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Abstract

The knee joint is one of the largest and complex joints in the human body. It can withstand a

significant amount of strain and injury risks in routine and sports activities. A survey conducted

by Indian orthopedic association (IOA) concluded that knee joint disorders are growing among

Indians at an alarming rate. Though there are invasive and noninvasive techniques available for

early diagnosis of knee joint disorders, these techniques are not feasible for a routine checkup.

Interpretation of the vibration or the audio signals emitted from the patella femoral joint during

the active knee joint movements is known as vibroarthrography (VAG). VAG signals are nonlinear,

nonstationary and multicomponent in nature. VAG signals could lead to safe, cost effective,

objective and noninvasive clinical tool for early detection, localization and quantification of the

articular cartilage disorder.

The work carried out in this thesis focuses on discriminating between the healthy and unhealthy

VAG signals by using different methodologies. The analysis has been carried out using different

preprocessing techniques, feature extraction and selection algorithms and these are followed by

pattern classification.

In this thesis, nonstationary linear signal processing technique namely wavelet packet decom-

position (WPD) has been proposed for the analysis of VAG signals. The VAG signals are

decomposed into subband signals using WPD. The VAG signals are reconstructed by identifying

the significant subband signals. Entropy based features and recurrence quantification analysis

(RQA) parameters are extracted from subband signals and reconstructed VAG signals. Entropy

based features namely approximate entropy (ApEn), sample entropy (SampEn), Shannon entropy

(ShEn), Rényi entropy (ReEn), Tsallis entropy (TsEn) and permutation entropy (PeEn) are

studied as feature extraction techniques. RQA based parameters consisting of recurrence rate

(RR), Determinism (DET), Entropy (ENTR) and averaged diagonal line length (DLL) are

extracted as features. A total of 60 features were extracted which consisted of 50 features from

subband signals and ten from reconstructed VAG signals. In this study, least square support

vector machine (LS-SVM) is used as a classifier for pattern classification. The feature vector of

10 features extracted from reconstructed VAG signals provided better classification accuracy of

84.27%.

To identify the most significant features and to remove the redundant features, feature selection

algorithm has been used. Feature selection algorithm namely genetic algorithm (GA) and apriori

algorithm are studied for computing the optimal feature set. The classification performance

was compared using LS-SVM. The feature vector of 60 features extracted from subband signals

and reconstructed VAG signals gave a classification accuracy of 69.66%. Using feature selection

algorithms, eight features were selected from GA which gave a classification accuracy of 82.02%.

The highest classification accuracy of 85.39% was obtained using five features selected by the
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apriori algorithm. Results also illustrated that entropy based feature performed better with

respect to RQA parameters.

The nonlinear nonstationary signal processing technique namely complete ensemble empirical

mode decomposition with adaptive white noise (CEEMDAN) has been studied. It is based on

empirical mode decomposition (EMD) and decomposes the VAG signals into intrinsic mode

functions (IMFs). Six entropy based features have been extracted from the reconstructed VAG

signals. A simple feature extraction technique based on central tendency measure (CTM) has

also been computed. The pattern classification using LS-SVM illustrated that the feature vector

of entropy based features gave a classification accuracy of 84.27%. PeEn performed better with

respect to other entropies by giving classification accuracy of 86.52% but highest classification

accuracy was obtained by CTM of 87.64%. The computed time complexity of PeEn and CTM

having an order of O(N) provided a simple, robust and low computational feature extraction

technique along with better classification accuracy.

Time-frequency analysis of VAG signal has been studied for the diagnosing knee-joint disorders.

Smoothed pseudo Wigner–Ville distribution (SPWVD) and Hilbert-Huang transform (HHT)

has been used for time frequency analysis of VAG signals. HHT consists of EMD for computing

intrinsic mode functions (IMFs) and Hilbert transform (HT). But in this study, CEEMDAN

has been used for computing IMFs. The time-frequency representation of the proposed method

is considered as a time-frequency image. Statistical features such as mean, standard deviation,

skewness and kurtosis are extracted from the time-frequency images. Pattern classification has

been carried out by LS-SVM. CEEMDAN-HHT performed better with respect to SPWVD by

giving the highest accuracy of 88.76%. The proposed method based on time-frequency technique

provides an effective tool for the analysis of VAG signals.

In this thesis, a comparative analysis of VAG signals has been carried out using different

methodologies. These methodologies consist of nonstationary signal processing, feature extraction

techniques and pattern classification using machine learning technique. This analysis has been

carried out with an objective to develop a computer aided diagnostic system for noninvasive

detection of knee joint disorders.





Acknowledgements

It is my privilege to take this opportunity to humbly state my gratitude to those people whom I

met and interacted with in the course of my Ph.D. thesis. First of all, I would like to sincerely

thank my supervisor Dr. A. Amalin Prince (HoD, EEE Department, BITS, Pilani - K. K. Birla

Goa Campus ) for his support, and most importantly, patience, with all aspects of my Ph.D.

thesis. For this, I would always be indebted. Dr. A Amalin Prince has always contributed

insightful guidance, thoughtful discussions, and timely encouragement in the due course of my

Ph.D. thesis. During my research work, he provided me with high flexibility in various scientific

research and creative thinking. I am honoured to say thanks to my beloved supervisor Dr. A

Amalin Prince for his firm supports around the clock.

I would like to thank my co-supervisor Dr. Anita Agrawal for constant encouragement. She

provide a firm support and helped me in my initial stages of Ph.D journey. She had played a

significant role in improving my scientific writing skills. I have been privilege to be as teaching

assist under her course and this learning has been very valuable for me as a student.

My deepest gratitude to the members of the doctoral advisory committee, Prof. Raghurama

Gunaje (Director, BITS, Pilani - K. K. Birla Goa Campus), and Prof. K R Anupama without

whose knowledge and assistance this study would not have been successful. I also express

my sincere thanks to Dr. Gautam Bacher, Convener, Departmental Research Committee for

providing me with the facilities to conduct my research work at BITS, Pilani - K. K. Birla

Goa Campus. I would also like to thank Dr. M.K.Deshmukh (Ex-HoD) and Nitin Sharma

(Ex-Convener, Departmental Research Committee). I am also very thankful to my departmental

faculty for their help and support. I would like to personally thank Dr. Gautam Bacher for his

constant encouragement and support throughout my journey of thesis.

I am extremely grateful to Prof. Souvik Bhattacharyya (Vice Chancellor, BITS- Pilani), Prof. S.

K. Verma (Dean, Academic Research, Ph. D. Programme, BITS, Pilani) and Prof. P. K. Das

(Associate Dean, Academic Research, BITS, Pilani - K. K. Birla Goa Campus). I would like to

thank past directors of BITS, Pilani - K. K. Birla Goa Campus, Prof. K. E Raman and Prof.

Sasikumar Punnekkat. Collective and individual acknowledgements are due to all my colleagues

and friends, within the BITS-Pilani community, who have directly or indirectly helped me in my

work.

I would like to thank Prof. R.M.Rangayyan (Professor Emeritus of Electrical and Computer

Engineering at the University of Calgary, Calgary, Alberta, Canada.) for helping, encouraging

and providing us the data set. I would like to thank the reviewers of journals/ conference who

have helped me to improve my research.

vi



I would like to thank Mr. Vijaykumar Patil and “Reconfigurable Computing lab” for providing

me the facilities. I would like to thank my lab colleagues Mr. Jay Kumar and Mr. Gibin George

for their support. I would also like to thank Mr. Adtiya Sundar, Mr. Valliappan C.A and other

students who have worked in the lab.

I also thank large number of persons and friends Mr.Praveen GB, Mr. Geetesh Mishra, Mr.

Gautam Kumar, Mr. Chetan Bandodkar, Mrs. Pinky, my football buddies and research scholars

for moral support. Special thanks to members of Goan Royal Riders (GRR) especially Raju

Saini and Toastmaster International Margao for making my stay in Goa a memorial one.

I would forever be indebted to my parents, parents-in-law, sister and my cats for their constant

love, confidence, prayers, strong support and good wishes. I would like to thank my wife for

having patience, for her love, understanding and support throughout my Ph.D journey.

I thank to the Almighty Lord for all the wonderful things and surrounding life he is giving to

me every moment and hope his blessing will be continue on my journey.

Nalband Saif Dilavar Shehnaz



Contents

Declaration of Authorship i

Certificate ii

Abstract iv

Acknowledgements vi

Contents viii

List of Figures xi

List of Tables xiii

Abbreviations xiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Knee joint disorders in India . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Aim Of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objective Of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Organization Of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 VAG Acquisition Techniques & Datasets . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Data Set Used In Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Characteristics Of VAG Signal . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Preprocessing Techniques Of VAG Signals . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Linear Signal Preprocessing Techniques . . . . . . . . . . . . . . . . . . . 14

2.4.1.1 Preprocessing VAG Signal Using Wavelet Packet Decomposition 16

2.4.2 Nonlinear Signal Processing Techniques . . . . . . . . . . . . . . . . . . . 16

2.4.2.1 Preprocessing Technique Using CEEMDAN . . . . . . . . . . . . 18

viii



Contents ix

2.4.3 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3.1 Smoothed Pseudo Wigner–Ville Distribution (SPWVD) & Hilbert-
Huang Transform (HHT) . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Feature Extraction and Feature Selection Techniques . . . . . . . . . . . . . . . . 22

2.5.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1.1 Proposed Feature Extraction Techniques . . . . . . . . . . . . . 24

2.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2.1 Genetic & Apriori Algorithm For Feature Selection . . . . . . . 26

2.6 Pattern Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.0.1 Least Square Support Vector Machine For Pattern Classification 30

2.7 Gaps In Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Analysis of VAG signals using Wavelet Packet Decomposition 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Wavelet Packet Decomposition (WPD) . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Entropy Based Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1.1 Approximate Entropy . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1.2 Sample Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.3 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Chapter 1

Introduction

The introduction of many minds into

many fields of learning along a broad

spectrum keeps alive questions about the

accessibility, if not the unity, of knowledge

Edward Levi

1.1 Background

The knee joint of the human body, also known as the tibiofemoral joint, is one of the largest

and most complex joint structure. The knee joint comprises of bones (fibula, femur, tibia and

patella), tendons, cartilages and a joint capsule (figure 1.1). The knee is a synovial hinge joint.

Figure 1.1: Anatomy of Knee joint

1



Chapter 1. Introduction 2

The knee cap which is also known as patella covers and protects the articular surface of knee

joint. The joint capsule provides lubrication and strength to the surrounding of the knee joint.

Ligaments surrounding the joint capsule helps to provide a stable structure and align the bones

correctly. The patella is supported by the patellar ligament which extends from the patella to

the tibial tuberosity of the tibia. There are two external ligaments known as the medial collateral

ligament (MCL) and the lateral collateral ligament (LCL). MCL connects the medial side of the

femur to tibia while LCL connects the lateral side of the femur to fibula. The primary function

of these ligaments is to resist the valgus and varus force on the knee joint. The internal ligaments

known as the anterior and posterior cruciate ligaments help to maintain a stable alignment of

the knee.

Apart from joint capsule and ligaments, several other structures surrounding the knee joints are

present which provide a cushion and protects the knee joints. Synovial fluid is found in the cavity

of synovial joint. The synovial fluid is responsible for reducing the friction between the patella

and femur. The articular fat pads tissues present near the knee joint act as a cushion to knee

joint from the external stress. The infrapatellar fat pad is the largest of the pads surrounding

the knee joint. It provides flexible movements of extension and flexion during the leg movements.

It also acts as a shock absorber to the anterior surface of the knee. These tissues, ligaments and

bones provide a stable structure and hold the bones in correct posture and alignment. Hence,

the knee joint is able to withstand human body weight while allowing the movements of the

leg relative to the thigh. The knee joint can resist a significant amount of strain and stress.

Consequently, the knee joints are prone to injury risks in routine life activities and especially in

sports activities.

Arthritis is one of the most common diseases that occur in the knee joints. It can be broadly

classified into osteoarthritis (OA) and inflammatory arthritis. OA is caused mainly due to

degeneration of protective cartilage or due to wear and tear of the muscles. Therefore, movements

of the leg become quite restricted since the bones of the knee joint brush against each other,

thereby causing severe pain to the subject, which varies among the subjects. But in the cases

related to inflammatory arthritis, the immune system of the body fails to protect tissues, muscles

ligaments etc. from infection. This leads to uncontrollable inflammation in joints and damaging

tissue, muscle. Rheumatoid arthritis, ankylosing spondylitis, juvenile idiopathic arthritis and

psoriatic arthritis are examples of inflammatory arthritis. There are other factors involved in

knee joint disorders which are aging, obesity, physical activities, previous knee injury, and regular

climbing of stairs [1].
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1.1.1 Knee joint disorders in India

OA is the most common knee joint disorder detected among Indians. By projecting its numbers

at the present rate, India may become the OA hub with more than 65 million cases by 2025

according to studies contacted by medical professionals [2]. “In the last few decades, Indians

in the age-group of 30 to 50 years are falling prey to OA and it continues to have a serious

impact on the lives of elderly people” said Mudit Khanna, consultant Orthopedics at Wockhardt

Hospital.

A recent study concluded by Prognosis management and research consultants Pvt. Ltd in

collaboration with the Indian orthopedic association conference (IOACON) Agra, made a critical

study on OA. The survey was conducted among the Indian population and the factors associated

with it [2]. The survey was carried out in 5 major cities across India, namely, Pune, Bangalore,

Kolkata, Agra and Dehradun. Figure 1.2 (a) shows a pie chart diagram of the number of subjects

participated and the percentage of subjects having OA. A total of 4909 subjects had participated

in the study.

Pune , 999

Bangalore , 1005

Kolkata , 993

Agra , 1000

Dehradun , 912

(a) Distribution of study across different cities

Male , 1763, 
36%

Female , 3146, 
64%

(b) OA between male Vs female

2256 908 1150 593

46

18.5
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12.1

0

500

1000

1500

2000

2500
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No of Participants Percentages

(c) Age distribution of subject having OA

Figure 1.2: Statistical Measures
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The survey was also carried out on the basis of gender. The study inferred that the occurrence

of OA was quite prevalent in cases of female subjects in comparison to male subjects. From

the figure 1.2 (b), it can be observed that the occurrence of OA among females is quite higher

than males. The figure elaborates that among 4909 subjects 64% of subjects were female while

36% were male. A study was also carried out with subjects consisting a wide range of ages

having knee joint disorders. This can be observed in figure 1.2 (c), the bar chart provides the

description of the subjects with the different range of ages having OA. Thereby, these studies

provide motivation for the prognosis of knee joint disorders.

1.2 Motivation

Procedures based on invasive and noninvasive techniques are available in detecting the deterio-

ration of knee joint disorders. A minimally invasive surgical procedure such as arthroscopy is

generally preferred for diagnosis of knee joint disorder. Arthroscopy is a standard procedure

which provides a comparatively low-risk estimation of knee joint disorders. However, it has a

limitation that it cannot be applied to the subject’s knees, which is in the highly degenerated

state due to arthritis ligament instability. Such procedure cannot be applied for a routine checkup

since repetitive surgical invasions could be susceptible to bacterial infection.

Noninvasive techniques such as computed tomography (CT) and magnetic resonance imaging

(MRI) are some of the popular procedures in asserting knee joint disorders [3]. Though MRI and

CT provide a good image contrast, it only displays anatomically. Therefore, these procedures

are highly observer dependent and this limits the diagnosis of knee-joint pathology. The cost,

availability and portability are some of the other major limitations of these procedures. Therefore,

these procedures cannot be used in the routine investigation or monitoring especially cases

related to rehabilitation programs.

Furthermore, the above mentioned procedures are only able to provide a static information

of knee joint disorders. Therefore, these techniques fail to provide dynamic aspects related to

knee joint movements [4]. These limitations and drawbacks of semi-invasive and noninvasive

procedures have motivated researchers for an alternative solution which would be noninvasive,

cost effective and configurable with computer-aided diagnosis (CAD). This could provide an early

diagnostic system for knee joint disorders. The auditory and deceleration/acceleration signals

from knee joints offer researchers noninvasive technique for diagnosis of knee joint disorders [5].

These signals are nonlinear and nonstationary in nature and are known as vibroarthrographic

signals (VAG). VAG signals could provide an assessable procedure for the diagnosis of knee joint

disorders since VAG signals of a pathological condition of knee joint are highly complex waveform

and large variation of frequencies [6]. These VAG signals contain pathological aspects of knee

joint disorders and could define the characteristic of VAG signal. Thus, VAG signals along with
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signal processing techniques could provide safe, cost effective, objective and noninvasive clinical

application for early diagnosis of knee joint disorders, thereby, reducing the surgery cost and it

would enhance the rehabilitation programs for monitoring the progress.

1.3 Aim Of Thesis

VAG Signal Preprocessing
Technique 

Feature
Extraction Classification

Feature
Selection

Healthy

Unhealthy

Figure 1.3: Flow chart for diagnosis of knee joint disorders using VAG signals

A typical CAD system involved in the diagnosis of knee joint disorder using VAG signal has

been presented in figure 1.3. These are the basic steps of pattern classification involved in the

analysis of signal or image processing [7].

• Data acquisition: Initially, the VAG signals are acquired from the subjects and the

signals are amplified.

• Preprocessing Technique: The next step involves the preprocessing, in which the signals

are prepared for the analysis. In this step, different signal processing techniques are applied

for removing any external noises, distortion etc.

• Feature extraction: Feature extraction is followed after preprocessing. The extracted

features gives the characteristic and the behaviour of the signals.

• Classification: Last step is pattern classification using machine learning algorithms. The

extracted features are given as input to the classifier algorithm in order to compute the

performance of the proposed methodology.

• Feature selection: The intermediate step between classification and features extraction

is feature selection. This step is involved whenever a larger number of features have been

extracted. In such cases feature selection is required to select most significant and relevant

features.
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The main aim of the thesis are

• To develop methodologies for computer aided diagnostic (CAD) system for early diagnosis

of knee joint disorders.

• Methodologies are developed for the analysis of VAG signals using nonstationary signal

processing techniques, feature extraction techniques and pattern classification.

1.4 Objective Of The Thesis

The aim of the thesis is achieved with specific objectives. These objectives are as follows:

1: To analyse the classification performance of VAG signals using nonstationary linear signal

processing technique and to extract entropy and recurrence quantification analysis(RQA)

based features.

This objective is achieved by decomposing the VAG signal using wavelet packet decompo-

sition (WPD) into subband signals. The subband signals consist of different frequencies.

The significant subband signals of particular frequencies are identified and VAG signals

are reconstructed. Features based on entropies and RQA parameters are extracted from

subband and reconstructed VAG signals. Entropies namely approximate entropy (ApEn),

sample entropy (SampEn), Shannon entropy (ShEn), Rényi entropy (ReEn), Tsallis entropy

(TsEn) and Permutation entropy (PeEn) are extracted. RQA based parameters namely

recurrence rate (RR), Determinism (DET), Entropy (ENTR) and averaged diagonal line

length (DLL) are extracted in this study. The pattern classification is carried out using

LS-SVM.

2: To identify the most significant and relevant features using feature selection algorithms for

building effective classification model.

This objective is achieved by using feature selection algorithms for choosing the most

significant and relevant features and discarding the irrelevant features. In this work,

genetic algorithm (GA) and apriori algorithm (ApA) have been utilized as feature selection

algorithms and their performance have been compared.

3: To analyse the classification performance of VAG signals using nonstationary nonlinear

signal processing techniques and to extract entropy based features and simple feature

extraction technique based on central tendency measures (CTM).

This study proposes to use a nonstationary nonlinear signal prepossessing technique known

as complete ensemble empirical mode decomposition with adaptive white noise (CEEMDAN)

to decompose the VAG signals into intrinsic mode functions (IMFs). Approximate entropy
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(ApEn), sample entropy (SampEn), Shannon entropy (ShEn), Rényi entropy (ReEn), Tsallis

entropy (TsEn) and permutation entropy (PeEn) along with simple feature extraction

technique based on central tendency measures (CTM) are explored.

4: To analyse VAG signals by time-frequency distribution (TFD) using smoothed pseudo

Wigner–Ville distribution (SPWVD) and CEEMDAN-Hilbert-Huang transform (CEEMDAN-

HHT) and to extract statistical features.

The objective is achieved by analysing VAG signals using time-frequency analysis namely

SPWVD and CEEMDAN-HHT for diagnosing knee-joint disorders. The time-frequency

representation of the proposed methods is considered as a time-frequency image. Statistical

features namely mean, standard deviation, skewness and kurtosis are extracted from the

time-frequency images. A pattern classification is performed to compare the effectiveness

of the proposed methods.

This thesis can be summarized in the flow diagram as shown in the figure 1.4.

Nonstationary 
Signal ProcessingLinear Signal Processing Nonlinear Signal Processing

Time Domain
Feature Extraction

WPD CEEMDAN

Time - Frequency 
Domain

Time-Frequency Image 

Statistical Features 

Sub-band Signals D2-D7

RQA Parameters Entropies

1. RR
2. DET
3. ENTR
4. DLL

1. ApEn
2. SampEn
3. ShEn
4. ReEn
5. TsEn
6. PeEn

1. Mean
2. Std
3. Skewness
4. Kurtosis

Analytical 
Representation

CTMFeature Selection

Genetic Algorithm
Apriori Algorithm

LS-SVM

Healthy VAG Unhealthy VAG

Figure 1.4: Thesis work flow
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1.5 Organization Of Thesis

The thesis comprises of seven chapters and contents of each chapters has been briefly described

below:

• Chapter 1 is an introductory chapter that briefly describes the problem domain. It briefly

introduces the motivation for studying the knee joint disorders. It also gives an outline

of various existing diagnostic methods. This chapter introduces how the computer aided

diagnostic system would be developed for a noninvasive and cost effective method for

diagnosing knee joint disorders using VAG signals.

• Chapter 2 gives literature review on VAG signals that sustain the significance of the

work. It gives literature review on the various methodologies applied by the researchers.

The literature review consists of different signal processing techniques, feature extraction

techniques and feature selection techniques. Dataset used in this research has also been

elaborated in this chapter. It also discusses the gaps in the existing research.

• Chapter 3 discusses the nonstationary linear technique using WPD. The VAG signals

are decomposed into subband signals of particular frequencies. Entropy and RQA based

features are discussed in this chapter. A pattern classification is carried out using LS-SVM.

• Chapter 4 introduces the aspects of features selection techniques. These techniques are

used for selecting the most significant and relevant features obtained using the techniques

in chapter 3. Genetic algorithm and apriori algorithm as feature selection algorithm are

explored. The performance of features selected by the feature selection algorithms is

compared.

• Chapter 5 discusses the nonstationary and nonlinear signal processing technique such as

CEEMDAN. It briefly explains the advantages of CEEMDAN over EMD based techniques.

Entropy based feature extraction techniques are carried out followed by pattern classification.

A simpler feature extraction based on central tendency measurement is also explored.

• Chapter 6 gives the general discussion on time-frequency distribution. It introduces the

methodology of SPWVD and CEEMDAN-HHT. The statistical features such as mean,

standard deviation, skewness and kurtosis obtained from time-frequency representation are

briefly explained. A comparative study between SPWVD and CEEMDAN-HHT is also

carried out.

• Chapter 7 finally, concludes the thesis and provides suggestions for future research.



Chapter 2

Literature Review

Literature review is a process of finding

the sources of relevant material for

particular topic or subjects

Galvan (2005)

In this chapter, an extensive literature survey has been carried out on VAG signals. Methodologies

consisting of data acquisition of VAG signals, signal processing techniques, feature extraction,

feature selection and pattern classification has been covered. The data acquisition carried out for

acquiring VAG signal by different researcher groups are discussed and data set selected in this

thesis has been elaborated. This chapter also presents an outline of various signal processing

techniques applied to VAG signals by researchers. These techniques are based on linear and

nonlinear techniques. Different feature extraction techniques studied by researchers have been

reviewed. The significance of feature selection algorithms in the analysis of VAG signals has been

covered. This is followed by a review on pattern classification of VAG signals using machine

learning techniques. Gaps in the existing literature have been identified and presented in this

chapter. A review of the proposed methodology has been covered.

2.1 Introduction

The knee joint is one of the most complex, strongest and most important joints in the human

body. It can withstand the weight of human body while allowing lower leg movements relative to

the thigh. The knee joint can resist a significant strain and injury risks in routine activities and

sports activities. Therefore, there is degradation of muscles, tissues and cartilage surrounding

the knee joint. Other factors which cause degradation are ageing, obesity and physical activity.

Thus, there is a need to interpret these deteriorations of the knee joint during the early stages.

9
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As discussed in the previous chapter, there are existing invasive and noninvasive techniques

available for early diagnosis of knee joint disorders. Noninvasive techniques include X-rays, CT

scans, MRI etc. are available, but these are notably expensive for a routine check-up and it only

provides static information about knee joint disorders. Therefore, a noninvasive, cost-effective

and portable method for early diagnosis of knee joint disorders using VAG signals has been

explored.

VAG signals are audible sound or vibration emitted from knee joint when a piezoelectric sensor is

placed on the patella. These sounds or vibration are emitted due to the friction created between

the bones and the surrounding tissues and ligaments. The wear and tear of these tissues and

ligaments are caused due to ageing, daily activities or sports activities. Therefore, the smooth

movements are restricted due the friction created between tissues, bones and ligaments. These

signals contain information that could be used to characterize certain pathological aspects of

the knee joint. VAG signals along with computer aided diagnostic system could lead to a safe,

objective and noninvasive clinical tool for early detection, localization, and quantification of the

articular cartilage disorder [8]. Diagnosis carried out using VAG signals could reduce the need

for diagnostic surgery and would enhance the rehabilitation program in monitoring knee joints.

In this section, a brief review on VAG signal processing techniques is presented. An extensive

research has been carried out in the area of VAG signals as a potential tool for diagnosis of the

knee joint disorders.

2.2 VAG Acquisition Techniques & Datasets

Researchers have used various sensors such as contact microphone, electro-stethoscope, and

accelerometers to acquire VAG signals with a varying degrees of success. The first attempt to

record the knee joint sound was by Erb in 1933. He placed a microphone on mid-patella and

graphically recorded the knee joint sounds. Researchers have used highly sensitive microphone

placed on mid patella to record the sounds originating from knee joints. A team led by Kim et

al. has used an electro-stethoscope (Hanbyul Meditec, Korea) for acquiring knee joint sounds [9],

[10]. The stethoscope was placed on the mid-patella considering the structure of knee and it

also provided minimal muscle interferences. The acoustic sounds acquired from the sensor were

characterized by acoustic parameters such as fundamental frequency, mean amplitude of the

pitches, and jitter and shimmer of the signals. In this experiment, the sample size was restricted

to 17 subjects (6 healthy and 11 unhealthy subjects). Unhealthy subjects suffered from knee

joint disorder such as ruptured wounds of the meniscus and OA. Results concluded that sound

parameters such as jitter, shimmer, and fundamental frequency were comparatively higher for

unhealthy subjects with respect to healthy subjects.
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Literature survey concluded that microphones cannot be considered as an effective sensor.

Microphone-based studies continued to be limited by the shortcomings of all acoustic systems,

chiefly the poor frequency response to low-frequency signals and distortion caused by background

noise. Mollan and his co-workers designed various data acquisition system for acquiring the knee

joint vibration signals [11]. Their studies concluded that accelerometers are better than acoustic

transducers because of their frequency response and small size. The accelerometers which are

mounted to the skin are sensitive to vibration at their point of application, and therefore the

problem of background noise, which affects microphone-based systems, is minimised. Their

small size and the fact that they can be securely fixed avoids skin friction noise. Cable noise is

removed by the use of pre-amplification. The study concluded that VAG signals of unhealthy

subject have major frequency components (300 to 600 Hz) as compared to signals of the healthy

subject (25 to 320 Hz). Since then, many researchers have reported the feasibility and usefulness

of this technique as a potential use for the noninvasive diagnosis of knee joint disorders.

A research team of Hongzhi Chen and Lik-Kwan Shark from applied digital signal and image

processing research center (ADSIP), University of Central Lancashire, Preston, UK carried out

preliminary studies on knee joints [12], [13]. Their study focused on the potential use of acoustic

emission(AE) with a biomarker for the analysis of knee joint disorders. 34 healthy subjects and

19 unhealthy subjects having OA participated in this experiment. The study was carried to

classify the knee joint disorders with respect to age and degeneration of knee joint [13].

Baczkowicz et al. used accelerometer to study age related quality of patellofemoral joint (PFJ)

motion in the VAG [14], [15]. The experiment setup was carried out for 220 subjects and

these subjects were distributed into 5 groups. Each group consisted of subjects belonging to a

particular range of ages. The subjects were part of a prevention program of locomotor system

dysfunctions at Institute of Physiotherapy, Opole University of Technology. Subjects with any

knee joint disorders were excluded from the study. Baczkowicz have et al. also studied the impact

of joint motion using VAG signal on subjects having knee joint disorders [14], [16], [17]. Subjects

involved in this study included were suffering from OA, lateral patellar compression syndrome

and chondromalacia. The results concluded that signals recorded from unhealthy subjects

possessed significantly higher values of parameters (variance of mean squared,entropy,power

spectral density bands) with respect to healthy subjects.

2.3 Data Set Used In Thesis

R.M. Rangayyan and his research team is one of the most prominent research team working in

the area of VAG signals. Rangayyan et al. carried out the data acquisition of VAG signals using

a miniature accelerometer (Model 3115A, Dytran Instruments, Inc., Chatsworth, CA, USA).

The setup for data/signal acquisition of knee joints was developed at the University of Calgary,
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Canada by research group led by Rangayyan [6], [18]. A block diagram of data acquisition setup

is shown in figure 2.1. The experiment protocol was given ethical clearance by Conjoint Health

Figure 2.1: VAG data acquisition system. Image taken from Wu Y. Knee joint vibroarthro-
graphic signal processing and analysis. Springer; 2015 Jan 29 [6].

Research Ethics Board of the University of Calgary. The experiment consisted of 89 subjects.

The subjects were consulted and examined by a physician. 51 subjects (22 male, 29 female, age

28 ± 9.5 years) were considered as healthy since they were not affected by any abnormalities in

knee joint pains or disorders. 38 subjects (20 male, 18 female, age 35± 13.8 years) suffered from

the various knee joint disorders such as tibial chondromalacia, anterior cruciate ligament tear,

meniscal tear etc. as reported by the physician. The protocol consisted of a simple experiment

in which the subjects were told to sit on a rigid table and were instructed to float their legs

freely. The position of the subject was fixed in such a manner that leg movements could be

performed without any discomfort. At the mid-patella, a miniature accelerometer sensor was

placed to acquire a signal from the knee joint. The physician instructed the subjects to flex

and extend their leg for a duration of 4 secs. The electric voltage generated by the sensor were

acquired in terms of acceleration and deceleration due to the knee joint movements of the leg.

National Instrument’s LabView software and data acquisition board were used for amplifying

and digitizing the acquired VAG signal. The VAG signal was prefiltered (10 Hz to 1 kHz) and

amplified. 2kHz was the sampling frequency of VAG signal and it was digitized with 12-bit

resolution [18].

An example of an acquired raw VAG signal is shown in figure 2.2. The figure (a) and (b) are the

VAG signals of a healthy and unhealthy subject respectively. As observed from figure 2.2 (a), the

VAG signal of a healthy person produces little or no vibration since the supporting tissues and

muscles of the knee joint are smooth and aren’t degraded. Whereas in the case of an unhealthy

person being affected by OA or other diseases, audible grinding sounds and vibration can be
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observed in figure 2.2 (b). This may be due to loss of cartilage tissues and supporting ligaments

of knee joints which restricts the smooth movements. Rangayyan et al. had concluded that

sharp burst audible sound appeared in the range of 0-200Hz from subjects who had meniscal

lesions. Subjects suffering from mild chondromalacia had a VAG signal in the frequency 0-300Hz

while subjects suffering from severe chondromalacia had low frequency components (0-100 Hz)

due to wear and tear of cartilage tissues [4].
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(b) Unhealthy subject

Figure 2.2: Sample raw VAG signal

In our study, the analysis of VAG signal has been carried out using the data set acquired by

Rangayyan et al. Prior permission was obtained from Rangayyan for utilizing the VAG data set.

This VAG data set was selected in our study since various studies have been carried using the

same data set. Therefore, the performance of our proposed work with the existing methodology

can be compared.

2.3.1 Characteristics Of VAG Signal

The characteristics of VAG signal are as follows:

i. VAG signal is a multicomponent signal since it contains several vibrations or acoustic com-

ponents. These vibrations occur due to friction produced between bones and surrounding

tissues/cartilage of knee joint.

ii. VAG signal is nonstationary in nature. This can be observed from figure 2.2; the acquired

VAG signals of the healthy and unhealthy subject consists of different amplitudes and

frequencies.

iii. VAG signal is aperiodic and nonlinear.
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Considering these characteristics of VAG signal, an effective advanced signal processing technique

followed by pattern classification is required for developing a CAD system. Following section

explores the existing signal processing techniques and the feature extraction methodology used

in the analysis of VAG signals.

2.4 Preprocessing Techniques Of VAG Signals

The task of the signal preprocessing procedure is to remove the artefacts in the raw signal. Its

main objective is to extract essential information about the signal and thereby making a proper

inference about the behaviour of the signal. Biomedical signals are susceptible to contamination

from artefacts such as baseline wander, external noise, muscle interferences etc. Therefore,

preprocessing is an indispensable step in the analysis of biomedical signals. Since the VAG

signals are acquired using an accelerometer, they too are contaminated by various artefacts.

Therefore, it is important that these artefacts are eliminated prior any analysis since these

artefacts could mislead the results of analysis [19].

Since VAG signals are nonlinear and nonstationary in nature, various researchers have used

linear and nonlinear signal processing technique. Linear signal processing techniques assume that

input signals are periodic and linear in nature. Therefore, the analysis carried out using linear

signal processing techniques may result in loss of important information. Whereas, nonlinear

methods do not assume the input data/signal as linear or stationary. The nonlinear methods are

suitable for nonlinear and nonstationary signals. But, the nonlinear methods are computationally

complex in nature. Researchers have extensively worked in the methodology related to the

frequency domain, time domain, and time-frequency analysis.

Various researchers have used different methodologies for the analysis of VAG signals. These

methodologies includes preprocessing techniques, feature extraction techniques and followed

by pattern classification for differentiating between healthy and unhealthy VAG signals. The

following section presents various linear and nonlinear signal processing techniques used on VAG

signals. A literature review of the proposed signal processing techniques has been presented in

the following section.

2.4.1 Linear Signal Preprocessing Techniques

An initial study on VAG signals was carried out using traditional linear signal processing

techniques[20]. Zhang et al. had used an adaptive cancellation of muscle contraction interference

and artefacts [21]. This technique was based on a two-stage least-mean-squares (LMS) adaptive

filter. The external noise generated from the accelerometer and its environment were removed
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Table 2.1: Linear signal preprocessing techniques

Year Author Techniques Features Classifier Accuracy%

1994 Zhang[21]
two-stage

LMS
- - -

1997 Krishnan[22]
adaptive segmentation

using RLSL

AR coefficients,

VMS

Logistic

classification
68.9

2013 Wu[23]
adaptive time-delay

neural filter
- - -

2012 Cai[24] DCMA - - -

in the first stage. In the second stage, the adaptive filter was able to remove the muscle

interference from the signal. The work was further investigated by Krishnan et al. using

adaptive segmentation based on the recursive least squares lattice (RLSL) algorithm [22]. In

the segmentation process, the VAG signals were broken down into series of quasi-stationary or

stationary segments. The segmented signals were assumed as stationary and thereby features

were extracted from these segmented signals. Yunfeng Wu used an adaptive time-delay neural

filter which estimated the noise present in the VAG signal by convolving neuron with synaptic

weights over a reference input [23]. Suxian Cai et al. proposed a double cascaded moving average

filter for removing artefacts from VAG signals [24]. The first layer of the filter has two moving

average operators of the same order. The second layer smooths the coefficients obtained from

the first layer. Figure 2.3 shows the filtered VAG signal using a double cascaded filter. In this

thesis, a double cascaded moving average (DCMA) filter has been used for 89 VAG signals as a

mandatory filtering step. Therefore, prior carrying out the analysis, the VAG signals are filtered

using a double cascaded moving average filter. The summary of literature survey carried on

VAG signals using linear signal processing techniques has been shown in the table 2.1.
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Figure 2.3: Filtered VAG signal using double cascaded moving average filter
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Work carried out by above researchers assumed that the VAG signals are stationary and applied

linear signal processing techniques. The analysis carried out using these techniques provided

poor classification performance and may mislead the results. Therefore, nonstationary linear

processing techniques for the analysis of VAG signals has not been extensively studied for the

analysis of VAG signals.

2.4.1.1 Preprocessing VAG Signal Using Wavelet Packet Decomposition

Wavelet transform (WT) is a popular nonstationary signal processing techniques and has been

widely used in research community. WT divides the input data or signals into different frequency

components [25]. WT has been studied where input data is nonstationary, aperiodic and

nonlinear. WT has been applied in the analysis of biomedical signals such as EEG, EMG etc.

[26]–[31]. Recent studies have concluded that wavelet based decomposition of EEG signals into

subband signals of different frequencies provided more information about the neuronal activities

[32]. The study also stated that the characteristics were distinctly evident in the subband signals

when compared to original EEG signals. Considering the similarity between EEG and VAG

signals as nonstationary and nonlinear nature, a technique of wavelet packet decomposition

(WPD) of VAG signal has been investigated.

Coifman et al. introduced WPD also known as wavelet packets or subband tree [33]. It is a

wavelet transform in which the input signal is given to bank of filters. It disintegrates a given

signal into detail approximation coefficients at the first stage of decomposition [34]. These

approximation coefficients are further disintegrated into approximation coefficients in successive

stages. Hence the signal breaks down like a tree structure. The WPD has been unexplored

in the literature review for the analysis of VAG signal. Therefore, WPD of VAG signal in

this dissertation has been studied. There are various wavelet functions available for selecting

the mother wavelet function. We have selected the mother wavelet function based upon the

correlation between VAG signals and coefficients of WPD.

2.4.2 Nonlinear Signal Processing Techniques

Since VAG signals are nonstationary and nonlinear by nature, nonlinear signal processing

techniques are explored for the analysis. With the evolution of digital signal processing, various

researchers have used different signal processing techniques for the analysis of VAG signals.

Comon et al. introduced independent component analysis (ICA) for the analysis of complex

signals [35]. ICA is based on a statistical approach that transforms multicomponent data into

simpler components that are statistically not dependent on each other. An example of ICA is

listening to one’s conversation in a noisy environment, also known as “cocktail party problem”.

In this method, the input signal/data are assumed as a linear or nonlinear combination of
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variables. These variables are assumed as mutually independent and are nongaussian in nature

and these variables are called as independent components of the signal/data. ICA is an extension

of principal component analysis method [36]. ICA has been used in various application domain

such as imaging processing, speech and audio signal processing, document databases and financial

data for stock markets [37]. ICA has been extensively applied in the analysis of biomedical signal.

The biomedical signals are acquired using contact sensors or multiple sensors and therefore,

these acquired biomedical signals are contaminated by various artefacts. Hence ICA has been

used for removing these artefacts present in biomedical signals [38], [39]. ICA has been used

as preprocessing technique for removing the artefacts present in such as EEG [40]. Chen et al.

applied ICA for the analysis of VAG signals [41]. VAG signals are contaminated with artefacts

such as muscle interference, baseline wanders etc. analysis of contaminated VAG signals would

be difficult. Therefore, ICA acts as preprocessing step in removing these artefacts and thereby

improving the quality of VAG signals [41].

Variational mode decomposition (VMD) is another nonlinear signal processing method used as

a preprocessing technique. VMD was proposed by Dragomiretskiy et al. as a novel technique

for decomposing the signal into an ensemble of band-limited IMFs [42]. VMD is based on a

nonrecursive model and modes are extracted concurrently. In this method, the input signal is

reconstructed by building the model of an ensemble of modes with respective central frequencies.

Sundar et al. used VMD for the denoising of VAG signals and followed by Wiener entropy for

computing the correlation of signals [43].

Huang et al. had proposed a signal processing technique for nonstationary nonlinear signals

known as the EMD [44]. EMD decomposes the signal into a number of intrinsic mode functions

(IMFs). Wu et al. have used EMD by removing the baseline wander and other external

noises [45]. IMFs signals are oscillations residing over the signals. It defines the only a single

mode of oscillation and multi waves components are restricted. Wu et al. had used EMD

for removing artefacts/other noises by using confidence limit criterion and probability density

function technique. The significant IMFs were identified and the VAG signal was reconstructed.

Turn count method was used to identify the fluctuating part of the signal. Results illustrated that

quality of VAG signal improved considerably from artefacts [45]. However, EMD suffers from one

prominent drawback of “mode mixing”. In order to overcome this drawback, Huang proposed

a modified version of EMD called as “ensemble empirical mode decomposition” (EEMD) [46].

The analysis of VAG signal using EEMD was carried out by Wu et al. to remove the baseline

wander and other external noises [47]. EEMD decomposes the VAG signals into a number of

IMFs and detrended fluctuation analysis (DFA) algorithm is applied on each of the IMFs to

calculate fractal scaling index [47]. DFA algorithm helps in inferring the anti-correlated and

long-range correlation components. The identified IMFs helps in reconstructing the VAG signals

[46]. The summary of literature survey carried on VAG signals using nonlinear signal processing

techniques has been shown in the table 2.2.
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Table 2.2: Nonlinear Signal Processing Techniques

Year Author Techniques Features Classifier Accuracy%

2012 ∗Chen[41] ICA root mean square - -

2015 Sundar[43] VMD - - -

2013 Wu[45] EMD turn counts - -

2013 Wu[47] EEMD - - -

2016 Wu[48] EEMD Entropy, EAM LS-SVM 83.56

∗Different dataset

Therefore considering the drawbacks of EMD based methods, nonstationary nonlinear signal

processing techniques using complete ensemble empirical mode decomposition with adaptive

noise (CEEMDAN) could be used for the analysis of VAG signals.

2.4.2.1 Preprocessing Technique Using CEEMDAN

VAG signals are nonlinear and nonstationary in nature and therefore advance signal processing

techniques are required for the analysis. EMD provides a vital signal processing techniques for

nonlinear and nonstationary data analysis. EMD has found widespread usage in the application

related to biomedical studies, geophysical studies [49], [50]. EMD was applied by Wu et al. for

carrying out the analysis of VAG signals. But the frequent occurrence of mode mixing is one of

the major flaws of EMD. In mode mixing, a particular IMF is composed of signals with widely

disparate scales, or a signal identical scale may reside in different IMF components. Huang et

al. applied intermittency test for removing the problem of mode mixing but wasn’t successful

[51]. Huang proposed a new noise-assisted data analysis (NADA) method known as EEMD for

removing the problem of mode mixing [46]. In this method, a true IMF is defined as the mean

of the ensemble of trails which consists of a signal and added Gaussian white noise. Wu et al.

applied EEMD for the analysis of VAG signals [47] along with DFA algorithm. However, EEMD

still contains the drawbacks such as

1. Presence of residual noise in the reconstructed signal and the modes

2. Different number of modes were obtained by realizing different input signal plus Gaussian

white noise.

Hence, in order to remove these drawbacks complete ensemble empirical mode decomposition

with adaptive noise (CEEMDAN) was proposed [52]. Considering the nature of VAG signal,

this thesis proposes to use CEEMDAN in computing IMFs for the analysis of VAG signal [52].

CEEMDAN provides an improvement in minimizing the reconstructed error, provides a fixed

number of modes for different signals and minimizes residual noise present in the modes [52].
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CEEMDAN has been successfully reported in the analysis of nonstationary and nonlinear data,

especially in cases of biomedical signals [53]–[55], vibrational signals from rolling element bearings

[56], wind speed forecasting [57]. Hence, considering these studies, CEEMDAN as one of the

preprocessing technique has been proposed for the analysis of VAG signals in this thesis.

2.4.3 Time-Frequency Analysis

Time frequency analysis of the input data/signal is represented in the frequency and time domain.

It is usually considered for a signal which possesses time-varying frequency content. Hence

interpretation of these signal in time-frequency domain allows intermittent, local, transient or

multicomponent of signals to be interpreted clearly [58]. Therefore these signal are represented

by time-frequency distribution (TFD). TFD infers the energy distribution of the signal in time

and frequency domain. Hence extracting features from TFD could provide distinct properties

or characteristics of the data/signal in the time-frequency domain. Various time-frequency

techniques are available such as short-time Fourier transform (STFT) or Gabor transform

(GT), the continuous Morlet wavelet transforms (CMWT), and the Hilbert transform (HT) [58].

Time-frequency analysis is one of the most active research fields in digital signal processing.

Analysis of biomedical signal using time-frequency techniques is helpful in understanding the

physiological aspects of the body [59], [60]. Various researchers have used time-frequency analysis

for VAG signals.

Sridhar Krishnan et al. used wavelet matching pursuit (MP) algorithm [34], [61] for time-

frequency analysis of VAG signals [62]. Features such as instantaneous energy, instantaneous

energy spread, instantaneous mean frequency and instantaneous mean frequency spread were

extracted from TFD. This methodology was carried out on 37 subjects (19 healthy and 18

unhealthy) and did not require any prior knowledge of any degeneration of articular cartilage

pathology. Result from MP gave an accuracy of 77.8% [62]. Krishnan et al. have used traditional

short-time Fourier transform (STFT) for time-frequency analysis of VAG signals [63], [64]. STFT

provided the frequency distribution of VAG signal with time domain. Fast Fourier transform

(FFT) with Hamming window of 128 samples was used to compute the spectrogram of VAG

signals. Due to the low resolution of STFT, the variation of VAG signal could not be observed

adequately. Krishnan et al. further continued the work in the analysis of VAG signals by using

adaptive time-frequency analysis [63]. Minimum cross-entropy optimization was carried out on

wavelet MP algorithm and Wigner-Ville distribution for obtaining TFD of VAG signals [34], [61].

Features interpreting the dynamics of the VAG signals such as energy, energy spread, frequency,

and frequency spread were extracted. This was followed by pattern classification which gave an

accuracy of 68.9% [63]. Umapathy and Krishna further carried out the analysis of VAG signal

[65]. In this study, wavelet packet decomposition and local discriminant bases algorithm were
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Table 2.3: Time Frequency Techniques

Year Author Techniques Features Classifier Accuracy%

1997 Krishnan[62]
wavelet

matching pursuit
energy, frequency

discriminant

analysis
77.8

2000 Krishnan[63]
adaptive

matching pursuit
energy, frequency LRA 68.90

2006 Umapthy[65]
modified

local discriminant

normalized node energy,

correlation coef.
LDA 79.8

2009 Wu[66] wavelet MP
MP atoms

TC
LS-SVM 73.03

2009 ∗Kim[9]
dynamic time

warping

energy

and frequency
NN 91.4

2013 ∗Chen[67] HHT - NN 85.3

2015 ∗Backowiz[15] STFT - - -

∗Different dataset

used for the analysis of VAG signals. The performance of this methodology gave an accuracy of

79.8% with linear-discriminant-analysis (LDA) as classifier [65].

Wu et al. further carried out investigation by comparing features from TFD obtained from

wavelet MP decomposition with respect to time domain features [66]. Features such as the

number of wavelet MP atoms and significant turns were extracted and pattern classification of

73.03% was obtained using LS-SVM [66]. Kim et al. (different dataset) had segmented the VAG

signals using dynamic time warping (DTW) for TFD [9]. Features such as energy, energy spread,

frequency and frequency spread were extracted from 1408 segments (healthy 1031, unhealthy

377) [9] and classification accuracy of 91.4% was obtained using a back-propagation neural

network (BPNN). Chen et al. used nonlinear signal processing techniques such as Hilbert-Huang

transform (HHT) for the analysis of VAG signals using different dataset [67]. The resultant

gave a classification accuracy of 85.3%. The time-frequency analysis related to age-specific

degradation of knee joint disorders was carried out by Baczkowicz et al. [15]. The discrete

Fourier transform was applied to segmented VAG signals to obtain short time spectrum. The

summary of literature survey carried on VAG signals using time frequency techniques has been

shown in the table 2.3.

From table 2.3 it can be observed that limited studies has been carried out in the analysis of VAG

signals using time frequency distribution. Therefore, the time frequency analysis can be further

investigated using advanced time-frequency techniques namely smoothed pseudo Wigner–Ville

distribution (SPWVD) and Hilbert-Huang transform (HHT) for the analysis of VAG signals.
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2.4.3.1 Smoothed Pseudo Wigner–Ville Distribution (SPWVD) & Hilbert-Huang

Transform (HHT)

Time-frequency distribution provides wider aspects in the analysis of the biomedical signal

which are nonlinear and nonstationary in nature. Considering the characteristics of VAG signals,

nonstationary signal processing techniques has been carried out. This thesis compares the

performance of smoothed pseudo Wigner–Ville distribution (SPWVD) [68] and Hilbert-Huang

transform (HHT)[44] for the time-frequency analysis of VAG signals. Two approaches based on

linear and nonlinear signal processing techniques has been proposed. In this work, we propose to

use nonstationary linear signal processing technique namely WPD and nonstationary nonlinear

signal processing technique namely CEEMDAN as preprocessing techniques.

In first method, SPWVD has been proposed for obtaining the time-frequency distribution (TFD).

SPWVD overcomes the problem of interference of “cross terms” in Wigner-Ville distribution.

This work proposes to apply WPD to decompose the VAG signal into subband signals of

different frequencies. The dominant subband are identified and the VAG signal is reconstructed.

Hence, time-frequency representation of reconstructed VAG is obtained by using SPWVD and

is considered as the time-frequency image. The statistical features such as mean, standard

deviation, skewness, and kurtosis are extracted. SPWVD has been successfully studied for the

analysis of biomedical signals [69], wind turbine fault diagnostic [70] acoustic and vibration

signals in detection of gear failures [71].

Moreover, considering the nonlinear, nonstationary and multicomponent nature of VAG signal, a

modified version of HHT known as CEEMDAN-HHT has been proposed. Traditional HHT consist

of empirical mode decomposition (EMD) [44] and Hilbert transform (HT). EMD decomposes the

signal into a number of IMFs. But this thesis proposes to use CEEMDAN for obtaining IMFs

[52]. The VAG signal is reconstructed by dominant IMFs and the time-frequency representation

is obtained by applying HT on reconstructed VAG signals. This time-frequency representation

is considered as time-frequency image and statistical features consisting of mean, standard

deviation, skewness, and kurtosis are extracted from time-frequency image. HHT has been

successfully applied for the application related to geophysical studies [49], biomedical studies,

vibration fault tolerance etc. [50], [72], [73].

Therefore, a comparative study of different methodologies (nonstationary linear signal processing

technique and nonstationary nonlinear signal processing technique) have been carried out and

their performance has been compared.
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2.5 Feature Extraction and Feature Selection Techniques

Feature extraction and feature selection techniques provide data to be represented in reduced

subset [7]. In the following subsection,a brief review of feature extraction and feature selection

techniques carried in the analysis of VAG signals have been presented. This section also includes

the proposed methodology for feature extraction and selection studied in this thesis.

2.5.1 Feature Extraction

Feature extraction is an important aspect in any pattern classification. It refers to processes

in which input data is transformed into a set of features. These features possess different

distinct properties of the input data which helps in differentiating among the input pattern

[74]. Brain Ripley defined feature extraction as “Feature extraction is generally used to mean

the construction of linear combinations of continuous features which have good discriminatory

power between classes” [75]. To develop a computer-aided diagnosis (CAD) system for any

biomedical application, feature extraction techniques plays an important role. The features

obtained from VAG signals could be utilized in discriminating and detecting abnormalities in VAG

signals. Researchers have successfully carried out the analysis of VAG signals by various feature

extraction methodologies. These extracted features are significant since they are correlated

with the degraded articular cartilage. Initial studies carried out by various researchers did not

assume VAG signals as a nonstationary signal. Hence, some of the traditional feature extraction

techniques were applied to VAG signal [20].

Reddy et al. have used power spectral analysis on VAG signals acquired from subjects having

OA, rheumatoid arthritis, and chondromalacia patella [76]. Their study concluded that VAG

signals of these three cases behaved differently in between 100-500Hz. Researcher used signal

processing techniques for segmenting the VAG signals. In the segmentation process, the VAG

signals were broken down into series of quasi-stationary or stationary segments and features

were extracted from segmented signals. Tavitha et al. applied fixed segmentation and linear

prediction modelling on segmented VAG signals and three features (model parameters, dominant

poles, spectral power ratio) were extracted [77]. The adaptive segmentation was further modified

by Moussavi by using recursive least squares (RLS) algorithm [78]. Krishna et al. further carried

out series of work with adaptive segmentation and computing autoregressive coefficients using

different methods [8], [22], [79], [80]. Features were extracted from the segmented signal of

healthy and unhealthy VAG signals. The data set used by the above mentioned researchers

had used the VAG signals acquired by Rangayyan and pattern classification of the accuracy of

75.6% was obtained in distinguishing healthy and unhealthy VAG signals. But the processes of

segmentation required clinical information gathered from arthroscopy. Therefore, this drawback

does not make segmentation a feasible approach.
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Yunfeng Wu and Rangayyan have worked extensively on the analysis of VAG signal using

statistical parameters [18], [81], [82]. The VAG signals were analysed by simple signal processing

techniques followed by simple features extraction techniques. Therefore, the need for segmentation

and dependency of clinical information was removed. Wu et al. computed the histogram of VAG

signals. In order to characterize the differences observed between the histograms of healthy and

unhealthy VAG signals, features based on statistical parameters such as moments, form factors

and turn counts were extracted. The measures are based upon the moments of the probability

density function (PDF) of the given VAG signals. Wu further carried the work by computing

the probability density function of VAG signal by Parzen-window to represent the statistical

characteristics of VAG signals [83]. Kullback-Leibler distance and statistical parameters were

computed. The classification accuracy of 77.53%, sensitivity of 71.05%, and specificity of 82.35%

were obtained using neural network using a radial basis function [83]. Wu et al. further tested

these statistical features derived from kernel-based bivariate probability distribution modeling

estimation [84]. This density distribution showed a significant difference between healthy and

unhealthy VAG signals and gave classification accuracy of 86% [84]. This work was further

carried forward by computing two more additional features in the time domain. Features such

as a number of atoms obtained from wavelet matching pursuit decomposition and the number of

prominent signals turn count with fixed threshold [85]. Dynamic weighted fusion (DWF) based

classifier fusion method gave classification accuracy of 88.76% [85]. Rangayyan et al. have used

fractal analysis to characterize spectral energy of healthy and unhealthy VAG signals. The fractal

dimension (FD) was obtained from the power spectrum along with 1/f model [86]. Classification

accuracy using area under the receiver operating characteristic curve (ROC-AUC) of 0.74 was

obtained. Yang et al. carried out the analysis of VAG signal by extracting features using

detrended fluctuation analysis algorithm and averaged envelope amplitude of VAG signals [87].

The work done by Wu using simple feature extraction techniques [18], [83]–[87] did not carried

preprocessing using double cascaded moving average filter. Therefore, the presence of noise(low

frequency components) and baseline wanders had an effect on classification performance. The

summary of literature survey carried on feature techniques has been shown in the table 2.4.

In initial studies, features were mostly extracted from the segmented signals using linear signal

processing techniques. The segmentation was either fixed or adaptive. The segmented signals

were considered stationary and features such as AR coefficients, poles etc. were extracted.

Later, the segmentation was removed by representing signals in PDF and statistical features

were extracted. Therefore, the experiment lacked the necessary signal preprocessing procedures

to remove random noise and baseline wander artefacts. Such a phenomenon would ruin the

effectiveness of threshold-based signal analysis especially for feature extraction techniques. This

may mislead the classification performance. Entropy, which provides the measure of disorder

within a system is used in biomedical applications as feature extraction techniques. Similarly,

recurrence quantification analysis (RQA) has been studied in the analysis of nonlinear data
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Table 2.4: Feature Extraction

Year Author Techniques Features Classifier Accuracy%

1995 Tavitha[77]

Fixed segmentation &

linear prediction

modelling

model parameters,

dominant poles,

spectral power ratio

- -

1996 Moussavi[78] recursive least squares
AR coefficients,

VMS, age
leave-one-out 71.1

1997 Rangayyan[79]
adaptive segmentation

using RLSL

Dominant poles

cepstral coef.
LRA 75.6

1997 Krishnan[22]
adaptive segmentation

using RLSL
AR coef.,VMS leave-one-out 68.9

2007 Wu[18] PDF + histogram FF,mean,TC NN 0.82 AUC

2010 Wu [83] Parzen Window FF,mean,TC NN 77.53

2013 Wu[84]
Bivariate Probability

Distribution Modeling
FF,mean,TC

maximal posterior

probability
86.6

2013 Wu[85] MP segmented
MP atoms &

TC
DWF 88

2013 Wu[86] Power Spectrum Fractal dimension RBF NN 0.74 AUC

2014 Wu[87] bivariate Gaussian fractal scaling Bayesian decision 0.95 AUC

especially in cases related to EEG signals and geographical studies. From literature survey it

has been inferred that, entropy based features and RQA parameters have not been used as

feature extraction in the analysis of VAG signals. Therefore entropy based techniques and RQA

parameters could be investigated.

2.5.1.1 Proposed Feature Extraction Techniques

Feature extraction is an important step in pattern classification. The characteristics of VAG

signals are obtained by feature extraction techniques. This thesis presents various feature

extraction techniques with respect to linear and nonlinear signal processing technique. These

techniques are yet to be explored for the analysis of VAG signals and they are as follows:

Entropy based feature extraction: Entropy based feature extraction techniques has been

proposed in this study. Entropy is the measure of the energy of the system or is a quantified

measure of the complexity of the signals. This work proposes to use entropy based features

involving approximate entropy (ApEn), sample entropy (SampEn), Shannon entropy (ShEn),

Rényi entropy (ReEn), Tsallis entropy (TsEn) and permutation entropy (PeEn). Reported
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literature revealed that entropy based features have been extensively studied in the analysis of

biomedical signals [88]–[91].

Recurrence Quantification Analysis (RQA): The recurrence quantification analysis (RQA)

is a method to analyse the nonlinear data. It quantifies the duration and number of recurrences

of a dynamical system presented by its state space trajectory. For time series, the concept of

recurrence was introduced by Eckmann and developed by Webber and Zbilut [92] by means

of the recurrence plot, a visual tool designed to display recurring patterns and to investigate

nonstationary patterns. Recurrence plots (RP) are binary symmetric of T X T arrays. Several

recurrence quantification measures have been introduced and successfully applied for the analyses

of nonstationary data. This research presents four primary measures defined by Webber et

al. [93]. They are recurrence rate (RR), determinism (DET), entropy (ENTR) and averaged

diagonal line length (DLL).

Central tendency measure (CTM): Features are also extracted from the analytical signal

representation of VAG signal. It is obtained by implementing Hilbert transform on IMFs. Central

tendency measure (CTM) is computed from the analytical signal representation of VAG signal.

CTM is a method used to sum up the observable data in the plots [94]. CTM is used to quantify

the variability of the signal.

Statistical parameters: Features are also extracted from the time-frequency analysis of

the VAG signals. As mention in the previous section, the time-frequency representation of

reconstructed VAG is obtained by using SPWVD and HHT. This representation is considered as

the time-frequency image. Thereby the statistical features such as mean, standard deviation,

skewness, and kurtosis are extracted.

Hence, in this thesis, different features extraction techniques has been covered. The objective of

studying various feature extraction techniques is to study the different parameters in character-

izing VAG signal. This would help us in developing an efficient methodology for the computer

aided diagnostic system.

2.5.2 Feature Selection

Feature selection refers to selecting a small subset of features that is relevant [95], [96]. The raw

input data/signal is represented by large features and thereby consisting of high dimension vector.

As a result, this could cause serious effects in building an effective classification model[97], [98].

Therefore reducing these number of irrelevant/redundant features can improve the classification

model more effectively [74]. The advantages of feature selection techniques are understanding the

input data, reducing the storage requirements, reducing learning and training time for building
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classification, reducing the high dimension vector and improving the prediction performance [74].

The feature selection techniques are broadly classified as follows [99]–[101]:

1. filters

2. wrappers

3. embedded

4. hybrid methods

Various techniques available for feature extraction techniques have been covered in the review

articles [102]–[104]. Feature selection techniques have been widely used in the application field

of bioinformatics [105], biomedical signal analysis [106]–[110], classification of power quality

disturbances [111], [112] etc.

Wu et al. had used feature selection technique for six statistical features [18], [81], [82], [113].

Rangayyan et al. have used sequential forward selection (SFS) and sequential backward selection

(SBS) methods as feature selection methods for the analysis of VAG signals [86]. Features were

extracted from fractional analysis parameters and spectral variability along with features from

the previous study such as statistical parameters was consider [82]. The summary of literature

survey carried on feature selection techniques has been shown in the table 2.5.

Table 2.5: Feature Selection

Year Author Techniques Features Classifier Accuracy%

2008 Wu [82] PDF + histogram FF,mean, turn counts,VMS NN 0.91 AUC

2013 Wu[86] power spectral analysis
FF,mean, turn counts,

VMS,fractal dimension
RBF NN 0.92 AUC

From table it can be observed that only limited studies has been carried out using feature

selection algorithms. In above studies the feature selection algorithm was applied on less number

of features and feature selection has not been applied on larger set of features. Therefore feature

selection algorithm could be used on larger set of features. Therefore feature selection algorithm

is presented in detail for selecting significant features.

2.5.2.1 Genetic & Apriori Algorithm For Feature Selection

Feature selection algorithm has also been proposed in order to identify the most stable, significant

and discriminate features. Different techniques of feature selection have been utilized for

improving the accuracy of the classifier by discarding redundant and irrelevant features. These
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techniques have been employed in the domain of medical imaging, biomedical signals, and power-

quality disturbance evaluations. In this thesis, k nearest neighbour based apriori algorithm

(ApA) [114] and genetic algorithm (GA) [115] has been used for selecting the most stable and

significant features from the extracted features. The feature sets obtained by feature selection

algorithms are given as input to classifiers.

Genetic algorithm: GA is one of the most popular feature selection techniques used for

improving the performance of data mining. GA is an evolutionary technique and sufficiently

good results have been obtained with respect to other non-evolutionary and traditional feature

selection methods. GA has been successfully implemented for large-scale feature selection

problems. GA has been used as feature selection algorithm in various application related to

biomedical signals [116], [117], credit risk assessment [118], text categorization [119].

Apriori algorithm: Apriori uses a “bottom” up approach. Apriori algorithm has been widely

used in data mining [120]. Apriori algorithm is based upon association rule learning over a

database. It identifies the most frequent individual’s items and extending them to larger sets.

The associating rules help in selecting frequent items of the set. The algorithm terminates

when no further frequent items are selected. Breadth-first search and a Hash tree are used for

counting the candidate key set effectively. Apriori algorithm has been widely used as feature

reduction algorithm in wide application ranging from data mining, imaging, wind forecasting

etc. [121]–[124].

Hence, apriori algorithm and GA as feature selection techniques has been proposed in this study.

This work is presented in chapter 4 of the thesis.

2.6 Pattern Classification

Pattern classification refers to classifying the input data based upon the characteristics or

features extracted from the input data/signal into particular classes [7]. The main task of pattern

classification is to generate a decision boundary to separate the input data/signal into classes or

group depending upon the extracted features. Classification methods can be broadly categorized

into

a. supervised learning

b. unsupervised learning

c. reinforcement learning.

In supervised learning, a training set of the input data is available to build the classification

model whereas unsupervised learning involves clustering of data based upon the similarity.
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Reinforcement learning is a classification model built using the learning continuously by trial and

error method [125], [126]. The analysis of biomedical signal is concluded by classifying the given

input data/signal into particular classes. This is an important step since a particular diagnostic

inference can be made [127]. For building an effective classification model, it is recommended

that classes or sets are disjoint distinctly. Therefore, feature extraction and feature selection

techniques are important aspects in building the classification model. Smaller the number of

features, the classification model is simpler to build [7]. Various classification techniques has

been developed with the advancement of machine learning algorithms. These techniques have

been used in various application of pattern classification in image processing, signal processing,

text processing etc. The effectiveness of the classifier techniques can be evaluated using different

performance parameters[128]. The performance of the classification model is evaluated by

following parameters. They are as sensitivity (SEN), specificity (SPF), accuracy (ACC), positive

predictive value (PPV), negative predictive value (NPV), Matthews correlation coefficient (MCC)

and false discovery rate (FDR)[125], [126]. And they are evaluated as follows:

1) Sensitivity (SEN): It measures the proportion of the positive sample to the test data and

is defined as:

SEN =
TP

(TP + FN)
× 100 (2.1)

2) Specificity (SPF): It measures the proportion of the negative samples to the test data and

is defined as:

SPF =
TN

(TN + FP )
× 100 (2.2)

3) Accuracy (ACC): It is defined as the ratio of the samples correctly classified to the total

number of samples and is defined as:

ACC =
TP + TN

(Total)
× 100 (2.3)

4) Positive predictive value (PPV): It is the ratio of true positive values to the total number

of positive samples identified by the classifier and is defined as:

PPV =
TP

(TP + FP )
× 100 (2.4)

5) Negative predictive value (NPV): It is the ratio of true negative values to the total number

of negative samples identified by the classifier and is defined as:

PPV =
TN

(TN + FN)
× 100 (2.5)
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6) Matthews correlation coefficient (MCC):For larger values of MCC, classifier performance

will be better. The MCC can be defined as :

MCC =
(TP × TN − FN × FP )√

(TP + FP )(TN + FN)(TN + FP )(TP + FP )
) (2.6)

7) False Discovery Detection (FDR): Its is the ratio of false positive to total number of positive

samples identified by classifier and is defined as:

FDR =
FP

(TP + FP )
(2.7)

where TP=True Positive, TN= True Negative FP=False Positive, FN= False Negative.

Another method to evaluate the performance of the classifier is receiver operating characteristic

(ROC) curve. ROC curve is a graphical representation of true positive rate (TPR, also named

sensitivity) against false positive rate (FPR, FPR = 1-specificity) [129]. The area under the

ROC curve (ROC-AUC) is an effective way of comparing the performance of different features

or classifiers. The area under ROC curve (ROC-AUC) provides a measure of how considerably a

parameter would be able to classify between two diagnostic groups. Larger of the ROC area

emphasises a better classification accuracy. Completely random discrimination would give points

along a diagonal line from the left bottom to the top right corners and generate an area of 0.5

under the curve. Perfect discrimination between classes would yield points in the upper left

corner of the ROC space and generate unity area under the ROC curve [130], [131].

Researchers have successfully applied machine learning techniques for pattern classification

of VAG signal. Moussavi et al. had used nearest neighbour, unsupervised cluster analysis,

discriminant analysis and logistic classification from statistical package for social sciences (SPSS)

software. Results illustrated that classification performance of nearest neighbour and cluster

analysis were quite poor in comparison with others. Logical regression analysis performed

better with respect to other classifier [77], [78]. Krishna also used logical regression analysis for

pattern classification [8], [22], [63]. Krishna et al. have used the leave-one-out (LOO) method

classification for features extracted from adaptive segmentation [80]. Umapathy had used linear

discriminant analysis (LDA) based classifier using SPSS and validation was performed by LOO

method and a classification of 80% was obtained [65], [132]. Wu et al. have used neural network

with radial basis function and Fisher’s linear discriminant analysis (FLDA) with statistical

features (the turns count and variance of the mean squared values) as input [18], [81], [82]. A

screening efficiency of up to 0.8570 was achieved in terms of AUC-ROC. Tingting et al. applied

linear and nonlinear strict 2-surface proximal (S2SP) classifiers [133] on statistical features

extracted from VAG signals [18], [82], [83]. The classification performance using linear S2SP

classifier gave AUC-ROC of 0.82 while nonlinear S2SP classifier gave AUC-ROC of 0.95 [113],
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Table 2.6: Classifier

Year Author Techniques Features Classifier Accuracy%

2007 Mu[133] PDF + histogram FF,mean,TC
Strict 2

surface classifier
0.95 AUC

2011 Wu[136] Parzen Window FF,mean, TC LS-SVM 80.90

2014 Wu[137] PDF + histogram FF,mean,TC
k-nearest

neighbour (k-NN)
80

[133]. Kim et al. used a back-propagation neural network technique for classifying acoustic

based features [9], [134], [135].

Wu et al. used least square support vector machines and multiple classifier systems (MCS) based

on a recurrent neural network (RNN) [136]. Statistical parameters extracted as features [18], [81],

[82] from VAG signals were given as input to these classifiers. Results inferred that MCS gave a

classification accuracy of 80.9% and AUC-ROC of 0.9484 [136]. Wu et al. used Fisher’s linear

discriminant analysis (FLDA), support vector machine (SVM) with polynomial kernels, and the

maximal posterior probability decision criterion on statistical features [85]. Results illustrated

that maximal posterior probability decision criterion gave the highest classification accuracy

of 86.67% and AUC-ROC of 0.9096 among FLDA (accuracy: 81.33%, AUC-ROC: 0.8564) and

SVM (accuracy: 81.33%, AUC-ROC: 0.8533) [85]. Classification based on dynamic weighted

fusion (DWF) method was applied by Cai et al. [85]. Two features such as turn count and a

number of atoms were derived from the wavelet matching pursuit decomposition along with

the statistical parameters [18]. A classification accuracy of 88.76% and ROC-AUC of 0.9515

was obtained [85]. Kaizhi used k -nearest neighbour (k -NN) algorithm on statistical features

extracted from VAG signals and (k -NN) algorithm gave classification accuracy of 80% [137].

Yang et al. used Bayesian decision rule on features extracted by detrended fluctuation analysis

algorithm and averaged envelope amplitude of VAG signals [87]. A classification accuracy of 88%

and AUC-ROC of 0.957 was obtained. Wu et al. have used support vector machine (SVM) for

the analysis of VAG signals and gave a classification accuracy of 0.8356 and AUC-ROC of 0.9212

was computed [48]. The summary of literature survey carried on classifier used in the analysis of

VAG signals has been shown in the table 2.1-2.6. It was concluded that LS-SVM provides better

classification performance among different classifier since it avoids the problem of overfitting.

2.6.0.1 Least Square Support Vector Machine For Pattern Classification

Support Vector Machine (SVM) is a machine learning algorithm based on statistical learning

of Vapnik-Chervonenkis dimension [138]. SVM was proposed by Vapnik and has been used for

nonlinear estimation, function estimation, density estimation and classification [138]. One of
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the major draw back of SVM is its high computation load. LS-SVM singles out this liability by

computing linear equation instead of solving the convex for quadratic programming problem in

case of SVM. Due to the ease of its implementation, it has widely used in the area of adaptive

signal processing [139].

Kernel based learning is a recent development in this area[139]. This thesis proposes to use

LS-SVM with radial basis function (RBF) as a kernel function for the binary classification

of VAG signals. LS-SVM is upgraded version of SVM and has been widely used in various

application domain [140], [141]. These applications include biomedical signals, vibration signals

from the ball bearing, the financial stock market prediction etc. [142]–[144]. In this thesis,

LS-SVM with RBF kernel function as classifier has been proposed.

2.7 Gaps In Existing Literature

Based on literature survey carried in the analysis of VAG signals, following research gaps have

been identified:

X From literature survey it was concluded that the analysis of VAG signal using linear signal

processing techniques was carried out. In these techniques the VAG signals were seg-

mented and assumed stationary. The experiment lacked the necessary signal preprocessing

procedures to remove random noise and baseline wander artefacts. Such a phenomenon

would devastate the effectiveness of threshold-based signal analysis and results could be

misleading. Nonstationary linear signal processing namely WPD has been used in various

application especially related to biomedical studies. The decomposition of signal into

subband signals are highly correlated with applications. For example the subband signals

obtained from EEG signal were related to neural activities. Therefore, considering similar

characteristics of EEG and VAG signals, the analysis of VAG signal using nonstationary

linear signal processing technique using WPD can be investigated.

X In the reported literature survey, it was reviewed that nonlinear methods based on EMD

were studied as preprocessing technique for the analysis of VAG signals. But the presence

of mode mixing and noises still persisted in these methods. To eliminate these drawbacks, a

nonstationary nonlinear signal processing techniques based on EMD known as CEEMDAN

can be used. Therefore, the analysis of VAG signals could be carried out using CEEMDAN

as preprocessing step.

X In the reported literature survey, features were extracted from the segments of VAG signals

and features such as autoregressive modelling coefficients, poles, statistical moments etc.

were extracted. These features were extracted from linear signal processing methods.
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Entropy which provides the dynamic of the system and nonlinear features namely RQA

have been studied as feature extraction techniques in various other applications especially

in the analysis of biomedical studies, geographical studies etc. Therefore, entropy based

features, RQA parameters and simple feature extraction techniques can be carried for

computing the characteristics of VAG signals.

X Limited studies have been carried out using feature selection in the analysis of VAG

signal. In the reported studies, few features were extracted and traditional feature selection

algorithm was applied. Therefore, features selection techniques such as genetic and apriori

algorithm can be used for a set of large feature elements for building effective classification

model.

X Few studies have been reported in the analysis of VAG signal using time frequency

distribution. Most of the studies has been carried out using linear signal processing

techniques. These techniques are based on classical Fourier analysis which assumes that

signals are infinite in time or periodic. Thereby the spectrum of the signal using these

methods (eg: STFT, CWT etc.) are poorly represented in term of sharpness and contrast.

Therefore, the spectrum representation of VAG signals can be improved using advance time

frequency distribution namely SPWVD and CEEMDAN-HHT. Hence, statistical features

could be extracted from TFD of VAG signals and these techniques have been unexplored

in the analysis of VAG signals. Therefore, time-frequency analysis using SPWVD and

CEEMDAN-HHT can be carried out for the analysis of VAG signals.

2.8 Conclusion

This chapter briefly reviews various signal processing techniques, feature extraction, feature

selection and classification methods on VAG signals. Gaps in the existing literature were identified

and literature survey on the proposed methodology has been explained briefly.
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Analysis of VAG signals using

Wavelet Packet Decomposition

The wavelet transform is a tool that cuts

up data or functions or operators into

different frequency components, and then

studies each component with a resolution

matched to its scale.

Ingrid Daubechies (1992)

3.1 Introduction

This chapter presents the analysis of VAG signals using wavelet packet decomposition (WPD).

The VAG signals are decomposed into subband signals using WPD. The subband signals are

based on frequencies where each subband signal represents a particular frequency.
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Figure 3.1: Flow chart for diagnosis of knee joint disorders using VAG signals
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Entropy based features and recurrence quantification analysis (RQA) parameters are extracted

from subband signals. A pattern classification is carried out using LS-SVM. The flowchart of

the work carried out in this chapter is shown in figure 3.1.

This chapter has been organised as follows. The section 3.2 and 3.3 gives the theoretical

background of the proposed methodology. Section 3.2 describes the preprocessing technique

using WPD. Feature extraction techniques based on entropy and RQA parameters has been

covered in section 3.3. Results obtained from the methodology has been presented in section 3.4

and discussion in section 3.5. Finally, the chapter concludes with section 3.6.

3.2 Wavelet Packet Decomposition (WPD)

Wavelet packet decomposition was introduced by Coifman, Meyer, and Wickerhauser [33]. The

dilation property of WT makes it quite popular for various application such as detection of

irregularities, time-frequency analysis, feature extraction, waveform representations, segmentation

and compression of digital data. The dilation property and translation helps to adjust the

frequency band and it identifies the position of low frequency and high frequency components.

The multi-resolution analysis and time localization ability are the two important characteristics

of WPD which motivates to analyse nonstationary signals.

The discrete wavelet transform (DWT) of a given signal is given as

C(j, k) =
∑
n∈Z

x(n)ψj,k(n) (3.1)

where x(n) is the signal to be analysed, ψj,k(n) is the discrete wavelet function, j is the scale

factor and k is the displacement.

The wavelet transform divides the signal into high frequency and low frequency components.

The low frequency component is called an approximation space of the original signal while the

difference of the approximations (Vj) between two successive decompositions is called a vector

of detail space (Wj). The multi-resolution analysis of the signal is obtained by successively

decomposing the low frequency components.

WPD is an extended work of WT in which the signals are passed through the bank of filters.

Here in WPD, the approximation space (Vj) and the detail space (Wj) are further decomposed

successively. As a result, the input signal is iteratively filtered at each successive stage. At each

stage of filtering, the frequency is divided into subband. The successive splitting of vector spaces

is represented by a tree. Mallat computed the equations for obtaining the coefficients [34]. For

any node in binary tree labelled by (j,p), where j-L ≥ 0 is the depth of the node and p is the
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number of nodes that are on its left at the same depth j-L. The two wavelet packet orthogonal

bases at the children nodes are defined by

ψ2p
j+1 =

∞∑
−∞

h[n]ψ2p
j (t− 2jn) (3.2)

ψ2p+1
j+1 =

∞∑
−∞

g[n]ψ2p
j (t− 2jn) (3.3)

since ψ2p
j (t− 2jn)n∈Z , therefore

h[n] = 〈ψ2p
j+1(u), ψ2p

j (t− 2jn)〉 (3.4)

g[n] = 〈ψ2p+1
j+1 (u), ψ2p

j (t− 2jn)〉 (3.5)

where h[n] and g[n] are low pass and high pass filters respectively.

Hence figure 3.2 (a) and (b) shows the level 3 WPD of the signal. The complete binary tree

is produced in the one-dimensional case. As observed, detail and approximation spaces are

obtained by splitting the original signal by low pass and high pass filter bank successively. The

resultant vectors are obtained and represented in a binary tree as shown in figure 3.2. In this

(a) Wavelet decomposition

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

Tree Decomposition

(b) example of Tree Decomposition

Figure 3.2: Wavelet decomposition

work, the maximum available frequency is 1 kHz since the VAG signal has been sampled at 2k

Hz. The number of levels of WPD is selected based upon the VAG signal’s dominant frequencies.

The levels are selected with respect to the required frequencies that are eventually related to the

wavelet coefficients. The VAG signal is decomposed into ten wavelet based subband signals (B1,

B2, B3, B4, B5, B6, B7, B8, B9, B10, A10 ).
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Table 3.1: Decomposition of the VAG Signal into Sub-bands

Decomposed Signal Frequency Decomposed Signal Frequency

B1 500-1000 Hz B6 15.62-31.25 Hz

B2 250-500 Hz B7 7.81-15.62 Hz

B3 125-250 Hz B8 3.90-7.81 Hz

B4 62.5-125 Hz B9 1.95-3.90 Hz

B5 31.25-62.5 Hz B10 1-1.95 Hz

A10 0-1 Hz

The frequency range 50 Hz-500 Hz captures the VAG [18]. The subband signal B8, B9, B10,

A10 represents slow baseline variations mainly caused by sweating and different artefacts, while

the subband signals B1 capture high-frequency artefacts such as muscular contractions and

environment noise[145]. These high frequency subband and low frequencies signals B1,B2, B8,

B9, B10, A10 aren’t investigated for evaluating features. For the analysis of physiological signals

especially for biomedical signal processing, an efficient wavelet such as Daubechies 4(db4) was

considered as the mother wavelet function [32].

3.3 Feature Extraction

3.3.1 Entropy Based Feature Extraction

3.3.1.1 Approximate Entropy

ApEn was initially developed to analyse medical data, such as heart rate[146], [147]. For a given

N data points from a time series x(n)=x(1), x(2), . . . , x(N) where N is the length, Two

parameters, the embedding dimension m and a tolerance window r are specified. Usually, m

is set to be 1, 2 or 3 and r is set to be some percentage value of the standard deviation of the

amplitude of time series. ApEn can be calculated in following these steps [146], [147]

Step 1. Form m-dimensional vectors Xm(1). . . . , Xm(N-m+1) defined by Xm(i)=[Xm(i),

Xm(i+1) . . . , Xm(i+m-1)], i=1, 2. . . . . . . N −m+ 1. Each vector is viewed as a

template.
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Step 2. The distance between each of the corresponding templates is denoted as d[Xm(i), Xm(j)],

is computed as the maximum absolute difference between their scalar components:

d[Xm(i), Xm(j)] = maxk=0.....m−1(|x(i+ k)− x(j + k)|) (3.6)

Step 3. For a given template Xm(i), count the number of template matching, denoted as, i.e. the

number of satisfying the distance d[Xm(i), Xm(j)] Then

Ami (r) =
1

N −m+ 1
Ai (3.7)

Step 4. Define φmi (r)

Ami (r) =
1

N −m+ 1

N−m+1∑
i

lnAmi (r) (3.8)

Step 5. Increase the dimension to m + 1 and follow the steps 1 - 4 to compute Am+1
i (r) and

Am+1(r)

Am+1
i (r) =

1

N −m

N−m∑
i

lnAm+1
i (r) (3.9)

Step 6. The approximate entropy is defined as

ApEn(m, r) = lim
N→∞

[Am(r)−Am+1(r)] (3.10)

Step 7. For a finite length of data points N, the approximate entropy is estimated as

ApEn(m, r,N) = [Am(r)−Am+1(r)] (3.11)

where

Am(r) =
1

N −m+ 1

N−m+1∑
i

lnAmi (r) (3.12)

3.3.1.2 Sample Entropy

The drawback of ApEn is biasing caused by the self matching, this was reduced by the concept

of SampEn. J.S. Richman et al. proposed the concept of SampEn [148]. SampEn generally

demonstrates the corresponding consistency where ApEn doesn’t and SampEn is independent of

record length. SampEn has been applied successfully in biomedical application especially, in

the analysis of the epileptic activities. Detection of seizure were identified based on computing

SampEn by Song et al. [149]. SampEn is computed by the following equation. Mathematically,
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the computation of SampEn has the same steps 1-3 as in case of ApEn.

Am(r) =
1

N −m+ 1
Ami (r) (3.13)

SampEn(m, r) = lim
N→∞

[lnAm(r)−Am+1(r)] (3.14)

SampEn(m, r,N) = ln[Am(r)−Am+1(r)] (3.15)

In this work, the values of m=2, r= 0.2*std (data) and N = 8000 (total data length of VAG

signal) are set in the calculation of approximate and SampEn. The parameters selected for

computing ApEn and SampEn were concluded by Jennifer et al. [150] on the clinical data. These

parameters provided an optimal setting for accurately estimating ApEn and SampEn. These

parameters are considered for biomedical signals especially for the nonlinear and nonstationary

signals such as EEG signal[151]–[154]. Considering the similar nature of VAG signals as nonlinear

and nonstationary, the values of m, r and N were chosen.

3.3.1.3 Shannon Entropy

The complexity of measurement data or measure of information content is carried out by Shannon

Entropy [155]. Claude Shannon proposed Shannon entropy as a measure of the information,

content or complexity of data. Shannon has proposed ShEn for use in communication domain.

High value of entropy is often associated with more randomness and less system order. In the

present work, ShEn is computed using power spectrum density (PSD) of the VAG signal in order

to evaluate the dynamic complexity of the VAG signals. Steps involved in computing ShEn are

as follows

1. The spectrum of the signal is computed by applying Fourier transform (Fast Fourier

Transform).

2. Power spectrum is obtained by computing the Fourier’s transform of the signal. Er denotes

the power level of the frequency component.

3. Probability density function is obtained by normalizing the computed PSD.

ef =
Ef∑
Er

(3.16)

4. The ShEn is given as

ShEn =
∑
f

ef log(
1

ef
) (3.17)
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3.3.1.4 Rényi Entropy

Rényi [156] introduced Rényi entropy which is a mathematical generalization of Shannon entropy.

Rényi defines the information measure in more general terms that would preserve additivity

individual events. The ReEn in VAG signal represents the statistics as indices of diversity. The

spikes or the high peaks of occurrence in abnormal VAG signals would be inferred as these events.

The Rényi entropy can be defined as :

ReEn(χ) =
1

1− χ
(
∑
f

eχf ), χ > 0, χ 6= 1 (3.18)

Where χ is the enabling measurement of uncertainty among the distribution and due to which

ReEn is much more flexible. In our study, the value of χ is taken as 2.

3.3.1.5 Tsallis Entropy

Tsallis entropy (TsEn) was presented by Constantino Tsallis which is a generalization of the

standard Boltzmann–Gibbs entropy [157]. Tellenbach et al. prove that TsEn is also known as

non-additive entropy, is useful for characterizing measures with non-Gaussian trends. TsEn is

used for the analysis of VAG signals since VAG signals are characterized by multicomponent

signals and non-Gaussian trends. TsEn is useful in the analysis since TsEn provides strong

correlations between the different microstates in a system. TsEn can signify the complexity

of the VAG signal. Tsallis Entropy characterizes the behaviour emulated by VAG signals in

spikes and bursts. The uncertainties could be modelled by the empirical value f. TsEn defined

as follows

TEn =

1−
K∑
i=1

dfj

f − 1
(3.19)

The parameter f is called as non-extensibility index, dj is the probability of jth state and b 6= 1.

Since VAG signals are nonstationary and nonlinear, therefore it would be reasonable to consider

VAG signals as a sub extensive system (i.e., b > 1). In the present work, f = 2 has been set

for conducting simulations. TsEn has been widely used in the analysis of biomedical signal

processing especially in cases of ECG [158] and EEG [91], [159] recently. Recent work concluded

that TsEn could provide a descriptive information, particularly in cases of identifying the spikes

or burst EEG analysis.

3.3.1.6 Permutation Entropy

Permutation entropy is a another complexity measurement for stationary or non-stationary,

deterministic or stochastic, regular or noisy or any arbitrary time series data[160]. It is based
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on comparing the neighbouring values and PE is evaluated based on PE index associated for a

pattern of order. Simplicity, robustness with respect to non-linear transformations and quick

computation are the major advantages of PE. The scalar time series x(t)Tt is embedded into

an s-dimensional space Zt = [z(t), z(t + L),..., z(t+(s-1)L)], where s is called the embedding

dimension and L the embedding delay time.

If wj represents the number of occurrences of the jth symbol in the time series, then the

probability of occurrence of the jth permutation can be estimated as

pj =
wj

N − s+ 1
(3.20)

where N is length of the signal. And thus PeEn can be defined as

PeEn = −
K∑
k=1

pjlog(pj) (3.21)

The authors, Bandit and Pompe suggested values of s = 3, 4, 5...7 and yet they inferred that the

values s = 3 or 4 might still be small. In this work, the values of s and td are 3 and 1 respectively

since these values have been reported in various analysis of biomedical signals [161], [162].

3.3.2 Recurrence Quantification Analysis (RQA)

Non-linear data analysis is been carried out by an advanced technique known as recurrence plot

(RP)[92], [93]. Recurrence plots is a graphical technique to locate hidden recurring patterns,

non-stationary and structural changes. Recurrence plots (RPs) are binary symmetric of T X T

arrays, in which a spot is placed at (g, h) when the distance between Yg and Yh is less than a

(a) healthy subject (b) Unhealthy subject

Figure 3.3: An example of recurrence plot for raw VAG signal
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prescribed value ∈ [92], [93].

Rg,h =

0 if ||Yg − Yh|| <∈

c if ||Yg − Yh|| ≥∈
(3.22)

RQA was framed to provide a quantification measure about recurrence plot since enumerating

graphically would be onerous. The figure 3.3 shows the RQA plot for the raw VAG signal of a

healthy and unhealthy subject. Four primary variables including %REC, %DET, ENTR and

DLL are evaluated in the present study for the quantification of recurrences [92], [93].

• Recurrence rate (%REC): The recurrence rate is correlated as the probability that a

particular state will reappear.

%REC =
1

T 2

T∑
g,h=1

R(g, h). (3.23)

• Determinism (%DET): Passivity of a dynamic system is defined by %DET. It is also the

percentage of recurrence points which form diagonal lines. These lines represent epochs of

similar time evolution of states of the system. Hence, DET indicates the predictability of

the system

%DET =

∑T
l=lmin

lQ(b)∑T
g,hRg,h

(3.24)

Q(b) is the histogram of the length b of the diagonal lines

• ENTR: The complexity or the Shannon entropy is computed as ENTR in recurrence plot .

ENTR = −
T∑

l=lmin

Q(b)lnQ(b) (3.25)

where

Q(b) =
W (b)∑T

b=bmin
Q(b)

(3.26)

• Average diagonal line length: The average length of the diagonal lines:

DLL =

∑T
b=bmin

bQ(b)∑T
b=bmin

Q(b)
(3.27)

In this work, to estimate the RQA, calculation were based on the work by Grassberger et al.

where c= 1, a delay of τ =1, a radius of ∈ = 15 and distance norm=Euclidean are chosen [163].
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3.4 Results

The proposed work consisting of preprocessing, feature extraction and classification has been

carried out in MATLAB 2015b. After pre-filtering using a double cascaded moving average

filter, a WPD is carried out by decomposing the VAG signals into subband signals. Since the

sampling rate of VAG is 2k, the frequency available would be 1 kHz. Hence, VAG signals are

decomposed into 10 levels of subband signals (B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, a10 )

and each subband signals consists of a particular frequency. Figure 3 (a) and (b) represents the

subband signals obtained from WPD of healthy and unhealthy respectively. The subband signals

B1, B2, B8, B9 and B10 as observed in figure 3.4 were ignored. B8, B9 and B10 represented

artefacts such as baseline wander, while the subband signals B1 and B2 indicated the presence

of high-frequency components.
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Figure 3.4: Wavelet decomposition of VAG signal for (a) healthy and (b)unhealthy subject
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The VAG signal is reconstructed from the subband signal (B3, B4, B5, B6 and B7 ) and is

shown in figure 3.5. Hence the feature based on six entropies and four RQA parameters are
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Figure 3.5: Reconstructed VAG signals

extracted from subband signals (B3, B4, B5, B6 and B7 ) and reconstructed VAG signal. These

procedures are followed for 89 samples of VAG signals. The feature set comprised of fifty features

were extracted from subband signals B3, B4, B5, B6 and B7 :

1) ApEn from subband signal B3 to B7.

2) SampEn from subband signals B3 to B7.

3) ShEn from subband signals B3 to B7.

4) ReEn from subband signals B3 to B7.

5) TsEn from subband signals B3 to B7.

6) PeEn from subband signals B3 to B7.

7) RQA-RR from subband signals B3 to B7.

8) RQA-DET from subband signals B3 to B7.

9) RQA-ENTR from subband signals B3 to B7.

10) RQA-DLL from subband signals B3 to B7.

Similarly, ten features (six entropies + four RQA parameters) were extracted from reconstructed

VAG signals. Figure 3.6 shows the RQA plot for the reconstructed VAG signal of a healthy and

unhealthy subject.
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(a) Healthy subject (b) Unhealthy subject

Figure 3.6: An example of recurrence plot for reconstructed VAG signal

3.4.1 Feature Extraction

Table 3.2 shows the mean and standard deviation of entropy and RQA based features extracted

from reconstructed VAG. From table 3.2 it can be observed that, the mean and standard

deviation of ApEn is 2.0113 ± 0.1303 for unhealthy subject which is 1.3 times that of healthy

subjects (1.7792 ± 0.1650). Similarly, though the mean of SampEn of healthy (2.3083) class

is larger than unhealthy class (2.0744), the huge variation can be observed since the standard

deviation of unhealthy class is two times the healthy class. Similar inference are observed in

table 3.2 for other entropy based features and RQA parameters.

Table 3.2: Statistical measures of entropy and RQA based features extracted from reconstructed
VAG signals

Healthy Class Unhealthy Class

Features Mean ± Std Mean ± Std P value

ApEn 1.7792 ± 0.1650 2.0113 ± 0.1303 2.421E-08

SampEn 2.3083 ± 0.1908 2.0744 ± 0.3727 1.7E-05

ShEn 5.0713 ± 0.4934 5.3087 ± 0.5355 0.0828

ReEn 4.4365 ± 0.5220 4.6323 ± 0.5849 0.1671

TsEn 0.9864 ± 0.0082 0.9886 ± 0.0066 0.1671

PeEn 1.7047 ± 0.1963 1.8260 ± 0.1467 0.0071

RR 0.2524 ± 0.0737 0.2885 ± 0.1391 0.3445

DET 0.9974 ± 0.0016 0.9967 ± 0.0026 0.2846

ENTR 3.3780 ± 0.5787 3.3725 ± 0.4149 0.6854

DLL 17.1224 ± 14.6281 14.7414 ± 6.3774 0.7632
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Kruskal-Wallis test was performed on the extracted features in order to infer the discrimination

between the two distribution class. Table 3.2 gives the p-value computed for extracted features

from reconstructed VAG signals. The return p-value signify that lower the p-value, the better is

the feature as it is different from the feature data. A p-value less than 0.01 is taken to indicate

that the difference between the means is statistically highly significant. The p-value signify the

discrimination between the two distributions. The p-value for ApEn, SampEn and PeEn are

2.421E-08, 1.7E-05 and 0.0071 which showed high significant among the features. The table 3.2

inferred that features extracted from reconstructed VAG signals were statistically significant.

Similarly, table 3.3 and 3.4 shows the mean, standard deviation and p-value of RQA and entropy

based features extracted from reconstructed and subband signals respectively. From table 3.2,

3.3 and 3.4, it can be observed that statistically significance are seen in the extracted features.

From table it can be also observed that large variation are observed from features extracted

from unhealthy class. This variation is due to the presence of the high irregular vibrational

components of VAG signals. This is caused mainly due to the irregular movement of the tibia,

patella and surrounding tissues and muscles.

Table 3.3: Statistical measures of reconstructed VAG signals for RQA parameters

Healthy Class Unhealthy Class

Features Subband Mean ± Std Mean ± Std p-value

RR

B3 0.1765 ± 0.1772 0.2239 ± 0.2288 0.4359

B4 0.2450 ± 0.2000 0.1990 ± 0.1306 0.5128

B5 0.3107 ± 0.1918 0.2626 ± 0.1120 0.3392

B6 0.3177 ± 0.1659 0.2735 ± 0.0984 0.2446

B7 0.3038 ± 0.1167 0.2608 ± 0.0686 0.0417

DET

B3 0.9146 ± 0.0400 0.9063 ± 0.0346 0.4799

B4 0.9414 ± 0.0294 0.9370 ± 0.0250 0.6254

B5 0.9859 ± 0.0089 0.9843 ± 0.0089 0.4059

B6 0.9973 ± 0.0018 0.9966 ± 0.0018 0.1051

B7 0.9997 ± 0.0003 0.9997 ± 0.0002 0.8926

ENTR

B3 1.8505 ± 0.5405 1.7367 ± 0.4086 0.4929

B4 2.0760 ± 0.5821 1.9426 ± 0.3438 0.6476

B5 2.6444 ± 0.4331 2.8004 ± 0.6818 0.4671

B6 3.4563 ± 0.6132 3.2964 ± 0.4037 0.2941

B7 3.9469 ± 0.2782 4.0881 ± 0.3908 0.0723

DLL

B3 5.4733 ± 3.3934 6.8783 ± 6.1558 0.3661

B4 5.7170 ± 1.9525 7.4314 ± 7.0469 0.4929

B5 9.1549 ± 4.4132 14.6638 ± 19.9002 0.4671

B6 15.3268 ± 8.1079 21.5304 ± 24.1569 0.2941

B7 25.1575 ± 9.4067 32.2625 ± 22.5412 0.0315
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Table 3.4: Statistical measures of six entropies extracted from subband signals

Healthy Class Unhealthy Class

Features Subband Mean ± Std Mean ± Std p-value

ApEn

B3 0.6374 ± 0.0779 0.5768 ± 0.1772 0.0407

B4 0.4766 ± 0.0753 0.4380 ± 0.1348 0.1192

B5 0.3367 ± 0.0974 0.3127 ± 0.1336 0.2619

B6 0.1668 ± 0.0631 0.2048 ± 0.1287 0.7951

B7 0.0940 ± 0.0481 0.1221 ± 0.0806 0.1802

SampEn

B3 0.6392 ± 0.0794 0.5810 ± 0.1881 0.0417

B4 0.4775 ± 0.0760 0.4414 ± 0.1366 0.1242

B5 0.3372 ± 0.0978 0.3146 ± 0.1338 0.2754

B6 0.1668 ± 0.0633 0.2053 ± 0.1296 0.7951

B7 0.0941 ± 0.0482 0.1219 ± 0.0817 0.2125

ShEn

B3 6.5880 ± 0.1234 6.5770 ± 0.0997 0.8192

B4 6.3005 ± 0.1639 6.3561 ± 0.2216 0.1051

B5 5.4372 ± 0.2094 5.5314 ± 0.2409 0.0629

B6 4.9574 ± 0.2361 5.1058 ± 0.2637 0.0100

B7 4.3413 ± 0.2308 4.4315 ± 0.2812 0.2013

ReEn

B3 6.0097 ± 0.1074 6.0102 ± 0.1157 0.7951

B4 5.7294 ± 0.4702 5.6884 ± 0.2323 0.0904

B5 4.8876 ± 0.2629 4.9946 ± 0.3001 0.1096

B6 4.6020 ± 0.3174 4.4298 ± 0.2770 0.0368

B7 3.8594 ± 0.2907 3.9519 ± 0.3363 0.2941

TsEn

B3 0.9975 ± 0.0003 0.9975 ± 0.0003 0.7951

B4 0.9962 ± 0.0034 0.9965 ± 0.0008 0.0904

B5 0.9922 ± 0.0019 0.9929 ± 0.0019 0.1096

B6 0.9895 ± 0.0034 0.9876 ± 0.0036 0.0368

B7 0.9780 ± 0.0075 0.9797 ± 0.0070 0.2941

PeEn

B3 1.9952 ± 0.0152 1.9945 ± 0.0197 0.5468

B4 1.7056 ± 0.0142 1.7049 ± 0.0126 0.2941

B5 1.3277 ± 0.0204 1.3291 ± 0.0203 0.7317

B6 1.1460 ± 0.0289 1.1520 ± 0.0255 0.3186

B7 0.9869 ± 0.0186 0.9926 ± 0.0155 0.0774

Graphical representation of extracted features from subband signals and reconstructed VAG

signals is shown by box-plot. Figure 3.7 represents the box-plot for ApEn. Figure 3.7(a) is the

boxplot for ApEn extracted from reconstructed VAG signal while figure (b)-(f) represents the

box-plots for subband signals (B3, B4, B5, B6 and B7 ). As observed from figure 3.7, the ApEn
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distributions of unhealthy VAG signals marked larger variation with respect to the healthy VAG

signals. Similarly, box-plots for other entropy based features and RQA parameters have been

shown in figure 3.8-3.16 and similar interference can be observed from these features. Thus, the

statistical measures obtained inferred that a significant distinction is observed between healthy

and unhealthy reconstructed VAG signals. Considering these results, the extracted features are

given as inputs in building an effective classification model.
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Figure 3.12: Boxplot of PeEn
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Figure 3.13: Boxplot of RQA-RR
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Figure 3.16: Boxplot of RQA-DLL

3.4.2 Classification

In this work, LS-SVM has been used for classification of VAG signals. LS-SVM toolbox by

Brabanter et al. has been used for implementing LS-SVM [164]. Six entropy based features and

four RQA parameters extracted from the reconstructed VAG signal and subband signals are
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given as inputs to LS-SVM. The dataset consisted of 89 VAG samples. Training set has been set

to 60% of healthy and unhealthy VAG signals and remaining signals were considered as a test set.

Targets belonging to unhealthy VAG signals are chosen as “one” and healthy signals is set to

“zero”. A tenfold cross-validation procedure has been used to evaluate the optimal classification

performance of the classifier [165], [166]. Radial basis function (RBF) has been used as a kernel

function for the LS-SVM classifier. Command ’(tunelssvm)’ from “LS-SVMlab Toolbox” was

used to determine the tuning parameters (e.g. the regularization and kernel parameters) of

the LS-SVM. The tuning parameters of LS-SVM is a two step procedure. Initially, coupled

simulated annealing (CSA) algorithm is used for determining the parameters of LS-SVM. In the

next step, the parameters are given to “simplex” or “gridsearch” algorithm for determining the

optimized regularization constant and kernel parameters. In our study, the classification results

were found to be more effective using gridsearch algorithm. The classification has been carried

out for 200 iterations and the best classification results were stored. The performance of the

classifier was hugely based on area under the receiver operating curve (AUC-ROC), SEN, SPF

and ACC. Other parameters such as PPV, NPV, MCC and FDR were also considered for the

evaluation purpose.

Table 3.5 gives the classification performance of entropy based features extracted from subband

signals (B3, B4, B5, B6 and B7 ). The first row gives the classification performance of ApEn.

The ApEn extracted from subband signals (B3, B4, B5, B6 and B7 ) are given as a feature

vector to LS-SVM. Hence, the feature vector of ApEn consists of five elements as

ApEn = [ApEn of B3, ApEn of B4, ApEn of B5, ApEn of B6, ApEn of B7] (3.28)

Table 3.5: Classification performance of extracted features from subband signals

Features ACC SEN SPE NPV PPV MCC FDR AUC-ROC

ApEn 0.8315 0.8205 0.8400 0.8101 0.8302 0.8571 0.2000 0.7663 ± 0.0524

SampEn 0.8539 0.8824 0.8158 0.8738 0.8484 0.8378 0.1346 0.7642 ± 0.0526

ShEn 0.6292 0.9216 0.2368 0.7402 0.4672 0.6923 0.3816 0.6780 ± 0.0574

ReEn 0.6404 0.9412 0.2368 0.7500 0.4721 0.7500 0.3766 0.7033 ± 0.0559

TsEn 0.6854 0.9216 0.3684 0.7705 0.5827 0.7778 0.3380 0.6899 ± 0.0577

PeEn 0.8764 0.9412 0.7895 0.8972 0.8620 0.9091 0.1429 0.7920 ± 0.0583

RR 0.7865 0.9423 0.5676 0.8376 0.7313 0.8750 0.2462 0.7848 ± 0.0565

DET 0.7753 0.8085 0.7381 0.7917 0.7725 0.7750 0.2245 0.9187 ± 0.0268

ENTR 0.7978 0.9804 0.5526 0.8475 0.7361 0.9545 0.2537 0.8668 ± 0.0391

DLL 0.7079 0.8431 0.5263 0.7679 0.6662 0.7143 0.2951 0.6367 ± 0.0627

All Features 0.8090 0.9216 0.6579 0.8468 0.7786 0.8621 0.2167 0.8606 ± 0.0397
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Similarly, the classification has been carried out for other features and their performance is

shown in table no 3.5. The classification has been also carried out by selecting all features as a

feature vector. In table 3.5, the “All features” consisted of six entropies based features and four

RAQ parameters extracted from subband signals. Therefore, the feather vector of “All features”

consisted of 50 elements as

All Features = [six entropies from B3−B7, four RQA paramters from B3−B7] (3.29)

From table 3.5 it can be observed that “All features” gives an accuracy of 80.90% with a

sensitivity of 92.12% and specificity of 65.79%. SampEn gives a classification accuracy of 85.39%

with lowest FDR of 0.1346. It can be observed that PeEn performed well with respect to other

entropies and gives the highest classification accuracy of 87.64% with FDR of 0.1429. Entropies

such ApEn and SampEn provided a better pattern classification with an accuracy of 83.15%

and 85.39% respectively. From the table 3.5 it can be observed that the performance of entropy

based features were better with respect to RQA parameters.

A similar pattern classification has been carried out with features extracted from reconstructed

VAG signals. Table 3.6 shows the classification performance of extracted features from recon-

structed VAG signals. The feature vector “All features” consists of

All Features = [ApEn, SampEn, ShEn,ReEn, TsEn, PeEn,RR,DET,ENTR,DLL]

(3.30)

Therefore, “All features” feature vector consists of ten feature elements (six entropies and four

RQA parameters) obtained from reconstructed VAG signals.

Table 3.6: Classification performance of extracted features from reconstructed VAG signals

Features ACC SEN SPE NPV PPV MCC FDR ROC

ApEn 0.7528 0.7843 0.7105 0.7843 0.7465 0.7105 0.2157 0.7791 ± 0.0514

SampEn 0.8202 0.8235 0.8158 0.8400 0.8197 0.7750 0.1429 0.8540 ± 0.0417

ShEn 0.6629 0.7647 0.5263 0.7222 0.6344 0.6250 0.3158 0.6501 ± 0.0583

ReEn 0.8315 0.9804 0.6316 0.8696 0.7869 0.9600 0.2188 0.6692 ± 0.0588

TsEn 0.7753 0.8163 0.7250 0.8000 0.7693 0.7632 0.2157 0.6011 ± 0.0601

PeEn 0.8132 0.9508 0.5333 0.8722 0.7121 0.8421 0.1944 0.8989 ± 0.0236

RR 0.7978 0.7419 0.8276 0.7188 0.7836 0.8571 0.3030 0.7069 ± 0.0551

DET 0.7528 0.7353 0.7636 0.6944 0.7493 0.8235 0.3421 0.6383 ± 0.0596

ENTR 0.6517 0.7647 0.5000 0.7156 0.6183 0.6129 0.3276 0.7312 ± 0.0528

DLL 0.7079 0.8824 0.4737 0.7759 0.6465 0.7500 0.3077 0.7461 ± 0.0548

All Features 0.8427 0.9020 0.7632 0.8679 0.8297 0.8529 0.1636 0.8560 ± 0.0427
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From the table 3.6, it can be observed that “All features” gives the highest classification accuracy

of 84.27% with FDR of 0.1636. It can be also inferred that entropy based features performed

well with respect to RQA parameters. SampEn gives a classification accuracy of 82.02% with low

FDR of 0.1429. The classification results inferred that the proposed methodology with feature

extraction technique could distinguish between healthy and unhealthy VAG signals.

The performance of the classification model has been measured graphically by AUC-ROC. Figure

3.17 gives the AUC-ROC of features extracted from subband signals. Figure 3.17 (a) gives

AUC-ROC plot for entropy based features (b) represents the AUC-ROC plot for RQA parameters.

AUC-ROC for “All features” was 0.8606 ± 0.0397 ( ACC: 80.90% from table no 3.5). The

AUC-ROC of other features has been presented in table 3.5. From table 3.5 and figure 3.17

(a) it can be observed that PeEn which gave the highest classification accuracy of 87.64% had

AUC-ROC of 0.7920 ± 0.0583. Though the AUC-ROC of RQA parameter DET was highest of

0.9187 ± 0.0268 but its classification accuracy was 77.53% (Table 3.5). A similar observation

can be observed for other RQA parameters.
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(b) ROC plot for RQA parameters

Figure 3.17: ROC plot for extracted features obtained from subband signals

Similarly, figure 3.18 gives the AUC-ROC of features extracted from reconstructed VAG signals.

while 3.18(a) represents AUC-ROC plot for entropy based features (b) represents the AUC-ROC

plot for RQA parameters. From table 3.6 and figure 3.18 (a) it can be observed that the feature

vector “All features” gave AUC-ROC of 0.8560 ± 0.0427 with a classification accuracy of 84.27%.

While entropies performed better with respect to RQA parameters as observed from table 3.6

and figure 3.18. PeEn gives AUC-ROC of 0.8989 ± 0.0236. From table 3.5 and 3.6 and figure

3.17 and 3.18 it can be observed that LS-SVM as a classifier effectively categorized a larger

number of VAG signals between healthy and unhealthy classes.
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(a) ROC plot for Entropy based features
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(b) ROC plot for RQA parameters

Figure 3.18: ROC plot for extracted features obtained from reconstructed signals

3.5 Discussion

The work carried out in this chapter focused on developing a nonstationary methodology for

CAD system. The methodology proposed in this chapter has been contributed by the analysis of

VAG signal using WPD followed by feature extraction techniques. Six entropies and four RQA

parameters has been studied. The VAG signals has been decomposed by WPD into subband

signals as observed in figure 3.4. Features has been extracted from subband signals (B3, B4,

B5, B6 and B7 ) and reconstructed VAG signals. A total of 50 features has been extracted from

subband signal while 10 features has been extracted from reconstructed VAG signals. A total

of sixty features were extracted in this study. Statistical analysis has been carried out for the

extracted features and are shown in the table 3.2, 3.3 and 3.4. From the table 3.2, 3.3 and 3.4, it

has been observed that large variation of statistical measures (mean and standard deviation)

exist between healthy and unhealthy classes. For example, from table 3.2, the mean and standard

deviation of ApEn (reconstructed VAG signals) for healthy VAG signal is 1.7792 ± 0.1650 while

for unhealthy VAG signal it is 2.0113 ± 0.1303. Furthermore, the graphical representation of

the extracted features has been carried out using boxplot. The distribution of features extracted

from the unhealthy data was larger in comparison to healthy data as observed in figures 3.5 - 3.16.

For example, the box-plot for SampEn extracted from reconstructed VAG signal as observed

in figure 3.6 (a), showed that the distribution of unhealthy VAG signals (std:0.3727 from table

3.2) has been larger with respect to healthy VAG signals (std: 0.1908 from table 3.2). Similar

observations has been observed from the boxplot of other extracted features. The statistical

measures and boxplot of extracted features gave a favourable inference in discriminating healthy

and unhealthy VAG signals. This was followed by pattern classification by using LS-SVM.
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A detailed classification analysis has been carried out using features extracted from subband

signals and reconstructed as observed from table 3.5 and 3.6 respectively. Classification results

shows that “All features” (no of features: 50) of subband signals gives a classification accuracy

of 80.90% (table 3.5) with AUC-ROC of 0.8606 ± 0.0397 while 84.27% was obtained for

reconstructed VAG signals (no of features: 10) with AUC-ROC of 0.8560 ± 0.0427. The pattern

classification for individual features extracted from subband signals and reconstructed VAG

signals has been carried out and is shown in table 3.5 and 3.6. It can be observed that entropy

based features performed better with respect to RQA parameters. Though PeEn extracted from

subband signals (five feature elements) gives the highest classification accuracy of 87.64% but it

provided relatively poor AUC-ROC of 0.7920 ± 0.0583. From this study, it can be concluded

that, the feature vector “All features” (no of features: 10) extracted from reconstructed VAG

signals performed better in terms of classification accuracy (ACC: 84.27%) and AUC-ROC

(0.8560 ± 0.0427).

The proposed methodology provided a better classification accuracy in distinguishing healthy

and unhealthy VAG signals. The proposed work provided a better methodology in analysing

nonlinear, nonstationary and multicomponent VAG signals using entropy based methods and

RQA parameters. Hence, a computer aided diagnostic system could be developed with the

proposed methodology for noninvasive diagnosis of knee-joint disorders.

3.6 Conclusion

In this chapter, a nonstationary linear signal processing technique based on wavelet transform

has been studied. Initially, the VAG signals were decomposed into subband signals of different

frequencies by WPD. The VAG signals were reconstructed by identifying the significant subband

signals. Six entropy based features namely ApEn, SampEn, ShEn, ReEn, TsEn, PeEn and

four RQA parameters namely recurrence rate (RR), determinism (DET), entropy (ENTR) and

diagonal length (DLL) were extracted from subband and reconstructed VAG signals distinctly.

Fifty features were extracted from the subband signals (B3, B4, B5, B6, B7 ) and ten from

reconstructed VAG signal. The feature vector “All features” (no of features: 10) extracted from

reconstructed VAG signals provided better classification accuracy of 84.27% and AUC-ROC of

0.8560 ± 0.0427 in this study. The results illustrated that entropy based features performed

better with respect to the features extracted from RQA since they were able to classify the signal

between healthy and unhealthy more precisely.
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Coming up with features is difficult,

time-consuming, requires expert

knowledge. “Applied machine learning” is

basically feature engineering.

Andrew Ng (2010)

In this chapter, the merits of feature selection algorithm in the analysis of VAG signals has

been studied. In any pattern classification problem, features consist of essential properties in

representing the data. From the previous chapter, various methodologies have been carried out

for extracting features. Most of these extracted features tend to be irrelevant and may lead to

over-fitting. Therefore in order to reduce the size of feature set, feature selection algorithm has

been presented in this work.
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This chapter has been organized as follows. Importance of feature selection algorithm is discussed

in the first section. Section 4.2 discusses the proposed feature selection algorithm used in this

study. Finally, the performance of the feature selection algorithm has been presented in section

4.3 along with the discussion. This chapter concludes with section 4.4.

4.1 Introduction

In pattern classification, a feature represents individual property or characteristics of any data.

Extracting essential properties which are distinctive and informative is one of the important

steps in describing and choosing the features. In a supervised learning, these features as a

“feature vector” helps in building an effective algorithm for modelling classification, regression

and pattern recognition. The quality and quantity of the features are important aspects of

building a classification model. In the initial study of machine learning and pattern recognition,

the number of features was quite restrictive whereas, in the recent development, the number of

features has expanded drastically.

Foremost, many of these methodologies suffer from “curse of dimensionality”. That is, as the

number of features in a feature vector increases, the computational complexity of the model

increases abruptly. One of the prominent causes of this phenomena is that most of these

features are irrelevant and insignificant. These insignificant and unessential features hamper

the classification model, thereby do not contribute to discriminate among the classes [167].

These features do not provide an effective prediction and thereby increasing the computational

and storage complexity. Hence feature selection algorithm provides an aid in reducing the

computational complexity, understanding the data, improving the prediction performance and

lowering the effects of “curse of dimensionality”. Various techniques have evolved in removing

redundant, insignificant and unessential features. The feature selection algorithm provides a

solution in building an effective classification model. The feature selection algorithm selects the

most stable, significant and discriminant features, thereby selecting an optimal feature subset.

The insignificant and unessential features are discarded and efficient classification model is built.

As the dimension of the feature vector is reduced, it decreases the computational complexity and

increases the performance of the classifiers. This thesis proposes to use genetic algorithm (GA)

and apriori algorithm (ApA) as feature selection technique to select the optimal feature subset.
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4.2 Methodology

4.2.1 Data Set Preparation

The features extracted from the previous chapter were used for the analysis. The VAG signals

were decomposed by WPD into subband signals. Six entropy based features and four RQA

based features were extracted from the subband signals. The features were also extracted from

the reconstructed VAG signals. Hence a total of 60 features were extracted and they can be

summarised as follows

1) ApEn from subband signal B3 to B7 and from reconstructed VAG signals.

2) SampEn from subband signals B3 to B7 and from reconstructed VAG signals.

3) ShEn from subband signals B3 to B7 and from reconstructed VAG signals.

4) ReEn from subband signals B3 to B7 and from reconstructed VAG signals.

5) TsEn from subband signals B3 to B7 and from reconstructed VAG signals.

6) PeEn from subband signals B3 to B7 and from reconstructed VAG signals.

7) RQA-RR from subband signals B3 to B7 and from reconstructed VAG signals.

8) RQA-DET from subband signals B3 to B7 and from reconstructed VAG signals.

9) RQA-ENTR from subband signals B3 to B7 and from reconstructed VAG signals.

10) RQA-DLL from subband signals B3 to B7 and from reconstructed VAG signals.

4.2.2 Genetic Algorithm

One of the feature selection techniques used for improving the performance of data mining is the

genetic algorithm (GA). Sufficiently good results can be obtained with GA when compared with

many nonevolutionary and traditional feature selection methods. The comparison is based on

higher classification accuracy and improved instance selection as shown by Cano et al. [168].

GA has been successfully implemented for large scale feature selection problems. A solution

to a given problem is represented in the form of a string, called “chromosome”. It consists of

a set of elements called as “genes”, which holds a set of values of the optimization variables.

Once an initial population is created, the individuals of this population are estimated through a

fitness function. The fitness function gives the description of the goodness of a chromosome. In

a genetic algorithm, the function to be optimized by minimization or maximization the “fitness”.

Based on this fitness function, chromosomes are selected and some genetic operators such as
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mutation, and crossover are applied over the selected chromosomes. These chromosomes evolve

better generation till it reaches the global optimum solution. Very briefly, in a GA basic steps

involved are as follows.

1. Population: The values of the single variables are drawn to randomly select a certain

number of experimental conditions (chromosomes). Creation of the initial population: a set with

Npop chromosomes is generated Cr for the initial population, in which each chromosome is a

vector Cr = [i1...iNn ] containing Nn features, indexes i are randomly generated without repeated

elements[116]. In our study 3, 4, 5, 6 , 7 and 8 have been chosen as size of the population. An

individual’s features or genes are contained in each of the chromosome.

2. Objective Function: The applied GA fitness function is based on the principle of Max-

Relevance and Min-Redundancy - the objective is that the outputs of the selected features present

discriminant power, avoiding redundancy. The application of the principle of Max-Relevance

and Min-Redundancy corresponds to searching the set of feature indexes i that satisfies the max-

imization problem: Max φ. The maximization of φ is a convenient approach to simultaneously

maximize V and minimize P.

φ=V-P is the objective function based on Max-Relevance/Min-Redundancy [169].

V =
1

N

Nn∑
i=1

I(yhi; y) (4.1)

is the relevance of a set with Nn features, and

P =
1

N

Nn∑
i=1

Nn∑
j=1

I(yhi; yhj) (4.2)

is the redundancy between features.

Notice that “V ” is the mean value of the mutual information I (yhi ; y) between extracted

features and outputs whereas “P” is the mean value of mutual information I(yhi; yhj) between

extracted features.

3. Crossover: A new population is obtained from the actual population by performing a certain

number of “matings” between chromosomes. These are randomly chosen in such a way that the

best individuals have a higher probability of being selected. Each gene of a new individual is

taken from one of the parents in a random process. Two new chromosomes are created when an

exchange of genes takes place during the crossover, and each has a mixture of the experimental

conditions which characterize the “parents”. These off springs can then replace some elements of

the population to which the two parents belonged. After fitness evaluation, the individuals are

organized based on their fitness values by the algorithm, ranking the indexes of the individuals
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into a vector, from the best to the worst. In order to create a new generation, the crossover

operator is applied. The fitness value gives each individual a probability of reproduction. More

adapted individuals (i.e. the individuals in higher positions of the ranking) have more probability

of participating in the crossover operation. The blend alpha crossover (BLX-α) crossover genetic

operator [170] is defined by:

v[k + 1] = round(αv1[k] + (1− α)v2[k]) (4.3)

Where k is the generation, v1 and v2 are parents of model wand α ε [0, 1], with normal density

probability density function (PDF). The blend alpha crossover (BLX-α) for real vectors creates

new offspring by sampling a new value in the range [mini - d *α, maxi + d*α) at each position

i. Here mini and maxi are the smaller and larger value of the two parents at position i and d is

maxi - mini.

4. Termination criteria: When the set of features outputs (yhi) is mutually exclusive and

totally correlated to the target output y, the maximum value is attained. In other words, the

idea is to take advantage of the diversity between neurons that were trained by means of different

methods. The termination criteria is kept as 80. In this work, the selective pressure parameter,

used to speed up the convergence of the GA was set equal to 6.

4.2.3 Apriori Algorithm

In data mining, the apriori algorithm is one of the most influential algorithm. This was proposed

by Agrawal et al. and is based on the association property [114]. Association rules in data

mining are to search the hidden relationships among the attributes. Association rule is a pattern

which states that when “X” occurs then the probability of occurrence of “Y” increases [171].

It removes the strange relationship, repeating pattern, association or ordinary links among the

dataset.

Let K = K1,K2.....Km be the items in a set and let “R” be the set of transaction “T” in the

database. Suppose “A” and “B” be the item sets such that A ⊂ K,B ⊂ K and A ∩B = φ. The

association rules can be applied to an expression such as A→ B. The association rule over the

transaction depends on two factor: support and confidence. The rate of “A” contained in “R” is

called as support and is denoted as Sup(A,R). It infers the statistical measures of the “R”. Its

importance increases with increasing value of statistical measures. The confidence is the rate of

both “A” and “B” are contained in “R” and is represented as Conf(A⇒ B) [171]. That is,

Conf(A⇒ B) =
Sup(A ∪B,R)

Sup(A,R)
(4.4)
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In the data mining, the association rules are applied to the transaction to have specific minimum

support (Minsup) and confidence (Minconf ). Agrawal et al. proposed Apriori algorithm for

association rules in larger databases. Apriori algorithm has two stages. The initial step involves

the scanning the database to identify the item set whose support value is greater than Minsup.

This is followed by implementing the association rules which must follow

Sup(A ∪B,R) ≥Minsup and Conf(A⇒ B) ≥Minconf (4.5)

The apriori algorithm is recursive in nature since it scans the database iteratively to find the

recurring item. In the first scan elements having minimum support are detected. In the following

next scans, the frequent elements found in the proceeding scans are used to the obtained new

probable item as candidate sets. In the meanwhile, the support values are computed and the sets

which have Minsup become the frequent item set for that particular transaction. The frequent

item set is again processed for next transaction as candidate keys. The procedure is repeated

unless new frequent items are not identified. The pseudo code of apriori algorithm is presented

below.

Algorithm 1: Apriori Algorithm

Data: Ck: candidate item set of size k
Data: Lk: frequent item set of size k
L1=frequent items ;
for k= 1; Lk != φ; k++) do

do begin ;
Ck+1 = candidates generated from Lk ;
foreach each transaction tin database do

increment the count of all candidates in Ck+1 ;
that are contained in t ;
Lk+1 = candidates in Ck+1 ;
with minsupport ;

end

end

Apriori algorithms are the most popular algorithms used in the first stage of association rule

mining. Apriori algorithms were used effectively to find the associations among various application

of data mining such as text clustering, image processing and web mining [172]–[175].

4.3 Results & Discussion

Feature selection is used to improve the early diagnosis of knee joint disorders. Sixty features

extracted from the subband and reconstructed signals characterises a VAG signal. Among these
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sixty features, most of them are insignificant and irrelevant features. These features are also

quite large and create a curse of high dimensionality. Thereby, most of these extracted features

do not contribute to building an efficient classification model. Thus, to reduce this dimensionality

and improve the classification model, genetic algorithm and apriori algorithm as feature selection

algorithm have been used. The feature selection algorithm is able to choose an optimal feature

subset and thereby reduces the size of the feature set. This simulation has been carried out in

MATLAB c©2015b.

4.3.1 Feature Selection

4.3.1.1 Genetic Algorithm

The extracted features of 89 VAG signals were given as input to the genetic algorithm. The

genetic algorithm was able to choose most significant, relevant and stable features and discard

the irrelevant features. Results illustrated that the genetic algorithm has been able to determine

eight features which showed the maximum recurrence. The optimal feature set constituted of

the following features:

1) ApEn of subband B7.

2) SampEn of subband B3.

3) SampEn of subband B7.

4) TsEn of subband B3.

5) TsEn of subband B7.

6) PeEn of subband B4.

7) ApEn of reconstructed signal.

8) SampEn of reconstructed signal.

4.3.1.2 Apriori Algorithm

Similarly, the apriori algorithm has been used as feature selection algorithm for sixty features. In

this procedure, a K-means clustering followed by the apriori algorithm has been applied on the

extracted features. K-means clustering algorithm divide the each of the features into two classes

and these two classes were labelled by single bit encoding. The extracted features belonging to

particular class were labelled as zeros and vice versa for the other class. Further analyses were

carried out on the encoded feature vectors for recurrences. Features that acted as the primary
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key was chosen as most significant, stable and relevant features. The feature set consisted of five

features, which showed the maximum recurrence. The compressed feature set constituted the

following extracted features:

1) ApEn of subband B6.

2) ShEn of subband B6.

3) PeEn of subband B5.

4) ENTR (RQA) of subband B5.

5) SampEn of reconstructed signal.

As observed from the features selected from the genetic and apriori algorithm, the entropy based

features were more significant with respect to RQA based features. In both feature selection

algorithms, ApEn and SampEn provided a significant presence in the optimal feature set.

4.3.2 Classification

LS-SVM toolbox by Brabanter et al. has been used for implementing LS-SVM [164]. Training

set has been set to 60% of healthy and unhealthy VAG signals and remaining signals were

considered as a test set. Targets belonging to unhealthy VAG signals are chosen as 1 and healthy

signals are set to 0. A tenfold cross-validation procedure has been used in order to assess the

classification performance of the classifier [165]. Radial basis function (RBF) has been used as a

kernel function for the LS-SVM classifier. “Gridsearch” algorithm has been used for determining

the optimized regularization constant and kernel parameters. The classification has been carried

out for 200 iterations and the best classification results were stored. The performance of the

classifier was largely based on the area under the receiver operating curve (AUC-ROC), SEN,

SPF and ACC. Other parameters such as PPV, NPV, MCC and FDR are also considered for the

evaluation purpose. The classification analysis was carried out with the feature vector as follows:

1. Fifty features were extracted from the subband VAG signals which consists of 50 features.

2. Ten features were extracted from reconstructed VAG signals which consists of 10 features.

3. A combined feature vector consisting of features extracted from subband and reconstructed

VAG signals consists of 60 features.

4. Features selected by GA consists of eight features

5. Features selected by apriori algorithm consists of five features
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Table 4.1: Comparison of classification performance of FS algorithm

Attributes
All features Features Features FS from FS from

vector subband Recon GA ApA

No of features 60 50 10 8 5

ACC 0.6966 0.8090 0.8427 0.8202 0.8539

SEN 0.58882 0.9216 0.9020 0.7254 0.9272

SPE 0.8421 0.6579 0.7632 0.9473 0.7352

NPV 0.6038 0.8468 0.8679 0.72 0.862

PPV 0.8333 0.7786 0.8297 0.9487 0.85

MCC 0.4337 0.8621 0.8529 0.6707 0.6868

FDR 0.1667 0.2167 0.1636 0.0512 0.15

AUC-ROC 0.7822 ± 0.0471 0.8606 ± 0.0397 0.8560 ± 0.0427 0.8754 ± 0.0347 0.9252 ± 0.0261

Table 4.1 shows the classification performance among all features vector (60*89), features

extracted from subband signals of VAG signals (50*89), features extracted from the reconstructed

VAG signal (10*89) and optimal feature set selected from GA (8*89) and apriori algorithm

(5*89). From the table 4.1, it can be observed that “All feature vector” which consisted of sixty

feature subset gives a classification accuracy of 69.66%. The classification accuracy of feature

vector “Features SB” of subband signals gives an accuracy of 80.90% while the classification

accuracy of feature vector “Features Recon” extracted from reconstructed VAG signals gives

84.27%. The highest classification accuracy has been obtained for the features selected by the

apriori algorithm with 85.39% which consisted of five features only. GA selected eight features

as an optimal feature set which gives a classification accuracy of 82.02%. The optimal feature

set selected by the feature selection algorithms provided better classification performance as

observed from the table 4.1. It can be seen from the table that, as the number of features

decreases the classification accuracy increases.

The classification performance of the five feature vectors has been graphically represented by

AUC-ROC. Figure 4.5 gives the comparative AUC-ROC for the optimal feature set and other

feature vectors. The feature vector “All feature vector” gives AUC-ROC of 0.7822 ± 0.0471

which is lowest among the other feature vectors. The feature vector “Features SB” and “Features

Recon” gives AUC-ROC of 0.8606 ± 0.0397 and 0.8560 ± 0.0427 respectively. Feature selected by

GA gives AUC-ROC of 0.8754 ± 0.0347 while highest AUC-ROC has been obtained from features

selected by the apriori algorithm (0.9252 ± 0.0261). Therefore, as observed from the table the

AUC-ROC of both feature selection algorithm performed well with respect to other feature

vectors. The classification analysis carried out provided the inference that feature selection plays

an important role in building effective classification by discarding the irrelevant and redundant

features.
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Figure 4.2: ROC plot of features selected from FS

4.4 Conclusion

In this chapter feature selection algorithm has been studied to discard the irrelevant and

redundant features. To select the most significant, relevant and stable features, two feature

selection algorithm namely genetic and apriori algorithm has been studied. The performance of

the feature selection algorithm was evaluated by LS-SVM. The results illustrated that feature

selected by feature selection algorithms performed better with respect to other feature vectors.

The genetic algorithm selected eight features namely ApEn of subband B7, SampEn of subband

D3, SampEn of subband D7, TsEn of subband D3, TsEn of subband D7, PeEn of subband D4,

ApEn and SampEn of the reconstructed signal. While apriori algorithm selected five features

which consisted of ApEn of subband B6, ShEn of subband B6, PeEn of subband B5, ENTR

(RQA) of subband B5 and SampEn of the reconstructed signal. Furthermore, the features

selected from the feature selection algorithms also inferred that, entropy based features were

prominent features with respect to RQA parameters. The highest classification of 85.39% and
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AUC-ROC of 0.9252 ± 0.0261 was obtained by five features selected by apriori algorithm. The

proposed methodology in this works could find a potential application in the knee joint pathology

for early detection and monitoring.



Chapter 5

Analysis of VAG Signals Using

Complete Ensemble Empirical Mode

Decomposition With Adaptive Noise

A necessary condition to represent

nonlinear and nonstationary data is to

have an adaptive basis. A priori defined

function cannot be relied on as a basis, no

matter how sophisticated the basis

function might be.

Norden E. Huang (2005)

From the previous chapters it has been concluded that VAG signal is multicomponent, nonlinear

and nonstationary in nature. The analysis carried out by traditional signal processing cannot

provide proper inferences of VAG signals since most of the traditional signal processing techniques

are based on Fourier. These techniques assume that the system is linear and input data is

stationary or periodic in nature and therefore improper inference could be assumed using these

techniques. In this chapter, nonlinear signal processing techniques such as empirical mode

decomposition (EMD) based techniques have been studied for the analysis of VAG signals. In the

previous chapter, it has been inferred that, entropy based features were prominent features with

respect to RQA based parameters. Therefore, entropy based feature extraction techniques has

been continued to be focused in this study. Additionally, a simple feature extraction technique

based on central tendency measure (CTM) has been computed.

68
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Figure 5.1: Flow chart for diagnosis of knee joint disorders using CEEMDAN

The chapter has been organized as follows: section 5.1 introduces the techniques of nonlinear

signal processing techniques. The next section briefly describes the methodology studied in this

chapter and followed by results and discussion section. The chapter concludes with section 5.4.

5.1 Introduction

The characteristics obtained from VAG signals could be utilized in discriminating and detecting

abnormalities in VAG signals. Researchers have successfully carried out the analysis of VAG

signals by various linear signal processing techniques. In the previous chapter, the analysis of VAG

signal was based on wavelet analysis which is essentially a Fourier analysis with an adjustable

window function. It is a linear method but applicable on nonstationary signals. The VAG signals

were decomposed into subband signals by WPD. But these subband signals were still contaminated

with artefacts. These artefacts included external noise, muscle contraction interference, baseline

wanders etc. These artefacts could mislead in inferring the results. Considering these drawbacks

and the characteristics of VAG signals, nonlinear signal processing techniques have been explored

in this work. The literature survey also revealed that nonlinear techniques accomplished by

feature extraction techniques could improve in discriminating between healthy and unhealthy

VAG signals.

Huang et al. introduced a nonlinear and nonstationary signal processing technique known as the

empirical mode decomposition (EMD) [44]. EMD has been applied for the data analysis of a large

number of an application involving nonstationary and nonlinear data such as biomedical, finance,

physical and geological engineering. Wu et al. applied EMD for the analysis of VAG signal for

detecting chondromalacia patellae [45]. However, EMD has one major disadvantage of “mode

mixing”. In mode mixing, a particular IMF is composed of signals with widely disparate scales,

or a signal identical scale may reside in different IMF components. To overcome this problem

“ensemble empirical mode decomposition” (EEMD) was proposed [46]. Wu et al. applied EEMD

for the analysis of VAG signal [47]. EEMD has been studied as an improved preprocessing
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technique for VAG signals. EEMD overcomes the problem of “mode mixing” by adding white

noise along with the original signal. In computing EEMD, EMD is performed on the original

signal but the true IMFs are obtained through an ensemble mean.

In this study, a complete ensemble empirical mode decomposition with adaptive noise (CEEM-

DAN) for the analysis of VAG signal [52] has been covered. CEEMDAN provides an improvement

in minimizing the reconstructed error, providing a fixed number of modes for different signals and

minimizes residual noise present in the mode [52]. CEEMDAN has been successfully reported in

the analysis of nonstationary [54], [176] and nonlinear data, especially in the application related

to biomedical signals [52]. Therefore, in this chapter CEEMDAN as a preprocessing technique

has been presented. Entropy, which is a quantified measure of the complexity is investigated.

Entropy based features as studied in the previous chapter namely ApEn, SampEn, ShEn, ReEn,

TsEn and PeEn has been used in this chapter as feature extraction techniques. In the proposed

work, the VAG signals are decomposed into intrinsic mode functions (IMF) by CEEMDAN. The

VAG signals are reconstructed by identifying the significant IMFs and entropy based features are

extracted. Finally, the extracted features are given to classifier for evaluating their performance.

LS-SVM as a classifier is proposed in the present study. Moreover, the time complexity of feature

extraction techniques has been computed and compared. Hence, the computational complexity

of the entire proposed system has been computed. The proposed methodology could provide an

aid in developing a noninvasive and low cost diagnostic system for knee joint disorders.

5.2 Methodology

5.2.1 CEEMDAN

Empirical mode decomposition (EMD) is a data-dependent approach suitable for decomposition

of a nonlinear and nonstationary signal into symmetric, amplitude and frequency modulated

(AM-FM) components known as intrinsic mode functions (IMFs) [44]. IMFs of the signal is

considered when following two conditions are fulfilled: (a) the number of maxima/minima

(extrema) and the number of zero crossing should be equal or differ by one (b) the mean of upper

and lower envelopes (local mean) must be zero. In the case of EEMD, the IMFs are computed

as the mean of the corresponding IMFs obtained from an ensemble of the original signal with

additional finite variance white noise [46]. EEMD overcomes the problem of “mode mixing” as

EEMD is a multiple trial process and each trial has the a procedure similar to EMD, except

that the input signal is a mixture of the original signal and a finite Gaussian white noise [46].

The scale separation capabilities of EEMD enables to eliminate the problem of mode mixing.

But there are some disadvantages of EEMD and they are as follows (i) the decomposition of the

signal is usually incomplete and residual noise are attached in the modes (ii) different modes are
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produced by the addition of noise with the signal. The number of sifting process increases with

the increase in the number of trials [52]. In order to overcome these disadvantages, CEEMDAN

has been reported.

The steps for CEEMDAN are as follows: Let R(.) be the operator producing local means of the

signal. Uk(.) be the operator producing k(th) mode obtained by the EMD. And let v(i) be the

white Gaussian noise added having zero mean and variance as 1 [52].

1) The first residue is computed from local means of I realization x(i) = x + βU1(v
(i)) by

EMD

r1 =< R(x(i)) > (5.1)

2) The first mode is calculated for k=1

d1 = x− r1 (5.2)

3) The second residue is computed as the average of local means r1 + βU2(v
(i)) and second

mode is computed as

d2 = r1 − r2 = r1− < R(r1 + β1R2(v
(i))) > (5.3)

4) The Kth residue is calculated as

< R(rk−1 + βk−1Uk(v
(i))) > (5.4)

5) kth mode is evaluated as

dk = rk−1 − rk (5.5)

6) repeat from step 4 for next k.

The CEEMDAN algorithm’s parameters are optimized by setting the amplitude of added

Gaussian noise and complete ensemble number by statistical rule suggested by Huang [46].

βn =
β√
EN

(5.6)

Here EN is the ensemble number, β is the added Gaussian noise and βn std (standard deviation)

of error which is the difference between the input data and its IMFs. The stopping criteria can

be set either by means of energy parameter or by fixing the shifting iteration. Hence, in the

present study, the following parameters are set as
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a) The complete ensemble number is set as EN = 100. This was the mean of IMFs obtained

from 100 trails of CEEMDAN.

b) 0.2 times the standard deviation (SD) of VAG signal is fixed as added Gaussian noise.

c) The maximum number of shifting iteration NS is set to 5000.

5.2.2 Hilbert-Huang Transform

N.E Huang et al. has proposed HHT method for effectively analysing the non-stationary and

aperiodic signals [44]. It consists of two part: Obtaining IMFs using EMD and then applying

the Hilbert transform. The most important part of HHT is decomposing the signal into a finite

number of distinct oscillations called IMFs. In this study, IMFs have been computed using

CEEMDAN.

5.2.2.1 Hilbert Transform

Inorder to obtain the analytical representation of the signal, instantaneous phase and amplitudes

is computed by applying Hilbert transform to each IMF obtained from EEMD. For an arbitrary

time series data x(t), its Hilbert transform v(t) as

v(t) =
1

π
C.V

∫ ∞
∞

v(τ)

(t− τ)
dτ (5.7)

Where C.V shows the principal of Cauchy value. The analytic signal of w(t) is defined as follows:

z(t) = x(t) + jv(t) = Z(t)ejφ(t) (5.8)

The amplitude Z(t) and instantaneous phase φ(t) are defined as

Z(t) =
√
x(t)2 + v(t)2 (5.9)

φ(t) = arctan
v(t)

x(t)
(5.10)

The instantaneous frequency ω(t) is obtained by differentiation:

ω(t) =
d(φ(t))

dt
(5.11)

HHT has been successfully applied for the application related to geophysical studies [49],

biomedical studies, vibration fault tolerance etc. [72], [177].
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5.2.3 Feature Extraction

5.2.3.1 Entropy Based Feature Extraction

Entropy based features were considered for this study. Six entropy such as ApEn, SampEn,

ShEn, ReEn, TsEn and PeEn were extracted from the reconstructed VAG signals. The details

explanation of entropy based features has been presented in chapter 3.

5.2.3.2 Central Tendency Measurement (CTM)

CTM is a method to sum up the observable data in the plots [94]. CTM is used to quantify the

variability of the signal. CTM is computed by initially finding the circular region of particular

radius ’r’. Then, dividing the number of data points existing within that circular region by the

total number of data points. In the analytical representation of IMFs, the real part of the signal

is plotted against the imaginary part of the signal in z-plane. CTM is exploited to compute

the circular region, which is the area of the analytic representation of IMF in the z-plane. For

computing CTM, let r be the radius of the central area and N be the total number of points

[94]. Then, the CTM for analytic signal w[t] is given as

CTM =

∑N
n=14(di)

N
(5.12)

4(di) =

1 if
√
real (w[t])2 + imag (w[t])2 < r

0 otherwise
(5.13)
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Figure 5.2: VAG signal of (a) healthy subject and (b) unhealthy subject
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5.3 Results

The current study comprising of preprocessing (CEEMDAN), feature extraction and classification

technique has been implemented in MATLAB 2015a. Figure 5.2 (a) and(b) shows the VAG

signals of a healthy and unhealthy subject respectively as a sample. The CEEMDAN decomposes

VAG signals into a set of IMFs as observed in figure 5.3. From figure 5.3 it can be observed

that different IMFs reveal different degrees of dynamics involved in the VAG signal. IMF1 -

IMF3 represents the high frequency oscillation while IMF4 - IMF12 represents the low frequency

oscillation. The high frequency oscillation IMFs (IMF1 and IMF2) have flat envelopes and

thereby do not represent pathological conditions of knee-joint disorders [6] while low frequency

oscillation IMFs (IMF9 and IMF10) are the external noise or artefacts.
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Figure 5.3: IMFs obtained from VAG signal of (a) healthy subject and (b) unhealthy subject
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The detrended fluctuation analysis (DFA) algorithm is computed to analyse the correlation

properties of each decomposed IMFs [6]. IMFs which contain the prominent information are

identified based on the computed fractal scaling index. As suggested from the study by Wu

[6], the IMFs with anti-correlation value between (0 < α < 0.5) and baseline wander related

IMFs (IMF9-IMF10) have been ignored. Therefore, IMF5, IMF6 and IMF7 are considered as

significant data of VAG signal. The obtained α values for IMF5, IMF6 and IMF7 are 1.302,

1.622 and 1.88 respectively. The VAG signals are reconstructed from the summation of these

IMFs (IMF5, IMF6 and IMF7). Figure 5.4 (a) and (b) shows the reconstructed VAG signals for

healthy and unhealthy subject respectively.
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Figure 5.4: Reconstructed VAG signal of (a) healthy subject and (b) unhealthy subject

5.3.1 Feature Extraction

5.3.1.1 Entropy

Entropy based features are extracted from reconstructed VAG signals. These features are

extracted for 38 unhealthy and 51 healthy VAG signals. Table 5.1 shows the mean and standard

deviation of entropy based features of reconstructed VAG. From table 5.1 it can be observed

that entropy based features are relatively high for unhealthy VAG signals with respect to healthy

VAG signals. The mean and standard of ApEn for healthy and unhealthy signals are 0.000178

± 0.00019 and 0.000301 ± 0.00023 respectively. As observed for feature ApEn, the mean of

unhealthy class id 1.7 times the healthy class. The large variation observed in features extracted

from unhealthy VAG signals is due to the presence of the high irregular vibrational components

of VAG signals. This is caused mainly due to the irregular movement of the tibia, patella and

surrounding tissues and muscles. In case of unhealthy VAG signals, a comparatively larger friction

is created between the bones and surrounding tissues, thereby restricting the smooth movements

of the knee joint and containing multiple component vibrations. The features extracted from the
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VAG signals signifies these characteristics. Similar inference can be observed for the rest of the

features.

Table 5.1: Statistical measures of reconstructed VAG signals for entropy based features

mean ± standard deviation

Features healthy unhealthy p-value

ApEn 0.000178 ± 0.000191 0.000301 ± 0.00023 0.012657

SampEn 0.000182 ± 0.000201 0.000299 ± 0.000221 0.014217

ShEn 0.239857 ± 0.165505 0.321193 ± 0.161272 0.009697

ReEn 0.053276 ± 0.041809 0.073854 ± 0.041279 0.002975

TsEn 0.051084 ± 0.038967 0.070421 ± 0.038454 0.015059

PeEn 0.888321 ± 0.034445 0.967527 ± 0.024158 0.000429

Kruskal-Wallis test has been performed on the extracted features in order to infer the discrimi-

nation between the two distribution class. Table 5.1 gives the p-value computed for extracted

features from reconstructed VAG signals. The p-value obtained for the extracted features

provided discrimination among two classes. For example, the p-value obtained for ApEn and

SampEn were 0.012657 and 0.014217 respectively. The p-value and the statistical analysis

inferred that there is significant discrimination in the distribution of features extracted between

healthy and unhealthy classes.
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Figure 5.5: Boxplots of VAG signal of both healthy and unhealthy

Graphical display of the distribution of entropy based features extracted from the reconstructed

VAG signals has been presented as boxplot in figure 5.5. Figure 5.5 shows the boxplot for a) ApEn
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b) SampEn and c)ShEn d) ReEn e) TsEn and f)PeEn respectively. As observed from boxplot,

unhealthy distributions of extracted features show a comparatively large variation with respect

to the class of healthy VAG signals. Thus, the results obtained from the statistical analysis

provided a significant distinction between healthy and unhealthy VAG signals. Considering these

results, the extracted features are given as inputs in building an effective classification model.

5.3.1.2 CTM

Hilbert transform is applied to the VAG signal, IMFs (5,6 and 7) and reconstructed VAG signal

in order to represent it in analytical form. It is obtained by plotting the imaginary part of

the signal against the real part of the signal in a z-plane. Figure 5.6 shows the analytical

representation of raw VAG and reconstructed VAG signal while figure 5.7 shows the analytical

representation of individual IMFs. From figure 5.6 (a) and (b) it can be observed that analytical

representation of VAG signals does not possess any geometrical shape. As a result, it is quite

difficult to analyse the raw VAG signal. These irregular shapes signify the presence of artefacts

and multicomponent signals. Whereas in figure 5.6 (c) and (d), prominent circular curves

are observed for reconstructed VAG signal. Similar circular curves are observed for analytical
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representation of IMFs (5,6 and 7) in figure 5.7. These circular curves possess proper individual

center for a particular circular curve. It can be also observed that there are many circular curves

having individual centers. This might indicate the presence of distinct frequency components

in the VAG signal. Considering these observation, the uniqueness described in the analytical

representation of reconstructed VAG signal has been extracted as features.
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Figure 5.7: Analytical representation of IMF5, IMF6 & IMF7 for healthy and unhealthy
subject

In order to extract the feature from the analytical representation of reconstructed VAG signals,

the radius of the circular curve of the reconstructed VAG signal in the z-plane has been identified.

Then, the area of the reconstructed VAG signal in the z-plane is computed with 95% CTM

utilization of data points. That is, the number of data points enclosed within the area of the

circle is computed. This provides a significant difference in surface area between unhealthy and

healthy VAG signals. The area parameter as a feature has been computed for 89 reconstructed

VAG signals. The computed area for healthy subjects were found to be smaller in comparison

with the area computed for unhealthy subjects. The larger area could signify the presence of

high amplitude for unhealthy subjects.

The statistical analysis of the area as feature computed from the reconstructed VAG signal has

been carried out. Table 5.2 provides the mean and standard deviation obtained from feature

extracted from reconstructed VAG signals. From the table, it can be observed that the area

computed from the unhealthy VAG signal has a larger variation with respect to healthy VAG

signals. Similarly, figure 5.8 shows the boxplot of extracted feature. From the boxplot, it can be
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Healthy Unhealthy

mean ± std dev mean ± std dev

0.2369 ± 0.1078 0.2952 ± 0.0894

p-value

0.0138

Table 5.2: Statistical measure
for CTM
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Figure 5.8: Boxplot for CTM

inferred that the area computed from unhealthy VAG signals consisted of larger distribution

with respect to healthy VAG signals. The extracted features have been given as input to the

classifier.

5.3.2 Classification

In this work, LS-SVM has been used for classification of VAG signals. LS-SVM toolbox by

Brabanter et al. has been used for implementing LS-SVM [164]. Six entropy based features and

area computed from CTM have been extracted from the reconstructed VAG signal. The dataset

consisted of 89 VAG samples. Training set has been set to 60% of healthy and unhealthy VAG

signals and remaining signals were considered as a test set. Targets belonging to unhealthy VAG

signals are chosen as 1 and healthy signals are set to 0. A tenfold cross-validation procedure has

been used in order to assess the classification performance of the classifier [165]. Radial basis

function (RBF) has been used as a kernel function for the LS-SVM classifier. The parameters of

LS-SVM were optimized using gridsearch algorithm. The classification has been carried out for

200 iterations and the best classification results were stored. The performance of the classifier

was hugely based on area under the receiver operating curve (AUC-ROC), SEN, SPF and ACC.

Other parameters such as PPV, NPV, MCC and FDR was also considered for the evaluation

purpose.

Table 5.3 gives the classification performance of VAG signal reconstructed from dominant IMFs.

The dominant IMFs (5,6 and 7) has been identified by DFA algorithm and reconstructed VAG

signal has been formed by the summation of IMF5, IMF6 and IMF7. Six entropy based features

(ApEn, SampEn, ShEn, ReEn, TsEn and PeEn) and CTM extracted from the reconstructed

VAG signal has been given as an input to LS-SVM. For example, from table 5.3, the first row
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Table 5.3: Classification performance of extracted features from reconstructed VAG signal

Features ACC SEN SPE PPV NPV MCC FDR AUC

ApEn 0.7640 0.8947 0.5313 0.7727 0.7391 0.4670 0.2273 0.7647±0.0521

SampEn 0.8202 0.9444 0.6286 0.7969 0.8800 0.6228 0.2031 0.7672±0.0506

ShEn 0.7528 0.8947 0.5000 0.7612 0.7273 0.4391 0.2388 0.6434±0.0590

ReEn 0.7191 0.8793 0.4194 0.7391 0.6500 0.3409 0.2609 0.6583±0.05851

TsEn 0.7079 0.8421 0.4688 0.7385 0.6250 0.3361 0.2615 0.6929±0.0624

PeEn 0.8652 0.9107 0.7879 0.8793 0.8387 0.7082 0.1207 0.7864±0.0474

Vector 0.8427 0.9107 0.7273 0.8500 0.8276 0.6575 0.1500 0.7812±0.0507

CTM 0.8764 0.8947 0.8627 0.8293 0.9167 0.7517 0.1707 0.7023±0.0506

signifies the classification performance of ApEn and similar classification have been carried out

for the rest of the features. A vector of entropy based features has been formed by combining

the six features.

vector = [ApEn, SampEn, ShEn,ReEn, TsEn, PeEn]. (5.14)

In table 5.3, the “vector” label in “Feature” column represents classification performance of a

feature vector consisting of six entropies (ApEn, SampEn, ShEn, ReEn, TsEn and PeEn) as

elements. From table 5.3 it can be seen that using SampEn as an input parameter, LS-SVM

gives a sensitivity of 94.44% which is highest among the other features and gives an accuracy

of 82.02%. The performance of SampEn is better with respect to ApEn (ACC: 76.40% ). The

highest accuracy of 86.52% has been obtained by using PeEn as a parameter. MCC for PeEn is

also highest among entropy based features with 0.7082 and provided a lowest FDR rate of 0.1207.

The vector of entropies (ApEn, SampEn, ShEn, ReEn, TsEn and PeEn) gives an accuracy of

84.26%, MCC of 0.6544 and FDR of 0.1355. The area computed with CTM as feature extraction

performed well with respect to other entropy based features. It gives the highest accuracy of

87.64% with highest MCC of 0.7517.

A receiver operating characteristic (ROC) curve is another effective measure of the classifier. It

is a graphical representation of false positive rate (FPR, FPR = 1-specificity) vs true positive

rate (TPR, also named sensitivity). The area under the ROC (AUC-ROC)curve provides how

adequately a classifier technique would be able to diagnose among different classes [130], [131].

The ROC plot for reconstructed VAG signals is given in figure 5.9. The area obtained from

the vector of entropies gives AUC-ROC of 0.7812 ± 0.0507 while highest AUC-ROC has been

obtained for PeEn (AUC: 0.7864 ± 0.0474). The AUC-ROC computed for CTM is 0.7023 ±
0.0506.

From table 5.3 and figure 5.9 it can be observed that PeEn gives the highest accuracy of 86.52%
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Figure 5.9: Performance of ROC of extracted features

and ROC curve (AUC: 0.7864±0.0474). While area computed from CTM gives 0.7023±0.0506.

The obtained results implied that LS-SVM as a classifier precisely categorized a larger number

of VAG signals between healthy and unhealthy classes.

5.4 Discussion

The traditional signal processing techniques fail in the analysis of the nonstationary and nonlinear

signals since methodologies a) assume that signals are linear and periodic in nature b) it is based

on Fourier. Considering these aspects, nonlinear signal processing techniques has been carried out.

This work has focused on feature extraction methodologies and classification. Simple extraction

technique based on the area computed by CTM has been also covered in the study. In this work,

VAG signals were decomposed into IMFs using CEEMDAN. Figure 5.3 (a) and (b) shows the

IMFs obtained from the VAG signal for healthy and unhealthy subject respectively. The VAG

signal was reconstructed by identifying the dominant IMFs (5,6 and 7) and the reconstructed

VAG signal can be observed in figure 5.4.

The analysis has been carried out for 89 VAG signals. Different entropy based features (ApEn,

SampEn, ShEn, ReEn, TsEn and PeEn) and CTM were computed for obtaining the characteristic
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of VAG signal. The features were extracted from reconstructed VAG signals. Table 5.1 and 5.2

gave the statistical analysis of extracted features. As observed from the table, features extracted

from unhealthy VAG signals were higher with respect to normal VAG signals. These statistical

results motivated in building an effective classification model. The extracted features were given

as input to LS-SVM.

This work compared the performance of extracted features. The classification performance

has been presented in table 5.3. PeEn gives the highest classification accuracy of 86.52% with

AUC-ROC curve of 0.7864 ± 0.0474 with respect to other entropies. But the highest classification

accuracy was obtained by the feature extracted by CTM which gives a classification accuracy of

87.64% as observed in table 5.3. The vector consisting of all entropies also provided a better

classification accuracy of 84.26% and AUC-ROC of 0.7812 ± 0.0507.

Furthermore, the computational complexity of the proposed system consists of preprocessing

technique, feature extraction technique and classification has been computed. In this work,

the preprocessing (CEEMDAN) and classification (LS-SVM) remain constant while feature

extraction techniques differ with respect to different entropies and CTM. The computational

complexity of the whole system would be summation of CEEMDAN, extracted features and

LS-SVM which is given as

Complexity of whole system = O(CEEMDAN) +O(Features) +O(LS − SVM) (5.15)

The computational complexity of CEEMDAN would be approximately equivalent to EMD/EEMD.

Wang et al. had computed the computational complexity of EMD/EEMD [178] and it is O (N

log N). Olivier stated that computational complexity of LS-SVM depends on the sample size and

no of features given as input to the classifier. The time complexity of LS-SVM computed is O

(N2) [179], [180].

Table 5.4: Complexity of the extracted features

Features ApEn SampEn ShEn

Complexity O (N2) O (N3/2) O (N log(N))

Features ReEn TsEn PeEn CTM

Complexity O (N log(N)) O (N log(N)) O (N) O (N)

Table 5.4 shows the computational complexity of extracted features. ShEn, ReEn and TsEn

entropies are computed by fast Fourier transform (FFT) which has the complexity of O (N log

(N)). Hence the complexity of ShEn, ReEn and TsEn are considered as O log(N). The complexity

of ApEn is O (N2) [181] and Yu-Hsiang et al. computed the complexity of SampEn as O(N3/2)

[182]. PeEn and CTM provided simple computation having complexity of O(N).
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PeEn and CTM provides a high classification accuracy with a low computational complexity of

O (N). Thus, a simple, robust and low computational diagnostic system with PeEn or CTM as

feature extraction technique could be designed. The complexity of the proposed system would

be the summation of the computational complexity of CEEMDAN, PeEn/CTM, and LS-SVM.

Hence, the computational complexity of the proposed system would be

O(NlogN) +O(N) +O(N2) ≈ O(N2) (5.16)

The proposed methodology has been compared with the previous studies related to nonlinear

signal processing techniques and is shown in table 5.5. From the table, it can be observed that

our proposed method with CEEMDAN and PeEn/CTM as feature extraction technique performs

better with respect to other methods. PeEn and CTM have given the highest accuracy of 86.52%

with MCC of 0.7082 and 87.64% respectively with respect to other nonlinear studies. Jein has

used HHT method for VAG signals [183] but this analysis was carried on different dataset. While

Wu et al. had used three entropies (symbolic entropy (SyEn), approximate entropy (ApEn),

fuzzy entropy (FuzzyEn)) and three distinct envelope amplitude parameters (the mean, standard

deviation, and root-mean-squared (RMS) values) of distinct signals [48] which gave an accuracy

of 83.56% with highest sensitivity of 0.9444. Proposed method also performed well with respect

to work of Nalband et al. [184] where only three entropies (Tsallis entropy, permutation entropy

and spectral entropy) were studied without removing artefacts with double cascaded moving

average filter.

Table 5.5: Comparison of the proposed methodology with the existing non-linear studies

EMD[183] EEMD[48] EEMD[184] PeEn CTM

ACC 85.30% 83.56% 86.52% 86.52% 87.64%

SEN NA 0.9440 0.9412 0.9107 0.8947

SPE NA 0.8000 0.7632 0.7878 0.8627

MCC NA 0.6599 0.6227 0.7082 0.7516

Classifier NA SVM Random Forest LS-SVM LS-SVM

Nonlinear signal processing technique followed by entropy based feature extraction and CTM

has been studied. The proposed methodology provided a better classification accuracy in

distinguishing healthy and unhealthy VAG signals. The performance of features was compared

and their computational complexity was also considered. Furthermore, the computational

complexity of the proposed system was also computed.
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5.5 Conclusion

In this work, the analysis of VAG signals has been carried out using nonlinear nonstationary

signal processing technique “CEEMDAN”. It decomposes the VAG signals into IMFs. The

VAG signals were reconstructed by identifying the significant IMFs. Entropy based features and

area computed by CTM are extracted from reconstructed VAG signals. The extracted features

provided distinct characteristics between healthy and unhealthy VAG classes and these features

were given as inputs to the classifier. LS-SVM with RBF as kernel function has been used as

classifier and the performance of extracted features has been evaluated. PeEn gives an accuracy

of 86.52% among the six entropies but the highest classification accuracy has been obtained by

CTM (ACC: 87.64%). The computed time complexity of PeEn/CTM having an order of O(N)

provided a simple, robust and low computational feature extraction technique along with good

classification accuracy. The proposed methodology which includes CEEMDAN as preprocessing

techniques, PeEn/CTM as feature extraction and LS-SVM as a classifier, provides an effective

tool for developing computer aided diagnostics system for knee joint disorders.



Chapter 6

Time-Frequency Analysis of VAG

signals

God is a frequency. Stay tuned.

Alan Cohen

In this chapter, the analysis of the VAG signal has been carried out using the time-frequency

techniques. The analysis carried on nonstationary and nonlinear signals by traditional signal

processing assumes the linearity nature of the signal. Thereby, the inference of these signal is

either interpreted in the time domain or in the frequency domain. Therefore, time frequency

analysis has been explored which provides time frequency content of the signal simultaneously.

This chapter compares the performance of smoothed pseudo Wigner–Ville distribution (SPWVD)

and Hilbert-Huang transform (HHT) for the time frequency analysis of VAG signals. Figure 6.1

shows the proposed methodology of the chapter.
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Figure 6.1: Flow chart for time frequency analysis of knee joint disorders using VAG signals

The chapter has been organized as follows: section one introduces the techniques of time frequency

techniques in the analysis of the signal. Section 2 covers a brief theoretical background of the

85
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proposed work. The results and discussion of the proposed work have been explained in section

3 and finally, section 4 concludes our proposed study.

6.1 Introduction

The essential steps in signal processing for any nonlinear, nonstationary and multicomponent

signals are analysis, detection and classification. The analysis of signal has been carried out in the

time domain and frequency domain. Most of the signals are multicomponent having time variant

properties and have different frequencies. Techniques based on these domains are quite restrictive

in making the physical inferences. Hence, time variant and frequency domain are required to

be observed simultaneously and this technique is known as “time frequency analysis”. The

algorithms which compute the time frequency analysis is called as “time-frequency techniques”.

Most popular time frequency techniques used in biomedical are short-time Fourier transform

(STFT) or Gabor transform (GT), the continuous Morlet wavelet transform (CMWT) and the

Hilbert transform (HT). Time frequency analysis has been widely used for many application of

engineering.

Time-frequency analysis has been studied for the analysis of various biomedical signals such

as ECG, EEG, EMG etc. [185]–[187]. Time-frequency has been also carried out for the

analysis of VAG signals. Krishna et al. applied time-frequency distribution by optimization of

minimum cross-entropy [63]. The time-frequency distribution was obtained by matching pursuit

decomposition algorithm. Features such as energy, energy spread, frequency, and frequency

spread were computed and compared between healthy and unhealthy VAG signals. A similar

analysis of time-frequency distribution was carried out but Keo Sik Kim et al. by segmenting

VAG signals with dynamic time warping (DTW) and singular value decomposition (SVD) for

denoising [9]. Chen et al. have used independent component analysis for VAG signals [67].

The time frequency analysis related to age specific was carried out by Baczkowicz et. al [15].

Discrete Fourier transform was applied to segmented VAG signals to obtain short time spectrum.

Therefore, this chapter continue to explore the advance time frequency analysis of VAG signals.

In the current investigation, we propose to use nonstationary linear signal processing techniques

namely as wavelet packet decomposition (WPD) [33], [34] and nonstationary nonlinear signal

processing technique such complete ensemble empirical mode decomposition with adaptive noise

(CEEMDAN) [52]. These techniques are used as preprocessing techniques for the analysis of

VAG signals.

This chapter explains and compares the performance of smoothed pseudo Wigner–Ville distribu-

tion (SPWVD) [68] and Hilbert-Huang transform (HHT)[188] for the time frequency analysis

of VAG signals. SPWVD overcomes the problem of interference of cross terms in Wigner-Ville
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distribution. This chapter proposes to apply WPD on VAG signal into subband signals of

different frequency. The dominant subband signals are identified and VAG signal is reconstructed

[189]. Hence, time-frequency representation of reconstructed VAG is obtained by using SPWVD

and is considered as the time-frequency image. Thereby the statistical features such as mean,

standard deviation, skewness and kurtosis are extracted. SPWVD has been successfully studied

for the analysis of biomedical signals [69], wind turbine fault diagnostic [70] acoustic and vibration

signals in detection of gear failures [71].

Moreover, considering the nonlinear, nonstationary and multicomponent nature of VAG signal,

a modified version of Hilbert-Huang Transform (HHT) [188] known as CEEMDAN-HHT has

been proposed. Traditional HHT consists of empirical mode decomposition (EMD) [44] and

Hilbert transform (HT). EMD decomposes the signal into a number of intrinsic mode functions

(IMF). But one of the major drawback of EMD is the mode mixing, in which a single IMF

consists of signals having different scales [46]. This thesis proposes to use CEEMDAN for

obtaining IMFs [52]. This has been presented in chapter 5, section5.2.1. The VAG signal is

reconstructed by dominant IMFs and the time frequency representation is obtained by HT. This

time-frequency representation is considered as time-frequency image and statistical features

consisting of mean, standard deviation, skewness and kurtosis are extracted from time-frequency

image. The extracted features obtained by using SPWVD and CEEMDAN-HHT are given as

input to LS-SVM as a classifier to evaluate their performance. Therefore, a comparative study

of different methodologies (nonstationary linear signal processing technique and nonstationary

nonlinear signal processing technique) have been carried out and their performance has been

compared.

6.2 Methods

6.2.1 Wavelet Packet Decomposition

The WPD algorithm disintegrates a given signal into detail coefficients and approximation to

derive at the first stage of decomposition [34]. Thus, these approximation coefficients are further

disintegrated into approximation and coefficients in successive stages. Hence the signal breaks

down like a tree. Detailed explanation has been given in the chapter 3 section 3.2.

6.2.2 SPWVD

Wigner-Ville distribution (WVD) is quadratic or nonlinear time-frequency analysis in which it

distributes the energy of the signal along the variables time and frequency [190]. Initially, it

was introduced in the domain of quantum mechanics as Wigner distribution but later it was
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used in the framework of signal analysis as Wigner-Ville distribution. Moreover, WVD has

better theoretical properties, but it has a major drawback as it produces interferences terms or

cross terms between different components of multi-component signals. It means that there are

additional components present in the signal. In order to remove this, a separable smoothing

window is introduced which is independent of time and frequency and it is called as smooth

pseudo Wigner-Ville distribution [68]. Here, the time-frequency resolution can be controlled

independently. Hence, in this work smooth pseudo Wigner-Ville distribution (SPWVD), the

improved version of WVD has been investigated for the nonstationary and nonlinear VAG

signals.

6.2.3 Hilbert Huang Transform

Detailed explanation has been presented in Chapter 5 section 5.2.2.

6.2.4 Feature Extraction

The time-frequency representation using SPWVD and HHT is considered as a time-frequency

image and features are extracted as the characteristics of the signal [191]–[193]. The pixel

intensity is used as the measure of calculated features. Each pixel corresponds to a particular

time and frequency which represents the power of the signal at any instance of frequency.

Statistical features such as mean, standard deviation, skewness and kurtosis are extracted from

time-frequency image. Hence, these statistical value gives an overview of the essential information

as attributes of the signal[191]. The statistical features of VAG signals are computed as follows:

Mean : µp =
1

N

N∑
n=1

Ip(n) (6.1)

Standarddeviation : σp =

√√√√ 1

N

N∑
n=1

(Ip(n)− µp)2 (6.2)

Skewness : Sp =

√
1
N

∑N
n=1(Ip(n)− µp)3

(σp)3
(6.3)

Kurtosis : Kp =

√
1
N

∑N
n=1(Ip(n)− µp)4

(σp)4
(6.4)

Here Ip is pixel intensity and n ∈ {1, 2, 3, 4....N} where N is the total number of pixels in the

image.
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6.3 Results

6.3.1 Preprocessing

Figure 6.2 represents a sample VAG signals of healthy and unhealthy subjects. A double cascaded

moving average filter was applied on VAG signals to remove the artefacts and baseline wander

[24]. The proposed work consisting of preprocessing, feature extraction and classification have

been carried out in MATLAB c©2015b. After filtering, the VAG signals are decomposed into

wavelet coefficients and IMFs using WPD and CEEMDAN respectively. A WPD is carried out

by decomposing the VAG signals into subband signals. Since the sampling rate of VAG is 2k,

the frequency available would be 1 Khz. Hence, VAG signals are decomposed into 10 levels of

subband signals (B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, a10 ) and each subband signals

consists of particular frequency[189]. Figure 6.3 (a) and (b) represents the subband signals

obtained from wavelet packet decomposition of healthy and unhealthy VAG signal respectively.
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Figure 6.2: VAG signal of (a) healthy and (b) unhealthy subject
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Similarly, Figure 6.4 represents the decomposed signal obtained from CEEMDAN. Figure 6.4

(a) and (b) shows the IMFs obtained using CEEMDAN. It can be observed from the figure

that different dynamics involved in VAG signals are observed in different IMFs for healthy and

unhealthy subject respectively. High frequency oscillation is observed in IMF1-IMF3 and low

frequency oscillation can be seen in IMF4-IMF10. As observed, flat envelopes can be seen in

IMF1 and IMF2 for both the cases and can be discarded for the study as it doesn’t signify any

pathological condition.
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Figure 6.4: IMFs of VAG signals obtained using CEEMDAN for (a) healthy and (b) unhealthy
subject

6.3.2 Feature Extraction

VAG signals are reconstructed from the subband signals obtained from WPD. From the figure

6.3, the subband signals B1, B2, B8, B9 and B10 were ignored and were not considered for

the study. B8, B9 and B10 represented artefacts such as baseline wander, while the subband

signals B1 and B2 indicated the presence of high-frequency components. And thus, VAG

signal was reconstructed using subband signals B3, B4, B5, B6 and B7 as show in figure 6.5(a)

and (b). Figure 6.5(c) and (d) represents the time-frequency representation using SPWVD.

Hence, attributes such as mean, standard deviation, skewness and kurtosis are computed from

time-frequency image for 89 VAG signals.

Identifying the correct IMFs for VAG signal is carried out by computing detrended fluctuation

analysis (DFA). The DFA is computed to obtain the correlation properties of IMFs. The fractal
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scaling index (α) obtained from DFA helps in identifying the correct IMFs. The α value of the

IMFs in the range between (0 < α < 0.5) and baseline wander related IMFs (IMF9-IMF10)

have been ignored as per the study concluded by Wu[45], [184]. Hence, from the computed α

value, IMF5, IMF6 and IMF7 are considered as correct IMFs of VAG signal and there α values

are 1.302, 1.622 and 1.88 respectively. Hence, the VAG signal is reconstructed from the correct

IMFs and is shown in figure 6.6 (a) and (b) for healthy and unhealthy VAG signal respectively.

Figure 6.6 (c) and (d) represents the time-frequency representation of the reconstructed VAG

signals. This representation is considered as time-frequency image and individual attributes such

as mean, standard deviation, skewness and kurtosis are computed. From figure 6.6 (a) and (b) it

can be observed that the variation of frequency is highly variant in case of unhealthy VAG signals

as compared to healthy VAG signal. Statistical features were extracted from 89 VAG signals.

As observed from figure 6.5 and 6.6, the time-frequency representation of VAG signal using

CEEMDAN provides a sharper distinguishable spectrum than time-frequency representation of

VAG signal using SPWVD. Thereby, the characteristics of the time-frequency representation

obtained from above two methods are computed by extracting statistical features. This analysis
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Figure 6.5: The reconstructed VAG signal obtained from SPWVD (a) healthy subject and
(b) unhealthy subject. Time-frequency representation of c) healthy subject and d) unhealthy

subject VAG signal
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Figure 6.6: The reconstructed VAG signal obtained from CEEMDAN (a) healthy subject and
(b) unhealthy subject. Time-frequency representation of c) healthy subject and d) unhealthy

subject VAG signal

has been carried out for 89 VAG signal and hence a comprehensive study has been carried out.

A statistical test was also performed on the extracted features. Kruskal-Wallis test was carried

out to infer the discriminability of extracted features among the healthy and unhealthy class of

distribution. Table 6.1 refer the mean, standard deviation and p-value computed for extracted

features from SPWVD and CEEMDAN-HHT. From the table 6.1, it can be seen that there

is a clear distinction between the healthy and unhealthy group of VAG signals. Figure 6.7

provides the box plots for extracted features for SPWVD and CEEMDAN-HHT. In both cases

of SPWVD and CEEMDAN-HHT, it can be observed that there is a significant variation among

the healthy and unhealthy group. The statistical features of unhealthy VAG signals provided

larger variation with respect to healthy VAG signals. Hence, the statistical analysis provided a

significant difference between the groups and these extracted features are given as input to the

classifier in building an effective classification model.
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Table 6.1: Statistical measures of extracted features using SPWVD and CEEMDAN-HHT

class Normal Abnormal

Features Mean ± Std Mean ± Std p-value

SPWVD

Mean 0.3461 ± 0.0662 0.3330 ± 0.0766 0.3237

Standard 1.6886 ± 0.3238 1.6224 ± 0.3766 0.3136

skewness 6.7910 ± 0.0900 6.8137 ± 0.1127 0.2663

Kurtosis 52.7752 ± 2.1699 53.4333 ± 2.6143 0.2050

CEEMDAN-HHT

Mean 0.3587 ± 0.0769 0.3373 ± 0.0670 0.1167

STD 1.7578 ± 0.3705 1.6550 ± 0.3224 0.1293

skewness 7.0215 ± 0.3311 7.1490 ± 0.3979 0.0629

Kurtosis 58.7469 ± 8.8681 62.2163 ± 10.6879 0.0559
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Figure 6.7: Box plots for features extracted from SPWVD and CEEMDAN-HHT

6.3.3 Classification

The extracted features from SPWVD and CEEMDAN-HHT are given as inputs to LS-SVM.

Various kernel such as linear, polynomial, quadratic and radial basis function (RBF) are

available as kernel functions. In our study, RBF as kernel function has been been used since

it provides optimal results. The kernel parameters were evaluated based on trial and error

approach. Regularization constant was selected appropriately for avoiding over-fitting and 10

cross validation was performed. The performance of the proposed system was evaluated based

on parameters such as sensitivity (SEN), specificity(SPE), accuracy(ACC), Matthews correlation
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Table 6.2: Classification of features extracted using SPWVD by LS-SVM

Vector Mean Std Skewness Kurtosis

ACC 0.7753 0.7865 0.6667 0.7416 0.6180

SEN 0.9091 0.8800 0.8000 0.7586 0.6429

SPE 0.7313 0.7500 0.6389 0.7333 0.6133

PPV 0.5263 0.5789 0.3158 0.5789 0.2368

NPV 0.9608 0.9412 0.9388 0.8627 0.9020

MCC 0.5585 0.5724 0.3343 0.4661 0.1886

FDR 0.4737 0.4211 0.6842 0.4211 0.7632

AUC-ROC 0.7699 ± 0.0573 0.8945 ± 0.0622 0.7281 ± 0.0593 0.7384 ± 0.0620 0.6744 ± 0.0594

Table 6.3: Classification of features extracted using CEEMDAN-HHT by LS-SVM

Vector Mean Std Skewness Kurtosis

ACC 0.8202 0.8876 0.8764 0.7978 0.7865

SEN 0.8750 0.8333 0.9655 0.7500 0.7209

SPE 0.7895 0.9362 0.8333 0.8367 0.8478

PPV 0.7000 0.9211 0.7368 0.7895 0.8158

NPV 0.9184 0.8627 0.9804 0.8039 0.7647

MCC 0.6410 0.7766 0.7569 0.5901 0.5746

FDR 0.3000 0.0789 0.2632 0.2105 0.1842

AUC-ROC 0.8994 ± 0.0579 0.9383 ± 0.0615 0.9494 ± 0.0617 0.8127 ± 0.0617 0.8519 ± 0.0568

coefficient (MCC), false discovery detection rate (FDR), negative predictive value (NPV) and

positive predictive value (PPV).

Table 6.2 and 6.3 provides the classification performance of LS-SVM using features extracted

from time-frequency image of SPWVD and CEEMDAN-HHT respectively. The classification

performance has been evaluated with features given as individual input and as a vector of all

features (mean, standard deviation, skewness and kurtosis) to LS-SVM. The performance of

features of CEEMDAN-HHT given as a vector provides an accuracy of 82.02% with a sensitivity

of 87.50% and specificity of 78.95%. MCC is 0.6410 with low FDR of 0.3000 for a vector of

features as observed in table 6.3. But the highest classification accuracy has been obtained for

the feature “mean” which gives an accuracy of 88.76% with a highest MCC value of 0.7766

and low FDR of 0.0789 using CEEMDAN-HHT (table 6.3). The highest accuracy obtained

using SPWVD gives 77.53% for a vector of all features. Which is comparably less than features

extracted from CEEMDAN-HHT ( ACC = 82.02% for a vector of features). As observed from

the table 6.2 and 6.3, CEEMDAN-HHT provided better classification performance with respect

to SPWVD. The other parameters of classification also inferred that the features extracted from

CEEMDAN-HHT provided better pattern classification than SPWVD.
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Figure 6.8: ROC plot for statistical features obtained from time frequency distribution

Graphical representation of classifier was evaluated using receiver operating characteristic (ROC).

The area under the curve (AUC) provides the effectiveness of the classifier. The AUC-ROC plot

for individual features and vector of features extracted from SPWVD and CEEMDAN-HHT are

shown in figure 6.8 (a) and (b) respectively. The highest (AUC-ROC = 0.8519) was obtained

for a vector of features extracted from CEEMDAN-HHT. These parameters implied that using

LS-SVM classifier technique, a larger number of VAG signals were precisely categorized into

healthy and unhealthy classes for features extracted from CEEMDAN-HHT.

6.4 Discussion

This study demonstrated the comparative analysis of time-frequency distribution of VAG signals.

The time-frequency representation has been computed by SPWVD and CEEMDAN-HHT which

provides the energy distribution of VAG signals as observed in figure 6.5 and 6.6. Hence, it

can be inferred that the unhealthy VAG signal provide a larger variation as compared to VAG

signal of the healthy subjects. The cause of this large variation might be due to wear and tear

of the muscle tissues associated with the knee joint. As a result, this did not allow the free

leg movements in performing extension and flexion. While comparing figure 6.5 and 6.6, it can

be observed that the time frequency image of HHT is sharper than time frequency image of

SPWVD. It also provides a better variety especially in the case of the unhealthy VAG signals.

These variations were evident through features extracted from time frequency images of SPWVD

and CEEMDAN-HHT. These variations were quite evident in Table 6.1 which provided the

statistical analysis of extracted features. The graphical display of extracted feature using boxplot

has been provided by figure 6.7, indicates a large variation between the healthy and unhealthy

group. And finally, the features has been given as input to build a classification model using
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LS-SVM. The performance of SPVWD and CEEMDAN-HHT has been compared in table 6.2

and 6.3. Results indicated that CEEMDAN-HHT provided a much better pattern classification.

Table 6.4: Comparison of the proposed methodology with the existing TFD

Methodology MP [62] MP [63] MLD [65] EMD-HHT [67] CEEMDAN

ACC 77.8 68.9 79.8 85.3 88.76

SEN NA NA NA NA 0.8334

SPE NA NA NA NA 0.9362

MCC NA NA NA NA 0.7766

Classifier DA LR LDA NA LS-SVM

No of samples 37 90 89 35 89

Table 6.4 represents comparison of the proposed work with the existing work reported in the

time frequency analysis of VAG signals. Initial study carried out by Krishnan et al. consisted

of 37 samples of VAG signals [62]. The time frequency distribution was obtained by matching

pursuit method (MP) method and it gave a classification accuracy of 77.8%. Krishnan et al.

continued his work by constructing adaptive time frequency distribution by minimizing the

cross optimization of time frequency distribution computed by the MP method [63]. The work

consisted of 90 samples of VAG signals which gave a classification accuracy of 68.9% using

logistic regression. Umapathy et al. further carried out the time frequency analysis by computing

TFD using modified local discriminant (MLD) [65]. It gave a classification accuracy of 79.8%

using linear discriminant analysis. Chen et al. carried out the analysis using traditional HHT

(using EMD for computing IMFs) which gave a classification accuracy of 85.3% [67]. Chen

used different dataset which consisted of 35 (12 healthy subjects and 23 unhealthy subjects)

samples of VAG signal. Different data acquisition system had been applied for acquiring VAG

signals (different accelerometers sensor, DAQ board, sampling frequency). The dataset consisted

of few samples of VAG signals and therefore, comparing the results of different dataset would

not be ideal. We have compared the performance of nonlinear techniques (EMD-HHT) used

by Chen et al. on the analysis of VAG signals. From table 6.4 it can be observed that, the

proposed method of CEEMDAN-HHT performed better with respect to other methodologies.

The proposed methodology (CEEMDAN-HHT) gives the highest classification accuracy of 88.76%

using LS-SVM.

6.5 Conclusion

This study proposed a computer aided diagnostic system using time-frequency analysis of

VAG signals. Time-frequency based techniques namely SPWVD and CEEMDAN-HHT were

studied and their performances were evaluated. The time-frequency representation has been
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considered as time-frequency image and statistical features based on image pixies were extracted.

Results concluded that time frequency technique using CEEMDAN-HHT provided a prominent

distinction between the healthy and unhealthy group. Furthermore, the pattern classification

results also concluded that CEEMDAN-HHT performed better with respect to SPWVD giving

highest accuracy of 88.76% and MCC of 0.7766 with low FDR of 0.0789. The proposed work

provided a better methodology in analysing nonlinear, nonstationary and multicomponent VAG

signals using time-frequency techniques. Hence, a computer aided diagnostic system could be

developed with the proposed methodology for non-invasive diagnosis of knee joint disorders.



Chapter 7

Conclusion and Future Scope

I am turned into a sort of machine for

observing facts and grinding out

conclusions.

Charles Darwin

7.1 Outcome Of The Thesis

The knee-joint is one of the most complex, the strongest and most important joints in the

human body. Knee joints can tolerate a moderate amount of stress without significant damage

due to daily work routine activities. But they are unable to resist the rotational forces that

are commonly related to sports activities. These activities are quite susceptible to knee joint

disorders. Therefore, early diagnosis of knee-joint diseases provides researchers an opportunity

for investigation. Procedures based on noninvasive and invasive techniques are available for the

diagnosis of knee-joint diseases. Arthroscopy, a semi-invasive based procedure does provide an

aide. But arthroscopy does carry a considerable amount of risk, such as bleeding into the knee-

joint, damage to the tissues/muscles or infection in the knee-joint. Noninvasive based medical

imaging approaches such as fMRI, MRI, Computer Tomography, X-Rays do provide the early

detection of knee-joint disease, however they are expensive and are usually not recommended for

a regular checkup [3]. In addition, their ineffectiveness in displaying the dynamic aspects of an

injured knee-joint disease is one of the major drawbacks of these procedures [5]. Considering

these constraints, an alternative solution which is noninvasive, and low cost is required for early

diagnosis of knee-joint disorders.

During active movements such as flexion and extension, the auditory sounds or the vibration

emitted from the mid patella is called as vibroarthrographic signal (VAG) [45]. These signals

98
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[154] D Abásolo, J Escudero, R Hornero, C Gómez, and P Espino, “Approximate entropy and

auto mutual information analysis of the electroencephalogram in Alzheimer’s disease

patients,” Medical & Biological Engineering & Computing, vol. 46, no. 10, pp. 1019–

1028, 2008, issn: 1741-0444. doi: 10.1007/s11517-008-0392-1. [Online]. Available:

http://dx.doi.org/10.1007/s11517-008-0392-1.

[155] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal, vol. 27, no. July 1928, pp. 379–423, 1948, issn: 07246811. doi: 10.1145/584091.

584093. arXiv: 9411012 [chao-dyn].
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Chapter 7

Conclusion and Future Scope

I am turned into a sort of machine for

observing facts and grinding out

conclusions.

Charles Darwin

7.1 Outcome Of The Thesis

The knee-joint is one of the most complex, the strongest and most important joints in the

human body. Knee joints can tolerate a moderate amount of stress without significant damage

due to daily work routine activities. But they are unable to resist the rotational forces that

are commonly related to sports activities. These activities are quite susceptible to knee joint

disorders. Therefore, early diagnosis of knee-joint diseases provides researchers an opportunity

for investigation. Procedures based on noninvasive and invasive techniques are available for the

diagnosis of knee-joint diseases. Arthroscopy, a semi-invasive based procedure does provide an

aide. But arthroscopy does carry a considerable amount of risk, such as bleeding into the knee-

joint, damage to the tissues/muscles or infection in the knee-joint. Noninvasive based medical

imaging approaches such as fMRI, MRI, Computer Tomography, X-Rays do provide the early

detection of knee-joint disease, however they are expensive and are usually not recommended for

a regular checkup [3]. In addition, their ineffectiveness in displaying the dynamic aspects of an

injured knee-joint disease is one of the major drawbacks of these procedures [5]. Considering

these constraints, an alternative solution which is noninvasive, and low cost is required for early

diagnosis of knee-joint disorders.

During active movements such as flexion and extension, the auditory sounds or the vibration

emitted from the mid patella is called as vibroarthrographic signal (VAG) [45]. These signals
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contain information that could be used to characterize certain pathological aspects of the knee

joint diseases. The VAG signals are nonstationary, nonlinear and multicomponent in nature.

Therefore, the analysis of VAG signal using signal processing is an important aspect in the

diagnosis of knee joint disorders. Various researchers has used different methodologies in the

analysis of VAG signals. The study has been limited in classifying the healthy and unhealthy

VAG signals.

Table 7.1: Summary of thesis methodologies

Methodology 1 Methodology 2 Methodology 3 Methodology 4

Chapter 3 4 5 6

Preprocessing WPD WPD CEEMDAN
WPD-SPWVD &

CEEMDAN-HHT

Feature

extraction

Entropies

+ RQA

Entropies

+ RQA
Entropies

Statistical

Features

Feature

Selection
-

GA &

ApA
- -

Classifier LS-SVM

The main objectives of this research is to develop a framework methodology for a computer-

aided diagnostic system for early diagnosis of knee joint disorders. VAG signals are nonlinear,

nonstationary and multicomponent in nature. Considering these characteristics, methodologies

based on nonstationary signal processing techniques, followed by feature extraction techniques

and pattern classification have been carried out. This study has been limited in classifying the

healthy and unhealthy VAG signals. The summary of proposed methodology has been shown in

table 7.1 and they are briefly explained as follows:

1. In the first approach, a linear signal processing such as wavelet packet decomposition

(WPD) has been considered for the analysis of VAG signals. Six entropy based features and

four recurrence quantification analysis (RQA) parameters were considered in this study. A

pattern classification was carried out using LS-SVM. In order to remove the irrelevant and

insignificant features, feature selection algorithm has been carried out. Genetic algorithm

and the apriori algorithm has been considered for this study.

2. In the second approach, nonlinear signal processing technique based on EMD known as

CEEMDAN has been studied. CEEMDAN as preprocessing technique has been utilised as

a mandatory procedure for further analysis of VAG. Similarly, six entropy based features

have been considered for this study. A simple feature extraction technique based on CTM

has been considered in this work.
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Table 7.2: Summary of results from the proposed work in thesis

Features No of features ACC SEN MCC AUC-ROC Chapter

Entr + RQA (SB+ReCon) 60 69.66% 0.5888 0.4337 0.7822 ± 0.0471

3Entr + RQA (SB) 50 80.90% 0.9216 0.8621 0.8606 ± 0.0397

Entr + RQA (ReCon) 10 84.27% 0.9020 0.8529 0.8560 ± 0.0427

FS by GA 8 82.02% 0.7254 0.6707 0.8754 ± 0.0347
4

FS by ApA 5 85.39% 0.9272 0.6868 0.9252±0.0261

Entropies (vector) 6 84.27% 0.9107 0.6575 0.7812 ± 0.0507

5PeEn 1 86.52% 0.9107 0.7082 0.7864 ± 0.0474

CTM 1 87.64% 0.8947 0.7517 0.7023 ± 0.0506

SPWVD

CEEMDAN-HHT

Mean(CEEMDAN-HHT)

4 77.53% 0.9091 0.5585 0.7699 ± 0.0573

64 82.02% 0.8750 0.6410 0.8994 ± 0.0579

1 88.76% 0.8333 0.7766 0.9383 ± 0.0615

3. Time frequency analysis of VAG signal has been considered in this thesis work. SPWVD

and CEEMDAN-HHT has been considered for the TFD. Statistical features were extracted

from TFD as characteristics of the VAG signals.

7.2 Contribution Of The Thesis

This study provides different framework methodologies for the analysis of VAG signal. Table 7.2

provided the overall contribution of the thesis. The contribution of the thesis can be summarized

as follows.

1. The analysis of VAG signals has been carried out using nonstationary linear signal processing

technique such as WPD. The VAG signals have been decomposed into subband signal.

Entropy based features and recurrence quantification analysis(RQA) based features have

been extracted from the subband signals and reconstructed VAG signals. To classify

and evaluate the performance of the proposed methodology, LS-SVM has been used for

distinguishing healthy and unhealthy VAG signals. This analysis has been carried out using

feature extracted from subband signals and from reconstructed signal. From table 7.2 it can

be observed that a vector of 60 features extracted from subband signals and reconstructed

VAG signals gives an accuracy of 69.66%. A vector of 50 features extracted from subband

signal gives an accuracy of 80.90% while features (no of features: 10) extracted from

reconstructed VAG signal gives a better classification accuracy of 84.27% with AUC-ROC

of 0.8560 ± 0.0427.
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2. Feature selection algorithm has been used to select the most relevant and significant features

from 60 features extracted from subband signals and reconstructed VAG signals. GA and

ApA algorithm has been used as feature selection algorithm. Results from the feature

selection algorithm inferred that entropy based features provided more discrimination

between healthy and unhealthy VAG signals, since most of the features selected by feature

selection algorithms were entropy based features rather than RQA parameters. The feature

vector (no of features: 8) selected from GA gives a classification accuracy of 82.02% while

the highest classification accuracy of 85.39% and AUC-ROC of 0.9252±0.0261 was obtained

from feature vector (no of features: 5) selected by apriori algorithm as observed from table

7.2.

3. The analysis of VAG signals has been carried out using nonstationary nonlinear signal

processing techniques. In this work, technique based on EMD, namely, CEEMDAN has

been used as a prepossessing step. The VAG signals has been reconstructed by identifying

the significant IMFs and feature extraction has been carried out from the reconstructed

VAG signals. In this study entropy based features has been studied since it was concluded

that entropy based features performed better with respect to RQA parameters in the

previous chapter. The feature vector of entropy based feature gives an accuracy of 84.27%.

A simple feature extraction technique based on CTM gives the highest classification

accuracy of 87.64%.

4. The analysis of VAG signals has been studied using time-frequency distribution. Time-

frequency based techniques such as SPWVD and CEEMDAN-HHT has been studied

and their performances has been evaluated. The time-frequency representation has been

considered as time-frequency image and statistical features based on image pixies has

been extracted. Results concluded that time frequency technique using CEEMDAN-HHT

provided a prominent distinction between the healthy and unhealthy group. Furthermore,

the pattern classification results also concluded that CEEMDAN-HHT with feature as

“mean” performed better with respect to other features by giving the highest accuracy of

88.76% and AUC-ROC of 0.9383 ± 0.0615.

Furthermore, from table 7.2 it can be also concluded that in this thesis the time frequency analysis

using CEEMDAN-HHT performed better with respect to other methodologies. Moreover, the

proposed work using CEEMDAN-HHT provided a better methodology in analysing nonlinear,

nonstationary and multicomponent VAG signals using CEEMDAN-HHT. Hence, a computer

aided diagnostic system could be developed with proposed methodology for noninvasive diagnosis

of knee joint disorders.
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7.3 Future Scope

The noninvasive detection of knee joint disorders by VAG signals could provide a low cost

diagnostic system. In the current investigation, different methodologies related to preprocessing,

feature extraction and selection have been proposed. This was followed by a pattern classification

using machine leaning technique. This work may be extended in the following direction

1. The data set consists of 89 samples which is comparatively small. The proposed work

could be carried out with a larger data set. Different researchers working in this area can

develop a common data acquisition system. The acquired data from different researchers

could be shared in cloud based environment so that larger database of knee joint disorder

can be developed.

2. Deep learning based convolution neural network (CNN) can be used for the analysis of

larger database. Recently, CNN has evolved as the most important research area, this

requires a large training set.

3. Data acquisition could be carried out by placing multiple sensors across the knee joint.

The signals obtained from the sensors could help in diagnosing the degree of knee joint

disorders. Various disease related to knee joint could be identified. With this type of data

acquisition the grades of knee joint disorders can be identified and this can help in the

diagnosis, especially in the rehabilitation program.

4. Nonlinear signal processing techniques proposed in this thesis can be used for developing a

prototype knee joint diagnostics system. This instrument could be available in a physician’s

clinic and can provide diagnostic information about the knee joint disorders. This device

can provide a cost effective tool in healthcare industry.
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