area measured normal to the direction of the heat flow and the

temperature gradient in the direction of the heat flow”. Mathematically we express the
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Fourier’s law for the x direction as

q = −κ∆T, (1.4.2)

where q is the local heat flux density, κ thermal conductivity and ∆T is the temperature

gradient.

Thermal Convection

As opposed molecular motion within the fluid, thermal convection occurs in a moving

fluid. When a solid surface is encountered by a moving fluid heat is convected either to

it or from it. It depends upon the sign of the surface-to-fluid temperature difference. A

mathematical expression for convective heat flux in convective heat transfer is written as

q = h′(Ts − Tf ), (1.4.3)

where h′ convective heat transfer coefficient, Ts is the temperature of solid and Tf is fluid

temperature.

Thermal Radiation

Radiation does not need any medium to occur and it is the transmission of energy in

the form of waves or particles through space or through the material medium. Anything

having the temperature above than the absolute zero (−273.150C) emits some kind of

energy as thermal radiation by experiencing molecular and atomic vibration. The part

of thermal radiation on flow and heat transfer processes puts a major importance in the

design of many advanced energy conversion systems which operate at high temperature.

In a unit volume, the equation of conservation of radiative transfer (which consider the

radiative energy incident from all directions) for all wavelength is defined as

∇.q̄ra =

∫ ∞
0

Kλ(T̄ )(4eλh(T̄ )−Gλ)dλ, (1.4.4)

where ∇.q̄ra is the radiative flux divergence, Gλ is the incident radiation and eλh is the

Plank’s function, which is expressed as,

Gλ =
1

π

∫
4π

eλ(Ω)dΩ, (1.4.5)
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where Ω is the solid angle and the injection parameter λ is determined as bySharma et al.

(2007)

λ =
u0R0

µ
.

Now, for an optically thin fluid which exchanges the radiation with an isothermal flat

plate at temperature T0 and by applying the Kirchhoff’s law, the conserved radiative heat

transfer from eq.(1.4.4) for an incident radiation Gλ = 4eλh(T0), converts into the given

form

∇.q̄c = 4

∫ ∞
0

Kλ(T̄ )(eλh(T̄ )− eλh ¯(T0))dλ. (1.4.6)

We apply the Taylor series expansion for Kλ(T̄ ) and eλh(T0) around T0 for small (T ∗−T0)

which transform the given eq.(1.4.6) in the form

∇.q̄c = 4(T̄ − T̄0)

∫ ∞
0

Kλ0

(
∂eλh
∂T

)
0

dλ, (1.4.7)

where Kλ0 = Kλ
¯(T0). Further, assuming αc

2 =
∫∞

0
Kλ0

(
∂eλh
∂T

)
0
dλ, eq.(1.4.7) changes in to

∇.q̄ra = 4(T̄ − T̄0)αra
2,

where αra is the mean radiation absorption coefficients.

In radiation therapy, as radiation waves are widely used to treat cancer and tumor,

it is an important subject of research to study the radiation effect on blood flow. Timmer-

man et al. (2003) and Alongi et al. (2012) explained stereotactic body radiation therapy

as a system in which a high dose of radiation is delivered to the tumor by affecting less to

the surrounding critical tissues. Effect of body temperature on blood flow is very much

important to study as it is noticed that during heat muscle treatment body tempera-

ture can cause radiative heat transfer on the blood flow. Craciunescu and Clegg (2001)

discussed the influence of blood velocity pulsation on bioheat transfer by having Newto-

nian characteristics of blood flow. Effects of radiation parameter on wall shear stress and

temperature distribution have been investigated by Ogulu and Abbey (2005). Infrared

radiation is very much used for heat treatment to different parts of the human body.

In this regard, several experimental investigations have been done by Kobu (1999), and
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Nishimoto et al. (2006) to analyze the effects of infrared radiation/ultrasonic radiation

on blood flow. It is preferred to use in heat therapy because with its help it is possible to

directly heat the blood capillaries of the affected areas of the body.

1.4.11 Mass Transfer

In a mixture due to concentration gradients, mass transfer particularly refers to the rela-

tive motion of species. In terms of dimensionless numbers, the mass transfer coefficients

are typically published including Peclet numbers, Reynolds numbers, Sherwood numbers

and Schmidt numbers (Welty et al., 2009). Rashidi et al. (2014) presented a study to show

the effects of both heat and mass transfer on MHD fluid flow over a permeable vertical

stretching sheet in the presence of the radiation and buoyancy effects. In their study, they

compared the effects of Biot number and magnetic parameter on heat and mass transfer

rate. Ellahi et al. (2014a) presented a model to study the influence of heat and mass

transfer on peristaltic flow in a non-uniform rectangular duct under the consideration of

long wavelength (0 �→ ∞) and low Reynolds number (Re → 0). Bhatti and Zeeshan

(2017) examined the heat and mass transfer effects on particle-fluid suspension with the

help of slip effects considering Casson fluid model in both fluid phase and particulate

phase. Further, heat and mass transfer effects on two-phase flow with Electric double

layer effects induced due to peristaltic propulsion in the presence of transverse magnetic

field have been analyzed by Bhatti et al. (2017b).

1.5 Gaps in Existing Research

In above-mentioned studies, the fluid viscosity is assumed to be constant. This assump-

tion is not valid everywhere. Whole blood viscosity is mainly determined by hematocrit

and temperature, whereas plasma viscosity mainly depends on the concentration of high

molecular weight proteins (Koppensteiner, 1996). In general, the coefficient of viscosity

for real fluids depends upon the temperature and pressure of the fluid. For many liquids,

such as water, oils and blood, the variation in viscosity due to temperature change is

more dominant than other effects. In fact, in many thermal transport processes, the tem-
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perature distribution within the flow field is never uniform, i.e. the fluid viscosity may

change noticeably if a large temperature difference exists in the system. For instance, the

fluid viscosity of water decreases by 240% when the temperature increases from 1000C

to 5000C. To accurately predict the flow behavior, it is necessary to take the function of

the variation of viscosity with temperature or hematocrit. Therefore, it is highly desir-

able to include the effect of temperature-dependent viscosity and variable hematocrit in

momentum and thermal transport processes.

The idea of electromagnetic fields in medical research was firstly given by Kolin

(1936), and later Korchevskii and Marochnik (1965) discussed the possibility of regulating

the movement of blood in the human system by applying the magnetic field. It was

observed by these authors that high strengths of the magnetic field slow down the speed

of blood and these results can be very much useful during the surgical process. However,

the published literature lacks the analysis of the magnetic effect on blood flow through an

inclined branched artery. If a magnetic field is applied to a moving electrically conducting

liquid, it induces electric and magnetic fields. The effect of radially variable magnetic field

on narrow arteries is also not investigated earlier.

It is very important to consider the rheological properties of the blood flow when

it flows through narrow blood vessels such as arterioles and venules. Many researchers

(Federspiel, 1989; Fedosov et al., 2010; Ishii and Hibiki, 2010) have been investigated the

two-phase behavior of blood flow (having cell-free plasma region and RBC containing

core region) with the help of in vivo and in vitro analysis. However, with the help of the

literature and to the best knowledge of the authors it is found that the effects of mass

transfer on two-phase blood flow have not gained much attention from the researchers. In

the present study, we consider the mass transfer phenomenon as an important part of the

investigation. Effects of Joule heating and viscous dissipation with first-order chemical

reaction are also observed on both core and plasma regions separately considering hemat-

ocrit dependent viscosity of the core region under the influence radially variable magnetic

field. The case of temperature-dependent viscosity of the core is also discussed consider-

ing the presence elliptic shaped stenosis inside the inclined artery. The present work also

investigates the influence of kth order homogenous chemical reaction with radiation on
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the two-layered model of blood flow. Analysis of heat transfer effects on blood flow with

an extra factor of the heat source is also a part of the present work.

Hence, in the proposed work, we investigate the blood flow with radiative heat and

mass transfer considering its hydromagnetic rheological nature in the presence of porous

medium and variable viscosity. Since this study is carried out for a situation when the

human body is subjected to an external magnetic field, therefore, it bears the promise of

significant application in electromagnetic therapy. The present study also discusses the

case when blood flows through a narrow artery. In which arterial length is presumed to be

large enough in comparison with its radius so that negligible wall effect is observed at the

inlet as well as outlet segment of the artery. The proposed study will be useful to clinicians,

hematologists, and biomedical engineers because they serve as useful estimates, which are

capable of throwing some light towards the understanding of the genesis of pathological

states, like arteriosclerosis as well as the mechanism of gaseous exchanges that take place

within tissues and blood vessels. The study will also be useful for evaluating the role of

porosity and slip condition when the body is subjected to magnetic resonance imaging

(MRI).

1.6 Methodology

1.6.1 Homotopy Method

Let us consider a general nonlinear differential equation

N [u(x)] = 0, (1.6.1)

where N is a nonlinear operator.

Let L denote an auxiliary linear operator and we assume that u0(x) is an initial guess

of u(x), c0 (which has a constant value) is a convergence-control parameter . Using the

embedding parameter q ∈ [0, 1] from homotopy theory, one may construct a family of

equations as

(1− q)L[u(x; q)− u0(x; q)] = c0qN [u(x; q)]. (1.6.2)
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The given eq.(1.6.2) is the zeroth order deformation equation, whose solution varies con-

tinuously with respect to the embedding parameter q ∈ [0, 1].

The linear equation

L [U(x; q)− u0(x; q)] = 0, (1.6.3)

with known initial guess U(x; 0) = u0(x) when q = 0, but it is equivalent to the original

non linear differential equation N [u(x)] = 0 when q = 1 i.e. U(x; 1) = u(x). Therefore,

as values of q vary from 0 to 1 solution U(x; q) of the zeroth order deformation equation

varies from the chosen initial guess u0(x) to the solution u(x) of the given non linear

differential eq.(1.6.1).

Now, using the Taylor series expansion we expand the U(x; q) about q = 0 and get the

homotopy-Maclaurin series as

U(x; q) = u0(x) +
∞∑
m=1

um(x)qm. (1.6.4)

Now, we consider the convergence-control parameter c0 of zeroth order deformation equa-

tion such that the above series eq.(1.6.4) is convergent for q = 1 and we get the homotopy-

series solution as

u(x) = u0(x) +
∞∑
m=1

um(x). (1.6.5)

Using the zeroth order deformation equation, one can directly derive the governing equa-

tion of um(x) as

L[um(x)−Xmu(m−1)(x)] = c0Rm[u0, u1, . . . . . . ., u(m−1)], (1.6.6)

the given eq.(1.6.4) is known as mth order deformation equation, in which the right-hand

side Rm is dependent only upon the known results u0, u1, ..., u(m− 1) and can be obtained

easily using computer algebra software and in equation X1 = 0 and Xk = 1 for k > 1.

Following the given procedure and without the assumption of any small/large physical

parameters the original nonlinear equation is transferred into an infinite number of linear

ones.
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Since the homotopy analysis method(HAM) (Liao (2013)) is based on homotopy, its pro-

vide the freedom to choose the initial guess u0(x), linear operator and the convergence-

control parameter for zeroth order deformation equation. Thus, the HAM gives freedom

to choose the equation-type of the high-order deformation equation and the base func-

tions of its solution. After calculating the general form for the chosen initial guess and

linear operator, the optimal value of the convergence-control parameter c0 is determined

by the minimum of the squared residual error of governing equations and/or boundary

conditions. Therefore, This is a promising way to find the convergence of the homotopy

series solution.

1.6.2 Shooting Method

The shooting method is the numerical method which is used to solve the boundary value

problems(BVP). In the first step of this method, we reduce the given BVP into a initial

value problem. Further, in this, we apply trial and error or some scientific approach to

get as close to the boundary value as possible. For a boundary value problem of a second-

order ordinary differential equation, the method is stated as follows.

Let

ẋ = f(x, t) x ∈ Rn with boundary conditions, (1.6.7)

B : Rn ×Rn → Rn such that B(x(a), x(b)) = 0. (1.6.8)

Let x(tf , s
0) is the solution of the BVP eq.(1.6.7) at time tf with initial condition as

x(t0) = s0. Then the shooting function (error function) is given by

Er(s
0) := B

(
s0, x

(
tf , s

0
))
.

The system of algebraic nonlinear eqs.(1.6.8) in s0 can be solved using Newton’s root

finding algorithm as described in algorithm(1).
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Algorithm 1 Single shooting method

1: procedure Root of the function Er

2: Choose appropriate initial guess s and the error tolerance bound δ > 0.

3: Stopping Criterion:

4: if ‖ Er(s) ‖∞ < δ then Stop.

5: end if

6: Calculate ∆s by solving the linear system dsEr(s)∆s = −Er(s).

7: Update the value of s = s+ ∆s.

8: go to Stopping Criterion.

9: end procedure

1.7 Thesis Organization

In this thesis, we proposed and analyzed mathematical models to understand the dy-

namics of the hydrodynamical flow of blood through a diseased coronary artery. Effects

of different physical parameters (such as magnetic field, chemical reaction and radiation

parameters etc.) which directly affect the flow behavior of blood have been examined

graphically. Results of their analysis on blood flow are widely applicable in many bio-

engineering problems such as cancer treatment, atherosclerosis treatment and regulating

blood flow. Following this introductory part, the thesis is organized as follows: Chapter

1 describes the brief background of the problem and provides the aim and objectives of

the thesis as well as gaps in existing research by giving the literature survey. In Chapter

2, we discussed the effects of heat transfer on blood flow through the inclined stenosed

porous artery with the heat source in the presence of an external magnetic field. In

the model, the viscosity of blood flow is considered as hematocrit dependent. Further,

in Chapter 3, we extended this work and analyzed the effects of both heat and mass

transfer on blood flow with the first order of the homogeneous chemical reaction. We

solved the governing nonlinear partial differential equations analytically using homotopy

perturbation method. The Chapter 4 discussed a case of the two-phase model of blood

flow in which we investigated heat and mass transfer effects with radiation in the presence
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of an external magnetic field. We expanded this work in Chapter 5 by explaining the

mathematical model which described the effects of both heat and mass transfer on the

two-phase model of blood flow through a stenosed vertical narrowed artery with chemical

reaction. We got an exact solution to the given problem. In Chapter 6, we studied Joule

heating and viscous dissipation effects on two-phase blood flow model under the influence

of variable magnetic field treating viscosity of the core region as hematocrit dependent.

We applied both the analytical and numerical approach to solve the given mathematical

model. Chapter 7 helped to analyze a mixed convection problem of two-phase blood

flow through the inclined stenosed artery in which viscosity of the core region is assumed

as temperature dependent and shape of the stenosis is considered as elliptic. Finally, the

main outcomes and future scope of the thesis are summarized in Chapter 8.



Chapter 2

Effect of Heat Transfer on MHD

Blood Flow with Variable Viscosity

and Heat Source

2.1 Introduction

Nowadays in the industrialized world, blood flow in our body through arteries is a major

cause of health risks. In the circulatory system of the human body highly, oxygenated

blood and nutrients delivered from the heart to each cell of the body through arteries.

Deposition of matter in an artery affects its function and this type of abnormal elongation

of arterial thickness is the first smallest step in the formation of atherosclerosis. The

accumulation of substances in the artery is known as stenosis and its presence changes

the flow behavior and hemodynamic conditions of the artery that were existing before

catheterization (Ellahi et al., 2014c; Rabby et al., 2013). In the presence of stenosis

because of fatty deposition on an artery wall, it is increasingly difficult for oxygenated rich

blood to reach the heart muscle and the larger scale of artery blockage causes heart attacks

(Ollivier et al., 2009; Salomone et al., 1996). As hemodynamics is directly related to overall

human health, recently it has gained a serious attention of researchers, physiologists and

clinical persons to study the blood flow through arteries. Excellent works in the context

of arterial blood flow in the presence of stenosis have been reported by Lipscomb and

39
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Hooten (1978), Mekheimer and Kot (2008) and Nadeem et al. (2011).

The erythrocyte (Red blood cell) in the blood is a highly specialized cell with a small

negative charge on it, so the presence of the magnetic field can influence the motion of

red blood cells. Biomagnetic fluid dynamics (BFD) is the science in which we study the

dynamics of biological fluids in the presence of a magnetic field. MHD differs from BFD in

the sense that it deals with magnetic properties of electrically conducting fluids and under

the influence of magnetic field flow is not affected by the magnetization or polarization

of the fluid. MHD has numerous proposed applications in bioengineering and medical

sciences (Mallikarjuna reddy C, 2011), therefore in this area Tzirtzilakis (2008) analyzed

the model of the blood flow in an artery having mild stenosis under the influence of the

magnetic field. Influence of radially varying MHD on the peristaltic flow in an annulus

with heat and mass transfer studied by Nadeem and Akbar (2010b). A model reported by

Sharma et al. (2015b) which shows the effect of the external uniform magnetic field on flow

parameters of both blood and magnetic particles using magnetohydrodynamics (MHD)

approach. Sharma et al. (2013) with Joule effect numerically investigated the heat and

mass transfer effect in magneto-biofluid through a non-Darcian porous medium. Magnetic

particle capture for biomagnetic fluid flow in stenosed aortic is discussed by Abdullah et al.

(2011), Bose and Banerjee (2015). Misra et al. (2011b) proposed a model of blood flow in

a porous vessel having double stenoses in the presence of an external magnetic field. The

flow of an electrically conducting fluid characterizing blood through the arteries having

irregularly shaped multi-stenoses in the environment of a uniform transverse magnetic

field is analyzed by Mustapha et al. (2009) and by Mekheimer et al. (2011). Ikbal et al.

(2009) investigated a model for non-Newtonian flow of blood through a stenosed artery

in the presence of a transverse magnetic field. In which blood is characterized by a

generalized Power law model. Above mentioned research has been done for showing the

magnetic field effects on blood flow but their studies are restricted in consideration of

variable viscosity.

However, In a real physiological system, the blood viscosity is not constant, it may

vary either in hematocrit ratio or depends on temperature and pressure(Shit and Ma-

jee, 2015). Layek et al. (2009) analyzed the functional dependence of blood viscosity on
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hematocrit, viscosity increases with the increasing value of the hematocrit parameter. In

the same direction, Sinha and Misra (2014) presented a model of a dually stenosed artery

with hematocrit-dependent viscosity. The influence of heat transfer with temperature

dependent viscosity is analyzed by Massoudi and Christie (1995), Pantokratoras (2006),

Nadeem and Akbar (2009). In the same direction, effects of temperature dependent vis-

cosity with thermal conductivity on heat transfer and fluid flow are analyzed by Umavathi

et al. (2016), Makinde and Onyejekwe (2011). Nadeem and Akbar (2010a); Nadeem et al.

(2009) proposed the model for peristaltic flow when the viscosity is not constant.

In the case of stenosis when cholesterol deposits on the artery wall and artery-

clogging blood clots in the lumen of the coronary artery this stage in the blood flow

can be considered as equivalent to a fictitious porous medium El-Shahed (2003) reported

a model for pulsatile flow of blood through a stenosed porous artery under the periodic

body acceleration. Akbarzadeh (2016) numerically investigated the effect of periodic body

acceleration and periodic body pressure gradient on MHD blood flow through a porous

artery. Kumar et al. (2005) presented computational techniques for blood flow in arteries

with porous effects. Bhatti and Abbas presented a model for Jeffrey fluid which shows the

effects of slip and MHD on peristaltic blood flow through a porous medium. Petrofsky

et al. (2009) examined the skin blood flow response to the effect of moisture content of the

heat source through data. Prakash et al. (2011) formulated a model for bifurcated arteries

to study the effects of heat source on MHD blood flow. In the same direction, Eldesoky

(2012) studied the effects of heat source on MHD blood flow which passes through a

parallel plate channel.

Motivated by the above analysis, this paper presents an analytical study of the ef-

fect of heat transfer on MHD blood flow through a stenosed inclined porous artery having

variable viscosity and heat source. In the mathematical model of the given problem,

momentum and energy equations of the blood flow are solved under the well-defined

boundary conditions using homotopy perturbation method (Demir et al., 2013; Hemeda,

2012; Roozi et al., 2011). Effects of different physical parameters such as the inclination

angle of the artery, porosity parameter, heat source parameter and magnetic field pa-

rameter on velocity and temperature profile of the blood flow have been plotted through
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graphs.

2.2 The Mathematical Model

The blood flow is assumed to be flowing through a cylindrically shaped non-tapered artery,

in the axial direction of the artery as shown in fig.2.1. Blood is electrically conducting

in such a way that a uniform magnetic field (M) is applied perpendicular to the flow

direction. Throughout the region of the blood flow in the uniform arterial tube, a non-

uniform suspension viscosity is considered, which varies with the packed cell volume of

the red blood cells. A case of symmetrically shaped mild stenosis is considered in order

to make the model in dimensionless form.

Let us Consider an incompressible magnetohydrodynamic(MHD) Newtonian fluid of

density ρ and variable viscosity µ(r̄) flowing through a porous medium in a tube having

finite length L. Artery with stenosis is inclined at an angle γ from the vertical axis.

Consider the cylindrical coordinate system (r, θ, z)in such a way that ū,v̄ and w̄ are the

velocity component in r̄, θ̄ and z̄ directions respectively. The governing equations for the

model are as follows

Momentum equation (r- direction)

ρ

[
ū
∂ū

∂r̄
+ w̄

∂ū

∂z̄

]
= −∂P̄

∂r̄
+

∂

∂r̄

[
2µ(r̄)

∂ū

∂r̄

]
+ 2

µ(r̄)

r̄

[
∂ū

∂r̄
− ū

r̄

]
+

∂

∂z̄

[
µ(r̄)

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
,

(2.2.1)

Momentum equation (z- direction)

ρ

[
ū
∂w̄

∂r̄
+ w̄

∂w̄

∂z̄

]
= −∂P̄

∂z̄
+

∂

∂z̄

[
2µ(r̄)

∂w̄

∂z̄

]
+

1

r̄

∂

∂r̄

[
µ(r̄)r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
− σ1µ̄m

2H0
2w̄ + ρgα

(
T̄ − T̄0

)
cos γ − µ(r̄)w̄

k1

, (2.2.2)

Energy equation

ρcp

[
ū
∂T̄

∂r̄
+ w̄

∂T̄

∂z̄

]
=
k

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
+ µ(r̄)

(
∂w̄

∂r̄

)2

− A(T̄ − T̄0), (2.2.3)

where ū, v̄ and w̄ are the respective velocity component in the radial and axial directions.

cp is specific heat at constant pressure, k is the thermal conductivity, σ1 is the electrical
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Figure 2.1: Geometry of the artery

conductivity and k1 is the permeability, p̄ is the pressure, T̄ is the temperature, ρ is the

density, µ(r̄) is the viscosity and H0 is applied magnetic field.

Variable viscosity of the blood flow is defined by the formula

µ(r̄) = µ0(1 + λ~(r̄)), (2.2.4)

where

~(r̄) = H

[
1−

(
r̄

d0

)m]
,

and Hr = λH, in which λ is a constant having the value 2.5 and H is the maximum

hematocrit at the center of an artery. Where m is the parameter that determines the

exact shape of the velocity profile of blood and Hr is the hematocrit parameter (Sinha

and Misra, 2014).

Geometry of the stenosis located at point z with it’s maximum height of δ, is defined by

the formula (Mekheimer and Kot, 2008)

h(z̄) =

 d(z̄)[1− η(bn−1(z̄ − a)− (z̄ − a)n)] when a ≤ z̄ ≤ a+ b,

d(z̄) otherwise,
(2.2.5)
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where d(z) is the radius of the tapered artery in stenotic region with

d(z̄) = d0 + ξz̄.

In eq.(2.2.5), n is the shape parameter which determines the shape of the constriction

profile. Value n = 2 results symmetrically shaped stenosis and for non symmetric stenosis

case n considers the values n ≥ 2. d0 is the radius of the non-tapered artery and ξ is the

tapering parameter which is defined by ξ = tan(φ), where φ is known as tapered angle

and it considers the values φ < 0, φ > 0 and φ = 0 for the case of converging, diverging

and non tapered artery respectively (Mekheimer and Kot, 2008).

In eq.(2.2.5) parameter η is defined as

η =
δ∗n

n
n−1

d0bn(n− 1)
, (2.2.6)

where δ is the maximum height of the stenosis located at

z̄ = a+
b

n
n
n−1

.

In order to represent the model in dimensionless form, let us introduce the non-

dimensional variables as follows:


ū = uu0δ

b
, r̄ = rd0, z̄ = zb, w̄ = wu0, h̄ = hd0,

P̄ = u0bµ0P
d0

2 , Re = ρbu0
µ0
, Θ = (T̄−T̄0)

T̄0
, P r = µcp

k
, Ec = u02

cpT0
,

Z = k1
d0

2 , M2 = σ1H0
2d0

2

µ0
, Q = Ad0

2

k
, Gr = gαd0

3T̄0
v2

,

(2.2.7)

where Re is the Reynolds number, Ec is the Eckert number, Pr is the Prandtl number

and Gr is the thermal Grashof number, M , Q, Z and Hr are magnetic field, heat source,

porosity and hematocrit parameters, respectively.

In the case of mild stenosis δ∗

d0
� 1 and other two additional conditions (Mekheimer and

Kot, 2008)

Reδ∗n
1

n−1

b
� 1, (2.2.8)

d0n
1

n−1

b
∼ O(1), (2.2.9)

eqs.(2.2.1)-(2.2.3) change in the given non dimensional form

Momentum equation (r-direction)

∂P

∂r
= 0, (2.2.10)
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Momentum equation (z-direction)

∂P

∂z
=

[
1

r
+Hr

(
1

r
− (m+ 1)rm−1

)]
∂w

∂r
+ [1 +Hr(1− rm)]

∂

∂r

(
∂w

∂r

)
− w

(
M2 +

1

Z
+
Hr

Z
(1− rm)

)
+GrΘ cos γ, (2.2.11)

Energy equation
1

r

∂

∂r

[
r
∂Θ

∂r

]
+ EcPr

[
∂w

∂r

]2

−QΘ = 0, (2.2.12)

where Br = EcPr, Brinkman number (Br) is the ratio between heat produced by viscous

dissipation and heat transported by molecular conduction.

The corresponding boundary conditions are

∂w

∂r
= 0,

∂Θ

∂r
= 0, at r = 0, (2.2.13)

w = 0, Θ = 0, at r = h(z). (2.2.14)

In which h(z) is the geometry of the stenosis in non-dimensional form when radius

of the artery is of unit length (d0 = 1)

h(z̄) =

 (1 + ξ′z)[1− η1((z − l1)− (z − l1)n)] when l1 ≤ z ≤ l1 + 1,

1 otherwise,
(2.2.15)

in eq.(2.2.15), η1, δ, l1 and ξ′ are defined as

η1 =
δn

n
n−1

(n− 1)
, δ =

δ∗

d0

, l1 =
a

b
, ξ′ =

ξb

d0

, ξ = tan(φ).

2.3 Solution

Now, we use semi-analytical technique named as homotopy perturbation method to solve

the given nonlinear eqs.(2.2.10)-(2.2.12) under the given boundary conditions eqs.(2.2.13)-

(2.2.14). First, formulate following homotopies for velocity and temperature profiles

H(q, w) = q

[
L(w) +Hr(

1

r
− (m+ 1)rm−1)

∂w

∂r
+Hr(1− rm)

∂

∂r
(
∂w

∂r
)− ∂p

∂z

]
(2.3.1)

+ (1− q)[L(w)− L(w0)]− q
[
w

(
M2 +

1

Z
+Hr

(1− rm)

Z

)
− cosγ(GrΘ)

]
,
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where q ∈ [0, 1] is the embedding parameter and L(w) is the auxiliary linear operator,

defined as

L(w) =
1

r

(
∂

∂r

(
r
∂w

∂r

))
, (2.3.2)

H(q,Θ) = (1− q)[L(Θ)− L(Θ0)] + q

[
L(Θ) + EcPr

(
∂w

∂r

)2

−QΘ

]
, (2.3.3)

where

L(Θ) =
1

r

(
∂

∂r

(
r
∂Θ

∂r

))
. (2.3.4)

The initial guesses used to solve these homotopies are given by

w10 =
(r2 − h2)

4

(
M2 +

1

Z

)(
∂p0

∂z

)
, (2.3.5)

Θ10 =
(r2 − h2)

4
. (2.3.6)

Now, the dependent variables can be decomposed as

w(r, q) = w0 + qw1 + q2w2 +O(q3), (2.3.7)

Θ(r, q) = Θ0 + qΘ1 + q2Θ2 +O(q3). (2.3.8)

Now, substitute the series expansion of above variables in eq.(2.3.1) and eq.(2.3.3),

compare the coefficients of q0, q1 and q2.

First by comparison the coefficient of q0 in eq.(2.3.1),

L(w0)− L(w10) = 0 ⇒ w0 = w10 =
(r2 − h2)

4

(
M2 +

1

Z

)(
∂p0

∂z

)
, (2.3.9)

now compare the coefficient of q1 in eq.(2.3.1),

L(w1) = −L(w0)−Hr

(
1

r
− (m+ 1)r(m−1)

)
∂w0

∂r
−Hr (1− rm)

∂

∂r

(
∂w0

∂r

)
+ w0

(
M2 +

1

Z
+Hr

(1− rm)

Z

)
− cosγ (GrΘ0) +

∂p0

∂z
, (2.3.10)

and by compare the coefficient of q2 in eq.(2.3.1), get the equation as follows

L(w2) = −Hr

(
1

r
− (m+ 1)r(m−1)

)
∂w1

∂r
−Hr(1− rm)

∂

∂r

(
∂w1

∂r

)
+ w1

(
M2 +

1

Z
+Hr

(1− rm)

Z

)
− cosγ (GrΘ1) +

∂p1

∂z
. (2.3.11)



2.4 Results and Discussion 47

Now in eq.(2.3.3), compare coefficients of q0, q1 and q2 respectively

q0 : L(Θ0)− L(Θ10) = 0 ⇒ Θ0 = Θ10 =
(r2 − h2)

4
, (2.3.12)

q1 : L(Θ1) = −L(Θ0)− EcPr
(
∂w0

∂r

)2

+QΘ0, (2.3.13)

q2 : L(Θ2) = −2EcPr

(
∂w0

∂r

)(
∂w1

∂r

)
+QΘ1. (2.3.14)

So with the help of initial guesses w10, Θ10 from eq.(2.3.5) and eq.(2.3.6) and by

using the definition of linear operators L(w0) and L(Θ0) from eq.(2.3.2) and eq.(2.3.4), in

eq.(2.3.10) and eq.(2.3.13), get the expressions for w1 and Θ1 as

w1 =
(r2 − h2)

4

(
∂p0

∂z

)(
1− (M2 +

1

Z
)

)
− cosγ

64

(
r4 + 3h4 − 4r2h2

)
Gr

+
Hr

4Z

(
∂p0

∂z

)(
M2 +

1

Z

)(
r4 + 3h4

16
+

(hm+4 − rm+4)

(m+ 4)2 +
h2rm+2 − hm+4

(m+ 2)2

)
− Hr

4Z

(
∂p0

∂z

)(
M2 +

1

Z

)(
r2h2

4

)
+

(
∂p0

∂z

)(
M2 +

1

Z

)2(
r4

16
+

3h4

16
− h2r2

4

)
− Hr

2

(
r2 − h2

2
+
hm+2 − rm+2

m+ 2

)(
∂p0

∂z

)(
M2 +

1

Z

)
, (2.3.15)

Θ1 = −EcPr (r4 − h4)

64

(
∂p0

∂z

)2(
M2 +

1

Z

)2

−
(
r2 − h2

4

)
+Q

(
r4

16
+

3h4

16
− r2h2

4

)
.

(2.3.16)

Final expressions for w2 and Θ2 have been calculated by putting the values of w1,

Θ1 in eq.(2.3.11) and eq.(2.3.14) and with the help of MATLAB 2015a. We obtain full

expressions for w(r, z) and θ(r, z) by putting the values of w1, w2, θ1 and θ2 in eq.(2.3.7)

and eq.(2.3.8) respectively.

2.4 Results and Discussion

In this section graphical results have been displayed for velocity, temperature and wall

shear stress profiles of the blood flow for different quantities of interest. Default values of
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the physical parameters which have been used to graphically analyze the effectiveness of

the model are as follows:

d0 =1, h(z)=0.9, a=0.25, b=1, γ = π
6
, Z = 0.3, n = 2, Gr = 2, z= 0.5, δ = 0.1, Hr = 1,

M = 1.5, Q = 1.5, Br = 2.

Fig.2.2, displays the effect of the magnetic field parameter on the velocity profile of

the blood flow. It can be easily seen from the figure that the velocity profile of the blood

flow decreases as values of the magnetic field parameter increase. It happens because

of the fact that when blood flows under the influence of the magnetic field, the action

of magnetization applies a rotational motion on the charged particles of the blood flow.

The continuous rotational motion of the charged particles causes red blood cells to be

more suspended in the blood plasma and this effect increases the internal viscosity of

the blood flow. Increased viscosity causes rise to a resistive type force called the Lorentz

force. This force opposes the motion of blood particles, which reduces the velocity of the

blood flow. This effect of magnetic field on the velocity profile of the blood flow follows

in the same manner as proposed by the authors Sharma et al. (2015b). Fig.2.3, displays

the effects of the magnetic field parameter on the temperature profile of the blood flow.

From the figure, it is clear that as the values of the magnetic field parameter increase,

the temperature profile of the blood flow decreases. As it has been discussed above that

with the increment in the values of magnetic field parameter result in increasing values

of viscosity. So by the physical law of viscosity, this follows in a right manner that with

the increment in the values of the magnetic field parameter result in the direction of

decreasing value of temperature profile.

In fig.2.4 , the velocity profile of the blood flow is plotted for different values of

thermal Grashof number. It is clear from the figure that as values of the thermal Grashof

number changes from 1 to 3, the velocity profile of the blood flow increases and this

happens due to increased Boussinesq source terms. Thermal Grashof number indicates

the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the

boundary layer. Therefore, a rise in the velocity of the blood flow is observed due to the

enhancement of thermal buoyancy force as values of the thermal Grashof number increase.

Fig.2.5 is plotted to show the effects of the thermal Grashof number on the temperature
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profile of the blood flow. It is clear from the figure that as values of the thermal Grashof

number increase, the temperature profile of blood flow decreases.
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with thermal Grashof number (Gr)
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Effect of the Brinkman number on the temperature profile is depicted in fig.2.6.

From the figure, it is clear that as the values of the Brinkman number increase, temper-

ature profile of blood flow decreases, respectively. It clears that for a particular value of

Brinkman number, the temperature profile of blood flow decreases from the middle of the

artery to the side wall of the artery. Fig.2.7 displays the effects of porosity parameter
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temperature profile of the blood flow. The figure marks that the temperature profile in-

creases with increasing values of the porosity parameter and it takes place maybe because

of the viscous nature of the fluid which decreases with increasing values of velocity.
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Figure 2.6: Variation of temperature pro-

file for different values of Br
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Fig.2.8 illustrates the distribution of the velocity profile of the blood flow for different

values of the hematocrit parameter. The figure shows that the velocity profile of the blood

flow decreases with increasing values of the hematocrit parameter. In blood, hematocrit

is the volume percentage of red blood cells and in the artery as the number of red blood

cells increases in the volume, the density of blood flow increases relatively. Increased

density of blood slows down the flow of blood and this causes the decreased velocity of

the blood flow. The figure further reveals that velocity of the blood flow follows the

parabolic profile such that for any particular value of the hematocrit parameter velocity

attains maximum value at the center and it starts decreasing as we move towards the

stenotic wall of the artery. Fig.2.9 illustrates the distribution of temperature profile of

the blood flow for different values of the hematocrit parameter Hr. From the figure, it can

be clearly observed that as the values of the hematocrit parameter increase, temperature

profile of the blood flow decreases. So increase in the value of Hr directly decrease the

rate of heat transfer at the stationary artery wall.

Fig.2.10 shows the variation of the velocity profile of the blood flow for different values

of the heat source parameter. It can be clearly seen from the figure that as values of the
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heat source parameter increase, the velocity of the blood flow also increases. Fig.2.11

displays the variation of the temperature profile of the blood flow for different values

of the heat source parameter. From the figure, it can be marked that within the blood,

radiation acts as a heat source. Hence, increasing values of radiation dosage would directly

increase the temperature profile of the blood flow. In the pathological state, this type of

thermal therapy is very much used to expose body tissues and cancerous tumor to high

temperature. The result of which kills cancer cells associated with tumors with minimal

injury to normal tissues. It is observed through the figure that for a particular value of
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the heat source parameter, temperature profile of the blood flow achieves its maximum

value at the center of the artery and it starts decreasing as we move towards the stenotic

wall.
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Figs.2.12-2.13 illustrate the distribution of velocity and temperature profiles for dif-

ferent inclination angles of the artery, respectively. Figures show that as the angle made

by the artery from vertical axes changes increasingly from 0 to π
3
, velocity profile increases

while temperature profile of the blood flow decreases, respectively, where γ = 0 is the case
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of the horizontal artery.

Figs.2.14-2.15 are plotted to show the effects of the height of the stenosis (δ) on

velocity and temperature profile of the blood flow, respectively. It is clear from figures

that as values of the height of the stenosis increase both velocity and temperature profile

of the blood flow decrease, respectively. So from these figures, it can be clearly observed

that both velocity and temperature profile of the blood flow attain their minimum value

at the arterial wall and maximum value at the middle of the artery. For every value of δ

this satisfies the boundary conditions

Expression for the Shear Stress

The nonzero dimensionless shear stress is given by

S̃rz = −
(
∂w

∂r

)
, (2.4.1)

expression for wall shear stress is

S̃rz = −
[
∂w

∂r

]
r=h

. (2.4.2)

To find the expression for shearing stress at the stenosis throat i.e., the wall shear at

the maximum height of the stenosis located at z = a
b

+ 1

n
n
n−1

, put h = (1 − δ). So the

expression for the wall shear at the maximum height of the stenosis is given by

τ̃s = −
[
S̃rz

]
h=(1−δ)

. (2.4.3)

Fig.2.16 is plotted for the wall shear stress at stenosis throat τs against the height of

the stenosis δ for different values of the magnetic field parameter (M). From fig.2.16 it is

clear that as values of the magnetic field parameter changes from 0 to 1.5, the wall shear

stress at stenosis throat increases respectively. Fig.2.17 and fig.2.18 display the effects of

hematocrit and porosity parameter on wall shear stress at stenosis throat, respectively.

Fig.2.17 marks that as values of hematocrit parameter increase from 0 to 2, wall shear

stress at stenosis throat is also increased, respectively. Fig.2.18 depicts that effects of the

porosity parameter change increasingly from 0.1 to 0.4, wall shear stress at stenosis throat

decreases, respectively.
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The flow rate of blood flow can be calculated as

Q = 2πd0
2

∫ d0

0

u(r)dr. (2.4.4)

Fig.2.19 displays flow rate profile of the blood flow for different values of the inclination

angle of the artery. From the figure, it is observed that as values of the inclination angle

made by the artery increase from 0 to π
3
, the flow rate of the blood flow inside a stenosed

artery increases.
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To draw the velocity contours following data are used:

M = 1, h = 0.9, δ = 0.1, Z = 0.5, Gr = 2, γ =
π

6
, Hr = 1.

Figs.2.20-2.22 illustrate the flow patterns of blood in the stenosed artery for different
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Figure 2.20: Velocity con-

tour for 10% stenosis
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Figure 2.21: Velocity con-

tour for 15% stenosis
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Figure 2.22: Velocity con-

tour for 18% stenosis
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tour for γ = 0
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values of the height of the stenosis. The plots give the clear picture of flow circulation

inside the artery when stenosis blocks 10% to 18% part of the artery. From figures, it is
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clear that as constriction of the artery increases trapping bolus try to the shift from the

downstream part of the stenosis towards the arterial wall. In figures, 0 scale streamlines

show the constriction part of the artery outside of that no flow occurs. Figs2.23-2.25

exhibit the flow pattern of the blood flow through streamlines contours for different values

of the inclination angles made by the artery. We observe that as the inclined angle of the

artery increasingly changes from 0 to π velocity increases at stenosis throat.

2.5 Conclusions

In the article, the hemodynamics of MHD blood flow having variable viscosity through

a stenosed, inclined arterial segment with heat source has been investigated. The study

discusses the situation when the lumen of an arterial segment converts into a porous

medium due to the deposition of fatty substances. Flow dynamics has been analyzed by

the momentum and energy equation of the flow. A homotopy perturbation technique is

used to get the analytical solutions for velocity and temperature equations of the blood

flow. The significant findings of this paper are summarized as follows:

1. The velocity of the blood flow decreases as values of the magnetic field parameter

increase and this happens due to the Lorentz force which opposes the motion of the

blood flow in the artery. The given result can be very much useful to control blood

flow during the surgical process.

2. The velocity profile of the blood flow increases as values of the inclination angle

made by the artery increase while it shows the reverse effects on the temperature

profile of the blood flow.

3. The velocity of the blood flow decreases as values of the hematocrit parameter

increase. This happens due to increased density of the red blood cell inside the

artery which in result slows down the flow.

4. Heat source parameter brings out an effective change in the temperature profile of

the blood flow. The temperature profile of the blood flow increases as values of the
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heat source parameter increase. This result is very much useful in the therapeutic

procedure of hyperthermia, particularly in understanding/regulating the blood flow.

5. The shear stress at the wall of the stenosis increases as values of the hematocrit

parameter increase. The flow rate of the blood flow increases as values of the

inclination angle made by the artery increase.





Chapter 3

Effect of Variable Viscosity on MHD

Inclined Arterial Blood Flow with

Chemical Reaction

3.1 Introduction

In the circulatory system of our body, blood delivers all important substances like nutri-

ents and oxygen from one body cell to the other body cells through arteries and veins.

Arteries play an important role in the transportation of highly oxygenated blood, which

drives blood from the heart to the other body parts. Systematic circulation of the blood

throughout the body help to stabilize the temperature and pH scale, by providing the

nourishment to the body. Extra deposition of fat inside the artery, constricts the arterial

wall and directly affects the work function of the artery. The accumulation of substances

in an artery is known as stenosis which changes hemodynamic conditions and flow pattern

that was existing in the artery, early to catheterization (Ellahi et al., 2014c; Rabby et al.,

2013; Srivastava and Saxena, 1997). Today’s industrialized world blood flow in our body

through arteries pose serious health risks. It is believed that one of the most widespread

diseases in humans is atherosclerosis which takes place when hard plaque builds up inside

the artery (Pasceri and Yeh, 1999). The presence of hard plaque limiting the flow of blood

inside the artery and provides cells of blood to make blood clots near the hardened plaque.
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Clots make the artery even more blocked and at that time it is increasingly difficult for

oxygenated rich blood to reach the heart muscle because of the narrowing of the artery.

This larger scale of coronary artery blockage causes heart attacks in the human body

(Falk et al., 1995). This type of biological system related problems we deal in “Biome-

chanics”, Which is about to study the function and structure of the living body with the

help of mechanics (Fung and Cowin, 1994). Since it is directly related to the health of a

human body, nowadays this has gained serious attention from researchers, physiologists,

and clinical persons to study the arterial blood flow. In this field Ellahi et al. (2014b)

in their paper mathematically explained a model of arterial blood flow with Composite

Stenosis. Further, in this work Pralhad and Schultz (2004) presented a model for arterial

stenosis and gave an idea about its application to blood diseases.

In the human body, one-milliliter blood contains about 5 ∗ 1011 cells. Most of the

cells in blood are red cells as these make up about 45% of the blood volume in the average

man. Red blood cells are also known as erythrocytes. Erythrocytes are rich in hemoglobin

which is an iron-containing biomolecule. Since erythrocytes have iron oxides molecules in

its content, an applied magnetic field can influence the motion of the blood flow. So in

the presence of a magnetic field, red blood cell shows characteristics of diamagnetic fluid

when it is allocated in arteries (Baldwin and Wilson, 1994). A field in which we study the

effects of applied magnetic field on biological fluids is known as biomagnetic fluid dynamics

(BFD) and today it has numerous proposed applications in bioengineering and medical

sciences. Magnetohydrodynamics (MHD) differs from BFD in the sense that it deals with

electrically conducting fluids, and in the magnetic field, flow affects by the magnetization

of the fluid (Haik et al., 1999). In order to investigate the effects of magnetic field on

blood flow, Tzirtzilakis proposed a mathematical model for Newtonian blood flow under

the action of applied magnetic field (Tzirtzilakis, 2005). Further, in the same direction,

Misra and Sinha (2013) presented a model to study the effects of thermal radiation on

MHD blood flow by using similarity transformation and boundary layer approximation.

Srivastava (2014a) analytically investigated the effect of an inclined magnetic field on

blood flow through an inclined porous artery with mild stenosis. In the presence of a

magnetic field and with the case of double stenosis Misra et al. (2011b) proposed a model
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of blood flow in a porous vessel.

The porosity of medium is a major characteristic of the artery in order to analyze

the effects of different physical parameters on blood flow. In this direction Khaled and

Vafai (2003) proposed a model for heat transfer, in furtherance of defining the role of

porosity in biological tissues. Akbarzadeh (2016) numerically simulated a non-Newtonian

model for MHD blood flows which flows through a porous blood vessel. Eldesoky (2014)

concerned with a study of the unsteady MHD pulsatile flow of blood through a porous

medium in a stenotic channel with slip at permeable walls. He reported that in porous

medium velocity of blood flow decreases as magnetic field parameter and depth of the

stenosis increases. Considering nanoparticles in the blood which is flowing through a

porous vessel, Rahbari et al. (2017) explained the mathematical model of heat transfer in

the presence of a magnetic field. However, none of these research considered the effects

of variable viscosity as they assumed in their research viscosity as constant viscosity.

In blood, the fraction of packed cell volume differs from point to point. So In a real

physiological system, the functional dependence of the blood viscosity is not constant it

may vary either with hematocrit ratio or depends upon temperature and pressure (Shit

and Majee, 2015). In this regard, taking functional dependence of blood viscosity on

hematocrit Layek et al. (2009) analyzed the model of unsteady viscous flow in a vascular

tube with an overlapping constriction and examined that as the value of hematocrit

parameter increases viscosity increases respectively. Further, Sinha and Misra (2014)

investigated the effects of variable viscosity and variable hematocrit on an MHD flow of

blood through a dually stenosed artery. Makinde and Onyejekwe (2011) proposed a model

of MHD generalized Couette flow and heat transfer with temperature dependent viscosity

and reported that increasing the viscosity exponent, increases the viscous forces and slow

down the fluid motion.

Recently, the study of the heat source and chemical reactions on blood has become

quite interesting because of the quantitative prediction of blood rate. Heat generations

are of great importance for diagnosing blood circulation illness and for the noninvasive

measurement of blood glucose. In order to analyze the effects of the heat source and

chemical reaction parameters on blood flowing artery Mekheimer et al. (2012) presented
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a paper which investigates the influence of heat and chemical reaction parameters on blood

flow through a tapered artery which is having overlapped stenosis. In the same direction,

Noreen Sher Akbar (2012) studied the blood flow in a tapered artery with stenosis which

shows the influence of heat and chemical reactions on a hyperbolic tangent fluid model.

By treating blood as a second-grade fluid, Misra and Adhikary (2016) presented a model

to study the effects of chemical reaction as well as heat and mass transfer of oscillatory

MHD flow of blood.

However, the effects of both heat and mass transfer on MHD blood flow of having

variable viscosity with chemical reaction have a little attention in the literature. Hence,

the present article with the help of governing non-linear partial differential equations ana-

lyzes the combined effects of heat and mass transfer on Newtonian, steady, incompressible

fluid flow. The analytical technique homotopy perturbation method has been used to ob-

tain the solutions for the wall shear stress, velocity, temperature and concentration of the

blood flow (Mohyud-Din and Noor, 2009). Their respective graphs have been plotted for

different values of the physical parameters of the problem.

3.2 The Mathematical Model

Let us consider the two-dimensional flow of blood through a porous stenosed artery of

length L, inclined at an angle γ from the vertical axis. The flow is assumed to be laminar,

axially symmetric, incompressible, bio-magnetic. Blood is assumed as Newtonian fluid.

Under the fully developed boundary conditions, the flow is subject to a uniform magnetic

field applied perpendicular to the direction of the inclined artery as displayed in fig.3.1.

The viscosity of the blood is assumed to vary in radial direction with a variable hematocrit

of density ρ. The shape of the artery is assumed to cylindrical in which ū, v̄ and w̄

represent the velocity components in r̄, θ̄ and z̄ directions, respectively. Under these

assumptions governing equations of the blood flow are as follows:

ρ

[
ū
∂ū

∂r̄
+ w̄

∂ū

∂z̄

]
= −∂P̄

∂r̄
+

∂

∂r̄

[
2µ(r̄)

∂ū

∂r̄

]
+ 2

µ(r̄)

r̄

[
∂ū

∂r̄
− ū

r̄

]
+

∂

∂z̄

[
µ(r̄)

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
,

(3.2.1)
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ρ

[
ū
∂w̄

∂r̄
+ w̄

∂w̄

∂z̄

]
=− ∂P̄

∂z̄
+

∂

∂z̄

[
2µ(r̄)

∂w̄

∂z̄

]
+

1

r̄

∂

∂r̄

[
r̄µ(r̄)

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
− σ1µ̄m

2H0
2w̄

+ ρgα
(
T̄ − T̄0

)
cos γ + ρgα

(
C̄ − C̄0

)
cos γ − µ(r̄)

k1

w̄, (3.2.2)

ρcp

[
ū
∂T̄

∂r̄
+ w̄

∂T̄

∂z̄

]
=
k

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
+ µ(r̄)

(
∂w̄

∂r̄

)2

, (3.2.3)

(
ū
∂

∂r̄
+ w̄

∂

∂z̄

)
C̄ =Df

(
∂2C̄

∂2r̄
+

1

r

∂C̄

∂r̄
+
∂2C̄

∂2z̄

)
+
DfKT

Tm

(
∂2T̄

∂2r̄
+

1

r

∂T̄

∂r̄
+
∂2T̄

∂2z̄

)
− L(C̄ − C̄0),

(3.2.4)

where ū, v̄ and w̄ are the respective velocity component in the radial and axial directions,

cp is specific heat at constant pressure, k is the thermal conductivity, σ1 is the electrical

conductivity, k1 is the permeability, p̄ is the pressure, T̄ is the temperature, ρ is the

density, µ(r̄) is the viscosity and H0 is applied magnetic field, Df is the coefficients of

mass diffusivity, KT is the thermal-diffusion ratio and L is the factor of chemical reaction

parameter.

Variable viscosity µ(r̄) of the blood flow is defined as

µ(r̄) = µ0(1 + λh(r̄)), (3.2.5)

where

~(r̄) = H

[
1−

(
r̄

d0

)m]
, (3.2.6)

assume that λH = Hr, H denotes the maximum hematocrit at the center of the artery,

λ is a constant which has a numerical value 2.5, notation m determines the exact shape

of the velocity profile and Hr is the hematocrit parameter (Sinha and Misra, 2014).

Geometry of the stenosis, located at point z with it’s maximum height of δ is defined

by the formula (Mekheimer and Kot, 2008)

h(z̄) =

 d(z̄)[1− η(bn−1(z̄ − a)− (z̄ − a)n)] when a ≤ z̄ ≤ a+ b,

d(z̄), otherwise,
(3.2.7)

where d(z̄) is the radius of the tapered artery in stenotic region with

d(z̄) = d0 + ξz̄, (3.2.8)
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Figure 3.1: Geometry of the inclined artery with perpendicular applied

magnetic field (M)

in which d0 represents the radius of the non-tapered artery and ξ is the tapering parameter

which defines by ξ = tan(φ), where φ is known as the tapered angle. φ possess values just

lower than zero (φ < 0) for the case of converging tapered artery, for diverging tapered

artery it takes the value greater than zero (φ > 0) and the case of non- tapered artery φ

has zero value.

In eq.(3.2.7) η is defined by

η =
δ∗n

n
n−1

d0bn(n− 1)
, (3.2.9)

where δ∗ is the maximum height of the stenosis located at

z̄ = a+
b

n
n
n−1

,

and n is the shape parameter which determines the shape of the constriction profile. Value

n = 2 results the symmetrically shaped stenosis and non-symmetric stenosis occurs for

n ≥ 2 values.

Now the nondimensional parameters are as follows

ū = uu0δ
b
, r̄ = rd0, z̄ = zb, w̄ = wu0, h̄ = hd0,

P̄ = u0bµ0P
d0

2 , Re = ρbu0
µ0
, Θ = (T̄−T̄0)

T̄0
, P r = µcp

k
, Ec = u02

cpT0
,

Z = k1
d0

2 , M2 = σH0
2d0

2

µ0
Sr = ρDkT T̄0

µ0TmC̄0
, Sc = µ

Dp
,

σ = (C̄−C̄0)

C̄0
, E = ρd0

2L
µ
,

(3.2.10)
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where Re is the Reynolds number, Ec is the Eckert number, Pr is the Prandtl number

and Gr and Gm are the thermal and solutal Grashof number, Sc and Sr are Schmidt and

Soret number, respectively and M , Q, Z, Hr, E are magnetic field, heat source, porosity,

hematocrit and chemical reaction parameters, respectively.

Viscosity of the blood flow as given in eq.(3.2.5) can be written in non-dimensional

form as

µ(r) = µ0(1 + λH(1− rm)). (3.2.11)

In the case of mild stenosis
(
δ∗

d0
� 1

)
and by considering two other additional conditions

(Mekheimer and Kot, 2008)

Reδ∗n
1

n−1

b
� 1, (3.2.12)

and
d0n

1
n−1

b
∼ O(1). (3.2.13)

Now, the eq.(3.2.1) to eq.(3.2.4) change in given non dimensional form respectively

as
∂P

∂r
= 0, (3.2.14)

∂P

∂z
=

[
1

r
+Hr

(
1

r
− (m+ 1)rm−1

)]
∂w

∂r
+

[
1 +Hr(1− rm)

∂

∂r

(
∂w

∂r

)]
+GrΘ cos γ

+Gmσcos γ − w
[
M2 +

1

Z
+
Hr

Z
(1− rm)

]
,

(3.2.15)

1

r

∂

∂r

[
r
∂Θ

∂r

]
+ EcPr

[
∂w

∂r

]2

= 0, (3.2.16)

1

Sc

[
1

r

∂

∂r

(
r
∂σ

∂r

)]
+ Sr

[
1

r

∂

∂r

(
r
∂Θ

∂r

)]
− Eσ = 0, (3.2.17)

where Br = EcPr known as the Brinkman number which is the ratio of viscous heat

generation to external heating and E is the chemical reaction parameter.

The corresponding boundary conditions are as follows,

∂w

∂r
= 0,

∂Θ

∂r
= 0,

∂σ

∂r
= 0 at r = 0, (3.2.18)

w = 0, Θ = 0, σ = 0, at r = h(z), (3.2.19)
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where h(z) is the geometry of the stenosis in non-dimensional form when radius of the

artery is of unit length (d0 = 1),

h(z) =

 (1 + ξ′z)[1− η1((z − l1)− (z − l1)n)] when l1 ≤ z ≤ l1 + 1,

1, otherwise,
(3.2.20)

where

η1 =
δn

n
n−1

(n− 1)
, δ =

δ∗

d0

, l1 =
a

b
, ξ′ =

ξb

d0

.

3.3 Solution

Now, applying homotopy perturbation method(HPM) to solve non linear differential

eqs.(3.2.14)-(3.2.17) under the given boundary conditions eqs.(3.2.18)-(3.2.19). In HPM

, homotopies for velocity, temperature and concentration profiles are as follows

H (q, w) = q

[
L (w) +Hr

(
1

r
− (m+ 1) rm−1

)
∂w

∂r
+Hr (1− rm)

∂

∂r

(
∂w

∂r

)
− ∂p

∂z

]
+ (1− q) [L (w)− L (w0)]− q

[
w

(
M2 +

1

Z
+Hr

(1− rm)

Z

)]
+ q [cosγ (GrΘ +Gmσ)] , (3.3.1)

H (q,Θ) = (1− q) [L(Θ)− L(Θ0)] + q

[
L(Θ) + EcPr

(
∂w

∂r

)2
]
, (3.3.2)

H (q, σ) = (1− q) [L (σ)− L (σ0)] + q [L (σ) + ScSrL (Θ)− ScEσ] , (3.3.3)

where L is the linear operator defined as

L (X) =
1

r

(
∂

∂r

(
r
∂X

∂r

))
. (3.3.4)

The initial guesses which satisfy the corresponding boundary conditions eqs.(3.2.18)-

(3.2.19) are given as,

w10 =
(r2 − h2)

4

(
M2 +

1

Z

)(
∂p0

∂z

)
, (3.3.5)

Θ10 =
(r2 − h2)

4
, (3.3.6)
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σ10 = −(r2 − h2)

4
. (3.3.7)

Dependent variables can be decomposed in series form as follows:

w(r, q) = w0 + qw1 + q2w2 +O(q3), (3.3.8)

Θ(r, q) = Θ0 + qΘ1 + q2Θ2 +O(q3), (3.3.9)

σ(r, q) = σ0 + qσ1 + q2σ2 +O(q3). (3.3.10)

Substituting the series expansion form of w(r, q), Θ(r, q), σ(r, q) from eqs.(3.3.8)-(3.3.10)

in to eqs.(3.3.1)-(3.3.3) respectively, compare the coefficients of q0, q1 and q2.

For eq.(3.3.1) coefficients of q0, q1 and q2 are as follows,

q0 : L(w0)− L(w10) = 0 ⇒ w0 = w10 =
∂p0

∂z

(r2 − h2)

4

(
M2 +

1

Z

)
, (3.3.11)

q1 : L (w1) =− L (w0) +
∂p0

∂z
−Hr

(
1

r
− (m+ 1) r(m−1)

)
∂w0

∂r

+ w0

(
M2 +

1

Z
+Hr

(1− rm)

Z

)
− cosγ(GrΘ0 +Gmσ0)

−Hr (1− rm)
∂

∂r

(
∂w0

∂r

)
, (3.3.12)

q2 : L(w2) =
∂p1

∂z
−Hr(

1

r
− (m+ 1)r(m−1))

∂w1

∂r
−Hr(1− rm)

∂

∂r
(
∂w1

∂r
)

+ w1(M2 +
1

Z
+Hr

(1− rm)

Z
)− cosγ(GrΘ1 +Gmσ1). (3.3.13)

Similarly, for temperature eq.(3.3.2) coefficients of q0, q1 and q2 are as follows,

q0 : L (Θ0)− L (Θ10) = 0 ⇒ Θ0 = Θ10 =
(r2 − h2)

4
, (3.3.14)

q1 : L (Θ1) = −L (Θ0)− EcPr
(
∂w0

∂r

)2

, (3.3.15)

q2 : L (Θ2) = −2EcPr

(
∂w0

∂r

)(
∂w1

∂r

)
. (3.3.16)

For eq.(3.3.3) coefficients of q0, q1 and q2 are as follows,

q0 : L(σ0)− L(σ10) = 0 ⇒ σ0 = σ10 = −(r2 − h2)

4
, (3.3.17)
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q1 : L (σ1) = −L (σ0)− ScSrL (Θ0) + ScEσ0, (3.3.18)

q2 : L (σ2) = −ScSrL (Θ1) + ScEσ1. (3.3.19)

Now, with the help of the values w0, Θ0, σ0 from eqs.(3.3.5)-(3.3.7) and by using definition

of linear operator for L(w0),L(Θ0), L(σ0) in to eqs.(3.3.12), (3.3.15) and (3.3.18), attain

the expressions for w1,Θ1 and σ1 as follows

w1 =
(r2 − h2)

4

(
∂p0

∂z

)(
1− (M2 +

1

Z
)

)
− cosγ

64

(
r4 + 3h4 − 4r2h2

)
(Gr −Gm)

+
Hr

4Z

(
∂p0

∂z

)(
M2 +

1

Z

)(
r4 + 3h4

16
+

(hm+4 − rm+4)

(m+ 4)2 +
h2rm+2 − hm+4

(m+ 2)2

)
− Hr

4Z

(
∂p0

∂z

)(
M2 +

1

Z

)(
r2h2

4

)
+

(
∂p0

∂z

)(
M2 +

1

Z

)2(
r4

16
+

3h4

16
− h2r2

4

)
− Hr

2

(
r2 − h2

2
+
hm+2 − rm+2

m+ 2

)(
∂p0

∂z

)(
M2 +

1

Z

)
, (3.3.20)

Θ1 = −(r2 − h2)

4
− EcPr (r4 − h4)

64
P 2U2, (3.3.21)

σ1 = (1− ScSr) (r2 − h2)

4
+ ScE

(
r4

64
+

3h4

64
− r2h2

16

)
. (3.3.22)

After getting the expressions for w1, θ1 and σ1 and by following the same steps we further

calculate the values of w2, Θ2 and σ2 with the help of MATLAB-2015b. We get Final ex-

pressions for velocity, temperature and concentration profiles of the blood flow by putting

the values of all the calculated variables in eqs.(3.3.8)-(3.3.10) respectively.

3.4 Results and Discussion

The motivation behind the research is to analyze the effects of heat and mass transfer on

blood flow through the inclined stenosed artery under the influence of an applied magnetic

field with a chemical reaction.

List of all the parameters used to graphically analyze the validity of the mathematical

model are given in Table.3.1, where the value of the height of the stenosis (δ) is considered

0.1 for the case of mild stenosis.

Considering the case of mild stenosis fig.3.2 provides a comparison between the

present study and those reported in Misra and Shit (2007) and in Misra and Kar (1988)
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for the Newtonian fluid model of the blood flow. From the figure, it is clear that the

present result shows a good agreement with those published results.

Parameters Values

(Unitfree)

Source

Height of the stenosis (δ) 0.1 Srivastava (2014a), Shukla et al.

(1980)

Inclination angle of the artery (γ) π
6

Sanyal et al. (2007), Ramesh

(2016)

Porosity parameter (Z) 0.3 Bhatti and Abbas (2016)

Chemical reaction Parameter (E) 1 Misra and Adhikary (2016)

Shape parameter for symmetric

case(n)

2 Mekheimer and Kot (2008)

Grashof Number (Gr) 2 Rao et al. (2012)

Modified Grashof Number (Gm) 3 Rao et al. (2012)

Brinkaman number (Br) 2 Zaman et al. (2016a)

Hematocrit parameter (Hr) 1 Thompson et al. (2016)

Magnetic field parameter (M) 1.5 Swartz et al. (2009)

Schmidt number (Sc) 1 Zaman et al. (2016a)

Soret number (Sr) 0.5 Zaman et al. (2016a)

Ratio of a
b

(l1) 0 Nadeem et al. (2011)

Location of the maximum height

of the stenosis

0.5 Nadeem et al. (2011)

Table 3.1: Values of the parametrs

All the graphs are plotted for the range of 0 to 0.9 by assuming non-stretching

stenotic wall of the artery (as the value of the height of the stenosis for mild stenosis

case is assumed as 0.1). All the figures have been plotted by using the parameters values
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Figure 3.2: Comparision result of variation of velocity profile for New-

tonian model of blood flow

as given in Table.3.1. Fig.3.3 and fig.3.4 display the radial variation of velocity and

temperature profiles for different values of the inclination angle (γ) made by the non-

tapered artery from the vertical axis. The magnitude of the applied magnetic field is

assumed to be the same for each and every inclined position of the artery. It can be

clearly observed from the fig.3.3 that as the values of the inclination angle of the artery

increase, the velocity profile of the blood flow decreases, respectively. It can be clearly

seen from the figure that the pattern of all velocity profiles for different inclination angles

are similar in the sense that they show the decrease in their maxima as one moves away

from the center of the artery and finally fall to zero at the stenotic wall. From fig.3.4 it

is clear that as the value of the inclination angle of the artery increases from 0 to π
3
, the

temperature profile of the blood flow also increases.

To analyze the magnetic effects on blood flow with variable viscosity through an

inclined porous artery, a magnetic field is applied perpendicular to the direction of the

inclined artery, which is assumed to be inclined at an angle π
6

from the vertical axis. Fig.3.5

illustrates the radial distribution of the velocity profile of the blood flow for different

values of magnetic field parameter (M). One can notice the half-flattened parabolic

velocity profile from the figure, which decreases as the values of the applied magnetic field

increases. It happens because, blood contains magnetic iron oxide particles in its content



3.4 Results and Discussion 71

0 0.3 0.6 0.9

r

0

0.05

0.1

0.15

0.2

w
(r,

z)

γ=0
γ=π /6
γ=π /3

Figure 3.3: Velocity profile for different

values of γ
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and when blood flows under the action of the applied magnetic field, it feels a strong

electromotive force. This effect of magnetization causes a rotational motion of charged

particles and magnetic particles of the blood. This type of orientation in blood, form

red blood cells and magnetic particles more suspended in the blood plasma and increase

the value of blood viscosity and that directly affects the velocity of the blood flow. So

as the value of applied magnetic field parameter increases, Lorentz force which stabilizes

between moving magnetic particles and applied magnetic field opposes the motion of
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the blood flow and causes reduced velocity profile of the blood flow. The result for the

velocity profile agrees well with the result reported by Sharma et al. (2015b). The effect of

magnetic field parameter (M) on temperature profile is displayed in fig.3.6. It is noticed

from the figure that temperature profile of blood flow in an inclined artery decreases as

the values of the applied magnetic field which works just perpendicular to the stenosed

artery, increase. Fig.3.7 displays the effects on the concentration profile of the blood

flow as the intensity of the applied magnetic field varies. From figure it is clear that the

concentration profile of the blood flow under variable viscosity effect, decreases as value

of the applied magnetic field increases from 1 to 3 and for a particular value of magnetic

field parameter concentration of the blood in the inclined porous artery decreases from

the center towards the arterial wall and falls to zero at stenosis wall.
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Variations of velocity, temperature and concentration profiles of the blood flow for

different values of porosity parameter (Z) have been analyzed with the help of the figs.3.8,

3.9 and 3.10, respectively. Fig.3.8 illustrates that as values of the porosity parameter

increase, velocity profile of the blood flow is also increases. It describes that for a particular

value of porosity parameter velocity attains its maximum value at the middle of the artery

and gradually it starts decreasing towards the arterial wall. Velocity profile with porosity

parameter shows this behavior may be because, when a fraction of the voids volume over
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the total volume increases, it can be more possible for fluid particles to move from one place

to another place in the artery. Similarly, fig.3.9 and fig.3.10 mark that the temperature

and concentration profiles of the blood flow in the stenosed artery also increase as the

values of porosity parameter increase.
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Fig.3.11 depicts the distribution of the velocity profile of the blood flow with different

sizes of the stenosis (δ). It is clear from the figure that the velocity profile of the blood

flow decreases as stenosis presence in the artery increases in size. It may also be noted
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that the velocity profile decreases the onset of the stenosis towards the stenosis throat.

This result is in good agreement with those reported by Misra and Shit (2007). Fig.3.12

displays the effects of the height of the stenosis (δ) on the variations of the temperature

profile of the blood flow. It shows that the temperature profile of the blood flow increases

as the values of the height of the stenosis increase from 0 to 0.2. The first case where

δ = 0 is considered to analyze the distribution of velocity and temperature profiles of the

blood flow in the stenosed free artery.

Fig.3.13 and fig.3.14 give the variation of concentration profiles of the blood flow with

r for different values of the Schmidt number (Sc) and Soret number (Sr), respectively.

Under the influence of chemical reaction, the value of concentration profiles of the blood

flow reduces as the effects of both Schmidt and Soret number increase in the stenosed

artery. Similar behavior of concentration profile with changing values of Schmidt number

(Sc) has been observed by Kandasamy et al. (2005).
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Expression for the Shear Stress

Shear stress in arteries defines by the force per unit area on the arterial wall and it can

be calculated as follows (Nadeem et al. (2011))

S̃rz = −
(
∂w

∂r

)
, (3.4.1)
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expression for wall shear stress is

S̃rz = −
[
∂w

∂r

]
r=h

. (3.4.2)
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Expression for shearing stress at the maximum height of the stenosis i.e. shear stress

at stenosis throat located at z = a
b

+ 1

n
n
n−1

, can be defined as

τ̃s = −
[
S̃rz

]
h=(1−δ)

. (3.4.3)
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Fig.3.15 displays the variation of shear stress profile at stenosis throat for different

values of chemical reaction (E) parameter. From the figure, it is clear that as the values

of the chemical reaction parameter increase, shear stress at stenosis throat of the artery

also increases. Further for different values of the porosity and magnetic field parameters

fig.3.16 and fig.3.17 show the variations of shear stress profile at the stenosis throat of an

inclined porous artery. It can be clearly observed from these figures that as values of the

porosity parameter increase, shear stress profile at stenosis throat decreases and it also

decreases with the increased value of the magnetic field parameter.
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Fig.3.18 and fig.3.19 are prepared to analyze the effect of hematocrit parameter

(Hr) on velocity and temperature profiles of the blood flow in an inclined porous artery.

Fig.3.18 shows that as the values of hematocrit parameter increase, the velocity profile

decreases receptively. From eq.(3.2.11) it is clear that the hematocrit ratio of the blood

directly affects the viscosity of the blood flow. So, as the number of red blood cell present

in the blood volume increases, it will be relatively difficult for blood particles to move

from one place to another place because of the higher viscosity and this results in the

decreased value of the velocity profile of the blood flow. Fig.3.19 illustrates that as the

values of hematocrit parameter increase from 0.5 to 1.5, the temperature profile of the

blood flow decreases, respectively.
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Fig.3.20 and fig.3.21 focus on variation of velocity and concentration profiles dis-

tribution for different values of chemical reaction parameter (E). From fig.3.20, it can

be clearly observed that as values of the chemical reaction parameter increases, velocity

profile also increases. Fig.3.21 indicates that as the values of chemical reaction parameter

increase, the concentration profile of the MHD blood flow in an inclined porous artery

increases. Further, those figures reveal that for a fixed value of chemical reaction param-

eter, both the velocity and concentration profiles decrease as we move gradually from the

middle of the artery towards the stenosed arterial wall.

Figure 3.22: Velocity contour plots for different values of height of the stenosis (δ)
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Figure 3.23: Velocity contour plots for different values of magnetic field parameter (M)

Fig.3.22 and fig.3.23 are prepared by using the values of physical parameters as

given in Table.(3.1), to display the contour plots for the variation of the velocity profile

of the blood flow for different values of the height of the stenosis (δ) and magnetic field

parameter. In these figures X, Y , Z display the scale of the axial distance, radial distance

and velocity at that point respectively. Contours are plotted for stenosis region z = 0.2

to z = 1.2, in which maximum height of stenosis is located at z = 0.7. So as the height

of the stenosis (δ) increases, size of the trapped bolus also increases and slowly it slows

down the flow of blood at the maximum height of the stenosis. In fig.3.23 as the effect of

magnetic field parameter increases, trapped bolus also increases in size which gradually

reduces the velocity of the blood flow. As it cleared that at point (0.5, 0.3718) value of

the velocity reduces from 0.1351 to 0.06552 as the influence of the magnetic field increases

from 1 to 3.5.

3.5 Conclusions

In this investigation, the effects of chemical reaction with heat and mass transfer have

been analyzed on blood flow of having variable viscosity through an inclined artery under

the influence of the applied magnetic field. Governing nonlinear differential equations

have been solved by using homotopy perturbation method under the given boundary

conditions. Effects of the physical parameters used in the problem as chemical reaction
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parameter (E), porosity parameter(Z), Schmidt number (Sc), Soret number(Sr), ther-

mal Grashof number(Gr), solutal Grashof number (Gm), hematocrit parameter (Hr) on

velocity, temperature and concentration profiles have been sketched graphically. Some

effective findings of the article are elaborated below

1. Blood Velocity in the inclined artery increases as we increase the effects of porosity

and chemical reaction parameters while it decreases when values of the magnetic

field and hematocrit parameters increase. This type of controlled behavior of the

velocity profile under the effects of the applied magnetic field can help medical

persons during their surgical procedure.

2. As the value of the inclination angle of the artery from the vertical axis increases,

the velocity of blood flow decreases while the temperature of the artery increases.

3. Height of the stenosis affects the velocity and temperature profiles of the blood flow

in the inclined artery in the sense that as the size of the stenotic region increases

both velocity and temperature profiles of the MHD blood flow decrease.

4. Concentration profile enhances as the magnitude of magnetic field parameter in-

creases while it reduces with the increased value of the porosity parameter.





Chapter 4

MHD Pulsatile Two-Phase Blood

Flow through a Stenosed Artery

with Heat and Mass Transfer

4.1 Introduction

To estimate the hemodynamic resistance and analyze the heat and mass transfer process

in arterioles and venules a quantitative comprehension of the blood flow is necessary. A

major characteristic of the blood depends upon the hematocrit level as it is the percentage

of whole blood occupies by the red blood cells(RBC) (Medvedev and Fomin, 2011). In

the artery, the hematocrit level of the blood flow depends upon the diameter of the artery,

and this relationship has important implications for physiological phenomena related to

blood flow. F̊ahræus effect explains this relationship which states that as the value of

arterial diameter decreases, hematocrit level present in the artery also decreases. Due to

the F̊ahræus effect in arteries having the diameter less than 500 µm, erythrocytes move

towards the center of the artery and thus forming the cell depleted plasma layer near the

wall (Barbee and Cokelet, 1971; Fahraeus and Lindqvist, 1931). In smaller arteries, due to

the higher concentration of red blood cell near the center and existence of cell-free plasma

layer near the arterial wall, blood flow is considered as two-phase fluid flow (Verma, 2014).

81
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Cokelet and Goldsmith (1991) through In vitro analysis have documented the phe-

nomenon in more fully tube of 172-µm diameter and found that the two-phase flow of

a suspension may lead to a decrease in hydrodynamic resistance. They suggested that

in vertical tubes at very low shear stress, decreased hydrodynamic resistance depends

upon the aggregation of red blood cells and the magnitude of this effect increases as the

degree of the aggregation cells increases. They also identified that in the core region with

the effect of gravity hydrodynamic resistance is greater in upward than the downward

flowing suspension. The importance of the two-phase flow come to light with decreasing

size of the vessel, however, for single phase flow, the flow characteristic is independent

of the vessel size. Sharan and Popel (2001) presented a two-phase model of blood flow

in narrow arteries assuming different viscosity of the core region than the cell depleted

plasma region. Through their work, they found that due to the dissipation of energy the

effective viscosity of the plasma region in a tube of fixed diameter increases as the level

of the hematocrit increases.

Cardiovascular system transports nutrients and waste product from one body part to

other. To supply proper oxygen-rich blood to all the tissues through arteries an adequate

blood circulation is necessary (Ku, 1997). Any type of intrusion of fat into the arterial

wall, block the way of blood flow. Hard plaque formation in the artery is known as

stenosis which causes a well-known disease in the human body named as atherosclerosis

(Alexopoulos et al., 2014), a major cause of heart attacks. To analyze the two-phase blood

flow behavior under these hemodynamical disturbances, Ponalagusamy (2016) stabilized

the two-fluid model for blood flow through a tapered stenotic artery considering core

region as couple stress fluid and a peripheral region of plasma as a Newtonian fluid. The

author reported that wall shear stress is high in the case of converging tapered stenosis

and it is low in the case of non-tapered diverging stenosis. Further, for the case of

symmetric and axisymmetric stenosis, Sankar (2011) proposed a mathematical model for

two-phase blood flow and investigated that presence of cell-depleted peripheral layer near

the wall helps in the functioning of the diseased arterial system. Many authors explored

the two-phase blood flow modeling of the stenosed artery considering the extra effect of

the magnetic field. In the artery to recognize the existence of the atherosclerosis disease,
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the presence of which alters the velocity field a non-invasive technique based on MRI

devices is used (Cavalcanti, 1995). The MRI device uses the strong magnetic field to

work and when performs over the particular area of our body it affects the velocity field

of that area. Now, it has gained serious attention by researches to study the blood flow

through the stenosed artery under the influence of the applied magnetic field.

Magnetohydrodynamics (MHD) is about to study the motion of highly conducting

fluid under the influence of the magnetic field. Blood is an electrically conducting fluid

because the erythrocytes contain iron oxide molecules in its content. When magnetic

field applies on blood flow, it induces electric as well as magnetic fields, interactions of

which generates a mechanical force on the body known as Lorentz force (Mekheimer, 2008;

Mekheimer and El Kot, 2008; Shit et al., 2014). Many researchers have been shown the

effects of magnetization on the arterial vessel by considering the two-phase fluid model

of the blood flow. Ponalagusamy and Selvi (2015) examined the effect of magnetic field

on the two-phase model of oscillatory blood flow assuming both core and plasma regions

as a Newtonian fluid in the presence of an arterial stenosis. They solved the model for

both core and plasma regions separately using boundary conditions at the arterial wall

as well as for interface region. The authors reported that as the value of the magnetic

field increases, the flow resistance of the blood flow in the stenosed artery also increases.

Further, Ponalagusamy and Priyadharshini (2018) examined the effect of magnetic field

on two-phase blood flow through a tapered stenosed artery, assuming micropolar fluid

in the core region and Newtonian fluid in the plasma region. A mathematical model

presented by Mirza et al. (2016) analyzes the effect of magnetic field on a transient lami-

nar electromagnetic-hydrodynamic two-phase blood flow using the continuum approach.

Solving the model analytically they displayed the effect of the magnetic field for both

blood velocity and particles velocity separately and concluded that as the effects of the

magnetic field increases, both blood and particles velocities decrease for electromagnetic-

hydrodynamic two-phase blood flow.

Above mentioned studies were focused on analyzing momentum and heat transfer

phenomenon for two-phase models of blood flow with the horizontal artery. To show

the effect of total movement of the mass from one place to the other place in the two-
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phase model of blood flow, our study includes mass transfer as an important part of the

investigation, which has not been done earlier. The present article analyzes the effects

of radiation, chemical reaction and the external applied the magnetic field on the two-

phase model of blood flow considering mild stenosis in the artery. The exact solutions for

the velocity, temperature and concentration profiles have been calculated for both core

and plasma regions and graphs have been plotted against the radial distance for different

values of parameters used in the problem. With the aim of having adequate insight

into the two-phase flow behavior of blood flow through a stenosed arterial segment flow

resistance, total flow rate and wall shear stress have been estimated and graphs have

been plotted with varying values of the applied magnetic field parameter, the ratio of the

viscosity parameter and radiation parameter. A comparative study has been done with

experimental data to show the effectiveness of the two-phase model of blood flow and

observed that the two-phase model fits more appropriately with the experimental data as

compared to single phase model.

4.2 The Mathematical Model

Consider the continuum model of unsteady, incompressible, pulsatile two-phase blood

flow through a vertically stenosed coronary artery of length L in the presence of applied

magnetic field M as shown in fig.4.1. In the cylindrical artery of radius r, the two-phase

model of blood flow consists of a core region of radius rc which contains erythrocytes (a

suspension of the uniform hematocrit of viscosity µ̄c ) and a plasma region of radius rp

having the cell-depleted plasma layer with viscosity µ̄p. Therefore, viscosities of the fluid

for core and plasma regions are given by

µ̄(r̄) =

 µ̄c for 0 ≤ r ≤ rc(z̄),

µ̄p for rc(z̄) ≤ rp(z̄).

Note that the artery is assumed to be of cylindrical shape with (ūc, v̄c, w̄c) as the velocity

vector for core region and (ūp, v̄p, w̄p) as the velocity vector for plasma region along (r̄, θ̄, z̄)

direction in the cylindrical coordinates. Shear stresses are considered high enough so that

the fluid can be treated as Newtonian in both the regions (Sharan and Popel, 2001).
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Let T̄w and C̄w be the temperature and concentration of the outer wall of the artery

respectively. The temperature T̄w is assumed high enough at the wall to induce radiative

heat transfer.

Figure 4.1: Geometry of the vertical stenosed artery of length L̄

Geometry of the stenosis in plasma region, which is assumed symmetric about the

radial direction, is defined as (Mekheimer and Kot, 2008),

R̄(z̄)

R̄0

=

1− δ̄sn
n
n−1

R̄0L̄n0 (n−1)

(
L̄n−1

0 (z̄ − d̄)− (z̄ − d̄)n
)

for d̄ ≤ z̄ ≤ d̄+ L̄0,

1, otherwise,

(4.2.1)

and in core region geometry of the stenosis is defined as (Sankar and Lee, 2007),

R̄1(z̄)

R̄0

=

β −
δ̄sn

n
n−1

R̄0L̄n0 (n−1)

(
L̄n−1

0 (z̄ − d̄)− (z̄ − d̄)n
)

for d̄ ≤ z̄ ≤ d̄+ L̄0,

β, otherwise,

(4.2.2)

where L̄0 is the length of the stenosis, β is the ratio of the central core radius to

the normal artery radius, R̄0 is the radius of the artery and n determines the shape of

the constriction profile (Nadeem et al., 2011) and δ̄s indicates the maximum height of the

stenosis located at

z̄ = d̄+
L̄0

n
1

(n−1)

. (4.2.3)
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For the symmetric case, i.e., n = 2, maximum height of the stenosis occurs at mid point

of the stenotic region

z̄ = d̄+
L̄0

2
.

Note that the fluid flow in both the regions is in the axial direction and applied

magnetic field is acting perpendicular to the flow direction. Under these assumptions the

equations for momentum, energy and concentration for the core region are given by

ρ̄c
∂ūc
∂t̄

= −∂p̄
∂z̄

+ µ̄c

(
∂2ūc
∂r̄2

+
1

r̄

∂ūc
∂r̄

)
− σ̄B̄0

2
ūc + ḡρ̄cβ̄

(
T̄c − T̄0

)
+ ḡρ̄cγ̄

(
C̄c − C̄0

)
,

(4.2.4)

ρ̄cc̄c
∂T̄c
∂t̄

= K̄c

(
∂2T̄c
∂r̄2

+
1

r̄

∂T̄c
∂r̄

)
− ∂q̄c
∂r̄

, (4.2.5)

∂C̄c
∂t̄

= D̄c

(
∂2C̄c
∂r̄2

+
1

r̄

∂C̄c
∂r̄

)
− Ē ′c

(
C̄c − C̄0

)
, (4.2.6)

where B̄0 is the magnetic field intensity, σ̄ is the electrical conductivity, ∂ ¯̄p
∂ ¯̄z

represents

the pressure gradient, D̄c is the coefficient of mass diffusivity, ρ̄c is the density, c̄c is

the specific heat, Ē ′c is the chemical reaction parameter, K̄c is the thermal conductivity,

ūc is the velocity of the fluid in radial direction, T̄c is the temperature and C̄c is the

concentration of fluid(blood) in the core region.

Similarly, the governing equations of momentum, energy and concentration for plasma

region are given by

ρ̄p
∂ūp
∂t̄

= −∂p̄
∂z̄

+ µ̄p

(
∂2ūp
∂r̄2

+
1

r̄

∂ūp
∂r̄

)
− σ̄B̄0

2
ūp + ḡρ̄pβ̄

(
T̄p − T̄0

)
+ ḡρ̄pγ̄

(
C̄p − C̄0

)
,

(4.2.7)

ρ̄pc̄p
∂T̄p
∂t̄

= K̄p

(
∂2T̄p
∂r̄2

+
1

r̄

∂T̄p
∂r̄

)
− ∂q̄p

∂r̄
, (4.2.8)

∂C̄p
∂t̄

= D̄p

(
∂2C̄p
∂r̄2

+
1

r̄

∂C̄p
∂r̄

)
− Ē ′p

(
C̄p − C̄0

)
, (4.2.9)

where D̄p is the coefficient of mass diffusivity, ρ̄p is the density, c̄p is the specific heat, Ē ′p

is the chemical reaction parameter and K̄p is the thermal conductivity of plasma in the

peripheral region.
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Remark 4.1. Terms ∂q̄c
∂r̄

in eq.(4.2.5) and ∂q̄p
∂r̄

in eq.(4.2.8) are due to the radiation effect of

heat transfer, where q̄c and q̄p represent the radiative heat flux in core and plasma regions

respectively.

Therefore, the radiative heat fluxes for core and plasma regions respectively can be

expressed as explained in eq.(1.4.4):

∂q̄c
∂r̄

= 4ᾱc
2
(
T̄c − T̄0

)
,

∂q̄p
∂r̄

= 4ᾱp
2
(
T̄p − T̄0

)
, (4.2.10)

where q̄c and q̄p represent the radiative heat transfer coefficients, and ᾱc and ᾱp are the

mean radiation absorption coefficients for core and plasma regions respectively.

Remark 4.2. Note that the mean radiation absorption coefficients ᾱc and ᾱp , in general,

are considered less than unity (ᾱ ≪ 1) in view of the fact that fluids like plasma and blood

in the physiological conditions are optically thin with low density (Ogulu and Abbey,

2005).

To solve the momentum, energy and concentration equations of the two-phase model

of the blood flow no-slip boundary conditions are considered on the arterial wall. It is

assumed that the functions of velocity, temperature and concentration are continuous at

the interface of core and plasma regions so their values of both core and plasma regions are

equal at that point and due to symmetry their gradient vanishes along with the axis. It is

believed that at the interface of core and plasma regions heat and mass transfer effects are

same for both the regions (Sharan and Popel, 2001). The appropriate boundary conditions

for the model under consideration are as follows:

ūp = 0, T̄p = T̄w, C̄p = C̄w at r̄ = R̄(z̄),

ūc = ūp, T̄p = T̄c, C̄p = C̄c at r̄ = R̄1(z̄),

∂ūc
∂r̄

= 0, ∂T̄c
∂r̄

= 0, ∂C̄c
∂r̄

= 0 at r̄ = 0,

τ̄c = τ̄p,
∂T̄c
∂r̄

= ∂T̄p
∂r̄
, ∂C̄c

∂r̄
= ∂C̄p

∂r̄
at r̄ = R̄1(z̄).

(4.2.11)

Now, we introduce the following dimensionless parameters:

uc =
ūc
ū0

, r =
r̄

R̄0

, z =
z̄

R̄0

, t = ω̄t̄, R(z) =
R̄(z̄)

R̄0

, R1(z) =
R̄1(z̄)

R̄0

,

p =
R̄0p̄

ū0µ̄p
, Re =

ρ̄pR̄0
2
ω

µ̄p
, θc =

(T̄c − T̄0)

T̄w − T̄0

, σc =
(C̄c − C̄0)

C̄w − C̄0

, up =
ūp
ū0

,
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δ =
δ̄s
R̄0

θp =
(T̄p − T̄0)

T̄w − T̄0

, N2 =
4R̄0

2
ᾱp

2

K̄p

, M2 =
σ̄B̄0

2
R̄0

2

µ̄p
, σp =

(C̄p − C̄0)

C̄w − C̄0

,

P e =
ρ̄pc̄pR̄0

2
ω̄

K̄p

, Sc =
µ̄p
D̄pρ̄p

, Gr =
ḡρ̄pβ̄R̄0

2 (
T̄w − T̄0

)
ū0µ̄p

, D0 =
D̄p

D̄c

,

τc =
τ̄cR̄0

2

ū0µ̄p
, τp =

τ̄pR̄0
2

ū0µ̄p
, ρ0 =

ρ̄p
ρ̄c
, µ0 =

µ̄p
µ̄c
, Ē ′p =

Eµ̄p

ρ̄pR̄0
2 , E0 =

Ēp
Ēc
.

Therefore, equations of momentum, energy and concentration eqs.(4.2.4)-(4.2.6) of the

core region is represented in terms of these non-dimensional parameters as(
Re

ρ0

)
∂uc
∂t

= −∂p
∂z

+
1

µ0

(
∂2uc
∂r2

+
1

r

∂uc
∂r

)
−M2uc +

(
Gr

ρ0

)
θc +

(
Gm

ρ0

)
σc, (4.2.12)

PeK0

ρ0s0

(
∂θc
∂t

)
=

(
∂2θc
∂r2

+
1

r

∂θc
∂r

)
− K0

α0

N2θc, (4.2.13)

Re

(
∂σc
∂t

)
=

1

D0

(
1

Sc

)(
∂2σc
∂r2

+
1

r

∂σc
∂r

)
− E

E0

σc, (4.2.14)

and, equations of momentum, energy and concentration eqs.(4.2.7)-(4.2.9) of the plasma

region is represented in terms of these non-dimensional parameters as

Re
∂up
∂t

= −∂p
∂z

+

(
∂2up
∂r2

+
1

r

∂up
∂r

)
−M2up +Grθp +Gmσp, (4.2.15)

Pe
∂θp
∂t

=

(
∂2θp
∂r2

+
1

r

∂θp
∂r

)
−N2θp, (4.2.16)

Re

(
∂σp
∂t

)
=

(
1

Sc

)(
∂2σp
∂r2

+
1

r

∂σp
∂r

)
− Eσp, (4.2.17)

where α0 is the ratio of mean radiation absorption coefficient in the plasma region to mean

radiation absorption coefficient in the core region, K0 is the ratio of thermal conductivity

of plasma to core region, s0 is the specific heat ratio of plasma to core region, E0 is the

ratio of chemical moles present in the plasma region to chemical moles in the core region

and N , M and E are factors of thermal radiation, applied magnetic field and chemical

reaction for both core and plasma regions.
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The dimensionless form of geometry of the stenosis in core and plasma regions are

given by

R(z) =

1− η ((z − l)− (z − l)n) for l ≤ z ≤ 1 + l,

1 otherwise,

(4.2.18)

R1(z) =

β − η ((z − l)− (z − l)n) for l ≤ z ≤ 1 + l,

β otherwise,

(4.2.19)

where

η =
δn

n
n−1

(n− 1)
, l =

d̄

L̄0

, δ =
δ̄s
R̄0

.

Similarly, the corresponding boundary conditions eq.(4.2.11) in non-dimensional form for

both core and plasma regions are given as

up = 0, θp = 1, σp = 1 at r = R(z),

up = uc, θp = θc, σp = σc at r = R1(z),

τc = τp,
∂θc
∂r

= ∂θp
∂r
, ∂σc

∂r
= ∂σp

∂r
at r = R1(z),

∂uc
∂r

= 0, ∂θc
∂r

= 0, ∂σc
∂r

= 0 at r = 0.

(4.2.20)

4.3 Solution

In this section, we solve the momentum, energy and concentration eqs.(4.2.12)-(4.2.17) in

both core and plasma regions under the given boundary conditions eq.(4.2.20). In view

of the fact that the pumping action of the heart results in a pulsatile blood flow, pressure

gradient can be represented as

−∂p
∂z

= P0e
iω̄t̄,

where P0 represents the constant pressure. This assumption is limited to cases of harmonic

oscillatory motion (San and Staples, 2012).

As eqs.(4.2.12)-(4.2.17) are linear, we are allowed to express velocity, temperature and

concentration in the form of:
uc(r, t) = uc0(r)e

iωt, up(r, t) = up0(r)e
iωt,

θc(r, t) = θc0(r)e
iωt, θp(r, t) = θp0(r)e

iωt,

σc(r, t) = σc0(r)e
iωt, σp(r, t) = σp0(r)e

iωt.

(4.3.1)
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Therefore, using eq.(4.3.1), eqs.(4.2.12)-(4.2.14) can be reduced as(
∂2uc0
∂r2

+
1

r

∂uc0
∂r

)
−
(
M2 +

µ0Re

ρ0

i

)
uc0 = −

(
P0 +

Grθc0
ρ0

+
Gmσc0
ρ0

)
µ0, (4.3.2)

∂2θc0
∂r2

+
1

r

∂θc0
∂r
−
(
K0N

2

α0

+ i
Pe

ρ0

(
K0

s0

))
θc0 = 0, (4.3.3)

∂2σc0
∂r2

+
1

r

∂σc0
∂r
−
(
iReD0Sc+

E

E0

D0Sc

)
σc0 = 0. (4.3.4)

Similarly, substituting eq.(4.3.1) into eqs.(4.2.15)-(4.2.17), we get(
∂2up0
∂r2

+
1

r

∂up0
∂r

)
−
(
M2 +Rei

)
up0 = −

(
P0 +

Grθp0
ρ0

+
Gmσp0
ρ0

)
, (4.3.5)

∂2θp0
∂r2

+
1

r

∂θp0
∂r
−
(
N2 + iPe

)
θp0 = 0, (4.3.6)

∂2σp0
∂r2

+
1

r

∂σp0
∂r
− (iReSc+ ESc)σp0 = 0. (4.3.7)

Remark 4.3. Note that the system of ODEs eqs.(4.3.2)-(4.3.7) along with the boundary

conditions eq.(4.2.20) admits an exact solution using Bessel functions.

To find the solution of eq.(4.3.3) and eq.(4.3.6) under the given boundary conditions

eq.(4.2.20), we rewrite the energy equations of core and plasma regions in standard Bessel

differential equations form as

∂2θc0
∂r2

+
1

r

∂θc0
∂r

+ β1θc0 = 0, (4.3.8)

∂2θp0
∂r2

+
1

r

∂θp0
∂r

+ β2θp0 = 0, (4.3.9)

where

β1 = −
(
K0N

2

α0

+ i
Pe

ρ0

(
K0

s0

))
, β2 = −

(
N2 + iPe

)
.
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Hence, solution for the energy equations of core and plasma regions are

θc0(r) =

[
U1

(√
β2Y1(

√
β2R1)

U3Y0(
√
β2R)

−
√
β1U2J1(

√
β1R1)

U3

)
+ U2

]
J0(
√
β1(r)), (4.3.10)

θp0(r) =

[(√
β2Y1(

√
β2R1)

U3Y0(
√
β2R)

−
√
β1U2J1(

√
β1R1)

U3

)(
J0(
√
β2r)−

J0(
√
β2R

Y0(
√
β2R

)Y0(
√
β2r)

)]
+
Y0(
√
β2r)

Y0(
√
β2R)

, (4.3.11)

where Jn(x) and Yn(x) are respectively the Bessel function of first and second kind.

Expressions for the constants U1, U2 and U3 are given in Appendix A.

Final expressions for temperature considering unsteady flow of core and plasma regions

respectively, are as follows

θc(r, t) =

[(
U1

(√
β2Y1(

√
β2R1)

U3Y0(
√
β2R)

−
√
β1U2J1(

√
β1R1)

U3

)
+ U2

)
J0(
√
β1(r))

]
eiωt,

(4.3.12)

θp(r, t) =

(√
β2Y1(

√
β2R1)

U3Y0(
√
β2R)

−
√
β1U2J1(

√
β1R1)

U3

)
J0(
√
β2r)e

iωt

−
(√

β2Y1(
√
β2R1)

U3Y0(
√
β2R)

−
√
β1U2J1(

√
β1R1)

U3

)
J0(
√
β2R)

Y0(
√
β2R)

Y0(
√
β2r)e

iωt

+
Y0(
√
β2r)

Y0(
√
β2R)

eiωt. (4.3.13)

In a similar manner, the concentration eq.(4.3.4) and eq.(4.3.7) of core and plasma region

can be rewritten in the standard Bessel differential equation form as

∂2σc0
∂r2

+
1

r

∂σc0
∂r

+ γ1σc0 = 0, (4.3.14)

∂2σp0
∂r2

+
1

r

∂σp0
∂r

+ γ2σp0 = 0, (4.3.15)

where

γ1 = −
(
iReD0Sc+

E

E0

D0Sc

)
, γ2 = − (iReSc+ ESc) .

Therefore, solutions for concentration equations satisfying the given boundary conditions

eq.(4.2.20) for both core and plasma regions are calculated as

σc0(r) =

[
U4

(√
γ2Y1(

√
γ2R1)

U6Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
+ U5

]
J0(
√
γ1(r)), (4.3.16)
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and

σp0(r) =

[(√
γ2Y1(

√
γ2R1)

U6Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)(
J0(
√
γ2r)−

J0(
√
γ2R

Y0(
√
γ2R

)Y0(
√
γ2r)

)]
+
Y0(
√
γ2r)

Y0(
√
γ2R)

, (4.3.17)

Consequently, concentration for unsteady flow in core and plasma regions are as follows

σc(r, t) =

[
U4

(√
γ2Y1(

√
γ2R1)

U6Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
+ U5

]
J0(
√
γ1(r))eiωt, (4.3.18)

σp(r, t) =

(√
γ2Y1(

√
γ2R1)

U6Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
J0(
√
γ2r)e

iωt

−
(√

γ2Y1(
√
γ2R1)

U6Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
J0(
√
γ2R)

Y0(
√
γ2R)

Y0(
√
γ2r)e

iωt

+
Y0(
√
γ2r)

Y0(
√
γ2R)

eiωt, (4.3.19)

where expressions for the constants U4, U5 and U6 are given in Appendix A.

To find the solution for velocity profile in core region, we substitute the values of θc0

and σc0 from eq.(4.3.10) and eq.(4.3.16) into eq.(4.3.2) and obtains the following non-

homogeneous differential equations by assuming(
∂2uc0
∂r2

+
1

r

∂uc0
∂r

)
+ λ1uc0 = −

(
P0 +

Grθc0
ρ0

+
Gmσc0
ρ0

)
µ0. (4.3.20)

where

λ1 = −
(
M2 +

µ0Re

ρ0

i

)
. (4.3.21)

The general solution of the eq.(4.3.20) is calculated using variation of parameters method

as

uc0 = C1J0

√
λ1r + C2Y0

√
λ1r + A1J0

√
λ1r +B1Y0

√
λ1r, (4.3.22)

where C1, C2 are the arbitrary constants and A1, A2 are defined as

A1 = −πr
2

∫
Y0

√
λ1r

(
P0 +

Grθc0
ρ0

+
Gmσc0
ρ0

)
µ0 dr,

B1 =
πr

2

∫
J0

√
λ1r

(
P0 +

Grθc0
ρ0

+
Gmσc0
ρ0

)
µ0 dr.
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Now for eq.(4.3.5) of plasma region, we assume that

λ2 = −
(
M2 +Rei

)
. (4.3.23)

So,the eq.(4.3.5) convert in terms of λ2 as(
∂2up0
∂r2

+
1

r

∂up0
∂r

)
+ λ2up0 = −

(
P0 +

Grθp0
ρ0

+
Gmσp0
ρ0

)
. (4.3.24)

So, the general solution of the given eq.(4.3.24) can be calculated as

up0 = C3J0

√
λ1r + C4Y0

√
λ1r + A2J0

√
λ1r +B2Y0

√
λ1r, (4.3.25)

where C3, C4 are arbitrary constants and A2, B2 are expressed as

A2 = −πr
2

∫
Y0

√
λ2r

(
P0 +

Grθc0
ρ0

+
Gmσc0
ρ0

)
dr,

B2 =
πr

2

∫
J0

√
λ2r

(
P0 +

Grθc0
ρ0

+
Gmσc0
ρ0

)
dr.

After applying the boundary conditions eq.(4.2.20) into the eq.(4.3.22) and eq.(4.3.25),

we get C2 = 0 and the linear system in terms of C1, C3, C4 as
J0(
√
λ1R1) −J0(

√
λ2R1) −Y0(

√
λ2R1)

0 J0(
√
λ2R) Y0(

√
λ2R)

−
√
λ1J1(

√
λ1R1)

√
λ2J1(

√
λ2R1)

√
λ2Y1(

√
λ2R1)



C1

C3

C4

 =


D1

D2

D3

 (4.3.26)

where D1, D2 and D3 are expressed in Appendix A. Under the given set of boundary

conditions the linear system eq.(4.3.26) admits a unique solution.

4.4 Results and Discussion

For having adequate insight into the two-phase flow behavior of blood through a stenosed

arterial segment, flow resistance, total flow rate, and wall shear stress have been estimated

assuming pulsatile, Newtonian nature of the blood flow for both core and plasma regions.

A computational study has been carried out to show the effects of cell-depleted plasma

layer on blood flow with the variation of different quantities of interest. Default values
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Parameters Values

(Unit free)

Source

Magnetic field Parameter (M) 1.5-3 Swartz et al. (2009); Trivedi et al.

(2004)

Schmidt Parameter (Sc) 0.5-1.5 Zaman et al. (2016a)

Radiation Parameter (N) 2-5 Ogulu and Abbey (2005)

Chemical reaction Parameter (E) 0.5-2 Misra and Adhikary (2016)

Peclet Number (Pe) 0.87 Sharan et al. (1997)

Grashof Number (Gr) 2-3 Misra and Adhikary (2016)

Modified Grashof Number (Gm) 2-3 Misra and Adhikary (2016)

Ratio of Thermal Conductivity in

core and plasma regions (K0)

0.4-0.8 Ponalagusamy and Selvi (2015)

Ratio of Specific heat in core and

plasma regions (s0)

1.0 Ponalagusamy and Selvi (2015)

Ratio of density in core and

plasma regions (ρ0)

1.05 Medvedev and Fomin (2011)

Ratio of mean radiation ab-

sobtion coefficients in core and

plasma region (α0)

1.0 Ponalagusamy and Selvi (2015)

Reynold Number(Re) 0.005 Fujiwara et al. (2009); Sharan

et al. (1997)

Ratio of viscosities in core and

plasma region (µ0)

1.2 Medvedev and Fomin (2011);

Sharan and Popel (2001)

Pressure gradient (P0) 10 Ponalagusamy and Selvi (2015)

Table 4.1: Values of the parameters

of the parameters used to graphically analyze the effectiveness of the model are given

in Table.4.1. In all the figures, continuous lines show the respective profile for the core
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region while dotted lines display the same for the plasma region.

Fig.4.2 displays the comparative studies between single phase (where we assume

that plasma and red blood cells are uniformly distributed over the region and their flow

dynamics are also same) and two-phase model of the blood flow with the experimental

results of Bugliarello and Sevilla (1970), who through their In Vitro experimental studies

in a fine glass tube under the steady flow conditions measured the cell velocity distribution

of blood containing 40% hematocrit. The results of the present model seems to be closer

to those of Bugliarello and Sevilla for values δ = 0, Re = 5, Pe = 1, M = 0 and R1 = 0.7.

Comparison result shows that the data of the present model for two-phase blood flow

(R1 = 0.7) shows a good agreement with the experimental result as compared to single

phase data (R1 = 1). Mean squared errors (MSE) for the measured data of two-phase

and single-phase blood flow as compared with the experimental data are calculated as

1

n

n∑
i=1

(ŶEXi
−YTi)

2 = 0.003094882, (4.4.1)

1

n

n∑
i=1

(ŶEXi
−YSi)

2 = 0.010313676, (4.4.2)

where ŶEX represents the experimental data (Bugliarello and Sevilla, 1970), YT is the

two-phase model data and YS shows single phase model data. The result shows that

two-phase model data fit with the experimental data more appropriately than the single

phase model data as it has 0.3% mean squared error than the single phase model data of

1% mean squared error.

Fig.4.3 shows the effect of variable applied a magnetic field on the velocity profile

of the blood flow. Hence, it is clear from the figure that as the value of uniform applied

magnetic field increases from 0.5 to 3 velocity profiles for both core and plasma regions

decrease, respectively. This happens because of the mature red blood cells contain high

concentration hemoglobin molecules in their content which basically are the oxides of

iron. Therefore, when blood flows under the influence of a magnetic field, erythrocytes

orient with their own disk plane parallel to the direction of the applied magnetic field.

This action increases the concentration of red blood cells and causes an increase in the
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Figure 4.2: Comparative results of veloc-

ity profiles for two-phase and single phase

blood flow model with the experimental re-

sults of Bugliarello and Sevilla (1970)
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Figure 4.3: Variation of velocity profile of

two-phase blood flow with different values

of magnetic field parameter (M), where

δ = 0.1, t = 1, R1 = 0.7
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Figure 4.4: Variation of velocity profile of

two-phase blood flow with Gm
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Figure 4.5: Variation of velocity profile of

two-phase blood flow with Gr

internal blood viscosity (Haik et al., 2001). In the model as boundary condition shows

the continuous behavior of the flow at the interface, the reduced velocity of the red blood

cells direct affects the velocity of the plasma by resulting angular velocity for the plasma

fluid. The difference between the angular velocities of plasma and red blood cell create

the viscous torque which results in the decreased velocity of the plasma region as well.
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This leads to a decrease in the blood velocity as Lorentz force opposes the flow of blood

(Tzirtzilakis, 2005). Fig.4.4 and fig.4.5 show the variation of axial velocity profiles with

solutal Grashof number and thermal Grashof number, respectively. It can be clearly

observed from the figures that as we increase the value of solutal Grashof number and

thermal Grashof number, velocity profiles increase respectively for both core and plasma

regions.
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Fig.4.6 illustrates the variations of the temperature profile of the blood flow for dif-

ferent values of the Peclet number (Pe). It can be observed from the figure that as values

of the Peclet number increase, temperature profile of the blood flow decreases in both

core and plasma regions. Fig.4.7 illustrates the behavior of the temperature profile of

the blood flow for different values of the radiation parameter. It can be clearly observed

from the figure that for a particular value of radiation parameter (N), temperature profile

start increases from mid of the artery towards the interface region of the core and plasma

regions and it continuously increases up to the arterial wall. Further, as we increase the

values of the radiation parameter, temperature profile decreases in both core and plasma

regions of the artery (Ogulu and Abbey, 2005). Comparative results for temperature pro-

files for single phase and two-phase model of blood flow have been displayed in fig.4.8, by

considering parameters value from Table.4.1. It is clear from the fig.4.8 that temperature

profile of the two-phase blood flow along the radial direction of the artery attains lower

values than the temperature profile of the single phase model of the blood flow in which

we assume that plasma and red blood cells are uniformly distributed over the artery.
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Fig.4.9 and fig.4.10 reveal that under the purview of the present computational study,

concentration profiles for both core and plasma regions decrease as the values of the chem-
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ical reaction parameter and Schmidt number increase, respectively. For a particular value

of the chemical reaction parameter and Schmidt number, concentration profile increases,

as we move from mid of the artery towards the interface region and it increases up to

the arterial wall. With chemical reaction parameter, concentration profile shows this be-

havior because higher values of chemical reaction parameter resulted to a fall into the

molecular diffusivity which directly suppresses the species concentration. Therefore, the

concentration decreases at all point of the flow field with increasing values of the chemical

reaction parameter. Fig.4.11 shows the comparison result for the concentration profile of

the single-phase blood flow as R1 = 1 and for the two-phase blood flow when R1 = 0.7.

It is clear from the figure that, concentration profile along the radial direction of the

artery attains higher values for single phase blood flow (in which blood components are

uniformly distributed over the artery) than the two-phase model of the blood flow.
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In the artery, vascular tissue shows histological and morphological alterations, when

it is physically stressed then the role of wall shear stress comes into the picture. So in

the study of stenosed arterial blood flow, wall shear stress is a major flow component to

measure (Cavalcanti, 1992). The shear stress at the interface wall of core and the plasma

region is obtained as

τ = −
(
∂uc
∂r

)
. (4.4.3)
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At the outer wall of the artery shear stress is determined as

τ ′ = − 1

µ0

(
∂up
∂r

)
, (4.4.4)

where µ0 is the ratio of the viscosity in plasma and core regions, respectively.

For unsteady blood flow, fig.4.12 displays the variation of wall shear stress along

with the time (which includes only one cycle for t), for different values of the Reynolds

number. It can be clearly observed from the figure that as values of the Reynolds number

increase from 0.005 to 0.405 along with the time cycle, shear stress at the wall of the

artery also increases. Here, we consider only the plasma velocity (due to the existence of

the plasma layer near the arterial wall) to evaluate the wall shear stress in the stenosed

artery. Fig.4.13 depicts the variation of wall shear stress along with time as the values of

the uniform applied magnetic field increase. From the figure, it is clear that for different

values of the magnetic field parameter wall shear stress shows the oscillatory behavior

due to the pulsatile nature of the blood flow.
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The total volumetric flow rate of the blood flow in the artery is calculated as

Q = 2πR2

∫ R1

0

uc(r, t)dr + 2πR2

∫ R

R1

up(r, t)dr. (4.4.5)

Fig.4.14 and fig.4.15 respectively show the flow rate profile of the blood flow along with

time t for different values of the radiation and magnetic field parameter. Further, these
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figures reveal that as values of the radiation and magnetic field parameter increase, flow

rate decreases. Flow rate displays this behavior with magnetic field parameter because

blood behaves as electrically conducting fluid and induces electric as well as magnetic

field around when it flows under the influence of magnetic field. Therefore, the combined

effect of both the forces produces a body force known as “Lorentz force”, which has the

tendency to oppose the fluid motion (Shit and Roy, 2016).

The flow impedance gives the strong correlation between the localization of stenosis

and arterial wall as it important to understand the development of arterial disease. Flow

resistance in two-phase blood flow is calculated as

λ =

∫ z

0

P0e
iωt

Q
dz, (4.4.6)

using the value of Q from eq.(4.4.5), we get the final expression for λ. Fig.4.16 and fig.4.17

are plotted to show the impedance profile against the axial distance for different values

of the radiation and magnetic field parameter, respectively. From these figures, it can

be clearly observed that as values of the radiation parameter increase from 2 to 6, total

impedance of the blood flow decreases while impedance shows the reverse effect as values

of the magnetic field parameter increase.

Now, to observe the phase difference between pressure gradient and flow rate for

pulsatile flow, expression of the longitudinal impedance (which relates the forces acting
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on blood due to the local pressure gradient with the movement of the blood) is used as

Zl = − 1

Q

(
∂p

∂z

)
, (4.4.7)

where Q is the flow rate. For pulsatile flow, impedance function is very much impor-

tant in the analysis of wave propagation, reflection of pressure and flow pulses traveling

through an arterial system. Therefore, for pulsatile blood flow figs.4.18-4.19 displays the

phase difference between pressure gradient and flow rate with magnetic field parameter

and with the variable height of the stenosis, respectively. Fig.4.18 shows that Arg(Zl) de-

creases with increase in the magnetic field parameter (M). For smaller values of magnetic

field parameter phase difference between pressure gradient and the flow rate is π
12

. From

the same figure, we conclude that for high values of magnetic field parameter (M > 0.5)

phase difference is decreasing between pressure gradient and flow rate. Fig.4.19 illustrates

that Arg(Zl) significantly decreases as the value of the height of the stenosis increases.

Further, the same figure reveals that the pressure gradient and flow rate are in the phase

difference of π
4

when there is no stenosis present in the arterial segment and it slowly

decreases as values of the height of the stenosis increases.

Figs.4.20-4.25 focuses on displaying the contour plots for the two-phase model of

the blood flow through the constricted part of the artery under the action of an applied

magnetic field. Under a range of hemodynamic flow, all the contour plots have been
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Figure 4.20: Flow analysis

for 10% stenosis

Figure 4.21: Flow analysis

for 20% stenosis

Figure 4.22: Flow analysis

for 30% stenosis

Figure 4.23: Flow analysis

at Re = 10

Figure 4.24: Flow analysis

at Re = 30

Figure 4.25: Flow analysis

at Re = 50

plotted by using the data given in Table.4.1. Figs.4.20-4.22 show the velocity contour

along the axial direction of the artery as blockage of the artery increases while considering

the fixed value of the applied magnetic field as M = 1. These figures illustrate the flow

patterns of blood in different positions of the artery, viz., entry section, onset, throat and

downstream of the stenosis, outlet, where diseased part of the artery varies from z = 0.5

to z = 1.5 along the artery. It can be clearly noticed from the figures that as blockage of

the artery increases the velocity contours strongly gets distorted at the downstream and
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slowly appearing trapping bolus shift toward the arterial wall, thereby velocity decreases.

For unsteady flow, figs.4.23-4.25 exhibit the flow patterns of blood through the contours of

the two-phase blood flow against time for different values of the Reynolds number. These

figures capture flow circulation at 10% constriction of the artery when Reynold number

varies from Re = 5 to Re = 50. We observe that the region of flow circulation is small

when Re = 5 and flow become turbulent for high values of Reynold number and it makes

flow locally unstable with respect to large-scale disturbances (Ahmed and Giddens, 1983).

4.5 Conclusions

The main focus of the present study is to investigate the combined effects of the plasma

layer thickness, heat and mass transfer on the blood flow through narrow stenosed arteries.

Effects of different parameters such as magnetic field, radiation and chemical reaction on

flow have been presented for core and plasma regions separately. Important findings

obtained from the graphical results are listed herewith:

1. The velocity of the blood flow in narrow arteries decreases as values of the magnetic

field parameter increase and velocity of the plasma region attains lower value than

the core region. The given result is very much applicable in the medical field since

during the surgical process in narrow arteries blood flow can be regulated at the

desired level.

2. Increase in the peripheral plasma layer thickness leads to decrease velocity, temper-

ature and concentration profile of the blood flow.

3. The temperature of the blood flow reduces to an appreciable extent in both core

and plasma regions, as the values of the radiation parameter increase. Hence, the

present study reveals that the temperature of blood flow can be regulated in the

narrow arteries by reducing or increasing the effects of the radiation parameter. The

result is very much useful in radiation therapy which is used to treat cancer.

4. The concentration profile decreases with increasing the chemical reaction parameter.

This happens due to increased molecular diffusivity which directly suppresses the



4.5 Conclusions 105

concentration profile of the flow.

5. The investigation shows that Peclet and Schmidt’s number have reducing effects on

temperature and concentration of the blood flow, respectively.

6. The high intensity of the magnetic field causes the reduction of the flow rate while

it has an enhancing effect on flow impedance.

7. Both flow rate and flow impedance decrease as values of the radiation parameter

increase.

8. A comparative study between the present result and the experimental result in a

fine glass tube of the cell velocity distribution of blood containing 40% hematocrit,

validate the present model. The comparative result shows that the present result

gives a good agreement with the experimental results.

9. For pulsatile flow, the phase difference between the pressure gradient and flow rate

decreases with applied magnetic field and height of the stenosis.





Chapter 5

Influence of Heat and Mass Transfer

on MHD Two-Phase Blood Flow

with Radiation

5.1 Introduction

In today’s industrialized world, blood flow in our body through arteries pose serious health

risks. It is believed that one of the most widespread diseases in humans is atherosclerosis

which takes place when hard plaque builds up inside the artery (Pasceri and Yeh, 1999).

The hard plaque formation inside the artery limits the flow of blood inside the artery and

provides cells of blood to make blood clots near the hardened plaque. Blood clots make

the artery even more blocked, and at that time it is increasingly difficult for oxygenated

rich blood to reach the heart muscle because of the narrowing of the artery. Nowadays

it has gained serious attention from physiologist and researchers to study the blood flow

dynamics.

F̊ahræus-Lindqvist effect explains when blood flows through a narrow artery then

there exists a cell-free plasma layer near the arterial wall (Barbee and Cokelet, 1971).

Therefore, in the narrow artery due to the higher concentration of red blood cell near the

center and existence of cell-free plasma layer near the arterial wall, blood flow is consid-

ered as two-phase fluid flow (Medvedev and Fomin, 2011). Cokelet and Goldsmith (1991)

107
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through In vitro analysis observed the phenomenon in a tube of 172-µm diameter and

suggested that the two-phase flow of a suspension may lead to a decrease in the hydro-

dynamic resistance. Ponalagusamy and Selvi (2011) presented a mathematical model of

two-phase blood flow, considering axially variable peripheral layer thickness and obtained

the analytic expressions for peripheral layer thickness, core viscosity, slip velocity and wall

shear stress.

Many cardiovascular diseases such as stenosis which is responsible for the deaths

of people are mainly related to the flow behavior and hemodynamic conditions of an

artery. Srivastava (1996) presented a two-phase model of blood flow in the presence of a

peripheral plasma layer, considering the presence of the stenosis inside an artery. Further,

Riahi (2016) proposed the modeling of two-phase blood flow through a stenosed artery

by choosing its form based on the available experimental data. He found that in narrow

artery blood pressure gradient gets affected and increased significantly in the presence of

stenosis.

Blood is an electrically conducting fluid which is greatly affected by the presence

of an external magnetic field. Magnetohydrodynamics (MHD) is the study which deals

with the magnetic properties of an electrically conducting fluid, including Lorentz force

due to induced electric as well as the magnetic fields (Sharma et al., 2015b). Ali et al.

(2017) studied the MHD effects on blood flow assuming blood as a Casson fluid, along

with the magnetic particles. With the help of their study, they found that the magnetic

field reduces the velocities of both magnetic particles and as well as the blood. To study

the effects of magnetic field on two-phase blood flow, Ponalagusamy and Selvi (2015)

presented a mathematical model of heat transfer on two-phase blood flow considering the

effects of an applied magnetic field. Further, Ponalagusamy and Priyadharshini (2018)

analyzed a two-fluid model of blood flow in the presence of an external magnetic field

by assuming the characteristics of a micropolar fluid in the core region and Newtonian

nature of the fluid in the plasma region. Authors reported that increased intensity of

an applied magnetic field increases the resistive impedance which reduces the required

amount of blood supply to vital organs.

In the past, there have been a number of studies to examine the heat transfer effect in
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narrow arteries. A numerical investigation of unsteady flow has been done by Majee and

Shit (2017) to investigate the heat transfer effects on MHD blood flow through a stenosed

arterial segment. They reported that the temperature profile of the blood flow increases as

values of the magnetic field parameter increase. They found that the given result is very

much applicable in the hyperthermic treatment of the tumor. Garcia and Riahi (2014)

examined the heat transfer effect on the two-phase blood flow through a stenosed artery

with viscous heating effect. They analyzed that the generation of heat in the blood due

to the viscous heating effect is significant enough to make the blood temperature higher

than the temperature on the surface of the artery. Abbas et al. (2014) studied the MHD

two-phase fluid flow with heat transfer in an inclined channel by considering velocity slip

and thermal slip conditions. They investigated that the temperature profile of blood flow

increases as the values of thermal slip parameter increase.

All the above-mentioned studies were focused on analyzing the momentum and heat

transfer phenomenon on the two-phase model of the blood flow. With the help of the

literature and to the best knowledge of the authors, it is found that the influence of mass

transfer on two-phase blood flow is still not done by the researchers. The present article

analyzes the heat and mass transfer effects on two-phase blood flow through a stenosed

artery in the presence of an external magnetic field with radiation. Exact solutions have

been calculated for the nonlinear differential equations of momentum, energy and concen-

tration, considering the pulsatile nature of the flow. With the aim of having an adequate

insight into the problem graphs for flow resistance, total flow rate and wall shear stress

have been plotted with different quantities of interest.

5.2 Mathematical Model

Let us consider the two-phase model of the blood flow consists of a core region (a suspen-

sion of the uniform hematocrit) of radius R̄1(z̄) and a cell-free plasma layer of radius R̄(z̄)

through a cylindrical stenosed artery of radius R̄0. It is assumed that blood flows through

the stenosed artery under the influence of an external magnetic field with radiation. In

which magnetic field works perpendicular to the flow direction as shown in fig.5.1. In the
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artery, shear rates are considered to be high enough so that the fluid can be treated as

Newtonian in the core and the plasma layer (Sharan and Popel, 2001). Viscosities of the

core and the plasma regions are taken as

µ̄(r̄) =

 µ̄c for 0 ≤ r ≤ R̄1(z̄),

µ̄p for R̄1(z̄) ≤ r ≤ R̄(z̄).

Geometry of the stenosis in plasma and core regions are defined as (Sankar and Lee, 2007).

R̄(z̄)

R̄0

=

 1− δ̄sn
n
n−1

R̄0L̄n0 (n−1)

(
L̄n−1

0 (z̄ − d̄)− (z̄ − d̄)n
)

for d̄ ≤ z̄ ≤ d̄+ L̄0,

1, otherwise,
(5.2.1)

R̄(z̄)

R̄0

=

 β − δ̄sn
n
n−1

R̄0L̄n0 (n−1)

(
L̄n−1

0 (z̄ − d̄)− (z̄ − d̄)n
)

for d̄ ≤ z̄ ≤ d̄+ L̄0,

β, otherwise,
(5.2.2)

where β is the ratio of the central core radius to the normal artery radius, n determines

the shape of the constriction profile (Nadeem et al., 2011) and δ̄s indicates the maximum

height of the stenosis located at z̄ = d̄+ L̄0

n
1

(n−1)
.

Now, under all these assumptions, equations for momentum, energy and concentra-

tion for the core region are given by

ρ̄c
∂ūc
∂t̄

= −∂p̄
∂z̄

+ µ̄c

(
∂2ūc
∂r̄2

+
1

r̄

∂ūc
∂r̄

)
− σ̄B̄0

2
ūc, (5.2.3)

ρ̄cc̄c
∂T̄c
∂t̄

= K̄c

(
∂2T̄c
∂r̄2

+
1

r̄

∂T̄c
∂r̄

)
− ∂q̄c
∂r̄

, (5.2.4)

∂C̄c
∂t̄

= D̄c

(
∂2C̄c
∂r̄2

+
1

r̄

∂C̄c
∂r̄

)
. (5.2.5)

Similarly, the governing equations of momentum, energy and concentration for plasma

region are given by

ρ̄p
∂ūp
∂t̄

= −∂p̄
∂z̄

+ µ̄p

(
∂2ūp
∂r̄2

+
1

r̄

∂ūp
∂r̄

)
− σ̄B̄0

2
ūp, (5.2.6)

ρ̄pc̄p
∂T̄p
∂t̄

= K̄p

(
∂2T̄p
∂r̄2

+
1

r̄

∂T̄p
∂r̄

)
− ∂q̄p

∂r̄
, (5.2.7)

∂C̄p
∂t̄

= D̄p

(
∂2C̄p
∂r̄2

+
1

r̄

∂C̄p
∂r̄

)
, (5.2.8)
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Figure 5.1: Geometry of the stenosed artery of length L̄

from eqs.(5.2.3)-(5.2.8) subscripts c and p stand for the coefficients defined in core and

plasma regions respectively. Where B̄0 is the magnetic field intensity, σ̄ represents the

electrical conductivity of the blood, ∂
¯̄p

∂ ¯̄z
stands for the pressure gradient. D̄ is the coefficient

of mass diffusivity, ρ̄ is the density, c̄ is the specific heat and K̄ represents the thermal

conductivity and ū, T̄ and C̄ are the velocity, temperature and concentration of the blood

flow. Terms ∂q̄c
∂r̄

in eq.(5.2.4) and ∂q̄p
∂r̄

in eq.(5.2.7) are due to the radiation effect and these

are defined as
∂q̄c
∂r̄

= 4ᾱc
2
(
T̄c − T̄0

)
,

∂q̄p
∂r̄

= 4ᾱp
2
(
T̄p − T̄0

)
. (5.2.9)

Note that as plasma and blood in the physiological conditions are optically thin fluids of

very low density the values of mean radiation absorption coefficient ᾱc and ᾱp of core and

plasma are considered here ᾱ≪ 1, (Ogulu and Abbey, 2005).

The appropriate boundary conditions for the model under consideration are as follows:

ūp = 0, T̄p = T̄w, C̄p = C̄w at r̄ = R̄(z̄),

ūc = ūp, T̄p = T̄c, C̄p = C̄c at r̄ = R̄1(z̄),

∂ūc
∂r̄

= 0, ∂T̄c
∂r̄

= 0, ∂C̄c
∂r̄

= 0 at r̄ = 0,

τ̄c = τ̄p,
∂T̄c
∂r̄

= ∂T̄p
∂r̄
, ∂C̄c

∂r̄
= ∂C̄p

∂r̄
at r̄ = R̄1(z̄).

(5.2.10)

Now, we introduce the following dimensionless parameters:

uc =
ūc
ū0

, r =
r̄

R̄0

, z =
z̄

R̄0

, t = ω̄t̄, R(z) =
R̄(z̄)

R̄0

, D0 =
D̄p

D̄c

,
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p =
R̄0p̄

ū0µ̄p
, δ =

δ̄s
R̄0

, Re =
ρ̄pR̄0

2
ω

µ̄p
, θc =

(T̄c − T̄0)

T̄w − T̄0

, σc =
(C̄c − C̄0)

C̄w − C̄0

, up =
ūp
ū0

,

θp =
(T̄p − T̄0)

T̄w − T̄0

, σp =
(C̄p − C̄0)

C̄w − C̄0

, µ0 =
µ̄p
µ̄c
, N2 =

4R̄0
2
ᾱp

2

K̄p

, M2 =
σ̄B̄0

2
R̄0

2

µ̄p
,

P e =
ρ̄pc̄pR̄0

2
ω̄

K̄p

, Sc =
µ̄p
D̄pρ̄p

, ρ0 =
ρ̄p
ρ̄c
.

Meaning of the above mentioned notations are already given in earlier chapters 2, 3 and

4.

Therefore, eqs.(5.2.3)-(5.2.5) of the core region in non dimensional form can be rep-

resented as (
Re

ρ0

)
∂uc
∂t

= −∂p
∂z

+
1

µ0

(
∂2uc
∂r2

+
1

r

∂uc
∂r

)
−M2uc, (5.2.11)

PeK0

ρ0s0

(
∂θc
∂t

)
=

(
∂2θc
∂r2

+
1

r

∂θc
∂r

)
− K0

α0

N2θc, (5.2.12)

Re

(
∂σc
∂t

)
=

1

D0

(
1

Sc

)(
∂2σc
∂r2

+
1

r

∂σc
∂r

)
, (5.2.13)

and, eqs.(5.2.6)-(5.2.8) of the plasma region can be expressed as

Re
∂up
∂t

= −∂p
∂z

+

(
∂2up
∂r2

+
1

r

∂up
∂r

)
−M2up, (5.2.14)

Pe
∂θp
∂t

=

(
∂2θp
∂r2

+
1

r

∂θp
∂r

)
−N2θp, (5.2.15)

Re

(
∂σp
∂t

)
=

(
1

Sc

)(
∂2σp
∂r2

+
1

r

∂σp
∂r

)
. (5.2.16)

Similarly, the corresponding boundary conditions eq.(5.2.10) in non-dimensional form are

given as 

up = 0, θp = 1, σp = 1 at r = R(z),

up = uc, θp = θc, σp = σc at r = R1(z),

τc = τp,
∂θc
∂r

= ∂θp
∂r
, ∂σc

∂r
= ∂σp

∂r
at r = R1(z),

∂uc
∂r

= 0, ∂θc
∂r

= 0, ∂σc
∂r

= 0 at r = 0.

(5.2.17)
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5.3 Solution

In this section, we solve the momentum, temperature and concentration eqs.(5.2.11)-

(5.2.16) for both core and plasma regions under the given boundary conditions eq.(5.2.17).

Since pumping action of the heart results in the pulsatile nature of the blood flow, we

assume pressure gradient, velocity, temperature and concentration are in the form of
−∂p
∂z

= P0e
iωt, uc(r, t) = uc0(r)e

iωt, up(r, t) = up0(r)e
iωt,

θc(r, t) = θc0(r)e
iωt, θp(r, t) = θp0(r)e

iωt,

σc(r, t) = σc0(r)e
iωt, σp(r, t) = σp0(r)e

iωt.

(5.3.1)

Now using eq.(5.3.1), eqs.(5.2.11)-(5.2.13) can be converted in the form of(
∂2uc0
∂r2

+
1

r

∂uc0
∂r

)
−
(
M2 +

µ0Re

ρ0

i

)
uc0 = −P0µ0, (5.3.2)

∂2θc0
∂r2

+
1

r

∂θc0
∂r
−
(
K0N

2

α0

+ i
Pe

ρ0

(
K0

s0

))
θc0 = 0, (5.3.3)

∂2σc0
∂r2

+
1

r

∂σc0
∂r
− (iReD0Sc)σc0 = 0. (5.3.4)

Similarly, substituting eq.(5.3.1) into eqs.(5.2.14)-(5.2.16), we get(
∂2up0
∂r2

+
1

r

∂up0
∂r

)
−
(
M2 +Rei

)
up0 = −P0, (5.3.5)

∂2θp0
∂r2

+
1

r

∂θp0
∂r
−
(
N2 + iPe

)
θp0 = 0, (5.3.6)

∂2σp0
∂r2

+
1

r

∂σp0
∂r
− iReScσp0 = 0. (5.3.7)

Remark 5.1. Note that the system of ODEs, eqs.(5.3.2)-(5.3.7) along with the boundary

conditions (eq.(5.2.17)) admits an exact solution using the definition of Bessel functions.

Therefore, final solutions for temperature and concentration considering unsteady

flow of core and plasma regions respectively, are as follows

θc(r, t) =
[
(U1S1 + U2) J0(

√
β1(r))

]
eiωt, (5.3.8)

θp(r, t) =

[
S1

(
J0(
√
β2r)−

J0(
√
β2R

Y0(
√
β2R

)Y0(
√
β2r)

)
+
Y0(
√
β2r)

Y0(
√
β2R)

]
eiωt. (5.3.9)
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σc(r, t) = [U4S2 + U5] J0(
√
γ′1(r))eiωt, (5.3.10)

σp(r, t) =

[
S2

(
J0(
√
γ′2r)−

J0(
√
γ′2R

Y0(
√
γ′2R

)Y0(
√
γ′2r)

)
+
Y0(
√
γ′2r)

Y0(
√
γ′2R)

]
eiωt, (5.3.11)

where S1 =
√
β2Y1(

√
β2R1)

U3Y0(
√
β2R)

−
√
β1U2J1(

√
β1R1)

U3
, S2 =

(√
γ′2Y1(
√
γ′2R1)

U6Y0(
√
γ′2R)

−
√
γ′1U5J1(

√
γ′1R1)

U6

)
and

constants β1, β2, γ′1, γ′2, U1, U2, U3, U4, U5 and U6 are given in Appendix A.

Now, we calculate the solution for the eq.(5.3.2)(
∂2uc0
∂r2

+
1

r

∂uc0
∂r

)
−
(
M2 +

µ0Re

ρ0

i

)
uc0 = −P0µ0. (5.3.12)

The general solution of the eq.(5.3.12) is calculated using variation of parameters method

as

uc0 = C1J0(
√
λ1r) + C2Y0(

√
λ1r) + A1J0(

√
λ1)r +B1Y0(

√
λ1r). (5.3.13)

where C1, C2 are the arbitrary constants and A1, B1 are defined as

A1 = −πr
2

∫
Y0(
√
λ1r)P0µ0 dr,

B1 =
πr

2

∫
J0(
√
λ1r)P0µ0 dr.

Similarly, for the plasma region the general solution for the eq.(5.3.5) is

up0 = C3J0(
√
λ2r) + C4Y0(

√
λ2r) + A2J0(

√
λ2r) +B2Y0(

√
λ2r). (5.3.14)

Now, using boundary conditions eq.(5.2.17) into eq.(5.3.13) and eq.(5.3.14), we get C2 = 0

and the linear system in terms of C1, C3, C4 as
J0(
√
λ1R1) −J0(

√
λ2R1) −Y0(
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0 J0(
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√
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√
λ2J1(

√
λ2R1)

√
λ2Y1(

√
λ2R1)
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
C1

C3

C4

 =


D1

D2

D3

 (5.3.15)

where values of λ1, λ2,D1, D2 and D3 are given in Appendix A. Under the given set of

boundary conditions the linear system eq.(5.3.15) admits a unique solution.
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5.4 Results and Discussion

In this section, graphical results are presented to analyze the effects of various dimension-

less parameters on velocity, temperature and concentration profiles of the blood flow. In

which value of the radius of the core region is taken as 0.7, by considering the radius of

the stenosed artery as 0.9. In all the graphical results, the effect of a particular parameter

on plasma region has been displayed using the dim black dotted lines. Default values

which have been used to graphically analyze the effectiveness of the model are as follows:

N = 2, K0 = 0.4, ρ0 = 1.05, Pe = 0.87 Sc = 0.5, Re = 0.9, L0 = 1, M = 3, δ = 0.1.

Fig.5.2 shows the variation of the velocity profile of blood flow for different values

of the magnetic field parameter (M). It is clear from the figure that as the values of

the magnetic field parameter increase, the value of the velocity profile decreases in both

core as well as in plasma regions. This happens due to the Lorentz force which acts as

a resistive drag force. An action of which makes red blood cell more suspended in the

fluid by increasing the internal viscosity of the fluid. This results in a decrease velocity

profile of the core region which directly affects the velocity of the plasma region due

to the continuous behavior of the flow lines at the interface region of core and plasma.

Therefore, the velocity of the plasma region also decreases as values of the magnetic field

parameter increase. Fig.5.3 displays the variation of the temperature profile of the core
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and plasma regions with radiation parameter (N). It can be clearly observed from the

figure that as the values of the radiation parameter increase, temperature profile of the

blood flow decreases. Therefore, when plasma separates from the red blood cell as in

two-phase analysis, temperature profile attains lower values in core region than in the

plasma region because of the buoyancy force which exists due to the radiation effect.

Further, the same figure reveals that with no radiation effect, temperature profile shows

exactly opposite behavior for core and plasma regions by attaining higher values in the

core region than the plasma region. Variation of concentration profile for different values
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of the Schmidt number (Sc) has been displayed in fig.5.4. From the figure, it is clear that

as values of the Schmidt number increase, the concentration profile of the core and the

plasma regions increases. Further, the same figure exhibits that for any particular value

of the Schmidt number concentration profile of the core region attains higher values than

the concentration profile of the plasma region.

The total volumetric flow rate (Q) and flow resistance (λ) are calculated as

Q = 2πR2

∫ R1

0

uc(r, t)dr + 2πR2

∫ R

R1

up(r, t)dr, (5.4.1)

λ =

∫ z

0

P0e
iωt

Q
dz. (5.4.2)
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Fig.5.5 has been plotted for the flow rate profile of the blood flow against the axial distance

z of the artery (values of which covers only the diseased part of the artery) for different

values of the Reynolds number. It can be clearly observed from the figure that as values

of the Reynolds number increase, flow rate of the blood flow within the stenosed artery

decreases. Fig.5.6 displays the flow impedance profile of the blood flow against the axial
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distance for different values of the magnetic field parameter. From the figure, it can be

noticed that as values of the magnetic field parameter increase, the impedance profile also

increases. This happens because the high intensity of the applied magnetic field increases

the internal viscosity of the fluid which directly affects the fluid resistance to flow.

At the outer wall of the artery shear stress is determined as

τ = − 1

µ0

(
∂up
∂r

)
. (5.4.3)

Fig.5.7 shows the variation of wall shear stress against the axial distance with variable

height of the stenosis. From the figure, it is clear that as values of the height of the

stenosis increase from 0.05 to 0.09, shear stress at stenosis throat decreases, respectively.
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Comparison of results

Table. 5.1 gives a comparison between the results computed on the basis of the present

study with those of Sharma et al. (2015b). Values of the parameters for both of these

studies are considered as N = 0, Pe = 0.1, Sc = 0.1 Re = 0.9, δ = 0 M = 1, P0 = 2.16.

Present study converts to the case of a single phase blood flow (in which plasma and

red blood cell are uniformly distributed throughout the artery by following the same flow

dynamics) with no radiation effect when we consider values as R1 = 1, N = 0 and R = 1.

For the given value of the parameters, result in the Table 5.1 displays that the present

model maintains a good agreement with the result given by Sharma et al. (2015b).

Table 5.1: Comparative results of Velocity distribution.

r 0.00276243 0.198895 0.400552 0.599448 0.798343 1

Sharma et al. 0.264906 0.256981 0.232075 0.187925 0.11434 0

Our result 0.2717 0.2647 0.2407 0.1939 0.1154 0

Figure 5.8: Velocity Con-

tour for 20% stenosis.

Figure 5.9: Velocity Con-

tour for 40% stenosis.

Figure 5.10: Velocity

Contour 50% stenosis.

Figs.5.8-5.10 show the magnetic field induced streamlines for 20%, 40% and 50% of

the arterial blockage. From the figures, it is clear that the showing symmetry about the

center line these streamlines reveal that as the height of the blocked area increases more

and more re-circulation zones appear around the center of the artery. To compare these

results one may also record from these patterns that the number of flow lines increases
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near the center of the artery as the height of the stenosis increases. Thus the deviation

of the patterns of flow lines can be used to estimate the influence of increasing height of

the stenosis on blood flow.

5.5 Conclusions

In the present study, we have theoretically analyzed the effects of heat and mass transfer

on the two-phase model of the blood flow through a stenosed artery, under the influence

of an applied magnetic field with thermal radiation. Considering Newtonian fluid in the

core and the plasma regions, the mathematical model of coupled nonlinear differential

equations have been developed for momentum, concentration, and energy equations of

the blood flow. The study enables us to conclude the following:

1. It is evident from the graphical result that the increasing intensity of an applied

magnetic field leads to the decreased velocity of both core and the plasma regions.

It implies that the blood velocity in the narrow artery can be regulated under the

influence of an applied magnetic field. This result can be helpful for the medical

personnel at the time of the surgical process in a human body.

2. The high values of the radiation parameter in the narrow artery decreases the tem-

perature of the blood flow. This result has important relevance in the therapeutic

procedure of hyperthermia which treats cancer.

3. The study reveals that increasing values of the Schmidt number give rise to an

increased concentration of the blood flow.

4. Results show that the flow rate of the blood flow in narrow artery decreases as values

of the Reynolds number increase and the shear stress at stenosis throat decreases

with increasing values of the height of the stenosis.





Chapter 6

Influence of Heat and Mass Transfer

on Two-Phase Blood Flow with

Joule Heating and Variable Viscosity

In the Presence of Variable Magnetic

Field

6.1 Introduction

To quantitate the analysis of the blood flow through the smaller size of blood vessels

as arterioles and venules, it is necessary to consider the rheological properties of the

blood flow. One of the major characteristics of blood flow is the volume percentage

of the erythrocytes in the blood. In the literature, it has been already shown through

in vitro and in vivo analysis that when the blood flows through a narrow artery, there

exists a cell-free plasma layer near the wall due to F̊ahræus effect (Chebbi, 2015; Cokelet

and Goldsmith, 1991; Sharan and Popel, 2001). Therefore, when blood flows through

narrow arteries, the two-phase nature of blood as a suspension becomes significant as the

diameter of the red blood cell becomes comparable to the arterial diameter. Therefore,

in the smaller arteries at very low shear stress, aggregation of red blood cells leads to the

121
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two-phase flow which consists of an inner core region of red blood cells surrounded by cell

depleted plasma layer. According to the fluid mosaic model, both red blood cells in the

core region (as they are mostly composed of water) and the plasma layer near the arterial

wall itself shows the fluid properties (Rubenstein et al., 2015).

Considering different viscosity of the core region than the plasma region and assuming

erythrocyte distribution by the step function, Medvedev and Fomin (2011) compared the

experimental values with the calculated values of relative observed viscosity. With the

help of in vitro and in vivo data Pries et al. (1992, 1994, 1990) established an empirical

relationship between relative apparent viscosity and mean tube hematocrit as a function

of tube diameter and discharge hematocrit. Authors found a significantly higher blood

flow resistance in tubes of diameters less than 40 µm “in vivo viscosity law” compared

with the results of “in vitro viscosity law” in a smooth glass tube. Ponalagusamy and Selvi

(2013) presented a mathematical model for narrow arteries with a core region containing

red blood cells and cell-free region of plasma. Considering radially varying viscosity of the

core region with the hematocrit level, they observed that increased viscosity of the core

fluid enhances the resistance force which slows down the velocity of the flow of blood.

In the cardiovascular system of our human body, narrowing of an artery due to the

deposition of fatty substances and cholesterol causes to a medical condition known as

stenosis (Bakheet et al., 2016). Presence of stenosis inside an inner wall of the artery

changes its flow pattern and hemodynamic conditions. Recently, many theoretical, as

well as experimental studies, have been done to investigate the flow characteristics of

the arterial lumen of a blood vessel due to the presence of stenosis (Ikbal et al., 2009;

Majee and Shit, 2017; Misra and Shit, 2006). For two-phase blood flow, considering

Newtonian fluid in both core and plasma regions, Srivastava (1996) examined the effects

of red cell concentration and peripheral layer on flow characteristics in the presence of

mild stenosis. Sankar and Lee (2007) analyzed the effects of stenosis on two-phase blood

flow assuming core region as a Herschel-Bulkley fluid and the plasma in the peripheral

layer as a Newtonian fluid and reported that the plug core radius and resistance to flow

increase as the size of the stenosis increases.

There are so many important technological problems that concern the flow of chem-
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ically reacting fluid mixtures. Therefore, it has gained serious importance from the re-

searchers to study the presence of chemical reaction effects during various physiological

functions. Many researchers have studied various aspects of blood flow including the chem-

ical reaction effects for single-phase arterial blood flow. As Mekheimer et al. (Mekheimer

et al., 2012) presented a theoretical model to study the impact of heat and chemical reac-

tion on blood flow with overlapping stenosis. Further, Misra and Adhikary (2016) studied

the problem of MHD flow of blood in presence of chemical reaction and an external mag-

netic field. They investigated with the help of their study that in blood flow, the mass

transfer rate is strongly dependent on the chemical reaction and it decreases as effects of

the chemical reaction increase. By assuming non-Newtonian characteristics of the blood

flow El-Sayed et al. (2011) develop a mathematical model to analyze the MHD heat and

mass transfer of chemical reaction fluid flow over a moving vertical plate in the presence

of heat source with convective surface boundary condition. However, in none of the afore-

said studies mentioned above, the effect of chemical reaction on two-phase blood flow has

been incorporated.

Blood is a physiological fluid which shows the characteristics of biomagnetic fluids

as it gets affected by the applied magnetic field. A mathematical study presented by

Misra et al. (2011b) for the single-phase model of the stenosed arterial blood flow in

which they examined the complex flow behavior of blood under the influence of applied

magnetic field. The study reveals that the variation in the values of applied magnetic field

influences the wall shear stress of the stenosed artery in such a way, that high intensity

of applied magnetic field can rupture the stenosed arterial wall and in result concerned

portion of the body may become paralyzed. By neglecting the induced magnetic and

electric fields effects Khan et al. (2017b), described the bioconvective flow of Maxwell

nanofluid containing microorganisms, in the presence of a magnetic field. Ponalagusamy

and Selvi (2015) introduced a mathematical model for narrow arteries to analyze the

external magnetic field effects on two-phase blood flow, consisting central core region

of suspended erythrocytes and a cell-free layer surrounding the core. They observed

that velocity profiles for both core and plasma regions decrease, under the increased

intensity of the applied magnetic field. For radially varying values of applied magnetic
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field Bhatti and Zeeshan (2016) developed a mathematical model for single-phase blood

flow which resulted that the pressure rise increases with increased values of the applied

magnetic field. Bhatti and Rashidi (2017) studied the effects of heat and mass transfer on

magnetohydrodynamic blood flow with joule heating effect. Further, Khan et al. (2017a)

established a mathematical model to study the effects of both viscous dissipation and

Joule heating on MHD stagnation point flow. They found that high intensity of magnetic

field has a reducing effect on both velocity and temperature profile of the fluid. However,

in the above-mentioned studies, no authors discussed the heat and mass transfer effects

on two-phase blood flow with viscous dissipation and Joule heating effect in the presence

of an applied magnetic field.

The analysis of various physiological systems has been reported by many scientists

during the past few years. They show unpredictable and chaotic behavior. In such type

of systems, the analysis of heat and mass transfer involves great interest which arises due

to its complex combination of stochastic and deterministic physiological processes. Blood

flow enhances when a person performs different physical activities and in this situations,

blood circulation remains unstable. When the environmental temperature fluctuates then

heat transfer takes place from the skin through the process of evaporation or the human

body loses heat through conduction and radiation processes. In such types of cases,

entropy plays an important role to scrutinize such systems. Bejan (1982) developed

the entropy generation optimization method and introduced its applications in science

and engineering field. Rashidi et al. (2016) presented the entropy generation on the

MHD blood flow of a nanofluid influenced by the thermal radiation. Considering heat

generation and absorption effects, Hayat et al. (2016) characterize the phenomenon of

heat transfer to addresses the effect of melting heat in the flow. Further, Hayat et al.

(2017) studied the flow of micropolar nano-fluid with thermal radiation and Newtonian

heating and analyzed that both heat and mass transfer rate increases as values of the

radiation parameter increase. Considering the nonlinear radiative effects, Farooq et al.

(2016) presented a mathematical model for stretched flow of viscoelastic fluid by assuming

nonlinear radiative effects. With the help of their study, they resulted from that surface

heat flux increases for large values of the radiation parameter. Recently, Tripathi and



6.2 The Mathematical Model 125

Sharma (2018a) discussed the effect of heat and mass transfer on the two-phase model

of the blood flow through a horizontal stenosed artery. The blood flow is considered as

Newtonian fluid in both the core and the plasma region.

Above mentioned studies were focused on analyzing the momentum and the heat

transfer phenomenon for the two-phase model of the blood flow. With the help of the

literature and to the best knowledge of the authors, it is found that the influence of mass

transfer on two-phase blood flow having variable viscosity with chemical reaction has not

gained much attention by the researchers. To show the effect of total movement of the

mass from one place to the other place in the two-phase model of blood flow we consider

the mass transfer phenomenon as an important part of the investigation. The present

article investigates the simultaneous effects of viscous dissipation and Joule heating with

the chemical reaction to the problem of unsteady two-phase blood flow through a stenosed

artery under the presence of variable applied magnetic field. The present mathematical

model with nonlinear partial differential equations of energy and concentration have been

solved using a shooting method for both core and plasma regions separately. To get

physical insight into the problem, flow resistance, total flow rate, wall shear stress, heat

and mass transfer have been estimated and their respective graphs have been plotted with

different values of stenosis size and magnetic field. A comparative study has been done

with experimental data to show the effectiveness of the two-phase model of blood flow

and it is observed that the two-phase model fits more appropriately with the experimental

data as compared to single-phase model.

6.2 The Mathematical Model

Let us consider a two-layered model of blood flow through a cylindrically shaped stenosed

artery having core region which contains erythrocytes (suspension of the uniform hema-

tocrit), and a cell-free layer outside the core containing plasma as shown in fig.6.1. To

investigate the flow dynamics of blood flow under the influence of radially varying applied

magnetic field, a fully developed, unsteady, laminar, incompressible fluid is considered

both in the core as well as plasma regions. Arterial length is presumed to be large enough
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Figure 6.1: Geometry of the stenosed artery of length L̄

in comparison with its radius so that wall effects can be neglected at the inlet as well as

outlet segment of the artery. Due to the large length of the blood vessel and high rates of

shear stress, nature of the blood flow is considered as Newtonian in both the core as well

as in plasma regions (Noutchie, 2009). We consider the flow of two immiscible Newtonian

fluids, consisting of a core region of having hematocrit dependent viscosity and plasma

region of constant viscosity.

The viscosity of the fluid for the core region is given by

µc(r̄) = µ̄p (1 + β1h(r̄)) ,

now we use following the empirical formula for (Sinha and Misra, 2014)

h(r̄) = hm

[(
R1

R0

)m
−
(
r̄

R0

)m]
, (6.2.1)

where m > 2, which is valid only for very dilute suspension of spherically shaped

erythrocytes and Hr = β1hm, in which β1 is a constant value (for blood it has value nearly

2.5).

Geometry of the stenosis in plasma region (assumed to be symmetric) is defined as

(Mekheimer and Kot, 2008),

R̄(z̄) =

1− η∗
(
L̄n−1

0 (z̄ − d̄)− (z̄ − d̄)n
)

for d̄ ≤ z̄ ≤ d̄+ L̄0,

1 otherwise,

(6.2.2)

in the core region, geometry of the stenosis is defined as (Sankar and Lee, 2007),
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R̄1(z̄)

R̄0

=

β − η
∗ (L̄n−1

0 (z̄ − d̄)− (z̄ − d̄)n
)

for d̄ ≤ z̄ ≤ d̄+ L̄0,

1 otherwise,

(6.2.3)

in which η∗ is expressed as

η∗ =
δ̄sn

n
n−1

R̄0L̄n0 (n− 1)
, (6.2.4)

where n = 2 for the case of symmetric stenosis (Nadeem et al., 2011) and the maximum

height of the stenosis is located at

z̄ = d̄+
L̄0

n
1

(n−1)

. (6.2.5)

Note that the artery is assumed to be of cylindrically shaped in which velocity components

(ūc, v̄c, w̄c) and (ūp, v̄p, w̄p) are considered in the (r̄, θ̄, z̄) directions, respectively. Having

all these assumptions, the governing equations of the flow of blood in the core arterial

segment are as follows (Hayat et al., 2008; Pal and Talukdar, 2011; Tripathi and Sharma,

2018a):

ρ̄c
∂ūc
∂t̄

= −∂p̄
∂z̄

+
1

r̄

∂

∂r̄

(
r̄µc(r̄)

(
∂ūc
∂r̄

))
− σ̄1B̄0(r̄)

2
ūc, (6.2.6)

ρ̄cc̄c
∂T̄c
∂t̄

= K̄c

(
∂2T̄c
∂r̄2

+
1

r̄

∂T̄c
∂r̄

)
+ µ̄c(r̄)

(
∂ūc
∂r̄

)2

+ σ̄1B̄0(r̄)
2
ūc

2, (6.2.7)

∂C̄c
∂t̄

= D̄c

(
∂2C̄c
∂r̄2

+
1

r̄

∂C̄c
∂r̄

)
− Ē ′c

(
C̄c − C̄0

)
. (6.2.8)

The equations for momentum, energy and concentration for plasma region are as follows

ρ̄p
∂ūp
∂t̄

= −∂p̄
∂z̄

+ µ̄p

(
∂2ūp
∂r̄2

+
1

r̄

∂ūp
∂r̄

)
− σ̄1B̄0(r̄)

2
ūp, (6.2.9)

ρ̄pc̄p
∂T̄p
∂t̄

= K̄p

(
∂2T̄p
∂r̄2

+
1

r̄

∂T̄p
∂r̄

)
+ µ̄p

(
∂ūp
∂r̄

)2

+ σ̄1B̄0(r̄)
2
ūp

2, (6.2.10)



128 Chapter 6. Effects of Joule Heating on blood flow having Variable Viscosity

∂C̄p
∂t̄

= D̄p

(
∂2C̄p
∂r̄2

+
1

r̄

∂C̄p
∂r̄

)
− Ē ′p

(
C̄p − C̄0

)
. (6.2.11)

In eqs.(6.2.6) and (6.2.9), terms σ̄1B̄0(r̄)
2
ūc and σ̄1B̄0(r̄)

2
ūp are appeared because of the

Lorentz force that is considered due to the electrical conductivity of the blood flow

(Tashtoush and Magableh, 2008). Term µ̄c(r̄)
(
∂ūc
∂r̄

)2
in eq.(6.2.7) and term µ̄p

(
∂ūp
∂r̄

)2

in eq.(6.2.10) are for the viscous dissipation which directly affects the mechanism of heat

transfer of the blood flow. This phenomenon has a great importance in a pathologi-

cal state of an arterial segment during deep heat muscle treatment (Dessie and Kishan,

2014). Further, last terms in eqs.(6.2.7) and (6.2.10) represent the Joule heating effect

while chemical reaction terms are incorporated in concentration eqs.(6.2.8) and (6.2.11)

for both core as well as plasma region.

In the model, It is also assumed that the outer arterial wall as a solid surface by con-

sidering no-slip boundary conditions (Prabhakara and Deshpande, 2004). A continuous

behavior of velocity, temperature, and concentration have been taken at the interface

of core and plasma regions. It is presumed that in the core region due to symmetry,

velocity, temperature and concentration gradient vanish along with the center of artery

(Sharan and Popel, 2001). Under all these assumption boundary conditions to solve the

mathematical model eqs.(6.2.6)-(6.2.11) for both core and plasma regions are as follows:

ūp = 0, T̄p = T̄w, C̄p = C̄w at r̄ = R̄(z̄),

ūc = ūp, T̄p = T̄c, C̄p = C̄c at r̄ = R̄1(z̄),

∂ūc
∂r̄

= 0, ∂T̄c
∂r̄

= 0, ∂C̄c
∂r̄

= 0 at r̄ = 0,

τ̄c = τ̄p,
∂T̄c
∂r̄

= ∂T̄p
∂r̄
, ∂C̄c

∂r̄
= ∂C̄p

∂r̄
at r̄ = R̄1(z̄).

(6.2.12)

Now, let us introduce following non-dimensional parameters as follows

uc =
ūc
ū0

, r =
r̄

R̄0

, z =
z̄

R̄0

, t = ω̄t̄,
R̄(z̄)

R̄0

= R(Z),
R̄(z̄)

R̄0

= R1(z),

up =
ūp
ū0

, p =
R̄0p̄

ū0µ̄p
, Re =

ρ̄pR̄0u0

µ̄p
, θc =

(T̄c − T̄0)

T̄w − T̄0

, σc =
(C̄c − C̄0)

C̄w − C̄0

,

δ =
δ̄s
R̄0

, θp =
(T̄p − T̄0)

T̄w − T̄0

, M1
2(r) =

σ̄B̄0(r̄)
2
R̄0

2

µ̄p
, σp =

(C̄p − C̄0)

C̄w − C̄0

,
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Pe =
ρ̄pc̄pR̄0

2
ω̄

K̄p

, Sc =
µ̄p
D̄pρ̄p

, D0 =
D̄p

D̄c

,

τc =
τ̄cR̄0

2

ū0µ̄p
, τp =

τ̄pR̄0
2

ū0µ̄p
, ρ0 =

ρ̄p
ρ̄c
, µ0 =

µ̄p
µ̄c
, Ē ′p =

Eµ̄p

ρ̄pR̄0
2 E0 =

Ēp
Ēc

.

where expression for variable magnetic field (Bhatti and Zeeshan, 2016) is considered as

M1(r) =
M

r
. (6.2.13)

where M is the magnetic field parameter and meaning of the other mentioned notations

are already given in earlier chapters 2, 3 and 4.

The dimensionless form of the geometry of the stenosis in core and plasma regions

are given by

R(z) =

1− η ((z − l)− (z − l)n) for l ≤ z ≤ 1 + l,

1 otherwise,

(6.2.14)

R1(z) =

β − η ((z − l)− (z − l)n) for l ≤ z ≤ 1 + l,

β otherwise,

(6.2.15)

where

η =
δn

n
n−1

(n− 1)
, l =

d̄

L̄0

, δ =
δ̄s
R̄0

.

The governing equations for core region in dimensionless form as described in eqs.(6.2.6)-

(6.2.8) can be written as(
Re

ρ0

)(
∂uc
∂t

)
=−

(
∂p

∂z

)
+

(
∂2uc

∂r2

)[
1 + βhm

((
R1

R0

)m2

− rm2

)]
+

1

r

(
∂uc
∂r

)[
1 + βhm

((
R1

R0

)m2

− (m2 + 1)rm2

)]
− M2

r2
uc,

(6.2.16)

(
1

ρ0s0

)(
∂θc
∂t

)
=

1

K0Pe

(
∂2θc

∂r2 +
1

r

∂θc
∂r

)
+
M2

r2

(
Ec

Re

)
uc

2

+

(
Ec

Re

)[
1 + βhm

((
R1

R0

)m2

− rm2

)](
∂uc
∂r

)2

,

(6.2.17)

Re

(
∂σc
∂t

)
=

1

D0

(
1

Sc

)(
∂2σc
∂r2

+
1

r

∂σc
∂r

)
− E

E0

σc. (6.2.18)
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Equations of the plasma region eqs.(6.2.9)-(6.2.11) can be transformed in non dimensional

form as

Re

(
∂up
∂t

)
= −

(
∂P

∂z

)
+

(
∂2up

∂r2 +
1

r

∂up
∂r

)
− M2

r2
up, (6.2.19)(

∂θp
∂t

)
=

1

Pe

(
∂2θp

∂r2 +
1

r

∂θp
∂r

)
+
Ec

Re

(
∂up
∂r

)2

+
M2

r2

Ec

Re
up

2, (6.2.20)

Re

(
∂σp
∂t

)
=

(
1

Sc

)(
∂2σp
∂r2

+
1

r

∂σp
∂r

)
− Eσp. (6.2.21)

Henceforth, the corresponding boundary conditions eq.(6.2.12) in nondimensional form

are given by 

up = 0, θp = 1, σp = 1 at r = R(z),

up = uc, θp = θc, σp = σc at r = R1(z),

τc = τp,
∂θc
∂r

= ∂θp
∂r
, ∂σc

∂r
= ∂σp

∂r
at r = R1(z),

∂uc
∂r

= 0, ∂θc
∂r

= 0, ∂σc
∂r

= 0 at r = Rc.

(6.2.22)

It is a well-studied fact that pumping action of the heart results into a pulsatile nature

of the blood flow, and therefore the pressure gradient is assumed in the following form

(Ponalagusamy and Selvi, 2015)

−∂p
∂z

= P0e
iωt, (6.2.23)

where P0 is the constant pressure. This assumption holds for harmonic oscillatory flows,

and in these cases, the real part of the eq.(6.2) gives the corresponding flow, as discussed

in details by Womersley (1955). For the selected form of the pressure gradient, solution of

velocity, temperature and concentration for both core and plasma regions can be written

in the form of 
uc(r, t) = uc0(r)e

iωt, up(r, t) = up0(r)e
iωt,

θc(r, t) = θc0(r)e
iωt, θp(r, t) = θp0(r)e

iωt,

σc(r, t) = σc0(r)e
iωt, σp(r, t) = σp0(r)e

iωt.

(6.2.24)

Substituting the expressions from eq.(6.2.24) in to eqs.(6.2.16)-(6.2.18), we get(
i
Re

ρ0

+
M2

r2

)
uc0 =P0 +

(
∂2uc0
∂r2

)[
1 + βhm

((
R1

R0

)m2

− rm2

)]
+

1

r

(
∂uc0
∂r

)[
1 + βhm

((
R1

R0

)m2

− (m2 + 1)rm2

)]
,

(6.2.25)
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(
i

1

ρ0s0

)
θc0 =

1

K0Pe

(
∂2θc0
∂r2 +

1

r

∂θc0
∂r

)
+

(
M

r

)2
Ec

Re
uc0

2eiωt

+

(
Ec

Re

)[
1 + βhm

((
R1

R0

)m2

− rm2

)](
∂uc0
∂r

)2

eiωt,

(6.2.26)

∂2σc0
∂r2

+
1

r

∂σc0
∂r
−
(
iReD0Sc+

E

E0

D0Sc

)
σc0 = 0, (6.2.27)

and eqs.(6.2.19)-(6.2.21) of plasma region change in the form of(
iRe+

(
M

r

)2
)
up0 =P0 +

(
∂2up0
∂r2 +

1

r

∂up0
∂r

)
, (6.2.28)

iθp0 =
1

Pe

(
∂2θp0
∂r2 +

1

r

∂θp0
∂r

)
+

(
M

r

)2
Ec

Re
up0

2eiωt +

(
Ec

Re

)(
∂up0
∂r

)2

eiωt, (6.2.29)

∂2σp0
∂r2

+
1

r

∂σp0
∂r
− (iReSc+ ESc)σp0 = 0. (6.2.30)

6.3 Solution

Since eqs.(6.2.25) and (6.2.26) are the coupled non-linear ordinary differential equations

(containing an independent variable r), we employ a numerical technique named single

shooting method to solve the equations with the given boundary conditions eq.(6.2.22).

Shooting method

Shooting methods are used to solve boundary value problems (BVP). In this technique,

an initial guess is chosen for the unknown initial value problem(IVP) and the IVP is fur-

ther solved. Subsequently, the initial guess is improved by comparing the error between

the known values and computed values at the terminal node (Ha, 2001; Ja, 1983). In the

model let us assume x(1) = u, x(2) = θ, x(3) = ∂u
∂r

and x(4) = ∂θ
∂r

.

Therefore, first order nonlinear system for eqs.(6.2.25) and (6.2.26) can be represented as

ẋ(1) = x(3), (6.3.1)

ẋ(2) = x(4), (6.3.2)
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ẋ(3) =
1

φ

(
−P0 −

1

r
(φ− βhm(m2 + 1)rm2)x(3)

)
+

((
M

r

)2

+
iRe

ρ0

)
x(1)

φ
, (6.3.3)

ẋ(4) = −1

r
x(4)− K0PeEc

Reφ
x(3)2eiωt +

K0Pe

ρ0c0

x(2)−
(
M

r

)2
K0PeEc

Re
x(1)2eiωt, (6.3.4)

where φ = 1 + βhm

((
R1

R0

)m2

− rm2

)
. Now, first order system for eqs.(6.2.28) and (6.2.29)

are as follows

ẋ(1) = x(3), (6.3.5)

ẋ(2) = x(4), (6.3.6)

ẋ(3) = −P0 +

((
M

r

)2

+ iα2

)
x(1)− 1

r
x(3), (6.3.7)

ẋ(4) = iPe x(2)− 1

r
Pe x(4)− PeEc

Re
x(3)2eiωt − PeEc

Re

(
M

r

)2

eiωtx(1). (6.3.8)

Now, we apply all the steps as given in algorithm((1)) to solve the given problem using

single shooting method.

Eqs.(6.2.27) and (6.2.30) are the ordinary differential equations which we solve using

the definition of Bessel differential equation and calculate their exact solutions. To solve

these equations under the given boundary conditions eq.(6.2.22), first we assume

γ1 = −
(
iReD0Sc+

E

E0

D0Sc

)
, (6.3.9)

γ2 = − (iReSc+ ESc) . (6.3.10)

So the eqs.(6.2.27) and (6.2.30) become

d2σc0
dr2

+
1

r

dσc0
dr

+ γ1σc0 = 0, (6.3.11)

d2σp0
dr2

+
1

r

dσp0
dr

+ γ2σp0 = 0. (6.3.12)

Therefore, Solution of concentration for core and plasma regions is calculated as

σc0(r) =

[
U4

(√
γ2Y1(

√
γ2R1)

U3Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
+ U5

]
J0(
√
γ1(r)), (6.3.13)
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and

σp0(r) =

[(√
γ2Y1(

√
γ2R1)

U3Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)(
J0(
√
γ2r)−

J0(
√
γ2R

Y0(
√
γ2R

)Y0(
√
γ2r)

)]
+
Y0(
√
γ2r)

Y0(
√
γ2R)

, (6.3.14)

Consequently, concentration for unsteady flow in core and plasma regions are as follows

σc(r, t) =

[
U4

(√
γ2Y1(

√
γ2R1)

U3Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
+ U5

]
J0(
√
γ1(r))eiωt, (6.3.15)

σp(r, t) =

(√
γ2Y1(

√
γ2R1)

U3Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
J0(
√
γ2r)e

iωt

−
(√

γ2Y1(
√
γ2R1)

U3Y0(
√
γ2R)

−
√
γ1U5J1(

√
γ1R1)

U6

)
J0(
√
γ2R)

Y0(
√
γ2R)

Y0(
√
γ2r)e

iωt

+
Y0(
√
γ2r)

Y0(
√
γ2R)

eiωt, (6.3.16)

where expressions for the constants U4, U5 and U6 are given in Appendix A.

6.4 Results and Discussion

Parameters Values

(Unitfree)

Source

Eckert number (Ec) 0.1-10 Fakour et al. (2015); Ramzan

et al. (2013)

Reynold Number(Re) 0.005-0.4 Fujiwara et al. (2009); Ku (1997)

Height of the stenosis (δ) 0.1-0.2 Misra et al. (1993)

Table 6.1: Values of the parametrs

The aim of the present model is to analyze the flow, heat and mass transfer effects on two-

phase blood flow through a stenosed artery under the influence of varying applied magnetic
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field along with the Joule heating and viscous dissipation. The viscosity of the core region

is assumed to be varying with the hematocrit ratio while the viscosity of the plasma region

is assumed constant. In order to illustrate the applicability of the given model, solutions

for velocity, the temperature of both core as well as plasma regions have been computed

numerically using single shooting method. Now, for having the adequate insight of two-

layered model of blood flow, computational results have been plotted graphically to show

the effects of cell-free plasma layer on blood flow with the variation of different quantities

of interest. Default values of the parameters used in graphs are specified in Table.(5.1)

and Table.(6.1) to analyze the effectiveness of the model.

The value of the plasma layer thickness is assumed as 0.2 on the scale of the radius of

the artery and height of the stenosis (δ) is taken as 0.1, to draw all the graphical results.

Taking these default values of parameters, flow, heat and mass transfer characteristics of

blood flow in narrow artery have been analyzed by considering range of the core region

from 0.1 to 0.7 (in which viscosity varies with hematocrit ratio) and the plasma region

(constant viscosity) from 0.7 to 0.9 on the scale of 0 to 1. In figures dotted lines display

the variation of velocity, temperature and concentration profiles of the blood flow in the

core region and continuous lines show the same inside the plasma region.

Fig.6.2 presents a comparative study between the present model and the experi-

mental data provided by Bugliarello and Sevilla (1970) with the help of their In Vitro

experimental studies in which they examined the cell velocity distribution in a fine glass

tube of blood containing 40% hematocrit. The figure shows that the present model for a

given set of values as δ = 0, Re = 5, M = 0 and R1 = 0.6 (core region is in the 60% part

of the artery), has a good agreement with the experimental data.

Fig.6.3 illustrates the behavior of the velocity profile of the blood flow characterized

by the Newtonian fluids in both the core as well as plasma regions in the presence of the

radially varying applied magnetic field. From the figure, it is clear that as the value of the

magnetic field parameter increases, the velocity profile of both core and plasma regions

decrease, respectively. This happens due to an increase in the viscosity for the blood

flow under the influence of applied magnetic field as red blood cells contain hemoglobin

molecules which are oxides of iron and highly influenced by the presence of the magnetic
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Figure 6.2: Comparative results of velocity

distribution of single and two-phase blood

flow with the experimetal data (Bugliarello

and Sevilla, 1970)
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Figure 6.3: Variation of velocity profile of

two-phase blood flow for different values of

M = 0, M = 1 and M = 2 when δ=0.1 and

R1=0.7

effect. This behavior is related to the existence of the magnetic torque which results in the

erythrocytes to orient with their disk plane parallel to the direction of the applied magnetic

field. This orientation makes red blood cell more concentrated along the fluid flow and

the results of which decreases the velocity profile of the core region. In the model as

boundary condition provides the continuous behavior of the flow at the interface between

core and plasma, the velocity of the plasma region gets affected due to the decreased

velocity of the red blood cells. The difference between the angular velocities of red blood

cells and plasma create the viscous torque which results in the decreased velocity of the

blood plasma. It is also observed that under the variable magnetic strengths, the velocity

of the red blood cells decreases more rapidly than the velocity of plasma. The velocity

of the core region attains higher values than the plasma region if there is no magnetic

field, while the reverse effect is observed for the strong magnetic field. Therefore, in the

narrow artery magnetic field is very influential in order to perform the surgical operation.

Fig.6.4 displays the variation of the velocity profile of the blood flow for different values

of the height of the stenosis. It can be clearly observed from the figure that as the height

of the stenosis increases inside the artery then the velocity profile decrease in both the
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core as well as plasma regions due to constriction of the artery. Further, the figure reveals

that with no magnetic effect and for the case of 10% arterial occlusion, core velocity

profile attains higher values than the velocity profile in the plasma region. It can be

seen clearly that in the presence of magnetic field velocity profile of the blood flow from

the center displays the symmetric parabolic profile, in both the cases of 13% and 16%

arterial occlusion. Fig.6.5 shows the variation of the velocity profile of blood flow for

different values of hematocrit parameter. In the proposed model viscosity of the core
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region varies with the hematocrit ratio while the viscosity of the plasma is assumed to be

constant. From the figure, it is clear that as values of hematocrit parameter increase, the

velocity of the core region decreases due to rising in the concentration of erythrocyte. It is

noticed that the velocity of cell-free plasma layer is not affected by the variable hematocrit

parameter. Further, the figure depicts that the velocity profile of the core region attains

higher values than the plasma region by following the parabolic velocity profile around

the center in the absence of a magnetic field. It is also observed that in the presence of a

magnetic field, velocity profile possesses the same values near the center of the artery for

different values of hematocrit parameter. For a fixed value of stenosis height (δ = 0.1),

fig.6.6 depicts the effects of variable plasma layer thickness on the velocity profile of blood

flow in the narrow artery. It is observed that as the radius of the core region increases

(so plasma layer thickness decreases), the velocity profile of both core and plasma layer

decrease.
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Fig.6.7 presents the variation of the temperature profile in the radial direction for

different values of the magnetic field parameter. The figure reveals that the temperature

profile of blood flow decreases with increasing values of the magnetic field parameter.

This happens due to the magnetic field which acts as a retarding force and slows down

the motion of fluid particles. As a result of this, the kinetic energy decreases and thus
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temperature decreases by increasing the magnetic field parameter. This result shows

the good agreement with the result obtained by (Hayat et al., 2015). Fig.6.8 shows the
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behavior of the temperature profile of blood flow for different values of the Eckert number.

The figure shows that as the values of the Eckert number increase, the temperature profile

of the blood flow also increases. The reason behind this is the fact that the effect of viscous

dissipation becomes more significant. It can be seen from the figure that for a fixed value

of the Eckert number (Ec), temperature profile starts decreasing from the center of the

artery towards the interface region of core and plasma and continuously decreases up to

the arterial wall.

Fig.6.9 displays the variation of the concentration profile of the blood flow for dif-

ferent values of the Schmidt number. As the values of the Schmidt number increase, the

concentration profile of the blood flow decreases. This happens due to the buoyancy ef-

fects in which high value of Schmidt number implies weaker mass diffusion coefficient, the

influence of which reduces the concentration profile of the blood flow. Fig.6.10 shows the

effects of chemical reaction in both the core as well as plasma regions. The figure reveals

that the concentration profile of the blood flow decreases as the values of the chemical

reaction parameter increase. Physically, an increase in chemical reaction parameter sup-

presses the concentration of the fluid due to a fall in the chemical molecular diffusivity
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of the species concentration. Thus the species concentration experiences retarding effect

and reduce the total mass transfer of both the fluids.

The total volumetric flow rate of the blood flow in the artery is calculated as

Q = 2πR2

∫ R1

0

uc(r, t)dr + 2πR2

∫ R

R1

up(r, t)dr. (6.4.1)

The shear stress at the interface wall of core and the plasma region is given by

τ = −
(
∂uc
∂r

)
R1

. (6.4.2)

Flow resistance in the two-phase blood flow is defined as

λ =

∫ z

0

P0e
iωt

Q
dz. (6.4.3)

The variation in the total volumetric flow rate of blood along with the axis of the artery
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for different values of the height of the stenosis is illustrated in fig.6.11. The range of

z includes only the diseased region of the artery by assuming the maximum height of

the stenosis at the point z = 0.5 for the case of symmetric stenosis. It is observed

that the flow rate is minimum at the throat of stenosis irrespective of the stenosis size.

This can be further notable that the volumetric flow rate decreases as values of the

height of the stenosis increase. The flow impedance establishes the strong correlation
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between the localization of stenosis and arterial wall which is important to understand

the development of arterial disease. Fig.6.12 displays the flow resistance profile of the

blood flow along with the axial direction (includes only the stenotic region) for different

values of the height of the stenosis. It is observed from the figure that the resistance to

flow or the impedance experienced by the streaming fluid distribution over the stenosed

arterial segment increases with the increased height of the stenosis. Wall shear stress is

one of the important flow characteristics of blood flow. Distribution of wall shear stress

along the axial direction( includes only the diseased part of the artery) has been displayed

in fig.6.13, for different values of the magnetic field parameter. The wall shear stress is

found to be reduced due to the increasing strength of the applied magnetic field. Since

the applied magnetic field tends to impede the flow motion and thus reduce the surface

friction force.
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The heat and mass transfer coefficients across the upper wall (upper wall) of the

stenosed artery respectively are calculated as

Nu = −
(
∂θp
∂r

)
R

, (6.4.4)

and

Sh = −
(
∂σp
∂r

)
R

. (6.4.5)
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Fig.6.14 shows the variations of heat transfer coefficient (Nusselt number) with the

Peclet number for different values of the Eckert number. It can be clearly observed from

the figure that as values of the Eckert number increase, the Nusselt number also increases

and for a fixed value of the Eckert number it monotonically increases with Peclet number.

This is due to the fact that heat energy is stored in the fluid due to frictional heating

which directly affects the heat transfer coefficients.
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Fig.6.15, displays the variations of mass transfer coefficient (Sherwood number) with

chemical reaction parameter for different values of the Schmidt number. The figure shows

that as values of the Schmidt number increase, the Sherwood number increases.

Figs.6.16 to 6.18 display velocity contours (measure of the flow disturbances) in the

downstream of the stenosis for 10%, 20% and 30% arterial occlusion. In figures, the range

of the diseased part of the artery has been taken from 0 to 1 in the axial direction of

the artery. From figures, it can be observed that under no magnetic effects and for the

case of 10% stenosis, the contour lines get generated near the center of the artery at the

downstream of the stenosis. As the blockage of the artery increases, the velocity contours

strongly get distorted at the downstream and thereby slowly velocity reduces at that

point. These plots provide a clear indication of the circulation zone of the flow.

Velocity contours of the stenosed artery having 10% stenosis and for different values

of the applied magnetic field have been displayed in figs.6.19 to 6.21. From these figures, it

can clearly be observed that as the strength of an applied magnetic field increases, the flow

lines tend to increase near the stenotic wall by producing low flow lines near the center of

the artery. These figures give a clear idea to find flow separation and reattachment points

under the influence of the applied magnetic field.

6.5 Conclusions

Combined effects of Joule heating and viscous dissipation with chemical reaction have

been investigated on the two-layered model of blood flow through a stenosed artery in the

presence of variable applied the magnetic field. The two-layered model of blood flow con-

tains a cell-free plasma layer of having constant viscosity and erythrocytes suspended core

region of hematocrit dependent viscosity. Shooting method is applied to solve nonlinear

partial differential equations in order to get the expressions for important flow character-

istics such as flow rate, flow impedance and wall shear stress. Based on the simulation

results following are the important conclusions:

1. To validate our model, a comparative study has been done between the present

result and the experimental result which shows that the present result has a good
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agreement with the experimental data of cell velocity distribution of blood contain-

ing 40% hematocrit.

2. The study reveals that the magnetic field parameter and hematocrit parameter

have reducing effects on the velocity distribution of both the core as well as plasma

regions. Since it is the situation when the human body directly subjected to an

external magnetic field, it carries the promise of significant application in magnetic

and electromagnetic therapy. Application of this result can be useful particularly

for people having a heart problem.

3. The temperature profile of the blood flow in narrow artery decreases under the

effect of high magnetic strengths while it shows the reverse effect for Eckert number.

Hence the present study reveals that the temperature of the body can be regulated

by applying the external magnetic field. This result can be very much useful to

treat cancer.

4. The present study concludes that the concentration profile of blood flow decreases

with increased values of the Schmidt number due to the buoyancy effect.

5. The concentration profile of the blood flow decreases as values of chemical reaction

parameter increase. This happens due to a fall in the chemical molecular diffusivity

of the species concentration which directly affects the concentration profile of core

and plasma regions.

6. The study reveals that the Eckert number and Schmidt number have enhancing

effects on both heat and mass transfer coefficients of the blood flow, respectively.

7. Increasing values of the height of the stenosis increase the flow impedance profile

while it has reverse effects on flow rate profile of the blood flow.





Chapter 7

Modeling and Analysis of MHD

Two-Phase Blood Flow through a

Stenosed Artery having

Temperature-Dependent Viscosity

7.1 Introduction

Blood is a bodily fluid which contains erythrocytes or RBCs, leukocytes or WBCs,

platelets, and plasma (contain different types of molecules and ions) in its content. It

is necessary to consider the physical properties of blood flow to measure the analysis of

blood flow through the small size of blood vessels as in arterial and venules. One of the

major characteristics of blood flow is the percentage of erythrocytes in the blood. F̊ahræus

effect explains that when blood passes from larger size of the blood vessel to a smaller size

of the blood vessel (almost at least 0.3 mm), hematocrit level decreases and there exists

a cell-free plasma layer at the corner of the smaller vessel (Barbee and Cokelet, 1971;

Fedosov et al., 2010). The apparent viscosity of the blood flow also decreases as vessel

diameter decreases as described in F̊ahræus and Lindqvist effect (Fahraeus and Lindqvist,

1931). It is well known by Haynes’ marginal theory that the blood flow through a small

blood vessel follows the two-layered model of blood flow which consists the core region con-

145
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taining red blood cells and a cell-free plasma layer (Chebbi, 2015). Many researchers have

been studied F̊ahræus and Lindqvist effect with the help of in vitro as well as through in

vivo analysis (Cokelet and Goldsmith, 1991; Sharan and Popel, 2001). Sharan and Popel

(2001) presented a two-phase model of the blood flow through a narrow artery consist-

ing a central core of suspended erythrocytes and a cell-free layer surrounding the core.

Medvedev and Fomin (2011) developed the two-phase model of the blood flow through

both large and small blood vessels. With the help of their study, they described the an-

alytical dependence for the blood velocity and viscosity as functions of the blood vessel

diameter and hematocrit level.

In a closed system like our human circulatory system, state of hemodynamic equi-

librium can be affected by the velocity, pressure, flow rate and viscosity of blood. As

viscosity is the property of the fluid (when it is in motion), which measures by the re-

sistance of fluid acts against the flow. In our human body friction between the blood

elements and the vessel lumen provides the resistance to blood for circulation. The ap-

plication of energy is essential to make a fluid flow. In our human circulatory system,

blood pressure as well as the velocity of the blood flow, are some forms of energy. It is

observed that the viscosity of biofluids shows noticeable variations with different values

of temperature. As for the case of water, increased values of temperature from 100C

to 500C reduce the viscosity of the water 240%. This behavior is not only seen for low

viscosity fluid like water but also happens with the high viscous fluid such as blood and

glycerin etc. It is observed with the help of quantitative data that the viscosity of blood

increases 26% as values of temperature reduce from 36.50C to 220C, which directly affects

the flow rate of blood flow by reducing its value by 20.72% (Çinar et al., 2001; Hooman

and Gurgenci, 2008; Torrance and Turcotte, 1971). Hence, it is very much interesting to

study the behavior of blood flow by establishing the relationship between the energy of

the circulatory system and the viscosity level of blood. Many authors presented different

models of blood flow by taking the temperature-dependent viscosity of blood flow rather

than assuming it constant. In this regard, Siddiqa et al. (2018) discussed the influence

of temperature dependent viscosity on heat transfer of blood flow through a rectangu-

lar vessel. Also, Siddiqa et al. (2017b) explained the mathematical model of the blood
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flow through a rectangular channel considering the exponential model for the variation

of viscosity with the temperature. In their study, it was observed that the strong viscos-

ity of the fluid causes more disturbances in the fluid and also increases the temperature

of the fluid. All the above-mentioned studies are focused on analyzing the influence of

temperature dependent viscosity for single phase model of blood flow.

In the cardiovascular system of the human body, any obstruction to blood flow due

to the accumulation of fatty substances such as cholesterol and saturated fats within the

arteries creates a medical condition called stenosis. Presence of stenosis inside an arterial

blood vessel changes its flow pattern and hemodynamics conditions and its continuous

growth inside the blood vessel increase the chance of heart failure, significantly (Cooper

et al., 2014; Jean et al., 1994). Since stenosis is directly related to human health, many

researchers have studied its effects on the blood flow due to various shapes and sizes of

stenosis. Mekheimer and Kot (2008) presented the mathematical model for the geometry

of the stenosis by defining the shape and tapering parameters. With the help of their

study, they resulted that impedance experienced by the streaming fluid distribution over

the whole arterial segment decreases with increasing values of the stenosis length and

stenosis shape parameter, while it increases as the size of the stenosis increases. Kamangar

et al. (2014) numerically computed the simulations of steady and transient blood flow for

different geometrical shapes of stenosis( triangular, elliptical, and trapezium) having 70%

(moderate), 80% (intermediate), and 90% (severe) area stenosis. Considering the case

of a diseased artery, Tripathi and Sharma (2018a) described a mathematical model for

narrow arteries by defining the geometry of stenosed artery for both core and plasma

regions separately. They showed that the velocity profile of blood flow decreases in both

core and plasma regions as the maximum height of the stenosis increases inside an artery.

The role of magnetohydrodynamics (in which we study about the magnetic property

of electrically conducting fluid) is very important in the medical science as it helps to

treat hyperthermia, a cancerous tumor or magnetic wounds, bleeding reduction during

surgeries (Bhatti and Zeeshan, 2016). As blood shows the characteristics of biomagnetic

fluids, magnetohydrodynamics laws are very much used to study the flow of blood through

an artery under the influence of the magnetic field. Misra et al. (2011c) developed a
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mathematical model to understand the behavior of blood flow under the influence of

externally applied magnetic field considering artery as 2D channel. They Investigated that

velocity of the blood can be controlled (increase or decrease) by varying the strengths of an

applied magnetic field. Bhatti et al. (2017b) analyzed the effects of transverse magnetic

field, heat and mass transfer on peristaltic motion of two-phase flow as particle fluid

suspension through a planar channel. They resulted that the temperature profile of the

flow increases as the influence of magnetic field increases. Further, Ponalagusamy and

Selvi (2013) explained the effects of the magnetic field for two-phase blood flow consisting

RBC containing core region and cell-free plasma region. With the help of their model,

they resulted that both wall shear stress and impedance increase as strengths of the

external applied magnetic field increase.

Recently, heat generated by viscous dissipation and Joule heating has attracted at-

tentions by many researchers. Joule heating is the process in which heat is generated

due to collision among the moving particles and in this procedure kinetic energy is trans-

formed into heat which enhances the temperature of the human body (Hayat et al., 2018;

Sharma et al., 2013). On the other hand, viscous dissipation is calculated through the

work done by the velocity against viscous stresses, known as viscous dissipation of energy

(Kumar et al., 2018). Sharma et al. (2015a) developed a mathematical model considering

pulsatile hydro-magnetic rheological nature of the blood flow with joule heating and vis-

cous dissipation effects. By paying attention to the viscous dissipation and Joule heating

effects, Chakraborty et al. (2013) discussed the thermal characteristics of electro-magneto-

hydrodynamics flow in microchannels. They resulted that increasing Joule heating effect

enhances the liquid temperature in a homogeneous manner while the increased value of

viscous heating increase temperature of the wall.

On the other hand, to study the chemical reaction effect in fluids is important in view

of several physiological functions. As in drug dynamics( which describes the effects of the

drug on the body) a role of the chemical reaction is important to study. In most of the

chemical reaction, reaction rate based on the concentration of the species itself whether

they are heterogeneous or homogeneous depends upon the where it occurs at an interface

or as a single phase volume reaction. If the reaction rate of any chemical reaction is



7.2 The Mathematical Model 149

directly proportional to the concentration it is called as a first-order homogeneous chemical

reaction. The reaction in which the reaction rate is proportional to the nth power of the

concentration is considered n order chemical reaction. Makinde (2010) analyzed the mixed

convection problem for vertical porous plate considering nth order homogeneous chemical

reaction between the fluid and the diffusing species. Further, Tripathi and Sharma (2018b)

explained the effects of first-order chemical reaction on the two-phase model of blood flow

and resulted that the concentration profile decreases in both core and plasma regions as

values of the chemical reaction parameter increase.

However, in none of the aforesaid studies mentioned above, a problem of two-phase

blood flow with kth order chemical reaction has been incorporated. The present study

deals the MHD problem of two-phase blood flow through a stenosed inclined artery having

Joule heating and viscous dissipation effects with radiation and kth order of chemical

reaction. In two-phase blood flow viscosity of the core region is assumed as temperature

dependent while the viscosity of the plasma region is treated constant. The governing non-

linear partial differential equations of the present mathematical model have been solved

by applying a single shooting method. Solutions which have been calculated for flow

resistance, total flow rate, wall shear stress, heat and mass transfer and simultaneously

their respective graphs, give the physical insight of blood flow.

7.2 The Mathematical Model

Considered the cylindrical stenosed narrow artery of length L in which blood flow is

assumed to be a two-layered flow viz. core layer and plasma layer as shown in fig.7.1.

The core layer contains erythrocytes (suspension of uniform hematocrit) and another one

plasma layer is the RBC cell-free. Length of the arterial vessel and applied shear stress

are assumed to be large enough so that the Newtonian nature of the blood flow can

be observed in both core and plasma regions, separately (Noutchie, 2009). In order to

investigate the flow dynamics of blood flow under the effect of applied magnetic field, a

fully developed, unsteady, laminar, incompressible fluid is considered both in the core as

well as in plasma regions. It is assumed that in the core region viscosity of the fluid varies



150 Chapter 7. MHD Two-Phase Blood Flow having Temperature-Dependent Viscosity

Figure 7.1: Geometry of the inclined stenosed artery of length L̄

with temperature, while, the viscosity of the plasma region is constant.

The temperature dependent viscosity of the fluid for the core region is given by

(Siddiqa et al., 2018)

µc(T̄ ) = µ̄pexp

[
λ

(
1

2
− T̄c − T̄0

T̄w − T̄0

)]
.

Geometry of the elliptical shape stenosis in plasma region (assumed to be symmetric) is

defined as (Kamangar et al., 2014),

R̄(z̄) =

1− δ̄∗s
R̄0

sin π
(
z̄−d̄
L̄0

)
for d̄ ≤ z̄ ≤ d̄+ L̄0,

1 otherwise.

(7.2.1)

In the core region, geometry of the elliptical shape stenosis is defined as

R̄1(z̄)

R̄0

=

β −
δ̄∗s
R̄0

sin π
(
z̄−d̄
L̄0

)
for d̄ ≤ z̄ ≤ d̄+ L̄0,

1 otherwise,

(7.2.2)

where δ̄∗s is the maximum height of the stenosis, located at

z̄ = d̄+
L̄0

n
1

(n−1)

. (7.2.3)
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Note that in cylindrically shaped artery, velocity components in (r̄, θ̄, z̄) directions are

considered as (ūc, v̄c, w̄c) and (ūp, v̄p, w̄p), respectively. Under these assumptions, the

governing equations for core region are as follows:

ρ̄c
∂ūc
∂t̄

=− ∂p̄

∂z̄
+

1

r̄

∂

∂r̄

(
r̄µc(r̄)

(
∂ūc
∂r̄

))
− σ̄1B̄0

2
ūc + ḡρ̄cβ̄

(
θ̄c − θ̄0cos γ

)
+ ḡρ̄cγ̄ (σ̄c − σ̄0) cos γ, (7.2.4)

ρ̄cc̄c
∂T̄c
∂t̄

= K̄c

(
∂2T̄c
∂r̄2

+
1

r̄

∂T̄c
∂r̄

)
+ µ̄c(r̄)

(
∂ūc
∂r̄

)2

+ σ̄1B̄0(r̄)
2
ūc

2 − ∂q̄c
∂r̄

, (7.2.5)

∂C̄c
∂t̄

= D̄c

(
∂2C̄c
∂r̄2

+
1

r̄

∂C̄c
∂r̄

)
− Ē ′c

(
C̄c − C̄0

)k
. (7.2.6)

Also, momentum, energy and concentration equations for plasma region are as follows

ρ̄p
∂ūp
∂t̄

=− ∂p̄

∂z̄
+ µ̄p

(
∂2ūp
∂r̄2

+
1

r̄

∂ūp
∂r̄

)
− σ̄1B̄0(r̄)

2
ūp + ḡρ̄pβ̄

(
θ̄p − θ̄0cos γ

)
+ ḡρ̄pγ̄ (σ̄p − σ̄0) cos γ, (7.2.7)

ρ̄pc̄p
∂T̄p
∂t̄

= K̄p

(
∂2T̄p
∂r̄2

+
1

r̄

∂T̄p
∂r̄

)
+ µ̄p

(
∂ūp
∂r̄

)2

+ σ̄1B̄0(r̄)
2
ūp

2 − ∂q̄p
∂r̄

, (7.2.8)

∂C̄p
∂t̄

= D̄p

(
∂2C̄p
∂r̄2

+
1

r̄

∂C̄p
∂r̄

)
− Ē ′p

(
C̄p − C̄0

)k
. (7.2.9)

In eqs.(7.2.4) and (7.2.7), σ̄1B̄0
2
ūc and σ̄1B̄0(r̄)

2
ūp are due to Lorentz force which acts in

the particular direction of the inclined artery as displayed in fig.7.1. Term µ̄c(r̄)
(
∂ūc
∂r̄

)2
in

eq.(7.2.5) and µ̄p

(
∂ūp
∂r̄

)2

in eq.(7.2.8) represent the viscous dissipation effect which greatly

influence the heat transfer mechanics of blood flow. Similarly, last terms in eqs.(7.2.5)

and (7.2.8) are because of the Joule heating effect, while last term in eqs.(7.2.6),

(7.2.9), (7.2.6) (7.2.9) are incorporated for chemical reaction effect. Here we consider the

case of non homogeneous chemical reaction of order kth, where k is any constant.

In the model, outer wall is taken solid by following the no-slip boundary conditions at

the wall. It is assumed that the velocity, temperature, and concentration follow a con-

tinuous behavior at the interface of core and plasma regions. Velocity, temperature and
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concentration gradient are assumed to be vanishing along with the center of artery due

to symmetry (Sharan and Popel, 2001). Therefore, having all these assumption boundary

conditions for the given mathematical model are as follows:

ūp = 0, T̄p = T̄w, C̄p = C̄w at r̄ = R̄(z̄),

ūc = ūp, T̄p = T̄c, C̄p = C̄c at r̄ = R̄1(z̄),

∂ūc
∂r̄

= 0, ∂T̄c
∂r̄

= 0, ∂C̄c
∂r̄

= 0 at r̄ = 0,

τ̄c = τ̄p,
∂T̄c
∂r̄

= ∂T̄p
∂r̄
, ∂C̄c

∂r̄
= ∂C̄p

∂r̄
at r̄ = R̄1(z̄).

(7.2.10)

Now, we introduce the following non-dimensional parameters,

uc =
ūc
ū0

, r =
r̄

R̄0

, z =
z̄

R̄0

, t = ω̄t̄,
R̄(z̄)

R̄0

= R(Z),
R̄1(z̄)

R̄0

= R1(z),

up =
ūp
ū0

, p =
R̄0p̄

ū0µ̄p
, Re =

ρ̄pR̄0u0

µ̄p
, θc =

(T̄c − T̄0)

T̄w − T̄0

, σc =
(C̄c − C̄0)

C̄w − C̄0

,

Gm =
ḡρ̄pβ̄R̄0

2 (
C̄w − C̄0

)
ū0µ̄p

, θp =
(T̄p − T̄0)

T̄w − T̄0

, M =
σ̄B̄0(r̄)

2
R̄0

2

µ̄p
, σp =

(C̄p − C̄0)

C̄w − C̄0

,

P e =
ρ̄pc̄pR̄0

2
ω̄

K̄p

, Sc =
µ̄p
D̄pρ̄p

, D0 =
D̄p

D̄c

, Gr =
ḡρ̄pβ̄R̄0

2 (
T̄w − T̄0

)
ū0µ̄p

, δ =
δ̄s
R̄0

τc =
τ̄cR̄0

2

ū0µ̄p
, τp =

τ̄pR̄0
2

ū0µ̄p
, ρ0 =

ρ̄p
ρ̄c
, µ0 =

µ̄p
µ̄c
, Ē ′p =

Eµ̄p

C̄w − C̄0
k
ρ̄pR̄0

2
, E0 =

Ēp
Ēc
,

where k is any constant and meaning of the other mentioned notations are already given

in earlier chapters 2, 3 and 4.

Using the non-dimensional parameters, the dimensionless form of the geometry of the

stenosis for core and plasma regions respectively are as follows

R(z) =


1
R0

(1− δ sin π (z − l)) for l ≤ z ≤ 1 + l,

1 otherwise,

(7.2.11)

R1(z) =

β − δ sin π (z − l) for l ≤ z ≤ 1 + l,

β otherwise,

(7.2.12)
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where

l =
d̄

L̄0

, δ =
δ̄s
∗

R̄0

.

The governing eqs.(7.2.4)-(7.2.6) for core region in dimensionless form are as follows(
Re

ρ0

)(
∂uc
∂t

)
=−

(
∂p

∂z

)
+ exp

(
λ

(
1

2
− θc

))
+

1

r

∂

∂r

(
r

(
∂uc
∂r

))
−Muc

+
θc
ρ0

cos γ +
σc
ρ0

cos γ,

(7.2.13)

(
1

ρ0s0

)(
∂θc
∂t

)
=

1

K0Pe

(
∂2θc

∂r2 +
1

r

∂θc
∂r

)
+M

(
Ec
Re

)
uc

2 −
(

N2

Peα0
2

)
θc

+

(
Ec
Re

)
exp

(
λ

(
1

2
− θc

))(
∂uc
∂r

)2

,

(7.2.14)

Re

(
∂σc
∂t

)
=

1

D0

(
1

Sc

)(
∂2σc
∂r2

+
1

r

∂σc
∂r

)
− E

E0

σc
k. (7.2.15)

The governing eqs.(7.2.7)-(7.2.9) for the plasma region can be written in non dimensional

form as

Re

(
∂up
∂t

)
= −

(
∂P

∂z

)
+

(
∂2up

∂r2 +
1

r

∂up
∂r

)
−Mup, (7.2.16)(

∂θp
∂t

)
=

1

Pe

(
∂2θp

∂r2 +
1

r

∂θp
∂r

)
+
Ec
Re

(
∂up
∂r

)2

+M
Ec
Re

up
2 −

(
N2

Pe

)
θp, (7.2.17)

Re

(
∂σp
∂t

)
=

(
1

Sc

)(
∂2σp
∂r2

+
1

r

∂σp
∂r

)
− Eσpk. (7.2.18)

The corresponding boundary conditions eq.(7.2.10) in non dimensional form are as follows

up = 0, θp = 1, σp = 1 at r = R(z),

up = uc, θp = θc, σp = σc at r = R1(z),

τc = τp,
∂θc
∂r

= ∂θp
∂r
, ∂σc

∂r
= ∂σp

∂r
at r = R1(z),

∂uc
∂r

= 0, ∂θc
∂r

= 0, ∂σc
∂r

= 0 at r = Rc.

(7.2.19)

As pumping action of the heart results into a pulsatile nature of the blood flow. Therefore,

we consider the following form for pressure gradient (Ponalagusamy and Selvi, 2015)

−∂p
∂z

= P0e
iωt, (7.2.20)
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where P0 denotes the constant pressure. As described by Womersley (1955), the given

assumption eq.(7.2.20) can be applied to the harmonic oscillatory flows in which real part

of the equation provides the corresponding flow.

For preferred form of the pressure gradient, solution of velocity, temperature and concen-

tration for both core and plasma regions can be written in the form of
uc(r, t) = uc0(r)e

iωt, up(r, t) = up0(r)e
iωt,

θc(r, t) = θc0(r)e
iωt, θp(r, t) = θp0(r)e

iωt,

σc(r, t) = σc0(r)e
iωt, σp(r, t) = σp0(r)e

iωt.

(7.2.21)

Substituting the given expressions from eq.(7.2.21) in to eqs.(7.2.13)-(7.2.15), we get the

equation of core region(
i
Re

ρ0

+M

)
uc0 =P0 + exp

(
λ

(
1

2
− θc

))[(
∂2uc0
∂r2

)
+

1

r

(
∂uc0
∂r

)]
+

cos γ

ρ0

(Grθc0 +Gmσc0) ,

(7.2.22)

(
iω

1

ρ0s0

+

(
N2

Pe

)(
1

α0

)2
)
θc0 =

1

K0Pe

(
∂2θc0
∂r2 +

1

r

∂θc0
∂r

)
+M

Ec
Re

eiωtuc0
2

+

(
Ec
Re

)
exp

(
λ

(
1

2
− θc0

))
eiωt
(
∂uc0
∂r

)2

,

(7.2.23)

iReD0Scσc0 +
E

E0

D0Scσc0
kei(k−1)t =

∂2σc0
∂r2

+
1

r

∂σc0
∂r

, (7.2.24)

and eqs.(7.2.16)-(7.2.18) of plasma region convert in the form of

(iRe+M)up0 =P0 +

(
∂2up0
∂r2 +

1

r

∂up0
∂r

)
+ cos γ (Grθp0 +Gmσp0) , (7.2.25)

iωθp0 =
1

Pe

(
∂2θp0
∂r2 +

1

r

∂θp0
∂r

)
+M

Ec
Re

eiωtup0
2 + eiωt

(
Ec
Re

)(
∂up0
∂r

)2

− N2

Pe
θp, (7.2.26)

∂2σp0
∂r2

+
1

r

∂σp0
∂r
− iReScσp0 + EScσkp0e

i(k−1)t = 0. (7.2.27)

7.3 Solution

Since given equations of core region from eqs.(7.2.22)-(7.2.24) and equations for plasma

region from eqs.(7.2.25)-(7.2.27) are coupled nonlinear differential equations. We apply a
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numerical technique named as single shooting method to solve following model under the

given boundary conditions eq.(7.2.19), simultaneously.

To execute the single shooting method on the given eqs.(7.2.22) and (7.2.24) we assume

x(1) = u, x(2) = θ and x(3) = σ, x(4) = ∂u
∂r

, x(5) = ∂θ
∂r

and x(6) = ∂σ
∂r

. We convert them

in first order nonlinear system as

ẋ(1) = x(4), (7.3.1)

ẋ(2) = x(5), (7.3.2)

ẋ(3) = x(6), (7.3.3)

ẋ(4) =

(
iωRe

ρ0

+M

)
x(1)

χ
− P0

χ
− cos γ

ρ0

(Grx(2) +Gmx(3))
1

χ
− x(4)

r
, (7.3.4)

ẋ(5) = −
(
EcK0Peχ

Re

)
x(4)2eiωt −

(
MEcK0Pe

Re

)
x(1)2eiωt − x(5)

r
+ (7.3.5)

(PeK0)

(
iω

ρ0s0

+
N2

Peα0
2

)
x(2),

ẋ(6) = iReD0Scx(3) +
E

E0

D0Scx(3)ke(k−1)t, (7.3.6)

where χ = exp
(
λ
(

1
2
− θc0

))
. Now, first order system for eqs.(7.2.25) and (7.2.27) can be

written as follows

ẋ(1) = x(4), (7.3.7)

ẋ(2) = x(5), (7.3.8)

ẋ(3) = x(6), (7.3.9)

ẋ(4) = (iRe+M)x(1)− P0 − cos γ (Grx(2) +Gmx(3))− x(4)

r
, (7.3.10)
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ẋ(5) = −
(
EcPe

Re

)
x(4)2eiωt −

(
MEcPe

Re

)
x(1)2eiωt + iPeωx(2) +

(
N2

Pe

)
x(2)− x(5)

r
,

(7.3.11)

ẋ(6) = iReScx(3) + EScx(3)ke(k−1)t − x(6)

r
. (7.3.12)

We solve these system of ODEs applying single shooting method as described in algo-

rithm((1)) with the help of MATLAB 2015.

7.4 Results and Discussion

The present model describes heat and mass transfer effects on two-phase blood flow

through a inclined stenosed artery considering Joule heating and viscous dissipation ef-

fects with kth order chemical reaction and radiation effect. As viscosity of bio fluids gives

noticeable variations with different values of temperature therefore in the present model

viscosity of the core region region is assumed as temperature dependent treating viscosity

of plasma region as constant. The effects of various physical parameters are analyzed

on the inclined artery which made γ angle from the horizontal axis. With the help of

computed results for velocity, temperature and concentration, different graphs have been

plotted to analyze the influence of various physical parameters on blood flow in this sec-

tion. The values of physical parameters which have been used in this model are given in

Table.(5.1) and Table.(6.1).

In order to get the physical insight of the problem core region is considered from 0

to 0.6 on the scale of 0 to 1, having a plasma layer thickness of 0.1, in which maximum

height of the stenosis is assumed as δ = 0.2. In all the figures, continuous lines display

the effects of the physical parameter on core region, while, dotted lines show the effects

for cell-free plasma layer.

Fig.7.2 displays the variations of the velocity profile of blood flow for different values

of magnetic field parameter (M). In the figure, individual effects of magnetic field on

velocity profiles of both core and plasma regions can be seen observed. From the figure,

it is clear that as the influence of an external magnetic field increases from 0 to 4, the
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velocity profile of blood flow decreases in both core and plasma region. In the core region,

it decreases more as compared to the plasma region. This is due to the fact that the core

region contains red blood cells which consist mainly of hemoglobin, an iron-containing

protein. Therefore, change in the strength of an external magnetic field create magnetic

torque, influence of which results in erythrocytes to orient with their disk plane parallel

to the direction of the applied magnetic field. This type of orientation makes red blood

cell to be more suspended in the blood which directly increases the viscosity of the blood

flow and the velocity of blood flow in the core region decreases with high strength of

magnetic field. Continuous behavior of flow at the interface of core and plasma directly

affects the velocity of the plasma layer by decreasing its value with high strength of the

magnetic field. This result follows in the same manner as proposed by Ponalagusamy and

Priyadharshini (2018). Fig.7.3 shows the variations of the velocity profile of blood flow as

the maximum height of the stenosis changes from 0 to 0.2. The figure shows the behavior

of velocity profile for the cases (i) when there is no blockage and core region varies from

0 to 0.9 and (ii) with blockage up to 20% and core layer covers 0 to 0.7 region of the

artery. It can be seen from the figure that velocity shows mixed behavior with different

height of the stenosis as it increases near the center of the artery as values of δ increase.

It decreases for rest of the region covered by core and plasma with increasing values of δ.

Fig.7.4 illustrates the effects of different inclination angle (made by the artery from the
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horizontal axis) on the velocity profile of blood flow. From the figure, it can be clearly

seen that as values of the inclination angle changes from π
6

to π
3
, velocity profile of both

core and plasma regions decrease, respectively. For all the given inclination angle of the

artery, velocity in the core region attains higher value than the plasma region. It attains

its maximum value at the middle of the artery and started decreasing towards the interface

region of both core and plasma region and fall to zero at the outer wall by following the

parabolic profile. Effects of Grashof number and modified Grashof number have been

displayed in figs.7.5 and 7.6, respectively. It is observed that as the values of Grashof

number and modified Grashof number increase velocity profile in both core and plasma

regions decrease, respectively. In both, the figures velocity profile of the core region shows

significant variations as compared to the plasma region with increasing values of Grashof

and solutal Grashof number.
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The temperature profile of blood flow shows variations with different values of mag-

netic field parameter due to Joule heating effect as shown in fig.7.7. As it can be seen from

the figure that as values of magnetic field parameter increase from 0 to 4, the temperature

profile of blood flow in both core and plasma regions increase, respectively. This is due to

the Lorentz force which acts as retarding force and slows down the velocity of both the

core region and plasma region, respectively. This resisting force creates more heat inside
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the regions and increases the temperature profile of blood flow in both the regions. The

temperature profile of the blood flow for different values of the radiation parameter has

been depicted in fig.7.8. The figure illustrates that as values of the radiation parameter

increase from N = 0 to N = 4, the temperature profile of the blood flow in both core

and plasma regions also increase, respectively. For each value of the radiation parameter

temperature profile of the core region attains higher value than the temperature profile

of the plasma region. Although, in both of the regions effective variations with differ-

ent values of the radiation parameter can be observed. This happens because radiation

works as a heat source within the blood and as radiation dosage increases temperature

profile also increases. This result is very much applicable to treat some pathological situ-

ations like thermal therapy in which body tissues and cancerous cells are exposed to high

temperature. High values of temperature due to thermal radiation absorption make the

cancerous cell more sensitive to radiation and action of which damages and kill cancer

cells associated with tumors (Dewhirst et al., 2003).

Fig.7.9 reveals the variation of the concentration profile of the blood flow for different

values of chemical reaction parameter where the order of chemical reaction is taken as

n = 1. The figure exhibits that as values of the chemical reaction parameter increase con-

centration profile of the blood flow in both core and plasma regions increase, respectively.
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Following the parabolic profile, concentration profile attains higher value at the middle

of the artery and it starts decreasing towards the interface region of the core and plasma

region and fall to zero at the outer wall.

Variation of the concentration profile of blood flow for different values of modified

Grashof number has been displayed in fig.7.10. The figure elucidates that the concen-

tration profile in both core and plasma regions decreases rapidly as effects of modified

Grashof number increase. Fig.7.11 shows the concentration profile of the blood flow when

order of the chemical reaction changes from n = 1 to n = 5. The figure illustrates that

the first and fifth order of the chemical reaction has the higher value of the concentration

profile as compared to the second, third and fourth order of chemical reaction.
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The total volumetric flow rate for different values of a magnetic field parameter, the

height of the stenosis and viscosity parameter have been shown in figs.7.12, 7.13 and 7.14,

respectively. In all the figures value of z covers only the stenosed region of the artery.

It can be noticed from the fig.7.12 that as the intensity of the magnetic field increases

from M = 0 to M = 4, flow rate decreases and this happens due to Lorentz force which

opposes the flow of fluid. Considering elliptically shaped stenosis, fig.7.13 reveals that

the increasing height of the stenosis slows down the flow rate of the blood flow. In

the stenosed region z = 0 to z = 0.5, from its higher value flow rate starts decreasing
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as the height of the stenosis increases. Fig.7.14 displays that as values of the viscosity

parameter increase, flow rate inside the stenosed artery decreases due to the assumption

of temperature-dependent viscosity of the core region.

The total volumetric flow rate of blood flow in the artery is calculated as

Q = 2πR2

∫ R1

0

uc(r, t)dr + 2πR2

∫ R

R1

up(r, t)dr. (7.4.1)

The shear stress at the interface of core and the plasma region is given by

τ = −
(
∂uc
∂r

)
R1

. (7.4.2)

Flow resistance in the two-phase blood flow is defined as

λi =

∫ z

0

P0e
iωt

Q
dz. (7.4.3)

Variations of Wall shear stress (which is one of the most important flow characteristics

of blood flow) for different values of Eckert number and radiation parameter have been

displayed in figs.7.15 and 7.16, respectively. The fig.7.15 illustrates that as values of Eckert

number (which characterize the heat dissipation) increase, wall shear stress decreases

while, reverse effect is observed for radiation parameter as shown in fig.7.16.

Effects of different values of plasma layer thickness and Reynolds number on flow

impedance (which develops the correlation between the localization of stenosis and arterial
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wall) have been discussed with the help of figs.7.17 and 7.18, respectively. Fig.7.17 reveals

that for fixed height of the stenosis (δ = 0.2), as radius of the core region increases

(which results decreasing radius of plasma region) from 0.7 to 0.9 (simultaneously radius

of plasma region decreases from 0.1 to 0.3) total impedance of the blood flow over the

stenosed arterial segment decreases, respectively. Further, fig.7.18 clearly displays that

the resistance to flow decreases as values of the Reynolds number increase. This happens

because high values of Reynolds number create more turbulence in the fluid which results

in the decreased impedance profile of blood flow.
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7.5 Conclusions

Combined heat and mass transfer effects with kth order homogeneous chemical reaction

have been investigated on MHD two-layered model of blood flow through an inclined

stenosed artery. In the two-layer model of blood flow viscosity of erythrocytes suspended

core region is considered as temperature dependent while the viscosity of cell-free plasma

layer is treated as constant. Single shooting method is applied to solve governing nonlinear

partial differential equations in order to get the flow characteristics such as flow rate, flow
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impedance and wall shear stress. Based on the simulation some important observation of

the present analysis are as follows:

1. Study reveals that the Grashof number and modified Grashof number have reducing

effects on the velocity profile of blood flow. Magnetic field parameter also has a re-

ducing effect on the velocity profile of blood flow. Since the result shows that blood

velocity can be very much controlled with regulating the strength of an external

magnetic field. Therefore, it can be practically applied in magnetic and electromag-

netic therapy.

2. The temperature profile of the blood flow in narrow artery increases as effects of

radiation increase. The result describes the possibility to provide the heat to the

blood capillaries of the affected area of the human body directly by using infrared

radiation and the technique is widely used in heat therapy for rehabilitation pur-

poses. Further, the temperature profile also increases as effects of magnetic field

increase. Hence, the result reveals that the temperature of the body can be con-

trolled by changing the strength of an external magnetic field. This result is very

much useful to treat cancer disease.

3. Result of the present study concludes that the concentration profile of blood flow

increases with increased values of the chemical reaction parameter. For different or-

der of the homogeneous chemical reaction, concentration profile follows the different

path as fifth order of the chemical reaction shows the higher value of concentration

profile as compared to the second, third and fourth order of chemical reaction.

4. Total flow rate of the blood flow decreases as values of the height of the stenosis

and viscosity parameter increases.

5. The study reveals that the Eckert number which establishes the relationship between

flow’s kinetic energy and the boundary layer enthalpy has to reduce the effect on

wall shear stress, while, reverse effect on wall shear stress has been observed for

radiation parameter.
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6. Increasing values of core layer thickness increase the flow impedance profile, while,

Reynolds number has reverse effects on flow impedance profile of the blood flow.





Chapter 8

Conclusions and Future Scope

In this chapter, the main outcomes of my research work have been discussed in the

conclusion section and the new directions which can be the possibilities for the further

research work have been presented in the future scope section.

8.1 Conclusions

In the thesis, we have analyzed the effects of heat and mass transfer on blood flow through

a stenosed artery. First two chapters explain the phenomenon of blood flow through a

stenosed porous artery considering hematocrit dependent viscosity of the blood flow in

the presence of an external magnetic field. In which chapter 2 explains the heat transfer

effects on blood flow through an inclined artery with a heat source while extended work

in chapter 3 describes both heat and mass transfer effects on blood flow with chemical

reaction effect. The governing mathematical models have been solved using homotopy

perturbation method. To analyze the effects of different physical parameters on blood

flow, different graphs have been plotted for flow rate and shear stress. Results show that

the magnetic field has reducing effects on the velocity profile of the blood flow. This

happens due to the Lorentz force which opposes the motion of the blood flow in the

artery. The given result is very useful to control blood flow during the surgical process.

The results indicate that changes in the values of the heat source parameter show an

effective change in the temperature of the blood flow and it increases as values of the heat

167
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source parameter increase. This result is very effective in understanding/regulating blood

flow, especially for the therapeutic process of hyperthermia.

Chapter 4, chapter 5, chapter 6 and chapter 7 analyze the phenomenon of F̊ahræus

– Lindqvist effect for narrow stenosed arteries. It is experimentally observed that when

blood flows through a narrow artery then there exists a cell-free plasma layer near the

arterial wall. In chapter 4 we focus on analyzing the effects of the plasma layer thickness on

the blood flow through a vertical stenosed artery having radiation and chemical reaction

effects in the presence of a magnetic field. In the founding of the given chapter, effects

of different physical parameters such as magnetic field, radiation parameter, chemical

reaction parameter on velocity, temperature and concentration profile of both core and

plasma regions have been displayed graphically. It is found that the velocity of both

core and plasma regions decreases as the strength of an applied external magnetic field

increases. Further, the result reveals that under the influence of the magnetic field the

velocity of plasma layer attains lower values than the velocity of the core layer. With

the help of this result during the surgical process in narrow arteries, blood flow can be

regulated at the desired level. The result of the given chapter explains that in the narrow

arteries concentration profile of blood flow decreases as values of the chemical reaction

parameter increase and this happens due to increased molecular diffusivity which directly

suppresses the concentration profile of the blood flow. The work further has been extended

in chapter 5 in which the effects of heat and mass transfer on two-phase blood flow through

a horizontal stenosed artery with radiation have been analyzed. The exact solution has

been found for the given problem after taking assumption on pressure gradient due to

pulsatile behavior of the blood flow. Results show that the flow rate of the blood flow in

narrow artery decreases as values of the Reynolds number increase and the shear stress at

stenosis throat decreases with increasing values of the height of the stenosis. Chapter 6

analyzes the Joule heating and viscous dissipation effects on two-phase blood flow in the

presence of radially varying magnetic field. In the model, the viscosity of the core region

is assumed as hematocrit dependent and plasma viscosity is considered as constant. The

study shows that the Eckert number and Schmidt number have enhancing effects on both

heat and mass transfer coefficients of the blood flow. Increasing values of the height of
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the stenosis increase the flow impedance profile while it shows reverse effects on flow rate

profile of the blood flow. Considering the case of elliptically shaped stenosis, chapter 7

presents the study on two-phase blood flow having temperature-dependent viscosity of

blood flow in the core region and constant viscosity of blood flow in the plasma region.

The problem also discusses the case of nth order homogeneous chemical reaction. The

coupled non-linear partial differential equations of the given problem have been solved

using a single shooting method. With the help of the results, we can conclude that

Increasing values of core layer thickness increase the flow impedance profile of the blood

flow. The result of the present study concludes that as values of the chemical reaction

parameter increase the concentration profile of blood flow also increases. It follows the

different path for a different order of the homogeneous chemical reaction, as fifth order

of the chemical reaction shows the higher value of concentration profile as compared to

the second, third and fourth order of chemical reaction. Results for the variations of the

temperature profile of the blood flow with radiation parameter describes the possibility to

provide the heat to the blood capillaries of the affected area of the human body directly by

using infrared radiation, which is widely used in heat therapy for rehabilitation purposes.

8.2 Future Scope

Mathematical models examined in this thesis basically describe the single-phase or two-

phase phenomenon of blood flow. We have analyzed the effects of different quantities of

interest on blood flow and have solved the governing mathematical models analytically as

well as numerically. Following aspects of research work can be explored in future:

1. The modeling of two-phase blood flow has been analyzed in the thesis, further this

work can be extended by considering the effects of nanoparticles on blood flow.

2. In two-phase modeling, a continuous behavior of flow is taken at the interface of

both core and plasma regions, the work further can be extended in which miscible

behavior of flow may be considered.

3. Modeling of optimal targeted drug delivery (magnetic nanoparticles) in blood flow
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under the influence of a controlled magnetic field can be explored for both single

and two-phase models.
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