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Abstract

Over the past decade, technological advancements made in network

technologies has led to the advent of the Internet of Things (IoT). IoT

aims to network different devices, appliances, and objects making it

possible for them to exchange data which in turn enables efficient

management of resources. IoT requires the interaction of many het-

erogeneous technologies like ZigBee, Bluetooth, Wi-Fi, WiMAX, etc.

The focus of this thesis will be to address two specific problems -one

each in Wireless Sensor Network (WSN) and mobile edge computing,

both of which are important domains of the IoT. This work proposes

two different time synchronization protocols for WSNs and a latency

aware task-assignment scheme for edge cloudlet network.

WSN is a network of devices called nodes, which are used to per-

form coordinated sensing, monitoring, and actuation tasks. Since WSN

is an example of a distributed system, it requires time synchroniza-

tion for many functionalities like data fusion, duty-cycled packet com-

munication, time-based localization protocols, etc. A time synchro-

nization protocol called E-SATS (Efficient and Simple Algorithm for

Time Synchronization) for a cluster-based WSN is presented in Chap-

ter 3. This protocol synchronizes the cluster members of a cluster to

its cluster head using very simple computations. E-SATS is imple-

mented on a WSN testbed and its performance is analyzed for different

Line-of-Sight (LOS) conditions. Further, E-SATS is compared to some

prominent existing Time Synchronization Protocols (TSPs) for clus-



tered WSNs. The experimental results show that E-SATS has higher

synchronization accuracy while being computationally efficient and

consuming significantly lesser energy as compared to other state-of-

the-art protocols.

Decentralized TSPs perform synchronization in a distributed way. They

are beneficial in WSN deployments which do not have a strict require-

ment of a particular network structure. Recently, message-passing

based methods have been employed to achieve synchronization in WSNs

in a distributed way. A Mean-Field based message-passing method

called Integrated Cooperative Synchronization (ICS) is proposed in

Chapter 4 to synchronize the WSN nodes. Existing message-passing

methods operate in two phases. The first phase is called the mea-

surement phase in which the time measurements are collected during

packet exchanges among the nodes. The second phase is called the

message-passing phase in which the clock parameters of the nodes are

estimated to achieve time synchronization of these nodes. Coordina-

tion of these two phases is highly challenging, especially in a large

network. ICS mitigates this problem by integrating the measurement

and message-passing phases. It selects an extended factorization of the

underlying joint a-posteriori distribution of the clock parameters and

uses an appropriate message scheduling for link initialization. ICS is

conceptually much simpler than conventional message-passing meth-

ods while achieving similar accuracy and reduced computational com-

plexity.

Chapter 5 of this thesis focuses on another domain of IoT, viz., edge

computing. Over the past decade, mobile devices have been used to

perform computationally intensive tasks. However, the computational



capability of these devices is limited due to memory, power and porta-

bility constraints. Cloud services have been used to enhance the perfor-

mance of these resource-limited devices by offloading their computa-

tionally intensive tasks on to the cloud servers. However, when cloud

servers are involved in processing, the latency and cost of computa-

tion increases. To mitigate these problems, devices with high compu-

tational resources, called edge devices or cloudlets, can be deployed

in the locations close to the mobile users/devices. Due to easier access

and nearness of the cloudlets, the cost and latency in processing the of-

floaded tasks decreases. Chapter 5 presents a task-assignment scheme

in a multi-cloudlet network connected via wireless Software-defined

Network (SDN) routers. This cloudlet network serves the task offload

requests from mobile devices in a given locality. The aim of the pro-

posed scheme is to minimize latency in processing the offloaded tasks

and thus enhance the Quality of Service (QoS) for mobile devices. The

optimality of the proposed scheme is proved mathematically. Also, an

admission control policy is employed to maintain this optimality even

in heavily loaded networks. Numerical simulations are performed

for two scenarios of small and large networks and the performance

for varying traffic and network parameters are evaluated. The results

demonstrate that the proposed task-assignment scheme offers reduced

latency compared to state-of-the-art task-assignment approaches and

hence improves the QoS offered to mobile devices.

Overall, this thesis proposes computationally efficient time synchro-

nization protocols for cluster-based WSNs and dynamic WSNs requir-

ing decentralized synchronization protocols. It also proposes a novel

scheme for assigning the tasks offloaded by the mobile devices onto

the edge cloudlets while optimizing latency for processing these tasks.



Table of Contents

List of Figures xii

List of Tables xvi

List of Algorithms xvii

List of Abbreviations/Symbols xviii

1 Introduction 1

1.1 Wireless Sensor Networks (WSN) . . . . . . . . . . . . . . . . . . . . . 4

1.2 Time Synchronization Protocols in Wireless Sensor Networks . . . . 6

1.3 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Latency Aware Task-Assignment Schemes in Edge Cloudlets . . . . 13

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Survey 16

2.1 Time Synchronization Protocols in WSNs- the Preliminaries . . . . . 17

2.1.1 Delays during packet transmission and reception . . . . . . . 17

2.1.2 Clock Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Factor Graphs in Message Passing based TSPs . . . . . . . . . 19

2.2 Time Synchronization in Cluster-based WSNs . . . . . . . . . . . . . 23

2.2.1 Hierarchical-based Method . . . . . . . . . . . . . . . . . . . . 25

vii



TABLE OF CONTENTS

2.2.1.1 Cluster-based Hierarchical Time Synchronization (CHTS)

for Multi-hop WSNs . . . . . . . . . . . . . . . . . . 25

2.2.1.2 Time-Synchronization Algorithm Based on Cluster

(CSSN) . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Consensus-based Method . . . . . . . . . . . . . . . . . . . . . 31

2.2.2.1 Cluster-Based Consensus Time Synchronization for

Wireless Sensor Networks (CCTS) . . . . . . . . . . . 33

2.2.2.2 Cluster-Based Maximum Consensus Time Synchro-

nization for Industrial Wireless Sensor Networks

(CMTS) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Regression-based methods . . . . . . . . . . . . . . . . . . . . 35

2.2.3.1 Scalable Lightweight Time Synchronization Proto-

col (SLTP) . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3.2 Large Degree Clustering based Time Synchroniza-

tion (L-SYNC) . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4.1 PC-Avg . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4.2 PulseSS . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.5 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Decentralized Time Synchronization Protocols for WSNs . . . . . . . 40

2.3.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Task-Assignment Schemes in Edge Computing . . . . . . . . . . . . . 45

2.4.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 E-SATS: An Efficient and Simple Time Synchronization Protocol for Cluster-

based Wireless Sensor Networks 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



TABLE OF CONTENTS

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Efficient and Simple Algorithm for Time Synchronization (E-SATS) . 56

3.3.1 Clock Model and the Network Considered . . . . . . . . . . . 56

3.3.2 Cluster Formation Phase . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Synchronization Phase . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.4 Use case for E-SATS . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 WSN Testbed and Methodology Used . . . . . . . . . . . . . . . . . . 65

3.4.1 LOS environment . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Mixed-LOS environment . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Methodology Used . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3.1 Cluster Formation phase . . . . . . . . . . . . . . . . 67

3.4.3.2 Synchronization phase . . . . . . . . . . . . . . . . . 69

3.4.3.3 Synchronization Evaluation . . . . . . . . . . . . . . 69

3.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Performance Analysis in Terms of Synchronization Error . . 71

3.5.2 Comparison of Energy Consumption and Computational Com-

plexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Integrated Cooperative Synchronization for Wireless Sensor Networks 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 System Model and Network Description . . . . . . . . . . . . . . . . 85

4.2.1 Network, Clock and Timestamping Model . . . . . . . . . . . 85

4.2.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Conventional Mean Field Message Passing . . . . . . . . . . . . . . . 87

4.4 Integrated Cooperative Synchronization . . . . . . . . . . . . . . . . . 89

4.4.1 Mode I: Standard Operation . . . . . . . . . . . . . . . . . . . 90

4.4.2 Mode II: Link Initialization . . . . . . . . . . . . . . . . . . . . 92

ix



TABLE OF CONTENTS

4.4.3 Use case for ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 An Optimal Delay Aware Task-Assignment Scheme for Edge Cloudlet

Networks 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 LATA Optimal Task-Assignment Scheme . . . . . . . . . . . . . . . . 106

5.4.1 Algorithm at the SDN Controller . . . . . . . . . . . . . . . . . 108

5.4.2 Algorithm at the Cloudlet . . . . . . . . . . . . . . . . . . . . . 110

5.4.3 Convergence of LATA Scheme . . . . . . . . . . . . . . . . . . 111

5.4.4 Optimality of the LATA Scheme . . . . . . . . . . . . . . . . . 114

5.4.5 Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.6 Use case for LATA . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 Latency Performance with Traffic Variation . . . . . . . . . . . 120

5.5.2 Latency Performance with Varying Network Parameters . . 123

5.5.3 Latency Performance with Admission Control . . . . . . . . . 124

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusion and Future Work 128

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References 133

Publications 149

x



TABLE OF CONTENTS

Biographies 150

xi



List of Figures

1.1 Architecture of a WSN node . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Example of a Factor Graph for the function g(x1, x2, x3, x4, x5) =

fA(x1) fB(x2) fC(x1, x2, x3) fD(x3, x4) fE(x3, x5). Source: [Kschischang

et al. 2001]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Example of a Factor Graph for illustrating calculation of the marginal.

Source: [Kschischang et al. 2001]. . . . . . . . . . . . . . . . . . . . . . 22

2.3 A typical cluster-based WSN . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Illustration of two-way-exchange between CHR and CHi . . . . . . 27

3.1 A typical network considered. . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Synchronization message exchanges between a cluster head and

two cluster member nodes mij and mis. . . . . . . . . . . . . . . . . . 61

3.3 A diagram to illustrate the approximate estimate used to calculate

relative skew and offset. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Picture showing part of the network (one cluster) deployed with

WSN nodes encircled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Set-up for mixed LOS environment (a) An indicative diagram de-

picting part of the deployment for mixture of LOS and NLOS envi-

ronment (b) A picture showing some of the nodes deployed in the

lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xii



LIST OF FIGURES

3.6 (a) The timestamps collected by each cluster head forwarded to the

Base Station connected to a computer. (b) Timestamps of an itera-

tion encircled in screenshot. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Results in LOS environment (a) Synchronization error of different

synchronization protocols for varying network sizes (b) Percentage

increase in synchronization error of other synchronization protocols

over E-SATS for varying network sizes. . . . . . . . . . . . . . . . . . 72

3.8 Results in mixed-LOS environment ((a) Synchronization error of

different synchronization protocols for varying network sizes (b)

Percentage increase in synchronization error of other synchroniza-

tion protocols over E-SATS for varying network sizes. . . . . . . . . . 74

3.9 Number of addition operations in E-SATS and other protocols for

varying network sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Number of multiplication operations in E-SATS and other protocols

for varying network sizes. . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.11 Number of division operations in E-SATS and other protocols for

varying network sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.12 Energy consumption (in micro Joules (µJ)) of E-SATS and other

protocols for the transmission and receptions during one synchro-

nization cycle for varying network sizes. . . . . . . . . . . . . . . . . 79

4.1 (a) Wireless network, (b) corresponding Factor Graph (FG) for con-

ventional Mean-Field (MF) based cooperative synchronization and

delay estimation, (c) FG with extended factorization for MF based

integrated cooperative synchronization. The following short nota-

tion is used: f ′p = p(ϑp), f ′pq = p(∆pq), f (nq)
pq = p(c(nq)

pq )|ϑp, ϑq, ∆pq)

and fpq = p(cpq|ϑp, ϑq, ∆pq). . . . . . . . . . . . . . . . . . . . . . . . . 88

xiii



LIST OF FIGURES

4.2 ICS standard operation between nodes p and q: (a) Packet exchange

where broadcast packets include timestamp and estimates of clock

parameters and delays to all neighbors at the time of transmission;

(b) The corresponding messages passing on the FG where k+pq =

kpq+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Link initialization mode: (a) Message passing between two nodes p

and q with four packets exchanged between them; (b) Correspond-

ing messages on the FG. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Topology of a wireless network with 10 randomly placed nodes.

Red circles indicate master nodes, blue crosses agent nodes, and

the dashed lines the communication links. . . . . . . . . . . . . . . . 95

4.5 Numerical results with RMSE on clock phase (solid lines) and clock

skew (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 A cloudlet network with the different participating entities. Cloudlet1

is heavily loaded, Cloudlet2 is having medium-load and Cloudlet3

is lightly loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Illustrative representation of the process of task offloading from the

mobile user on to the cloudlet with intervention of the SDN Con-

troller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 The topology of the network with three cloudlets used in our sim-

ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 The topology of the network with ten cloudlets used in our simula-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Latency variation for varying offload request arrival rates in a net-

work of three cloudlets. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Latency variation for varying offload request arrival rates in a net-

work of ten cloudlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xiv



LIST OF FIGURES

5.7 Latency behavior with different α values for a network with three

cloudlets and traffic of 20 requests/s. . . . . . . . . . . . . . . . . . . 122

5.8 Latency behavior with different α values for a network with three

cloudlets and traffic of 80 requests/s. . . . . . . . . . . . . . . . . . . 122

5.9 Latency behavior with different α values for a network with ten

cloudlets and traffic of 20 requests/s. . . . . . . . . . . . . . . . . . . 123

5.10 Latency behavior with different α values for a network with ten

cloudlets and traffic of 160 requests/s. . . . . . . . . . . . . . . . . . . 123

5.11 Latency behavior for different admission control parameter values

for a network with three cloudlets. . . . . . . . . . . . . . . . . . . . . 126

5.12 Latency behavior for different admission control parameter values

for a network with ten cloudlets. . . . . . . . . . . . . . . . . . . . . . 126

xv



List of Tables

2.1 Summary of existing works on time synchronization protocols for

cluster-based WSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Notation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Computational Complexity of E-SATS and other protocols (refer

Table 3.1 for notation meanings) . . . . . . . . . . . . . . . . . . . . . 76

4.1 Per node computational complexity in number of operations: for

ICS and ATS per received packet, and for CMF per iteration of the

message passing phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Notation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xvi



List of Algorithms

3.1 E-SATS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Algorithm at the SDN Controller . . . . . . . . . . . . . . . . . . . . . 110

5.2 Algorithm at the Cloudlet . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvii



List of Abbreviations

Term Definition

FG Factor Graph

ICS Integrated Cooperative Synchronization

IoT Internet of Things

LOS Line-of-Sight

MAC Medium-Access Control

MEC Mobile Edge Computing

MF Mean-Field

MIMO Multi-Input-Multi-Output

NLOS Non-Line-of-Sight

OFDMA Orthogonal Frequency-Division Multiple Access

QoS Quality of Service

RSSI Received Signal Strength Indicator

TDMA Time-Division Multiple Access

TSP Time Synchronization Protocol

SDN Software-Defined Network

VM Virtual Machine

WSN Wireless Sensor Network

xviii



Chapter 1

Introduction

Over the past decade, there has been a phenomenal increase in the number of

devices connected together through the internet. The devices connected to the

internet today are not limited to just computers or servers as it was the case a

few years ago, but also include devices like smartphones, home appliances, in-

dustrial controllers, etc. This change was made possible by the advent of a new

domain of technology called the Internet of Things or more commonly known as

the IoT. The IoT paradigm allows objects to communicate data and information

with each other and with end users over the Internet, which is expected to lead

to efficient management of resources. For instance, the vision of ‘smart cities’

[Batty et al. 2012] has been pursued extensively in the recent past by the scien-

tific community [Lin et al. 2017], [Ejaz et al. 2017], [Sotres et al. 2017] as well as

the local governmental authorities in countries like Italy, Mexico, etc., to pro-

vide better public administration and unified, easily accessible, and transparent

services to the citizens. Apart from this, IoT finds its application in agriculture

[Elijah et al. 2018] , military surveillance [Suri et al. 2016], building energy man-

agement [Minoli et al. 2017], education [Ali et al. 2017], disaster management [Ray

et al. 2017], etc.
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IoT is made functional by a combination of many underlying technologies such as

sensors, communication networks, Application Program Interfaces (APIs), back-

end servers with data analytics, remote data/service access technologies, etc.

Thus, it requires interface among many heterogeneous technologies to achieve

seamless flow of data across these different entities of the IoT network. This

interfacing is indeed challenging to achieve. Apart from this interfacing, there

is a need to make the existing technologies "IoT-ready", i.e., suitable to be used

in the IoT networks. Also, the interfacing of heterogeneous technologies paves

way for newer problems which were never encountered before. For instance, mo-

bile devices generate large amount of data in applications like image processing,

speech recognition, etc. This data cannot be processed easily on these resource

constrained devices. With the availability of internet connectivity on these mobile

devices, this data is offloaded on to the cloud servers for processing. This data is

processed on the cloud servers and the results are sent to the mobile devices. The

process of offloading the data and receiving the results by the mobile device has

a considerable latency. Therefore, we have to now invent methods to reduce this

latency so that the Quality of Service (QoS) of the applications being executed on

the mobile device can be improved.

Wireless Sensor Network (WSN) and Mobile Edge Computing (MEC) are two

important domains of the IoT. WSN consists of a network of nodes which coop-

eratively perform sensing of event(s) or phenomena. MEC provides high compu-

tation capabilities at the edge of a network. These computational capabilities can

be utilized by mobile devices to perform computationally intensive tasks. Mobile

devices like smartphones, mobile tablets PCs, sensor nodes, etc., have memory,

power and portability constraints and thus cannot perform computationally in-

tensive tasks themselves. Thus they make use of edge devices in MEC networks

to perform these tasks. We will elaborately introduce these domains in later sec-

tions of this chapter.
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WSNs and MEC are used together in many IoT applications. For instance, Smart

Street Lighting System (SSLS) [Zanella et al. 2014] which was implemented in

Padova, Italy as a part of the Smart City Project uses both WSNs and edge com-

puting nodes in it network. In this system, there is a WSN node on every street

light. Each node is equipped with sensors to monitor the ambient light, air qual-

ity, temperature and humidity. The sensor data from the sensor nodes is collected

by a node called the gateway which provides a link between the WSN and tradi-

tional Wireless Area Network (WAN). It also performs many functionalities like

data storage, protocol translation, etc. This gateway is an example of ‘edge’ com-

puting node. These edge devices provide an intermediate layer between the WSN

and the cloud in this network. The focus of this doctoral thesis will be to address

two specific problems in these two domains. The objectives of this thesis are:

1. To develop an efficient time synchronization protocol for clustered WSN and

to implement it on a WSN testbed.

2. To carryout the performance evaluation of this synchronization protocol in

various Line-of-Sight (LOS) environments.

3. To develop an accurate and efficient decentralized time synchronization pro-

tocol for a WSN (without any restriction on the topology of the network).

4. To develop a task-assignment scheme in a network of edge cloudlets to opti-

mize the latency in processing the tasks offloaded on to them by the mobile

devices.

The following subsections introduce WSNs and edge computing and introduce

the specific problems addressed in both these domains in this thesis.
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1.1 Wireless Sensor Networks (WSN)

1.1 Wireless Sensor Networks (WSN)

WSN consists of a network of nodes which are generally capable of performing

the following tasks:

• sensing some events or phenomena in a location

• processing the sensed data

• communicating with each other over the wireless

In addition to the above functionalities, in certain applications, the WSN nodes

are also interfaced with actuators to perform some action based on the detection

of some events. Thus, WSN nodes cooperatively perform the sensing, monitor-

ing and actuation tasks in a given location. Applications like home automation

[Ghayvat et al. 2015], agriculture [Ojha et al. 2015], personal health monitoring

[Milenković et al. 2006], environmental monitoring [Othman & Shazali 2012], as-

set tracking [Kim et al. 2008], etc., require distributed sensing, processing of data,

and suitable actuation. In such scenarios, WSNs emerge as the suitable platform

for designing the solutions. Several WSN based IoT implementations have al-

ready been reported. The Smart Street Light application implemented in Padova

(mentioned in the last section) is one such example. Some of the features of WSN

which make them suitable for IoT applications are low cost (suitable for large

scale deployment of devices), bidirectional communication (suitable for sensing

and actuation) and low bandwidth requirements [Song et al. 2014].

The architecture of a WSN node is shown in Fig. 1.1. A WSN node consists of

sensor(s) and actuator(s), a processing unit, communication interface and a power

source. We briefly describe each of these constituents in the following:

• Sensor and actuators: Sensors and actuators are the interfaces of the WSN

to the external world. The sensors, as mentioned before, sense a particular

phenomenon and generate sensor data. The sensor data is processed either
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Figure 1.1: Architecture of a WSN node

locally on the node where the data was generated and/or remotely on other

device(s). Based on the data generated, some decisions are taken which

might involve some actuation like rotating a motor, display related tasks,

etc., and the relevant WSN node controls the actuator.

• Processing unit: The Processing Unit (PU) provides the intelligence to the

WSN node. It processes the sensor data partially or completely to monitor

a location and take decisions. The PU on a WSN node is typically a micro-

controller or a microprocessor. The choice of a PU for a node depends on

the application running on the node, the nature of the sensor data generated

by the sensors, etc. The PU also performs some pre-processing of the sensor

data to minimize the data to be transmitted. Some networks protocols are

also executed on the PU for data communication through the network.

• Communication Interface: Generally radio signals are used for wireless com-

munication between the node and the network. However, certain WSN net-

works use acoustic signals, optical signals, etc., [Gkikopouli et al. 2012] for

wireless data communication. WSNs are characterized by low data rates for

data communication. WSN nodes are equipped with transceivers which are

generally used in simplex mode. Of all the tasks of a WSN, data transmis-

sion and reception is one of the most power consuming tasks. Thus, a WSN

node generally turns off its radio to conserve its energy when not in use.
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• Power Source: Most of the WSN nodes in the network rely on batteries for

their power supply requirements. However, there have been implementa-

tions where WSNs have used solar energy [Yi et al. 2009], temperature gradi-

ent [Lu & Yang 2010] or vibrations [Lu et al. 2016] to power themselves. Thus,

a WSN is typically an energy-constrained network. WSNs are deployed in a

harsh environments like industrial plants [Krishnamurthy et al. 2005], mines

[Li & Liu 2009], volcanoes [Werner-Allen et al. 2005], etc., where frequent

human intervention is difficult or impossible. Therefore, WSN nodes are

designed to be robust and energy efficient.

A typical WSN uses many protocols/algorithms for various functionalities like

the localization, time-synchronization, routing, clustering, etc. The first three

objectives of this thesis focus on the time synchronization protocols in WSNs.

Therefore, a brief overview of time synchronization protocol is provided in the

next section.

1.2 Time Synchronization Protocols in Wireless Sen-

sor Networks

WSNs are an example of distributed network where the nodes run in a coordi-

nated way to carry out sensing and monitoring tasks. Thus, it is very important

for the participating nodes to have a common notion of time of the network. It

is possible to achieve time synchronization among the WSN nodes if they are

all equipped with devices like Global Positioning System (GPS) modules. But it

is not possible to have a GPS module on every node as it increases the cost of

each node tremendously. Further, GPS connectivity is very limited in indoor lo-

cations, in cloudy conditions, etc. [Elson et al. 2002]. Therefore we need a Time

Synchronization Protocol (TSP) to achieve the synchronization among the nodes.
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WSN nodes maintain the local time at each node using crystal oscillators. But

large scale deployment of WSN nodes prohibits usage of high accuracy crystal

oscillators. Thus, WSN nodes use cheap crystal oscillators for running their local

clocks. These cheap crystal oscillators bring inaccuracies in the local time due to

crystal aging, environmental factors like temperature, humidity, etc. [Sivrikaya &

Yener 2004]. Therefore, a TSP is essential to synchronize the local clocks of the

WSN nodes. However, we cannot use generic synchronization protocols like Net-

work Time Protocol (NTP) [Mills 1994] used in other distributed networks. This

is because specific characteristics of WSNs like limited energy availability, low

bandwidth, possibility of frequent changes in the network (due to ad-hoc join-

ing and leaving of the nodes), etc., mandate usage of synchronization protocols

specifically designed for WSNs.

TSPs provide a common reference of time either for the entire network or for some

part(s) of the network. The common time reference provided by a TSP could be

either (i) an absolute time like Coordinated Universal Time (UTC)/local time for

a zone or (ii) relative/local time which is specific to the network or part of the

network or (iii) give a basis to decide the chronology of some events in the WSN.

The kind of time reference provided by a TSP depends on the requirements of the

applications that use it. TSP plays an important role in applications/functions like

data gathering and fusion, time-based localization, TDMA based communication,

power management protocols, etc. Time synchronization is all the more important

for a WSN used in an IoT network as the sensor data recorded by a WSN node is

monitored and analyzed at remote locations. Thus, it is important to timestamp

such sensor data according to a common clock valid across this IoT network. A

general approach followed to achieve synchronization for this scenario is that all

the WSN nodes are synchronized to the sink node (also called as Base Station or

Coordinator), which acts as an interface between the WSN and other networks.

This sink node is synchronized to the internet time and it translates the times-
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tamps generated at WSN nodes to the internet time.

Time synchronization in WSN is particularly challenging as the nodes are usually

deployed in harsh environments. They are deployed for unattended operation

targeted to work with minimal or no maintenance, generally for a few months

to a few years. Thus the synchronization protocol must be robust to node fail-

ures and provide a synchronization of required accuracy. Also, since a WSN is an

ad-hoc network which involves joining and leaving of nodes in a dynamic man-

ner, the TSP should be scalable with increasing network size without significant

degradation in its performance. Also since a WSN is largely a battery operated

network, the TSP should be energy efficient. A TSP is called energy efficient if it

requires very few packets for achieving the synchronization and/or requires in-

frequent resynchronizations. Further, WSNs are often used in critical applications

like health monitoring, surveillance, etc., which require immediate reporting of

emergency events. Therefore the TSP protocol must be immediate and thus must

be computationally efficient. A detailed discussion about the characteristics and

requirements of a TSP in WSNs can be found in [Sivrikaya & Yener 2004].

There are several TSPs which have been proposed and even used in WSNs like

RBS [Elson et al. 2002], TPSN [Ganeriwal et al. 2003], FTSP [Maróti et al. 2004],

SLTP [Nazemi Gelyan et al. 2007], L-SYNC [Jabbarifar et al. 2010], etc. Most of

these protocols have been implemented and tested either partially or fully on a

simulator only. There are very few protocols which have been demonstrated on

a hardware testbed. Simulator-based works cannot give a complete picture of the

performance of a TSP as they make many assumptions at a high level of abstrac-

tion, do not consider packet loss and its effect on synchronization accuracy, etc.

[Djenouri & Bagaa 2016]. We therefore require a TSP which has been proved suit-

able for WSN on a hardware platform, which is simple and efficient (in terms of

the computations involved) and accurate. In addition, most of the works do not
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describe the environment in which the experiments have been performed. The en-

vironmental conditions, i.e., whether the communicating nodes are Line-of-Sight

(LOS) or Non Line-of-Sight (NLOS) significantly affect the performance of a TSP,

especially in the IoT applications which have NLOS environments (like smart

home application). So we aim to address these issues in this thesis by proposing a

TSP called Efficient and Simple Algorithm for Time Synchronization (E-SATS). E-SATS

has been designed for WSN with a cluster-based topology and is able to achieve

micro-second level synchronization accuracy with simple computations. Thus, E-

SATS is aptly suited for resource-constrained WSN nodes. Micro-second accurate

TSP is very essential for many automotive, health and industrial applications [El-

sts et al. 2016]. To prove the merit of E-SATS in realistic scenarios in different LOS

conditions, its performance is been tested on a densely deployed large size WSN

testbed. A detailed presentation of the work on E-SATS is made in Chapter 3 of

this thesis.

E-SATS is an example of centralized TSP which requires coordination among the

nodes to form a specific network topology. Cluster-based topology has several

advantages. For example, it increases the energy-efficiency of operations like data

gathering, data dissemination, etc. It also increases the lifetime of the network by

increasing energy efficiency of these operations. However, formation and mainte-

nance of specific network structure becomes a significant overhead for large sized

WSN deployments [Etzlinger et al. 2014]. Also, node failures which are very com-

mon in WSNs, can drastically effect the performance of centralized TSPs [Leng &

Wu 2011]. Thus, over the last few years, there has been a growing interest in a class

of synchronization protocols called decentralized TSPs in which the synchroniza-

tion is performed in a decentralized way. In decentralized TSPs, a node performs

time synchronization with the help of its neighbors. Also, it is scalable and is

more resilient to node failures. Examples of such TSPs are [Etzlinger et al. 2014],

[Leng & Wu 2011], [Etzlinger et al. 2013b], [Schenato & Fiorentin 2011], [Zennaro
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et al. 2011], etc. Consensus based synchronization techniques like [Schenato &

Fiorentin 2011] and [Zennaro et al. 2011] synchronize the nodes in the network by

achieving a consensus of the network time parameters among the nodes. Further,

there are some TSPs like [Etzlinger et al. 2014] and [Leng & Wu 2011] which use

statistical techniques like belief propagation and TSPs like [Etzlinger et al. 2013a]

use Mean-field technique. The TSPs which use such statistical techniques achieve

higher synchronization accuracy as compared to other methods. But they have

high computational complexity. Further, they require two distinct phases namely

the measurement phase and message-passing phase [Etzlinger et al. 2014], [Et-

zlinger et al. 2013a] [Zennaro et al. 2013], [Leng & Wu 2011]. In the measure-

ment phase, all the nodes exchange packets with their neighbors recording their

time stamps of transmission and reception of the packets. In the message-passing

phase, the nodes achieve synchronization by exchanging the estimates of their lo-

cal clock parameters estimated based on the timestamps recorded in the measure-

ment phase. The coordination of these two phases in a large-sized WSN requires

additional mechanisms and is highly challenging.

So we propose a new TSP based on mean-field technique called Integrated Cooper-

ative Synchronization (ICS) which integrates both these phases without significant

reduction in the synchronization accuracy. Further, ICS makes a drastic reduc-

tion in the computational complexity compared to conventional mean-field tech-

nique. It does so by selecting an extended factorization of the underlying joint a-

posteriori distribution of the clock parameters and using an appropriate message

scheduling for link initialization. Due to its computational simplicity and reduced

memory requirements, it is suitable for resource constrained WSN nodes.

In the next section, we introduce edge computing, another domain of the IoT

which has been explored in this thesis.
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1.3 Edge Computing

Rapid advances made in mobile computing have enabled proliferation of mobile

devices in a variety of tasks like video calling, gaming, image processing appli-

cations, etc. However, such capabilities have come with new challenges. Many

of these applications are computationally intensive, which require hardware plat-

forms with high computational power. Mobile devices like smartphones, tablet

PCs, etc., cannot handle such intensive computations due to their memory, power

and portability constraints. Trying to execute such tasks on the mobile device

itself leads not only to the slowing down of the device but also to quicker bat-

tery energy drainage. Therefore, these tasks are offloaded on to the cloud servers.

Cloud servers have features like large data-storage capacity, high computation ca-

pabilities and can process a variety of computationally intensive tasks offloaded

on to them. Thus, cloud services have been seen as a viable solution to overcome

the above-mentioned constraints of mobile devices [Nakamura et al. 2007], [Chun

et al. 2011], [Xie et al. 2013]. Cloud platforms perform these offloaded tasks and

provide the results to the mobile devices quickly.

However, along with the above-mentioned advantages of using the cloud services,

there are certain drawbacks of using this option. Firstly, the mobile device requires

an internet connection to offload its computation request on to the cloud server

and to receive the results of its computation. Internet connectivity is generally

limited and in the absence of Wi-Fi hotspots, the user has to rely on cellular

networks for offloading and receiving the results. This could incur data usage

charges. Secondly, usage of cloud services would incur additional subscription

charges levied by the cloud service providers on their users. Thirdly, when the

user is using the cloud services from far off locations, high computation tasks like

face recognition and image processing based applications can experience high

latency in getting the results. These factors envisage the need for devising a new
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solution to these problems of mobile computing and this has led to the advent of

edge or fog computing in the recent years.

In edge computing, the offloaded computations are performed on a computation-

ally powerful device, which is present at a location near the offloading mobile de-

vice. Such computationally powerful devices are called cloudlets [Satyanarayanan

et al. 2009] or edge devices [Mahmud et al. 2018]. These cloudlets have advantages

like small size, easy installation and low cost. However, they are computation-

ally less powerful than the cloud servers. Cloudlets can mitigate the problems

involved in using the cloud servers by introducing an additional layer that lies in

between cloud servers and mobile devices.

However, the computational resources on these cloudlets must be managed effi-

ciently to ensure that the mobile users who are offloading their tasks on to the

cloudlets experience optimum Quality of Service (QoS). One of the most impor-

tant aspects of QoS is the latency experienced by the users to receive the results of

the offloaded tasks.

In this thesis, a network of cloudlets is considered to serve the offloaded task

requests from the mobile devices. This ensures that no single cloudlet is heavily

loaded by task requests. In such a scenario, it is pertinent problem as to how to

identify a suitable cloudlet such that the latency in processing the offloaded tasks

is reduced. Thus, one of the works done as a part of this thesis focuses on latency

aware optimal task-assignment scheme in edge cloudlets. A brief introduction

to latency aware task-assignment schemes in edge cloudlets is given in the next

section.
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1.4 Latency Aware Task-Assignment Schemes in Edge

Cloudlets

As mentioned before, one of the objectives of having edge cloudlets is to reduce

the delay experienced by the mobile devices offloading their tasks on to the cloud

servers. Edge cloudlets are generally deployed in enterprises like offices, univer-

sities and even public places like shopping malls, airports, etc., for serving appli-

cations like image processing, speech processing, etc. Thus, these edge cloudlets

generally experience variable traffic during the day. One of the most common

strategies to handle the network traffic of incoming requests from mobile devices

is that the cloudlet in the close vicinity of a mobile device serves the task offloaded

by the mobile device. Though this strategy is simple to implement, it leads to im-

balance in the load experienced by the cloudlets when more mobile devices are

nearer to one or few cloudlets. The load experienced by the cloudlets directly

affects the latency in processing the offloaded task requests. Thus, we need to

employ a more sophisticated task-assignment scheme to process the offloaded

tasks.

Deviating from the traditional approach of assigning the offloaded tasks to the

nearest cloudlet, the Latency Aware task-assignment scheme (LATA) discussed in

this thesis decides which cloudlet among a network of cloudlets will process an

incoming task request from a mobile device. Thus, a task request received at a

cloudlet can be served by any cloudlet in the network. These cloudlets are con-

nected through a wireless Software Defined Network (SDN). LATA identifies a

cloudlet in the network and assigns the task request to it so that the overall la-

tency in processing the requests is optimized. To identify such a cloudlet in the

network, LATA takes into account the maximum service rate of each cloudlet, the

current load at the cloudlets and the distance of each cloudlet from the requesting

mobile device. In addition, it is proved mathematically that LATA gives an opti-
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mal solution to latency aware task-assignment problem. A detailed presentation

of LATA is made in Chapter 4 of this thesis.

1.5 Organization of the Thesis

This thesis focuses on time synchronization protocols in WSN and latency aware

task-assignment scheme in edge cloudlets. Chapter 2 presents a literature survey

of the work done in the above-mentioned domains. The TSPs in WSN with a

cluster-based topology are surveyed first where the specific features and limita-

tions of the existing TSPs are highlighted. Further, a survey of some of the decen-

tralized TSPs for WSNs is presented. Then the existing works in edge cloudlets

with a special focus on the latency aware task-assignment schemes are discussed.

Also, the gaps in the existing schemes which provides a motivation to formulate

and implement a new task-assignment scheme are identified.

Chapter 3 presents a newly proposed TSP called E-SATS, which achieves syn-

chronization in a cluster-based WSN. It also presents the mathematical basis of

this protocol and discusses the methodology used by E-SATS to synchronize the

nodes. Further, the experimental setup used used in this work is presented. Fi-

nally, this chapter also discusses the experiments carried-out to evaluate the per-

formance of E-SATS in various LOS conditions and analyzes their results.

Chapter 4 presents a new decentralized TSP called Integrated Cooperative Syn-

chronization (ICS) for WSNs. It first gives a brief background of the conven-

tional Mean-Field (MF) technique used to achieve synchronization in WSNs. It

then presents ICS which is based on the MF technique but integrates the mea-

surement and message-passing phases generally dealt separately in the MF-based

synchronization technique. The results of the evaluations of ICS in a WSN is then

presented.

14



1.5 Organization of the Thesis

Chapter 5 presents LATA, a new latency aware task-assignment scheme in a net-

work of edge cloudlets. This scheme assigns the offloaded task to a cloudlet in a

way that the latency in processing these tasks is optimized. Mathematical proofs

to show the optimality of this scheme are also discussed. Further, the evaluation

of this scheme for varying number of cloudlets in the network and a comparison

with existing task-assignment schemes are also presented.

Chapter 6 presents a summary of the work carried out in this thesis and the con-

clusions derived from this work. It also mentions some of the potential directions

for future research in the domains explored in this thesis.
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Chapter 2

Literature Survey

This chapter presents a review of the existing time synchronization protocols

(TSPs) in Wireless Sensor Networks (WSNs) and task-assignment schemes in edge

cloudlets. Firstly, we briefly describe the clock models used in the existing TSPs

for WSNs and some of the major challenges encountered in designing a TSP for

a WSN. We then present some of the important state-of-the-art TSPs in clustered

WSNs highlighting their features, advantages and limitations. We then focus on

the decentralized TSPs in WSNs where we discuss the existing approaches for

achieving synchronization in a distributed manner. We also highlight the moti-

vation for a new decentralized TSP which is implemented in this thesis. We then

turn our focus to edge computing where we give an overview of the recent re-

search on edge computing especially the task-assignment schemes used to assign

the offloaded tasks on to the edge cloudlets.
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2.1 Time Synchronization Protocols in WSNs- the Pre-

liminaries

In this section, we briefly described some important concepts which form as the

background for the survey of the existing TSPs for WSNs presented in Sections

2.2 and 2.3.

2.1.1 Delays during packet transmission and reception

As mentioned in the previous chapter, WSNs are typically deployed in harsh en-

vironments like mines, industrial plants, volcanoes, etc. Wireless communication

in such environments experiences packet loss which leads to loss of timing data,

need for re-transmissions, increase in synchronization error, etc. [Ting et al. 2015],

[Schenato & Fiorentin 2011].

A TSP in a WSN typically involves exchange of packets among the participating

nodes. These packets contain timing information like the local clock of the sender,

reception time of the previous packets, etc. There are different delays which a

packet experiences in the course of this transmission-reception operation. These

delays can be categorized as deterministic delays and non-deterministic delays.

Deterministic delays consist of the following:

• Transmission delay: Time taken for the packet to be transmitted by the trans-

mitter.

• Propagation delay: Time taken by the packet to traverse through the medium.

• Reception delay: Time taken for the packet to be received by the receiver.

Transmission and reception delays are deterministic as they can be calculated by

knowing the packet size and the transmission and reception speed of the trans-

mitter and the receiver, respectively. Similarly, the propagation delay can be deter-
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mined by knowing the distance between the transmitting and the receiving nodes

and the speed of the wireless signal in the medium. Non-deterministic delays

consist of the following:

• Send time: Time taken for the packet to reach the Medium-Access Control

(MAC) layer of the transmitter node which depends on the current processor

load at the transmitting node.

• Access time: Time taken for the transmitter to get an access to the transmis-

sion channel.

• Receive time: Time taken for the application on the receiver node to be

notified about the incoming packet.

These delays are elaborately discussed in [Maróti et al. 2004] and [Sivrikaya &

Yener 2004]. A synchronization protocol has to take into account these delays as

they directly influence the accuracy of the synchronization achieved.

2.1.2 Clock Models

As mentioned before, the local clock of a node is maintained using a crystal oscil-

lator. Two common models are used to model the local clock of a node. The first

is the offset only model and the second one is the skew offset model.

In the offset only model which is used in [Ganeriwal et al. 2003], [Dai & Han 2004],

[Noh et al. 2008], the local time of a node k at time t denoted as Ck(t) is given by

Ck(t) = t + βk, (2.1)

where βk is the offset of the local clock of the node k from the reference clock

(referred to as global time). Since the crystal oscillators of all the nodes do not

tick at the same rate, this offset-only model cannot give an accurate synchroniza-
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tion of the clocks. The nodes which are synchronized using a synchronization

protocol based on this clock model will experience a large synchronization error

very quickly. Thus, such nodes require frequent re-synchronizations [Djenouri &

Bagaa 2016].

In the skew-offset model used in [Elson et al. 2002], [Etzlinger et al. 2017], [Meyer

et al. 2018], [Chalapathi et al. 2016], the local time of a node k at time t denoted as

Ck(t) is given by

Ck(t) = αkt + βk (2.2)

where αk and βk are the skew and offset of the local clock of node k, respectively

with respect to the global clock. As compared to the offset-only model, this model

captures the difference in the rate of local clock with respect to the global clock

in addition to the offset. Thus, the nodes synchronized using a synchronization

protocol based on this model will have higher synchronization accuracy and they

require less-frequent re-synchronizations as compared to a synchronization pro-

tocol based on the offset-only model [Djenouri & Bagaa 2016]. It is to be noted

that in reality, the skew of a node’s clock is not constant with time, i.e., dαk
dt 6= 0.

However, since skew changes very slowly over time, it is taken as a constant

during the synchronization process [Sichitiu & Veerarittiphan 2003], [Sivrikaya &

Yener 2004]. The skew-offset clock model has been considered in both the TSPs

which were implemented as a part of this thesis Chapters 3 and 4. In the next

section, a brief discussion on factor graph is presented. Factor graphs are used in

depicting the formulation of the TSP presented in Chapter 4.

2.1.3 Factor Graphs in Message Passing based TSPs

In a WSN having a large number of nodes, a significant overhead (in terms of

the number of computations performed, packets exchanged, etc.) is involved

in forming a specific network structure like spanning-trees, mesh, etc. Thus it
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is desirable to perform synchronization in a distributed or decentralized way to

avoid this overhead. Research community has explored distributed synchroniza-

tion schemes extensively over the past few years and some of them are surveyed

in Section 2.3. Many of these works including the work presented in Chapter 4

of this thesis have used a Bayesian approach (i.e., using Bayes rule) to formulate

the synchronization problem. An a-posterior probability density function (PDF)

results by using a Bayesian approach to synchronization problem (this is shown

in Chapter 4). A maximum a-posterior (MAP) estimate of the clock parameters

is obtained to determine the clock parameters of the WSN node and synchronize

the WSN nodes. Estimating these clock parameters is computationally intensive

and thus many contemporary works [Etzlinger et al. 2014], [Ahmad et al. 2012],

[Zennaro et al. 2013], [Leng & Wu 2011] have adopted a graphical approach using

Factor Graphs (FGs) [Kschischang et al. 2001]. FGs have been used to represent

the synchronization problem that is presented in Chapter 4. Thus, we give a brief

introduction to FGs below.

Let us consider a five-variable function g(x1, x2, x3, x4, x5) which can be written as

follows:

g(x1, x2, x3, x4, x5) = fA(x1) fB(x2) fC(x1, x2, x3) fD(x3, x4) fE(x3, x5), (2.3)

where A, B, C, D and E are the domains of the functions fA, fB, fC, fD and fE

respectively. The factor graph for this function is represented in Fig. 2.1. In this

figure, the circles are called the variable nodes and the rectangles are called the

factor nodes. The factor nodes represent the functions into which the function g

factorizes into. The function g is sometimes called the global function and the

functions into which it factorizes (in this case fA, fB, fC, fD and fE ) are called

local functions [Ahmad et al. 2012]. The variable nodes represent the arguments

of the global function. As we see from Eq. (2.3), each local function is dependent
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Figure 2.1: Example of a Factor Graph for the function g(x1, x2, x3, x4, x5) =
fA(x1) fB(x2) fC(x1, x2, x3) fD(x3, x4) fE(x3, x5). Source: [Kschischang et al. 2001].

on some of the variables of the global function. In the FG, each local function is

joined to all the variables which are its arguments. Thus, FG is a bipartite graph

which represents the factors of a global function and the variables each factor is

dependent upon.

FGs are used to determine the marginal function of the global function. 1 To

obtain marginal functions, each vertex of the FG is imagined to be a processor

and the edges connecting these vertices are imagined to be the channels by which

these vertices communicate with each other by sending "messages". The messages

sent between these vertices are used to compute the marginal function. Messages

communicated between two processors correspond to an appropriate description

of a marginal function.

For computing a marginal function using FGs, the Sum-Product Algorithm (SPA)

[Kschischang et al. 2001] is used. The SPA uses an update rule for its operation.

Let µx→ f represent the message from variable node x to the factor node f and

µ f→x be the message from f to x. Let n(x) represent the set of neighbors of the

vertex x in the FG. Then the update rule says that the message from a variable to

1The marginal function gi(xi) is obtained by summing g(x1, x2, x3, x4, x5), i.e., g1(x1) =
∑

x2∈B
∑

x3∈C
∑

x4∈C
∑

x5∈D
g(x1, x2, x3, x4, x5) = ∑

∼{x1}
g(x1, . . . , x5). This is also called summary of x1 and

∑
∼{x1}

is called the summary operator.
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Figure 2.2: Example of a Factor Graph for illustrating calculation of the marginal.
Source: [Kschischang et al. 2001].

a factor is given by

µx→ f = ∏
h∈n(x)\{ f }

µh→x (2.4)

In the above equation, n(x)\{ f } represents all neighbors of the node x except f .

Further, the message from a factor to a variable is given by

µ f→x = ∑
∼{x}

(
f (X) ∏

z∈n( f )\{x}
µz→ f (z)

)
, (2.5)

where X is the set of all the arguments of f or in other words n( f ). We can

compute the marginal gi(xi) as the product of two messages in two opposite di-

rections on any edge connected to the node xi. For example, in Fig. 2.2, the

marginal g1(x1) can be computed by considering the messages sent on any edge

connected to x1. Therefore, g1(x1) is given by

g1(x1) = µ fA→x1µx1→ fA (2.6)

= µ fC→x1 µx1→ fC (2.7)

We will use these concepts to estimate clock parameters in Integrated Cooperative

Synchronization (ICS) protocol presented in Chapter 4.

A discussion on the existing TSPs for cluster-based WSNs is presented in the next
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section.

2.2 Time Synchronization in Cluster-based WSNs

In a cluster-based WSN, nodes in the network form many groups of nodes called

clusters. Each cluster consists of a leader node called a cluster head and few other

nodes called cluster members. A typical cluster-based WSN is depicted in Fig.

2.3. In this figure, we find that there are three clusters, each with a cluster head

and a few cluster members forming a cluster. Organizing a WSN into clusters is

advantageous especially in saving the energy required by a node to transmit some

information to a sink or a base station. The base station (which is also shown in

Fig. 2.3) is the coordinator of the WSN and it acts as a gateway between the WSN

and other networks. A base station is responsible for coordinating the network

activities like data-collection, data-analysis, data-logging, node-association and

disassociation, etc., whenever required in a specific application. It also provides

protocol translation if the WSN has to communicate with another network using

a different protocol.

In the absence of cluster-based topology, each node has to transmit a separate

packet to the base station either in a hop-by-hop manner or by directly transmit-

ting it to the base station. Direct transmission to the base station by every node

will increase the traffic in the network and energy consumption. In a cluster-based

network, the cluster head collects sensor data from all the cluster members, col-

lates them and then transmits the collated sensor data to the base station. Thus,

a single packet from a cluster head consists of information from all the nodes in

a cluster. Therefore, this scheme reduces the energy consumed and traffic in the

network for sending sensor data from all the nodes to the base station as com-

pared to a scenario in which every node sends its sensor data to the base station

separately.
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Figure 2.3: A typical cluster-based WSN

It has been shown in works like [Manjeshwar & Agrawal 2001], [Heinzelman

et al. 2000], [Yang et al. 2004] that cluster-based topology is a very energy-efficient

topology for WSNs particularly for operations like data-gathering, data dissem-

ination, route-formation, etc., which are the most common operations in typical

WSN deployments. Thus, it is pertinent to design time synchronization protocol

specific to cluster-based WSNs. A TSP for a clustered WSN can take advantage

of the structured organization of the network which leads to energy efficiency,

faster synchronization, reduced network traffic, etc. A brief overview of the cur-

rent state-of-the-art TSPs for clustered WSNs is presented in the following sub-

sections.

The existing TSPs in clustered WSN can be categorized into four broad categories:

1. Hierarchical-based methods

2. Consensus-based methods

3. Regression-based methods

4. Other methods
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Each of the above-mentioned methods are elaborated and an overview of the

existing TSPs in each of these categories is presented in the following sub-sections.

Also, each of these existing protocols are analyzed by mentioning their advantages

and limitations.

2.2.1 Hierarchical-based Method

In hierarchical-based method, there exits a hierarchy among the cluster heads.

As mentioned before, a base station generally acts as the gateway of the WSN

to other outside networks. The cluster heads directly associated with the base

station route the packets coming from the children cluster heads and send them

to the base station. There are two prominent TSPs in this category: Cluster-based

Hierarchical Time Synchronization (CHTS) and Time-Synchronization Algorithm

Based on Cluster (CSSN). We elaborate on these two protocols below:

2.2.1.1 Cluster-based Hierarchical Time Synchronization (CHTS) for Multi-

hop WSNs

CHTS [Kim et al. 2006] assumes that the network consists of two kind of nodes-

High Performance oscillator equipped Nodes called HPNs and Low Performance

oscillator equipped Nodes called LPNs. A network typically consists of a few

HPNs (about 5-10% of total number nodes in the network) and the rest are LPNs.

The network consists of a reference node called Cluster Head Reference (CHR)

apart from cluster heads and cluster members. The cluster heads and CHR are

HPNs, whereas the cluster members are LPNs.

A cluster head tree is constructed between the CHR and cluster heads with the

CHR at the root. The CHR broadcasts a CH Discovery packet to initiate the dis-

covery of cluster heads. This packet also contains a hop field which specifies the

number of hops the sender is away from the CHR. The cluster heads which hear
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the packet from the CHR identify CHR to be its parent and also note the hop

field. These nodes re-broadcast the packet by incrementing the hop field by one.

When a cluster head receives a CH Discovery packet it notes the hop field as well

as the power level of the packet received, i.e., the Received Signal Strength Indi-

cator (RSSI) value. If a cluster head receives the CH Discovery packets from two

or more nodes, it selects a node with minimum hops from the CHR as its parent

cluster head. If the hop field of two or more nodes is same and minimum, the

node with higher RSSI is chosen as the parent cluster head. The idea is to min-

imize the number of hop counts to the CHR because the synchronization error

increases with increase in the number of hops. This phase is followed by clus-

ter member tree construction. Each cluster head sends a cluster member discovery

packet. A cluster member after receiving these packets from multiple cluster heads

chooses the node with highest RSSI value as its cluster head. A cluster head can

communicate to all its cluster members directly, i.e., all the cluster members are

within the radio range of the cluster head. However, the cluster head may not

be within the radio range of a cluster member. In such cases, a cluster member

chooses another cluster member which is closer to the cluster head as its parent.

Thus, a hierarchical tree of cluster members is formed with the cluster head at the

root. Thus the cluster may consist of two or three levels of cluster members called

the first, second and third groups of cluster members. After this cluster member

tree construction phase, the synchronization phase begins.

In the synchronization phase, CHTS very intelligently chooses an explicit syn-

chronization method to synchronize the cluster heads to the CHR and an implicit

synchronization method to synchronize most of the cluster members to its cluster

heads. The cluster heads are synchronized first to the CHR. The CHR synchro-

nizes the cluster heads which are directly connected to it, i.e., which are one hop

away from it. The CHR broadcasts a packet to initiate this synchronization of

these cluster heads. These cluster heads on receiving this packet back-off for a
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Figure 2.4: Illustration of two-way-exchange between CHR and CHi

random amount of time. Then each cluster head sends a packet to the CHR one at

a time. Let us say a cluster head CHi sends a packet to CHR. This packet is time

stamped as T1 by CHi (as per CHi’s local clock) to record the time of transmission.

The CHR receives this packet at T2 and sends an acknowledgment to CHi at T3,

where T2 and T3 are recorded as per CHR’s local clock. The CHi receives this

acknowledgment at T4 (as per CHi’s local clock). The offset of CHi is calculated

as

O f f seth,i =
(T2− T1)− (T4− T3)

2
(2.8)

The above procedure of packet sent by CHi to CHR and reply sent by CHR to

CHi is called a two-way exchange as the packets are sent and received by both the

nodes as illustrated in Fig. 2.4. In this figure, tR and ti refer to the time axis of

local clock of CHR and CHi respectively. This procedure is done by all the cluster

heads directly connected with the CHR which we term as first-level cluster heads

in the further discussion. The children cluster heads of the first-level cluster heads

overhear their parent transmitting the packet with time stamp T1 and they take

this as synchronization initiation packet. They back-off for random amount of

time and they follow the same synchronization procedure as followed by the first-

level cluster heads with CHR. Using this procedure, each cluster head calculates

its offset with respect to the parent cluster head. This synchronization procedure

is followed until the terminal cluster heads are synchronized.

After a cluster head gets synchronized with its parent cluster head, it synchro-

nizes its cluster members by employing an implicit synchronization method as
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mentioned before. It chooses a particular cluster member in the first-group of its

cluster members and initiates a two-way exchange with it. It broadcasts a packet at

T1 and the chosen cluster member say CMj receives it at T2 and replies at T3. The

packet is received by the cluster head at T4. The cluster head calculates the offset

of CMj using

O f f setm,j = (−1) ∗ (T2− T1)− (T4− T3)
2

(2.9)

This offset and the value of T2 is broadcasted by cluster head which is heard

by all the first-group and second-group cluster members. It is to be noted that

all the second-group cluster members can hear the packets of cluster head but

cannot directly transmit to the cluster head and thus they are in the second-group

of cluster members. So all the first and second-group cluster members hear the

packet broadcasted by the cluster head. Also the first-group cluster members

(other than CMj) and the second-group cluster members could hear the packet

previously broadcasted by the cluster head with the timestamp T1. On receiving

this packet, these first-group and second-group cluster members record the time

of reception of this packet as T2sel f . Thus when the cluster head broadcasts T2

and O f f setm,j, other cluster members can calculate their offset as

O f f setm,k = O f f setm,j + T2− T2sel f , (2.10)

where k refers to a cluster member other than CMj.

An advantage of CHTS is that it reduces the hop count of a cluster head to the

CHR during the cluster-tree formation phase. During this phase, if a cluster head

receives a reply from a potential cluster head parent with lesser hop counts to the

CHR than its parent, it changes its parent and broadcasts this information to other

nodes who might change their own parent cluster head. Though this reduces the

hop-count of a cluster head to the CHR, it leads to increased in network traffic

whenever change of cluster head parent takes place.
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Further, CHTS requires two different kind of nodes- HPNs and LPNs. Though

the number of HPNs in the network is 5-10% of total number of nodes in the

network, but such specific requirement of cluster heads to be HPNs increases the

monetary cost of the network. CHTS uses implicit synchronization method among

the cluster members which reduces the number of packets required to synchro-

nize the cluster members in a cluster. However, one of the major disadvantage

about CHTS is that it is an offset-only synchronization procedure. In this syn-

chronization, the skew of the clock is not estimated. Therefore it requires frequent

re-synchronizations among the nodes.

Also, it uses a timer to keep track of the re-synchronization period. The period

of the timer is calculated using the non-deterministic offset. This contradicts the

very nature of this non-deterministic offset, i.e., it cannot be exactly determined or

calculated. Thus it cannot be used to ascertain the period of this timer. CHTS does

not account for the deterministic and non-deterministic delays that occur during

any transmission. Thus it will not be able to achieve very good synchronization

accuracy as is evident from the results of shown in this work.

2.2.1.2 Time-Synchronization Algorithm Based on Cluster (CSSN)

CSSN [Kong et al. 2010] forms a spanning-tree for the cluster heads just like CHTS.

Thus CSSN forms multiple levels of cluster heads staring with the base station

at the root. The base station, which is assigned level-0, broadcasts a Sync_start

packet. The cluster heads who hear this packet assign themselves as level-1 and

they send a Sync_req packet along with transmission timestamp of this Sync_req

packet (T1). They perform two-way exchange with the base station just like in

CHTS and calculate their offset with respect t to the base station. The cluster

heads which have not been assigned a level yet and which hear the Sync_req

packet of a level-1 node assign themselves as level-2. They also get synchronized

with a higher level cluster head and thus all the cluster heads get synchronized.
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During the synchronization, the offset is calculated in the similar way as it is done

in CHTS.

The cluster heads then synchronize their cluster members. A cluster head con-

structs a set S consisting of cluster members used as reference broadcast nodes.

This set S is constructed using the information about the cluster members avail-

able with the cluster head. A particular cluster member is selected from S and

it is assigned a serial number beginning with 0. This cluster member, say CMs,

broadcasts a packet at transmission power such that the cluster head can hear

this packet. This packet also contains the serial number of CMs. All other cluster

members record the reception time of this packet from CMs and the serial number.

The cluster head on receiving the broadcast from CMs broadcasts its own recep-

tion time and the serial number to all the cluster members. Each cluster member

now records the reception timestamp of the cluster head along with its own re-

ception timestamp for the broadcast from CMs along with the serial number. The

cluster head removes CMs from S and selects another cluster member from S to

act as reference broadcast. The cluster head also assigns this newly selected ref-

erence broadcast node a serial number one more than the serial number assigned

to previous reference broadcast node. Thus the above procedure is repeated until

the S is empty. Finally each cluster member performs linear least square method

on the reception timestamps recorded previously for the broadcasts from different

reference broadcast nodes. Using this method, each cluster member calculates its

clock offset with respect to the cluster head.

CSSN reduces the number of packets used in synchronizing the cluster members

to the cluster head by using the reference broadcast mechanism. A major limita-

tion with CSSN is that it only calculates offset (but not skew) while performing

synchronization and thus it achieves very low synchronization accuracy of the or-

der of milliseconds. It also does not account for the various deterministic and non-
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deterministic delays which further worsen its synchronization accuracy. Further,

since the synchronization of cluster heads use only one measurement to synchro-

nize with the parent cluster head, the accuracy of synchronization will be badly

affected by these deterministic and non-deterministic delays [Maróti et al. 2004]

[Lim et al. 2016]. Also it does not have any mechanism to reduce the hop counts

from a cluster head to the base station. This leads to increase in the synchroniza-

tion error as we traverse from the base station to the terminal cluster heads.

2.2.2 Consensus-based Method

The TSPs discussed in the previous subsection attempted to estimate the skew

and offset of their local clock with respect to a reference clock. The following

are some of the problems with this approach to achieve time synchronization in a

WSN:

i) The skew and offset of the WSN nodes are not actually known due to the

involvement of deterministic and non-deterministic delays during the packet

exchanges.

ii) It is sometimes not preferable to correct the local clock of a node to maintain

the continuity of time. [Wu et al. 2015].

iii) It is disadvantageous to have a single node as a reference for other nodes as

seen in hierarchy-based methods because a failure of the reference node leads

to disruption of time-synchronization of the whole network.

Thus a class of TSPs called consensus based synchronization protocols has evolved.

Some of the examples of consensus-based synchronization protocols for WSNs

are ADMM [Zennaro et al. 2011], CMTS [Wang et al. 2017d], Average TimeSync

[Schenato & Fiorentin 2011] and CCTS [Wu et al. 2015]. In the consensus-based

method, the nodes maintain a virtual clock which they try to synchronize during
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every synchronization phase.

Consider a set N consisting of all nodes in a WSN. Considering the skew-offset

model representation of the local clock of node i (mentioned in Eq. (2.2)) we get

the local time of i at time t, i.e., Ci(t) using the following:

Ci(t) = αit + βi, (2.11)

where αi and βi are the skew and offset of i with respect to the global clock.

Let the skew-compensation parameter and offset-compensation parameter of the

virtual clock of this node i be α̂i and β̂i respectively. These parameters relate the

local clock of a node with the virtual clock. The virtual clock of node i denoted

by Ĉi(t) is defined as

Ĉi(t) = α̂iCi(t) + β̂i = α̂iαit + α̂iβi + β̂i, (2.12)

where α̂iαi and α̂iβi + β̂i are the skew and offset of the virtual clock.

So by applying the consensus method, it is aimed to synchronize the virtual clocks

of all the nodes i.e.,

limt→∞ α̂iαi = α̂Cand

limt→∞ (α̂iβi + β̂i) = β̂C,

 ∀i ∈ N (2.13)

where α̂C and β̂C are respectively the values to which the skew and offset of the

virtual clock converge to after applying the consensus method. An overview of

two consensus based TSPs for cluster-based WSNs namely- Cluster-Based Consen-

sus Time Synchronization for Wireless Sensor Networks (CCTS) [Wu et al. 2015]

and Cluster-Based Maximum Consensus Time Synchronization for Industrial Wire-

less Sensor Networks (CMTS) [Wang et al. 2017d] is presented in following sub-

sections.
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2.2.2.1 Cluster-Based Consensus Time Synchronization for Wireless Sensor

Networks (CCTS)

CCTS [Wu et al. 2015] performs synchronization in two phases, viz., intra-cluster

time synchronization which is followed by inter-cluster time synchronization. In CCTS,

two virtual clocks, viz., intra-cluster virtual clock and network virtual clock are

maintained by the cluster head. The intra-cluster virtual clock’s skew and offset

compensation parameters are updated by the cluster head and its cluster members

during the intra-cluster synchronization in a cluster to achieve synchronization

among these nodes. Similarly, the network virtual clock’s skew and offset com-

pensation parameters are updated by the cluster heads in the inter-cluster time

synchronization phase to achieve a network-wide synchronization.

In the intra-cluster time synchronization, the cluster head first broadcasts its own

local clock, skew-compensation parameter and intra-cluster virtual clock to the

cluster members. It also records the transmission time-stamp of this packet as

Ch(t). Each cluster member after receiving this packet, records the time-stamp

of reception of its local clock Cj(t), its skew-compensation parameter and intra-

cluster virtual clock and sends this information to the cluster head. The cluster

head calculates the average of the skew-compensation parameters and the intra-

cluster virtual clocks of the cluster members as α̂h
av(l) and Ĉh

av
(l), where l repre-

sents the iteration index. The α̂h
av(l) is used to update the skew-compensation pa-

rameter of the intra-cluster virtual clock. The cluster head sends this updated pa-

rameter to the cluster members which then update their own skew-compensation

parameter of the intra-cluster clock maintained at the cluster member. The cluster

head then updates the offset-compensation parameter of the intra-cluster clock

β̂h(l) using ¯̂Cav
h (l) and sends it to the cluster members. The cluster members

upon receiving this updated offset-compensation parameter from the cluster head

update their own offset-compensation parameter of the intra-cluster clock main-
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tained at each cluster member. This updation is performed in the form of itera-

tions where l = 1, 2, 3, . . . . These iterations are performed until the intra-cluster

virtual clock converges.

After synchronizing the cluster members, the cluster head will participate in the

synchronization of the inter-cluster virtual clock. The cluster heads of any two

clusters having a common cluster member (called the gateway nodes as shown

in Fig. 2.3) are referred to as "overlapping clusters". These overlapping clusters

exchange the information of their clock parameters related to the inter-cluster vir-

tual clock during inter-cluster synchronization and achieve a consensus on these

clock parameters by iterative message exchanges.

CCTS achieves a network-wide synchronization using inter-cluster synchroniza-

tion and it has been tested in simulations for a large network. It also uses a

skew-offset model which therefore needs less frequent re-synchronization com-

pared to offset-only model. However, CCTS has a very slow convergence and

requires a large number of iterations [Wang et al. 2017d]. The reason for this slow

convergence is attributed to the fact that CCTS first synchronizes the skew (in

both the virtual clock synchronization phases) and then synchronizes the offset

[Wang et al. 2017d]. The large number of iterations (as seen in Fig. 9 and Fig. 6

of CCTS [Wu et al. 2015]) used by CCTS to achieve microsecond accurate synchro-

nization cannot be afforded by energy-constrained WSN nodes. Also, CCTS does

not capture the deterministic and non-deterministic delays that occur in the com-

munication of packets and thus it does not give good synchronization accuracy in

practical WSNs which we will prove in Section 5.5 of this thesis.

2.2.2.2 Cluster-Based Maximum Consensus Time Synchronization for Indus-

trial Wireless Sensor Networks (CMTS)

CMTS [Wang et al. 2017d] is another recently proposed consensus-based synchro-

34



2.2 Time Synchronization in Cluster-based WSNs

nization protocol for cluster-based WSNs. CMTS, like CCTS, has two different

synchronization phases, i.e., within a cluster (intra-cluster) and between the clus-

ters (inter-cluster). CMTS maintains a single virtual clock at each node. To achieve

consensus, CMTS uses the maximum value of skew and offset compensation pa-

rameters of the virtual clock of all the nodes in a cluster instead of the average

value (as used in CCTS). By using maximum value, it achieves faster convergence

compared to CCTS. Once all the cluster members are synchronized to their clus-

ter head in a cluster, this synchronized cluster head serves as a time reference

to the neighboring clusters. The inter-cluster synchronization is then achieved

using gateway nodes. An improved version of CMTS called ‘Revised-CMTS’ is

also presented in the same work[Wang et al. 2017d]. Revised-CMTS considers

the communication delays and assumes that these communication delays have an

upper-bound. It performs simultaneous synchronization of skew and offset of the

virtual clocks. Though CMTS and Revised-CMTS have faster convergence than

CCTS, they still need a large number of broadcasts in inter-cluster synchroniza-

tion (as seen from Fig. 8 and Fig. 9 of Revised-CMTS [Wang et al. 2017d]). It needs

around 2000 broadcasts for a 50 node network (as seen in Fig. 9 of Revised-CMTS

[Wang et al. 2017d]) which is quickly draining the batteries of energy-constrained

WSN nodes. We will test Revised-CMTS on a testbed and discuss its performance

in Section 5.5 of this thesis.

2.2.3 Regression-based methods

Regression-based methods achieve synchronization among the nodes using linear

regression method. Many TSPs use this method to achieve synchronization. SLTP

[Nazemi Gelyan et al. 2007] and L-SYNC [Jabbarifar et al. 2010] are two prominent

cluster-based TSPs of this category. We briefly describe these protocols below.
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2.2.3.1 Scalable Lightweight Time Synchronization Protocol (SLTP)

SLTP [Nazemi Gelyan et al. 2007] consists of a configuration phase and a synchroniza-

tion phase. Configuration phase is the cluster formation phase of SLTP in which all

the nodes divide themselves into clusters. In the static mode where the nodes are

stationary, a node called eager node begins the cluster formation by declaring itself

to be a cluster head. It then broadcasts a packet for informing the neighboring

nodes that it is a cluster head node. All the nodes which hear this packet become

its cluster members. These new cluster members broadcast their status that they

are cluster members. Any node which hears this packet and has not yet become

a cluster head or cluster member becomes a cluster head. Each of these cluster

heads broadcast a packet informing about their status. Thus this procedure re-

peats till each node in the network has become either a cluster head or a cluster

member. A node which hears from more than one cluster head becomes a cluster

gateway. In the dynamic mode where the nodes are mobile, only cluster heads

are chosen in the configuration phase. The cluster members and cluster gateways

are chosen in the synchronization phase.

In the synchronization phase, the cluster heads synchronize their respective clus-

ter members by broadcasting their local times at random time intervals. The

cluster members then use linear regression method to find their relative skew

and offset with respect to the cluster head. In the dynamic mode, the configura-

tion phase must be executed before every synchronization phase. Thus, there is

a significant overhead in terms of performing the configuration phase for every

synchronization in the dynamic mode.

2.2.3.2 Large Degree Clustering based Time Synchronization (L-SYNC)

L-SYNC [Jabbarifar et al. 2010] forms clusters in such a way that the overlap-

ping between the clusters is minimized. It uses two algorithms called SLACE-3
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and ACE-UD to achieve large size clusters with minimal overlapping. The ration

behind these algorithms is that by achieving optimum number of clusters, the

synchronization accuracy can be increased. Just like SLTP, L-SYNC uses a linear

regression method to synchronize the cluster members to the cluster head in each

cluster.

Both SLTP and L-SYNC simulate their performance over large-sized networks.

However, they exhibit very high synchronization error of the order of millisec-

onds. Both SLTP and L-SYNC do not take into consideration of the non-deterministic

and deterministic delays in the packet exchanges. Also, L-SYNC has very high

overhead especially for the cluster formation phase which makes it unsuitable to

large size networks and thus this protocol is not scalable with network size.

2.2.4 Other Methods

This category of TSPs consist of TSPs which cannot be categorized into any of the

previously described categories. A prominent TSP for cluster-based WSN of this

category is PC-Avg [Mamun-Or-Rashid et al. 2005].

2.2.4.1 PC-Avg

PC-Avg [Mamun-Or-Rashid et al. 2005] uses average of the local time of the clus-

ter members to synchronize the cluster members. In this protocol, the cluster

members send their local time to the cluster head periodically. The cluster head

then calculates the average of the local times of the cluster members, sends this

information to the cluster members and thus synchronizes the cluster members.

This protocol exhibits a high synchronization error and also does not consider the

non-deterministic and deterministic delays involved in communication. It also re-

quires frequent re-synchronizations as it is based on the offset-only clock model.
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2.2.4.2 PulseSS

Pulse-coupled synchronization and scheduling (PulseSS) [Gentz et al. 2016] aims

to achieve simultaneous synchronization and scheduling in cluster-based WSNs.

In this protocol, each node maintains a fine clock and a coarse clock. The time

period of the fine clock is ’T’ and the coarse clock advances by one for every ’L’

periods of the fine clock. A node sends two beacons (or signals) to its cluster

head called the start and end beacon to start and end the communication. The

cluster head sends out acknowledgments when these beacons are received. These

beacons are used to signal to other nodes that the cluster head is busy and they

are also used in synchronization. The synchronization is achieved by these ac-

knowledgments sent by the cluster head. This protocols also compensates for the

propagation delays that occur in the communication. However, this protocol up-

dates the phases (i.e., offset) of the clock only. Thus, it uses a offset-only model

which necessitates more frequent re-synchronization. Also this protocol ignores

the deterministic and non-deterministic delays in communication.

2.2.5 Research Gaps

The limitations of each of the existing protocols were mentioned previously in the

respective subsections. Overall, the problems with the existing TSPs for clustered

WSNs are as follows:

• All these protocols are simulator-based protocols and their suitability to

practical WSNs has not been proven.

• These protocols (except Revised-CMTS) do not consider the deterministic

and non-deterministic delays during the packet transmission and thus ex-

hibit very high synchronization error.

• They do not consider the effects of the environment in which the nodes are
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Table 2.1: Summary of existing works on time synchronization protocols for cluster-
based WSNs

S.
No.

Name of the
existing work

Method of
Synchro-
nization

Deter. and
Non-deter.
delays

Clock
model
used

Synch.
Accu-
racy

Comm.
traffic

1 CHTS [Kim
et al. 2006]

Hierarchical not
accounted

offset-only low high

2 CSSN [Kong
et al. 2010]

Hierarchical not
accounted

offset-only low high

3 CCTS [Wu
et al. 2015]

Consensus not
accounted

skew-
offset

medium high

4 Revised
CMTS [Wang
et al. 2017d]

Consensus assumes
delays are
bounded

skew-
offset

medium high

5 SLTP
[Nazemi Gelyan
et al. 2007]

Regression not
accounted

skew-
offset

low medium

6 L-SYNC
[Jabbarifar
et al. 2010]

Regression not
accounted

skew-
offset

low medium

7 PC-Avg
[Mamun-
Or-Rashid
et al. 2005]

Other
methods

not
accounted

offset-only low low

8 PulseSS
[Gentz
et al. 2016]

Other
methods

not
accounted

offset-only low low

Note: Meaning of the short forms used in the above table: Deter and Non-deter.
delays= deterministic and non-deterministic delays, synch. accuracy= synchro-
nization accuracy achieved, comm. traffic= communication traffic in the network
during the synchronization

deployed, i.e., whether the nodes are Line-of-Sight (LOS) or Non Line-of-

Sight (NLOS).

The works surveyed in this section are summarized in table 2.1. We address

the above-mentioned issues in a new TSP called E-SATS presented in Chapter 3.

A survey of some of the important decentralized TSPs is presented in the next

section.
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2.3 Decentralized Time Synchronization Protocols for

WSNs

In cluster-based WSNs, we need to organize the WSN nodes into clusters. The

formation and maintenance of such a network structure proves to be a signifi-

cant overhead especially large networks [Etzlinger et al. 2014], [Leng & Wu 2011].

Also centralized TSPs are not scalable and are vulnerable to node failures. Thus,

decentralized TSPs have attracted significant interest in the recent years. In de-

centralized TSPs, the synchronization is done locally rather than at a central node

for the entire network. In these TSPs, each node calculates its clock parame-

ters by exchanging packets with its neighbors thus removing the need of central-

ized coordination or processing. There are many decentralized TSPs, viz., the

consensus-based techniques like [Schenato & Fiorentin 2011], [Garone et al. 2015],

Belief Propagation (BP) methods like [Leng & Wu 2011], [Etzlinger et al. 2014] and

Mean-Field (MF) methods like [Etzlinger et al. 2013a], [Etzlinger et al. 2014].

As discussed before in Section 2.2.2, consensus-based methods achieve synchro-

nization by agreeing to a common notion of time, i.e., they achieve a consensus

on the current time of the common clock. Average TimeSynch (ATS) [Schenato &

Fiorentin 2011] is a very simple consensus based technique. It is a cascade of two

consensus techniques- one each for skew and offset. In ATS, each node makes

a pseudo-periodic broadcast. This broadcast is periodic with respect to the local

clock of the nodes. However, with respect to a global clock which gives the global

time (as mentioned in Section 2.1.2), these local clocks have a different clock fre-

quency, i.e., relative skew is not unity. Therefore, the inter-arrival intervals of two

subsequent broadcasts are not equal and thus these broadcasts are called pseudo-

periodic broadcasts. Based on these broadcasts, particularly the time of arrival

of the broadcasts from the neighbor nodes, each node calculates the relative drift

(or skew) with respect to each of its neighbor. It then uses these relative drifts to
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perform a drift compensation to converge the value of skew of the virtual clock.

Then, the nodes perform an offset compensation to converge the offset of the

virtual clock. Though ATS is a simple protocol, it has slow convergence speed

[Etzlinger et al. 2014], thereby requiring many rounds of packet transmissions.

Further, ATS assumes instantaneous reception of the transmitted packets neglect-

ing the deterministic and non-deterministic delays in packet communication.

RoATS [Garone et al. 2015] is another consensus method which tries to mitigate

the short comings of ATS by assuming that the network delays during the com-

munication are bounded. However, it exhibits high synchronization error of about

19.6ms for a 20-node and 100-node networks. Also it does not compensate for the

propagation delay. It has been shown in [Lim et al. 2016] that the propagation de-

lay, which is generally neglected by most of the TSPs, plays an important role in

achieving highly accurate time synchronization. It is of special importance to esti-

mate the propagation delay and to compensate for its effect, especially when sub-

microsecond accurate time synchronization is required. Sub-microsecond syn-

chronization accuracy is essential for many distributed network based control and

event analysis applications [Lim et al. 2016].

LSTS [Tian 2017] is another TSP which improves ATS. Similar to RoATS, LSTS

also assumes bounded delays in its synchronization scheme. However, it uses

least-squares estimation method for synchronization process. This protocol also

exhibits poor synchronization accuracy just like RoATS and it also does not com-

pensate for the propagation delays in the communication.

Apart from consensus based methods, there are other methods in which the

nodes estimate the clock parameters (i.e., skew and offset) by exchanging mes-

sages among themselves. These methods are commonly called as message-passing

methods. They differ from the consensus methods in that instead of using clock

parameters of each other, they use a global statistical model. This model contains
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the time measurements of the nodes. Therefore, the message-passing methods

consider the errors which arise from the non-deterministic and deterministic de-

lays also. To further discuss about the message-passing methods which are of

interest in this thesis, we consider a Bayesian estimator as given below. Let the

vector ϑj contain the clock parameters of the WSN node j, i.e., clock skew αj and

offset β j. The maximum a-posterior estimate of the clock parameters, ϑ̂j is given

by

ϑ̂j = arg max
ϑ̂j

p(ϑ̂j|T1) (2.14)

= arg max
ϑ̂j

∫
p(ϑj|T1)dϑ j̄ (2.15)

where T1 contains all the time measurements during the packet exchanges be-

tween the nodes, ϑ j̄ denotes the integration over all ϑi (i.e., clock parameters vec-

tor of all the nodes in the network) except ϑj. It is a computationally intensive task

to perform the marginalization in Eq. (2.15). Thus, message-passing methods are

used to reduce the computational complexity and arrive at an approximate value

of this marginal. This approximate value of the marginal is called as the belief

denoted by b(ϑj), i.e.,

b(ϑj) ≈ p(ϑj|T1). (2.16)

Factorization of the joint probability density function involved in the marginal-

ization operation performed in Eq. (2.15), is essential for the convergence of the

message-passing methods. Factor Graphs (FGs) introduced in Section 2.1.3 are

used to visualize this factorization structure and it helps in interpreting the mes-

sages which are passed over the edges of the FG as probability density functions.

Although there are many message-passing methods, we focus on two message-

passing techniques, viz., Belief Propagation (BP) and Mean-Field (MF) message-

passing. BP and MF are two variational inference techniques used in Bayesian
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statistics. Variational inference techniques are used to find an approximate proba-

bility density functions for the latent (or hidden) variables given the observations,

i.e., when posterior probability is available. BP and MF methods comprise of

the rules that govern the message-passing over the function and variable nodes

of the FG. BP was initially used for machine learning using Pearl’s algorithm

[Pearl 1988]. MF, on the other hand, was initially used for a simplified theory of

ferromagnetism But it was later used in neural networks. A free energy formula-

tion is used in [Yedidia et al. 2005] to show the unified interpretation of BP and

MF. A significant difference between BP method and MF method is that MF is

guaranteed to converge while BP is not. Also, BP is computationally more inten-

sive than MF method and gives more accurate computation of the marginal when

compared to that of the MF method.

BP-based message-passing method has been used in many works for time syn-

chronization in WSNs. BP based synchronization for the offset-only clock model

based synchronization, is proposed in [Leng & Wu 2011]. However, as discussed

before, offset-only model based synchronization protocols require more frequent

re-synchronizations than the protocols based on skew-offset model. A synchro-

nization protocol based on skew-offset model using BP and MF is proposed in

[Etzlinger et al. 2014]. This work shows that the non-deterministic delays in the

communication follows a Gaussian distribution and it analyzes the convergence

behavior of both BP and MF for the time synchronization problem. It has been

shown in this work that MF method performs the synchronization by each node

exchanging its belief with its neighbors. The message that has to be sent to each

node is same and thus a broadcast mechanism can be used to perform the message

exchanges. In contrast to this, BP requires a separate computation (and transmis-

sion) of the message to each neighbor because the message to each neighbor is

different. Thus it requires more computations and packet transmissions than MF

method.
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An MF-based simultaneous synchronization and ranging protocol is proposed in

[Etzlinger et al. 2013a]. In this work, MF method is used to estimate the clock

parameters and distances between the nodes in a distributed way. In [Etzlinger

et al. 2017], BP method is used for simultaneous localization and synchronization.

BP-based simultaneous localization and synchronization is proposed in [Yuan

et al. 2016]. However, this work assumes dense deployment of anchor nodes

(i.e.,nodes who provide the time reference) to linearize the likelihood function.

Also this work does not consider the clock skew.

2.3.1 Research Gaps

A common approach followed by message-passing methods to achieve synchro-

nization is that all the nodes first exchange packets containing the timing infor-

mation. The timing information represents the time of transmission and reception

of the packets at the transmitting and receiving nodes respectively. This phase

is referred to as the measurement phase. The clock parameters are then esti-

mated using the time measurements obtained in the measurement phase. This

phase is referred to as the message-passing phase. The message-passing phase

can begin only after all the nodes in the network have completed the measure-

ment phase. Thus, there is a need to synchronize the measurement and message-

passing phases so that all the nodes in the network perform each phase together

and there is no overlap in these phases in any part of the network. This synchro-

nization not just becomes challenging but also becomes an additional overhead

for the network. Further, since the measurements obtained in the measurement

phase are used in each iteration of the message-passing phase, the computational

complexity involved in clock parameter estimation increases tremendously. (This

point will be explained in more detail in Chapter 4.) Further, any new node joining

the WSN has to wait until the next measurement phase to estimate its clock pa-

rameters. In such scenarios, we need to perform measurement phase periodically
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and this further increases the overhead incurred due to the synchronization pro-

tocol. Thus, we require a simpler message-passing based TSP which can integrate

both these phases, i.e., the measurement and message-passing phases. This will

enable using each message exchanged for both the purposes, i.e., to obtain time

measurements and also to obtain the estimate of clock parameters. A message-

passing TSP which addresses the above-mentioned issues will be presented in

Chapter 4.

A overview of task-assignment schemes in edge computing in presented in the

next section.

2.4 Task-Assignment Schemes in Edge Computing

Mobile computing has made information and data processing ubiquitous. Yet, by

its very nature, mobile hardware is inferior to stationary hardware in terms of

performance because of limited computing power, storage and battery capacity

of the former [Satyanarayanan 1996]. Cloud technology has found its application

in recent years in mobile computing, commonly referred to as Mobile Cloud Com-

puting (MCC). MCC is used especially for offloading computationally intensive

tasks from the mobile devices on to the cloud servers [Qi & Gani 2012], [Bar-

bera et al. 2014]. Apart from the challenges of a heterogeneous network [Sanaei

et al. 2014], the MCC technology has associated limitations of high network latency

and high transmission power involved in connecting with the cloud [Qureshi

et al. 2011]. To mitigate these shortcomings, researchers have explored the ef-

ficient use of a network of supporting devices called cloudlets [Satyanarayanan

et al. 2009], [Jararweh et al. 2013]. Cloudlets are also referred to as fog devices

[Bonomi et al. 2012], [Stojmenovic 2014] or edge devices [Ahmed & Ahmed 2016].

Cloudlets have been used to support the cloud services to mobile devices in many

real time applications few of which are given below. An architecture based on
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edge computing is proposed in [Taleb et al. 2017a] to achieve ultra-low latency

and network congestion reduction for the upcoming 5G mobile systems for appli-

cation in smart cities. A novel method to manage data streams at the mobile edge

to enhance scalability in IoT architecture is presented in [Sun & Ansari 2016]. Re-

cently, a vehicle control system is proposed in [Sasaki et al. 2016], where resources

are allocated dynamically. In this system, computation is switched between the

edge devices and the cloud according to the network conditions to overcome in-

stability in vehicle control caused by long latencies in the absence of cloudlets. For

widely used mobile device applications like gaming, face recognition, etc., that in-

volve heavy computation and require low latencies, the use of cloudlets has been

demonstrated to be technically feasible and beneficial compared to direct com-

munication with cloud servers [Soyata et al. 2012]. Surveys on edge computing

are presented in [Mach & Becvar 2017], [Mao et al. 2017], [Yu et al. 2018], [Taleb

et al. 2017b] while [Kumar et al. 2013] presents an early version of a survey on

computational offloading in mobile systems. A survey on computational offload-

ing in Mobile Edge Computing (MEC) especially in terms of the current state of

standardization and current work on various aspects of offloading like mobility

management, decision making in offloading, resource allocation on the cloudlets,

etc., is presented in [Mach & Becvar 2017].

Recently, researchers have also explored the effect of combining task-offloading

decisions with several other network parameters. In [Wang et al. 2017a], the prob-

lem of task offloading is addressed along with strategies employed for content

caching in cellular networks using edge computing. The same authors have fo-

cused on managing task offloading along with interference management in [Wang

et al. 2017b]. Many works like [Satyanarayanan et al. 2009] propagate the concept

of Virtual Machines (VMs), which will be invoked on the cloud/cloudlet devices

to execute the offloaded tasks from the mobile users. In [Plachy et al. 2016], a

strategy to find an optimal placement of these VMs while optimizing the commu-
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nication costs in an MEC environment is presented. This scheme finds an optimal

trade-off between VM migration cost and reducing the communication cost from

the VM to the mobile user.

Another important issue is to deal with in cloudlets is the dynamic mobility of

the mobile users in a cloudlet network. This opens up other interesting problems-

as to where should the services requested by a mobile device be deployed/run

in an MEC network and where should the service be migrated to cope up with

user mobility and/or network changes. In [Wang et al. 2017c], the problem of

service placement in MEC is explored and the authors of this work coined MEC

as Mobile-micro-cloud (MMC).

In offloading the resource intensive tasks on to the cloudlets, one of the primary

considerations is to minimize latency by managing the network traffic to provide

better QoS to the users. The traditional way of task offloading is to offload the

task from the mobile device to the nearest available cloudlet with an intention

to minimize the communication delay (the Round-Trip-Time (RTT)) between the

mobile device and destined cloudlet. This approach however does not take into

consideration of the current workload at the nearest cloudlet and thus leads to

poor latency during heavy traffic conditions.

In an MEC environment, the devices are mobile, energy limited, and multiple

cloudlets are available with possibly distributed specialized resources. These fac-

tors create a need for specific decisions regarding choice of cloudlet to offload

the task, proportion of computation to be offloaded, and task distribution [Satya-

narayanan 1996]. These details are also discussed in [Huerta-Canepa & Lee 2010].

More recently, [Zhang et al. 2016b, Sardellitti et al. 2015, Muñoz et al. 2015, You

et al. 2017, Kao et al. 2017] have dealt with some or all of these issues for mobile

cloud computing in different directions. In [Zhang et al. 2016b], energy of both

computation and data transmission are minimized with latency as constraint,
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while [Sardellitti et al. 2015] addressed a similar problem in Multi-Input-Multi-

Output (MIMO) multi-cell systems. In [Muñoz et al. 2015], a joint optimization of

energy consumption and latency by delivering a framework in Femto Access Point

(FAP) network using MIMO radios is explored. In [You et al. 2017], an optimiza-

tion of energy consumption using Time-Division Multiple Access (TDMA) and

Orthogonal Frequency-division Multiple Access (OFDMA) based resource alloca-

tion to the mobile users is presented. In [Kao et al. 2017], a special scenario where

the application can be represented as a serial tree task graphs is addressed. The

authors of this work focus on optimizing the latency in computing the offloaded

applications composed of many tasks/routines by mapping different tasks on to

multiple computing nodes/devices. However, they focus on a scenario where the

application can be expressed as serial trees, which may not be always possible. In

[Zhang et al. 2016a], strategies to maximize the benefit of mobile cloud comput-

ing resources and the utilities on mobile devices (which in this case are vehicles)

with latency constraints are proposed. In [Mao et al. 2016], an online algorithm

to jointly decide CPU cycle frequencies of mobile devices, transmit power and of-

floading decision for minimizing latency and task failure is proposed. A generic

problem of task offloading for intermittent connection between mobile device and

cloudlet is considered in [Zhang et al. 2014]. This intermittent connection is mod-

eled and solved to minimize the communication and computation costs. Here the

application is divided into phases and the decision is made whether to execute

each application phase locally or to offload on to a nearby cloudlet. A different

case of [Zhang et al. 2014] is discussed in [Truong-Huu et al. 2014], where cost con-

straints are similar, but now a set of parallel tasks are to be processed on cloudlets.

[Liu et al. 2016] have proposed a strategy to schedule the task at a mobile device

either at the mobile device locally or at the cloudlet based on the state of the trans-

mission unit and computation unit of the mobile device. This work analyzes the

average power consumption of the mobile device and average delay of each task
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at the mobile device and comes up with optimization problem to minimize the

delay with power as the constraint.

It is to be noted that these works have considered cloudlets that are stand-alone

and primarily serve mobile devices in their service area. In [Sun & Ansari 2017], a

task-assignment scheme in a multi-cloudlet network is presented. In this scheme,

the cloudlets are connected by SDN switches. The scheme focuses on identifying

the mobile device generating the maximum traffic and that is assigned to the

cloudlet which can serve it with minimum response time. This is followed by

doing task-assignment for the mobile device having the next highest traffic in the

same way. This goes on until all the mobile devices have been assigned to the

cloudlets. There is another scheme proposed in [Mukherjee et al. 2019], which

reduces the network latency in a multi-cloudlet network where the cloudlets are

connected to each other. The tasks offloaded to one cloudlet can be served on

any of the cloudlets in the network. The tasks to be offloaded in this scheme

are offloaded to the nearest cloudlet and are served by them. However, when

the nearest cloudlet is not able to serve this request, the task is processed on a

cloudlet, which offers the minimum latency to process the request. However, this

scheme does not account for the current load at the cloudlets which significantly

affects the overall network latency.

2.4.1 Research Gaps

Many of the existing task-assignment schemes consider only a single cloudlet for

processing an offloaded task from a mobile device. This leads to load balancing

problem and increases the latency in processing the offloaded tasks. Other exist-

ing schemes which consider cloudlet network to process the offloaded tasks, do

not consider the current load of the cloudlets while evaluating the latency that an

offloaded task will experience if it is processed on a particular cloudlet. Thus it
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leads to non-optimal task-assignment among the cloudlets.

The above-mentioned issues are addressed in the task-assignment scheme pre-

sented in Chapter 5. This work improves the network latency by also consider-

ing the cloudlet load and develops a framework for optimal task offloading in a

multi-cloudlet network. A cloudlet network is considered in this work, which is

connected by wireless SDN switches that enables the cloudlets to cooperatively

serve the tasks offloaded by the mobile devices. Networking the devices via SDN

switches allows separation of the control and data pane and gives greater flexibil-

ity for routing of the offload requests among the cloudlets. This ensures reduced

latency for mobile devices, thereby improving QoS experienced by them and also

balancing the load at the cloudlets.

2.5 Summary

In this chapter, an overview of some of the prominent TSPs for clustered-based

WSNs, decentralized synchronization protocols for WSNs and task-assignment

schemes for edge cloudlets has been presented. The shortcomings of the existing

approaches is summarized below:

• Most of the existing TSPs for cluster-based WSNs are simulator-based im-

plementations and thus there is no credible proof to show their suitability

for a real world WSN deployments.

• Further, most of the existing TSPs use an offset-only model in their proto-

col which makes frequent re-synchronization of the nodes thereby making

these protocols inefficient in terms of energy consumption. Some of the pro-

tocols which use the skew-offset clock model require too many packets for

achieving synchronization among the nodes.

• Decentralized TSPs for WSNs have been proposed to avoid the overhead of
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network structure formation. Message-passing based decentralized TSPs op-

erate in two phases, viz., measurement phase and message-passing phases

to estimate clock parameters of the nodes. Such operation in two distinct

phases require additional mechanisms to indicate the completion of one

phase so that other phase can be begun. Need of such addition mechanism

not just forms an overhead but also becomes challenging in a huge network.

• In edge cloudlets, most of the existing task-assignment schemes consider a

single cloudlet to process the incoming task offloaded by a mobile device.

Even those schemes which consider a network of cloudlets to process these

tasks do not consider current load of the cloudlets while assigning the tasks

to them. Thus, they end up making non-optimal task allocation which in-

creases the latency experienced by mobile devices thereby degrading the

QoS.

The above-mentioned research gaps provides the motivation for the works pre-

sented in this thesis and the above-mentioned shortcomings are addressed through

these works. We first present a new TSP for a cluster-based WSN in the next chap-

ter.
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Chapter 3

E-SATS: An Efficient and Simple

Time Synchronization Protocol for

Cluster-based Wireless Sensor

Networks

3.1 Introduction

Cluster-based topology is a suitable topology for many Wireless Sensor Networks

(WSNs) used in Internet of Things (IoT) applications. For example, the Smart

Street Lighting System (SSLS) (mentioned in Chapter 1) implemented in Padova,

Italy [Zanella et al. 2014], uses a WSN node on every street light for monitoring

the lighting condition, air quality and weather conditions like temperature and

humidity. In such applications, it is advantageous to group the nodes which are

in close spatial proximity into clusters. The sensor data from different nodes in

a cluster can be collated or fused at a cluster head. This operation is known as

data fusion. The cluster head then forwards this collated sensor data to the sink
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node (or also referred to as the base station node) in a hop-by-hop manner. This

approach will reduce the number of packets needed to transmit the sensor data

from each node to the sink node. The sensor data from each node is accompanied

by its corresponding time information. Thus, it is very essential to synchronize

all the nodes to a common clock to ensure that the timestamp accompanying the

sensor data is coherent. Incoherent timestamps will lead to erroneous analysis of

sensor data.

As mentioned in Section 2.2, there are many existing time synchronization proto-

cols specifically for cluster-based WSNs like SLTP [Nazemi Gelyan et al. 2007],

L-SYNC [Jabbarifar et al. 2010], CCTS [Wu et al. 2015], Revised-CMTS [Wang

et al. 2017d], etc. However, almost all of them are simulator-based time synchro-

nization protocols. Also, they do not consider the effect of LOS conditions during

the analysis of their protocols. Therefore a time synchronization protocol called

Efficient and Simple Algorithm for Time Synchronization (ESATS) is presented in this

chapter that addresses the above-mentioned issues.

The contributions made in this chapter are as follows:

1. A simple and efficient synchronization protocol for a cluster-based WSN

named E-SATS is presented.

2. E-SATS is shown to achieve micro-second level synchronization on a hard-

ware testbed.

3. The effect of LOS conditions on the accuracy of E-SATS is also analyzed.

4. E-SATS is also shown to have significantly better synchronization accuracy,

lower computational complexity and lower energy consumption compared

to the existing synchronization protocols used in cluster-based WSNs.

The organization of this chapter is as follows. Section 3.2 presents a summary

of the drawbacks of some of the existing TSPs for cluster-based WSNs which
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Figure 3.1: A typical network considered.

were reviewed in Section 2.2. Section 3.3 discusses the network model, clock

model and the mathematical basis of E-SATS. Section 3.4 describes the testbed

and the methodology used for the evaluation of E-SATS. Section 3.5 presents the

results and analysis of the experiments carried out on the testbed in different LOS

conditions. This section also presents a comparison of computational complexity

and energy consumption of E-SATS with some of the existing synchronization

protocols. Finally, Section 3.6 presents the conclusions.

3.2 Related work

This chapter focuses on time synchronization in WSNs with a cluster-based topol-

ogy. A typical cluster-based WSN is shown in Fig. 3.1. A cluster consists of

a cluster head and a few cluster members. There are a few cluster members

called the gateway nodes which are cluster members of more than one cluster.

These gateway nodes help in inter-cluster communication. Except for the gate-

way nodes, a cluster member communicates only to its cluster head via a unicast

communication.
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In this chapter, E-SATS will be compared with regression-based method (used in

works like L-SYNC [Jabbarifar et al. 2010] and SLTP [Nazemi Gelyan et al. 2007]),

CCTS [Wu et al. 2015] and Revised-CMTS [Wang et al. 2017d]. These protocols

have been already discussed in Section 2.2. Therefore, we summarize some of

the major drawbacks of these protocols which is a motivation to present a new

synchronization protocol called E-SATS which addresses these drawbacks.

SLTP and L-SYNC do not consider the deterministic and non-deterministic de-

lays that occur in the exchange of synchronization packets. Thus, they have high

synchronization errors of the order of milliseconds. CCTS also does not con-

sider these delays which occur during communication. Also, it exhibits very slow

convergence rates due to which it requires many iterations to achieve synchro-

nization. Revised-CMTS improves CCTS by considering communication delays

with the assumption that the delays that occur during packet transmission and

reception are bounded. However, Revised-CMTS also exhibits slow convergence

and thus it requires many iterations to achieve synchronization among the nodes.

Thus, both CCTS and Revised-CMTS have high overhead in terms of the number

of packet transmissions during the synchronization which cannot be afforded by

energy constrained WSNs.

A common drawback of all the above-mentioned synchronization protocols is that

they are all simulation-based works, i.e., they have not been tested on real WSN

platform. As mentioned in Section 1.2, simulation-based works do not give a

complete and accurate understanding of the synchronization protocol in practical

WSN deployment. Also, these works do not take into account the LOS conditions

among the nodes in practical deployments. The performance of a synchronization

protocol is greatly affected by the LOS conditions in which it operates (which will

be proved in this chapter). Therefore, in this chapter, we present E-SATS which

is a simple yet accurate time synchronization protocol tested on WSN testbed
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in different LOS conditions. The preliminary version of E-SATS is presented in

[Chalapathi et al. 2016] and [Chalapathi et al. 2019a]. E-SATS presented in this

chapter has been reported in [Chalapathi et al. 2019b].

An elaborate discussion of E-SATS is presented in the next section.

3.3 Efficient and Simple Algorithm for Time Synchro-

nization (E-SATS)

Before describing the E-SATS algorithm, we first describe the clock model and the

network considered in this work.

3.3.1 Clock Model and the Network Considered

The network considered in this work is shown in Fig. 3.1. WSN nodes in this

network are organized into clusters each of which has a cluster head and few

cluster members. There are gateway nodes, which, as explained before, are part

of more than one cluster and they help in communication between their cluster

heads. The cluster heads are connected to a node called the base station or the

sink node. The base station, as mentioned in previous chapter, acts as an interface

between the WSN and other networks like the Internet when the WSN is used in

IoT applications.

A static network is considered in E-SATS, i.e., the nodes in the network are sta-

tionary. Also, the links between any two nodes are symmetric links, i.e., if node

p can communicate with node q, then q can also communicate with p. This is

a reasonable assumption as WSN radios are usually capable of adjusting their

transmission power levels to communicate with a particular node which is within

its maximum radio communication range (the communication range when the

maximum power level is used) [Wu et al. 2015]. Generally, WSN nodes use a
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transmission power level lower than the maximum transmission level to mini-

mize collisions with the packets transmitted by other nodes and also to conserve

energy. Some other works like [Etzlinger et al. 2017], [Meyer et al. 2018], [Wu

et al. 2015] have also made this assumption of symmetric links. The nodes which

have higher computation and memory capabilities are identified as the cluster

heads.

Let there be n nodes in a network and the set N represent all those n nodes. The

cluster heads in the network are represented by D , {d1, d2, ...., dh}, where h is

the total number of cluster heads in the network. Let the total number of cluster

members in the whole network be u. Therefore, n = h + u. The set Ti represents

the cluster members of the ithcluster head , i.e., di. Thus

Ti = {m | m is a cluster member of di, di ∈ D}. (3.1)

The number of cluster members of di is given by Mi. In the rest of the chapter, the

jth cluster member of cluster head di is denoted as mij.

The skew-offset model discussed in Section 2.1.2 is considered in E-SATS. Each

cluster member is synchronized to its cluster head. From Eq. (2.2), the local time

of a cluster member mij with respect to its cluster head di at time t, represented as

Cij(t), is given by

Cij(t) = αij Ci(t) + βij, (3.2)

where Ci(t) is the local time of the cluster head di. In the above equation, αij

and βij are the relative skew and relative offset, respectively, of node mij with

respect to di. The relative skew can be formally defined as the rate of the clock

being considered with respect to a reference clock. The relative offset is the time

difference of a clock being considered and the time at the reference clock at a
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Table 3.1: Notation Summary

Notation Meaning
N Set representing all nodes in the network
n total number of nodes in the network
D Set representing all the cluster heads
h Total number of cluster heads in the network
u Total number of cluster members in the network
i index of the cluster head
di ith cluster head
Ti Set representing all the cluster members of di
Mi Number of cluster members in the ith cluster
j index of the cluster member
k index of the iteration of communication between

a cluster member and its cluster head
mij jth cluster member of ith cluster head (i.e. di)
αij Relative skew of mij with respect to di
βij Relative offset of mij with respect to di

ζ
j
ik deterministic delays in communication between

mij and di in the kth iteration
η

j
ik, ω

j
ik non-deterministic delays in communication be-

tween mij and di in the kth iteration
Q Total number of iterations in Synchronization

phase
S Total number of common event packets sent by

tester node in Synchronization evaluation phase

given point of time. If we plot the time recorded on the clock being considered (as

Y-coordinate) with respect to the time at the reference clock as X-coordinate, the

relative skew is the slope of the line joining these points and relative offset is the

X-intercept of this line. Such a plot is shown in Fig. 3.2. We will elaborate about

this figure in Section 3.3.3. The notations used in this chapter are summarized in

Table 3.1.

In E-SATS, there is a cluster formation phase when the network is initialized. This

phase is followed by a synchronization phase.
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3.3.2 Cluster Formation Phase

The cluster heads initiate the cluster formation phase. A cluster head broadcasts a

CM_assignment packet containing its nodeID. Note that the cluster head can adjust

the transmit power level according to the cluster area and the cluster size that is

desired. When the nodes (which are not cluster heads) hear this packet, they iden-

tify themselves to be the cluster members of this cluster head and store the nodeID

of the cluster head. If a cluster member hears the CM_assignment packets of more

than one cluster head, it becomes a cluster member of all these cluster heads and

identifies itself to be a gateway node. Further, the gateway cluster member uni-

casts the information about the nodeID of the cluster heads it is associated with

to all its cluster heads. This helps a cluster head in identifying the gateway node

to the neighboring cluster heads. Since the nodes are stationary, this cluster for-

mation phase is performed only while initializing the network. However, a newly

joining node can initiate a cluster discovery by sending a CH_Discovery packet.

A cluster head which hears this packet, responds to this node by unicasting its

acknowledgment to allow this node to join its cluster. If the newly joining node

receives an acknowledgment from more than one cluster head, it will become a

gateway node and it sends this information to all its cluster heads.

3.3.3 Synchronization Phase

The cluster head (say di) then synchronizes its cluster members by sending a

Synch_msg packet at time T1,1 as per its local clock. This packet contains the times-

tamp T1,1 and is broadcasted to all its cluster members . On receiving this packet,

the cluster members record the reception time. For example, cluster member mij

will record the reception time as T j
2,1. All the cluster members then respond to this

Synch_msg by sending an acknowledgment packet at T j
3,1 after backing off for a

pre-determined amount of time. Note that this back-off time is different for each
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cluster member so that collisions of the acknowledgment packets sent by them

to di can be avoided. The acknowledgment sent by the cluster member contains

T1,1, T j
2,1, T j

3,1. The cluster head knows the back-off time observed by each cluster

member. The cluster head di receives this packet at T j
4,1. This iteration of cluster

head sending the Synch_msg and cluster member sending an acknowledgment is

repeated Q number of times. Each iteration collects four-time stamps for each

cluster member mij, i.e., T1,k, T j
2,k, T j

3,k and T j
4,k (where the subscript k represents

the iteration index and the superscript j represents the index of the cluster mem-

ber). Note that the time stamp T1,k does not have the superscript j because it is

common for all the cluster members. The back-off time observed by each cluster

member is chosen in such a way that the duration of each iteration is kept small.

The message exchanges for two cluster members mij and mis with their cluster

head are depicted in Figure 3.2. The superscript in the timestamps specifies the

node to which the timestamp corresponds to. Thus, in E-SATS, in the ith clus-

ter with cluster head di a total of Mi+1 packets are required in each iteration (1

broadcast packet and Mi acknowledgment packets from the cluster members). In

contrast, SATS (the preliminary version of E-SATS) which was proposed in [Cha-

lapathi et al. 2016] needs 2Mi packets in each iteration. This is because in SATS,

a cluster head unicasts the Synch_msg and synchronizes the cluster members one-

by-one. Thus, E-SATS is more energy efficient than SATS.

The timestamps collected for an iteration k of cluster member mij are related to

each other as follows:

T j
2,k = αij(T1,k + ζ

j
ik + η

j
ik) + βij, (3.3)

T j
3,k = αij(T

j
4,k − ζ

j
ik −ω

j
ik) + βij. (3.4)

In the above equations, ζ
j
ik represents the deterministic delay and, η

j
ik and ω

j
ik

represent the non-deterministic delays measured by local clock of di. Eqs. (3.3)
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Figure 3.2: Synchronization message exchanges between a cluster head and two clus-
ter member nodes mij and mis.

and (3.4) can be rewritten as follows:

T j
2,k = αijT1,k + βij + αij(ζ

j
ik + η

j
ik), (3.5)

T j
3,k = αijT

j
4,k + βij − αij(ζ

j
ik + ω

j
ik). (3.6)

Let us consider the case where the timestamps of cluster member mij and the

timestamps of cluster head di are plotted in Cartesian plane as shown in Fig. 3.3.

The Y-axis represents the local time at mij and the X-axis represents local time at

di. From Eq. (3.5), it can be seen that since αij, ζ
j
ik and η

j
ik are positive quantities,

the line L1 = αijT1,k + βij lies below the points (T1,k, T j
2,k). Also it can be observed

from equation Eq. (3.6) that the line L2 = αijT
j
4,k + βij will lie above the points

(T j
3,k, T j

4,k). So a good approximate estimate of the relative skew and offset of mij

with respect to di can be obtained by fitting a line (say L3) that passes in between
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L1 and L2. To obtain this line L3, two points A1 and A2 are identified such that

A1 = {0.5(T j
4,b + T1,b), 0.5(T j

2,b + T j
3,b)}, (3.7)

A2 = {0.5(T j
4,a + T1,a), 0.5(T j

2,a + T j
3,a)}, (3.8)

where b = arg min
1≤k≤Q

(T j
4,k− T1,k−back-off time of mij) and a = arg min

1≤k≤Q,k 6=b
(T j

4,k−

T1,k − back-off time of mij).

The point A1 represents the iteration for which the deterministic and non-deterministic

delays are minimum. Similarly, A2 represents the iteration for which these delays

are the next minimum. Thus, the line L3 passes through the points A1 and A2.

The slope of L3 gives the relative skew and its y-intercept gives the relative offset

of node mij. So the estimated values of relative skew (α̂ij) and relative offset (β̂ij)

are obtained by the following equations:

α̂ij =
(T j

2,b + T j
3,b)− (T j

2,a + T j
3,a)

(T j
4,b + T1,b)− (T j

4,a + T1,a)
, (3.9)

β̂ij =
(T j

2,b + T j
3,b)

2
− α̂ij

(T j
4,b + T1,b)

2
. (3.10)

Though this is a simple and approximate method to calculate relative skew and

offset, it gives an accuracy comparable to more sophisticated and computationally

intensive maximum likelihood estimates as shown in [Chaudhari et al. 2008]. In

E-SATS we use the gateway nodes to do the time translation whenever a packet is

sent from one cluster to another. We do not employ a network-wide synchroniza-

tion when it is not required. Thus by performing the inter-cluster synchronization

on a need basis, we reduce the overhead involved in network-wide synchroniza-

tion when it is not needed. Algorithm 3.1 summarizes the E-SATS algorithm.
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Figure 3.3: A diagram to illustrate the approximate estimate used to calculate relative
skew and offset.

3.3.4 Use case for E-SATS

As mentioned before E-SATS will be useful in WSN networks in which cluster-

based topology is used. Cluster-based topology is beneficial in applications where

the nodes do not move frequently. We can consider the Smart Street Lighting Sys-

tem (SSLS) application [Zanella et al. 2014] implemented in Padova, Italy. As

mentioned in the beginning of this chapter, each street light is equipped with a

sensor node which has sensors to monitor lighting condition, air quality, temper-

ature and humidity at a given location. A group of WSN nodes which are in

close proximity to each other can be clustered together. We can also employ the

cluster head rotation feature to avoid the draining of the battery of a single node

which becomes a cluster head. The WSN nodes report the sensor data periodi-

cally and the sensor data is collated by the cluster head and forwarded to the Base

Station which further forwards the sensor data to the city’s data centre through

the internet. The data centre is equipped with cloud servers to analyze the sen-

sor data to make predictions about weather, to host information about weather

and air quality for remote access, etc. It is very important for the sensor nodes
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Algorithm 3.1 E-SATS Algorithm
Cluster formation Phase

1: Each cluster head di (where di ∈ D) broadcasts CM_assignment packet along

with its nodeID.

2: A node p (where p ∈ N and p /∈ D) hears this packet and assigns itself as

cluster member of di, i.e., Ti = Ti ∪ {p}.
3: If p hears CM_assignment packet of more than one cluster head, p becomes a

gateway node and joins the cluster of all those cluster heads .

4: p sends the information of its cluster heads to all dl ∈ D where p ∈ Tl.
Synchronization Phase

1: for i=1:h do

2: for k=1:Q do

3: di broadcasts a Synch_msg at T1,k

4: for j=1:Mi do

5: Node mij (where mij ∈ Ti) receives it at Tk
2,j.

6: Node m responds at time Tk
3,j after backing-off for a predetermined

time.

7: di receives the packet at Tk
4,j

8: end for

9: di waits till it receives the acknowledgment from all cluster members .

10: end for

11: for j=1:Mi do

12: calculate α̂ij and β̂ij using Eqs. (3.7), (3.8), (3.9) and (3.10)

13: end for

14: end for

to employ a time synchronization protocol so that sensor data that they report is

also accompanied by an accurate time stamp (of the sensor data) which will help

in accurate analysis of the sensor data. Since the sensor nodes are stationary in

this application, we do not require to run the cluster formation phase except for

the cluster head election algorithm. Also as it will be demonstrated in Section 3.5

that E-SATS is able to achieve microsecond-level synchronization accuracy which
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is more than sufficient for this application.

3.4 WSN Testbed and Methodology Used

E-SATS is implemented on a WSN testbed consisting of TelosB WSN motes [Tel ].

TelosB motes have MSP-430, a 16-bit microcontroller and CC2420 [CC2 ], an IEEE

802.15.4 compliant transceiver. There were a total of 30 WSN nodes used for test-

ing E-SATS and comparing it with other synchronization protocols. These nodes

were organized into 6 clusters and they were turned on one-by-one. In the cur-

rent implementation, all the 30 nodes used in the network are identical, i.e., they

have same computational and memory capabilities. Thus, 6 nodes were chosen

and programmed as cluster heads. Since both the cluster members and cluster

heads are battery powered, a cluster-head rotation scheme can be considered so

that each node in a cluster can become a cluster head in turns and thus a single

node is not overloaded. However, such a cluster head rotation is not implemented

in the current evaluations.

To evaluate the performance of E-SATS, the WSN nodes were deployed in two

different environments:

Line-of-Sight (LOS): In this kind of deployment, all the nodes can communicate

LOS without any obstacles between them.

Mixed-LOS: In this kind of deployment, some of the nodes can communicate

LOS without any obstacles between them while others are Non-Line-of-Sight

(NLOS).

3.4.1 LOS environment

The image shown in Fig. 3.4 shows the deployment of nodes for the LOS environ-

ment experiments. The area of each cluster in this deployment is 20 sq. m. and the

65



3.4 WSN Testbed and Methodology Used

Figure 3.4: Picture showing part of the network (one cluster) deployed with WSN
nodes encircled.

distance between two clusters is about 4 meters. Such a dense deployment is used

to cause intense traffic which would evaluate the behavior of the protocol even in

challenging situations. The clusters were activated one-by-one, i.e., initially only

one cluster was active and gradually other clusters were powered-on one-by-one.

When more than one cluster was operational, the packet exchanges in one cluster

caused packet drops in other cluster(s).

3.4.2 Mixed-LOS environment

In this experiment, the cluster head could communicate to some of its cluster

members with LOS while other cluster members were NLOS to the cluster head.

Some of the nodes were deployed inside a lab while others were deployed in a

gallery which is separated from the lab by thick concrete walls. Fig. 3.5a shows an

indicative diagram of the deployment, while the image in Fig. 3.5b shows some of

the nodes deployed in the lab. The presence of thick concrete walls will increase

the communication delays among the nodes which are NLOS. In this experiment

also, the clusters were turned on one-by-one and the performance of E-SATS along
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(a) (b)

Figure 3.5: Set-up for mixed LOS environment (a) An indicative diagram depicting
part of the deployment for mixture of LOS and NLOS environment (b) A picture
showing some of the nodes deployed in the lab.

with other protocols was analyzed in each case.

3.4.3 Methodology Used

The methodology used to implement E-SATS is described in this subsection. The

same methodology was followed for LOS environment and mixed-LOS environ-

ment. E-SATS was implemented in two phases, i.e., cluster formation phase and

synchronization phase. Further, a synchronization evaluation is performed to cal-

culate the synchronization error after the nodes were synchronized.

3.4.3.1 Cluster Formation phase

The cluster formation phase is performed as described in Section 3.3.2. Each clus-

ter has a Cluster_ID for identification of the cluster. In the current implementation,

there were 4 cluster members in each cluster. The energy consumed by E-SATS to

perform the cluster formation is also estimated. Along the lines of [Shi et al. 2015],
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[Marcelloni & Vecchio 2009], the information about the supply voltage, the current

consumption and the data rate of transmission and reception operations of the ra-

dio of a node from the datasheets of CC2420 [CC2 ] has been used to estimate the

energy consumption. If the supply voltage during a transmission/reception op-

eration is VRad, current consumed by the radio is IRad and the time taken for this

transmission and reception operation is tRad, the energy consumed by the radio

during the transmission/reception operation can be obtained by fundamentals of

electrical science which in this case is given

ERad = VRad × IRad × tRad. (3.11)

The main challenge is to know the values of the supply voltage, current consumed

during a transmission and reception operation. A detailed experimental analysis

of transmission and reception operations for TelosB motes has been presented in

[Amiri 2010]. The TelosB mote uses a voltage of 2.92V for transmission and 2.88V

for reception [Shi et al. 2015], [Amiri 2010]. Also the size of the header and footer

for any data transmission is 18 bytes for TelosB mote [Amiri 2010], [Abdelaal &

Theel 2013]. The CH broadcasts CM_assignment packet as explained in Section

3.3.2 with its nodeID and a sequence number. Thus, the length of this packet along

with the above-mentioned header and footer is 20 bytes.

The CC2420 radio can be programmed to have different transmission energy levels

[CC2 ]. A transmission energy of -15dBm is used for the transmissions during

these experiments. At this transmission level, the radio consumes 9.9mA for a

transmission and 18.8mA for reception [CC2 ]. Since the radio uses a data rate

of 250 kbps, it takes 6.4 ms each for both transmission and reception operations.

Thus, we can calculate the energy consumed for a transmission and reception of

this packet as 18.5 µJ and 34.65 µJ respectively. The total energy consumption

for the 30-node network for all the packet transmissions and reception is 1289.18
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µJ. It must be noted that this calculation is an approximate estimation without

accounting for the energy consumed by the processor of the nodes which will be

much smaller in this case.

3.4.3.2 Synchronization phase

After clusters were formed, the cluster heads synchronize their respective clus-

ter members by broadcasting the Synch_msg to them. Since the Synch_msg was

broadcasted by the cluster head, all the cluster members in that cluster were able

to hear this packet. They recorded the reception of this packet and responded to

it by backing-off for a predetermined quantum of time. The cluster head then cal-

culated the relative skew and relative offset of each cluster member (as discussed

in Section 3.3.3) and unicasted these values to the corresponding cluster member.

In the synchronization phase, 17 iterations were performed, i.e., Q=17. For moni-

toring, testing and debugging, the timestamps collected by the cluster head were

also forwarded to the base station node which was connected to a PC as shown

in Fig. 3.6a. Figure 3.6b shows one of the two-way exchange iteration of a cluster

member encircled. The nodes were synchronized once every 1000 seconds.

As mentioned in Section 3.3.3, during the synchronization phase, the cluster head

broadcasts a Synch_msg packet to synchronize the cluster members for every itera-

tion. The cluster members backoff for a pre-determined amount of time and then

send their acknowledgment to cluster head. This backoff time for the 4 cluster

members in a cluster was 1ms, 5ms, 10ms and 15ms. These back-off times were

observed in all the clusters.

3.4.3.3 Synchronization Evaluation

After the cluster members were synchronized to the cluster head, a good method

to evaluate the synchronization error is that both di and mij observe a common

event and record the occurrence of this event as per their local clock. These times-
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(a) (b)

Figure 3.6: (a) The timestamps collected by each cluster head forwarded to the Base
Station connected to a computer. (b) Timestamps of an iteration encircled in screen-
shot.

tamps will be used to calculate the synchronization error. Let us say that the

common event was observed by di and mij at t
′
e,k and t

′′
e,k, respectively, as per their

respective local clocks for the k-th common event packet (we generate the com-

mon event packets multiple times). Then mij can estimate the local time of di

when di observed this event using Eq. (3.2). Let us say this estimate is t̂
′′
e,k. The

difference of t̂
′′
e,k and t

′
e,k will give the magnitude of synchronization error. Thus,

synchronization error of the k-th common event is given by

ek = |t̂
′′
e,k − t

′
e,k|. (3.12)

Since the difference in the propagation time of this common-event packet to dif-

ferent nodes is very small, it will be a realistic assumption to say that this packet

was observed by all the nodes in a cluster at the same time. This method of eval-

uating the synchronization error was used in these experiments while evaluating

the synchronization error of E-SATS and comparing it with other synchronization

schemes.

A WSN node which was not a part of the network was used to generate the

common event by broadcasting a packet to all the nodes in the cluster. This node
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is called tester-node. The transmission power of the tester-node was adjusted such

that it can communicate with all the nodes in the cluster. This tester-node was

used to test the synchronization accuracy of each cluster one-by-one. The tester-

node sends S common-event packets and the average synchronization error was

calculated. The synchronization evaluation was performed 10 seconds after the

synchronization phase was completed.

3.5 Results and Analysis

3.5.1 Performance Analysis in Terms of Synchronization Error

As described in the previous section, the WSN nodes were deployed in an LOS

environment and in a mixed-LOS environment. The performance of E-SATS is

compared in terms of synchronization error (in microseconds) with the regression-

based method, CCTS [Wu et al. 2015] and Revised-CMTS [Wang et al. 2017d]. It

must be noted that E-SATS performs synchronization within a cluster only. As ex-

plained in Section 3.3.3, it performs synchronization among the clusters through

the gateway nodes only when there is a packet exchange from one cluster to an-

other. Thus, to have a fair comparison of E-SATS with CCTS and Revised-CMTS,

only the intra-cluster synchronization phases of Revised-CMTS and CCTS are

compared with E-SATS. The regression-based method is the core of the synchro-

nization schemes like SLTP [Nazemi Gelyan et al. 2007] and L-SYNC [Jabbarifar

et al. 2010]. The synchronization error observed in LOS-environment is shown in

Fig. 3.7a and the percentage of increase in synchronization error of other protocols

over E-SATS is shown in Fig. 3.7b. In these figures, the regression-based method

is referred to as ’regression-method’ for brevity. We observe that when there are

only 5 nodes in the network, i.e., one cluster, the synchronization error for all four

synchronization protocols compared here are very close to each other. However,

as more clusters are added to the network, the difference in the synchronization
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Figure 3.7: Results in LOS environment (a) Synchronization error of different syn-
chronization protocols for varying network sizes (b) Percentage increase in synchro-
nization error of other synchronization protocols over E-SATS for varying network
sizes.

error widened. As the number of nodes in the network increases, the network

traffic (i.e., number of packets exchanged) increases causing increased delays (es-

pecially non-deterministic delays). To have a fair comparison among the protocols

being analyzed, the number of iterations have been kept the same while evaluat-

ing them. Regression-method takes into account all the packets to calculate the

relative skew and offset. Thus, it will be affected by the delays in all the iterations

and consequently its synchronization error is more than that of E-SATS. On the
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other hand, E-SATS is affected by just two iterations which have minimal delays

and thus it shows the least synchronization error. The reason for Revised-CMTS

showing an increase in the synchronization error can be attributed to two facts.

Firstly, it uses an upper bound of the communication delays in its computations

which is just an estimated value. Thus, its results depend on the accuracy of this

estimated value. Since the communication delays vary from iteration to iteration,

it will lead to inaccurate estimation of compensation parameters. Secondly, as

the results of Revised-CMTS [Wang et al. 2017d] also show, it takes a long time

for Revised-CMTS to converge as the network size increases. As mentioned in

Revised-CMTS [Wang et al. 2017d], it converges when minimum and maximum

delays occur in successive iterations and the number of iterations we have taken

may not be sufficient for it to converge. However, we cannot afford to perform a

large number of broadcasts to allow the nodes to converge as it would drain the

batteries of the WSN nodes. In the case of CCTS, it does not account for communi-

cation delays in its model and these delays significantly affect the synchronization

accuracy. Therefore, as expected, CCTS has large synchronization error in a prac-

tical scenario. Further, CCTS also has the problem of large convergence time.

The difference in the synchronization error of E-SATS and the consensus methods

(both CCTS and Revised-CMTS) increases with increase in network size. It can

be noted that E-SATS shows better synchronization accuracy compared to other

three protocols for all the network sizes considered.

The results of the experiments performed in the mixed-LOS environment are

shown in Figs. 3.8a and 3.8b. The synchronization error (in microseconds) of

E-SATS, regression-method , Revised-CMTS [Wang et al. 2017d] and CCTS [Wu

et al. 2015] is shown in Fig. 3.8a. The percentage of increase in synchronization

error of other protocols over E-SATS is shown in Fig. 3.8b. In mixed-LOS envi-

ronment also, when there are only 5 nodes in the network, the difference in the

synchronization errors of all the four protocols was close to each other. How-
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Figure 3.8: Results in mixed-LOS environment ((a) Synchronization error of differ-
ent synchronization protocols for varying network sizes (b) Percentage increase in
synchronization error of other synchronization protocols over E-SATS for varying
network sizes.

ever, as the number of clusters in the network increases, the difference in the

synchronization error also increases due to the reasons mentioned before. How-

ever, we see from Fig. 3.8b that improvement in E-SATS over CCTS for the 30

node network in mixed-LOS environment is 175% compared to an improvement

of 289% observed in LOS environment. For Revised-CMTS, this improvement in

the mixed-LOS environment was 124% compared to 212% in LOS-environment.

It can be seen from the above results that in a NLOS environment, all the syn-
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chronization schemes experience increased synchronization errors. This can be

attributed to the fact that there is an increase in packet loss in NLOS communi-

cation. The synchronization error of E-SATS for a 30-node network was 438.82 µs

in the mixed-LOS environment compared to 125.3 µs in LOS environment. The

performance gain, i.e., improvement of E-SATS over the other protocols is lesser in

the mixed-LOS environment compared to LOS-environment due to this increased

synchronization error. Thus, we see a wide gap in the synchronization accuracy of

a protocol in LOS and mixed-LOS environments. Thus, we conclude that NLOS

communication significantly affects the performance of synchronization protocols

and increases the synchronization error. However, E-SATS shows better synchro-

nization accuracy than other protocols in both environments.

3.5.2 Comparison of Energy Consumption and Computational

Complexity

The computational complexity of E-SATS, regression-method [Jabbarifar et al. 2010]

[Nazemi Gelyan et al. 2007], CCTS [Wu et al. 2015] and Revised-CMTS [Wang

et al. 2017d] is shown in Table 3.2. Note that this table is not specific to a partic-

ular LOS environment considered in the previous section and does not include

computations due to packet drops. In this table, Q represents the number of itera-

tions used in each synchronization phase, h represents the total number of clusters

and u represents the total number of cluster members inn each cluster.

To understand how the number of arithmetic operations involved in E-SATS have

been evaluated, let us consider a two-way exchange between a cluster member

di and its cluster head mij. During the synchronization phase, for each two-way

exchange, one subtraction (which can be seen as an addition) is required to calcu-

late the duration of a two-way exchange which is computed by (T j
4,k − T1,k). Thus

Q two-way exchanges require Q addition (or subtraction) operations. Further,
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2(Q− 2) subtractions are required for comparison operations for determining the

two-way exchange with minimum delays. Also, 4 additions are required in Eqs.

(3.7) and (3.8) and 3 more in Eqs. (3.9) and (3.10). Thus a total of 3Q + 3 addition

operations are required for synchronizing each cluster member by a cluster head.

This synchronization of mij with di also requires a total of 7 multiplications, 4 of

which are required in Eqs. (3.7) and (3.8) and the rest of the 3 multiplications are

required in Eq. (3.10). Note that in Eq. (3.10), division by 2 in both the terms

are taken as multiplication with 0.5. Further, one division operation is required

in Eq. (3.9). To obtain the total number of operations for the whole network, we

multiply by the above-obtained numbers with total number of members in each

cluster, i.e., u and the total number of clusters in the network given by h. Thus

we can arrive at the expressions mentioned in Table 3.2. Likewise, the number

of additions, subtractions and divisions in regression-based method, CCTS and

Revised-CMTS have been calculated.

Figure 3.9 shows the number of addition operations required in E-SATS and other

protocols for different cluster sizes. E-SATS uses 1296 additions in a 30 node-

network while the regression-based method requires 1608, CCTS requires 2346

and Revised-CMTS requires 3672 additions. Thus, E-SATS requires just 55% of

the number of additions required by CCTS and 35% of that required by Revised-

CMTS. E-SATS mainly requires addition (or subtraction) operations to identify

Table 3.2: Computational Complexity of E-SATS and other protocols (refer Table 3.1
for notation meanings)

Protocol Additions Multiplications Divisions
E-SATS (3Q+3)hu 7hu hu
Regression-based
method [Nazemi Gelyan
et al. 2007] [Jabbarifar
et al. 2010]

(4Q-1)hu (2Q+6)hu 2hu

CCTS [Wu et al. 2015] Qh(5u+3) Qh(4u+4) (3Qh)
Revised-CMTS [Wang
et al. 2017d]

(9Qhu) (5Qhu) Qhu
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Figure 3.9: Number of addition operations in E-SATS and other protocols for varying
network sizes.

two iterations with minimal duration (as discussed in Section 3.3.3). Once these

iterations are identified, the computations involved in calculating the relative skew

and offset are very simple. Thus, E-SATS requires comparatively lesser number

of operations.

Figure 3.10 shows the multiplication operations required by E-SATS and other

protocols. E-SATS has an enormous advantage over other protocols in the number

of multiplication operations required to perform synchronization. For a 30-node

network, E-SATS requires just 168 multiplication operations which is just 17.5% of

the multiplications required by regression-method and 8.2% of that required by

CCTS and Revised-CMTS. E-SATS requires multiplication operations only for the

computations in Eqs. (3.7), (3.8), (3.9) and (3.10) which are evaluated only once per

synchronization cycle. Thus, it just requires 7 multiplication operations per cluster

member. However, since other protocols perform multiplication operations during

every iteration, they require much higher number of multiplication operations

to achieve synchronization. Note that both Revised-CMTS and CCTS use the
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Figure 3.10: Number of multiplication operations in E-SATS and other protocols for
varying network sizes.

same number of multiplication operations for the network used. However, these

numbers will be different for other networks with different number of cluster

members and cluster heads.

Figure 3.11 shows the division operations required by E-SATS and other protocols.

In a 30 node network, E-SATS requires just 24 division operations which is the 50%

of what is required by regression, 1.7% of that required by CCTS and 5.9% of what

is required by Revised-CMTS. E-SATS just requires one division operation for each

cluster member in Eq. (3.9). (The division by 2 in equation Eq. (3.10) is accounted

in the number of multiplication as division by 2 can be seen as multiplication with

0.5.) Thus, in all the cases, i.e., from 5 node network to 30 node network, E-SATS

requires the least number of additions, multiplications, and division operations.

The energy consumption of E-SATS, Regression-method, CCTS and Revised-CMTS

for the transmissions and receptions during one synchronization phase in µ J is

shown in Fig. 3.12. It must be noted that these energy estimations do not in-

clude any re-transmissions due to packet drops and it is not specific to any LOS
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Figure 3.11: Number of division operations in E-SATS and other protocols for varying
network sizes.

Figure 3.12: Energy consumption (in micro Joules (µJ)) of E-SATS and other protocols
for the transmission and receptions during one synchronization cycle for varying
network sizes.

conditions considered in the previous section. We have estimated the energy con-

sumed for each protocol using the same method used in Section 3.4.3 to calculate

the energy consumption for the cluster formation phase. The energy consump-
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tion of E-SATS is slightly more than that of the regression-method. However,

this difference is at most 361.4 µ J for a 30-node network. This difference is due

to the fact that the regression-method uses smaller data payload for the pack-

ets exchanged though the number of packet transmissions and receptions in the

regression-method and E-SATS are same. It must be noted that this graph shows

the energy consumption of the radio only. The total energy consumption of a

WSN node during a synchronization phase is roughly equal to the summation

of the energy consumed by the radio (for transmissions and receptions) and the

energy consumed by its processor (to perform the addition, multiplications and

divisions). We have not shown the energy consumed by the processor of the

node for these arithmetic operations and have just shown the number of opera-

tions required by each of the protocols during the synchronization phase. This

is because arithmetic operations involving floating point numbers require vari-

able number of clock cycles in MSP430 depending on the numbers involved in an

operation [MSP ]. To determine the exact number of cycles (and thus the energy

consumption) of these operations will require computationally intensive methods

like profiling which cannot be performed on the energy constrained WSN nodes.

However, we note that most of these operations are floating point data operations

requiring large number of cycles. For example, according to [MSP ], a C library of

MSP430 requires 427 cycles to perform a multiplication of an integer and a float-

ing point number. The current consumed by MSP430 on TelosB mote which runs

at 4.1MHz is 2.33 mA during a multiplication operation [Prayati et al. 2010]. So

the regression-method which requires 960 multiplications (in 30-node network)

compared to 168 multiplications of E-SATS will consume 569.615 µ J more en-

ergy than E-SATS (if the multiplications involve an integer and a floating-point

number). We note that this excess energy consumed by the regression-method for

multiplication operations (569.615 µJ) is much more than the energy it has saved

compared to E-SATS in the transmission and reception operations (i.e., 361.4 µ J).
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Further, a multiplication of two floating point numbers requires many more cycles

which only increases the energy consumption of the regression-method compared

to E-SATS. The multiplications involved in the calculations of these synchroniza-

tion protocols mostly involve two floating point numbers. Thus, we can conclude

that E-SATS consumes least energy among the compared synchronization proto-

cols. Further, E-SATS offers better synchronization accuracy than the compared

protocols.

3.6 Conclusion

In this chapter, a simple and efficient TSP called E-SATS has been proposed for

WSNs with a cluster-based topology. E-SATS has been tested on a practical WSN

testbed in an LOS environment and a mixed-LOS (mixture of LOS and NLOS)

environment. It achieves micro-second level accurate synchronization in both the

environments. This protocol has been found to outperform other state-of-the-art

synchronization protocols for clustered WSNs in the two environments consid-

ered, both in terms of synchronization accuracy and also in terms of a number of

computations. It also consumes lesser energy than the other protocols. These fea-

tures make E-SATS a suitable synchronization protocol for resource constrained

WSNs having cluster-based topology.
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Chapter 4

Integrated Cooperative

Synchronization for Wireless Sensor

Networks

4.1 Introduction

As discussed before, clock synchronization is one of the basic building blocks

for many applications in WSNs or the Internet of Things (IoT) [Wu et al. 2011].

WSNs generally involve dense deployment of large number of nodes. This high

node density advocates the application of decentralized synchronization meth-

ods [Etzlinger et al. 2014], [Etzlinger et al. 2013a], [Schenato & Fiorentin 2011],

[Zennaro et al. 2011], [Tian 2017]. From the above cited time synchronization

protocols, delay compensated approaches discussed in [Etzlinger et al. 2014], [Et-

zlinger et al. 2013a], [Tian 2017] outperform approaches presented in [Zennaro

et al. 2011], [Schenato & Fiorentin 2011] as the inaccuracies in that result from the

communication delay between nodes are mitigated.

From an implementation perspective, the non-delay compensated method pre-
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sented in [Schenato & Fiorentin 2011] is a very efficient method. In this method,

each node records the time-of-arrival of packets broadcast by its neighbors. With

the content of the received packet, i.e., the transmission timestamp and the cur-

rent clock parameter estimate of the sender, the receiver node can update its own

clock estimate with simple computations, and then broadcast it to the neighbors.

This conceptual simplicity sets a benchmark for decentralized synchronization

schemes.

In the message passing methods, the Mean-Field (MF) based synchronization pro-

tocols described in [Etzlinger et al. 2014] and [Etzlinger et al. 2013a] are of particu-

lar interest. This is because MF-method inherently supports a broadcasting mech-

anism of synchronization information while having only moderate computational

complexity and guaranteed convergence. However, its biggest shortcoming com-

pared to [Schenato & Fiorentin 2011] is the requirement of two operational phases

that are necessary for practical implementation. First, each node has to collect

time measurements with all its neighbors and store them for the second phase

(requiring additional memory resources). Second, the nodes have to iteratively

update and broadcast their local messages. In contrast, the heuristic method in

[Lim et al. 2016] has similar complexity as [Schenato & Fiorentin 2011]. However,

it uses a flooding principle that extracts a tree topology from the network, which

is prone to error propagation.

In this work, we propose an MF message passing scheme called Integrated Co-

operative Synchronization (ICS) that integrates the measurement phase into the

message passing phase. The main novelty is that we rely on an extended factoriza-

tion of the a-posteriori distribution of the clock parameters and a specific message

passing schedule such that with each broadcast packet a node can collect a new

measurement and do message passing computations. This mitigates the two ma-

jor drawbacks of [Etzlinger et al. 2014, Etzlinger et al. 2013a] with only a small
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loss in achievable accuracy. The proposed method has a similar implementation

complexity as the consensus method presented in [Schenato & Fiorentin 2011].

The contributions made in this chapter are:

1. Existing message-passing based TSPs operate in two phases-measurement

and message passing phases. These TSPs need an additional mechanism

to synchronize these phases. Integrated Cooperative Synchronization (ICS)

proposed in this chapter integrates both these phases thus removing the

need of such a mechanism to synchronize these phases.

2. In existing message-passing based TSPs, newly joining nodes have to wait

till next measurement phase to begin estimating their clock parameters. In

ICS, every packet exchanged between two nodes is used both for collect-

ing measurements and estimating clock parameters. Thus ICS reduces the

latency for newly joining nodes to estimate their clock parameters.

3. ICS greatly simplifies the computations and memory required for clock pa-

rameter estimation as only one packet is used during clock parameter esti-

mation.

4. When only one packet is used for clock-parameter estimation, it seems like

a one-way message dissemination which makes synchronization of skew

and offset impossible (explained later). ICS therefore provides a link initial-

ization method by which this limitation of one-way dissemination can be

overcome.

5. ICS is able to achieve sub-microsecond accuracy without any prior informa-

tion of the clock parameters of the agent nodes.

The following section introduces the system model and the network considered

in this work. Section 4.3 describes the conventional MF message passing method

which is the basis of ICS. Different modes of ICS to achieve synchronization are
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described in Section 4.4. Section 4.5 presents the results of the simulation per-

formed to evaluate ICS and to compare it with other decentralized time synchro-

nization protocols. Conclusions are presented in Section 4.6. The work presented

in this chapter has been published in [Chalapathi et al. 2019d].

4.2 System Model and Network Description

4.2.1 Network, Clock and Timestamping Model

We consider a network containing P = M + A stationary nodes, consisting of

M ≥ 1 synchronous master nodes and A asynchronous agent nodes. The node

indices are collected in the corresponding disjoint sets M , {1, 2, ...M} A , {M +

1, M + 2, ...P} for master and agent nodes, respectively, that form the set of all

nodes P = M∪A. The network topology is represented by the set S that contains

all node pairs (p, q) that can directly communicate to each other. Moreover, we

require that all links are symmetric, i.e., if (p, q) ∈ S =⇒ (q, p) ∈ S. Further, we

define the neighbor set of node p ∈ P as Tp = {q|(p, q) ∈ S}, i.e., it contains all

the nodes which are directly connected to the node p. We assume that there are

no direct links between any two master nodes.

A stationary skew-offset clock model is considered, where the local time at a node

p, cp
(
t
)
, is related to the reference time t with clock skew αp and offset βp by

cp
(
t
)
= αpt + βp . (4.1)

The clock parameters are collected in the vector ϑp ,
[
1/αp βp/αp

]T. Agent nodes

have unknown ϑp, whereas master nodes are assumed to have ϑp = [1 0]T, i.e.,

absolute synchronization [Xiong et al. 2018] is considered.

Each node p ∈ P broadcasts Np packets, each indexed by np = 1, . . . , Np. All
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neighbors q ∈ Tp will receive the packets. Per link (p, q) ∈ S, this yields Np

packets p → q and Nq packets q → p. The npth packet p → q is transmitted at

reference time t(np)
p,0 , and received at node q at t(np)

pq,1 = t(np)
p,0 + ∆pq + ω

(np)
pq , where

∆pq is the unknown communication delay that is assumed to remain constant

and ω
(np)
pq is the measurement noise, modeled as normal Gaussian distribution

[Etzlinger et al. 2014] with ω
(np)
pq ∼ N

(
0, σ2

ω

)
. Timestamps are recorded at node

p at transmission as cp
(
t(np)

p,0
)
, and measured at node q at reception as cq

(
t(np)

pq,1

)
.

Using Eq. (4.1), the receive timestamp is

cq
(
t(np)

pq,1

)
= αq

cp
(
t(np)

p,0
)
− βp

αp
+ αq ω

(np)
pq + αq ∆pq + βq . (4.2)

In the following, we will use a short notation c̃(np)
p , cp

(
t(np)

p,0
)

for the transmit

timestamp and c(np)
qp , cq

(
t(np)

pq,1

)
for the receive timestamp .

4.2.2 Stochastic Model

To each node we assign a Gaussian prior distribution p
(
ϑp
)

on the clock parame-

ters, and on each link a Gaussian prior distribution p
(
∆pq
)

on the communication

delay.

The approximate local likelihood function [Etzlinger et al. 2014] of c(np)
qp given the

clock parameters ϑp and ϑq is

p
(
c(np)

qp |ϑq, ϑp, ∆pq
)

∝ exp
(
− 1

2σ2
ω
‖ a(np)

pq ϑq + b(np)
pq ϑp − ∆pq ‖2

)
, (4.3)

where a(np)
pq ,

[
c(np)

qp −1
]

and b(np)
pq =

[
−c̃(np)

p 1
]
. Similarly, the likelihood of the

nqth q→ p packet, nq ∈ {1, . . . , Nq} can be derived by interchanging p and q in

Eq. (4.3). The pairwise likelihood function of all measurements cpq , [{c(np)
qp }

Np
np=1,
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{c(nq)
pq }

Nq
nq=1]

T between p and q is

p(cpq|ϑq, ϑp, ∆pq) ∝
Np

∏
np=1

p(c(np)
qp |ϑq, ϑp, ∆pq)

×
Nq

∏
nq=1

p(c(nq)
pq |ϑq, ϑp, ∆pq) . (4.4)

Collecting the pairwise likelihood function over all links and joining the prior

distributions yields the global posterior function

p(ϑ, ∆|c) ∝ ∏
q′∈P

p(ϑq′) ∏
(p,q)∈S

p(∆pq)

×
( Np

∏
np=1

p(c(np)
qp |ϑq, ϑp, ∆pq)

Nq

∏
nq=1

p(c(nq)
pq |ϑq, ϑp, ∆pq)

)
(4.5)

= ∏
q′∈P

p(ϑq′) ∏
(p,q)∈S

p(∆pq) p(cpq|ϑq, ϑp, ∆pq) , (4.6)

where the vectors c and ∆ collect all cpq and ∆pq, respectively, for (p, q) ∈ S, and ϑ

collects all ϑp, p ∈ P. From Eq. (4.6), an estimate of the clock parameters of node

p is obtained by

ϑ̂p = arg max
∫

p(ϑ, ∆|c)d∼ϑp , (4.7)

where ∼ϑp denotes all entries of ϑ except ϑp.

4.3 Conventional Mean Field Message Passing

Conventional MF message passing finds an approximate solution b(ϑp) ≈
∫

p(ϑ, ∆|c)d∼ϑp

to solve Eq. (4.7) in an iterative way [Etzlinger et al. 2014], [Etzlinger et al. 2013a].

MF synchronization has high accuracy and moderate computational complexity,

but requires a measurement phase and message passing phase in practical im-
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Figure 4.1: (a) Wireless network, (b) corresponding Factor Graph (FG) for con-
ventional Mean-Field (MF) based cooperative synchronization and delay estima-
tion, (c) FG with extended factorization for MF based integrated cooperative syn-
chronization. The following short notation is used: f ′p = p(ϑp), f ′pq = p(∆pq),

f (nq)
pq = p(c(nq)

pq )|ϑp, ϑq, ∆pq) and fpq = p(cpq|ϑp, ϑq, ∆pq).

plementation. Coordinating these phases becomes highly challenging in asyn-

chronous networks and thus prevents a broad application.

In the following, we will shortly introduce the basic MF equations to highlight the

shortcomings in its practical implementation. Thereafter, modifications needed

for ICS are introduced. Motivated from practical observations, we consider the

following simplifications: (i) all links have the same measurement covariance σ2
ω

and (ii) no prior on the distances is available, i.e., p(∆pq) has infinite covariance.

Conventional message passing uses the factorization shown in Eq. (4.6) to con-

struct a factor graph (FG). For synchronization, this factor graph matches the

topology of the network (see Fig. 4.1(a) and (b)). Thus, messages that are passed

over the edges of the FG directly translate to packet transmissions between nodes.

For example, parameters of messages between variable vertices ϑ1 and ϑ2 can be

transmitted in packets between nodes 1 and 2.

On such a factor graph, MF operates iteratively after all measurements are ob-

tained. The measurements are collected in the matrices Apq,
[
a(1)T

qp , . . . , a(Nq)T
qp ,
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b(1)T
pq , . . . , b(Np)T

pq
]T and Bpq ,

[
b(1)T

qp , . . . , b(Nq)T
qp , a(1)T

pq , . . . , a(Np)T
pq

]T. Starting from an

initial guess of the communication delay and the clock parameter vector denoted

by ∆̂(0)
pq and ϑ̂

(0)
p respectively, a node computes1 at iteration i

∆̂(i+1)
pq =

1T(Bpqϑ̂
(i)
q + Apqϑ̂

(i)
p
)

(Np + Nq)
(4.8)

ϑ̂
(i+1)
p = P−1

p

(
m0,p + ∑

q∈Tp

AT
pq
(
∆̂(i)

pq − Bpqϑ̂
(i)
q
))

, (4.9)

where

Pp = P0,p + ∑
q∈Tp

AT
pq Apq , (4.10)

and P0,p and m0,p are the precision matrix and weighted mean of the prior p(ϑp).

In the above equations, ϑ̂
(i+1)
p and ϑ̂

(i+1)
p denote the estimate of the propagation

delay and the clock parameter vector respectively. After the computations are

completed, the node broadcasts its estimate ϑ̂
(i+1)
p to its neighbors, and vice-versa

receives their estimates. The method has two shortcomings. First, the iterations

have to be coordinated among all nodes, and second, the measurements have to be

collected before starting the message passing, requiring additional coordination

of the network and memory for (2 Np + 2 Nq) timestamps that have to be stored at

node p per neighbor q.

4.4 Integrated Cooperative Synchronization

In contrast to conventional MF, ICS uses the factorization shown in Eq. (4.5), in

which each likelihood function obtained with a single packet exchange is con-

1Note that equations (4.8) and (4.9) are a simplified version of the message passing equations
in [Etzlinger et al. 2013a].
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sidered separately, i.e., it performs message passing on an extended FG (see

Fig. 4.1(c)). In every transmitted packet, the transmission time stamp is appended,

and by measuring the receive time, the receiver can construct a single packet like-

lihood directly after reception. If the transmitter additionally includes its current

message parameters, this likelihood function can be directly used for message

passing. Thereby, the message passing does not operate iteratively as a message

is passed only once over every single edge.

Although the proposed modification seems trivial, the message scheduling re-

quires careful consideration when no prior delay estimate is available. Therefore,

we first introduce the computation rules for standard operation when previous ac-

curate delay estimates are available, and thereafter discuss the special case when

a new link is initialized, i.e., when no prior delay estimate is available. The tran-

sition between these modes is per node and depends on a simple local decision.

4.4.1 Mode I: Standard Operation

Nodes perform message computation for synchronization in the standard opera-

tion mode if an accurate estimate of the delay to the neighbor is available. This

mode is motivated by observation that AT
pq Apq = ∑ a(nq)T

qp a(nq)
qp + ∑ b(np)T

pq b(np)
pq in

Eq. (4.10) and AT
pq Bpq = ∑ a(nq)T

qp b(nq)
pq + ∑ b(np)T

qp a(np)
pq in Eq. (4.9).

Selecting message passing only in the direction of packet transmission will repro-

duce the first parts of those sums.

Each node q broadcasts packets to its neighbors, where the nqth packet includes

the transmission timestamp c̃nq
q , its clock estimate ϑ̂

(kq)
q , and the delay estimates

to all its neighbors ∆̂
(kpq)
pq , p ∈ Tq.. Here, kq and kpq are the recursion indices for

the clock parameter estimate and for the delay estimate, respectively. If a node

p receives the nqth packet from node q, it can directly perform the following
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Node p Node q

(
c̃
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q , ϑ̂
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)
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(kp)
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)
c
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Figure 4.2: ICS standard operation between nodes p and q: (a) Packet exchange where
broadcast packets include timestamp and estimates of clock parameters and delays to
all neighbors at the time of transmission; (b) The corresponding messages passing on
the FG where k+pq = kpq+1.

message passing computations on the branch of the FG that includes f (nq)
qp :

P(nq)
qp = a(nq)T

qp a(nq)
qp , m(nq)

qp = a(nq)T
qp

(
∆̂
(kpq)
pq −b(nq)

qp ϑ̂
(kq)
q
)
, (4.11)

then updates its local variables

P(kp+1)
p = P(kp)

p + P(nq)
qp , m(kp+1)

p = m(kp)
p + m(nq)

qp , (4.12)

and estimates

∆̂
(kpq+1)
pq =

kpq∆̂pq +
(
a(nq)

pq ϑ̂
(kp)
p + b(nq)

pq ϑ̂
(kq)
q
)

kpq + 1
, (4.13)

ϑ̂
(kp+1)
p =

(
P(kp+1)

p
)−1m(kp+1)

p . (4.14)

The updated parameters ϑ̂
(kp+1)
p and ∆̂

(kp+1)
p are broadcast with the next packet.

If a node is a master node, i.e. p∈A, then the clock parameters are not updated
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as in Eq. (4.14), but remain constant. Note that no timestamps from previous

packets have to be stored, i.e., the message passing happens with the same packet

as the measurement recording. The packet exchange and message passing for this

phase of ICS is shown in Fig. 4.2.

4.4.2 Mode II: Link Initialization

We consider the initialization P(0)
p = 0, m(0)

p = 0 for all non-master nodes p∈A and

∆̂(0)
pq = 0 for all links (p, q) ∈ S. Thus, we assume not having any prior knowledge

on the network, except the clock parameters of the master nodes.

When a node p∈A receives the first packet from a neighbor with accurate clock

parameter estimates, i.e. from a master node (or a node q with a sufficiently large

clock estimation index kq, referred to as pseudo-master node), it would not be

able to compute the standard mode equations. Firstly, P(1)
p cannot be inverted in

Eq. (4.14) after only one reception, i.e., P(1)
p = P(1)

qp , as it has only rank one (see

Eq. (4.11)). This would not be a limitation if node p has already updated P(kp)
p ,

kp > 1 times with received packets from other (pseudo-)master nodes. Secondly,

as the delay is not known before, m(1)
qp in Eq. (4.11) will be inaccurate and severely

perturb the network synchronization process.

Therefore, we propose that every node has one set of link initialization variables

P
(k′p)
p,init and m

(k′p)
p,init, and that the following procedure is executed when a node p

receives a packet from a neighboring (pseudo-)master q.

1. Node p initializes P(0)
p,init = 0, m(0)

p,init=0 and k′p=0

2. Node p updates the local initialization variables for the first two packets

received from a (pseudo-)master q as in Eq. (4.11), with ∆̂(1)
pq = ∆̂(2)

pq = 0.

3. Node p then computes ϑ̂p,init = P(2)−1
p,init m(2)

p,init and adds it to its next broadcast,

indexed by n′p. At this point, a deterministic error occurs on the phase
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Node p Node q
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Figure 4.3: Link initialization mode: (a) Message passing between two nodes p and q
with four packets exchanged between them; (b) Corresponding messages on the FG.

estimate (second entry of ϑ̂p,init) of the magnitude of the unknown ∆pq.

4. Node q computes the delay estimate with ∆̂(3)
pq =

(
a
(n′p)
qp ϑ̂p,init + b

(n′p)
pq ϑ̂

(kq)
q
)
/2,

and broadcasts the result with its next packet.

5. Node p corrects its previous estimate to ϑ̂′p,init = ϑ̂p,init − [0, ∆̂(3)
pq ]

T and its

variable m(2)
p,init = P(2)

p,initϑ̂
′
p,init. It then adds the initialization variables to

its standard operation variables with P(kp+1)
p = P(kp)

p + P(2)
p,init and m(kp+1)

p =

m(kp)
p + m(2)

p,init.

6. Node p joins the standard operation mode, and executes equations (4.11)–

(4.14) with the packet received in step 5.

These steps, graphically depicted in Fig. 4.3, require the cooperation of node p

and q during the transmission of 4 packets.

4.4.3 Use case for ICS

A suitable application in which ICS can be employed as a time synchroniza-

tion protocol is WSN-based animal habitat monitoring application [Handcock

et al. 2009], [Sikka et al. 2006]. In ranches which are spread over large geographic

areas, it is challenging to observe the grazing patterns of the animals, their so-
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cial behaviour and other activities or events. Each of these animals (like cows,

pigs, etc.) can carry a WSN node on its collar. These WSN nodes are equipped

with relevant sensors like GPS sensors, accelerometers, acoustic sensors, etc. The

nodes can also have actuators which generate acoustic and vibration signals [Sikka

et al. 2006]. These sensors nodes provide the sensor data which is useful in ana-

lyzing the social behaviour of these animals, the grazing patterns, etc. The sensor

data analysis can be used for increasing productivity in animal farming. Since

the WSN nodes attached to the animals are mobile, the network topology keeps

changing frequently. Thus, we cannot employ time synchronization protocol s

which employ formation of a specific network structure like trees, clusters, etc.

Also since such ranches might have large number of animals which implies that

the node density is very high, it necessitates the use of decentralized time synchro-

nization protocol. A time synchronization protocol is essential in this application

to provide an accurate time stamp accompanying the sensor data which facilitates

correct data analysis. Also, we might also employ localization algorithms to lo-

cate an animal. Many time-based localization protocols like [Etzlinger et al. 2017],

[Meyer et al. 2018] use time synchronization protocol s as the basis for the localiza-

tion protocols. Also the low latency involved in ICS for a new node or a displaced

node to obtain the estimate of its clock parameters will help the nodes (animals) to

get synchronized very quickly even when it moves from one location of the ranch

to another. Thus ICS will be a useful protocol for this application. Next section

presents the results of the simulations carried out to analyze the performance of

ICS.

4.5 Results and Analysis

Simulations were carried out to evaluate the performance of ICS. MATLAB 2017R1

was used to perform these simulations. For evaluating ICS we used a network of
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Figure 4.4: Topology of a wireless network with 10 randomly placed nodes. Red
circles indicate master nodes, blue crosses agent nodes, and the dashed lines the
communication links.

10 nodes randomly placed in a 1000× 1000 m2 field as shown in Fig. 4.4, where the

connectivity is defined by the node range of 600 m. The noise standard deviation

σω was set to 93 ns as seen from [Etzlinger et al. 2014]. The communication delays

∆pq are set to the propagation time, i.e., distance between the nodes divided by the

speed of light. The clock skews were drawn by a normal distribution of standard

deviation 100 ppm i.e. αp ∼ N(1, 10−4). Similarly the standard deviation for

the clock offset was selected to be 5 s, i.e βp ∼ N(0, 5). A node was selected as

pseudo-master if it had kp=20 updates in the standard operation.

We compare the performance of ICS with the consensus method from [Schenato

& Fiorentin 2011], referred to as ATS, and the conventional MF method from [Et-

zlinger et al. 2014] referred to as CMF using K = 100 measurements and I = 4 iter-

ations. For evaluation, we depict 800 time intervals, where each node broadcasts

one packet per interval. While ICS and ATS perform synchronization operations

after each broadcast, CMF has to collect its measurements first. In Fig. 4.5, the

RMSE of the clock phase (solid lines) and clock skew (dashed lines) are depicted.
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While all methods achieve similar accuracy for clock skew with the selected pa-

rameters, the differences in the clock phase accuracy are significant. ATS, which

is limited by the communication delay, achieves an accuracy of 27.5 µs, while ICS

and CMF achieve 0.23 µs and 0.05 µs, respectively. Thus, ICS clearly outperforms

ATS while having a similar complexity and achieves results close to CMF that has

major drawbacks for ad-hoc network implementations.

Finally, we assess the latency and the computational complexity. For ICS we de-

fine the latency as the number of intervals until all nodes are pseudo-master nodes

in standard operation, i.e., kp times the network diameter (which is 3 in this net-

work). ATS has no latency, as all nodes update their clock parameters from the

first packet on. For CMF, the latency is defined by the duration of the message

passing phase, i.e., K plus I. For the considered network we have 60, 1 and 104

intervals of latency for ICS, ATS and CMF, respectively. Thus, ATS has lowest

latency compared to ICS and CMF. However, in the applications where synchro-

nization accuracy outweighs latency, ICS is advantageous. Also from practical

experience on WSN testbeds, the difference in this latency of ATS and ICS is in

the order of few tens of seconds even for a network of about 30-50 nodes.

The computational complexity is assessed in the number of mathematical opera-

tions per received packet for ICS and ATS, or per iteration in the message passing

phase for CMF. The resulting numbers are shown in Table 4.1. This table shows

that while ICS requires only slightly more operations per packet than ATS, both

are advantageous to CMF in the message passing phase.

A detailed explanation for these expressions for the number of additions, mul-

tiplications and divisions involved in ICS is presented below. We consider only

the computational complexity in standard operation mode, as this constitutes the

dominant part.

Eq. (4.11): requires 8 multiplications and 2 additions
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Figure 4.5: Numerical results with RMSE on clock phase (solid lines) and clock skew
(dashed lines).

Eq. (4.14): requires 6 additions.

Eq. (4.12): requires 5 multiplication, 4 additions and 1 division.

Eq. (4.14): requires 6 multiplications, 3 additions and 1 divisions.

In total, ICS requires 19 multiplications, 15 additions and 2 divisions per node per

received packet. In the similar manner, the number of addition, multiplication

and division operations for CMF and ATS have been obtained.

Table 4.1: Per node computational complexity in number of operations: for ICS and
ATS per received packet, and for CMF per iteration of the message passing phase.

Protocol Additions Multiplications Divisions
ICS
(proposed method) 15 19 2
ATS
[Schenato & Fiorentin 2011] 10 7 1
CMF
[Etzlinger et al. 2014] (|Tp|(8K− 6)) + 4K + 8 (|Tp|8K) + 4K + 6 2
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4.6 Conclusions

While existing message passing based synchronization schemes yield excellent

results, they have major shortcomings that prevent them from broad application.

In order to mitigate those drawbacks, ICS proposes to use MF message passing

on an extended factorization of the a-posteriori function and a specific message

schedule, in order to achieve a simplistic and still highly accurate synchronization

method with drastic reduction in computational complexity. Hereby, nodes have

to perform only simple computations, and take local decisions for operating in a

standard operation or in a link initialization phase. The above-mentioned features

make ICS suitable for resource constrained WSN nodes. Despite convergence was

observed in numerical evaluations, a theoretical analysis has to be carried out in

the future work.
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Chapter 5

An Optimal Delay Aware

Task-Assignment Scheme for Edge

Cloudlet Networks

5.1 Introduction

Over the past decade, there has been an increasing demand for mobile devices to

perform computationally intensive tasks. However, the computational capability

of these devices is limited due to memory, power and portability constraints. One

of the feasible and attractive ways to enhance the performance of the resource-

limited mobile devices is to offload their computationally intensive tasks on to

the cloud servers when internet connectivity is available. However, when cloud

servers are involved in processing, the latency and cost of computation increases.

To mitigate these problems, devices with high computational resources, called

cloudlets, can be deployed in the locations close to the mobile users/devices.

The mobile devices can then offload their computationally intensive tasks on to

them. Due to easier access and nearness of the cloudlets, the cost and latency in
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processing the tasks decreases.

In this chapter, we focus on task-assignment problem in a multi-cloudlet network

connected via a network of wireless Software-defined Network (SDN) switches,

which services the task offload requests from mobile devices in a given locality.

The computational resources of the cloudlets are used to serve the tasks offloaded

by mobile devices in their vicinity [Kosta et al. 2012]. In edge computing network,

the tasks from the mobile devices or other end devices likes smart objects are of-

floaded on to the cloudlets. In an edge computing, the tasks are handled by the

cloudlets and the cloud servers are absent in edge computing network [Mahmud

et al. 2018]. Edge computing network does not provide Infrastructure as a Ser-

vice (IaaS), Platform as a Service (PaaS) and other cloud services spontaneously

[Mahmud et al. 2018], [Shi et al. 2016]. Traditionally, the nearest cloudlet serves

the request of a mobile device. However, this is an inefficient approach because

the nearest cloudlet may be heavily loaded at a given time while another cloudlet

in the network may be lightly loaded as illustrated in Fig. 5.1. In this figure, we

see that there are more mobile devices in the vicinity of Cloudlet1 as compared

to Cloudlet2 or Cloudlet3. Thus, as per the traditional task-assignment scheme,

Cloudlet1 will handle all the tasks offloaded by the mobile devices in its vicinity.

Therefore, Cloudlet1 becomes heavily loaded (hence marked as red). The mobile

devices served by such a heavily loaded cloudlet will thus experience high la-

tency for completion of their computation tasks [Jia et al. 2016]. At the same time,

since there are lesser mobile devices near Cloudlet3, it is lightly loaded (hence

marked as green) and Cloudlet2 has a medium load (hence marked as yellow).

We, therefore, observe that there is an imbalance in the load allocated to these

cloudlets.

We can solve this load imbalance among the cloudlets by networking these cloudlets

through Software Defined Network (SDN) switches to enable the network load to
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Figure 5.1: A cloudlet network with the different participating entities. Cloudlet1 is
heavily loaded, Cloudlet2 is having medium-load and Cloudlet3 is lightly loaded.

be served in a cooperative manner. This is done to ensure a better quality of ser-

vice and better utilization of resources by load balancing. The task-assignment

scheme for edge cloudlets presented in this chapter called Latency Aware task-

assignment (LATA), aims to reduce the latency in processing the tasks offloaded

by the mobile devices. An optimal scheme is presented here and its performance

is compared with other state-of-the-art offloaded task-assignment schemes pre-

sented in [Sun & Ansari 2017] and [Mukherjee et al. 2019]. A preliminary version

of the current work was presented in [Chamola et al. 2017]. The work described

in this chapter has been presented in [Chalapathi et al. 2019c]. The main contribu-

tions made in this chapter can be summarized as follows:

1. An optimal task-assignment scheme for a multi-cloudlet environment in

which a wireless SDN network is used to connect the cloudlets is proposed

in this chapter. An elaborate description of the mechanics of this scheme,

mathematical proofs of its optimality and convergence are also presented.

2. An admission control for this task-assignment scheme to manage the ad-

mission of task-assignment requests when the number of requests is greater

than what the network can handle is also proposed.
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3. A performance analysis for different sized cloudlet networks- a small net-

work consisting of three cloudlets and a large one consisting of ten cloudlets

is also presented.

4. A thorough performance analysis of latency for different requests rates for

these different sized networks with varying network environment parame-

ters is also included.

5. The simulations show that this task-assignment scheme reduces the latency

experienced by offloaded tasks in a multi-cloudlet scenario as compared to

the existing state-of-the-art methods.

Rest of the chapter is organized as follows. The system model considered in this

work is discussed in the next section. The problem formulation is discussed in

Section 5.3 and the solution methodology in Section 5.4. The simulation results

are discussed in Section 5.5 and the conclusions are presented in Section 5.6.

5.2 System Description

In this work, we consider a cloudlet network as depicted in Fig.5.1. In our model,

the tasks offloaded by a mobile device on an overloaded cloudlet can be served

on some other lightly loaded cloudlet in the network. The wireless SDN con-

troller present in the network takes care of the offloaded task-assignment as per

the scheme discussed in Section 5.4. Let us consider our cloudlet network as rep-

resented by the set of cloudlets W with W = {G1, G2, · · · , Gk, · · · , G|W|}, where

we refer to the k-th cloudlet as Gk. Let us denote the maximum rate of service

that the k-th cloudlet offers as Smax
k . It is assumed that the task offloading requests

from the mobile devices located at a location y ∈ R (R being the geographical

region) follows a Poisson process that has an arrival rate of λ(y). Poisson arrival

process has been taken into account based on its wide acceptance for generating
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traffic for mobile networks [Lee et al. 2014]. The analysis done later is not limited

by the traffic’s being Poisson in nature but also holds valid for any other type

of distribution. We denote the average file size offloaded at location y as τ(y).

Thus, we get the mobile task offload density denoted by γ(y) as γ(y)=λ(y)τ(y),

where the spatial task offload variability is captured by γ(y). A number of factors

determine the latency experienced by the tasks that the mobile devices offload on

to the cloudlets for the execution. These factors are enumerated as: (i) the current

load of the cloudlet in executing the offloaded task request, (ii) the maximum rate

of service of the cloudlet in processing its request offers, and (iii) the distance be-

tween the serving cloudlet and the corresponding mobile device. Without loss of

generality, let us consider the service rate that the cloudlet k offers to the mobile

device located at y as

sk(y) =
Smax

k
1 + (dis(Gk, y)/d0)α

(5.1)

where dis(Gk, y) is the Euclidean distance of the k-th cloudlet from the mobile

device that is at location y. In the above equation, we introduce the parameter

α that helps us adjust the service rate according to different network scenarios.

d0 is the scaling factor for the distance. We arrive at the above formula in Eq.

(5.1) based on the intuition that the service rate that the cloudlet offers is directly

proportional to the maximum rate of service which that cloudlet can offer, and in-

versely proportional to the distance between the mobile device and that cloudlet.

As compared to the computational delay at the cloudlets, the transmission delay

and the propagation delay for our network are negligible (especially due to the

fact that the cloudlets are in close proximity of the mobile devices). To illustrate

this point, let us consider a wireless SDN network having 10 Gbps links. Note

that such wireless SDN solutions are commercially available [Cis ]. Further let

us consider a scenario where the mobile user is at a distance of 100 m from the

cloudlet which is processing the tasks offloaded on to it by the mobile user and let
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the maximum computational service rate (Smax) of this cloudlet be 3000 KBps. As-

suming that the size of a packet offloaded to be processed by the user is 40 KB, the

the transmission delay using this SDN solution will be TD = 40×8×103

10×109 = 32µs.The

effective service rate observed by the mobile user at 100m from this cloudlet as

per Eq. (5.1) is 272.72KBps (with α taken to be unity). The computational de-

lay for a 40KB packet offloaded on to this cloudlet by this mobile user will be

TC = 40
272.72 = 0.1466705s = 146670.5µs. Likewise, the propagation delay for a

round trip of 200 m (i.e., twice of 100m) will be TP = 200
3×108 = 0.66µs. Thus the

transmission and propagation delays are much lower than the computational de-

lay. Therefore, in this work, the primary consideration for latency evaluation is

the computational delay .

To specify task-assignment relationship between the mobile devices and the cloudlets,

let us introduce a function uk(y) called task-assignment indicator function. This

function takes the value 1 if the mobile user located at y is served by the cloudlet

k and 0 otherwise. Also, let us define the cloudlet load by ρk,

ρk =
∫
R

γ(y)
sk(y)

uk(y)dy. (5.2)

As given by [Liu et al. 2014] the cloudlet load represents the time fraction for

which the cloudlet k is engaged in serving its traffic requests.

Definition 1: Z denotes the feasible set of the cloudlet loads ρ = (ρ1, · · · , ρ|W|).

We define Z as

Z =
{

ρ | ρk =
∫
R

γ(y)
sk(y)

uk(y)dy, 0 ≤ ρk ≤ 1− ε, ∀k ∈W,

uk(y) ∈ {0, 1},
|W|

∑
k=1

uk(y) = 1, ∀k ∈W, ∀y ∈ R
}

,

with ε being an arbitrarily small positive constant. The assumption here is that

an offloaded task of a particular mobile device is served in its entirety by only
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one cloudlet in the network. Although a mobile device would be connected to the

closest cloudlet in the network, the cloudlet that serves its offloaded task request

is decided based on the task-assignment algorithm discussed in Section 5.4. The

arrivals of offloaded tasks follow Poisson process, and thus the sum of arrivals of

offloaded tasks is also a Poisson process. There is only one server at a cloudlet

and the service process follows a general distribution. Thus, the traffic arrivals at

the cloudlets are modeled as an M/G/1 queue. At the cloudlet k, we can give the

average traffic flow by the fraction ρk
1−ρk

[Liu et al. 2014]. From the Little’s Law,

the latency that a traffic flow experiences is proportional to the average number of

flows in the system [Kleinrock 1976]. Hence, at a given cloudlet, the total number

of flows is considered as the k-th cloudlet’s latency indicator, i.e., Lk(ρk), which is

given by [Liu et al. 2014]

Lk(ρk) =
ρk

1− ρk
. (5.3)

From the above equation, we can see that as the value of ρk tends to 1, the latency

indicator, Lk(ρk) increases exponentially approaching ∞. It is to be noted that the

latency indicator being a relative indicator of the overall latency of the system, is

unit-less. Several contemporary studies [Liu et al. 2014], [Han & Ansari 2014],[Liu

et al. 2015] have used the above indicator to quantitatively analyze the perfor-

mance of a system’s latency, due to its ability to give a comprehensive view of the

latency performance of the network by jointly capturing computational as well as

queuing delay. It can be seen here that both these delays have been well captured

in the expression for the latency given by Eq. (5.3), where ρk (given in Eq. (5.2))

is a function of the data traffic size and computational rate offered, and ρk
1−ρk

is a

well known expression for queuing delay.
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5.3 Problem Formulation

The problem [Pr1] denotes the problem to minimize the total network latency and

is formulated as follows

[Pr1] minimize
ρ

Φ(ρ) =
|W|

∑
k=1

Lk(ρk)

subject to: ρ ∈ Z

We present a task-assignment scheme called Latency Aware task-assignment (LATA)

in this chapter. Using this scheme, the SDN controller aims to improve the overall

QoS experience of the mobile devices by solving the above-mentioned optimiza-

tion problem. It does the task-assignment for the service requests, i.e., it maps

offloaded task requests to the serving cloudlet, for ensuring best latency perfor-

mance in the network. As described in Section 5.4, we arrive at the optimal solu-

tion to [Pr1] by balancing the current load of the cloudlets (ρ) in the network. A

description of LATA is presented in the next section.

5.4 LATA Optimal Task-Assignment Scheme

We present the task-assignment scheme called LATA in this section. This scheme

aims to find the optimal solution of the problem [Pr1] that was formulated in the

previous section. Let us now briefly describe how the task-assignment algorithm

works. The detailed description will follow in sequel.

Each cloudlet estimates a variable called “resistance index” (described later) and

advertises it to the SDN controller. The resistance index is calculated for each indi-

vidual cloudlet periodically by evaluating their respective traffic loads. The wire-

less SDN controller then decides which cloudlet should be assigned the offloaded

task with the aim to minimize the value of the objective function formulated in
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Table 5.1: Notation Summary

Notation Meaning
y location of the mobile user
W set of Cloudlets
k index of the cloudlet in W

λ(y) task offloading arrival rate per unit area
τ(y) average file size
γ(y) :=λ(y)τ(y), mobile task offload density
Smax

k maximum service rate offered
by the k-th cloudlet

sk(y) the service rate offered by
k-th cloudlet at y

α parameter capturing distance dependency
of service rate

uk(y) task-assignment indicator of
k-th cloudlet at y

ρk k-th cloudlet’s load
Lk(ρk) latency indicator of k-th cloudlet
Z Feasible set of cloudlet loads

relaxed feasible set of
Z̃ cloudlet loads

objective function which is sum of
Φ(ρ) latency indicators of all cloudlets
i index of the time slot
ui

k(y) task-assignment indicator of k-th cloudlet
at y in i-th time slot

ψi
k resistance index of k-th cloudlet

in time slot i
ρi

k load sent by the k-th cloudlet to the
SDN controller in i-th time slot

Tk(ρ
i
k) load of k-th cloudlet in the i-th time slot

θ admission control parameter

[Pr1].

We make the following assumptions in this task-assignment algorithm:

1. The time scale of the traffic arrival and departure processes is faster than

the scale at which the resistance indices of the cloudlets are unicasted (to the

SDN controller), so that our scheme converges. This assumption ensures that

for the current set of resistance indices of the cloudlets, the SDN controller
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makes the task offloading decisions before the cloudlets send the next set of

indices into the network.

2. The resistance indices are sent to the SDN controller by all the cloudlets at

the same time, i.e., the cloudlets in our network are synchronized.

LATA consists of two algorithms, one running at the SDN controller and another

at the cloudlet. We will now describe these two algorithms.

5.4.1 Algorithm at the SDN Controller

As mentioned earlier, LATA aims at arriving at the optimal solution to the prob-

lem [Pr1] that has been formulated previously. The feasible set Z defined in

Section 5.2 is not a convex set as uk(y) ∈ {0, 1}. This is because Z is not contin-

uous and thus it is not differentiable. Thus, we will not be able to minimize the

objective function Φ(ρ) subject to ρ ∈ Z . Thus, to make the set Z continuous and

differentiable, we modify the above constraint on uk(y) to 0 ≤ uk(y) ≤ 1, thus

introducing convexity to the optimization problem [Pr1].

With such relaxation in place, uk(y) can be seen as the probability that task of-

floaded by a mobile device at location y is serviced by the cloudlet k. We can now

define Z̃, the set of relaxed cloudlet loads given as

Z̃ =
{

ρ |ρk =
∫
R

γ(y)
sk(y)

uk(y)dy, 0 ≤ ρk ≤ 1− ε, ∀k ∈W,

0 ≤ uk(y) ≤ 1,
|W|

∑
k=1

uk(y) = 1, ∀k ∈W, ∀y ∈ R
}

.
(5.4)

The set Z̃ mentioned above is convex and its convexity has been proved in [Kim

et al. 2012]. By applying the above-obtained relaxation in problem [Pr1], we arrive

at a modified problem [Pr2] which can be formulated as
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[Pr2] minimize
ρ∈Z̃

Φ(ρ) =
|W|

∑
k=1

Lk(ρk).

The new optimization problem [Pr2] has been formulated using Z̃. However, it

can be seen from Theorems 1 and 2 presented further in this section that we get a

deterministic task-assignment (which belongs to Z) based on the task-assignment

algorithm presented later in this section.

We define a time slot as the time taken between any two consecutive updates of

resistance index. In the beginning of the i-th time slot, the respective resistance

indices are sent by the cloudlets to the SDN controller. The cloudlets are assigned

the tasks offloaded by the mobile device based on the service rate they offer and

the resistance indices that they have sent to the SDN controller. It is assumed that

the resistance indices are sent by the cloudlets at the start of the time slot i. The

term ψi
k denotes the resistance index sent by the cloudlet k at the beginning of

time slot i which is defined as

ψi
k =

∂Li
k(ρ)

∂ρi
k

=
1

(1−ρi
k)

2
. (5.5)

We use the function given below to assign the offloaded tasks of the mobile de-

vices (for any device at location y) to the cloudlets.

ui
k(y) =


1 if k = arg max

k∈W

sk(y)
ψi

k

0 otherwise.
(5.6)

uk(y) is the task-assignment indicator function (defined in Section 5.2), which

indicates whether or not the k-th cloudlet services the task requests offloaded by

the device at y. The term sk(y) captures the service rate that the k-th cloudlet

offers at location y. Thus, the computation complexity of each task-assignment

process is of the order of O(|W|), i.e., the number of cloudlets in the network
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Algorithm 5.1 Algorithm at the SDN Controller

Input: At the beginning of time slot i, the resistance index ψi
k, ∀k ∈ W and

the service rate sk(y) at location y, ∀y ∈ R, ∀k ∈W

Output: task-assignment indicator ui
k(y)

1: Receive the resistance indices (ψi
k) for all the cloudlets at the beginning of the

time slot.
2: Upon receiving a task offloading request at location y evaluate sk(y), ∀k ∈W

using Eq. (5.1).
3: Assign a cloudlet for the request at location y, i.e., calculate ui

k(y) using Eq.
(5.6).

because the number of computations involved in each task assignment process

increases linearly with increase in the number of cloudlets in the network.

5.4.2 Algorithm at the Cloudlet

At the end of the i-th time slot, load at the k-th cloudlet is represented as Tk(ρ
i
k).

Each cloudlet evaluates its load defined as per the following equation

Tk(ρ
i
k) = min

(∫
R

γ(y)
sk(y)

uk(y)dy, 1− ε

)
, (5.7)

where ε is an arbitrarily small positive constant. The cloudlets update their

cloudlet load, Tk(ρ
i
k), and use it to calculate the resistance index to be broadcasted

to the SDN controller, using the load as per the below equation

ρi+1
k = ξρi

k + (1− ξ)Tk(ρ
i
k) (5.8)

Here ξ is taken as the averaging factor with 0 < ξ < 1.

The working of the algorithms on the SDN controller and at the cloudlet is de-

picted in Fig. 5.2.
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5.4.3 Convergence of LATA Scheme

This subsection and the next prove the convergence and optimality of the algo-

rithm for task-assignment that has been discussed above. We first show that the

objective function Φ is convex in ρ ∈ Z̃. This will ensure that we can have an

optimal task-assignment by minimizing the objective function.

Lemma 1: When the cloudlet load ρ is defined in Z̃, the objective function Φ(ρ) is ob-

served to be convex in ρ.

Proof. This can be proven by showing O2Φ(ρ) > 0.

We can write the objective function as

Φ(ρ) =
|W|

∑
k=1

Lk(ρ) =
|W|

∑
k=1

ρk
1− ρk

(5.9)

The 1st and 2nd order derivatives of the objective function evaluated with respect

to ρ are as follows

OΦ(ρ) =
|W|

∑
k=1

1
(1− ρk)2 (5.10)

O2Φ(ρ) =
|W|

∑
k=1

2
(1− ρk)3 (5.11)

Since the value of 2
(1−ρk)3 > 0, the above evaluated 2nd order derivative is also

non-negative for all cloudlets. Thus, we have shown that our objective function is

convex.

As proved in Lemma 1, the objective function is convex. Thus, we can find an

optimal load ρ∗ ∈ Z̃ which corresponds to a unique optimal task-assignment,

such that it minimizes the objective function, Φ(ρ) = ∑|W|k=1 Lk(ρk). Next step to

prove is that LATA is convergent. We will make use of Lemmas 2 and 3 (discussed

further in the chapter) for proving the same. We begin with proving that Tk(ρ
i),
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Algorithm 5.2 Algorithm at the Cloudlet

Input: task-assignment ui
k(y), ∀y ∈ R at the beginning of time slot i

Output: The resistance index ψi+1
k

1: Calculate the current load Tk(ρ
i
k) using Eq. (5.7)

2: Evaluate ρi+1
k using Equation (8)

3: Calculate the resistance index ψi+1
k using the Eq. (5.5)

4: Advertise this ψi+1
k to the SDN Controller at the beginning of the next time

slot.

and in turn (ρi+1 − ρi), yields the direction of descent for Φ(ρi) at ρi (as it will be

proved in Lemma 2 and 3). Further in Theorem 1, we will show that the cloudlet

load will converge after a few iterations. It will be proved in Theorem 2 that the

objective function Φ is minimized with the obtained cloudlet load.

Lemma 2: Given ρi 6= ρ∗, Tk(ρ
i) provides the direction of descent for Φ(ρi) at ρi.

Proof. From Lemma 1, we know that when ρ is defined in Z̃, Φ(ρ) is a con-

vex function of ρ. From this, we can easily prove Lemma 2 by showing that

< OΦ(ρi), T(ρi)− ρi > ≤ 0 (where < m, l > denotes the inner product of the vec-

tors m and l) [Boyd & Vandenberghe 2004]. For the cloudlet loads ρi
k and T(ρi

k),

let the task-assignment indicators be uk(y) and uT
k (y). The inner product can be

then given as

< OΦ(ρi), T(ρi)−ρi >

=
|W|

∑
k=1

1
(1−ρi

k)
2

(
Tk(ρ

i
k)− ρi

k

)
=
|W|

∑
k=1

1
(1−ρi

k)
2

(∫
R

γ(y)(uT
k (y)− uk(y))
sk(y)

dy

)

=
∫
R
γ(y)

|W|

∑
k=1

( 1
(1−ρi

k)
2

sk(y)
(uT

k (y)− uk(y))

)
dy.
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Figure 5.2: Illustrative representation of the process of task offloading from the mobile
user on to the cloudlet with intervention of the SDN Controller.

We can see that
|W|

∑
k=1

1
(1−ρi

k)
2 (u

T
k (y)−uk(y))

sk(y)
≤ 0

holds because uT
k (y) from (Eq. 5.6) will maximize the value of sk(y)

1
(1−ρi

k)
2

. Therefore,

< OΦ(ρi), T(ρi)− ρi >≤ 0, thus proving the lemma.

Lemma 3: (ρi+1 − ρi) provides the descent direction to Φ(ρi).

Proof. To prove this, we consider the expression given below.

ρi+1
k − ρi

k =ξρi
k + (1− ξ)Tk(ρ

i
k)− ρi

k

=(1− ξ)(T(ρi
k)− ρi

k). (5.12)

We have earlier seen in Lemma 2 that (T(ρi)− ρi) is a descent direction of Φ(ρi).

Since 0 < ξ < 1, we can say (1− ξ) > 0. Thus, ρi+1 − ρi also gives the descent

direction of Φ(ρi).
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Next, we prove that our task-assignment scheme is optimal and convergent in

Theorems 1 and 2.

Theorem 1: The cloudlet load vector ρ will converge to ρ∗ ∈ Z (ρ∗ is the optimal cloudlet

load vector).

Proof. Earlier in Lemma 1, it has been shown that Φ(ρi) is convex. Further, Lemma

3 shows that (ρi+1− ρi) gives a descent direction for Φ(ρi). Thus, the convergence

of Φ(ρi) to ρ∗ can be guaranteed. Let us prove this by contradiction. Suppose that

Φ(ρi) does not converge to Φ(ρ∗), but rather to a different point; then ρi+1 will

again give a direction of descent which decreases Φ(ρi)(as proven in Lemma 3),

which contradicts the assumption of convergence that we began with. Addition-

ally, as ρi is derived based on (Eq. 5.6) where uk(y) ∈ {0, 1}, ρ∗ belongs to set

Z.

5.4.4 Optimality of the LATA Scheme

We establish the optimality of the LATA scheme through the following theorem.

Note that this theorem uses results of the lemmas proved in the previous subsec-

tion.

Theorem 2: Given a non-empty set Z and given that the cloudlet load ρ has a convergence

in ρ∗, the task-assignment corresponding to ρ∗ minimizes the objective function Φ(ρ).

Proof. Suppose that the task-assignment corresponding to ρ∗ is u∗ = {u∗k(y)|u∗k(y)∈{0, 1},

∀ k∈W, ∀y ∈ R} and the task-assignment corresponding to

ρ is u = {uk(y)|uk(y)∈ {0, 1}, ∀k ∈W, ∀y ∈ R } with ρ ∈ Z being the load vector

of some cloudlet. We have already seen that Φ(ρ) is convex over ρ, and now to

prove this theorem, we show that < OΦ(ρ∗), ρ− ρ∗ > ≥ 0. Please note that for

114



5.4 LATA Optimal Task-Assignment Scheme

Figure 5.3: The topology of the network with three cloudlets used in our simulations.

the purpose of clarity, we substitute ∂Φ(ρ∗)
∂ρ∗k

as ψk(ρ
∗
k) in the following proof.

< OΦ(ρ∗), ρ− ρ∗ >=
|W|

∑
k=1

ψk(ρ
∗
k) (ρ− ρ∗)

=
|W|

∑
k=1

(∫
R

γ(y)(uk(y)− u∗k(y))

sk(y)ψ−1
k (ρ∗k)

dy

)

=
∫
R

γ(y)
|W|

∑
k=1

(uk(y)− u∗k(y))

sk(y)ψ−1
k (ρ∗k)

dy.

However, we already know that the criterion to choose the optimal offloaded task-

assignment is as under

u∗k(y) =


1, if k = arg max

k∈W
sk(y)

ψk(ρ
∗
k )

,

0, otherwise.
,

and thus we can deduce the following equation using the optimal task-assignment

criterion,
|W|

∑
k=1

u∗k(y)

sk(y)ψ−1
k (ρ∗k)

≤
|W|

∑
k=1

uk(y)
sk(y)ψ−1

k (ρ∗k)
. (5.13)
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Figure 5.4: The topology of the network with ten cloudlets used in our simulations.

Hence, < OΦ(ρ∗), ρ− ρ∗ > ≥ 0 proving this Theorem.

5.4.5 Admission Control

To ensure optimality and convergence of the LATA scheme, the cloudlet assign-

ment problem is required to be feasible. This means that the traffic loads of the

cloudlets should lie in the feasible set that has been defined in Definition 1 in

Section 5.2. Note that when the traffic in the network is beyond its capacity to

serve, the cloudlet assignment problem ceases to be feasible. Thus, the optimality

and convergence property of the LATA scheme does not hold. This necessitates

an admission control policy to ensure that the above-mentioned properties still

hold in presence of exceedingly high task offload requests in the network. For ad-

mission control, let θ(y) be the coefficient for admission control of user at location

y, such that 0 ≤ θ(y) ≤ 1 is the probability of a mobile device at location y get-

ting admittance into the network. The SDN controller assigns θ(y) for a location

y. Note that θ(y) is not dependent on cloudlet selection. This ensures that the

integration of admission control does not change cloudlet selection of the mobile
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users. The cloudlet serving the user is still evaluated based on Eq. (5.6). As a

result of this admission control, the load of the k-th cloudlet at the end of ith time

slot is updated in the following way

Tk(ρ
i
k) = min

(∫
R

θ(y)
γ(y)
sk(y)

uk(y)dy, 1− ε

)
. (5.14)

The cloudlet updates its load based on Eq. (5.8). Thus, the SDN controller restricts

the loads of the cloudlets to ensure that the cloudlet assignment problem remains

feasible. For this admission control, the relaxed feasible set becomes

Z̃=
{

ρ |ρk =
∫
R
θ(y)

γ(y)
sk(y)

uk(y)dy, 0 ≤ ρk ≤ 1− ε, ∀k ∈W,

0 ≤ uk(y) ≤ 1,
|W|

∑
k=1

uk(y) = 1, ∀k ∈W, ∀y ∈ R
}

.

As 0 ≤ θ(y) ≤ 1 is constant, Lemma 1 holds now also, and thus the set remains

convex. Further as the integration of admission control does not modify the objec-

tive problem of clouldet assignment, thus Lemma 2 still stands true. This ensures

that convergence and optimality proofs given previously still hold, thus enabling

the traffic load to converge to the optimal solution even with admission control

applied. The effect of variation in this parameter θ on the latency will be analyzed

in the next section.

5.4.6 Use case for LATA

We consider the use case of ’Shopper Information and Navigation Application in a

Shopping Mall’. In huge shopping malls, there may be many hundreds and thou-

sands of shoppers present at a given point of time. These shoppers might have

queries like location and route to a particular store, current offers in different

stores, information about the stores which stock a particular item which he is
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looking for, etc. Such information can be provided to the shopper using a mobile

application of the shopping mall. The shopper might use speech or even images

to put his queries in the application. The speech or image must then be analyzed

to provide the relevant information to the shopper on his mobile device. Using

the cloud services for this application will increase the latency in processing the

data and providing the results. Thus it is suitable to use cloudlets to do the speech

or image processing and provide the relevant information to the shopper so that

the latency involved can be reduced. However, we need to choose an appropriate

cloudlet so that this latency is minimized to improve or retain the QoS to the user.

We can deploy cloudlets at different locations of this shopping mall to perform

these tasks. Many times, a particular cloudlet might be overloaded due to the

tasks already offloaded on to it. Thus, we have to select an appropriate cloudlet

to optimize the latency in processing the data (which is the task in this case)

offloaded by the shoppers. Thus LATA can be employed in this application in se-

lecting the appropriate cloudlet to process the offloaded tasks so that the latency

experienced by the shoppers is optimized. There can be a central controller which

runs the controller side algorithm to decide the appropriate cloudlet to offload

the data. The cloudlets can send the information about their load and their resis-

tance index and send these values to the central controller. This data will be used

by the central controller to identify the optimal cloudlet to perform the offloaded

task. The following section presents the results and analysis of the simulations

performed to evaluate LATA.

5.5 Results and Analysis

The LATA algorithm described in this paper was evaluated through simulations

carried out using MATLAB 2017R1 and the results of these simulations are dis-

cussed and analyzed in this sections. In these simulations, we consider two dif-
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ferent cloudlet topologies (shown in Fig. 5.3 and Fig. 5.4) with three and ten

cloudlets respectively, to carry out the performance analysis of our scheme. Note

that these two different topologies have been considered for the performance anal-

ysis for different network sizes. As it can be seen from Fig. 5.3, there are three-

cloudlets which provide service in an area of 100 m × 100 m whereas in Fig.

5.4 there are ten-cloudlets providing service in the given area. The cloudlets are

randomly placed within the network. It is to be noted that the SDN switched

network with the SDN Controller at the core connects the different cloudlets in

the network. Two kinds of cloudlets are considered here: one with its maximum

service rate being 3000 KB/s and the other having maximum service rate as 6000

KB/s. For generating the mobile task offload requests, Homogeneous Poisson

Point Process (HPPP) is used. The performance is analyzed for various task ar-

rival rates with the lowest traffic being 20 offload requests arriving in the network

per second in the coverage area. The maximum traffic arrival rate has been taken

to be 80 requests/s for the three-cloudlet network scenario and 160 requests/s for

the 10 cloudlet network scenario. Note that we have taken the different maximum

traffic arrival rates (of 80 and 160 requests/s) for these networks considering their

traffic handling capabilities. Also, dis(.) denotes the distance of the cloudlet from

the mobile device in km. The parameter d0 has been taken as 15 m (i.e., 0.015 km).

The offload requests are considered here to range from 10 KB/packet to 70 KB/-

packet by taking into account of the different computational demands of the users

(e.g., 70 KB/packet traffic offloaded is from users which are requesting more com-

putationally intensive tasks to be performed like 3D gaming whereas those with

10 KB/packet have lesser computationally intensive tasks offloaded like an appli-

cation requesting to zip the streamed files into a folder). The location based task

offload density (γ(y)) is calculated based on the model discussed in Section 5.2.

The value of the averaging factor ξ (mentioned in Eq. (5.8)) is taken to be 0.95.

Keeping this value of ξ, we note that the task-assignment algorithm converges
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Figure 5.5: Latency variation for varying offload request arrival rates in a network of
three cloudlets.
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Figure 5.6: Latency variation for varying offload request arrival rates in a network of
ten cloudlets.

within 10 iterations. The performance of the our scheme has been compared to

the state-of-the-art schemes [Sun & Ansari 2017] and [Mukherjee et al. 2019] which

have been briefly discussed in Section 2.4.

5.5.1 Latency Performance with Traffic Variation

We study how the network latency performance changes when the request arrival

rates of the offloaded traffic are varied. The arrival rates of the offloaded requests

120



5.5 Results and Analysis

range from 20 to 80 offload requests/s (for the three-cloudlet network) and 20 to

160 offload requests/s (for the ten-cloudlet network). We calculate the latency in-

dicator for the whole network (Φ) corresponding to these arrival rates of requests.

As stated in Section 5.2, this latency indicator is a unit-less quantity. The numeri-

cal value of α has been taken as 1 for the results in this section. However the effect

of α on latency has been studied in the next subsection. The results pertaining to

the network having three cloudlets are shown in Fig. 5.5 whereas those pertaining

to network of ten cloudlets are shown in Fig. 5.6. From the results, we observe

that as the traffic load increases the latency increases in all three schemes; this is

due to a higher load on the cloudlets. It can be seen from the results that the LATA

scheme presented in this chapter has better performance than the schemes pre-

sented in [Mukherjee et al. 2019] and [Sun & Ansari 2017] since it achieves lower

latency. Further, we also see that performance gain of LATA over the schemes

in [Sun & Ansari 2017] and [Mukherjee et al. 2019] increases as the traffic is in-

creased. For example, in the three-cloudlet scenario, for an average traffic arrival

rate of 80 requests/s the latency for the scheme in [Sun & Ansari 2017] is 13%

higher and for [Mukherjee et al. 2019] is 10% higher as compared to LATA. In the

ten-cloudlet scenario, for average traffic arrival rate of 160 requests/s, the latency

is 140% higher for [Sun & Ansari 2017] and 64% higher for [Mukherjee et al. 2019]

as compared to the LATA scheme. The reasoning for this behavior is as follows.

For the case of very high offload arrival rate, the schemes in [Sun & Ansari 2017]

and [Mukherjee et al. 2019] prefer offloading many of the requests to the cloudlets

closest to them which leads to some of the cloudlets getting overloaded (which

have more number of users near them). This causes an increase in the overall la-

tency of the network. For the scheme presented in [Mukherjee et al. 2019], the task

is assigned to the nearest cloudlet if it is not overloaded, else it assigns the task

to the remote cloudlet which is able to serve the task with least latency. Note that

the model proposed by them does not take into consideration of the current load
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Figure 5.7: Latency behavior with different α values for a network with three cloudlets
and traffic of 20 requests/s.
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Figure 5.8: Latency behavior with different α values for a network with three cloudlets
and traffic of 80 requests/s.

on the remote cloudlet while making the task offload decisions, and thus is un-

able to optimize the network level latency. However, in case of LATA, in addition

to the distance of the cloudlet from the request, the current load of the cloudlets

is considered for making the task-assignment decisions. This gives an improved

latency on account of its load balancing nature.
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Figure 5.9: Latency behavior with different α values for a network with ten cloudlets
and traffic of 20 requests/s.
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Figure 5.10: Latency behavior with different α values for a network with ten cloudlets
and traffic of 160 requests/s.

5.5.2 Latency Performance with Varying Network Parameters

In this section, we study the latency performance as the network parameter α

is varied. In the formulation shown in Eq. (5.1), the parameter α captures the

quality of the network in terms of the latency associated with the distance of the

requests from the cloudlet. With other parameters fixed, a higher value of α would

indicate that the cloudlet provides a lower service rate at the location where the

request is originated. We vary α from 0.25 to 2 for the two different network
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scenarios (three-cloudlet and ten-cloudlet networks) and study the performance

of the system. The analysis is done considering the two extreme values of the

request rate, i.e., the minimum and the maximum requests/second. We fix the

value of traffic to a certain value and see the latency performance on varying the

network parameter α. Note that a higher value of this parameter (α) indicates

a slower system. In Fig. 5.7 and Fig. 5.9, we show the change in the latency

as α is varied for an average traffic of 20 request/s for three and ten-cloudlet

network, respectively. In Fig. 5.8 and Fig. 5.10, we show the change in the latency

for an average traffic of 80 and 160 request/s respectively, which are the upper

limits of traffic taken for network with three and ten cloudlets, respectively. Note

that in the three-cloudlet network, for its maximum traffic, the latency indicator’s

value for LATA increases from around 10 to nearly 60 (increase by 6 times) as

α varies from 0.25 to 2. However, in the ten-cloudlet network for the maximum

traffic, the latency indicator increases from 5 to 8.5 (increase by 1.7 times only).

From this we conclude that the increase in latency with an increase in α is less

emphatic for the ten-cloudlet network as compared to the three-cloudlet network.

This is because the requests generated in the network are served by a greater

number of cloudlets in ten-cloudlet network. Note that in all cases we find that

LATA outperforms the schemes presented in [Sun & Ansari 2017] and [Mukherjee

et al. 2019] because of making optimal cloudlet assignment based on the service

rate, distance of the cloudlet from the user offloading the task as well as the

current load on the cloudlet.

5.5.3 Latency Performance with Admission Control

We analyze the latency performance when the admission control parameter θ is

varied. As mentioned in the previous section (Section 5.4.5), the parameter θ(y)

depicts the probability with which a mobile device at a location y is admitted into

the network. For example, θ(y) =1 would indicate that all the offload requests
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arriving in the network at location y are admitted, whereas θ(y) = 0.7 would

indicate that requests arriving at that location are allowed admittance into the

network with a probability 0.7 (in-turn denied admittance with probability 0.3).

We have considered this parameter to be the same for the entire area served by

the cloudlets (i.e. for all y). We vary this parameter while keeping the other

parameters constant. For this analysis, we keep the parameter α mentioned in Eq.

(5.1) as unity. The simulations for both three-cloudlet and ten-cloudlet networks

for different arrival rates are performed. For a three-node network, the LATA

algorithm for different average traffic arrival rates varying from 80 requests/s to

140 requests/s is simulated and the results are depicted in Fig. 5.11. Note that for

higher traffic arrival request rates (i.e., 120 requests/s and 140 requests/s), when

the admission probability is high (> 0.7), the latency becomes unacceptably high.

This indicates that the network cannot manage such high traffic. However, if the

network has such high traffic, the admission control parameter can be reduced to

enable lower latency for the served users (this is however at the cost of some of

the users being dropped/denied admission into the network). For example, when

the arrival rate is 140 requests/s and θ is set as 0.5, the latency indicator for the

users being served is limited to 21 (at the cost of around 50% of the requests being

dropped).

The latency performance for the ten-cloudlet network for varying values of θ for

average arrival rates varying from 160 requests/s to 400 requests/sec is depicted

in Fig. 5.12. Note that when the offload request arrival rate is low, admission

control is not required and the θ value can be kept as 1. However, when the traffic

is high, admission control can be applied to reduce the latency experienced by the

users served by the cloudlet network.
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Figure 5.11: Latency behavior for different admission control parameter values for a
network with three cloudlets.
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Figure 5.12: Latency behavior for different admission control parameter values for a
network with ten cloudlets.

5.6 Conclusion

This chapter has presented a novel task-assignment scheme (named LATA) which

makes task-assignment decisions for a network of cloudlets that serves compu-

tationally intensive tasks offloaded by the mobile devices. The task-assignment

aims at reducing the network latency to enhance the QoS experienced by the mo-

bile users served by the cloudlets. This task-assignment scheme converges to an

optimal load for all the cloudlets which minimizes the overall latency in servicing
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the offloaded tasks. The optimality and convergence property of this scheme have

been proved mathematically. Through simulation results, it has been shown that

this scheme gives a better performance in comparison to the existing schemes.

An admission control policy to ensure that the task-assignment scheme remains

optimal even when traffic in the network is more than what it can handle has also

been presented.

127



Chapter 6

Conclusion and Future Work

WSN and edge computing are two major enabling technologies in the IoT paradigm.

This thesis has addressed two important algorithms in WSNs and edge comput-

ing, viz., Time Synchronization Protocols (TSPs) in WSNs and latency aware task-

assignment schemes in edge cloudlet network. Next section presents the conclu-

sions of this thesis.

6.1 Conclusion

A TSP for cluster-based WSNs named E-SATS has been presented in Chapter 3.

E-SATS has been proposed to address two major drawbacks of the existing TSPs

for cluster-based WSNs. First, most of the existing protocols are simulator-based

protocols which make many assumptions at high-level of abstraction which may

not be valid for practical WSNs. Second, the existing TSPs do not consider the

effect of the Line-of-Sight (LOS) conditions on the performance of a TSP. E-SATS

uses fewer computations and consumes lesser energy (than other protocols) while

achieving microsecond-level synchronization accuracy. E-SATS accounts for the

deterministic and non-deterministic delays, which seriously affect the accuracy of
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a synchronization protocol. It involves a cluster-formation phase by which the

nodes in the network are organized into clusters. The cluster members were then

synchronized to their respective cluster heads using simple two-way exchanges.

This protocol has been implemented on WSN testbed of 30 nodes and its perfor-

mance has been analyzed in two different environments, viz., Line-of-Sight (LOS)

environment (where all the nodes in the WSN were LOS) and mixed-LOS envi-

ronment (where half of the nodes were LOS and the rest were Non-Line-of-Sight

(NLOS)). It has been compared to other state-of-the-art TSPs for clustered WSNs.

The experimental results have shown that E-SATS achieved better synchronization

accuracy compared to other protocols. Also, it has been shown analytically that E-

SATS has higher computational and energy efficiency than other protocols. Since

the performance of E-SATS has been proved on a WSN testbed, it gives a credible

proof that E-SATS is ideal for resource-constrained WSN nodes which require a

simple and energy efficient yet accurate TSP. Further, it has also been shown that

as the number of nodes which are NLOS increases, the synchronization error of

all the TSPs increases significantly.

A decentralized TSP based on a message-passing method called Integrated Coop-

erative Synchronization (ICS) has been proposed in Chapter 4. ICS is a Mean-Field

based delay compensated method to evaluate maximum a-posterior estimate of

the clock parameters. It integrates the measurement phase with message-passing

phase thereby removing the need of a separate mechanism to synchronize these

two phases. It uses an extended factorization of the a-posterior function and

specific message-passing schedule to achieve synchronization. In the normal op-

eration, this protocol uses every packet exchanged between two nodes both for

obtaining the time measurements and for estimating the clock parameters. A link

initialization phase has been proposed to handle the links where a prior estimate

of the delay was not present. It has been shown that ICS achieves high accu-

racy (sub-microsecond accuracy) and uses simpler computations compared to the
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existing message-passing methods.

A latency aware task-assignment scheme (LATA) for a network edge cloudlets

to handle the tasks offloaded by mobile devices on to the edge cloudlets has

been proposed in Chapter 5. This scheme makes task-assignment decisions in

such a way that the overall network latency experienced by the offloaded tasks is

optimized. The optimality of this scheme has been proven mathematically. The

performance of this scheme in varying task offloading traffic conditions has been

analyzed and compared with existing state-of-the-art task-assignment schemes for

edge cloudlets. It has been shown that LATA outperforms the existing schemes

by achieving reduced latency. Also, the latency performance has been assessed

for varying network conditions. An admission control policy which maintains the

optimality of this scheme in high task offloading traffic conditions has also been

presented and its performance has been analyzed for varying values of network

admission parameter.

Thus, two time synchronization protocols for WSNs and a task-assignment scheme

for edge cloudlets have been presented in this thesis. The synchronization pro-

tocol proposed for cluster-based WSN, i.e., E-SATS has been proved to be com-

putationally efficient, energy efficient while achieving higher synchronization ac-

curacy of the order of microseconds. Thus, it is suitable for resource-constrained

WSN nodes. The decentralized message-passing based synchronization protocol,

i.e., ICS, has been proved to achieve high synchronization accuracy. The task-

assignment scheme for the edge cloudlet network has achieved optimal latency

for processing the tasks offloaded by edge cloudlets thereby improving the QoS

experienced by the mobile users.

Next section presents the future research directions based on this doctoral re-

search.
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6.2 Future Work

The TSP proposed for clustered WSN achieves synchronization for a network

which is static to a large extent. However, its performance in a network where

the nodes are highly mobile has not been tested. The performance of E-SATS

for such a dynamic network has to be tested and the cluster formation phase

may have to be simplified further to reduce the overhead due to frequent clus-

ter formation. Further, E-SATS achieves a synchronization accuracy of the order

of 100s of microseconds. Such an accuracy is not sufficient for some industrial

and control system application which requires sub-microsecond accuracy. Thus,

there is a need to improve the synchronization accuracy that can be achieved in a

cluster-based WSN.

ICS proposed in Chapter 4 shows its convergence in numerical evaluations. How-

ever, its convergence is required to be proved mathematically. ICS can be adapted

for a cluster-based WSN and it can be compared with E-SATS in terms of syn-

chronization accuracy, immediacy, etc. Further, this synchronization scheme can

be extended to achieve simultaneous localization and synchronization. Localiza-

tion protocols are used to find the location of the nodes whose position changes

dynamically due to their mobility. Since the localization problem is closely related

to synchronization, this extension is highly feasible.

LATA presented in Chapter 5 proposed a task-assignment scheme for edge cloudlets

in which the tasks were offloaded on to a nearby cloudlet and the results of the

offloaded task request were delivered to the mobile device through the same

cloudlet regardless of which cloudlet served the task request. However, since

the mobile devices change their position, the current location of the mobile device

must be tracked so that a cloudlet closest to the current location of the mobile

device can be used to deliver the results. Further, there is a need to incorpo-

rate energy-awareness in the task-assignment scheme to optimize the energy con-
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sumed to serve the tasks requests. Energy-awareness is very essential when the

cloudlets are energy constrained. In green cloudlet networks [?], the cloudlets

are solar powered and hence are energy constrained. In such a scenario, it be-

comes important to optimize both energy and latency while serving the requests

of mobile devices. Thus, LATA can be modified to incorporate energy-awareness.
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