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ABSTRACT 
 

With emergence of real-time, embedded systems and high performance computing 

environments, development processes for complex systems with concurrent and reactive 

behaviors has become important. There exist wide gap between the initial requirements 

phases and final system design for these systems. Ideally a formal, intuitive specification 

phase between requirements and architecture design is needed. The Unified Modeling 

Language (UML), a de facto industry standard, provides intuitive graphical design 

notations for modeling static as well as dynamic aspects of systems. But, the behavioral 

specification in UML is representative in nature rather than complete. Further, UML lacks 

constructs, semantics towards precise specification of concurrent, reactive behaviors.  

 

There are major shortcomings in UML as a precise language to specify complex behaviors 

of concurrent and reactive systems. The higher level formalisms like Sequence diagrams, 

Statecharts, and Activity diagrams are inconsistent and are not well integrated with the 

underlying object model of UML. Current UML based approaches depend on low-level 

primitives such as semaphores, monitors etc., to model concurrency features. Many Real-

Time UML methodologies for example COMET, CODARTS are largely based on 

informal design heuristics with focus on static aspects of the systems. For example 

liveness issues of concurrent systems are not considered in above approaches. There exist 

formal approaches with precise semantics for UML such as RT-UML, UML-RT, and 

UML/SDL. There also exist translation based approaches into specific formalisms like 

CSP, LOTOS, Esterel etc for translating and analyzing certain aspects of UML models. 

Though promising, these approaches are neither intuitive nor integrated within traditional 

development processes.  

 

This thesis proposes a semi-formal specification framework in UML, namely cmUML, in 

the development of systems with concurrent and reactive behaviors. The framework 

adopts the principles and semantics of formal specification approaches for concurrent and 

reactive systems. It further clarifies inconsistencies and ambiguities in the usage and 

semantics of UML diagrams through a unifying framework, based on conceptual 

semantics and the foundations of the standard UML/ SPT Profile, and provide a basis for 
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explicit introduction of concurrency and reactivity. The framework is independent of 

implementation level primitives and associated semantics. 

 

The main contributions of the thesis are: 

 

• Definition of abstract components, with heterogeneous behaviors and semantics, to 

hierarchically constitute precise specification of complex systems 

• Integrating principles and semantics of formal specification approaches for 

concurrent, reactive systems e.g., liveness  

• Definition of specification constructs and mechanisms for explicit specification of 

complex behaviors of systems i.e., concurrency, reactivity, exception handling, and 

synchronization  

• Use of multiple behavior diagrams of UML i.e., sequence charts, state machines, 

activities to provide multi-view, intuitive graphical specifications under a unified 

semantic framework 

• Application of separation-of-concerns in system specifications through interface 

and internal specifications corresponding to precise requirements and an abstract 

implementation respectively 

• Definition of a UML Profile, based on standard extension mechanisms of UML, 

for application of the framework 

• Specification methodology for application of the specification framework and 

related UML profile 

• Definition of a formal semantics for the proposed specification framework 

• Integration of existing verification techniques and tools for early analysis of 

system specifications  

 

The proposed specification framework is validated through specification of a case-study 

i.e. a vending machine as well as specification of well-known concurrency patterns e.g., 

producer-consumer, reader-writer, and leader-follower. The specifications are compared 

with pure formal approaches as well as existing UML-based approaches. 
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CHAPTER 1 

INTRODUCTION 
 

oftware development life cycle methods and processes play an important role in the 

development of software systems.  With the emergence of inexpensive multi-

processor hardware platforms, real-time embedded software systems with complex 

behaviors have grown manifold. Traditionally the development processes are designed 

around sequential execution models with guaranteed correctness. But, modern software 

systems have characteristic behaviors of concurrency, reactivity and timeliness aspects.  

These systems need rigorous development processes in formal or semi-formal approaches.  

Thus there is growing need to integrate these approaches in traditional software 

engineering methods and processes.  Further, the integration needs to be done in an 

intuitive way to enable common system modelers and developers to work with formal 

concepts, techniques, and tools. 

 

This chapter describes the motivation and scope of study behind the thesis work in terms 

of software engineering methods, formal methods, and emergence of Unified Modeling 

Language. The chapter further describes the main objectives of the thesis. Also, the 

organization of the thesis is described providing a brief overview of each chapter. 

 

1.1 THESIS MOTIVATION 
 
Modern software systems have grown in size and complexity. While the computing 

hardware is becoming cheaper and faster, the development complexity and cost of 

software has been increasing. Traditionally the software development has been organized 

into software engineering phases of requirements, software design, testing, maintenance 

etc [Pressman 2004]. To handle the complexity of modern software systems, approaches 

like model driven development, programming-in-large, software architectures, component 

based software development have emerged.  These approaches are traditionally integrated 

S



CHAPTER 1: INTRODUCTION 
 

2 
 

into software development phases [Gomaa 1993, 2000]. These approaches are largely 

successful in obtaining system design in terms of functional requirements. 

 

 
 

Figure 1.1 Software Development Phases 

 

But modern software systems possess complex behaviors of concurrency, parallelism, 

reactivity, timeliness etc [Gomaa 1993, 2000]. With the increase in complexity of software 

systems an early design phase known as architectural design has become important (figure 

1.1). This phase focuses on designing the system to achieve non-functional properties 

[Bass 2003]. But existing architectural design practices are ad hoc and informal in nature. 

Hence there still exists a wide gap between requirements phase and architectural design 

phase.  

 

For systems with complex behaviors the gap between requirements analysis and 

architectural design is a major challenge. The critical non-functional aspects of the 

systems like concurrency, timeliness etc are neither well specified nor understood under 

current development approaches. Traditionally concurrency issues are handled during 

architecture or system design phases using implementation primitives like threads, 

semaphores, monitors etc. Hence there is a need to introduce a formal or semi-formal 

specification phase between requirements and architectural design towards better 

understanding, analysis, design and implementation of complex software systems.   
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1.1.1 SOFTWARE ENGINEERING AND FORMAL METHODS 
 
Formal methods are useful to develop complex software systems using engineering 

methods and tools that are verifiable [Liu 2005]. Formal approaches complement informal 

engineering methods by techniques like formal specification and verification. They have 

been extensively researched and studied [Liu 2005]. A range of semantic theories, 

specification languages, design techniques, and verification methods and tools have been 

developed that are used in critical applications. However, it is still a challenge to scale up 

formal methods and integrate them into engineering development processes for the correct 

construction of software systems. Both formal methods and the methods adopted by 

software engineers are far from meeting the developmental complexity of complex 

systems. Further, complete assurance of correctness requires too much to specify and 

verify and thus a full automation of the verification is infeasible.  

 

However, recently there have been encouraging developments in both approaches. The 

software engineering community has started using precise models for early requirement 

analysis and design [Mellor 2002]. Theories and methods for object-oriented, component-

based and aspect-oriented modeling and development are gaining the attention of the 

formal methods community. But, as system development community largely consists of 

people who do not possess expertise in formal methods, there needs to be intuitive yet 

formal approaches hiding the complexity of formal methods. 

 
1.1.2 UNIFIED MODELING LANGUAGE (UML) 
 

The Unified Modeling Language (UML) has become the de facto industry standard visual 

specification language for specification of software systems [OMG 2001]. UML consists 

of design notations such as class diagrams, sequence diagrams, activity diagrams, and 

statecharts towards static as well as dynamic aspects of systems. UML can be used in 

several phases of development processes of systems i.e., requirements, architecture design, 

and detailed design. An oft-repeated criticism of UML is that it has no semantics largely 
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due to the fact that UML lacks formal semantics. The informal semantics described using 

a natural language like English leads to various inconsistencies, and ambiguities.  

 

1.2  SCOPE OF THE THESIS WORK   
 
There are major shortcomings in UML as a precise language to specify complex behaviors 

of concurrent and reactive systems. The higher level constructs or formalisms like 

Sequence diagrams, Statecharts, and Activity diagrams are inconsistent and are not well 

integrated with the underlying object model of UML [Ober 1999, Jagadish 2006a]. 

Current UML based approaches depend on low-level primitives such as semaphores, 

monitors, etc to model concurrency features. From the perspective of formal languages, 

they use complex OCL (Object Constraint Language) statements [Goni 2004]. Many Real-

Time UML methodologies for example COMET, CODARTS are largely based on 

informal design heuristics with focus on static aspects of the systems [Gomaa 2000]. For 

example safety and liveness issues of concurrent systems are not handled in these 

approaches. 

 

There have been many attempts towards providing formal approaches with precise 

semantics for UML such as RT-UML, UML-RT, and UML/SDL. There also exist 

translation based approaches (e.g. [Clark 2000]) into specific formalisms like CSP, 

LOTOS, Esterel etc translating and interpreting certain aspects of UML models under 

specified semantic domain and analyzed with the related tools. Though promising, these 

approaches are not satisfactory for complete behavioral aspects of concurrent and reactive 

systems. Further these approaches are not integrated with traditional development phases 

in general and requirements phase in perticular.   

 

Object Management Group (OMG), the UML consortium, has defined a generic resource 

modeling framework with concurrency and causality for real-time systems known as 

‘Standard UML profile for Schedulability, Performance, Time’ (also known as UML/ SPT 

Profile) [OMG 2001]. The SPT profile defines basic concepts of events, causality, and 

concurrency independent of formal semantics and UML meta model [Ober 2004].  
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Component based approaches have emerged as an effective way of specifying, verifying, 

and implementing complex systems. Of these, works on software architectures for 

example Architecture Description Languages (ADLs) are significant.   The ADL 

community has contributed much in terms of interfaces, components, and system 

compositionality. Certain ADLs like Rapide, Darwin, and Wright are based on precise 

formal semantics [Luckham 1995, Nenad 2000, Magee 1995, Allen 1997].  

 

A multi-view and multi-notation modeling language, as a formalized subset of the UML, 

can be used to specify precise system or component models and analyzed for 

inconsistencies using formal techniques, e.g. model-checking [Shrotri 2003]. The models 

can further be enhanced by adding descriptions of interaction protocols with the 

environment, timing aspects etc. The analysis can be carried out incrementally, a small 

number of use cases at a time that only involve a small number of domain classes. 

 

1.3  OBJECTIVES OF THE THESIS 
 

Following objectives are identified for the thesis work: 

• Precise behavioral specification of concurrent, reactive systems in hierarchical 

approach with higher level conceptual semantics 

• Integrating principles and semantics of formal specification approaches  

• Explicit specification of externally visible behaviors i.e., concurrency, reactivity, 

exception handling, and synchronization of system components  

• Use of all behavior diagrams of UML i.e., sequence charts, state machines, 

activities in well defined contexts under a unifying semantic framework 

• Resolving inconsistencies, and ambiguities in UML behavioral semantics  

• Integration of the specification process with functional requirements (use cases) 

• The definition of a specification process, independent of design or  implementation 

constructs e.g., threads, semaphores, monitors  

• To define constructs and mechanisms for explicit specification of exception 

handling and synchronization features. 



CHAPTER 1: INTRODUCTION 
 

6 
 

• To investigate the existing formal verification techniques that can be integrated 

with the proposed specification framework 

 

1.4  THESIS ORGANIZATION  
 
The thesis has been organized into seven chapters as described below.  

 

Chapter 1 has introduced the motivation and objectives of the thesis work describing the 

limitations of traditional software development processes, Unified Modeling Language, 

and role of formal methods in software engineering. The scope of the research work is 

discussed. The objectives of the thesis work are described.  

 

Chapter 2 presents the detailed background and literature survey of the thesis work. The 

chapter describes formal approaches, and principles of formal specification of concurrent, 

reactive systems. The transition axiom method, a simple and efficient formal approach 

proposed by Lamport, is described. It combines both axiomatic and operational 

approaches towards component based specification of concurrent systems. Also, the 

chapter presents the UML framework as described in the literature. The advantages and 

limitations of existing UML based approaches for modeling concurrent and reactive 

systems are described. An overview of the existing formal approaches in UML is 

presented. 

 

Chapter 3 presents the first part of the thesis contribution. It describes the conceptual 

model of the proposed framework (namely cmUML). The corresponding specification 

language, as precise subset of UML using standard extension mechanisms known as 

stereotypes, tags and constraints, is defined. The standard UML/SPT profile which forms 

the conceptual foundation of the proposed framework is described. The chapter also 

presents the informal semantics of the proposed abstractions of the cmUML framework. 

 

Chapter 4 presents a specification methodology with the proposed cmUML specification 

framework. The methodology is defined in terms of a sequence of well-defined 

specification tasks. This is significant as OMG does not prescribe any standard process for 
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application of UML (usually left to the profile developers). The specification process is 

integrated with the traditional requirements phase. This requirements driven process 

identifies suitable system decomposition and specification of containing behaviors with 

concurrency, reactivity, exception handling, and synchronization features. Also, the 

specification process incorporates design guidelines, and heuristics of general object 

oriented analysis and design approaches [Gomaa 2000].  The specification methodology is 

illustrated with a simple case study of vending machine specification. The chapter further 

presents a comparison and validation of cmUML approach using classical examples of 

concurrency i.e., readers-writers problem and producer-consumer problem against existing 

UML approaches as well as formal approaches. Also, the concurrency pattern leader-

follower is specified. 

 

Chapter 5 describes the semantics foundations of the proposed specification framework. 

As the framework proposes a two level specification process in terms of interface 

specifications (based on LSCs and protocol state machines), and internal specifications 

(based on activities and statemachine), the semantic description is described along two 

separate but related dimensions. For interface specifications, the semantic framework is 

described in terms of LSCs and proposed extensions. The semantics of the internal 

specifications is described using the formalism of ‘Symbolic Transition Systems (STS)’ 

and is based on UML foundations e.g., action semantics.  

 

Chapter 6 presents the existing verification approaches that can be integrated with the 

cmUML specifications. For interface verifications, the LSC semantic framework is 

extended to integrate the exception handling aspects of the specifications. For this, a 

simple algorithm is proposed. Also LSC based verification techniques are described for 

consistency checks of the various parts of the specifications. For example, consistency 

checking scenarios are described like LSCs vs interface statemachines, LSCs vs Internal 

statemachines, and Interface vs internal statemachines. For verification of internal 

specifications, an application of CSP based model checking technique is described (e.g. 

deadlock analysis).  
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Chapter 7 presents the thesis conclusions in terms of contributions, and limitations of the 

thesis work. Further the future work related to the thesis work is discussed.  

 

The thesis includes following appendices: 

 

The appendix A describes the characterization of concurrent systems in terms of their 

safety and liveness properties.  

 

The appendix B describes the precise formalism of Live Sequence Charts and their 

semantic foundation.  

 

The appendix C presents the complete specification of the vending machine case study 

described in chapter 4. 
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CHAPTER 2 

BACKGROUND & LITERATURE SURVEY 
 

pecification serves as a contract, a valuable piece of documentation, and a means of 

communication among clients, designers and implementers. A formal specification 

provides the means of precisely defining the notions like consistency, completeness, and 

more importantly correctness. Formal approaches help specify, develop, and verify 

systems in a systematic approach rather than ad hoc means.  

 

This chapter describes the foundations of formal methods in specifying systems with a 

special focus on Transition Axiom method which combines axiomatic and operational 

approaches for intuitive yet analyzable specifications [Wing 1995, Lamport 2000]. A brief 

overview of UML is presented, in particular the semantic architecture of UML 2.0, and 

corresponding ambiguities, inconsistencies with respect to specification of concurrency 

and reactivity. Further the related works are described. Finally, the research gaps are 

identified and the research problem formulated.  

 

2.1 FORMAL SPECIFICATIONS OF SOFTWARE SYSTEMS  
 
2.1.1 INTRODUCTION  
 
A formal specification language provides a notation (its syntactic domain), a universe of 

objects (its semantic domain), and a precise rule defining which objects satisfy each 

specification [Wing 1990].  A language’s syntactic domain is usually defined in terms of a 

set of symbols and a set of grammatical rules for combining these symbols which need not 

be restricted to text; graphical elements such as boxes, circles, lines, arrows, and icons can 

be given a formal semantics. The languages differ in their choice of semantic domains. For 

example, specification languages for concurrent systems need to specify state sequences, 

event sequences, state and transition sequences, streams, synchronization trees, partial 

orders, and state machines. The different aspects or ‘views’ of a single specificand (a 

s
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semantic object) are best specified perhaps using different specification languages (or 

sublanguages). The specifications i.e. both structural and behavioral imply constraints to be 

‘satisfied’ by specificands. Behavioral specifications describe only constraints on the 

observable behavior of specificands and usually address system’s functionality but can 

include non-functional aspects.  

 

Formal specifications can play an important role in the traditional development processes. 

The general scenario involving the main stakeholders during system development process 

is described in figure 2.1. Specifiers should specify enough so that implementers do not 

make unacceptable implementations. On the other hand, saying too much may leave little 

design freedom for the implementer [Lamport 2000]. Informally, a specification has 

‘implementation bias’ if it specifies externally unobservable properties of its specificands. 

From figure 2.1 it is clear that many actors of system development process including 

human beings, and tools interact with the specifications. Many languages are suitable only 

for a subset of the actors. Further a specification language may suit only specific kinds of 

systems as well as specific phase of the development process.  

 

 
 

Figure 2.1. Specification as Core Artifact of Development Process [Source: Wing 1990] 

 

Verification is the process of showing that a system satisfies its specification. Formal 

verification is impossible without a formal specification. Although an entire system may 

never be verified completely, its smaller, critical components can be verified. Further 
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specifications can be used to generate test cases for black-box testing. For example, 

specifications that explicitly state assumptions on a module’s use identify test cases for 

boundary conditions.  Further specification languages could be executable allowing rapid 

prototyping of systems but the disadvantage could be that such languages may suffer from 

implementation bias. 

 

2.1.2 SPECIFICATION METHODS & LANGUAGES   
 
Formal methods can not describe an entire large, software system but only certain aspects 

or certain views of it [Lamport 2000]. It is very important to understand ‘why’, ‘what’, and 

‘how’ to formally specify systems. Formal specifications may help precise documentation 

of system or its component interfaces, or towards precise and abstract design, or to perform 

some formal analysis, etc [Wing 1995].  Formal methods can further be used to specify 

‘global correctness conditions’ (e.g. deadlock freedom), ‘system invariants’, ‘observable 

behavior’, or ‘properties or entities’ of a system at a suitable level of abstraction (e.g. 

interface, implementation) by characterizing the observable entities forming system’s ‘state 

variables’ at that level. State transitions correspond to operations that access or modify the 

observable behavior. For each operation, its observable effect on the observable state 

entities may be specified. Further the observable behavior should include any change in 

state that is observable at that abstract level e.g. changes to state variables, signaled 

exceptions, errors, etc.  

 

The fundamental techniques regarding ‘how’ to specify systems are known as ‘abstraction’ 

and ‘decomposition’. Certain methods e.g., Z, VDM facilitate a model based approach to 

specification [Spivey 1988, Jones 1986]. Models give good intuition about the system but 

needs to be related with necessary algebraic or axiomatic assertions about the system. The 

system may be specified following incremental abstraction techniques: 

i) finding necessary pre-conditions (i.e. assumptions about the environment) 

ii) first handling the normal case, then the failure case 

iii) first assuming the operations are atomic, then introducing necessary interleaving 
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Further, it is important to specify erroneous or exceptional behaviors i.e. errors, 

exceptions, or failures. For any system it is important to identify operations that are 

‘atomic’ w.r.t the level of abstraction. For a concurrent system, it is critical to state 

explicitly operations that are atomic. Specifying ‘non-determinism’ is another effective 

technique of achieving abstraction.  

 

Formal methods for specification of concurrent systems differ in terms of their semantic 

domains i.e. states, or events or both. A system’s behavior can be modeled as sequence of 

states and associated events or set of trees of states and associated events. When 

specification of concurrent systems is interpreted as sets of sequences of states, the system 

properties can be described in terms of ‘safety’ (e.g. functional correctness) and ‘liveness’ 

(e.g. termination) [Alpern 1985]. Temporal logic is a property oriented method for 

specifying properties of concurrent systems [Pnueli 1986]. It uses specific operators to 

refer to past, current, and future states (or events). CSP uses a model oriented method for 

specifying concurrent processes and a property oriented method for stating and proving 

properties about the model [Hoare 1985]. CSP is based on model of ‘traces’ or event 

sequences, and assumes processes communicate by sending messages across channels. 

Processes synchronize on events. Lamport’s transition axiom method combines an 

axiomatic method for describing the behavior of individual operations with temporal logic 

assertions for specifying safety and liveness properties [Lamport 1983].  

 

Last but important aspect is about the assumptions (implicit or explicit) made on the 

environment of a system or its components. Many formal methods do not make these 

explicit. Environment represents a set of assumptions for the correct behavior of the system 

or its components. Whereas a specifier places constraints on the system’s behavior, the 

specifier can not place constraints on the environment but can only make assumptions 

about its behavior. As no one method is suitable for specifying all aspects or all kinds of 

systems, the only practical strategy is to mix the methods e.g. Z to specify static aspects 

(i.e. state space), and CSP to specify dynamic behavior (sequences of state transitions). 
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However mixing methods is dangerous as they are based on different semantics and could 

lead to inconsistencies of the model. This is still the subject of research efforts.  

 

2.1.3  TRANSITION AXIOM METHOD   
 

Proposed by Lamport, the transition axiom method provides a conceptual and logical 

foundation for writing formal specifications of concurrent systems. The transition axiom 

method specifies the behavior of a system i.e., the sequence of observable actions it 

performs when interacting with the environment. More precisely, it specifies two classes of 

behavioral properties: safety and liveness properties. Safety properties assert what the 

system is allowed to do, or equivalently, what it may not do. Liveness properties assert 

what the system must do. The method emphasizes the precise and detailed specification of 

interfaces, the mechanisms by which the system communicates with the environment, as 

the influence of the interface on the rest of the specification is especially important in 

concurrent systems. For example, it is shown that the specification of even so basic a 

property as first-come-first-served priority cannot be independent of the interface’s 

implementation details.  

 

Transition axiom method can be used for specification of a module in a concurrent 

program, where a module is a collection of related subroutines. A module must be 

specified in terms of its behavior, rather than the values it returns. Though temporal logic 

has proved to be a successful tool in reasoning about the behavior of concurrent programs, 

it is not convenient for expressing many aspects of concurrent programs. New kinds of 

constructs, with precise formal interpretations, make the specifications simpler and easier 

to understand. The transition axiom method introduces new kinds of assertions. The 

transition axiom method is formalized based on a generalization of temporal logic to 

include predicates for describing the actions that are executed. However, the specifications 

can be understood with no knowledge of the formal temporal logic upon which they are 

based.  
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Unlike many other protocol specification methods, the transition axiom method specifies 

not an abstract protocol but an actual program module containing subroutine calls for 

sending and receiving messages. In practice, one is concerned not with abstract protocols 

but with the program modules that implement them. An extra layer of formalism relating 

programs and abstract protocols is needed to verify that a program module correctly 

implements such an abstract protocol specification. In transition axiom method, this extra 

layer is avoided by specifying the program module itself. 

 

The execution of a concurrent program can be represented as a sequence of state transitions 

of the form (S → S’ after executing a single atomic statement ‘a’) which denotes that the 

action ‘a’ takes the program from state s to state s'. Typically, this transition would 

represent the execution of a single atomic statement in some process, in which case s is the 

state before the execution, s' is the state immediately after the execution, and ‘a’ denotes 

the program statement being executed. However, the exact nature of the states and actions 

does not concern the method. Concurrency is represented by the interleaving of concurrent 

atomic operations. A state represents a complete "snapshot" of the program at some instant 

of time. At any point during the execution, the possible future behavior of the program 

must depend only upon its current state, and not upon how it reached that state. Thus, the 

state must include not only the value of program variables, but also the values of processes 

‘program counters’, the values of parameter passing stacks, the contents of message 

queues, the states of transmission lines, etc. 

 

A state function is a mapping from the set S of states into some set of values. A predicate 

is a boolean-valued state function. There are two kinds of primitive state functions that can 

be used: program variables, control predicates. Complex state functions can be constructed 

from these primitive ones. A program is specified by specifying all its possible execution 

sequences. A specification consists of a collection of conditions on execution sequences. A 

program satisfies the specification if all of its possible execution sequences satisfy each of 

these conditions.  

 



CHAPTER 1: BACKGROUND & LITERATURE SURVEY 
 

16 
 

2.2 UNIFIED MODELING LANGUAGE (UML)    
 
The Unified Modeling Language (UML) is a general-purpose graphical language to 

specify, visualize, construct, and document the artifacts of a software system [OMG 2001, 

Selic 2004]. It captures decisions and understanding about systems that must be 

constructed. It is intended for use with all development methods, lifecycle stages, 

application domains, and media and is intended to unify past experience about modeling 

techniques and to incorporate current software best practices into a standard approach. 

UML includes semantic concepts, notation, and guidelines. It has static, dynamic, 

environmental, and organizational parts. The UML specification does not define a standard 

process but is intended to be useful with an iterative development process. The UML 

captures information about the static structure and dynamic behavior of a system. 

Modeling a system from several separate but related viewpoints permits it to be understood 

for different purposes. UML is not primarily a programming language. Tools can provide 

code generators from UML into a variety of programming languages.  

 

2.2.1  OVERVIEW 
 
After several years of experience with UML, the OMG has revised the language features, 

semantics fixing problems uncovered by experience gained in using UML. Current version 

UML2 has some new features [Selic 2004]: 

 

• Sequence diagram constructs and notation based, largely on the ITU Message 

Sequence Chart standard, adapted to make it more object-oriented 

• Decoupling of UML ‘activities’ from state machines  

• Unification of ‘activities’ with ‘actions’ to provide a complete procedural model. 

• Contextual modeling constructs for the internal composition of classes and 

collaborations.  

• Repositioning of components as design constructs and artifacts as physical entities 

that are deployed. 
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2.2.2  SEMANTICS AND INCONSISTENCIES   
 
An oft-repeated criticism of UML is that it has “no semantics”; that it is primarily a visual 

notation whose graphical constructs can be interpreted differently. This is because UML is 

intended to model systems across a broad spectrum of different application domains. An 

additional consideration related to formal models, is that it is often the case that the same 

entity may need to be modeled from different viewpoints. This suggests that basing UML 

on any specific concrete formalism would likely severely hamper one of its primary 

objectives: to unify a set of broadly applicable modeling mechanisms in a common 

conceptual framework. This aspect of UML must not be underrated even while defining a 

formal semantic for UML.  

 

 
 

Figure 2.2. The Semantic Architecture of UML2.0 [Source: Selic 2004] 

 
The semantic architecture of UML2, as given in figure 2.2, identifies the key semantics 

areas covered. It also shows the dependencies that exist among them. At the highest level 

of abstraction, it is possible to distinguish three distinct layers of semantics. The 

foundational layer is structural. This reflects the premise that is no disembodied behavior 

in UML – all of it emanates from the actions of structural entities. The next layer is 

behavioral and provides the foundation for the semantic description of all higher-level 

behavioral formalisms. This layer is called the Behavioral Base and consists of three 

separate sub-areas arranged into two sub-layers. The bottom sub-layer consists of the inter-

object behavior base, which deals with how structural entities communicate with each 

other, and the intra-object behavior base, which addresses the behavior occurring within 
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structural entities. ‘Action’ layer defines the semantics of individual actions. Actions are 

the fundamental units of behavior in UML and are used to define fine-grained behaviors. 

Their resolution and expressive power are comparable to the executable instructions in 

traditional programming languages. Actions in this sub-layer are available to any of the 

higher-level formalisms to be used for describing detailed behaviors. The topmost layer in 

the semantics hierarchy defines the semantics of the higher-level behavioral formalisms of 

UML: activities, state machines, and interactions, dependent on the semantics provided by 

lower layers. 

 

Though UML2 has prescribed precise semantic foundation at action level, its semantics at 

higher levels are ambiguous, and inconsistent particularly for specification of concurrency 

[Ober 2001].  The concurrency is an important issue to tackle when modeling real-time 

applications which are intrinsically concurrent. For concurrency, UML offers the concept 

of active object, which is an instance of an active class. According to the UML definition, 

classes may be either ‘active’ or ‘passive’. The internal concurrency of active objects 

outcomes from: 

 

- state machine specification: concurrent states of the state machine can be perceived 

as concurrent threads of control; 

- operation executions: concurrent invocations of a same operation may be executed 

at a same time, leading to concurrent executions of the operation specification; 

- action specification: according to the new action semantics definition, the actions 

contained in an action set may be executed concurrently, unless explicit or causal 

dependencies constrain their sequencing. 

 

At run-time, the above mechanisms should work together correctly in order to ensure the 

correct behavior of the model. But, ambiguities, and inconsistencies in UML regarding 

specification of concurrency are well documented [Ober 2001]. The following 

inconsistencies are observed.  
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- UML allows both passive and active objects to own state machines without any 

constraint. But, a passive object, by not having its own thread of control, does not 

have a scope for executing the state machine. 

 

- In case of active objects associated with statemachine, it is not clear whether 

operations and statemachine execute independently. 

 

- The state machine processes events in a sequential way so that all events are 

queued and processed following a given policy that the user has to define (FIFO, 

priority based, earliest deadline based, …), even if they are method calls. The 

semantics of classes and operations and that of state machines interfere 

dramatically in UML, without any clarifications. 

 

2.2.3  SEMANTICS DEFINITION APPROACHES 
 
All attempts to define UML semantics can be classified into different orthogonal 

dimensions described below. One dimension is the level of UML coverage. Many people 

have been trying to build the semantics of individual diagrams of the UML e.g. on state-

machines [Kwon 2000], on collaboration diagrams [Engels 2000], on class diagrams 

[Evans 1999], on use cases [Overgaard 1998], on activity diagrams [Borger 2000] or just to 

give formal foundations for action language [Alvarez 2001]. Because all diagrams are only 

views on one and the same model, the attempts to give semantics for separated UML 

diagrams fail in producing the right semantics for the entire UML. The combination of 

statics and dynamics is also given in [Reggio 2000] which considers the problem of 

defining active classes with associated state-machines. It gives a very fine interleaving 

semantics for state-machines in terms of transition systems, but the authors do not give 

precise semantics for state-machines, for event queue handling, and they treat only at UML 

state-machines without action semantics.  

 

Another coverage level relates to the problems with possible concurrency as well as 

aspects of objects communication, which have been uncovered in [Reggio 2000] and not 
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addressed in the original UML 1.x documents itself. Such open problems are typical for so 

called loose semantics introduced in [Hubmann 2002], where the aspects of concurrency 

and object communication are not fixed to some design decision, but cover different 

implementations. Such loose semantics is not suitable for formal verification. There are a 

number of UML modelling and/or verification tools implementing precise semantics by 

translating UML models to programming language or model checker internal formats 

([Lilius 1999, ILogix 2002]). These tools have different limitations on the supported UML 

features and do not provide formal description of the implemented semantics or it is just 

technical translations. 

 

Translation approaches define translations from UML diagrams to traditional specification 

languages (Z [Evans 1998], Object-Z [Kim 1999], CASL [30] etc.). For example, G. 

Reggio et al. [Reggio 2000] proposed a general schema of the UML semantics by using an 

extension of the algebraic language CASL for describing individual diagrams (class 

diagrams and state-machines) and then their semantics are composed to get the semantics 

of the overall model. Also other UML diagram types have been translated to formal 

notations, e.g., using Abstract State Machines ([Borger 2000, Ober 2001]). E. Borger et al. 

[Borger 2000] defined the dynamic semantics of UML in terms of ASM extended by new 

construct to cover UML state-machine features. The model covers the event-handling and 

the run-to-completion step, and formalises object interaction by combining control and 

data flow features. However, the authors did not give a complete solution to solve 

transition conflicts and it is not clear how firable transitions are selected. The semantics 

implemented by UML-tool vendors via code generation or model simulation can be also 

classified to this group of approaches. 

 

2.3 RELATED WORKS IN UML 
 
Several research efforts are made to develop precise approaches, both formal and informal, 

in UML for modeling concurrent, reactive systems. These approaches aimed at resolving 

inconsistencies in UML semantics as well as defining formal approaches in UML based 

specification processes.  
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2.3.1  A PATTERN FOR CONCURRENCY IN UML    
 
A formal approach for the description of systems, in which two or more operations may be 

acting concurrently upon the same object, was proposed [Crichton 2002]. The pattern 

addresses two common problems – inadequate models, and complicated state diagrams. 

Changes in attribute state and changes in operation state are described separately using two 

different types of diagrams i.e. state and activity diagrams. The pattern attempts to present 

models that characterize every possible sequence of interaction (in terms of the set of 

actions and events defined in the model). The essence of the pattern can be represented as a 

fragment of the UML metamodel: a class diagram linking the diagrams and the entities that 

they represent [figure 2.3].  

 

 
Figure 2.3. A meta-Model for a Concurrency Pattern in UML [Source: Chricton 2002] 

 

In the application of the pattern, (attribute) state diagrams do not make use of call or call* 

(i.e. asynchronous) actions, due to complication with run-to-completion semantics of  

UML statemachines, except when the operation is considered atomic i.e. nothing else can 

happen to the sate of the current object while it is executing. Each operation (non-atomic) 

is described using UML activity diagram (where the emphasis is upon activity, or flow of 

control, rather than state). In application of the pattern, the activity diagrams may perform 

any of the actions send, call, and call* (in addition to other local actions).  

 

The definition and use of the pattern, in figure 2.3, raised several issues regarding the 

syntax and meta-model of UML (some of which were addressed in later revision of UML 

[Selic 2004]). 1) local actions of activity diagrams are considered ‘atomic’. There effects 

can be implicitly, rather than explicit action-event pairs, regarded as communication with 
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the underlying object state, and include their effect as ‘change’ events in the attribute state 

diagram. 2) it may be required to refer to a particular invocation of an operation: to make 

explicit the target of a return action, or to describe the effect of an exception. 3) the 

separation of state, and activity diagrams makes it difficult to represent the effect of 

exceptions upon operations. Ideally there should be a mechanism to achieve the effect of a 

try-catch block in Java.  

 

Models with single state diagram impose a sequential execution model due to associated 

run-to-completion semantics. Using the patter, with the separation of activity diagrams 

(operations) from state diagram, the effect of interleaving of multiple invocations of 

operations on the state diagram can be easily represented. Concurrent invocations of 

operations are best seen as peers, alongside the attribute state of the object. Any attempt to 

represent them using concurrent substates, within the object state diagram, is likely to 

produce a confusing inadequate model. Further the pattern identified that behavioral 

features such as operations do not have classifiers making it impossible to construct an 

explicit representation of concurrent invocation (rectified in UML2 [Selic 2004]). The 

pattern points out the complexity associated with the event deferral mechanism in UML 

statecharts semantics. Although multiple events may be deferred, only one of these will 

ever be processed; the others will be lost; clearly, in a description of concurrent behavior, 

this may not be appropriate. The pattern proposes a simple solution; to avoid the use of 

deferred events, and to include a component within the model whose role is the 

management and delivery of signal events. Another possible solution would be a persistent 

version of event queue associated with state diagram that retains the events until they are 

used to trigger transitions, or are explicitly discarded by the state machine.  

 

The proposed cmUML framework adopts the similar notion of separation of operations 

from statecharts and separately modeling them using activity diagrams. Further cmUML 

makes benefit of new behavioral elements in the revised meta-model of UML for e.g. 

classifier form of behaviors. This helps explicit specification of multiple invocations of 

operations. cmUML adopts the architectural framework thus providing the ‘port’ 
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components to handle explicit event management as suggested by the pattern. cmUML 

further defines an exception handling mechanism in the fashion of try-catch semantics of 

Java. Compared to the above proposed pattern, cmUML is a comprehensive approach to 

model complex systems.  

 

2.3.2  ATOM-S: A CONCURRENT MODEL IN UML 
 
ATOM-S, a design model based on active/ passive object paradigm, for specifying 

concurrency in UML was proposed [Ober 1999]. The approach systematically tackles the 

issues of concurrency in UML object model by integrating ATOM, a well-designed 

concurrent object model, into UML [Papathomas 1996]. UML object model is compared 

against the well known classification of concurrent object models given by Papathomas 

[Papathomas 1992].  The classification uses three dimensions. On the first dimension, 

object models are divided with respect to what combination of objects they support, into 

three categories: orthogonal (objects are independent of threads), homogenous (all objects 

are active), heterogeneous (objects may be active or passive). The second dimension 

captures the internal concurrency of objects: internally sequential, quasi-concurrent or 

concurrent. Finally, the third dimension captures the available inter-object communication 

and synchronization mechanisms: synchronous/asynchronous feature calls, 

conditional/unconditional acceptance of incoming calls, etc. The position of UML in the 

design space of concurrent object models, as per the above comparison framework, is 

described in the table 2.1. 

 

The main drawbacks in the approach taken by UML towards concurrency are identified: 

active objects are ‘sequential’, UML semantics says nothing about the situation when 

multiple concurrent calls are made to the same active object (except when the object has a 

statemachine), no constraints specified regarding asynchronous calls which could be 

problematic when the target is a ‘passive’ object, inconsistency and ambiguity in case of 

passive objects if associated with a state machine, semantics of method invocation is 

ambiguous in the case of active objects associated with statemachine for e.g. it is not clear 

whether the methods of an object are executed by its state machine or the statemachine is 



CHAPTER 1: BACKGROUND & LITERATURE SURVEY 
 

24 
 

manipulated by the methods. It is observed that a cleaner semantics and more powerful 

primitives are desirable in UML object model towards concurrency. 

 

Classification 
Criterion 

UML Position Remarks 

Object Model Heterogeneous The definition of active and passive in UML 
are not same as those used in the 
classification e.g., passive objects are 
protected against concurrent calls. 

Internal 
Concurrency 

Active objects – sequential
Passive objects – internally 
concurrent 

The methods of passive objects are split in 
three classes: sequential, guarded, and 
concurrent

Client/ Server 
Interaction 

One way message passing 
through signals and 
asynchronous calls. 
And RPC 

No support for reply scheduling  

Constructs for 
accepting 
requests 

Activation conditions 
supported through state 
machines 

States/ transitions/ guards provide a powerful 
mechanism for expressing activation 
conditions, but no semantics for the 
inheritance of a state machine 

Table 2.1. UML Position in the Design Space of Concurrent Object Models  

[Source: Ober 1999] 

 
ATOM-S is the result of the drawbacks of UML object model towards better combination 

of a concurrent object model (ATOM) and UML statemachine (S). ATOM, with quasi-

concurrent active objects and no passive objects, has proven to solve many of the classical 

problems of object oriented concurrency, and inheritance [Papathomas 1996]. It is a good 

compromise between expressive power and protection of the integrity against concurrent 

calls. Special events are designed to indicate when a method call is received, when the 

execution begins or when it ends. ATOM-S integrates statemachines into ATOM and 

retains passive objects of UML without statemachines to resolve associated ambiguities 

w.r.t asynchronous calls. Besides attributes and methods, an active object may have a 

statemachine that specified ‘reactive’ part of its behavior and responds to asynchronous 

one-way simuli i.e. signals that may carry parameters. Further, as in UML, a statemachine 

may specify the complete behavior of an object or only its protocol, case in which its states 

are used as ‘activation conditions’ for the object methods. To solve the ambiguity that 

exists in UML about the way CallEvents are processed, method invocations sent towards 



CHAPTER 1: BACKGROUND & LITERATURE SURVEY 
 

25 
 

an object do not pass through its state machine and only signals are queued and processed 

one-by-one by the machine. Thus, a method invocation will always result in the execution 

of the method.  
 

 Class ThreadScheduler (ActiveObjectSupport): 
 
  methods = [‘InsertThread’, ‘Schedule’, ‘EndThread’, ‘AlertAdmin’,  
    ‘RecoveryProc’] 
  events =[‘Recover’] 
  conditions = { 
   ‘InsertThread’ : ‘not self.inState (‘Overloaded’)’ 
   ‘Schedule’:’not self.inState (‘Overloaded’)’ } 
  def  InsertThread (self, thread, priority): …. method bodies omitted 
  statechart = { --- given below graphically } 
 
 
 

 

 

 

 

 

 

 
 

 

Figure 2.4. A Simple Thread Scheduler in ATOM-S in Extended Python  

[Source: Ober 1999] 

 

The operational semantics of state machines in ATOM-S is based on the fact that the state 

machine of an active object runs quasi-concurrently with its methods.  The state machine 

of an object is notified when a message call is received, when a method starts executing or 

finishes. Note that, like in ATOM, the moment when the method is received may not 

coincide with the moment when it starts executing. The introduction of these implicit 

messages augments the expressive power. The features of ATOM-S can be exemplified 

using a thread scheduler class (given in figure 2.4). 

Recv_InsertThread/ [self.Load() 
≥3] /self.receiveEvent(‘Recover’) 

Recover/ 
self.AlertAdmin(1), 
self.RecoveryProc() 

End_InsertThread [self.Laod() <1] 

End_InsertThread [self.Laod() ≥1] 
Normal Alerted 

Overloaded 

Recv_InsertThread/ 
[self.Load() <3] 
/self.AlertAdmin(0)



CHAPTER 1: BACKGROUND & LITERATURE SURVEY 
 

26 
 

 

The cmUML framework of the thesis shares certain operational semantics of ATOM-S: 

separation of method calls from statechart of an object, special events to notify the 

statechart regarding the execution status of the invoked methods, etc. But, being a 

specification language cmUML does not use the notion of active/ passive design paradigm 

i.e. both active or passive ‘kind’ of objects can specify internal concurrency as well as 

reactive behavior (left to the specifier). Further cmUML is a comprehensive formal 

approach using live sequence charts as part of component interface specifications.  

 

2.3.3  SPECIFYING CONCURRENT SYSTEM BEHAVIOR IN UML/ OCL  
 
Shane Sendall and Alfred Strohmeier proposed a UML based approach in specifying 

concurrent, reactive behaviors and timing constraints using OCL [Sendall 2001, Kleppe 

1999].  Recognizing the UML’s limited support for specification of timing constraints and 

mechanisms for synchronization of concurrent activities, the approach extends the 

operation schemas in OCL i.e. pre, post assertions with constructs for specifying timing 

constraints, and asserting synchronization on shared resources. The approach has three 

principal views: 

• a model composed of descriptions of the effects caused by operations, which uses 

pre- and postcondition assertions written in OCL, called operation schemas; 

• a model of the allowable temporal ordering of operations, called the system 

interface protocol (SIP); and 

• a model that describes the system state used in the operation schemas, called the 

analysis class model (ACM). 

 

The analysis class model (ACM) represents all the domain concepts and relationships 

between them, the combination of which provides an abstract model of the state space of 

the system and defines the system boundary. This model is used as the basis for writing 

operation schemas, i.e., pre- and postcondition assertions for each system operation. The 

System Interface Protocol (SIP) defines the temporal ordering of system operations, one 

aspect of the behavior model of the system. SIP is described with a UML state diagram. A 
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transition in the SIP is triggered by an input event only if the SIP is in a state to receive it, 

i.e., there exists an arc with the input event and the guard evaluates to true. If not, the input 

event that would otherwise trigger an operation is ignored. The SIP for sequential and 

trivial systems can normally be described with a single statemachine. We have made the 

observation, however, that concurrent systems are better described with multiple views, 

one view per perspective on the concurrency. 

 

An operation schema declaratively describes the effect of the operation on a conceptual 

state representation of the system and by events sent to the outside world. It describes the 

assumed initial state by a precondition, and the required change in system state after the 

execution of the operation by a postcondition, written in UML’s OCL formalism [Kleppe 

1999]. The syntax of operation schemas consists of several clauses e.g. Description, Use 

Cases, Scope, Declares, Sends, Pre, Post etc to convey the semantics of the operation 

behavior. To highlight the constraint on shared resources in presence of concurrency, a 

clause ‘Shared’ is added in operation schemas to imply that the resources listed in this 

clause are constrained to be updated in mutual exclusion by the operation execution. 

Further as pre, post conditions are not sufficient in presence of concurrency suffixes 

@preAU, @postAU are added to shared variables to refer to the state of the resource 

immediately before and after an ‘atomic update’ by the operation. Further the suffix @rd 

indicates the consistent value of a shared resource without parallel updates within a 

specific period e.g. operation execution. Semantics of branch condition if-then-else 

assumes atomicity to avoid race conditions. The ‘rely’ block states a condition that must be 

true immediately before, immediately after, and during the execution of the body of the 

block for the body to take effect. If the rely condition does not stay true throughout 

execution, then the effect of the fail part of the rely block is observed to execute instead. 

The ‘rely’ block imposes neither immediate nor wait semantics on the condition. All it 

requires is that if the condition remains true, then the effect described by the body of the 

block will hold. 
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Though the approach described above provides a precise specification of concurrency and 

timing aspects, it is not well integrated with development process of systems. Tts heavy 

dependence on OCL may not appeal to ordinary developers and non-OCL specifiers. It 

also requires a complete class model to precisely define operation schemats. Further, the 

focus of the concurrency is at higher conceptual level, more suitable to describing 

distributed application behavior, and does not handle issues of concurrent operations and 

behavioral statemachines which are central to reactive systems. Additionally a multi-view 

SIP requires rules for composition, completeness, consistency, etc to form the ensemble 

from the different SIP views, a complex process. However the operation schema approach 

and semantics of related constructs in describing effects of concurrent operations is similar 

to that of cmUML specification framework i.e. activity specification of component 

services.  

 

2.3.4  SDL/ UML AND UML-RT   
 
ITU-T defines a one-to-one mapping between a subset of SDL and a specialized subset of 

UML. With this mapping it is possible to use UML (for multiple views of the same system, 

informal object models) and SDL (for detailed and formalised object models, with 

execution semantics) [ITU 1994, ITU 2000, Glasser 1997]. The main differences between 

UML and SDL are that 

 

• UML is a collection of concepts and notations for several ‘views’ of the same 

system: e.g. Object-, State Machine-, Use Case-, Collaboration and Interaction  

 

• SDL is a language (with concepts, abstract grammar and graphical/textual 

grammars) focusing on the Object- and State Machine views of a system. For these 

views, SDL is however a complete language with static and dynamic semantics and 

with concrete syntax (graphical/textual) for the specification of actions. Users of 

SDL rely on other languages like MSC for specification of interactions between 

instances. 
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• UML has a weak semantics with many variation points, while SDL has a complete 

semantics, including execution semantics for state machines.  

 

An SDL System consists of Agents that are connected by means of Channels. Agents may 

communicate by sending Signals or by requesting other Agents to perform Procedures. An 

Agent may have both a StateMachine and an internal structure of Agents (a composite 

Agent). The internal Agents and the StateMachine are connected by Channels. The 

connection points for Channels are Gates. Agents come in different kinds with different 

execution semantics: Block Agents are concurrent Agents with possibly interleaved 

execution of the transitions of the state machines, while Process Agents are alternating 

Agents with run-to-completion execution of transitions. The overall system is a special 

System Block Agent. 

 

 

 

 

 

 

 
Figure 2.5. UML Conceptual Model of basic SDL Concepts and Relationships 

[Source: Glasser 1997] 

 

In SDL, internal structure of agents takes explicit form in terms of interfaces and gates.  An 

Interface defines Signals, Variables, RemoteProcedures and Exceptions. Interfaces are 

associated with Gates. Gates are connection points for Channels connecting Agents. 

Communication between Agents takes place via Channels. Gates are mapped to UML by 

means of a combination of interfaces and associations to other classes. Statemachines of 

‘block’ agents execute concurrently (i.e. interleaving semantics) where as ‘process’ agent 

statemachines (with in a ‘block’ agent) executes in run-to-completion steps. SDL 

statemachine transitions are triggered by events like input of a Signal or a remote 

Procedure call. 
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UML-RT is similar to SDL/UML except it defines only one type of ‘active’ system entity 

called ‘capsule’ and also defines ‘ports’ and ‘interfaces’ [Selic 1998]. In terms of 

composition, system entities, and system architecture the proposed cmUML framework is 

similar to SDL/UML (or UML-RT). But being behavioral specification language, there is 

no emphasis on static aspects of associations, classes etc in cmUML. Further external and 

internal associations are similar (take implicit form i.e. no notion of channels and gates). 

Further the focus of ‘interface specification’ in UML is different as it is an abstract form of 

more detailed ‘internal specification’ and meant for certain kinds of verification purposes. 

SDL/UML and UML-RT are heavily dependent on statemachine formalism (where 

transitions are triggered by both signals and procedure calls) where as cmUML leaves the 

choice of combinations of both statemachine and flow diagrams to the specifier giving 

more expressive power and flexibility (in cmUML operations are delinked from 

statemachine by default).  cmUML integrates sequence diagrams into specifications with 

liveness constraints on the execution behaviors of system entities. SDL/UML and UML-

RT target designs with precise operational semantics. 

 
2.3.4  KRTUML    
 
krtUML, a subset of UML, is rich enough to express all behavioural modelling entities of 

UML used for real-time applications, covering such aspects as concurrency and 

communication [Damm 2002]. A formal interleaving semantics for this kernel language is 

defined by associating with each model M of krtUML a symbolic transition system 

STS(M) [Manna 1991]. This provides the semantical foundation for formal verification of 

real-time UML models [Damm 2003]. In this semantic framework, the state-space of the 

transition system is given by valuations of a set of typed system variables, and initial states 

and the transition relation are defined using first-order predicate logic. A complete 

snapshot of the dynamic execution state of a UML model is captured using unbounded 

arrays of object configurations to maintain the current status of all objects, and a pending 

request table modeling the status of all submitted, but not yet served operation calls. Object 

configurations include information on the valuation of the object's attributes, the state 
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configuration of its state-machine, as well as the pending events collected in an event-

queue. Central to a krtUML specification are ‘krtUML omponents’ where a component is a 

collection of an active object and a set of passive objects. With in a component all passive 

objects delegate their event handling to corresponding active object. An active object is 

like an event-driven task which processes its incoming requests in a first-in-first-out 

fashion. It comes equipped with a dispatcher, which picks the top-level event for the event-

queue, and dispatches it for processing to either its own state-machine, or to one of the 

passive reactive objects associated with this active object, inducing a so-called run-to-

completion step. ‘Triggered operations’ i.e. operation calls, whose return value depends on 

the current state of the system, are distinguished from ‘primitive operations’. For triggered 

operations the willingness of the object to accept a particular operation call in a given state 

is expressed within the corresponding statemachine. 

 

krtUML semantics is defined using symbolic transition systems. A symbolic transition 

system (STS) S = (V;θ; ρ) consists of V, a finite set of typed system variables, θ, a first-

order predicate over variables in V characterizing the initial states, and ρ, a transition 

predicate, that is a _rst-order predicate over V; V 0, referring to both primed and unprimed 

versions of the system variables (their current and next states) 

 

krtUML is targeted for hard real-time systems as the corresponding semantics enforces that 

at most a single thread of control is active within one component. cmUML adopts the 

semantical definition framework of krtUML but its components possess heterogeneous 

semantics as they correspond to different kinds of behaviors e.g. finite statemachine, flow 

diagram, or different combination of both. Further as cmUML is not tied to a specific 

application domain the semantic foundation is more generic and flexible. cmUML adopts 

more structured ADL approach towards composition of systems in terms of cmUML 

components. Both the frameworks aim towards LSC based formal verification [Damm 

2003].  
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2.4 RESEARCH GAPS AND PROBLEM DEFINITION   
 

A formal specification framework in UML towards specification phase in the development 

of systems with concurrent and reactive behaviors is required. The principles and 

semantics of formal specification approaches for concurrent and reactive systems as 

described in [Wing 1990, Lamport 2000] can be adopted. It is required to clarify 

inconsistencies and ambiguities in the usage and semantics of UML diagrams through an 

integrating framework based on higher level conceptual semantics. The standard UML/ 

SPT Profile [OMG 2002] can be used as the foundation for the proposed frameworks as 

the profile defines the concepts of events, causality, concurrency, and resource without 

formal semantics. The framework should form a basis for explicit introduction of 

concurrency in UML. Further it should be independent of implementation level primitives 

and associated semantics. 

 

A unifying framework for UML diagrams e.g. activity, state, and sequence with precise 

conceptual semantics and well defined context is required. The formal semantics should be 

defined in an intuitive way without extensive use of OCL [Kleppe 1999], the standard 

constraint language of UML. Further the proposed framework of the thesis should also 

integrate principles and techniques of formal methods and those of ADL community 

towards compositional specifications in terms of components, interfaces, ports etc. As 

UML does not define a development process and leave it to the profile developers as 

required for the domain under consideration, a suitable specification process for use of the 

framework can be defined. Further the framework can be validated against the current 

approaches [e.g. Goni 2004] in UML using classical problems of concurrency patterns, or 

example, or case studies or all of them. 

 

The specification framework should adopt the separation-of-concerns approach in 

specification of system components through separation of interface and internal 

specifications where the latter is more detailed version of previous. Further suitable 

semantic foundation for the proposed framework should be investigated. The semantics 

should handle the liveness issues of executions of the system. For this, the formalism of 
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LSCs i.e. live sequence charts [Damm 1999] can be integrated in to the proposed 

framework. The research work can further explore the suitable formal verification 

techniques e.g. model checking, industry tools, ADL tools with formal basis for integration 

with the proposed framework. 

 

Thus the framework should provide explicit, precise, yet intuitive means for specification 

of concurrency, reactivity, exception handling, synchronization features which are 

externally visible, and hence verifiable, of the system components. 
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2.5 SUMMARY  
 
 
This chapter provided the background and literature survey which forms the foundation of 

the thesis work carried out. Formal specification approaches, overview of UML and related 

issues are presented. Further related works in UML are described. The chapter concludes 

with the research gaps identified through literature survey and the formulated research 

problem for the thesis work. 
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CHAPTER 3 

FRAMEWORK DEFINITION 
 

ML has defined an important profile, known as Profile for Schedulability, 

Performance, and Time (UML/SPT), for modeling Real-Time systems. In an 

attempt to provide a flexible open framework towards the exchange of models, the SPT 

profile has not defined a formal semantics. This limits the understanding of semantics of 

the specifications. A better approach to providing a open framework together with 

semantically rich specifications is by describing the relevant semantic information at a 

higher level of abstraction. The thesis defines such a framework over concepts of SPT 

profile. This is achieved by adding an abstract specification layer with precise conceptual 

semantics, on top of the UML/SPT profile, towards explicit specification of concurrency, 

reactivity, exception handling, and synchronization.  

 

This chapter presents the first part of the thesis contribution i.e., the definition of a UML 

based specification framework, namely cmUML, and associated specification language, 

namely cmUML Profile. The profile is based on the standard light weight extension 

mechanisms of UML.  The framework defines higher level abstractions with associated 

conceptual semantics as necessary building blocks for specification of system components. 

In this chapter, the relevant features of the SPT profile are described. Then, a conceptual 

model of the framework is presented. A mapping strategy between the elements of the 

conceptual model and those of SPT profile and UML meta model is defined. The chapter 

concludes with an informal description of behavior and semantics of the proposed 

specification constructs of the proposed cmUML framework. 

 

3.1 UML SPT PROFILE  
 
UML SPT profile offers a common framework for real-time modeling that unifies the 

diversity of techniques, terminologies and notations existing in the real-time software 

U
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community, while still leaving space for different kinds of specifications [OMG 2002]. In 

its current form, the main focus of the SPT profile is on time and time-related concepts. It 

offers a terminology for modeling real-time systems: defines a set of concepts and some 

relationships between these concepts, as allowed by the meta-modeling technique used for 

the definition of the profile. Clearly, the meta-modeling techniques can carry only 

superficial semantic information. At a first sight this may be argued by its aim to address 

the needs of various real-time modeling techniques. However, a closer look to the SPT 

definition itself shows that such a definition is insufficient, in particular for promoting 

common understanding of specification and exchange of specifications between tools 

[Ober 2004]. 

 

The approach used in SPT to deal with the variability of concepts is to add attributes in the 

form of keywords and to abandon the idea of fixing a semantics (left to the tools). Indeed, 

fixing semantics has the inconvenience that there will always be some domains in which 

slightly different concepts are needed. The approach of the SPT was to provide an answer 

to the main question: how to provide a flexible and relatively open framework and still be 

able to exchange models with their semantics? But, the better alternative approach in 

providing open framework with semantics is to provide a standard way to describe 

semantic information at a higher level of abstraction [Ober 2004]. For the general dynamic 

semantics, the main issues are the choice of the granularity and communication and 

execution mechanisms i.e., the possible choices between several concurrently enabled 

steps and the granularity of the observed steps. The number of reasonable communication 

modes is relatively small, and in particular in the context of SPT, an effort can be made to 

provide attributes with widely accepted interpretation. 

 

3.1.1 GENERAL RESOURCE MODELING FRAMEWORK 
 
 
The SPT Profile is partitioned into a number of packages dedicated to specific aspects of 

real-time system modeling and analysis techniques. At the core of the profile is a set of 

sub-profiles that represent the general resource modeling framework. This provides a 
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common base for all the sub-profiles. However, it is anticipated that future profiles may 

need to reuse only a portion of this core. Hence, the general resource model is itself 

partitioned into three separate parts (figure 3.1). 

 

 

 

 

 

 

 

 
Figure 3.1 General Resource Modeling Framework Packages of SPT Profile 

 [Source: OMG 2002] 

 
The core resource modeling framework is further divided into sub packages (figure 3.2). 

Of these packages CoreResourceModel package forms the core part and defines the 

abstract concept of a Resource, ResourceService and Instances. Because concurrent, 

reactive systems are best specified in terms of instances of their behavior parts, the rest of 

this description will focus on the behavioral entities corresponding to proposed cmUML 

constructs. 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 3.2.  Sub packages of Resource Modeling Package of SPT Profile 

[Source: OMG 2002] 
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Of all the sub packages of SPT profile the packages CoreResourceModel, 

CausalityModel, and RTconcurrencyModelling form necessary elements for defining 

the proposed cmUML specification framework. 

 
3.1.2 CAUSALITY SUB-PACKAGE 
 
This is an important model that is used as a basis for any dynamic modeling associated 

with the SPT profile. It captures the essentials of the cause-effect chains in the behavior of 

run-time instances of the model. The model is based on the dynamic semantics of UML but 

is more detailed and precise.  

 

 
 

Figure 3.3.  The basic Causal Loop Model in UML [Source: OMG 2002] 

 

A fundamental concept in the causality model is the notion of an EventOccurrence. This 

corresponds to an instance of the UML event notion. There are many different kinds of 

event occurrences, but the most interesting ones are the StimulusGgeneration and 

StimulusReception events. A stimulus is an instance of a communication in transit between 

a calling object and a called object. A stimulus generation event occurs when an object 

executes an action that invokes an operation on another object (the receiver) or sends a 

signal to it. The effect of the stimulus generation event is the creation and dispatching of a 

stimulus that identifies the parameters of the communication (the operation invoked, the 

values of the parameters, etc.). The stimulus will eventually result in a stimulus reception 
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event. This event occurs when an object executes some kind of reception operation. The 

occurrence of this event will either trigger a transition in the receiver or result in the 

execution of a method (details of how the event is received, scheduled, and dispatched 

can be defined as part of the formal semantics of the sublanguage, here it is cmUML). 

This, in turn, leads to a scenario execution (or simply, scenario). A scenario execution may 

result in the execution of an ordered set of actions, some of which may generate further 

stimuli, and so on. 

 
Figure 3.4. Scenario Event Occurrences [Source: OMG 2002] 

 

3.1.3 CONCURRENCY SUB-PACKAGE 
 
The general concurrency model in SPT profile is based on its causality model (as described 

in previous section). As ‘actions’ (which are parts of scenarios) execute, they generate 

‘stimuli’. In the concurrency model we specifically identify so-called message actions. 

These are action executions that generate one or more stimuli. Following the standard 

causal loop, a stimulus targets a particular service instance of a specific object instance. 

This causes the execution of the scenario corresponding to the method associated with the 

resource service instance. This leads to further action executions, and so on. For the 

concurrency model, of particular interest is the notion of a ConcurrentUnit, an ‘active’ 

resource instance that executes concurrently with other concurrent units.  

 

Ultimately, all behavior in the system is a consequence of actions executed by concurrent 

units. Following creation, each concurrent unit commences to execute one main scenario. 

This scenario executes until the concurrent unit is terminated. During its execution, the 

scenario may perform explicit receive actions in order to accept any stimuli sent to it. A 
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receive action by a concurrent unit leads directly to the activation of the appropriate service 

instance and its service method. During the execution of the service method the main 

method may either be blocked, the so-called run-to-completion step, or it may proceed 

executing concurrently. Of course, a stimulus may arrive before the targeted concurrent 

object is ready to receive it. In such situations it may be necessary to defer the response to 

the stimulus until the corresponding ‘receive’ action is executed. For this reason, a 

concurrent unit needs one or more queues for holding deferred stimuli (multiple queues 

may be used to differentiate between stimuli of different priorities or sources). There are 

two choices at either end of the communication, which affect the detailed causality 

between concurrent threads of control. At the server end, the service request may either be 

handled immediately, or deferred. In the immediate case, a further property describes 

whether the receiving instance creates its own concurrent execution thread to handle the 

service request (the so-called local option), or assumes that there is an existing thread 

available (the remote option). At the receiver end, the message action may either represent 

an asynchronous or synchronous invocation of the service. If the request is asynchronous, 

then execution proceeds immediately; if the request is synchronous, then the client is 

blocked until a response is received from the receiver. Instances that are not concurrent do 

not have a main method and, hence, have no direct choice in controlling how a service 

request is handled. The concurrency model of SPT profile is described in figure 3.5. 

 

3.2 EXTENSION MECHANISMS IN UML  
 
The UML profile mechanism provides a way of specialization of the concepts defined in 

the UML standard. A stereotype can be viewed as a subclass of an existing UML concept. 

Most domain concepts (e.g. cmUML concepts, which in turn are based on UML SPT and 

UML metamodel) map directly into a stereotype with additional attributes of such 

concepts, specified using appropriately typed tags for each attribute. However, the domain 

model often shows associations between domain concepts, and, since the UML extension 

mechanisms do not provide a convenient facility for specifying new associations in its 

metamodel, such domain associations have to be represented in a variety of different ways, 
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depending on the case at hand. The following three general techniques are used to capture 

associations between domain elements:  

 

 
 

Figure 3.5. General Concurrency Modeling Concepts in SPT Profile 

[Source: OMG 2002] 

 

• Some domain associations map directly to existing associations in the metamodel. 

• Some domain composition associations map to tags associated with the stereotype. 

• In few cases, a domain association is represented by using the <<taggedValue>> 

relationship provided by the UML profile mechanisms. 

 

The concept of an action execution figures prominently in the SPT profile. This represents 

the run-time execution of some action (the UML metamodel does not provide such a 

concept). The UML notation definition document finesses over this by mapping activation 

to the action whose execution is represented. Unfortunately, this is not adequate for 

specification of instance behaviors. Sometimes it is necessary to differentiate between an 

action, from an instance of the execution of that action. What is crucial is that different 

executions of the same action specification are different. Therefore, what is required is an 
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extension to the UML metamodel Common Behavior package. The new concept, called 

ActionExecution, is integrated into the current metamodel as indicated in figure 3.5. 

 

 
 

Figure 3.6. Proposed UML metamodel Extension in SPT Profile (ActionExecution) 

[Source: OMG 2002] 

 

3.3  CONCEPTUAL MODEL OF cmUML  
 

SPT profile approach is followed in defining the conceptual framework and the 

corresponding UML mapping: first conceptual elements of the framework are introduced 

in a class diagram notation (not related to UML metamodel) and then mapped onto UML 

metamodel using standard extension mechanisms stereotypes, tags, and constraints. In 

cmUML, a ‘component’ (different from UML components) is a generic entity representing 

the type or ‘descriptor’ of corresponding runtime behavior instances. The specialized 

components are defined with specific functionality and behavior specified in terms of 

actions or activities combined in reactive or flow semantics. Further these components may 

be ‘concurrent’ or ‘sequential’. The internal concurrency is specified in two ways as 

interleaved executions or alternating executions in run-to-completion semantics.  

 

The conceptual model of proposed cmUML specification framework is presented in figure 

3.7. The core abstractions are represented in the conceptual model. Based on the 

functionality and related conceptual semantics (as explained in detail later in this chapter), 

the components are further classified as system, state, port, service, and resource.  
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Figure 3.7. Conceptual Model of cmUML Framework  

 

A system component contains other components and responsible for their initialization. 

Intuitively a system defines the scope of containing behaviors and represents a single 

cohesive behavioral unit suitable for compositional specification, verification, analysis as 
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well as synthesis (not all of them are within the scope of this thesis). It may further contain 

other system components hierarchically.  

 

Resource components with abstract operations acquire(), release(), read() and write() 

represent passive, protected data or hardware resources. Resource components with 

complex concurrent behaviors may be specified as system components. State represents 

reactive, synchronization, and exception handling semantics of internal executions. Port 

represents interface specification with concurrency aspects, service access order, and inter-

component communication. State component can be considered as an extended form of 

Port behavior with sub states and sub transitions corresponding to an abstract 

implementation behavior (this may be comparable to so-called stuttered transitions in 

Lamport’s transition axiom method approach [Lamport 1989]). 

 

 Service components represent dynamically created ‘sequential’ executions in interleaved 

or run-to-completion steps in response to external events (in contrast to asynchronously 

executing State and Port behaviors). An instance of a Service may execute concurrently 

with itself and other compatible services as specified in corresponding Port specification. 

Action and activities are simple or guarded (with precise semantics regarding atomicity, 

synchronization, and exception handling). The guard conditions are local assertions or 

global invariants representing synchronizations. Failure of guards associated with a 

guarded action or activity may result in either wait semantics or a raised exception causing 

the termination of the corresponding activity (similar to the java’s try-catch block []).  
 
cmUML framework defines ‘conditions’ as first-class entities facilitating precise 

specification behaviors at interface level (comparable to conditions in LSC semantic 

framework [Damm 1999]). Further the interface ‘conditions’ and related semantics 

correspond to those of internal behaviors e.g. guarded actions. Thus cmUML provides 

consistent specifications both at interface and internal specification level. A 

ScenarioContext represents interactions of component executions with liveness semantics, 

in response to external events. These contexts correspond to component use-cases and are 

triggered by specific events or sequence of events. 
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3.4 DEFINITION OF cmUML PROFILE  
 
The goal of the proposed stereotypes is to provide specification constructs with conceptual 

semantics towards precise behavioral specification of concurrent, reactive systems 

hierarchically. Further the proposed language integrates various modeling  formalisms of 

UML (i.e., statechart, activity, sequence diagrams) with concurrency semantics of 

underlying object model and the action semantics of UML. The UML profile, 

corresponding to the conceptual model of cmUML, is defined using UML standard 

extension mechanisms stereotypes, tags and constraints.  

 

The cmUML profile uses flat structures of behavioral specifications i.e., activities, 

statecharts, and sequence diagrams without hierarchy  as the latter can be easily translated 

into equivalent flat versions. Also a few meta-level abstract methods are defined for some 

abstractions (e.g., state, resource etc) to simplify the semantics description and make the 

specifications intuitive to system or tool developers. The design rationale behind the 

proposed stereotypes of cmUML is described below by related mapping on to elements of 

UML metamodel and the UML/SPT profile. This also explains the related tag-value pairs 

and cosntraints of the corresponding stereotypes (table 3.1-3.3). 

 

Component: a generic behavioral specification unit in cmUML. Associated with 

ConcurrentUnit in UML/SPT profile, it represents a concurrent activity. As behaviors in 

UML can take classifier form [Selic 2004], it is also associated with UML metamodel 

element Class (with isActive=true). This mapping is further consistent with general notion 

of ‘threads’ associated with an active object in design paralance (but cmUML is 

independent of design notion of ‘threads’). Thus behavors specified as cmUML 

abstractions may be regarded as ‘Active’ in generic specification interpretation. 
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cmUML Stereotype  UML/ SPT Concepts UML Metamodel  

Element 

Component  Descriptor,  

ConcurrentUnit 

Class 

[isActive = ‘true’] 

System Specialization: Component 

Port  Specialization: Component 

State Specialization: Component 

Resource ProtectedResource Specialization: Component 

Service Scenario  Specialization: Component 

ServiceType (ST)  Operation  

ServiceHandler (SH)  Classifier 

ActivityExecution (AE) ActionExecution  

ScenarioExecution (SE) Specialization: ActionExecution 

GuardedAction (GA)  Action 

MessageAction (MA) SendAction  

Exception  Stimulus  

ScenarioEvent EventOccurence Event  

Start Specialization: ScenarioEvent 

End Specialization: ScenarioEvent 

AccessOrder (AO)  (Protocol)StateMachine 

Reactive  StateMachineDiagram 

Flow  ActivityDiagram 

ScenarioContext (SC)  SequenceDiagram 

PrimaryContext (PC) Specialization: ScenarioContext 

SecondaryContext (SC) Specialization: ScenarioContext 

Condition  Static Feature  

Assertion  Specialization: Condition  

Invariant  Specialization: Condition 

 

Table 3.1. Stereotypes of cmUML and the mapping into UML and UML/SPT Profile 
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Specializations of Component: taking into consideration the specification needs, several 

specializations of Component are proposed. State represents a behavior with reactive 

semantics. Port represents an interface specification and its abstract behavior for e.g. the 

interface concurrency control, global synchronization patterns. Resource represents a 

‘passive’ entity with possible ‘internal’ concurrency. A resource entity may not be 

specified further i.e., decomposed in terms of internal specification entities. Services 

represent dynamically created behavior executions in response to external events (i.e. 

service requests). Service components are associated with static descriptors defined as 

ServiceTypes (specification of paramerters, reutrn values, pre-condition, post-condition 

etc) and dynamic descriptors defined as ServiceHandlers (with incarnation counters 

corresponding to each ServiceType). Thus service handlers represent the dynamic 

information of service instances, corresponding to a specific ServiceType i.e., the 

necessary information required of the executing status of intances of a service type. The 

ServiceHandlers are analogous to implementation level system variables like call stack, 

program counter etc which represent important information of executions that can be used 

to specify execution behaviors at higher level without suffering from any implementation 

bias [Lamport 2000]. 

 

Specializations of Action and ActionExecution: an ‘action’ in UML represents a 

fundamental unit of execution without precise behavioral semantics. cmUML proposes 

GuardedActions as an extension of basic actions with concurrency semantics of atomicity, 

synchronziation, and exception handling. GaurdedAction precisely conveys the execution 

semantics of corresponding actions as defined in UML (not compromising the general 

action semantics defined in UML). SPT profile has proposed the concept of 

ActionExecution towards the metamodel extension of UML. This helps distinguish 

different executions of an action which is in perticular useful to specify concurrent 

executions of same action, or service type. As ‘activity’ is basically defined as an ‘action’ 

or a sequence of actions at UML metamodel, cmUML extends the ActionExecution to 

more specific concepts of behavior i.e., instances of executions e.g. ActivityExecution and 

ServiceExecution corresponding to various instances of methods of ‘operations’ 
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(ServiceTypes in cmUML). With this construct it is possible to refer, distinguish and 

specify the different invocations of component services and their execution status either in 

interface or internal specifications. 

 

Specialization of EventOccurence: executions in concurrent, ractive systems are related to 

causality of actions. UML has defined certain kinds of events e.g. callEvent, changeEvent, 

etc. As these events are not sufficient to specify exact start, and termination of behavior 

executions, cmUML identifies two special events Start, End corresponding to start, and 

termination of every instance of an ‘ActivityExecution’ or ‘ServiceExecution’. These 

events help specify the necessary synchronization behavior (e.g. in interface specification) 

as well as flexibility in defining the semantics of the execution models (e.g. for internal 

specifications).  

 

Specialization of UML feature: As defined in UML metamodel, a classifier can be 

associated with various kinds of features e.g., static and behavior. cmUML extends the 

StaticFeature to define ‘conditions’ as first-class entities that can be associated with 

behaviors. As identified in LSC semantic framework, conditions as first class entities are 

useful for specification of externally observable behaviors. Further these ‘conditions’ can 

be associated with specific semantics and interpretations having a bearing on the 

acceptable ‘runs’ i.e., executions of the system components.   cmUML further 

distinguishes two kinds of conditions i.e., assertion and invariant. An assertion 

corresponds to a condition based on local instance variables where an invariant may 

contain other sytem level variables e.g. attributes of ServiceHandlers (this may be useful to 

specify various kinds of synchronziation patterns [Mizuno 1999, Jagadish2006(a)]. Further 

a condition is associated with the tag  ‘isDelay’ which specifies the wait semantics in 

addition to optional (cold), or mandatory (hot) semantics as defined in LSC semantic 

framework [Damm 1999]. 

 



CHAPTER 4:  SPECIFICATION METHODOLOGY  

49 
 

Table 3.1 lists the stereotypes defined in cmUML extension. UML name as tag type in the 

table indicates reference to the corresponding instance. Also absence of multiplicity 

indicates 0 or 1 where as * indicates 0 or more.  

 

Stereotypes Associated Tags (if any):  

Name [Type] {values} (multiplicity) 

Component spec[Behavior](*); root[«system»]; 
concurrencyKind={concurrent, sequential};  

evBuffer[«resource»] 

System port[«port»]; state[«state»]; 
service[«service»](*);  

Port interface[«serviceType»](*);  
spec[«AcessOrder», «ScenarioContext»(*)];  
handles[«serviceHandler»](*);  
policy={FIFO, Priority} 

State spec [«Reactive»]; 

Service spec [«Flow»];   

ServiceType (ST) max[integer]; serviceKind={read, write}; 
parService[«serviceType»](*); 

ServiceHandler (SH) execs[«service»](*); 

 in(integer); out(integer); 

GuardedAction (GA) guard[boolean]; isDelay[boolean]; 
isHot[boolean]; exception[«exception»]; 
isAtomic[boolean]; 

MessageAction (MA) synchKind={send, accept, return} 

AccessOrder (AO) scope: {local, global} 

Condition  isDelay[boolean] 

PrimaryContext  secondary[«SecondaryContext»](*) 

SecondaryContext  primary[«PrimaryContext»](*) 

 

Table 3.2. Tags for Proposed Stereotypes of cmUML 
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Stereotype Associated Constraint  

Component  Abstract  

System  port, state are not ‘null’ 

Port  concurrencyKind = ‘sequential’; 

port, and state are ‘null’ 

State  concurrencyKind = ‘sequential’ ; 

port and state are ‘null’ 

Service  concurrencyKind = ‘sequential’ 

port and state refer to those of ‘root’ 

Resource To be atomically acquired and released  

 

Table 3.3. Constraints Associated with  the Stereotypes of cmUML 

 

3.5  INFORMAL SEMANTICS OF cmUML PROFILE 
 
This section describes the informal semantics of the cmUML constructs as defined in the 

profile in previous section (formal semantics is described in the following chapter).  

 

One of the important constructs defined in the profile is ActivityExecution, as a 

generalization of SPT Profile’s ActionExecution, consistent with UML definition of 

activity as action. Activities are at a higher granularity than actions and can represent an 

instance of a Service corresponding to a ServiceType. A service instance is associated with 

a run-time handler ServiceHandler (analogous to run-time system variables, call stack, 

program counter etc) with dynamic information regarding service instances that (using 

incarnation counters ‘in’ and ‘out’). This information can be used to specify complex 

synchronization patterns in the form of global invariants representing safety conditions in a 

simpler way [Jagadish 2007, Mizuno 1999]. A set of useful global invariants were 

proposed by Mizuno which work as basic patterns to compose appropriate global 

invariants for specifications. Translations exist from global invariant based coarse-grained 

specifications to fine-grained synchronization code using semaphore, monitors etc.  
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Another important construct defined in the profile with respect to concurrent semantics is 

GuardedAction. This allows specifying precise semantics corresponding to the execution 

of the corresponding action or activity. The GuardedAction specifies synchronization and 

exception handling aspects through specified tags ‘guard’, ‘isDelay’, ‘isHot’, ‘Exception’, 

and ‘isAtomic’. Various combinations of these tag values specify the precise semantics of 

the construct as described below (other combinations may be termed invalid). 

 

Tag Value Combinations The Implied Semantics 

isHot =  true and 
guard = false 

termination of the service execution that raised 
the specified exception 

isHot = false and  
guard = false 

no effect on the corresponding service execution. 
The action is only skipped 
 

isHot = true and  
guard = true 

Desired effect of the action on the run  

isDelay = true wait semantics until guard is true  
isAtomic = true Atomicity of guard evaluation and action 

execution, with no interleaving step in between, 
in the corresponding execution of the service  

 

Table 3.4. Summary of GuardedAction Semantics 

 
Further the exceptions are handled by corresponding state component or thrown into 

higher level containing system components (comparable to the semantics of Java’s try-

catch block [Gosling 1996]). Thus GuardedAction provides much needed specification 

construct for synchronization, exception handling behavior of sequential executions in 

concurrent environment [Lohr 1992]. Further these ‘visible’ effects of ‘guards’ may 

correspond to the semantics of ‘conditions’ specified on LSCs of corresponding interface 

specification. Thus cmUML relates constructs and semantics regarding synchronization, 

exception handling in both interface and internal specifications. 

 

The semantics of main abstractions of cmUML are described below: 
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• System: the main abstraction which contains other components compositionally 

and associated with their initialization behavior of its Port and State (if exist). 

Further it defines a ‘scope’ for containing components defining ‘runs’ of the 

executions as a whole which can be verified against the specified LSCs as part of 

its interface specification i.e., port. If not decomposed further, a system’s internal 

behavior can be completely specified in terms of state and service components 

based on required implementation semantics [Girault 1999]. Thus, this internal 

specification corresponds to an abstract implementation and a higher design 

specification of a component towards easier synthesis. The port and state are 

asynchronously executing behaviors where as service instances are dynamic 

components, initialized in response to external requests. A system component may 

also contain resource type components to specify simple, protected, shared 

resources with no reactive behaviors but may have internal concurrency.  The static 

composition aspect of system components can be specified using structure 

diagrams like UML component diagrams (i.e., no separate concrete syntax).  

 

• Resource: represents a simple protected shared resource with methods acquire(), 

release(), read(), and write(). A resource instance may be explicitly acquired and 

released (atomically). Instances of these components do not possess reactive 

behaviors but can have internal concurrency which is specified as part of its 

ServiceTypes (using tags serviceKind and parService ) of corresponding port 

specification. 

 

• Service: the behavior corresponding to an interface of a component i.e. a collection 

of  ServiceTypes is specified with data and control flow semantics (using UML 

activity diagram with UML2.0 semantics).The concurrent nature of a ServiceType 

with itself and other compatible ServiceTypes is specified by associated tags 

‘parService’, ‘serviceKind’. The tag parService represents the collection of other 

ServiceTypes whose instances can execute concurrently with this service instance. 

serviceKind tag specifies whether instances of the same serviceType can execute 
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concurrently  (read indicates multiple instances and write indicate single instance 

only) [Lohr 1992].  Further, events start and end are generated corresponding to a 

service execution (event end not generated if the service is terminated due to a 

raised exception). These events are broadcasted to all state components with in the 

scope of the containing system component.  

 

• Port: represents the interface specification of component behavior as observable 

externally. As recommended in Lamport’s transition axiom method approach, the 

interface need to be specified with precise operational semantics, if required using 

the necessary state variables corresponding to execution environment [Lamport 

1983, 2000]. This principle is adopted in the specification of interface including 

concurrency control using AccessOrder, a protocol statemachine (for temporal 

ordering dependencies among the invoked services). AccessOrder may represent an 

abstract version of the more detailed internal State component. ServiceHandlers 

and associated execution information can be used for the detailed specification 

(fine-grained) of the concurrency control at the interface. Further, a port 

specification exports a collection of ServiceTypes with concurrency annotations 

through associated tag values for specifying concurrent semantics of their 

invocations (while this may specify the same information as that of AccessOrder 

specification, the latter may additionally specify fine-grained concurrency control). 

The AccessOrder is an important abstraction addressing many issues of concurrent 

systems [Jagadish 2007(a)]. For a concurrent component, this also aids in 

identifying concurrent sub components [Jagadish 2007(b)], as described in next 

chapter. 

 

• State: specifies the reactive, coordination, exception handling aspects of internal 

behaviors of system components. The associated Reactive behavior (specified using 

behavior statemachines) executes asynchronously with respect to instances of 

services of a component (this behavior can be restricted for an implementation 

environment). To understand the concurrency semantics intuitively, a system 
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component associated with a state behavior is analogous to an operating system 

monitor with concurrent threads of control which synchronize on need (classical 

monitors cause unnecessary mutual exclusion [Jagadish 2007a]). Thus UML 

approaches that use low level constructs like semaphore, monitor to specify 

concurrency behavior suffer from implementation bias and prohibit legal 

implementations that ‘could’ satisfy the specification. Though a state behavior 

corresponds to corresponding AccessOrder behavior of the interface specification 

the corresponding internal specification may contain additional states, transitions, 

and activities (comparable to Lamport’s notion of stuttered transitions [Lamport 

1983, Lamport 2000]). The meta-operations wait() and notify(), associated with a 

state behavior facilitate ‘explicit’ form of service synchronization (comparable to 

classical monitors). Further a state component receives events start, end indicating 

the execution status of instances of ‘services’ of the corresponding system 

component. 

 

• ScenarioContext: corresponding to each use case, ScenarioContexts represent 

interactions of internal behaviors, as observed externally, with precise notions of 

compulsory, optional, and wait semantics. These contexts are specified using live 

sequence charts (LSC) [Damm 1999]. cmUML extends the LSCs to specify ‘wait’ 

semantics of guarded actions, and other conditions. In concurrent environment, 

certain executions may need to ‘wait’ for certain events, or conditions to happen. 

Though LSCs are specified for externally observable behaviors in response to use 

cases, certain synchronization aspects may be externally visible (even otherwise it 

may be necessary to make them visible for the sake of verification of certain 

aspects). Usually these contexts represent the principle behavior of the system 

without considering error scenarios. But as cmUML provides explicit exception 

handling mechanisms, certain important exceptions (which are visible externally) 

and expected system response can be specified (and verified) using the secondary 

scenario contexts i.e., SecondaryContexts triggered by corresponding exceptions 

(raised by the PrimaryContexts). 
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3.6  SUMMARY  
 
This chapter provided the overview, design rationale, and definition of cmUML, the 

proposed specification framework and the associated specification language through 

lightweight extensions in UML. Based on the conceptual framework of UML/SPT profile, 

cmUML provides the constructs, and concurrency semantics towards precise behavioral 

structuring and specification of system components. Thus cmUML complements the 

existing UML framework with latter’s design rational in tact. cmUML framework further 

integrates the higher level formalisms of UML with underlying object model and UML 

action semantics. Further the framework provides constructs and mechanisms for explicit 

specification of concurrency, reactivity, exception handling, and synchronization. 
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Chapter 4 

SPECIFICATION METHODOLOGY  
 

oftware development methodologies and processes play a major role in software 

engineering. They specify a systematic procedure of applying principles, tools, 

techniques, and heuristics in rapid development of software systems.  Though UML has 

become the de facto industry standard language, it does not prescribe any standard 

development process and leaves the task to profile developers or domain experts or tool 

developers. Hence the thesis proposes a specification methodology for application of the 

proposed cmUML framework and its UML extensions. As the framework is defined using 

light weight extension mechanisms of UML, it can be used along with other UML based 

methods, and tools. The thesis proposes a specification refinement for application of the 

proposed cmUML framework and proposed UML extensions.  

 

This chapter presents the second part of the thesis contribution i.e., a step-wise 

specification process that can be applied to develop hierarchical specification of 

concurrent, reactive systems (or subsystem components) using proposed cmUML 

framework and its profile. The process is demonstrated using the well known problem of a 

Vending Machine specification. Further the advantage of the cmUML approach is 

demonstrated by comparing and validating it with other approaches, formal as well as 

semi-formal. For this, classical problems of concurrency i.e., readers-writers problem and 

producer-consumer problem are specified and compared against their specifications in 

UML and formal approaches. 

 

4.1  SPECIFICATION PROCESS WITH cmUML 
 
In this section, a step-wise specification methodology for the application of the cmUML 

framework is proposed. The methodology assumes use case based requirement analysis. 

Also a higher level decomposition strategy is assumed for arriving at the initial subsystems 

S 
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i.e., the large-grained architectural components that may be deployed on a single physical 

computing node [Gomma 1993, Gomma 2000]. For the simple case study of Vending 

Machine specification below, there is only one subsystem that can be considered as the 

initial System component. For a complex system there may exist many subsystems for 

which the methodology can be applied independently. We describe the specification 

approach in terms of the following tasks. 

 

Interface Identification (Task1): Identify the offered ‘services’ of the system component 

through its interface. The information can be obtained from requirement artifacts like 

problem statement, use cases, and context diagrams for the subsystem under specification 

process. 

 

Interface Specification (Task2): The detailed Port specification of a system component. 

This includes the specification of service types, and related tags as well as protocol 

statemachine like behavior. Determine the concurrent execution behavior of offered 

interface services (serviceKind and other tags). For interface ServiceTypes, the temporal 

ordering dependencies, if any, as observable externally, can be specified as the 

AccessOrder part of the Port specification. AccessOrder is a protocol statemachine, but its 

transition guards may include expressions over incarnation counters of ServiceHandlers 

corresponding to each ServiceType  defined. This detailed AccessOrder specification is 

also useful for a suitable decomposition of a system component i.e., identification of 

concurrent subcomponents as described in next task. 

 

System Decomposition (Task3): Considering the Port specification obtained in previous 

task, i.e., the externally observable concurrent component services, a suitable component 

(or subsystem) decomposition needs to be performed. This can be done by dividing the 

interface services into a set of concurrent ‘groups’ of services. This decomposition can be 

fine tuned by applying the general task cohesion principles from OOAD approaches (e.g. 

functional cohesion) [Gomma 200]. Task cohesion principles, largely design heuristics, 

help identify optimum number of concurrent tasks in a system. For example, sequential 



CHAPTER 4:  SPECIFICATION METHODOLOGY  

58 
 

cohesion and functional cohesion can be applied to group two services of different 

concurrent components into a single component as sequential cohesion implies sequential 

execution among the identified tasks and functional cohesion implies the tasks are related 

into performing similar services. Each of these concurrent groups, identified by applying 

simple design heuristics to the artifact of previous task, can be specified as a system 

subcomponent. For simple components with no internal structure, this step may be 

skipped.  

 

Internal Specification (Task4): For each system sub-component, repeat the tasks 1, and 2. 

Once the decomposition process is over, each sub-component specification (currently 

consisting of interface part only) may be refined by providing the necessary internal 

specifications i.e., State and Service. As explained in previous chapter, this depends on the 

behavior semantics of the System (sub) component under consideration. For example, a 

component with state-based internal concurrency represents a reactive behavior and hence 

requires an internal State specification for necessary synchronization, exception handling 

aspects. For a component with state-less internal concurrency, the internal specification 

may not contain a State specification (even with this, a fine-grained concurrency, if 

required, may be specified using Port specification alone, based on the attributes of 

ServiceHandlers). 

 

Interaction Specification (Task5): Corresponding to each use case of a System 

component under consideration, specify one or more ScenarioContexts involving 

interaction between its sub-components. These interactions may also involve the 

corresponding Port and State components if required. ScenarioContext are UML sequence 

diagrams with explicit liveness semantics and event orderings borrowed from Live 

Sequence Charts [Damm 199, Damm 2003]. Further the notion of ‘pre-charts’ as defined 

in LSCs are very useful to specify a generic pre-conditions, as a sequence of messages 

exchanges, for triggering above ScenarioContext. Thus a ScenarioContext specifies 

primary activities of System components in response to external requests and events. These 

contexts can be further extended, as explained in Task6, with exception conditions 
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‘triggering’ SecondaryContexts, the latter thus specify much needed exception handling 

features (important characterisitics of concurrent and reactive systems).   

 

Service Specifications (Task6): UML2.0 has replaced the statemachine like semantics of 

activity diagrams with control and data flow semantics [Selic 2004]. These diagrams are 

very useful to specify sequential executions and local actions internal to concurrent 

component executions. As explained in previous chapter, cmUML extends the UML 

activities and actions to specify the semantics of synchronization, atomicity, and exception 

handling. Thus internal specifications of services (i.e., ServiceType) in cmUML provide 

unambiguous specification of sequential executions in concurrent and reactive 

environments.  

 

Synchronization, Exception Handling Features (Task7): Identify the different 

synchronization, and exception handling situations. This may be done by identifying 

GuardedActions in Service and ScenarioContexts specifications. Further refine the internal 

specifications i.e., Service, State (if exist) and ScenarioContexts specifications by 

identifying synchronization, exception handling aspects among the concurrently executing 

behaviors of the component. This leads to identification and specification of 

SecondaryContexts i.e., responses to the raised exceptions. The task also includes 

identification of appropriate invariants in the Port specification (e.g., fine-grained 

synchronization patterns using attributes of ServiceHandlers).  

  

Task8: Repeat above Tasks1-7 for all System components and also System sub components 

identified in Task3. 

 

4.2 CASE STUDY: VENDING MACHINE SPECIFICATION  
 
4.2.1 PROBLEM STATEMENT 
 
The specification methodology as described in the previous section is further elaborated 

through a case study, the well known problem of Vending Machine specification [Schinz 
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2004]. A vending machine (VM) accepts coins from users to dispense a drink of chosen 

choice. The user gives coins, one at a time, and while the sum is sufficient enough the 

corresponding choices of available drinks are updated. The user can select any of enabled 

choices. The drink and the extra coins, if any, are dispensed (for simplicity, we assume that 

the VM doesn’t remember the coins of previous transactions). Also the user’s request to 

cancel the transaction may be considered for e.g. before the drink or coins are dispensed.  

 

4.2.2 SPECIFICATION PROCESS 
 
The specification process assumes a suitable subsystem identification strategy as discussed 

in [Gomma 1993, Gomma 2000]. This allows identification of large grained architectural 

components in the system usually corresponding to physical architecture of the systems, 

which can be best specified using UML deployment diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. General Use Cases of a Vending Machine 

 

cmUML specification process (Task1-8 as explained in the previous section) is based on 

artifacts of requirements elicitation phase. In UML, this activity is commonly performed 

using the informal design notation of Use Cases. A use case corresponds to a specific 

DropCoins 

MakeChoice 

DispenseCoins 

Cancel 

DispenseDrink 



CHAPTER 4:  SPECIFICATION METHODOLOGY  

61 
 

system functionality involving actors of the subsystem i.e., external entities which include 

both persons and other sub systems. In the current case study of the vending machine, there 

is at most one actor interacting with the system. Further as the case study is a simple, we 

assume there is only one subsystem comprising a vending machine system. The general 

use cases of a vending machine are given in figure 4.1. 

 

Identification of System Interface (Task1): Interactions of the system (vending machine) 

with its environment (user), i.e., externally observable behaviors can be understood from 

system requirements diagram (use cases in UML). In case of vending machine’s external 

behavior, the user inserts sufficiently more coins and when prompted by the VM selects 

his choice of the drink. The VM, after validating the choice and the received coins, 

dispenses the ‘drink’ as well as the balance coins if any. From the initial analysis of these 

interactions, we can observe four principle services of the VM, involving its environment 

(user): ReceiveCoins, ReceiveChoice, DispenseDrink, and DispenseCoins (denoted as R-

Coins, R-Choice, D-Drink, D-Coins). During this task, the error or exception handling 

situations are not considered.  

 

 
 

Figure 4.2. AccessOrder Specification of «system» VM 

 

Specification of System Interface (Task2): Now, we specify the interface specification 

i.e., Port component of the VM system. This includes both static aspects (i.e., ServiceTypes 

and attributes) and the dynamic aspects (e.g.,  temporal dependencies at run-time using 

AccessOrder). As in figure 4.2, AccessOrder specifies concurrency and temporal 
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dependency between the interface services, as can be observed externally. The specified 

tag value scope is redundant in this example as there exist at most one user at a given time 

interacting with the VM (scope tag indicates whether the interface behavior is applicable 

locally per a given actor or global invocation order among all actors [Jagadish 2006a]). 

The complete interface specification («port») includes concurrency aspects of all 

ServiceTypes of the component (again as observed externally). For VM, all service types 

have same tag values {isAtomic=false; serviceKind=write; max=1} with additional 

information that D-Drink, D-Coins may execute in parallel.  

 

System Decomposition (Task3): From the AccessOrder specification of «system» 

components it is possible to identify concurrency or sequential dependency among 

interface services. For VM component, from figure 4.2, a concurrent region and a 

sequential region in dashed border indicates that the services DispenseDrink and 

DispenseCash may execute concurrently while ReceiveCoins and ReceiveChoice have 

sequential dependency. Now following task cohesion principles of OOAD approaches 

[Gomma 2000], we can identify two concurrent components with functionally related 

services; a CashExchanger component (CE) (that handles interface services R-Coins, D-

Coins) and a DrinkDispenser component (DD) (that handles interface services R-Choice, 

D-Drink). With the identification of internal components (concurrent, or sequential), the 

internal structure of the VM system can be specified using UML structure diagram (figure 

4.3). In cmUML a component represent a collection of behaviors at an abstract level (and 

independent of class or object diagram approaches of usual UML approaches).  

 

Internal Specifications (Task4): If a System component is decomposed its interface may 

be completely delegated to its sub components (as in the current case of VM system). Even 

so, the System component may contain the State specification for necessary coordination, 

synchronization or exception handling aspects. For example, for VM system component, 

the temporal dependencies specified as part of interface specification must be preserved in 

the internal specification. The internal state specification VM system (figure 4.3) specifies 

externally observable states (it may also contain other states) as well as the coordinating or 
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Data 
«Resource» 

CE 
«System» 

DD 
«System» 

VM «System» 

«End» R-Coins 

«End» D-Coins  
&& «End» D-Drink  

S2 Entry: init 
S1 

«Exception» noDrink/ 
trigger(noDrinkHandle)     In S1or S2: Cancel / trigger(VM-Cancel) 

synchronization of internal behaviors. The transitions are augmented with new kind of 

events e.g. start, end, and exception towards specifying the necessary coordination and 

exception handling mechanisms. There are no Service specifications at the top-level of the 

VM system. The Cancel use-case i.e., the possible cancellation of the transaction is 

specified as an Exception as it requires coordination of the sub-components rather than a 

sequential Service execution.  

 

 

 

 

 

 

 

 

 
 

 

Figure 4.3. Specification of internal structure and State of «system» VM 

 

System Interactions (Task5): During this process of specification, primary interaction 

scenarios i.e., ScenarioContexts are specified using sequence diagrams. The primary 

ScenarioContexts, also PrimaryContexts, correspond to the main functionality or use cases 

of the System component. As UML sequence diagrams are not associated with precise 

semantics, cmUML adopts the LSC formalism towards specifying optional and 

mandatory behaviors through interaction with external environment [Damm 1999]. LSCs 

extend sequence diagrams by associating all the elements of sequence diagrams e.g. 

lifelines, messages, conditions etc with two kinds of annotations i.e., hot and cold. The hot 

annotations (graphically solid lines) indicate mandatory or compulsory behavior indicating 

liveness where as cold annotations (graphically dotted elements) indicate optional 

semantics. Further the cmUML profile extends the LSC framework to indicate wait 

semantics for certain conditions specified on LSCs (this feature relates the interface and 
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internal specifications for consistency). This may be alternatively specified using explicit 

synchronization messages with State component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. «ScenarioContext» Specifications of Vending Machine Use Cases  

 

ScenarioContexts, as LSCs, can be associated with pre-charts indicating optional 

precondition behavior expected of environment towards execution of a use case and are 

comparable to specification of pre-conditions of procedures in sequential execution 

environment. The environment including actors, and other hardware interfaces e.g. 

choicePanel, display interfaces etc is denoted by Env in scenario context specifications. 

Further these contexts are useful towards simulation or formal verification of correctness, 

liveness, and property verification etc as described in later chapter. Only specified events 

under given liveness constraints are of interest to the context/ use-case under consideration 

with respect to overall system behaviors (which may include other ‘unspecified’ internal 

events, actions etc comparable to the Lamport’s ‘stuttered’ transitions [Lamport 2000]).  
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Figure 4.4 specifies the ScenarioContext corresponding to DropCoins use case. Pre-chart, 

an optional behavior, acts a ‘triggering’ mechanism for execution of corresponding 

ScenarioContext (pre-charts with single message can also be specified within the scenario 

context using the ‘trigger’ stereotype. For example, an important SecondaryContext VM-

Cancel is invoked if the user presses ‘Cancel’ at any point of time. 

 

Service Specifications (Task6): The computational aspects of ServiceTypes of a 

component are specified using activity diagram (with data and control flow semantics). 

The component VM System has no service specifications as its ServiceTypes are all 

delegated to its sub-components. For description purpose we chose a service of its 

subcomponent. Figure 4.5 specifies the sequential execution behavior of the service R-

Coins. The specification contains GuardedActions. The associated tag values specify that 

the service execution does not wait for guard value to become true and terminate by raising 

an exception. GuardedActions are useful to specify atomic update of shared data values 

(isAtomic=true) or synchronization semantics regarding guard evaluation. In this context 

atomicity indicates that the guard value can not change during execution of the action(s) 

(for example, in fig.5 the outer guard corresponding to drinks availability cannot change 

during execution of R-Coins behavior). Also a guard expression may declaratively specify 

a condition referring to old and new values w.r.t action under consideration, using notation 

e.g. x@preAU and x@postAU enhancing expressiveness of specifications [Lam00].  

 

 

 

 

 

 

 

 

Figure 4.5. Activity Specification of a Service with guarded Semantics 
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Synchronization and Exception handling (Task7): Both interface and internal 

specifications can be examined for further synchronization and exception handling 

involved. For example the interface specification can be augmented by global invariants 

over incarnation counters in, out of ServiceHandlers of corresonding ServiceTypes 

specifying global synchronizations if any (e.g. fine-grained concurrency control). A State 

specification can be easily extended to specify new exceptions and corresponding 

exception handling contexts or services (which executes synchronously with the State 

behavior). New events, both external and internal, may be identified. In figure 4.3, the 

State specification is extended with new exception noDrink, handled synchronously.  

 
context Semaphore inv: 
 
context Semaphore 
 def: waiting    :   Sequence{ } 
 
context Semaphore::P(ID:T) : void 
 body : 
  if  self.s@pre > 0 then 
   self.s = self.s@pre – 1 
  else 
  self.synchronizedProcess->select ( p: Process |  

p.ID =ID).semSynch.isActive = false 
  self.synchronizedProcess -> select (p:Process | 
   p.ID=ID). semSynch.isBlocked = true 
  self.waiting = self.waiting@pre -> append (ID) 
  endif 
 
 
context Semaphore:: V() : void 
 body: if self.s @pre = 0 then 
  if self.waiting @pre -> isEmpty() = false then 
  self.synchronizedProcess -> select ( 
  p: Process | p.ID = self.waiting @pre ->  
   first()).semSynch.isBlocked = false 
  self.synchonizedProcess -> select( 
  p : Process | p.ID = self.waiting @pre ->  
   first()).semSynch.isActive = true 
  Self.waiting = self.waiting@pre ->  
  Subsequence (2, self.waiting@pre -> size()) 
  endif 
  endif 
  else 
   self.s = self.s @pre +1 
 

 
Table 4.1. An OCL based Specification of Semaphore Semantics 
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In figure 4.4, the ScenarioContexts are extended with possible external event Cancel 

corresponding to user cancellation of the transaction. This is handled as an exception even 

though specified as a use-case of the system. The corresponding exemption handling is 

specified as a SecondaryContext i.e., VM-Cancel as it requires specific interactions among 

the sub-components.  

 

Sub-Component Specifications (Task8): We can complete the specification of VM by 

specifying each «system» sub component (CE, DD) following Tasks 1-7. We skip the 

description of these steps here. The complete specification of VM system is presented in 

the appendix. 

 

4.3 COMPARISON AND VALIDATION   
 
In this section we validate cmUML framework through specification of well known 

classical concurrency problems i.e., readers-writers, and producer and consumer problems. 

We compare and validate the specifications against current UML approaches for the same, 

e.g. as given in [Goni 2004]. Generally these approaches use low-level primitives like 

locks, semaphore, and monitors etc to describe concurrent behavior where the semantics of 

these constructs are either not specified or specified in complex program-like OCL 

statements.  

 

A. Goni and Y. Eterovic, in [Goni 2004], provided precise OCL semantics to low level 

concurrency mechanisms like semaphores, and monitors. Using these mechanisms they 

have shown that certain concurrency problems e.g. Sleeping Barber problem can be 

precisely specified. Their OCL based specifications for ‘Semaphore’ is reproduced in table 

4.1. A similar OCL specification is defined for ‘monitor’ construct. The specifications are 

restricted by the semantics of these low-level primitives [Jagadish 2007]. In these 

approaches, though higher level diagrams are used, no precise semantics can be inferred 

about behavior of the specification. In contrast, cmUML specifications convey precise 

semantics without using low level primitives or complex OCL statements. 
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4.3.1 CLASSICAL PROBLEMS OF CONCURRENCY 
 
Current UML approaches are not precise regarding semantics of concurrency in 

specifications. Most approaches are based on low-level implementation constructs like 

semaphore, and monitor to convey the semantics of concurrent behavior thus suffering 

from implementation bias. Further there are certain inherent problems associated with 

these low-level mechanisms for e.g., sometimes the unnecessary mutual exclusion imposed 

by a ‘monitor’ is not suitable to specify the required fine-grained concurrency semantics 

[Jagadish 2006(a)].  Below we specified two well known problems for concurrency; 

readers-writers problem and producer–consumer problem. These problems are first 

specified using existing UML approaches and then in the proposed cmUML specification 

framework. It should be easy to see that the higher level semantics precisely specified by 

the cmUML approach is superior to OCL and low-level primitive based approaches. To 

compare the formality and specification power of cmUML, the specifications of these 

problems in a formal language are presented and compared.  

 

 
 

Figure 4.6. Specification of Readers-Writers Problem in UML  

 
4.3.2 READERS-WRITERS PROBLEM 
 

Readers-writers problem is a well known concurrency pattern and often used to 

demonstrate the concurrency aspects of a language. It states situation where there is a 

collection of ‘reader’ entities (processes, or actors), and a collection of ‘writer’ entities 

which access a shared resource. Readers can access the resource in parallel while writers 

access in mutual exclusion with other writers and readers. This problem is a very simple 



CHAPTER 4:  SPECIFICATION METHODOLOGY  

69 
 

«Port» {policy=FIFO}
 

«ServiceType»   +  read() : {serviceKind=read;} 
«ServiceType»   +  write() :{serviceKind=write;} 

 
Buffer  

 «System» 
 

read

«End» write/ 
«SH» write.out++ 

WriterIn
 

Entry:   Start(write) 
«SH» write.in ++; 

«AcessOrder» 
Scope={global} 

read

Write 

«SH» read.in = «SH» read.out
Idle 

«End» read/ 
«SH» read.out++;

ReadersIn
 

Entry:    Start(read) 
«SH» read.in ++;

pattern and many solutions exist based on suitable read-write lock like ‘semaphore’. But 

the specifications in UML also use these mechanisms to convey the required semantics of 

the pattern i.e., readers could be accessing simultaneously and writers in mutual exclusion 

with all other entities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Specification of Readers-Writers Problem in cmUML 

 
Figure 4.6 shows the specification of the problem using one of current UML practices 

(semantics of ‘semaphore’ lock, as OCL statements, is presented in table 4.1) and in figure 

4.7 using the proposed cmUML approach. The proposed approach retains the abstractness 

of specifications yet provides the precise concurrency semantics. AccessOrder i.e., a UML 

statemachine specifies the interface concurrency. The transitions are labeled with End 

events of service executions as well as the ‘in’ and ‘out’ i.e., the incarnation counters of 

service handlers corresponding to a given service type.  

 

Read  «Flow»  

ReadData 

Write  «Flow»

WriteData 



CHAPTER 4:  SPECIFICATION METHODOLOGY  

70 
 

 
call resource.startread  call resource.startwrite 
read     write 
call resource.endread   call 

resource.endwrite 
 
 
// A variable ‘s’ defines the current resource state as  
 
s=0 : 1 writer uses the resource 
s=1 : 0 processes use the resource 
s=2 : 1 reader uses the resource 
s=3 : 2 readers uses the resource 
... ... 
 
Process resource 
s : int 
 
Proc startread  when s≥1 : s:=s+1 end 
Proc endread    if   s>1 : s:=s-1 end 
Proc startwrite when s=1 : s:=0 end 
Proc endwrite   if   s=0 : s:=1 end 

 s:=1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Specification of Reader-Writer problem in Distributed Processes framework 

 

The complete formal specification of the problem is given in table 4.2. It is based on 

Distributed Processes framework due to Brinch Hansen [Hansen 1978]. The constructs 

when and if represent a guarded region and a guarded statement respectively with 

associated formal semantics w.r.t delay and exceptions. It can be seen that the specification 

power of cmUML matches with that of formal approaches yet provides better intuitivity 

and abstractness. 

 

The cmUML specification of readers-writers problem does not use many features of 

cmUML profile as it represents a simple system with no internal structure and has simple 

behaviors i.e., the sequential executions of the ServiceTypes i.e., Read(), and Write().  For 

example, the specification of the internal State component is not required as there is no 

synchronization, exception handling aspects among internal executions. It may be noted, 

that the ‘policy’ tag value ‘FIFO’ with «Port», guarantees that there is no starvation of 
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‘writers’ as request events are only handled in FIFO order and events stay until completely 

processed (default behavior as per formal semantics of a ‘Port’ component). 

 

4.3.3 PRODUCER-CONSUMER PROBLEM 
 
The problem involves specification of a protected passive resource i.e., a bounded ‘Buffer’ 

accessed by operations put(), get(), in state-dependent synchronization fashion, and 

possibly concurrently. For simplicity, we assume only single instance of these operations 

execute at a moment. When the Buffer is ‘full’ an execution instance of ‘put’ can not 

proceed and similarly when the Buffer is ‘empty’ an execution instance of ‘get’ waits until 

the state of the buffer changes.   Thus the concurrency and synchronization behavior of the 

problem depends on the state of the Buffer.  

 

 
Figure 4.8. Specification of Producer-Consumer Problem in UML approaches 

 

Figure 4.8 specifies the problem (invocation behavior of get() skipped) in current UML 

approaches (as in [Goni 2004]). This specification assumes monitor behavior as specified 

in [Goni 2004] (similar to that of semaphore using OCL statements as in table 4.1). The 

figure 4.9 presents the cmUML specification of the problem. The UML approach uses a 

sequence diagram to model the necessary state condition and related wait semantics. But 

the specified behavior is representative in nature and does not specify precise semantics. 
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Figure 4.9. cmUML Specification of Producer-Consumer Problem 

 

The cmUML specification of the problem uses many abstractions of the proposed 

framework (but not ScenarioContexts due to simplicity of the system). In figure 4.9, «Port» 

specifies interface services ServiceTypes and their concurrency aspects through 

AccessOrder (the associated invariant specifies the single instance of each ServiceType to 

be executing at a given instant). Further the state-based synchronization behavior of 

interface operations is specified using internal State specification (the reactive semantics). 

Also the sequential behavior of interface ServiceTypes is specified using UML activity 

diagrams. These sequential behaviors contain guarded actions i.e., ReadData and 

WriteData which imply wait semantics until the corresponding guards are true. Further the 

spcified atomicity indicates that the guard value can not change during execution of the 

corresponding action.  

 

Also, the complete formal specification of the problem is given in table 4.3. It is based on 

‘Distributed Processes’ framework due to Brinch Hansen [Hansen 1978]. The constructs 

when and if represent a guarded region and a guarded statement respectively with 

associated formal semantics w.r.t delay and exceptions. It again validates that the 

specification power of cmUML matches with that of formal approaches. 

«Port» {policy=FIFO} 
 

«ServiceType» 
Put() {serviceKind=write; parService=(Get); 
params(‘in:item(data)’; pre= ‘in!=null’}  
 
Get() {serviceKind=write; parService=(Put); 
params=‘out:item(data)’ } 

«Reactive»

[notEmpty] [notFull]

[empty] [full]Full ok Empty

«State» {policy=FIFO}

«AccessOrder»   Scope={global} 

«End» Put /   
 «SH» Put.out++      

Put / start(Put); 
«SH» Put.in++ 

«End» Get/
«SH» Get.out++; 

Get /start(Get); 
«SH» Get.in++ 

«invariant»   («SH» Put.in -«SH» Put.out ≤1) && 
(«SH» Get.in - «SH» Get.out ≤1) 

PortActive 

Read «Flow» Write   Flow»

ReadData 
{guarded,atomic} 
 

{guard=notFULL
: isHot=false; 
Delay=true 

WriteData 
{guarded,atomic} 
 

{guard=notFULL
: isHot=false; 
Delay=true 
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call resource.startput call resource.startget 
put   write 
call resource.endput  call resource.endget 
 
 
process resource 
buff:[0..SIZE] of buffer; 
head, tail: integer; 
 
proc startput   when tail ≤ head+SIZE end 
proc endput     tail:= tail+1 end 
proc startget   when head < tail end 
proc endget     head := head-1 end 
 

 begin head:=0 ; tail :=0 end 
 

 
call resource.put(x)   call resource.get(x) 
 
process resource 
buff:[0..SIZE] of int; 
head, tail: integer; 
 
proc put(x :int) 
     when tail ≤ head+SIZE : tail :=tail+1 
     insert(buff,x)     
     end 
proc get (#x :int) 
     when head < tail : head := head-1 
     remove(buff,x) 
     end 
 

 begin head:=0 ; tail :=0 end 

 

 

 

 

 

 

 

 

  

 

 

Table 4.3. Distributed Processes Specification of Producer-Consumer problem 

   

4.4 SPECIFICATION OF LEADER-FOLLOWER CONCURRENCY PATTERN 
 

There exist several design patterns for implementation of efficient concurrency models e.g. 

Active object, HalfSynch-HalfAsynch, HalfSynch-HalfReactive etc [Schimidt 1997]. The 

Leader/Followers design pattern provides a concurrency model where multiple threads can 

efficiently demultiplex events and dispatch event handlers that process I/O handles shared 

by the threads. The pattern is specified below using cmUML framework. Under the 

pattern, multiple former leader threads can process events concurrently while the current 

leader thread waits on the handle set. After its event processing completes, an idle follower 

thread waits its turn to become the leader. If requests arrive faster than the available 

threads can service them, it is assumed that the underlying I/O system can queue events 

internally until a leader thread becomes available. 

 

Figure 4.10 presents the cmUML Specification of Leader-Follower pattern. The interface 

specification describes the concurrency aspect of lone ServiceType i.e., ‘HandleEvent'. 

This ServiceType executes concurrently but limited by the maximum number of instances 

that is specified (which specifies the number of threads that would be available in the 

equivalent implementation). The internal specification ‘State’ executes internal operations 
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‘PromoteLeader()’ and ‘JoinQ()’ (invoked by concurrently executing instances of the 

ServiceType HandleEvent). Also the sequential execution of the HandleEvent ServiceType 

is specified using UML activity diagram. It can be noted that this example does not require 

other features of the cmUML framework i.e., ScenarioContexts as the behavior is simple 

and the specified system does not contain any internal components (at specification level). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. cmUML Specification of Leader-Follower Concurrency Pattern 

 

 

 

 

 

 

 

 

«Port» {policy=FIFO}
 
«ServiceType» HandleEvent() {serviceKind=read}

«AccessOrder»   Scope={local}

«End» HandleEvent/
  «SH» HandleEvent.out++     

HandleEvent/ Start(HandleEvent); 
«SH» HandleEvent.in++
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 «SH»HandleEvent.in -«SH»HandleEvent.out 

ProcessEvents 

JoinQ() 

NOT FollowersQ.Empty()/ 
PromoteLeader()
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«Start» HandleEvent ProcessEvent

JoinQ()

«State»    

HandleEvent «Flow»

JoinQ 
«SendAction» 
 
{CallKind=retu
rn} 

GetHandle 

ProcessEvent 
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4.5  SUMMARY 
 
 
This chapter presented the second part of the contribution of the thesis i.e., the 

specification methodology along with a case study of ‘Vending Machine’ specification. 

The chapter further discussed the comparison and validation of cmUML framework 

approach with existing UML based approaches using two well known problems of 

concurrency i.e., readers-writers problem and producer-consumer problem. Our 

demonstration shows that the cmUML approach provides an abstract yet precise 

specifications. Further the approach is very intuitive hiding the intricacies of formal 

semantics behind simple specification constructs and specification methodology. 
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CHAPTER 5 

FORMAL SEMANTICS 
 

hough UML has become the de-facto industry standard language for specification of 

software systems, the UML models are not suitable for formal analysis. This is 

mainly due to lack of formal semantics in UML. Several approaches were taken in 

providing formal semantics to UML, or suitable subsets of it, as required for the domain 

under consideration. This thesis has proposed a specification framework, namely cmUML, 

for precise and explicit specification of concurrency, reactivity, exception handling, and 

synchronization for system components. Further a specification language, namely cmUML 

profile based on UML extension mechanisms, has been defined. Towards rigorous and 

unambiguous specification framework, this thesis work further proposes an appropriate 

semantic foundation as described in this chapter. 

 

The formal semantics of cmUML framework is largely based on so called informal 

semantics descriptions of UML and UML/SPT Profile. This does not cover all elements of 

UML and SPT metamodels but only those providing foundations for cmUML constructs. 

The formal semantics is described along two dimensions i.e., the interface, and internal 

specifications of system. For this existing semantic descriptions and formalisms are 

adopted with suitable extensions wherever necessary. The chapter also provides an 

overview of existing approaches of semantics descriptions in UML.  

 

5.1 INTRODUCTION   
 

The cmUML specification framework defines a two level specification process (figure 5.1) 

in terms of interface specification (based on LSCs and protocol state machines), and 

internal specification (based on activities and statemachine i.e., data/control flow 

semantics, reactive semantics respectively). Hence the formal semantics is described in 

two separate but related dimensions. For interface specifications, the semantic framework 

T 
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of LSCs [Damm 1999] is extended as required. The LSC semantics provide the liveness 

semantics of executions of the system as observable externally. The semantics of the 

internal specifications is described using ‘Symbolic Transition Systems (STS)’. For this 

purpose, the foundation part of krtUML approach has been adopted [Damm 2002]. STS 

based formal semantics of cmUML internal specifications is general enough to provide a 

flexible and heterogeneous implementations.  This is particularly useful for internal 

specifications of basic i.e., non-composite System components in cmUML, as these 

specifications are close to implementations.  For example, the internal concurrency and 

non-determinism as provided by the semantics may be compiled away by specific 

implementation semantics (e.g. sequential execution environment). Further formal 

semantics preserves the semantics of multiple formalisms associated with cmUML i.e., 

sequence charts, activity diagrams and statemachines, providing much needed consistent 

and unifying semantic foundation.  

 

The separation of concern approach in formal semantics definition of cmUML framework 

facilitates the integration of various formal verification approaches. For example, the LSC 

based interface specifications can provide simulation or formal verifications of interface 

correctness, deadlock etc. Formal verification of internal specifications is achieved by 

translating the specifications to chosen semantic domain in consistent with adopted 

semantics and execution models of implementations. For example, in next chapter, we 

describe a CSP translation mechanism for formal verification of internal specifications of 

basic non-composite system components.  

 

5.2 SEMANTICS DESCRIPTION APPROACHES IN UML 
 
There exist several approaches in defining formal semantics for UML models [described in 

detail in section 2.2.3]. While a few of the approaches focused on some chosen subsets of 

UML and only static aspects, other approaches provided formal semantics of behavioral 

specification of UML with concurrency, and reactivity. Reggio et.al considered the 

problem of defining active classes with associated statemachines [Reggio 2000]. They 

gave a very fine interleaving semantics for state-machines in terms of labeled transition 
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systems (used to model concurrent languages such as Ada, part of Java). The labeled 

transition system associated with an active class is presented using the algebraic 

specification language CASL [CoFI 1997]. This formalization of active classes and state 

machines has led to perform a thorough analysis uncovering many problematic points in 

the official informal semantics of UML. But, this work does not give precise semantics for 

statemachines, event queue handling, and action semantics.  

 

Hussmann introduced the so called ‘loose semantics’ approach where the aspects of 

concurrency and object communication are not fixed to some design decision, but cover 

different implementations. Such loose semantics is not suitable for formal verification 

[Hussmann 2002]. The semantics of a UML class diagram is constituted by all object 

algebras that are type conformant to the class diagram. The approach combines the existing 

approaches of formal semantics e.g., set-theoretic, translation based, and meta-modeling, to 

give more abstract semantics. Hussmann’s approach provides semantics in two versions: 

first a direct semantics based on plain mathematical set theory, then a sketch of a meta-

modeling approach to the same concept.  

 

krtUML provides the semantical foundations for formal verification of real-time UML 

models [Damm 2003]. krtUML approach fixes one detailed formal semantics to support 

verification purposes. The subset krtUML of UML is rich enough to express all behavioral 

modeling entities of UML. A formal interleaving semantics of for this kernel language is 

defined by associating with each model M in krtUML a symbolic transition systems 

STS(M).  

 

Thus many approaches try to formalize UML or a subset of it by using a particular 

semantic language, or a collection of them, or by fixing a detailed semantics. Each of these 

approaches has many limitations and represent heavy-weight extensions of UML not 

supported by UML and related tools. But the formal semantics of cmUML is close to UML 

core and so-called informal semantics. 
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5.3 SEMANTIC FOUNDATIONS OF cmUML FRAMEWORK  
 

A layered approach is defined for semantic descriptions of the cmUML specifications 

(figure 5.1). The semantic approach separates externally visible interface behaviors from 

internal implementation behaviors facilitating different verification approaches. The formal 

semantics assume the consistency between the interface and internal specifications. As 

shown in figure 5.1, the semantic foundation of cmUML specifications is based on the 

precise action semantics of UML and related dynamic aspects e.g., events, causality, 

concurrency, and abstract resources as defined in UML/SPT metamodel. Further the 

classical semantics of the higher level formalisms e.g., Statecharts, Activities, and 

Sequence diagrams are retained as defined in original UML framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1. The Layered Approach of cmUML Semantic Framework  

 
 
 

Interface Specification Layer (Specification)

Internal Specification Layer (Abstract Implementation) 

Features: ‘formal’ specification of requirements: functional, concurrency,  
       reactivity, synchronization, and exception handling 

cmUML Syntax: ServiceType, Port, AccessOrder, ScenarioContext 

cmUML semantics: extensions of LSC semantics 

Features: specific implementation aspects, execution models 

cmUML syntax: Service, State, GuardedActions 

cmUML semantics: symbolic transition system with interleaved semantics in  
         run-to-completion steps 

UML & UML/SPT Foundations

Meta model: Event, Class, Classifier, Action, Activity, Statemachine, Sequence

Semantics: Action and causality semantics  
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5.3.1  INTERFACE SPECIFICATIONS  
 

The top layer of the semantic framework (figure 5.1) represents the interface specifications 

in cmUML. This layer is close to the requirements phase of software development 

processes and hence represents the required interface behaviors associated with liveness 

constraints as well as synchronization and exception handling as observable externally of a 

System component.  As the dynamic aspects of interface specifications are represented by 

live sequence charts (LSCs) and protocol statemachines, the related formal semantics is 

based on the semantic foundations of LSCs and its suitable extensions as required.  

 

5.3.2  INTERNAL SPECIFICATIONS  
 

The middle layer of the semantic framework (figure 5.1) represents the internal 

specifications of cmUML components in general or basic, non-composite, ‘system’ 

components in specific. This layer is close to the design or (abstract) implementation phase 

of software development processes and hence represents the implementation semantics, 

execution models System components. As the internal specifications consist of UML 

statemchines and Activities, the corresponding formal semantics is described as a 

Symbolic Transition System (STS).  A simple C-like programs using with non-

deterministic choice of actions, is defined for the formal semantics of main abstractions of 

the cmUML framework. 

 
5.4  SEMANTICS OF INTERFACE SPECIFICATIONS   
 
An interface specification of a System component in cmUML mainly consists of a 

collection of ServiceTypes (representing static aspects) and AccessOrder and 

ScenarioContexts (representing dynamic aspects of execution instances of ServiceTypes). 

The ScenarioContexts are further divided into PrimaryContexts and SecondaryContexts 

which represent the system functionality and exception handling aspects as observable 

exernally. These contexts are specified using an extension of LSC formalism as described 

in previous chapters (chapters 3 and 4). The live sequence charts represent a collection of 
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represent a collection of partially ordered sets of events with associated liveness 

constraints. cmUML framework adopts the semantics foundations of LSCs as described in 

[Damm 1999], Also described in Appendix B.  

 
5.4.1  LIVE SEQUENCE CHARTS   
 

While message sequence charts (MSCs), sequence diagrams in UML, are widely used in 

industry to document the interworking of processes or objects, they are expressively weak, 

being based on the modest semantic notion of a partial ordering of events as defined, e.g., 

in the ITU standard [ITU 1994]. A highly expressive and rigorously defined MSC 

language is a must for serious, semantically meaningful tool support for use-cases and 

scenarios (as documented during requirements phase).  

 

LSCs (live sequence charts) are extensions of MSCs towards precise behavioral 

specification of scenarios of the system. In fact, LSCs allow the distinction between 

possible and necessary behavior both globally, on the level of an entire chart and locally, 

when specifying events, conditions and progress over time. Thus, elements of MSCs e.g. 

lifelines, messages, locations etc are annotated with live ness constraints ‘hot’ or ‘cold’ 

(i.e., the mandatory or optional behavior respectively). The semantical basis of LSCs 

facilitates rigorous and complete consistency checks between the descriptive view of the 

system and the constructive or implementation view (e.g. statemachines). Thus LSCs allow 

integration of implementation models with the descriptive or requirements part of the 

system specifications. 

 

The formal semantics of an LSC is described by a symbolic transition system (or a 

skeleton automaton as described in Appendix B). The transition system is described by its 

abstract states (active, terminated, or aborted) and associated atomic transitions (Figure 

5.2, Figure 5.3). The detailed description of the formal foundation is given in ([Damm 

1999]), also presented in Appendix B. 
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Figure 5.2. Transition System Corresponding to a LSC [Source: Damm 1999] 
 
 
 

 

 
 

Figure 5.3. Transition System of LSC as a Pre-chart [Source: Damm 1999] 
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5.4.2  CMUML EXTENSIONS OF LSC SEMANTICS    
 

The cmUML framework of the thesis adopts LSCs and the associated liveness semantics. 

In cmUML, the ‘formal’ part of interface specifications consist of a collection of 

ScenarioContext i.e LSCs. These LSCs are divided as PrimaryContexts and 

SecondaryContexts. The primary LSCs correspond to the principle behaviors of the System 

components and represent the corresponding use cases of the requirements phase. The 

secondary LSCs correspond to the necessary exception handling behavior expected of the 

System components in response to exceptions raised during its executions (or ‘runs’ in LSC 

parlance). In cmUML framework, the exceptions are first-class specification and 

behavioral entities. Thus the expected system responses w.r.t to raised exceptions during 

executions represent the part of system ‘requirements’. The explicit separation of primary 

and secondary behaviors thus simplifies the specification, analysis, and development of 

systems. Initially only primary behaviors can be specified ignoring the secondary 

behaviors (or assuming no exceptions are raised). Though the thesis assumes the 

consistency between various parts of specifications these can also be easily verified (as 

described in next chapter). 

 

The LSC semantics require extensions to incorporate the required semantics of the 

cmUML framework e.g. semantics of the synchronization and exception handling 

mechanisms as provided in cmUML. This can be done by adding necessary axioms in the 

transition relation of symbolic transition system that describes the formal semantics a LSC 

[Appendix B]. These extensions are described informally below: 

 

• When a LSC is aborted due to violation of specified condition it may perform 

actions which have no effect on the ‘runs’ of the system (stutter) as defined in LSC 

framework or ‘trigger’ a ‘secondary’ LSC (specified in cmUML framework) using 

the exception raised in violation of the condition. The ‘secondary’ LSC specifies 

the expected exception handling behavior that should be observed in the ‘run’ of 

the component. 
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• When a condition ‘C’ is encountered along a single instance line, no instance 

progress steps are performed until the condition is satisfied. But the local steps can 

be performed which may actually effect the condition. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4. Partial Interface Specification in cmUML 
 
 

• At a given instant, an execution of a cmUML component can be associated with a 

collection of ‘active’ ScenarioContexts to be satisfied. When all specified events 

i.e., both external and internal events of a partially ordered set satisfies the order, 

and liveness constraints as specified on a LSC it is considered ‘complete’ and 
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removed from the collection. Thus a component starts with empty collection of 

LSC instances and said to have satisfied all specified behaviors when it becomes 

empty eventually while AccessOrder i.e., the corresponding interface statemachine 

reaches the final state or terminates.    

 
5.5  SEMANTICS OF INTERNAL SPECIFICATIONS   
 
The internal specification in cmUML is described by UML Activities and Statemachines. 

UML Activities represent sequential executions with data/control flow semantics while a 

statemachine possesses the reactive behavior. Thus the cmUML framework combines 

these formalisms to define a semantically precise execution or implementation models. 

Further the framework integrates an ‘internal’ exception handling mechanism in the 

fashion of Java’s try-catch block [Gosling 1996] among the sequentially executing 

concurrent activities and the synchronized reactive behaviors. Further the semantic 

foundation of the internal specifications is extensible to customize for the adopted 

execution models and implementation environments providing flexibility to system design 

specifiers. 

 

The cmUML framework adds precise semantics to UML Activities and Actions to specify 

semantics of sequential executions in concurrent and reactive environment.  cmUML 

clarifies the semantics of executions of concurrent operations ( Services in cmUML) 

associated with a statemachine. As in [Ober 1999, Chrichton 2002] the execution of 

operations is de-linked from statemachine towards expressiveness in concurrency 

specification. Further the basic concepts of ‘Action’ and ‘Activity’ are extended as 

GuardedAction. The GuardedAction consists of various ‘tags’. These tags and their values 

describe the liveness, synchronization, and exception behavior of actions or activities 

during execution [table 6.1, reproduced from chapter 3]. Further individual instances of 

Service executions (activities) can be referred in the specifications thus increasing the 

expressive power of the specification language. A ServiceHandler is associated with each 

ServiceType which contains the information about the current instances in execution using 

incarnation counters ‘in’ and ‘out’. These ServiceHandlers help specification of complex  
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synchronization patters, as described in [Mizuno 1999] e.g. barrier synchronization pattern 

etc.  

 

Tag Value Combinations The Implied Semantics 

isHot =  true and 
guard = false 

termination of the run raising the specified 
exception 

isHot = false and  
guard = false 

no effect on the ‘run’ of the corresponding system 
component 
 

isHot = true and  
guard = true 

effect of action on the run  

isDelay = true wait semantics till guard is true  
isAtomic = true atomic effect of guard evaluation and action 

execution with no interleaving step in between in 
the corresponding run of the system component 

 

Table 5.1. GuardedAction Semantics 

 
An internal specification constitutes the implementation or detailed aspects of its interface 

specification [Lamport 2000]. cmUML follows a generic approach in semantics definition 

of its internal specification allowing different kinds of semantics specializations. For 

example, various combination of Finite State Machines, represented by UML behavioral 

statemachines and other kinds of concurrency models e.g. data/ control flow, synchronous 

reactive etc are described in [Girault 1999]. These execution models and associated 

semantics can be easily adopted in cmUML framework. 

 

The formal semantics of the internal specifications is described using the formalism of 

Symbolic Transition Systems (STS) [Damm 2002].  The formal foundations of UML as 

defined in krtUML approach [Damm 2002] are adopted for the semantic description of 

cmUML. While the krtUML adopts the sequential execution in components, cmUML 

framework proposes a generic, extensible, multi-threaded semantics (though with reduced 

verification capabilities).  
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Further the semantic description is organized as semantic modules corresponding to the 

major abstractions of the cmUML framework (instead of first order predicate logic, as in 

krtUML approach, cmUML framework uses simple C-like programs for description of 

these semantic modules). These abstractions are namely PORT, SERVICE (referred as OP 

for brevity), STATE. The semantics of these abstractions are defined in terms of 

executions of instances of corresponding semantic modules (configuration instances e.g. 

PORTconf, OPconf, STATEconf with corresponding behavior types Tport-conf, Top-conf, Tstate-

conf.  

 

The semantic is defined in terms of atomic actions combined in imperative style. The 

instances of semantic modules execute in run-to-completion steps. The over all execution 

model of a ‘system’ component in cmUML is represented by an interleaving of the run-to-

completion steps of corresponding semantic modules. Further two ‘system’ components 

(or sub-components) may execute concurrently with arbitrary interleaving.  

 

5.5.1 SYMBOLIC TRANSITION SYSTEMS   
 

Symbolic transition systems (STS) allow for purely syntactical description of a transition 

system over a set of typed system variables.  A symbolic transition system (STS) S = (V, θ, 

ρ) consists of a finite set of typed system variables (V), a first-order predicate (θ) over 

variables in V characterizing the initial states, and ρ, a transition predicate. An STS 

induces a transition system on the set of interpretations of its variables as follows.  

 

5.5.2 FORMAL REPRESENTATION OF INTERNAL SPECIFICATIONS    
 

In general, defining semantics of a language L (cmUML) involves defining a mapping M 

between the syntactic structures of L and concepts of chosen semantic domain S (symbolic 

transition system). For this, a formal notation for specifications in L i.e. cmUML, is 

needed. An instance of a cmUML specification (internal) represents a collection of 

dynamically created sequential executions (Services) and a reactive (State) behavior.  

Services, corresponding to the triggered operations, represent independent threads-of-
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executions executing a sequence of actions (analogous to procedures in programming 

language frameworks). The reactive behavior represents an event-driven task, processing 

incoming messages/ events under a specified scheduling policy (default FIFO) by 

dispatching them for execution as specified by the statemachine in run-to-completion (rtc) 

steps. 

 

Formally, an internal specification ‘M’ of cmUML framework is a 10-tuple:  

M = (T, Act, Att, Expr, F, E, P, S, C) where 

• T: A set of basic types and types for STATE, PORT, ENV and OP classes

   

• Act: The finite set of UML actions 

• Att: A finite set of typed attributes of M 

• Expr: A finite set of expressions expr over Att in first order logic defining the 

expression language for the model. An expr is a term defined in the scope of an 

object and used as  transition guard, or invariant, or assertion  

• F: Ft∪Fp contains the predefined types for triggered and primitive operations 

(defined below)  

• E: A class of the type TENV, E = (e.Attr, e.Seq)  

o e.Seq is {<mesi, ti>} (i.e. a sequence of) represents messages mesi sent/ 

received at time ti  

• P: A class of the type TPORT, P=(p.Attr, p.Seq, p.Acq) 

o p.Seq is {f} over Ft defining the allowed temporal order of operation 

invocation  

o p.Attr includes the implicit attributes referring all OP objects and the 

STATE object  

o p.Acq is the set of acquaintances (i.e. references) representing external 

associations 

• S: A class of the type TSTATE, S= (s.Att, s.Expr, s.Act, s.Ops, Assign, Q, Tr) 

o Q is the set of finite states of s with So, Sf as the initial, and final states 

o Assign represents a valuation of s.Att in a state 
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o s.Ops is the set of primitive operations  

o Tr is the transition operation, ⊆ Q x S.Expr x S.Act x Q 

o s.Act is the set of UML actions specified on transitions as well as in 

primitive operations 

• C: A finite, non-empty set of classes c, of the common super-type TOP 

o c = (c.Att, c.Param, c.Ret, c.Tf, Pre, Post, L) 

o For each c∈C,∃ corresponding type tc∈T 

o c.Tf ∈Ft is the related triggered operation type 

o c.Param⊆c.Att, and c.ret∈c.Att represent the parameters and return values 

of c.Tf with corresponding types typepar(Tf) and typer(Tf) 

o Pre, Post ∈Expr are pre, post conditions  of c.Tf 

o L is a finite {<actioni, asserti,>}  representing a flattened  sequential method 

specification where  asserti ∈Expr and actioni ∈Act. asserti, asserti+1 

represent the local pre, post assertions of actioni 

 

For each operation p∈F, typepar(p) = T1x … xTn denotes the parameter type where Ti 

∈T(M) is the type of the i-th parameter and typer(p)∈T(M) is the type of the reply value. 

The type of p, TP, is defined as TP = (typepar(p)→ typer(f), callKind) where CallKind, is an 

enumerated value (of type TCK ∈T) defined by {read, write, readPar, writePar} 

representing the concurrency nature of the operation w.r.t itself as well as other operations 

(for e.g., read indicates multiple instantiations, write indicates single instantiation in 

isolation, and the suffix par groups a set of operations that can execute in parallel).  

 

UML Actions are a finite set of fundamental actions (e.g object creation/ destruction, 

attribute assignment, operation calls etc). The definitions for expressions, guards and 

Actions can be given inductively as in [Damm 2002]. But, there is no need for association 

types in models of cmUML as all inter/ intra component associations are represented by 

the implicit variables. We also assume the following additional requirements for the 

models in cmUML. 

 



CHAPTER 6: VERIFICATION  APPROACHES  
  

90 
 

• For each object o of type TOP, o.Attr contains self, state, port referencing the 

corresponding objects 

• For the object o of type TPORT, o.Attr contains implicit attributes self, state, acqi opi 

as well as references to objects of type TOP, corresponding to different invocations 

of triggered operations  

• For each f ∈FT , there exist a c ∈C (with c.Tf = f) containing local attributes to hold 

the parameter and return values as well as the specification of corresponding 

method in terms of c-expressions and actions 

• For each operation f∈FP the STATE object o contains local attributes to hold the 

parameter values, return value, and a transition (q, f, expr, q’) ∈o.Tr  

• The STATE object does not make a call to its own triggered operation 

 

 

5.5.3 DESCRIPTION OF FORMAL SEMANTICS     
 
The behavioral semantics of an internal specification, say M, in cmUML is defined in 

terms of transition axioms of corresponding symbolic transition system (STS) SM ≡ (VM, 

θM, ρM , LM). The type systems of the symbolic transition system i.e. T(S) is completely 

defined. The system variables V completely capture a dynamic execution of M. The 

semantics is described in terms of intuitive semantic modules in an imperative style. These 

modules define the execution semantics of configurations of semantic types TPORT, TSTATE, 

TOP corresponding to the major abstractions of the cmUML framework.  These semantic 

modules define the final transition relation ρM. These modules include liveness axioms. 

Thus the modules together fully define a transition system for corresponding concurrent 

system. The sets of initialization predicates, transition predicates, liveness axioms across 

all modules are collectively referred as θ, ρ L respectively. A snapshot s of the transition 

system corresponding to the specified system is the evaluation of variables of V at a given 

instant. 
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All the system types, variables are informally defined and described below (the formal 

definitions of these semantic types and their corresponding domains can be skipped as 

these can be done on similar lines as in [Damm 2003]): 

 

• Semantic configurations of types TOP-conf, TPORT-conf, TSTATE-conf (i.e OP-confi, 

PORT-conf, STATE-conf,) respectively represent the semantic entities 

corresponding to behavior types TENV, TPORT, TSTATE, TOP  

• sconf, a variable of type Tsconf, contains all instances of the semantic configurations  

 

A semantic configuration fully captures the execution behavior of the corresponding 

semantic entity (subsuming the types of the corresponding entities). Necessary system 

variables and types are defined in simple form: variable_name(domain type or values). For 

simplicity, the null value of any type is represented by ε; 

 

Msg-type =def  (source(TPORT∪TENV), dest(TPORT), type{call,reply}, mode{synch, asynch},  

  p(Ft),  args(Typepar(p)), ret(Typeret(p)∪void)) 

Event_type =def (dest(TOP),p(Fp),args(Typepar(p)), ret(Typeret(p) ∪ void) ) 

Sys-err(Boolean) = false;              --variable  initialization 

 

Assuming the services are ordered 1,2,…..,n., we define the following types and variables 

to capture the allowed execution scenarios corresponding to multiple invocations and 

instantiations (depending on callKind of the invoked services). 

 

PAR-type =def an integer vector of size n  

 

Semantic Configurations of type Top-conf: captures the execution behavior of invoked 

services. Prior to creation the corresponding execution instance is considered to be 

dormant. Creation of a new service instance, corresponding to its invocation, will pick a 

dormant index of sconf. During execution, these instances may become suspended when 
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waiting for completion of invoked services, through corresponding PORT, on other 

components  

 

Semantic Module OPconf : 

 

OP-status:   dormant, executing, suspended; 

OP-variables:  status(OP-status),loc(integer), msg(Msg_type);  

promises(Set of <Msg-type>); 

OPinit:  status:= dormant; loc := 0; msg:= ε; promises:= φ; 

OPstart:  status:= executing; Param := msg.args; 

  if (!Pre) then sys-err= ‘true’ else OPexecute; 

OPexecute:  loc:= loc+1; 

   if (loc<= |L|) then OPcall ∨ OPlocal; else  OPreturn; 

OPlocal;   execute ‘actionloc’  (as per UML semantics) 

    if (!assertloc) then sys-err=‘true’ ; OPexecute; 

OPcall:  status := suspended;  

  state.eve-queue.enqueue(Event_type<self,actionloc.opname, 

……… >); 

  promises := promises ∪msg; 

  while(status != executing) wait;  

  promises := promises – msg;  OPexecute; 

OPreturn;  if (msg.mode == asynch ∧ msg.ret != NULL) 

                   port.outqueue.enque(<port, msg.source, reply, asynch, 

msg.p, -, ret>); 

  else  

       port.outqueue.enque( <port, msg.source,  reply, synch, msg.p, -, ret>); 

  status=dormant; 

OPlive: OPreturn ∧ (OPreturn => promises = φ)  
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Semantic Configurations of type Tport-conf: Captures the execution status of the PORT 

instances. It contains two queues: in-queue for incoming messages and out-queue for 

return messages. In addition the configuration keeps track of number of instantiations 

executing in parallel using instantiation counters ink, outk per each specified service. An 

eligible (w.r.t to the currently executing methods) service request is removed from in-

queue and corresponding method object is created for execution. Also corresponding ink is 

incremented.  

 

Semantic Module PORTconf : 

PORT-status: idle, synch-wait, triggering;  

PORT-variables:  Status(PORT-status), in-queue(Queue), out-queue(Queue),  

   ink(integer), outk(integer), synch-msg(Msg-type), 

msg(Msg-type);  

PARCO(PAR-type)∧ PARCO[i]=ini – outi       

      -Dynamic vector reflecting current execution scenario 

PARpar(PAR-type) ∧ PARpar[i]=1if the triggered operation is of type ‘writePar’, ≥1 if 

‘readPar’, 0 for other.  -- a static vector representing group of  parallel operations 

PARi(PAR-type) ∧ PARi[i]=1 if the callKind of i-th operation is write,≥ 1 if it is read else  

PARi≡PARPAR[i] 

 

PORT-definitions: Compatible(x(PAR-type), y(PAR-type)) = true if x, y are  

compatible component wise else false. 

PORTinit: status := idle; in-queue, out-queue := ε; synch-msg, msg := ε; ink, outk := 0 ∀k;   

PORTtrigger:        msg := choose(first(Msg-type ∈in-queue):  

       msg.type=call ∧compatible(PARCO, PARindex(msg.p) );. 

       if(msg!= ε) then {status:= triggering; PORTinvoke;} 

PORTinvoke:  j:=choose(first(integer): sconf[j](TOP) ∧ sconf[j].status=dormant)  

    k := index(msg.p); ink := ink+1; OPj.msg := msg;  

fork(OPj.OPstart);  

PORTsend:      if(out-queue != ε) msg=first(out-queue); 
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             if (msg.mode = synch)  msg.dest.synch-msg := msg;   

             else   msg.dest.in-queue.enqueue(msg);   

PORTprocess:  while (true){ if(status=synch-wait)  

                 then PORTsend∨PORTsynch; 

              else PORTtrigger∨PORTsend;} 

PORTsynch: if(synch-msg != ε)   

then { state.synch- msg := synch-msg; state.status:= rtc; status=idle; } 

PORTlive:   (∀msg ∈in-queue ∧ msg.type=call ∃ PORTtrigger)∧  

(∀msg∈out-queue∃ PORTsend) 

 

Semantic Configurations of type Tstate-conf: This represents the dynamic state-based 

synchronized execution behavior of a STATE behavior representing the kernel of the 

component. It contains an event queue. All the incoming messages i.e. from method 

objects (or the PORT object in future extension for trigger handling) are kept in the queue. 

The object continuously takes an eligible first event for processing in a run-to-completion 

(rtc) step. After processing the event is removed from the queue and the status of the 

corresponding service instance is changed to indicate the completion of its pending 

request.  

 

Semantic Module STATEconf : 

 

STATE-status: idle, rtc, synch-wait; 

STATE-variables: status(STATE-status), eve-queue(Queue of Event-type); 

synch-msg(Msg-type); eve(Event-type); state(∈S.Q);  

msg(Msg-type); 

STATE-definitions:  eligible(eve)= true if ∃ a firable (tr ∈Tr) and tr[2]=eve.p;   

   firable(tr ∈Tr ) = true if tr[1]=state and tr[3];  

STATEinit: status:=idle; msg:= ε; eve-queue:= ε; synch-msg:= ε; eve:= ε; state:=So;  

 

STATEtrigger: eve=choose(Event ∈eve-queue: eligible(eve)) 
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         if (eve != ε)  then {status := rtc; tr= choose(tr ∈Tr: firable(tr) ∧ tr[2]=eve.p); 

          STATEaction; (state= tr[4]); STATErtc; eve.dest.status :=  executing;} 

 

STATErtc:   STATEaction ∨ STATEprocess; 

STATEaction:  STATEsend ∨ STATEprimitive or  STATElocal ∨ STATEnull; 

STATEsend:   STATEasynch-send ∨ STATEsynch-send; 

 

STATEsynch-send: status=synch-wait;  

  msg=create(Msg-type: msg.type=call  ∧ msg.mode=synch)  

   port.out-queue.enqueue(msg); 

  port.status=synch-wait; STATEreceive; 

 

STATEreceive : while (status = synch-wait) wait; -- Assign synch-msg to local variables 

  STATErtc  ∨ STATEnull; 

STATEasynch-send: msg=create(Msg-type: msg.type=call  ∨ msg.mode=asynch)  

  port.out-queue.enqueue(msg);  

STATElocal: tr= choose(tr ∈Tr: firable(tr) ∨ tr[2]= ε) 

        if (tr != ε ) {STATEaction; state= tr[4]; STATErtc;} 

STATEprimitive:  --do local actions/ primitive operations 

STATEprocess: while(true){status=idle; wait; STATEtrigger; } 

STATElive:   (∀ eve ∈in-queue ∃ STATEtrigger) 

 

Thus the semantics of M is the STS(M)≡  S (V, θ, ρ, L) where 

System variables, V = {sconf, sys-err}  

Initial condition, θ = ENVinit ∧ PORTinit ∧ STATEinit 

Transition relation, ρ = ENVprocess ∧ PORTprocess ∧ STATEprocess 

Liveness axioms, L=PORTlive ∧ STATElive  ∧ OPlive 
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5.6  SUMMARY   
 
This chapter presented the semantic foundations for proposed cmUML framework. The 

semantic foundation is defined over a subset of elements of UML meta model and UML/ 

SPT Profile. As the cmUML framework separates the specifications in terms of interface 

and internal specifications, the semantic foundation is defined along two dimensions. The 

semantic foundation of interface specifications adopts LSC formalism and its semantics 

with necessary extensions to provide for exceptions and system responses as first class 

entities. The formal semantics of the internal specifications is defined using the formalism 

of Symbolic Transition Systems (STS). The formal semantics is close to the so called 

informal semantics of UML and UML/SPT profile elements used in cmUML profile. 

Further this includes the formal foundation of UML as defined in krtUML. While krtUML 

defines sequential execution in a component, cmUML adopts multi-threaded concurrent 

semantics in its ‘system’ components. Also formal semantics is defined in terms of 

executions of semantic modules corresponding to the main abstractions of cmUML profile. 

The executions of these modules are defined using a set of actions combined in imperative 

style. Wherever applicable the atomic actions of the semantic modules are chosen non-

deterministically. Further each semantic module contains a basic liveness axiom. 
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CHAPTER 6 

VERIFICATION APPROACHES  
 

esting has been the traditional approach of verification of implemented systems for 

correctness. But, with complexity of system behaviors increasing, an early phase of 

verification of system specifications saves cost and efforts towards system development. 

The lack of preciseness in early phases of development processes has been the main source 

of obstacle in integrating formal techniques towards early analysis of systems. With the 

Unified Modeling Language becoming the de facto industry standard language, many 

approaches and tools are proposed to integrate formal verification techniques in system 

development phases. But, the lack of formal semantics in UML has been the main source 

of obstacle in successful integration of formal techniques with UML towards analysis of 

critical system with concurrent and reactive behaviors. 

 

This chapter presents the existing verification approaches that can be integrated with the 

proposed cmUML specification framework. The chapter presents an overview of two 

verification approaches: verification of interface specification by integrating LSC based 

verification techniques; verification by internal specification by translation into CSP 

formalism and related tools. LSC based verification technique can be used to verify 

consistency between various parts of the specification e.g.  interface vs internal 

specifications. CSP based verification can be used to verify interface correctness, deadlock 

detection etc. 

 
6.1  INTRODUCTION  
 

One of the main purposes of software engineering is to enable developers to build systems 

that operate reliably despite their complexity. The formal methods community has 

developed many tools to help achieve this goal. With software rapidly growing in size and 

complexity, graphical specifications in languages like UML need to be formally verified, 

before the implementation phase in order to guarantee the development of more reliable 

T 
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systems. A few years ago the formal verification community began investigating 

mechanisms to integrate such graphical specifications with verification tools. While this 

approach achieved reasonable success on the translation of simple diagrams to model 

checkers’ input notations, the results are not well integrated into general development 

environments. Further interpreting the results of verification is still highly human 

dependent particularly requiring developers to be expertise with the formal techniques. 

 

The thesis has proposed a precise specification framework, namely cmUML, for 

concurrent and reactive systems. Investigations are made to find the suitable verification 

techniques, and tool environments that can be integrated with the cmUML framework. The 

separation of concerns approach in terms of interface specifications based on LSC 

formalism and internal specifications based on UML Activities and Statemachine facilitate 

integration of various verification approaches. For example, the LSC tool environments 

e.g. Rhapsody can be integrated for simulation and verification of interface specifications 

(e.g. consistency checks). In addition to simulation of cmUML specifications, various 

consistency checking scenarios are investigated like LSCs vs interface statemachines, 

LSCs vs Internal statemachines, and Interface vs internal statemachines. 

 

6.2 LSC-BASED VERIFICATION OF cmUML SPECIFICATIONS 
 

6.2.1  VERIFICATION OF INTERFACE SPECIFICATIONS   
 

Interface specifications in cmUML mainly consist of a collection of ScenarioContexts 

(LSCs) and AccessOrder (a protocol statemachine). Various formal verification scenarios 

can be defined in cmUML framework. First, interface specifications can be verified with 

PrimaryContexts and the associated AccessOrder. To check that the specified behaviors of 

a PrimaryContexts are always ‘satisfied’, the model checking tool can translate the 

sequence diagram into an automaton (translation mechanisms exist), synchronized with the 

automaton corresponding to the AccessOrder, to inspect the evolution of the global states 

corresponding to the statemachine. The automaton corresponding to LSC evolves 
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observing events in the statemachine, and when it reaches a final state (the last event in the 

sequence diagram), then the property as specified by the LSC is ‘verified’.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Verification of a ‘PrimaryContext’ against the Interface Statemachine 

 

The verification process should carefully consider the situation when the system produces 

an unspecified event with respect to the LSC being verified. If the event is defined in the 

scope of LSC but is not specified, it can be ignored. If the event is associated with 

‘optional’ semantics (i.e. ‘cold’ annotation) a choice may be presented to the user 

regarding processing of the event.  If an event which is undefined in the scope of an LSC is 

observed a pre-defined exception can be raised or verification process terminated.  
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Figure 6.2 Verification of a PrimaryContext against a State Specification  

 

A PrimaryContext, an LSC, describes the principle behavior corresponding to a use case 

(functional requirement). During initial phases of analysis the focus of verification are 

PrimaryContexts. The SecondaryContexts, again LSCs, represent the mandatory behavior 

that must be observed in response to ‘Exceptions’ raised during the execution of 

PrimaryContexts.  As cmUML framework integrates the exception handling behaviors into 

the system specifications, the verification of SecondaryContexts is integrated into the 

verification of PrimaryContexts. For this, a simple extension mechanism, in the form of 

algorithm, is described in fig. 6.3. 
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A Verification Algorithm: 

 
Verify (ScenarioContext X, FinisteStateMachine Y) 
   
 Input: a ScenarioContext X, and a FiniteStateMachine Y  
 Output: return true if X is ‘terminated’ else false if X is ‘aborted’  
 
 Construct an automaton A corresponding to X 
    The states corresponds to ‘cuts’ of X as defined for LSCs  
 Synchronize the automata A and Y 
 
 Loop:  Trigger the execution of Y 
  For each event ev generated 
  Process the event in A in run-to-completion 
  If status(A) = ‘aborted’ and error=’exception’ 
  Trigger (SecondaryContext(exception)) 
  return false 
  If status(A) = ‘terminated’ return true 
  Go to loop 
 

Figure 6.3. Verification algorithm integrating exception handling behaviors 

 

The cmUML framework defines two statemachines for specification of a component i.e. 

interface statemachine (‘AccessOrder’), and internal statemachine (‘State’). The ‘State’ 

specification may be considered as more detailed version of ‘AccessOrder’ specification. 

Thus verification of ‘AccessOrder’ against ‘State’ specification constitute part of 

consistency checking or formal refinement between interface specification and 

corresponding implementation. Further the ‘PrimaryContexts’ defined in the interface 

specifications can also be verified against the ‘State’ specification of internal 

specifications. This further verifies the implementation of expected behaviors. Thus 

cmUML framework facilitates simple approaches to consistency checking. 

 

6.3 VERIFICATION IN RHAPSODY TOOL ENVIRONMENT   
 
The ‘Rhapsody’ UML verification environment supports verification of safety and liveness 

properties. The verification environment is integrated in the design tool “Rhapsody in 

C++”, a commercial design tool offered by the company I-Logix, and is based on the VIS 
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(Verification Interacting with Synthesis) model checker [Harel 2002, VIS 1996]. 

Requirements or properties to be verified can be specified using Live Sequence Charts 

(LSC) [Damm 1999]. 

 

The interaction of the model with its environment is restricted to event communication. In 

order to specify the communication interface of the model the user has to define a set of 

events as being external. These external events are controlled by the model checker as 

inputs for the model. In order to restrict the possible environment behavior with respect to 

this event communication, the user of the verification environment can specify 

assumptions about possible event sequences provided by the environment using the 

specification techniques listed above. If the model checker detects a dynamic violation of a 

requirement specification, an error path is issued showing a concrete computation of the 

model violating the requirement. 

 

To be able to use the VIS model checker both the model and the specification have to be 

transformed into the input formats of the model checker i.e., a finite state machine (FSM) 

description of the model and a computation tree logic (CTL) formula for the specification. 

An LSC specification can be translated into an adequate CTL formula. Both the FSM and 

the CTL formula are then fed into the VIS model checker, which either will state that the 

formula is true, or will produce a trace showing a violating run of the system. In order to 

become comprehensible, the trace is back translated into UML terminology so that model-

constituents like objects, associations, and event queues become visible again. On the other 

hand, the event communication between the objects of the model which led to the 

contradiction of the specification is displayed as an LSC. 

 

For verification purpose, the problem statement is refined with further events and features: 

drinks are sold at 50p (water), 1 re (soft drink), and 1.5 re (tea). The machine hold at most 

three drinks of each kind, but it can be refilled by the external event ‘FillUp’. This event 

then enables those drink lamps for which an adequate amount of money was already 

inserted into the machine. The detailed behavioral statemachine with all the detailed events 
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is given below (assume the states C50(water), Re1orC100(drink), C150(tea) enable, as 

entry actions, the corresponding buttons only when there is the corresponding drink 

available; ‘additional’ coins are discarded during ‘self’ loops): 

 

An important property that can be verified for vending machine specification is: 

“Whenever a customer wants to buy a water drink (thus, inserts at least one 50 ps coin 

followed by pushing the water button) and the VendingMachine is not out of water, then 

water is prepared and dispensed to the customer”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 6.5. Property Verification in Rhapsody with LSCs and Statemachine 
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Regarding the Vending Machine example, the LSC specification does not hold. The 

produced error path consists of several steps where initial steps might drive the model into 

a situation where no more water drinks are available (not shown in the figure). Starting at 

the ‘Idle’ state and inserting the first ‘C50’ leads to the state ‘C50’. This event also 

“activates” the pre-chart. Note that the water lamp is not enabled since there is no water in 

stock. The next ‘C50’ leads to ‘C100’. Now, the ‘Re1’ forces to take the self-loop of the 

or-state ‘Re1orC100’ which leads to state ‘Re1’ by taking the default transition. Crucial for 

recognizing the design error is the fact,  that the internal state of the CoinExchanger has 

changed although the Re1 coin itself has been directly given back to the customer. The 

following ‘FILLUP’ enables the buttons of the ChoicePanel depending on the information 

about already inserted coins. But since the statechart of the CoinExchanger now encodes 

the fact that only a 1 Re coin was inserted the water lamp is not enabled. The first 

‘WATER’ event then “concludes” the prechart (since in particular the machine is not out 

of water on the reception time of this event due to the previous refilling). The following 

‘WATER’s mark the looping section of the infinite error path. 

 

Thus cmUML framework approach supports the integration of industry standard tool 

environment ‘Rhapsody’ for verification purpose.  

 

6.4  CSP BASED VERIFICATION  
 
The previous sections describe the existing verification techniques that can be integrated 

with proposed cmUML framework for verification of interface specifications. This section 

describes an approach that can be integrated with cmUML framework for verification of 

internal specifications, in particular those of basic i.e. non-composite ‘System’ 

components.  

 

The internal specifications in cmUML framework, which represents an abstract 

implementation, consists of data and control flow diagrams (represented by UML activity 

diagrams) and FSMs (represented by UML statemachines). The Activities represent the 
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sequential executions and hence the computational aspect of the component. A generic, 

concurrent execution model is adopted towards the semantics of the internal specifications.  

The internal specification of cmUML components can have different semantics and 

execution models thus may represent different implementations corresponding to the same 

interface. Thus the associated verification approach for internal specifications should be 

generic and flexible to construct the required semantics and execution models.   

 

The approach by Crichton et.al [Crichton 2002] describes a CSP based verification for 

concurrent models specified in UML. The approach also adopts a separation of concerns 

through separating executions of operations from statemachine behavior of an object. Thus 

operations are specified using Activities.  The activity as well as the statemachine 

specifications can be translated into the notation of Communicating Sequential Processes 

(CSP) [Hoare 1985, Magee 1999] and verified using FDR model checking tool. 

 

The interface specification approach in cmUML framework is closer to that of Cricton 

et.al. and hence can be easily mapped onto CSP specifications in similar manner. Thus 

cmUML internal specifications can also be formally verified for e.g. deadlock analysis.  

 

6.4.1 CASE STUDY: A SIMPLE PRINTER SPECIFICATION 
 
For the verification purpose a simple printer specification [Crichton 2002]. The problem 

can be specified in a similar manner in cmUML framework and the verification technique 

described is applicable as both the approaches are based on the separation of operations 

(specified as activity diagrams) from statemachine. The printer is described in terms of its 

five interface operations (‘services’ in cmUML); pause(), resume(), print(), service(), 

carelessService() described below 

 
– pause() : pause any print job that might be in progress; 

– resume() : resume any print job that is paused; 

– print() : start a print job; 

– service() : replenish the paper tray, pausing the printer first; 
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– carelessService() :replenish the paper tray, pausing the printer at the same time. 

 
The first two operations can be treated as atomic (and hence can be specified on 

statemachine itself). The printer can be thought of having eight states i.e. the product of 

three conditions; printing or idle (1/0); paused, or not(1/0); and open or closed(1/0).  In this 

the ‘jam’ state is undesirable (this state is reached from printing state (100) when tray is 

opend i.e. ‘opentray’ action occurs). Further a state is notified by appropriate events the 

effect of actions of operations e.g. ‘change’, ‘call’, events. These events can cause state 

transitions. It needs to be investigated whether this state is reachable in any situation of 

concurrent invocations of services.  

 

 

 

 

 

 

Figure 6.6. ‘State’ specification of «system» Printer [Source: Crichton 2002] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. «service» Specifications of «system» Printer 
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Semantics of cmUML extensions e.g. ‘guarded’ actions are particularly intuitive and 

correspond to CSP semantics. These operations can be easily mapped onto CSP using 

latter’s constructs e.g. ‘process’ and operators like □ (external choice), ||| (parallel 

execution but terminate same time), || (communication and synchronization on common 

events). The CSP translation of printer operations is given below. 

 

Print = start → stopped → SKIP 

Service = pause → open → close → resume → SKIP 

CarelessService = (pause → resume → SKIP) 
||| (open → close → SKIP) 

 

 

Similarly the «state» specifications can be translated into a set of CSP processes (as 

transitions represent individual processes). Translation of two states ‘idle’, and ‘jam’ is 

given below. 

Idle = start → initialise → Printing 
□  open → IdleOpen 
□  pause → IdlePaused 
□  ( □ x : {resume, close} • x → Idle) 

 

Jammed = (□ x : {pause, resume, open, close, start} • x → Jammed 
□ error → Jammed) 

 

With the translated CSP models the refinement-checking tool FDR can be used to explore 

the consequences of the specified design and concurrency. To do this, a specification 

process is need to be defined, identifying a range of acceptable behaviors, and a variety of 

implementation processes, representing possible situations, or combinations of the model 

components. FDR checks whether these processes i.e. the ‘Spec’ and ‘Implementations’ 

are equivalent i.e. every trace, and every failure of the implementation is also a behavior of 

the ‘Spec’. For the ‘printer’ example these are given below. 

 

Interface = {open, close, pause, resume, start, stopped, initialise, complete} 
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Spec = □ e : Interface • e → Spec 

 
System1 = Print ||  Printer 

System2 = (Print ||| Service) || Printer  

System3 = (Print ||| CarelessService) || Printer 

System4 = (Print ||| Service ||| Service) || Printer  

 

Implementation processes System1 and System2 describe situations in which a single 

invocation of print(), and the simultaneous invocation of print() and service() act upon the 

printer state. In each case, the refinement check succeeds: error is impossible; the Jammed 

state is never reached. System3 describes a situation in which print() and carelessService() 

may be invoked simultaneously. In this case, the refinement check fails, and the tool 

returns as evidence the sequence <start, initialise, open, error> to show how the Jammed 

state could be reached. Similarly, when we check System4, which describes the effect of 

invoking print() concurrently with two invocations of service(), we are presented with the 

sequence <pause, open, close, pause, resume, start, initialise, open, error>: Jammed is 

reachable here, too. 
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6.5 SUMMARY   
 
This chapter has presented a few existing verification methods, tool environments that can 

be integrated with the proposed specification framework, cmUML. For verification of 

interface specifications it is shown that LSC based environments can be adopted with 

minor extensions. Further an approach for integration of exception handling behavior 

during verification process is described. Various consistency checking scenarios are 

described. Also, an industry standard tool environment, Rhapsody, is found suitable for 

property verification of cmUML specifications. For verification of internal specifications, a 

CSP based translation approach is found suitable. 
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CHAPTER 7 

CONCLUSIONS 
 

he main objective of the thesis is to arrive at an abstract framework in UML that 

would allow concurrent abstractions to be used effectively from specification to 

implementation. The thesis has presented a formalism referred to as cmUML. The cmUML 

framework models separate external observable behaviors from internal implementation 

behaviors of the systems. These hierarchical specifications enable use of various kinds of 

verification approaches such as interface correctness, property verification, liveness, 

deadlock etc.  

 

7.1 THESIS SUMMARY 
 

The proposed cmUML framework retains the intuitive design notations of multi-view, 

graphical language UML for precise interface semantics and abstract implementation level 

models. The specification framework includes constructs for explicit specification of 

liveness, concurrency, synchronization and exception handling. Further the specification of 

these aspects is consistent in terms of both interface, and internal specifications. The 

operational semantics of cmUML has been defined using the formalism of Symbolic 

Transition Systems. The semantics of cmUML integrates low level UML action semantics 

with higher constructs of UML like Statecharts, activity and sequence diagrams and the 

underlying object model – thus providing a consistent view of system descriptions in spite 

of multi-view graphical specifications. The proposed specification language, namely 

cmUML defined for the specification phase is based on UML’s light weight extension 

mechanisms (known as stereotypes, tags, and constraints) thus facilitating compatibility 

with existing UML tools. Thus, the framework can be used within existing UML based 

methodologies towards precise specification of complex systems with concurrent, reactive 

behaviors at an early phase of development processes. 

 

T 
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The cmUML framework and corresponding specification language are based on UML 

metamodel and the conceptual model of UML/SPT profile (known as Profile for 

Schedulability, Performance, and Time). The framework addresses the limitations of both 

UML and UML/SPT profile for the precise specification of concurrent, reactive systems. 

The cmUML framework defines higher level abstractions with precise semantics based on 

the dynamic elements of the SPT profile. A conceptual model of the framework is 

presented together with a formal mapping between the elements of the conceptual model 

and those of SPT profile and UML meta model. Also the informal description of the 

semantics of the proposed specifications is described.  

 

As a refinement of the proposed specification framework, the thesis has presented a step-

wise specification process that can be applied to develop hierarchical specification of 

systems (or subsystem components) using proposed cmUML framework and its profile. 

The process is demonstrated using the case study of a Vending Machine specification. 

Further the advantage of the cmUML approach is demonstrated by comparing and 

validating it with other approaches, both formal as well as semi-formal. For this, classical 

problems of concurrency i.e., readers-writers problem and producer-consumer problem are 

specified and compared against their corresponding specifications in UML and formal 

approaches. 

 

Though UML has become the de-facto industry standard language for specification of 

software systems, the UML models are not defined a formal semantics making the 

specifications ambiguous and inconsistent. To avoid this, a formal semantics is defined for 

the proposed framework. The formal semantics of cmUML framework is largely based on 

so called informal semantics descriptions of UML and UML/SPT Profile. Thus the 

semantics definition approach addresses the problem of ambiguity and inconsistency in 

UML specifications but retains the open framework philosophy of UML by not imposing 

the so-called concrete semantics. The formal semantics is described separately for both 

interface and internal specifications. The semantics of the interface specifications are based 
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on LSC framework while the semantics of internal specifications are described using the 

formalism of Symbolic Transition Systems.  

 

This thesis has also described the existing verification approaches that can be integrated 

with the proposed cmUML specification framework: verification of interface specification 

by integrating LSC based verification techniques; verification of internal specification by 

translation into CSP formalism and related tools. LSC based verification technique can be 

used to verify consistency between various parts of the specification e.g.  interface vs 

internal specifications. CSP based verification can be used to verify interface correctness, 

deadlock detection etc. 

 

In nutshell, cmUML combines the basic elements of UML, and the conceptual foundation 

of UML/SPT (causality and concurrency) under a unifying framework towards higher level 

abstractions for specification of complex systems. The framework integrates low level 

UML actions semantics and higher formalisms of UML like statechart, activity, and 

sequence diagrams with the underlying object model of UML retaining the latter’s 

intuitive, multi-view design notations. Also, the framework doesn’t constrain the system 

developers with fixed semantics, execution models, and implementation level constructs. 

Thus the cmUML framework provides a rigorous yet intuitive specification phase for 

precise specification of externally visible behaviors of concurrent and reactive systems i.e., 

concurrency, reactivity, exception handling, and synchronization. Further, the framework 

is closely integrated with requirements phase facilitating validation of the requirements 

against the system specification. The applicable verification strategies are presented.  

 

7.2 CONTRIBUTIONS AND LIMITATIONS  
 

Following contributions are made by this thesis work. 

 

• Specification framework in Unified Modeling Language, namely cmUML, 

bridging requirements and early design for hierarchical specification of systems 

with concurrent and reactive behaviors.  
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• A specification language, namely cmUML Profile, using standard lightweight 

extension mechanisms of UML. Several stereotypes with precise semantics and 

specification context are defined. Extensions of UML Action and Activity as 

GuardedAction to specify precise semantics of action executions in concurrent 

environment. This gives implementation level expressiveness to internal 

specifications.  

• Integration of UML/SPT profile and UML metamodel towards a unifying 

framework for lower level constructs e.g,,UML actions and higher level formalisms 

e.g., statecharts, activity, sequence diagrams. The integration further resolves 

ambiguities and inconsistencies of UML semantics. It further provides precise 

contexts for use of UML behavioral diagrams.  

• Definition of semantic foundations for the proposed framework through adoption, 

and extensions of existing semantic frameworks like LSCs and krtUML. LSC 

foundation allows specification of liveness constraints. krtUML foundations define 

precise semantic foundations for UML action semantics.  

• Integration of exception handling mechanism in specification and verification. The 

mechanism is comparable to Java’s try-catch mechanism 

• A specification process, in terms of specification tasks and heuristics,  for 

application of the proposed framework  

• Validation of the framework w.r.t both existing UML and formal approaches  

• Investigation of existing verification approaches for integration with the proposed 

framework 

 

Some of the limitations are: 

• The specification framework and approach has been validated with simple 

examples and case study. The applicability of the approach for real-world systems 

need to be experimented 

• The specification framework and process is short of tool support 

• Formal semantics, and applicable verification approaches need to be further 

investigated. 
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7.3 FUTURE WORK  
 
While the proposed cmUML framework has been demonstrated and validated using well 

known specification problems and a case study, further investigations with large scale 

industrial strength case studies shall help refine the various aspects of the framework. 

Though applicability of formal techniques has been investigated through appropriate 

extensions of the corresponding semantical frameworks, further investigations shall 

strengthen the semantic framework of cmUML. The cmUML framework can be extended 

to Real-Time embedded systems. As the framework is defined using light weight extension 

mechanisms of UML, it can be integrated with other UML-based methods and approaches. 
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APPENDIX A 

SAFETY AND LIVENESS  IN CONCURRENT SYSTEMS 
 

Concurrent systems are analyzed in terms of their safety and liveness properties. Any 

property of these systems can be described in terms of their safety and liveness properties 

and analyzed using respective techniques.  Safety and liveness were first described by 

Lamport [Lamport 1977]. Alpern and Schneider proposed formal characterization of safety 

and liveness properties of concurrent systems [Alpern 1985]. 

 

 

A.1 CONCURRENT SYSTEMS AND PROPERTIES   
 
A concurrent program execution can be viewed as a sequence σ = s0s1s2... of states, each 

state si (for i > 0) is the result of a single atomic action from si -1. A set of such sequences 

is defined as a ‘property’. A property P holds for a program if the set of all sequences 

defined by the program is contained within the property. It is useful to distinguish two 

classes of properties, since they are proved using different techniques. A proof that a 

program satisfies a ‘safety property’ rests on an invariance argument, while a proof that a 

program satisfies a ‘liveness property’ depends on a well-foundness argument.  

 

For formalization of safety, and liveness, let S = set of program states, Sω = set of infinite 

sequences of program states, S* = set of finite sequences of program states. The execution 

of a program can be modeled as a member of Sω. Thus the elements of Sω form 

‘executions’.  Elements of S* are partial executions. Further σ|= P if σ is in property P. Let 

σi = partial execution consisting of the first i states in σ. 
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A.2 SAFETY PROPERTIES  
 
Informally, a safety property stipulates that no “bad things” happen during program 

execution. Examples of safety properties (and their respective “bad things”) are mutual 

exclusion (two processes executing in the critical section at the same time), deadlock 

freedom (deadlock), partial correctness (starting state satisfied the precondition, but the 

termination state does not satisfy the postcondition), first-come-first-serve (servicing a 

request made after one that has not yet been serviced) etc. 

For P to be a safety property, if P does not hold for an execution then at some point some 

‘bad thing’ must happen. Such a ‘bad thing’ must be irremediable because a safety 

property states that the ‘bad thing’ never happens during execution. Thus following formal 

definition hold for a safety property P: 

P is a safety property if and only if  
(∀σ: ∈σSω: σ|≠ P ⇒ (∃i : 0≤i: (∀β: ∈βSω: σiβ |≠ P))) 

 
A.3 LIVENESS PROPERTIES  
 
Informally, a liveness property stipulates that  a “good thing” happens during program 

execution. Examples of liveness properties (and their respective “good things”) are 

starvation freedom (making progress), termination (completion of the final instruction), 

guaranteed service ( receiving service). 

 

For P to be a ‘liveness property’, no partial execution is irremediable; a “good thing” can 

always occur in the future i.e. if a partial execution were irremediable, it would be a “bad 

thing” and liveness properties cannot reject “bad things”, only ensure “good things”.   

 

Thus the following formal definition holds for liveness property P: 

P is a liveness property if and only if  (∀α: ∈αS*: (β∃: ∈β Sω: βα|=P) 
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APPENDIX B 

LIVE SEQUENCE CHARTS 
 

While message sequence charts (MSCs) are widely used in industry to document the 

interworking of processes or objects, they are expressively weak, being based on the 

modest semantic notion of a partial ordering of events as defined, e.g., in the ITU standard. 

The language of LSC is a highly expressive and rigorously defined MSC language 

extension towards a serious, semantically meaningful behavioral specification of 

concurrent, reactive systems as well as providing tool support for formal analysis of system 

properties at early phases of development [Damm 1999]. Further LSCs address the central 

problems in behavioral specification of systems: relating scenario-based inter-object 

specification to state-machine intra-object specification. 

  

B.1  LIVE SEQUENCE CHART (LSC) 
 
MSC specifications are typically used to capture sample scenarios corresponding to system 

functionalities (also known as use cases). At this stage the representational interpretation of 

MSC semantics is permissible. But as system becomes refined and conditions 

characterizing use cases evolve, the intended interpretation needs to distinguish existential 

(optional) behaviors from universal (mandatory) behaviors. Here the conventional 

semantics of MSCs is inadequate. LSCs allow the user to selectively designate parts of a 

chart, or even the whole chart itself, as universal (that is, live, or mandatory), thus 

specifying that messages have to be sent, conditions must become true, etc. The designer 

may incrementally add liveness annotations as knowledge about the system evolves. Hand 

in hand with this extension comes the need to support conditions as first-class citizens. 

‘Conditions’ as first-class citizens, help in capturing assertions that characterize usecases. 

Conditions can thus qualify requirements as assertions over instance variables. Thus, LSCs 

provide the semantical basis for rigorous and complete consistency checks between the 

descriptive view of the system by sequence charts and the constructive one. Such checks 

could eventually be made using formal verification techniques like modelchecking 
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Table. B.1. Summary of Liveness Notions in LSCs, with their Informal Meaning 

 [Source: Damm 1999] 

 

B.2  FORMAL SEMANTICS OF LSCS  
 
Formal semantics of a LSC ‘m’ is described by a symbolic transition system or a skeleton 

automaton A(m) [Damm 1999].  States of A(m) corresponds to ‘cuts’ in LSC induced by 

the partial order subsuming the constraints imposed by both the standard and the 

extensions. Each state or ‘snapshot’ of the system is described the instance variables, 

events, and the necessary system variables. The elements of abstract syntax of LSC are 

given below, where ‘m’ represents a LSC. 

 

inst(m): set of all instances 

dom(m, i): finite set of ‘abstract’ discrete locations of instance i, of m. 

dom(m, i) ⊆ {0, …., l_max(m,i)} 

dom(m): {< i, l > | i ∈ inst(m) ∧ l ∈ dom(m, i )}.     

Messages = Message_Ids x {synch, asynch} x {!, ?} 

Conditions = Condition_Ids x bexp(vis_var(m)) 
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Labels = ℘ (Messages) x Conditions 

label(m) : dom(m) → Labels 

temp(m) : ((dom(m) ∪ Message Ids ∪ Condition Ids) → Temp) 

 where Temp = {hot, cold} 

order(m) : dom(m) → {true, false}  ---- a total order 

coregion, L: a maximal set L of locations of i with order(m)(<i, l>) = false. 

 

The state space of the STS associated with the basic LSC m is derived from the following 

(meta)variables, where i is any of the instances referred to in the LSC: 

 

i.location:  the current location of instance i  

i.events :  the events currently emitted by i (from events(i ) ∪ silent 

i.v :   the current local value of i’s instance variable v; 

status:   {active, aborted, terminated}  

promises:  takes its value in the power-set of  

dom(m) ∪ {m id? | m id ∈ vis events(m)}; 

 

initialization predicate: init(m) is the conjunction of following: 

i.location=0; status=active; i.events ∈ vis_events(m) 

transition relation: partitioned into following types of moves  

active state: t-steps (local computations); i-steps  (proceed instances) 

terminated state: chaos-step (arbitrary changes) 

aborted state: stutter steps (no changes to variables) 

 

The semantics is a pure interleaving one: only a single instance is allowed to proceed at a 

time, and hence the transition predicate for the global transition relation is just the 

disjunction of the transition predicates of its partitions. Thus each action of the partions of 

the transition relation can be described in a self-explanatory imperative style. 
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Figure. B.1. The Transition System of a LSC with Pre-chart 

[Source: Damm 1999]  
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APPENDIX C 

CMUML SPECIFICATION OF VENDING MACHINE 
 

1. General Use Cases of a Vending Machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. AccessOrder Specification of «system» VM 

 

 
 

 

 

 

DropCoins 

MakeChoice 

DispenseCoins 

Cancel 

DispenseDrink 
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Data 
«Resource» 

CE 
«System» 

DD 
«System» 

VM «System» 

«End» R-Coins 

«End» D-Coins  
&& «End» D-Drink  

S2 Entry: init 
S1 

«Exception» noDrink/ 
trigger(noDrinkHandle)     In S1or S2: Cancel / trigger(VM-Cancel) 

3. Specification of internal structure and State of «system» VM 

 

 

 

 

 

 

 

 

 

 

 

4. «ScenarioContext» Specifications of Vending Machine Use Cases 
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5. Service Specification of R-Coins with guarded Semantics 

 

 

 

 
R-Coins 

«Flow» {guarded} 
{guard=drinks_available ≥1; 
  isHot=true; isDelay=false,  
  exception=noDrink; isAtomic=true} 

Get 
Coins 

Write (CoinValues) 
{guarded} 

{guard=CoinValuesOK(); 
isHot=true; isDelay=false; 
exception=invalidCoins 
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