
Time-Domain Synthesis of
Continuous-Time Filters using

Nonlinear Sequence Transformation

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Goutham Makkena

ID. No. 2009PH230002H

Under the Supervision of

Dr. M. B. Srinivas

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE - PILANI

2017

http://universe.bits-pilani.ac.in/


BIRLA INSTITUTE OF TECHNOLOGY AND

SCIENCE - PILANI

CERTIFICATE

This is to certify that the thesis entitled, “Time -Domain Synthesis of Continuous-Time Filters

using Nonlinear Sequence Transformation” and submitted by Goutham Makkena ID

No. 2009PH230002H for award of Ph.D. of the Institute embodies original work done

by him under my supervision.

Supervisor

Dr. M. B. Srinivas

Professor,

BITS-Pilani, Hyderabad Campus

Date:

i

http://universe.bits-pilani.ac.in/
http://universe.bits-pilani.ac.in/


Acknowledgements

I wish to express sincere gratitude to my supervisor Prof. M. B. Srinivas for his help

and valuable guidance, without which this work would not have been accomplished.

His unwavering support through out the journey has been a constant source of encour-

agement. I am grateful to Prof. G. Sundar, Director, Birla Institute of Technology and

Science - Pilani, Hyderabad Campus for providing all the necessary facilities required

to conduct my research. I also take this opportunity to thank the previous and current

Heads of the Department of Electrical Engineering, Prof. Y. Yoganandam and Prof.

Sanket Goel respectively for the support and help extended to me. I would also like to

thank my Doctoral Advisory Committee (DAC): Prof. Prabhakara Rao and Prof. S. K.

Chatterjee, for their timely feedback and insightful comments. To all my friends in the

department, thank you for your cooperation and camaraderie - especially to Mr. Sai

Phaneendra Parlapalli, Mr. Chetan Kumar Vudadha and Mr. Avinash S Vaidya for

helping me overcome difficult phases and not letting me give up. Lastly, my warmest

acknowledgements to my parents, sister and my wife for being there for me all the

time.

ii



Abstract

Advanced filtering techniques like wavelet filters and linear-phase frequency selective

filters consume very low power when implemented as continuous-time filters. Both

these filters have prescribed impulse responses and hence can be easily synthesized in

time-domain. A key step in the time-domain synthesis of a continuous-time filter is

the approximation of its transfer function to a proper rational function. In this thesis,

a closed-form method known as nonlinear sequence transformation is used to obtain

rational approximation of these advanced filters.

Nonlinear sequence transformation utilizes regularities in a slowly converging infinite

series, like the Taylor expansion, to accomplish convergence acceleration by transforming

it to a rational function. Of the many variants of nonlinear sequence transformation,

Levin and Weniger transformations are being extensively used. However, direct

application of the versions of Levin and Weniger transforms falls short in obtaining

BIBO stable proper rational approximations for wavelet filters. Hence, new variants of

nonlinear sequence transformation that obtain BIBO stable rational approximations

for wavelet filters is proposed in this thesis. These variants perform better in terms of

mean square error when compared to those obtained by other closed-form methods.

It is shown that the model order reduction of the proposed variants leads to either

similar or better performance compared to L2 optimization method. These variants
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are also shown to act as good starting points for optimization methods that use local

search routines.

In this thesis, a new closed-form solution for the design of linear-phase selective

filters is presented. The approach consists of developing an approximation to the

Laplace transform of impulse response of the chosen linear-phase selective filter using

a sum of shifted and scaled causal splines. This approximation is then rationalized

using the proposed variants of nonlinear sequence transformation to obtain a realizable

medium order transfer function which is then balanced and truncated to the required

order. The magnitude and phase features of the filter derived are presented and

discussed. It is shown that the closed-form solution obtained can act as a starting

point for approximation methods that use local search routines.

Finally, a transfer function obtained by one of the proposed variants is converted

to an equivalent electrical network and is simulated to show that the proposed variants

are implementable. The electrical network is obtained in the form of a Gm-C circuit

which approximates a Gabor wavelet. From the simulation results, it is clear that the

circuit has the required characteristics of a Gabor wavelet filter.
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Chapter 1

Introduction

1.1 Time-domain Synthesis

Traditionally, analog filter design concerned itself with approximation of the required

characteristics using polynomials and rational functions as functions of frequency.

Accordingly, filters such as Butterworth, Chebyshev, Elliptic, Cauer, Legendre which

approximate the rectangular magnitude either in maximally flat or equiripple sense

were developed [2]. However, as communications and signal processing fields evolved,

requirement for electrical networks that had specific transient responses arose. This

lead to research on synthesis of time-domain filters in the 1950’s [3–20].

1
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LTI
System

Input Output

t t

fi(t) fo(t)h(t)

Figure 1.1: A LTI system with the required impulse response

Time-domain synthesis of filters consists of three steps. In the first step, the input

function fi(t) of the filter, also known as the excitation function and the desired output

function fo(t), also known as the response function are identified as shown in Figure.

1.1. Impulse response, denoted by h(t), that corresponds to this input-output pair is

then identified because the input function fi(t) and the desired output function fo(t)

are related by the equation given below:

fo(t) = fi(t) ∗ h(t) (1.1)

The star in the above equation denotes convolution.

The second step consists of obtaining transfer function H(s) of the linear time-

invariant (LTI) system whose inverse transform closely approximates the impulse

response h(t) in equation (1.1). This approximation has to be in an appropriate form,

i.e, a proper rational function with numerator and denominator polynomials having

real coefficients while the denominator polynomial is strictly Hurwitz. The third step

consists of practical implementation of the approximated transfer function H(s) in the
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form of an electrical network.

In this work we focus on the second step of the three steps outlined i.e, the

approximation of the transfer function H(s) to a practically realizable form as shown

in figure 1.2.

Identify the
 required h(t)

Practical
Implementation 

of H(s)

Approximate 
H(s) to a realizable

form

Figure 1.2: Major steps involved in time-domain filter synthesis

1.2 Continuous-Time Filters

Filters are primarily implemented as electrical networks consisting of lumped elements

operating on continuous-time analog signals. As the field of VLSI and Microprocessors

evolved, filters that can operate on sampled, discrete-time signals called digital filters

have been developed. These filters usually contain analog-to-digital converters (ADCs)
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to sample the input signal, followed by a device such as a microcontroller to perform

mathematical operations and finally a digital-to-analog converter(DAC) at the output.

The introduction of ADC, microcontrollers and DAC might result in an expensive filter

when compared to an equivalent analog filter. However digital filters make complex

designs practical that are not possible with analog filters. This made digital filters

ubiquitous in everyday devices like computers, radios, televisions etc [21].

However, signal processing in continuous-time domain is still preferred where power

consumption is a critical design constraint (Eg: devices that are powered by battery).

Power consumption is even more critical in implantable devices, wherein the battery

cannot be recharged. Advanced signal processing techniques when implemented as

continuous-time filters consume very low power, of the order of nW and hence are very

much suited to low power applications.

1.3 Time-domain synthesis of continuous-time fil-

ters

Time-domain synthesis has been used successfully to design continuous-time filters in

case of wavelet filters [1, 22, 23], linear-phase selective filters [24–26], pulse forming

and shaping networks[27–29] etc.
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Wavelet Transform [30–32] has evolved as a powerful tool for analysis of non-

stationary signals owing to it’s time frequency localizations. Continuous Wavelet

Transform (CWT) has proven to be highly useful technique in this respect. In CWT,

the signal to be analyzed is convolved with scaled copies of basis functions called

mother wavelets. This allows for a signal under study to be mapped to a time-scale

plane in which the spectral content of a signal with respect to time is obtained thereby

aiding in feature detection. It is shown in [22, 23, 33–37] that Wavelet Transform

implemented as CWT in analog domain consumes ultra low power in the range of pW.

Linear-phase selective filters are used extensively when there is a requirement for

both rectangular magnitude and linear phase response. Such filters are used extensively

when group-delay equalization is required [38, 39]. Successful time-domain synthesis of

linear-phase selective continuous-time filters has been presented in [24–26].

A key step in time-domain synthesis of the above mentioned wavelet filters and

linear-phase selective filters is the rational approximation of the transfer function of

linear time invariant system, whose impulse response is the required wavelet and sinc

pulse respectively. This thesis focuses on this key approximation step to synthesize

wavelet and linear-phase selective filters.
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1.4 Approximation Methods

There are two major approaches to the approximation problem (second step in figure.

1.2) in time-domain synthesis, which are shown in the figure below:

The first approach obtains the approximated transfer function H∗(s) by approximating

h(t) H(s)

h∗(t) H∗(s)

≈ ≈

= P (s)
Q(s)=

∑
Ake

st

Figure 1.3: Two approaches to the approximation in time-domain synthesis

the desired impulse response h(t) as a sum of damped exponentials and complex

exponentials h∗(t) as shown in equation (1.2)

h∗(t) = α1e
p1t + β1e

(q1+ir1)t + β∗1e
(q1−ir1)t + β2e

(q2+ir2)t + β∗2e
(q2−ir2)t (1.2)
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Then, approximation techniques that are based on certain error criteria between the

desired and approximated response are used to minimize the error. The most commonly

used error criteria is the mean square error (MSE) approximation given by

MSE =

∫ ∞
−∞
|h(t)− h∗(t)|2 dt (1.3)

This equation is minimized using several optimization procedures such as nonlinear least

squares [40], second-order cone programming [25], differential evaluation algorithm [41],

simulated annealing [42], particle swarm optimization [43], chaotic map particle swarm

optimization with local sequential quadratic programming [44] etc. This approach is

depicted by the dotted lines in figure 1.3.

In the second approach, initially the desired transfer function H(s) is obtained

by calculating the Laplace transform of the desired impulse response h(t). It is then

expressed as truncated power series with the help of expansions such as Taylor series,

McLaurin series etc. The truncated Taylor series expansion of H(s) typically looks like

H(s) = a0 + a1s+ a2s
2 + a3s

3 + · · ·+ aks
k (1.4)

where a0, a1, a2, a3 · · · ak are the Taylor coefficients. This truncated expansion is

converted to a proper rational function by techniques like Padé approximation [45].
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Padé approximation converts a power series of H(s) into a doubly indexed sequence

of rational function given by

H(s) =
Pm(s)

Qn(s)
=
p0 + p1s+ · · ·+ pms

m

1 + q1s+ · · ·+ qnsn
(1.5)

The co-efficients p0, p1, ..., pm and q1, q2, ..., qn are obtained such that the Taylor expan-

sion of P/Q at s = 0 agrees with the power series as much as possible.

Qn(s)H(s)− Pm(s) = O(sm+n+1), s→ 0 (1.6)

This equation above gives rise to m + n + 1 linear equations. If this system has a

solution, then it leads to coefficients of Pm(s) and Qn(s).

The second approach is depicted by the solid lines in figure 1.3.

A careful observation of these approximation methods lets us to classify these

methods broadly as optimization methods and closed-form methods. Optimization

methods use several iterative routines [25, 40–44], where as the closed-form methods

use definitive procedures [27, 45, 46]. Optimization routines let designers handle several

constraints during the approximation procedure. They also let the designer come up

with a solution that meets a required MSE. However, since most of the optimization

routines employ iterative procedures, the solution arrived at often is a local optimum.

For some iterative procedures, the starting points considered greatly affect the final

approximation. Even though optimization methods are effective, closed-form methods
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are attractive because they are straight-forward and easy to design.

1.5 Objectives of the Thesis

While there are several optimization procedures used in the time-domain approximation

problem [25, 40–44], very few generic closed-form methods [45] are available in the

literature. Thus, the objectives of this thesis are as follows:

• Develop a closed-form technique that can solve the approximation problem in

time-domain synthesis.

• Apply this technique and approximate several mother wavelet bases to compare

with existing methods

• Approximate linear-phase selective filters using this technique and compare with

existing methods

• Demonstrate that the transfer function obtained by the proposed method can be

implemented as a circuit to validate the technique.
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1.6 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces a closed-form approximation

method namely nonlinear sequence transformation. It also shows that this technique

can be successfully used to approximate Gaussian filters. In the third chapter it is

shown that the nonlinear sequence transformation technique when applied on wavelets

does not produce stable transfer functions and hence proposes a modified technique to

obtain stable transfer functions for wavelet filters. Chapter 4 develops a new expression

for the Laplace transform of a linear-phase selective filter before applying the modified

technique proposed in Chapter 3 to obtain stable rational transfer functions. Chapter 5

implements one of the transfer functions obtained by the proposed variants of nonlinear

sequence transformation as a operational transconductance amplifier - capacitor (OTA-

C) circuit to validate the techniques developed. Chapter 6 gives conclusions and

directions for future work.



Chapter 2

Nonlinear Sequence Transformation

Power series, like the one shown in equation 1.4 mentioned earlier, is an important tool

in mathematics owing to its analytical properties and is used to mathematically treat

several scientific and engineering problems. Summing up a power series that converges

slowly is an age old problem that occurs in many fields of science and engineering.

Convergence acceleration of series using extrapolation techniques based on linear and

nonlinear sequence transformation, has been researched heavily and is present in the

literature in the form of exclusive monographs [47–54] and in sections of books on

numerical computing [55–57].

11



Chapter 2. Nonlinear Sequence Transformation 12

2.1 Nonlinear Sequence Transformation

Nonlinear sequence transformation starts with assuming that a slowly convergent or

divergent sequence {Sn}∞n=0, where Sn contains partial sums of infinite series as,

Sn =
n∑
k=0

ak (2.1)

can be partitioned into a generalized limit S and a remainder or a truncation error rn

given by

Sn = S + rn (2.2)

An infinite series is typically evaluated by adding many of its terms such that the

remainder rn becomes negligible. However, this approach is not feasible because only

so many terms of the sequence can be added owing to practical limitations. An

alternate approach to evaluate such series would be to approximate the remainder rn

and eliminate it from the sequence elements Sn. A sequence transformation tries to

accomplish this by transforming a given sequence {Sn}∞n=0 to a new sequence
{
S̃n

}∞
n=0

that has the same generalized limit S but a different remainder r̃n.

S̃n = S + r̃n (2.3)
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The transformed sequence given in the above equation is said to be successful if the

new remainder r̃n converges much faster compared to the actual remainder rn given as

lim
n→∞

r̃n
rn

= lim
n→∞

S̃n − S
Sn − S

= 0 (2.4)

It is often not feasible to find the numerical values of the remainders rn and thus sequence

transformations obtain approximations to the remainders by using the structural

information of the sequence to be transformed. This is explained with the help of an

example give below.

Consider a sequence Sn which contains partial sums of a strictly alternating series

given by

Sn =
n∑
k=0

(−1)kbk (2.5)

where all values of bn, n ∈ N0 have the same sign. The remainder rn of this sequence

Sn can now be written as

rn = −
∞∑

k=n+1

(−1)kbk. (2.6)

Let us now assume that the series converges to a limit S, which implies that the values

of bn, n ∈ N0 are positive and decreasing as n is increasing and finally vanish as n→∞.

This also results in the magnitude of the remainder rn being bound by its first term,
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i.e, bn+1 which is not a part of the sequence Sn [58] and is given as

|rn| < bn+1, n ∈ N0. (2.7)

The above inequality gives structural information about the remainder rn by expressing

the ratio rn/[(−1)n+1bn+1] as an asymptotic power series in the variable 1/(n+ 1) i.e,

rn = (−1)n+1bn+1

∞∑
j=0

cj(n+ 1)−j, n→∞ (2.8)

However, elimination of the remainder rn given in the above equation by computing

the infinite asymptotic series is not possible and hence model remainders of the below

type are considered

r̃n ≈ (−1)n+1bn+1

k∑
j=0

cj(n+ 1)−j, n ∈ N0 (2.9)

For sufficiently large values of k and n, the new remainder r̃n approximates the actual

remainder rn closely. This implies that the sequence Sn also can be approximated by

the new remainder r̃n, which contains only finite terms as:

S̃n = S + (−1)n+1bn+1

k∑
j=0

cj(n+ 1)−j, n ∈ N0 (2.10)

Nonlinear sequence transformation utilizes regularities in a slowly converging infinite

series to accomplish convergence acceleration by transforming it to a rational function
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[47]. This convergence acceleration is a result of extrapolation of the rational function

obtained thus eliminating the need for asymptotic approximations which require heavy

computations.

2.2 Levin’s Transformations

The best-known example of sequence transformation is the Levin’s transformation [59]

widely used for convergence acceleration of infinite series. It has been extensively used

to accelerate spectral domain immitance [60–64] and in electromagnetic modeling of

high-speed interconnects [65]. Levin’s transformation starts with the assumption that

the series, Sn(s) =
∑n−1

i=0 ais
i, where ai (i = 0 to n − 1) are the terms of the series,

admits

Sn = S + ωn

k−1∑
j=0

cj
(n+ β)j

, k, n ∈ N0 (2.11)

for certain values of the parameters {cn}k−1
0 . It is to be noted that S is the generalized

limit, ωn is a remainder estimate and β is a constant shift parameter. Multiplying

both sides by (n+ β)k−1 would yield

Sn − S
ωn

(n+ β)k−1 =
k−1∑
j=0

cj(n+ β)k−j−1 = Pk−1(n) (2.12)
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The Right Hand Side (RHS) of (2.12) is a polynomial in n of order k − 1 (Pk−1(n)),

which can be completely annihilated by the forward difference operator of order k (∆k).

Applying ∆k we obtain the kth order Levin transformation as a rational approximation

to S as,

S =

k∑
j=0

(−1)j
(
k
j

)
(n+ j + β)k−1 Sn+j

ωn+j

k∑
j=0

(−1)j
(
k
j

)
(n+ j + β)k−1 1

ωn+j

(2.13)

The ∆ operator property

∆kf(n) =
k∑
j=0

(−1)j
(
k

j

)
f(n+ j) (2.14)

is used to obtain the equation (2.13).

Different choices of the remainder estimate ωn result in different variants of Levin’s

transformation. Levin’s u-transformation is obtained by substituting ωn = (n+β)∆Sn−1

in equation (2.13) leading to

u =

k∑
j=0

(−1)j
(
k
j

)
(n+ j + β)k−2 Sn+j

∆Sn+j−1

k∑
j=0

(−1)j
(
k
j

)
(n+ j + β)k−2 1

∆Sn+j−1

(2.15)
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Using equation (2.14), the value of ∆Sn+j−1 can be calculated and is given as,

∆Sn+j−1 = an+j−1s
n+j−1 (2.16)

Substituting the above equation and the actual series Sn+j =
∑n+j−1

i=0 ais
i in equation

(2.16), we obtain

u =

k∑
j=0

n+j−1∑
i=0

(−1)j
(
k
j

)
(n+ j + β)(k−2)

(
ais

i

an+j−1sn+j−1

)
k∑
j=0

(−1)j
(
k
j

)
(n+ j + β)(k−2)

(
1

an+j−1sn+j−1

) (2.17)

By changing the index of summation of the denominator in equation (2.17) using the

identity
∑k

j=0 aj =
∑k

j=0 ak−j, we obtain

u =

k∑
j=0

n+j−1∑
i=0

(−1)j
(
k
j

)
(n+ j + β)(k−2)

(
ais

i

an+j−1sn+j−1

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−2)

(
1

an+k−j−1sn+k−1

) (2.18)

Now, changing the limits of the double finite summation present in the numerator of

equation (2.18) using the identity
∑k

j=0

∑n+j−1
i=0 aj,i =

∑n+k−1
i=0

∑k
j=i−(n−1) aj,i results

in

u =

n+k−1∑
i=0

k∑
j=i−(n−1)

(−1)j
(
k
j

)
(n+ j + β)(k−2)

(
ais

i

an+j−1sn+j−1

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−2)

(
1

an+k−j−1sn+k−1

) (2.19)
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Now, changing the index of summation of the numerator involving j in equation (2.19)

using the identity
∑k

j=i−(n−1) aj =
∑k

j=i−(n−1) ak−j+i−(n−1),

u =

n+k−1∑
i=0

k∑
j=i−(n−1)

(−1)k−j+i−(n−1)
(

k
k−j+i−(n−1)

)
(n+ k − j + i− (n− 1) + β)(k−2)

(
ais

i

an+k−j+i−(n−1)−1s
n+k−j+i−(n−1)−1

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−2)

(
1

an+k−j−1sn+k−1

)
(2.20)

By changing the limits of the double summation of (2.20) again we get

u =

k∑
j=0

sj
n+j−1∑
i=0

(−1)k−j+i−(n−1)
(

k
k−j+i−(n−1)

)
(n+ k − j + i− (n− 1) + β)(k−2)

(
ais

i

an+k−j+i−(n−1)−1s
n+k+i−(n−1)−1

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−2)

(
1

an+k−j−1sn+k−1

)
(2.21)

The final expression for the u-transformation can now be obtained by changing the

index of the summation involving i in the numerator of equation (2.21) as,

u =

k∑
j=0

sj
n+j−1∑
i=0

(−1)k−i
(
k
i

)
(n+ k − i+ β)(k−2)

(
an−1+j−i
an−1+k−j

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−2)

(
s1−n

an−1+k−j

) (2.22)

Similarly, a choice of ωn = ∆Sn−1 in equation (2.13) gives Levin’s t-transformation.

Following the procedure described through equations (2.15)-(2.21) gives the final
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expression for the t-transformation as

t =

k∑
j=0

sj
n+j−1∑
i=0

(−1)k−i
(
k
i

)
(n+ k − i+ β)(k−1)

(
an−1+j−i
an−1+k−j

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−1)

(
s1−n

an−1+k−j

) (2.23)

2.3 Weniger’s Transformations

The Levin’s transformation derived was for the model sequences of the type described

by equation (2.11). A new class of sequence transformations called the Weniger’s

transformations is derived when model sequences of the type given in the equation

below are considered

Sn = S + ωn

k−1∑
j=0

cj
(n+ β)j

, k, n ∈ N0 (2.24)

The difference between equation (2.11) and equation (2.24) is that the powers (n+ β)k

in Levin transformation are replaced by Pochhammer symbols (n + β)k in Weniger

transformation. Following the same process as described in the previous section, we

can obtain different variants of Weniger transformation. A choice of ωn = (n+β)∆Sn−1

and ωn = ∆Sn−1 gives Weniger’s y and τ -transformations respectively and their final
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expressions are given below as

y =

k∑
j=0

sj
n+j−1∑
i=0

(−1)k−i
(
k
i

)
(n+ k − i+ β)(k−2)

(
an−1+j−i
an−1+k−j

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−2)

(
s1−n

an−1+k−j

) (2.25)

τ =

k∑
j=0

sj
n+j−1∑
i=0

(−1)k−i
(
k
i

)
(n+ k − i+ β)(k−1)

(
an−1+j−i
an−1+k−j

)
k∑
j=0

sj(−1)k−j
(
k
j

)
(n+ k − j + β)(k−1)

(
s1−n

an−1+k−j

) (2.26)

Equations (2.22)-(2.23) describe the Levin transformations and (2.25)-(2.26) de-

scribe the Weniger transformations. From these expressions, two key observations can

be made:

(i) For a given value of k, the value of the parameter n defines the minimal index of

the partial sums used in these approximations. That is, if n = 1, the partial sums S0

to Sk are used in the rational approximation.

(ii)The order of approximation is given as k+n−1
k

, for a given value of k
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2.4 Gaussian Filter Approximation Using Levin &

Weniger Transformations

Gaussian filter is a filter whose impulse response is Gaussian. It is used in digital

communications to limit the spectral energy outside the transmission band [66]. It is

also used on physiological signals for smoothening. Another important application of

Gaussian filter is modeling analog delays [67]. Analog delays are achieved by Gaussian

filters which are obtained by approximating very thin Gaussian functions. Gaussian

filters are usually implemented in digital domain which however use power hungry

elements such as Digital-to-Analog Converter (DAC) and Voltage Controlled Oscillator

(VCO). When implemented in analog domain, Gaussian filter consumes very low power

compared to its digital counterpart. However to obtain Gaussian filter in analog

domain, a faithful approximation of the Gaussian function is required.

2.4.1 Mathematical Representation

Gaussian filter convolves the input signal with a Gaussian function. This process

of convolution of a signal with a Gaussian function is also called as the Weierstrass

transform. Equation (2.27) below shows the Gaussian function, where µ is the time-shift
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and σ is the scale.

f(t) =
1

σ
√

2π
e

−(t−µ)2

2σ2 (2.27)

A given transfer function H(s) is called a Gaussian filter, if its impulse response follows

a given Gaussian closely [67].

When an attempt is made to find the Laplace Transform of the Gaussian function

given in equation (2.27), we encounter integrals which are transcendental in nature.

For example, for a Gaussian function f(t) with time-shift µ = 2 and scale σ = 1, the

Laplace Transform F (s) is,

F (s) = 0.06766764162 e
(s−2.0)2

2 erfc
(√

2
(s

2
− 1.0

))
(2.28)

where erfc(s) is the complementary error function. Clearly, equation (2.28) is not a

strictly proper rational function with all poles having negative real parts, the necessary

condition for a practically realizable transfer function.

2.4.2 Approximation of Gaussian Filter Transfer Function

As seen from equation (2.28), a necessity arises for transfer functions in transcendental

form to be approximated as proper rational functions. The series expansions of most

of these transcendental functions can be obtained at points like s = 0, which can
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then be rationalized using Levin and Weniger transformations given by the equations

(2.22)-(2.23) and (2.25)-(2.26) respectively. The value of n in the (2.22)-(2.23) and

(2.25)-(2.26) has to be taken as 1 so as to obtain proper rational approximations. The

other parameters in those equations are k, which is the order of the approximation,

the Taylor coefficients ak and the constant shift parameter β. A minimum value for β

can be chosen from the following inequality.

β > −(1) (2.29)

This is obtained from the fact that the factor (1 + k− j + β) in equations (2.22)-(2.23)

and (2.25)-(2.26) should always be positive.

As the value of β is varied around this minimum value, the impulse response also

varies, which is different for different variants. Each variant has it’s own value of β for

which the impulse response obtained has a minimum mean square error (MSE) with

reference to the actual Gaussian pulse. Figure 2.1 shows the variation of mean square

error of the 5th order approximation of the Gaussian (σ = 0.5, µ = 2) as β is varied.

Once the value of β, for which minimum MSE is obtained, is identified, that value

is used to calculate the final transfer function of the Gaussian pulse. The 5th order

approximations of the Gaussian pulse (σ = 0.5, µ = 2), for example, obtained with

the u, t, y and τ -transformations are given by equations (2.30)-(2.33) and shown in

Figures 2.3(a) - 2.6(a) respectively. Figures 2.2(a)-2.2(d) show the pole-zero locations
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of these transfer functions. From these plots, it is clear that all the poles for all the

variants lie on the left half of the complex plane indicating stable transfer functions for

which practical implementations are possible.

u ≈ −0.03874s4 − 0.3081s3 + 5.36s2 − 27.14s+ 63.67

s5 + 7.031s4 + 28.51s3 + 70.47s2 + 100.2s+ 63.67
(2.30)

t ≈ 0.1931s4 − 2.265s3 + 13.57s2 − 46.62s+ 85.97

s5 + 7.107s4 + 30.61s3 + 81.53s2 + 125.3s+ 85.97
(2.31)

y ≈ −0.0341s4 − 0.2709s3 + 5.019s2 − 26.28s+ 63.03

s5 + 7.129s4 + 28.79s3 + 70.65s2 + 99.79s+ 63.03
(2.32)

τ ≈ 0.1771s4 − 2.151s3 + 13.26s2 − 46.58s+ 87.15

s5 + 7.284s4 + 31.46s3 + 83.52s2 + 127.7s+ 87.15
(2.33)

Figures 2.3 - 2.6 show Gaussian pulses with different values of σ and µ obtained

Figure 2.1: Variation of MSE with β for 5th order approximation of the u, t,
y and τ transformations for a Gaussian pulse (σ = 0.5 , µ = 2)
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(a) Pole-Zero plot of Eq.(2.30)
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(b) Pole-Zero plot of Eq.(2.31)
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(c) Pole-Zero plot of Eq.(2.32)
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(d) Pole-Zero plot of Eq.(2.33)

Figure 2.2: Pole-Zero plots of the Gaussian transfer functions

using the u, t, y and τ -transformations respectively. From these figures, it is clear

that all the four variants are able to obtain impulse responses close to the required

pulse. If the time-shift parameter of the Gaussian pulse (µ) is high, then a higher order

approximation might be required to be able to obtain an accurate impulse response.
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(a) σ = 0.5, µ = 2, β=1.43, Order = 5
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(b) σ = 0.75, µ = 4, β=2.25, Order = 7
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(c) σ = 1, µ = 3, β=2.17, Order = 6
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(d) σ = 1.5, µ = 3.5, β=2.49, Order = 6
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(e) σ = 2, µ = 5, β=3.11, Order = 7
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(f) σ = 2.5, µ = 7, β=3.41, Order = 8

Figure 2.3: Gaussian impulse response approximation using u-transformation.
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(a) σ = 0.5, µ = 2, β=2.35, Order = 5
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(b) σ = 0.75, µ = 4, β=3.01, Order = 7
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(c) σ = 1, µ = 3, β=3.33, Order = 6
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(d) σ = 1.5, µ = 3.5, β=3.83, Order = 6
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(e) σ = 2, µ = 5, β=4.43, Order = 7
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(f) σ = 2.5, µ = 7, β=4.90, Order = 8

Figure 2.4: Gaussian impulse response approximation using t-transformation.
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(a) σ = 0.5, µ = 2, β=0.62, Order = 5
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(b) σ = 0.75, µ = 4, β=0.70, Order = 7
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(c) σ = 1, µ = 3, β=0.90, Order = 6
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(d) σ = 1.5, µ = 3.5, β=1.18, Order = 6
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(e) σ = 2, µ = 5, β=1.36, Order = 7
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(f) σ = 2.5, µ = 7, β=1.5, Order = 8

Figure 2.5: Gaussian impulse response approximation using y-transformation.
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(a) σ = 0.5, µ = 2, β=1.09, Order = 5
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(b) σ = 0.75, µ = 4, β=1.02, Order = 7
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(c) σ = 1, µ = 3, β=1.61, Order = 6
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(d) σ = 1.5, µ = 3.5, β=2.08, Order = 6
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(e) σ = 2, µ = 5, β=2.25, Order = 7
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(f) σ = 2.5, µ = 7, β=2.31, Order = 8

Figure 2.6: Gaussian impulse response approximation using τ -transformation.
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2.5 Conclusion

In this chapter we studied the nonlinear sequence transformation technique as a

potential method to convert a transfer function in the form of a power series to a

rational function. There are several variants of nonlinear sequence transformation

technique of which Levin and Weniger transformations have been used extensively in

the literature. Levin’s u and t-transformations and Weniger’s y and τ -transformations

have been used in this chapter to approximate Gaussian filters of different time-shift

(µ) and scale (σ) parameters. A comparison among different variants and with other

closed-form methods for a Gaussian filter was not done here because our aim has been

to show that these variants can be used to successfully to arrive at a proper rational

function.



Chapter 3

Approximation of Nonlinear

Sequence Transformation-based

Continuous-Time Wavelet Filter

As mentioned previously, continuous-time domain analog implementation of wavelet

transforms is preferred over discrete-time when power consumption is a major con-

straint. It has been shown in [1, 22, 23, 35, 36, 68, 69] that Wavelet Transform (WT)

implemented in continuous-time consumes extremely low power, of the order of pW,

compared to discrete-time counterparts which consume power of the order of µW [70].

31



Chapter 3. Approximation of Nonlinear Sequence Transformation-based
Continuous-Time Wavelet Filter 32

The WT, W (σ, b), of a time varying signal x(t) is given by

W (σ, b) =
1√
σ

∫ +∞

−∞
x(t)ψ

(
t− b
σ

)
dt (3.1)

where σ and b are the scaling and shifting parameters respectively and the function

ψ(t) is the mother wavelet.

It is known that the output response y(t) of the signal x(t) when passed through a

Linear Time Invariant (LTI) system is the convolution of the signal with the impulse

response h(t) of the LTI system and is given by

y(t) =

∫ ∞
−∞

x(t)h(τ − t)dt (3.2)

From (3.1) and (3.2) it can be established that WT of a signal can be computed by the

convolution of the input signal x(t) with a function whose impulse response is given by

h(t) =
1√
σ
ψ

(
−t
σ

)
(3.3)

For practical implementations, the impulse response in (3.3) has to be causal which

implies that h(t) is zero for t < 0. Thus, wavelets are shifted by an acceptable value

t0 to meet this condition [71]. A wavelet function with a low value of t0 can be

approximated by a lower order system. However, this would result in truncation of

energy as major portion of wavelet is in the region t < 0. Choosing a high value
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for t0 would result in zero truncation of energy but a higher order system is needed

for approximation. Thus, an appropriate value for t0 has to be chosen by trading-off

truncation energy with order of approximation as was illustrated in [72]. Therefore,

WT at a given scale can be obtained by implementing a filter with the transfer function

H(s) =
1√
σ

∫ ∞
−∞

ψ

(
t0 − t
σ

)
e−stdt (3.4)

While H(s) shown in (3.4) is of infinite dimension, from an implementation per-

spective, it needs to be finite dimensional and stable. Several techniques exist in the

literature that yield rational and stable transfer functions. Accuracy of the impulse

response of higher order approximations of these transfer functions is greater than lower

order ones but the order of approximation is driven by practical constraints like power

consumption, chip area, delay etc. Thus, a strictly proper rational approximation of

H(s) with real coefficients, preferably of lower order, needs to be obtained to be able

to effectively compute the WT in analog domain.

Approximation methods described in [27, 46, 73] synthesize wavelet filter transfer

functions but are limited to wavelet bases related to Gaussian function. A more generic

procedure known as Padé approximation, which is based on Taylor series, has been used

in [74]. Several types of wavelets including complex wavelets have been approximated

using this technique [75–77].
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A generic approximation procedure that reduces the L2 norm between an approx-

imation and actual wavelet by numerical optimization, called L2 method, has been

proposed in [71]. Solutions obtained by this method rely on local search routines and

also there is a risk of ending up at local optima. The final outcome of this method

depends largely on the starting points. Different starting points result in different

solutions after optimization and a good starting point may avoid local optima. An

automated methodology which generates starting points for L2 method has been de-

vised in [1]. Yet another optimization method that minimizes the weighted square

error between an approximation and actual wavelet has been proposed in [25].

In this chapter, proper rational approximation of wavelet transfer functions is

attempted initially using two major variants of nonlinear sequence transformation,

namely Levin’s transformations and Weniger’s transformations [47] discussed in Chapter

2. However, these variants do not obtain Bounded Input Bounded Output (BIBO)

stable rational functions when applied to wavelets due to irregularities in leading

terms of the Taylor series of the wavelet function. Thus, in this Chapter we propose

certain other variants of nonlinear sequence transformation that obtain proper rational

approximation for wavelets by avoiding irregular Taylor coefficients.
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3.1 Nonlinear Sequence Transformation and Prob-

lem with leading irregular Taylor coefficients

A common term in the remainder estimate ωn of the four variants (Levin’s u and t,

Weniger’s y and τ) is ∆Sn−1. This term determines two important parameters of these

four variants for a given value of k:

(i) The order of approximation given as k+n−1
k

and

(ii) The Taylor coefficients used in construction of denominator polynomial given as

an−1 to ak+n−1.

To obtain proper rational approximations using these transformations, the parameter n

in equation (2.13) should be taken as 1. However, this choice of n = 1 leads to rational

approximations which are not BIBO stable. The instability problem is highlighted with

the help of Table 3.1, which contains pole-zero information of 5th order approximations

(k = 5) of Gaussian Wavelet (first derivative of Gaussian function) and Mexican Hat

wavelet (second derivative of Gaussian function). It is clear that some of the poles

(highlighted in bold) of rational approximation obtained by each variant crossed over

to the right half plane, which will lead to instability [78].

Nonlinear sequence transformation makes use of regularities in the elements of

sequence (which in this case are Taylor coefficients of Laplace transforms of wavelet

functions) to be transformed. In some cases, the leading terms of elements of a sequence

behave irregularly (that is, certain leading terms grow in magnitude like the terms
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Table 3.1: Zeros and Poles of 5th order Approximations of Gaussian wavelet
and Mexican Hat wavelet Obtained by different variants of Nonlinear sequence

transformation

Guassian Wavelet (t0 = 2, σ = 1) Mexican Hat Wavelet (t0 = 2, σ = 1)

ψ(t) = −e−(t−2)2 (2 t− 4) ψ(t) = e−(t−2)2 (2 t− 4)2 − 2 e−(t−2)2

Zeros Poles Zeros Poles

u
1.9026± 3.2783i 0.7653±1.4057i −0.8091 0.2489±0.4200i
−7.6031 −0.5627± 0.7556i 0.8827 −0.2841± 0.2165i
0.0106 −0.8195 0.2978,−0.1706 167

t
1.2297± 2.9736i 0.9695±2.2582i −1.8290 0.3190±0.5691i

4.7414 −0.8305± 0.9916i 1.4022 −0.3717± 0.2762i
0.0106 −1.1066 0.2818,−0.1686 320.11

y
1.0333± 3.1133i 0.6404±0.9540i −0.5612 0.2161±0.3473i
−4.7625 −0.4149± 0.6196i 0.5642 −0.2423± 0.1885i
0.0106 −0.6581 0.3667,−0.1737 80.0524

τ
1.1807± 3.1175i 0.7462±1.1485i −0.8205 0.2488±0.4057i
−2.8163e02 −0.4936± 0.7173i 0.8061 −0.2802± 0.2164i

0.0106 −0.7642 0.3010,−0.1707 100

of a mildly divergent series) resulting in approximations which make no sense as

described in [79]. Therefore, the instability observed in approximating wavelet transfer

functions in Table 3.1 can be attributed to the presence of leading irregular Taylor

coefficients. This irregularity is better understood by varying the translation parameter

of a wavelet function as shown in figure 3.1, where the absolute percentage change

in Taylor coefficients (a0 to a5) of a Gaussian wavelet is shown as the translation

parameter is varied. It is evident from this figure that the behaviour of the leading

term a0 is irregular as compared to other coefficients a1 to a5.

As discussed earlier, the Taylor coefficients an−1 to ak+n−1 are used to construct

the kth order denominator polynomial using four variants of nonlinear sequence trans-

formation. Now, considering the Gaussian wavelet and taking the index n to be 2, will
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Figure 3.1: Absolute percentage change of Taylor Coefficients a0 − a5 of
Gaussian wavelet as the translation is increased

n =1
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Figure 3.2: Location of Poles on the complex plane as n is varied for a 5th

order u-transformation approximation of Gaussian wavelet (t0 = 2, σ = 1)
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result in the Taylor coefficients a1, a2, · · · ak+1 being used, thereby avoiding a0 which

has been shown to be irregular. Figure 3.2 shows the location of the roots of the

denominator polynomial of the 5th order u-transformation approximation of Gaussian

wavelet ( t0 = 2, σ = 1) as the value of the index n is varied. It is clear that for n

greater than 1, all the roots are on the left half of the complex plane, indicating a

Hurwitz denominator polynomial [78], as opposed to the case when n = 1 where some

of the roots crossed over to the right half. But a choice of n > 1 gives rise to improper

rational approximations since the order of approximation varies with n as k+n−1
k

as

mentioned earlier. Such improper rational functions, as is known, are not suitable for

practical implementation.

3.2 Proposed Variants to Obtain Proper Rational

Approximations for Wavelets with Leading Ir-

regular Taylor Coefficients

The proposed variants make use of the fact that a polynomial of the order k − 1,

described by equation (2.12), is also completely annihilated by a forward difference

operator of the order k + p (∆k+p), where p is a positive integer. That is,

∆k+p

(
Sn − S
ωn

(n+ β)k−1

)
= ∆k+p

(
Pk−1(n)

)
(3.5)
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The RHS of equation (3.5) is a polynomial of the order k − 1 which is annihilated

completely by applying ∆k+p. Since the application of ∆k+p leads to approximations

of the order k + p conforming to equation (2.14), the limits of ∆k+p in the proposed

variants are truncated to k to obtain a kth order approximation. However, truncation

of the limits of summation to k does not lead to complete annihilation of the RHS of

equation (3.5) resulting in a truncation error (Te) as shown in equation (3.6)

Te = −
k+p∑
j=k+1

(−1)j
(
k + p

j

)
Pk−1(n+ j) (3.6)

This truncation error Te is ignored for the variants being proposed in this work and

consequences of the same are discussed below:

Rearranging the terms of equation (3.5) ignoring the truncation error Te, we obtain

S ≈

k∑
j=0

(−1)j
(
k+p
j

)
(n+ k + p− j + β)k−1 Sn+k+p−j

ωn+k+p−j

k∑
j=0

(−1)j
(
k+p
j

)
(n+ k + p− j + β)k−1 1

ωn+k+p−j

(3.7)

The limits of the term representing the Taylor coefficients Sn+k+p in equation (3.7) are

also truncated to k which results in,

Sn+k+p ≈
n+k−1∑
i=0

ais
i (3.8)

where Sn+k+p is a function of s and ai is the ith Taylor coefficient. Now, a variant
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similar to Levin u-transformation is obtained by substituting ωn = (n+ β)∆Sn−1 and

equation (3.8) in equation (3.7). We designate it as û-transformation shown below:

û ≈

k∑
j=0

(−1)j(k+pj )(1+k+p−j+β)k−2

ak+p−jsk+p−j

k−j∑
i=0

ais
i

k∑
j=0

(−1)j(k+pj )(1+k+p−j+β)k−2

ak+p−jsk+p−j

(3.9)

In obtaining the above equation, the expression ∆Sn+j−1 = an+j−1s
n+j−1 has been

used. The minimal index of the Taylor coefficients to be used in the approximation, n,

is taken as 1 so as to obtain proper rational approximation.

By changing the index of summations of the numerator in equation (3.9) using the

identity
∑k

j=0 aj =
∑k

j=0 ak−j, we obtain

û ≈

k∑
j=0

(−1)k−j(k+pk−j)(1+p+j+β)k−2

ap+jsp+j

j∑
i=0

ais
i

k∑
j=0

(−1)j(k+pj )(1+k+p−j+β)k−2

ak+p−jsk+p−j

(3.10)

By changing the limits of the double finite summation present in the numerator of

equation (3.10) using the identity
∑k

j=0

∑j
i=0 aj,i =

∑k
i=0

∑k
j=i aj,i and changing the

index of the numerator summation involving j again, we obtain

û ≈

k∑
i=0

sj
k∑
j=i

(−1)j−i
(
k+p
j−i

)
(1 + k + p− j + i+ β)k−2 ai

ak+p−j+i

k∑
j=0

sj(−1)j
(
k+p
j

)
(1 + k + p− j + β)k−2 1

ak+p−j

(3.11)

Rearranging the limits of double summation once again as well as changing the index
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of the numerator summation involving i in the above equation, we obtain the final

expression for the proposed û-transformation as

û ≈

k∑
j=0

sj
j∑
i=0

(−1)i
(
k+p
i

)
(1 + k + p− i+ β)k−2 aj−i

ak+p−i

k∑
j=0

sj(−1)j
(
k+p
j

)
(1 + k + p− j + β)k−2 1

ak+p−j

(3.12)

From the denominator polynomial in the above equation, it is clear that the Taylor

coefficients ap to ak+p are used in the approximation of the denominator polynomial,

thereby eliminating the use of first p terms a0 to ap−1.

Now, choosing the remainder estimate to be ωn = ∆Sn−1 and following the proce-

dure mentioned through the equations (3.9)-(3.12), a transformation similar to Levin’s

t-transformation, which we name as t̂-transformation, is obtained as given in the

following equation:

t̂ ≈

k∑
j=0

sj
j∑
i=0

(−1)i
(
k+p
i

)
(1 + k + p− i+ β)k−1 aj−i

ak+p−i

k∑
j=0

sj(−1)j
(
k+p
j

)
(1 + k + p− j + β)k−1 1

ak+p−j

(3.13)

The powers (1 + β)k in equations (3.12) and (3.13) replaced by Pochhammer symbols

(1 + β)k result in the proposed approximations ŷ (3.14) and τ̂ transformations (3.15)
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similar to Weniger y and τ transformations:

ŷ ≈

k∑
j=0

sj
j∑
i=0

(−1)i
(
k+p
i

)
(1 + k + p− i+ β)k−2

aj−i
ak+p−i

k∑
j=0

sj(−1)j
(
k+p
j

)
(1 + k + p− j + β)k−2

1
ak+p−j

(3.14)

τ̂ ≈

k∑
j=0

sj
j∑
i=0

(−1)i
(
k+p
i

)
(1 + k + p− i+ β)k−1

aj−i
ak+p−i

k∑
j=0

sj(−1)j
(
k+p
j

)
(1 + k + p− j + β)k−1

1
ak+p−j

(3.15)

From the equations (3.12)-(3.15), it is clear that the number of Taylor coefficients

computed are k + p + 1 (a0 to ak+p). While all the coefficients a0 to ak+p are used

for computing the numerator polynomial, the coefficients ap to ak+p only are used for

computing the denominator polynomial.

3.2.1 Choice of the parameters p and β

In the proposed variants given in equations (3.12) - (3.15), the parameter p helps in

avoiding the leading Taylor coefficients. Given a Taylor series, it is therefore important

to compute a value for p. A method to do this is given in Lemma 1 below:

Lemma 1 :The k+1 Taylor coefficients ap, ap+1,· · · ,ak+p used in construction of the kth

order denominator polynomial in equations (3.12) - (3.15) have to satisfy the inequality
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given by,

ap+l · ap+l+1 < 0 ∀ l (l = 0 to k − 1) (3.16)

Proof : Necessary condition for the BIBO stability [78] of a rational function mandates

that all the coefficients of the denominator polynomial exist and have the same sign.

From the proposed transformations (3.12) - (3.15), it is clear that each coefficient of

the denominator polynomial is multiplied by (−1)k+p−j which results in a polynomial

with alternating signs. Hence the k+ 1 Taylor coefficients ap to ak+p have to be strictly

alternating proving the inequality given by equation (3.16). Hence, the leading p terms

that do not follow the equation (3.16) should be avoided. The value of p need not

always be the least value which satisfies the equation (3.16) but can also be of higher

value.

Once a value for p is finalized from Lemma 1, a minimum value for β can be chosen

from the following inequality.

β > −(p+ 1) (3.17)

This is obtained from the fact that the factor (1 + k + p− j + β) in equations (3.12) -

(3.15) should always be positive. The process of choosing an exact value of β during

the approximation is detailed in the next Section.
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3.2.2 Rational approximation and admissibility property

An important property of the wavelet transform is that the wavelet ψ(t) should have

at least one vanishing moment. This is known as the wavelet admissibility condition

[31] and is given by

∫ ∞
−∞

ψ(t)dt = 0 (3.18)

It is known that the impulse response h(t) of the wavelet filter obtained from the

approximated transfer function H(s) (equation 3.4) should also satisfy the admissibility

property. In the Laplace domain this requirement translates to having a zero component

at zero frequency i.e, H(0) = 0.

The admissibility property would be satisfied by the proposed approximations (3.12)

- (3.15), if the first Taylor coefficient of H(s), a0 is allowed to be zero. Alternatively,

this property would be satisfied if the constant term of the numerator is allowed to be

zero after the approximation is made. The latter approach is followed in this work since

the term a0 plays a role in determining all the coefficients of the numerator polynomial.
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3.3 Approximation of Different Wavelet Bases us-

ing Proposed Variants

In this section we demonstrate how the proposed variants can be used to approximate

different wavelet bases. First, a wavelet at a given dilation (σ) and translation (t0) is

chosen, then its Laplace transform is computed and the corresponding Taylor series

expansion around zero is obtained. For a given order of approximation k, the value of

p (the number of leading irregular Taylor coefficients to be avoided) is selected with

the help of Lemma1 mentioned earlier. A minimum value of β for a given value of

p is then obtained from the equation (3.17). As the value of β is varied around the

minimum value, the impulse response also varies which is different for different variants

proposed. Each variant has it’s own value of β for which the impulse response obtained

has a minimum mean square error (MSE) with reference to the actual wavelet. Figure

3.3 shows the variation of mean square error of the 5th order approximation of the

Gaussian wavelet as β is varied.

Referring to the parameter n mentioned earlier, a value greater than the number of

leading irregular Taylor coefficients results in a Hurwitz polynomial in the denominator

(all poles lying on the left half of the complex plane) as can be seen from figure 3.2.

Similarly, the value of p greater than the value obtained by the least value satisfying

Lemma 1 for a given value of k, also successfully avoids the leading irregular Taylor
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Figure 3.3: Variation of MSE with β for 5th order approximation of the
proposed variants (p=1) for a Gaussian wavelet (t0 = 2 , σ = 1)

coefficients. Tables 3.2-3.5 show the variation of MSE for a given order as p is increased

for the proposed û, t̂, ŷ and τ̂ - approximations of Gaussian wavelet respectively.

Table 3.2: Variation of minimum MSE as p is varied for û-transformation
approximation of Gaussian wavelet. (the corresponding β value for which the

mininum MSE occurs is given in braces)

order 4 order 5 order 6 order 7

p=1 0.0095 (-0.88) 9.50e-4 (-0.45) 5.99e-4 (-0.1) 3.69e-4 (0.27)
p=2 0.0114 (-1.65) 0.0019 (-1.18) 2.41e-4 (-0.74) 2.15e-5 (-0.43)
p=3 0.0126 (-2.57) 0.0027 (-2.05) 2.90e-4 (-1.57) 1.97e-4 (-1.25)
p=4 0.0136 (-3.56) 0.0035 (-2.98) 3.77e-4 (-2.50) 2.02e-4 (-2.17)

Once the values of p and β are finalized, the important property of admissibility is

ensured by making the constant term of the numerator polynomial, if any, to zero. If

strictly proper rational approximations are required then the numerator polynomials

in (3.12) - (3.15) are truncated to k − 1.
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Table 3.3: Variation of minimum MSE as p is varied for t̂-transformation
approximation of Gaussian wavelet. (the corresponding β value for which the

mininum MSE occurs is given in braces)

order 4 order 5 order 6 order 7

p=1 0.0031 (-0.30) 0.0018 (0.08) 0.0017 (0.49) 7.38e-4 (1.17)
p=2 0.0051 (-0.98) 8.51e-4 (-0.58) 7.44e-4 (-0.20) 3.06e-4 (0.3)
p=3 0.0066 (-1.81) 8.81e-4 (-1.44) 4.68e-4 (-1.09) 2.28e-4 (-0.71)
p=4 0.0078 (-2.74) 0.0010 (-2.39) 3.91e-4 (-2.03) 2.55e-4 (-1.71)

Table 3.4: Variation of minimum MSE as p is varied for ŷ-transformation
approximation of Gaussian wavelet. (the corresponding β value for which the

mininum MSE occurs is given in braces)

order 4 order 5 order 6 order 7

p=1 0.0103 (-1.23) 0.0015 (-1.15) 1.19e-4 (-1.14) 6.88e-4 (-1.19)
p=2 0.0120 (-2.02) 0.0026 (-1.89) 2.01e-4 (-1.84) 3.14e-5 (-1.88)
p=3 0.0131 (-2.94) 0.0035 (-3.69) 3.45e-4 (-2.70) 2.90e-5 (-2.71)
p=4 0.0141 (-3.93) 0.0013 (-3.53) 3.72e-4 (-3.61) 4.32e-5 (-3.61)

Table 3.5: Variation of minimum MSE as p is varied for τ̂ -transformation
approximation of Gaussian wavelet. (the corresponding β value for which the

mininum MSE occurs is given in braces)

order 4 order 5 order 6 order 7

p=1 0.0038 (-1.02) 6.69e-4 (-1.03) 4.83e-4 (-1.01) 1.99e-4 (-0.84)
p=2 0.0059 (-1.71) 6.84e-4 (-1.72) 1.89e-4 (-1.74) 8.24e-5 (-1.68)
p=3 0.0073 (-2.56) 9.69e-4 (-2.59) 1.16e-4 (-2.60) 4.61e-5 (-2.65)
p=4 0.0085 (-3.50) 0.0013 (-3.53) 1.39e-4 (-3.51) 5.06e-5 (-3.59)

A 5th order approximation of the Gaussian wavelet, for example, obtained with the

proposed τ̂ -approximation that has minimum MSE of all the proposed variants, for

p = 1 and β = −1.03, is given by equation (3.19) and is shown in figure 3.4(a).

−0.0061s4 + 2.985s3 − 8.996s2 + 51.63s

s5 + 6.042s4 + 21.21s3 + 45.2s2 + 55.07s+ 29.77
(3.19)

This method can also be used to approximate several mother wavelet bases. Figure
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Figure 3.4: Wavelet base approximations carried out using the proposed
variants. The thick gray line is the wavelet and the dashed black line is
the impulse response of the approximated wavelet. Following wavelets are
approximated with orders O() and time shifts T (): (the scale σ is 1 unless
specified otherwise) (a) Gaussian Wavelet O(5), T (2) (b) Mexican Hat Wavelet
O(7),T (3) (c) Compactly supported Spline Wavelet of order 2 O(8) T(0) (d)
3rd derivative of B-Spline of order 7, O(9), T (0), σ = 0.5 (e) 4th derivative
of Exponential-Spline of order 8, α = 0.25, O(9), T (0) (f) Morlet Wavelet
(Gaussian multiplied by cosine of angular frequency 6rad/sec),O(10), T (3).
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3.4 shows approximations of wavelet bases such as Gaussian wavelet, Morlet wavelet

and Mexican Hat wavelets. Wavelets belonging to the spline wavelet family like

interpolatory splines [80], compactly supported splines [81], exponential splines [82]

have also been approximated using the proposed method and the same are shown in

figure 3.4.

The Table 3.6 illustrates the trade-off between truncation of energy and approxi-

mation complexity for the proposed τ̂ -transformation while approximating a Gaussian

wavelet. Such kind of tabulation helps in choosing an appropriate value for t0 before

proceeding for implementation.

Table 3.6: Effect of the time shift on the Order of approximation, MSE and
Energy Loss for the τ̂ -transformation when approximating Gaussian wavelet

(σ =1)

shift 2.0 shift 2.5 shift 3.0 shift 3.5

Order MSE

4 0.0038 0.0103 0.0188 0.0273
5 6.69e-4 0.0019 0.0053 0.0109
6 1.16e-4 4.54e-4 0.0014 0.0038
7 4.61e-5 1.23e-4 3.28e-4 9.26e-4
8 1.33e-5 5.26e-5 1.38e-4 3.02e-4
9 2.09e-6 1.51e-5 5.77e-5 1.53e-4

Energy Loss 7.10e-4 9.67e-6 4.73e-8 3.15e-10
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3.4 Performance Evaluation

3.4.1 Comparison with Padé Method

The mean square error between the impulse responses obtained and the actual wavelets

is used as a measure of comparison between different approximation methods. Since

the proposed variants result in closed-form solutions, comparison is first made with the

Padé method. As discussed in [79], the variant of nonlinear sequence transformation

that gives the best MSE has not yet been established. It depends on the sequence

to be transformed and any one of the variants gives the best MSE for a given order.

This behaviour can be observed for the variants proposed in this work, as seen from

figure 3.5, which shows the MSE plotted against different orders of approximations for

different wavelets.

In case of the Gaussian wavelet, the proposed τ̂ -transformation performs better

than the Padé method for all the orders as seen from figure 3.5(a). Among other

variants, while the t̂-transformation performs the best for the orders 4 and 5, the

ŷ-transformation performs the best for the orders 6 through 8. In case of the Mexican

Hat wavelet, the τ̂ -transformation performs as well as or better than the Padé method

for all orders as seen from figure 3.5(b). While the t̂-transformation performs the

best for orders 6 and 7, the τ̂ -transformation gives the best MSE for orders 8 through

10. The 9th order τ̂ -transformation can be clearly seen to be performing on par with



Chapter 3. Approximation of Nonlinear Sequence Transformation-based
Continuous-Time Wavelet Filter 51

(a) (b)

(c) (d)

Figure 3.5: MSE versus order of approximation for Padé and Proposed
variants for (a) Gaussian Wavelet (t0 = 2, σ = 1) (b) Mexican Hat Wavelet
(t0 = 3, σ = 1) (c) Third derivative of seventh order B-spline (t0 = 0, σ = 0.5)
(d) Fourth derivative of eighth order Exponential spline (t0 = 0, σ = 1, α = 0.25)

the 10th order Padé approximation. In case of the B-spline wavelet, t̂-transformation

performs the best for orders 7 and 8, while τ̂ -transformation performs the best for

orders 9 through 11 as seen from figure 3.5(c). The 10th order τ̂ -transformation can be
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clearly seen to be performing on par with the 11th order Padé approximation. For the

exponential spline wavelet, t̂-transformation performs the best for orders 7 through

9, while τ̂ -transformation performs the best for orders 10 and 11 as seen from figure

3.5(d). The 9th order û, t̂ and τ̂ -transformations can be clearly seen to be performing

on par with the 11th order Padé approximation, which is a notable advantage of the

proposed variants.

While Padé approximation has been shown to be a very special case of nonlinear

sequence transformation under some conditions [83], it should be remembered that

there are substantial differences between the sequence transformations and Padé

approximation. For example, Levin and Weniger transformations are obtained with

the help of explicit expressions whereas Padé approximation is obtained by solving a

system of equations.

3.4.2 Comparison with the L2 Method

It has been shown in [84] that for a given order, L2 method gives better MSE when

compared to the Padé method. The same is true for the proposed variants also. That

is, L2 method still performs better than the proposed variants as seen from figure 3.6

which plots the MSE of L2 method and the best among the four proposed variants for

a given order for different wavelets. However, an extra step of model reduction [85]

applied on any of the medium order (14− 20) proposed variants to the required lower
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order improves the accuracy. figure 3.6 also provides a comparison between the MSEs

of the rational approximations obtained by balance and truncate model reduction of

one of the medium order variants and the L2 method. It may be mentioned here that

the L2 approximation is obtained using the RARL2 toolbox [86].

The proposed variant used, the medium order from which it is reduced and the

corresponding p and β values for different wavelets are given in Table 3.7. In case

of the Gaussian wavelet, for orders such as 4 and 5 the MSE values of the reduced

variant and the L2 method are so close that any difference is of no consequence from

an implementation point of view, as seen from figure 3.6(a). However, in some cases

the difference in MSE is notable. The 6th order model reduced approximation has

a value of MSE better than that of 7th order obtained by the L2 method. Similarly,

for the Mexican Hat wavelet in figure 3.6(b), the L2 method and the model reduced

ŷ-transformation have almost the same MSE values for orders 6 and 7. However, the

9th order model reduced approximation has a value of MSE better than that of 10th

order obtained by the L2 method.

Table 3.7: Proposed variant, its order and corresponding p and β values used
for model reduction for different wavelets

Wavelet Variant Reduced Order p (β)
Gaussian Wavelet τ̂ -transformation 14 6 (-6.02)

Mexican Hat Wavelet ŷ-transformation 16 8 (-7.79)
B-spline Wavelet τ̂ -transformation 16 14 (-13.48)

Exponential-spline Wavelet τ̂ -transformation 16 5 (-5.76)

For B-spline wavelet in figure 3.6(c), the model reduced approximation has a value
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(a) (b)

(c) (d)

Figure 3.6: MSE versus order of approximation for L2 method, model reduced
proposed variant and best among the proposed variants (a) Gaussian Wavelet
(t0 = 2, σ = 1) (b) Mexican Hat Wavelet (t0 = 3, σ = 1) (c) Third derivative of
seventh order B-spline (t0 = 0, σ = 0.5) (d) Fourth derivative of eighth order

Exponential spline (t0 = 0, σ = 1, α = 0.25)

of MSE better than that obtained by the L2 method for orders 8 through 11. In case of

the Exponential-spline wavelet, the L2 method and the model reduced ŷ-transformation

have almost the same MSE values for all the orders 7 through 11 as seen from figure
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3.6(d).

It can be argued that the approximations obtained by the Padé method can also

be improved by the method discussed in this section. However, a medium order

approximation obtained by the Padé method does not guarantee stability. In case of

both the Gaussian and Mexican Hat wavelets, approximations obtained by the Padé

method for orders above 10 have been found to be unstable. In case of B-spline and

Exponential-spline wavelets, approximations obtained by the Padé method for orders

above 11 have been found to be unstable.

3.4.3 Proposed Variants as Alternate Starting Points

Approximations obtained by optimization methods that rely on local search routines,

like the L2 method, depend largely on the starting points. Different starting points

result in different solutions after optimization and a good starting point may help in

avoiding local optima. Having several starting points gives flexibility to designers in

picking a solution. The rational approximations generated by the proposed variants

can also act as alternate starting points for optimization routines.

The same medium order calculated for each wavelet in the Table 3.7 is given as

alternate starting point along with a same order starting point by the method described

in [1] and the resulting MSEs are shown in figure 3.7. From figure 3.7(a), 3.7(b) and
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3.7(d), it is clear that the proposed variant and the method in described in [1] give

similar MSEs for Gaussian, Mexican Hat and Exponential-spline wavelets. However,

for the B-spline wavelet, it can be seen that the proposed variant as starting point

gives much better MSEs for orders 8 through 11 as seen from figure 3.7(c).

(a) (b)

(c) (d)

Figure 3.7: MSE versus order of approximation for L2 method with proposed
variant and method described in [1] as starting points (a) Gaussian Wavelet
(t0 = 2, σ = 1) (b) Mexican Hat Wavelet (t0 = 3, σ = 1) (c) Third derivative of
seventh order B-spline (t0 = 0, σ = 0.5) (d) Fourth derivative of eighth order

Exponential spline (t0 = 0, σ = 1, α = 0.25)
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3.5 Conclusion

New variants of nonlinear sequence transformation to approximate wavelet filters

have been proposed in this chapter. These variants identify irregular leading Taylor

coefficients and discount them in constructing denominator polynomials of the wavelet

filter transfer function. The proposed variants have explicit expressions which result in

closed-form solutions. When compared to the Padé method, at least two variants have

outperformed it for a given order depending on the wavelet considered. It has also

been shown that the model reduced approximation of the proposed variants performs

as well as the L2 method for lower orders (4− 7) and better for higher orders (8− 11).

It has been shown that these variants can also be useful as alternate starting points to

the L2 optimization routine.



Chapter 4

Closed-Form Design of

Continuous-Time Linear-Phase

Selective Filters

Design of continuous-time linear-phase selective filters demands rectangular magnitude

and linear-phase response requiring a multi-objective optimization approach involving

trade-offs. Earlier work focused on optimizing a combination of frequency domain

characteristics like equiripple pass-band with linear-phase [87–89], equiripple pass-band

with flat group delay [90, 91], monotonic pass-band with sharp cut-off characteristic

[92, 93], monotonic pass-band with flat group-delay [94], sharp cut-off characteristic

with equalized group-delay [95], equiripple pass-band and stop-band characteristics

58
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with group-delay equalization [96], monotonic or ripples of arbitrary width in pass-

band with group-delay maximally flat or equiripple in whole or part of pass-band [97]

etc. Later, it has been found that the time-domain properties of these filters, such

as, impulse response symmetry [38, 98] and distortion [39] help in formulating much

simpler optimization criteria. Such an approach leads to a successful time-domain

synthesis of linear-phase selective filters [24–26]. Time-domain synthesis has also

been successfully used for approximating wavelet filters [1, 22, 23] and pulse forming

and shaping networks [27–29]. While modern optimization techniques offer optimal

solutions to design both discrete and continuous-time filters, closed-form solutions are

also pursued [99] because they are easy to design and can act as starting points to

optimization methods that rely on initial approximations.

Time-domain based closed-form solutions for linear-phase selective filters are present

in discrete-domain [99] but the same for continuous-time domain are not present to

the knowledge of the authors. Closed-form continuous-time filters in general can be

obtained by approximating the transfer function of a linear time invariant system

to a proper rational function with required impulse response using techniques like

Padé approximation [45] and nonlinear sequence transformation discussed in the

previous chapter. However extending this technique for the synthesis of linear-phase

selective filters will result in rational functions that have complex co-efficients, making

their implementation difficult [73]. This is because the Taylor co-efficients of transfer

functions of such filters are complex.
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In this chapter, a time-domain based closed-form design of continuous-time linear-

phase selective filters is attempted for the first time. It involves expressing Laplace

transform of the impulse response of linear-phase selective filters as a sum of shifted

and scaled causal splines. Causal splines are considered in this work because their

Laplace transforms can be calculated easily and also they have Taylor expansions

with real co-efficients. The resulting expression is approximated to a rational form of

medium order (15− 20) using variants of nonlinear sequence transformation proposed

in the previous chapter which is then reduced to a desired order using balance and

truncate method [85].

4.1 Causal B-splines

Causal B-splines [100] are a result of n-fold convolution of the rectangle function given

by

β0
+(t) =


1 0 ≤ t ≤ 1

0 otherwise

(4.1)
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The Laplace transform of a nth order causal B-spline is easily calculated by the

convolution property and is given as

LT [βn+(t)] = Bn
+(s) =

[
1− e−s

s

]n+1

(4.2)

The time-domain equation of a nth order causal B-spline is calculated by taking the

inverse Laplace transform of (4.2) instead of calculating the n-fold convolution and it

is given as

βn+(t) =
1

n!

n+1∑
k=0

(−1)k

n+ 1

k

 (t− k)n+ (4.3)

The above equations represent the classic B-splines when the order of convolution n

is a positive integer (n ≥ 0 ). This however differs slightly when we try to define a

fractional spline [101]. Because only causal splines are considered, we can obtain the

corresponding Laplace transform and time-domain equations of fractional splines with

only slight modifications to the equations (4.2) and (4.3). These are given by equations

(4.4) and (4.5) respectively, where α is the fractional order:

Bα
+(s) =

[
1− e−s

s

]α+1

(4.4)
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βα+(t) =
1

Γ(α + 1)

+∞∑
k=0

(−1)k

α + 1

k

 (t− k)α+ (4.5)

There are however two important differences between a fractional spline and a classic

spline. First is the axis of symmetry. While equation (4.2) represents a symmetric

spline for every positive integer, same is not true with equation (4.4). Second difference

is the compact support. While classic splines are compactly supported, fractional

splines are not so but decay in proportion to |s|−α−2 [101].

4.2 Proposed Method

The impulse response h(t) of a linear-phase selective filter is a symmetric sinc pulse

[26] given by

h(t) =


0 t < 0

ωcsinc[ωc(t− T0)] 0 < t ≤ 2T0

0 t > 2T0

(4.6)

where ωc is the cut-off frequency, T0 is the delay and sinc(x) = sin(x)/x for x 6= 0 and

1 for x = 0. Let us assume that the impulse response required is as shown in figure

4.1, with cut-off frequency (ωc) chosen as 1 rad/sec (4.6). The idea is to develop an

expression for the main lobe and each of the side lobes of the response individually
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in the interval 0 < t ≤ 2T0 using causal splines, both classic and fractional, and add

them up to form a final expression.

-0.4
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Figure 4.1: Required Symmetric Sinc pulse with delay T0 and cut-off frequency
ωc = 1 rad/sec.

It can be seen from figure 4.1 that the main lobe M0 of the required impulse

response is symmetric around T0 with a width 2π and amplitude 1. Since the main

lobe is symmetric, it can be approximated by a classic-spline. Thus, Laplace transform

of M0 can be written as a scaled and shifted classic causal B-spline of the order 1 given
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by

M0(s) = π

[
1− e−πs

πs

]2

e−(T0−π)s (4.7)

Note that the B-spline in equation (4.7) is scaled and multiplied by π so that the main

lobe’s width and amplitude are 2π and 1 respectively. It is also multiplied by e−(T0−π)s

to achieve the shift of T0 − π so that it is centered around T0.

Now the side lobe immediately to the right of the main lobe, m+1 and immediately

to the left of the main lobe, m−1, are to be defined. It is clear from figure 4.1 that

both the side lobes m+1 and m−1 have a width of π, amplitude of −0.217 but do not

have an axis of symmetry. Thus, these two side lobes can be expressed with the help of

a fractional spline of the order α + 1 = π, whose maximum amplitude is ≈ 0.75. Since

the absolute maximum value of the side lobes m+1 and m−1 occurs approximately at

T0 + 3π
2

and T0 − 3π
2

respectively, we can define the Laplace transform of side lobes

m+1 and m−1 as

m+1(s) ≈
sinc[3π

2
]

0.75

[
1− e−s

s

]π
e−(T0+π)s (4.8)

m−1(s) ≈
sinc[3π

2
]

0.75

[
1− e−s

s

]π
e−(T0−2π)s (4.9)

These side lobes are shifted by appropriate amounts so that they occur just before and
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after the main lobe. Similarly, the side lobes m+2 and m−2 are expressed as shifted

and scaled versions of causal fractional splines similar to equations (4.8) and (4.9).

Finally, the Laplace transform of each lobe in the interval 0 < t ≤ 2T0 is calculated

and summed up to obtain the expression for Laplace transform of the required impulse

response (4.10).

H(s) = . . .+m−2(s) +m−1(s) +M0(s) +m+1(s) +m+2(s) + . . . (4.10)

The delay T0 in equation (4.6) is chosen to be at least 2π so that symmetry exists.

Thus, the generalized expression for transfer function of linear-phase selective filter

H(s) with delay T0 = pπ, p ≥ 2 is given as in equation (4.11) below.

H(s) = π

[
1− e−πs

πs

]2

e−(p−1)πs︸ ︷︷ ︸
Main lobe

+

p−1∑
k=1

sinc[(2k + 1)π
2
]

0.75

[
1− e−s

s

]π
e−(p+k)πs

︸ ︷︷ ︸
Side lobes to the right of main lobe

+

p−1∑
k=1

sinc[(2k + 1)π
2
]

0.75

[
1− e−s

s

]π
e−(p−(k+1))πs

︸ ︷︷ ︸
Side lobes to the left of main lobe

(4.11)

4.2.1 Magnitude and Phase properties of the Proposed Filter

Equation (4.11) given earlier provides an approximation to the Laplace transform of

the impulse response of linear-phase selective filters. The expressions governing the
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magnitude |H(jω)| and phase ∠H(jω) of the proposed transfer function are given in

(4.12) and (4.13).

|H(jω)| = 2

0.75

∣∣∣sinc(
ω

2
)
∣∣∣π p−1∑

k=1

∣∣∣sinc((2k + 1)
π

2
)
∣∣∣+ π

∣∣∣sinc(
πω

2
)
∣∣∣2 (4.12)

H(jω) = −pπω +
π2ω2

2
(2p− 1) (4.13)

From the above equations it is clear that the magnitude approximates a rectangular

function as depicted in figure 4.2(a) for p=4. Also the phase is a linear function

of frequency in the pass-band as shown in figure 4.2(b). From the figure 4.2 it is

clear that equation (4.11) produces the required magnitude and phase responses for

linear-phase selective filters. However, this transfer function is not in a practically

realizable form and needs to be converted to a proper rational function. Since the

motivation of this work is to obtain a closed-form solution, we opt for ŷ-transformation

proposed in the previous chapter to obtain a medium order (15− 20) approximation,

which is subsequently balanced and truncated to obtain the linear-phase selective filter

of required order. Getting a (given) kth order approximation from equation (4.11)

depends on two factors: i) The delay T0 which is characterised by p in (4.11) and ii)

The medium order kn,m, where n and m are degrees of numerator and denominator

respectively, from which the required kth order is to be obtained. Table 4.1 describes



Chapter 4. Closed-Form Design of Continuous-Time Linear-Phase Selective Filters67

0 0.5 1 1.5 2
Frequency rad/s

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 d

B

(a)

0 0.5 1 1.5 2
Frequency rad/s

-20

-15

-10

-5

0

5

P
ha

se
 r

ad

(b)

0 0.5 1 1.5 2
Frequency rad/s

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 d

B

(c)

0 0.5 1 1.5 2
Frequency rad/s

-25

-20

-15

-10

-5

0

P
ha

se
 r

ad

(d)

0 0.5 1 1.5 2
Frequency rad/s

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 d

B

(e)

0 0.5 1 1.5 2
Frequency rad/s

-25

-20

-15

-10

-5

0

P
ha

se
 r

ad

(f)

Figure 4.2: Magnitude and Phase response of the proposed transfer function
for p=4 (a) Magnitude response (b) Phase response
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two parameters p and kn,m used to obtain the kth order approximation. These two

parameters are chosen such that the Hankel singular value of the reduced order is less

than 0.1 except for lower orders 3 to 5 for which it is taken as 0.5.

Table 4.1: The values of p and the medium order kn,m

Order of
Approximation

(k)

Delay
Parameter (p)

Medium Order
(kn,m)

3 2 [11,13]
4 2.5 [11,13]

5 3 [12,14]
6 3.5 [12,14]
7 4 [13,15]

8 4.5 [13,15]
9 5 [14,16]
10 5.5 [14,16]
11 6 [15,17]

12 6.5 [15,17]

4.3 Properties of the Proposed Filters

Continuous-time linear-phase selective filters with ωc of 1 rad/sec are synthesized using

the proposed method and their properties studied in this section. Figure 4.3 shows

the magnitude and phase responses of the proposed filters. Figure 4.3(a) gives the

responses for orders 4, 5 and 7 while figure 4.3(b) and figure 4.3(c) provide the same for

orders 7 to 9 and 10 to 12 respectively. It can be seen clearly from the figures that the

magnitude response approximates a rectangle function, with ripples of arbitrary width

in the pass-band. Further, it is clear from figure 4.3(b) that for k ≥ 6 the pass-band

ripple is less than 2 dB. Similarly, it can be seen from figure 4.3(c) that for k ≥ 9,

the pass-band ripple is around 0.5 dB. For a given kth order, the proposed filters

result in k poles and k − 1 zeros. Because of the zeros we can observe notches in the
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stop-band responses in figure 4.3(a) to 4.3(c). Figure 4.3(d) gives the phase responses

of the proposed filters form k = 4 to k = 12. It is clear from this figure that the phase

response is linear in the passband as required. The slope of the phase responses can

be seen to be increasing as the order of the filter is increased. This is because the

delay parameter p is increased as the filter order is increased. Figure 4.4 shows the

impulse responses of the proposed filters of the orders 4 to 12. As desired, the impulse

responses almost mimic the required symmetric sinc responses.
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Figure 4.3: Magnitude and responses of proposed filter normalized to ωc = 1
rad/sec (a) Magnitude responses for orders 4, 5 and 6 (b) Magnitude responses
for orders 7, 8 and 9 (c) Magnitude responses for orders 10, 11 and 12 (d) Phase

responses for orders 4 to 12
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Figure 4.4: Impulse responses of the proposed filter (a) Orders 4, 5 and 6 (b)
Orders 7 and 8 (c) Orders 9 and 10 (d) Orders 11 and 12
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4.4 Comparison With L2-Method

Since there are no other time-domain based closed-form solutions for linear-phase

selective filters, the proposed method is compared to the L2 method, an iterative

procedure that optimizes the L2 norm between the approximation and the required

impulse response. The L2 optimization is carried out by the toolbox given in [86].

Figure 4.5 shows the comparison of the magnitude and phase characteristics of the

proposed method and the L2 method for orders 5, 7 and 9. From figure 4.5(a), it is

clear that the 5th order filter obtained by the proposed method has larger ripple in

the pass-band when compared to the L2 method. However, the proposed method has

a steeper cut-off characteristic, resulting in a better stop-band characteristic. The

ripple in the pass-band for both the methods is similar for 7th and 9th order filters

as seen from the figure 4.5(b) and 4.5(c) respectively. While the stop-band notch is

much deeper for the 7th order filter obtained by the L2 method when compared to

the proposed filter, it is same for both the methods for 9th order filters. The phase

characteristics obtained by both the methods are similar and linear in the pass-band

as seen from figure 4.5(d).
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Figure 4.5: Comparison of the proposed method with L2 method (a) 5th

order magnitude responses (b) 7th order magnitude responses (c) 9th order
magnitude responses (d) Phase response comparison for orders 5, 7 and 9
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4.5 Proposed Method as a Starting Point

Solutions obtained by optimization methods that rely on local search routines depend

largely on the starting points. Different starting points result in different solutions

after optimization and a good starting point may help in avoiding local optima. Having

several starting points gives flexibility to designers in picking a solution. In [1], an

automated procedure for generating starting points before doing L2 optimization has

been presented. This procedure involved model reduction of a higher order discrete-time

FIR filter to a medium order IIR filter which was then converted to continuous-time

and finally reduced to the required lower order.

The solution generated by the proposed method can also act as an alternate

starting point for optimization routines. Figure 4.6 shows a comparison of 9th order

filter responses obtained after L2 optimization, whose starting points are given by the

method in [1], and those by the proposed method. While the proposed method results

in a ripple of around 0.85 dB in the passband, the method proposed in [1] has a ripple

of around 1.4 dB. However, the starting point obtained through the proposed method

results in a deeper notch in the stopband compared to that given by the method in

[1]. As seen from figure 4.6(b), both methods result in linear-phase in the passband as

required. A designer can therefore choose among the two solutions depending on the

passband and stopband characteristics required.
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Figure 4.6: Comparison of responses of the 9th order filters after L2 opti-
mization using different starting points (a) Magnitude response (b) Phase

response.

4.6 Conclusion

In this chapter we proposed a time-domain closed-form solution to design continuous-

time linear-phase selective filters using the sum of shifted and scaled causal splines.

This method demonstrated the required characteristics of rectangular magnitude and

linear phase response. While it has been shown that the proposed method compares

well with the L2 method, it is also clear that the closed-form solution can also act as

an alternate starting point for optimization methods that use local search routines.



Chapter 5

Circuit Implementation

The final step in time-domain synthesis of continuous-time filters is the practical

implementation of the transfer function H(s) obtained using the techniques mentioned

in previous chapters. The electrical network that mimics the transfer function is not

unique and there are several ways in which it can be implemented. Although this

thesis concentrates mainly on the approximation problem in time-domain synthesis,

we also demonstrate that the transfer functions obtained by the proposed variants

can in fact be translated in to electrical networks. This is done by simulating a filter,

approximating a Gabor wavelet, as a Gm-C network.
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5.1 Circuit Implementation of Gabor Wavelet

In this section, a continuous-time analog circuit implementation of Gabor wavelet,

whose transfer function is approximated by making use of one of the proposed variants

of nonlinear sequence transformation, is presented. The Gabor wavelet is obtained by

multiplying a complex exponential with a Gaussian window function as given in the

equation below

ψ(t) = w(τ − t)e−i2πft (5.1)

w(τ) =
1

σ
√

2π
e−

τ2

2σ2 (5.2)

From the equation of the Gabor wavelet described in (5.1), the impulse response of

the LTI system to be implemented can be calculated and is given as

h(t) = e−i2πfτ
|f |√
2π
e−

(t−τ)2f2
2 e−i2πf(t−τ) (5.3)

From the above impulse response the transfer function of the filter is obtained as

H(s) =
|f |√
2π

∫ +∞

−∞
e−

(t−τ)2f2
2 e−i2πfte−stdt (5.4)

A good approximation of H(s) in equation (5.4) is required now to make implementation

feasible. Using one of the proposed variants of nonlinear sequence transformation as
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described by equations (3.12) - (3.15) a stable transfer function can be obtained. On

careful observation of the transfer function in equation (5.4), we can establish that the

Laplace transform needs to be calculated for the Gaussian window function multiplied

by e−i2πft. Therefore, the final transfer function is written with the help of convolution

property as

H(s) = Hgauss(s) ∗HE(s) (5.5)

where Hgauss(s) is the Laplace transform of the Gaussian window function, HE(s) is

the Laplace transform of e−i2πft and ∗ stands for convolution. Applying Euler’s formula

on equation (5.5), we can rewrite it as

H(s) = Hgauss(s) ∗
(
L[cos(2πft)]− j L[sin(2πft)]

)
(5.6)

By using one of the proposed variants of nonlinear sequence transformation as described

by equations (3.12) - (3.15) given in Chapter 3, a rational approximation for the

Gaussian window can be obtained. In this work a Gaussian window shifted by 1.5 time

units and at a frequency of 2 Hz is considered.

For a fifth order rational approximation, it is observed that the Hgauss(s) obtained by

using the Weniger ŷ-transform has the least Mean Square Error (MSE) of all the four

transformations and it is given as
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Figure 5.1: Impulse responses of the Gaussian window, the ideal impulse(solid
line) and the approximated impulse(dashed line).

0.03242s4 − 0.1847s3 + 6.31s2 − 28.86s+ 167.7

s5 + 8.876s4 + 44.13s3 + 131.6s2 + 223.3s+ 167.9
(5.7)

Figure 5.1 shows the impulse response of the approximated Gaussian window with

the required ideal response. Using equations (5.6) and (5.7) we can compute the final

transfer function and it should be obvious that it would have real and imaginary parts.

Both the real and imaginary transfer functions have the same denominators but the

numerators will vary. The final transfer function would be tenth order with 9 zeroes

for real part and 8 zeroes for imaginary part as seen in equation (5.8). The impulse

response of approximated imaginary and real transfer functions along with the ideal

responses are shown in figures 5.2 and 5.3 respectively. From these figures it can

be inferred that the approximation closely follows the required ideal waveform thus
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Figure 5.2: Impulse response approximation: Imaginary output

proving the Non linear sequence transformation method works very well.

D(s) = s10 + 17.75s9 + 956.6s8 + 1.22e04s7 + 3.31e05s6 + 3e06s5 + 5.2e07s4 + 3.07e08s3+

3.69e09s2 + 1.10e10s+ 9.25e10

Im(s) = 0.407s8 − 4.64s7 + 456.63s6 − 2.34e3s5 + 1.09e5s4 + 1.07e5s3 + 2.55e6s2 + 3.41e7s− 5.41e6

Re(s) = 0.032s9 + 0.10s8 + 26.57s6 + 146.695s5 + 3928.32s4 + 7.25e4s3 − 3.92e5s3 + 6.33e6s2 − 1.31e7s− 3.19e6

(5.8)
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5.2 Filter design

To prove that the approximated Gabor wavelet can be implemented, an Inverse Follow

the Leader Feedback (IFLF) input distribution filter design methodology [102] is

followed, for realization of both poles and zeros. This is due to its simplicity in

synthesis of a generic transfer function. IFLF filters are based on OTA-C integrators as

the main building blocks. All the internal circuit nodes contain a grounded capacitor

in this filter structure [103].



Chapter 5. Circuit Implementation 82

Vin+ Vin-

Vbias

VDD

MM1 MM2

M1 M2

M3 M4

M5

Vout

Ibias

Figure 5.4: Schematic of the transconductor.

5.3 Low power transconductor circuit design

A fully integrable filter design is made possible by OTA-C filter design methodology.

The transfer functions obtained in equation (5.8) have characteristics of band pass filter.

The center frequency of the two transfer functions is 2 Hz as we started out with a

Gaussian window which localizes a frequency of 2 Hz. This low value of center frequency

results in large time constants, which require very low value of transconductances, in
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the range of pS. To be able to achieve these low transconductances, very low bias

currents in the range of pA are required. In [104], it is shown that bias currents in the

range of fA are indeed achievable. Figure 5.4 shows the transconductor block used

in the current work. It consists of a simple PMOS differential pair and employs a

current division technique [105] to achieve very low transconductances as required in

the present situation. All the transistors shown in figure 5.4 are operated in deep weak

inversion region to obtain the lower value of the transconductances as needed.

5.4 Simulation Results

The tenth order real part of the transfer function of the Gabor wavelet filter is simulated

using TSMC 0.18 µm technology with a supply voltage of 1.8 V and a total capacitance

of 527.8 pF as shown in figure 5.5. The simulated magnitude response is shown

along with the actual magnitude response in figure 5.6. As per the design the center

frequency of the filter is observed at 2 Hz. The filter draws a total current of 4.48

nA resulting in a total power consumption of around 8 nW. The transfer function

magnitude characteristics resemble that of a band pass filter with a pass band ranging

from 1.74- 2.25 Hz. Since the pass band is only 0.51 Hz wide, it would be inappropriate

to compute Total Harmonic Distortion (THD). Therefore, the filter distortion is quoted

in terms of third order intermodulation distortion (IMD3). Sine wave inputs of 2 Hz

and 2.1 Hz with an amplitude of 60.6 mVpp are applied to the filter resulting in a IMD3
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of -19.99 dB with a dynamic range of 42.15 dB. Input signal levels can be up to 60.6

mVpp and the input referred noise is observed to be 473.1 µV/
√
Hz. The performance

of the filter is summarized in Table 5.1.

Table 5.1: Summary of simulated filter performance

VDD = 1.8 V, TSMC 0.18 µm technology
Order and Topology 10th order and single ended

Supply current drawn 4.48 nA
Total capacitance 527.8 pF

Power consumption 8.07 nW
Center frequency 2 Hz

Signal input range Up to 60.6 mVpp

Input referred noise 473.1 µ V/
√
Hz

THD (2Hz, 60.6 mVpp input) <-29 dB
IMD3 (2, 2.1 Hz inputs 60.6 mVpp ) -19.99 dB

Dynamic range (for -20 dB IMD3 at output) 42.15 dB
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5.5 Conclusion

In this chapter, an electrical network that implements a Gabor wavelet filter obtained

by one of the proposed variants is simulated to validate the technique. IFLF input

distribution filter architecture has been used for simulation. Since this architecture is

based on OTA-C design methodology, a low power transconductor circuit is designed.

Using this transconductor as the basic building block, a tenth order real part of transfer

function of Gabor wavelet filter is simulated. Results clearly shown that the circuit

closely approximates the required transfer function.



Chapter 6

Conclusions and Future Work

In this work, our prime focus has been on obtaining closed-form solutions to the

time-domain synthesis approximation problem for advanced continuous-time filters

such as wavelet filters and linear-phase frequency selective filters. Nonlinear sequence

transformation and many of its variants have been attempted to obtain such closed-form

solutions. However, due to initial irregular Taylor coefficients in the Taylor series of

the transfer functions of these advanced filters, BIBO stable rational transfer functions

could not be obtained. Therefore, new variants of nonlinear sequence transformation

that discount the initial irregular Taylor coefficients have been proposed.

These variants have been shown to be successful in being able to approximate

several mother wavelet bases like Gaussian, B-spline and E-spline wavelets. They have

also been shown to be better in terms of MSE when compared to the other closed-form

87
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method, the Pade method. It has been found that the MSEs of model order reduced

transfer functions of the proposed variants are comparable to those obtained by the L2

optimization routine. It is observed that these closed-form solutions can also act as

starting points for optimization routines.

In case of linear-phase frequency selective filters, the desired impulse response is a

symmetric sinc pulse. When the proposed variants were applied on the Taylor series

of the Laplace transform of the sinc pulse, they resulted in rational approximations

but with complex coefficients. Such complex coefficients however make practical

implementation of these filters cumbersome. To achieve rational approximation with

real coefficients, first the Laplace transform of the sinc pulse was approximated with

the help of shifted and scaled causal splines. After obtaining this approximation, one of

the proposed variants has been used to achieve a medium order approximation which

is balanced and truncated to the required order to obtain the final transfer function.

While it has been demonstrated that the proposed method compares well with the L2

method, it has also been shown that the closed-form solution can act as an alternate

starting point for optimization methods that use local search routines.

Finally, a Gabor wavelet filter transfer function obtained by one of the proposed

variants has been simulated to validate the technique. Architecture of IFLF input

distribution filter has been used for simulation. Since it is based on operational

transconductance amplifier - capacitor (OTA-C) design methodology, a low power

transconductor circuit has been designed. Using this transconductor as the basic
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building block, a tenth order real part of transfer function of Gabor wavelet filter was

simulated. Results clearly indicate that the circuit closely approximates the required

transfer function.

6.1 Future Work

From an implementation perspective, it was shown in [23] that continuous-time transfer

functions that have zeros only on the imaginary axis can be implemented as doubly or

singly terminated ladder filters. Such filters have been shown to have good dynamic

range, which is one of the crucial parameters in filter design. However, there are no

generic closed-form methods that can obtain transfer functions with zeros only on

imaginary axis. We plan to concentrate on approximating such transfer functions using

closed-form methods, in future.
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