
Peer-to-Peer Network Traffic Classification

Based on Statistical and Behavioral Analysis

THESIS

Submitted in Partial Fulfilment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Submitted by:
JAGAN MOHAN REDDY DANDA

ID. NO. 2011PHXF011H

Under the Supervision of
Prof. Chittaranjan Hota

BITS Pilani
Pilani |Dubai |Goa |Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
2016

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis entitled “Peer-to-Peer Network Traffic Clas-

sification Based on Statistical and Behavioral Analysis” and submitted by

Jagan Mohan Reddy Danda ID.NO. 2011PHXF011H for award of Ph.D.

degree of the institute embodies original work done by him under my supervision.

...

DR. CHITTARANJAN HOTA
Professor,
Department of Computer Science,
BITS Pilani Hyderabad Campus,
Hyderabad, Telangana - 500 078

Date:

Dedication

To

My Mother, for her over-decades cultivating and enduring love.

My Father, who always takes me as his best pride.

My Brother, who always encouraged in his best.

Acknowledgements

I express my profound gratitude and sincere thanks to Prof. Chittaranjan Hota for

his valuable suggestions, guidance, constant encouragement and intent supervision

at every stage of thesis work. It has been a great learning process for me. It is

in his association that gave me many opportunities to ameliorate my skills and

knowledge.

I am thankful to Prof. N L Bhanumurthy, Head of the Department of Computer

Science and Engineering, for all the necessary help I got during my thesis work. I

am thankful to my DAC members Dr. Aruna Malapati and Prof. Y Yoganandam,

who had been meticulous in reviewing my work time to time with their priceless

suggestions.

I express my gratitude towards Prof. V S Rao (Director and Senior Professor of

BITS Pilani Hyderabad campus and Acting Vice-chancellor of BITS Pilani) and

Prof. M B Srinivas (Dean, Administration). I would also like to express my grati-

tude to Prof. P Yogeeswari (Associate Dean, Sponsored Research & Consultancy

Division) and Prof. Vidya Rajesh (Associate Dean, Academic Research Division),

for their constant support during my Ph.D work.

I am also indebted to Mr. Abhishek Thakur, for devoting his time and resources

thus supplementing valuable inputs to my research work.

I am thankful to Mr. Ramesh Goud, who helped me with necessary networking

setup during my Ph.D. course.

I owe my friends Rakesh Prasanna C, Muthukumaran K, Kiranmai G, Balaji V,

Neha Singh T, Kasthuri I and Pratik Narang a token of appreciation for providing

their support and encouragement that I received throughout my Ph.D. course.

I am obliged to Tata Consultancy Services (TCS), who funded my research work,

Mr. Sitaram, TCS.

Last but not the least, I express my gratitude to my parents, brother and family

for their constant support and unfailing guidance in whatever I did.

Abstract

The use of peer-to-peer overlay applications is growing dramatically, particularly

for sharing video/audio, document files and software. The growth of such appli-

cations suggest that the use of P2P for illegal, malicious, and copyrighted data

transfer traffic can have significant impact on the underlaying network. This re-

sulting to reduced quality of service for other applications. It is therefore impor-

tant to understand and characterize this traffic in terms of end-system behavior

to provide network traffic planning. Detection and identification of P2P is one of

the key tasks for Internet Service Providers.

In this research, a significant portion focuses on the problem of detecting peer-to-

peer traffic from the web traffic, regardless of whether it is benign or malicious

traffic. The classification of P2P traffic is challenging since traditional techniques,

rely on mapping applications to well-know port numbers and payload data are

ineffective against applications that use random ports or encryption. This research

proposes three approaches to classify P2P traffic in real-time.

The first approach is based on statistical analysis of flow features, which are both

port and payload agnostic. We extracted flow features from the network traces

of P2P and NonP2P. We present a novel P2P traffic detection system using com-

bined classifiers that integrate supervised ML algorithms to accurately differenti-

ate between P2P and Nonp2P applications, and could also detect unknown P2P

traffic. The results of proposed method can achieve high accuracy, outperform-

ing comparable existing approaches to classify P2P network traffic. According to

experimental results, we obtain the detection accuracy of more than 99.0% and a

false positive rate of less than 0.1%.

The second approach, further enhances the host behavior mechanism by leverag-

ing the host activity on the network to detect P2P flows and hosts in real-time.

We proposed several heuristics to exploiting fundamental characteristics of P2P

and NonP2P activity. These approaches rely on the connection patterns at trans-

port layer, which does not need any machine learning algorithm. According to

experimental results, we obtained an average detection accuracy of more than

96.55% and the false positive rate of 2.5%.

The third approach is based on Fuzzy pattern recognition system. In this ap-

proach, we classify P2P traffic based on the behavior. Features are extracted

from the TCP and UDP headers. We propose several fuzzy membership func-

tions to characterize P2P and NonP2P traffic. We obtain the detection accuracy

of 98.89% for eMule application and the false positive rate of 1.11% and for the ap-

plication µTorrent, detection accuracy of 97.51% and false positive rate of 2.49%.

For NonP2P dataset, the detection accuracy of 99.96% and false positive rate of

.04% is observed.

Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Background . 1

1.2 Overview of Peer-to-Peer Systems 3

1.2.1 What is Peer-to-Peer? . 3

1.2.2 What is the Motivation for Peer-to-Peer? 4

1.2.3 Unstructured Networks . 8

1.2.4 Structured Networks . 9

1.2.5 Hybrid Networks . 10

1.2.6 Gnutella . 11

1.2.7 BitTorrent . 14

1.2.8 Freenet . 16

1.3 Issues with P2P overly . 18

1.4 Background Study about Machine Learning 19

1.4.1 Supervised Learning . 19

1.4.2 Unsupervised Learning . 20

vii

1.4.3 Performance Metrics for Classification 21

1.4.4 Feature Selection Techniques 21

1.5 Fuzzy Logic . 26

1.5.1 Fuzzy Classification . 27

1.6 Research Motivations . 29

1.7 Research Contributions and Organization of Thesis 30

1.8 Thesis Organization . 31

2 Literature survey 32

2.1 P2P Traffic Classification . 32

2.2 Classification Approaches . 33

2.2.1 Port-based Approach . 33

2.2.2 Protocol/Packet-level/Payload Based Approach 36

2.2.3 Connection Patterns at Transport-Layer 37

2.2.4 Flow based traffic Classification: Machine Learning 40

3 Data Collection and Preliminary Analysis 46

3.1 Data Collection and Preliminary Analysis 46

3.2 Summary . 59

4 Design of a privacy-preserving P2P traffic classifier 60

4.1 Network Traffic Classification . 60

4.2 System Overview . 62

4.2.1 Background of Feature Selection 67

4.2.2 System Implementation 70

4.3 Result Analysis . 74

4.4 Limitations . 77

4.5 Conclusion . 78

viii

5 Host-Based P2P Traffic Identification 80

5.1 Host-based P2P Traffic Identification using Heuristics 80

5.2 P2P and NonP2P Applications 81

5.2.1 NonP2P . 83

5.2.2 P2P . 84

5.2.3 Framework . 84

5.2.4 Proposed Heuristics . 85

5.3 Flow Based Vs Host Based approaches 91

5.4 Summary . 92

6 P2P Traffic Identification: A Fuzzy Approach 93

6.1 Proposed Fuzzy Recognition System for P2P Traffic Detection . . 93

6.1.1 Characterization of P2P Traffic 94

6.1.2 Behavior-based P2P Traffic Detection 96

6.1.3 Membership Functions for UDP and TCP Features 97

6.2 Performance Evaluation . 100

6.2.1 Dataset Collection . 100

6.2.2 Detection Accuracy . 100

6.3 Conclusion . 101

7 Design and implementation of a P2P-aware firewall 102

7.1 P2P-aware firewall module . 102

7.2 System Integration . 104

7.3 Summary . 109

8 Conclusion and Future scope of work 110

8.1 Conclusion . 110

8.2 Future Scope of the work . 113

ix

Index 114

Bibliography 114

List of Publications 122

Biography 124

x

List of Tables

1.1 Basic Message Types for Gnutella 12

2.1 Well-known port numbers used by several applications 35

2.2 Comparison of network traffic classification approaches 44

3.1 P2P Dataset . 50

3.2 Application Signatures . 51

4.1 Flow-based features . 71

4.2 Attribute Selection with CSE and PCA 74

5.1 Application wise statistics . 86

5.2 Flow vs Host based approaches 92

6.1 Feature Description . 100

6.2 Detection Accuracy . 101

xi

List of Figures

1.1 Global Internet Phenomena of Asia-Pacific 2014 2

1.2 Global Internet Phenomena of Asia-Pacific 2015 3

1.3 An Example Overlay Network . 4

1.4 Napster scenario . 6

1.5 Peer to Peer Architecture . 7

1.6 An unstructured P2P network . 8

1.7 Structured P2P network . 10

1.8 Hybrid P2P network . 11

1.9 Gnutella Header . 12

1.10 Searching and propagation of ping message in the Gnutella 14

1.11 BitTorrent file Swarm . 15

1.12 Freenet distributed key-based routing 17

2.1 Inclinations of Applications and features [1] 33

2.2 Classification Approaches . 34

xii

2.3 Flow example, Host A opens HTTPS (443), HTTP (80) and default

port for Kazaa (1214). Host A and Host B packets are grouped into

either single TCP connection or two bi-flows or four flows. On the

other hand, Host A again opens new port on both TCP and UDP,

packets can be grouped into single TCP and UDP connection. . . 40

3.1 Network architecture of BITS-Pilani Hyderabad Campus 47

3.2 Network architecture of BITS-Pilani Hyderabad Campus 48

3.3 Logs for Internet traffic generated on one day at the university of

the authors . 49

3.4 Testbed for impact analysis of P2P on IPS/IDS 50

3.5 Payload-based detection of P2P traffic using Snort IDS 52

3.6 Virtualized Environment running P2P & NonP2P traffic at BITS

Pilani, Hyderabad campus . 53

4.1 Stacked Learning . 66

4.2 Stacked Learning . 67

4.3 Proposed Detection Framework using ensemble learning 69

4.4 Accuracy and Recall of Stacking and Voting ensemble learning with

NB, BN and C4.5 . 76

4.5 Accuracy and Recall of Stacking and Voting ensemble learning with

NB, BN, C4.5 and RF . 77

4.6 Build Time of Staking and Voting with Full and Two subset Features 78

5.1 Framework for P2P Traffic Identification 85

5.2 Heuristic A . 87

5.3 Heuristic B . 88

5.4 Heuristic C . 88

xiii

5.5 Heuristic D . 89

5.6 Heuristic E . 90

5.7 Detection rate of P2P traffic . 91

6.1 UDP packets sent by NonP2P applications. 94

6.2 Peer Discovery/control messages sent by P2P Application over UDP. 96

6.3 TCP behavior observed in P2P applications. 97

6.4 TCP behavior observed in NonP2P applications. 98

6.5 Procedure to extract Host feature 99

7.1 Overview of System Integration 104

7.2 A snapshot of the P2P classification module invoked in parallel . . 105

xiv

Chapter 1

Introduction

1.1 Background

In recent times, peer-to-peer (P2P) overlay networks have become popular for file

sharing applications. In the context of an overlay, each host is known as a peer.

The behavior of the P2P networks, which connect the peers on top of a physical

network, like IP, is growing dramatically. Client-server models are categorized by

an asymmetric relation between client and server where client sends request and

server responds back. But P2P networks are distributed in nature and for file

sharing, each peer acts as a client as well as a server. These overlay networks

build a logical network at application layer providing connectivity, routing and

messaging among addressable end points. These types of networks have been used

for voice-over IP like Skype and streaming media over P2P like IPTV in recent

times.

With the rapid development of P2P technology, the P2P traffic has accounted

for 40-60% of Internet traffic [2]. Schulze et al. [3] observed that P2P traffic is

1

1.1. BACKGROUND 2

Figure 1.1: Global Internet Phenomena of Asia-Pacific 2014

responsible for 69.95% of the global Internet traffic and BitTorrent [4] is the most

used protocol. In September 2015, global Internet phenomena report by Sandvine

[5] points to the increased percentage of aggregated P2P traffic of Asia-Pacific

fixed access networks from 29.35% in 2014 to 29.76% in 2015 and BitTorrent

accounts 58.57% of total upstream and 22.65% of total downstream traffic during

peek period is shown in Fig. 1.1 and Fig. 1.2.

There are large number of applications such as Napster [6], Gnutella [7], Kazaa

[8], eDonkey [9] , Freenet [10], Skype [11] etc. developed for deploying P2P tech-

nologies in the Internet. There is an exponential increase of users taking interest

in these applications. Researchers have contributed to designing large number of

models based on P2P overlay networks, suiting to different requirements such as

file sharing, anonymity, media streaming, and voice over P2P etc.

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 3

Figure 1.2: Global Internet Phenomena of Asia-Pacific 2015

1.2 Overview of Peer-to-Peer Systems

1.2.1 What is Peer-to-Peer?

Peer-to-peer is defined as a network of interconnecting nodes (called peers) that

partitions the tasks or work load and access resources (CPU cycles, Storage, con-

tent) in the network. Peer systems are scalable and fault tolerant in their approach

because they offer no single points of failure, and the network can grow and shrink

without sacrificing the functionality of the system [12].

Client-server based architectures are characterized by asymmetric relationship

between client and server where client queries and server responds. In contrast, in

distributed P2P networks every node acts as both a server and a client. Peer-to-

Peer network is a form of virtual network on top of a physical network, where the

nodes form a subnet of the nodes in the physical network. But the application layer

peers directly communicate at the logical network via directly over the underlying

network. Overlay network provides connectivity, routing, and messaging amongst

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 4

Physical Network

Overlay
Network

Figure 1.3: An Example Overlay Network

addressable end-points of the communication as shown in Fig. 1.3.

1.2.2 What is the Motivation for Peer-to-Peer?

The motive behind P2P applications have transformed the typical user’s experi-

ence of getting content and communication services from the Internet and at the

same time other Internet applications have not been built with P2P. P2P offers

a uniquely self-scaling architecture and provide services at a low cost level where

client/server architectures are not achievable.

Peer-to-Peer (P2P) overlay networks which connect peers on top of a physical

network, be it over Internet Protocol (IP), Asynchronous Transfer Mode (ATM),

Frame Relay (FR), Systems Network Architecture (SNA), Internetwork Packet

Exchange (IPX) etc., are growing dramatically in their usage. P2P application

usage has grown steadily since its inception. Client-server based architectures are

characterized by asymmetric relationship between client and server where client

queries and server responds. Contrast to that in distributed P2P systems every

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 5

node acts as both a server and a client. Peer-to-Peer overlay structure is brought

to popularity by the file sharing applications like Napster [6], Gnutella [7] etc.

These overlay networks have been used for file sharing, Voice over P2P, and

streaming media over P2P in recent times. Motivated by the extent of their

usage, researchers are eager to study and improve the scalability and performance

of these networks. Unlike the client-server model, a P2P network connects several

peers directly. The architecture of a P2P network is determined by the character-

istics of its overlay network, placement and scope of data, and the protocols used

for communication. The choice of the architecture influences how the network can

be used for various tasks like searching and downloading.

These P2P networks are distributed in nature and are named as centralized

and decentralized networks. Centralized P2P networks are like a client-server

model, but the server keeps index media files of all peers in the network. The

drawback of this approach is single-point of failure. Decentralized P2P networks

are scalable and fault tolerant because they offer no single-point of failure, and the

network can grow and shrink without sacrificing the functionality of the system.

Napster [6] was the first centralized distributed overlay network designed for music

file sharing, the file indexes are stored on a central server and when a new peer

searches a file .mp3/.mp4 it has to get the information from the central index

server. The index server finds which peer has the corresponding file and informs

the requester. Then file is directly downloaded from that peer. This process is

shown in Fig. 1.4.

There are two classes of P2P overlay networks: structured, and unstructured. An

unstructured P2P system consists of peers joining the P2P network with some

loose rules, without any prior knowledge of the topology. Unstructured P2P

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 6

Peer II

Peer V

Peer IV

Peer III

Titanic.mp3
Sholay.mp3

Titanic.mp3

Peer I Central index server

Query: titanic.mp3

Replay: peer I

Figure 1.4: Napster scenario

networks such as Freenet [10], Gnutella [7], KaZaA [8], Direct Connect++ [13]

offer decentralization and simplicity, but may require O(N) hops to search a file

when the network is made up of N nodes. In contrast, structured P2P overlay

networks tightly control both the network topology and the placement of the con-

tent. Specifically, the content is stored at specified locations based on Distributed

Hash Tables (DHTs), so as to improve the efficiency of the queries. Structured

P2P overlays using DHTs like Content Addressable Network (CAN) [14], Chord

[15], and Pastry [16] are well suited for large scale distributed applications because

of their search efficiency which is O(logN) for a network of N nodes.

In practice the functions of P2P networks is divided into three main components:

(i) Routing and Messaging, (ii) Search and Content storage, (iii) Configuration

and Peer role selection. Routing API, each peer maintain the state of some connec-

tion to other (neighboring) peers within the overlay, which include peer discovery

and other peer state maintenance. The overlay messaging API, provides service at

application layer that can exchange messages with other peers in the overlay and

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 7

Figure 1.5: Peer to Peer Architecture

messages received from other peers can be forwarded to destination peer using

message-forwarding function. Bootstrap provides the initial configuration infor-

mation of a peer to join the overlay network. Join and leave functions allow peers

to join and leave the overlay network whenever they wish to do so.

The content storage functionality at a peer should facilitate access to the stored

object locally as well as by other peers using improved search indices and a query

interfaces. Peers should also self-configure and assess their capabilities based on

resource availabilities and stability, and further select their own role to either act

as a super-peer or an ordinary peer in the overlay. The self configurable nature

of a peer and the dependence of peers with each other allows malicious peers to

abuse the trust. As internals are exposed to fellow peers in the name of sharing or

distributing the workload, attackers can leverage this in compromising the P2P

networks and hence creating havoc to other users. These networks also provide

session and media management into overlay for P2P streaming applications like

Session Initial Protocol (SIP), Real Time Protocol (RTP) and Voice Over P2P

(VoP2P). The P2P architecture is shown in Fig. 1.5 with several such functions

being performed at different layers.

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 8

Figure 1.6: An unstructured P2P network

Based on the topology of the peers in the network, P2P networks are classified as

being Unstructured, Structured or Hybrid [17].

1.2.3 Unstructured Networks

Peers in an unstructured P2P network are organized in a random graph. The

links between nodes are established arbitrarily and hence there is no correlation

between a peer and the content being managed or shared by it. An example is

given in Fig. 1.6. Unstructured P2P networks use flooding, random walks or

expanding Time-to-Live (TTL) search on the graph to query content stored by

the participating peers [17]. If a peer wants to find some piece of information in

the network, the query has to be flooded through the network in order to find as

many peers as possible sharing that information. In such a system, the network

is easy to construct.

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 9

1.2.4 Structured Networks

In contrast to the unstructured P2P networks, structured P2P overlay networks

have a tightly coupled topology. The content in such systems is not placed at

a random peers but rather at specified location. Every data item in the overlay

network is assigned a (key, value) pair, and peers are organized into a graph that

maps each data-key to a peer. This enables efficient discovery of data items using

the key of a data element [18]. Structured P2P systems are based on Distributed

Hash Tables (DHTs), which are decentralized and distributed systems provide a

lookup service similar to a hash table.

Fig. 1.7 is an example of P-Grid overlay. Each pair of peers is responsible for

keys with the indicated prefix as shown in the labelled tree. In addition, each

peer has a routing table or cache that associates key prefixes with other peers’

identifiers. P-Grid algorithm uses the local routing table in the peer to match

the nearest prefix and it will performs separate checking to see whether the peer

is still online. To update routing table in P-Grid, it uses public key mechanism

for authenticating peer-to-peer interactions when needed. With the DHT data

structure and algorithm, peers can easily map data-keys to nodes. This facilitates

faster look up for any data object in a small number of overlay hops. These

networks provide a cooperative, stable, and robust mechanism for storing and

retrieving content. Some of the prominent structured P2P systems, which are

self-organized include the Chord, Kademlia, PASTRY etc.

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 10

Figure 1.7: Structured P2P network

1.2.5 Hybrid Networks

Hybrid P2P systems are not pure P2P networks. They combine the traditional

client-server model with the P2P model. Hybrid P2P systems require the presence

of one (or multiple) server-like central entity, without whose presence the network

will not sustain. An example of Hybrid P2P systems is given in Fig. 1.8. Hier-

archical approaches introduce the notion of “super-peers” or “ultra-peers”. The

majority of overlay responsibilities (related to routing, indexing, etc.) is assigned

to a small subset of these more powerful nodes. A super-peer may be chosen

based on the participation/contribution of the peer in the network, its uptime,

bandwidth, publicly visible IP address, etc.

The hybrid P2P networks are having two categories of peers called Super Node

(SN) or Ultra Peer (UP) and Ordinary Nodes (ON) or Normal Peers (NP).

The super peers are very powerful in terms of the capability of the peer and are

controlled by several ordinary peers and these ONs become peers in the overlay

network to maintain the P2P structure and to share the files. Once the super node

goes down then among one of ON as become the super node. These networks use

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 11

Ordinary
Node

Ordinary
Node

Ordinary
Node

Ordinary
Node

Super
Node

Super
Node

Ordinary
Node

Ordinary
Node

Ordinary
Node

Ordinary
Node

Ordinary
Node

Ordinary
Node

Figure 1.8: Hybrid P2P network

central control that is generally called as centralized networks. Example networks

are KazaA [8] and eDonkey [9] or eD2K, Direct Connect++ (DC++) [13].

P2P overlays may also be classified based on the dependency of peers [19]. Flat or

pure P2P networks treat all participating peers equally. That is, all peers enjoy

the same share of resources in the network and have similar responsibilities. In

the next section, we examine the most dominant P2P protocols in reality today

that are Gnutella, BitTorrent and Freenet for content delivery networks in terms

of their protocol design for providing an insight to the reader.

1.2.6 Gnutella

Gnutella was the first pure P2P file-sharing application and one of the popular

protocol. In this network, the peers join in an unstructured overlay using flooding

for routing. Most recent Gnutella protocol adopted a superpeer/ultrapeer model

which is of high-capacity and stable. All the queries are routed using a flooding

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 12

Table 1.1: Basic Message Types for Gnutella

Message Type Description

Ping Used to discover other peers in the Gnutella
network

Pong The response to a Ping. Provides the IP ad-
dress and part number of the host and ex-
tensions supported by the peer.

Query Search for a file. Specifies the minimum
transfer speed of the peer and the search cri-
teria. The search criteria is text, such as a
string of keywords.

QueryHit Response to a query. A peer returns query
hit responses to previously forwarded queries
back along the connection from which the
query was received.

Push Download a request for firewalled peers.

Bye Tell the remote host that the connection is
being closed.

Message ID Payload
type

TTL Hops Payload
length Payload

16-bytes 1-byte 1-byte 1-byte 4-bytes Variable-length

Figure 1.9: Gnutella Header

mechanism between superpeers. Each ultrapeer maintains connection to a set of

other ultrapeers. To join any peer in the Gnutella network, one has to contact a

known peer of the network and request to establish a Gnutella protocol connection

to the remote peer. Once a peer is connected to the network, it receives infor-

mation about other peers through the protocol messages as shown in Table 1.1.

Fig. 1.9 shows the header format of Gnutella and each message has the following

fields:

A. Message ID : A 16-byte field contains a globally unique message ID.

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 13

B. Payload type : A 1-byte field containing the message type.

C. Time to Live (TTL): A 1-byte field is decremented by each peer receiving the

message until the TTL is 0. This value is no larger than 3.

D. Hops : A 1-byte field incremented by each peer receiving the message and

that indicates the number of hops the message has travelled so far.

E. Payload Length : A 4-byte field containing the number of bytes in the re-

mainder of the message.

F. Payload : A variable-length field, the contents of which are message depen-

dent.

An example Gnutella network is shown in Fig. 1.10. Messages received by a

peer are forward to other peers that are connected to it. In this way, messages

are flooded in the network to ensure that it reaches it’s intended destination. To

control the scope of flooding of Gnutella messages, the TTL value is set in the

descriptor header specifying the number of times the message should be forwarded

before it can be discarded. When a peer receives a ‘ping’ message from a new peer

in the network, it replies back with a ‘pong’ message and decrements the TTL

value of the message. The ping message is forwarded to other neighboring nodes

which reply with a ‘pong’ and decrement the TTL value. Once the TTL value of

the message is zero, the message is dropped from the network [20]. Distributed

discovery of resources in the Gnutella P2P network works in much the same way

as sending ping/pong messages in the network; the initial query is generated

by a peer and sent to neighbor peers directly connected to it. These neighbor

peers evaluate and then forward the query to other neighbor peers. Peers that

receive the query message evaluate it against its own data store and if they have

resources that match the query respond back with a ‘QueryHit’ message to the

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 14

Figure 1.10: Searching and propagation of ping message in the Gnutella

original peer. Once the query initiator has aggregated the responses to its original

query, it initiates download of the resource by contacting the source peer in the

network. The Gnutella protocol does not support file download over its application

level protocol rather a target peer must contact the source peer directly using IP

routing to establish a HTTP connection to download the file .

1.2.7 BitTorrent

BitTorrent protocol is designed for distributing large files using mutual distribu-

tion of the pieces between a set of peers called as a swarm [21]. Peers join a swarm

to download a file and leave the swarm after the file download is complete. The

downloaded file is available at peer called as seed, which provides a .torrent file

corresponding to the content of the file. The .torrent file provides the information

about individual fixed-size pieces of the file called tracker. When a request comes

from a P2P client to a tracker, the tracker determines other peers that are already

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 15

Figure 1.11: BitTorrent file Swarm

in the swarm to access the piece of the content as shown in Fig. 1.11.

BitTorrent protocol has the following message types:

A. Choke : The initial state of a peer, which signifies that it is not sending data

to the neighbor peer.

B. Unchoke : The neighbor peer is to receive pieces from this peer.

C. Interested : The peer is willing to receive pieces from this neighbor.

D. Not interested : The peer is not willing to receive pieces from this neighbor.

E. Have : The piece that this peer, is most recently downloaded and verified.

F. Bitfield : A bitfield that has a 1 bit in each position, indicating pieces already

sent by this peer.

G. Request : Identifies a piece being requested for download.

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 16

H. Piece : Identifies a piece being sent by a neighbor peer.

I. Cancel : A flow control mechanism to cancel previously requested pieces,

typically used near the completion of a file download.

For file downloads to be successful in Bittorrent, atleast one peer (seeder) with

the complete file must participate in the swarm until the complete set of file pieces

have been fully disseminated in the network, as a result of which Bittorrent to

efficiently handles hot spots or requests for large files [22]. In the case of a large

file, the seeder must stay on-line long enough until atleast one peer has successfully

downloaded the file or subsets of the full set of file pieces in available on peers in

the network. Eventually as more peers in the system complete their download and

remain as seeders in the network, request for file start to complete quickly since

each new peer participating in a file swarm adds additional upload bandwidth.

1.2.8 Freenet

Freenet is a pure P2P decentralized network for security, anonymity and denia-

bility [21]. Freenet operates as an unstructured network of nodes that poll their

unused disk space to store data files in the network and cooperate to route re-

quest to the most likely physical location [23]. Nodes in Freenet are arranged in a

loosely structured overlay network similar to Gnutella. The nodes are connected

to a set of neighbor nodes which they route message to/from. Peers join the

Freenet network by discovering address of one or more existing members of the

network. Again like the case of Gnutella, discovery of known peers in the network

is not part of the protocol definition although out-of-band means downloading a

list of peers from a server or manually supply the Freenet node with an address

of peers to contact, are popular ways to setting up initial connection to the net-

1.2. OVERVIEW OF PEER-TO-PEER SYSTEMS 17

10

9
0

8

7

6

4

3
Data request

Request failed

Data replay

1

2

5

Start

Data

Figure 1.12: Freenet distributed key-based routing

work. After a remote Freenet node is contacted, a secure channel is built over the

TCP/IP transport layer and the new node sends a ‘Request.HandShake’ message

to the remote peer to initiate a Freenet connection. If the remote peer is active,

it can reply back with a ‘Reply.HandShake’ message indicating that it accepted

the connection request.

Searching in Freenet networks only support exact match queries using the file

keys. It is not possible to perform a range/blind search in the network. To search

in the network, a user posts a query to its local node containing the descriptive

text of the file to be retrieved from the network. The node hashes the descriptive

text to obtain a file key and the routing algorithm is used to determine the likely

location of the file in the system. If no match is found, a ‘Request.Data’ message is

routed to a next hop node till a ‘Reply.NotFound/Send.Data message’ is received

or when TTL value reaches 0. In the case that a ‘Reply.NotFound’ message is

returned, the originating node tries to reach the second next hop for the file key.

1.3. ISSUES WITH P2P OVERLY 18

Once a match for the file key is found, a Send.Data message, containing the file

requested, is routed from the source node to the querying node by back-tracing

along the path through which the query was routed which is as shown in Fig.

1.12.

1.3 Issues with P2P overly

In order to access and share files on ones computer within a P2P network, one must

open a specific TCP port through the firewall for the P2P software to communi-

cate. In effect, once firewall has opened the port, one can no longer be protected

from malicious traffic coming through it. Another security concern is that when

one downloads files from other peers, one doesn’t know for sure that the file is

legitimate. P2P systems lack the tools available to a centralized administrator,

making it much more difficult to implement security protections. Because the P2P

file sharing content represents a relevant traffic share, network operators and ser-

vice providers would like to detect, classify, regulate and may charge for carrying

this content. Moreover, P2P traffic has many characteristics that overlap with ma-

licious traffic; e.g., multiple persistent high-throughput flows (similar to spyware),

communication with centralized p2p trackers (similar to botnet communications),

large number of simultaneous peer connection requests, many of which are un-

successful due to peer-churn (similar to self-propagating malware infections and

port-scan attacks), communication on uncharacteristic ports, receiving requests

from a peer and forwarding those requests to neighbors immediately, trying to

connect using both TCP and UDP ports etc. Consequently, in addition to its

relevant network resource consumption, the growing of P2P traffic has serious im-

plications for network security devices such as intrusion-detection systems (IDS),

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 19

firewalls, policy/SLA enforcers etc.

1.4 Background Study about Machine Learning

In this thesis, we deliberate different Machine Learning and Fuzzy pattern classi-

fication approaches. ML is a powerful technique in the area of data mining which

finds useful patterns from the given data. ML techniques are broadly categorized

into two learning groups: Supervised and Unsupervised learning. Supervised

Learning uses a training data to classify unseen examples from the model file.

Unsupervised Learning doesn’t rely on the training dataset rather it groups

the instances into clusters that have similar characteristics.

1.4.1 Supervised Learning

Supervised learning is the machine learning task of inferring a function from la-

belled training data. The training data consists of a set of training examples. In

supervised learning, each example is a pair consisting of an input object (typically

a vector) and a desired output value. A supervised learning algorithm analyzes

the training data and produces an inferred function, which can be used for map-

ping new examples. An optimal scenario will allow for the algorithm to correctly

determine the class labels for unseen instances [24]. This requires the learning

algorithm to generalize from the training data to unseen examples in a reasonable

way. Examples of supervised learning algorithms are, Decision trees, Ensembles

(bagging, Boosting, Random Forest), k -NN, Linear Regression, Neural Networks

and Logistic Regression etc.

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 20

1.4.2 Unsupervised Learning

Unsupervised learning studies how systems can learn to represent particular input

patterns in a way that reflects the statistical structure of the overall collection of

input patterns. By contrast with Supervised Learning or Reinforcement Learning,

there are no explicit target outputs or environmental evaluations associated with

each input; rather the unsupervised learner brings to bear prior biases as to what

aspects of the structure of the input should be captured in the output [25].

The only things that unsupervised learning methods have to work with are the

observed input patterns xi, which are often assumed to be independent samples

from an underlying unknown probability distribution PI [x], and some explicit or

implicit a priori information as to what is important.

Density estimation techniques explicitly build statistical models (such as Bayesian

Network) of how underlying causes could create the input. Feature extraction

techniques try to extract statistical regularities (or sometimes irregularities) di-

rectly from the inputs. However unsupervised learning also encompasses many

other techniques that seek to summarize and explain key features of the data.

Many methods employed in unsupervised learning are based on data mining meth-

ods used to pre-process data. Examples of unsupervised learning algorithms are,

Clustering(k-means, mixture models, hierarchical clustering), ExpectationMax-

imization algorithm (EM), Principal Component Analysis (PCA), Independent

Component Analysis (ICA), Singular Value Decomposition (SVD).

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 21

1.4.3 Performance Metrics for Classification

To measure the performance of a classification algorithm, different metrics can be

used. The metrics employed in this work are briefly discussed below:

• Accuracy: Accuracy of the classifier is the ratio of sum of true positives

(TP) and true negatives (TN) and to the sum of true positives (TP), false

positives (FP), true negatives (TN) and false negatives (FN) for all classes.

Accuracy in % =
TP + TN

TP + FP + TN + FN
× 100 (1.1)

• Detection rate, a.k.a True Positive rate, is the ratio of TP over the sum

of TP and FN, or the ratio of relevant records retrieved to the total number

of relevant records.

Detection rate in % =
TP

TP + FN
× 100 (1.2)

1.4.4 Feature Selection Techniques

Feature selection is the process of reducing the number of features, with the aim

of removing those features from the learning algorithm which have low impact on

the classification problem.

Primary motivation behind feature selection is that the training data contains

many features which are either redundant to the classification problem, i.e., they

provide no further information than the currently selected features, or are totally

irrelevant to the classification problem itself. Consider the simple example of

features that may be extracted from network flows for the purpose of classification

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 22

of network traffic. Many features that can be extracted for this purpose- such as

average packet size, duration of the flow, number of unique ports used, etc. But

certain features are not at all relevant to the task of classifying network traffic. For

example, every TCP packet receives an acknowledgement in response. A count

for the number of ACK packets is not a good feature for classifying network traffic

because it cannot help in distinguishing between different applications.

Reducing the number of features provides direct benefit in terms of lesser training

time for the learning model. Such ‘feature selection’ is also known to reduce the

problem of ‘over-fitting’ or the variance error [26], and is also critical to overcome

the class imbalance problem [27]. It should be noted that although the final

accuracy of the learning algorithm will depend on the learning technique used,

suitability of the original features obtained (i.e., those obtained prior to use of

feature selection) etc., feature selection techniques are effective in optimizing the

performance of the classifier since the number of features used for classification

are reduced.

Correlation-based Feature Selection

Correlation-based Feature Selection (CFS) algorithm is a simple filter method.

Given a full set, it finds an optimal subset that contains features that are highly

correlated with class label and uncorrelated with each other. The ‘class label’ field

in the training set is the target value of that particular instance of the training

set [28].

CFS evaluates correlation of the feature subset on the basis of this hypothesis-

“A good feature subset contains features highly correlated with (predictive of)

the classification, yet uncorrelated with (not predictive of) each other” [26]. This

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 23

hypothesis relies on two metrics- one is the correlation of the feature with the class,

and other is inter-correlation amongst features. The ‘feature-class’ correlation

indicates how much the feature is correlated with its class, while ‘inter-correlation’

amongst features tells about correlation between any two features.

Ms =
kr̄cf√

k + k(k − 1)r̄ii
(1.3)

The above equation calculates the merit values (Ms) for each subset of k features.

For each value of k, all possible subsets are chosen and merit values are computed.

The subset giving the highest merit is the output of CFS. In Equation 1.3, rcf

is the average correlation between feature and class, and rii is the average inter-

correlation between two features. The heuristic metrics rcf and rii are calculated

as the Symmetrical Uncertainty (SU) [26] given in Equation 1.4.

SU = 2.0×
[
H(X) +H(Y)−H(X, Y)

H(X) + H(Y)

]
(1.4)

where H(X) is defined as entropy.

Entropy: In information theory, entropy (Shannon entropy) is a measure of

uncertainty or disorder. Shannon defined the entropy H of a discrete random

variable X with possible values x1, x2, ...xn and probability mass function P (X),

as given below:

H(X) = E[I(X)] = E[−ln(P (X))] (1.5)

Here, E is the expected value operator, and I is the information content ofX [29].

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 24

I(X) is itself a random variable or it can also be written as:

H(X) = −
∑

p(x)
xεX

log2(p(x)) (1.6)

Consistency-based Subset Evaluation

The consistency-based Subset Evaluation (CSE) search algorithm [30] evaluates

the feature subsets and finds an optimal subset of relevant features that are con-

sistent to each other. To determine the consistency of a subset, the combination

of feature values representing a class are given a pattern label. All instances of

a given pattern should thus represent the same class. A pattern is inconsistent

if there exist at least two instances such that their patterns are same but they

differ in their class labels. The overall inconsistency of a pattern p is calculated

by Inconsistency Count (IC):

IC(p) = np − cp (1.7)

where np is the number of instances of the pattern p, and cp is the number of

instances of the majority class of the np instances.

The overall consistency of a subset S is calculated using Inconsistency Ratio (IR).

IR is the sum of all inconsistency counts over all the patterns of the feature subsets

divided by the total number of instances in the dataset:

IR(S) =

∑
p

IC(p)∑
p

np
(1.8)

1.4. BACKGROUND STUDY ABOUT MACHINE LEARNING 25

Principal Component Analysis

Strictly speaking, Principal Component Analysis (PCA) is not a feature selection

but a feature reduction technique. PCA is a dimensionality reduction technique

which reduces the initial number of features to a smaller number of uncorrelated

features, which are calculated as the linear combination of the original features.

Since PCA does involve calculation of a smaller set of features from the original,

larger set, it also qualifies as a feature ‘selection’ technique.

PCA aims at reducing the dimensionality of the dataset. It transforms higher-

dimensional data into lower-dimensional space by identifying Principle Compo-

nents (PCs) which are uncorrelated and better captures the variability of the data

[31]. The first dimension is chosen so as to capture as much variability as possible.

The second dimension is orthogonal to the first, and it aims to capture as much

remaining variability as possible subject to the constraint imposed by the first,

and so on [32]. The mathematics behind PCA is briefly described here.

Given a N ×M matrix X. Where N is the number of training samples and

M is the number of features. The mean µ of the set of N training samples

(corresponding to a column vector) is given by

µ =
1

N

N∑
i=1

xi (1.9)

Matrix X is preprocessed such that each column has zero mean. This is done by

subtracting µ from each xi.

wi = xi − µ (1.10)

1.5. FUZZY LOGIC 26

Further, the covariance matrix is defined by

C =
1

N

N∑
i=1

wi.wi
T (1.11)

If λj, j = 1, 2 . . . n, are the eigenvalues of C, then the eigenvalues can be ordered

such that λ1 ≤ λ2 . . . λn, where n is the number of eigenvalues. Further, let matrix

Y = vj, j = 1, 2 . . . n be the eigenvectors of C. These are ordered in such a way

that ith eigenvector corresponds to the ith largest eigenvalue. Finally, the columns

of matrix XY are a linear combination of the original attributes. These new

attributes are called principal components [32]. The top k principal components

are chosen which capture the variability of the data up to a predefined threshold

(taken as 95% in the Weka machine learning tool [33]).

1.5 Fuzzy Logic

The term fuzzy logic was first introduced by Lotfi Zadeh (1956). Fuzzy logic is

a form of many-valued logic in which the truth values of variables may be any

real number between 0 and 1. By contrast, in Boolean logic, the truth values

of variables may only be 0 or 1. Fuzzy logic has been extended to handle the

concept of partial truth, where the truth value may range between absolutely true

and absolutely false or some intermediate truth degree [34]. In the analogy to

various definitions of operations on fuzzy sets (intersection, union, complement,

etc.) one may ask how propositions can be combined by connectives (conjunction,

disjunction, negation, etc.) and if the truth degree of a composed proposition is

determined by the truth degrees of its components, i.e. if the connectives have

their corresponding truth functions [35].

1.5. FUZZY LOGIC 27

Fuzzy logic and probability, both address different forms of uncertainty. While

both fuzzy logic and probability theory can represent degrees of certain kinds of

subjective belief, fuzzy set theory uses the concept of fuzzy set membership, i.e.,

how much a variable is in a set (there is not necessarily any uncertainty about

this degree), and probability theory uses the concept of subjective probability,

i.e., how probable is it that a variable is in a set (it either entirely is or entirely is

not in the set in reality, but there is uncertainty around whether it is or not). The

technical consequence of this distinction is that fuzzy set theory relaxes the axioms

of classical probability, which are themselves derived from adding uncertainty, but

not degree, to the crisp true/false distinctions of classical Aristotelian logic.

1.5.1 Fuzzy Classification

Fuzzy classification is the process of grouping elements into a fuzzy set [34] whose

membership function is defined by the truth value of a fuzzy propositional func-

tion.

A fuzzy class ∼ C = {i| ∼
∏

(i)} is defined as a fuzzy set ∼ C of individuals i sat-

isfying a fuzzy classification predicate
∏

which is a fuzzy propositional function.

The domain of the fuzzy class operator ∼ {.|.} is the set of variables V and the

set of fuzzy propositional functions ∼ PF , and the range is the fuzzy power-set

(the set of fuzzy subsets) of this universe, ∼ P (U):

∼ {.|.} : V x ∼ PF →∼ P (U) (1.12)

Accordingly, fuzzy classification is the process of grouping individuals having the

same characteristics into a fuzzy set. A fuzzy classification corresponds to a

1.5. FUZZY LOGIC 28

membership function µ that indicates whether an individual is a member of a

class, given its fuzzy classification predicate ∼
∏

.

µ :∼ PFxU →∼ T (1.13)

Here, ∼ T is the set of fuzzy truth values (the interval between zero and one). The

fuzzy classification predicate ∼
∏

corresponds to a fuzzy restriction “i is R” of

U. where R is a fuzzy set defined by a truth function. The degree of membership

of an individual i in the fuzzy class ∼ C is defined by the truth value of the

corresponding fuzzy predicate.

µ ∼ C(i) : = T (∼
∏

(i)) (1.14)

Intuitively, class is a set that is defined by a certain property, and all objects

having that property are elements of that class. The process of classification eval-

uates for a given set of objects whether they fulfil the classification property, and

consequentially are a member of the corresponding class. However, this intuitive

concept has some logical subtleties that need clarification. In classical logic the

truth values are certain. Therefore a classification is crisp, since the truth values

are either exactly true or exactly false.

In the next section we bring out the research motivations and contributions made

in this thesis.

1.6. RESEARCH MOTIVATIONS 29

1.6 Research Motivations

The motivation of this thesis is aimed at building an effective privacy preserving

P2P classifier. To preserve privacy, P2P classification should be payload oblivious.

The classifier distinguishes the network traffic into two groups: P2P and Non-P2P

traffic. Research questions and challenges that are addresses by this thesis are

listed below:

Research Questions:

1. What is the best approach to classify real-time P2P traffic?

2. What are the optimal features that are needed to classify P2P traffic?

3 Which Machine Learning algorithm is suitable for P2P traffic classification?

The list of challenges to classify P2P traffic are listed as below:

A: P2P traffic has many characteristics that overlap with Internet traffic.

B: P2P Networks are heterogeneous in nature.

C: Protocol encapsulation (traffic is tunnelled) over HTTP.

D: Applications allow users to encrypt traffic on HTTPS.

E: Applications support multiple service channels like IRC, Proxy et.

F: Applications run behind NAT/Firewall.

1.7. RESEARCH CONTRIBUTIONS AND ORGANIZATION OF THESIS 30

1.7 Research Contributions and Organization of

Thesis

The main contributions of this thesis lie in designing and implementing P2P traffic

classification based on statistical and host based analysis.

• Statistical Analysis: This approach relies on traffic’s statistical character-

istics to identify network applications. An assumption is made that traffic

at the network layer has statistical characteristics such as flow duration,

packet length, number of bytes per packet, packet arrival periodicity for a

number of Internet applications. The results thus, obtained stimulated new

classification techniques based on traffic flow statistical properties. To deal

with large datasets and multi-dimensional space of flow and packet features

is one of the reasons for the introduction of ML techniques in this thesis.

This thesis proposes multiple classifiers approach to improve the accuracy

of P2P traffic identification than a single classifier in (near) real-time. In

this approach different learning algorithms over the same dataset have been

combined and the detailed work of statistical properties to identify network

traffic using ML approach is discussed in Chapter 4 which also describes the

advantages and limitations of this approach.

• Host Based Analysis: Host-based approach monitors the behavior of an

individual host. In this approach the behavior of P2P applications were

studied. The network data is classified based on the connection patterns,

instead of looking at individual flows. The sequence of flows or packets to

and from a specific endpoint are matched with a set of predefined heuristics.

These heuristics do not require packet payloads. The detailed proposed

1.8. THESIS ORGANIZATION 31

heuristics approach and its limitations are discussed in Chapter 5.

1.8 Thesis Organization

The reminder of this thesis is organized as follows. Chapter 2 introduces the

P2P traffic detection techniques and methodologies. This chapter also provides

the taxonomy of P2P traffic detection, and the advantage and disadvantages of

each type of detection technique are also discussed. Data collection and prelim-

inary analysis of P2P traffic identification using signature based approach with

the help of Snort is discussed in Chapter 3. Chapter 4 presents the proposed P2P

traffic identification framework with statistical fingerprints using ML techniques,

with details regarding its design, architecture, and implementation. This chapter

also discusses a novel combined classifier that is proposed to identify P2P traffic

flows. The detection of P2P traffic classification using connection patterns with-

out packet payloads with a set of predefined heuristics on real-time datasets is

discussed in Chapter 5. A novel approach to detect P2P traffic based on behav-

ioral metrics using Fuzzy based approach is discussed in Chapter 6. Chapter 7

presents the P2P-aware firewall to block any suspicious behavior of IP address

based on the output of classifier modules. In this chapter the Firewall is con-

figured as in-line to generate automate rules and dynamically firewall rules and

Chapter 8 concludes the thesis.

Chapter 2

Literature survey

2.1 P2P Traffic Classification

This section describes the present classification approaches and methods. Network

traffic classification is, a method of classifying traffic data sets based on features

passively observed in the Internet traffic according to classification goals. In recent

times, several approaches have been proposed for Peer-to-Peer (P2P) traffic clas-

sification. Different techniques used for P2P traffic classification are port-based,

protocol-based, statistical flow or flow features and per host or social behavior of

hosts as shown in Fig. 2.1.

The goal of this thesis is to classify traffic into coarse classification, i.e., whether

traffic is transaction-oriented, bulk-transfer or P2P file sharing. Port based is

one of the traditional approach to classify P2P traffic using transport-layer (TCP

or UDP) port numbers, but as P2P applications began port randomization, this

approach became less accurate to classify P2P traffic.

32

2.2. CLASSIFICATION APPROACHES 33

Figure 2.1: Inclinations of Applications and features [1]

2.2 Classification Approaches

This section describes a classical approach used to profile P2P applications. There

are four different techniques in network traffic classification. A detailed summary

of these approaches of pros and cons are discussed in the subsequent sections. Fig.

2.2 illustrates network traffic classification approaches.

• Port-based Approach

• Payload-based Approach

• Connection Patterns at Transport Layer

• Flow feature based Approach

2.2.1 Port-based Approach

One of the early techniques to identify traffic at application layer was based on

port numbers. Internet Assigned Numbers Authority (IANA) has published list

of registered port numbers which is available in the web [36]. This method is

2.2. CLASSIFICATION APPROACHES 34

Figure 2.2: Classification Approaches

the basic and straight forward and accurate to detect P2P traffic within network

traffic. Most P2P applications have default port numbers on which they function.

Some commonly used P2P applications and their well-known port numbers are

given in Table 2.1.

With port based analysis it is easy to identify weather traffic is P2P or not. But

it has several limitations. Most of the P2P applications change their default port

numbers by allowing users manually to configure whatever they like. Madhukar

et al. [37] observed The P2P traffic was 30%-70% in University of Calgary.

Authors examined only TCP port numbers to classify P2P traffic. Their analysis

revealed that the port based approach is ineffective for classifying P2P traffic.

Additionally, many newer P2P applications begin to masquerade their port num-

bers over well-known ports like 80 and 443, to bypass the Firewalls or Intrusion

Detection Prevention System (IDPS). Recently, some applications like µTorrent,

PPStream, PPLive etc., have changed from using TCP to UDP, which is a chal-

lenge to traditional approaches. Hence, port-based analysis is less effective in

traffic identification.

2.2. CLASSIFICATION APPROACHES 35

Table 2.1: Well-known port numbers used by several applications

Protocol TCP Port UDP Port

Direct Connect 411, 412, 1025-32000 1025-32000

eDonkey 2323, 3306, 4242, 4500, 4501,
4661-4674, 4677, 4678, 4711, 4712,

7778

4665, 4672

Gnutella 6346, 6347 6346, 6347

Kazaa 1214 1214

Limewire 6346 6347

BearShare 6346 6346

eMule 4662 4672

BitTorrent 6881-6889 6881-6889

winMx 6699 6257

AIM-messages 5190 5190

AIM-video 1024-5000 1024-5000

ARES Galaxy 32285 32285

Blubster 41170-41350 41170-41350

FastTrack 1214, 1215, 1331, 1337, 1683, 4329

GoBoogy 5335 5335

HotLine 5500-5503

iMesh 80, 443, 1863, 4329

IRC 6665-6669

MP2P 10240-20480, 22321, 41170 41170

MSN-voice 6901 6901

Napster 5555, 6666, 6688, 6699-6701, 6257

Qnext 5235-5237 5235-5237

SoulSeek 2234, 5534 2234, 5534

WinMX 6699 6257

XMPP/Jabber 5222, 5269 5222, 5269

Yahoo-voice 5000-5001 5000-5010

2.2. CLASSIFICATION APPROACHES 36

2.2.2 Protocol/Packet-level/Payload Based Approach

To overcome the limitations of the previous approach, an accurate classification

requires payload examination. It monitors traffic passing through the network and

identifies byte strings associated with an application or perform more complicated

syntactical matching. The most payload based approaches compare each packet

content to a set of known signatures (pattern matching) from the database. It

is an accurate approach for P2P traffic classification, but examining payload is

an arguable methodology due to privacy concerns to an individual. Examining

payload technology is referred as Deep Packet Inspection (DPI), which requires

full packet payloads. There are several commercial and open-source tools available

in the research community to identify the P2P traffic according to signatures and

these tools map few Bytes from every packet payload written in some regular

expression format.

Many researchers have developed P2P traffic identification techniques using sig-

nature based approach. Gummadi et al. [38] proposed extraction of application

signatures to characterize the workload of KaAaA. They do not provide any accu-

racy and scalability of their signature generation. Sen et al. [39] have generated

for five most popular P2P protocols by analyzing application-level signatures of

Gnutella, eDonkey, DirectConnet, BiTorrent and KaZaA protocols with high ac-

curacy. Their approach improved the accuracy of classification, but the signature

discovery is poor and not suitable for real-time analysis and the signatures are

generated only for TCP but not for UDP. The signatures are manually generated

using the off-line tools. Madhukar et al. [37] extracted signatures from most pop-

ular P2P applications: Gnutella, BiTorrent and KaZaA. Their approach uses few

packets and extracted simple signature to accurately identify P2P applications.

2.2. CLASSIFICATION APPROACHES 37

Recently Park et al. [40] proposed automated generation of applications-level

signatures, which do not need any prior information about the protocol.

Few of these include, L7-filter [41], Cisco’s NBAR [42] , Juniper’s netscreen-IDP

[43], QOSMOS’ [44], nTop [45] , Open-DPI [46] and Snort [47]. These tools

monitor every packet payload and raise alerts when the predefined signature is

matched. With this type of classification technique we can overcome the demerits

of port based classification techniques. But, when P2P applications are evolving

continuously and their signatures can also change, we need to keep monitoring

and update new signatures observed. However, this type of classification has

limitations like, if the P2P applications use tunnels or encrypted traffic, it is

difficult to detect it. Another limitation of this technique is at a high bandwidth it

needs more resources in terms of hardware requirements like CPU speed, memory

size etc.

2.2.3 Connection Patterns at Transport-Layer

Karagiannis et al. [48] proposed a novel-approach for classifying P2P traffic, based

on the transport-layer connection patterns. It doesn’t require payload analysis.

Rather, the analysis based on IP-Port pairs. Irrespective of application level data,

the connection level patterns remain the same. It relies on two major heuristics

to identify P2P traffic.

• Look for source-destination IP pairs that concurrently use both TCP and

UDP. If such a pair exists then they are marked as a P2P flow.

• Examine all source IP, source Port and destination IP, destination Port

pairs. Look for all pairs for which the number of distinct IPs communicated

2.2. CLASSIFICATION APPROACHES 38

is equal to the number of distinct ports communicated.

Limitation to their approach does not include UDP packets, the effectiveness of

TCP/UDP heuristics is minimal and also the traces contain TCP - SYN, FIN

and RST packets, so data packet size cannot be utilized. Madhukar et al. [37]

proposed a sliding-window to observe the flows. In their approach, they eliminated

all flows use standard port numbers of NonP2P applications to create IP, port

pairs to identify P2P applications. Unfortunately, this approach fails to detect

port masquerading. Another limitation is that the IP-port heuristic is ineffective

when an IP host communicates with another IP host on a single port, which is

actually identified as a P2P behavior over UDP.

Sen et al. [49] proposed P2P traffic identification using flow-level records and

analyzed these records with Zipf’s distribution. They studied three popular P2P

systems – FastTrack, Gnutella and DirectConnect. They separated signalling traf-

fic from the data traffic to accurately identify P2P applications. The key finding

in their approach is that the traffic volume generated by individual host is ex-

tremely variable, which is less than 10% of the IP addresses contribute around 99%

of the total traffic volume. The traffic distribution is skewed for both upstream

and downstream traffic at the prefix, and Autonomous Systems (AS) suggested

coarse-grained traffic management.

Karagiannis et al. [50] proposed a traffic classification approach based on host be-

havior at transport layer. They looked at a multilevel approach to classify traffic

according to the applications that generate them. Their traffic classification ap-

proach uses host behavior first and then social, functional, and application level

behavior. At social level, their approach identifies hosts with similar behavior

which is evident from the interactions a host makes with other hosts. At a func-

2.2. CLASSIFICATION APPROACHES 39

tional level, it identifies what function a host plays in the network, i.e. either a

provider or a consumer of the service, or both. At an application layer, they look

for transport layer interactions to identify traffic.

Hurley et al. [51] proposed a set of heuristics for P2P traffic and web traffic iden-

tification by using host behavior. They could identify 90% of the flows accurately

that go out and come into a host. The heuristics were developed by using infor-

mation like source host, destination host, connections between the hosts, and the

flow activity like how many packets per flow etc. Yan et al. [52] proposed P2P

traffic identification scheme based on both host behavior and flow behavior. First

they identified whether a host is running a P2P application by matching it’s be-

havior with a set of predefined rules like the number of ports open, number of IPs

connecting, number of failed connections etc. Next they refined this identification

by comparing the statistical features of each flow in the host with several flow

features’ profiles like flow duration, flow volume etc. The identification accuracy

was above 90%.

John et al. [53] proposed heuristics to classify Internet traffic based on network

applications that include P2P applications along with other types of applications.

The heuristics used were based on connection patterns between two hosts. Heuris-

tics like usage of both TCP and UDP concurrently, a particular port usage, ratio

of IP/port pairs etc. were used to achieve identification accuracy of upto 99.8%.

Perenyi et al. [54] derived a set of heuristics from the robust properties of P2P

traffic collected or revealed from a traffic aggregation. They also presented a

traffic analysis based on behavior of active users, ratio between P2P users and

normal users etc. and observed that the daily profile of P2P traffic intensity is

less variable.

2.2. CLASSIFICATION APPROACHES 40

Figure 2.3: Flow example, Host A opens HTTPS (443), HTTP (80) and default
port for Kazaa (1214). Host A and Host B packets are grouped into either single
TCP connection or two bi-flows or four flows. On the other hand, Host A again
opens new port on both TCP and UDP, packets can be grouped into single TCP
and UDP connection.

2.2.4 Flow based traffic Classification: Machine Learning

Researchers have also studied approaches that are independent of packet content,

such as statistical techniques based on network flows. Another approach is to

identify P2P traffic by examining the flows that can vary from one direction of an

individual application to bidirectional between hosts. A typical flow has 5-tuples

i.e., source IP, destination IP, source port, destination port, and protocol. Fig.

2.3 illustrates different types of flows between hosts. In section 1.4 we discussed

the background study about machine learning (ML). This section focus on the

past research work to identify P2P traffic using ML.

Nguyen et al. [55] presented application of several ML algorithms for IP traffic

identification with several single classifiers, which justify the usage of ML algo-

rithms for any type of traffic classification work. A wide variety of techniques

2.2. CLASSIFICATION APPROACHES 41

have been practised to classify traffic either in backbone or in the age-networks.

J. Li et al. [56] proposed C4.5 and REPTree algorithms to classify the traffic

as P2P or Non-P2P and then compared with K-Means algorithm which is an

unsupervised technique. The authors have derived features in the following way:

first, they aggregate the packets into flows with five-tuples, and then the features

like source port, destination port, flow duration, total packets, total bytes, packet

inter-arrival time, packet payload, packet length are extracted from first to eight

packets. The traffic traces considered in their work were from applications like

DNS, HTTP, POP3, FTP, Streaming, BitTorrent, eMule, Game, PPlive, MSN,

KaZaa, Gnutella, Skype etc. They have built up a dataset by randomly sampling

traffic from these traces to eliminate bias. Their results showed higher accuracy

with decision tree (C4.5) than REPTree and K-Mean clustering algorithms.

Y. Zhang et al. [57] proposed a supervised Machine learning algorithm to classify

different P2P applications. The authors have computed features like transport

layer protocol, payload length, and difference of control packets proportion be-

tween two directions. Authors have used categories of applications: File-sharing

applications (Bit torrent, eMule, Thunder), P2P streaming media (PPLive, PP-

Stream) and P2P voice application (Skype). From the above features they built

a decision tree with C4.5 algorithm and measured the classifier accuracy which

came out to be 96.7%. H. Xu et al. [58] proposed P2P traffic identification us-

ing nave Bayes and decision tables. Features like PUSH packets, ACK packets,

Data packets length etc. are extracted from the flow using NETMATE [59] tool.

Using WEKA [33] tools feature selection algorithm, they pruned the selection to

eight features out of forty four features extracted by NETMATE. Their traffic

identification accuracy rate was 97%.

2.2. CLASSIFICATION APPROACHES 42

An alternative flow based approach is to accurately identify P2P traffic using

ML techniques, which is promises to classify P2P network traffic. Each flow is

characterized by the same set of features but with different feature values. ZHAo

et al. [60] proposed real-time feature selection in traffic classification which is the

most important step in ML. Feature selection not only improves the accuracy, but

also improves the computational performance. In their approach, they calculated

first quartile of bytes in packet, control bytes, total bytes of IP packet and inter-

arrival time features from every flow. Their experimented result shown that,

C4.5 achieves greater than 96% accuracy and RandomForest achieves greater than

99%. The tree based algorithms always either over-fit or under-fit the data if the

dataset is imbalanced i.e., the variance error is more which is the limitation of

their approach.

H. Chen et al. [61] proposed traffic identification using supervised ML algorithms:

support vector machine (SVM). The authors used a proprietary tool called as Om-

niPeek [62] to collect the traffic and extract the features. The features extracted

include traffic duration, average traffic speed, average packet length, ratio of av-

erage TCP packet length to that of UDP, ratio of TCP traffic to UDP traffic, etc.

Their experiments used several SVM parameters to measure the accuracy of differ-

ent attributes sets. The RBF kernel with SVM method achieved an accuracy rate

of 99.54%. J. Erman et al. [63] identified traffic using unsupervised techniques,

such as K-Means and DBSCAN. With K-Means, authors obtained 85% accuracy

and with DBSCAN it is 75%. To accurately identify traffic, authors extracted

flow statistics form their flows with features like total number of packets, mean

packet size, mean payload size, bytes transmitted for bi-flow etc.

C. Gu et al. [64] proposed a novel P2P traffic classification scheme using back

2.2. CLASSIFICATION APPROACHES 43

propagation neural network learning algorithm. They have proposed Genetic

Algorithm (GA) for best feature selection to reduce the time complexity during

the training phase. To identify the P2P flows, authors have derived features like

total fpackets, total bpackets, etc. They achieved an accuracy of 86.75%. Ang et

al. [65] proposed an adaptive classification ensemble framework for P2P networks,

using Support Vector Machines (SVM) to adjust the Voting scheme dynamically

by combining a subset of classifiers according to the test data. Dong et al. [66]

proposed multi-classifier model for traffic classification using C4.5, Näıve Bayes

and SVM as base classifiers with Voting as the fusion scheme. They showed that

multi-classifier models with fusion improved accuracy over single classifier models.

Wang et al. [67] proposed voting scheme as ensemble learning to identify traffic

from flows to dynamically update the on-line classification module when changes

occurred in the off-line module for every few hours and days. Wang et al. [68]

proposed traffic identification from flows using randomly selected five packets

set. During the feature extraction, authors did not use inter-arrival time while

achieving better accuracy with few packet sets. Dan et al. [69] proposed the

voting scheme as ensemble learning, with base classifiers as DTNB, ONER, and

BPNs and their experimental results showed that traffic identification with 97.27%

of average precision rate.

Traditional ML techniques, i.e using a single ML classifier (ex: C4.5, SVM, etc.),

build a model on training dataset and validate over test dataset. These classifiers

may over-fit or under-fit the training data that results in more false positives

and false negatives when compared to ensemble learning techniques. More details

of single classification techniques can be found in [56, 57, 58, 61, 63, 64, 55,

65]. Authors in [66, 67, 69] proposed multi-classifier technique, namely V oting

2.2. CLASSIFICATION APPROACHES 44

Table 2.2: Comparison of network traffic classification approaches

Approach Characteristics Pros Cons

Port-based Relies on port
numbers

Easy to imple-
ment and less
computational
complexity

Inaccurate due
to random port
numbers

Payload-based Relies on packet
payload

Highly accurate may not work
for encrypted
traffic, requires
high computing
resources, and
accurate when
signatures are
known

Connection
Patterns

Uses packet
headers

Applicable for
encrypted traffic

Less accurate
when compared
to payload based

Flow based accumulate
packets into
flows and ex-
tracts flow
metrics

Applicable
for encrypted
and identify
unknown ap-
plications from
target classes

Needs machine
Learning algo-
rithms which
increases the
computational
cost in terms
of model build
time.

scheme, which combined multiple traditional models to obtain better classification

accuracy to discriminate between P2P and NonP2P traffic. The drawback of

V oting scheme is that by increasing the number of base classifiers, the performance

degrades. Table 2.2 summaries the comparison of these approaches.

Next Chapter 3 of this thesis covers the data collection and preliminary analysis

to understand the underlying communication of peer-to-peer applications. In

the first phase, data collection, ran several P2P applications individually in a

controlled environment on our testbed. Second phase, we analyzed the captured

2.2. CLASSIFICATION APPROACHES 45

P2P traffic based on the port and signature based approaches. We created our

own set of Snort rules, to identify whether the host/IP address is P2P or Nonp2p.

Chapter 3

Data Collection and Preliminary

Analysis

3.1 Data Collection and Preliminary Analysis

BITS-Pilani Hyderabad Campus network furnishes services to three thousand to

four thousand on-campus students along with faculty and guest users every day,

providing wired as well as wireless connectivity in the various parts of the BITS-

Pilani Hyderabad campus. Internet connectivity is facilitated in the BITS-Pilani

Hyderabad Campus via leased lines drawn from two Internet Service Providers

(ISPs). The BITS-Pilani Hyderabad Campus network consists of a three-tier

architecture, consisting of two core switches one for fall-back to another, multiple

distribution switches and additional access switches with a 10 Gb backbone fibre-

optic. This architecture is shown in Fig. 3.1 and Fig. 3.2. Wireless connectivity

is also available in the academic blocks and other designated areas within the

campus by deploying Wi-Fi access points and a wireless controller. Access to

46

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 47

Figure 3.1: Network architecture of BITS-Pilani Hyderabad Campus

different Internet-based services hosted by the BITS-Pilani Hyderabad Campus

is facilitated in a ‘DMZ’ (demilitarized zone). The DMZ hosts, Web (HTTP(S))

service, FTP service, and the Institutional email service (SMTP) of BITS-Pilani

Hyderabad Campus.

The network is protected by a commercial Unified Threat Management (UTM)

system which controls the ingress and egress Internet traffic. The UTM performs

the task of traditional Intrusion Detection/Prevention Systems (IDS/IPS). Along

with this, it also plays the role of performing anti-virus, anti-malware and spam-

filtering services. It is instrumental in performing URL filtering and detecting

potentially suspicious websites hosting malware, spyware, adware etc.

Large number of users in a large scale university contribute data to such networks

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 48

Figure 3.2: Network architecture of BITS-Pilani Hyderabad Campus

which conglomerate to huge amounts of data every day. Web-based traffic related

to web browsing, social networking, search engines and education related material

forms the major backbone of Internet traffic. P2P based applications,although

popular amongst students, play a pivotal role in consuming large amounts of

Internet bandwidth. Although these applications are restricted by the UTM, it is

observed that students are still able to override the UTM and run many such P2P

applications on the University network. This might be attributed to the fact that

many such applications use encryption (thus,making signature detection difficult)

and randomize their port numbers (thus, localizing port numbers by filtering is

difficult).

The average network traffic generated is one Terabyte per day in our campus. A

snapshot of the traffic logs of one day (20 August 2014) as captured by the UTM,

supplemented with the distribution of different types of applications running in

the network, is given in Fig. 3.3. From the graphs, it is evident that the majority

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 49

(a) Internet Usage Bar Graph (b) Distribution of protocols

Figure 3.3: Logs for Internet traffic generated on one day at the university of the
authors

of the traffic generated in the campus is primarily web-based (HTTP/HTTPS).

The testbed shown in Fig. 3.4 is made up of both wired and wireless nodes at

BITS Hyderabad Information Security Lab, Distributed Systems Lab and two of

our hostels. Network traffic is mirrored from the border router and captured at

the storage server. Due to the real-time traffic, we need to guard the sensitive

information of users in the packets. Due to magnanimous amount of packets

per day, processing which would otherwise take enormous amount of time can be

limited by dropping packets without any privacy threat associations. To ensure a

secure communication through this channel, filtering of HTTPS packets is ensured.

The capture was segregated in accordance to the external IP addresses with which

the communication was taking place from an internal hosts. It was noticed that

most of the traffic content consisted of online video streaming and software up-

dates from online repositories following which this traffic was also dropped. The

P2P packets’ payload and extracted signatures of these applications were thor-

oughly analysed Using AnonTool [70], we anonymized all the packets which were

mapped with extracted signatures.

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 50

Figure 3.4: Testbed for impact analysis of P2P on IPS/IDS

In the inception, payload-based identification of P2P traffic using an open-source

IDS Snort tool was carried out. To detect P2P traffic, extracted signatures from

multiple P2P applications from network traces obtained from our campus testbed

were prepared. A sample of these signatures is given in Table 3.2. A snapshot of

our experiments and results with Snort is also shown Fig. 3.5.

Another significant research fact to be pursued in this work is to assess the impact

of P2P traffic on the performance (accuracy and speed) of traditional network

Table 3.1: P2P Dataset

Application Amount of Data Source of data

Direct Connect 20 GB Generated on testbed

eMule 39 GB University of Georgia

FrostWire 11 GB University of Georgia

µTorrent 53 GB University of Georgia

Vuze 19 GB University of Georgia

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 51

Table 3.2: Application Signatures

Application TCP UDP

DC++ $Send, $Connect, $Get, $Search,
$MyINFO, $MyNick, $Hello, $Quit,
$ADCGET, $ADCSND, $Supports,

$dcplusplus

$SR, $Pin

BitTorrent GET, /announce, info hash=,
peer id=, event=, 0x13 BitTorrent

protocol

-

GNUTella GNUTELLA, GNUTELLA
CONNECT, GNUTELLA OK

GND

eDonkey Server 3A eMule -

Fasttrack Get /.hash 0x270000002980

eDomkey2000 0xe319010000, 0xc53f010000 0xe319010000, 0xc53f010000

Ares GET hash:, Get sha1: -

KazaA kazaa, kazaaClient, KazaA, X-Kazaa,
48 54 54 50 2f 2f 31 2e 3120 32 30 30

20 4f 4b

-

security devices like firewalls and IDSs. Due to relatively large volume of P2P

traffic, its impact on these devices is quite significant. However, this impact is

not well deciphered and consequently, solutions to neutralize this impact does not

exist. The proposed testbed (Fig. 3.4) is used to quantify the impact of P2P

traffic on network security devices and develop solutions to mitigate this impact.

We use this testbed as a reference throughout the thesis.

In the Information security lab, attack traffic was simulated by creating binaries

of bots as well as by replaying existing bot datasets. Attacks generated included

port-scans, ICMP ping of death, TCP SYN floods and UDP floods [71]. For

the purpose of creating malicious traffic, binaries of bots were obtained from

innumerable sources. Virtual Machines with Windows OS were deployed on Linux

machines and these VMs were infected with the binaries of bots. This set-up was

created in a VLAN segregated from the BITS network. It has been observed in

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 52

Figure 3.5: Payload-based detection of P2P traffic using Snort IDS

[72] that in order to successfully run security-related experiments in a virtualized

environment, the users must be provided privileged access rights on the virtual

machines to execute security or network tools. This facility was furnished to all

users of the system and secure remote connectivity was also facilitated. Since bots

run in a virtualized environment, and that too on a VLAN separated from the

rest of the network, the testbed exercises control over the effects of the generated

attack and background traffic [73]. However, the systems infected with bots were

allowed communication with the Internet. In Fig. 3.6, a snapshot of this lab set-

up is provided showing VMs running on a controlled environment running P2P

applications and NonP2P applications. We deliberately ran machines P2P to see

the efficacy of our detection algorithms which are presented in later chapters.

Distributed system laboratory at BITS, Hyderabad, runs application servers as

well as some of the peers for P2P clients. This laboratory also includes Database

server(s) that stores the data and monitors logs of various events (particularly

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 53

Figure 3.6: Virtualized Environment running P2P & NonP2P traffic at BITS
Pilani, Hyderabad campus

Syslog service) generated from our experiments. Multiple P2P applications were

executed which include file sharing applications as well as media streaming. In

addition, simulation of non-P2P traffic using freely available simulators like mail

server and web-server loads are also performed.

Anonymized and prioritized traffic from BITS hostels and labs is relayed to In-

formation Security Lab for P2P and IDS analysis. Wired as well as wireless data

collectors were deployed for this purpose. Info-Sec lab also has a Linux based

firewall, which was integrated with IDS to thwart attacks detected by it in real

time. Moreover, based on IDS triggers, solutions were formulated to blacklist

compromised systems from getting access to wired/wireless network.

Inclusion of ‘live Internet traffic’ is taken for analysis of IDS and P2P classifiers.

This traffic is mirrored from the border router and made available in the Info-

Sec lab. Once an integrated solution for IPS was made available, we use our

firewall (in Info-Sec lab) to carry all ISP bound traffic while enforcing the IDS/IPS

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 54

functionality in real time.

Preliminary experiments were carried out using existing PCs in the Info-Sec lab

for detection of P2P traffic based on signature-based detection using Snort. Snort

performs real-time protocol analysis, content searching and content matching on

Internet Protocol (IP). As part of the experiment(s), few P2P applications like,

multiple versions of Direct Connection (DC++) and BitTorrent traffic were taken

into consideration. The reason for considering different versions of DC++ is

because of the varying nature of signatures from version to version. For these

two applications well defined rules set to detect its traffic were created. Snort

can be configured in three modes: sniffer, packet logger and Network Intrusion

Detections System (NIDS). When Snort is in NIDS, it monitors traffic, analyses

it and raises alerts as per the user defined rule base. To monitor the alerts Basic

Analysis and Security Engine (BASE) is used which happens to be a third party

tool that interfaces with Snort. Fig. 3.5 captures our experimental results showing

the alerts that were raised.

The following signatures were used to identify several applications (Torrents,

KaZaA and DirectConnect) using Snort IDS:

Torrent Signatures:

alert $HOME_NET any <> $EXTERNAL_NET any (msg: "P2P Tracker Site";

content: "GET"; sid:10000001: rev:1;)

alert $HOME_NET any <> $EXTERNAL_NET any (msg: "P2P Torrent

metafile Download"; content: "d8\:announce"; flow:established,

to_server; classtype: policy-violation; sid:10000002: rev:2;)

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 55

alert udp $HOME_NET any <> $EXTERNAL_NET any (msg: "P2P torrent

DHT ping";content:"d1\:ad2\:id20\:"; classtype:policy-violation;

sid:1000003; rev:3;)

KaZaA Client Signature:

alert tcp $EXTERNAL NET any <> $HOME NET any (flow:from client;

content:"|48 54 54 50 2f 2f 31 2e 3120 32 30 30 20 4f 4b|";

offset:0; depth:15; content:"KazaaClient";session:printable;

msg:"Request of a shared file with KaZaA";sid:1000004;)

alert tcp $EXTERNAL NET any <> $HOME NET any (flow:from client;

content:"X-Kazaa";

offset:0; depth:07; content:"X-Kazaa";session:printable;

msg:"Request from P2P-Agent";sid:1000005;)

alert tcp $EXTERNAL NET any <> $HOME NET any (flow:from client;

content:"KaZaA"; offset:0; depth:05; content:"KaZaA";

session:printable; msg:"Request from X-Kazaa-Network";sid:1000006;)

Direct Connect Signatures:

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Send";

offset:0; depth:5; classtype:dcconectionsend; sid:100201;

priority:9;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Connect";

offset:0; depth:8; classtype:dcconectionconnect; sid:100202;

priority:10;)

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 56

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Get";

offset:0; depth:4; classtype:dcconectionget; sid:100203;

priority:11;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Search";

offset:0; depth:7; classtype:dcconectionsearch; sid:100204;

priority:12;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$MyINFO";

offset:0; depth:7; classtype:dcconectionmyinfo; sid:100205;

priority:13;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$MyNick";

offset:0; depth:7; classtype:dcconectionmynick; sid:100206;

priority:14;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Direction";

offset:0; depth:10; classtype:conectiondirection; sid:100207;

priority:15;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Hello";

offset:0; depth:7; classtype:dcconectionhello; sid:100208;

priority:16;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Quit";

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 57

offset:0; depth:5; classtype:dcconectionquit; sid:100209;

priority:17;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$Lock";

offset:0; depth:5; classtype:dcconectionlock; sid:100210;

priority:18;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (content:"$key";

offset:0; depth:4; classtype:dcconectionkey; sid:100211;

priority:19;)

alert udp $HOME_NET any <> $EXTERNAL_NET any (content:"$SR";

offset:0; depth:3; classtype:dcconectionsr; sid:100212;

priority:20;)

alert udp $HOME_NET any <> $EXTERNAL_NET any (content:"$Pin";

offset:0; depth:4; classtype:conectionpin; sid:100213;

priority:21;)

Gnutella Signatures:

alert tcp $HOME_NET any <> $EXTERNAL_NET any (flow:from client;

content:"GNUTELLA"; offset:0; depth:08;

classtype: Gnutella Connection; sid: 3000001; priority:30;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (flow:from client;

3.1. DATA COLLECTION AND PRELIMINARY ANALYSIS 58

content:"GNUTELLA CONNECT"; offset:0; depth:08;

classtype: Gnutella Connection Request from Client;

sid: 3000002; priority:31;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (flow:from server;

content:"GNUTELLA OK"; offset:0; depth:11; classtype:

Gnutella Connection Found; sid: 3000003; priority:32;)

alert udp $HOME_NET any <> $EXTERNAL_NET any (flow:from server;

content:"GND"; offset:0; depth:03; classtype: Gnutella Connection

Request Accepted; sid: 3000001; priority:33;)

Fasttrack Signatures:

alert tcp $HOME_NET any <> $EXTERNAL_NET any (flow:from client;

content:"Get /.hash"; offset:0; depth:10; classtype: Fattrack

connection Request; sid: 5000001; priority:41;)

alert udp $HOME_NET any <> $EXTERNAL_NET any (flow:from server;

content:"|27 00 00 00 29 80|"; offset:0; depth:11; classtype:

Fattrack over UDP; sid: 5000002; priority:42;)

Ares Signatures:

alert tcp $HOME_NET any <> $EXTERNAL_NET any (flow:from client;

content:"GET hash:"; offset:0; depth:08; classtype: Ares requests

hash of file list from peers; sid: 6000001; priority:51;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (flow:from client;

3.2. SUMMARY 59

content:"GET sha1:"; offset:0; depth:08; classtype: Ares requests

sha1 of peers list; sid: 6000002; priority:52;)

3.2 Summary

In this chapter we have introduced the taxonomy of P2P traffic identification

techniques using signatures applied in P2P detection in detail. The usage of P2P

applications is increasing day by day and which allows more P2P applications and

more users sharing their content.

The P2P packets’ payload and extracted signatures of these applications were

thoroughly analysed This approach accurately identifies P2P traffic. To detect

the signatures, we search few strings of the packets’ payload and maps against

the signature database. In this thesis, we extracted the signatures from popular

P2P applications. However, signature based detection also has its drawbacks: (1)

if the P2P applications use tunnels or encrypted traffic, it is difficult to detect

it. (2) Another limitation of this technique is at a high bandwidth it needs more

resources in terms of hardware requirements like CPU speed, memory size etc. In

order to alleviate the problem of high false positive rate in P2P traffic detection we

propose the an multi-classifier approach which combines several Machine Learning

algorithms that can have high performance and efficiency. In the next chapter,

Chapter 4, we present the proposed framework for P2P traffic identification.

Chapter 4

Design of a privacy-preserving

P2P traffic classifier

4.1 Network Traffic Classification

With increase of network bandwidth, network behavior becomes more complex

and produces a myriad of new network applications. Traffic identification and clas-

sification are becoming increasingly important for network administrators. Net-

work engineers’ tasks comprise of many responsibilities, e.g., meeting bandwidth

requirements of customers or services, monitoring the bandwidth consumption of

the users,if necessary, implementing security rules and performing accurate ac-

counting for billing issues [74]. To accurately identify network traffic it is vital

to provide best-effort delivery to the end users, i.e traffic shaping/policing, traffic

prioritization, and quality of service(QoS). On the other hand file sharing ap-

plications, particularly, Peer-to-Peer applications, are designed to use available

bandwidth which impact the quality of Service (QoS) to other applications run-

60

4.1. NETWORK TRAFFIC CLASSIFICATION 61

ning in the network.

These applications are indecipherable by following traditional policies. On fixed

networks, around 27% of aggregated traffic (upstream and downstream) is carried

by P2P (file sharing applications) networks, as reported by Sandvine [5]. The

impact of P2P network traffic is increasing day by day. It is clogging the ISPs’

bandwidth and becoming the nucleus of many attacks since worms, viruses etc.

are launching attacks by exploring vulnerabilities in these applications.

It is an important problem to classify the P2P traffic from the regular Internet

traffic and this is a uphill task to discriminate between P2P to Non-P2P traffic

because of the evolution of P2P networks and applications. The P2P applications

carry the traffic which is similar to web traffic at transport layer either TCP/UDP

or both. Many research papers have been published, but till now, challenges to

classify the P2P traffic remain unresolved.

P2P traffic identification is bifurcated into two techniques namely:

1. Signature based technique – It maps few bytes (referred as signatures) of the

payload of every packet to verify whether the packet is P2P or Non-P2P at the

expense of more computation power (in-terms of CPU and RAM) and thus leading

to privacy concerns which form the bottleneck of this technique.

2. Anomaly based technique – It observes the behavior of the application/network

and then extracts relevant characteristics/features from the network traces. It

subsequently applies statistical methods on these features to classify the traffic by

using Machine Learning (ML) technologies.

4.2. SYSTEM OVERVIEW 62

4.2 System Overview

To identify P2P traffic, we employ statistical characteristics of TCP and UDP

protocols. We constructed 5-tuple (src ip, src port, dst ip, dst port, protocol)

flows from these two protocols and then extracted statistical features from the

network traces. We attempt different feature selection techniques to reduce the

number of features required to train the model i.e reducing the model build time

and achieve optimized training model.

Stacking and Voting ensemble learning techniques were used to improve the pre-

diction accuracy (Detection rate) with base classifiers modelled using Machine

learning (ML). Network traffic traces were collected in the testbed at our labo-

ratory. A Java based module with the jNetPcap library [75] is used to extract

the features from the captured network traces. The performance comparison of

two different feature selection algorithms - Consistency-based Subset Evaluation

(CSE) and Principal Component Analysis (PCA) techniques is discussed in Sec-

tion 4.2.2 and pictorial representation is shown in the Fig. 4.4 and Fig. 4.5.

Classification: Classification is a technique where we assign a decision class

label to a set of objects described by a set of attributes. The set of learning ex-

amples S = < x1, y1 >,< x2, y2 >, ..., < xn, yn > for some unknown classification

function f : y = f(x)

Xi =< xi1, xi2, ..., xim > where m is number of attributes and y is the class label.

Need of Multiple Classifiers: Choosing an appropriate algorithm for clas-

sification is not a straightforward approach because there is no one algorithm

achieving the best accuracy for all situations.

4.2. SYSTEM OVERVIEW 63

“Multiple learning systems try to exploit the local different behavior of the base

learners to enhance the accuracy of the overall learning system” – G. Valentini,

F. Masulli

Multiple Classifiers: Is a set of classifiers where individual predictions from

each classifier are combined in some way to classify new examples. These classifiers

are also called as ensemble methods, classifier fusion, combination, aggregation,

etc. This approach improves the prediction or classification accuracy. However,

combining identical classifiers does not give better accuracy, because the classifiers

might make uncorrelated s with respect to one another, each classifier should

perform better than a random guess.

The intuition behind diversification of classifiers; if two classifiers are diverse, they

make different errors on a new object. Assume a set of three classifiers m1,m2,m3

and a new object x,

• If all are identical, then when m1(x) is wrong, m2(x) and m3(x) will also be

wrong.

• If the classifiers are uncorrelated, then when m1(x) is wrong, m2(x) and

m3(x) may be correct − > a majority vote will correctly classify x.

The diversification of classifiers are diverse in:

• Different training sets(i.e different samples or splitting)

• Different classifiers (i.e trained from the same data)

• Different attribute sets

• Different parameters choices (tree pruning, BP parameters, # neighbors in

KNN etc.)

4.2. SYSTEM OVERVIEW 64

• Different architectures (like topology of ANN)

• Different initializations

Ensemble Approach: Learning algorithms that output only a single hypothe-

sis suffer from three problems that can be overcome by an ensemble approach: the

statistical problem, the computational problem and the representation problem

[76].

A learning algorithm that suffers from the statistical problem is said to have

high ‘‘variance’’. An algorithm that suffers from the computational problem

is described as having computational ‘‘variance’’. And a learning algorithm

that suffers from the representation problem is said to have high ‘‘bias’’.

• The Statistical Problem: arises when the hypothesis space is too large

for the amount of availability data. In such cases, there are many different

hypotheses with the same accuracy on the training data and the learning

algorithm chooses only one of them. There is a risk that the accuracy of

the chosen hypothesis is low on unseen data. A simple vote of all these

equally-good classifiers can reduce this risk.

• The Computational Problem: arises when the learning algorithm cannot

guarantee finding the best hypothesis within the hypothesis space.

• The Representation Problem: arises when the hypothesis space does

not contain any good approximation of the target class(es).

There are different approaches to create multiple system like homogeneous and

heterogeneous classifiers.

• Homogeneous Classifier: Uses the same algorithm over diversified data

4.2. SYSTEM OVERVIEW 65

sets. Algorithms like bagging, boosting, multiple partitioned data, multi-

class specialized systems.

• Heterogeneous Classifiers: Different learning algorithms over the same

data set.

– Voting or rule-fixed aggregation

– Stacked generalization or meta-learning

Ensemble Learning This section entails about the approaches implemented in

this thesis. The approaches undertaken are Staking and V oting, which are two

of the most well-known ensemble approaches which use heterogeneous classifiers.

– Stacking : This technique consists of three layers as shown in Fig. 4.1. In the

first layer, it takes the training dataset as input. The second layer, the input

dataset is fed to several ‘base classifiers’ to obtain the individual predictions.

In the third layer, a ‘meta classifier’ is employed for the final prediction. It is

hard to analyse theoretically.

– V oting : This approach is similar to that of Stacking till the second layer as

shown in Fig. 4.1. The only difference is that there is no meta classifier used

in this technique. In the third layer, it combines all the probability estimations

from the base classifiers and classifies an instance based on the majority vote.

The functioning of each of these layers is as described below:

• Input Layer: Contains a set of features as training data.

• Base Classifier: Multiple independent classifiers are used in this layer.

This layer results in predictions of multiple classifiers. If the base learners

can output probabilities, it’s better to use those as input to meta learner.

4.2. SYSTEM OVERVIEW 66

Dataset

BC1 BC2 BCn

Meta

Dataset

BC1 BC2 BCn

voting

Output Output

Layer 1

Layer 2

Layer 3

Stacking Voting

Figure 4.1: Stacked Learning

• Meta Classifier: The predictions of base classifiers on an extra validation

set (not directly training set – apply internal cross validation) with correct

class decisions − > a meta-level training set. An extra learning algorithm

is used to construct a meta-classifier. It attempts to learn mapping between

predictions and the final decision. It may correct some mistakes of the base

classifiers.

In this approach, the base classifiers do most of the work and reduce risk of over-

fitting.

Ensemble Learning Model for Traffic Classification An ensemble tech-

nique combines multiple models whose individual predications are fused to obtain

better predictive performance than the individual predictions [77]. The proposed

ensemble learning model for P2P traffic classification is as shown in Fig. 4.2.

Flow and Flow description: Packets are categorized into flows using 5-tuple,i.e.,

source IP, source port, destination IP, destination port and protocol. As most of

the time flows are bi-directional in P2P networks the direction of the flow is de-

4.2. SYSTEM OVERVIEW 67

Figure 4.2: Stacked Learning

cided when the first packet is noticed. In general, a TCP flow is completed when

either a connection timeouts or FIN/RST flags are set, while a UDP flow is ter-

minated based on a heuristic value of 600 seconds [59]. Feature extraction module

is implemented in Java using jNetPcap library.During the feature extraction we

dropped few flows like TCP three-way handshake, flows with zero payload length

etc., which do not contribute significantly to P2P traffic classification activity.

However, flows with minimum of four packets are considered that describe P2P

traffic behavior suitably. Algorithm 1 details the construction of flow from TCP

and UDP protocols.

4.2.1 Background of Feature Selection

Feature selection is the process of reducing the number of features, with the aim

of removing those features from the learning algorithm which have low impact on

the classification problem. Primary motivation behind feature selection is that

the training data contains many features which are either redundant to the clas-

sification problem, i.e., they provide no further information than the currently

4.2. SYSTEM OVERVIEW 68

Algorithm 1: Conversation

Conv c;
HashSet< Conv > cset;
Map< String, Conversation > ConvMap;
Data: getConv(ArrayList < Packet > list) input is a list of
packets.

Result: Set< Conv > convSet; conversations in convSet.
begin

cset ← new HashSet< Conv >()
ConvMap ← new HashMap< String, Conv >()
for Packetp ∈ list do

if ConvMap.containsKey(p.getSige()) then
if p.isTcp() and (p.getT cpf lag()[7]||p.getT cp− flag()[5]) then

ConvMap.get(p.getSig()).addPacket(p)
ConvMap.remove(ConvMap.get(p.getSig()))

else if p.isTcp() 6= ∅ then
if
p.getTstamp()− ConvMap.get(p.getSig()).last ≥ timeOut
then

ConvMap.remove(ConvMap.get(p.getSig()))
c = Conv(p.getSIp(), p.getDtIp(), p.getSPort(),
p.getDPort(), p.isTcp())

c.addPacket(p)
cset.add(c)
ConvMap.put(p.getSig(), c)

else
ConvMap.get(p.getSig()).addPacket(p)

else
ConvMap.get(p.getSig()).addPacket(p)

else
c ← Conv(p.getSIp(), p.getDIp(), p.getSPort(), p.getDPort(),
p.isTcp())

c.addPacket(p)
cset.add(c)
ConvMap.put(p.getSig(), c)

for Conv co ∈ cset do
co.updateValues()
co.freeSpace()

return cset

4.2. SYSTEM OVERVIEW 69

Figure 4.3: Proposed Detection Framework using ensemble learning

selected features or are totally irrelevant to the classification problem itself. Con-

sider the simple example of features that may be extracted from network flows for

the purpose of classification of network traffic. Several features can be extracted

from every flow like average packet size, duration of the flow, number of unique

ports used, TCP flags, TCP window size, etc. But certain features are not at all

relevant to the task of classifying network traffic. For example, every TCP packet

receives an acknowledgement in response. A count providing the number of ACK

packets is not a good feature for classifying network traffic because it cannot help

in distinguishing between differentiating applications.

Reducing the number of features provides direct benefit in terms of lesser train-

ing time for the learning model. Such ‘feature selection’ is also known to reduce

the problem of ‘over-fitting’ or the variance error [26] and is also critical to over-

come the class imbalance problem [27]. It should be noted that although the final

accuracy of the learning algorithm will depend on the learning technique used,

suitability of the original features (i.e., those obtained prior to use of feature selec-

tion) etc., feature selection techniques are effective in optimizing the performance

of the classifier drastically reducing the number of features used for classification.

4.2. SYSTEM OVERVIEW 70

4.2.2 System Implementation

Our approach using ensemble learning:

– Step I: We captured the network traffic at our core switch and stored them in

a Storage Area Network (SAN).

– Step II: Once desired captures are obtained, we preprocess the traces and filter

only IP packets. Then, we obtained desired flows to extract features. We

extracted a total of 24 features from each bi-flow (i.e. a pair of unidirectional

flows between the same 5-tuple) and stored them into comma separated values

(CSV) format.

– Step III: After feature extraction, we labelled each instance according to class

as P2P or Non-P2P.

– Step IV: We used ensemble learning technique to classify network traffic. In the

off-line phase, we experimented with Näıve Bayes, Bayesian Networks, Decision

Trees as base classifiers and Random Forest as decision classifier. In on-line

phase, we classified unknown samples (i.e. no class label is assigned to it) using

model built from off-line phase.

A total of twenty three features are extracted from each flow. The twenty three

statistical features that we considered include features shown on Table 4.1.

The proposed P2P network traffic detection framework is shown in Fig. 4.3. This

hierarchical framework consists of three main components. The packet capture

and feature extraction module involved processes like flow parsing, and extracting

feature vectors into an .arff file (Weka format) which is later used to train the

classifiers (Näıve Bayes, Bayesian Network, C4.5 and Random Forest). Stacking

is then used as a fusion technique to improve upon the classification accuracy

4.2. SYSTEM OVERVIEW 71

Table 4.1: Flow-based features

Feature Description Abbreviation

Packet Count (sent) spkt

Packet Count (Receive) dpkt

Flow Duration (sent) sflowdur

Flow Duration (Receive) dflowdur

Minimum Packet Size (sent) sminpkt

Minimum Packet Size (Receive) dminpkt

Maximum Packet Size (sent) smaxpkt

Maximum Packet Size (Receive) dmaxpkt

Mean Packet Size (sent) smeanpktsize

Mean Packet Size (Receive) dmeanpktsize

Standard deviation of Packet Size (sent) sstdpktsize

Standard deviation of Packet Size (Receive) dstdpktsize

Minimum Inter-arrival Time (sent) sminiat

Minimum Inter-arrival Time (Receive) dminiat

Maximum Inter-arrival Time (sent) smaxiat

Maximum Inter-arrival Tim (Receive) dmaxiat

Mean Inter-arrival Time (sent) smeaniat

Mean Inter-arrival Time (Receive) dmeaniat

Standard Deviation Inter-arrival Time (sent) sstdiat

Standard Deviation Inter-arrival Time (Receive) dstdiat

Total bytes (sent) stalbytes

Total bytes (Receive) dtalbytes

Transport Protocol proto

4.2. SYSTEM OVERVIEW 72

by combining the predictions of NB, BN (base classifiers) and C4.5 as the meta-

classifier, as per the structure shown in Fig. 4.2. To improve the output of

Stacking three base classifiers NB, BN and C4.5 are used followed by RF as

the meta-classifier. To further compare the performance of Stacking with other

learning algorithms, Voting scheme [66] that computes average probabilities of

predictions made by NB, BN, C4.5 and Random Forest is used.

Feature Selection:

Feature selection is the process of reducing the number of features, with the aim

of removing those features from the learning algorithm which have low impact on

the classification problem.Primary motivation behind feature selection is that the

training data contains many features which are either redundant to the classifica-

tion problem, i.e., they provide no further information than the currently selected

features, or are totally irrelevant to the classification problem itself. Consider the

simple example of features that may be extracted from network flows for the pur-

pose of classification of network traffic.Reducing the number of features provides

direct benefit in terms of lesser training time for the learning model. Such ‘feature

selection’ is also known to reduce the problem of ‘over-fitting’ or the variance error

[26], and is also critical to overcome the class imbalance problem [27]. It should

be noted that although the final accuracy of the learning algorithm will depend

on the learning technique used, suitability of the original features obtained (i.e.,

those obtained prior to use of feature selection) etc., feature selection techniques

are effective in optimizing the performance of the classifier since the number of

features used for classification are reduced. In [78] authors shown that feature

reduction techniques are able to greatly reduce the feature space and at the same

4.2. SYSTEM OVERVIEW 73

Algorithm 2: Best first search algorithm

Begin with the OPEN list containing the start state, the CLOSED list
empty, and BES ← start state.

Let s = arg max e(x) (get the state from OPEN with the highest
evaluation).

Remove s from OPEN and add to CLOSED.
if e(s) ≥ e(BEST) then

BEST ← s.
for childtofsnotintheOPENorCLOSElist do

evaluate and add to OPEN.
if BESTcahngedinthelastsetofexpression then

select the state from OPEN.
return BEST

time increase the computation performance.

In this work we use two different algorithms to reduce the feature set: CSE and

PCA. CSE evaluate different combination of features to create an optimal feature

subset. The feature subset is generated using different search techniques. We

use Best First Search in CSE is discussed below. With CSE and BFS, optimal

features with eight feature subset (reduced from full feature set of 23 features) are

obtained.

BFS: BFS [79] is an AI search strategy that allows backtracking along the search

path. It generates an optimal subset based on the addition or removal of features

to the current subset. However, it has ability to backtrack along the subset selec-

tion path to explore different possibilities when the current path no longer shows

improvement. To prevent the search from backtracking through all possibilities in

the feature space, a limit is placed on the number of non-improving subsets that

are considered given in Algorithm 2.

PCA reduced the feature set from 23 to 11 features are extracted with 95% of

variance which are in linear combinations is listed in Table 4.2. With these features

4.3. RESULT ANALYSIS 74

Table 4.2: Attribute Selection with CSE and PCA

Attribute
Selection

of Features Feature Description

CSE 8 source max pkt length, destina-
tion mean pkt length, source min
inter-arrival time (iat), source
max iat, destination max iat, des-
tination mean iat, source total
volume, destination total volume

PCA 11 linear combinations with 95% of
variance

obtained from CSE and PCA, Stacking and Voting mechanisms were put to use.

Three models,in total, are obtained from each of the ensemble learning that en-

compasses two from feature selection algorithms and one from full feature set.

To evaluate the algorithms, k-fold cross-validation is implemented(in this work,

k=10). This cross-validation technique divides the training data into k subsets.

Each time k-1 subsets are used for training and one of the k is used as the test data.

To measure the classifier performance the overall accuracy is generally considered

as an acceptable metric. However, for a better understanding of the classifier’s

performance one has to calculate the recall and precision for each class in addition

to the overall accuracy metric.

4.3 Result Analysis

Our goal is to show the impact of multiple classifiers (Staking and Voting) with

two feature reduction on the relative computational performance of our chosen

ML algorithms. The results have demonstrated that the classification accuracy

is not significantly degrade by the use of reduced feature sets. We reduce feature

4.3. RESULT ANALYSIS 75

set using CSE and PCA subset evaluation. Then, we compare the computational

performance of each tested ML algorithm with and without reduced feature sets.

We then determine the best subset by comparing the average accuracy against

the average accuracy and across the algorithms using the full feature set.

The results obtained using stacking and voting using NB, BN and C4.5 is shown

in Fig. 4.4. The accuracy of full feature set is found to be 99.2% of staking and

99.4% of Voting. A larger reduction in the feature space is achieved with relatively

change in accuracy. The subset evaluation algorithm CSE is found to be 98.69%

with stacking technique and 99.81% with voting technique. Similarly, for PCA

the accuracy obtained is 96.3% with stacking and 97.5% with voting.

The accuracy is little high in Stacking approach than Voting even with feature

subset evaluation techniques. The recall (P2P) value of CSE and PCA is 99.89%

and 99.6% of Stacking. Similarly the recall value of CSE and PCA is 99.7% and

99% of Voting. The results showed that CSE is better than the PCA as the

subset evaluator to identify P2P traffic. There appears to be a very good trade-

off between feature space reduction and loss of accuracy. We examine the impact

of feature reduction no individual algorithms, in terms of accuracy and recall.

Both Stacking and Voting approaches achieve more that 99% of accuracy using

full feature set and there is little change when using either of the reduced feature

subsets.

Experiments were carried out on four diverse classifiers, NB, BN and C4.5 as base

classifiers followed by RF as the meta-classifier. Stacking with full feature set

and the detection rate and the accuracy is 99.94% and 99.9% respectively. Using

Voting approach with full feature set accuracy and detection rate results were

found to be 99.7% and 99.7% respectively as shown in Fig. 4.5.

4.3. RESULT ANALYSIS 76

Figure 4.4: Accuracy and Recall of Stacking and Voting ensemble learning with
NB, BN and C4.5

Using stacking, higher accuracy and detection rate than the Voting is ensured

because the Voting scheme cannot have more number of base classifiers (in our

work maximum three). It is because while predicting it combines outputs from

all the base classifiers and evaluates the average probabilities to the output class

which leads to either over-fitting or under-fitting which is a default limitation of

Voting scheme. It is observed that the Stacking scheme performs better in this

scenario than Voting (P2P traffic identification).

Tests were performed on server grade machine running Ubuntu 12.04 LTS. The

computational time for building a ML model is measured with WEKA. The build

time of Stacking and Voting for CSE and PCA is computed with the help of

classifiers, such as, NB, BN, C4.5 and RF. The build time for Stacking and Voting

is shown in Fig. 4.6. The computational time of various datasets is as follows:

• Full feature set: It is observed that 430 sec 99 sec for Stacking and Voting

respectively.

• CSE: The build time of reduced subset using CSE is 156 sec for Stacking

4.4. LIMITATIONS 77

Figure 4.5: Accuracy and Recall of Stacking and Voting ensemble learning with
NB, BN, C4.5 and RF

and 45 sec for Voting.

• PCA: The build time of reduced subset using PCA is 217 sec for Stacking

and 59 sec for Voting.

4.4 Limitations

The P2P traffic classification is based on statistical properties of flows, and using

ML techniques which is a promising method, these methods do not rely on port

numbers and on on packet payloads. However, the success of such “statistical

fingerprints” highly depends on the accuracy of the training data used. Ensuring

accuracy and authenticity of the training sets is still an open issue, especially for

disguised P2P flows.

4.5. CONCLUSION 78

Figure 4.6: Build Time of Staking and Voting with Full and Two subset Features

4.5 Conclusion

In recent times, have seen an increased interest on development of ML techniques

for P2P traffic classification. The existing research focuses on achieving higher

accuracy of different ML algorithms. The process of defining appropriate feature,

performing feature section, performing diverse ML algorithms and influence of

this on classification and computational performance has not been studied. We

obtained 24 flow features that are well accepted and simple to calculate by re-

searchers from networking community. We evaluate the classification accuracy

and computational performance of Stacking and Voting schemes with NB, BN,

C4.5 and RF and with two additional feature subset section algorithms (CFS and

PCA).

The experimental results, thus obtained, exhibited that stacking performs better

over voting in all the scenarios. However, voting degrades its performance when

more number of base classifiers are used because the final prediction is based on the

4.5. CONCLUSION 79

majority of the voting on the training dataset which leads to more false positives

and negatives, but build time of voting is much lesser than the stacking. The

result of this work has shown that multiple classifiers overcome the over-fitting

of the model and also presented feature reduction greatly improves performance

of the algorithms in terms of model build time and classification speed for most

algorithms.

Chapter 5

Host-Based P2P Traffic

Identification

5.1 Host-based P2P Traffic Identification using

Heuristics

A heuristic is a technique to identify approximate solution when traditional meth-

ods fail to find exact solution. These heuristics ensure optimality, completeness,

accuracy and precision, execution time. Host-based traffic identification approach

allows us to improve the classification accuracy by examining the host activity. In

this approach, heuristics were proposed that can evaluate the behavior of source

and destination for both P2P and NonP2P traffic. The objective of the proposed

technique is to improve the P2P traffic identification accuracy based on the ap-

plication profile of the host. This technique observes the communication patterns

of an end-host. This approach doesn’t require any learning method as flow-based

80

5.2. P2P AND NONP2P APPLICATIONS 81

approaches do.

5.2 P2P and NonP2P Applications

In this section, we discuss the behavior of two group of protocols, P2P and

NonP2P. This section considered few popular P2P protocols like eMule, uTor-

rent, Skype and for NonP2P protocols like HTTP(S), SMTP, FTP, Dropbox. To

distinguish between P2P and NonP2P, a series of heuristics are developed after

understanding the behavior of these protocols.

Gnutella was the first decentralized P2P network and it came with the concept of

Super peers. In this network every host acts as a client as well as a server. To join

the Gnutella network, a host must send a request to a pre-defined server namely

Super-peer in the network which is already set-up for the Gnutella client. Once

the Super peer accepts the peer request then it can be the part of the Gnutella

network. After which it can find the information from the other hosts. To search

for a file in the network it initiates PING messages to all of its neighbors. Who

ever has the file will reply with a PONG message over the UDP. Once the file is

available in the network, the host directly communicates to retrieve the file over

TCP.

eMule P2P application uses eDonkey network which is based on centralized sever

concept. eDonkey network forms a logical ring network where each peer is assigned

an ID based on a hash function. Once the client is part of the network it will

exchange information with all the servers. Initially client connects over TCP to

log into the server. The server uses another TCP connection to perform a client-

to-client handshake for accepting connections from other eMule clients and then

5.2. P2P AND NONP2P APPLICATIONS 82

the sever closes the second connection. eMule client and server both use UDP for

keep-alive messages and for enhancing the search [80].

µTorrent is a variant of BitTorrent client owned by BitTorrent, Inc. The client

needs a .torrent file to download a file which contains a list of peer URLs called

seeders. These URLs are associated with a tracker server that is a centralized

component. The client connects to these tracker servers over UDP or TCP. These

servers only provide the information about the seeders. Once the client finds

the file from the seeders, the data transfer begins from multiple peers over TCP

connection. Downloading peers are called as leechers.

Skype is a Voice over P2P (VoP2P) application. It uses P2P networks to discover

peers. It contains three main components, i.e., Skye Client (SC), Skye Server

(SS), and Super Nodes (SNs) [81].

i. Skype Client (SC): SC or ordinary node is used for host login with SS. Once

it authenticates successfully with the SS, this information is made available

to the SNs.

ii. Skype Server (SS): Is a traditional central server that maintains all the user’s

account information.

iii. Super Node (SN): SNs are the end points of SCs which are used to connect

each other SCs. SNs can be designated by Skype itself. SNs are very high-end

systems with powerful CPU, enough memory and large network bandwidth.

The SCs open randomly chosen TCP and UDP listening ports. SCs bootstrap

themselves by connecting to a SN over a UDP connection with a fixed packet

size. Then SN opens a TCP port to exchange it’s information with SCs. Once

SN recognizes an SC, it allows to login using a TCP connection. In this work we

5.2. P2P AND NONP2P APPLICATIONS 83

have used SN’s data for the purpose of classification.

5.2.1 NonP2P

These applications typically follow a client/server behavior. The client always

initiates a TCP connection and server responds to its’ request. A standard web

browsing connection (either HTTP or HTTPs) is accomplished by a 3-way hand-

shake i.e. client initiates TCP’s SY N flag to a web server over port 80 or 443

and then server replies with TCP’s SY N −ACK flag. Then client acknowledges

back with ACK flag. After the 3-way handshake is completed the client requests

the desired information from the server. Here, the requesting host is always a

client and responding host is a server. This activity is common for most of the

web applications.

There are few applications which are slightly different in terms of using port

numbers 80 and 443. File transfer protocol (FTP) also is a client/server protocol.

FTP uses two control channels, one channel for control information that the server

accepts from the client over port 21 and the other channel is utilized for data

transfer from server to client over port 20. Dropbox is a cloud based application

that also adopts client/server behavior. A client host requests Drobox server to

access the files over HTTPs and these files are then downloaded into the local

host machine. This protocol is different from FTP service in a way where it can

sync any shared file in the Local Area Network (LAN) without connecting to the

Dropbox server. It can also broadcast the network over port number 17500 if the

host enables the LAN sync option.

5.2. P2P AND NONP2P APPLICATIONS 84

5.2.2 P2P

P2P applications are different from the traditional client-server applications. The

motivation behind design of these applications is to share files amongst the col-

laborating peers over the IP layer. In this, a host can act as a client and also as

a server to maximize their file sharing benefits. In this section we briefly discuss

about the most common P2P networks like Gnutella, eMule, Skype and µTorrent.

These protocols never generate any DNS queries once these are executed over a

P2P network which is a major difference between P2P and NonP2P.

5.2.3 Framework

We imported packet information into the MySql database. Then, connection

patterns were obtained from P2P and NonP2P. Fig. 5.1 shows the framework of

our approach to develop the heuristics. A Java interface is implemented to query

the database and develop heuristics as given in Algorithm 3.

In later sections, the usage of our heuristics are discussed vividly. Then flows are

constructed using 5-tuple i.e., source IP, source port, destination IP, destination

port and protocol. TCP flows are separated by FIN, ACK or RST flags, whereas

UDP flows are terminated based on Timeout of 600 seconds [59].

Network traces were independently collected from our campus LAN that is con-

nected to the Internet by a 155 Mbps STM link. NonP2P (HTTP, HTTPs,

and SMTP) applications traffic and P2P applications traffic (Torrents, Gnuetlla)

were captured using Wireshark [82] tools. Due the privacy concerns, first 130

Bytes were captured of each packet. Around 250 GB of data is collected on our

testbed. FTP dataset was obtained from Lawrence Berkeley National Laboratory

5.2. P2P AND NONP2P APPLICATIONS 85

host based
analyser heuristics

conversation
module

Storage

MySql

Figure 5.1: Framework for P2P Traffic Identification

Algorithm 3: hostAnalyser

Data: Heuristics as queries
Result: returns as flows
String query, flow ← null;
read the heuristics from text file;
read the database server path;
conn ← getConnection(db path);
while query 6= null do

result ← excuteQuery(query);
while result 6= null do

flow ← result.getString(db fields);

return flow;

(LBNLab) [83] with no payload information and the IP addresses obtained were

anonymized. Part of the P2P traces used in this work was processed data from

University of Georgia (UGA) [84]. Statistics of NonP2P and P2P application

traffic in the datasets provided is shown in Table 5.1.

5.2.4 Proposed Heuristics

The heuristics are proposed when the flow based approach is failing to detect P2P

traffic. 1. When the flow based approach failing the exact solution, heuristics solve

more quickly than the flow based approach. 2. It finds the approximate solution

to classify P2P traffic. 3. When compared to flow based, heuristics generates

5.2. P2P AND NONP2P APPLICATIONS 86

Table 5.1: Application wise statistics

Application Date
(captured/Obtained)

Pakets Flows Bytes

web 14 May, 2013 10534 K 137465 2810 M

Dropbox LAN 06 June, 2013 2389 K 133 182 M

FTP (control) 08 June, 2013 1096 K 7898 98 M

Smtp 24 September, 2012 49 K 658 40 M

eMule 02 August, 2013 20984 K 179235 2310 M

Frostwire 02 August, 2013 26766 K 771204 3150 M

Skype 23 October 2013 597 K 35145 2080 M

µTorrent 02 August, 2013 24176 K 526141 2710 M

Vuze 02 August, 2013 16270 K 580154 1830 M

tiny rules that the system is robust enough to classify the traffic. 4. The flow

based approach should accumulate all the packets and calculate the behavioural

features, whereas the heuristics can be generated at individual packets.

In this section P2P traffic heuristics are explained based on the host behavior

that were observed from the dataset collected. Heuristics were formulated to

contain some well-known port number information as well. Tunable thresholds

were derived that provide trigger to application of the heuristics used. The P2P

traffic has been classified from the proposed heuristics and the false positives

(FP) were identified. The fact that this piece of work differs from other related

works is in terms of using lesser number of packets in the flows. These heuristics

are tested in real-time by giving one minute intervals by running both P2P and

NonP2P applications in the campus backbone. Few other types of traffic seen

on the campus LAN were filtered, i.e., services like Network Basic Input/Output

System (NETBIOS), Network Time Protocol (NTP), Dynamic Host Configuration

5.2. P2P AND NONP2P APPLICATIONS 87

Host Uses UDP/TCP-Concurrently

Figure 5.2: Heuristic A

Protocol (DHCP), Simple Service Discovery Protocol (SSDP), and Link local from

both TCP and UDP protocols. The heuristics used are described as below:

A: P2P TCP/UDP protocols: This heuristic is based on the fact that the P2P

applications like Gnutella, Skype, etc. use both TCP and UDP protocols. In

most of the scenarios the TCP is used for data transfers whereas UDP is used

for signalling messages. There may be an FP with this heuristic with UDP

like default LAN services. However NonP2P applications make communication

parallel over TCP. This is shown in Fig. 5.2.

B: P2P UDP ports: This heuristic exploits port based classification where the

peers in the P2P network use well-know ports like port 80 and 443 over UDP

to communicate outside the servers which can bypass the firewall. In general,

these ports are being used with TCP connections for retrieving web contents.

If any host uses these port numbers to and from, that host is marked as P2P

and all these flows are classified as P2P. Experimental results reveal that the

P2P hosts use these ports quite often in their lifetime. This is shown in Fig.

5.3.

C: P2P Source Port and Destination Port: In general all most all the P2P

5.2. P2P AND NONP2P APPLICATIONS 88

Host Uses well-known ports (80/443) over UDP

Figure 5.3: Heuristic B

Host uses identicalports over UDP

Figure 5.4: Heuristic C

applications allow change in port numbers or the application itself will use a

random port to signal the peer in the overlay. However, the P2P application

has the following property. Both source IP and destination IP communicate

with the same port over UDP protocol. This property is unique for UDP, but

not for TCP. All flows to and from these hosts are classified as P2P. This is

shown in Fig. 5.4.

D: P2P UDP/TCP port pairs: The fact that, P2P applications use UDP for

signaling or control messaging, any host can communicate using a default port

or an ephemeral port over UDP on the destination side, the same port can

5.2. P2P AND NONP2P APPLICATIONS 89

UDP-TCP port pair

Figure 5.5: Heuristic D

be assigned to TCP for data transfer. This property is unique in NonP2P

applications. All the TCP and UDP flows directed to and from a host are

classified as P2P hosts. This heuristic can be applicable for both source IP

and destination IP pairs, if both of them are involved in sharing of files in the

overlay network. For example, a host (source/destination) communicates on

port (for example: 3222) over UDP and for data transfer the other end opens

same port (for example: 3222) to TCP. This heuristic when used classified

Dropbox traffic wrongly as P2P traffic. This is because of the Sync behavior

of Dropbox. This is shown in Fig. 5.5.

E: P2P Unique IPs and Unique Ports: When the P2P client initiates a

connection in the network it signals multiple peers. At this point, it opens

multiple port numbers to get the information about other peers over UDP

and this will continue till the desired information is obtained. In our analy-

sis, if a host is a P2P host, it must use TCP and UDP and the number of

unique destination IPs are less than the number of unique ports and all flows

are classified as P2P. On the other-hand NonP2P applications typically use

multiple connections with a web server over TCP. Typically, FTP and SMTP

5.2. P2P AND NONP2P APPLICATIONS 90

Host contacts multiple IPs and Ports simultaneously

Figure 5.6: Heuristic E

servers accept multiple connections over the same port, but geographically, the

servers communicate with distinct IPs and distinct port numbers over TCP,

which are marked as NonP2P hosts, i.e. the host must use TCP and the num-

ber of unique IPs is less than or equal the number of unique ports. This is

shown in Fig. 5.6.

The performance of our heuristics has been validated to identify P2P hosts in

real-time. To justify this approach, we implemented the algorithms in Java using

jNetPcap library [75]. The average detection rate is found to be more than 99%.

The amount of unknown traffic is around 0.2%. The total number of unclassified

flows, for Vuze is about 0.01%, µTorrent is about 0.01%, Skype is about 0.84%,

Frostwire is about 0.02% and eMule is about 0.04% as shown in Fig. 5.7. Total

594 flows remain unclassified as P2P traffic out of 20,91,879.

Real-Time Analysis objective is to identify P2P and nonP2P flows even if a

host uses both applications simultaneously. In this section we discuss the effec-

5.3. FLOW BASED VS HOST BASED APPROACHES 91

Figure 5.7: Detection rate of P2P traffic

tiveness of our heuristics to identify a host as a P2P or nonP2P in the form of

traffic flows based on a specific time period. For this purpose we consider, a flow

to have at least two packets in UDP. For TCP only packets carrying payload are

used. We assumed, if any host uses the default port number 80 over TCP then

it is treated as nonP2P traffic. We experimented measuring the heuristics for

different values for a time window of duration W from 1 to 2 minutes. For the

time window W = 1, we captured both P2P (torrents) and nonP2P (Youtube)

originating from a host. From the captured file we had 238 flows of 210 are UDP

flows and 28 are TCP flows. Out of 238 flows our heuristics classified 218 flows

as P2P. Similarly, for the time duration of 2 minutes we had 379 flows out of 289

flows are UDP and 90 of them are TCP. The heuristics A-F classified 341 as P2P.

5.3 Flow Based Vs Host Based approaches

In this section, the flow and host based traffic classifications according to different

parameters were compared. In the experiments undertaken, it is observed that

5.4. SUMMARY 92

Table 5.2: Flow vs Host based approaches

Parameter Flow Based Host Based

Extraction Based on 5-tuples based on IP address

Learning is required no learning

Volume of Data large (approx. in GBs) less (approx. in MBs)

Time more build time no build time

Performance accurate, when enough data accurate, when patterns are
known

performance of host based approach is much better when compared to flow based

approach discussed in previous sections in terms of metrics. Comparison of flow

based and host based approaches is shown in Table 5.2.

5.4 Summary

In this work we proposed a new set of heuristics to identify a host as a P2P host

based on its connection patterns. The proposed heuristics do not require any

payload signatures. Our experimental result shows that the proposed rules are

able to classify the P2P hosts effectively and suggested heuristics are promising.

The dataset used as realistic in nature and we verified our approach in a real-

time scenario too. We also presented the comprehensive behavior analysis of our

P2P hosts. Further, our approach has minimal heuristics which can be deployed

easily in real-time. The unclassified traffic is about 0.2% of the P2P traffic. Next

Chapter 6 of this thesis covers a novel technique to identify P2P and NonP2P

traffic using Fuzzy recognition based approach.

Chapter 6

P2P Traffic Identification: A

Fuzzy Approach

6.1 Proposed Fuzzy Recognition System for P2P

Traffic Detection

When distinctive features of the patterns are identified correctly, the classes can

easily be distinguished in the feature space. With the rapid development of P2P

applications, the patterns are overlapping with NonP2P traffic, thereby leading

to an ambiguity in P2P traffic recognition. To overcome ambiguity, a well-know

approach is fuzzy pattern recognition, capable of identifying patterns by deriving

soft boundaries. The patterns can be classified into one or more classes with a

certain degree of membership for TCP and UDP traffic. An algorithm for fuzzy

pattern recognition is numerically demonstrated, in recognition of P2P traffic.

The previous chapters are proposed P2P traffic detection based on behavioral

93

6.1. PROPOSED FUZZY RECOGNITION SYSTEM FOR P2P TRAFFIC
DETECTION 94

Figure 6.1: UDP packets sent by NonP2P applications.

characteristics obtained from the network traces. The proposed solution should

detect P2P traffic as accurately as possible in reasonable amount of time. To

achieve these objectives, our proposed system has 3 stages – packet accumulation,

feature extraction, and fuzzy pattern recognition. Given network traces, the first

stage accumulates only IP (IPv4 and IPv6) packets associated with every host

and discards rest of the packets. The behavior-based features are extracted in

the second stage whose details are described in the next section 6.1.1. Finally,

the feature vector is passed through proposed fuzzy pattern recognition stage to

detect P2P traffic.

6.1.1 Characterization of P2P Traffic

Our goal in this part of the work is to understand the behavior of P2P applications

and to explore how these applications impact the underlying network character-

istics when they are active. In our study we found most of the P2P applications

use both UDP and TCP transport protocols over the network. We observed that

decentralized P2P hosts like Freenet, eMule never use any DNS queries over UDP

6.1. PROPOSED FUZZY RECOGNITION SYSTEM FOR P2P TRAFFIC
DETECTION 95

protocol to discover the peers, on the other-hand hosts running torrents initiate

DNS queries to find the domain of the tracker server. Whereas NonP2P hosts,

e.g, hosts running http and https services resolve the domain name of the server.

Fig. 6.1 shows an example of DNS query packets and Fig. 6.2 shows an exam-

ple of peer discovery without DNS seen in our testbed. Similarly, both P2P and

NonP2P hosts use TCP to transfer application data. We observed that the number

of packets transferred (from server to client) in NonP2P hosts is more, whereas

P2P hosts obtain packets from multiple sources concurrently. The behavior of

P2P and NonP2P over TCP are shown in Fig. 6.3 and Fig. 6.4 respectively.

With these observations we extracted the following behavioral metrics to char-

acterize P2P and NonP2P traffic. Given an input trace, our feature extraction

module parses only IP, TCP and UDP headers and discards rest of the packets.

Once these headers are checked for correctness then the module accumulates all

the packets associated with every host. Thereafter the extraction module extracts

the behavioral features for every host from the IP address list and stores them

in a comma separated value (CSV) format. The feature extraction procedure is

shown in Fig. 6.5.

A: Bytes per Second: Since P2P networks are mainly used for file sharing

applications (text, video, audio, etc.), the volume of the file is larger per flow

compared to NonP2P applications. Thus we measured the aggregate data

transmitted between different P2P hosts.

B: Packet Inter Arrival Time: The Inter Arrival Time (IAT) of a packet is

defined as the time gap between packets sent and received at a host. We

observed high churn in P2P networks to discover the peers in the network

i.e., the peers are joining and leaving the network. It is viewed as abnormal

6.1. PROPOSED FUZZY RECOGNITION SYSTEM FOR P2P TRAFFIC
DETECTION 96

Figure 6.2: Peer Discovery/control messages sent by P2P Application over UDP.

behavior compared to a NonP2P host’s behavior.

C: Host Connectivity: We observed the total number of unique IP addresses

a host contacted in a day. P2P hosts make concurrent connections with other

peers in the network whereas NonP2P hosts make parallel connections to the

server.

6.1.2 Behavior-based P2P Traffic Detection

To detect P2P traffic, we employ fuzzy pattern recognition approach. In this pro-

cess we extract the features from both TCP and UDP headers of a specific host.

Our approach uses maximum membership function principle to characterize P2P

behavior. According to this principle, from a given feature set, if the membership

function for P2P traffic derives high values, the host is detected as P2P. Similarly,

if the membership function for NonP2P derives higher values, the host is detected

6.1. PROPOSED FUZZY RECOGNITION SYSTEM FOR P2P TRAFFIC
DETECTION 97

Figure 6.3: TCP behavior observed in P2P applications.

as NonP2P. Table 6.1 shows the summary of host-behavior features used for iden-

tifying the hosts as P2P or NonP2P. The membership functions are discussed in

the following section.

6.1.3 Membership Functions for UDP and TCP Features

In this section we discuss fuzzy membership functions which detect P2P hosts.

These membership functions are derived from a particular network trace. We

define the membership functions for both TCP and UDP protocols as below:

i: Normalized total number of sent and received packets: A P2P host

sends a large number of TCP and UDP packets to search for a file in the

overlay network. Based on our analysis, we defined a membership function

6.1. PROPOSED FUZZY RECOGNITION SYSTEM FOR P2P TRAFFIC
DETECTION 98

Figure 6.4: TCP behavior observed in NonP2P applications.

F1 and F3 to calculate the normalized packets sent and received as follows:

F1,3(x) =



(
Sp
Rp

)
xt1

, 1 <

(
Sp
Rp

)
xt1

< 4.5

1,

(
Sp
Rp

)
xt1

>= 4.5

0, otherwise

(6.1)

where Sp and Rp are the total number of sent and received packets in a given

trace, and xt1 is the threshold for P2P host sent and received packets.

ii: Normalized average of the total payload bytes sent: In general P2P

hosts send large number of packets in short period of time; we observed that

the size of payload carried by each packet is small with equal sized pack-

ets. Therefore, we defined a membership function F2 and F4 for calculating

6.1. PROPOSED FUZZY RECOGNITION SYSTEM FOR P2P TRAFFIC
DETECTION 99

Inputv
Traffic IP

No

Yesforveach
packet

Discard
Packets

Tcp/Udp

No

Yes IPvAddress
List

Feature
Extraction

Store
inv.csvvfileFinished

Figure 6.5: Procedure to extract Host feature

normalized average of the total payload bytes sent as follows:

F2,4(x) =



(
Bs
ni

)
xt2

, 0.2 <
Bs

(Sp+Rp)
xt2

< 1

1,
Bs

(Sp+Rp)
xt2

>= 1

0, otherwise

(6.2)

n1 = Spt +Rpt

n2 = Spu +Rpu

where i = 1, 2 and Bs is bytes sent by a P2P host in a short period time, n1

is the total number of TCP packets in the trace and n2 is the total number

of UDP packets in the trace and xt2 is the threshold for P2P host sent bytes.

The above membership functions define the P2P host activities over TCP and

UDP. We define the membership function to calculate the probability of NonP2P

host as below.

X = 1−max(F1(x), F2(x), F3(x), F4(x)) (6.3)

6.2. PERFORMANCE EVALUATION 100

Table 6.1: Feature Description

Protocol Feature Description Feature

UDP
of UDP sent and receive packets F1

of UDP bytes sent F2

TCP
of TCP sent and receive packets F3

of TCP bytes sent F4

6.2 Performance Evaluation

6.2.1 Dataset Collection

To evaluate the performance of our proposed method, we collected two different

datasets: P2P traffic generated by popular P2P applications and NonP2P traffic

in the Information security laboratory at our department. The summary of the

traffic collected is shown in Table 6.2. We collected the P2P dataset in a fully

controlled environment. We choose the two popular P2P applications namely:

eMule and µtorrent. Each application was run in different times and variety

of files were uploaded and downloaded in order to increase the diversity of our

dataset. NoP2P traffic was collected for the three different protocols namely http,

https and ftp. We collected NonP2P traffic based on their standard port numbers

at our Institution’s border gateway.

6.2.2 Detection Accuracy

We used the collected dataset to evaluate the proposed approach. Table 6.2

summarizes the detection accuracy. We achieved low false positive rate of about

1.11% for data set 1, low false positive rate of about 2.49% for data set 2 and

6.3. CONCLUSION 101

Table 6.2: Detection Accuracy

Data Set 1 Data Set 2 Data Set 3

Application Type P2P (eMule) P2P (uTorrent) NonP2P (http, https, ftp)

of Hosts 271 443 2406

of Packets 2143 K 3876 K 1904 K

Capture Duration 3600 Sec 3600 Sec 318681 Sec

Correctly Classified 268 432 2405

Incorrectly Classified 3 11 1

Accuracy 98.89% 97.51% 99.96%

Error Rate 1.11% 2.49% 0.04%

low false positive rate of about 0.04% for data set 3. Among the total 11 false

positives in the data set 2, we found that those are HTTP instances which made

several connections to tracker servers.

6.3 Conclusion

In this paper, we presented a behavior-based P2P host identification approach

using fuzzy patterns. This work improves our previous work in terms of detection

accuracy for p2p traffic identification. The detection rate is improved by using

fuzzy pattern recognition approach. Experiments show that our approach is able

to detect more than 98% of P2P traffic and≈2% of false positive rate was observed.

However, our work is focused only on two P2P applications. Our future work will

focus on further investigation of more P2P applications and define more fuzzy

membership functions to even reduce the false positive rate further.

Chapter 7

Design and implementation of a

P2P-aware firewall

7.1 P2P-aware firewall module

P2P-aware firewalls is proposed to monitor deeper into P2P traffic in terms of

behavioural features than that of regular security system configurations. The

regular firewalls can only monitor based on port numbers and (or) the payload

signatures. P2P-aware firewalls adopted the regular security system features and

unified flow based and behavioural features to classify P2P traffic on the fly. The

drawback with P2P-aware firewalls are bit slower than the other firewalls systems.

The P2P classification module is used as “preprocessors” to enhance an IPtables

based firewall. P2P-aware classification module was deployed to receive mirrored

traffic from the border router of the BITS network. As such, they do not sit

‘inline’. In order to take action on real-time traffic (in the form of blocking suspi-

cious traffic, rate limiting P2P connections, etc.), an inline module is necessary.

102

7.1. P2P-AWARE FIREWALL MODULE 103

The firewall modules was set-up as an inline module for this purpose.

IPtables is the default firewall available with Linux distributions. The firewall

can take actions based on multiple parameters, such as – reject all traffic to a

destination, drop all traffic to a destination, limit the traffic originating from P2P

hosts, etc.

Traffic classification is performed by the classification modules. The results thus

obtained are used by the ‘firewall’ module to generate automated, dynamic firewall

rules. For the purpose of this thesis, IPtables based firewall was set-up on a server-

grade Linux machine. This server was implemented as the gateway for the systems

in the Information Security lab at BITS Hyderabad campus. The firewall rules

are applied to this ‘gateway’ server. Being the gateway, this server sits ‘inline’

and can take real-time action with the firewall rules.

The ‘firewall’ module utilizes IPtables and bash scripts to create automated and

dynamic firewall rules for hosts identified as running P2P applications. For the

prototype implementation of our module, we implemented firewall rules for top

20 IPs inside and outside BITS campus identified as P2P. Apart from creating

firewall rules pertaining to these set of hosts, we also created generic firewall rules

to rate-limit connections of popular P2P applications. Our firewall rules have a

dynamic nature. We do not block/reject P2P traffic on weekends. On working

days, P2P traffic is disallowed during the working hours (9:00 AM – 5:00 PM).

Apart from working hours, P2P traffic is allowed. Bot traffic, however, is shown

zero tolerance and is rejected under all circumstances.

7.2. SYSTEM INTEGRATION 104

Figure 7.1: Overview of System Integration

7.2 System Integration

The P2P traffic classification module was integrated in the form of a live P2P

traffic classifier and the output further goes to the firewall. The firewall mod-

ule generates real-time, dynamic rules to block and/or rate-limit P2P traffic. A

diagram of the entire integrated system is given in Fig. 7.1.

The integrated module has been deployed at the BITS network. The module

receives mirrored traffic from the border router of the University. This mirrored

traffic is captured on the server using a ‘dumpcap’, a libpcap (packet capture

library) based tool. The .pcap files thus generates from dumpcap are limited to

size of 50 MB. This size was chosen so as to achieve high speed of processing.

Bigger file sizes will slow down the processing speed.

To achieve high speed of processing, we utilizes a parallelized implementation of

7.2. SYSTEM INTEGRATION 105

Figure 7.2: A snapshot of the P2P classification module invoked in parallel

different modules such as the P2P traffic classification module, .pcap file parsing

module, etc. Multiple ‘processes’ of each module are invoked on different CPU

cores of the server-grade machine. In this way, we are able to efficiently harness

the processing power of server-grade machines.

The P2P classification module is invoked in parallel using the GNU Parallel util-

ity. Fig. 7.2 captures the run of the classification module in parallel (marked in

red). Since multiple modules run in parallel, we are able to process the .pcap

files at high speed. One 50 MB files takes approximately 5–6 minutes to get pro-

cessed. At the current network speed of the BITS network, a single ‘process’ of

this module processes around 1,100 packets per second. Currently, owing to CPU

core limitations, 15 processes of the P2P classifier are run. This amounts to a

classification speed of around 16,500 packets per second. A better picture of this

classification speed will come out when we compare our module with open-source

IDS Snort in the next section.

7.2. SYSTEM INTEGRATION 106

The P2P classification module uses ensemble learning approach to classify flows

as ‘P2P’ or ‘Non-P2P’. Non-P2P flows are discarded, while P2P flows are written

out to the database.

This integrated system was compared for performance against open-source IDS

Snort. Network traces totalling more than 200 GB were collected from BITS

network by regular sampling over a period of more than one month. Our modules

was compared to Snort on the basis of multiple parameters, as mentioned below:

• P2P detection: Both Snort and our modules were successful in accurate

detection of P2P applications running in the campus.

• Payload-oblivious classification: Since content-matching in the payload lies

at the heart of Snort’s detection engine, Snort cannot perform privacy-

preserving, payload-oblivious classification. We tested Snort capability by

supplying a 100 GB of pcap files to it which were collected from the BITS

network. These pcap files were purposefully captured with payloads trun-

cated to first 150 bytes. This was done because it is commonly seen that

many organizations, owing to privacy concerns, share data only after trun-

cating the payloads. Therefore it becomes important that a detection mod-

ule can handle such data. Snort’s detection engine failed to understand this

data, and around 50% of the data was simply discarded by Snort. Our mod-

ules, on the other hand, face no problem in dealing with such data. Our

modules extract feature from packet headers only, and are thus privacy-

preserving.

• Speed: Snort is able to process network traces at very high speeds. Snort

directly listens for traffic at the network interface, processes data packet-by-

packet, and writes out data in binary format. This way, it is highly optimized

7.2. SYSTEM INTEGRATION 107

and thus attains high speed. With the dataset fed to Snort, we observed a

processing speed of 34,268 packets per second. Our module in contrast to

Snort, does not process data packet-by-packet. We extract several statistical

features discussed in Chapter 4 from a flow. This creates some time latency.

The classification speed of a single process of P2P classification module

is about 1,100 packets per second. However, we have implemented our

modules to be ‘multi-process’. This speed can be scaled up as a factor of

CPU cores available on the machine. At present, 15 cores are being used by

the classification module, giving a speed of 16,500 packets per second. With

more CPU cores, our module can outperform Snort.

The entire integrated system was deployed at the Hyderabad campus of BITS

Pilani. The system is running continuously, with the P2P classification module

detecting suspicious activities, the firewall module generating dynamic firewall

rules.

Given below are the rules written using IPtables.

All traffic to the top 20 P2P IPs (as detected by our module) outside the BITS

network is outrightly rejected so that any attempt from inside the BITS network

attempting to connect to them is denied:

iptables -I FORWARD -t filter -d $ip -j REJECT

Further, the traffic from top 20 P2P hosts inside the BITS network is limited to

3 connections per host:

iptables -I FORWARD -s $ip -m connlimit --connlimit-above 3

-j REJECT

All P2P traffic is permitted during weekends, and blocked during the working

7.2. SYSTEM INTEGRATION 108

hours of weekdays. P2P traffic is blocked by rejecting all traffic on known standard

ports of popular P2P applications. After working hours, this traffic is again

permitted. Since IPtables processes rules in the order in which they are written.

This rule is given here:

iptables -I FORWARD -p tcp -m time --timestart 09:00:00

--timestop 17:00:00 --weekdays Mon,Tue,Wed,Thu,Fri -m multiport

--sports 411,412,2323,6347,1214,6346,4662,6881,6889,6699 -j REJECT

Certain P2P applications may escape this rule by using ports other than those

mentioned above. For this purpose, we reject all traffic to the top 20 P2P IPs

during the working hours of weekdays:

iptables -I FORWARD -t filter -d $ip -m time --timestart 09:00:00

--timestop 17:00:00 --weekdays Mon,Tue,Wed,Thu,Fri -j REJECT

The rules given above are explained in Algorithm 4 below:

Algorithm 4: IPtables pseudo-code

Weekday ← [Mon, Tue,Wed, Thu, Fri];
P2P ports← [411, 412, 2323, 6347, 1214, 6346, 4662, 6881, 6889, 6699];
begin

while do
if IP in Top20 P2P IPs then

REJECT traffic to IP

else if IP in Top20 local P2P IPs then
Rate limit traffic to IP to 3 connections

else if Time in [9 : 00− 17 : 00] and Weekday then
REJECT TCP traffic on P2P ports

else if IP in Top20 P2P IPs then
if Timein [9 : 00− 17 : 00] and Weekday then

REJECT traffic to IP

else
ALLOW traffic

7.3. SUMMARY 109

7.3 Summary

In order to understand the effectiveness of the P2P-aware classifier, it was impor-

tant to compare it with known existing solutions. Snort IDS was chosen for this

comparison since Snort is completely open-source and it has been the de facto IDS

for academic research for several years. Moreover, many other solutions employed

by past research are not open-source or freely available.

Snort failed to detect P2P traffic in the following censorious are tested on In-

formation Security Lab., BITS-Pilani Hyderabad Campus. 1. It doesnt work at

flow based features. 2. It also failed to detect the truncated payloads. Snort

can only parse, packet heads, payload signatures and also behavioural aspects are

implemented 3. Snort need to have signatures are stored in the system. It has a

low detection rate when new type of P2P application is designed. 4. Snort can

also outperform with more CPU cores, but with all the above draw backs it cant

detect the P2P traffic.

Chapter 8

Conclusion and Future scope of

work

This thesis proposed novel mechanisms for P2P traffic detection. Chapter 2 de-

scribed the past research work on detection of P2P traffic approaches. A signifi-

cant portion of this thesis dealt with the detection of P2P traffic using machine

learning techniques proposed in Chapter 4. A portion of the thesis also proposed

behavior based and Fuzzy pattern based approaches to overcome the drawbacks

with ML techniques to detect P2P traffic in real-time, which is discussed in Chap-

ter 5 and 6.

8.1 Conclusion

In Chapters 4, 5 and 6, we proposed our novel approaches for the detection of

P2P traffic from the regular web traffic. Our approaches don’t rely on signa-

tures or Deep Packet Inspection (DPI) mechanisms which are bypassed by P2P

110

8.1. CONCLUSION 111

applications using encryption.

In Chapter 4, we presented multi classifiers approach. This approach differentiates

between P2P and NonP2P traffic with high accuracy. P2P traffic identification

modules were developed by extracting features from network flows. To identify

P2P traffic, we employed statistical characteristics of TCP and UDP protocols.

We constructed 5-tuple (src ip, src port, dst ip, dst port and protocol) flows from

these two protocols and then extracted statistical flow features from the network

traces. We used different feature selection techniques to reduce the number of

features required to train the model i.e., reduce the model build time to achieve

optimized training model. An ensemble learning model was used to build detection

models with supervised machine learning algorithms. Experiments were carried

out on four diverse classifiers, NB, BN and C4.5 as base classifiers followed by

RF as the meta-classifier. Stacking with full feature set and the detection rate,

the accuracy obtained is 99.94% and 99.9% respectively. Using Voting approach

with full feature set accuracy and detection rate, obtained results were found to

be 99.7% and 99.7% respectively.

Another approach was proposed for P2P traffic identification which performs host-

based detection using heuristics proposed in Chapter 5. This approach can evalu-

ate the behavior of source and destination for both P2P and NonP2P traffic. The

objective of this approach was to improve the P2P traffic identification accuracy

based on the application profile of the host. This technique observes the com-

munication patterns of an end-host, and it doesn’t require any learning methods

as flow-based approaches do. Six heuristics were proposed which could identify

P2P traffic based on host behavior. Heuristics could identify a P2P host with

high accuracy and low false positive rate. Heuristics were formulated to contain

8.1. CONCLUSION 112

some well-known port number information as well. Tunable thresholds were de-

rived that provide trigger to application of the heuristics used. The P2P traffic

has been classified from the proposed heuristics and the false positives (FP) were

identified. According to experimental results, we obtain the average detection

accuracy of more than 96.55% and the false positive rate of 2.5%.

In Chapter 6, we proposed a fuzzy pattern recognition system to detect P2P traf-

fic aiming to accurately detect the traffic. In our study we found most of the

P2P applications use both UDP and TCP transport protocols over the network.

We observed that decentralized P2P hosts like Freenet, eMule never use any DNS

queries over UDP protocol to discover the peers, on the other-hand hosts running

torrents initiate DNS queries to find the domain of the tracker server. Whereas

NonP2P hosts, e.g, hosts running http and https services resolve the domain

name of the server. With these observations we extracted the following behav-

ioral metrics to characterize P2P and NonP2P traffic. Our feature extraction

module parses only IP, TCP and UDP headers and discards rest of the packets.

Once these headers are checked for correctness then the module accumulates all

the packets associated with every host. Thereafter the extraction module extracts

the behavioral features for every host. Our approach uses maximum membership

function principle to characterize P2P behavior. According to this principle, from

a given feature set, if the membership function for P2P traffic derives high values,

the host is detected as P2P. Similarly, if the membership function for NonP2P

derives higher values, the host is detected as NonP2P. We defined several mem-

bership functions, two for UDP and two for TCP: (1) Normalized total number of

sent and received packets, (2) Normalized average of the total payload bytes sent.

The proposed approach achieved low false positive rate of about 1.11% for dataset

1, low false positive rate of about 2.49% for dataset 2 and low false positive rate

8.2. FUTURE SCOPE OF THE WORK 113

of about 0.04% for dataset 3. Among the total 11 false positives in the dataset

2, we found that those are HTTP instances which made several connections to

tracker servers.

8.2 Future Scope of the work

Research on Internet traffic classification has produced creative and novel ap-

proaches, but the landscape is foggy, fragmented, and inconsistent. We outline

the research directions that could improve the effectiveness of the traffic classifi-

cation system.

• The increasing speed of network links requires thorough investigation of

scalability trade-offs in traffic classification.

• Appropriate novel approaches for highly parallel low-cost architectures promise

significant scalability improvements.

• Traffic classification techniques and algorithms to be presented with rigorous

empirically grounded analysis of efficiency and performance.

We plan to explore further above aspects of traffic classification with respect to

P2P traffic.

Bibliography

[1] M. Zhang, W. John, K. Claffy, and N. Brownlee, “State of the art in traffic

classification: A research review,” in PAM Student Workshop, 2009, pp. 3–4.

[2] “Ipoque internet study 2008/2009,” http://www.ipoque.com/en/resources/

internet-studies, accessed on 4 January 2014.

[3] H. Schulze and K. Mochalski, “Internet study 2008/2009,” 2009.

[4] “Bittorrent,” http://www.bittorrent.com/, accessed on 17 December 2013.

[5] “Sandvine: Global internet phenomena report on

asia-pacific and europe 2015,” https://www.sandvine.

com/downloads/general/global-internet-phenomena/2015/

global-internet-phenomena-report-apac-and-europe.pdf/, accessed on

31 January 2016.

[6] “Napster,” http://www.napster.com/.

[7] “Gnutella,” http://rfc-gnutella.sourceforge.net/.

[8] “Kazaa,” http://www.kazaa.com/.

[9] “edonkey,” http://www.edonkey.com/.

[10] “Freenet,” http://www.freeenet.com/.

[11] “Skype,” https://www.skype.com/en/.

[12] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer

content distribution technologies,” acmcs, vol. 36, no. 4, pp. 335–

371, dec 2004. [Online]. Available: http://www.spinellis.gr/pubs/jrnl/

2004-ACMCS-p2p/html/AS04.html

114

http://www.ipoque.com/en/resources/internet-studies
http://www.ipoque.com/en/resources/internet-studies
http://www.bittorrent.com/
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-apac-and-europe.pdf/
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-apac-and-europe.pdf/
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-apac-and-europe.pdf/
http://www.napster.com/
http://rfc-gnutella.sourceforge.net/
http://www.kazaa.com/
http://www.edonkey.com/
http://www.freeenet.com/
https://www.skype.com/en/
http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.html
http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.html

BIBLIOGRAPHY 115

[13] “Directconnect++,” http://dcplusplus.sourceforge.net/, accessed on 10 Au-

gust 2013.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable

content-addressable network. ACM, 2001, vol. 31, no. 4.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”

ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 149–

160, 2001.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object loca-

tion, and routing for large-scale peer-to-peer systems,” in Middleware 2001.

Springer, 2001, pp. 329–350.

[17] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and

comparison of peer-to-peer overlay network schemes,” IEEE Communications

Surveys and Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[18] E. Sit and R. Morris, “Security considerations for peer-to-peer distributed

hash tables,” in Peer-to-Peer Systems. Springer, 2002, pp. 261–269.

[19] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applications,

ser. Lecture Notes in Computer Science, vol. 3485. Springer, 2005.

[20] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement study of peer-

to-peer file sharing systems,” in Electronic Imaging 2002. International

Society for Optics and Photonics, 2001, pp. 156–170.

[21] J. Buford, H. Yu, and E. K. Lua, P2P Networking and Applications. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[22] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent p2p file-

sharing system: Measurements and analysis,” in Peer-to-Peer Systems IV.

Springer, 2005, pp. 205–216.

[23] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed

anonymous information storage and retrieval system,” in Designing Privacy

Enhancing Technologies. Springer, 2001, pp. 46–66.

http://dcplusplus.sourceforge.net/

BIBLIOGRAPHY 116

[24] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine

learning. MIT press, 2012.

[25] R. A. Wilson and F. C. Keil, The MIT encyclopedia of the cognitive sciences.

MIT press, 2001.

[26] M. A. Hall, “Correlation-based feature selection for machine learning,” Ph.D.

dissertation, The University of Waikato, 1999.

[27] P. Van Der Putten and M. Van Someren, “A bias-variance analysis of a real

world learning problem: The coil challenge 2000,” Machine Learning, vol. 57,

no. 1-2, pp. 177–195, 2004.

[28] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, 2005.

[29] M. Borda, Fundamentals in information theory and coding. Springer Science

& Business Media, 2011.

[30] M. Dash and H. Liu, “Consistency-based search in feature selection,” Artifi-

cial intelligence, vol. 151, no. 1, pp. 155–176, 2003.

[31] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.

[32] P.-N. Tan et al., Introduction to data mining. Pearson Education India,

2007.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The weka data mining software: an update,” ACM SIGKDD Explorations

Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[34] L. A. Zadeh, “Information and control,” Fuzzy sets, vol. 8, no. 3, pp. 338–353,

1965.

[35] P. Hajek, “Fuzzy logic,” in The Stanford Encyclopedia of Philosophy, E. N.

Zalta, Ed., 2010.

[36] “Iana - internet assigned numbers authority port numbers,”

http://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xhtml.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

BIBLIOGRAPHY 117

[37] A. Madhukar and C. Williamson, “A longitudinal study of p2p traffic classi-

fication,” in Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems, 2006. MASCOTS 2006. 14th IEEE International Sym-

posium on. IEEE, 2006, pp. 179–188.

[38] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Za-

horjan, “Measurement, modeling, and analysis of a peer-to-peer file-sharing

workload,” in ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM,

2003, pp. 314–329.

[39] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network identifi-

cation of p2p traffic using application signatures,” in Proceedings of the 13th

International Conference on World Wide Web, ser. WWW ’04. New York,

NY, USA: ACM, 2004, pp. 512–521.

[40] B.-C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong, “Towards automated

application signature generation for traffic identification,” in Network Opera-

tions and Management Symposium, 2008. NOMS 2008. IEEE. IEEE, 2008,

pp. 160–167.

[41] L. Gheorghe, Designing and Implementing Linux Firewalls with QoS using

netfilter, iproute2, NAT and l7-filter. Packt Publishing Ltd, 2006.

[42] “Cisco’s network-based application recognition,” http://

www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/

network-based-application-recognition-nbar/prod case

study09186a00800ad0ca.pdf.

[43] S. Sorensen, “Competitive overview of statistical anomaly detection,” White

Paper, Juniper Networks, 2004.

[44] “Qosmos: Deep packet inspection and metadata engine,” http://www.

qosmos.com/products/deep-packet-inspection-engine/, 2012.

[45] “ndpi: Open and extensible lgplv3 deep packet inspection library,” http:

//www.ntop.org/products/deep-packet-inspection/ndpi/.

[46] O. Beaudoux and M. Beaudouin-Lafon, “Opendpi: A toolkit for developing

document-centered environments,” in Enterprise Information Systems VII.

Springer, 2006, pp. 231–239.

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/network-based-application-recognition-nbar/prod_case_study09186a00800ad0ca.pdf
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/network-based-application-recognition-nbar/prod_case_study09186a00800ad0ca.pdf
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/network-based-application-recognition-nbar/prod_case_study09186a00800ad0ca.pdf
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/network-based-application-recognition-nbar/prod_case_study09186a00800ad0ca.pdf
http://www.qosmos.com/products/deep-packet-inspection-engine/
http://www.qosmos.com/products/deep-packet-inspection-engine/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.ntop.org/products/deep-packet-inspection/ndpi/

BIBLIOGRAPHY 118

[47] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in

LISA, vol. 99, no. 1, 1999, pp. 229–238.

[48] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy, “Transport layer

identification of p2p traffic,” in Proceedings of the 4th ACM SIGCOMM Con-

ference on Internet Measurement, ser. IMC ’04. ACM, 2004, pp. 121–134.

[49] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,”

IEEE/ACM Transactions on Networking (ToN), vol. 12, no. 2, pp. 219–232,

2004.

[50] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel traffic

classification in the dark,” in ACM SIGCOMM Computer Communication

Review, vol. 35, no. 4. ACM, 2005, pp. 229–240.

[51] J. Hurley, E. Garcia-Palacios, and S. Sezer, “Host-based p2p flow identifica-

tion and use in real-time,” ACM Transactions on the Web (TWEB), vol. 5,

no. 2, p. 7, 2011.

[52] J. Yan, Z. Wu, H. Luo, and S. Zhang, “P2p traffic identification based on

host and flow behaviour characteristics,” Cybernetics and Information Tech-

nologies, vol. 13, no. 3, pp. 64–76, 2013.

[53] W. John and S. Tafvelin, “Heuristics to classify internet backbone traffic

based on connection patterns,” in Information Networking, 2008. ICOIN

2008. International Conference on. IEEE, 2008, pp. 1–5.

[54] M. Perényi, T. D. Dang, A. Gefferth, and S. Molnár, “Identification and

analysis of peer-to-peer traffic,” Journal of Communications, vol. 1, no. 7,

pp. 36–46, 2006.

[55] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” Communications Surveys & Tutorials,

IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[56] J. Li, S. Zhang, Y. Lu, and J. Yan, “Real-time p2p traffic identification,”

in Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008.

USA: IEEE, 2008, pp. 1–5.

BIBLIOGRAPHY 119

[57] Y. Zhang, H. Wang, and S. Cheng, “A method for real-time peer-to-peer

traffic classification based on c4. 5,” in Communication Technology (ICCT),

2010 12th IEEE International Conference on. IEEE, 2010, pp. 1192–1195.

[58] H. Xu, S. Wang, R. Wang, and D. Zhao, “Research of p2p traffic identi-

fication based on naive bayes and decision tables combination algorithm,”

in Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh Interna-

tional Conference on, vol. 6. IEEE, 2010, pp. 2875–2879.

[59] D. Arndt, “How to calculating flow statistics using netmate,” 2011.

[60] J.-j. ZHAO, X.-h. HUANG, S. Qiong, and M. Yan, “Real-time feature selec-

tion in traffic classification,” The Journal of China Universities of Posts and

Telecommunications, vol. 15, pp. 68–72, 2008.

[61] H. Chen, X. Zhou, F. You, H. Xu, C. Wang, and Z. Ye, “A svm method

for p2p traffic identification based on multiple traffic mode,” Journal of Net-

works, vol. 5, no. 11, pp. 1381–1388, 2010.

[62] “Omnipeek: Network analyzer,” 2013.

[63] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using cluster-

ing algorithms,” in Proceedings of the 2006 SIGCOMM workshop on Mining

network data. ACM, 2006, pp. 281–286.

[64] C. Gu and S. Zhuang, “A novel p2p traffic classification approach using back

propagation neural network,” in Communication Technology (ICCT), 2010

12th IEEE International Conference on. IEEE, 2010, pp. 52–55.

[65] H. H. Ang, V. Gopalkrishnan, S. C. Hoi, and W. K. Ng, “Adaptive ensemble

classification in p2p networks,” in Database Systems for Advanced Applica-

tions. Springer, 2010, pp. 34–48.

[66] S. Dong, D. Zhou, and W. Ding, “Traffic classification model based on inte-

gration of multiple classifiers,” Journal of Computational Information Sys-

tems, vol. 8, no. 24, pp. 10 429–10 437, 2012.

[67] R. Wang, L. Shi, and B. Jennings, “Ensemble classifier for traffic in presence

of changing distributions,” in Computers and Communications (ISCC), 2013

IEEE Symposium on. IEEE, 2013, pp. 000 629–000 635.

BIBLIOGRAPHY 120

[68] L. Shi, R. Wang, and B. Jennings, “Training traffic classifiers with arbitrary

packet sets,” in Communications Workshops (ICC), 2013 IEEE International

Conference on. IEEE, 2013, pp. 1314–1318.

[69] D. Zhao, R. C. Wang, and H. Xu, “P2p traffic identification model based on

ensemble learning,” Journal of Nanjing University of Posts and Telecommu-

nications(Natural Science), 2011-04.

[70] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos,

P. Trimintzios, and M. Fukarakis, “CRAWDAD toolset tool-

s/sanitize/generic/anontool (v. 2006-09-26),” Downloaded from

http://crawdad.org/tools/sanitize/generic/AnonTool/20060926, Sep. 2006.

[71] S. Hansman and R. Hunt, “A taxonomy of network and computer attacks,”

Computers & Security, vol. 24, no. 1, pp. 31–43, 2005.

[72] J. Son, C. Irrechukwu, and P. Fitzgibbons, “A comparison of virtual lab

solutions for online cyber security education,” Communications of the IIMA,

vol. 12, no. 4, p. 81, 2012.

[73] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Os-

trenga, and S. Schwab, “Experience with deter: a testbed for security re-

search,” in Testbeds and Research Infrastructures for the Development of

Networks and Communities, 2006. TRIDENTCOM 2006. 2nd International

Conference on. IEEE, 2006, pp. 10–pp.

[74] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate

flow-based network traffic classification: Evaluation and comparison,” Per-

formance Evaluation, vol. 67, no. 6, pp. 451–467, 2010.

[75] “jnetpcap.” [Online]. Available: http://jnetpcap.com/

[76] T. G. Dietterich, “Ensemble learning,” The handbook of brain theory and

neural networks, vol. 2, pp. 110–125, 2002.

[77] D. Thomas G, “Machine-learning research,” AI magazine, vol. 18, no. 4, pp.

97–136, 1997.

[78] N. Williams, S. Zander, and G. Armitage, “A preliminary performance com-

parison of five machine learning algorithms for practical ip traffic flow classi-

http://jnetpcap.com/

BIBLIOGRAPHY 121

fication,” ACM SIGCOMM Computer Communication Review, vol. 36, no. 5,

pp. 5–16, 2006.

[79] E. Rich and K. Knight, “Artificial intelligence,” McGraw-Hill, New, 1991.

[80] Y. Kulbak, D. Bickson et al., “The emule protocol specification,” eMule

project, http://sourceforge. net, 2005.

[81] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer in-

ternet telephony protocol,” arXiv preprint cs/0412017, 2004.

[82] “Wireshark - sniffing tool,” http://wiki.wireshark.org/Tools/.

[83] “Lbnl/icsi enterprise tracing project (2005, jan.),” http://www.icir.org/

enterprise-tracing/download.html.

[84] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining for

unwanted p2p traffic,” Journal of Information Security and Applications,

vol. 19, no. 3, pp. 194 – 208, 2014.

http://wiki.wireshark.org/Tools/
http://www.icir.org/enterprise-tracing/download.html
http://www.icir.org/enterprise-tracing/download.html

BIBLIOGRAPHY 122

List of Publications

The following list of peer-reviewed publications have come out during the course

of this project:

Peer-reviewed journals/Book Chapters:

1. Chittaranjan Hota, Pratik Narang and Jagan Mohan Reddy, “Unwanted

Traffic Identification in Large-scale University Networks: A case study”, Big

Data Analytics: Methods and Applications, Springer, March 2016.

Peer-reviewed conferences:

1. Jagan Mohan Reddy and C. Hota, Information Systems Design and Intel-

ligent Applications: Proceedings of Third International Conference INDIA

2016, Volume 2. New Delhi: Springer India, 2016, ch. “Attack Identi-

fication Framework for IoT Devices”, pp. 505-513. [Online]. Available:

http://dx.doi.org/10.1007/978-81-322-2752-6 49

2. Jagan Mohan Reddy and C. Hota and M. Rajarajan, “Behavior-based

P2P traffic identification using fuzzy approach,”IEEE International Confer-

ence on Applied and Theoretical Computing and Communication Technolo-

gies (iCATccT), Oct 2015, IEEE-Xplore.

3. Jagan Mohan Reddy and C. Hota, “Heuristic-Based Real-Time P2P Traf-

fic Identification,”The 2nd International Research Conference on Emerging

Information Technology and Engineering Solutions (EITES 2015), Feb 2015,

Pune, IEEE, CPS, pp. 38-43, ISBN:978-1-4799-1838-6, IEEE-Xplore.

4. Jagan Mohan Reddy and Chittaranjan Hota. 2013. “P2P traffic classi-

fication using ensemble learning”. In Proceedings of the 5th IBM Collabo-

rative Academia Research Exchange Workshop (I-CARE ’13). ACM, New

BIBLIOGRAPHY 123

York, NY, USA, , Article 14 , 4 pages.

doi=http://dx.doi.org/10.1145/2528228.2528243

5. Pratik Narang, Jagan Mohan Reddy, and Chittaranjan Hota. 2013.

“Feature selection for detection of peer-to-peer botnet traffic.” In Proceed-

ings of the 6th ACM India Computing Convention (Compute ’13). ACM,

New York, NY, USA, , Article 16 , 9 pages.

DOI=http://dx.doi.org/10.1145/2522548.2523133

6. Jagan Mohan Reddy, Pratik Narang, and Chittaranjan Hota, Prafulla

Kumar, “P2P traffic classification for Intrusion Detection Systems,” Security

and Privacy Symposium 2013, IIT Kanpur, Feb 28th – March 2nd, 2013

(Poster).

7. Jagan Mohan Reddy, A. Thakur, and Chittaranjan Hota, ”Approaches

for Measuring P2P Classification Efficiency for Intrusion Detection and Pre-

vention Systems,” First National Conference on Cyber Security, NCCS 2012,

Defence Institute of Advanced Technology(DU), Pune, India, June 7-8, 2012.

BIBLIOGRAPHY 124

Biographies

Brief Biography of the Candidate Jagan Mohan Reddy is a full-time PhD

Scholar at Department of Computer Science and Information Systems in BITS

Pilani, Hyderabad Campus. His research work has been funded by Tata Con-

sultancy Services (TCS), India. He received his Master’s in Computer Science

from Jadavpur University, Kolkata in 2010. He did his B.Tech in Computer Sci-

ence from VNR VJIET, Hyderabad in 2008. His research interests are in the

area of Network Security and Big-data analytics using applied Machine Learning

algorithms.

Brief Biography of the Supervisor Chittaranjan Hota is a Professor and

Associate Dean (Admissions) at Birla Institute of Technology and Science-Pilani,

Hyderabad, India. He is also responsible for managing the Information Processing

Unit at BITS-Hyderabad that takes care of ICT needs of the entire institute. He

was the founding Head of Dept. of Computer Science at BITS, Hyderabad. Prof.

Hota did his PhD in Computer Science and Engineering from Birla Institute of

Technology & Science, Pilani. He has been a visiting researcher and visiting pro-

fessor at University of New South Wales, Sydney; University of Cagliari, Italy;

Aalto University, Finland and City University, London over the past few years.

His research work has been funded by University Grants Commission (UGC),

New Delhi; Department of Electronics & Information Technology (DeitY), New

Delhi; Tata Consultancy Services (TCS), India; and Progress Software, India. He

has guided PhD students and currently guiding several in the areas of Internet

of Things, Cyber security, and Big-data analytics He is recipient of Australian

Vice Chancellors Committee award, recipient of Erasmus Mundus fellowship from

BIBLIOGRAPHY 125

European commission, and recipient of Certificate of Excellence from Kris Ra-

machandran Faculty Excellence Award from BITS, Pilani. He has published ex-

tensively in peer-reviewed journals and conferences and has also edited LNCS

volumes. He is a member of IEEE, ACM, CSI, IE, and ISTE.

	List of Tables
	List of Figures
	Introduction
	Background
	Overview of Peer-to-Peer Systems
	What is Peer-to-Peer?
	What is the Motivation for Peer-to-Peer?
	Unstructured Networks
	Structured Networks
	Hybrid Networks
	Gnutella
	BitTorrent
	Freenet

	Issues with P2P overly
	Background Study about Machine Learning
	Supervised Learning
	Unsupervised Learning
	Performance Metrics for Classification
	Feature Selection Techniques

	Fuzzy Logic
	Fuzzy Classification

	Research Motivations
	Research Contributions and Organization of Thesis
	Thesis Organization

	Literature survey
	P2P Traffic Classification
	Classification Approaches
	Port-based Approach
	Protocol/Packet-level/Payload Based Approach
	Connection Patterns at Transport-Layer
	Flow based traffic Classification: Machine Learning

	Data Collection and Preliminary Analysis
	Data Collection and Preliminary Analysis
	Summary

	Design of a privacy-preserving P2P traffic classifier
	Network Traffic Classification
	System Overview
	Background of Feature Selection
	System Implementation

	Result Analysis
	Limitations
	Conclusion

	Host-Based P2P Traffic Identification
	Host-based P2P Traffic Identification using Heuristics
	P2P and NonP2P Applications
	NonP2P
	P2P
	Framework
	Proposed Heuristics

	Flow Based Vs Host Based approaches
	Summary

	P2P Traffic Identification: A Fuzzy Approach
	Proposed Fuzzy Recognition System for P2P Traffic Detection
	Characterization of P2P Traffic
	Behavior-based P2P Traffic Detection
	Membership Functions for UDP and TCP Features

	Performance Evaluation
	Dataset Collection
	Detection Accuracy

	Conclusion

	Design and implementation of a P2P-aware firewall
	P2P-aware firewall module
	System Integration
	Summary

	Conclusion and Future scope of work
	Conclusion
	Future Scope of the work

	Index
	Bibliography
	List of Publications
	Biography

