

Framework for Specification of Concurrent and Reactive

Systems in Unified Modeling Language

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Suryadevara Jagadish

Under the Supervision of

Prof. R. K. SHYAMASUNDAR

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

2009

Dedicated to

my grandparents

Late. Mallampati Arjunaiah

& Seetharathnamma

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Framework for Specification of

Concurrent and Reactive Systems in Unified Modeling Language” and

submitted by Mr. Suryadevara Jagadish ID No. 2002PHXF415 for award

of the Ph.D degree of the Institute embodies original work done by him under

my supervision.

 Signature of the Supervisor

Date: Name: Prof. R.K. Shyamasundar

 Designation: Sr. Professor,

Tata Institute of Fundamental

Research (TIFR), Mumbai, India

ACKNOWLEDGEMENTS

I am most indebted to my supervisor, Professor R.K. Shayamasundar, Tata Instittue of

Fundamental Research (TIFR) and Professor L.K.Maheswari, Vice-Chancellor, BITS for

their guidance, wisdom, valuable suggestions and encouragement throughout my work.

Talking to them has always been enlightening and highly productive. It has been a great

learning experience working under their guidance.

I thank Prof. Lawrence Chung, University of Texas, Dallas, USA for providing critical

inputs during the thesis work.

I thank Prof Sundar Balasubramaniam, and Prof J.P. Misra, senior members of CSIS

Group, BITS for their support and encouragement. I also thank all my colleagues who

directly and indirectly helped me in completing my thesis. Special thanks are to Dr. T.S.B

Sudarshan, member, CSIS group.

I thank Prof Ravi Prakash, Dean and other members of Research & Consultancy Division,

BITS who directly or indirectly helped me during this period. I also thank Prof. Navneet

Goyal, and Dr. Mukesh K. Rohil, members of my Doctoral Advisory Committee (DAC)

for reviewing the draft thesis and providing valuable inputs.

Last but not least, my special thanks to my family; Anuradha, my wife, for all the support

and Baby Nandana and Baby Mahima, my little daughters for giving me joyous moments

during the stress and strain of ph.d study.

I thank The Almighty GOD for all good things that happened in my life.

i

ABSTRACT

With emergence of real-time, embedded systems and high performance computing

environments, development processes for complex systems with concurrent and reactive

behaviors has become important. There exist wide gap between the initial requirements

phases and final system design for these systems. Ideally a formal, intuitive specification

phase between requirements and architecture design is needed. The Unified Modeling

Language (UML), a de facto industry standard, provides intuitive graphical design

notations for modeling static as well as dynamic aspects of systems. But, the behavioral

specification in UML is representative in nature rather than complete. Further, UML lacks

constructs, semantics towards precise specification of concurrent, reactive behaviors.

There are major shortcomings in UML as a precise language to specify complex behaviors

of concurrent and reactive systems. The higher level formalisms like Sequence diagrams,

Statecharts, and Activity diagrams are inconsistent and are not well integrated with the

underlying object model of UML. Current UML based approaches depend on low-level

primitives such as semaphores, monitors etc., to model concurrency features. Many Real-

Time UML methodologies for example COMET, CODARTS are largely based on

informal design heuristics with focus on static aspects of the systems. For example

liveness issues of concurrent systems are not considered in above approaches. There exist

formal approaches with precise semantics for UML such as RT-UML, UML-RT, and

UML/SDL. There also exist translation based approaches into specific formalisms like

CSP, LOTOS, Esterel etc for translating and analyzing certain aspects of UML models.

Though promising, these approaches are neither intuitive nor integrated within traditional

development processes.

This thesis proposes a semi-formal specification framework in UML, namely cmUML, in

the development of systems with concurrent and reactive behaviors. The framework

adopts the principles and semantics of formal specification approaches for concurrent and

reactive systems. It further clarifies inconsistencies and ambiguities in the usage and

semantics of UML diagrams through a unifying framework, based on conceptual

semantics and the foundations of the standard UML/ SPT Profile, and provide a basis for

ii

explicit introduction of concurrency and reactivity. The framework is independent of

implementation level primitives and associated semantics.

The main contributions of the thesis are:

• Definition of abstract components, with heterogeneous behaviors and semantics, to

hierarchically constitute precise specification of complex systems

• Integrating principles and semantics of formal specification approaches for

concurrent, reactive systems e.g., liveness

• Definition of specification constructs and mechanisms for explicit specification of

complex behaviors of systems i.e., concurrency, reactivity, exception handling, and

synchronization

• Use of multiple behavior diagrams of UML i.e., sequence charts, state machines,

activities to provide multi-view, intuitive graphical specifications under a unified

semantic framework

• Application of separation-of-concerns in system specifications through interface

and internal specifications corresponding to precise requirements and an abstract

implementation respectively

• Definition of a UML Profile, based on standard extension mechanisms of UML,

for application of the framework

• Specification methodology for application of the specification framework and

related UML profile

• Definition of a formal semantics for the proposed specification framework

• Integration of existing verification techniques and tools for early analysis of

system specifications

The proposed specification framework is validated through specification of a case-study

i.e. a vending machine as well as specification of well-known concurrency patterns e.g.,

producer-consumer, reader-writer, and leader-follower. The specifications are compared

with pure formal approaches as well as existing UML-based approaches.

iii

The thesis is supported through the following publications:

1. Jagadish Suryadevara, Lawrence Chung, Shyamasundar R.K., “cmUML – A UML

based Framework for Formal Specification of Concurrent, Reactive Systems”, in

Journal of Object Technology, vol. 7, no. 8, November - December 2008, pp. 187 –

207 (submitted 2007)

2. Jagadish Suryadevara, Shyamasunder R.K., “An UML-based approach to Specify

Secured, Fine-grained, Concurrent Access to Shared Resources” Journal of Object

Technology (JOT), vol.6 no.1, Jan-Feb, 2007, pp 107-119 (submitted 2006).

3. Jagadish Suryadevara, Shyamasundar R.K., “cmUML- A Precise UML for

Abstract Specification of Concurrent Components”, Proceedings of 18th

International Conference on Parallel and Distributed Computing and Systems

(PDCS), Dallas, USA, Acta press, November 2006, pp 141-146.

4. Jagadish Suryadevara, Shyamasundar R.K., “A Multi-threaded Active Object

Behavioral Pattern for Concurrent/ Distributed Programming in Java”, Proc. First

International Conference on Web Engineering and Applications (ICWA-06)

Bhubaneswar, India, pp 230-239, Macmillan press, India

iv

TABLE OF CONTENTS

ABSTRACT --- i
TABLE OF CONTENTS--- iv
LIST OF FIGURES -- vii
LIST OF TABLES --- ix
LIST OF ACRONYMS ------ -- x

1. INTRODUCTION

1.1 Thesis Motivation --- 1
1.1.1 Software Engineering and Formal Methods------------------ 3
1.1.2 Unified Modeling Language ----------------------------------- 3

1.2 Scope of the Thesis Work --- 4
1.3 Objectives of the Thesis -- 5
1.4 Thesis Organization -- 6

2 BACKGROUND & LITERATURE SURVEY

2.1 Formal Specification of Systems -- 10
2.1.1 Introduction -- 10
2.1.2 Specification Methods & Languages ------------------------- 12
2.1.3 Transition Axiom Method ------------------------------------- 14

2.2 Unified Modeling Language (UML) -------------------------------------- 16
2.2.1 Overview -------------------------- ------------------------------ 16
2.2.2 Semantics and Inconsistencies--------------------------------- 17
2.2.3 Semantics Definition Approaches ---------------------------- 19

2.3 Related Works in UML --- 21
2.3.1 A Pattern for Concurrency in UML -------------------------- 21
2.3.2 ATOM-S: A Concurrent Model in UML -------------------- 23
2.3.3 Specifying Concurrent System Behavior in UML/ OCL -- 26
2.3.4 SDL/ UML and UML-RT ------------------------------------- 28
2.3.5 krtUML --- 30

2.4 Research Gaps and Problem Definition ---------------------------------- 32
2.5 Summary -- 34

3 FRAMEWORK DEFINITION

3.1 UML SPT Profile -- 35
3.1.1 General Resource Modeling Framework --------------------- 36
3.1.2 Causality sub-package --- 38
3.1.3 Concurrency sub-package -------------------------------------- 39

3.2 Extension Mechanisms in UML -- 40
3.3 Conceptual Model of cmUML -- 42
3.4 Definition of cmUML Profile --- 45
3.5 Informal Semantics of cmUML Profile ------------------------------------ 50
3.6 Summary --- 55

v

4 SPECIFICATION METHODOLOGY

4.1 Specification Process with cmUML --------------------------------------- 56
4.2 Case Study: Vending Machine Specification ---------------------------- 59

4.2.1 Problem Statement --- 59
4.2.2 Specification Process -- 60

4.3 Comparison and Validation -- 67
4.3.1 Classical Problems of Concurrency --------------------------- 67
4.3.2 Readers-Writers Problem --------------------------------------- 68
4.3.3 Producer-Consumer Problem----------------------------------- 71

4.4 Specification of Leader-Follower Concurrency Pattern ---------------- 73
4.5 Summary -- 75

5 FORMAL SEMANTICS DESCRIPTIONS

5.1 Introduction -- 76
5.2 Semantics Description Approaches in UML ------------------------------ 77
5.3 Semantic Foundation of cmUML Framework --------------------------- 79

5.3.1 Interface Specifications-- 80
5.3.2 Internal Specifications--- 80

5.4 Semantics of Interface Specifications -------------------------------------- 80
5.4.1 Live Sequence Charts -- 81
5.4.2 cmUMLExtensions of LSC Semantics ----------------------- 83

5.5 Semantics of Internal Specifications --------------------------------------- 85
5.5.1 Symbolic Transition Systems ----------------------------------

 87
5.5.2 Formal Representation of Internal Specifications ----------- 87
5.5.3 Description of Formal Semantics ------------------------------ 90

5.6 Summary -- 96

6 VERIFICATION APPROACHES

6.1 Introduction -- 97
6.2 LSC based verification of cmUML specifications ----------------------- 98

6.2.1 Verification of Interface Specifications ----------------------- 98
6.3 Verification in Rhapsody Tool Environment ---------------------------- 101
6.4 CSP based Verification --- 104

6.4.1 Case Study: A Simple Printer Specification ---------------- 105
6.5 Summary --- 109

7 CONCLUSIONS

7.1 Thesis Summary -- 110
7.2 Contributions and Limitations --- 111
7.3 Future Work -- 113

vi

REFERENCES ---115

APPENDIX A: SAFETY AND LIVENESS IN CONCURRENT SYSTEMS

A.1 Concurrent Systems and Properties --- 126
A.2 Safety Properties: Formal Definition -- 128
A.3 Liveness Properties: Formal Definition ------------------------------------- 128

APPENDIX B: LIVE SEQUENCE CHARTS

B.1 Live Sequence Chart (LSC) -- 129
B.2 Formal Semantics of LSCs -- 130

APPENDIX C: CMUML SPECIFICATION OF VENDING MACHINE --------------------- 132

BRIEF BIOGRAPHY OF THE CANDIDATE -- 135

BRIEF BIOGRAPHY OF THE SUPERVISOR --- 136

vii

List of Figures

Fig Caption Page No.
No.

1.1 Software Development Phases --- 02

2.1 Specification as Core Artifact of Development Process ---------------------- 11

2.2 The Semantic Architecture of UML2.0 --- 17

2.3 A meta-Model for a Concurrency Pattern in UML ---------------------------- 21

2.4 A Simple Thread Scheduler in ATOM-S in Extended Python --------------- 25

2.5 UML Conceptual Model of basic SDL Concepts and Relationships -------- 29

3.1 General Resource Modeling Framework Packages of SPT Profile ---------- 37

3.2 Sub- packages of Resource Modeling Package of SPT Profile -------------- 37

3.3 The basic Causal Loop Model in UML -- 38

3.4 Scenario Event Occurrences --- 39

3.5 General Concurrency Modeling Concepts in SPT Profile ------------------- 41

3.6 Proposed UML metamodel Extension in SPT Profile (ActionExecution) 42

3.7 Conceptual Model of cmUML Framework ------------------------------------- 43

4.1 General Use Cases of a Vending Machine -------------------------------------- 60

4.2 AccessOrder Specification of «system» VM ---------------------------------- 61

4.3 Specificatio of Structure and State of «system» VM -------------------------- 63

4.4 «ScenarioContext» Specification of Machine Use Cases ------------------- 64

4.5 Activity Specification of a Service with guarded Semantics ----------------- 65

4.6 Specification of Readers-Writers Problem in UML --------------------------- 68

viii

4.7 Specification of Readers-Writers Problem in cmUML ----------------------- 69

4.8 Specification of Producer-Consumer Problem in UML -----------------------71

4.9 cmUML Specification of Producer-Consumer Problem ---------------------- 72

4.10 cmUML Specification of Leader-Follower Concurrency Pattern ----------- 74

5.1 The Layered Approach of cmUML Semantic Framework ------------------- 79

5.2 Transition System Corresponding to a LSC ------------------------------------ 82

5.3 Transition System of a LSC as Pre-chart -- 82

5.4 Partial Interface Specification in cmUML -------------------------------------- 84

6.1 Verification of a ‘ScenarioContext’ against the Interface Statemachine --- 99

6.2 Verification of a ‘ScenarioContext’ against a ‘State’ Specification ------- 100

6.3 Verification algorithm integrating exception handling behaviors -----------101

6.4 Property Verification in Rhapsody with LSCs and CE Statemachine ------103

6.6 State specification of «system» Printer ---106

6.7 «service» Specifications of «system» Printer --------------------------------- 106

B.1 The Transition System of a LSC with Pre-chart ------------------------------ 142

ix

List of Tables

Table Caption Page No.
No.

2.1 UML Position in the Design Space of Concurrent Object Models ---------------- 24

3.1 Stereotypes of cmUML and the Mapping into UML and UML/SPT Profile ---- 46

3.2 Tags for Proposed Stereotypes of cmUML -- 49

3.3 Constraints Associated with the Stereotypes of cmUML -------------------------- 50

3.4 Summary of GuardedAction Semantics --- 51

4.1 An OCL based Specification of Semaphore Semantics ---------------------------- 66

4.2 Specification of Reader-Writer problem in Distributed Processes framework – 70

4.3 Distributed Processes Specification of Producer-Consumer problem ----------- 73

5.1 GuardedAction Semantics -- 85

6.1 Event Dependencies (denoted by A → B) in cmUML and Rapide ---------------118

B.1 Summary of Liveness Notions in LSCs with their Informal Meaning -----------140

x

List of Acronyms

ADL : Architecture Description Language

DF : Data Flow

FSM : Finite State Machine

ITU : International Telecommunications Union

LSC : Live Sequence Chart

MSC : Message Sequence Chart

OCL : Object Constraint Language

OMG : Object Management Group

SPT : Schedulability, Performance, and Time

SR : Synchronous Reactive

STS : Symbolic Transition System

UML : Unified Modeling Language

CHAPTER 1: INTRODUCTION

1

CHAPTER 1

INTRODUCTION

oftware development life cycle methods and processes play an important role in the

development of software systems. With the emergence of inexpensive multi-

processor hardware platforms, real-time embedded software systems with complex

behaviors have grown manifold. Traditionally the development processes are designed

around sequential execution models with guaranteed correctness. But, modern software

systems have characteristic behaviors of concurrency, reactivity and timeliness aspects.

These systems need rigorous development processes in formal or semi-formal approaches.

Thus there is growing need to integrate these approaches in traditional software

engineering methods and processes. Further, the integration needs to be done in an

intuitive way to enable common system modelers and developers to work with formal

concepts, techniques, and tools.

This chapter describes the motivation and scope of study behind the thesis work in terms

of software engineering methods, formal methods, and emergence of Unified Modeling

Language. The chapter further describes the main objectives of the thesis. Also, the

organization of the thesis is described providing a brief overview of each chapter.

1.1 THESIS MOTIVATION

Modern software systems have grown in size and complexity. While the computing

hardware is becoming cheaper and faster, the development complexity and cost of

software has been increasing. Traditionally the software development has been organized

into software engineering phases of requirements, software design, testing, maintenance

etc [Pressman 2004]. To handle the complexity of modern software systems, approaches

like model driven development, programming-in-large, software architectures, component

based software development have emerged. These approaches are traditionally integrated

S

CHAPTER 1: INTRODUCTION

2

into software development phases [Gomaa 1993, 2000]. These approaches are largely

successful in obtaining system design in terms of functional requirements.

Figure 1.1 Software Development Phases

But modern software systems possess complex behaviors of concurrency, parallelism,

reactivity, timeliness etc [Gomaa 1993, 2000]. With the increase in complexity of software

systems an early design phase known as architectural design has become important (figure

1.1). This phase focuses on designing the system to achieve non-functional properties

[Bass 2003]. But existing architectural design practices are ad hoc and informal in nature.

Hence there still exists a wide gap between requirements phase and architectural design

phase.

For systems with complex behaviors the gap between requirements analysis and

architectural design is a major challenge. The critical non-functional aspects of the

systems like concurrency, timeliness etc are neither well specified nor understood under

current development approaches. Traditionally concurrency issues are handled during

architecture or system design phases using implementation primitives like threads,

semaphores, monitors etc. Hence there is a need to introduce a formal or semi-formal

specification phase between requirements and architectural design towards better

understanding, analysis, design and implementation of complex software systems.

CHAPTER 1: INTRODUCTION

3

1.1.1 SOFTWARE ENGINEERING AND FORMAL METHODS

Formal methods are useful to develop complex software systems using engineering

methods and tools that are verifiable [Liu 2005]. Formal approaches complement informal

engineering methods by techniques like formal specification and verification. They have

been extensively researched and studied [Liu 2005]. A range of semantic theories,

specification languages, design techniques, and verification methods and tools have been

developed that are used in critical applications. However, it is still a challenge to scale up

formal methods and integrate them into engineering development processes for the correct

construction of software systems. Both formal methods and the methods adopted by

software engineers are far from meeting the developmental complexity of complex

systems. Further, complete assurance of correctness requires too much to specify and

verify and thus a full automation of the verification is infeasible.

However, recently there have been encouraging developments in both approaches. The

software engineering community has started using precise models for early requirement

analysis and design [Mellor 2002]. Theories and methods for object-oriented, component-

based and aspect-oriented modeling and development are gaining the attention of the

formal methods community. But, as system development community largely consists of

people who do not possess expertise in formal methods, there needs to be intuitive yet

formal approaches hiding the complexity of formal methods.

1.1.2 UNIFIED MODELING LANGUAGE (UML)

The Unified Modeling Language (UML) has become the de facto industry standard visual

specification language for specification of software systems [OMG 2001]. UML consists

of design notations such as class diagrams, sequence diagrams, activity diagrams, and

statecharts towards static as well as dynamic aspects of systems. UML can be used in

several phases of development processes of systems i.e., requirements, architecture design,

and detailed design. An oft-repeated criticism of UML is that it has no semantics largely

CHAPTER 1: INTRODUCTION

4

due to the fact that UML lacks formal semantics. The informal semantics described using

a natural language like English leads to various inconsistencies, and ambiguities.

1.2 SCOPE OF THE THESIS WORK

There are major shortcomings in UML as a precise language to specify complex behaviors

of concurrent and reactive systems. The higher level constructs or formalisms like

Sequence diagrams, Statecharts, and Activity diagrams are inconsistent and are not well

integrated with the underlying object model of UML [Ober 1999, Jagadish 2006a].

Current UML based approaches depend on low-level primitives such as semaphores,

monitors, etc to model concurrency features. From the perspective of formal languages,

they use complex OCL (Object Constraint Language) statements [Goni 2004]. Many Real-

Time UML methodologies for example COMET, CODARTS are largely based on

informal design heuristics with focus on static aspects of the systems [Gomaa 2000]. For

example safety and liveness issues of concurrent systems are not handled in these

approaches.

There have been many attempts towards providing formal approaches with precise

semantics for UML such as RT-UML, UML-RT, and UML/SDL. There also exist

translation based approaches (e.g. [Clark 2000]) into specific formalisms like CSP,

LOTOS, Esterel etc translating and interpreting certain aspects of UML models under

specified semantic domain and analyzed with the related tools. Though promising, these

approaches are not satisfactory for complete behavioral aspects of concurrent and reactive

systems. Further these approaches are not integrated with traditional development phases

in general and requirements phase in perticular.

Object Management Group (OMG), the UML consortium, has defined a generic resource

modeling framework with concurrency and causality for real-time systems known as

‘Standard UML profile for Schedulability, Performance, Time’ (also known as UML/ SPT

Profile) [OMG 2001]. The SPT profile defines basic concepts of events, causality, and

concurrency independent of formal semantics and UML meta model [Ober 2004].

CHAPTER 1: INTRODUCTION

5

Component based approaches have emerged as an effective way of specifying, verifying,

and implementing complex systems. Of these, works on software architectures for

example Architecture Description Languages (ADLs) are significant. The ADL

community has contributed much in terms of interfaces, components, and system

compositionality. Certain ADLs like Rapide, Darwin, and Wright are based on precise

formal semantics [Luckham 1995, Nenad 2000, Magee 1995, Allen 1997].

A multi-view and multi-notation modeling language, as a formalized subset of the UML,

can be used to specify precise system or component models and analyzed for

inconsistencies using formal techniques, e.g. model-checking [Shrotri 2003]. The models

can further be enhanced by adding descriptions of interaction protocols with the

environment, timing aspects etc. The analysis can be carried out incrementally, a small

number of use cases at a time that only involve a small number of domain classes.

1.3 OBJECTIVES OF THE THESIS

Following objectives are identified for the thesis work:

• Precise behavioral specification of concurrent, reactive systems in hierarchical

approach with higher level conceptual semantics

• Integrating principles and semantics of formal specification approaches

• Explicit specification of externally visible behaviors i.e., concurrency, reactivity,

exception handling, and synchronization of system components

• Use of all behavior diagrams of UML i.e., sequence charts, state machines,

activities in well defined contexts under a unifying semantic framework

• Resolving inconsistencies, and ambiguities in UML behavioral semantics

• Integration of the specification process with functional requirements (use cases)

• The definition of a specification process, independent of design or implementation

constructs e.g., threads, semaphores, monitors

• To define constructs and mechanisms for explicit specification of exception

handling and synchronization features.

CHAPTER 1: INTRODUCTION

6

• To investigate the existing formal verification techniques that can be integrated

with the proposed specification framework

1.4 THESIS ORGANIZATION

The thesis has been organized into seven chapters as described below.

Chapter 1 has introduced the motivation and objectives of the thesis work describing the

limitations of traditional software development processes, Unified Modeling Language,

and role of formal methods in software engineering. The scope of the research work is

discussed. The objectives of the thesis work are described.

Chapter 2 presents the detailed background and literature survey of the thesis work. The

chapter describes formal approaches, and principles of formal specification of concurrent,

reactive systems. The transition axiom method, a simple and efficient formal approach

proposed by Lamport, is described. It combines both axiomatic and operational

approaches towards component based specification of concurrent systems. Also, the

chapter presents the UML framework as described in the literature. The advantages and

limitations of existing UML based approaches for modeling concurrent and reactive

systems are described. An overview of the existing formal approaches in UML is

presented.

Chapter 3 presents the first part of the thesis contribution. It describes the conceptual

model of the proposed framework (namely cmUML). The corresponding specification

language, as precise subset of UML using standard extension mechanisms known as

stereotypes, tags and constraints, is defined. The standard UML/SPT profile which forms

the conceptual foundation of the proposed framework is described. The chapter also

presents the informal semantics of the proposed abstractions of the cmUML framework.

Chapter 4 presents a specification methodology with the proposed cmUML specification

framework. The methodology is defined in terms of a sequence of well-defined

specification tasks. This is significant as OMG does not prescribe any standard process for

CHAPTER 1: INTRODUCTION

7

application of UML (usually left to the profile developers). The specification process is

integrated with the traditional requirements phase. This requirements driven process

identifies suitable system decomposition and specification of containing behaviors with

concurrency, reactivity, exception handling, and synchronization features. Also, the

specification process incorporates design guidelines, and heuristics of general object

oriented analysis and design approaches [Gomaa 2000]. The specification methodology is

illustrated with a simple case study of vending machine specification. The chapter further

presents a comparison and validation of cmUML approach using classical examples of

concurrency i.e., readers-writers problem and producer-consumer problem against existing

UML approaches as well as formal approaches. Also, the concurrency pattern leader-

follower is specified.

Chapter 5 describes the semantics foundations of the proposed specification framework.

As the framework proposes a two level specification process in terms of interface

specifications (based on LSCs and protocol state machines), and internal specifications

(based on activities and statemachine), the semantic description is described along two

separate but related dimensions. For interface specifications, the semantic framework is

described in terms of LSCs and proposed extensions. The semantics of the internal

specifications is described using the formalism of ‘Symbolic Transition Systems (STS)’

and is based on UML foundations e.g., action semantics.

Chapter 6 presents the existing verification approaches that can be integrated with the

cmUML specifications. For interface verifications, the LSC semantic framework is

extended to integrate the exception handling aspects of the specifications. For this, a

simple algorithm is proposed. Also LSC based verification techniques are described for

consistency checks of the various parts of the specifications. For example, consistency

checking scenarios are described like LSCs vs interface statemachines, LSCs vs Internal

statemachines, and Interface vs internal statemachines. For verification of internal

specifications, an application of CSP based model checking technique is described (e.g.

deadlock analysis).

CHAPTER 1: INTRODUCTION

8

Chapter 7 presents the thesis conclusions in terms of contributions, and limitations of the

thesis work. Further the future work related to the thesis work is discussed.

The thesis includes following appendices:

The appendix A describes the characterization of concurrent systems in terms of their

safety and liveness properties.

The appendix B describes the precise formalism of Live Sequence Charts and their

semantic foundation.

The appendix C presents the complete specification of the vending machine case study

described in chapter 4.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

10

CHAPTER 2

BACKGROUND & LITERATURE SURVEY

pecification serves as a contract, a valuable piece of documentation, and a means of

communication among clients, designers and implementers. A formal specification

provides the means of precisely defining the notions like consistency, completeness, and

more importantly correctness. Formal approaches help specify, develop, and verify

systems in a systematic approach rather than ad hoc means.

This chapter describes the foundations of formal methods in specifying systems with a

special focus on Transition Axiom method which combines axiomatic and operational

approaches for intuitive yet analyzable specifications [Wing 1995, Lamport 2000]. A brief

overview of UML is presented, in particular the semantic architecture of UML 2.0, and

corresponding ambiguities, inconsistencies with respect to specification of concurrency

and reactivity. Further the related works are described. Finally, the research gaps are

identified and the research problem formulated.

2.1 FORMAL SPECIFICATIONS OF SOFTWARE SYSTEMS

2.1.1 INTRODUCTION

A formal specification language provides a notation (its syntactic domain), a universe of

objects (its semantic domain), and a precise rule defining which objects satisfy each

specification [Wing 1990]. A language’s syntactic domain is usually defined in terms of a

set of symbols and a set of grammatical rules for combining these symbols which need not

be restricted to text; graphical elements such as boxes, circles, lines, arrows, and icons can

be given a formal semantics. The languages differ in their choice of semantic domains. For

example, specification languages for concurrent systems need to specify state sequences,

event sequences, state and transition sequences, streams, synchronization trees, partial

orders, and state machines. The different aspects or ‘views’ of a single specificand (a

s

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

11

semantic object) are best specified perhaps using different specification languages (or

sublanguages). The specifications i.e. both structural and behavioral imply constraints to be

‘satisfied’ by specificands. Behavioral specifications describe only constraints on the

observable behavior of specificands and usually address system’s functionality but can

include non-functional aspects.

Formal specifications can play an important role in the traditional development processes.

The general scenario involving the main stakeholders during system development process

is described in figure 2.1. Specifiers should specify enough so that implementers do not

make unacceptable implementations. On the other hand, saying too much may leave little

design freedom for the implementer [Lamport 2000]. Informally, a specification has

‘implementation bias’ if it specifies externally unobservable properties of its specificands.

From figure 2.1 it is clear that many actors of system development process including

human beings, and tools interact with the specifications. Many languages are suitable only

for a subset of the actors. Further a specification language may suit only specific kinds of

systems as well as specific phase of the development process.

Figure 2.1. Specification as Core Artifact of Development Process [Source: Wing 1990]

Verification is the process of showing that a system satisfies its specification. Formal

verification is impossible without a formal specification. Although an entire system may

never be verified completely, its smaller, critical components can be verified. Further

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

12

specifications can be used to generate test cases for black-box testing. For example,

specifications that explicitly state assumptions on a module’s use identify test cases for

boundary conditions. Further specification languages could be executable allowing rapid

prototyping of systems but the disadvantage could be that such languages may suffer from

implementation bias.

2.1.2 SPECIFICATION METHODS & LANGUAGES

Formal methods can not describe an entire large, software system but only certain aspects

or certain views of it [Lamport 2000]. It is very important to understand ‘why’, ‘what’, and

‘how’ to formally specify systems. Formal specifications may help precise documentation

of system or its component interfaces, or towards precise and abstract design, or to perform

some formal analysis, etc [Wing 1995]. Formal methods can further be used to specify

‘global correctness conditions’ (e.g. deadlock freedom), ‘system invariants’, ‘observable

behavior’, or ‘properties or entities’ of a system at a suitable level of abstraction (e.g.

interface, implementation) by characterizing the observable entities forming system’s ‘state

variables’ at that level. State transitions correspond to operations that access or modify the

observable behavior. For each operation, its observable effect on the observable state

entities may be specified. Further the observable behavior should include any change in

state that is observable at that abstract level e.g. changes to state variables, signaled

exceptions, errors, etc.

The fundamental techniques regarding ‘how’ to specify systems are known as ‘abstraction’

and ‘decomposition’. Certain methods e.g., Z, VDM facilitate a model based approach to

specification [Spivey 1988, Jones 1986]. Models give good intuition about the system but

needs to be related with necessary algebraic or axiomatic assertions about the system. The

system may be specified following incremental abstraction techniques:

i) finding necessary pre-conditions (i.e. assumptions about the environment)

ii) first handling the normal case, then the failure case

iii) first assuming the operations are atomic, then introducing necessary interleaving

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

13

Further, it is important to specify erroneous or exceptional behaviors i.e. errors,

exceptions, or failures. For any system it is important to identify operations that are

‘atomic’ w.r.t the level of abstraction. For a concurrent system, it is critical to state

explicitly operations that are atomic. Specifying ‘non-determinism’ is another effective

technique of achieving abstraction.

Formal methods for specification of concurrent systems differ in terms of their semantic

domains i.e. states, or events or both. A system’s behavior can be modeled as sequence of

states and associated events or set of trees of states and associated events. When

specification of concurrent systems is interpreted as sets of sequences of states, the system

properties can be described in terms of ‘safety’ (e.g. functional correctness) and ‘liveness’

(e.g. termination) [Alpern 1985]. Temporal logic is a property oriented method for

specifying properties of concurrent systems [Pnueli 1986]. It uses specific operators to

refer to past, current, and future states (or events). CSP uses a model oriented method for

specifying concurrent processes and a property oriented method for stating and proving

properties about the model [Hoare 1985]. CSP is based on model of ‘traces’ or event

sequences, and assumes processes communicate by sending messages across channels.

Processes synchronize on events. Lamport’s transition axiom method combines an

axiomatic method for describing the behavior of individual operations with temporal logic

assertions for specifying safety and liveness properties [Lamport 1983].

Last but important aspect is about the assumptions (implicit or explicit) made on the

environment of a system or its components. Many formal methods do not make these

explicit. Environment represents a set of assumptions for the correct behavior of the system

or its components. Whereas a specifier places constraints on the system’s behavior, the

specifier can not place constraints on the environment but can only make assumptions

about its behavior. As no one method is suitable for specifying all aspects or all kinds of

systems, the only practical strategy is to mix the methods e.g. Z to specify static aspects

(i.e. state space), and CSP to specify dynamic behavior (sequences of state transitions).

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

14

However mixing methods is dangerous as they are based on different semantics and could

lead to inconsistencies of the model. This is still the subject of research efforts.

2.1.3 TRANSITION AXIOM METHOD

Proposed by Lamport, the transition axiom method provides a conceptual and logical

foundation for writing formal specifications of concurrent systems. The transition axiom

method specifies the behavior of a system i.e., the sequence of observable actions it

performs when interacting with the environment. More precisely, it specifies two classes of

behavioral properties: safety and liveness properties. Safety properties assert what the

system is allowed to do, or equivalently, what it may not do. Liveness properties assert

what the system must do. The method emphasizes the precise and detailed specification of

interfaces, the mechanisms by which the system communicates with the environment, as

the influence of the interface on the rest of the specification is especially important in

concurrent systems. For example, it is shown that the specification of even so basic a

property as first-come-first-served priority cannot be independent of the interface’s

implementation details.

Transition axiom method can be used for specification of a module in a concurrent

program, where a module is a collection of related subroutines. A module must be

specified in terms of its behavior, rather than the values it returns. Though temporal logic

has proved to be a successful tool in reasoning about the behavior of concurrent programs,

it is not convenient for expressing many aspects of concurrent programs. New kinds of

constructs, with precise formal interpretations, make the specifications simpler and easier

to understand. The transition axiom method introduces new kinds of assertions. The

transition axiom method is formalized based on a generalization of temporal logic to

include predicates for describing the actions that are executed. However, the specifications

can be understood with no knowledge of the formal temporal logic upon which they are

based.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

15

Unlike many other protocol specification methods, the transition axiom method specifies

not an abstract protocol but an actual program module containing subroutine calls for

sending and receiving messages. In practice, one is concerned not with abstract protocols

but with the program modules that implement them. An extra layer of formalism relating

programs and abstract protocols is needed to verify that a program module correctly

implements such an abstract protocol specification. In transition axiom method, this extra

layer is avoided by specifying the program module itself.

The execution of a concurrent program can be represented as a sequence of state transitions

of the form (S → S’ after executing a single atomic statement ‘a’) which denotes that the

action ‘a’ takes the program from state s to state s'. Typically, this transition would

represent the execution of a single atomic statement in some process, in which case s is the

state before the execution, s' is the state immediately after the execution, and ‘a’ denotes

the program statement being executed. However, the exact nature of the states and actions

does not concern the method. Concurrency is represented by the interleaving of concurrent

atomic operations. A state represents a complete "snapshot" of the program at some instant

of time. At any point during the execution, the possible future behavior of the program

must depend only upon its current state, and not upon how it reached that state. Thus, the

state must include not only the value of program variables, but also the values of processes

‘program counters’, the values of parameter passing stacks, the contents of message

queues, the states of transmission lines, etc.

A state function is a mapping from the set S of states into some set of values. A predicate

is a boolean-valued state function. There are two kinds of primitive state functions that can

be used: program variables, control predicates. Complex state functions can be constructed

from these primitive ones. A program is specified by specifying all its possible execution

sequences. A specification consists of a collection of conditions on execution sequences. A

program satisfies the specification if all of its possible execution sequences satisfy each of

these conditions.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

16

2.2 UNIFIED MODELING LANGUAGE (UML)

The Unified Modeling Language (UML) is a general-purpose graphical language to

specify, visualize, construct, and document the artifacts of a software system [OMG 2001,

Selic 2004]. It captures decisions and understanding about systems that must be

constructed. It is intended for use with all development methods, lifecycle stages,

application domains, and media and is intended to unify past experience about modeling

techniques and to incorporate current software best practices into a standard approach.

UML includes semantic concepts, notation, and guidelines. It has static, dynamic,

environmental, and organizational parts. The UML specification does not define a standard

process but is intended to be useful with an iterative development process. The UML

captures information about the static structure and dynamic behavior of a system.

Modeling a system from several separate but related viewpoints permits it to be understood

for different purposes. UML is not primarily a programming language. Tools can provide

code generators from UML into a variety of programming languages.

2.2.1 OVERVIEW

After several years of experience with UML, the OMG has revised the language features,

semantics fixing problems uncovered by experience gained in using UML. Current version

UML2 has some new features [Selic 2004]:

• Sequence diagram constructs and notation based, largely on the ITU Message

Sequence Chart standard, adapted to make it more object-oriented

• Decoupling of UML ‘activities’ from state machines

• Unification of ‘activities’ with ‘actions’ to provide a complete procedural model.

• Contextual modeling constructs for the internal composition of classes and

collaborations.

• Repositioning of components as design constructs and artifacts as physical entities

that are deployed.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

17

2.2.2 SEMANTICS AND INCONSISTENCIES

An oft-repeated criticism of UML is that it has “no semantics”; that it is primarily a visual

notation whose graphical constructs can be interpreted differently. This is because UML is

intended to model systems across a broad spectrum of different application domains. An

additional consideration related to formal models, is that it is often the case that the same

entity may need to be modeled from different viewpoints. This suggests that basing UML

on any specific concrete formalism would likely severely hamper one of its primary

objectives: to unify a set of broadly applicable modeling mechanisms in a common

conceptual framework. This aspect of UML must not be underrated even while defining a

formal semantic for UML.

Figure 2.2. The Semantic Architecture of UML2.0 [Source: Selic 2004]

The semantic architecture of UML2, as given in figure 2.2, identifies the key semantics

areas covered. It also shows the dependencies that exist among them. At the highest level

of abstraction, it is possible to distinguish three distinct layers of semantics. The

foundational layer is structural. This reflects the premise that is no disembodied behavior

in UML – all of it emanates from the actions of structural entities. The next layer is

behavioral and provides the foundation for the semantic description of all higher-level

behavioral formalisms. This layer is called the Behavioral Base and consists of three

separate sub-areas arranged into two sub-layers. The bottom sub-layer consists of the inter-

object behavior base, which deals with how structural entities communicate with each

other, and the intra-object behavior base, which addresses the behavior occurring within

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

18

structural entities. ‘Action’ layer defines the semantics of individual actions. Actions are

the fundamental units of behavior in UML and are used to define fine-grained behaviors.

Their resolution and expressive power are comparable to the executable instructions in

traditional programming languages. Actions in this sub-layer are available to any of the

higher-level formalisms to be used for describing detailed behaviors. The topmost layer in

the semantics hierarchy defines the semantics of the higher-level behavioral formalisms of

UML: activities, state machines, and interactions, dependent on the semantics provided by

lower layers.

Though UML2 has prescribed precise semantic foundation at action level, its semantics at

higher levels are ambiguous, and inconsistent particularly for specification of concurrency

[Ober 2001]. The concurrency is an important issue to tackle when modeling real-time

applications which are intrinsically concurrent. For concurrency, UML offers the concept

of active object, which is an instance of an active class. According to the UML definition,

classes may be either ‘active’ or ‘passive’. The internal concurrency of active objects

outcomes from:

- state machine specification: concurrent states of the state machine can be perceived

as concurrent threads of control;

- operation executions: concurrent invocations of a same operation may be executed

at a same time, leading to concurrent executions of the operation specification;

- action specification: according to the new action semantics definition, the actions

contained in an action set may be executed concurrently, unless explicit or causal

dependencies constrain their sequencing.

At run-time, the above mechanisms should work together correctly in order to ensure the

correct behavior of the model. But, ambiguities, and inconsistencies in UML regarding

specification of concurrency are well documented [Ober 2001]. The following

inconsistencies are observed.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

19

- UML allows both passive and active objects to own state machines without any

constraint. But, a passive object, by not having its own thread of control, does not

have a scope for executing the state machine.

- In case of active objects associated with statemachine, it is not clear whether

operations and statemachine execute independently.

- The state machine processes events in a sequential way so that all events are

queued and processed following a given policy that the user has to define (FIFO,

priority based, earliest deadline based, …), even if they are method calls. The

semantics of classes and operations and that of state machines interfere

dramatically in UML, without any clarifications.

2.2.3 SEMANTICS DEFINITION APPROACHES

All attempts to define UML semantics can be classified into different orthogonal

dimensions described below. One dimension is the level of UML coverage. Many people

have been trying to build the semantics of individual diagrams of the UML e.g. on state-

machines [Kwon 2000], on collaboration diagrams [Engels 2000], on class diagrams

[Evans 1999], on use cases [Overgaard 1998], on activity diagrams [Borger 2000] or just to

give formal foundations for action language [Alvarez 2001]. Because all diagrams are only

views on one and the same model, the attempts to give semantics for separated UML

diagrams fail in producing the right semantics for the entire UML. The combination of

statics and dynamics is also given in [Reggio 2000] which considers the problem of

defining active classes with associated state-machines. It gives a very fine interleaving

semantics for state-machines in terms of transition systems, but the authors do not give

precise semantics for state-machines, for event queue handling, and they treat only at UML

state-machines without action semantics.

Another coverage level relates to the problems with possible concurrency as well as

aspects of objects communication, which have been uncovered in [Reggio 2000] and not

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

20

addressed in the original UML 1.x documents itself. Such open problems are typical for so

called loose semantics introduced in [Hubmann 2002], where the aspects of concurrency

and object communication are not fixed to some design decision, but cover different

implementations. Such loose semantics is not suitable for formal verification. There are a

number of UML modelling and/or verification tools implementing precise semantics by

translating UML models to programming language or model checker internal formats

([Lilius 1999, ILogix 2002]). These tools have different limitations on the supported UML

features and do not provide formal description of the implemented semantics or it is just

technical translations.

Translation approaches define translations from UML diagrams to traditional specification

languages (Z [Evans 1998], Object-Z [Kim 1999], CASL [30] etc.). For example, G.

Reggio et al. [Reggio 2000] proposed a general schema of the UML semantics by using an

extension of the algebraic language CASL for describing individual diagrams (class

diagrams and state-machines) and then their semantics are composed to get the semantics

of the overall model. Also other UML diagram types have been translated to formal

notations, e.g., using Abstract State Machines ([Borger 2000, Ober 2001]). E. Borger et al.

[Borger 2000] defined the dynamic semantics of UML in terms of ASM extended by new

construct to cover UML state-machine features. The model covers the event-handling and

the run-to-completion step, and formalises object interaction by combining control and

data flow features. However, the authors did not give a complete solution to solve

transition conflicts and it is not clear how firable transitions are selected. The semantics

implemented by UML-tool vendors via code generation or model simulation can be also

classified to this group of approaches.

2.3 RELATED WORKS IN UML

Several research efforts are made to develop precise approaches, both formal and informal,

in UML for modeling concurrent, reactive systems. These approaches aimed at resolving

inconsistencies in UML semantics as well as defining formal approaches in UML based

specification processes.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

21

2.3.1 A PATTERN FOR CONCURRENCY IN UML

A formal approach for the description of systems, in which two or more operations may be

acting concurrently upon the same object, was proposed [Crichton 2002]. The pattern

addresses two common problems – inadequate models, and complicated state diagrams.

Changes in attribute state and changes in operation state are described separately using two

different types of diagrams i.e. state and activity diagrams. The pattern attempts to present

models that characterize every possible sequence of interaction (in terms of the set of

actions and events defined in the model). The essence of the pattern can be represented as a

fragment of the UML metamodel: a class diagram linking the diagrams and the entities that

they represent [figure 2.3].

Figure 2.3. A meta-Model for a Concurrency Pattern in UML [Source: Chricton 2002]

In the application of the pattern, (attribute) state diagrams do not make use of call or call*

(i.e. asynchronous) actions, due to complication with run-to-completion semantics of

UML statemachines, except when the operation is considered atomic i.e. nothing else can

happen to the sate of the current object while it is executing. Each operation (non-atomic)

is described using UML activity diagram (where the emphasis is upon activity, or flow of

control, rather than state). In application of the pattern, the activity diagrams may perform

any of the actions send, call, and call* (in addition to other local actions).

The definition and use of the pattern, in figure 2.3, raised several issues regarding the

syntax and meta-model of UML (some of which were addressed in later revision of UML

[Selic 2004]). 1) local actions of activity diagrams are considered ‘atomic’. There effects

can be implicitly, rather than explicit action-event pairs, regarded as communication with

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

22

the underlying object state, and include their effect as ‘change’ events in the attribute state

diagram. 2) it may be required to refer to a particular invocation of an operation: to make

explicit the target of a return action, or to describe the effect of an exception. 3) the

separation of state, and activity diagrams makes it difficult to represent the effect of

exceptions upon operations. Ideally there should be a mechanism to achieve the effect of a

try-catch block in Java.

Models with single state diagram impose a sequential execution model due to associated

run-to-completion semantics. Using the patter, with the separation of activity diagrams

(operations) from state diagram, the effect of interleaving of multiple invocations of

operations on the state diagram can be easily represented. Concurrent invocations of

operations are best seen as peers, alongside the attribute state of the object. Any attempt to

represent them using concurrent substates, within the object state diagram, is likely to

produce a confusing inadequate model. Further the pattern identified that behavioral

features such as operations do not have classifiers making it impossible to construct an

explicit representation of concurrent invocation (rectified in UML2 [Selic 2004]). The

pattern points out the complexity associated with the event deferral mechanism in UML

statecharts semantics. Although multiple events may be deferred, only one of these will

ever be processed; the others will be lost; clearly, in a description of concurrent behavior,

this may not be appropriate. The pattern proposes a simple solution; to avoid the use of

deferred events, and to include a component within the model whose role is the

management and delivery of signal events. Another possible solution would be a persistent

version of event queue associated with state diagram that retains the events until they are

used to trigger transitions, or are explicitly discarded by the state machine.

The proposed cmUML framework adopts the similar notion of separation of operations

from statecharts and separately modeling them using activity diagrams. Further cmUML

makes benefit of new behavioral elements in the revised meta-model of UML for e.g.

classifier form of behaviors. This helps explicit specification of multiple invocations of

operations. cmUML adopts the architectural framework thus providing the ‘port’

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

23

components to handle explicit event management as suggested by the pattern. cmUML

further defines an exception handling mechanism in the fashion of try-catch semantics of

Java. Compared to the above proposed pattern, cmUML is a comprehensive approach to

model complex systems.

2.3.2 ATOM-S: A CONCURRENT MODEL IN UML

ATOM-S, a design model based on active/ passive object paradigm, for specifying

concurrency in UML was proposed [Ober 1999]. The approach systematically tackles the

issues of concurrency in UML object model by integrating ATOM, a well-designed

concurrent object model, into UML [Papathomas 1996]. UML object model is compared

against the well known classification of concurrent object models given by Papathomas

[Papathomas 1992]. The classification uses three dimensions. On the first dimension,

object models are divided with respect to what combination of objects they support, into

three categories: orthogonal (objects are independent of threads), homogenous (all objects

are active), heterogeneous (objects may be active or passive). The second dimension

captures the internal concurrency of objects: internally sequential, quasi-concurrent or

concurrent. Finally, the third dimension captures the available inter-object communication

and synchronization mechanisms: synchronous/asynchronous feature calls,

conditional/unconditional acceptance of incoming calls, etc. The position of UML in the

design space of concurrent object models, as per the above comparison framework, is

described in the table 2.1.

The main drawbacks in the approach taken by UML towards concurrency are identified:

active objects are ‘sequential’, UML semantics says nothing about the situation when

multiple concurrent calls are made to the same active object (except when the object has a

statemachine), no constraints specified regarding asynchronous calls which could be

problematic when the target is a ‘passive’ object, inconsistency and ambiguity in case of

passive objects if associated with a state machine, semantics of method invocation is

ambiguous in the case of active objects associated with statemachine for e.g. it is not clear

whether the methods of an object are executed by its state machine or the statemachine is

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

24

manipulated by the methods. It is observed that a cleaner semantics and more powerful

primitives are desirable in UML object model towards concurrency.

Classification
Criterion

UML Position Remarks

Object Model Heterogeneous The definition of active and passive in UML
are not same as those used in the
classification e.g., passive objects are
protected against concurrent calls.

Internal
Concurrency

Active objects – sequential
Passive objects – internally
concurrent

The methods of passive objects are split in
three classes: sequential, guarded, and
concurrent

Client/ Server
Interaction

One way message passing
through signals and
asynchronous calls.
And RPC

No support for reply scheduling

Constructs for
accepting
requests

Activation conditions
supported through state
machines

States/ transitions/ guards provide a powerful
mechanism for expressing activation
conditions, but no semantics for the
inheritance of a state machine

Table 2.1. UML Position in the Design Space of Concurrent Object Models

[Source: Ober 1999]

ATOM-S is the result of the drawbacks of UML object model towards better combination

of a concurrent object model (ATOM) and UML statemachine (S). ATOM, with quasi-

concurrent active objects and no passive objects, has proven to solve many of the classical

problems of object oriented concurrency, and inheritance [Papathomas 1996]. It is a good

compromise between expressive power and protection of the integrity against concurrent

calls. Special events are designed to indicate when a method call is received, when the

execution begins or when it ends. ATOM-S integrates statemachines into ATOM and

retains passive objects of UML without statemachines to resolve associated ambiguities

w.r.t asynchronous calls. Besides attributes and methods, an active object may have a

statemachine that specified ‘reactive’ part of its behavior and responds to asynchronous

one-way simuli i.e. signals that may carry parameters. Further, as in UML, a statemachine

may specify the complete behavior of an object or only its protocol, case in which its states

are used as ‘activation conditions’ for the object methods. To solve the ambiguity that

exists in UML about the way CallEvents are processed, method invocations sent towards

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

25

an object do not pass through its state machine and only signals are queued and processed

one-by-one by the machine. Thus, a method invocation will always result in the execution

of the method.

 Class ThreadScheduler (ActiveObjectSupport):

 methods = [‘InsertThread’, ‘Schedule’, ‘EndThread’, ‘AlertAdmin’,
 ‘RecoveryProc’]
 events =[‘Recover’]
 conditions = {
 ‘InsertThread’ : ‘not self.inState (‘Overloaded’)’
 ‘Schedule’:’not self.inState (‘Overloaded’)’ }
 def InsertThread (self, thread, priority): …. method bodies omitted
 statechart = { --- given below graphically }

Figure 2.4. A Simple Thread Scheduler in ATOM-S in Extended Python

[Source: Ober 1999]

The operational semantics of state machines in ATOM-S is based on the fact that the state

machine of an active object runs quasi-concurrently with its methods. The state machine

of an object is notified when a message call is received, when a method starts executing or

finishes. Note that, like in ATOM, the moment when the method is received may not

coincide with the moment when it starts executing. The introduction of these implicit

messages augments the expressive power. The features of ATOM-S can be exemplified

using a thread scheduler class (given in figure 2.4).

Recv_InsertThread/ [self.Load()
≥3] /self.receiveEvent(‘Recover’)

Recover/
self.AlertAdmin(1),
self.RecoveryProc()

End_InsertThread [self.Laod() <1]

End_InsertThread [self.Laod() ≥1]
Normal Alerted

Overloaded

Recv_InsertThread/
[self.Load() <3]
/self.AlertAdmin(0)

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

26

The cmUML framework of the thesis shares certain operational semantics of ATOM-S:

separation of method calls from statechart of an object, special events to notify the

statechart regarding the execution status of the invoked methods, etc. But, being a

specification language cmUML does not use the notion of active/ passive design paradigm

i.e. both active or passive ‘kind’ of objects can specify internal concurrency as well as

reactive behavior (left to the specifier). Further cmUML is a comprehensive formal

approach using live sequence charts as part of component interface specifications.

2.3.3 SPECIFYING CONCURRENT SYSTEM BEHAVIOR IN UML/ OCL

Shane Sendall and Alfred Strohmeier proposed a UML based approach in specifying

concurrent, reactive behaviors and timing constraints using OCL [Sendall 2001, Kleppe

1999]. Recognizing the UML’s limited support for specification of timing constraints and

mechanisms for synchronization of concurrent activities, the approach extends the

operation schemas in OCL i.e. pre, post assertions with constructs for specifying timing

constraints, and asserting synchronization on shared resources. The approach has three

principal views:

• a model composed of descriptions of the effects caused by operations, which uses

pre- and postcondition assertions written in OCL, called operation schemas;

• a model of the allowable temporal ordering of operations, called the system

interface protocol (SIP); and

• a model that describes the system state used in the operation schemas, called the

analysis class model (ACM).

The analysis class model (ACM) represents all the domain concepts and relationships

between them, the combination of which provides an abstract model of the state space of

the system and defines the system boundary. This model is used as the basis for writing

operation schemas, i.e., pre- and postcondition assertions for each system operation. The

System Interface Protocol (SIP) defines the temporal ordering of system operations, one

aspect of the behavior model of the system. SIP is described with a UML state diagram. A

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

27

transition in the SIP is triggered by an input event only if the SIP is in a state to receive it,

i.e., there exists an arc with the input event and the guard evaluates to true. If not, the input

event that would otherwise trigger an operation is ignored. The SIP for sequential and

trivial systems can normally be described with a single statemachine. We have made the

observation, however, that concurrent systems are better described with multiple views,

one view per perspective on the concurrency.

An operation schema declaratively describes the effect of the operation on a conceptual

state representation of the system and by events sent to the outside world. It describes the

assumed initial state by a precondition, and the required change in system state after the

execution of the operation by a postcondition, written in UML’s OCL formalism [Kleppe

1999]. The syntax of operation schemas consists of several clauses e.g. Description, Use

Cases, Scope, Declares, Sends, Pre, Post etc to convey the semantics of the operation

behavior. To highlight the constraint on shared resources in presence of concurrency, a

clause ‘Shared’ is added in operation schemas to imply that the resources listed in this

clause are constrained to be updated in mutual exclusion by the operation execution.

Further as pre, post conditions are not sufficient in presence of concurrency suffixes

@preAU, @postAU are added to shared variables to refer to the state of the resource

immediately before and after an ‘atomic update’ by the operation. Further the suffix @rd

indicates the consistent value of a shared resource without parallel updates within a

specific period e.g. operation execution. Semantics of branch condition if-then-else

assumes atomicity to avoid race conditions. The ‘rely’ block states a condition that must be

true immediately before, immediately after, and during the execution of the body of the

block for the body to take effect. If the rely condition does not stay true throughout

execution, then the effect of the fail part of the rely block is observed to execute instead.

The ‘rely’ block imposes neither immediate nor wait semantics on the condition. All it

requires is that if the condition remains true, then the effect described by the body of the

block will hold.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

28

Though the approach described above provides a precise specification of concurrency and

timing aspects, it is not well integrated with development process of systems. Tts heavy

dependence on OCL may not appeal to ordinary developers and non-OCL specifiers. It

also requires a complete class model to precisely define operation schemats. Further, the

focus of the concurrency is at higher conceptual level, more suitable to describing

distributed application behavior, and does not handle issues of concurrent operations and

behavioral statemachines which are central to reactive systems. Additionally a multi-view

SIP requires rules for composition, completeness, consistency, etc to form the ensemble

from the different SIP views, a complex process. However the operation schema approach

and semantics of related constructs in describing effects of concurrent operations is similar

to that of cmUML specification framework i.e. activity specification of component

services.

2.3.4 SDL/ UML AND UML-RT

ITU-T defines a one-to-one mapping between a subset of SDL and a specialized subset of

UML. With this mapping it is possible to use UML (for multiple views of the same system,

informal object models) and SDL (for detailed and formalised object models, with

execution semantics) [ITU 1994, ITU 2000, Glasser 1997]. The main differences between

UML and SDL are that

• UML is a collection of concepts and notations for several ‘views’ of the same

system: e.g. Object-, State Machine-, Use Case-, Collaboration and Interaction

• SDL is a language (with concepts, abstract grammar and graphical/textual

grammars) focusing on the Object- and State Machine views of a system. For these

views, SDL is however a complete language with static and dynamic semantics and

with concrete syntax (graphical/textual) for the specification of actions. Users of

SDL rely on other languages like MSC for specification of interactions between

instances.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

29

• UML has a weak semantics with many variation points, while SDL has a complete

semantics, including execution semantics for state machines.

An SDL System consists of Agents that are connected by means of Channels. Agents may

communicate by sending Signals or by requesting other Agents to perform Procedures. An

Agent may have both a StateMachine and an internal structure of Agents (a composite

Agent). The internal Agents and the StateMachine are connected by Channels. The

connection points for Channels are Gates. Agents come in different kinds with different

execution semantics: Block Agents are concurrent Agents with possibly interleaved

execution of the transitions of the state machines, while Process Agents are alternating

Agents with run-to-completion execution of transitions. The overall system is a special

System Block Agent.

Figure 2.5. UML Conceptual Model of basic SDL Concepts and Relationships

[Source: Glasser 1997]

In SDL, internal structure of agents takes explicit form in terms of interfaces and gates. An

Interface defines Signals, Variables, RemoteProcedures and Exceptions. Interfaces are

associated with Gates. Gates are connection points for Channels connecting Agents.

Communication between Agents takes place via Channels. Gates are mapped to UML by

means of a combination of interfaces and associations to other classes. Statemachines of

‘block’ agents execute concurrently (i.e. interleaving semantics) where as ‘process’ agent

statemachines (with in a ‘block’ agent) executes in run-to-completion steps. SDL

statemachine transitions are triggered by events like input of a Signal or a remote

Procedure call.

0..1
StateMachine

0..*

0..*
Channel

0..*
Agent

Gate

0..*

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

30

UML-RT is similar to SDL/UML except it defines only one type of ‘active’ system entity

called ‘capsule’ and also defines ‘ports’ and ‘interfaces’ [Selic 1998]. In terms of

composition, system entities, and system architecture the proposed cmUML framework is

similar to SDL/UML (or UML-RT). But being behavioral specification language, there is

no emphasis on static aspects of associations, classes etc in cmUML. Further external and

internal associations are similar (take implicit form i.e. no notion of channels and gates).

Further the focus of ‘interface specification’ in UML is different as it is an abstract form of

more detailed ‘internal specification’ and meant for certain kinds of verification purposes.

SDL/UML and UML-RT are heavily dependent on statemachine formalism (where

transitions are triggered by both signals and procedure calls) where as cmUML leaves the

choice of combinations of both statemachine and flow diagrams to the specifier giving

more expressive power and flexibility (in cmUML operations are delinked from

statemachine by default). cmUML integrates sequence diagrams into specifications with

liveness constraints on the execution behaviors of system entities. SDL/UML and UML-

RT target designs with precise operational semantics.

2.3.4 KRTUML

krtUML, a subset of UML, is rich enough to express all behavioural modelling entities of

UML used for real-time applications, covering such aspects as concurrency and

communication [Damm 2002]. A formal interleaving semantics for this kernel language is

defined by associating with each model M of krtUML a symbolic transition system

STS(M) [Manna 1991]. This provides the semantical foundation for formal verification of

real-time UML models [Damm 2003]. In this semantic framework, the state-space of the

transition system is given by valuations of a set of typed system variables, and initial states

and the transition relation are defined using first-order predicate logic. A complete

snapshot of the dynamic execution state of a UML model is captured using unbounded

arrays of object configurations to maintain the current status of all objects, and a pending

request table modeling the status of all submitted, but not yet served operation calls. Object

configurations include information on the valuation of the object's attributes, the state

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

31

configuration of its state-machine, as well as the pending events collected in an event-

queue. Central to a krtUML specification are ‘krtUML omponents’ where a component is a

collection of an active object and a set of passive objects. With in a component all passive

objects delegate their event handling to corresponding active object. An active object is

like an event-driven task which processes its incoming requests in a first-in-first-out

fashion. It comes equipped with a dispatcher, which picks the top-level event for the event-

queue, and dispatches it for processing to either its own state-machine, or to one of the

passive reactive objects associated with this active object, inducing a so-called run-to-

completion step. ‘Triggered operations’ i.e. operation calls, whose return value depends on

the current state of the system, are distinguished from ‘primitive operations’. For triggered

operations the willingness of the object to accept a particular operation call in a given state

is expressed within the corresponding statemachine.

krtUML semantics is defined using symbolic transition systems. A symbolic transition

system (STS) S = (V;θ; ρ) consists of V, a finite set of typed system variables, θ, a first-

order predicate over variables in V characterizing the initial states, and ρ, a transition

predicate, that is a _rst-order predicate over V; V 0, referring to both primed and unprimed

versions of the system variables (their current and next states)

krtUML is targeted for hard real-time systems as the corresponding semantics enforces that

at most a single thread of control is active within one component. cmUML adopts the

semantical definition framework of krtUML but its components possess heterogeneous

semantics as they correspond to different kinds of behaviors e.g. finite statemachine, flow

diagram, or different combination of both. Further as cmUML is not tied to a specific

application domain the semantic foundation is more generic and flexible. cmUML adopts

more structured ADL approach towards composition of systems in terms of cmUML

components. Both the frameworks aim towards LSC based formal verification [Damm

2003].

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

32

2.4 RESEARCH GAPS AND PROBLEM DEFINITION

A formal specification framework in UML towards specification phase in the development

of systems with concurrent and reactive behaviors is required. The principles and

semantics of formal specification approaches for concurrent and reactive systems as

described in [Wing 1990, Lamport 2000] can be adopted. It is required to clarify

inconsistencies and ambiguities in the usage and semantics of UML diagrams through an

integrating framework based on higher level conceptual semantics. The standard UML/

SPT Profile [OMG 2002] can be used as the foundation for the proposed frameworks as

the profile defines the concepts of events, causality, concurrency, and resource without

formal semantics. The framework should form a basis for explicit introduction of

concurrency in UML. Further it should be independent of implementation level primitives

and associated semantics.

A unifying framework for UML diagrams e.g. activity, state, and sequence with precise

conceptual semantics and well defined context is required. The formal semantics should be

defined in an intuitive way without extensive use of OCL [Kleppe 1999], the standard

constraint language of UML. Further the proposed framework of the thesis should also

integrate principles and techniques of formal methods and those of ADL community

towards compositional specifications in terms of components, interfaces, ports etc. As

UML does not define a development process and leave it to the profile developers as

required for the domain under consideration, a suitable specification process for use of the

framework can be defined. Further the framework can be validated against the current

approaches [e.g. Goni 2004] in UML using classical problems of concurrency patterns, or

example, or case studies or all of them.

The specification framework should adopt the separation-of-concerns approach in

specification of system components through separation of interface and internal

specifications where the latter is more detailed version of previous. Further suitable

semantic foundation for the proposed framework should be investigated. The semantics

should handle the liveness issues of executions of the system. For this, the formalism of

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

33

LSCs i.e. live sequence charts [Damm 1999] can be integrated in to the proposed

framework. The research work can further explore the suitable formal verification

techniques e.g. model checking, industry tools, ADL tools with formal basis for integration

with the proposed framework.

Thus the framework should provide explicit, precise, yet intuitive means for specification

of concurrency, reactivity, exception handling, synchronization features which are

externally visible, and hence verifiable, of the system components.

CHAPTER 1: BACKGROUND & LITERATURE SURVEY

34

2.5 SUMMARY

This chapter provided the background and literature survey which forms the foundation of

the thesis work carried out. Formal specification approaches, overview of UML and related

issues are presented. Further related works in UML are described. The chapter concludes

with the research gaps identified through literature survey and the formulated research

problem for the thesis work.

CHAPTER 4: SPECIFICATION METHODOLOGY

35

CHAPTER 3

FRAMEWORK DEFINITION

ML has defined an important profile, known as Profile for Schedulability,

Performance, and Time (UML/SPT), for modeling Real-Time systems. In an

attempt to provide a flexible open framework towards the exchange of models, the SPT

profile has not defined a formal semantics. This limits the understanding of semantics of

the specifications. A better approach to providing a open framework together with

semantically rich specifications is by describing the relevant semantic information at a

higher level of abstraction. The thesis defines such a framework over concepts of SPT

profile. This is achieved by adding an abstract specification layer with precise conceptual

semantics, on top of the UML/SPT profile, towards explicit specification of concurrency,

reactivity, exception handling, and synchronization.

This chapter presents the first part of the thesis contribution i.e., the definition of a UML

based specification framework, namely cmUML, and associated specification language,

namely cmUML Profile. The profile is based on the standard light weight extension

mechanisms of UML. The framework defines higher level abstractions with associated

conceptual semantics as necessary building blocks for specification of system components.

In this chapter, the relevant features of the SPT profile are described. Then, a conceptual

model of the framework is presented. A mapping strategy between the elements of the

conceptual model and those of SPT profile and UML meta model is defined. The chapter

concludes with an informal description of behavior and semantics of the proposed

specification constructs of the proposed cmUML framework.

3.1 UML SPT PROFILE

UML SPT profile offers a common framework for real-time modeling that unifies the

diversity of techniques, terminologies and notations existing in the real-time software

U

CHAPTER 4: SPECIFICATION METHODOLOGY

36

community, while still leaving space for different kinds of specifications [OMG 2002]. In

its current form, the main focus of the SPT profile is on time and time-related concepts. It

offers a terminology for modeling real-time systems: defines a set of concepts and some

relationships between these concepts, as allowed by the meta-modeling technique used for

the definition of the profile. Clearly, the meta-modeling techniques can carry only

superficial semantic information. At a first sight this may be argued by its aim to address

the needs of various real-time modeling techniques. However, a closer look to the SPT

definition itself shows that such a definition is insufficient, in particular for promoting

common understanding of specification and exchange of specifications between tools

[Ober 2004].

The approach used in SPT to deal with the variability of concepts is to add attributes in the

form of keywords and to abandon the idea of fixing a semantics (left to the tools). Indeed,

fixing semantics has the inconvenience that there will always be some domains in which

slightly different concepts are needed. The approach of the SPT was to provide an answer

to the main question: how to provide a flexible and relatively open framework and still be

able to exchange models with their semantics? But, the better alternative approach in

providing open framework with semantics is to provide a standard way to describe

semantic information at a higher level of abstraction [Ober 2004]. For the general dynamic

semantics, the main issues are the choice of the granularity and communication and

execution mechanisms i.e., the possible choices between several concurrently enabled

steps and the granularity of the observed steps. The number of reasonable communication

modes is relatively small, and in particular in the context of SPT, an effort can be made to

provide attributes with widely accepted interpretation.

3.1.1 GENERAL RESOURCE MODELING FRAMEWORK

The SPT Profile is partitioned into a number of packages dedicated to specific aspects of

real-time system modeling and analysis techniques. At the core of the profile is a set of

sub-profiles that represent the general resource modeling framework. This provides a

CHAPTER 4: SPECIFICATION METHODOLOGY

37

common base for all the sub-profiles. However, it is anticipated that future profiles may

need to reuse only a portion of this core. Hence, the general resource model is itself

partitioned into three separate parts (figure 3.1).

Figure 3.1 General Resource Modeling Framework Packages of SPT Profile

 [Source: OMG 2002]

The core resource modeling framework is further divided into sub packages (figure 3.2).

Of these packages CoreResourceModel package forms the core part and defines the

abstract concept of a Resource, ResourceService and Instances. Because concurrent,

reactive systems are best specified in terms of instances of their behavior parts, the rest of

this description will focus on the behavioral entities corresponding to proposed cmUML

constructs.

Figure 3.2. Sub packages of Resource Modeling Package of SPT Profile

[Source: OMG 2002]

RealizationModel

ResourceUsageModel

CausalityModel CoreResourceModel

ResourceManagement

ResourceTypes

«import»
«import»

«Profile»
RTresourceModeling

«Profile»
RTtimeModeling

«Profile»
RTconcurrencyModeling

CHAPTER 4: SPECIFICATION METHODOLOGY

38

Of all the sub packages of SPT profile the packages CoreResourceModel,

CausalityModel, and RTconcurrencyModelling form necessary elements for defining

the proposed cmUML specification framework.

3.1.2 CAUSALITY SUB-PACKAGE

This is an important model that is used as a basis for any dynamic modeling associated

with the SPT profile. It captures the essentials of the cause-effect chains in the behavior of

run-time instances of the model. The model is based on the dynamic semantics of UML but

is more detailed and precise.

Figure 3.3. The basic Causal Loop Model in UML [Source: OMG 2002]

A fundamental concept in the causality model is the notion of an EventOccurrence. This

corresponds to an instance of the UML event notion. There are many different kinds of

event occurrences, but the most interesting ones are the StimulusGgeneration and

StimulusReception events. A stimulus is an instance of a communication in transit between

a calling object and a called object. A stimulus generation event occurs when an object

executes an action that invokes an operation on another object (the receiver) or sends a

signal to it. The effect of the stimulus generation event is the creation and dispatching of a

stimulus that identifies the parameters of the communication (the operation invoked, the

values of the parameters, etc.). The stimulus will eventually result in a stimulus reception

CHAPTER 4: SPECIFICATION METHODOLOGY

39

event. This event occurs when an object executes some kind of reception operation. The

occurrence of this event will either trigger a transition in the receiver or result in the

execution of a method (details of how the event is received, scheduled, and dispatched

can be defined as part of the formal semantics of the sublanguage, here it is cmUML).

This, in turn, leads to a scenario execution (or simply, scenario). A scenario execution may

result in the execution of an ordered set of actions, some of which may generate further

stimuli, and so on.

Figure 3.4. Scenario Event Occurrences [Source: OMG 2002]

3.1.3 CONCURRENCY SUB-PACKAGE

The general concurrency model in SPT profile is based on its causality model (as described

in previous section). As ‘actions’ (which are parts of scenarios) execute, they generate

‘stimuli’. In the concurrency model we specifically identify so-called message actions.

These are action executions that generate one or more stimuli. Following the standard

causal loop, a stimulus targets a particular service instance of a specific object instance.

This causes the execution of the scenario corresponding to the method associated with the

resource service instance. This leads to further action executions, and so on. For the

concurrency model, of particular interest is the notion of a ConcurrentUnit, an ‘active’

resource instance that executes concurrently with other concurrent units.

Ultimately, all behavior in the system is a consequence of actions executed by concurrent

units. Following creation, each concurrent unit commences to execute one main scenario.

This scenario executes until the concurrent unit is terminated. During its execution, the

scenario may perform explicit receive actions in order to accept any stimuli sent to it. A

CHAPTER 4: SPECIFICATION METHODOLOGY

40

receive action by a concurrent unit leads directly to the activation of the appropriate service

instance and its service method. During the execution of the service method the main

method may either be blocked, the so-called run-to-completion step, or it may proceed

executing concurrently. Of course, a stimulus may arrive before the targeted concurrent

object is ready to receive it. In such situations it may be necessary to defer the response to

the stimulus until the corresponding ‘receive’ action is executed. For this reason, a

concurrent unit needs one or more queues for holding deferred stimuli (multiple queues

may be used to differentiate between stimuli of different priorities or sources). There are

two choices at either end of the communication, which affect the detailed causality

between concurrent threads of control. At the server end, the service request may either be

handled immediately, or deferred. In the immediate case, a further property describes

whether the receiving instance creates its own concurrent execution thread to handle the

service request (the so-called local option), or assumes that there is an existing thread

available (the remote option). At the receiver end, the message action may either represent

an asynchronous or synchronous invocation of the service. If the request is asynchronous,

then execution proceeds immediately; if the request is synchronous, then the client is

blocked until a response is received from the receiver. Instances that are not concurrent do

not have a main method and, hence, have no direct choice in controlling how a service

request is handled. The concurrency model of SPT profile is described in figure 3.5.

3.2 EXTENSION MECHANISMS IN UML

The UML profile mechanism provides a way of specialization of the concepts defined in

the UML standard. A stereotype can be viewed as a subclass of an existing UML concept.

Most domain concepts (e.g. cmUML concepts, which in turn are based on UML SPT and

UML metamodel) map directly into a stereotype with additional attributes of such

concepts, specified using appropriately typed tags for each attribute. However, the domain

model often shows associations between domain concepts, and, since the UML extension

mechanisms do not provide a convenient facility for specifying new associations in its

metamodel, such domain associations have to be represented in a variety of different ways,

CHAPTER 4: SPECIFICATION METHODOLOGY

41

depending on the case at hand. The following three general techniques are used to capture

associations between domain elements:

Figure 3.5. General Concurrency Modeling Concepts in SPT Profile

[Source: OMG 2002]

• Some domain associations map directly to existing associations in the metamodel.

• Some domain composition associations map to tags associated with the stereotype.

• In few cases, a domain association is represented by using the <<taggedValue>>

relationship provided by the UML profile mechanisms.

The concept of an action execution figures prominently in the SPT profile. This represents

the run-time execution of some action (the UML metamodel does not provide such a

concept). The UML notation definition document finesses over this by mapping activation

to the action whose execution is represented. Unfortunately, this is not adequate for

specification of instance behaviors. Sometimes it is necessary to differentiate between an

action, from an instance of the execution of that action. What is crucial is that different

executions of the same action specification are different. Therefore, what is required is an

CHAPTER 4: SPECIFICATION METHODOLOGY

42

extension to the UML metamodel Common Behavior package. The new concept, called

ActionExecution, is integrated into the current metamodel as indicated in figure 3.5.

Figure 3.6. Proposed UML metamodel Extension in SPT Profile (ActionExecution)

[Source: OMG 2002]

3.3 CONCEPTUAL MODEL OF cmUML

SPT profile approach is followed in defining the conceptual framework and the

corresponding UML mapping: first conceptual elements of the framework are introduced

in a class diagram notation (not related to UML metamodel) and then mapped onto UML

metamodel using standard extension mechanisms stereotypes, tags, and constraints. In

cmUML, a ‘component’ (different from UML components) is a generic entity representing

the type or ‘descriptor’ of corresponding runtime behavior instances. The specialized

components are defined with specific functionality and behavior specified in terms of

actions or activities combined in reactive or flow semantics. Further these components may

be ‘concurrent’ or ‘sequential’. The internal concurrency is specified in two ways as

interleaved executions or alternating executions in run-to-completion semantics.

The conceptual model of proposed cmUML specification framework is presented in figure

3.7. The core abstractions are represented in the conceptual model. Based on the

functionality and related conceptual semantics (as explained in detail later in this chapter),

the components are further classified as system, state, port, service, and resource.

CHAPTER 4: SPECIFICATION METHODOLOGY

43

Figure 3.7. Conceptual Model of cmUML Framework

A system component contains other components and responsible for their initialization.

Intuitively a system defines the scope of containing behaviors and represents a single

cohesive behavioral unit suitable for compositional specification, verification, analysis as

CHAPTER 4: SPECIFICATION METHODOLOGY

44

well as synthesis (not all of them are within the scope of this thesis). It may further contain

other system components hierarchically.

Resource components with abstract operations acquire(), release(), read() and write()

represent passive, protected data or hardware resources. Resource components with

complex concurrent behaviors may be specified as system components. State represents

reactive, synchronization, and exception handling semantics of internal executions. Port

represents interface specification with concurrency aspects, service access order, and inter-

component communication. State component can be considered as an extended form of

Port behavior with sub states and sub transitions corresponding to an abstract

implementation behavior (this may be comparable to so-called stuttered transitions in

Lamport’s transition axiom method approach [Lamport 1989]).

 Service components represent dynamically created ‘sequential’ executions in interleaved

or run-to-completion steps in response to external events (in contrast to asynchronously

executing State and Port behaviors). An instance of a Service may execute concurrently

with itself and other compatible services as specified in corresponding Port specification.

Action and activities are simple or guarded (with precise semantics regarding atomicity,

synchronization, and exception handling). The guard conditions are local assertions or

global invariants representing synchronizations. Failure of guards associated with a

guarded action or activity may result in either wait semantics or a raised exception causing

the termination of the corresponding activity (similar to the java’s try-catch block []).

cmUML framework defines ‘conditions’ as first-class entities facilitating precise

specification behaviors at interface level (comparable to conditions in LSC semantic

framework [Damm 1999]). Further the interface ‘conditions’ and related semantics

correspond to those of internal behaviors e.g. guarded actions. Thus cmUML provides

consistent specifications both at interface and internal specification level. A

ScenarioContext represents interactions of component executions with liveness semantics,

in response to external events. These contexts correspond to component use-cases and are

triggered by specific events or sequence of events.

CHAPTER 4: SPECIFICATION METHODOLOGY

45

3.4 DEFINITION OF cmUML PROFILE

The goal of the proposed stereotypes is to provide specification constructs with conceptual

semantics towards precise behavioral specification of concurrent, reactive systems

hierarchically. Further the proposed language integrates various modeling formalisms of

UML (i.e., statechart, activity, sequence diagrams) with concurrency semantics of

underlying object model and the action semantics of UML. The UML profile,

corresponding to the conceptual model of cmUML, is defined using UML standard

extension mechanisms stereotypes, tags and constraints.

The cmUML profile uses flat structures of behavioral specifications i.e., activities,

statecharts, and sequence diagrams without hierarchy as the latter can be easily translated

into equivalent flat versions. Also a few meta-level abstract methods are defined for some

abstractions (e.g., state, resource etc) to simplify the semantics description and make the

specifications intuitive to system or tool developers. The design rationale behind the

proposed stereotypes of cmUML is described below by related mapping on to elements of

UML metamodel and the UML/SPT profile. This also explains the related tag-value pairs

and cosntraints of the corresponding stereotypes (table 3.1-3.3).

Component: a generic behavioral specification unit in cmUML. Associated with

ConcurrentUnit in UML/SPT profile, it represents a concurrent activity. As behaviors in

UML can take classifier form [Selic 2004], it is also associated with UML metamodel

element Class (with isActive=true). This mapping is further consistent with general notion

of ‘threads’ associated with an active object in design paralance (but cmUML is

independent of design notion of ‘threads’). Thus behavors specified as cmUML

abstractions may be regarded as ‘Active’ in generic specification interpretation.

CHAPTER 4: SPECIFICATION METHODOLOGY

46

cmUML Stereotype UML/ SPT Concepts UML Metamodel

Element

Component Descriptor,

ConcurrentUnit

Class

[isActive = ‘true’]

System Specialization: Component

Port Specialization: Component

State Specialization: Component

Resource ProtectedResource Specialization: Component

Service Scenario Specialization: Component

ServiceType (ST) Operation

ServiceHandler (SH) Classifier

ActivityExecution (AE) ActionExecution

ScenarioExecution (SE) Specialization: ActionExecution

GuardedAction (GA) Action

MessageAction (MA) SendAction

Exception Stimulus

ScenarioEvent EventOccurence Event

Start Specialization: ScenarioEvent

End Specialization: ScenarioEvent

AccessOrder (AO) (Protocol)StateMachine

Reactive StateMachineDiagram

Flow ActivityDiagram

ScenarioContext (SC) SequenceDiagram

PrimaryContext (PC) Specialization: ScenarioContext

SecondaryContext (SC) Specialization: ScenarioContext

Condition Static Feature

Assertion Specialization: Condition

Invariant Specialization: Condition

Table 3.1. Stereotypes of cmUML and the mapping into UML and UML/SPT Profile

CHAPTER 4: SPECIFICATION METHODOLOGY

47

Specializations of Component: taking into consideration the specification needs, several

specializations of Component are proposed. State represents a behavior with reactive

semantics. Port represents an interface specification and its abstract behavior for e.g. the

interface concurrency control, global synchronization patterns. Resource represents a

‘passive’ entity with possible ‘internal’ concurrency. A resource entity may not be

specified further i.e., decomposed in terms of internal specification entities. Services

represent dynamically created behavior executions in response to external events (i.e.

service requests). Service components are associated with static descriptors defined as

ServiceTypes (specification of paramerters, reutrn values, pre-condition, post-condition

etc) and dynamic descriptors defined as ServiceHandlers (with incarnation counters

corresponding to each ServiceType). Thus service handlers represent the dynamic

information of service instances, corresponding to a specific ServiceType i.e., the

necessary information required of the executing status of intances of a service type. The

ServiceHandlers are analogous to implementation level system variables like call stack,

program counter etc which represent important information of executions that can be used

to specify execution behaviors at higher level without suffering from any implementation

bias [Lamport 2000].

Specializations of Action and ActionExecution: an ‘action’ in UML represents a

fundamental unit of execution without precise behavioral semantics. cmUML proposes

GuardedActions as an extension of basic actions with concurrency semantics of atomicity,

synchronziation, and exception handling. GaurdedAction precisely conveys the execution

semantics of corresponding actions as defined in UML (not compromising the general

action semantics defined in UML). SPT profile has proposed the concept of

ActionExecution towards the metamodel extension of UML. This helps distinguish

different executions of an action which is in perticular useful to specify concurrent

executions of same action, or service type. As ‘activity’ is basically defined as an ‘action’

or a sequence of actions at UML metamodel, cmUML extends the ActionExecution to

more specific concepts of behavior i.e., instances of executions e.g. ActivityExecution and

ServiceExecution corresponding to various instances of methods of ‘operations’

CHAPTER 4: SPECIFICATION METHODOLOGY

48

(ServiceTypes in cmUML). With this construct it is possible to refer, distinguish and

specify the different invocations of component services and their execution status either in

interface or internal specifications.

Specialization of EventOccurence: executions in concurrent, ractive systems are related to

causality of actions. UML has defined certain kinds of events e.g. callEvent, changeEvent,

etc. As these events are not sufficient to specify exact start, and termination of behavior

executions, cmUML identifies two special events Start, End corresponding to start, and

termination of every instance of an ‘ActivityExecution’ or ‘ServiceExecution’. These

events help specify the necessary synchronization behavior (e.g. in interface specification)

as well as flexibility in defining the semantics of the execution models (e.g. for internal

specifications).

Specialization of UML feature: As defined in UML metamodel, a classifier can be

associated with various kinds of features e.g., static and behavior. cmUML extends the

StaticFeature to define ‘conditions’ as first-class entities that can be associated with

behaviors. As identified in LSC semantic framework, conditions as first class entities are

useful for specification of externally observable behaviors. Further these ‘conditions’ can

be associated with specific semantics and interpretations having a bearing on the

acceptable ‘runs’ i.e., executions of the system components. cmUML further

distinguishes two kinds of conditions i.e., assertion and invariant. An assertion

corresponds to a condition based on local instance variables where an invariant may

contain other sytem level variables e.g. attributes of ServiceHandlers (this may be useful to

specify various kinds of synchronziation patterns [Mizuno 1999, Jagadish2006(a)]. Further

a condition is associated with the tag ‘isDelay’ which specifies the wait semantics in

addition to optional (cold), or mandatory (hot) semantics as defined in LSC semantic

framework [Damm 1999].

CHAPTER 4: SPECIFICATION METHODOLOGY

49

Table 3.1 lists the stereotypes defined in cmUML extension. UML name as tag type in the

table indicates reference to the corresponding instance. Also absence of multiplicity

indicates 0 or 1 where as * indicates 0 or more.

Stereotypes Associated Tags (if any):

Name [Type] {values} (multiplicity)

Component spec[Behavior](*); root[«system»];
concurrencyKind={concurrent, sequential};

evBuffer[«resource»]

System port[«port»]; state[«state»];
service[«service»](*);

Port interface[«serviceType»](*);
spec[«AcessOrder», «ScenarioContext»(*)];
handles[«serviceHandler»](*);
policy={FIFO, Priority}

State spec [«Reactive»];

Service spec [«Flow»];

ServiceType (ST) max[integer]; serviceKind={read, write};
parService[«serviceType»](*);

ServiceHandler (SH) execs[«service»](*);

 in(integer); out(integer);

GuardedAction (GA) guard[boolean]; isDelay[boolean];
isHot[boolean]; exception[«exception»];
isAtomic[boolean];

MessageAction (MA) synchKind={send, accept, return}

AccessOrder (AO) scope: {local, global}

Condition isDelay[boolean]

PrimaryContext secondary[«SecondaryContext»](*)

SecondaryContext primary[«PrimaryContext»](*)

Table 3.2. Tags for Proposed Stereotypes of cmUML

CHAPTER 4: SPECIFICATION METHODOLOGY

50

Stereotype Associated Constraint

Component Abstract

System port, state are not ‘null’

Port concurrencyKind = ‘sequential’;

port, and state are ‘null’

State concurrencyKind = ‘sequential’ ;

port and state are ‘null’

Service concurrencyKind = ‘sequential’

port and state refer to those of ‘root’

Resource To be atomically acquired and released

Table 3.3. Constraints Associated with the Stereotypes of cmUML

3.5 INFORMAL SEMANTICS OF cmUML PROFILE

This section describes the informal semantics of the cmUML constructs as defined in the

profile in previous section (formal semantics is described in the following chapter).

One of the important constructs defined in the profile is ActivityExecution, as a

generalization of SPT Profile’s ActionExecution, consistent with UML definition of

activity as action. Activities are at a higher granularity than actions and can represent an

instance of a Service corresponding to a ServiceType. A service instance is associated with

a run-time handler ServiceHandler (analogous to run-time system variables, call stack,

program counter etc) with dynamic information regarding service instances that (using

incarnation counters ‘in’ and ‘out’). This information can be used to specify complex

synchronization patterns in the form of global invariants representing safety conditions in a

simpler way [Jagadish 2007, Mizuno 1999]. A set of useful global invariants were

proposed by Mizuno which work as basic patterns to compose appropriate global

invariants for specifications. Translations exist from global invariant based coarse-grained

specifications to fine-grained synchronization code using semaphore, monitors etc.

CHAPTER 4: SPECIFICATION METHODOLOGY

51

Another important construct defined in the profile with respect to concurrent semantics is

GuardedAction. This allows specifying precise semantics corresponding to the execution

of the corresponding action or activity. The GuardedAction specifies synchronization and

exception handling aspects through specified tags ‘guard’, ‘isDelay’, ‘isHot’, ‘Exception’,

and ‘isAtomic’. Various combinations of these tag values specify the precise semantics of

the construct as described below (other combinations may be termed invalid).

Tag Value Combinations The Implied Semantics

isHot = true and
guard = false

termination of the service execution that raised
the specified exception

isHot = false and
guard = false

no effect on the corresponding service execution.
The action is only skipped

isHot = true and
guard = true

Desired effect of the action on the run

isDelay = true wait semantics until guard is true
isAtomic = true Atomicity of guard evaluation and action

execution, with no interleaving step in between,
in the corresponding execution of the service

Table 3.4. Summary of GuardedAction Semantics

Further the exceptions are handled by corresponding state component or thrown into

higher level containing system components (comparable to the semantics of Java’s try-

catch block [Gosling 1996]). Thus GuardedAction provides much needed specification

construct for synchronization, exception handling behavior of sequential executions in

concurrent environment [Lohr 1992]. Further these ‘visible’ effects of ‘guards’ may

correspond to the semantics of ‘conditions’ specified on LSCs of corresponding interface

specification. Thus cmUML relates constructs and semantics regarding synchronization,

exception handling in both interface and internal specifications.

The semantics of main abstractions of cmUML are described below:

CHAPTER 4: SPECIFICATION METHODOLOGY

52

• System: the main abstraction which contains other components compositionally

and associated with their initialization behavior of its Port and State (if exist).

Further it defines a ‘scope’ for containing components defining ‘runs’ of the

executions as a whole which can be verified against the specified LSCs as part of

its interface specification i.e., port. If not decomposed further, a system’s internal

behavior can be completely specified in terms of state and service components

based on required implementation semantics [Girault 1999]. Thus, this internal

specification corresponds to an abstract implementation and a higher design

specification of a component towards easier synthesis. The port and state are

asynchronously executing behaviors where as service instances are dynamic

components, initialized in response to external requests. A system component may

also contain resource type components to specify simple, protected, shared

resources with no reactive behaviors but may have internal concurrency. The static

composition aspect of system components can be specified using structure

diagrams like UML component diagrams (i.e., no separate concrete syntax).

• Resource: represents a simple protected shared resource with methods acquire(),

release(), read(), and write(). A resource instance may be explicitly acquired and

released (atomically). Instances of these components do not possess reactive

behaviors but can have internal concurrency which is specified as part of its

ServiceTypes (using tags serviceKind and parService) of corresponding port

specification.

• Service: the behavior corresponding to an interface of a component i.e. a collection

of ServiceTypes is specified with data and control flow semantics (using UML

activity diagram with UML2.0 semantics).The concurrent nature of a ServiceType

with itself and other compatible ServiceTypes is specified by associated tags

‘parService’, ‘serviceKind’. The tag parService represents the collection of other

ServiceTypes whose instances can execute concurrently with this service instance.

serviceKind tag specifies whether instances of the same serviceType can execute

CHAPTER 4: SPECIFICATION METHODOLOGY

53

concurrently (read indicates multiple instances and write indicate single instance

only) [Lohr 1992]. Further, events start and end are generated corresponding to a

service execution (event end not generated if the service is terminated due to a

raised exception). These events are broadcasted to all state components with in the

scope of the containing system component.

• Port: represents the interface specification of component behavior as observable

externally. As recommended in Lamport’s transition axiom method approach, the

interface need to be specified with precise operational semantics, if required using

the necessary state variables corresponding to execution environment [Lamport

1983, 2000]. This principle is adopted in the specification of interface including

concurrency control using AccessOrder, a protocol statemachine (for temporal

ordering dependencies among the invoked services). AccessOrder may represent an

abstract version of the more detailed internal State component. ServiceHandlers

and associated execution information can be used for the detailed specification

(fine-grained) of the concurrency control at the interface. Further, a port

specification exports a collection of ServiceTypes with concurrency annotations

through associated tag values for specifying concurrent semantics of their

invocations (while this may specify the same information as that of AccessOrder

specification, the latter may additionally specify fine-grained concurrency control).

The AccessOrder is an important abstraction addressing many issues of concurrent

systems [Jagadish 2007(a)]. For a concurrent component, this also aids in

identifying concurrent sub components [Jagadish 2007(b)], as described in next

chapter.

• State: specifies the reactive, coordination, exception handling aspects of internal

behaviors of system components. The associated Reactive behavior (specified using

behavior statemachines) executes asynchronously with respect to instances of

services of a component (this behavior can be restricted for an implementation

environment). To understand the concurrency semantics intuitively, a system

CHAPTER 4: SPECIFICATION METHODOLOGY

54

component associated with a state behavior is analogous to an operating system

monitor with concurrent threads of control which synchronize on need (classical

monitors cause unnecessary mutual exclusion [Jagadish 2007a]). Thus UML

approaches that use low level constructs like semaphore, monitor to specify

concurrency behavior suffer from implementation bias and prohibit legal

implementations that ‘could’ satisfy the specification. Though a state behavior

corresponds to corresponding AccessOrder behavior of the interface specification

the corresponding internal specification may contain additional states, transitions,

and activities (comparable to Lamport’s notion of stuttered transitions [Lamport

1983, Lamport 2000]). The meta-operations wait() and notify(), associated with a

state behavior facilitate ‘explicit’ form of service synchronization (comparable to

classical monitors). Further a state component receives events start, end indicating

the execution status of instances of ‘services’ of the corresponding system

component.

• ScenarioContext: corresponding to each use case, ScenarioContexts represent

interactions of internal behaviors, as observed externally, with precise notions of

compulsory, optional, and wait semantics. These contexts are specified using live

sequence charts (LSC) [Damm 1999]. cmUML extends the LSCs to specify ‘wait’

semantics of guarded actions, and other conditions. In concurrent environment,

certain executions may need to ‘wait’ for certain events, or conditions to happen.

Though LSCs are specified for externally observable behaviors in response to use

cases, certain synchronization aspects may be externally visible (even otherwise it

may be necessary to make them visible for the sake of verification of certain

aspects). Usually these contexts represent the principle behavior of the system

without considering error scenarios. But as cmUML provides explicit exception

handling mechanisms, certain important exceptions (which are visible externally)

and expected system response can be specified (and verified) using the secondary

scenario contexts i.e., SecondaryContexts triggered by corresponding exceptions

(raised by the PrimaryContexts).

CHAPTER 4: SPECIFICATION METHODOLOGY

55

3.6 SUMMARY

This chapter provided the overview, design rationale, and definition of cmUML, the

proposed specification framework and the associated specification language through

lightweight extensions in UML. Based on the conceptual framework of UML/SPT profile,

cmUML provides the constructs, and concurrency semantics towards precise behavioral

structuring and specification of system components. Thus cmUML complements the

existing UML framework with latter’s design rational in tact. cmUML framework further

integrates the higher level formalisms of UML with underlying object model and UML

action semantics. Further the framework provides constructs and mechanisms for explicit

specification of concurrency, reactivity, exception handling, and synchronization.

CHAPTER 4: SPECIFICATION METHODOLOGY

56

Chapter 4

SPECIFICATION METHODOLOGY

oftware development methodologies and processes play a major role in software

engineering. They specify a systematic procedure of applying principles, tools,

techniques, and heuristics in rapid development of software systems. Though UML has

become the de facto industry standard language, it does not prescribe any standard

development process and leaves the task to profile developers or domain experts or tool

developers. Hence the thesis proposes a specification methodology for application of the

proposed cmUML framework and its UML extensions. As the framework is defined using

light weight extension mechanisms of UML, it can be used along with other UML based

methods, and tools. The thesis proposes a specification refinement for application of the

proposed cmUML framework and proposed UML extensions.

This chapter presents the second part of the thesis contribution i.e., a step-wise

specification process that can be applied to develop hierarchical specification of

concurrent, reactive systems (or subsystem components) using proposed cmUML

framework and its profile. The process is demonstrated using the well known problem of a

Vending Machine specification. Further the advantage of the cmUML approach is

demonstrated by comparing and validating it with other approaches, formal as well as

semi-formal. For this, classical problems of concurrency i.e., readers-writers problem and

producer-consumer problem are specified and compared against their specifications in

UML and formal approaches.

4.1 SPECIFICATION PROCESS WITH cmUML

In this section, a step-wise specification methodology for the application of the cmUML

framework is proposed. The methodology assumes use case based requirement analysis.

Also a higher level decomposition strategy is assumed for arriving at the initial subsystems

S

CHAPTER 4: SPECIFICATION METHODOLOGY

57

i.e., the large-grained architectural components that may be deployed on a single physical

computing node [Gomma 1993, Gomma 2000]. For the simple case study of Vending

Machine specification below, there is only one subsystem that can be considered as the

initial System component. For a complex system there may exist many subsystems for

which the methodology can be applied independently. We describe the specification

approach in terms of the following tasks.

Interface Identification (Task1): Identify the offered ‘services’ of the system component

through its interface. The information can be obtained from requirement artifacts like

problem statement, use cases, and context diagrams for the subsystem under specification

process.

Interface Specification (Task2): The detailed Port specification of a system component.

This includes the specification of service types, and related tags as well as protocol

statemachine like behavior. Determine the concurrent execution behavior of offered

interface services (serviceKind and other tags). For interface ServiceTypes, the temporal

ordering dependencies, if any, as observable externally, can be specified as the

AccessOrder part of the Port specification. AccessOrder is a protocol statemachine, but its

transition guards may include expressions over incarnation counters of ServiceHandlers

corresponding to each ServiceType defined. This detailed AccessOrder specification is

also useful for a suitable decomposition of a system component i.e., identification of

concurrent subcomponents as described in next task.

System Decomposition (Task3): Considering the Port specification obtained in previous

task, i.e., the externally observable concurrent component services, a suitable component

(or subsystem) decomposition needs to be performed. This can be done by dividing the

interface services into a set of concurrent ‘groups’ of services. This decomposition can be

fine tuned by applying the general task cohesion principles from OOAD approaches (e.g.

functional cohesion) [Gomma 200]. Task cohesion principles, largely design heuristics,

help identify optimum number of concurrent tasks in a system. For example, sequential

CHAPTER 4: SPECIFICATION METHODOLOGY

58

cohesion and functional cohesion can be applied to group two services of different

concurrent components into a single component as sequential cohesion implies sequential

execution among the identified tasks and functional cohesion implies the tasks are related

into performing similar services. Each of these concurrent groups, identified by applying

simple design heuristics to the artifact of previous task, can be specified as a system

subcomponent. For simple components with no internal structure, this step may be

skipped.

Internal Specification (Task4): For each system sub-component, repeat the tasks 1, and 2.

Once the decomposition process is over, each sub-component specification (currently

consisting of interface part only) may be refined by providing the necessary internal

specifications i.e., State and Service. As explained in previous chapter, this depends on the

behavior semantics of the System (sub) component under consideration. For example, a

component with state-based internal concurrency represents a reactive behavior and hence

requires an internal State specification for necessary synchronization, exception handling

aspects. For a component with state-less internal concurrency, the internal specification

may not contain a State specification (even with this, a fine-grained concurrency, if

required, may be specified using Port specification alone, based on the attributes of

ServiceHandlers).

Interaction Specification (Task5): Corresponding to each use case of a System

component under consideration, specify one or more ScenarioContexts involving

interaction between its sub-components. These interactions may also involve the

corresponding Port and State components if required. ScenarioContext are UML sequence

diagrams with explicit liveness semantics and event orderings borrowed from Live

Sequence Charts [Damm 199, Damm 2003]. Further the notion of ‘pre-charts’ as defined

in LSCs are very useful to specify a generic pre-conditions, as a sequence of messages

exchanges, for triggering above ScenarioContext. Thus a ScenarioContext specifies

primary activities of System components in response to external requests and events. These

contexts can be further extended, as explained in Task6, with exception conditions

CHAPTER 4: SPECIFICATION METHODOLOGY

59

‘triggering’ SecondaryContexts, the latter thus specify much needed exception handling

features (important characterisitics of concurrent and reactive systems).

Service Specifications (Task6): UML2.0 has replaced the statemachine like semantics of

activity diagrams with control and data flow semantics [Selic 2004]. These diagrams are

very useful to specify sequential executions and local actions internal to concurrent

component executions. As explained in previous chapter, cmUML extends the UML

activities and actions to specify the semantics of synchronization, atomicity, and exception

handling. Thus internal specifications of services (i.e., ServiceType) in cmUML provide

unambiguous specification of sequential executions in concurrent and reactive

environments.

Synchronization, Exception Handling Features (Task7): Identify the different

synchronization, and exception handling situations. This may be done by identifying

GuardedActions in Service and ScenarioContexts specifications. Further refine the internal

specifications i.e., Service, State (if exist) and ScenarioContexts specifications by

identifying synchronization, exception handling aspects among the concurrently executing

behaviors of the component. This leads to identification and specification of

SecondaryContexts i.e., responses to the raised exceptions. The task also includes

identification of appropriate invariants in the Port specification (e.g., fine-grained

synchronization patterns using attributes of ServiceHandlers).

Task8: Repeat above Tasks1-7 for all System components and also System sub components

identified in Task3.

4.2 CASE STUDY: VENDING MACHINE SPECIFICATION

4.2.1 PROBLEM STATEMENT

The specification methodology as described in the previous section is further elaborated

through a case study, the well known problem of Vending Machine specification [Schinz

CHAPTER 4: SPECIFICATION METHODOLOGY

60

2004]. A vending machine (VM) accepts coins from users to dispense a drink of chosen

choice. The user gives coins, one at a time, and while the sum is sufficient enough the

corresponding choices of available drinks are updated. The user can select any of enabled

choices. The drink and the extra coins, if any, are dispensed (for simplicity, we assume that

the VM doesn’t remember the coins of previous transactions). Also the user’s request to

cancel the transaction may be considered for e.g. before the drink or coins are dispensed.

4.2.2 SPECIFICATION PROCESS

The specification process assumes a suitable subsystem identification strategy as discussed

in [Gomma 1993, Gomma 2000]. This allows identification of large grained architectural

components in the system usually corresponding to physical architecture of the systems,

which can be best specified using UML deployment diagram.

Figure 4.1. General Use Cases of a Vending Machine

cmUML specification process (Task1-8 as explained in the previous section) is based on

artifacts of requirements elicitation phase. In UML, this activity is commonly performed

using the informal design notation of Use Cases. A use case corresponds to a specific

DropCoins

MakeChoice

DispenseCoins

Cancel

DispenseDrink

CHAPTER 4: SPECIFICATION METHODOLOGY

61

system functionality involving actors of the subsystem i.e., external entities which include

both persons and other sub systems. In the current case study of the vending machine, there

is at most one actor interacting with the system. Further as the case study is a simple, we

assume there is only one subsystem comprising a vending machine system. The general

use cases of a vending machine are given in figure 4.1.

Identification of System Interface (Task1): Interactions of the system (vending machine)

with its environment (user), i.e., externally observable behaviors can be understood from

system requirements diagram (use cases in UML). In case of vending machine’s external

behavior, the user inserts sufficiently more coins and when prompted by the VM selects

his choice of the drink. The VM, after validating the choice and the received coins,

dispenses the ‘drink’ as well as the balance coins if any. From the initial analysis of these

interactions, we can observe four principle services of the VM, involving its environment

(user): ReceiveCoins, ReceiveChoice, DispenseDrink, and DispenseCoins (denoted as R-

Coins, R-Choice, D-Drink, D-Coins). During this task, the error or exception handling

situations are not considered.

Figure 4.2. AccessOrder Specification of «system» VM

Specification of System Interface (Task2): Now, we specify the interface specification

i.e., Port component of the VM system. This includes both static aspects (i.e., ServiceTypes

and attributes) and the dynamic aspects (e.g., temporal dependencies at run-time using

AccessOrder). As in figure 4.2, AccessOrder specifies concurrency and temporal

CHAPTER 4: SPECIFICATION METHODOLOGY

62

dependency between the interface services, as can be observed externally. The specified

tag value scope is redundant in this example as there exist at most one user at a given time

interacting with the VM (scope tag indicates whether the interface behavior is applicable

locally per a given actor or global invocation order among all actors [Jagadish 2006a]).

The complete interface specification («port») includes concurrency aspects of all

ServiceTypes of the component (again as observed externally). For VM, all service types

have same tag values {isAtomic=false; serviceKind=write; max=1} with additional

information that D-Drink, D-Coins may execute in parallel.

System Decomposition (Task3): From the AccessOrder specification of «system»

components it is possible to identify concurrency or sequential dependency among

interface services. For VM component, from figure 4.2, a concurrent region and a

sequential region in dashed border indicates that the services DispenseDrink and

DispenseCash may execute concurrently while ReceiveCoins and ReceiveChoice have

sequential dependency. Now following task cohesion principles of OOAD approaches

[Gomma 2000], we can identify two concurrent components with functionally related

services; a CashExchanger component (CE) (that handles interface services R-Coins, D-

Coins) and a DrinkDispenser component (DD) (that handles interface services R-Choice,

D-Drink). With the identification of internal components (concurrent, or sequential), the

internal structure of the VM system can be specified using UML structure diagram (figure

4.3). In cmUML a component represent a collection of behaviors at an abstract level (and

independent of class or object diagram approaches of usual UML approaches).

Internal Specifications (Task4): If a System component is decomposed its interface may

be completely delegated to its sub components (as in the current case of VM system). Even

so, the System component may contain the State specification for necessary coordination,

synchronization or exception handling aspects. For example, for VM system component,

the temporal dependencies specified as part of interface specification must be preserved in

the internal specification. The internal state specification VM system (figure 4.3) specifies

externally observable states (it may also contain other states) as well as the coordinating or

CHAPTER 4: SPECIFICATION METHODOLOGY

63

Data
«Resource»

CE
«System»

DD
«System»

VM «System»

«End» R-Coins

«End» D-Coins
&& «End» D-Drink

S2 Entry: init
S1

«Exception» noDrink/
trigger(noDrinkHandle) In S1or S2: Cancel / trigger(VM-Cancel)

synchronization of internal behaviors. The transitions are augmented with new kind of

events e.g. start, end, and exception towards specifying the necessary coordination and

exception handling mechanisms. There are no Service specifications at the top-level of the

VM system. The Cancel use-case i.e., the possible cancellation of the transaction is

specified as an Exception as it requires coordination of the sub-components rather than a

sequential Service execution.

Figure 4.3. Specification of internal structure and State of «system» VM

System Interactions (Task5): During this process of specification, primary interaction

scenarios i.e., ScenarioContexts are specified using sequence diagrams. The primary

ScenarioContexts, also PrimaryContexts, correspond to the main functionality or use cases

of the System component. As UML sequence diagrams are not associated with precise

semantics, cmUML adopts the LSC formalism towards specifying optional and

mandatory behaviors through interaction with external environment [Damm 1999]. LSCs

extend sequence diagrams by associating all the elements of sequence diagrams e.g.

lifelines, messages, conditions etc with two kinds of annotations i.e., hot and cold. The hot

annotations (graphically solid lines) indicate mandatory or compulsory behavior indicating

liveness where as cold annotations (graphically dotted elements) indicate optional

semantics. Further the cmUML profile extends the LSC framework to indicate wait

semantics for certain conditions specified on LSCs (this feature relates the interface and

CHAPTER 4: SPECIFICATION METHODOLOGY

64

internal specifications for consistency). This may be alternatively specified using explicit

synchronization messages with State component.

Figure 4.4. «ScenarioContext» Specifications of Vending Machine Use Cases

ScenarioContexts, as LSCs, can be associated with pre-charts indicating optional

precondition behavior expected of environment towards execution of a use case and are

comparable to specification of pre-conditions of procedures in sequential execution

environment. The environment including actors, and other hardware interfaces e.g.

choicePanel, display interfaces etc is denoted by Env in scenario context specifications.

Further these contexts are useful towards simulation or formal verification of correctness,

liveness, and property verification etc as described in later chapter. Only specified events

under given liveness constraints are of interest to the context/ use-case under consideration

with respect to overall system behaviors (which may include other ‘unspecified’ internal

events, actions etc comparable to the Lamport’s ‘stuttered’ transitions [Lamport 2000]).

Cancel

 write *

read

Data
«Resource»

 D_Coins

Env

Sd VM-DropCoins

CE
«System»

«PrimaryContext»

«End»
R-choice

VM-Cancel
«SecondaryC
ontext»

R-Coins

Cancel

 read

Data
«Resource» Env

Sd VM-MakeChoice

DD
«System»

«PrimaryContext»

«End» R-coins

VM-Cancel
«SecondaryC
ontext»

R-Choice

D Drink

CHAPTER 4: SPECIFICATION METHODOLOGY

65

Figure 4.4 specifies the ScenarioContext corresponding to DropCoins use case. Pre-chart,

an optional behavior, acts a ‘triggering’ mechanism for execution of corresponding

ScenarioContext (pre-charts with single message can also be specified within the scenario

context using the ‘trigger’ stereotype. For example, an important SecondaryContext VM-

Cancel is invoked if the user presses ‘Cancel’ at any point of time.

Service Specifications (Task6): The computational aspects of ServiceTypes of a

component are specified using activity diagram (with data and control flow semantics).

The component VM System has no service specifications as its ServiceTypes are all

delegated to its sub-components. For description purpose we chose a service of its

subcomponent. Figure 4.5 specifies the sequential execution behavior of the service R-

Coins. The specification contains GuardedActions. The associated tag values specify that

the service execution does not wait for guard value to become true and terminate by raising

an exception. GuardedActions are useful to specify atomic update of shared data values

(isAtomic=true) or synchronization semantics regarding guard evaluation. In this context

atomicity indicates that the guard value can not change during execution of the action(s)

(for example, in fig.5 the outer guard corresponding to drinks availability cannot change

during execution of R-Coins behavior). Also a guard expression may declaratively specify

a condition referring to old and new values w.r.t action under consideration, using notation

e.g. x@preAU and x@postAU enhancing expressiveness of specifications [Lam00].

Figure 4.5. Activity Specification of a Service with guarded Semantics

R-Coins
«Flow» {guarded}

{guard=drinks_available ≥1;
 isHot=true; isDelay=false,
 exception=noDrink; isAtomic=true}

Get
Coins

Write (CoinValues)
{guarded}

{guard=CoinValuesOK();
isHot=true; isDelay=false;
exception=invalidCoins

CHAPTER 4: SPECIFICATION METHODOLOGY

66

Synchronization and Exception handling (Task7): Both interface and internal

specifications can be examined for further synchronization and exception handling

involved. For example the interface specification can be augmented by global invariants

over incarnation counters in, out of ServiceHandlers of corresonding ServiceTypes

specifying global synchronizations if any (e.g. fine-grained concurrency control). A State

specification can be easily extended to specify new exceptions and corresponding

exception handling contexts or services (which executes synchronously with the State

behavior). New events, both external and internal, may be identified. In figure 4.3, the

State specification is extended with new exception noDrink, handled synchronously.

context Semaphore inv:

context Semaphore
 def: waiting : Sequence{ }

context Semaphore::P(ID:T) : void
 body :
 if self.s@pre > 0 then
 self.s = self.s@pre – 1
 else
 self.synchronizedProcess->select (p: Process |

p.ID =ID).semSynch.isActive = false
 self.synchronizedProcess -> select (p:Process |
 p.ID=ID). semSynch.isBlocked = true
 self.waiting = self.waiting@pre -> append (ID)
 endif

context Semaphore:: V() : void
 body: if self.s @pre = 0 then
 if self.waiting @pre -> isEmpty() = false then
 self.synchronizedProcess -> select (
 p: Process | p.ID = self.waiting @pre ->
 first()).semSynch.isBlocked = false
 self.synchonizedProcess -> select(
 p : Process | p.ID = self.waiting @pre ->
 first()).semSynch.isActive = true
 Self.waiting = self.waiting@pre ->
 Subsequence (2, self.waiting@pre -> size())
 endif
 endif
 else
 self.s = self.s @pre +1

Table 4.1. An OCL based Specification of Semaphore Semantics

CHAPTER 4: SPECIFICATION METHODOLOGY

67

In figure 4.4, the ScenarioContexts are extended with possible external event Cancel

corresponding to user cancellation of the transaction. This is handled as an exception even

though specified as a use-case of the system. The corresponding exemption handling is

specified as a SecondaryContext i.e., VM-Cancel as it requires specific interactions among

the sub-components.

Sub-Component Specifications (Task8): We can complete the specification of VM by

specifying each «system» sub component (CE, DD) following Tasks 1-7. We skip the

description of these steps here. The complete specification of VM system is presented in

the appendix.

4.3 COMPARISON AND VALIDATION

In this section we validate cmUML framework through specification of well known

classical concurrency problems i.e., readers-writers, and producer and consumer problems.

We compare and validate the specifications against current UML approaches for the same,

e.g. as given in [Goni 2004]. Generally these approaches use low-level primitives like

locks, semaphore, and monitors etc to describe concurrent behavior where the semantics of

these constructs are either not specified or specified in complex program-like OCL

statements.

A. Goni and Y. Eterovic, in [Goni 2004], provided precise OCL semantics to low level

concurrency mechanisms like semaphores, and monitors. Using these mechanisms they

have shown that certain concurrency problems e.g. Sleeping Barber problem can be

precisely specified. Their OCL based specifications for ‘Semaphore’ is reproduced in table

4.1. A similar OCL specification is defined for ‘monitor’ construct. The specifications are

restricted by the semantics of these low-level primitives [Jagadish 2007]. In these

approaches, though higher level diagrams are used, no precise semantics can be inferred

about behavior of the specification. In contrast, cmUML specifications convey precise

semantics without using low level primitives or complex OCL statements.

CHAPTER 4: SPECIFICATION METHODOLOGY

68

4.3.1 CLASSICAL PROBLEMS OF CONCURRENCY

Current UML approaches are not precise regarding semantics of concurrency in

specifications. Most approaches are based on low-level implementation constructs like

semaphore, and monitor to convey the semantics of concurrent behavior thus suffering

from implementation bias. Further there are certain inherent problems associated with

these low-level mechanisms for e.g., sometimes the unnecessary mutual exclusion imposed

by a ‘monitor’ is not suitable to specify the required fine-grained concurrency semantics

[Jagadish 2006(a)]. Below we specified two well known problems for concurrency;

readers-writers problem and producer–consumer problem. These problems are first

specified using existing UML approaches and then in the proposed cmUML specification

framework. It should be easy to see that the higher level semantics precisely specified by

the cmUML approach is superior to OCL and low-level primitive based approaches. To

compare the formality and specification power of cmUML, the specifications of these

problems in a formal language are presented and compared.

Figure 4.6. Specification of Readers-Writers Problem in UML

4.3.2 READERS-WRITERS PROBLEM

Readers-writers problem is a well known concurrency pattern and often used to

demonstrate the concurrency aspects of a language. It states situation where there is a

collection of ‘reader’ entities (processes, or actors), and a collection of ‘writer’ entities

which access a shared resource. Readers can access the resource in parallel while writers

access in mutual exclusion with other writers and readers. This problem is a very simple

CHAPTER 4: SPECIFICATION METHODOLOGY

69

«Port» {policy=FIFO}

«ServiceType» + read() : {serviceKind=read;}
«ServiceType» + write() :{serviceKind=write;}

Buffer

 «System»

read

«End» write/
«SH» write.out++

WriterIn

Entry: Start(write)
«SH» write.in ++;

«AcessOrder»
Scope={global}

read

Write

«SH» read.in = «SH» read.out
Idle

«End» read/
«SH» read.out++;

ReadersIn

Entry: Start(read)
«SH» read.in ++;

pattern and many solutions exist based on suitable read-write lock like ‘semaphore’. But

the specifications in UML also use these mechanisms to convey the required semantics of

the pattern i.e., readers could be accessing simultaneously and writers in mutual exclusion

with all other entities.

Figure 4.7. Specification of Readers-Writers Problem in cmUML

Figure 4.6 shows the specification of the problem using one of current UML practices

(semantics of ‘semaphore’ lock, as OCL statements, is presented in table 4.1) and in figure

4.7 using the proposed cmUML approach. The proposed approach retains the abstractness

of specifications yet provides the precise concurrency semantics. AccessOrder i.e., a UML

statemachine specifies the interface concurrency. The transitions are labeled with End

events of service executions as well as the ‘in’ and ‘out’ i.e., the incarnation counters of

service handlers corresponding to a given service type.

Read «Flow»

ReadData

Write «Flow»

WriteData

CHAPTER 4: SPECIFICATION METHODOLOGY

70

call resource.startread call resource.startwrite
read write
call resource.endread call

resource.endwrite

// A variable ‘s’ defines the current resource state as

s=0 : 1 writer uses the resource
s=1 : 0 processes use the resource
s=2 : 1 reader uses the resource
s=3 : 2 readers uses the resource
... ...

Process resource
s : int

Proc startread when s≥1 : s:=s+1 end
Proc endread if s>1 : s:=s-1 end
Proc startwrite when s=1 : s:=0 end
Proc endwrite if s=0 : s:=1 end

 s:=1

Table 4.2. Specification of Reader-Writer problem in Distributed Processes framework

The complete formal specification of the problem is given in table 4.2. It is based on

Distributed Processes framework due to Brinch Hansen [Hansen 1978]. The constructs

when and if represent a guarded region and a guarded statement respectively with

associated formal semantics w.r.t delay and exceptions. It can be seen that the specification

power of cmUML matches with that of formal approaches yet provides better intuitivity

and abstractness.

The cmUML specification of readers-writers problem does not use many features of

cmUML profile as it represents a simple system with no internal structure and has simple

behaviors i.e., the sequential executions of the ServiceTypes i.e., Read(), and Write(). For

example, the specification of the internal State component is not required as there is no

synchronization, exception handling aspects among internal executions. It may be noted,

that the ‘policy’ tag value ‘FIFO’ with «Port», guarantees that there is no starvation of

CHAPTER 4: SPECIFICATION METHODOLOGY

71

‘writers’ as request events are only handled in FIFO order and events stay until completely

processed (default behavior as per formal semantics of a ‘Port’ component).

4.3.3 PRODUCER-CONSUMER PROBLEM

The problem involves specification of a protected passive resource i.e., a bounded ‘Buffer’

accessed by operations put(), get(), in state-dependent synchronization fashion, and

possibly concurrently. For simplicity, we assume only single instance of these operations

execute at a moment. When the Buffer is ‘full’ an execution instance of ‘put’ can not

proceed and similarly when the Buffer is ‘empty’ an execution instance of ‘get’ waits until

the state of the buffer changes. Thus the concurrency and synchronization behavior of the

problem depends on the state of the Buffer.

Figure 4.8. Specification of Producer-Consumer Problem in UML approaches

Figure 4.8 specifies the problem (invocation behavior of get() skipped) in current UML

approaches (as in [Goni 2004]). This specification assumes monitor behavior as specified

in [Goni 2004] (similar to that of semaphore using OCL statements as in table 4.1). The

figure 4.9 presents the cmUML specification of the problem. The UML approach uses a

sequence diagram to model the necessary state condition and related wait semantics. But

the specified behavior is representative in nature and does not specify precise semantics.

CHAPTER 4: SPECIFICATION METHODOLOGY

72

Figure 4.9. cmUML Specification of Producer-Consumer Problem

The cmUML specification of the problem uses many abstractions of the proposed

framework (but not ScenarioContexts due to simplicity of the system). In figure 4.9, «Port»

specifies interface services ServiceTypes and their concurrency aspects through

AccessOrder (the associated invariant specifies the single instance of each ServiceType to

be executing at a given instant). Further the state-based synchronization behavior of

interface operations is specified using internal State specification (the reactive semantics).

Also the sequential behavior of interface ServiceTypes is specified using UML activity

diagrams. These sequential behaviors contain guarded actions i.e., ReadData and

WriteData which imply wait semantics until the corresponding guards are true. Further the

spcified atomicity indicates that the guard value can not change during execution of the

corresponding action.

Also, the complete formal specification of the problem is given in table 4.3. It is based on

‘Distributed Processes’ framework due to Brinch Hansen [Hansen 1978]. The constructs

when and if represent a guarded region and a guarded statement respectively with

associated formal semantics w.r.t delay and exceptions. It again validates that the

specification power of cmUML matches with that of formal approaches.

«Port» {policy=FIFO}

«ServiceType»
Put() {serviceKind=write; parService=(Get);
params(‘in:item(data)’; pre= ‘in!=null’}

Get() {serviceKind=write; parService=(Put);
params=‘out:item(data)’ }

«Reactive»

[notEmpty] [notFull]

[empty] [full]Full ok Empty

«State» {policy=FIFO}

«AccessOrder» Scope={global}

«End» Put /
 «SH» Put.out++

Put / start(Put);
«SH» Put.in++

«End» Get/
«SH» Get.out++;

Get /start(Get);
«SH» Get.in++

«invariant» («SH» Put.in -«SH» Put.out ≤1) &&
(«SH» Get.in - «SH» Get.out ≤1)

PortActive

Read «Flow» Write Flow»

ReadData
{guarded,atomic}

{guard=notFULL
: isHot=false;
Delay=true

WriteData
{guarded,atomic}

{guard=notFULL
: isHot=false;
Delay=true

CHAPTER 4: SPECIFICATION METHODOLOGY

73

call resource.startput call resource.startget
put write
call resource.endput call resource.endget

process resource
buff:[0..SIZE] of buffer;
head, tail: integer;

proc startput when tail ≤ head+SIZE end
proc endput tail:= tail+1 end
proc startget when head < tail end
proc endget head := head-1 end

 begin head:=0 ; tail :=0 end

call resource.put(x) call resource.get(x)

process resource
buff:[0..SIZE] of int;
head, tail: integer;

proc put(x :int)
 when tail ≤ head+SIZE : tail :=tail+1
 insert(buff,x)
 end
proc get (#x :int)
 when head < tail : head := head-1
 remove(buff,x)
 end

 begin head:=0 ; tail :=0 end

Table 4.3. Distributed Processes Specification of Producer-Consumer problem

4.4 SPECIFICATION OF LEADER-FOLLOWER CONCURRENCY PATTERN

There exist several design patterns for implementation of efficient concurrency models e.g.

Active object, HalfSynch-HalfAsynch, HalfSynch-HalfReactive etc [Schimidt 1997]. The

Leader/Followers design pattern provides a concurrency model where multiple threads can

efficiently demultiplex events and dispatch event handlers that process I/O handles shared

by the threads. The pattern is specified below using cmUML framework. Under the

pattern, multiple former leader threads can process events concurrently while the current

leader thread waits on the handle set. After its event processing completes, an idle follower

thread waits its turn to become the leader. If requests arrive faster than the available

threads can service them, it is assumed that the underlying I/O system can queue events

internally until a leader thread becomes available.

Figure 4.10 presents the cmUML Specification of Leader-Follower pattern. The interface

specification describes the concurrency aspect of lone ServiceType i.e., ‘HandleEvent'.

This ServiceType executes concurrently but limited by the maximum number of instances

that is specified (which specifies the number of threads that would be available in the

equivalent implementation). The internal specification ‘State’ executes internal operations

CHAPTER 4: SPECIFICATION METHODOLOGY

74

‘PromoteLeader()’ and ‘JoinQ()’ (invoked by concurrently executing instances of the

ServiceType HandleEvent). Also the sequential execution of the HandleEvent ServiceType

is specified using UML activity diagram. It can be noted that this example does not require

other features of the cmUML framework i.e., ScenarioContexts as the behavior is simple

and the specified system does not contain any internal components (at specification level).

Figure 4.10. cmUML Specification of Leader-Follower Concurrency Pattern

«Port» {policy=FIFO}

«ServiceType» HandleEvent() {serviceKind=read}

«AccessOrder» Scope={local}

«End» HandleEvent/
 «SH» HandleEvent.out++

HandleEvent/ Start(HandleEvent);
«SH» HandleEvent.in++

«invariant»
 «SH»HandleEvent.in -«SH»HandleEvent.out

ProcessEvents

JoinQ()

NOT FollowersQ.Empty()/
PromoteLeader()

New Leader
Leader

Assigned

«Start» HandleEvent ProcessEvent

JoinQ()

«State»

HandleEvent «Flow»

JoinQ
«SendAction»

{CallKind=retu
rn}

GetHandle

ProcessEvent

CHAPTER 4: SPECIFICATION METHODOLOGY

75

4.5 SUMMARY

This chapter presented the second part of the contribution of the thesis i.e., the

specification methodology along with a case study of ‘Vending Machine’ specification.

The chapter further discussed the comparison and validation of cmUML framework

approach with existing UML based approaches using two well known problems of

concurrency i.e., readers-writers problem and producer-consumer problem. Our

demonstration shows that the cmUML approach provides an abstract yet precise

specifications. Further the approach is very intuitive hiding the intricacies of formal

semantics behind simple specification constructs and specification methodology.

CHAPTER 6: VERIFICATION APPROACHES

76

CHAPTER 5

FORMAL SEMANTICS

hough UML has become the de-facto industry standard language for specification of

software systems, the UML models are not suitable for formal analysis. This is

mainly due to lack of formal semantics in UML. Several approaches were taken in

providing formal semantics to UML, or suitable subsets of it, as required for the domain

under consideration. This thesis has proposed a specification framework, namely cmUML,

for precise and explicit specification of concurrency, reactivity, exception handling, and

synchronization for system components. Further a specification language, namely cmUML

profile based on UML extension mechanisms, has been defined. Towards rigorous and

unambiguous specification framework, this thesis work further proposes an appropriate

semantic foundation as described in this chapter.

The formal semantics of cmUML framework is largely based on so called informal

semantics descriptions of UML and UML/SPT Profile. This does not cover all elements of

UML and SPT metamodels but only those providing foundations for cmUML constructs.

The formal semantics is described along two dimensions i.e., the interface, and internal

specifications of system. For this existing semantic descriptions and formalisms are

adopted with suitable extensions wherever necessary. The chapter also provides an

overview of existing approaches of semantics descriptions in UML.

5.1 INTRODUCTION

The cmUML specification framework defines a two level specification process (figure 5.1)

in terms of interface specification (based on LSCs and protocol state machines), and

internal specification (based on activities and statemachine i.e., data/control flow

semantics, reactive semantics respectively). Hence the formal semantics is described in

two separate but related dimensions. For interface specifications, the semantic framework

T

CHAPTER 6: VERIFICATION APPROACHES

77

of LSCs [Damm 1999] is extended as required. The LSC semantics provide the liveness

semantics of executions of the system as observable externally. The semantics of the

internal specifications is described using ‘Symbolic Transition Systems (STS)’. For this

purpose, the foundation part of krtUML approach has been adopted [Damm 2002]. STS

based formal semantics of cmUML internal specifications is general enough to provide a

flexible and heterogeneous implementations. This is particularly useful for internal

specifications of basic i.e., non-composite System components in cmUML, as these

specifications are close to implementations. For example, the internal concurrency and

non-determinism as provided by the semantics may be compiled away by specific

implementation semantics (e.g. sequential execution environment). Further formal

semantics preserves the semantics of multiple formalisms associated with cmUML i.e.,

sequence charts, activity diagrams and statemachines, providing much needed consistent

and unifying semantic foundation.

The separation of concern approach in formal semantics definition of cmUML framework

facilitates the integration of various formal verification approaches. For example, the LSC

based interface specifications can provide simulation or formal verifications of interface

correctness, deadlock etc. Formal verification of internal specifications is achieved by

translating the specifications to chosen semantic domain in consistent with adopted

semantics and execution models of implementations. For example, in next chapter, we

describe a CSP translation mechanism for formal verification of internal specifications of

basic non-composite system components.

5.2 SEMANTICS DESCRIPTION APPROACHES IN UML

There exist several approaches in defining formal semantics for UML models [described in

detail in section 2.2.3]. While a few of the approaches focused on some chosen subsets of

UML and only static aspects, other approaches provided formal semantics of behavioral

specification of UML with concurrency, and reactivity. Reggio et.al considered the

problem of defining active classes with associated statemachines [Reggio 2000]. They

gave a very fine interleaving semantics for state-machines in terms of labeled transition

CHAPTER 6: VERIFICATION APPROACHES

78

systems (used to model concurrent languages such as Ada, part of Java). The labeled

transition system associated with an active class is presented using the algebraic

specification language CASL [CoFI 1997]. This formalization of active classes and state

machines has led to perform a thorough analysis uncovering many problematic points in

the official informal semantics of UML. But, this work does not give precise semantics for

statemachines, event queue handling, and action semantics.

Hussmann introduced the so called ‘loose semantics’ approach where the aspects of

concurrency and object communication are not fixed to some design decision, but cover

different implementations. Such loose semantics is not suitable for formal verification

[Hussmann 2002]. The semantics of a UML class diagram is constituted by all object

algebras that are type conformant to the class diagram. The approach combines the existing

approaches of formal semantics e.g., set-theoretic, translation based, and meta-modeling, to

give more abstract semantics. Hussmann’s approach provides semantics in two versions:

first a direct semantics based on plain mathematical set theory, then a sketch of a meta-

modeling approach to the same concept.

krtUML provides the semantical foundations for formal verification of real-time UML

models [Damm 2003]. krtUML approach fixes one detailed formal semantics to support

verification purposes. The subset krtUML of UML is rich enough to express all behavioral

modeling entities of UML. A formal interleaving semantics of for this kernel language is

defined by associating with each model M in krtUML a symbolic transition systems

STS(M).

Thus many approaches try to formalize UML or a subset of it by using a particular

semantic language, or a collection of them, or by fixing a detailed semantics. Each of these

approaches has many limitations and represent heavy-weight extensions of UML not

supported by UML and related tools. But the formal semantics of cmUML is close to UML

core and so-called informal semantics.

CHAPTER 6: VERIFICATION APPROACHES

79

5.3 SEMANTIC FOUNDATIONS OF cmUML FRAMEWORK

A layered approach is defined for semantic descriptions of the cmUML specifications

(figure 5.1). The semantic approach separates externally visible interface behaviors from

internal implementation behaviors facilitating different verification approaches. The formal

semantics assume the consistency between the interface and internal specifications. As

shown in figure 5.1, the semantic foundation of cmUML specifications is based on the

precise action semantics of UML and related dynamic aspects e.g., events, causality,

concurrency, and abstract resources as defined in UML/SPT metamodel. Further the

classical semantics of the higher level formalisms e.g., Statecharts, Activities, and

Sequence diagrams are retained as defined in original UML framework.

Figure 5.1. The Layered Approach of cmUML Semantic Framework

Interface Specification Layer (Specification)

Internal Specification Layer (Abstract Implementation)

Features: ‘formal’ specification of requirements: functional, concurrency,
 reactivity, synchronization, and exception handling

cmUML Syntax: ServiceType, Port, AccessOrder, ScenarioContext

cmUML semantics: extensions of LSC semantics

Features: specific implementation aspects, execution models

cmUML syntax: Service, State, GuardedActions

cmUML semantics: symbolic transition system with interleaved semantics in
 run-to-completion steps

UML & UML/SPT Foundations

Meta model: Event, Class, Classifier, Action, Activity, Statemachine, Sequence

Semantics: Action and causality semantics

CHAPTER 6: VERIFICATION APPROACHES

80

5.3.1 INTERFACE SPECIFICATIONS

The top layer of the semantic framework (figure 5.1) represents the interface specifications

in cmUML. This layer is close to the requirements phase of software development

processes and hence represents the required interface behaviors associated with liveness

constraints as well as synchronization and exception handling as observable externally of a

System component. As the dynamic aspects of interface specifications are represented by

live sequence charts (LSCs) and protocol statemachines, the related formal semantics is

based on the semantic foundations of LSCs and its suitable extensions as required.

5.3.2 INTERNAL SPECIFICATIONS

The middle layer of the semantic framework (figure 5.1) represents the internal

specifications of cmUML components in general or basic, non-composite, ‘system’

components in specific. This layer is close to the design or (abstract) implementation phase

of software development processes and hence represents the implementation semantics,

execution models System components. As the internal specifications consist of UML

statemchines and Activities, the corresponding formal semantics is described as a

Symbolic Transition System (STS). A simple C-like programs using with non-

deterministic choice of actions, is defined for the formal semantics of main abstractions of

the cmUML framework.

5.4 SEMANTICS OF INTERFACE SPECIFICATIONS

An interface specification of a System component in cmUML mainly consists of a

collection of ServiceTypes (representing static aspects) and AccessOrder and

ScenarioContexts (representing dynamic aspects of execution instances of ServiceTypes).

The ScenarioContexts are further divided into PrimaryContexts and SecondaryContexts

which represent the system functionality and exception handling aspects as observable

exernally. These contexts are specified using an extension of LSC formalism as described

in previous chapters (chapters 3 and 4). The live sequence charts represent a collection of

CHAPTER 6: VERIFICATION APPROACHES

81

represent a collection of partially ordered sets of events with associated liveness

constraints. cmUML framework adopts the semantics foundations of LSCs as described in

[Damm 1999], Also described in Appendix B.

5.4.1 LIVE SEQUENCE CHARTS

While message sequence charts (MSCs), sequence diagrams in UML, are widely used in

industry to document the interworking of processes or objects, they are expressively weak,

being based on the modest semantic notion of a partial ordering of events as defined, e.g.,

in the ITU standard [ITU 1994]. A highly expressive and rigorously defined MSC

language is a must for serious, semantically meaningful tool support for use-cases and

scenarios (as documented during requirements phase).

LSCs (live sequence charts) are extensions of MSCs towards precise behavioral

specification of scenarios of the system. In fact, LSCs allow the distinction between

possible and necessary behavior both globally, on the level of an entire chart and locally,

when specifying events, conditions and progress over time. Thus, elements of MSCs e.g.

lifelines, messages, locations etc are annotated with live ness constraints ‘hot’ or ‘cold’

(i.e., the mandatory or optional behavior respectively). The semantical basis of LSCs

facilitates rigorous and complete consistency checks between the descriptive view of the

system and the constructive or implementation view (e.g. statemachines). Thus LSCs allow

integration of implementation models with the descriptive or requirements part of the

system specifications.

The formal semantics of an LSC is described by a symbolic transition system (or a

skeleton automaton as described in Appendix B). The transition system is described by its

abstract states (active, terminated, or aborted) and associated atomic transitions (Figure

5.2, Figure 5.3). The detailed description of the formal foundation is given in ([Damm

1999]), also presented in Appendix B.

CHAPTER 6: VERIFICATION APPROACHES

82

Figure 5.2. Transition System Corresponding to a LSC [Source: Damm 1999]

Figure 5.3. Transition System of LSC as a Pre-chart [Source: Damm 1999]

CHAPTER 6: VERIFICATION APPROACHES

83

5.4.2 CMUML EXTENSIONS OF LSC SEMANTICS

The cmUML framework of the thesis adopts LSCs and the associated liveness semantics.

In cmUML, the ‘formal’ part of interface specifications consist of a collection of

ScenarioContext i.e LSCs. These LSCs are divided as PrimaryContexts and

SecondaryContexts. The primary LSCs correspond to the principle behaviors of the System

components and represent the corresponding use cases of the requirements phase. The

secondary LSCs correspond to the necessary exception handling behavior expected of the

System components in response to exceptions raised during its executions (or ‘runs’ in LSC

parlance). In cmUML framework, the exceptions are first-class specification and

behavioral entities. Thus the expected system responses w.r.t to raised exceptions during

executions represent the part of system ‘requirements’. The explicit separation of primary

and secondary behaviors thus simplifies the specification, analysis, and development of

systems. Initially only primary behaviors can be specified ignoring the secondary

behaviors (or assuming no exceptions are raised). Though the thesis assumes the

consistency between various parts of specifications these can also be easily verified (as

described in next chapter).

The LSC semantics require extensions to incorporate the required semantics of the

cmUML framework e.g. semantics of the synchronization and exception handling

mechanisms as provided in cmUML. This can be done by adding necessary axioms in the

transition relation of symbolic transition system that describes the formal semantics a LSC

[Appendix B]. These extensions are described informally below:

• When a LSC is aborted due to violation of specified condition it may perform

actions which have no effect on the ‘runs’ of the system (stutter) as defined in LSC

framework or ‘trigger’ a ‘secondary’ LSC (specified in cmUML framework) using

the exception raised in violation of the condition. The ‘secondary’ LSC specifies

the expected exception handling behavior that should be observed in the ‘run’ of

the component.

CHAPTER 6: VERIFICATION APPROACHES

84

• When a condition ‘C’ is encountered along a single instance line, no instance

progress steps are performed until the condition is satisfied. But the local steps can

be performed which may actually effect the condition.

Figure 5.4. Partial Interface Specification in cmUML

• At a given instant, an execution of a cmUML component can be associated with a

collection of ‘active’ ScenarioContexts to be satisfied. When all specified events

i.e., both external and internal events of a partially ordered set satisfies the order,

and liveness constraints as specified on a LSC it is considered ‘complete’ and

«PrimaryContext»

R-Choice

 D_Drink

wait(«End» R-coin)

read

Data
«Resource»

Control
«State»

DD {seq}
«System»

Sd VM-main-2

Cancel

VM-Cancel
«PrimaryCon
text»

Env

CHAPTER 6: VERIFICATION APPROACHES

85

removed from the collection. Thus a component starts with empty collection of

LSC instances and said to have satisfied all specified behaviors when it becomes

empty eventually while AccessOrder i.e., the corresponding interface statemachine

reaches the final state or terminates.

5.5 SEMANTICS OF INTERNAL SPECIFICATIONS

The internal specification in cmUML is described by UML Activities and Statemachines.

UML Activities represent sequential executions with data/control flow semantics while a

statemachine possesses the reactive behavior. Thus the cmUML framework combines

these formalisms to define a semantically precise execution or implementation models.

Further the framework integrates an ‘internal’ exception handling mechanism in the

fashion of Java’s try-catch block [Gosling 1996] among the sequentially executing

concurrent activities and the synchronized reactive behaviors. Further the semantic

foundation of the internal specifications is extensible to customize for the adopted

execution models and implementation environments providing flexibility to system design

specifiers.

The cmUML framework adds precise semantics to UML Activities and Actions to specify

semantics of sequential executions in concurrent and reactive environment. cmUML

clarifies the semantics of executions of concurrent operations (Services in cmUML)

associated with a statemachine. As in [Ober 1999, Chrichton 2002] the execution of

operations is de-linked from statemachine towards expressiveness in concurrency

specification. Further the basic concepts of ‘Action’ and ‘Activity’ are extended as

GuardedAction. The GuardedAction consists of various ‘tags’. These tags and their values

describe the liveness, synchronization, and exception behavior of actions or activities

during execution [table 6.1, reproduced from chapter 3]. Further individual instances of

Service executions (activities) can be referred in the specifications thus increasing the

expressive power of the specification language. A ServiceHandler is associated with each

ServiceType which contains the information about the current instances in execution using

incarnation counters ‘in’ and ‘out’. These ServiceHandlers help specification of complex

CHAPTER 6: VERIFICATION APPROACHES

86

synchronization patters, as described in [Mizuno 1999] e.g. barrier synchronization pattern

etc.

Tag Value Combinations The Implied Semantics

isHot = true and
guard = false

termination of the run raising the specified
exception

isHot = false and
guard = false

no effect on the ‘run’ of the corresponding system
component

isHot = true and
guard = true

effect of action on the run

isDelay = true wait semantics till guard is true
isAtomic = true atomic effect of guard evaluation and action

execution with no interleaving step in between in
the corresponding run of the system component

Table 5.1. GuardedAction Semantics

An internal specification constitutes the implementation or detailed aspects of its interface

specification [Lamport 2000]. cmUML follows a generic approach in semantics definition

of its internal specification allowing different kinds of semantics specializations. For

example, various combination of Finite State Machines, represented by UML behavioral

statemachines and other kinds of concurrency models e.g. data/ control flow, synchronous

reactive etc are described in [Girault 1999]. These execution models and associated

semantics can be easily adopted in cmUML framework.

The formal semantics of the internal specifications is described using the formalism of

Symbolic Transition Systems (STS) [Damm 2002]. The formal foundations of UML as

defined in krtUML approach [Damm 2002] are adopted for the semantic description of

cmUML. While the krtUML adopts the sequential execution in components, cmUML

framework proposes a generic, extensible, multi-threaded semantics (though with reduced

verification capabilities).

CHAPTER 6: VERIFICATION APPROACHES

87

Further the semantic description is organized as semantic modules corresponding to the

major abstractions of the cmUML framework (instead of first order predicate logic, as in

krtUML approach, cmUML framework uses simple C-like programs for description of

these semantic modules). These abstractions are namely PORT, SERVICE (referred as OP

for brevity), STATE. The semantics of these abstractions are defined in terms of

executions of instances of corresponding semantic modules (configuration instances e.g.

PORTconf, OPconf, STATEconf with corresponding behavior types Tport-conf, Top-conf, Tstate-

conf.

The semantic is defined in terms of atomic actions combined in imperative style. The

instances of semantic modules execute in run-to-completion steps. The over all execution

model of a ‘system’ component in cmUML is represented by an interleaving of the run-to-

completion steps of corresponding semantic modules. Further two ‘system’ components

(or sub-components) may execute concurrently with arbitrary interleaving.

5.5.1 SYMBOLIC TRANSITION SYSTEMS

Symbolic transition systems (STS) allow for purely syntactical description of a transition

system over a set of typed system variables. A symbolic transition system (STS) S = (V, θ,

ρ) consists of a finite set of typed system variables (V), a first-order predicate (θ) over

variables in V characterizing the initial states, and ρ, a transition predicate. An STS

induces a transition system on the set of interpretations of its variables as follows.

5.5.2 FORMAL REPRESENTATION OF INTERNAL SPECIFICATIONS

In general, defining semantics of a language L (cmUML) involves defining a mapping M

between the syntactic structures of L and concepts of chosen semantic domain S (symbolic

transition system). For this, a formal notation for specifications in L i.e. cmUML, is

needed. An instance of a cmUML specification (internal) represents a collection of

dynamically created sequential executions (Services) and a reactive (State) behavior.

Services, corresponding to the triggered operations, represent independent threads-of-

CHAPTER 6: VERIFICATION APPROACHES

88

executions executing a sequence of actions (analogous to procedures in programming

language frameworks). The reactive behavior represents an event-driven task, processing

incoming messages/ events under a specified scheduling policy (default FIFO) by

dispatching them for execution as specified by the statemachine in run-to-completion (rtc)

steps.

Formally, an internal specification ‘M’ of cmUML framework is a 10-tuple:

M = (T, Act, Att, Expr, F, E, P, S, C) where

• T: A set of basic types and types for STATE, PORT, ENV and OP classes

• Act: The finite set of UML actions

• Att: A finite set of typed attributes of M

• Expr: A finite set of expressions expr over Att in first order logic defining the

expression language for the model. An expr is a term defined in the scope of an

object and used as transition guard, or invariant, or assertion

• F: Ft∪Fp contains the predefined types for triggered and primitive operations

(defined below)

• E: A class of the type TENV, E = (e.Attr, e.Seq)

o e.Seq is {<mesi, ti>} (i.e. a sequence of) represents messages mesi sent/

received at time ti

• P: A class of the type TPORT, P=(p.Attr, p.Seq, p.Acq)

o p.Seq is {f} over Ft defining the allowed temporal order of operation

invocation

o p.Attr includes the implicit attributes referring all OP objects and the

STATE object

o p.Acq is the set of acquaintances (i.e. references) representing external

associations

• S: A class of the type TSTATE, S= (s.Att, s.Expr, s.Act, s.Ops, Assign, Q, Tr)

o Q is the set of finite states of s with So, Sf as the initial, and final states

o Assign represents a valuation of s.Att in a state

CHAPTER 6: VERIFICATION APPROACHES

89

o s.Ops is the set of primitive operations

o Tr is the transition operation, ⊆ Q x S.Expr x S.Act x Q

o s.Act is the set of UML actions specified on transitions as well as in

primitive operations

• C: A finite, non-empty set of classes c, of the common super-type TOP

o c = (c.Att, c.Param, c.Ret, c.Tf, Pre, Post, L)

o For each c∈C,∃ corresponding type tc∈T

o c.Tf ∈Ft is the related triggered operation type

o c.Param⊆c.Att, and c.ret∈c.Att represent the parameters and return values

of c.Tf with corresponding types typepar(Tf) and typer(Tf)

o Pre, Post ∈Expr are pre, post conditions of c.Tf

o L is a finite {<actioni, asserti,>} representing a flattened sequential method

specification where asserti ∈Expr and actioni ∈Act. asserti, asserti+1

represent the local pre, post assertions of actioni

For each operation p∈F, typepar(p) = T1x … xTn denotes the parameter type where Ti

∈T(M) is the type of the i-th parameter and typer(p)∈T(M) is the type of the reply value.

The type of p, TP, is defined as TP = (typepar(p)→ typer(f), callKind) where CallKind, is an

enumerated value (of type TCK ∈T) defined by {read, write, readPar, writePar}

representing the concurrency nature of the operation w.r.t itself as well as other operations

(for e.g., read indicates multiple instantiations, write indicates single instantiation in

isolation, and the suffix par groups a set of operations that can execute in parallel).

UML Actions are a finite set of fundamental actions (e.g object creation/ destruction,

attribute assignment, operation calls etc). The definitions for expressions, guards and

Actions can be given inductively as in [Damm 2002]. But, there is no need for association

types in models of cmUML as all inter/ intra component associations are represented by

the implicit variables. We also assume the following additional requirements for the

models in cmUML.

CHAPTER 6: VERIFICATION APPROACHES

90

• For each object o of type TOP, o.Attr contains self, state, port referencing the

corresponding objects

• For the object o of type TPORT, o.Attr contains implicit attributes self, state, acqi opi

as well as references to objects of type TOP, corresponding to different invocations

of triggered operations

• For each f ∈FT , there exist a c ∈C (with c.Tf = f) containing local attributes to hold

the parameter and return values as well as the specification of corresponding

method in terms of c-expressions and actions

• For each operation f∈FP the STATE object o contains local attributes to hold the

parameter values, return value, and a transition (q, f, expr, q’) ∈o.Tr

• The STATE object does not make a call to its own triggered operation

5.5.3 DESCRIPTION OF FORMAL SEMANTICS

The behavioral semantics of an internal specification, say M, in cmUML is defined in

terms of transition axioms of corresponding symbolic transition system (STS) SM ≡ (VM,

θM, ρM , LM). The type systems of the symbolic transition system i.e. T(S) is completely

defined. The system variables V completely capture a dynamic execution of M. The

semantics is described in terms of intuitive semantic modules in an imperative style. These

modules define the execution semantics of configurations of semantic types TPORT, TSTATE,

TOP corresponding to the major abstractions of the cmUML framework. These semantic

modules define the final transition relation ρM. These modules include liveness axioms.

Thus the modules together fully define a transition system for corresponding concurrent

system. The sets of initialization predicates, transition predicates, liveness axioms across

all modules are collectively referred as θ, ρ L respectively. A snapshot s of the transition

system corresponding to the specified system is the evaluation of variables of V at a given

instant.

CHAPTER 6: VERIFICATION APPROACHES

91

All the system types, variables are informally defined and described below (the formal

definitions of these semantic types and their corresponding domains can be skipped as

these can be done on similar lines as in [Damm 2003]):

• Semantic configurations of types TOP-conf, TPORT-conf, TSTATE-conf (i.e OP-confi,

PORT-conf, STATE-conf,) respectively represent the semantic entities

corresponding to behavior types TENV, TPORT, TSTATE, TOP

• sconf, a variable of type Tsconf, contains all instances of the semantic configurations

A semantic configuration fully captures the execution behavior of the corresponding

semantic entity (subsuming the types of the corresponding entities). Necessary system

variables and types are defined in simple form: variable_name(domain type or values). For

simplicity, the null value of any type is represented by ε;

Msg-type =def (source(TPORT∪TENV), dest(TPORT), type{call,reply}, mode{synch, asynch},

 p(Ft), args(Typepar(p)), ret(Typeret(p)∪void))

Event_type =def (dest(TOP),p(Fp),args(Typepar(p)), ret(Typeret(p) ∪ void))

Sys-err(Boolean) = false; --variable initialization

Assuming the services are ordered 1,2,…..,n., we define the following types and variables

to capture the allowed execution scenarios corresponding to multiple invocations and

instantiations (depending on callKind of the invoked services).

PAR-type =def an integer vector of size n

Semantic Configurations of type Top-conf: captures the execution behavior of invoked

services. Prior to creation the corresponding execution instance is considered to be

dormant. Creation of a new service instance, corresponding to its invocation, will pick a

dormant index of sconf. During execution, these instances may become suspended when

CHAPTER 6: VERIFICATION APPROACHES

92

waiting for completion of invoked services, through corresponding PORT, on other

components

Semantic Module OPconf :

OP-status: dormant, executing, suspended;

OP-variables: status(OP-status),loc(integer), msg(Msg_type);

promises(Set of <Msg-type>);

OPinit: status:= dormant; loc := 0; msg:= ε; promises:= φ;

OPstart: status:= executing; Param := msg.args;

 if (!Pre) then sys-err= ‘true’ else OPexecute;

OPexecute: loc:= loc+1;

 if (loc<= |L|) then OPcall ∨ OPlocal; else OPreturn;

OPlocal; execute ‘actionloc’ (as per UML semantics)

 if (!assertloc) then sys-err=‘true’ ; OPexecute;

OPcall: status := suspended;

 state.eve-queue.enqueue(Event_type<self,actionloc.opname,

……… >);

 promises := promises ∪msg;

 while(status != executing) wait;

 promises := promises – msg; OPexecute;

OPreturn; if (msg.mode == asynch ∧ msg.ret != NULL)

 port.outqueue.enque(<port, msg.source, reply, asynch,

msg.p, -, ret>);

 else

 port.outqueue.enque(<port, msg.source, reply, synch, msg.p, -, ret>);

 status=dormant;

OPlive: OPreturn ∧ (OPreturn => promises = φ)

CHAPTER 6: VERIFICATION APPROACHES

93

Semantic Configurations of type Tport-conf: Captures the execution status of the PORT

instances. It contains two queues: in-queue for incoming messages and out-queue for

return messages. In addition the configuration keeps track of number of instantiations

executing in parallel using instantiation counters ink, outk per each specified service. An

eligible (w.r.t to the currently executing methods) service request is removed from in-

queue and corresponding method object is created for execution. Also corresponding ink is

incremented.

Semantic Module PORTconf :

PORT-status: idle, synch-wait, triggering;

PORT-variables: Status(PORT-status), in-queue(Queue), out-queue(Queue),

 ink(integer), outk(integer), synch-msg(Msg-type),

msg(Msg-type);

PARCO(PAR-type)∧ PARCO[i]=ini – outi

 -Dynamic vector reflecting current execution scenario

PARpar(PAR-type) ∧ PARpar[i]=1if the triggered operation is of type ‘writePar’, ≥1 if

‘readPar’, 0 for other. -- a static vector representing group of parallel operations

PARi(PAR-type) ∧ PARi[i]=1 if the callKind of i-th operation is write,≥ 1 if it is read else

PARi≡PARPAR[i]

PORT-definitions: Compatible(x(PAR-type), y(PAR-type)) = true if x, y are

compatible component wise else false.

PORTinit: status := idle; in-queue, out-queue := ε; synch-msg, msg := ε; ink, outk := 0 ∀k;

PORTtrigger: msg := choose(first(Msg-type ∈in-queue):

 msg.type=call ∧compatible(PARCO, PARindex(msg.p));.

 if(msg!= ε) then {status:= triggering; PORTinvoke;}

PORTinvoke: j:=choose(first(integer): sconf[j](TOP) ∧ sconf[j].status=dormant)

 k := index(msg.p); ink := ink+1; OPj.msg := msg;

fork(OPj.OPstart);

PORTsend: if(out-queue != ε) msg=first(out-queue);

CHAPTER 6: VERIFICATION APPROACHES

94

 if (msg.mode = synch) msg.dest.synch-msg := msg;

 else msg.dest.in-queue.enqueue(msg);

PORTprocess: while (true){ if(status=synch-wait)

 then PORTsend∨PORTsynch;

 else PORTtrigger∨PORTsend;}

PORTsynch: if(synch-msg != ε)

then { state.synch- msg := synch-msg; state.status:= rtc; status=idle; }

PORTlive: (∀msg ∈in-queue ∧ msg.type=call ∃ PORTtrigger)∧

(∀msg∈out-queue∃ PORTsend)

Semantic Configurations of type Tstate-conf: This represents the dynamic state-based

synchronized execution behavior of a STATE behavior representing the kernel of the

component. It contains an event queue. All the incoming messages i.e. from method

objects (or the PORT object in future extension for trigger handling) are kept in the queue.

The object continuously takes an eligible first event for processing in a run-to-completion

(rtc) step. After processing the event is removed from the queue and the status of the

corresponding service instance is changed to indicate the completion of its pending

request.

Semantic Module STATEconf :

STATE-status: idle, rtc, synch-wait;

STATE-variables: status(STATE-status), eve-queue(Queue of Event-type);

synch-msg(Msg-type); eve(Event-type); state(∈S.Q);

msg(Msg-type);

STATE-definitions: eligible(eve)= true if ∃ a firable (tr ∈Tr) and tr[2]=eve.p;

 firable(tr ∈Tr) = true if tr[1]=state and tr[3];

STATEinit: status:=idle; msg:= ε; eve-queue:= ε; synch-msg:= ε; eve:= ε; state:=So;

STATEtrigger: eve=choose(Event ∈eve-queue: eligible(eve))

CHAPTER 6: VERIFICATION APPROACHES

95

 if (eve != ε) then {status := rtc; tr= choose(tr ∈Tr: firable(tr) ∧ tr[2]=eve.p);

 STATEaction; (state= tr[4]); STATErtc; eve.dest.status := executing;}

STATErtc: STATEaction ∨ STATEprocess;

STATEaction: STATEsend ∨ STATEprimitive or STATElocal ∨ STATEnull;

STATEsend: STATEasynch-send ∨ STATEsynch-send;

STATEsynch-send: status=synch-wait;

 msg=create(Msg-type: msg.type=call ∧ msg.mode=synch)

 port.out-queue.enqueue(msg);

 port.status=synch-wait; STATEreceive;

STATEreceive : while (status = synch-wait) wait; -- Assign synch-msg to local variables

 STATErtc ∨ STATEnull;

STATEasynch-send: msg=create(Msg-type: msg.type=call ∨ msg.mode=asynch)

 port.out-queue.enqueue(msg);

STATElocal: tr= choose(tr ∈Tr: firable(tr) ∨ tr[2]= ε)

 if (tr != ε) {STATEaction; state= tr[4]; STATErtc;}

STATEprimitive: --do local actions/ primitive operations

STATEprocess: while(true){status=idle; wait; STATEtrigger; }

STATElive: (∀ eve ∈in-queue ∃ STATEtrigger)

Thus the semantics of M is the STS(M)≡ S (V, θ, ρ, L) where

System variables, V = {sconf, sys-err}

Initial condition, θ = ENVinit ∧ PORTinit ∧ STATEinit

Transition relation, ρ = ENVprocess ∧ PORTprocess ∧ STATEprocess

Liveness axioms, L=PORTlive ∧ STATElive ∧ OPlive

CHAPTER 6: VERIFICATION APPROACHES

96

5.6 SUMMARY

This chapter presented the semantic foundations for proposed cmUML framework. The

semantic foundation is defined over a subset of elements of UML meta model and UML/

SPT Profile. As the cmUML framework separates the specifications in terms of interface

and internal specifications, the semantic foundation is defined along two dimensions. The

semantic foundation of interface specifications adopts LSC formalism and its semantics

with necessary extensions to provide for exceptions and system responses as first class

entities. The formal semantics of the internal specifications is defined using the formalism

of Symbolic Transition Systems (STS). The formal semantics is close to the so called

informal semantics of UML and UML/SPT profile elements used in cmUML profile.

Further this includes the formal foundation of UML as defined in krtUML. While krtUML

defines sequential execution in a component, cmUML adopts multi-threaded concurrent

semantics in its ‘system’ components. Also formal semantics is defined in terms of

executions of semantic modules corresponding to the main abstractions of cmUML profile.

The executions of these modules are defined using a set of actions combined in imperative

style. Wherever applicable the atomic actions of the semantic modules are chosen non-

deterministically. Further each semantic module contains a basic liveness axiom.

CHAPTER 6: VERIFICATION APPROACHES

97

CHAPTER 6

VERIFICATION APPROACHES

esting has been the traditional approach of verification of implemented systems for

correctness. But, with complexity of system behaviors increasing, an early phase of

verification of system specifications saves cost and efforts towards system development.

The lack of preciseness in early phases of development processes has been the main source

of obstacle in integrating formal techniques towards early analysis of systems. With the

Unified Modeling Language becoming the de facto industry standard language, many

approaches and tools are proposed to integrate formal verification techniques in system

development phases. But, the lack of formal semantics in UML has been the main source

of obstacle in successful integration of formal techniques with UML towards analysis of

critical system with concurrent and reactive behaviors.

This chapter presents the existing verification approaches that can be integrated with the

proposed cmUML specification framework. The chapter presents an overview of two

verification approaches: verification of interface specification by integrating LSC based

verification techniques; verification by internal specification by translation into CSP

formalism and related tools. LSC based verification technique can be used to verify

consistency between various parts of the specification e.g. interface vs internal

specifications. CSP based verification can be used to verify interface correctness, deadlock

detection etc.

6.1 INTRODUCTION

One of the main purposes of software engineering is to enable developers to build systems

that operate reliably despite their complexity. The formal methods community has

developed many tools to help achieve this goal. With software rapidly growing in size and

complexity, graphical specifications in languages like UML need to be formally verified,

before the implementation phase in order to guarantee the development of more reliable

T

CHAPTER 6: VERIFICATION APPROACHES

98

systems. A few years ago the formal verification community began investigating

mechanisms to integrate such graphical specifications with verification tools. While this

approach achieved reasonable success on the translation of simple diagrams to model

checkers’ input notations, the results are not well integrated into general development

environments. Further interpreting the results of verification is still highly human

dependent particularly requiring developers to be expertise with the formal techniques.

The thesis has proposed a precise specification framework, namely cmUML, for

concurrent and reactive systems. Investigations are made to find the suitable verification

techniques, and tool environments that can be integrated with the cmUML framework. The

separation of concerns approach in terms of interface specifications based on LSC

formalism and internal specifications based on UML Activities and Statemachine facilitate

integration of various verification approaches. For example, the LSC tool environments

e.g. Rhapsody can be integrated for simulation and verification of interface specifications

(e.g. consistency checks). In addition to simulation of cmUML specifications, various

consistency checking scenarios are investigated like LSCs vs interface statemachines,

LSCs vs Internal statemachines, and Interface vs internal statemachines.

6.2 LSC-BASED VERIFICATION OF cmUML SPECIFICATIONS

6.2.1 VERIFICATION OF INTERFACE SPECIFICATIONS

Interface specifications in cmUML mainly consist of a collection of ScenarioContexts

(LSCs) and AccessOrder (a protocol statemachine). Various formal verification scenarios

can be defined in cmUML framework. First, interface specifications can be verified with

PrimaryContexts and the associated AccessOrder. To check that the specified behaviors of

a PrimaryContexts are always ‘satisfied’, the model checking tool can translate the

sequence diagram into an automaton (translation mechanisms exist), synchronized with the

automaton corresponding to the AccessOrder, to inspect the evolution of the global states

corresponding to the statemachine. The automaton corresponding to LSC evolves

CHAPTER 6: VERIFICATION APPROACHES

99

observing events in the statemachine, and when it reaches a final state (the last event in the

sequence diagram), then the property as specified by the LSC is ‘verified’.

Figure 6.1 Verification of a ‘PrimaryContext’ against the Interface Statemachine

The verification process should carefully consider the situation when the system produces

an unspecified event with respect to the LSC being verified. If the event is defined in the

scope of LSC but is not specified, it can be ignored. If the event is associated with

‘optional’ semantics (i.e. ‘cold’ annotation) a choice may be presented to the user

regarding processing of the event. If an event which is undefined in the scope of an LSC is

observed a pre-defined exception can be raised or verification process terminated.

Cancel

VM-Cancel
«ScenarioC
ontext»

write *

read

Data
«Resource»

 D_Coins

Control
«State»

wait(«End»
R-choice)

R-Coins

Env

Sd VM-main-1

CE {seq}
«System»

«PrimaryContext»

CHAPTER 6: VERIFICATION APPROACHES

100

VM «State»

«End» R-Coins

«End» D-Coins
&& «End» D-Drink

S2 Entry: init
S1

«Exception» noDrink/
trigger(noDrinkHandle) In S1or S2: Cancel / trigger(VM-Cancel)

Figure 6.2 Verification of a PrimaryContext against a State Specification

A PrimaryContext, an LSC, describes the principle behavior corresponding to a use case

(functional requirement). During initial phases of analysis the focus of verification are

PrimaryContexts. The SecondaryContexts, again LSCs, represent the mandatory behavior

that must be observed in response to ‘Exceptions’ raised during the execution of

PrimaryContexts. As cmUML framework integrates the exception handling behaviors into

the system specifications, the verification of SecondaryContexts is integrated into the

verification of PrimaryContexts. For this, a simple extension mechanism, in the form of

algorithm, is described in fig. 6.3.

«PrimaryContext»

R-Choice

 D_Drink

wait(«End» R-coin)

read

Data
«Resourc

Control
«State»

DD
{seq}
S

Sd VM-main-2

Cancel

VM-
Cancel
«Scenario
C t t

Env

CHAPTER 6: VERIFICATION APPROACHES

101

A Verification Algorithm:

Verify (ScenarioContext X, FinisteStateMachine Y)

 Input: a ScenarioContext X, and a FiniteStateMachine Y
 Output: return true if X is ‘terminated’ else false if X is ‘aborted’

 Construct an automaton A corresponding to X
 The states corresponds to ‘cuts’ of X as defined for LSCs
 Synchronize the automata A and Y

 Loop: Trigger the execution of Y
 For each event ev generated
 Process the event in A in run-to-completion
 If status(A) = ‘aborted’ and error=’exception’
 Trigger (SecondaryContext(exception))
 return false
 If status(A) = ‘terminated’ return true
 Go to loop

Figure 6.3. Verification algorithm integrating exception handling behaviors

The cmUML framework defines two statemachines for specification of a component i.e.

interface statemachine (‘AccessOrder’), and internal statemachine (‘State’). The ‘State’

specification may be considered as more detailed version of ‘AccessOrder’ specification.

Thus verification of ‘AccessOrder’ against ‘State’ specification constitute part of

consistency checking or formal refinement between interface specification and

corresponding implementation. Further the ‘PrimaryContexts’ defined in the interface

specifications can also be verified against the ‘State’ specification of internal

specifications. This further verifies the implementation of expected behaviors. Thus

cmUML framework facilitates simple approaches to consistency checking.

6.3 VERIFICATION IN RHAPSODY TOOL ENVIRONMENT

The ‘Rhapsody’ UML verification environment supports verification of safety and liveness

properties. The verification environment is integrated in the design tool “Rhapsody in

C++”, a commercial design tool offered by the company I-Logix, and is based on the VIS

CHAPTER 6: VERIFICATION APPROACHES

102

(Verification Interacting with Synthesis) model checker [Harel 2002, VIS 1996].

Requirements or properties to be verified can be specified using Live Sequence Charts

(LSC) [Damm 1999].

The interaction of the model with its environment is restricted to event communication. In

order to specify the communication interface of the model the user has to define a set of

events as being external. These external events are controlled by the model checker as

inputs for the model. In order to restrict the possible environment behavior with respect to

this event communication, the user of the verification environment can specify

assumptions about possible event sequences provided by the environment using the

specification techniques listed above. If the model checker detects a dynamic violation of a

requirement specification, an error path is issued showing a concrete computation of the

model violating the requirement.

To be able to use the VIS model checker both the model and the specification have to be

transformed into the input formats of the model checker i.e., a finite state machine (FSM)

description of the model and a computation tree logic (CTL) formula for the specification.

An LSC specification can be translated into an adequate CTL formula. Both the FSM and

the CTL formula are then fed into the VIS model checker, which either will state that the

formula is true, or will produce a trace showing a violating run of the system. In order to

become comprehensible, the trace is back translated into UML terminology so that model-

constituents like objects, associations, and event queues become visible again. On the other

hand, the event communication between the objects of the model which led to the

contradiction of the specification is displayed as an LSC.

For verification purpose, the problem statement is refined with further events and features:

drinks are sold at 50p (water), 1 re (soft drink), and 1.5 re (tea). The machine hold at most

three drinks of each kind, but it can be refilled by the external event ‘FillUp’. This event

then enables those drink lamps for which an adequate amount of money was already

inserted into the machine. The detailed behavioral statemachine with all the detailed events

CHAPTER 6: VERIFICATION APPROACHES

103

is given below (assume the states C50(water), Re1orC100(drink), C150(tea) enable, as

entry actions, the corresponding buttons only when there is the corresponding drink

available; ‘additional’ coins are discarded during ‘self’ loops):

An important property that can be verified for vending machine specification is:

“Whenever a customer wants to buy a water drink (thus, inserts at least one 50 ps coin

followed by pushing the water button) and the VendingMachine is not out of water, then

water is prepared and dispensed to the customer”.

Figure. 6.5. Property Verification in Rhapsody with LSCs and Statemachine

Env

«ScenarioContext»

CE {seq}
«System»

DD {seq}
«System»

C50

Not WaterOut

D-water

OK(water)

 D-cash

water

idle

C50

 Re1orC100

Re1

C100C50

C50

Re1

Re1/ enable-soft

C50

C150

C50/ enable-
water

OK

CHAPTER 6: VERIFICATION APPROACHES

104

Regarding the Vending Machine example, the LSC specification does not hold. The

produced error path consists of several steps where initial steps might drive the model into

a situation where no more water drinks are available (not shown in the figure). Starting at

the ‘Idle’ state and inserting the first ‘C50’ leads to the state ‘C50’. This event also

“activates” the pre-chart. Note that the water lamp is not enabled since there is no water in

stock. The next ‘C50’ leads to ‘C100’. Now, the ‘Re1’ forces to take the self-loop of the

or-state ‘Re1orC100’ which leads to state ‘Re1’ by taking the default transition. Crucial for

recognizing the design error is the fact, that the internal state of the CoinExchanger has

changed although the Re1 coin itself has been directly given back to the customer. The

following ‘FILLUP’ enables the buttons of the ChoicePanel depending on the information

about already inserted coins. But since the statechart of the CoinExchanger now encodes

the fact that only a 1 Re coin was inserted the water lamp is not enabled. The first

‘WATER’ event then “concludes” the prechart (since in particular the machine is not out

of water on the reception time of this event due to the previous refilling). The following

‘WATER’s mark the looping section of the infinite error path.

Thus cmUML framework approach supports the integration of industry standard tool

environment ‘Rhapsody’ for verification purpose.

6.4 CSP BASED VERIFICATION

The previous sections describe the existing verification techniques that can be integrated

with proposed cmUML framework for verification of interface specifications. This section

describes an approach that can be integrated with cmUML framework for verification of

internal specifications, in particular those of basic i.e. non-composite ‘System’

components.

The internal specifications in cmUML framework, which represents an abstract

implementation, consists of data and control flow diagrams (represented by UML activity

diagrams) and FSMs (represented by UML statemachines). The Activities represent the

CHAPTER 6: VERIFICATION APPROACHES

105

sequential executions and hence the computational aspect of the component. A generic,

concurrent execution model is adopted towards the semantics of the internal specifications.

The internal specification of cmUML components can have different semantics and

execution models thus may represent different implementations corresponding to the same

interface. Thus the associated verification approach for internal specifications should be

generic and flexible to construct the required semantics and execution models.

The approach by Crichton et.al [Crichton 2002] describes a CSP based verification for

concurrent models specified in UML. The approach also adopts a separation of concerns

through separating executions of operations from statemachine behavior of an object. Thus

operations are specified using Activities. The activity as well as the statemachine

specifications can be translated into the notation of Communicating Sequential Processes

(CSP) [Hoare 1985, Magee 1999] and verified using FDR model checking tool.

The interface specification approach in cmUML framework is closer to that of Cricton

et.al. and hence can be easily mapped onto CSP specifications in similar manner. Thus

cmUML internal specifications can also be formally verified for e.g. deadlock analysis.

6.4.1 CASE STUDY: A SIMPLE PRINTER SPECIFICATION

For the verification purpose a simple printer specification [Crichton 2002]. The problem

can be specified in a similar manner in cmUML framework and the verification technique

described is applicable as both the approaches are based on the separation of operations

(specified as activity diagrams) from statemachine. The printer is described in terms of its

five interface operations (‘services’ in cmUML); pause(), resume(), print(), service(),

carelessService() described below

– pause() : pause any print job that might be in progress;

– resume() : resume any print job that is paused;

– print() : start a print job;

– service() : replenish the paper tray, pausing the printer first;

CHAPTER 6: VERIFICATION APPROACHES

106

– carelessService() :replenish the paper tray, pausing the printer at the same time.

The first two operations can be treated as atomic (and hence can be specified on

statemachine itself). The printer can be thought of having eight states i.e. the product of

three conditions; printing or idle (1/0); paused, or not(1/0); and open or closed(1/0). In this

the ‘jam’ state is undesirable (this state is reached from printing state (100) when tray is

opend i.e. ‘opentray’ action occurs). Further a state is notified by appropriate events the

effect of actions of operations e.g. ‘change’, ‘call’, events. These events can cause state

transitions. It needs to be investigated whether this state is reachable in any situation of

concurrent invocations of services.

Figure 6.6. ‘State’ specification of «system» Printer [Source: Crichton 2002]

Figure 6.7. «service» Specifications of «system» Printer

/stopped

pause

010 010 010

jam

010

010 010

Otray

010

Ctray OtrayCtray Otray
Otray Ctray

resume

pause

resume

start

complete

Print() «flow»

«guarded»
isDelay=true
Receive (stopped)

Send (start)

Service() «flow»

Pause() Send
(OpenTray) Resume()Send

(CloseTray)

carelessService() «flow»

Pause()

Send
(OpenTray)

Resume()

Send
(CloseTray)

CHAPTER 6: VERIFICATION APPROACHES

107

Semantics of cmUML extensions e.g. ‘guarded’ actions are particularly intuitive and

correspond to CSP semantics. These operations can be easily mapped onto CSP using

latter’s constructs e.g. ‘process’ and operators like □ (external choice), ||| (parallel

execution but terminate same time), || (communication and synchronization on common

events). The CSP translation of printer operations is given below.

Print = start → stopped → SKIP

Service = pause → open → close → resume → SKIP

CarelessService = (pause → resume → SKIP)
||| (open → close → SKIP)

Similarly the «state» specifications can be translated into a set of CSP processes (as

transitions represent individual processes). Translation of two states ‘idle’, and ‘jam’ is

given below.

Idle = start → initialise → Printing
□ open → IdleOpen
□ pause → IdlePaused
□ (□ x : {resume, close} • x → Idle)

Jammed = (□ x : {pause, resume, open, close, start} • x → Jammed
□ error → Jammed)

With the translated CSP models the refinement-checking tool FDR can be used to explore

the consequences of the specified design and concurrency. To do this, a specification

process is need to be defined, identifying a range of acceptable behaviors, and a variety of

implementation processes, representing possible situations, or combinations of the model

components. FDR checks whether these processes i.e. the ‘Spec’ and ‘Implementations’

are equivalent i.e. every trace, and every failure of the implementation is also a behavior of

the ‘Spec’. For the ‘printer’ example these are given below.

Interface = {open, close, pause, resume, start, stopped, initialise, complete}

CHAPTER 6: VERIFICATION APPROACHES

108

Spec = □ e : Interface • e → Spec

System1 = Print || Printer

System2 = (Print ||| Service) || Printer

System3 = (Print ||| CarelessService) || Printer

System4 = (Print ||| Service ||| Service) || Printer

Implementation processes System1 and System2 describe situations in which a single

invocation of print(), and the simultaneous invocation of print() and service() act upon the

printer state. In each case, the refinement check succeeds: error is impossible; the Jammed

state is never reached. System3 describes a situation in which print() and carelessService()

may be invoked simultaneously. In this case, the refinement check fails, and the tool

returns as evidence the sequence <start, initialise, open, error> to show how the Jammed

state could be reached. Similarly, when we check System4, which describes the effect of

invoking print() concurrently with two invocations of service(), we are presented with the

sequence <pause, open, close, pause, resume, start, initialise, open, error>: Jammed is

reachable here, too.

CHAPTER 6: VERIFICATION APPROACHES

109

6.5 SUMMARY

This chapter has presented a few existing verification methods, tool environments that can

be integrated with the proposed specification framework, cmUML. For verification of

interface specifications it is shown that LSC based environments can be adopted with

minor extensions. Further an approach for integration of exception handling behavior

during verification process is described. Various consistency checking scenarios are

described. Also, an industry standard tool environment, Rhapsody, is found suitable for

property verification of cmUML specifications. For verification of internal specifications, a

CSP based translation approach is found suitable.

CHAPTER 7: CONCLUSIONS

110

CHAPTER 7

CONCLUSIONS

he main objective of the thesis is to arrive at an abstract framework in UML that

would allow concurrent abstractions to be used effectively from specification to

implementation. The thesis has presented a formalism referred to as cmUML. The cmUML

framework models separate external observable behaviors from internal implementation

behaviors of the systems. These hierarchical specifications enable use of various kinds of

verification approaches such as interface correctness, property verification, liveness,

deadlock etc.

7.1 THESIS SUMMARY

The proposed cmUML framework retains the intuitive design notations of multi-view,

graphical language UML for precise interface semantics and abstract implementation level

models. The specification framework includes constructs for explicit specification of

liveness, concurrency, synchronization and exception handling. Further the specification of

these aspects is consistent in terms of both interface, and internal specifications. The

operational semantics of cmUML has been defined using the formalism of Symbolic

Transition Systems. The semantics of cmUML integrates low level UML action semantics

with higher constructs of UML like Statecharts, activity and sequence diagrams and the

underlying object model – thus providing a consistent view of system descriptions in spite

of multi-view graphical specifications. The proposed specification language, namely

cmUML defined for the specification phase is based on UML’s light weight extension

mechanisms (known as stereotypes, tags, and constraints) thus facilitating compatibility

with existing UML tools. Thus, the framework can be used within existing UML based

methodologies towards precise specification of complex systems with concurrent, reactive

behaviors at an early phase of development processes.

T

CHAPTER 7: CONCLUSIONS

111

The cmUML framework and corresponding specification language are based on UML

metamodel and the conceptual model of UML/SPT profile (known as Profile for

Schedulability, Performance, and Time). The framework addresses the limitations of both

UML and UML/SPT profile for the precise specification of concurrent, reactive systems.

The cmUML framework defines higher level abstractions with precise semantics based on

the dynamic elements of the SPT profile. A conceptual model of the framework is

presented together with a formal mapping between the elements of the conceptual model

and those of SPT profile and UML meta model. Also the informal description of the

semantics of the proposed specifications is described.

As a refinement of the proposed specification framework, the thesis has presented a step-

wise specification process that can be applied to develop hierarchical specification of

systems (or subsystem components) using proposed cmUML framework and its profile.

The process is demonstrated using the case study of a Vending Machine specification.

Further the advantage of the cmUML approach is demonstrated by comparing and

validating it with other approaches, both formal as well as semi-formal. For this, classical

problems of concurrency i.e., readers-writers problem and producer-consumer problem are

specified and compared against their corresponding specifications in UML and formal

approaches.

Though UML has become the de-facto industry standard language for specification of

software systems, the UML models are not defined a formal semantics making the

specifications ambiguous and inconsistent. To avoid this, a formal semantics is defined for

the proposed framework. The formal semantics of cmUML framework is largely based on

so called informal semantics descriptions of UML and UML/SPT Profile. Thus the

semantics definition approach addresses the problem of ambiguity and inconsistency in

UML specifications but retains the open framework philosophy of UML by not imposing

the so-called concrete semantics. The formal semantics is described separately for both

interface and internal specifications. The semantics of the interface specifications are based

CHAPTER 7: CONCLUSIONS

112

on LSC framework while the semantics of internal specifications are described using the

formalism of Symbolic Transition Systems.

This thesis has also described the existing verification approaches that can be integrated

with the proposed cmUML specification framework: verification of interface specification

by integrating LSC based verification techniques; verification of internal specification by

translation into CSP formalism and related tools. LSC based verification technique can be

used to verify consistency between various parts of the specification e.g. interface vs

internal specifications. CSP based verification can be used to verify interface correctness,

deadlock detection etc.

In nutshell, cmUML combines the basic elements of UML, and the conceptual foundation

of UML/SPT (causality and concurrency) under a unifying framework towards higher level

abstractions for specification of complex systems. The framework integrates low level

UML actions semantics and higher formalisms of UML like statechart, activity, and

sequence diagrams with the underlying object model of UML retaining the latter’s

intuitive, multi-view design notations. Also, the framework doesn’t constrain the system

developers with fixed semantics, execution models, and implementation level constructs.

Thus the cmUML framework provides a rigorous yet intuitive specification phase for

precise specification of externally visible behaviors of concurrent and reactive systems i.e.,

concurrency, reactivity, exception handling, and synchronization. Further, the framework

is closely integrated with requirements phase facilitating validation of the requirements

against the system specification. The applicable verification strategies are presented.

7.2 CONTRIBUTIONS AND LIMITATIONS

Following contributions are made by this thesis work.

• Specification framework in Unified Modeling Language, namely cmUML,

bridging requirements and early design for hierarchical specification of systems

with concurrent and reactive behaviors.

CHAPTER 7: CONCLUSIONS

113

• A specification language, namely cmUML Profile, using standard lightweight

extension mechanisms of UML. Several stereotypes with precise semantics and

specification context are defined. Extensions of UML Action and Activity as

GuardedAction to specify precise semantics of action executions in concurrent

environment. This gives implementation level expressiveness to internal

specifications.

• Integration of UML/SPT profile and UML metamodel towards a unifying

framework for lower level constructs e.g,,UML actions and higher level formalisms

e.g., statecharts, activity, sequence diagrams. The integration further resolves

ambiguities and inconsistencies of UML semantics. It further provides precise

contexts for use of UML behavioral diagrams.

• Definition of semantic foundations for the proposed framework through adoption,

and extensions of existing semantic frameworks like LSCs and krtUML. LSC

foundation allows specification of liveness constraints. krtUML foundations define

precise semantic foundations for UML action semantics.

• Integration of exception handling mechanism in specification and verification. The

mechanism is comparable to Java’s try-catch mechanism

• A specification process, in terms of specification tasks and heuristics, for

application of the proposed framework

• Validation of the framework w.r.t both existing UML and formal approaches

• Investigation of existing verification approaches for integration with the proposed

framework

Some of the limitations are:

• The specification framework and approach has been validated with simple

examples and case study. The applicability of the approach for real-world systems

need to be experimented

• The specification framework and process is short of tool support

• Formal semantics, and applicable verification approaches need to be further

investigated.

CHAPTER 7: CONCLUSIONS

114

7.3 FUTURE WORK

While the proposed cmUML framework has been demonstrated and validated using well

known specification problems and a case study, further investigations with large scale

industrial strength case studies shall help refine the various aspects of the framework.

Though applicability of formal techniques has been investigated through appropriate

extensions of the corresponding semantical frameworks, further investigations shall

strengthen the semantic framework of cmUML. The cmUML framework can be extended

to Real-Time embedded systems. As the framework is defined using light weight extension

mechanisms of UML, it can be integrated with other UML-based methods and approaches.

115

REFERENCES

[Allen 1997] R. Allen and D. Garlan, “A Formal Basis for Architectural Connection”,

ACM Trans. Software Eng. and Methodology, vol. 6, no. 3, pp. 213-249, July 1997.

 [Alpern 1985] B. Alpern, and F. Schneider, “Defining Safety and Liveness”, Information

Processing Letters, 21(4):181-185, October, 1985

[Alvarez 2001] J.M. Alvarez, T. Clark, A. Evans, and P. Sammut., “An Action Semantics

for MML”, In Proc. UML 2001, 2001.

[Bass 2003] L. Bass, P. Clements, R. Kazman, and K. Bass., “Software Architecture in

Practice”, 2nd Edition, Addison-Wesley, 2003.

[Berry 1991] A. Benveniste and G. Berry, “The synchronous approach to reactive and real-

time systems,” in Proc IEEE, vol. 79, pp. 1270–1282, Sept, 1991.

[Belina 1991] F. Belina, D. Hogrefe, and A. Sarma, “SDL with Applications from Protocol

Specification”, Hemel Hempstead, U.K.: Prentice-Hall International, 1991.

[Borger 2000] E. Borger, A. Cavarra, and E. Riccobene., “Modeling the Dynamics of

UML State Machines”, International Workshop, ASM 2000, Proceedings, volume 1912 of

LNCS, pages 223-241. Springer-Verlag, 2000.

[Borger 2000] E. Borger, A. Cavarra, and E. Riccobene., “An ASM Semantics for UML

Activity Diagrams”, In T. Rus, editor, Proc. AMAST 2000, volume 1816 of LNCS, pages

293-308. Springer-Verlag, 2000

[Bryan 1992] D. Bryan, “Rapide{0.2 language and tool-set overview", Technical Note

CSL{TN{92{387, Computer Systems Lab, Stanford University, Feb. 1992.

116

[Cheng 2001] S. Cheng, and D. Garlan, “Mapping Architectural Concepts to UML-RT”,

International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA'2001), Las Vegas, USA, June, 2001.

[Cheng 2001] H.C. Cheng and W. E. Mcumber., “A General Framework for Formalizing

UML with Formal Languages”, Proceed. of the 23rd International Conference on Software

Engineering (ICSE), pp 433—442, Ontario, Canada, 2001

[Chinodo 1994] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and

A.Sangiovanni Vincentelli, “Hardware-software codesign of embedded systems,” IEEE

Micro, pp. 26–36, Aug. 1994.

[Clark 2000] R.G. Clark, A.M.D. Moreira: Use of E-LOTOS in Adding Formality to UML.

J. UCS 6(11): 1071-1087 (2000)

[Clarke 2003] E. Clarke, E. Mota, A. Groce, W. Oliveira, M. Falcao, J. Kanda.,

“VeriAgent: an Approach to Integrating UML and Formal Verification Tools”, Sixth

Brazilian Workshop on Formal Methods (WMF 2003), pages 111--129, Universidade

Federal de Campina Grande, Brazil, October 2003.

[CoFI 1997] CoFI Task Group on Language Design, “CASL Summary Version 1.0”,

Technical Report, 1998

[Crichton 2002] C. Crichton, J. Davies, and A. Cavarra, “A Pattern for Concurrency in

UML”, Oxford Computing Lab, submitted in FASE 2002

[Damm 1999] W. Damm, D. Harel, “LSCs: Breathing life in to Message Sequence

Charts”, In Porc. 3rd IFIP International Conference on Formal Methods for Open Object-

based Distributed System, 1999

117

[Damm 2002] W. Damm, B. Josko, A. Pnueli, and A. Votintseva., “Understanding UML:

A formal semantics of concurrency and communication in real-time UML”, In Proceedings

of FMCO’02, LNCS. Springer Verlag, November 2002

[Damm 2003] W. Damm and B. Westphal., “Live and Let Die: LSC-based Verification of

UML Models”, In Proceedings FMCO'02, First Int. Symp. on Formal Methods and

Components and Objects, Netherlands, Vol. 2852, Lecture Notes in Computer Science,

2003.

[Dennis 1975] J. B. Dennis, “First version data flow procedure language,” Massachusetts

Inst. Technol. Lab. Comput. Sci. Tech. Memo MAC TM61, May 1975.

[Douglass 2004] B.P. Douglass, “Real-Time UML: Advances in the UML for Real-Time

Systems”, 3/e, Pearson Ed., New Delhi, 2004

[Engels 2000] G. Engels, J.H. Hausmann, R. Heckel, and S. Sauer, “Dynamic Meta

Modeling: A Graphical Approach to the Operational Semantics of Behavioral Diagrams in

UML”, In Proceed. 3rd International Conference on the UML 2000, October 2000.

[Evans 1998] A.S. Evans and A.N. Clark., “Foundations of the Unified Modeling

Language”, In 2nd Northern Formal Methods Workshop, Ilkley, electronic Workshops in

Computing. Springer-Verlag, 1998.

[Evans 1999] A. Evans, R. France, K. Lano, and B. Rumpe., “The UML as a Formal

Modeling Notation”, In The Unifed Modeling Language: the first international workshop,

June 1998. Springer-Verlag, 1999

[Girault 1999] A. Girault, B. Lee, and E. A. Lee, “Hierachical Finite State Machines with

Concurrency Models”, IEEE Trans. on Computer Aided Design of Integrated Circuits and

Systems, Vol. 18(6), 1999

118

[Glasser 1997] U. Glässer and R. Karges. Abstract State Machine semantics of SDL.

Journal of Universal Computer Science, 3(12):1382--1414, 1997

[Gomaa 1993] H. Gomaa, “Software Design Methods for Concurrent and Real-Time

Systems”, Addision-Wesley Publishing Company, Reading Massachusetts, 1993

[Gomaa 2000] H. Gomaa, “Designing Concurrent, Distributed, and Real-Time

Applications with UML”, Addison-Wesley Longman Publishing Co. 2000

[Goni 2004] A. Goni, Y.Eterovic, “Building Precise UML Constructs to Model

Concurrency Using OCL”, UML 2004 Conference, LNCS Vol 3273, pp 212-225, 2004

[Gosling 1996] J. Gosling, The Java Language Specification, Addison-Wesley, 1996

[Guttag 1985] J.V.Guttag, J.J. Horning, and J.M. Wing, “The Larch Familyl of

Specification Languages”, IEEE Software, Vol.2, No.5, Sept. 1985, pp. 24-36

[Hall 1990] A. Hall, “Seven myths of formal methods,” IEEE Software, Vol. 6, No. 9, pp.

11–19, 1990.

[Harel 1987] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci

Comput. Program., vol. 8, pp. 231–274, 1987.

[Harel 2002] E. Gery, D. Harel, and E. Palachi, “Rhapsody: A complete life-cyclemodel-

based development system”, In Proceedings of the Third International Conference on

Integrated Formal Methods, pages 1–10, 2002.

[Hansen 1978] P. Brinch Hansen, “Distributed processes: A concurrent programming

concept”, Communications of the ACM 21, 11, pp934-941, November 1978

119

[Hoare 1985] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall Int.,

1985.

[Hussmann 2002] H. Hussmann, “Loose Semantics for UML, OCL”, In Proceedings 6th

World Conference on Integrated Design and Process Technology (IDPT 2002). Society for

Design and Process Science, June 2002.

[ILogix 2002] I-Logix Inc, Rhapsody, 2002.

[ITU 1994] ITU-T Recommendation Z.100. Specification and Description Language

(SDL). International Telecommunication Union (ITU), Geneva, 1994

[ITU 2000] ITU-T, “SDL combined with UML”, ITU-T recommendation Z.109, 2000

[Jagadish 2006(a)] S. Jagadish, R.K. Shyamasunder, “An UML-based approach to Specify

Secured, Fine-grained, Concurrent Access to Shared Resources” Journal of Object

Technology (JOT), vol.6 no.1, Jan-Feb, 2007, pp 107-119.

[Jagadish 2006(b)] S. Jagadish, R.K. Shayamasundar, “cmUML- A Precise UML for

Abstract Specification of Concurrent Components”, Proceedings of 18th International

Conference on Parallel and Distributed Computing and Systems (PDCS), Dallas, USA,

Acta press, November 2006, pp 141-146.

[Jagadish 2007] S. Jagadish, L. Chung, R.K. Shyamasundar, “UML based Framework for

Formal Specification of Concurrent, Reactive Systems”, Journal of Object Technology

(JOT), to appear.

[Jones 1986] C.B. Jones, “Systematic Software Development Using VDM”, Prentice Hall

International, 1986

120

[Kim 1999] S.-K. Kim and D. Carrington, “Formalizing the UML Class Diagrams Using

Object-Z”, In France and Rumpe, editors, Proc. UML'99, volume 1723 of LNCS, pages

83-98. Springer-Verlag, 1999.

[Kahn 1974] G. Kahn, “The semantics of a simple language for parallel programming,”

in Proceed. of the IFIP Congress 74Amsterdam, The Netherlands: North-Holland, 1974.

[Kleppe 1999] J. Warmer, and A. Kleppe, “The Object Constraint language: Precise

Modelling with UML”, Addison-Wesley, 1999

[Kwon 2000] G. Kwon., “Rewrite Rules and Operational Semantics for Model Checking

UML Statecharts”, In Proceed. of the 3d International Conference on the UML 2000,

University of York, October 2000.

[Lamport 1977] L. Lamport, “Proving the Correctness of Multiprocess Programs”, IEEE

Trans. on Software Engineering SE-3, 2(March 1977), 125-143

[Lamport 1983] L. Lamport, “Specifying Concurrent Program Modules”, ACM Trans.

Programming Languages and Systems, Vol.5, No.2, Apr. 1983, pp. 190-222.

[Lamport 1989] L. Lamport, “A Simple Approach to Specifying Concurrent Systems”,

Communications of ACM, vol.32 no.1, pp32-45, January 1989

[Lamport 2000] L. Lamport, “A Formal Basis for the Specification of Concurrent.

Systems”, Notes for the NATO Advanced Study Institute, Izmir, Turkey. June 26, 2000

[Larman 2001] C. Larman, “Applying UML and Patterns: An Introduction to Object-

Oriented. Analysis and Design, and the Unified Process”, 2/e. Prentice Hall, 2001

121

[Lilius 1999] J. Lilius and I.P. Paltor. vUML: a Tool for Verifying UML Models. Turku

Centre for Computer Science, Abo Akademi University, Finland. Technical Report TUCS-

TR-272

[Liu 2005] Z. Liu, and R. Venkatesh, “Tools for formal software engineering”, IFIP

Working Conference on Verified Software: Theories, Tools and Experiments

[Lohr 1992] K. Lohr, “Concurrency Annotations”, Proc. on Object-oriented programming

systems, languages, and applications, Canada, pp 327-340, 1992

[Luckham 1995] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W.

Mann, “Specification and Analysis of System Architecture Using Rapide,º IEEE Trans.

Software Eng., vol. 21, no. 4, pp. 336-355, Apr. 1995.

[Magee 1995] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, ªSpecifying Distributed

Software Architectures,º Proc. Fifth European Software Eng. Conf. (ESEC '95), Sept.

1995.

[Magee 1999] J.Magee and J.Kramer., “Concurrency - State Models &. Java Programs”,

Chichester: John Wiley & Sons, 1999.

[Manna 1991] Z. Manna and A. Pnueli., “The Temporal Logic of Reactive and Concurrent

Systems Specification”, Springer-Verlag, New York, 1991.

[Mellor 2002] S.J. Mellor, and M.J. Valcer, “Executable UML: a foundation for model-

driven architecture”, Addison-Wesley, 2002.

[Milner 1992] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, I,”

Inform. Computation, vol. 100, no. 1, Sept. 1992.

122

[Mizuno 1999] M. Mizuno, "A structured approach for developing concurrent programs in

Java", Information Processing Letters, Vol 69, No 5, pp232-238, 1999.

[Nenad 2000] N. Medvidovic and R.N. Taylor, “A Classification and Comparison

Framework for Software Architecture Description Languages”, IEEE Trans. on Software

Engg., Vol.26(1), January, 2000.

[Ober 1999] I. Ober, I. Stan, “On the Concurrent Object Model of UML”, Proceedings of

EUROPAR’ 99, pp 1377-1384, Toulouse, France, 1999

[Ober 2001] S. Gerard, I. Ober, “Parallelism/ Concurrency Specification in UML“, white

paper, UML Conference, Toronto, Canada, 2001

[Ober 2001] I. Ober., “Harmonizing Design Languages with Object-Oriented Extensions

and an Executable Semantics”, PhD Thesis, Institut National Polytechnique de Toulouse,

[Ober 2004] I. Ober, S. Graf., “How useful is the UML real-time profile SPT without

Semantics?”, In SIVOES 2004, associated with RTAS 2004, Toronto Canada 2004

[OMG 2001] OMG., “The Unified Modeling Language (UML) Specification - Version

1.4”, September 2001. Joint submission to the Object Management Group (OMG)

http://www.omg.org/technology/uml/index.htm

[OMG 2002] Object Management Group, “UML Profile for Schedulability, Performance,

and Time Specification”, OMG Adopted Specification ptc/02-03-02, July 1, 2002

(www.omg.org)

[Overgaard 1998] G. Overgaard and K. Palmkvist., “A Formal Approach to Use Cases and

Their Relationships”, In UML 1998, 1998.

123

[Pankert 1994] M. Pankert, O. Mauss, S. Ritz, and H. Meyr, “Dynamic data flow and

control flow in high level DSP code synthesis,” in Proc. 1994 IEEE Int. Conf. Acoustics,

Speech, and Signal Processing, Australia, Apr. 19–22, 1994, vol. 2, pp. 449–452.

[Papathomas 1992] M. Papathomas, “Language Design Rationale and Semantic

Framework for Concurrent Object Oriented Programming”, Ph.D Thesis, University of

Geneva, 1992.

[Papathomas 1996] M. Papathomas, “ATOM – An Active Object Model for Enhancing

Reuse in the Development of Concurrent Software”, RR 963-I-LSR-2, LSR-IMAG,

Grenoble, 1996.

[Pnueli 1986] A. Pnueli, “Applications of Temporal Logic to the Specification and

Verification of Reactive Systems: A Survey of Current Trends”, Lecture Notes in

Computer Science 224, Springer-Verlag, NY, 1986, pp. 510-584

[Pnueli, 1997] A. Pnueli, and W. Damm, “Verifying out-of-order Executions”, Proce. Int.

Conf. on Correct Hardware Design and Verification Methods (CHARME), Canada, pp 23-

47, 1997

[Pressman 2004] R.S. Pressman, “Software Engineering: A Practitioner’s Approach”, Mc-

Graw Hill Higher Eduction, 6/e, 2004

[Reggio 2000] G. Reggio, E. Astesiano, C. Choppy, and H. Humann., “Analyzing UML

Active Classes and Associated State Machines - A Lightweight Formal Approach”, In

FEAS 2000, 2000.

[Schniz 2004] I. Schinz, T. Toben, C. Mrugalla, B. Westphal, “The Rhapsody UML

Verification Environment”, Proc. of 2nd Int. Conf. on Software Engineering and Formal

Methods (SEFM’04), Beijing, China, pp 174-183, 2004

124

[Schmidt 1997] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop

Object-Oriented Communication Software,” in Handbook of Programming Languages (P.

Salus, ed.), MacMillan Computer Publishing, 1997

[Selic 1994] B. Selic, G. Gullekson, and P.Ward, “Real-Time Object-Oriented Modeling”,

John Wiley, New York, 1994

[Selic 1998] B. Selic and J. Rumbaugh., “Using UML for modeling complex real-time

systems”, available under http://www.objectime.com/uml, April 1998

[Selic 2004] Selic, B., “On the Semantic Foundations of Standard UML 2.0”, Lecture

Notes in Computer Science vol. 3185, Springer-Verlag, 2004.

[Sendall 2001] S. Sendall, A. Strohmeier, “Specifying Concurrent System Behavior and

Timing Constraints Using OCL and UML”, in proceeding of UML conference, UML

2001, pp 391-405, Toronto, 2001.

[Shrotri 2003] U. Shrotri, P. Bhaduri, and R. Venkatesh., “Model checking visual

specification of requirements”, International Conference on Software Engineering and

Formal Methods (SEFM 2003), page 202-209, Brisbane, Australia. IEEE Computer

Society Press, Zurich, October 2005

[Shrotri 2003] U. Shrotri, P. Bhaduri, and R. Venkatesh., “Model checking visual

specification of requirements”, International Conference on Software Engineering and

Formal Methods (SEFM 2003), page 202-209, Brisbane, Australia. IEEE Computer

Society Press, Zurich, October 2005

[Spivey 1988] J. M. Spivey, “Introducing Z: A Specification Language and its Formal

Semantics”, Cambridge Univ. Press, 1988.

125

[Vahid 1995] F. Vahid, S. Narayan, and D. D. Gajski, “Speccharts: A VHDL front end for

embedded systems,” IEEE Trans. Computer-Aided Design, vol. 14, pp. 694–706, June

1995.

[VIS 1996] The VIS Group., “VIS : A System for Verification and Synthesis”, In 8th

international Conference on Computer Aided Verification, volume 1102 of LNCS, 1996.

[VonderBeeck 1994] M. von der Beeck, “A comparison of statecharts variants,” in Proc.

Formal Techniques in Real Time and Fault Tolerant Systems, LNCS 863. Berlin,

Germany: Springer-Verlag, 1994, pp. 128–148.

[Wing 1990] J.M. Wing, “A Specifier's Introduction to Formal Methods”, IEEE Computer,

23(9):8-24, September 1990

[Wing 1995] J.M. Wing., “Hints to Specifiers”, Technical Report, CMU-CS-95-118R,

Carnegie Mellon University, USA, 1995

[Wing 1996] E.M. Clarke, J.M. Wing, “Formal Methods: State of the Art and Future

Directions”, ACM Computing Surveys, 28(4):626{643, 1996.

126

APPENDIX A

SAFETY AND LIVENESS IN CONCURRENT SYSTEMS

Concurrent systems are analyzed in terms of their safety and liveness properties. Any

property of these systems can be described in terms of their safety and liveness properties

and analyzed using respective techniques. Safety and liveness were first described by

Lamport [Lamport 1977]. Alpern and Schneider proposed formal characterization of safety

and liveness properties of concurrent systems [Alpern 1985].

A.1 CONCURRENT SYSTEMS AND PROPERTIES

A concurrent program execution can be viewed as a sequence σ = s0s1s2... of states, each

state si (for i > 0) is the result of a single atomic action from si -1. A set of such sequences

is defined as a ‘property’. A property P holds for a program if the set of all sequences

defined by the program is contained within the property. It is useful to distinguish two

classes of properties, since they are proved using different techniques. A proof that a

program satisfies a ‘safety property’ rests on an invariance argument, while a proof that a

program satisfies a ‘liveness property’ depends on a well-foundness argument.

For formalization of safety, and liveness, let S = set of program states, Sω = set of infinite

sequences of program states, S* = set of finite sequences of program states. The execution

of a program can be modeled as a member of Sω. Thus the elements of Sω form

‘executions’. Elements of S* are partial executions. Further σ|= P if σ is in property P. Let

σi = partial execution consisting of the first i states in σ.

127

A.2 SAFETY PROPERTIES

Informally, a safety property stipulates that no “bad things” happen during program

execution. Examples of safety properties (and their respective “bad things”) are mutual

exclusion (two processes executing in the critical section at the same time), deadlock

freedom (deadlock), partial correctness (starting state satisfied the precondition, but the

termination state does not satisfy the postcondition), first-come-first-serve (servicing a

request made after one that has not yet been serviced) etc.

For P to be a safety property, if P does not hold for an execution then at some point some

‘bad thing’ must happen. Such a ‘bad thing’ must be irremediable because a safety

property states that the ‘bad thing’ never happens during execution. Thus following formal

definition hold for a safety property P:

P is a safety property if and only if
(∀σ: ∈σSω: σ|≠ P ⇒ (∃i : 0≤i: (∀β: ∈βSω: σiβ |≠ P)))

A.3 LIVENESS PROPERTIES

Informally, a liveness property stipulates that a “good thing” happens during program

execution. Examples of liveness properties (and their respective “good things”) are

starvation freedom (making progress), termination (completion of the final instruction),

guaranteed service (receiving service).

For P to be a ‘liveness property’, no partial execution is irremediable; a “good thing” can

always occur in the future i.e. if a partial execution were irremediable, it would be a “bad

thing” and liveness properties cannot reject “bad things”, only ensure “good things”.

Thus the following formal definition holds for liveness property P:

P is a liveness property if and only if (∀α: ∈αS*: (β∃: ∈β Sω: βα|=P)

128

APPENDIX B

LIVE SEQUENCE CHARTS

While message sequence charts (MSCs) are widely used in industry to document the

interworking of processes or objects, they are expressively weak, being based on the

modest semantic notion of a partial ordering of events as defined, e.g., in the ITU standard.

The language of LSC is a highly expressive and rigorously defined MSC language

extension towards a serious, semantically meaningful behavioral specification of

concurrent, reactive systems as well as providing tool support for formal analysis of system

properties at early phases of development [Damm 1999]. Further LSCs address the central

problems in behavioral specification of systems: relating scenario-based inter-object

specification to state-machine intra-object specification.

B.1 LIVE SEQUENCE CHART (LSC)

MSC specifications are typically used to capture sample scenarios corresponding to system

functionalities (also known as use cases). At this stage the representational interpretation of

MSC semantics is permissible. But as system becomes refined and conditions

characterizing use cases evolve, the intended interpretation needs to distinguish existential

(optional) behaviors from universal (mandatory) behaviors. Here the conventional

semantics of MSCs is inadequate. LSCs allow the user to selectively designate parts of a

chart, or even the whole chart itself, as universal (that is, live, or mandatory), thus

specifying that messages have to be sent, conditions must become true, etc. The designer

may incrementally add liveness annotations as knowledge about the system evolves. Hand

in hand with this extension comes the need to support conditions as first-class citizens.

‘Conditions’ as first-class citizens, help in capturing assertions that characterize usecases.

Conditions can thus qualify requirements as assertions over instance variables. Thus, LSCs

provide the semantical basis for rigorous and complete consistency checks between the

descriptive view of the system by sequence charts and the constructive one. Such checks

could eventually be made using formal verification techniques like modelchecking

129

Table. B.1. Summary of Liveness Notions in LSCs, with their Informal Meaning

 [Source: Damm 1999]

B.2 FORMAL SEMANTICS OF LSCS

Formal semantics of a LSC ‘m’ is described by a symbolic transition system or a skeleton

automaton A(m) [Damm 1999]. States of A(m) corresponds to ‘cuts’ in LSC induced by

the partial order subsuming the constraints imposed by both the standard and the

extensions. Each state or ‘snapshot’ of the system is described the instance variables,

events, and the necessary system variables. The elements of abstract syntax of LSC are

given below, where ‘m’ represents a LSC.

inst(m): set of all instances

dom(m, i): finite set of ‘abstract’ discrete locations of instance i, of m.

dom(m, i) ⊆ {0, …., l_max(m,i)}

dom(m): {< i, l > | i ∈ inst(m) ∧ l ∈ dom(m, i)}.

Messages = Message_Ids x {synch, asynch} x {!, ?}

Conditions = Condition_Ids x bexp(vis_var(m))

130

Labels = ℘ (Messages) x Conditions

label(m) : dom(m) → Labels

temp(m) : ((dom(m) ∪ Message Ids ∪ Condition Ids) → Temp)

 where Temp = {hot, cold}

order(m) : dom(m) → {true, false} ---- a total order

coregion, L: a maximal set L of locations of i with order(m)(<i, l>) = false.

The state space of the STS associated with the basic LSC m is derived from the following

(meta)variables, where i is any of the instances referred to in the LSC:

i.location: the current location of instance i

i.events : the events currently emitted by i (from events(i) ∪ silent

i.v : the current local value of i’s instance variable v;

status: {active, aborted, terminated}

promises: takes its value in the power-set of

dom(m) ∪ {m id? | m id ∈ vis events(m)};

initialization predicate: init(m) is the conjunction of following:

i.location=0; status=active; i.events ∈ vis_events(m)

transition relation: partitioned into following types of moves

active state: t-steps (local computations); i-steps (proceed instances)

terminated state: chaos-step (arbitrary changes)

aborted state: stutter steps (no changes to variables)

The semantics is a pure interleaving one: only a single instance is allowed to proceed at a

time, and hence the transition predicate for the global transition relation is just the

disjunction of the transition predicates of its partitions. Thus each action of the partions of

the transition relation can be described in a self-explanatory imperative style.

131

Figure. B.1. The Transition System of a LSC with Pre-chart

[Source: Damm 1999]

132

APPENDIX C

CMUML SPECIFICATION OF VENDING MACHINE

1. General Use Cases of a Vending Machine

2. AccessOrder Specification of «system» VM

DropCoins

MakeChoice

DispenseCoins

Cancel

DispenseDrink

133

Data
«Resource»

CE
«System»

DD
«System»

VM «System»

«End» R-Coins

«End» D-Coins
&& «End» D-Drink

S2 Entry: init
S1

«Exception» noDrink/
trigger(noDrinkHandle) In S1or S2: Cancel / trigger(VM-Cancel)

3. Specification of internal structure and State of «system» VM

4. «ScenarioContext» Specifications of Vending Machine Use Cases

Cancel

 write *

read

Data
«Resource»

 D_Coins

Env

Sd VM-DropCoins

CE
«System»

«PrimaryContext»

«End»
R-choice

VM-Cancel
«SecondaryC
ontext»

R-Coins

Cancel

 read

Data
«Resource» Env

Sd VM-MakeChoice

DD
«System»

«PrimaryContext»

«End» R-coins

VM-Cancel
«SecondaryC
ontext»

R-Choice

D Drink

134

5. Service Specification of R-Coins with guarded Semantics

R-Coins

«Flow» {guarded}
{guard=drinks_available ≥1;
 isHot=true; isDelay=false,
 exception=noDrink; isAtomic=true}

Get
Coins

Write (CoinValues)
{guarded}

{guard=CoinValuesOK();
isHot=true; isDelay=false;
exception=invalidCoins

135

BIOGRAPHY OF THE CANDIDATE

NAME: JAGADISH SURYADEVARA

Jagadish Suryadevara received B.Sc from Andhra University (1991), M.Sc (Applied

Mathematics) from Andhra University (1994), and M.Tech (Computer Science) from

Jawaharlal Nehru Technological University, Hyderabad (2000). From 1995 to 2002 he has

was a lecturer in mathematics and computer science at Vignan Educational Institutions,

Andhra Prasad. From 2002 to 2008 he was a lecturer in computer science in Birla Institute

of Technology and Science (BITS), Pilani, Rajasthan. Currently he is a member of Real-

time Modeling and Analysis Group, Mälardalen Real Time Research Centre, Västerås,

Sweden.

Jagadish Suryadevara started his ph.d study in 2003 under the supervision of Prof.

R.K.Shyamasundar, Sr. Professor in Tata Institute of Fundamental Research (TIFR),

Mumbai. He presented a paper in 18th Int. Conf. on Parallel and Distributed Computing

and Systems (PDCS), Dallas, USA. He also visited University of Texas, Dallas towards

research collaboration. He participated in a work shop on semantic web held in South

Korea in November, 2007. He also participated in Onassis Foundation lecture series for

embedded systems at Creta, Greece in 2008. His research interests include concurrent,

reactive systems, formal specifications and verifications, and software engineering. He can

be reached at suryadevara.jagadish@gmail.com

136

BIOGRAPHY OF THE SUPERVISOR

NAME: PROF. (DR). R.K. SHYAMASUNDAR

R. K. Shyamasundar received the B.E. degree from Mysore University, Mysore, India, in

1970 and the M.E. and Ph.D. degrees from Indian Institute of Science, Bangalore, India, in

1972 and 1975, respectively. Since then he has been with Tata Institute of Fundamental

Research where he is currently a Senior Professor.

Prof. Shyamasundar has held various Visiting Scientist/Faculty positions at various places

such as Technological University of Eindhoven Netherlands, State University of Utrecht.

Netherlands, IBM T. J. Watson Research Center Yorktown Heights. NY, and Pennsylvania

State University, University Park. He is a well known researcher in India and abroad. His

main research interests are semantics of programming languages. real-time programming,

and logic programming. Prof. Shyamasundar is a member of the Association for

Computing Machinery, EATCS and the IEEE Computer Society. He is also a member of

various scientific, and research committees of Government of India. He can be reached at

shyam@tcs.tifr.res.in.

