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Preface

The electrical transfer of energy over.long distances for domestic and
industrial uses is one of the major problems-in the field of electrical engineer-
ing.

The dream of the radio dilettante of adapting radio techniques to wire-
less transmission of power will remain a dream for a long time to come.
The conversion of energy from high voltage alternating current to corre-
spondingly high voltage and direct current by means of electronic rectifiers
and the consequent elimination of the reactive effects of line inductance and
capacitance in the transmission of power is still in the experimental stage.
In the experimental stage is also the most recent and possibly the most
sanguine method of power transmission by means of wave guides.

The three-phase system of power transmission now universally used has
reached its present high and efficient development in a continuous growth
over a period of aver half a century. The country is virtually covered with
three-phase tragémission networks operating at voltages ranging from 2.3
kilovolts to 308 kilovolts and transferring large amounts of electrical en-
ergy at rates ranging from a few kilowatts to hundreds of thousands of kilo-
watts over distances of a few miles to nearly 300 miles.

The large capital invested in present systems of transmission and the ac-
cumulated experienge of half a century of operation of such systems preclude
the possibility of discarding such systems for rpany years to come, even
though wave guides or electronic high-voltage rectification prove feasible.

When the length of a transmission line, operated at the commercial fre-
quency of 60 cps, does not exceed about 25 miles, an approximation involv-
ing the neglect of line capacitance and leakage conductance gives sufficiently
accurate results whether used in the design of the line or in the predeter-

mination of its performance.
N 4



vi . PREFACE

The nominal series circuit thus obtained by the neglect of the linear
admittance is wholly inadequate in the solution of problems pertaining to
lines exceeding this length. It is found, however, that for power lines of
lengths roughly between 25 and 100 miles operated at 60 cps, substantially
accurate results are obtained by neglecting the fact that the dissipative and
reactive properties of the line are uniformly distributed. Problems pertain-
ing to lines of such length are usually solved by the use of either symmetrical
T or symmetrical 7 circuits.

In the nominal symmetrical T circuit the entire linear admittance of the
line is assumed lumped half way between the line termini. In the nominal
symmetrical  circuit, half of the linear admittance of the line is assumed
concentrated at each of the termini, and the whole linear impedance is thus
lumped between the two. Such nominally equivalent circuits are used very
extensively in the predetermination of the performance of medium long lines.

The various problems pertaining to power transmission become appar-
ently more complicated when the line is of such a length that the effect of the
linear distribution of its dissipative and reactive properties cannot be neg-
lected. The rigorous method involving hyperbolic functions of the complex
variable becomes essential either in the direct solution of transmission line
problems, or through a prior conversion into truly equivalent T or = circuits.

With longer lines there came, of course, the need of higher transmission
voltages and the demand for economic transfer of larger volumes of energy
at correspondingly higher rates. Such transmission schemes include, in addi-
tion to the line proper, the terminal transformers needed for the conversion
of voltages from those at which the energy is generated to those demanded
by the length of the line, and then again to those required by the distribu-
tion system at the receiving end.

The maintenance of a definite voltage at the generating end of lines by
means of automatic regulating devices, and at the receiving end or other
points through the control of the reactive power by means of synchronous
phase modifiers, is a problem to which justifiable attention must be given.

Dependability of service is, of course, paramount in the operation of
power supply systems. Interruptions are minimized in number and in sever-
ity of effect by systematic studies of faults which might occur at important
points in the system. A knowledge of the magnitude of the short-circuit
currents due to such faults is quite essential to the successful operation of
transmission systems.

The same may be said also with regard to the steady-sta.te power limits
and in general of stability characteristics of the system. Unstable situations
may occur during sudden changes of load, during switching operations or
faults of one kind or another.
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All these problems are treated more or less in detail and in the sequence
indicated in the Table of Contents to give the student and the practicing
engineer a wholesome knowledge of the physical phenomena involved and
of the mathematical processes needed in their solution.

Because of the limitation of its scope, description of generating equip-
ment and of voltage control, of schemes of mechanical suspension of lines,
of insulation structures, switching apparatus, current-limiting reactors, relay
installations, lightning protection, etc., have been omitted. The emphasis is
only on what is hoped to be a sound presentation and rational treatment of
the electrical problem of transmission.

In the preparation of the material, the author has drawn valuable infor-
mation pertinent to the various subjects discussed from technical papers,
books and other publications by authorities and specialists in one or another
phase of this important branch of the profession. Specific cases are given
credit by being listed at the place where the material is presented. The lists
of references given at the end of the various chapters should prove of great
value to the reader who desires additional information on special phases
of the subject.

The author wishes to call the readers’ attention to the fact that all vector
or vector-like quantities such as voltage, current, impedance, admittance
and propagation constant, are expressed in this book by single symbols in
boldface type to distinguish them from the magnitude of such quantities
expressed by the same symbol, but in italics.

The work is the outgrowth of many years of teaching transmission
courses at the University of Missouri. Various suggestions pertaining to the
treatment of power limits, faults, and instability studies have come to the
author from his associates, Professors C. M. Wallis and D. L. Waidelich, who
at one time or another have attended his lectures as hearers.

The author wishes to express his gratitude to his many students, and
especially to Messrs. Charles Wilhite and Bert Gastineau for checking the
illustrative problems. He is particularly indebted to his former student,
Stanley Stokes, now Chief Engineer of the Union Electric Company of
Missouri, for the data used in the Stability problem in Chapter 10.

M. P. Weinbach
COLUMBIA, MISSOURI

Deep gratitude and appreciation are extended to Mr. Durward Brandt
for his care in checking the illustrative figures and his valuable aid in read-
ing the proofs.
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Chapter 1 Circuit Properties
of Transmission Lines

1.1. General Classification of Lines. A transmission line is that part of

an electrical power system whose
function is the transfer of electrical energy from the station where it is gen-
erated to a substation wherefrom it is distributed. A transmission line may
serve also to transfer energy between two substations of the same system,
or between two independent neighboring systems.

A line is said to be direct or alternating when the current transmitted is,
respectively, uni-directional or alternating in character.

In its simplest form, a line consists of two solid or stranded metal con-
ductors of a definite cross-sectional area, having a definite interaxial spac-
ing. These conductors are properly suspended at a definite height above
the ground and insulated from each other.

When such a line is supplied at the sending end from a single-phase alter-
nator or from one phase of a three-phase alternator, the line is said to be
a single-phase line. Three-phase lines consisting of either three or four con-
ductors supplied from a three-phase source of energy are used most generally
because of economy of copper, greater efficiency of transmission, and greater
flexibility in the distribution and utilization of the energy for industrial
purposes. )

Transmission lines are classified also as overkead and underground. Under-
ground transmission, usually required in large cities, is more expensive than
overhead transmission. Such lines are necessarily short, seldom exceeding
10 to 15 miles in length. The operating voltages for underground lines are
usually from 12 to 66 kv although voltages of 132 kv have been success-

fully used in New York City and Chicago.
1



2 CH. 1 CIRCUIT PROPERTIES OF TRANSMISSION LINES

1.2. Thke Line as a Circuit. Each conducting wire of a trans-

mission line has a definite resistance
which, because of the uniform cross-sectional area of the wire, is uniformly
distributed and is therefore fixed in value per unit length. It is through this
uniformly distributed resistance of the line conductors that a small portion
of the transferred energy is converted into and dissipated as heat in the
line itself.

Each conducting wire of a transmission line has also a definite self-
inductance. Because of the uniform size of the conductor, of the uniform
interaxial spacing between conductors, and of the magnetic homogeneity
of the medium between the conductors, this inductance is uniformly dis-
tributed and fixed in value per unit length. It is through the agency of this
inductance that a magnetic field is established within and about the line
conductors by the currents flowing in them. By virtue of this magnetic
field the space about the line becomes the seat of magnetic energy which
varies in quantity at each point along its length in accordance with the
variations of the conductor current at that point.

The voltage drop along a line conductor is a linear function of both the
resistance, R, and of the inductive reactance, Lw, of the conductor. The
resistance and the inductance of each elemental length of line conductor
are thought of, therefore, as though they were in series connection.

The two conducting wires of a line, in their relation to each other, may
be thought of also as forming a two-element condenser. Because of the uni-
form size of the conducting wires, of the uniform interaxial spacing distance,
and by assuming dielectric homogeneity of the separating medium, the
capacitance between the wires is usually assumed also as distributed uni-
formly and is thus fixed in value per unit length. The capacitance between
the two line conductors may be thought of as being the joint capacitance
of two equal condensers in series connection, one on each side of the zero or
ground potential plane to conductor. When so considered the capacitance of
each conductor to ground potential is twice the capacitance between the two.
It is through the agency of this uniformly distributed capacitance that an
electric field is established about the line conductors by the difference of
potential between them. By virtue of this electric field, the space surround-
ing the conductors becomes the seat of electric energy which varies in
quantity at each point along the line in accordance with the variation of
the difference of potential between the conductors at that point.

Although the line conductors are separated by a medium of high insu-
lating quality, there may be, particularly at very high transmission voltages,
some current leakage or even a loss of energy due to radiation. Assuming
resistive homogeneity of the medium along the entire line length and because
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of the uniform size of the conductors and of the separating distance between
them, the leakage conductance is thought of also as distributed uniformly
and fixed in value per unit length. Line conductance is usually neglected
in the calculation of the performance of lines operated at voltages up to
about 150 kv.

Since the uniformly-distributed high insulation resistance across the
line conductors may be considered as consisting of two equal resistances
joined in series at the plane of zero (ground) potential, it follows that the
leakage conductance per conductor is twice that between the two conduc-
tors. Furthermore, since the leakage current between the conductors is a
linear function of the leakage conductance, G, and of the capacitive suscept-
ance, Cw, it follows that they must be thought of as being in parallel con-
nection for each elemental length of line conductor.

From what has been said above it follows that, as an electric circuit, a
simple two-wire line may be represented diagrammatically as shown in
Fig. 1-1.

Zero Potential
Plane

le——Line Element—
Figure 1-1

1.3. Conductor Materials. The most widely used metals for

solid or stranded line conductors
are copper and aluminum. With the exception of silver, copper has the
highest conductivity and its wide use as a conductor material makes it the
standard of comparison.

To conform to the specifications of the American Society of Testing
Materials, electrically refined copper must have a purity of not less than
99.9 per cent copper including silver. Its electrical conductivity must be
not less than 99.3 per cent of the International Annealed Copper Standard
(IACS) adopted by the International Electrotechnical Commission (IEC)
in 1913.

On the basis of 100 per cent conductivity, a copper wire one meter
long and one square millimeter in cross-sectional area has a resistance of
17.241 X 10~ ohms at 20° C. This is equivalent to 10.371 ohms per circular
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mil-foot and 54758.88 ohms per circular mil per mile.* The temperature
coefficient of electrolytic copper adopted by the IEC is 0.00393 per degree
centigrade at 20° C.

The density of electrolytic copper at 20° C. is 8.89 grams per centimeter
cube. This is equivalent to 302.699 X 10-2 pounds per circular mil-foot and
to 15983 X 10~% pounds per circular mil per mile at 20° C. The melting point
of electrolytic copper is 1083° C. Its coefficient of expansion is 0.000017 per
degree centigrade. Its tensile strength is fairly high, about 34,000 pounds
per square inch, with an elongation of 40 per cent before rupture.

The conductivity of aluminum is about 60 per cent that of copper. For
equal conductance and equal length, an aluminum wire has a cross-sectional
area 63 per cent larger than a copper wire. It weighs about half as much
as the copper wire, but its diameter is 28 per cent larger. The aluminum
wire has, therefore, a much larger surface area exposed to wind pressure
and to snow and sleet. Since the tensile strength of aluminum wire is only
about 73 per cent that of a copper wire of equal length and conductance,
the sag is greater for the aluminum conductor. This necessitates higher sup-
porting towers or poles for the same length of span or shorter spans, and
thus more poles or towers.

The resistivity of aluminum is 17.084 ohms per circular mil-foot and is
equivalent to 89003.35 ohms per circular-mil per mile.

Its density is 91.83 X 10~ pounds per circular mil-foot and is equiva-
lent to 0.48487 X 102 pounds per circular-mil per mile.

The disadvantages of lower tensile strength and greater cross-sectional
area of aluminum conductors are offset to some extent by the use of stranded
aluminum cable reinforced with steel. The central strand in a one-layer
cable is of steel. If the cable consists of more than one layer, the central
strand and first central layer are of steel. This type of cable conductor has
found considerable favor in the construction of long lines, and is known
under the trade name of A.C.S.R. (Aluminum Cable, Steel Reinforced).

1.4. Linear Line Impedance. The resistive property of a circuit

is active as long as there is a cur-
rent flowing in the circuit. The evidence of its activity is the conversion of
electrical energy into heat and its dissipation as such. The inductive prop-
erty of a circuit, on the other hand, comes into play only when the current
in the circuit changes in value. Thus in the case of a direct-current circuit,
the inductance comes into action during the short period in which the
current, and its associated magnetic field, starting from zero, reach their
respective maxima. The physical evidence of this inductive action is the
* General Cable Corporation, Catalog 37. .
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field itself, the stored energy therein (3 LI?) and the generation of a reactive
emf (d¢/dt), which retards the growth of both current and the field.

When the circuit carries an alternating current, its inductance is in con-
tinuous action. The physical evidence thereof is the alternating magnetic
field itself, the cyclic storage and restoration of energy, and the generation
of a reactive emf which limits the magnitude of the current. The value of
the supplied voltage which balances this reactive emf is LwI volts leading
the current by 90°. If ¢ is the magnetic flux in webers, and N the number
of current paths linking this flux, the voltage may be expressed also by Nuxp.
From what has just been said it follows that

LI = N,

i.e., the inductance L in henries is numerically equal to the interlinkage per
ampere. In the particular case of a line conductor there is only one current
path that links the flux. The above formula becomes, accordingly,

L= ?henry. (14.1)

To obtain the inductance of a line conductor it is essential, therefore,
to determine the current in the conductor and the flux linking it. The flux
which links a line conductor may be thought of as consisting of two parts.
One, ¢, is due only to the current in the conductor and is confined
wholly within the conductor. This part of the whole flux does not link with
the entire current. The second part, ¢,, is produced jointly by the current
in the conductor itself and by the currents in all neighboring conductors.
It resides wholly outside the conductor and links the entire current. Accord-
ingly the inductance L of a conductor may also be thought of as consisting
of two parts. One is due to the flux-current linkage within the conductor
itself and the other is due to the flux-current linkage outside the conductor.
If L; and L, denote these two inductances, respectively, per meter length
of conductor, then

L = L; + L, henries per meter. (1.4.2)
Designating by R. the resistance per meter length of conductor to the
flow of an alternating current of angular phase velocity w, then
Z = R, + j(L; + Lo)w vector ohms/meter (1.4.3)
is the linear impedance per meter length of conductor.

1.5. Determination of R, and L;; Skin If the current in the conductor
Effect. were unidirectional and constant,

it would distribute itself uniformly

over the sectional area of the conductor. Such a distribution satisfies the
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requirement that the energy loss, and hence the resistance, be a minimum.*
Because of the reactive emf, caused by the flux linkages within the con-
ductor when the current is sinusoidal in character, the distribution of the
current is not uniform over the sectional area.

Figure 1-2

Referring to Fig. 1-2, let I';; be the density of the rms value of the
current at some point x meters distant from the center of the conductor.
As a function of the distance x from the axis, the current density may be
represented to any required degree of accuracy by an infinite series such as

I'u=a+ax+bx>+ ae® + - -+

The current density 7',4 at some point x# meters measured in the opposite
direction is accordingly

I''i=a—ax+ b —agx® + -+ -

But, since the current density is the same at all points equally distant from
the center, it follows that the above two expressions are equal. The current
density, at all points x distant from the center, is therefore

Iu=a+ b2+ cx*+ -+ (1.5.1)

where the coefficients a, b, ¢, etc., are independent of x.

Let Ax be the infinitesimal thickness of a cylindrical shell at x, concen-
tric with the axis of the conductor as shown in Fig. 1-2. Since the annular
cross-sectional area 2mrx Ax of this cylindrical shell is infinitesimally small,
the current density I.; over it may be taken as substantially uniform. The
total current distributed over this small area is 2wl.4 Ax, and the total
current I over the circular section of radius x is

I = (2%l 4 dx.

* Maxwell, Clark, Flectricity and Magnetism, Vol. 1, p. 408.



§1.5 DETERMINATION OF R; AND L;; SKIN EFFECT 7

Substituting the value of I, from (1.5.1) and integrating between the
stated limits, yields

= g0 L b2 ex®
1,—21(2+4+6+ ) (1.5.2)

The magnetomotive force F, caused by this current which has only one
path with reference to the flux is, in mks units,

F, = I.ampere-turns.

The length of the path around which this magnetomotive force is acting
is 2z meters. The cross-sectional area, normal to the flux density for s meters
length of conductor, is s(Ax). If u denotes the permeability of the conductor
in mks units, the reluctance of the flux path at x is 27x/us Ax and its
value per meter length at x is, therefore,

R, = 2rx

uAx
The flux within the cylindrical shell of thickness Ax and length one meter is

Fe_ wl: Az,

@)= B = s

Substituting the value of I, from (1.5.2) gives
Y (2 S
(A¢)z—u(2+4 + 2L Yo

The flux confined within the cylindrical shell of inside radius x and outside
radius 7, and which links the current I, distributed over the section of
radius z, is

= (a0 e
¢,.,——fzu(2 +EL )dx.
This gives
b bt et 2y b2t et )]
bz 4[07 +22+32+ (ax + 22+ 32+ webers. (1.5.3)

This is the rms value of a sinusoidally varying flux, and as such it causes
the generation of a reactive emf in the section of conductor of radius x.
The reactive voltage drop, equal to this emf is .. volts per meter and
leads the current I in the section of radius x by 90°.

Let p designate the resistivity of the conductor material in ohms per
meter cube. The resistance of the cylindrical shell of length one meter and
thickness Ax is p/27wx Ax. Since the current density /.4 is substantially uni-
form over this small area, the total current flowing in this shell is I,4(27rx Ax).
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It follows, therefore, that the voltage drop due to the resistance is pJ,4 and
is the same per meter length at all points x distant from the center.

The voltage drop due to the resistance and to the interlinkage within
the conductor shell per meter length is, therefore,

V: = pl.a + jwds—, vector volts. (1.5.4)

Substituting the value of ¢,—, from (1.5.3) and the value of 7,4 from (1.5.1)
gives

’ 8
V==P(a+bx’+cx‘+-o-)+1-‘;£[ar’+b2-';+%'z_+...

Separating the 7 and x terms, the expression becomes
= pa (g O o — e z(_iﬂ_wé)
V.= pa+ 4(ar+2,+3,+ )+(pb 4a)x+ po—8)
(1.5.5)

But the potential difference between two parallel sections of a conductor is
the same for all points of the parallel surfaces. Hence the voltage drop V,
due to the conductor resistance per meter length R., and to the interlink-
age within the conductor per meter length, is independent of z and is

_ o bt | or®
Vl—pa+174—(ar2+3;+§+---)- (1.5.6)
The terms in z in the expression for V; are, therefore,

(pb—'&;"—a)x’+(pc—%w2—l:)x‘+"'=0.

However, since x is not zero, it follows that the coefficients of # must be
equal to zero, i.e.,

b= dm,
” a
= o, (i), _a
‘=iz’ (4,,) ay (1.5.7)
d= Jme c=('w)‘.._a_
4.3 4p) (312
Setting

the expression (1.5.6) for V; becomes

Vi= Pa+jkp(ar‘+;;1—“—6:+ Qg;’_:fq. . )
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Factoring out (pa) gives

V,=pa(1+jkrz+£ﬂ'l"_‘+ﬂl'f+...).

@) T @l
By setting k7> = N, the equation simplifies itself to
= ] w UN )8 . .)‘
vi= e (1458 + G0+ U+ (158)

Equation (1.5.2) gives the current in the section of conductor of radius x.
The total current in the conductor of radius 7 is, accordingly,

=op( Lo et )
1—21(2 +¥+2 ) (1.5.9)
Using the values of b, ¢, d, etc., given by (1.5.7) and since
= mor®
N 5

the above expression for I becomes
= xay? 2(jN) o 3GN)* | 4N L.
xar (1+ S+ 2+ ) (1.5.10)

Solving this equation for a and substituting in equation (1.5.8) gives
for the voltage drop V, per meter length of conductor

(2h  @3n @y
2(jN) | 3(jN)* | 4N L .,
ey ey Tar T
where p/xr* is the d-c resistance R, of the conductor per meter length.
The expression may be written, therefore,

=Rl(1+1N+ -t L s+ )

V1=I-£2
r

576 1
N GNY L GN) L GN? GN)®
b T T 1t ss0 Tasao T

| 41

I

Carrying out the division gives

i iN _ GN)? L GNP (GN) 13(J'N)‘_...).
I3 R‘<1+2 12 T4 180 T 8640

Since j =V —1, the equation becomes

o N _ N N,
7 R‘[(H'tz 180 T2as0 T )

(N _ N 18N )]
.,.,(7 L )] (1.5.19)
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Furthermore, since V/I is of the nature of an impedance, it follows that
the real part of the above expression is the resistance R, to the flow of an
alternating current per meter length of conductor. The imaginary term is
the value of the reactance resulting from the internal interlinkage per
meter length of conductor.

Using the value of N given above, the real and imaginary members of
(1.5.11) become, respectively,

= 1 fuer®\ 1 fper™\ 1 fuer®\S
R.= R [1 + 12( 4p) 130( ) + 2440( ) ] (1.5.12)
and
= rf (e _ L fuer’\' | 13 fuer’\® T
b Rl[2(4p2) 48( ) +8640( ) ] (1.5.13)

where L, represents the internal flux linkage per ampere.
Since 7 = A/x and p = 4w/107 is the permeability of copper and alu-
minum in rationalized mks units, the above two expressions may be written

A 1 fwd\ 1 [wd
R.= 1 @ — (&4 .- |oh
[ BEV (107 ) 180 (107p) * 2410 (107 ) ']° ms/ me(tfrs 19)
L,_,,:g[l(&’ﬁ_)___cﬂ)z.*. 13 “’A) o
"L2\107%/ 48 \107 8640 \10
= Rwd T, _ (wA) 4+ 13 13 fwd L.
2p 107 24 \107 4320 107
and since R, = p/A, this becomes
0.5 1 fwA\? 13 [wA
o=l — (el .. , 151
L 0 [1 % (107p) + = B (107 ) Jhenry per meter (1.5.15)

in which 4 is in square meters and p is in ohms per meter cube.

An analysis of equations (1.5.14) and (1.5.15) indicates that both the
resistance and the internal inductance of line conductors carrying alternat-
ing currents depend upon the electric and magnetic properties of the con-
ductor material, upon the size of the conductor, and the frequency of the
supply.

For a definite conductor material such as copper or aluminum, the
resistance increases with the frequency and with the cross-sectional area in
accordance with the law defined by (1.5.14). When w = O, i.e., when the
conductor carries a direct current, the resistance is a minimum. The current
density is uniform and in conformity with the requirement for minimum
energy loss. .

From equation (1.5.15) it is seen that the inductance L; due to internal
linkages decreases as the frequency increases. When w = O, i.e., when the
current is direct, the value of L; is a maximum 0.5 X 10~7 henries per meter
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of conductor. It is the same for all conductors of nonmagnetic materials
and is independent of the size of the conductor. The current density is
uniform and is in conformity with the requirement for maximum energy
storage.

The increase in resistance and the decrease in the internal inductance
with the increase of frequency or size of conductor is equivalent to a
virtual reduction in the cross-sectional area of the conductor, so that the
requirement for minimum energy loss and maximum energy storage are
both satisfied.

Since the flux linkage within the conductor, and hence the internal react-
ance, is greatest at the axis of the conductor and decreases toward the sur-
face, the effect is as though the current density increases from the axis
toward the outer surface or the skin of the conductor. For this reason the
effect of alternating currents in altering the resistance and the inductance
is called skin effect.* "

For cylindrical copper conductors having a resistivity p = 17.241 X 10-*°
ohms per meter cube and whose cross-sectional areas are expressed in cir-
cular mils,f the equation (1.5.14) becomes for a frequency of 60 cycles per
second

(Ef) = 14 10.23(Acm 1077)2 — 83.73(Aem 1077)* + 758.3(Acm 1077)8 — « ¢ o,
Ri/eu (1.5.16)
where A.» denotes the cross-sectional area of the conductor in circular mils.

For cylindrical aluminum conductors having a resistivity p=28.28X10—*
ohms per meter cube operated at 60 cps, equation (1.5.14) may be written
in terms of circular mils

(’if> = 1+ 3.80(Aom 1072 — 11.56(Aem 10-T)4 + 38.93(Aom 10-16 — - -,
Ri/a1 (1.5.17)
Formulas (1.5.16) and (1.5.17) give the ratio of the a-c resistance to the
d-c resistance of copper and aluminum line conductors respectively, when
operated at a frequency of 60 cps. The expressions are thus independent of
the length of the conductor.

The value of the internal inductance L; for copper and aluminum line
conductors operated at a frequency of 60 cps may also be expressed in terms
of corresponding cross-sectional areas stated in, circular-mils (4.m). Thus
* Maxwell, Electricity and Magnetism, Vol. II, Chap. 13. '

‘I:ag'éiigh, “On Self Induction and Resistance of Straigh§ Conductors,” Pkil. Mag., 1886,

H. B. Dwight, Transmission Line Formulas, p. 111.
Gray, Mathews and Macrobert, Bessel Functions, p. 172,

2
t4 -:'—%’-(%%S;T?-whered'=44¢.indrc.mﬂa.
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for copper conductors having a resistivity of 17.241 X 10~° ohms per meter
cube, expression (1.5.15), when multiplied by 5280/3.281, gives
(L)ow= 80.47 X 10~¢[1 — 5.115(Acm 10~7)2 4 45.35(Aom 10~7)¢ — « + <] henry/mile.
1.5.18)
To indicate the application of these formulas to the calculation of R./R,
and of the internal inductance L, consider a #0000 AWG copper line
operated at a frequency of 60 cps. The cross-sectional area of this con-
ductor is 211,600 circ. mils. Substituting this value of 4. in (1.5.16), gives

1% =1+4-10.23(211600XX 10-7)2—83.73(211600< 10~7)44-758.3(211600X 10-7)6— .-+

1

% = 1 4 0.00458 — 0.0000168.

1
The internal inductance L; by (1.5.18) is

Li = 80.47 X 10-91 — 5.115(2116 X 10-5)2 + 45.35(2116 X 10-5)4 — « + 1]

or
L; = 80.47 X 101 — 0.002 + 0.000009 — - -] henry/mile.

The result of these calculations indicates that the skin effect for line con-
ductors up to #0000 size and operated at a frequency of 60 cps is not serious
and may be neglected. The resistance of such conductors is substantially
the same as given in tables. The internal inductance of such conductors is

L; = 80.47 X 10~ henry/mile. (1.5.19)

This is substantially equal to that obtained by assuming uniform distribu-
tion of current.

Consider further a copper conductor having a cross-sectional area of
1,000,000 circular mils. In this case (Aem 10~7) = 10-1. Hence

% =1+ (10.23 X 10-?) — (83.73 X 10~) + (758.3 X 10-%) — « « -

1
or

2 .
=14 0.0947
R + ,
i.e., an increase of 9.47 per cent in the resistance. Similarly the value of the
internal inductance L; by (1.5.18) is
L;= 8047 X 10~*[1 — (5.115 X 10~?) 4 (45.35 X 10%)]
= 8047 X 10~*[1 — 0.0466],

i.e., a decrease of 4.66 per cent.
It can be said in general that, for copper and aluminum oconductors
operating at frequencies of 60 cps or less and of sizes smaller than 300,000
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circular mils, the skin effect may be neglected with impunity, but should
always be corrected for larger sizes. The increase in resistance for a 300,000
circ.-mil copper conductor is somewhat less than 1 per cent and the decrease
in internal inductance is less than 0.5 per cent.

1.6. Determination of Conductor In- It was stated in § 1.1 that trans-
ductance Due to the External Flux mission lines consist of two and
Interlinkage. more generally of three or four con-

ductors. Frequently two or three

transmission lines are operated in parallel. The external magnetic flux link-

ing any of the conductors of a system of several conductors is caused jointly
by the current in each of the conductors.

Consider Fig. 1-3 in which a number of conductors are geometrically

in parallel to each other and normal to the plane of the paper. Let I, k, I,

etc., be the rms values of the currents in the conductors similarly numbered.

Each of these currents establishes a magnetic field within its own conductor

and in the space surrounding the conductor. The effect of the field within

any of the conductors was discussed in the preceding article.

-
5 ///
-
2 3 /@6 %
V¥ Dy ' D3 4 -
_
\ D‘r—@z @Y
Dy DIG\O Ay
8
o7
Figure 1-3 Figure 14

The outside flux linking any of the conductors may be obtained by con-
sidering the individual fluxes produced independently by each current.
Thus, referring to Fig. 14, to determine the flux ¢.; caused by I, and
linking with I, let Ay be the width of a cylindrical shell outside the con-
ductor at a distance y meters as indicated. The magnetomotive force acting
around the shell is

F, = I, ampere-turns.
The reluctance of the flux path per meter lengtlf of conductor is

= 2y
R, wdy

where 2ry is the flux path measured in meters, Ay is the area of the flux
path normal to the flux density per meter length of the shell, and u is the
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permeability of the medium outside the conductors in rationalized mks
units. The flux within the cylindrical shell caused by the current 1, is
(Ag), = = Twdy,
R, 2y

The total flux due to I; within a cylindrical space coaxial with conductor (1)
and of a very large radius R, per meter length of conductor is

pu = 4L

fR dy _ b n R webers/meter. (1.6.1)
2r

noy 2Zr n

In this expression 7, is the radius of conductor (1).

Let Dys, D, etc., respectively, be the interaxial distances between con-
ductors 1 and 3, 1 and 5, and so on. Then the flux produced by I, which
links current I; in the same sense as ¢y, is

¢m=ﬂai

2r fR_D“ 2.

Dy y

This, when integrated between the stated limits, gives

webers per meter. (1.6.2)

_ uly, R= Dy
$=50 075

13

Similarly the flux produced by the current Iy and which links with I; in
the same sense as ¢ is

b0 = .’;_I: In i_zﬂ webers per meter. (1.6.3)
15

The respective fluxes produced by the even-numbered currents are obtained
in the same manner. Thus, the flux produced by current I and which

links with I is
b = —‘E—hln %—DL’ webers per meter. (1.6.4)
g 12

Taking a;, as, a3, etc., the time-phase angles of I, L, &, etc., respectively,
to a common reference, the total external flux ¢, linking with current 7y, is

Do = ¢u/os + du/as + dujas+ « - -

By the preceding relations, this may be written

- M R R — Dy, R — Dy
P 2x [(IlZﬂ)ln n + (Ty/ag)in Dy, + (s/ag)ln Dy,

+ (I.&i)lng-:—pﬁ + . ]
DH



§1.6 DETERMINATION OF CONDUCTOR INDUCTANCE 15

However, since Dya, Dy, Dy, etc., are very small compared with the assumed
large value of R, the preceding expressioﬁ may be simplified to

o = - [(1 1/a ou)ln + (I2/as)n E; +{ s/aa)ln o + (I4/es)in ——‘ ]

webers per meter length.

Converting from meters to miles, using logarithms to the base 10, and
4 X 10~7 for the permeability of the conductor material in the rationalized
mks system of units, the above expression for the external flux linking
current I, in conductor (1) is

o= 74113 X 10~ [(mi) log R + (Io/a) tog £ + (/) 1og £ + - ]
1 D, D3
webers per mile.
This may be written
b1 = 74113 X 1078 [I1/a; (log R — log 71) + I3/as (log R — log Dy3) + -« + *]

or
o1 = 741.13 X 10~ [log R(I1 /o1 + Is/as + Is/as + -+ )

- (Ilﬁﬂlogﬂ + 12&108012 + -9l
For the usual case when a complete system of » conductors is considered

Loy + Infas + Isfos + + -+ + Infan = 0,

and the above expression for the flux linking with current I; in conduc-
tor (1) is
Bo1 = — 74113 X 10-%(1, /e log 1 + Ir/as log Dys + Is/azlog Dis+ - - -] (1.6.5).
If L;is the value of the internal flux-current linkage in conductor 1 per am-

pere under any form of current distribution, as given for instance by equa-
tion (1.5.18), the internal flux is

¢ = L, webers.
The phase of this flux is the same as the phase of I; with respect to the

chosen reference.
The total flux linking current I, is accordingly

$1= Lili/oy — 741.13 X 10_6[11_/_9_1_108 r1+ Is/azlog Dz + Is/azlog Dig + - - +].
(1.6.6)

This expression may be simplified, however, by combining the first term
with the first term in the bracket. Thus,

L;
; 0t of L
(L.+ 741.13 X 10~%log )Ix/al 74113 X 10~ (7 T13%1 6+log )I;[al_.
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Setting for the sake of convenience

L; _
HBX1 (16.7)

the preceding equation may be written

741.13 X 10-° (log 10 + log )—— 741.13 X 10~*log /110¢ (1.6.8)

The quantity r,/10° is called geomean radius of the conductor and will be
denoted in this book by the symbol 7,m. Its physical significance will become
apparent when special cases are considered.

Using the above combination of L; with the first term of equation (1.6.6)
the formula for the flux linking current I, in conductor (1) of the system
of n conductors becomes

@1 =—741.13 X 1071, /a1 10g 71 gm + Is/azlog D1z + Is/aslog Dig + - - -].
Setting for the sake of symmetry r;, ;,n = Dy, the expression becomes
1= —"T741.13 X 1071,/ log D11 + I;/az log D1z + Is/aslog Dis + - - +]. (1.6.9)

The formula for the flux ¢ linking the current I, in any conductor % of a
system of # conductors, by analogy is

$r = —741.13 X 10~¢ (I, /s log Dis + In/atz log Dis + Iy/as log Dia + + + »

+ Ii/ax log D + + + + + In/an log Dia) webers/mile (1.6.10)
in which
Dkk = Tkgm (1.6-11)

is the geomean radius of the 2 conductor.
The value of the inductance L, of any conductor % is the ratio of the
flux linking it to the current flowing in it, i.e.,

= ¢" henry per mile. (1.6.12)

1.7. Linear Inductance and Impedance Consider a single-phase transmis-
of a Two-Wire Line. sion system consisting of two con-
ductors of equal radius and with a

spacing distance D. Since

Ixitﬂ-}'lz alg = 0,
Dy = D»y = D,

and
Dn = Dgg = Tom
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the inductance of each of the conductors, by equations (1.6.10) and
(1.6.12) is
L= 741.13 X 10~ (log-—l— +log D)
Tom

= 741.13 X 10~ log ;’l henry/mile. (1.7.1)
om

The geomean radius 7,m measured in the same units as the spacing
distance D is, by equation (1.6.8)

T

Tom »
where, by (1.6.7),
= L; .
T B X 10
From the discussion given in § 1.5 and equation (1.5.19), (L,) is substan-
tially equal to 80.47 X 10~¢ henry/mile for all solid conductors either of

copper or of aluminum of sizes up to #0000 AWG and operated at a fre-
quency of 60 cps. It follows, therefore, that

80.47

= —— = (.1086 ..

°= 74113 01086, (1.7.2)
r
Tom = i’(m = 0.7788’, (1.7.3)
and
D .

= 741. B . .

L= 174113 X 10~ log 07788 henry/mile 1.74)

The quantity 0.7788r = re=°% is the geometric mean radius of a circular
area of radius r. It may be considered, with reference to the value of L, as
being the radius of a fictitious conductor within which there is no magnetic
flux but which has the same inductance L as the actual conductor.

If 'R, is the resistance per mile of any copper or aluminum conductor
of sizes less than 300,000 circular mils, and L, as given by equation (1.7.4),
is the inductance per mile of conductor of a two-wire line, the linear line
impedance per conductor at 60 cps is

. D .
= 1. e R
Z= R, +j741.13 X 10~% log 077 ohms/mile, (1.7.5)

L]

where © = 120x = 377.

The skin effect on both the resistance and inductance of conductors less
than 300,000 circular mils in cross-sectional area and operated at frequencies
less than 60 cps is negligibly small.

For conductors of sizes larger than 300,000 circular mils, the skin effect
must be taken into consideration through the modified formulas for R and L.



18 CH. 1 CIRCUIT PROPERTIES OF TRANSMISSION LINES

Thus, for a copper conductor of 1,000,000 circular mils, the value of (L;) as
calculated in § 1.5 is

L; = 80.47 X 0.9534 X 10— = 76.728 X 10-%,

Hence,
o= ;2'1—7'—?2 = 0.10353,
Fom = oo = 078797, (1.7.6)
and .
L= 74113 X 10*log - 7?7;» henry/mile. 1.7.7)

The resistance per mile of this size conductor modified by the skin effect
as calculated in § 1.5 for a frequency of 60 cps, is

R. = 1.0947R,; ohms,
where R, is the ohmic resistance of the conductor per mile.

The linear line impedance per conductor of this line at a frequency of
60 cps is therefore

Z= 1.0947R, + j741.13 X 10~ log —2— ohms/mile. ~ (1.7.8)

0.7879r
1.8. Inductance and Impedance of Stranded conductors or cables con-
Stranded Conductors. sisting of a central strand and one

or more concentric or helical layers
are frequently used for transmission line conductors because of their flexi-
bility and greater convenience in handling. When the core of a cable consists
of only one strand, the number of equal size strands in the first layet is six
and the number of strands in each successive layer increases by six. Thus,
the third layer has 18 strands and the total number of strands in a two-layer
cable is 1 4 6 4+ 12 = 19. If a represents the number of layers, and 7z the

number of strands, then
n=3a(a+1)+ 1. (1.8.1)

D

D

A two-cable line with a spacing distance D, as shown in Fig. 1-5, forms
a system of conductors similar to the one discussed in § 1.6, provided that
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the strands are assumed laid concentrically. The procedure for determining
the inductance of the cable conductor is as follows:

a. Obtain the inductance of each strand.

b. Adding these inductances and dividing by the number of strands
gives the average inductance per strand.

c. Since the strands are electrically in parallel, the total inductance of
the cable is the average inductance per strand divided by the number of
strands.

The procedure just outlined is illustrated below with the determination
of the inductance of a 7-strand cable. To simplify the problem let the
strands in cable 4 in Fig. 1-5 be odd numbered and those in cable B even
numbered as indicated.

Assuming uniform distribution, the currents in the strands have the
same phase angle and are equal to the total current divided by the number
of strands. Cable B carries the return current From what has just been

said it follows that

h=L=L=IL=L=I=1Is
and
L=—L=—-l=~Ilgj=—R=—I)y=—I,=—I,
Setting for the sake of convenience
74113 X 10~ = M,

the inductance L, for the strand (1) of the cable, by equation (1.6.6) is

L1 = L.' + M [IOg 1— + IOg Du - IOg Dla + log Du -_ lOg Dm
7s
+ IOg Dle - lOg D17 + lOg D]s - lOg D19 + 10g Duo
- 10g D+ 10g Dy — log Dy + log Dm]-

Combining the logarithmic terms gives

Li=L+M [:Iog Dy log D“ + log g“ + -+ log 2‘-‘—‘]

15

where 7, is the strand radius and the D’s are the spacing distances from

strand (1) respectively to the other strands. Howver, 7, is negligibly small

in comparison to Dy, Dy, Dy, etc. Setting, accordingly, Diy = Dy = Dy

= ..+ = D, and since Dy = Dy = Dy; = - - - = 2r,, the above expression,
which gives the inductance of strand (1), simplifies to

' Li=L+M (log f—’ + 6log -2%) henry/mile. (1.8.2)
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.

The inductance of strand 3, obtained in the same manner, is

D D Dss D
=L log =3¢ £ <38 L
L ¢+M(0g ] +l°gDan+logDa7+l°8Du
Dji2 D31y Daz)
log 222 + log 23 + log =%2).
+ log Dy, + log Dsys + log Dy,
For reasons given above, it may be said that Dy = Dys = Dy = +++ = D.

From the figure it will be seen also that Dy = Dgy3, D3 = Dg, and
Dy, = 2r,. Accordingly the above expression, which gives the inductance
of strand (3), becomes

D D D D
Li= L, 4+ M(log = + log =+ 2 — —
= L+ ( og 2+ log 2 + 210g 2+ 210g .-

D
log =< ). 1.83
+ log Dag) (1.8.3)

The equations for the inductance of each of the other five outer strands are
identical to that of strand 3. The average value of the inductance L, per
strand for the seven strands of the cable is, therefore,

L, = *(Ll + 6L3),
which, by (1.8.2) and (1.8.3), becomes

D,12, D , 12, D ,12, D
.= L Di12ygD 12y, D 4 12, D
L L+M(]og’.+7log2n+7 ogD%-i-,]logD'7
6 D
+ 2 10g Dw) (1.8.4)

This may be written
(D)(D)Y*(D)* .
(r)(2r.) ¥ (Dss) ¥ (Ds2) ™ (Do)

Since the seven strands of the cable are electrically in parallel, the induct-
ance of the seven-strand cable is

L,=L;+ M log

L L; D
g = = + M log (1-8.5)
7 7 (’a)* (2'|)H (DSS)*%(DV)H(DN)*
To evaluate the denominator of the logarithmic term, note that the
last three members in the denominator may be written

(D3 (D) ¥ (D) = [V (D) (D7) *(Dso) V8. (1.8.6)

The radical within the bracket will be recognized as the geometric mean
of all the possible distances between the centers of the outer strands. The
number of possible distances is the sum of the exponents of the D’s..For
the 7-strand cable it is 30.
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By referring to Fig. 1-6 it will be
noted also that

Das = 2’:
Ds7 = 4r, cos 30°
= 27\/5,
and
Dm = 41'..

Substituting these values in the radi-
cal of (1.8.6) gives

¥V Ds)2(Da)*(Dx) = 2r,(6)t. (1.8.7)

From Fig. 1-6 it will be seen also
that 2y, is the radius r of the circle
around which the centers of the six
outer strands are equally spaced. The
geomean distance between six points equally spaced around a circle of
radius » = 2r, therefore is given by equation (1.8.7).

More generally, the geomean distance d,, between any number of
points m, equally spaced around a circle of radius r is*

Figure 16

(dom)m = #(m)=1, (18.8)

Thus, for the first layer of a cable of any number of layers, m; = 6,
r = 2r,, and the geomean distance between the centers is as given by (1.8.7).
For the second layer, m, = 12, r = 4r, and the geomean distance between
the centers of the strands, by (1.8.8), is

(dom)12 = 4r,(12)7r.
Similarly, for the third layer, m; = 18 and r = 6r,. The geomean dis-
tance between the centers of the strands, by (1.8.8), is

(dgm)1s = 67,(18)7
and so on.
Substituting expression (1.8.7) in (1.8.6) gives for the 7-strand cable

(Das)¥(D5:) (D) = [2r,(6)3]3.
This used in equation (1.8.5) gives for the inductance L in henrys per mile
of the 7-strand cable

L7=—L,i-‘+Ml°8 D

('u)*(z'c)u[2'1(6)*]“
* Guye, Ch. Eugene. Sur la moyenne distance géométric des éléments d’un ensemble de sur-

faces. Comptes Rendue des Séances de V' Académie des Sciences. Vol. 118, 1894. See appendix
for proof of formula (1.8.8).




22 : CH. 1 CIRCUIT PROPERTIES OF TRANSMISSION LINES
Factoring out the M and writing

. Lt
Li log 107m,

™
the equation becomes
Li= Mlog = D .
AL PG

(10)7m
Using the values L;=80.47X10-% from (1.5.19) and M =741.13X10-%
gives )

r! o
_ = 0.7788r,,
(10)#
whence
Li= M1 D (1.8.9)

8 {(0.7788r,)7(27,)<5[27,(6)%] 5""}%'

It is important to note that the first member within the outside bracket

of the denominator is the geomean radius per strand taken as many times as
the number of strands in the cable. The

second member is thc geomean dis-
tance between the central strand and
each strand of the six-strand layer,
taken twice as many times as the num-
ber of strands in the layer. The last
member is the geomean distance be-
tween the centers of the six strands in
the layer, taken as many times as the
number of distances, which in this
case is (m — 1)m = 5 X 6. The root
of the denominator is the square of
the number of strands in the cable,
which in this case is 7.

The inductance of the 19-strand cable shown in Fig. 1-7 may now be
written by analogy :

D

Lo = Mg O P e P A
where M = 741.13 X 10-¢.

It will be noted that the first member within the outside bracket of the
denominator is the geomean radius per strand taken as many times as the
number of the strands in the cable. The second member is the geomean
distance between the central strand and each strand of the first layer, taken

Figure 1-7
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twice times the number of strands in the first layer. The third member is
the geomean distance between the centers of the strands of the first layer
taken (m; — 1)m; = 5 X 6 times. The fourth term is the geomean distance
between the centers of each of the twelve strands of the outer layer and
each of the seven strands within this layer, taken 2 X 7 X 12 times.* The
last term is the geomean distance between the centers of the strands of the
outer layer, taken (me — 1)m, = 11 X 12 times.f The root of the denomi-
nator is the square of the number of strands.
Carrying out the calculations involved, equation (1.8.9) reduces to

= 741.13 X 10~% log henry per mile.

D
2.176r,
Designating by 7. the radius of the cable, then since ». = 3r,, the above
formula becomes

= 741.13 X 10~% log henry per mile.

D
0.7253r.

The quantity 0.7253r. is the geomean radius (7,.); of a seven-strand

cable.
The generalized formula for the inductance of concentric cables of any

number of strands #» is
L.= 741.13 X 10~%log

henry per mile. (1.8.11)
(nm n

The values of the geomean radii of the more commonly used cables cal-
culated in a manner similar to that outlined in this article are given in the
following table:

TABLE I

No. of strands (») geomean radius (Ygm)n
3 0.6780r.
7 0.7253r.
19 0.7570r.
37 0.7680r.
61 0.7720r.
91 0.77447.
127 0.7750r.
solid conductor 0.7788r.

* It can be shown that the geomean distance from a circle of radius r to all points within it is

equal to the radius 7.
tA genera.lwed formula for the determination of the value of L for cables with any number of
layers is given in H. B. Dwight’s Transmission Line Formulas, p. 126.
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1.9. Inductance per Conductor of Twin Consider a transmission system
Single-Phase Lines. consisting of two single-phase lines

in parallel connection as shown in

Fig. 1-8. Let r; be the radius of conductors 1 and 2 forming one line, and

3 4
B B

Dy, o D24 2 -
BF—e—~_ '
Figure 1-8 -

r3 the radius of conductors 3 and 4 forming the other line. The spacing dis-
tances are as indicated in the figure. Since conductor 2 is the return of 1
and conductor 4 the return of 3, it follows that

Ijay=—Is/ay
and
Is/as = —Ii/as

By direct application of the generalized formula (1.6.10) the flux ¢,
linking current I in conductor (1) is

é. = 741.13 X 10~ (Il/allog * 4 Iy/aslog ) 1.9.1)
1gm

The flux ¢; linking current L in conductor 3, similarly, is

bs = 741.13 X 10‘“(13/0:3 log 2% + Ifay log ‘:) (1.9.2)
Referring to the figure, if Dy; = Dyy = D and Dy3 = Da,, then setting
D
B——“ = a,
the above two expressions become, respectively,
b= M (Iljgl tog 2~ + Iy/as 1ogVa + 1) (1.9.3)
1gm .
$r= M (I:ﬂﬂ tog 2 + I'/ay JogVa ¥ 1), (19.4)
3om

where M = 741.13 X 10-%,
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Since conductors 1 and 3, in parallel with each other, are of equal length,
the voltage drop per mile of each will be equal. Hence if R, is the resistance
of conductor 1 per mile and R; is the resistance of conductor 3 per mile,

then
L(R, +jLlw) = I3(Rs +jL#)- (1.9.5)
But
L, I and L; A

where ¢ and ¢; are the scalar values of equations (1.9.3) and (1.9.4), respec-
tively. It follows from the above that

IRy + jorw = IRz + joww (1.9.6)
whence
IR, = I;Rs (1.9.7)
and
¢1= ¢s. (1.9.8)

This indicates that irrespective whether the two lines are identical or
not, the scalar values of the fluxes linking the currents are equal. If the
conductors are of the same size, the currents will also be equal, and the
inductance of the conductors will be equal. Under the conditions just stated,
expressions (1.9.3) and (1.9.4) simplify to

é1=¢s= MI (log 2—#) webers/mile (1.9.9)
am
and
Li= Ly= 741.13 X 108 (1og9——— ”r"“fl) henry/mile.  (1.9.10)
omm

If the lines are not identical in size and in design, the flux linking the
currents in the conductors will be equal, but since the currents are not
equal, the inductances will be unequal. The vector values of the currents in
the two parallel conductors must be known to determine the magnitude of
the fluxes and the corresponding inductances.

The two lines in parallel connection may be disposed also with reference
to each other in flat spacing as indicated in Fig. 1-9.

Dy, Daz Dy,
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The flux ¢, linking current I; in conductor 1 is given by equation (1.9.1)
and the flux ¢; linking current Z in conductor 3 is given by equation (1.9.2).
Referring to the figure, however, let

Dy = D3y =D
and

Dla = Du = (ZD,
then

Dy = D3+ D3y = D(1 + a)
and

Daz = D Du D(l - a)

Assuming further that the conductors are of the same size, so that their
geomean radii are equal, the expressions for ¢, and ¢;, become, respectively

1= 741.13 X 10-° (Il/al log — + Is/as log 1+ a) (1.9.11)

s = 741.13 X 10~ (13/& log;—— + Ii/on log 1= “) (1.9.12)

gm

It should be noted from these two expressions that, although the con-
ductors were assumed identical, the flat-spacing arrangement causes unequal
flux-current linkages per ampere in each conductor. Because of this inequal-
ity in inductance values, the linear impedance of the conductors will be
unequal. The currents will be unequal, therefore, and out of phase.

1 3 1

2 4 2
Figure 1-10

The inductance per conductor of twin single phase lines with flat spac-
ing may be balanced more or less, and the current values equalized by
proper transposition, as indicated in Fig. 1-10.

1.10. I'nductance of Nontransposed Consideranonsymmetrically spaced
Three-Phase Lines. three-phase line having conductors

of the same size as is shown in

Fig. 1-11. The flux lmkmg the currents in the three conductors may be
obtained by a direct application of the generalized equation (1.6.10). Thus,
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b= M [1@_1 log ;1‘ — (Iy/as log D1z + Is/as log Dis)
om

om

$:=M [1@2 log -1 — (Iy/a log Das + T/ log Dn)]

¢3 =M [Ia_/_tﬂ log —l- - (1119_1 lOg Ds, + Iz_/_g_g log sz)

Tom

where M = 741.13 X 10-S.

For a balanced system the cur- 3
rents are numerically equal and 120°
apart in time phase. Taking ¢, as
the reference, the flux ¢ lags ¢, by Dis D

120°, and flux ¢; lags ¢, by 240°.
To bring these two fluxes in phase

with ¢;, multiply the second equa- ~N
tion by /120° and the third by /240°. Q/
The above equations may be writ-
ten, accordingly :

Dl2 2

Figure 1-11

¢1= 1, (1og L) /0°  (1og Duw)/=120° — (g D)/ =240 ]

]
¢ = M1 (108 1) /0° — (log Du)/=120° ~ (1og D)/~ 200°]

Tom
Carrying out the vector additions and collecting terms yields

r]og (DI2D18)* +7 ﬁ log D___12_

¢= MI webers/mile. (1.10.1)
L rgm 2 Dla_J
- ‘} -

o= M1 [1og @ule | V310 Dl opermile. (1.10.2)
Tom 2 D., |

- 3 Z
@3 = MI|log (—Q’—;D—’—"'—)— +7 ——\g—é log % webers/mile. (1.10.3)
om 82_]

The scalar values of these fluxes are of the form
6= MIVA: + B (1.10.4)
where A is the real and B the quadrature member in the brackets. Thus, for

4, = log (Buu) !

om
and V3
= V3 )op Dtz
B, 3 log Dus
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The inductance of conductor 1 is, accordingly,

Lx‘—" =MVA12+B),2.

~Je

The inductances of the other two conductors are calculated in the same
manner.

'From the above formulas it is seen that the inductances of the conduc-
tors of a nonsymmetrically-spaced three-phase line are unequal under bal-
anced condition of currents. Because of this inequality, the impedance of
each of the three conductors will also be unequal, resulting in unbalanced
voltages at the receiving end. For this reason the conductors of nonsym-
metrically-spaced lines are usually transposed, as indicated in Fig. 1-12.

] 3 2 1
2 1 3 2
3 2 1 3

Figure 1-12

When a nonsymmetrically-spaced three-phase line is transposed, the
conductors occupy each other position for one-third the length of line. The
average flux linking each current is therefore

¢=¢1+9§2+¢3,

This, by (1.10.1), (1.10.2) and (1.10.3) gives
¢ = MI log LuDuDu)}
7

om

webers/mile,

and the inductance of each conductor is
L=%= 74113 X 10~ log DuDuDult y o e, (1.10.5)
Tom
It is of interest to note that the numerator of the logarithmic term is the
geomean spacing distance between the three conductors.

" Formula (1.10.5) applies also to transposed three-phase lines when flat
spacing either horizontal or vertical is used. From Fig. 1-13 it is seen that
Dyy = Dy = D and Dy; = 2D. The geomean spacing distance is

D= (2D D+ D)} = 1.26D. ,
O——O———06
1 2 . 3

Figure 1-13




§1.11 LINE INDUCTANCE TABLE 29

The average value of the inductance per conductor of such a flat-
spaced line is therefore

L = 741.13 X 10~%log 1.26D henry/mile. (1.10.6)
Tgm

If the spacing is equilateral, i.e., if the three conductors are at the corners
of an equilateral triangle, then Dy, = D3 = Dy; and formula (1.10.5) be-
comes

L= 741.13 X 10~%log 2 henry/mile. (1.10.7)

Tom ‘
For this reason, the geomean distance of unsymmetrically-spaced trans-
posed three-phase lines is often referred to as equivalent equilateral spacing.

1.11. Line Inductance Table. Line inductance and more gener-
ally the inductive reactance per
mile of conductor of standard sizes, and with standard equilateral or equiva-
lent equilateral spacing distances and at commercial frequencies of 25 and
60 cps, are usually given in reference and handbooks of electrical engineer-
ing. The inductance per mile of conductor of any specific size, stranding
and with any spacing may, obviously, be computed from formula (1.10.7).
A working table of line inductance values per mile of conductor for
various size conductors and spacing distances, may be formulated with ease
by writing formula (1.10.7) in the form

L= 741.13 X 10~ log;l— + 741.13 X 10%log D mh/mile.  (1.11.1)
om

It is obvious that the first term of this expression gives the line induct-
ance L, per mile of conductor having a geomean radius 7,» feet and with
equilateral or equivalent equilateral spacing distance D = 1 foot. The sec-
ond term of the above expression may be interpreted as the line inductance
L, per mile of conductor having a geomean radius of 1 foot, and whose equi-
lateral or equivalent spacing distance is any value D feet.

Thus Table II gives the calculated values of L, in milli-henry for stranded
copper conductors as indicated and for D = 1 foot.

Table IIT gives the values of L, in milli-henry for conductors of
rem = 1 foot and equilaterally spaced from 1 to 30 feet in steps of 1 foot.

Similar tables may be formulated for solid copper conductors and for
solid and stranded aluminum conductors.

To illustrate the use of these tables consider a 400000 cir. mil line
having an equilateral spacing distance D = 15 ft. From Table II, get
L, = 1.2155 mh; from Table III similarly get L, = 0.8716 mh. The induct-
ance per mile of conductor is therefore L = 1.2155 4 0.8716 = 2.0871 mh.
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TABLE II
AW.G. D=1 foot
. r Fym . =
or Strands ils f” " 1
Cir. Mils mils ec 0.74113 log = mh/mile
om
0 7 184 0.0111 1.4488
00 7 202 0.0124 1.4130
000 7 232 0.0140 1.3740
0000 7 261 0.0158 1.3350
250000 19 287.5 0.0181 1.2913
300000 19 314 0.0198 1.2624
350000 19 338 0.0213 1.2389
400000 19 362.5 0.0229 1.2155
450000 37 384 0.0246 1.1925
500000 317 407 0.0260 1.1747
600000 37 446.5 0.0285 1.1452
700000 61 482 0.0311 1.1170
750000 61 499 0.0321 1.1068
800000 61 515.5 0.0332 1.0960
900000 61 546.5 0.0352 1.0772
1000000 61 575.5 0.0370 1.0611
TABLE 11l
r,m = 1 foot
Ly = 0.74113 log D mh/mile
D
Feet > 0 10 20
]
1 0 0.7718 0.9799
2 0.2231 0.7998 0.9949
3 0.3536 0.8256 1.0092
4 0.4462 0.8494 1.0229
5 0.5180 0.8716 . 10362
6 0.5767 0.8924 1.0487
7 0.6263 0.9119 1.0608
8 0.6693 0.9303 1.0725
9 0.7072 0.9477 1.0839
10 0.7411 0.9642 1.0947
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1.12. Inductance of Twin Three-Phase Consider two nontransposed un-
Lines. symmetrically-spaced three-phase

' lines to be operated in parallel. As-

sume conductors of the same size and disposed with reference to each other
in clockwise sequence as indicated in Fig. 1-14. Conductors 1, 2, and 3

Figure 1-14

carrying respectively currents Iy/ay, I/as, and I3/as form one line, and
conductors §, 6, and 7 carrying respectively currents /5/as, Is/as, and Ii/eq,
form the other line. For parallel operation, the conductors of the same
phase are connected in parallel, i.e., conductors 1 and 5, 2 and 6, and 3 and 7
are, respectively, connected in parallel, as indicated schematically in

Fig. 1-15.

L]
[T

Figure 1-15

To determine the fluxes linking the conductors, apply the generalized
. formula (1.6.10). Assuming a balanced system, the currents are numerically
equal and 120° apart for the three phases. Thus, the flux linking with the
current in conductor 1, by (1.6.10) is

é1 = MI{(log ;1— /0° — [(log D1s)/ —120° + (log Dys)/—240° + (log D1y)/0°
+ (log Dis)/—120° + (log Dy)/—240°1}. (1.12.1)
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Carrying out the vector additions, and combining terms, yields

&= MI [log — + log (DuDie)t + j ‘_/_ log (D13D1e) + log (D1aDrr)?
~j —‘/- log (DuDu)]
This simplifies further to
¢, = MI [m%ﬂl} 473 ‘/3 log g‘:g::] (1.12.2)

Note that ¢, and ¢; are in phase with each other. The fluxes ¢» and ¢ lag
¢1 by 120°. Similarly ¢; and ¢ lag ¢, by 240°. To bring the five fluxes in
phase with ¢;, multiply the equations for ¢ and ¢ by /120° and the equa-
tions for ¢s and ¢; by /240°. The equations for the other five fluxes, by
(1.6.10), become accordingly :

DysDuDuDy)t | V3 g DeaDor]
¢2 [ 8 DZOrpm J 2 Dleza_J ( )
1 V3. DuDys]
= M1 [log LurLssDuD)” | ;3 10 DuDas 1124
Ps [og Daron +J 2 % DrDis | ( )
@ = MI | log D52D53D53D51)’+ log Dg3Dse | (1.12.5)
Dy17ym Dy3Dy; |
bo= MI [log ﬁ—-———D“‘D“’D“‘D“ +7 log DesDer | (1.12.6)
s2fpm Deles_‘
= Dy\D35D713D16 . D71D75]
— 1 [log @uDuDuDi}t | V3, DuDy], 1.12.7
¢7 [ 8 D7a'gm + J 2 8 DDy ( )

The scalar values of these fluxes are of the form
¢ = MIVA* F B,
where A is the real and B the quadrature member in the brackets. Thus,

for b1
- D1sD13D1eD17)t
A= log Dion
and
V3. DuDs
By = Y2 |og L2018,
! 2 8 DysDyy
The inductance of conductor 1 is, therefore,
L=8=MVET R

where M = 741.13 X 10-¢,
The above formulas for the fluxes linking the currents in the conductors
indicate that although the currents are balanced, the inductance values of
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the line conductors are unequal and will, therefore, cause unbalanced line
voltages at the receiving end. To equalize to some extent the inductance
values, a transposition scheme such as indicated schematically in Fig. 1-16

Figure 1-16

is used. The conductors occupy each other’s position for one-sixth the en-
tire length of line. The average flux linking each current is, therefore,

¢=¢x+¢2+¢a+¢a+¢e+¢7.
6

Substituting the preceding equations it is found that the sum of the
j-components drops out, and collecting terms gives

6 = MI log LuDisD1eD:DssDeDyDysDyDuDsDe)t, (4 15 g)
fm(DszoD.w)‘}

The value of the inductance per conductor is

L= ‘—*}henry/mile.

If the spacing is equilateral and equal for the two lines, then
D3y = D31 = Dsg = Dg1 = D15 = D,

Dy; = Dy
Dys = Dis
Dys = Dy
Dy; = Dy

and the formula for the inductance per conductor is
(Dy*D12D;2Dsi?)}
’vm(DlszDzo)*

L= 741.13 X 10~*log

or

L = 741.13 X 10-¢ log 212 (D—“M-’é)* henry/mile. (1.12.9)

Tom D 1 52D 26 *

1.13. Capacitance. General Formula.  The capacitive properties of a cir-

cuit come into play when the dif-
ference of potential across the circuit changes in value. Thus, in the case
of a circuit subject to a constant, uni-directional difference of potential, the
capacitance acts only during the short interval in which the electric charge
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and the electric flux associated with it, starting from zero, reach their
respective maxima. The physical evidence of this capacitive action is the
establishment of an electric field, the stored energy (3CV?) therein, and the
generation of a reactive emf (y/C) which retards the growth of the field
to its maximum value.

When the difference of potential impressed upon the circuit is alternat-
ing in character, the capacitance of the circuit is in continuous action. The
physical evidence of this continuous action is the establishment of an alter-
nating field, the cyclic storage and restoration of electric energy in and
from the field, and the generation of a continuously-acting reactive emf
which limits the charging current. The value of the supplied voltage which
balances the reactive emf is V = I,/Cw volts and lags the charging cur-
rent 7, by 90°.

If ¢ is the rms value of the sinusoidally varying electric flux measured
in coulombs, the instantaneous chargir}g current is

g = (% (V2 ¢ sin w).
‘This gives for the rms or effective value of the charging current

I, = wy amperes
which, when substituted in the voltage expression V = I,/Cw gives

C= 'I%farads. (1.13.1)

This formula defines the capacitance in farads as being numerically

equal to the flux (or charge) in coulombs per volt difference of potential
impressed upon the circuit. Because of the unknown value of ¢, this for-
mula, as it stands, does not lend itself directly to the determination of the

capacitance for any specific system of conductors. However, since a differ-
ence of potential is the negative line integral of the field intensity vector

V=— f F dx, (1.13.2)
the above formula for the capacitance may be written
c=—Y__. (1.13.3)
—[Fax

In this formula F is the field intensity vector or potential gradient, meas-
ured in volts per meter at any point « in the field.

Furthermore, the ratio of the flux density y4* in coulombs per sq. meter
to the field intensity F in volts per meter at any point in an electric field

* To avoid confusion the symbol yq is used here for electric flux density in preference to the
more usual D, which designates in this book the spdcing distance between conductors.
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depends only upon the dielectric properties of the medium in which the
field resides. The value of this ratio

o (1.13.4)
is called the permittivity of the medium. The permittivity of free space and

substantially of air in the rationalized mks system of units is
' 1

“TEXOXI0 (1133)
The permittivity of media other than air is
_ — €r
€= €6, B XOX 10 (1.13.6)

where €, called relative permittivity, is numerically equal to the dielectric
constant of the medium as given in various handbooks on electrical engi-
neering and Smithsonian Physical Tables.

Substituting (1.13.4) in the relation given by (1.13.3) gives

-_ % (1.13.7)

This expression can be evaluated with great facility because the flux
density ¥4 depends upon the geometry of the electrical structure considered.
This is illustrated in the next article.

1.14. Capacitance of Single-Conductor A single-conductor cable consists of
Cables. a solid or stranded conductor prop-
erly insulated and enclosed coaxi-
ally in a cylindrical lead sheath, as shown in Fig. 1-17.
The structure forms a condenser
with a definite capacitance per unit
length. To determine the value of
C, let r, be the radius of the con- 2
ductor and 7, the inside radius of the
lead sheath. Let V be the potential
difference between conductor and x
sheath and ¢ the corresponding
electric flux in the medium between
the two per meter length of cable.
If the cable is assumed to be quite
long, the charge imparted to the
conductor will be uniformly dis-
tributed over its length. The field Figure 1-17
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intensity vector F will be radial to the conductor axis, and the flux will be
uniformly distributed over any cylindrical surface of radius «, smaller than
r, and coaxial with the conductor. The area of such a cylindrical surface
per meter length is 2rx. Hence, if ¢ is the electric flux uniformly dis-
tributed over the surface per meter length, its density is

‘l’d"‘l’

Substituting this in equation (1.13.7) and integrating between the limits of
r, and ry, gives
C = 2™ farads per meter. (1.14.1)
InZ
71
Changing to common logarithms and using the relative dielectric constant
¢, from (1.13.6), the formula becomes
C=——107 _ farads/meter. (1.14.2)
4.6052 X 9 log?
1

Multiplying by 5280/3.281 yields

38.82 X 107% farads/mile. (1.14.3)
log Iz
n

C=

1.15. Capacitance per Conductor of a Consider the general case of a sys-
System of Parallel Conductors. tem consisting of any number of
charged conductors geometrically

in parallel to each other as shown in Fig. 1-18. Let Dy, Dy, Dy, etc.,
designate the interaxial distances be-

tween the respective conductors of
the system. Although not essential, it
will be assumed for simplicity’s sake

that all conductors are of the same
size. It will be assumed also that the
interaxial distances are so large in
comparison with the radii of the
conductors, that the proximity effect
may be neglected. The charges will
be assumed, therefore, as uniformly
distributed along the conductor axis. A still further assumption is that the
system as a whole is shielded so that it is unaffected from outside electrical

Figure 1-18
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disturbances. Let charges g1, ¢s, g3, etc., per meter length be imparted to
the respective conductors so that

g=—(g2+ g+ ).

In consequence of these charges, electric fields are established between
conductor 1 and the other conductors, such that

ity t+ys+---=0. - (L1sd)

This summation is vectorial if the corresponding voltages are alternating
in character.

Due to the electric field between conductor 1 and the other conductors,
differences of potential Vi, Vi3, etc., are established across conductor 1
and 2, 1 and 3, and so on. If the medium in which the conductors reside is
electrically homogeneous, these differences of potential will depend only upon
the respective fluxes and upon the respective spacing distances. The con-
tribution to the potential difference between any pair of conductors by each
conductor in the system may be obtained by substituting equation (1.13.4)
in (1.13.2).

Thus the contribution of conductor 1 to the potential difference V,;
between conductor 1 and conductor 5, for instance, is

N L1
€

where ¢, = 1/(4r X 9 X 10°) is substantially the permittivity of air* in
the mks system of units and ¥4 is the electric flux density due to ¥, at some
point along the spacing distance ¥ meters from the surface of conductor 1.
The value of the flux density at this point is
=%
‘ V4 2rx
.pey
where ¥, is the ﬂux};\r;xeter length of conductor 1.
Substituting this value of ¥, in the preceding expression and integrating
between the limits of D;; — r and 7, yields

(Vi) = -2%:: In 9‘—‘;’——’- (1.15.2)

Using the value of ¢ given above and converting to common logarithms,
- the formula becomes '

(Vig)r = 41.445 X 10%, log %‘-ﬂ. (1.15.3)

* The relative permittivity of air is ¢, = 1.00058. The actual permittivity is, therefore,
1.00058

T XOX10F
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Note that the r in the numerator of the logarithmic term is neglected in
comparison with the much larger value of Dys.
Referring to Fig. 1-18, it is seen that the contribution of conductor 2
to the difference of potential Vy; is
(Vls)z = (Vza)z - (V21)2,
which by analogy to (1.15.3) may be written

r

(Vie)2 = 41.445 X 10%, (log

or
(Vis)s = 41.445 X 10%; log zp).;:f' (1.15.4)

The contribution of conductor 3 to V,; is, similarly,

(Vie)s = (Vss)s — (Vs1)s
or

(Vie)s = 41.445 X 10%; log g“ (1.15.5)

The contribution of any conductor k to Vs is, in general,

(Vig)e = 41.445 X 10% log 1’;“ (1.15.6)

The difference of potential Vy5 across conductors 1 and 5 due to all the
conductors is, accordingly,

Vis= (Vish + (Vis)e + (Vis)s + « + « + (Vis)a

Substituting the corresponding formulas obtained above, and assigning to
the fluxes their corresponding angles, gives

Vi = 41.445 X 109[(:#1/«:1) log 15 4 (Yo/as) 10g

Dnb

+ (Ys/as) log Dy + «+ (Yn/cta) log . (1.15.7)

The difference of potential between conductor 1 and any other conductor f
is, by analogy, _
Vi, = 41.445 X 10° [(1,01_/31) loggy + (Y2/as) log Dy
D 11 D21

+ Wa/as) log %f 4o+ (/o) log %1] (1.158)

where for the sake of symmetry Dy, is written for 7.
Finally the difference of potential between any pair of conductors such

as fand & is
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V= 41.445 X 10° [(%Ll) log £+ (/e log Dk
+ (Ps/as) 108 <& + (\l’f/ ) 108 "L‘ + -

(1.15.9)

where Dy, = ;.

Equations (1.15.1) and (1.15.9) are sufficient for the determination of
the capacitance per unit length of conductor in any system of geometrically
parallel conductors.

1.16. Capacitance per Conductor of a For a two-wire line equation
Two-Wire Line. (1.159), using f=1 and &k = 2,
becomes

Vie = 41.445 X 10° [(¢1/a1) log 2 1 (fafas) log Dﬂj]

However, since ¥1/a; = — ya/an,
D]z = D and Du = D22 =1,

the above expression, when ¥, is the reference vector, becomes

Vie = 41.445 X 10° [.p, log 2 — ¢, log 13]
r

or
Vie = 82.89 X 10°y; log 2-
r
The capacitance of the two-wire line, therefore, is
Vi o_ 10—° .
Cr= e D farad per meter of line (1.16.1)
2 82.89log =
r
or
— 10-°
Cy = ————— farads per meter of conductor. (1.16.2)
41.4451og 2
r
Multiplying by 5280/3.281 yields
Cip= Q-Q—X—D&—— farad/mile of lme, (1.16.3)
log =
or
Ci= -3—8-82—XD19—_0 farad/mile of conductor, (1.16.4)
log =
r

where D and r must be expressed in the same units.
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1.17. Cépaz:itance of Single Cylindrical The capacitance of such a conduc-
Conductor Parallel to the Ground. tor is

_ 38.82 X 10*®

, =
1ogZI—.-I

farad/mile, (1.17.1)

where H is the height of the conductor above the earth’s surface. The
formula is obtained by assuming a fictitious conductor a distance H below
the surface of the earth and parallel to the conductor above. The actual
and fictitious conductors thus form a two-conductor line with a spacing
distance equal to 2H.

1.18. Capacitance per Conductor of Consider a three-phase three-wire
Three-Phase Lines. line with triangular spacing as
shown in Fig. 1-19. Let the inter-

axial spacing distances between the respective conductors be designated

by D12y D23, and D31.
O:s

O O

Figure 1-19

Setting for brevity’s sake 41.445 X 10° = N, the differences of poten-
tial across successive pairs of conductors are, by (1.15.9),

V=N F(,pl/a,) log L) log 2 1 (ofay) log D2 Du 1 a.1s.)

31

Vas= N ('lu/ax) 108 Dy + 2] 108 + (Vs/as) 108 (1-18-2)

and

Vaa= N (w,/cu) log + (Ya2/as) log + (Ws/as) log D . (1.18.3)

For conductors of the same size Dy, = Dy = Dy = r. If the system is
balanced, the voltages are equal and 120° apart in time phase, and the
fluxes are equal and 120° in time phase. Taking the voltage V of conductor 1
to neutral as the reference, the above expressions may be written :
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V3V/30° = N [log %3 W/0° — y/—120°) + (log lD)—" W/ —2407) | (1.18.4)

V3V/—90° = N [log 9:—‘ W/ —120° — y/—240°) + (log Dy Wg)" (1.18.5)

V3IV/=210° = N[logg:—l- (¥/—240° — 9/0°) + (log Dav\y/—120° 120°) (1.18.6)

For equilateral spacing, Dy, = Dy = Ds; = D, the above expressions be-
come, numerically,

V3V =V3Ny log 2. (1.18.7)
r
Using the value of N = 41.445 X 10° gives
C= % = _L.;"__D_ farad/meter of conductor (1.18.8)
41.445 log =
r

or
C= 38.82 X 107 farad/mile of conductor. (1.18.9)

log =
Ogr

It follows from the above that for the particular case of an equilaterally
spaced three-phase line with balanced voltages the capacitances of the con-
ductors are equal and equal to that of the conductors of a single-phase line
of the same size and spacing distance.

If the conductors are not spaced equilaterally, the capacitance to neu-
tral of each conductor will differ in value. Because of this inequality the
linear admittance per mile will be unequal, resulting in unbalanced voltages
at the receiving end. The degree of unbalance is minimized by transposing
the conductors in such a manner that each occupies each other’s position
for one-third of the entire length of the line as shown in Fig. 1-20. The
improvement in balance depends largely upon the transposition distance,
i.e., the number of complete transpositions in the length of line. From what
has just been said it follows that the average capacitance per mile of con-
ductor of a transposed three-phase line is one-third of the sum of the capaci-
tances of any of the three conductors for each of its three positions.

The capacitance between conductors 1 and 2 when in position (a) is
given by equation (1.18.1) in which (Vy.), is taken as the reference vector.
The capacitance between the same pair of conductors when in position (b),
where conductor 1 is in the position of 2, conductor 2 in the position of 3,
and conductor 3 in the position of 1 is obtained by equation (1.18.2). The
voltage Vi lags (Vis)a by 120°. Its vector value in phase with (Vi) is
(Viads = (Vaa)/120°.
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3 2 1
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Figure 1-20

Similarly the capacitance of the same pair of conductors when 1n posi-
tion (c) is given by equation (1.18.3). The voltage Vs, lags (Vi) by 240°.
Its vector value in phase with (Vi2)s is (Viz). = (V31)/240°. The three equa-
tions become accordingly, when the second is shifted by 120° and the third
by 240°,

—_— o Dl2 O D12 D82
e = 3 [ 0/0%) log 222 — (9/=120°)log 22 + 4/ =240) 1og 2]
31

(Vido = N [#/=240° og ¥ + (/0% log 22 — (9/= 120" 10g 2]
- D]z r r
(Ve = N[ = 0/=120) log D2 + (0/=240%) 10g B + (907 1og 22 ]
28

Each of these equations gives a different value for the capacitance. The
average value may be obtained from

Vi = (V12)a + (V12)s + (Vaa).,
12 3

In adding the right-hand side of the above three equations it is found that

D D D
/—240° (log =¥ + log =2 ) = 0,
v ( %8 Dy T 18D, T 18 D,

Hence,
Vie = %v<log l—}’ + log Qf’ + log DT“)(W@_" — ¥/=120%.

Since in terms of the voltage V per phase Vi, =1/3V, and the numerical
value of ¥/0° — ¢/—120° =13y, the preceding expression, by assigning
to N its value 41.445 X 10°, becomes

V = 41445 X 10% log LulasD)}, (1.18.10)
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The capacitance per conductor is, therefore,

c=¥o 10~

farads/meter,
|4 414_45 lOg (DnDstsl)i
r

or

~ 3882 X107 farads/mile. (1.18.11)
log (D|2D23D:H)*

r

The numerator of the logarithmic term in the denominator will be recog-
nized as the geomean spacing distance between the conductors. If Dy, =
Dy; = Dy, = D, the expression becomes

_ 38.82 X 10*

o farads/mile of conductor, (1.18.12)

log =
r

which is the same as (1.18.9). The quantity (DyDssDs;)? is referred to as
the eguivalent spacing distance of an unsymmetrically-spaced transposed
three-phase line.

For flat spacing such as shown in Fig. 1-13, where Dy, = Dy = D and
D3, = 2D, formula (1.18.11) becomes

C= 38.82 X 107 farad/mile of conductor, (1.18.13)
log 1.26D

r

in which 1.26D is the equivalent spacing distance.

1.19. Line Capacitance Table. The capacitance and, more gener-

ally, the charging current per mile
of conductor at 100,000 volts to neutral (I, = 100000 Cw) of standard sizes,
and with equilateral or equivalent equilateral spacing and at frequencies of
25 and 60 cps, are usually given in reference and handbooks on electrical
engineering.

The capacitance per mile of conductor of any specific size and spacing
distance D in feet may, however, be computed from the general formula
(1.18.12). ' :

A working table of line capacitance per mile of conductor may be for-
mulated by writing formula (1.18.12) in the form

C = 3882 %107

1 microfarads per mile.
log p + log D
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The reciprocal of this expression with C in microfarads is

10° log %

1__10%log D
= 19.
C 38.82 + 38.82 (1.19.9)

The reciprocal of the capacitance is called elastance. The first of this
expression may be interpreted, therefore, as the elastance 1/C, per mile of
conductor having a radius » = 1 foot and whose equilateral or equivalent
equilateral spacing is D feet. The second term gives the elastance 1/C, per
mile of conductor of radius 7 feet and with equilateral or equivalent equi-
lateral spacing of D = 1 foot.

Table IV gives the value of 1/C, with C, in microfarads for conductors
of radius r = 1 foot and equilaterally spaced from 1 to 30 feet in steps of
1 foot. Table V gives the value of 1/C, with C, in microfarads (uf) for
stranded copper conductors as indicated and for D = 1 foot.

Similar tables may be formulated for solid copper conductors, and for
solid and stranded aluminum conductors.

To illustrate the use of these tables, consider a 400000 cir. mil line
having an equilateral spacing distance D = 15 feet. From Table IV, get
1/Ca = 30.296 and from Table V, similarly get 1/C, = 39.188. The elastance
per mile, therefore, is

= 39.188 + 30.296 = 69.484

1
C
and
C

= 0.01439uf per mile of conductor.

1.20. Capacitance per Conductor of The general method outlined in
Transposed Twin Three-Phase §1.15 may be applied directly to
Lines. the determination of the formula

for the capacitance per conductor-
mile of twin three-phase lines in which the conductors are arranged as

shown in Fig. 1-21.

Conductors 1, 2, and 3 form one line and conductors 5, 6, and 7 form a
second line, the two lines to be operated in parallel. From the symmetry
of the spacing note that Ds; = D, ; Des = Drs; and Dyg = Dyy. The potential
of conductors 1 and 5 to ground or neutral is assumed V/ay, that of con-
ductors 2 and 6, V/a,, and that of conductors 3 and 7, V/a;. The conductors
of each line, respectively, are transposed in such a manner that each occupies
successively the position of the other two for one-third of the entire length
of line, as indicated in the figure. The improvement in voltage balance will
depend largely upon the number of complete transpositions in the entire
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TABLE IV
fl— ~ 1000 log D
C. 38.82
D
Feet > 0 10 20
\{
1 0 26.826 34.060
2 7.7545 27.799 34.581
3 12.296 28.695 35.078
4 15.509 29.524 35.554
5 18.005 30.296 36.010
6 20.045 31.018 36.449
7 21.769 31.696 36.872
8 23.263 32.235 37.279
9 24.581 32.940 37.671
10 25.760 33.514 38.051
TABLE V
1
AW.G. ’ Cs
or Strands mrils feet D=1
Cir. Mils 1000l 1
— log
38.82
0 7 184 0.01533 46.741
00 7 202 0.01683 45.696
000 7 232 0.01933 44.146
0000 7 261 0.02173 42.837
250000 19 287 0.02391 41.767
300000 19 314 0.02617 40.757
350000 19 338 0.02817 39.933
400000 19 362.5 0.03011 39.188
450000 37 384 0.03200 38.507
500000 37 407 0.03392 37.855
600000 37 446.5 0.03721 36.820
700000 61 482 0.04016 35.966
750000 61 499 0.04158 35.577
800000 61 515.5 0.04296 35.212
900000 61 546.5 0.04554 34.560
1000000 61 576 0.04800 33971
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Figure 1-21

length of line. The average capacitance per mile per conductor is therefore
one-third of the sum of the capacitances of any of the conductors in the
system for each of its three positions. Using the general equation (1.15.9),
the potential difference across any two conductors such as 1 and 2 (or §
and 6), when in position (a), is by combining terms

Dy.D rD Ds.D
Vis)a = /0°) log L12Ds /—120°) log P62 —240°) log Pa2Dr2 ],
(V1o) N[@_) log 22204 4 (y/—120°) log D% + (/= 240°) log DmDﬂ]

The potential difference across the same conductors when in position (b),
obtained in the same manner, and shifted 120° to bring it in phase with

(Vlg)a is

- o Dstga o fD7a o D13D53]
Vigs= N 0°) log ——= 4+ —120°) log —— + (¢/—240°) log =12 =B L.
(Vi2)s [(‘/’/ ) log +Des W/ ) log DD (¥/—240°) log D1Dss
Similarly, the potential difference across the same conductors when in posi-

tion (c) and shifted in phase 240° to bring it in phase with (Vs), is

- o DDy, /—120° rDs —240° Dlem],
(Vi)e= N [(wLO_ ) log D + (¥/—120°) log DuDa + (¥/—240° log DuDe

Each of these equations will give a different value for the capacitance
per mile between conductors 1 and 2, depending upon their position in the
transposition scheme. The average value of the capacitance may be obtained,
however, from the average of the three equations. Referring to Fig. 1-21, (a),
it is seen that, from the symmetry of the arrangement,

Dys = Dyoy Dsg = Degs = Dy = Dig; D1y = Dy
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Using these relations in the above expressions, it is found that the sum
of the last three terms adds up to zero. The average of the three expressions

Vig = (Viz)s + (V;)b + (Vi2),

is accordingly
— N o 0122D132D13017 o ’3D152D20 ]
Vie=|= (y/0°) Jog =218 1817 —120°) log ————2%2_|.
” [3 9/0) log 2ERCIIDY 4 () —120°) log LD D

Since the logarithmic terms are equal and of opposite sign, the formula
may be written

N D12?D162D13D17 (-] o
Vie= = log 22216 sl g0y
12 log #D12Dse (¢_/_ '»b/_ 120°)
D\9?D1¢*Dr3Dy; (‘/j¢) '30°
7°D1s*Dog —
Since in terms of the voltage V to neutral V, =V/3V, the formula becomes

(Dlzpls)g(DlsDn)‘}
V= Nlog Dis D / y

3
v log
3

The capacitance of each conductor is

C= —f;farads/meter.

Assigning to N its value 41.445 X 10° and multiplying by 5280/3.281 yields

C= 38.82 X 10~
(Dqus)?(DlaDn)*
log \_Dis Des farads/mile of conductor. (1.20.2)
r

The numerator of the logarithmic term is the geomean spacing distance
between conductors and is thus the equivalent equilateral spacing between
the conductors.

1.21. Leakage Conductance. The insulating medium between the
conductors of an overhead aerial
transmission line is obviously air. The insulating medium of single-conductor
cables* for underground transmission systems at voltages higher than 27 kv
is generally manila or woodpulp paper impregnated with insulating com-
pounds of mineral oil or petrolatum base. Hollow-conductor oil-filled cablest
are used for voltages above 132 kv.
* Roper, D. W., and Halperin, H., Rating of High-Tension Cables and Impregnated-Paper Insula-

tion, trans. ALE.E. 1926, p. 528.
t Shanklin, G., and Sheals, V. A., Development of New Oil-filled Cable. Elec. World, 1928, p. 186.
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Whatever type of line is considered, the insulating medium has such a
high resistivity that the conduction currents through and across this sepa-
rating medium between the line conductors are usually quite small. In case
of aerial lines, a certain amount of conduction currents may also leak over
the insulators. These, as well as the conduction currents through and across
the air, are called leakage currents. The ratio of the leakage current I, per
conductor to the potential difference V' between the conductor and neutral
is called leakage conductance. Its value is measured in mhos and designated
by the letter G.*

Accordingly, the leakage conductance per conductor is

G= {7* mhos, (1.21.1)

and is numerically equal to the leakage current I, in amperes per volt
difference of potential.

The leakage conductance may be expressed also in terms of the con-
ductive property of the medium and the length and cross-sectional area of
the leakage current path. Thus, if ¥ is the conductivity, i.e., the conduct-
ance per meter cube of the medium, S the length in meters, and 4 the
cross-sectional area of the path in square meters, then

G=1v f‘S- mbhos. (1.212)

Equating (1.21.1) and (1.21.2) gives

where I,/A is the density I, of the leakage current, and V/S is the potential
gradient or negative electric field intensity —F, in volts per meter.
When the gradient is not uniform along the current path, the equation
is written
Yo, (1.21.3)
ds

This gives

—flads .
V= (1.21.4)

where the integration is between the limits of the current path.
If I, represents the leakage current per meter length of conductor and

* The name of the international unit of conductance is the siemens. This name was adopted by
the International Electrotechnical Commission at its meeting held in Scheveningen, Brussels,
June, 1935,
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V the potential difference between conductor and neutral, the leakage con-
ductance, by (1.21.4) and (1.21.1), is

G=—2h (1.21.5)

mhos per meter length of conductor.

This expression may be evaluated quite easily for such cases where the
current density I3 can be determined from the geometry of the electrical
structure under consideration.

" It is important to note, however, that the leakage conductance and the
capacitance of line conductors occur as if they were connected in shunt
across the same difference of potential. Indeed, their formulas

G= —Il}mhos
and
C= -;éfarads

are analogous.
Furthermore the ratio of G, as given by the general formula (1.21.5),
to C, as given by the general formula (1.13.7), is

G_y D/ [Tads (1.21.6)

where ¢ is the permittivity of the medium in the rationalized mks system
of units.

It can be shown that the distribution of the leakage current through a
high resistance medium, such as there is between the line conductors, is as
if there are two equal and opposite charges at opposite points of the two
conductors. The distribution of the leakage current in the space surround-
ing the conductor follows, therefore, exactly the same pattern as the electric
flux distribution shown in Fig. 1-22. Under this condition it follows that

L __ ¥ .
fI d ds f¢/d ds
Equation (1.21.6) may be written, therefore,

G_1.
&= (1.21.7)

This expression indicates that the leakage conductance per mile of con-
ductor of any system of conductors, such as those discussed in the preceding
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Figure 1-22

articles on capacitance, may be obtained directly by multiplying the respec-
tive capacitance by v/e. Thus the leakage conductance per conductor of a
single-phase line, or per conductor of a three-phase line with equilateral
spacing, by (1.21.7) and (1.18.12), is

G= M__.Wl mhos/mile. (1.21.8)
log =
r

The leakage conductance from conductor to conductor per mile is one-
half as much.

The conductivity of air ¥ which enters in the formulas for leakage con-
ductance is not a constant, however. Its value depends upon the atmos-
pheric pressure, upon the humidity, the temperature, and the degree of
ionization of the air surrounding the line. Furthermore, since these factors,
respectively, are not the same at all points along a line, there is no justifi-
cation in the assumption of uniform distribution of the leakage conductance
for aerial transmission lines.

The conductivity of the air, however, is so low, and the spacing dis-
tance between the conductors of high voltage lines is so large in comparison
with the conductor radius that, as a rule, leakage conductance is neglected
in the design or performance calculation of power lines operating at voltages
not exceeding 125 kv.
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1.22. Corona Disruptive Potential Gra- The operating voltage of long trans-
" dient and Visual Potential Gra- mission lines may be sufficiently
dient. high to produce an electric field of
intensity so great as to ionize the
air strongly in the immediate vicinity of the conductors. Under this con-
dition the leakage conductance becomes quite large and the conduction
currents and the consequent leakage power loss are increased in propor-
tion.

The leakage of energy from the surfaces of the conductors is associated
with crackling noises, a breakdown of the air into ozone which may be
detected by its characteristic odor, and by a bluish glow around the con-
ductors, called corona, and which becomes visible in the dark. At very high
differences of potential, the streamers of bluish light may extend to appre-
ciable distances from the conductor surface. A more or less continuous
spark or arc may actually be established at various points across the con-
ductors. This is usually associated with a complete collapse of the insulating
properties of the air.

The particular value of the difference of potential which causes the for-
mation of the visible corona is called visual critical voltage, and that which
causes the complete breakdown of the air is usually referred to as the
spark or flask over voltage.

Research on corona formation on transmission lines and allied phenom-
ena was pioneered some thirty years ago by the late F. W. Peek, Jr., of
the General Electric Co.* His original investigations were made on experi-
mental lines of about 500 feet in length with various size conductors, at
adjustable spacing distances. From his experimentally-obtained data, Peek
has shown that the actual potential gradient (field intensity) at the surface
of a conductor, and at which there is just sufficient ionization taking place
to cause an increase in leakage conductance, is somewhat smaller than the
potential gradient at which the corona becomes visible. He called it dis-
ruptive potential gradient, to distinguish it from that at which the corona
becomes visible and which he called visual potential gradient.

The experimental data indicated also that, at normal condition of
atmospheric pressure of 76 cm. of mercury, normal temperature of 25° C.
the rms value of the disruptive potential gradient at the surface of a smooth
polished conductor is 53.5 kv per inch. This corresponds to 2110 kv per
meter. The formulas for the potential gradient in volts per meter and for

* F. W. Peek, Law of Corona, Proc., ALE.E., 1912, Vol. 31.
F. W. Peek, Dielectric Phenomena in High-voltage Engineering.
Whitehead, Electric Strength of Air, Proc., ALE.E.,, 1912, Vol. 31.
Moody and Faccioli, Corona Phenomena, Trans., A.LE.E., 1909, Vol. 27.
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the field intensity in newtons* per coulomb are identical for all electrical
systems. Their numerical values are equal and the same symbol} F will be
used to designate either.

A fuller realization of the significance and magnitude of the disruptive
potential gradient may be obtained by translating it in terms of its equiva-
lent field intensity as a force per charge of one coulomb. Thus, the disrup-
tive potential gradient of 2110 kv per meter is equivalent to 2,110,000 new-
tons per coulomb, or 2110000 X 0.102 = 215220 kilograms of force per
coulomb, or 2110000 X 0.2248 = 474,328 pounds of force per coulomb or
somewhat over 237 tons per coulomb!

To determine the line voltage that would give rise to the disruptive
potential gradient F, or to the visual potential gradient F,, consider first
the general relationship between voltage and potential gradient.

The field intensity or potential gradient at any point « along the inter-
axial distance D between two parallel conductors in air is given by equation

F= ¥ (1 + 1 )volts/meter, or newtons,/coulomb,
2re\x D — x,

where ¢ is the electric flux in coulombs per meter of conductor and
e=1/(4r X 9 X 10°) is the permittivity of air in the mks system of
units. At the surface of the conductor where x = r, the radius of the con-
ductor, this expression becomes

"= 1 1 .
I 18><10°¢(r+D )

However, since the interaxial distance between the conductors is very much
larger than r, the equation is substantially

F= 18X 10° 4 volts/meter or newtons/coulomb. (1.22.1)
r

Designating the voltage from conductor to ground or to neutral by V,
and by C the capacitance of the conductor to ground per meter of conduc-
tor, the above formula becomes

F=18x 10
Using the value of C as given by equation (1.16.2) gives
Y
23r lOg 'r—

F= volts/meter or newtons/coulomb. (1.22.2)

* The unit of force in the mks system of units is 100,000 dynes. The name newfon, which is gain-
ing favor among engineer and physicists, was proposed for this unit at the last meeting of the
International Electrotechnical Commission held at Scheveningen, Brussels, in 1935.

t The letters g and G are frequently used to designate potential gradients. Some confusion may
arise, however, because the symbol for leakage conductance is also G.
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Designating by F, the disruptive potential gradient (field intensity) in
kilovolts per meter and by (kv)s, the disruptive potential to ground or
neutral in kilovolts, the equation (1.22.2) becomes

()so = 2.3F4 7 log 17’- (1.22.3)
Substituting Fq = 2110 kv per meter, as determined by Peek, yields
(kv)a = 48537, log % (1.22.4)

kilovolts to neutral. The subscript m to D and r in this expression denotes
that D and r ate expressed in meters.
If Fyis in kilovolts per cm. and r and D in cm., the above equation be-

comes E
Do

(kv)ao = 48.5370n, log (1.22.5)

Tom
When the disruptive potential gradient is expressed in kilovolts per
inch and D and 7 are measured in inches, the equation is

(k0)ao = 2.3 X 21.1 X 2.54r; log 2
£
= 123r, log —?}'- (1.22.6)

Equations (1.22.4), (.5), and (.6) give the disruptive voltages to ground
or neutral. The disruptive line voltage for a single-phase line is

(kv)ar = 2(kv)a (1.22.7)
and for a three-phase line it is
(k9)as = V3(k0) 0. (1.22.8)

Equations (1.22.4), (.5), and (.6) give the voltage from conductor to
ground or neutral that causes a disruptive potential gradient of a rms
value equal to 2110 kv per meter. The conductor must have, as previously
stated, a smooth, polished surface, the barometric pressure must be normal
at 76 cm. of mercury, and the temperature must be 25° C.

It was found experimentally that the voltage causing the disruptive
potential gradient is somewhat smaller when the conductor surface is rough
or when the line consists of stranded conductors. This is taken care of by
multiplying ()4, obtained above by an “irregularity ”’ factor m, whose
value is* '

1.00 for smooth, polished conductors.
0.98 to 0.93 for rough or weathered wire.
0.87 to 0.83 for seven-strand cables.

0.85 to 0.80 for concentric layer cables of 19, 37, or 61 strands.

* ¥. W. Peek, Dielactric Phenomena in High-Voltage Engineering, p. 302, McGraw-Hill Book Co.
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A further correction in the value of (kv)s, must be introduced if the
atmospheric pressure, or the temperature, or both are not the standard
value of 76 cm. and 25° C., respectively. This is taken care of by multiply-
ing the radius r by the air-density factor é, whose value is

3.928
YR, (1.22.9)
where
B = barometric pressure in cm. of mercury, and
¢t = temperature in degrees centigrade
or
17.95
01 7 (1.22.10)
where

= barometric pressure in inches of mercury, 4nd
T = temperature in degrees Fahrenheit.

The complete formula for (kv)4, when the dimensions are in centimeters,
by (1.22.5), is
(k0)ao = 48.53m4(570m) log Lem. (1.22.11)

Tem

The complete formula for (kv)4, when the dimensions are in inches, by
(1.22.6), is

(kv)ao = 123m,(b7;) log D, (1.22.12)

i

1.23. Visual Critical Potential Differ- The experimental data of Peek in-
ence. dicate also that a visible corona is
just being formed when the rms
value of the disr \}Rt_lve potential gradient of 21.1 kv per cm. is at a distance
of (rom + 0.301V'7,,) cm. from the axis of the conductor.
The substitution of this quantity for 7., in (1.22.5) will give, therefore,
the visual critical voltage (¥v),, to ground or neutral :

(B)uo = 48.53(rom + 0.301V/7,7) log Zem.

cm

This may be written

(kv)oo = 48.53 (1 + ‘1}0_1_) fem log Ir’"m (1.23.1)
Tem em
If the dimensions are given in inches the equation becomes
(B0)eo = 4853(1 + \?_30_1. zs4r.10gD‘
or
(ko) = 123 (1 + 0\}8_9) rilog 2¢ D‘ (1.23.2)
7 ’
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Equations (1.23.1) and (.2) give the voltage from conductor to ground
or neutral that causes visible corona to be formed under standard condi-
tions, i.e., when the conductor is smooth and polished, the barometric
pressure 76 cm. of mercury and the temperature 25° C.

The experimental data indicate that the equation for (kv),, must be
modified by the ‘‘irregularity ”’ and the density factors given in the pre-
ceding article. If the dimensions are given in centimeters, formula (1.23.1)
is modified to

(v). = 48.53 (1 + il’l:) Mabrom log 2em. (1.23.3)

\/arcm om
Similarly, if the dimensions are stated in inches, formula (1.23.2) be-
comes
D;
modr; log =, (1.23.4)
’

1

(kv)oo = 123 (1 + 9\:}2—?)

or;

where the values of & and m, are given in the preceding article.

1.24. Corona Loss and Equivalent From extensive research resulting
Leakage Conductance. in a great mass of experimental
data, Peek formulated the following

empirical expression for the loss in power due to corona:

_ (3% et |74 10
P—{T(,H— 25)((kv) — (kv)aol \/5}10— (1.24.1)

kilowatts per mile of conductor.

In this formula, 8 is the air density factor as calculated by (1.22.9) or
(1.22.10). The term (kv) is the potential to ground in kilovolts for a
single-phase line and to neutral for a balanced, equilaterally-spaced three-
phase line. The quantity (kv)s, is the disruptive potential to ground in
kilovolts for a single-phase line, and to neutral for a balanced, equilaterally-
spaced three-phase line and is given by either (1.22.11) or (1.22.12), depend-
ing upon what units are used. The symbol f, in the equation, stands for the
frequency of the supply in cycles per second.

The above formula for thé power loss P holds strictly for single-phase
lines or equilaterally-spaced three-phase lines.

When a line is operated at voltage values which are conducive to the
formation of corona, appreciable current leaks across the conductors. These
currents are not sinusoidal, and as a consequence the corona loss as given
by formula (1.24.1) will not give the correct actual leakage conductance per
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conductor. If the power loss due to the higher harmonics, however, is
neglected, the leakage conductance is

G= mhos/mile of conductor. (1.24.2)

__P
1000(kv)?
The value of P in this formula is given by (1.24.1) and is in kilowatts per
mile, and (kv) is the voltage to neutral in kilovolts.
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SUGGESTIVE PROBLEMS Chapter 1

1. Using equats. (1.5.16) and (1.5.17), respectively, plot the skin effect resistance-
ratio for a frequency of 60 cps as a function of the cross-sectional area in circ.
mils for copper and aluminum conductors.
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2.

10.

11,

12

Using equat. (1.5.18) plot the internal inductance L; in henry per mile at a
frequency of 60 cps as a function of the cross-sectional area in circ. mils for
copper conductors.

. Obtain the equation for the internal inductance L; in henry per mile at 60 cps

as a function of the cross-sectional area for aluminum conductors. (See equat.
(1.5.18) for copper conductors.)

. Obtain graphs showing the variation of the inductance in henry per mile per

conductor of a two-wire line (a) as a function of the spacing distance D and
(b) as a function of the conductor radius for conductors of sizes smaller than
1,000,000 circ. mils.

. Obtain a graph showing the variation of the inductance in henry per mile per

conductor for stranded conductors as a function of the number of strands.

. Calculate the average inductance in henry per mile per conductor of a twin

three-phase transposed line of 1,000,000 circ. mils standard annealed copper,
concentric stranded of 61 strands. Assume the equilateral spacing distance
between the conductors in the same line is 10 ft. and that the spacing dis-
tance between the lines is 15 feet.

. Derive the equation for the inductance per mile of a hollow copper conductor

of internal diameter d; and external diameter d.. Such conductors are used
in the Boulder Dam-Los Angeles transmission system.

. Calculate the equivalent equilateral spacing (geomean spacing) distance of a

three-phase flat-spaced line in which the outer conductors are 12 and 18 feet,
respectively, from the middle one.

. Using equat. (1.16.4), obtain a graph showing the variation of line capacitance

in mf per mile per conductor (a) as a function of the spacing distance, and
(b) as a function of the radius of the wire.

Calculate the average capacitance per conductor per mile of a three-phase
750,000 circ. mil line with flat spacing, assuming that the spacing between
the middle and outside conductor is 10 feet.

Calculate the capacitance per mile per conductor of the twin three-phase line
stated in Prob. 6.

Calculate the disruptive potential to neutral of a three-phase line whose con-
ductors are separated by a spacing distance of 20 feet, 250,000 circ. mils in
cross-section and smooth. Assume normal atmospheric pressure and tempera-
ture of 70° F.

What is the value of the disruptive potential difference between conductors?
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13.

14.

CH. 1 CIRCUIT PROPERTIES OF TRANSMISSION LINES

What would be the disruptive potential difference to neutral and between
conductors if the conductor were a concentric layer cable of 61 strands, at
normal atmospheric pressure and temperature of 88° F.?

Calculate the visual critical potential difference to neutral and between
conductors for the two conditions stated above.

Using Peek’s formula, calculate the corona loss per conductor mile for the
conditions stated in Prob. 10, on the assumption that the line voltage is
10 per cent larger than the visual critical potential difference at 60 cps fre-
quency.

Neglecting the higher harmonics, calculate the equivalent leakage conduct-
ance in mhos per mile per conductor for the line stated in Prob. 13.



Chapter 2 Transmission Line
Formulas

2.1. General Considerations: Ther and It was shown in § 1.2 that a line

T Line Elements. conductor, in its relationship to the

neutral or ground, is an electric cir-

cuit consisting of uniformly distributed resistance and inductance in series

connection and uniformly distributed leakage conductance and capacitance
in parallel connection, as shown schematically in Fig. 1-1.

The voltage drop in an infinitesimal conductor element of length Ax

where the current is ¢ ampere is

Ae = (Ri + L %) Ax volts.

The quantities R and L are the resistance and inductance, respectively, of
the conductor per unit length. The space-rate of change of the voltage

drop along the line conductor as Ax—> 0, is

de _ p. di,

T Ri+ L o
Similarly the current through the leakage conductance and capacitance of
an infinitesimal conductor element of length Ax where the potential to neu-

tral or ground is ¢ volts, is
Al = (Gg +C gf) Ax amperes.

The quantities G and C are, respectively, the leakage conductance and the
capacitance of the conductor per unit length. The space-rate of change of

the current along the line conductor as Ax >0, is
di _ de,
- CtCq
59



60 . CH. 2 TRANSMISSION LINE FORMULAS

By differentiation and proper elimination, these two expressions may be
written ,
=rc%y (RC+LG) ¢4 RGe '

d:x:2 ae
and
d*
dx? LCdt2+(RC+LG) ' | RGi,
in which for a sinusoidally alternating voltage
e = E¢™
i= Jwto

The complete solution of the above two differential equations, with the
constants of integration determined to satisfy the particular limiting con-
ditions, includes the transient values of both voltage and current incident
to the energizing of the line, and the steady-state values pertaining to the
steady conditions of operation.

The study of line behavior under transient conditions is beyond the
scope of this book, and the line performance under steady-state conditions
may be obtained by methods much simpler than that demanded by the
above differentials.

Each infinitesimal part of line conductor may be thought of as consist-
ing, at any one particular frequency, of an impedance element of the form
(R 4+ jLw) and two admittance elements of the form (G + jCw), as shown
in Fig. 2-1. A four-terminal circuit so connected is commonly known as a
= network. A line element may be thought of also as consisting of two im-
pedance elements of the form (R + jLw) and a single admittance element
of the form (G + jCw) connected as shown in Fig. 2-2. Such a four-terminal
structure is referred to as a T network.

R lw lw R

thure 2-1 Figure 2-2

From what has just been said, it follows that since a line conductor
consists electrically of recurrent symmetrical = elements or recurrent sym-
metrical T elements, the behavior of a conductor as a vehicle for the
transfer of electrical energy may thus be obtained from an analysis of the
behavior of its component elements, either of the = or of the T form.
Thus one of the fundamental properties of such networks is that for each
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value of frequency there is only one impedance which, when connected at one
end of the circuit will result in an equal impedance at the other end. The

l——AAVVWWWA
———
I
Zp; 1,

20— ——— e ]

Figure 2-3

impedance of the network under this condition, therefore, is the same irre-
spective at which end it is measured. To determine this particular imped-
ance value consider the symmetrical T network in Fig. 2-3. From the con-
nection it is seen that
1
1
Z,+ Zy

Zy,=2,+
Y: +

Setting Zy; = Zy = Z, and solving for Z,, gives

Zi=2¢ + % 2.1.1)

2
This particular impedance Z, is called characteristic impedance of the circuit.
Another fundamental property of the symmetrical T network is that
when the network is terminated in characteristic impedance, the ratio of
the currents at the two ends is fixed and equal to the respective ratio of
the voltages at the two ends. Thus referring to the figure it will be noted
that, since 21, = Z = 2,

Vie= 12,
and
V= L2,
or
Vie _ I, 2.1.2
Vaa Iy (21.2)

To obtain the value of this ratio, note that

L=5L+15
and

1%’= Lz + Z,).
3
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Hence
11 = Ia[l + Yz(zl + Za)]
or, by (2.1.2),
Ve_ Loy 4 vz+2). (213
Vas Iz

The fundamental properties of symmetrical I' networks embodied in
equations (2.1.1) and (2.1.3) are also fundamental to transmission lines.
First, any transmission line has a characteristic impedance, i.e., if a network
of impedance Z, is connected at one end of the line, the impedance at the
other end is the same. Second, if the receiving-end impedance is equal to
Z,, the ratio of the end currents and of end voltages are equal.

2.2. Characteristic Impedance of Equations (2.1.1) and (2.1.3) ob-
Transmission Lines. tained above hold for each ele-
mental T of a line conductor. Thus,

let
2= R+ jLo (2.2.1)
v= G+ jCw (2.2.2)

be, respectively, the linear impedance and the shunt admittance per mile
of conductor.

Consider a T element of length
AS as shown in Fig. 24, then

Z,= 3zAS

Y, = y AS. (2.2.3)
Substituting these values in equation
(2.1.1) for the characteristic imped-
as ance, gives

22=1(Gasyp+ 2
y

Figure 24

At the limit when the elemental length of the conductor is infinitesi-
mally small, the equation becomes

Z,= \/5- (2.2.4)

Substituting the values of z and y from (2.2.1) and (2.2.2) yields

_ [Rtje .
Z, G——L—+ iCa (2.2.5)

_ [R*+ L%\
z,= ( R C’w’) [t (2.2.6)

or
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where

and
o= mn—l%’ 2.2.7)
a = tan™! %ﬂ

Equations (2.2.4), (2.2.5), and (2.2.6) represent the characteristic imped-
ance per conductor whether the line is single phase or three phase. The
angle ¢, of the characteristic impedance Z, is given by (2.2.7). Extreme care
should be exercised in the use of proper values of line constants. These con-
stants for copper and aluminum conductors for various types of lines and
conductor arrangements are discussed in Chapter I.

The real or resistive component of the characteristic impedance is

R, = Z, cos {o, (2.2.8)
and the quadrature or reactive component is
X, = Z,sin {,. (2.2.9)

The leakage conductance G in the formula for Z, is usually neglected
when the line is operated at a voltage to ground or neutral (voltage per
phase) less than the critical disruptive voltage (kv)s, given by (1.22.12).
When the operating voltage is larger than that given by this equation, the
approximate value for G given by (1.24.2) should be used.

If the resistance per mile of line conductor is also negligibly small in
comparison with Lw, the formula (2.2.5) for the characteristic impedance

becomes ~
Zy= \/(5 (2.2.10)

It is then called surge impedance.
For a solid conductor of a single-phase line or of an equilaterally-spaced
three-phase line, the surge impedance to ground or neutral, by (1.7.4) and

(1.16.2), is
741.13 X 10~ log —2— . log 2T}
Z = 0.7788r r |,
"’ 38.82 X 10~
This yields

Z, = 138.15 [(log ?)2 4+ 0.1085 log 17’]’ @2.2.11)

where D is the interaxial distance between the line conductors and r is the
conductor radius.
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If the magnetic interlinkages within the conductor are neglected, the
above formula becomes

L D
o= = 138 D, 2.2.12
Zy \/‘ 138.15 log (22.12)

This approximate formula is often used in the calculation of the surge
impedance of transmission line. Thus, for a line whose conductors are of
1,000,000 circ. mil and spaced 25 feet, the accurate value for the surge im-
pedance, as obtained by (2.2.11), is 392 ohms. The approximate formula
yields 384 ohms, an error of 2.04 per cent.

2.3. Propagation Constant of Trans- Consider again the T element of

mission Lines. the line terminated in Z,, shown in

Fig. 2-4. Let I be the current which

leaves the element and enters the next one to the right, and A7 be the cur-

rent in the admittance branch of the element. The current which enters

the element is, therefore, 7 + AI. By (2.1.3), the ratio of the currents at
the ends of the element is

’—fl—“’= 14 Yo(Z, + 2,)

which, by (2.2.3), becomes
A -y +yAS(5—?§+Z,,)
or

Al vz AS
—_— = Z,) AS.
; ( ; +y)

Using the value of Z,, as given in (2.2.4), this equation' may be written

i——g—, = I(yzA—ZS +\/fﬁ)-
At the limit when AS approaches zero, i.e., when the conductor element is
infinitesimal in length, the equation becomes

‘—’I-’ =Vyz dS. (2.3.1)

Assuming that distances along the conductor are measured from the receiv-
ing end where the distance S = 0 and I = I,, toward the station end where
the distance is S and the current I = I,, the equation (2.3.1) becomes

J:‘QI!=L3\/;;¢:.
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This, when integrated between the stated limits, gives

’ 1n§' =SV (2.3.2)
or
L_ sva, (2.3.3)

r

The quantity V. 2y is called line propagation constant and is usually
designated by the letter p. The equation may, accordingly, be written

fz = oS, (2.3.4)

By equation (2.1.2), this relationship holds also for the voltage ratio, i.e.,

Ve _
v S, (2.375)

Using the values of z and y as given by (2.2.1) and (2.2.2), the value of the
propagation constant p in terms of the constants of the line conductor is

p =V (R + jLo)(G + jCw) (2.3.6)
or
p = [(R? + La2)(G? + Chd)R/s, (2.3.7)
where
= (23] + &2
2
and
ay = tan™! % (2.38)
az = tan™? %u.

Like the characteristic impedance, the propagation constant of the line
conductor is a vector-like quantity. Its real component, called alfenuation
constant

a= pcosd (2.3.9)
measures the decrease in voltage, current, and energy values per mile of
line conductor as the energy is transferred (propagated) from the station
end along the line. The quadrature component of p, called phase constant

8= psind ‘ (2.3.10)

measures the angular phase shift, i.e., the displacement of voltage, and of
current per mile of line conductor, with reference to the respective quantities
at the station end. Accordingly the vector value of the propagation con-

stant is
p=a+jB. (2.3.11)
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As in the case of the characteristic impedance the G which enters in the
formula for p may be neglected when the operating voltage to ground or
neutral is less than the critical disruptive voltage (kv)s given by (1.22.12).
The approximate formula given by (1.24.2) should be used, however, when
the operating voltage to ground or neutral is larger than the critical dis-
ruptive voltage for the line under consideration.

2.4. Velocity of Energy Transfer: Ve- 1If, in formula (2.3.6) for the propa-
locity of Phase Propagation. gation constant, the values of R
and G are assumed negligibly small

in comparison with Lw and Cw respectively, the formula becomes

p=V—LCu* = juVLC.

This being the quadrature component of p, it is the phase constant and
should be written

8= wVIC
or
1 w
1__ o 2.4.1
vIC B (240

Since the w in this expression denotes a velocity, it follows that the
quantity, 1/\/~E' has also the characteristics of a velocity and as such it
has a particular significance and should be investigated more fully. Thus
the value of L per mile of a solid conductor of a single-phase hne or of an
equilaterally-spaced three-phase line, by (1.7 4) is

0. 7788— henry.

The capacitance per mile of a solid conductor, by (1.164), is
Cc =388 X107, 4.
log =
r

L= 741.13 X 10~%]og

The quantity 1/4LC has therefore a value of

1 log g)
—= = 186300 .
vILC _D__)

log'<0.7788r
This may be simplified to v

1 1
— = 186300 |—————- 2.4.2
VIC 1+ 0.1086 (24.2)

D
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If the L and C are in henries and farads per mile, respectively, the quan-
tity 1/V/LC differs from the velocity of light (186,300 miles per second) by
a factor equal to the radical in formula (2.4.2). Furthermore the radical
would be equal to 1 if, in the calculation of L, the actual radius of the con-
ductor were used instead of the geomean radius. In other words, if the
magnetic flux within the conductor were neglected, the quantity 1/v/LC
would be equal to the velocity of light, and would be the same for all lines,
independent of frequency, conductor size and interaxial spacing distance.
For line conductors of 1,000,000 circ. mils, i.e., of 0.5 inches radius and
whose interaxial spacing distance is 25 feet, the radical has a value of 0.981,
indicating that the velocity of propagation for this particular line is 98.1 per
cent of the velocity of electromagnetic waves through space, or 182,760 miles
per second.

The quantity 1/V'LC = 1,, represented by equation (2.4.2), is the veloc-
ity of energy transfer. It is independent of the frequency or of the wave shape
of the impressed voltage, but depends to a slight extent, as indicated above,
upon the size of line conductors and their interaxial spacing distance.

The quantity w/B = v, has also the characteristics of a velocity. It is
called velocity of phase propagation. It is equal to the velocity of energy
transfer only when the line is hypothetically free of dissipative properties,
i.e., when R=0and G = 0.*

The value of the propagation constant for power lines in which R is
appreciable and G negligible, by (2.3.6), is

p=ViCu(R + jL)

or

p = (CoVR + L%?)}/3, (2.4.3)
where
tan™! % + 90°
o= — = . (244)
2 .
The phase constant 38, by (2.3.10), is
8= (CwVR:+ L%k sins. (24.5)

From (2.4.4) it is found that

. 1 L
sin§ = \/'z'(‘ +ﬁ—+£LT)

This substituted in (2.4.5) and simplifying, yields
= (Lw +VR T szf)-

* Carson, John R., Electric Circuit Theory and the Operational Calculus, p. 106. McGraw-Hill
Book Co.
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By factoring out Lw, this may be put in the form

- Lo ),
-1 (e )
1

_— = 7,

vIC

the equation for the phase constant 8 may be written

g = vf[%(l + 41 +z%)]*- (2.4.6)

The velocity of phase propagation being

Setting

Vp= —,

:—;= B (1 + A1+ waz)]* (24.7)

where v, is the velocity of energy transfer.

From this it is easily seen that the velocity of phase propagation is
smaller than the velocity of energy transfer and approaches it when the
dissipative properties of the line are negligible in amount, or when the fre-
quency is very large.

Since by definition

™IE

it follows that

%="= and 9,= %’,
it follows that

% BS,

v wit

Comparing with (2.4.7), it is seen that

S-BeEl e

It will be recalled that § is the space-phasc shift in radians or degrees
of either the voltage or of the current at a point one mile distant from the
station end with reference to the respective values at the station end. The
line is assumed to be terminated with an impedance to ground or neutral
equal to the characteristic impedance. Under identical conditions, the quan-
tity BS represents, therefore, the space-phase shift (in radians or degrees)
of voltage and of current at any point S miles from the station end.

The quantity wt on the other hand is the time phase of either the voltage
or of the current with respect to their respective initial steady state values.
The space-phase angle S5 is always larger than the time-phase angle. It.will
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approach it in value only when the dissipative properties of the line are
negligible or when w is very large.

When 8S is equal to 2= with S measured in miles and 8 in radians, S
will be equal to one complete wave length A. It follows, therefore, that

= %’5 miles. (2.4.9)

Substituting the value of B8 from (2.4.6) and using 186300 for »,, there
results

186300 (2.4.10)

B R

where f is the frequescy of the supply in cycles per second. Since R is
rather small in comparison with Lw for long power lines, the wave length

is substantially
186300

when the frequency is 60 cps.

Since this is equivalent to 360°, it follows that commercial power lines
operating at 60 cps are equivalent to a little over 8.62 miles per degree.
A line 776 miles long would be equivalent to one-fourth of a wave length.

The longest commercial line is about 35 degrees long.

2.5. The Impedance Formula of Trans- Consider the T element as part of
mission Lines; Station-end Imped- a line which is terminated at the
ance to Neutral or Ground. receiving end with an impedance

Z,, as shown in Fig. 2-5.

Z,
—— e e A AN—TUT
1+Al
Z+AZ
—_———
Figure 2-5

Let Z be the impedance to neutral at the output terminals of the T ele-
ment and AZ, the impedance of the T element. The impedance at the input
end of the T element is, therefore, Z 4 AZ.
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It is seen from the diagram that

Z+AZ=27,+

Yo+ —>

Z2i+ 2

This simplifies to
2z
z: -z +%
S
Z\+Z+ 1
Y.
and, by (2.1.1), to
Za‘l — Z‘Z

AZ = =
V4 Z+ —

v+ Z+ Y.
Using the values of Z, and Y- in terms of the linear series impedance and
linear shunt admittance, respectively, as given by (2.2.3), the above equa-
tion may be written
z2— 2

, Z _—
1zAS+ +yAS

AZ =

or
(Z2 — 2?2y AS

T @AS)WAS)t 2ZyaS+2

At the limit when AS approaches zero, the equation becomes

2 __
d S = (22— 2%y

or
iz
92 _ — ys. 2.5.1
i ¥ @5.1)

Measuring line length from the receiving end where S = 0 and Z = Z,,
to any point along the line, where S = § and Z = Z gives the limits to the

integral
z
[ RN

The integral of this expression is

z2,+Z Z, + Z,
-1 = y3.
2Z, I:ln z,—-2Z n Z, — Z,] ¥s

This may be written
2,+2 %2,—2 _
1 Z —Z Za+Zr 22 S
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Using the exponential form and since by (2:2.4)

Zy=Vuy=p,
the above equation becomes

Zo+2Z 2 — 2, _ aps
2, -2 2,+ 2 ’

Solving this for Z gives

Z= Zo[(zn + zr)e2’s — (Zo - Zr)].
(Zo - zr) + (Zo + Zr)e2ﬁ5

The expression may be put in the more convenient form given below
by multiplying numerator and denominator by e-#s

_ ZH — ) + 2,Z,(*5 + )
Z,(S + €75) + Z(PS — €*5)

(2.5.2)

(2.5.3)

or
7=12 Z, sinh pS + Z, cosh pS.
°Z, cosh pS + Z, sinh pS

(2.5.4)

This gives the impedance to ground or neutral at any point of the line.
The equation represents the impedance of the line at the station end if S
designates the entire line length.

It is important to note that if the load impedance Z, to neutral is equal
to the characteristic impedance Z, in the above two equations, they would
reduce to Z = Z,. This not only restates the fact that when a line is termi-
nated in characteristic impedance, the impedance at the other end is the
same, but proves also the fact that the impedance at any point of such a
line is equal to Z,.

Logically, this would be true also of an infinitely long line. For this rea-
son, a line terminated in characteristic impedance is sometimes referred to
as a portion of an infinite line or as a smootk line.

2.6. Significance and Evaluation of Ex- The exponential term €* and its
ponential and Hyperbolic Terms.  reciprocal enter into many formulas
pertaining to transmission lines. In
equation (2.5.4) there appear also hyperbolic functions of the term pS. It
will be seen, as the theory of transmission is further developed, that such
hyperbolic terms enter into practically all transmission line formulas. It is
important that the significance of these expressions be ascertained and pro-
cedures for evaluating them be formulated.
It was seen that the propagation constant is a vector-like quantity

p=a+jB
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From this it follows that expressions of the form A¢*® may be written

AetS = AeS/BS. (2.6.1)
Similarly
Be?S = BeS/—BS. (2.6.2)
If S, which designates distance along the line, is a variable, then equa-
tion (2.6.1) represents an exponentially growing vector-like quantity which
rotates simultaneously counter-clockwise with an angular space-phase dis-
placement f radians per mile as shown in Fig. 2-6.

;} /" .

23
Ae®

Be P’

Figure 2-6

Similarly, equation (2.6.2) represents an exponentially decaying and
clockwise rotating vector as indicated in the figure. The initial values of
these exponentially changing and rotating vectors are 4 and B respectively.
The numerical evaluation of such quantities is suggested by equations (2.6.1)
and (2.6.2). Obviously, each may be expressed as a complex number by
splitting up into a real or cosine component and a quadrature or sine com-
ponent. This complex form of the exponentials is useful in evaluating the
hyperbolic terms cosh S and sinh pS.

Thus, since

cosh pS = ‘—”:-g;‘i’, (2.63)
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by (2.6.1) and (2.6.2) it may be put in the form

cosh 5§ = - /85 + £ /=85, 2.64)

The equation indicates that if S is a variable, cosh (¢ + jB8)S is the
vector sum of two exponentially changing and rotating vectors. One of
these 3¢ is growing and rotating counter-clockwise, and the other 3¢S
is decaying and rotating clockwise, as shown in Fig. 2-7.

Figure 2-7

Equation (2.6.4) indicates also the procedure for evaluating cosh S by
splitting its two exponential components into complex numbers. If the
equation is expanded, however, it becomes

cosh pS = cosh a5 cos BS + j sinh aS sin 8S.
This simplifies readily to -
cosh pS = V'sinh? a$ + cos? 8S/¢

where (2.6.5)
¢ = tan™! (tanh a5 tan 8S).

It should be noted from (2.6.5) that the numerical value of cosh pS,
being the square root of the sums of squares, may be treated as the
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hypoteﬁuse of a right triangle whose sides are sinh @S and cos 8, and thus
evaluated by a trigonometric procedure.*
The hyperbolic term sinh pS is
E—ps

sinh (o + j8)S = =€,

3 (2.6.6)

It may be written

aS
sinh (a + jB)S =f—2— /BS — ‘2 /—BS. (2.6.7)
This equation suggests a method of evaluating sinh pS and it indicates
also that if S is a variable, the function is the vector difference of two
exponentially changing and rotating vectors as shown in Fig. 2-7.
If equation (2.6.7) is expanded, however, it gives

sinh pS = sinh a§ cos S + j cosh aS sin 8S,
which simplifies readily to

sinh pS = V’sinh? aS + sin? BS/Y¥
where (2.6.8)
— 1 tan S\,
¥ = tan (tanh aS)

The numerical value of the function may be calculated easily by (2.6.8).
Like the cosh pS it may be computed trigonometrically by treating the
radical in (2.6.8) as the hypotenuse of a right triangle whose sides are
sinh S and sin 8S.}

2.7. The Current Formulas of Trans- Referring to Fig. 2-5, let I be the
mission Lines. current leaving the T element of
the line conductor; Z, the imped-
ance to neutral at that point; and Al the current in the admittance branch
Y. of the element. By observation, it is seen that
Hence
91—’ = (24 2)1..

Substituting for Z, and Y, their respective equivalents as given by (2.2.3),
the preceding equation becomes

ATI= ZyAS + (-z—;‘-‘s)(yAS)

* Weinbach, M. P., The Log Log Duplex Vector Slide Rule, Keuffel and Esser Co.
t See Appendix 2 for the determination of p = & + j8 when sinh p, cosh p, or tanh p are known.
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This at the limit, when AS approaches zero, gives

di
- = ZydS.
7 Y

Using the impedance formula (2.5.4) for Z puts this equation in the form

ar _ ( Z Z, sinh pS + Z, cosh p
I Z, cosh pS + Z, sinh pS,

It should be noted that in this expression

and that the derivative of the denominator diS (Z, cosh pS + Z, sinh pS)

with respect to S is equal to the numerator. The equation may be written,
therefore,

d .
g IS (Z, cosh pS + Z, sinh pS) i

1 Z, cosh pS + Z, sinh pS

Integrating the left member of this equation between the limits of I = I,
and I = I, and the right side between the limits of S = 0 and § = S, gives

Inl =2 cosh pS + Z, sinh pS
I, Z,
or
I, = I, cosh pS + smh »S. (2.7.1)
Since 1Z. =V,

where V, is the receiving-end voltage to ground or neutral, the preceding
equation takes the final form

I, = I, cosh pS + %r sinh $S. (2.7.2)
This gives the current at the station end of the line conductor in terms of

receiving-end quantities, and the line properties p and Z,.
In terms of the receiving-end voltage V, equation (2.7.2) becomes

L'=v, (cosh pS + sinh pS) (2.7.3)
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The formula for the current at the receiving end in terms of station-end

values is v,
I. = 1, cosh pS — ~z—' sinh pS, (2.7.4)
which, in terms of V,, becomes ’
- cosh pS _ sinh pS)_
I v.( 2 2 (2.7.5)

Taking S as the full length of the line, and using the value of Z, as given
by (2.5.4) and simplifying, yields

|4
I = S . 2.7.6
Z, cosh pS + Z, sinh pS ( )

It should be noted that for any definite line with constant impressed
voltage V,, the only variable in (2.7.6) is Z,. When Z, = 0, i.e., when the
line is short-circuited at the load end, the equation becomes:

V.
Ir " = —_— 2.7.7
(I)ar Z, sinh 5§ (2.7.7)
which is fixed in value. Also when Z, approaches infinite value, i.e., when
the line becomes open-circuited, the current I, approaches zero. The curve
marked I, in Fig. 2-8 shows the variation of the load-end current with Z,.

(vA),

(VA),,

(") sh \,'\

Figure 2-8 ‘ Z,
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2.8. The Voltage Formula of Trans- 1f I, is the conductor current at
mission Lines. the station end and Z, the im-
pedance to ground or neutral, the

voltage to ground or neutral at that end is

V.= ILZ,.

Using the formula for I, as given by (2.7.4) and the formula for Z, as
given by (2.5.4), the preceding expression would give V, in terms of the
line constants and receiving-end impedance. If formula (2.5.4) for Z, is
simultaneously multiplied and divided by I,/Z, it becomes

z, = IZosinh pS + V; cosh 55,

I, cosh pS + %I sinh pS

Hence using (2.7.1) for I,, and this formula for Z, in the above equation
for V,, gives

V, = V,cosh pS + I.Z, sinh S, (2.8.1)

or the more convenient form
V=V, (cosh 25 + g—"sinh pS), (28.2)

where S is the entire length of line.
The voltage to ground or neutral at the receiving end in terms of station-
end values is by analogy
V. = V, cosh pS — I,Z, sinh pS. (2.8.3)

Substituting V,/Z, for I,, and for Z, its formula (2.5.4) and simplifying
yields the more convenient formula

- V.2,
v Z, cosh pS + Z,sinh pS 284)

By putting this formula in the form
v, = L : (28.5)
cosh S + 2‘-’ sinh 5§

it will be observed that when the load-end impedance Z, = 0, the value of
V. = 0. Also when Z, approached infinity, i.e; when the receiving end
becomes open-circuited, the load-end voltage approaches the constant
=V .
Vo cosh pS (2.8.6)

. The curve marked V, in Fig. 2-8 shows the variation of V, with the
load impedance Z,.
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Under the condition of open-circuited receiving end, the current at that
end is I, = 0, and equation (2.7.2) becomes

L = Vo sinh pS
80 Za y

V, sinh pS
I, = % . 2.8.
Z, cosh pS (288)
This current is usually called the ckarging current of the line.
Formula (2.8.4) for V,, multiplied by formula (2.7.6) for I, gives the
formula for the receiving-end voltampere
V,’Z,
VA), = L . 2.8.9
v4) (Z, cosh pS + Z, sinh pS)* (289
Since V. = 0 when Z, = 0 on short circuit and I, = 0 when Z, = o
on open circuit, it is reasonable to assume that (VA), passes through a maxi-
mum value for some definite value of receiving-end load impedance Z,. By
differentiating equation (2.8.9) with respect to Z, as the variable, equating
to zero, and solving for Z, it is found that the voltampere (VA4). at the
receiving end is a maximum when the receiving-end impedance has the
value

(2.8.7)
or, by (2.8.6),

Zn= 2, 2;‘;*}‘1 ;’g = 7, tanh pS (2.8.10)

The variation of the voltampere (VA), with the load impedance Z, is
indicated by the curve so marked in Fig. 2-8.

2.9. Voltage Regulation. This .is defined as the change in

voltage at the receiving end from

full load to no load in per cent of the full-load voltage. If V, is the receiving-

end voltage to neutral on full load and V,,, as given by formula (2.8.6), is
the receiving-end voltage on no load, the regulation is

Reg. = _(_Yl—V_Vr)!P_Q (2.9.1)

2.10. Receiving-End and Station-End 1If the load at the receiving end

Currents on Short-Circuited Re- should suddenly become short-

cewving End. circuited and its equivalent im-

pedance Z, thus forced suddenly

to approach a zero value, the current at that end would rise to a steady

state value given by (2.7.7).

= .__YL_._.
(I)an Z,sinh pS (2.10.1)
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The station-end current (7,) s, assumed sustained while the line is short-
circuited at the receiving end, is by (2.7.2), when V, = 0 and I, = (I,)a,

(L)sn = (Ir)s cosh pS. (2.10.2)
By (2.10.1) this becomes
_ V. cosh pS
(Ze)an Z. sinh 55" (2.10.3)

where V, is the station-end voltage to neutral.

2.11. Résumé of Derived Transmission Linear line impedance

Formulas.
2= R+ jLw = 3/a, vector ohms. (2.11.1)
Linear line admittance
y= G+ jCw = y/ay vector mhos (2.11.2)
forG=0
y = Cw/90° vector mhos. (2.11.3)

Characteristic impedance

Z,= | /%]%’ = \/5&” (2.11.4)

where
fo= 21— 2 degrees
a; = tan™! %
az = tan—l %
Surge impedance
’ Zoy = \/g ohms. (2.11.5)

Propagation constant

p =V R+ jLu)(G + jCw) =Vzy/s,
where (2.11.6)

6=a1+a3_

2

Attenuation constant

a= pcosd. (2.11.7)
Phase constant

B = p sin & degrees/mile. (2.11.8)
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Velocity of energy propagation

=\ /—le' miles/sec.

A= %E miles.
Sinh pS = (sinh? S + sin? BS)¥/¢
— a1 tanBS\
¥ = tan (tanh aS)
Cosh pS = (sinh? aS + cos? 85)}/¢
¢ = tan~!(tan 8S tanh aS).

Wave length

Sending-end impedance of a line to ground or neutral

7 =12 Z, sinh pS 4+ Z, cosh pS
* 7 Z,cosh pS + Z, sinh pS’

where
S = length of line

Z, = load impedance per phase.
Station-end current
I, = I, cosh pS + ;f sinh pS,

or in terms of V, and Z,,

L=v, (cosh pS sinh pS)

Receiving-end current in terms of V, and Z,

= Vo .
~ Z, cosh pS + Z, sinh pS

Station-end voltage to neutral in terms of ¥V, and Z,

Vo=V, (cosh S + smh pS)

Receiving-end voltage to neutral in terms of V, and 2,

—————

(2.119)

(2.11.10)

(2.11.11)

(2.11.12)

(2.11.13)

(2.11.14)

(2.11.15)

(2.11.16)

(2.11.17)

(2.11.18)

(2.11.19)

V.= V.2,
" Z,cosh pS + Z, sinh pS
Voltage to neutral at the open-circuited end of a line, in terms of V,
V.
Vo= L
cosh pS

Current at the station end when the load end is open-circuited, i.e.,

charging current
I V,sinh S
* = Z,cosh S

(2.11.20)
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Voltamperes at the receiving end in terms of V, and Z,

VZ,

VA), = £=r . Al

(¥4) (Z, cosh pS + Z, sinh pS) (2.11.21)
Receiving-end impedance for maximum voltamperes

Z,. =2 sinh pS,
C—Loshp S (2.11.22)

Voltage regulation

Reg. = w (2.11.23)
Current at the short-circuited end of a line terms of V,

B = —— (2.11.24)

Z,sinh pS

Current at the station end when receiving end is short-circuited

(L) = %—m (2.11.25)

This by (2.11.24) becomes
(I)en = (I,)en cosh pS. (2.11.26)
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Chapter 3 Applications of
Transmission Formulas

The general equations developed in the preceding chapter may be applied,
with proper interpretations, to the design and analysis of performance of
all types of lines, d-c or a-c, single-phase or three-phase, single circuit, twin
or multiple circuit. This chapter deals primarily with the application of the
transmission formulas to the study of line performance.

3.1. The Direct-Current Line. Since w=0 for a d-c circuit,
formula (2.11.4) for the charac-
teristic impedance becomes

R,= \/g, (3.1.1)

where R, may be called the characteristic resistance of ‘a d-c line. Thus the
characteristic resistance of a #10 A.W.G., ground-return telegraph line
100 miles long, having a resistance R = 5.28 ohms per mile, and a leakage
conductance G of 5 X 10~® mhos is

/ 5.28
= [———— = 1026 ohms.
R % 10 ohms

o

The propagation constant, given by (2.11.6), becomes for a d-c line
#»=a=VRG. (3.1.2)
For the particular line under consideration the attenuation constant is

a=v528 X 5 X 10-¢

= 0.005138.
82
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The formula for the resistance at the station end becomes by (2.11.13)

R, = R, (ResinhaS + R, cosh aS)
’ R, cosh aS + R, sinh aS

For the illustrative line under consideration, if terminated with a resistance
of R, = 500 ohms, it is

(3.1.3)

R. = 1026 1026 sinh 0.5138 + 500 cosh 0.5138)
) 1026 cosh 0.5138 + 500 sinh 0.5138
R, = 801.9 ohms.

This gives for the sending-end current

Vs
801.9
= 1.247 V, milliamperes.

I, =

The formula (2.11.18) for the voltage at the receiving end when applied
to a d-c line is
v, = Ve

cosh aS + %’ sinh aS

r

(3.1.4)

For the illustrative problem considered it is

V
V.= oo
cosh 0.5138 + 4228 sinh 0.5138

or
V.= 0.446 V, volts.

The current at the receiving end is, obviously,
V, _ 0446V,

L R. 500

]

or
I, = 0.892 V, milliamperes.

Equation (2.7.4) could, evidently, be used to determine the current at
the receiving end. For the d-c line, this equation becomes

V.

I = I, cosh oS — 3*sinh aS. (3.1.5)
The voltage at the open-circuited end, by (2.11.19), is
|4
Vie= L. 3.1.6
cosh a§ - ( )

For the particular line considered in the illustrative problem stated above,
it is
=_V,
Veo = 1135
= 0.881 V, volts.
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With a load of 500 ohms, the receiving-end voltage was found to be
V., = 0.446 volt per volt impressed at the station end.
If the d-c line were short-circuited at the receiving end the current at
that end would be, by (2.11.24),

=_ Ve
(Ir)oh - R.,sinh aS (3.1.7)

For the illustrative line this is
|

() = 1076 sinh 05138
= 1.811 V, milliamperes.

The current at the station end when the receiving end is short-circuited,
by (2.11.26), is

(In)ch = (Ir).h COSh aS. (3.1.8)
For the illustrative line considered, it is

(I)s = 1.811 X 1,135V,
= 2.056 V, milliamperes.
The receiving-end voltamperes, which for the d-c line is numerically
equal to the power in watts is
P.=V,I,
= 0.446 X 0.892 X 102 V2
= 0.398 V,? milliwatts.

The receiving-end resistance that would give the maximum power at the
receiving end, by (2.11.22), is

_ p sinhaS _
R = Roc——_oshaS R, tanh aS.

For the illustrative line used, it is

R.» = 1026 X 0.473
= 485.3.

3.2. The Nondissipative Alternating- To get a comprehensive under-
/Cunem Line. Fundamental Rela- standing of the transmission line

/ tions. formulas developed in the preced-
ing chapter it is desirable that they

should be applied also to a nondissipative a-c line. The analysis of such a
line in contrast with that of the nonreactive (d-c) line discussed and
illustrated in the preceding article, will give not only a more complete
insight into the phenomena of energy transmission, but of the performance
of a-c lines under actual operating conditions. It should be kept in mind
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of course that a nondissipative line is nonexistent. For this reason it is
sometimes referred to as an ¢deal or nonrealizable line.

The analysis is illustrated with a single-phase line consisting of two
stranded hard-drawn copper cables, each of 61 strands. The cross-sectional
area of the copper is 1,000,000 circ. mils. The outside diameter of the cable
is 1.151 inches (» = 0.5755 inches). The resistance of such a cable is 0.068
ohms per mile. Since it is less than one-tenth of the inductive reactance per
mile, it will be neglected and the line assumed to be substantially a non-
dissipative line. The interaxial spacing distance is assumed to be 24 feet,
i.e., 288 inches.

The inductance and inductive reactance of standard conductors and
standard spacing distances, and at commercial frequencies may be obtained
from handbooks of electrical engineering, or from Tables II and III as out-
lined in § 1.11.

The inductance may, however, be calculated by the general formula

(1.8.11)
D

(’vm)ﬂ.
The geomean radius of a 61-strand cable, given in Table I is 0.7720 r.
Accordingly the above formula becomes for the particular cable considered

L= 741.13 X 10~*log W:}s_oﬁ

L = 0.002084 henry per mile.

L= 741.13 X 10~ log

The inductive reactance at the commercial frequency of 60 cps is
Lw = 0.002084 X 377 = 0.786 ohms/mile.

The capacitance per mile of conductor to ground or neutral is, by (1.16.4),
or directly from Tables IV and V as outlined in § 1.19

C= 38.82 X 10—°
log 288
0.5755
C = 14.387 X 10° farads/mile.

The capacitive susceptance is, at the frequency of 60 cps,

Cw = 14.387 X 10~° X 377 ‘
= 5.421 X 10-¢ mhos/mile.

Under the assumption that the line is nondissipative, i.e., R = 0 and
G = 0, the formula for the characteristic impedance given by (2.2.5), be-
comes, therefore,
L

z,= \/g 0°. 1 3.2.1)



86 . CH. 3 APPLICATIONS OF THE TRANSMISSION FORMULAS

The characteristic impedance of a nondissipative line is thus equal to the
surge impedance, i.e., to the resonant impedance of a circuit consisting
theoretically only of inductance and capacitance. All the energy that is
imparted to the line is reactive in character. The phase angle of the surge
impedance is zero. It indicates that the storage and restoration of the reac-
tive energy is not between source and line but between the inductance and
capacitance of the line. With reference to the source, a nondissipative line
is, paradoxically, a circuit of unity power factor. The concept of storage and
restoration of the energy must be interpreted to mean storage in the induct-
ance as a magnetic field and restoration to the capacitance as an electric

field, and vice versa.
The characteristic impedance of the nondissipative line under considera-

tion is
\/: _ \/ 0.002084
14.387 X 10

Z, = 380 ohms.

The approximate formula (2.2.12) for the surge impedance gives

L
== 138.15 X 2.7
J; x

Z, = 372.9 ohms.

The velocity of energy propagation is

[1_ 1
IC \/0.002084 X 14.387 X 10~°

= 182,700 miles per second.

On the supposition that the line is operated in fair weather, barometric
pressure of 76 cm. of mercury and temperature of 25° C., the disruptive
potential to ground would be, by (1.22.6), modified by an “irregularity
factor” of 0.85 due to stranding, as indicated by (1.22.12)

(kv)ao = 123 X 0.5755 X 2.7 X 0.85
= 162.3 kilovolts per phase.

or 2 X 162.3 = 324.6 kilovolts across the two-conductor line.

On the same supposition of conductor condition and fair weather the
visual critical potential to ground would be, by (1.23.2) modified by the
“irregularity factor” due to stranding, as shown in (1.23.4) ~

0.189
kvw=123(1+ )x05755x27x085
(k) V05755

= 202.86 kv. to ground
or 2 X' 202.86 = 405.72 kilovolts across the two-conductor line.
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If the line were operated at a voltage equal to the visual critical voltage
the power loss (in fair weather, § = 1) would be, by (1.24.1),

P= [390(60 + 25)(202.86 — 162.3)* 0___-25;;5] 10-5

= 24.36 kw per mile per conductor,

or
2 X 24.36 = 48.72 kw per mile of line.

The propagation constant of a nondissipative line, by (2.3.6), is
p=VjLCw? = juwV LC. 3.2.2)
Since the propagation constant p is equal to its j-component, it follows that
the attenuation constant is zero, as it should be for a nondissipative line.
The phase constant is therefore
B = wV LC radians per mile. (3.2.3)
For the illustrative line under consideration, its value is

B = 377%/0.002084 X 14.387 X 10—*
= 0.002062 radians per mile

or
B = 0.1184 degrees per mile.

The velocity of phase propagation is

Vo= ‘é’
For the illustrative line, it is
377 .
p= ma = 182700 mlles/sec.

It is equal to the energy velocity as it should be for a nondissipative line.
The wave length, by (2.4.9), is

A= 2r _ _ 6.28
B 0.002062
= 3045 miles.

3.3. Performance of the Nondissipa- Before applying the various trans-

‘tive Line. mission formulas to the calcula-

tion of the performance of the

nondissipative line, it is necessary to evaluate tie hyperbolic functions of
the propagation constant

cosh pS = cosh (¢ + jB)S

sinh pS = sinh(a + jB)S,
for the particular condition when a = 0, as it is for a nondissipative line.

and
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By expanding, the cosh function becomes

cosh pS = cosh aS cos 8S + j sinh aS sin 8S,
which, when
a=0,coshaeS=1,sinhaS=0
gives
cosh pS = cos 8S. 3.3.1)

Similarly, by expanding the sinh function it is found that when a = 0,
' sinh pS§ = j sin 8S.
Accordingly the station-end impedance, given by (2.11.13), becomes

_ 5 Z.cos BS + jZ,sin BS
z2,= 2, - , 3.3.2
Z, cos BS + jZ, sin BS ( )

where for a nondissipative line

= . /L

zZ,= C
To apply formula (3.3.2) to the particular illustrative line used in
the preceding article, it will be assumed that the length of the line is
S = 300 miles. The calculated value of the phase constant is 8 = 0.1184°.

Hence
BS = 0.1184 X 300 = 35.52°.

This is not quite ohe-tenth of a complete wave length.
The characteristic impedance was found to be

\/g = 380 ohms.

Assuming that the receiving-end impedance to ground is Z, = 300/0°,
the sending-end impedance is, by equation (3.3.2)

300 cos 35.52° 4 j 380 sin 35.52°
380 cos 35.53° + 5 300 sin 35.52°

Z, = 380
or
329/42.15°
355{29.4l°
2, = 352/12.74° vector ohms,

= 380

to the ground potential plane or a total impedance across the station-end
terminals of the two-wire line equal to 704/12.74° vector ohms.

It will be assumed now that the illustrative line is connected at the
station end to the output terminals of a step-up transformer whose voltage
is 250 kv.
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Under this particular assumption, the station-end current is

— _ 250000
*704/12.74°
= 355.2/—12.74° vector amperes.

The total kva supplied to the line at the station end is

(kva), = (kv).1,
= 250 X 355.2
= 88800 kilovolt-amperes.

The amount of dissipative power supplied to the line at the station end is

P, = (kva), cos (6,)
= 88800 cos (—12.74°)
= 86700 kilowatts.

The entire amount of dissipative power supplied at the station end
should reach the receiving end, because in a nondissipative line there is no
loss. The power factor of the line at the station end is 97.5 per cent.

The equivalent reactive power at the station end of the line is

Q, = (kva), sin (6,)
= 88800 sin (— 12.74°)
= — 19500 kilovars.

The positive angle of Z, indicates lagging current at the station end.
The negative sign of Q, indicates lagging reactive power. There is more
energy stored in the magnetic field of the line than in the electric field.

The current at the receiving end of the line is given by formula (2.11.16).
For the nondissipative line it becomes

V.
I= LR ) 3.3.3
Z, cos BS + jZ,sin 8S ( )

where

For the particular illustrative line, it is

- 125000 i

300 cos 35.52° + 7 380 sin 35.52°
— 125000

329/42.15°

= 380/—42.15° vector amperes.

I

The angle is with reference to the station-end voltage.
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The voltage to ground-potential plane is
V.= 12, \
= (380/—42.15°)(300/0°)
= 114000/ —42.15° vector volts

to ground-potential plane, i.e., 228 kv across the two-wire line. The angle -
is with reference to the station-end voltage.
The receiving-end voltage may also be calculated directly by (2.8.4),
which for the nondissipative line becomes
V.= Vi,
" Z.cosBS + jZ,sin BS
It should be noted that because of the line capacitance, the receiving-
end current is larger than the station-end current. The voltage and current
at the receiving end are in time phase, because the receiving-end impedance
is nonreactive.
The total power at the receiving end is
P, = (kv),I,
= 228 X 380
= 86640 kw.

This agrees substantially with the value obtained above.
The voltage V,, at the open-circuited receiving end is given by formula
(2.11.19). For the nondissipative line it becomes

L

Vo= cos BS

to ground-potential plane.
For the illustrative line, it is

V. — 125000
" cos 35.52°
= 153700 volts,

i.e., 307.4 kv across the open-end of the line. It is important to note that
this open-circuited receiving-end voltage is very much larger than the
station-end voltage and is in time phase with it. The phenomenon is called
Ferranti effect, after the engineer who first noticed it. It is due to the inter-
action of the inductive and capacitive properties of the line, and will occur
not only in nondissipative lines but also in actual lines when the phase
constant 8, expressed in radians, is numerically larger than the attenuation
constant a.*

volts

* See Appendix 3 for discussion of the Ferranti effect.
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The regulation of the line is by (2.11.23)

(307.4 — 228)100 _
228

Reg. = = 34.85 per cent.
This result indicates that with a station-end voltage maintained constant,
the voltage at the load terminals changes greatly with load impedance
variations.

If the line should become short-circuited at the receiving end, while
the voltage at the station end remains constant, the current at that end
would be by (2.11.24)

y
Iru‘:’_—"— .
B = o in BS (3.3.5)

L
Zo= \/_.
C

For the illustrative line considered, this current is

(L) = 125000
7" § 380 sin 35.52°
= 566/—90° vector amperes.

where

The angle is with reference to the station-end voltage.

The current at the station end when the load end is short-circuited is
given either by (2.11.25) in terms of V, and Z,. or by (2.11.26) in terms
of (I,)s. For the nondissipative line, formula (2.11.26) becomes

(Ia)ah = (Ir)ah cos 8S. (336)
For the illustrative line considered, this is
(I)en = (566/—90°) cos 35.52°
= 460.5/—90° vector amperes.

Note that the station-end current, under short-circuit condition at the
load end is smaller than the load-end current. This is always the case for
nondissipative lines, irrespective of line length, because under short-circuit

conditions
=) = cos
(I P)ah ﬁs

is always less than 1.
The receiving-end impedance that would make the volt-amperes at that

end a maximum, by (2.11.22), is
Zom = jZ, tan BS.
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For the illustrative line under consideration it is

Zm = 380 tan 35.52°/90°
= 271.2/90° ohms.

The charging current, i.., the sending-end current when the line is open
at the receiving end, by equation (2.11.20), is

1. = JV.sinBS
* " Z,cosBS
= 234.5/90° vector amperes

* with reference to the station voltage.

34. The Three-Phase Line; General The transmission formulas, devel-
Relations. oped in Chapter 2, apply directly
to the calculation of the perform-
ance of three-phase lines. The line, which is used in this and in the fol-
lowing article to illustrate performance calculations of a three-phase line,
consists of three bare concentric-layer cables each of 19 strands of standard
annealed copper. The cross-sectional area of the cable is 250,000 circ. mils.
The outside diameter is 0.575 inches. The line is assumed to be equilaterally
spaced with a spacing distance of 10 ft. The resistance per mile of conductor
is 0.263 ohms per mile at 65° C. The calculated value of the inductance
per mile of conductor is 0.002032 henry and the inductive reactance at a
frequency of 60 cps is

Lw = 0.765 ohms per mile of conductor.
The calculated capacitance is

C = 14.81 X 10~° farads per mile of conductor.

The susceptance at 60 cps is A

Cw = 5.58 X 10~% mhos per mile of conductor.

The velocity of energy propagation is

1 .
%% = —=— = 182,300 miles per second.
vIC pert
The linear-line impedance per mile of conductor is
2= R+ jLw
= 0.263 + j 0.765

= 0.808/71° vector ohms.
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Since the leakage conductance is assumed negligible, the linear-line admit-
tance per mile of conductor is
v=jCuw
= 5.58 X 10~%/90° vector mhos.

The characteristic impedance of line to neutral, by (2.11.4), is

- \/'__0.808/71"
5.58 X 10-%/90°
= 380/—9.5° vector ohms.

The propagation constant, by (2.11.6), is
p = V(0.808/71°)(5.58 X 10-¢/90°)
= 0.002123/80.5°.
The attenuation constant, by (2.11.7), is

a = 0.002123 cos 80.5°
= 0.00035.

The phase constant, by (2.11.8), is

B8 = 0.002123 sin 80.5
= 0.0020939 radians per mile

or
B = 0.12° degrees per mile.
The velocity of phase propagation, by (2.4.6), is

v = 377
7 0.0020939
= 180,000 miles per second.

It is 98.9 per cent of the velocity of energy propagation of this line, and
96.8 per cent of the velocity of electromagnetic waves through space
The wave length, by (2.11.10), is

2x
0.0020939
= 3000 miles.

It will be assumed that the line is 300 miles long. This gives
= (0.002123/80.5°)300 = 0.6369/80.5°

or ‘
25 = 0.1050 + ; 0.628.

Since the quadrature component of p, i.e., the phase constant, is an angle,
the quantity SS is also an angle. In the above equation it is expressed in
radians. For convenience in numerical calculation, it is desirable that it be
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expressed in degree measure. Accordingly, the above is written for conven-
ience in calculation

£S5 = 0.105 + 7 36°.

Since sinh pS and cosh pS enter into all transmission formulas, it is also con-
venient to have their numerical values predetermined. Thus, by (2.11.11) *

sinh pS = (sinh? 0.105 + sin? 36°)3/y,
where

— a1 _tan 36° )
¥ = tan (tanh 0.105

Performing the indicated calculations gives

sinh pS = 0.598/81.8°.
The hyperbolic cosine, by (2.11.12), is

cosh pS = (sinh? 0.105 + cos? 36°)‘}_/_q>_
where

¢ = tan~! (tanh 0.105 X tan 36°).

Performing the indicated calculations, there results

cosh pS = 0.816/4.35°.

In the numerical calculations of the performance of three-phase lines it
will be taken for granted that the line is connected at both ends to the
high side of transformer banks, in wye connection. The low sides of the
transformers may be connected in either wye or delta. The load is assumed
balanced.

. 3.5. Performance Calculation of Three- A review of the general transmis-
Phase Lines; Receiving-End Vol- sion formulas for voltage and for
tage and Load Known. current indicates that they are in

terms of the equivalent impedance
Z, of the load per phase as if it would be measured on the high side of the
transformer bank at the receiving end. This equivalent impedance is
easily obtained if the load in terms of kva or kw, its power factor and
the voltage at which it operates are known. Conversely, if the equivalent
impedance per phase Z, is known, it is just as easy to obtain the kva or
kw load, provided the voltage per phase is known.

The various aspects of the problem will be illustrated with the line
whose transmission properties were obtained in the preceding article and
will be based upon a receiving-end line voltage of 216.5 kv corresponding
to 125 kv per phase.

* The K & E log log vector slide rule designed by the author is of great convenience in all vector
calculations including hyperbolic functions of the complex variable.
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There is one limiting quantity pertaining to the line behavior which
can be obtained directly, since it is independent of voltage or of load. This
quantity is the receiving-end impedance corresponding to the maximum
voltamperes per phase, and is given by formula (2.11.22)

Z.,.= 2, sinh pS
cosh pS
For the illustrative line under consideration it is
Z,n = (380/—9.5°) 0-598/8L.8°
" 0.816/4.35°
= 278.5/67.95°.

Using this as the equivalent impedance per phase, subject to the 125 kv
per phase, gives
_ 125000
" 278.5/67.95°

= 448.8/—67.95° vector amperes.

The maximum kva at the receiving end would be

(kva)rm = (kv),I,
= 125 X 448.8
= 56100 kilovolt-ampere

per phase. The dissipative power for this maximum kva is
P, = 56100 cos (—67.95°) = 21060 kilowatts.

The reactive power is
Q= 56100 sin (—67.95°) = — 51990 kilovars.

The power factor of the load at maximum kva is
cos (—67.95°) = 0.375.

From the standpoint of low power factor, it is not desirable to operate
the line at its maximum kva. There are, however, further and more funda-
mental reasons why it is not desirable to operate the line at its maximum
kva. The load on a power line changes with the aggregate power demand
at its receiving end. With these continuous changes of the load, or of the
reactive character of the load, or of both, there will be corresponding changes
in the value of Z, or its angle or both. A glance at the (VI), curve, Fig. 2-8,
indicates that the maximum voltamperes corresponds to a receiving-end
voltage value V, on the steep portion of the voltage curve, and changes
in Z, below and above Z,, is conducive to undesirable variations in receiving-
end voltage. The curve indicates clearly that it is highly desirable to operate
the line at loads whose corresponding impedances are quite larger than Z.,.
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As a trial calculation, it will be assumed that the equivalent impedance
of the load is Z, = 625, and that its phase angle is 25° positive correspond-
ing to a lagging power factor of 90.6 per cent.

With these assumed values, the receiving-end current is

— 125000
" 625/25°
= 200/ —25° vector amperes.

The receiving-end kva, accordingly, is
(kva), = 125 X 200 = 25000 kilovolt amperes.
The dissipative power per phase at the receiving end is

P, = (kva), cos (—86,)
25000 cos (— 25°)
22650 kilowatts.

(]

The total dissipative power is
P, = 67950 kilowatts.

The reactive power at the receiving end is

Q- = 25000 sin (—25°)

= —10560 kilovars,

The total reactive power is

Q- = — 31680 kilovars, lagging.
The current at the station end, by (2.11.15), is

_125000(0.816/4.35%) | 125000(0.598/81.8°)
' 625/25° 380/—-9.5°

= 163.2/—20.65° + 196.7/91.3°
= 203/43.2° vector amperes.

The angle is, with respect to the receiv-
ing-end voltage, as shown graphically
v, in Fig. 3-1.

The station-end voltage is given by
formula (2.11.17). For the illustrative
line whose receiving-end voltage to

V¢ neutral is V, = 125000 volts, and
whose receiving-end impedance to neu-
tral is Z, = 625/25° the station-end
voltage is

Figure 31 A
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(380/—9.5°)(0.598/81.8°)]

17
* 625/25°

125000 [0.816/4.35° +

102000/4.35° + 45440/47.3°
138900/17.5° vector volts.

The station-end voltage to neutral is 138.9kv and the line voltage is
240.3 kv. The angle is, with reference to the receiving-end voltage, as
shown graphically in Fig. 3-1.

The kva supplied to the line per phase is

(kve), = (kv).l,
= 138.9 X 203 = 28190 kilovolt amperes.

The phase angle between station-end voltage and station-end current is
0, = 43.2° — 17.5° = 25.7°.
The power factor of the load at the station end is
cos 25.7° = 0.901.

The positive angle of the current indicates that the load at the station end
is capacitive in character, i.e., the sending-end impedance angle is negative,
the current leading the voltage by 25.7°.

The dissipative power per phase at the station end is

P, = (kva) cos 6,

28190 cos 25.7°
25400 kilowatts.

The total dissipative power is
P, = 76200 kw.
The reactive power per phase at the station end is

Q. = (kva), sin 6,
= 28190 sin 25.7°
= 12200 kilovars.

The total reactive power is
Qs = 36600 kilovars.

The positive sign indicates leading or capacitive reactive power.
The efficiency of transmission in per cent is

g = 1007,
P,
_ 100 X 22650

= 89, .
35400 89.1 per cent.
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The receiving-end voltage, when the receiving end is open-circuited, is
given by (2.11.19). For the illustrative line under consideration it is
__ 138900

" 0.816
170.2 kilovolts.

The regulation is

(170.2 — 125)100
125

= 36.1 per cent.

The rather poor voltage regulation indicates that the chosen value of
Z, = 625/25° is too low, i.e., the corresponding (kva), equal to 25000 at
90.6 per cent power factor is too high.

Assume that Z, = 1250/25° ohms. Then

I, = 100/ —25° vector amperes
(kva), = 12500 kilovolt ampere.
P, = 11325 kilowatt.
I, = 81.6/—20.65° + 196.7/91.3°
= 182.5/66.8° vector amperes
V. = 102000/4.35° + 22720/47.3°
= 119600/11.8° vector volts.

Reg. =

The station-end voltages to neutral is 119.6 kv, and leads the phase voltage

at the load end by 11.8°.
The phase angle between voltage and current at the station end is

6, = 66.8° — 11.8° = 55°
The kva at the station end is

(kva), = 119.6 X 182.5
= 21820 kilovolt amperes.

The dissipative power per phase at the station end is
P, = 21820 cos 55° = 12500 kw

and the reactive power per phase at that end is
Q. = 21820 sin 55° = 17850 kilovars.

The efficiency, therefore, is

1= 1348
= 90.4 per cent.
The receiving-end voltage on open circuit, by (2.11.19), is
_ 119600
" 0816

= 146.5 kilovolts.
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The regulation, therefore, is

_ (146.5 — 125)100
125

It will be noted that using a receiving-end impedance of 1250/25°, cor-
responding to a load per phase of 11325 kw at 90.6 per cent power factor
gave a better regulation than with a load corresponding to Z, = 625/25°
vector ohms. It would appear that an adequate value of receiving-end im-
pedance would be about Z, = 1000/25°. This would give a receiving-end
current of

Reg. = 17.2 per cent.

_ 125000
" 1000/25
= 125/—25 vector amperes.

The kva at the receiving end per phase would be
(kva), = 125 X 125 = 15625 kilovolt amperes

and the receiving-end dissipative power
P, = 15625 cos 25 = 14156 kw.

It is seen from the above calculations that the line whose transmission
constants are stated and whose properties are formulated in § 3.4 will carry
a full load per phase of about 15000 kva at 90.6 per cent power factor.

3.6. Performance Calculation of Three- 1f the receiving-end load per phase
Phase Lines; Station-End Voltage is known in terms of the receiving-
and Receiving-End Impedance end impedance the problem is es-
Known. sentially similar to the one dis-

cussed in the preceding article.

Thus, let the station-end voltage per phase of the illustrative line con-

sidered in § 3.5 be 125 kv and the receiving-end impedance Z, = 1000/25°

vector ohms. The station-end impedance, by (2.11.13), is
, [(380/—9.5°)(0.598/81.8%) 4 (1000/25°)(0.816/4.35°)
2, = 380[=9.5 [(380/—9.5°)(0.816/4.35°) + (10001%5_")(0.598&)]’
. 993/38.%
2= 380/=9.5° <rE S
Z, = 675/—47.3° vector ohms.

The current at the station-end is
V.
I,= -
¥ 4

.
125000

= §7s/—a73 ~ 185/47.3 vector amperes.
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The kva supplied per phase is

(kva), = 125 X 185
= 23120 kilovolt ampere.

The supplied dissipative power per phase is

23120 cos 47.3°
= 15690 kw.

P,

]

The total dissipative power supplied to the line is
P,t = 47070 kW'

The current at the receiving end is given by (2.11.16). For the line under
consideration it is

L 125000

~ (1000/25°)(0.816/4.35°) + (380/—9.5°)(0.598/81.8°)
125000

" 995/38.5°

= 125.6/—38.5° vector amperes.

The angle is with reference to the sending-end voltage V,.
The voltage per phase at the receiving end is given by (2.11.18). For
the particular illustrative line under consideration it is given directly by

V,= 1z,
(125.6/— 38.5°)(1000/25%)

125.6/—13.5° kv.

The angle is with reference to the station-end voltage.
The kva per phase at the receiving end is

(kva), = 125.6 X 125.6
= 15775 kilovolt ampere.

The dissipative power per phase at the receiving end is

P, =15775 cos 25°
= 14300 kw.

The total dissipative power at the receiving end is
P, rt = 42900 kw.

The efficiency of transmission is

1= 14488

= 01.2 per cent.
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3. Performance Calculation of Three- The case discussed in the preced-
Phase Lines; Station-End Voltage ing article is hypothetical in char-
and Receiving-End Load Known.  acter, for, as a rule, the value of

the receiving-end impedance Z, is
not known unless the load, its power factor, and the receiving-end voltage
are known. If such is the case, the problem is identical with that discussed

in § 3.5.

The condition met quite frequently, however, is that in which the
receiving-end load P, and its lagging power factor cos, are known, and
instead of the receiving-end voltage, the sending-end voltage V, is known.
Equation (2.11.17),

V.=V, (cosh S+ % sinh pS) | (3.7.1)

applies to this case, but with V, and its angle 3, with reference to V, un-
known. The vector value of I, with reference to V, is also unknown. In terms
of receiving-end quantities, its magnitude is, however,

P A
I, = I = .
V,cos6, V, (3.7.2)

where A = P,/cos 8, represents the known value of the receiving-end volt-
amperes. From this it follows that the numerical value of the receiving-end
impedance is

Ve V2
Z,=lr= 12 3.7.3
I, A4 (3.7:3)
and its angle is 6, from the known value of cos ,.
Setting for brevity’s sake
cosh pS = a/a
Z,sinh pS = b/B ] @3.7.4)

and using vector notation, equation (3.7.1) may be written, using V, as the

reference vector o
Vifo= (afa)(V./0%) + (_;‘7__)(@

or
(V.&)V' = (aLC_[)I/r2 + Abzg - 0',
where V, is the unknown voltage at the receiving énd and §, is the unknown
phase angle of V, with reference to V..
Splitting both sides of the equation into horizontal and quadrature
components and equating them, respectively, yields

V.V,cos88, = (acosa)V,2+ Abcos (8 — 6,)
V.V,sind, = (asina)V,? + Ab sin (8 — 4,).
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Squaring and adding gives
VaV.2= a®V,* 4+ A%+ 2a4bV.2cos (@ — B + 6,).
For convenience in solving, the equation is put into the form
a?V,4t — [V,2 — 2abA cos (@ — B+ 6,)]V,2 = —b2A?

V4_[V,2-—2abAcos(a—ﬁ+052]V2=_lféf_
a’ T

or

This quadratic equation in V,?, when solved, gives two real values for the
receiving-end voltage. The larger value, which gives more economical trans-
mission and better voltage regulation is, of course, the correct one.

The above method for obtaining V., when P,, cos 8,, and V, are known,
although not complicated is rather tedious particularly if the receiving-end
voltages are to be calculated for more than one value of receiving-end
load P,.

A more direct method and one not quite as tedious is to calculate the
receiving-end currents 7, for the given values of V, and angle 8,, corre-
sponding to the given power factor for three or more assumed values of Z,.
Calculated values of 7,, receiving-end voltage V, = I.Z,, and voltamperes
V.I, may then be plotted against corresponding calculated value of receiv-
ing-end power P, = V,I, cos6..

Thus for the illustrative line used in preceding articles there was obtained
by previous calculation

Z, = 380/—9.5°
sinh pS = 0.598/81.8°
cosh pS = 0.816/4.35°.

Assume receiving-end impedances Z, of values 500, 1000, 1500, and
2000 ohms each having a phase angle of 25° corresponding to the assumed
power factor of 90.6 per cent.

The receiving-end current is given by the formula (2.11.16) and for a
sending-end voltage of 125 kv, it is

125000
I =
(0.816/4.35°)Z, + (380/—9.5)(0.598/81.8)
125000

" (0816/435°)Z, + 227.2/12.3°
For Z, = 500/25° vector ohms, the equation becomes

125000

~ 308/29.35° + 227.2/12.3°
= 210.1/—44.43° vector amperes.

I
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The angle is with respect to the sending-end voltage. The voltage to neu-
tral at the receiving end is
V, = (210.1/—44.43°)(500/25°)
= 105050/ — 19.43° vector volts.

The voltampere per phase at the receiving end is

V.l =
I = 105.05 X 210.1 = 220 .
i 5.05 X 70 kva

The dissipative power per phase at the receiving end is

P, = 22070 cos 25°
= 20000 kilowatts.
For Z, = 1000/25° vector ohms:

_ 125000
816/29.35° + 227.2/72.3°

125.6/ — 38.5° vector amperes.

r

V, = (125.6/—38.5°)(1000/25°)
= 125600/ —13.5° vector volts.
Vile _ 1256 % 125.6
1000
= 15775 kilovolt amperes.
P, = 15775 cos 25°
= 14300 kilowatts.
For Z, = 1500/25° vector ohms:
- 125000
T 1224/29.37° + 227.2/72.3°
= 80.4/—35.75° vector amperes.
V, = (89.4/—35.75°)(1500/25°).
V, = 134100/ —10.75° vector volts.
V.l
L= 134.1 X 89.4
1000 X
= 11980 kilovolt amperes.
P, = 11980 cos 25°
= 10860 kilowatts.
For Z, = 2000/25° vector ohms:
125000

I, =
1632/29.35° + 227.2/72.3°
= 69.2/—34.25° vector amperes.
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V, = (69.2/—34.25°)(2000/25°)
= 138400/ —9.25° vector volts.

V.
——= = 1384 .
1000 X 69.2

= 9577 kilovolt amperes.
P, = 9577 cos 25°

= 8680 kilowatts.
The receiving-end voltage on open circuit, by (2.11.19), is
125000
V,, = 2220
° 0816
= 153.2 kilovolts.
=}
" [ | |
30f 150} 300 4 .
] [ 1 == ! ((KV)r
] - T ; |
25 250} AEsane =<l (
5 BEsSS
J - 4
201 100} 200} S
S T N
3 § ~ - ’,
“i5)S 150 | (kva) -
4 o r .
1’ i o 7 - ’r
10} sop 100} %
1 i
5 50
) N » A
[
ol - ol 0
0o 2 4 6 8 10 12 14 16 18 20x10°KW
Receiving-End Power
Figure 3-2

The curves I,, (kv),, and (kva), in Fig. 3-2, are plotted against the
receiving-end power in kw. They pertain, of course, only to a station-end
voltage V, = 125 kv per phase and a load power factor of 90.6 per cent.
Similar curves may be obtained for any other values of V, and power factor
of receiving-end load, and the values of I,, (kv),, and (kva), for any value
of (kw), obtained from the curves.

SUGGESTIVE PROBLEMS Chapter 3

1. Calculate the linear impedance and the linear admittance per mile of conductor
of a three-phase line, consisting of hard drawn copper 97.3 per cent conduc-
tivity; size 750,000 circ. mils, 61 strands: equilateral spacing distance 10 ft.
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2. Calculate the characteristic impedance, the propagation, attenuation and phase
constant per mile to neutral of the line specified in Prob. 1.

3. Compute the surge impedance, the velocity of energy transfer, the velocity of
phase propagation and the wave length of the line specified in Prob. 1.

4. A three-phase line is built of A.C.S.R. cable 397,000 circ. mils having a resist-
ance per conductor mile of 0.235 ohms at 25° C. The cable consists of 30 strands
of aluminum and 7 strands of steel and has an outside diameter of 0.806 inches.
The equivalent equilateral spacing is 11 feet. The inductive reactance at 60 cps
is 0.710 ohms per mile per conductor. The capacitive susceptance at the stated
frequency ds 5.82 micromhos.

Assuming negligible leakage conductance, determine:

a. The characteristic impedance to neutral.

b. The propagation, attenuation, and phase constants to neutral.

c. The surge impedance.

d. Assume that the line is 300 miles long and determine the receiving-end
impedance per phase for maximum receiving-end voltamperes per phase.
Determine the power factor of the receiving-end load under this condi-
tion and discuss the feasibility of such a load.

e. Assume that the load at the receiving end is 21,000 kw at 90 per cent
power factor and that the line voltage at the receiving end is 220 kv.
Calculate the station-end voltage and current and the efficiency of
transmission.

f. Calculate the line regulation.

5. Aload of 21,000 kw at 87.5 per cent power factor lag is to be transmitted over
120 miles with a maximum loss of 12 per cent of the power delivered. The re-
ceiving-end voltage is 63.5 kv to neutral. Determine the size of conductors to
be used and calculate the efficiency of transmission and the line regulation for
the chosen conductor,



Chapter 4 Equivalent Circuits of
Transmission Lines

4.1. General Conditions of Equivalence. It will be recalled that the various

transmission-line equations, formu-
lated in Chapter 2 and illustrated in the preceding chapter, were devel-
oped on the fundamental assumption that a line conductor consists es-
sentially of infinitesimal symmetrical T or = networks. It is reasonable to
presume, therefore, that since a portion of a line, however short, can be
thought of as a symmetrical T or = network, a whole line, however long,
could be represented also under well-defined conditions by a T or = network.
In an actual line, the resistive and reactive properties are uniformly dis-
tributed along the length of the line. In a T or = network, the resistive and
reactive properties are lumped or concentrated in only three branches.
Complete equivalence will exist between a T or 7 network and a line when,
under identical conditions of frequency, the circuits have identical energy
transfer properties, i.e., when the characteristic impedance of the line to
neutral is equal to the characteristic impedance of the T or = circuit, and
when the propagation factor of the line is equal to the propagation constant
of the T or 7 circuits, respectively.

Under these conditions, the line and its equivalent circuit have equal
end values of voltage, of current, and of power for equal receiving-end
impedances.

The solution of transmission line problems may be accomplished, there-
fore, by first converting the line into its equivalent T or 7 network then
solving the three-branch circuit in the usual manner as an ordinary series-
parallel circuit. The amount of labor involved in this method of solving
transmission line problems is about the same if not greater than the direct

method discussed and illustrated in the two preceding chapters. The equiva-
106
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lent circuit method becomes imperative, however, when an artificial circuit
is to be built to simulate the behavior of the line, or when the transmission
line problem includes the end transformers, as will be seen in the following
chapter.

4.2, The T Equivalent of Transmission To obtain the branch impedances
""" Lines. of a symmetrical T circuit equiv-

alent to any line, consider the T
network shown in Fig. 4-1. Let V, and V, be, respectively, the voltages
to neutral at the station and receiving ends of the circuit as indicated.
Let I, be the station-end current and I, the receiving-end current.

z,
Is
Vs
Figure 4——1- ————————————
Referring to the circuit, it is seen that
I,
Ve= 1 —=
27 + Yr
I, = (Vr + IrZT)YT
and
I. = I.- + 12.
From these relations it is found that
4 Vo= V(1 + Z7¥r) + L(2 + Zr¥1)Zr (4.2.1)
an
L= I(1+4+ ZyYr) + V,Yr. (4.2.2)

These two equations are fundamental to symmetrical T networks, and
relate end voltages and currents through the series impedance Zr and shunt
admittance Yr of the circuit. They are called transmission equations of the
T circuit because of their analogy to the transmission equations of a line.
Under this name, the two formulas may be generalized in the form

V.= AV, + BI, ,

I,= AL + DV, " } (4.23)
in which, by (4.2.1) and (4.2.2),

A= 14 2Z2;Yr
B= (Zr¥Yr+ 2)Zr } (4.2.4)
D=Yr

for a symmetrical T.
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If the generalized transmission equations (4.2.3) pertain to a line, then,
by referring to (2.8.1) and to (2.7.2), it is seen that

A = cosh pS
B = Z,sinh pS
and (4.2.5)
p = SinhpS,
Z,

A symmetrical T network is the equivalent of a line when equations
(4.2.4) representing the T are respectively equal to equations (4.2.5) which
represent the line, i.e.,

v = SRLAS (4.2.6)
Zr*Yr + 2Zr = Z,sinh pS (4.2.7)
1+ Z7Yr = cosh pS. (4.2.8)
Dividing (4.2.7) by (4.2.6), yields
Zr= 7+ P24 (4.2.9)
Yr

This gives the characteristic impedance of the line in terms of the T circuit,
and shows that the characteristic impedances of the two are equal when
the two are equivalent.

Substituting (4.2.6) in (4.2.8) gives

Z,(cosh pS — 1)
Zr = . 2.
T sinh pS (4.2.10)

Since by hyperbolic trigonometry
sinh pS = 2sinh eg coshpz‘—g
and
mmﬁ=2mm§+1
by substituting in (4.2.10) and simplifying, yields
| Zr = Z, tanh &. (4.2.11)
Any line may be converted into its equivalent T by the use of formulas

(4.2.6) and (4.2.10) or (4.2.11), whichever is more convenient. Thus, for the
illustrative 300-mile line used in the preceding chapter:

Z, = 380/—-9.5°
sinh pS = 0.598/81.8°
cosh pS = 0.816/4.35°.
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By (4.2.6)
_0.598/81.8°
T 380/-9.5°
= 15.73 X 1074/91.3° vector mhos.

" Note that the angle of Yr is larger than 90°. The real component,
although véry small; is negative, indicating that the equivalent T is non-
physical iti character® For all practical purposes, however, Y7 is substan-
tially a capacitive susceptance.

Y7 = Cw/90° mhos.

The capacitance of the shunt branch of the equivalent T of the illus-
trative line at a frequency of 60 cps, therefore, is
Cp = 1573 X 104

T 377
= 4.17 X 10~% farad;.

The value of the series impedance Zr may be calculated by (4.2.10).
Thus for the particular T equivalent of the illustrated line, it is
Zr = (380/—9.5°)(0.816/4.35° — 1)

T 0.598/81.8°

= 518.5/—86.95° — 635.4/—91.3°

125.3/69.75° vector ohms.

The positive angle indicates that the impedance Zr is inductively reactive.
Its resistance component is
Ry = 43.37 ohms,

and its inductive reactance is
Lpw = 117.55 ohms at 60 cps.
The inductance of the series branch of the equivalent T, therefore, is

Lr= 1755 _ 3118 henry. '

377
In accordance with the above calculation, the equivalent T network of
the 300-mile line per conductor is as shown in Fig. 4-2. It should be noted
R;=43.37 ohms {;=0.3118 henry
VW A1l A oA L1 AAA'A

| G407 uf
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that, although this T network is a true equivalent of the line to neutral,
the values of Ry, Ly, and Cr differ considerably from their corresponding
values of the line itself.

4.3. The Nominal T Equivalent of When the actual values of the re-
Short Lines. sistance, inductance, and capaci-
tance of the line to neutral are
used in the T circuit, i.e., when the effect of their distribution is neg-
lected, the T network is called a nominal T of the line. There is a definite
limit to the length of line for which a nominal T may be used without in-
troducing serious errors. Consider equation (4.2.6) for the shunt admittance
of the equivalent T. Expanding the numerator, the equation becomes
_ sinh a5 cos BS -;j cosh aS sin S (.3.1)
Note that when aS < 0.1, the sinh aS = a5, and cosh aS = 1, substan-
tially. Similarly when B8S < 0.1, the sin S = S and cos 8S = 1, sub-
stantially. It follows, therefore, that for the particular case when aS and
BS are both less than 0.1, the above equation becomes

Yr

Yr =@ *‘z 8)S, (4.3.2)
But by (2.3.11) ’ -
a+jB=>»,

and by (2.3.6)

p =V (R + jLw)(G + jCw).

Using this equation for a + jB, and also formula (2.2.5) for Z,, equation

(4.3.2) becomes
Yr= (G + jCw)S. (4.3.3)

In the same manner, equation (4.2.11) becomes for the particular case
when aS < 0.1 and 8S < 0.1,

Zr= Z,(a ;— iB)S

= ZbS,
2
Using the formulas for p and Z,, the above equation for Zr reduces to
Zp =& +2'Lw S, . (4.34)

Equations (4.3.3) and (4.3.4) show that the distribution of R, L, G, and C
may be neglected in the equivalent T only when aS and BS are smaller
than 0.1. Generally, the attenuation constant a of a power transmission
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line is sufficiently small so that its product with the length .S of the line is
less than 0.1 but the value of the phase constant g is large enough to limit
the use of the nominal T circuit to short lines only. Thus, for the illustra-
tive line used in the preceding problems, 8 = 0.0020939 and the maximum
length of line for which the nominal T could be used without serious error
in the calculation of its performance is

s=—01  _ 4775 miles.

"~ 0.0020939

Since this figure is used merely as a guide on whether the actual or the
nominal T shall be used as the equivalent of a particular line, the scalar
value of the propagation constant p may be used instead of the value of 8
in the determination of the limiting length of line S. Thus, for the illustra-
tive line, p = 0.002123. This gives for the limiting length

S=-—9L _ _ 471 miles.

"~ 0.002123

From what has been said above, it follows that since commercial power
lines operating at 60 cps have propagation constants of about equal magni-
tudes, the length of line for which the nominal T could be used substan-
tially as an equivalent is between 50 and 100 miles.

4.4. The Equivalent = Circuit. To obtain the actual = equiva-
lent of a line, consider the = cir-
cuit shown in Fig. 4-3. Let V, and I, be respectively the voltage and cur-

" z" 'r
vll- 'tl Y 'bl Y _vlf z,
Figwre 45

rent, at the station end, and V, and I, the voltage and current, respectively,
at the receiving end. From the diagram, it is seen that

V. = Vf + {]z',

L=L+1
and

Ib = V,-Y,.

The expression for V., therefore, may be written
V.= V,(1+ Y.Z) + 1.Z.. (4.4.1)
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The transmission equation for the station-end voltage, by (2.11.17), is
V. = V. cosh pS + I.Z, sinh pS. (4.4.2)

That the = network shall be an actual equivalent of the line to neutral,
equations (4.4.1) and (4.4.2) must be equal, i.e.,

Z, = Z,sinh pS (4.4.3)
1+ ¥,Z, = cosh pS. (444
Substituting (4.4.3) for Z, in (4.4.4) gives
Y, = coshpS — 1, (4.4.5)
Z, sinh pS

Referring this to (4.2.10) and (4.2.11), it is seen that the expression for ¥,
may be written '
tanh %‘5

Y, = (4.4.6)

Z

Any line may be converted into an equivalent = network by the use of the
formulas (4.4.3) and either (4.4.5) or (4.4.6), whichever is more convenient.
Thus, for the illustrated line considered in previous problems
Z, = 380/—9.5°
sinh pS = 0.598/81.8°
cosh p§ = 0.816/4.35°

Z, = (380/—9.5°)(0.598/81.8°)
= 227.2/72.3°.

The positive angle indicates that Z, is inductively reactive in character.
Hence its resistance component is

R, = 227.2 cos 72.3° = 69.07 ohms,

By (4.4.3)

and its reactive component is
Lyw = 227.2 8in 72.3° = 216.4 ohms.

Since the line is operated at a frequency of 60 cps, it follows that

L, = 2164 _ 0574 henry.

377
By equation (4.4.5),
_ 0.816/4.35° — 1

Y. = 227.2/12.3°
= 0.864 X 10~%/89.33° vector mhos.
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The capacitive susceptance is substantially
C.w = 0.864 X 10~ mhos.
The capacitance, therefore, is

c, = 0864 X 107 _ ) 295 % 106 farads.

377

In accordance with the above calculations, the equivalent = of the
illustrative 300-mile line to neutral is as shown in Fig. 4-4. It should be

Rp=69.07 ohms L,=0.574 henry

Figure 44

noted that although the 7 network is an actual equivalent of the line, the
values of R, L, and C differ considerably from the corresponding values of
the line itself.

4.5. The Nominal = Equivalent of A = network in which are used

Short Lines. the actual values of resistance,

inductance, and capacitance of

the line conductors, thus neglecting the effect of their respective uniform

distribution, is called a mominal = of the line. By expanding sinh pS in
(4.4.3), the equation becomes

Z, = Z,(sinh aS cos S + j cosh aS sin 8S).

When aS and 8S are less than 0.1, then sinh aS=aS, sin 8S=8S, cosh aS=1
and cos BS =1, substantially. Under this specific condition, the above expres-

sion becomes
Z, = Z,(a + jB)S

or
Z, = ZpS. (4.5.1)
Since
22 = R4+ Z'Lw
* " G+ jCw
and

P = (R+jLw)(G + jCw),
equation (4.5.1) may be written
Z,= (R+jLw)S. 4.5.2)
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In a similar manner, equation (4.4.6) becomes, when aS and S are less

than 0.1
’ =55, 453
Y,=2 7 (4.5.3)
Substituting the formulas for # and Z,, gives
y. = G+ jC)S, (4.5.4)
i 2

Equations (4.5.2) and (4.5.4) show that the uniform distribution of the line
constants may be neglected in the equivalent = only when S and &S are
smaller than 0.1. The condition is, as expected, identical to that pertaining
to the nominal T equivalent. The nominal = may also be used, therefore,
without any serious error for all lines between 50 and 100 miles long.

4.6. Equivalence between T and = Cir- Since by a proper choice of circuit
cuits. constants the T and = networks
can be made equivalent to any line

for a definite frequency and length, they must also be equivalent to each

other.
Consider a T and a = circuit each equivalent to the same line as shown

in Fig. 4-5.

Figure 4-5

Since both are equivalent to the same line, it follows that the charac-
teristic impedances of the two circuits are equal and equal to that of the
line, i.e.,

Z,T = Z,,, = Zo.
By (4.2.6) _ sin; 55,
By (4.2.11) ’
Zr= 7, tanh &2?
By (4.4.3)
Z, = Z,sinh pS.
By (4.4.6)
tanh ?‘
Y' = .

2,
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By (2.1.1) the characteristic impedance of the T circuit is

Za* = 2 + 21 (4.6.1)
T
Dividing (4.2.11) by (4.4.6) gives
Zr_ z:
7= % (4.6.2)
Dividing (4.4.3) by (4.2.6) gives
Z: ~ 72 4.6.3
Y Z2. (4.6.3)
By the two expressions just obtained, it follows that
Zr¥r = Z,Y,. (4.6.4)
Substituting for Zr and ¥r in terms of Z, and ¥, in (4.6.1) gives

4
2 = vz, + A

L

and since Z,, = Z,, this reduces to

Yo = |V 3} (4.6.5)

This formula represents the characteristic admittance of the = circuit. It
is worthwhile to note the similarity betwcen the formula (4.6.1) for the
characteristic impedance Z,r of the T circuit and formula (4.6.5) which
gives the characteristic admittance Y,, of the = circuit.

It is sometimes convenient to have the formula for the characteristic
impedance of the = circuit instead of the characteristic admittance. It can
be obtained by taking the reciprocal of (4.6.5) resulting in

Z,
Loy = o | —"F—- 4.6.6
" Nzyz2+12Y, (4.6.6)

To obtain the series impedance Zr and the shunt admittance ¥r of a T cir-
cuit equivalent to a known = circuit, combine (4.6.3) and (4.6.2) with
(4.6.6). This gives

- Z,
2r= ZY. F2 4.6.7)
and
Yr= (Z,Y, + 2)Y,. (4.6.8)

Similarly, to obtain the series impedance Z, and’the shunt admittance ¥,

of a = circuit equivalent to a given T circuit combine (4.6.3) and (4.6.2)

with (4.6.1). This gives :
2, = (ZyYr + 2)Zr, (4.6.9)

and = Yr 4.6.10
Y, Zi¥r 43 (4.6.10)
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Note the sxmllanty between (4.6.7) and (4.6.10) and also between (4.6.8)
and (4.6.9). It is also worthwhile to note that these relationships could have
been obtained by treating the T circuit as a wye and the = circuit as a delta.

4.7. The Single-Impedance Equivalent It was seen that the nominal T or

of Very Short Lines. the nominal 7 circuit may be used

as substantially equivalent to lines

when the phase shift S does not exceed about 5.7° or 0.1 radians, i.e.,

when the line length does not exceed about 100 miles. Under this condition,
the shunt admittance of the nominal T, given by (4.3.3), is

Yr= (G + jCw)S,
and the shunt admittance of the nominal =, given by (4.54), is
y = (G+iCo)S,
2

The linear line admittance (y) per phase per mile of commercial power
lines is rather small (about 6 X 10~ mhos). Hence, for short lines not ex-
ceeding about 20 miles in length, ¥r and ¥, may be omitted from their
respective circuits, the effect of leakage conductance and capacitive suscep-
tance neglected, and the line treated as a single series circuit of impedance

= (R + jLw)S,
where R is the resistance per mile of conductor and L is the inductance
per mile of conductor.

4.8. Illustrative Short-Line Calcula- There are many transmission-line
tions. problems which cannot be solved
directly by the formulas developed
in the preceding articles. A few such illustrative problems are considered
in this article.
Problem 1. Determine the amount of receiving-end power, of definite
power factor cos 8,, that could be transmitted over a short line with a defi-
nite station-end voltage V,, the loss not to exceed a definite per cent of the

delivered power.
Let P,, V,, and I, be, respectively, the unknown values of power, volt-

age, and current per phase at the receiving end. Then
P, = VI, cosé, (4.8.1)

If m represents the power loss in per cent of P,, R the resistance per mile
of conductor, and S the length of the line in miles, then

mPr _ I3RS, (4.8.2)
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This is substantially correct if the line is fairly short, not exceeding 20 or
25 miles. For, in such case, the current at all points along the line is sub-
stantially the same as at the receiving end.

Substituting the value of P, as given by (4.8.1) in (4.8.2) gives

V, _ 100RS _

I, mcosé,

(4.8.3)

This formula for the equivalent impedance of the load is substantially true
only for very short lines.

Since the linear shunt admittance has a negligible effect in short lines,
the transmission equation for such lines is

V(8 = V./0° + (1/6,)(35/a), (4.8.9)

where 8, Is the unknown phase between the known station-end voltage and
the unknown receiving-end voltage, 7 is the unknown load current lagging
or leading V, by 6, corresponding to

the known cos6,; z is the linear-line  z
impedance per mile and « = tan!
(Lw/R) is the phase angle of 2. Using
the relation given by (4.8.3), the ex-

. Figure 46 1
pression (4.8.4) for V, becomes
Vifs= V.[0° + V2S[a + 0, (4.8.5)

This equation is visualized graphically in Fig. 4-6 for the condition when
6, is negative. Equation (4.8.5) may be written

2S/a + 6,
V.& =V, (1 + T)

or /
_ v, 2S/a + 6,
1= V./8 (1 t—Z )
V.
Ve[ = ——o7—— Py (4.8.6)
==

where Z, is given by (4.8.3).

The formula gives the voltage to neutral at the receiving end, and its
phase 8, with reference to the station-end voltage. The required dissipative
power per phase at the receiving end is

P, = V,I cosé,.

To illustrate numerically the above problem, let it be required to deter-
mine 'the amount of power that can be transmitted over a 250000 circ. mil
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three-phase line 20 miles long with a loss of 10 per cent of the power deliv-
ered. The line conductor is a concentric-layer copper cable of 19 strands.
The equilateral spacing is 20 feet. The resistance per mile of conductor at
65° C. is 0.263 ohms. The inductive reactance at 60 cps is Lw = 0.765 ohms.
The impedance per conductor per mile is z = 0.808/71° vector ohms. The line
being very short, the effect of the capacitive susceptance may be neglected.
The power factor of the receiving-end load is assumed 90.6 per cent and
lagging, corresponding to an angle of 25 degrees. The station-end voltage
is 33 kv, corresponding to a phase voltage of virtually 19 kv.
The receiving-end impedance per phase, by (4.8.3), is

100 X 0.263 X 20 ;<o

= 10 X920 X 20 /55
z 10 X 0.906 /2
58.1/25° vector ohms.

The receiving-end voltage to neutral, by (4.8.6), is

19000
0.808 X 20/71° — 25°
58.1
= 15660/ —9.5° vector volts.

‘/1‘/—-65=
1+

The receiving-end voltage per phase is therefore 15.66 kv and lags the
station-end voltage by 9.5 degrees.
The receiving-end current is

I, = 15660 _ 269.5 amperes,

58.1

and lags the receiving-end voltage V, by 25 degrees.
The receiving-end kilovolt amperes per phase is

(kva), = 15.66 X 269.5
= 4220 kilovolt amperes.

The dissipative power per phase at the receiving end is

P, = 4220 cos 25°
= 3825 kilowatts.

The total dissipative power is
P,; = 11475 kilowatts.

Since the line is short and the current is assumed the same at all points
along its length, the current at the station end is

I, = 269.5 amperes.
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The kva at the station end is

(kva), = 19.0 X 269.5
= 5120 kilovolt amperes.

The phase between the station-end current and voltage is
—25° — 9.5° = — 34.5°
The dissipative power per phase at the station end is

P, = 5120 cos 34.5°
= 4220 kw.

The total dissipative power supplied to the line is

P, = 12660 kw.
The line efficiency is
1=}
= 90.6 per cent.

The power loss per conductor is

power loss = 4220 — 3825
= 395 kw,

or 10.32 per cent of the delivered power. This is substantially equal to the
assumed per cent loss.
The voltage regulation is
_ (19.0 — 15.66)100
Reg. 15.66

= 21.3 per cent rise.

The above method of solution gives substantially accurate results if the
lines do not exceed about 25 miles and the linear-line admittance is neg-
lected. Equation (4.8.3), which gives the equivalent load impedance, holds
only for such lines.

The problem as stated above cannot be solved for lines for which the
nominal or equivalent T or = are used because the station and receiving-
end currents differ in value, and, as a consequence, there is no way of
determining the equivalent impedance Z. of the load. A trial calculation
may be made, however, using a value of Z, equal t¢ or close to that obtained
by (4.8.3).

Problem 2. Determine the amount of receiving-end power P, of power
factor 0.906 that could be transmitted over the line whose characteristics
are stated in Prob. 1, with a loss of 15 per cent of the power delivered.
The line is 100 miles long.
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Formula (4.8.3) gives a rough approximation of the value of the equiva-
lent impedance of the load. Thus

100 X 0.263 X 100 /pco _
= 5
Z 5% 0. /25° = 193.5/25 vector ohms,

where 0.906 is the power factor of the load.
Using V,/Z, for I, in (4.2.1) the formula becomes

V.=V, [1 + ZeYr + (Zo¥r + 2) Zzz]

where for the first trial Z, = 200/25°.
For the particular line under consideration the impedance per conductor

per mile is z = 0.808/71°. Hence
0.808/71°)100
r= E———-/;’:)——— = 40.4/71° vector
From § 3.4 .
Yr.= CSw/90° = (5.58 X 10-/90°)100
= 558 X 10-4/90°,
Zr¥r = (40.4/71°)(558 X 10-%/90°)
= —22540 X 10~%/—19°,

40.4/71°
ZrYr) == = 22540 X 10—%/—19° e
(Zr T) z - X107 =19 200257
= —4553 X 10-%/27°,
2 X 40.4/71°
2y 2XWOTE o os/aee

Z, 200/25°

Substituting these values in the above formula for V,, and taking V, as the
reference vector, gives

Vi/6. = V./0°(1 — 0.02254/—19° — 0.004553/27° + 0.404/46°)
= V,/0°(1.29/13.3).
For a station-end voltage of 66 kv, corresponding to 38.05 kv per phase,
the receiving-end voltage is

s _ 3805
Vi/=8 1.29/13.3°
= 29.46/— 13.3° kv
with reference to V,.

The current at the receiving end is
29460[_"

b= 200725

= 147.3/—25° vector amperes

with reference to V..
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The kva at the receiving end is

(kva), = 29.46 X 147.3
= 4340 kilo-voltamperes.

The dissipative power per phase at the receiving end is
P, = 4340 cos 25°

= 3930 kw.
The total dissipative power at the receiving end is
P,y = 11790 kw.

Equation (4.2.2) gives the current at the station end. For the particular
case considered, it may be written

L= (LR )

where Z, = 200/25°. Substituting numerical values for the quantities in-

volved gives
I, = 134.5/—32.6° vector amperes.

The kilo-voltamperes at the station end is

(kva), = 38.05 X 134.5
= 5120 kilo-voltamperes.

The dissipative power per phase supplied to the line is

» = 5120 cos 32.6° A
= 4310 kw.

The total dissipative power supplied to the line is
P, = 12930 kw.
The line efficiency is

7= 1448
= 91.2 per cent.
The loss per conductor is 4310 — 3930 = 380, i.e., 9.68 per cent of the
power delivered to the receiving end.

v~ ~ Problem 3. Another short transmission-line problem often met is when
%e load, its power factor, receiving-end voltage, and line length are known,
and the size of the conductor and the sending-end voltage are to be deter-
mined for a definite permissible loss stated in per cent of the delivered
power. To illustrate such a problem, determine the size of conductor and
the required station-end voltage to transmit an amount of dissipative
power equal to 15000 kw at 90.6 per cent power factor over a line 20 miles
long. The line voltage at the receiving end is 33 kv and the permissible
loss is 10 per cent of the delivered power.
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From the statement of the problem, it follows that the dissipative
power, P,, per phase is 5000 kw, and that the voltage to neutral is 19 kv.
The current at the receiving end, therefore, is

Pr
L= V. cos 6,
I = - 5000
" 19 X 0.906
= 290.4 amperes.

Since the line is very short, it will be assumed that the current is the
same at all points along the conductors. Hence, if R. is the resistance of
the conductor

I*R. = loss per conductor
or
R, = 500000
290.4?
R, = 5.929 ohms.

The resistance per mile is

R =292 _ (2964 ohms.
20

The nearest size of Aluminum Cable Steel Reinforced (A.C.S.R.) is the
336,400 circ. mil cable having an outside diameter of 0.741 inches and a
resistance per mile of 0.272 ohms. Using this size cable, the resistance of
the conductor is

R.= 0.272 X 20 = 5.44 ohms.

The spacing distance in inches, assumed equilateral, may be determined
approximately by the following empyrical formula, based upon spacing
distances commonly used in commercial lines

_ span in feet | line voltage
D 20 + 1000 (4.8.7)

For the particular line under consideration the line voltage is 33 kv, and
assuming a span of 500 feet, gives for the spacing distance

D = 25 4+ 33 = 58 inches.

Using D = 60 inches, the inductive reactance to neutral at a frequency of
60 cps is Lw = 0.755 ohms per mile, i.e., 15.1 ohms for the 20-mile con-

ductor. ‘
The line being short, the linear-line susceptance is neglected.
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The impedance of the line to neutral is
Z=544+43;151
= 16.05/70.18° vector ohms.

The station-end voltage to neutral is

Ve [8s= V:/0° + (I./8,)(Z/a)
19000/0° + (290.4/ —25°)(16.05/70.18%)
22500/8.44° vector volts to neutral.

o

The station-end line voltage is, therefore, 39 kv.

Since the line is short and the current is substantially the same at all
points along the line, it follows that the station-end current is 7, = 290.4
amperes lagging V, an angle 25° 4 8.44° = 33.44°. The kva at the station

end is
(kva), = 22.5 X 290.4

= 6534 kilo-voltamperes.
The dissipative power at this end per phase is

P, = 6534 cos 33.44°
P, = 5450 kw.

The total dissipative power is
P,; = 16350 kw.
The line efficiency is

7= §388 = 91.74 per cent.
The loss per conductor is 5450 — S000 = 450 kw, i.e., 9.0 per cent of the
power delivered.
The line regulation is
_ (22,5 — 19)100
Reg. T
= 18.4 per cent.

Problem 4. A load of 30,000 kw at 90.6 per cent power factor is to be
“transmitted a distance of 100 miles with a maximum loss of 15 per cent
of the power delivered. The receiving-end line voltage is 110 kv correspond-
ing to 63.5 kv to neutral. Determine the size of conductor to be used and
the performance of the line.
The current at the receiving end is
P r
V: cos 6,
L= — 10000 _
63.5 X 0.906
= 173.8 amperes.

'=
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The current at the station end is somewhat smaller than the current at
the receiving end because of the effect of the capacitive susceptance of the
line. To determine the size of conductor it is safe to assume that the line
loss is due to a current equal to the receiving-end current, i.e.,

loss per conductor = I,°R.
1,500,000 = 173.8°R,
or
R. = 49.66 ohms.

The calculated resistance per mile of conductor, therefore, is

= %%6 = 0.4966 ohms.

A #000 A.C.S.R. has a resistance of 0.542 ohms per mile at 20° C. The next
larger size is a #0000, whose resistance is 0.432 ohms per mile, or a total
resistance for the 100-mile conductor equal to 43.2 ohms.

The approximate value of the equilateral spacing distance in inches
for a span of 600 feet, is

D = S5 + 145482
D = 30 + 110 = 140 inches.

Taking the spacing distance equal to 144 inches, the inductance is
0.00213 henry per mile* and the inductive reactance at 60 cps is Lw = 0.804
ohms per mile. The total inductive reactance for the 100-mile line to neu-
tral is 80.4 ohms. The linear impedance of the line conductor is

Z=1432+;804
Z = 91.27/61.75° vector ohms.

The capacitancet to neutral is 0.01415 X 10% farads per mile and the
linear-line admittance of the 100-mile conductor to neutral at 60 cps is

Y = 100 X 5.34 X 10-%/90°
= 534 X 10-%/90° vector mhos.

A substantially correct result will be obtained by using the nominal T.
The voltage formula is

Ve = V(1 + ZrYr) + I.(2 + Z7Y71)2Z7r.

* From Tables IT and III. f From Tables IV and V.
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For the problem under consideration,

Zr¥r = (45.63/61.75°)(534 X 10-%/90°)
= —0.02436/—28.25°,
1+ Zp¥Yr = 1 — 0.02436/—28.25°
= 0.978/0.63°.
22 + Zr2¥r = 91.27/61.75° — (0.02436/— 28.25°)(45.63/61.75°)
= 90.2/62.2°.

The station-end voltage, therefore, is

V./8. = (63500/0°)(0.978/0.63°) + (173.8/—25°)(90.2/62.2°)
= 75600/7.76° vector volts

per phase. The line voltage at the station end is, therefore, 130 kv.
The current at the station end is obtained by formula (4.2.2) and

I, = Ir(l + ZTYT) + V.Yr.
For the particular line under consideration,
1+ Zr¥r = 0.978/0.63°.

Yr = 534 X 10-5/90°

Hence

I, = (173.8/—25°)(0.978/0.63°) + (63500/0°)(534 X 10~%/90°)

159.2/—13.22° vector amperes.
The kva per phase at the station end is

(kva), = 75.6 X 159.2
= 12200 kilo-volt amperes.

The station-end voltage leads the current at that end by
8, = 7.76° — (—13.22°) = 20.98°.
The dissipative power per phase supplied to the line is
P, = 11400 kw.
The total dissipative power is
P, = 34200 kw.

The efficiency of transmission is
7= 43§38
= 87.7 per cent.

The loss per conductor is 1140 kw or 11.4 per cent of the power deliv-
ered to the receiving end.
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SUGGESTIVE PROBLEMS Chapter 4

1.

Obtain the equivalent T and the equivalent = of the line stated in Prob. 4,
Chap. 3.

. How much power at 87 per cent power factor lag can be transmitted over a

250,000 circ. mil copper three-phase line, 23 miles long with a loss of 12 per
cent of the receiving-end power? The resistance per conductor is 0.263 per mile;
the inductive reactance at 60 cps is 0.764 ohms per mile and the capacitive
susceptance negligibly small. Assume the station-end line voltage equal to
33 kv.

. Determine the size of the copper conductors and the needed station-end voltage

to transmit 12,500 kw at 87 per cent power factor lag over a 3-phase 25-mile
line with a loss of 12 per cent of the receiving-end power. Assume the receiving-
end voltage to neutral maintained constant at 19 kv.

What size of A.C.S.R. would be needed?



Chapter 5 Line with Transformers

5.1. The T Equivalent of Transformers. It was remarked in § 3.4 that three-

phase transmission lines are termi-
nated at both ends in transformer banks, normally connected in wye on
the high-voltage side. The function of the transformers at the station end
is to step-up the station-end voltage to that required for the line, and the
function of those at the receiving end is to step down the voltage to that
required by the distribution system. The transformer banks are thus part
of the transmission system. Fig. 5-1 shows schematically one phase of a

Te _lile_ T
Figure 5-1
transmission system including the station- and receiving-end transformers
T, and T,. The transmission system viewed as a whole consists, therefore,
of lumped, highly inductive electric circuits coupled magnetically through
mutual impedances, and interconnected through a circuit of uniformly dis-
tributed resistance, inductance, capacitance, and leakage conductance.

A comparatively simple method of approaching a solution of the com-
plete circuit is to convert the indirect-coupled cir¢uit of the transformers
into T networks. The circuit per phase thus takes, schematically, the form
shown in Fig. 5-2. Because of their nonlinear magnetic characteristics,
transformers can be simulated by equivalent circuits for the particular fre-

quency for which they are designed, for only one value of voltage and cur-

rent. It is found, however, by actual calculations that the equivalent T
127
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which simulates a transformer at its rated voltage and current, may be
used without serious error even when the voltage and current differ to
some extent from their respective normal values.

T, T,

Figure 5-2

To obtain the equivalent T of a transformer let Vg be the voltage on
the high side and Iy, the input current on that side when the secondary is
open-circuited. The self-impedance Zy, of the high side, therefore, is

Zy, = Vu vector ohms. (5.1.1)
He
In a similar manner, if V7 is the impressed voltage on the low-voltage side,
and I, is the input current when the high-side is open-circuited, the self-
impedance of the low-voltage side is
2, = Y vector ohms. (5.1.2)
Le
The currents Iy, and I, are, respectively, the exciting currents under the
two stated conditions. The mutual impedance Z, of the transformer is the
vector ratio of the open-circuited voltage on one side to the exciting cur-
rent on the other side, i.e.,
Z,= E._ @, vector ohms, (5.1.3)
Iy, I,
where Eg is the open-circuit voltage on the high-voltage side when the
low-voltage side is excited, and E, is the open-circuit voltage on the low-
voltage side when the high-voltage side is excited.

Zy L Z, Z,

vy z,, E E, Z, v,
Figure 5-3 Figure 5-3a

From what has been said, it follows that a transformer may be repre-
sented by a direct inductive coupling such as the one shown diagrammati-
cally in Fig. 5-3 and 5-3a. The two are identical except for the direction
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of the energy transfer. From the figures it is seen that the self-impedance
on the high-voltage side is

Zwe= 2.+ Zn, (5.1.4)
and the self-impedance on the low-voltage side is
2= 2o+ 2. (5.1.5)

The quantities Z,, Z1,, and Z, may be obtained by direct measurement
in accordance with equations (5.1.1), (5.1.2), and (5.1.3) respectively. The

impedances
Za = ZH' - zm

and (5.1.6)
Zy=21,—2Zn

are, respectively, the leakage impedances of the high and low-voltage
windings of the transformer. The equivalent T of the transformer thus
obtained, is not symmetrical. The leakage impedances Z, and Z, are not
equal and, as a consequence, the energy transfer is not at the same poten-
tial in either direction as it would be if the T equivalent were symmetrical.

To obtain a symmetrical T equivalent of the transformer, i.e., one in
which the energy transfer is at identical potentials in either direction, the
transformer data must be modified to give a fictitious unity ratio trans-
former — one having an equal number of turns on the two windings. The
self-impedance of such a transformer

is obviously the same irrespective at | — —_—

which end it is measured, and the Iu I

equivalent T is thus symmetrical. Vi Vi 32
To convert a transformer circuit

into such a symmetrical T with refer-

ence to the high-voltage side, con- Figure 54

sider the transformer diagram Fig. 54

and assume the low-voltage side loaded with an impedance Z. Let Vy be
the impressed voltage across, and Iy the current in the high-voltage side
taken as the primary. If I, is the output current of the low voltage, taken
as the secondary, then

Va = InZy, — IpZn, (5.1.7)
where Zpy, is the self-impedance of the primary side and Z, the mutual
impedance.

Since the ratio of transformation is

Ey _ I,
=28 = i1 5.1.8
¢ E, Iy ( )
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the above expression may be written in terms of the current in high-voltage
side .
_ Va = IyZy, — Ig(aZ,). (5.1.9)
The induced emf in the low-voltage secondary is
EL = IL(ZL, + Z), (5.110)

where Z is the load impedance.
Expressing both E; and Iy, respectively, in terms of corresponding
values in the high-voltage side, by (5.1.8), gives

% = aly(Z1, + 2)

or
Ey= IH(ZL. + Z)az. (5.1.11)

Equations (5.1.9) and (5.1.11) show that if the mutual impedance Z,
of the transformer is multiplied by the transformation ratio ¢ and the self-
impedance Z., of the low-voltage side, and load impedance Z multiplied
by the square of this ratio, the cir-
cuit will behave like a unity-ratio
transformer. The self-impedances
measured from either end will have
the same value, indicating that the
equivalent T'is symmetrical as shown
in Fig. 5-5. From what has just been
Figure 5-5 said it follows that

Z., = a’lb

Zy, = 0°Z1.. (5.1.12)

Denoting by Zyr and Z,. the leakage impedances of the high and low-
voltage windings, respectively, it follows from the above that for the unity-
ratio transformer and its equivalent T

Zvu = 2L (5.1.13)

The total leakage, impedance of a transformer may be thought of,
therefore, as being equally divided between the high and low-voltage
windings in the symmetrical equivalent T of the transformer.

5.2. Transmission Formulas of the The relations between the sending-
Equivalent T of Transformers. end and receiving-end voltage and
current values of the symmetrical T

circuits were obtained in § 4.2. In the generalized form these relations are
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V. = AV, + BI, (5.2.1)

1,= al, + DV, (5.2.2)
in which, by (4.2.3) and (4.2.4),

A= 14+ 2Z;Yr

B = ZT(Z + ZTYT) (523)
and

D= 21'.

To determine these quantities when the symmetrical T simulates a
transformer, consider the T equivalent of a transformer in Fig. 5-6. The
quantity Zy is the leakage impedance
of the high-voltage winding or of
the low-voltage winding referred to
the high-voltage side. It is, there-
fore, one-half of the total leakage
impedance of the transformer when
measured from the high-voltage side. 0

If R; is the equivalent resistance ;1;”—(,_(,
of the iron loss and X,, the mutual
rcactance, both referred to the high-voltage side, and assumed in parallel
connection as indicated in the figure, then

zZ, zZ,

1 _ 7
Yo= — — L, 5.2.4
I (5.24)

where YV, is the mutual admittance.
In accordance with the set of equations (5.2.3), it follows that

ZT = Z)\

YT = Ym (525)
A=142\Y, (5.2.6)
B= 2,2+ Z)Y») (5.2.7)
D=7Yn (5.2.8)

Substituting these values in equations (5.2.1) and (5.2.2) gives for the
transmission equations of the transformer with the high-voltage side taken

as the primary
Ve= (14 23Yn)VL + 202 + YL (5.2.9)

In= (1 + Z\Yn)IL + YuVy, (5.2.10)

where V., and I, are, respectively, the voltage and current at the secondary
low-voltage side. The transmission constants of the symmetrical T of trans-
formers, as stated by equations (5.2.6), (.7), and (.8), may be obtained by
the well-known open- and short-circuit tests.
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Thus, with the transformer low-voltage side open, measure the supplied
voltage Vy, the primary exciting current /. and the power supplied Pp.
Since under the conditions just stated 7, = 0, equations (5.2.9) and (.10)

may be written
Viy = (1 + Z)\Y,,.)VL (5.2.11)

Iy = Ya.VL

where, if Vy; is taken as the reference vector, the current lags it by an
angle

P
6, = cos™! - —HL.. 5.2.12
‘ (VD G212
Equations (5.2.11) may be written
Vin _ 1+ 2\Y,
= (5.2.13)
1
= — 4 2. WA
Y. + 2» (5.2.149)

Since Z, is very small compared to the mutual impedance 1/¥V ., the above
expression becomes substantially

. 111_1 /6. (5.2.15)

With the low-voltage winding short-circuited through a low-impedance
ammeter, and the impressed voltage on the primary reduced to a suffi-
ciently low value to avoid excessive secondary current, measure Vy, the
primary current Iy, for full load secondary current, 71, and the power
supplied Pg,.

Since under the conditions just stated V, = 0, equations (5.2.9) and

(.10) become
Ve = Z\(2 + Z2Y ) L.

In: = (1 + Z3Yn)1L, (5.2.16)

where, if Vg, is taken as the reference vector, the current lags it by an angle

= cos—t LH2_,
62 = cos ™ (5.2.17)
Equations (5.2. 11) may be written, accordingly
Kl_f} = X!Z + ZXYm). (5-2.18)

I 14 Z\Vn

However, since Z,Y,, is much smaller than one, the expression becomes
substantially '
27, = V’" 7 foy (5.2.19)
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To illustrate the above, consider the following data pertaining to one of
the three similar transformers of a three-phase bank rated 110 kv/11 kv.
From the open-circuit test:

V]n = 63.5kv
Iy = 2.28 amperes
Py, = 33 kw.

From the short-circuit test:

Ve = 983 volts
Iys = 50 amperes
Pys = 11 kw.

The mutual admittance referred to the high-voltage winding is, by equa-

tion (5.2.15),

Vo= 22/ cos1(33/63.5 X 2.28)

~ 63500
= 35.9 X 10~¢/—76.9° mhos.

The leakage reactance, referred to the high-voltage winding is, by equa-

tion (5.2.19),
22, = 383 /cos™'(11000/983 X 50)

or
Zy = 9.83/77.1° ohms.

The transmission constants of the equivalent T of the transformer are,
therefore, by equations (5.2.6), (.7), and (.8),

A =1+ (9.83/77.1°)(35.9 X 10-¢/—176.9°)

= 1+ 0.000353/0.2°
or, substantially

4 =1)0°
B = 22\ 4+ Z\*¥Vm
= 19.66/77.1° + 0.00347/77.3°
or, substantially
B = 19.66/771.1°

and
D=Y,= 359 X 10“(—76.9°.

The transmission equations (5.2.9) and (.10) Hor this particular trans-
former, accordingly, are

Ve= Vi + 19.66/77.1°I,

Ig= I+ (359 X 107%/—76.9)V,,
where V, and I, are referred to the high-voltage side.

and
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5.3. High-Voltage Transformers. The transformers used with high-

voltage lines to step-up the gener-
ator voltage at the station end to that of the line voltage and to step-down
the line voltage to that of the substation at the receiving end may be either
single or three-phase units. As stated previously the low-voltage windings
are usually connected in delta, and the high-voltage windings generally in
wye. Connecting the high voltage winding in wye not only provides a
higher voltage but also a point for grounding the system. This, as discussed
in § 8.2, is a required provision to permit the flow of short-circuit currents
in line to ground or line-line to ground short-circuit faults. A delta connec-
tion on the low side eliminates the third harmonic which otherwise may
cause interference with neighboring telephone lines.

The voltage rating of transmission transformers is based not only upon
the needed voltages with regard to that of the generators in the station
and that required by the length of line, but also upon needed compensa-
tion for the voltage drop in the transformers and in the line. This is neces-
sary in order to limit to some extent the range of generator excitation voltage
at the station end, and the capacity of the needed phase modifier at the
receiving end. As a rule the generators in the station have a voltage rating
5 per cent in excess of the transformer voltages, to compensate for the
leakage impedance drop of the transformers under full load conditions.
Similarly, the station-end transformers have normally a voltage rating 5 to
7 per cent higher than that of the receiving-end transformer to compensate
for the voltage drop in the line.

The following data pertaining to high-voltage transformers of capacities
of from 5000 to 25,000 kva are sufficiently accurate for all transmission-line
calculations in the absence of manufacturers’ data for specific cases.

1. The leakage impedance drop may be taken from 7 to 9 per cent of the
rated voltage and at full load.

2. The copper loss is from 0.7 to 1 per cent of the rated capacity at unity
power factor.

3. The iron loss is from 0.3 to 0.5 per cent of the rated output at unity
power factor.

4. The exciting current is from 3 to 7 per cent of the full-load current.

5.4. Calculation of Leakage Impedance Given the kva rating of the trans-
Z\ and of the Mutual Admit- former and the kv to neutral at the

tance V . high-voltage primary, then the pri-
mary load current is
In= (kva), (54.1)

 ()a
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If Z, represents the leakage impedance of either the high- or the low-
voltage side with reference to the high-voltage side, and m, is the known
leakage impedance drop in per cent of the rated voltage, then

= ‘meH.
212\ 100

or

L= 5’%- (5.4.2)

To obtain the angle of the leakage impedance Z, it is necessary to cal-
culate the resistance component of Z,. Its value can be obtained from the
known value of the copper loss. Thus, if m. is the copper loss in per cent
of the rated capacity at unity power factor, then

op — Me(kva)1000
2y'R, = BT,

where R, is the resistance of the high-voltage winding or of the low-voltage
winding with reference to the high-voltage side. Its value is

R, = me(kva), (5.4.3)
Iy"

If X, is the leakage reactance of the high-voltage winding or of the low-
voltage winding referred to the high-voltage side, then since it is the quad-
rature component of Z, its value is

X)‘ =V Z)\"! - Rc2.

The angle of the leakage impedance is

X
= t -1 A,
a = tan z
However, since
a = cos™! &, (5.4.4)
Z)

it follows that the quadrature component of Z, may be calculated con-

veniently by X»= Zsina. (5.4.5)
The impedance of the series branch of the equivalent T of the transformer,
therefore, is Zr= ZyJa= R.+jXn. (5.4.6)
To determine the shunt admittance ¥,, refer to Fig. 5-6 and note that on
no load {(L’ = Zu, (5.4.7)

in which the self-impedance Zy, on the high-voltage side is
ZH. = Zx + Z,... (548)
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If m, is &e known value of the exciting current in per cent of the full-load
current, then

= mely, 549

IH. ~ 100 ( )

This, substituted in (5.4.7), gives

Zy = 100VE, (5.4.10)
m.l, H
This gives the self-impedance Zg, of the transformer in per cent of the full-
load impedance Vy/Iy as measured on the high-voltage side.

To determine the angle of Zy, it
will be assumed that the compo-
nents of the mutual impedance Z,
are in series instead of in parallel
connection as they are usually con-
sidered. The series resistance equiva-
‘lent of the iron loss, R;,, is thus in
series with the resistance component
R, of the leakage impedance under
no load condition and carries the exciting current, as shown in Fig. 5-7. It
follows, therefore, that if m; is the iron loss in per cent of the rated kva, then

mi(kva)1000 _

Figure 5-7

100 Iy R,,. (5.4.11)
Hence,
R, = 10milkva), © (54.12)
IHez
The total resistance component of the self-impedance Zg, is
Ry, = R. + R.. (5.4.13)

The angle of Zy, may now be calculated by
04, = cos™! Ru, (5.4.14)

The value of the mutual impedance, by (5.4.8), is

Zm&_:: Z}h/’ll_ - ZXZ_QL- (5.4.15)
The mutual admittance is 1
Ym = Z_ Z —-0,,,,.

The shunt branch of the mutual admittance (in Fig. 5-6) representing
the equivalent resistance of the iron loss with reference to the high side has

a resistance z
Ri= Zn_. (5.4.16)
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The reactive branch of the mutual admittance is the mutual reactance
with reference to the high side and has a value

Y4
m= oD 5. .
X Sin 6. (5.4.17)

The voltage across the shunt admittance is
Ve= InZm. (5.4.18)
The current through the resistive branch of ¥, is

|4
I,=— 5.4.19
x (5.4.19)
and the magnetizing current 7, through the mutual reactance is
vV
Iy = == 5.4.20
=5 (5.4.20)

5.5. Calculation of the Equivalent T of To illustrate the various relations
Transformers from Given Data. obtained in the preceding articles.
let it be required to obtain the equiv-
alent T per transformer of a bank having a voltage rating of 132/13.8 kv,
and joint capacity of 21,000 kva.
The exciting current is
me = 6.8% of Iy;

the iron loss is
m; = 0.59, of the kva;

the copper loss is
m. = 0.85% of the kva;

and the leakage impedance drop is
my = 8.7% of Vg.
The voltage to neutral is
132

Vg = —= = 76.3 kv.

H \/5 \'Z
The capacity per transformer is
21800 = 7000 kva.

By (5.4.1), the primary load current is

7000
= —= 917 .
Iy 6.3 91.7 amperes
The leakage impedance of the high-voltage winding or of the low-
voltage winding referred to the high side, by (5.4.2), is

_ 8.7.X 76300

200 3 018 = 36.2 ohms.

VAN
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The resistance of the high-voltage winding or of the low-voltage wind-
ing referred to the high side, by (5.4.3), is
_ 5 X 0.85 X 7000

91.72
= 3.55 ohms.

R,

By (5.4.4) iss

36.2
= 84.5°

The leakage reactance of the high-voltage winding or of the low-voltage
winding referred to the high side, by (5.4.5), is

X» = 36.2 sin 84.5°
= 36.02 ohms.

a = cos™!

The impedance of the series branch of the equivalent T, therefore, is

Zr=2x

= 36.2/84.5°

= 3.55 + j 36.02 vector ohms.

The exciting current, by (5.4.9), is

_ 6.8 X917
100
= 6.24 amperes.

IHe

The self-impedance at the high-voltage side, by (5.4.7), is

— 76300
6.24
= 12230 ohms.

ZH.I

The equivalent resistance of the iron loss assumed in series with R.,
by (5.4.12), is
_ 10 X 0.5 X 7000
6.242
= 898.8 ohms.

R.

The total resistance of the self-impedance, therefore, is

Ry, = 3.5 + 898.8

= 902.3 ohms.
The angle of Zg, is
Oy, = cos™ —————1932233

= 85.8°,
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The mutual impedance, by (5.4.8), is

Zn/0m = 12230/85.8° — 36.2/84.5°
= 12190/85.7° vector ohms.

Hence, the mutual admittance is

Y, = 82 X 10~%/—85.7° vector mhos.

The equivalent resistance R; of the iron loss assumed in parallel with
the mutual reactance and referred to the high-voltage side, by (5.4.16), is

12190
' cos 85.7°
= 162530 ohms.

The mutual reactance with reference to the high-voltage side, by

(5.4.17), is
12190

™~ in85.7°
= 12230 ohms.

The voltage across the shunt admittance, by (5.4.18), is

Ve= 6.24 X 12190
= 76100 volts.

The equivalent T of the transformer is shown in Fig. 5-6.
The transmission constants of the transformer may be calculated by

(5.2.3). Thus,
A

1+ ZrYr
1+ (36.2/84.5°)(82 X 10-¢/—85.7°)
= 14 0.00296/—1.2°.
B=72r(2+4+ Zr¥7)
= 36.2/84.5°(2 + 0.00296/ — 1.2°)
= 72.4/84.5° + 0.1075/83.3°
= 72.5/84.5° practically.
D=7Y,
= 82 X 10-%/—85.7°.

The transmission equation of the transformer, therefore, is substantially

Va = Vi + (72.5/84.5°)1,
Ig= I, + (82X 10-%/—85.7°)Vy.
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5.6. Performance Formulas of Line Consider a line with station- and
with Transformers. Solution by receiving-end transformers as indi-
Generalized Transmission Equa- cated in Fig. 5-8.
tions. Receiving-End Conditions To obtain the performance of the
Known. line including the two end trans-

formers, the transformers are first
converted into equivalent symmetrical T networks as discussed and illus-
trated in the preceding five articles. The system assumes schematically the

Va

SZ, p
_____________
Is
Vs N Va Vi !IE
Figure 5-8

form shown in Fig. 5-8a in which Z,, ¥, and Z,, ¥, pertain to the sending
and receiving-end transformers respectively. The line between the two
transformers is defined completely by its length S miles, its characteristic
impedance Z, and its propagation constant p.

Figure 5-8a

Assuming the receiving-end voltage and current at the low-voltage side
of transformer b known, and also the generalized transmission constants
4;, By, and D, of this transformer referred to the high-voltage side, the
voltage and current at the high-voltage side of this transformer are, by
(5.2.9) and (5.2.10), respectively,

Vie = AyVa + Bula (561)

Iy = Auln + DyVa, (5.6.2)
where 4, is given by (5.2.6), B, is given by (5.2.7), and D; by (5.2.8). Refer-
ring to Fig. 5-9, it will be noted that Vj, and Iy are the voltage and cur-
rent, respectively, at the output terminals of the line. If 4, B, and D are
the generalized transmission constants of the line, the voltage and current
at the input terminals of the line are
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Vs = AVw + Bly (5.6.3)
Iy= Al + DVy (5.6.4)
where
= cosh pS
B = Z,sinh pS (5.6.5)
D= sin; pS.

Figure 5-9

Referring again to the figure, it will be seen that V, and I, are the voltage
and current, respectively, at the input terminals of the station-end trans-
former. The voltage and current at the low-voltage side of the transformer

are, respectively,
V.= AVs + Bl (5.6.6)

I = AJs + D,V; (5.6.7)

where 4,, B,, and D, are the generalized transmission constants of the
transformer at this end. The solution may be obtained in three steps, by
solving for Vy, and I, using equations (5.6.1) and (5.6.2). Then solving for
V: and I; using equations (5.6.3) and (5.6.4), and finally solving for V, and
I, using equations (5.6.6) and (5.6.7). The three sets of equations may be
also combined into a single set of the form

V.= AVn + B.ln (5.68)
I, = Aly + DV (5.6.9)

where 4;, B, and D, are the combined transmission constants of line and
transformers. Nothing is gained, however, in making this transformation.
Although equations (5.6.8) and (5.6.9) appear simple, there is a good deal
of labor involved in the determination of the general transmission constants
of line and transformers.

5/1. Ilustrative Problem of Line with Calculate the performance of a

Transformers; Receiving-End three-phase 300-mile line hav-
Conditions Known. ing a characteristic impedance

Z, = 380/—9.5°; a propagation
constant p = 2123 X 107°/80.5°. The transformer banks at the two ends
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of the line are identical, each transformer is rated at 7000 kva capacity,
and 125/12.5 kv. The data of each transformer are:

Excitation current = 6.89, of the load current.
Iron losses = 0.59%, of the kva.
Copper loss = 0.85% of the kva.

Leakage impedance drop = 8.79, of the high voltage.
The load current on the high side, by (5.4.1), is
In = 1%

= 56 amperes.
The leakage impedance per winding, by (5.4.2), is
_ 8.7 X 125000

= = 97.1 ohms.
AN 300 X 56 ohms
The resistance component of Z,, by (5.4.3), is
R(_ = w = 9.49 ohms.
562
The angle of Z,, by (5.4.4),is -
a = cos™! 949 _ 84.39°,
97.1

The leakage reactance, by (5.4.5), is

X, = 97.1 sin 84.39°
= 96.6 ohms.

The leakage impedance may be written, therefore,
2, = 97.1/84.39° = 9.49 + 7 96.6.

The exciting current, by (5.4.9), is

_ 68X 56 _
Ig.= 100 3.81 amperes.
The self-impedance, by (5.4.10), is
_ 125000
Zae= 341

= 32800 ohms.
The series resistance equivalent of the iron loss, by (5.4.12), is
R. = 10X 0.5 X 7000
“ 3.812
= 2410 ohms.
The total resistance component of Zg,, by (5.4.13), is
Ryu, = 949 4 2410 = 241949,
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The angle of Zy,, by (5.4.14), is

e = cos™ il
= 85.7°.
The mutual impedance, by (5.4.15), is
Zm/0n = 32800/85.7° — 97.1/84.39°
= 32700/85.7° substantially.

The equivalent mutual admittance of the transformer is
Y= 30.58 X 10~%/—85.7°.

The transmission constants of the transformer are

A= A= 1+ (97.1/84.39°)(30.58 X 10-%/—85.7°)
= 1 + 0.00297/—1.31°
= 1.0/0°, substantially.

By, = By = 2 X 97.1/84.39° = 194.2/84.39°.

Dy, = Dy = 30.58 X 10~¢/—85.7°.

For a load of 7000 kva at 90.6 per cent power factor lag and 12.5 kv
at the low-voltage side, the load current is 560/ — 25° vector amperes. With
reference to the high-voltage side, the receiving-end voltage and current are

Vay = 125000/0°
Iy = 56/—25°.

The transmission equations of the transformer, accordingly, by (5.2.1)

and (5.2.2), are
Vie = 125000 -+ (194.2/84.39°)(56/— 25°).
Ly = 56/—25° + (30.58 X 10~°/—85.7°)(125000/0°).

This gives for the voltage on the high side of the receiving-end trans-
former

Vis = 131000/4.1° vector volts.

The angle is with reference to Vy. The current at the high side of the
transformer is

5y = 57.9/—28.3° vector amperes.

This current lags the load voltage by 28.3° and the voltage on the high
side by 32.4°. Referring to Fig. 5-8a, it will be seen that Vy, and Iy, as cal-
culated, are the voltage and current, respectively, at the input terminals of
transformer b and also the voltage and current at the output terminals of
the line proper.
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The transmission equations for the line are given by equations (5.6.3)
and (5.6.4). Assuming the values of the transmission constants of the line

under consideration®
A= 0.816{4.35°

B = 227.2/72.3°
D = 15.73 X 104/90°.

The equation for the voltage and current at the sending end of the line,
accordingly, are

Vs = (0.816/4.35°)(131000/4.1°) + (227.2/72.3°)(57.9/—28.3°)
I = (0.816/4.35°)(57.9/—28.3°) + (15.73 X 10~4/90°)(131000/4.1°).

Multiplying out, these expressions become, respectively,

Vs = 106890/8.45° 4 13154/44.0°
Iy = 47.2/—23.95° — 206.5/—85.9°.

Carrying out the calculations, yields
Vs = 118000/12.17° vector volts

and
I; = 188.7/81.3° vector amperes.

The angles are with reference to V. The current I; entering the line
leads the voltage V; by an angle 81.3° — 12.17° = 69.13°.

The transmission equations for the voltage and current at the low-voltage
side of the station-end transformer referred to the high-voltage side are

V, = 118000/12.17° 4 (194.2/84.39°)(188.7/81.3°)
I, = 188.7/81.3° + (30.58 X 10-¢/—85.7°)(118000/12.17°).

Carrying out the calculations involved, yields

V. = 86500/23.2° vector volts
I, = 183/80.7° vector amperes.

The angles are with reference to the receiving-end voltage Va. The
station-end current leads the voltage at the station end by an angle
80.7° — 23.2° = 57.5°. The actual voltage and current at the low-voltage
side per phase at the station end are 8650 volts and 1830 amperes, respec-
tively. ,

" The dissipative power per phase at the receiving end is
P, = 7000 cos 25° = 6350 kilowatts.

* See Art. 4.2.
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The kva supplied at the station end is
(kva), = 8.65 X 1830
= 15820 kilovolt-amperes.
The dissipative power supplied per phase is
P, = 15820 cos 57.5°
= 8500 kilowatts.

The overall efficiency of line and transformers is

1= §38%
= 74.7 per cent.

5.8. The Complex Circuit of Line with If the line in Fig. 5-8 is also con-

Transformers. verted into an equivalent T, the

schematic diagram of line and

transformers assumes the form shown in Fig. 5-9. If the line is long, the

series impedance and the shunt admittance of the equivalent T of the line
are calculated by (4.2.10) and (4.2.6), respectively,

7= Z,(cosh pS — 1) _ Z,,tanhez—“s

sinh pS

, (5.8.1)
Y= sinh pS
Z,
If the line is between 25 and 100 miles long, then
77— (R+jLw)S
2 } (5.8.2)
Y = jCo.
For lines shorter than 25 miles,
Z= (R+ jLw)S
Yo } (5.8.3)

The series impedance Z, of the transformer calculated from known data,
as discussed in § 5.4, is the leakage impedance per winding referred to the
high-voltage side (equation (5.4.6)),

Z, = ZAL“_.= R. + ij- . (58.4)

The shunt admittance of the transformer is the reciprocal of the mutual
impedance, as calculated in § 5.4 (equation (5.4.15)). The Z, at the receiv-
ing end is the equivalent impedance of the load per phase referred to the
high-voltage side, i.e., the actual value multiplied by the square of the ratio
of transformation.
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Referring to Fig. 5-9 it will be noted that the admittance across
junctions 1 and 2 is

1

=73nth (5.8.5)

Y2

The impedance to the right of junctions 3 and 4, and not including the
admittance ¥, is
mm=a+z+%u (5.8.6)
1

2

The admittance across junction 3-4 including the admittance ¥ is

1
Yyu= —— 4 Y. 5.8.7
“= o + (5.8.7)
The impedance (Zs). to the right of junction 5-6 not including the admit-
tance Y, is

(Zoo)r = Z+ 2, + L. (5.8.8)
Yﬂ 4

The admittance across junction 5-6 including the admittance ¥, is

1
Yie = —— + Ya. 8.
% (Zbﬂ)r + (5 8 9)

The total impedance at the sending end of the entire circuit is

z,=2+-L. (5.8.10)
Y b6
If the voltage at the station end is known, the joint performance of line
and transformers may be calculated as is illustrated in the next article.
The formulas given above may be combined into a single compact for-

mula as shown below.
Substituting the value of Yz, from (5.8.9) in (5.8.10), gives

Z=7z +—1 . (5.8.11)

1
Yo+ ——
+ (ZBG)r

Again, substituting the value of (Zs). yields

Z,=7.+ 11 . (5.8.12)
Y.+

1
Z+ 2, + —
+Z. + o
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Replacing Y34 by its value in (5.8.7) gives
1

Z,=27Z,+ ; (5.8.13)
Y, + 1
Z+2Z,+ —
Y
+ (234)1'
Similarly, replacing (Z;),, from (5.8.6), gives
Z.=2, + 1 : (5.8.14)
Y, + i
Z+ 2, + g
Y+ ——
Zy+-Z + Y
Finally, replacing ¥y, by its value given in (5.8.5) yields
Z=12,+ 1 1 (5.8.15)
Y. + 1
Z + Za + 1
Y+ 1
Zy+ Z +
Y, +

2y + 2,

This will be recognized as a “ terminating continuous fraction,” and lends
itself very conveniently to the solution of the circuit.*

5.9. Illustrative Problem of Line with Calculate the sending-end imped-

‘Transformers. Receiving-End I'm-  ance of the line whose equivalent T

pedance and Station-End Voltage per phase as calculated in §4.2

Known. consists of Zr = 125.3/69.75° and

Yr = 15.73 X 10—/90°. The line is

terminated in transformers whose equivalent T as calculated in § 5.7 con-

sists of Z, = 97.1/84.39° and Y, = 30.58 X 10-%/—85.7°. Assume that the

receiving-end impedance equivalent to the load per phase is Z, = 2230/25°.

To obtain the sending-end impedance Z, to neutral, refer to equation
(5.8.15) and note that

Z, + 2, = 97.1/84.39° + 2230/25°

= 2280/27.1°.
2, + Z = 97.1/84.39° + 125.3/69.75°
= 220.5/76.13°.

* Bartlett, A. C., The Theory of Electrical Artificial Lines and Filters, Wiley and Sons, p. 41.
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Substituting in (5.8.15) gives

Z, = 97.1/84.39° + L 1
) —6/—85.7° 4+ e
30.58 X 1074/ =857 + o5 re15s + 1
15.73 X 10-4/90°
1
t 25057615 1

+ 30.58 X 10—%/—85.7° + 1

2280/27.1°

Z, = 465/—57.3° vector ohms.

Assuming that the station-end voltage referred to the high side of the
transformer is 85 kv per phase, the current at that end is

_ 85000
' 465/-57.3°
= 182.7/57.3°.
The kva input per phasc is
(kva), = 85 X 182.7 = 15520 kilovolt amperes.
The dissipative power per phase supplied to the station-end transformer is

P, = 15520 cos 57.3°
= 8390 kilowatts.

The receiving-end voltage, current, and dissipative power may be cal-
culated from the known values of V,, I, and the circuit diagram, Fig. 5-9.
Thus, the voltage across junction 5-6 is

Ve = V. — L,Z..

The current between junctions 5 and 3 is

— Vbﬂ = IJ

" (Zso)-

where (Z;s), is given by (5.8.8).
The voltage across junctions 3 and 4 is

Ve = Vie — Iss(Z, + 2).

The current between junctions 3 and 1 is

Iss

I3 = LTI 6

(Zu)r

where (Zy), is given by (5.8.6).
The voltage across the junctions 1 and 2 is

Vie= Vo — In(Z + 7).
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The load current is

Vi
Zb + Zr,
and the voltage across the load is

V, = Irzr = Vi — Irzb-

All values are, obviously, referred to the high voltage side of the trans-
former.

Another method of calculating receiving-end values is by means of the
transmission equations in which station-end values are known. Thus, refer-
ring to Fig. 5-9, the equations

Vs = AV, — B.l,
and } (5.9.1)
Iy = A, — D,V,
give the voltage and current, respectively, at the output terminals of the
station-end transformer, and which are also the respective values at the
input terminals of the line proper.
The equations

I.=

Vu, = AV; - Bls

and } (5.9.2)
Iu, = AIs - DVa

give the voltage and current at the output terminals of the line proper, and

at the input terminals of the transformer at the receiving end.

Finally, equations

Voo = AV1s — Bolnp

and (5.9.3)
Iy = AVis — DiyVrs

give the voltage and current at the receiving end. All quantities are, of

course, referred to the high side of the transformer.

5.10. Transformers in Parallel. The generalized transmission for-
mulas of transformers given in
(§ 5.2) with the values of the constants given by (5.2.6), (5.2. 7) and (5.2.8)
afford a convenient method of ob-
taining the performance of trans- (@
formers connected in parallel. Thus,
consider two transformers a and b
connected in parallel as shown in WV Zz,
Fig. 5-10, and whose symmetrical T g E

equivalent circuit is shown in Fig.
5-11. Let A,, B,, and D, be trans- ’ (b)
mission constants of transformer @, Figure 5-10
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and 4;, By, and D, be the transmission constants of transformer 5. The
transmission formulas of the two transformers, under the assumption that

I, Iy,

Figure 5-11

the receiving-end valucs with reference to the high-voltage side are known,
are

Vi= A2 + Boloz ’ (5.10.1)
and
Ial = Aala'.’ + DaVZ (5.10.2)
for transformer a and
Vi= AsV2 + Buols (5.10.3)
and
Iy = Aplvz + DyVo. (5.10.4)
In these formulas
= 14 (Z\¥n)o; A= 14 (5\Yn)s;
Ba = ZN'(Z + ZXYm)a; Bb = be(2 + Z)Ym)b;
Da = Yma, Db = Ymb-
The total secondary current is
L= Lo+ I, (5.10.5)
and the total primary current is
L= I+ L. (5.10.6)
Substituting (5.10.5) in (5.10.3), equatmg to (5.10.1), and solving for I,
yields
Ay
La= (B————+ Bb) s+ (Ba & B,,) I (5.10.7)

Using this value of I, in (5.10.1) and simplifying, gives

Vi= (““g" i ;:B") Va + (:f;b) | (5.10.8)




§5.11 LINES IN PARALLEL 151

To get an expression for the current /,, in the primary of the transformer a,
substitute (5.10.7) in (5.10.2). This gives
— [ 4By A Ay — A
I (B———a i Bb) L+ (—-—Ba et D,,) Va. (5.10.9)

The current [, in the primary of transformer 3, obtained in a similar
manner, is

= AsB, A Ay — Ap?
o (Ba + Bb) bt ( B.¥ B D") Ve (5.10.10)

The total primary current, by (5.10.6), is
—_ AaBb + AbBa (Aa — Ab)2 )
L= - — Dy — Dy Va. 5.10.11
‘ ( B, + B, )12 (Ba+3b o)Ve (1041

If the two transformers counected in parallel are identical, ie., is
A,= A4, = A; B,= B,= B, and D, = D, = D, formulas (5.10.8) for V;
and (5.10.11) for I, become, respectively,

Vi= ave+ (%) I (5.10.12)

I, = Al + 2DV, (5.10.13)
In terms of primary end values, these formulas are

Va= 4V — (%) L (5.10.14)

L= Al — 2DV.. (5.10.15)

The last two sets of formulas indicate that, as expected, each transformer
carries one-half of the load.

S.11. Lines in Parallel. The formulas developed in the pre-

ceding article for two transformers
in parallel operation, in terms of the equivalent T’s of each of the trans-
formers, hold also for two lines ¢ and & operated in parallel. In this case,
however, the constants in the transmission equations are

For line (a) For line (b)
Az = cosh (pS)a; Ay = cosh (pS)s;
B, = Z,, sinh (pS),; By = Z,, sinh (pS)s;
D, = sinh (pS)a. Dy = sinh (pS)s,
Zoa ’ ¢ Zob

If the two lines are identical in characteristic and length, then
A, = Ap= A = cosh pS
B,= B,= B = Z,sinh pS
Dy=Dp=D= Si%é.
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Under this particular condition formulas (5.10.12) to (5.10.15) inclusive,
indicate, as is expected, that each line carries one-half the total current.

5.12. Twin Three-Phase Lines with Consider Fig. 5-12, showing one

End Transformers. phase of a twin three-phase system

in which the lines including the end

transformers are connected in parallel. In terms of equivalent symmetrical

T’s of transformers and line, the twin system is shown schematically in
Fig. 5-13.

S| BN
I

Let Ai;B1uDia, AzaBouDsa, and As,Bs.Ds, represent the transmission con-
stants of the receiving-end transformer, line and station-end transformer,
respectively, of line a.

.__..,’. -—-—".

—..".

13
LY

Figure 5-13

Referring to Fig. 5-13, the transmission equations of line a, are

Vie= (AlVr)a + (Bllr)u (5.12.1)
L= (Allr s + (Dlvr)a . (5.122)
Vaa = (4V1)a + (Bal1)s (5.12.3)
T = (4sh)e + (D2V1)a (5.12.4)
Vo= (4sV2)s + (Bsls)a (5.12.5)

I = (Ashy)a + (DsV3)e. (5.12.6)
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Substituting (5.12.1) and (5.12.2) in (5.12.3) and (5.12.4), respectively,
yields

Vo = (AAVr)a + (Bdr)a (5.12.7)

IM = (Aﬁlr)a + (DBVr)ay (5.128)
where

Ala (A1A2)a + (B2Dl)a

By, = (4:B1)a + (B241)a (5.12.9)

Asy = (Alﬂz)a (BlD2)a
D5¢ = (AaDl)a + (DzAl)a-

Substituting (5.12.7) and (5.12.8) in (5.12.5) and (5.12.6), respectively,
gives
Ve = (4eVr)e + (Bel,)e (5.12.10)

and

Iy = (A7Ir)u + (D7Vr)n (5.12.11)
where

Aga = (4344)4 + (BaDs)a

Be = (ABBA)a + (ABBS)a (5.1212)

A = (AaAb)a + (DaB4)a

D'lo (ASDE)a + (DlAd)a-

Similarly, if AB1wDw, AwBwDy, AwBswDy, represent the transmission
constants of the receiving-end transformers, line and station-end trans-
formers of line b, the station-end voltage V, and station-end current 7y for

this line would be
Vl = (AGVr)b + (Bﬂlr)b (5.12.13)
Iy = (Asl)s + (D1V) ). (5.12.14)

Since the two lines with their respective transformers are in parallel, the
station-end voltage V, in equations (5.12.10) and (5.12.13),is the same, and
the V, in the two expressions are also the same. The total current supplied

to the two lines is
I, = I, + Iy, (5.12.15)

and the joint current delivered to the load is
L= Lo+ I (5.12.16)

Using the method developed in § 5.10 for transformers in parallel, equa-
tions (5.12.10) and (5.12.11) and (5.12.13) and (5 12.14) may be combined

to give +
AsaBer + AsrBea BoaBob
, = (AwBe + AsBee I 12,
v ( Bes + Bes ) (Beo + Bab) (5.12.17)
ABe Ara(Agp — Aga) '
Iy, = [——=-)1, = 4+ D)V,
s (Bu + Beb) * ( Bes + Bes + D )

I

(AnBu ,_'_(mfAu—AM +D)
B

sa + Bs B¢ + Bey



154 CH. 5 LINE WITH TRANSFORMERS

The current supplied to the two lines operated in parallel, by (5.12.15), is

A1aBeb + AnBsa (A1a — A7) (A — Asu) )
= I Ds, V. (5.12.18
! ( Bga + B ) +< Bes + Be *+ Do+ D ( )

If the two lines including their transformers are identical in every
respect, then Ae; = Agy = As; Ar.= An= A47; Bea= Bey= Bs; and D7,= Dn= Ds.
Under this particular condition, equations (5.12.17) and (5.12.18) become,
respectively,

V.= AV, + 92—“1, (5.12.19)

and
1, = A:l, + 2DyV,, (5.12.20)

indicating that the two lines share the load equally.
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SUGGESTIVE PROBLEMS Chapler 5

1. Determine the equivalent T of a transformer rated 66.5/12.7 kv; 7000 kw
capacity. Assume: copper loss 0.75% of rated kva; iron loss 0.32% of rated kva;
exciting current 4.29% of full-load current; and leakage impedance drop 7.4%,
of rated voltage.

2. Calculate the performance of the line stated in Prob. 4, Chap. 3, with station
and receiving-end transformers whose data are given in Prob. 1 under the
assumption the line is 120 miles long and V, to neutral is 12.7 kv. The load
is assumed to be 21000 kva at 909, power factor.

3. Calculate the equivalent transmission constants of two identical parallel-
connected transformers whose data are given in Prob. 1.

4. Calculate the equivalent transmission constants of a twin three-phase line
whose data is specified in Prob. 4, Chap. 3.

5. Two three-phase lines whose data are specified in Prob. 4, Chap. 3, are con-
nected in parallel and terminated with parallel-connected end transformers as
shown in Fig. 5-12. The transformer data are specified in Prob. 1. Obtain the
transmission equations of the transmitting system. Assume .S = 120 miles.



Chapter 6 Voltage Control
of Transmission Systems

6.1, General Considerations. One of the major problems in the
operation of constant potential sys-
tems is that of maintaining the receiving-end voltage constant under wide
variations of load. Unless controlled by some appropriate method the volt-
age at the receiving end of a transmission system will change with changes
in load. The maintenance of a constant receiving-end voltage for short lines
is accomplished by the automatic adjustment of the station-end voltage
through the excitation equipment of the generating system. Line-drop com-
pensators are frequently used with automatic voltage regulators to hold the
substation bus at or as close as possible to the prescribed necessary receiv-
ing-end voltage. Transformers with multiple-ratio taps, which permit auto- -
matic changing under load conditions, are also used with short lines. It is
worthwhile to note that these methods of voltage control do not eliminate
the voltage change but compensate for it at the station end. Although these
methods are usually satisfactory for the control of the receiving-end voltage
of short lines, they are not applicable to long transmission systems because
of the rather large voltage regulation of such systems.
Voltage control is also accomplished, particularly for long lines, by
means of synchronous reactors installed at the receiving end. Their func-
tion is to maintain the voltage at the receiving er.d and at the station end
constant by adjusting the reactive power of the reactor either in quantity
or in character or both. The voltage at the termini of the transmission sys-
‘tem is thus maintained constant by changing the power factor either in
value or in character (lead or lag) or both. For this reason the synchronous
reactors used for this specific purpose are frequently referred to as p{gue

modifiers, and the method as phase control.
' I55
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“The excitation of the synchronous reactors is automatically controlled
by voltage regulators actuated by the load changes.

In constant-voltage transmission systems the station-end voltage is also
maintained at a fixed predetermined value by the automatic adjustment
of the generator excitation by means of Tirrill regulators.

With the receiving-end voltage maintained constant by synchronous
reactors, and the station-end voltage maintained constant by Tirrill regu-
lators, the voltage at other points along the line will vary with changes in
load. When the line is long, the voltages at such points may reach danger-
ously high values and impose damaging stresses on the insulators. To avoid
this, it is advisable to have synchronous reactors installed at other points
along the line.

6.2. Leading and Lagging Reactive Before entering into a discussion

Power. of voltage control of lines by phase

modifiers, it is necessary to review

the mathematical definitions of leading and lagging reactive powers particu-

larly with reference to the sign, plus or minus, that should designate each.
In terms of its components, an inductive impedance is

ZL=R+jLw
or

= 2,2)% -1 Lw
2L (R’+L~w)/tan R

= Z1/8;. (6.2.1)
Hence, an inductive impedance is associated with a positive angle. Simi-
larly, a capacitive impedance, in terms of its components, is

=RrR-1L

= _1. * —1:1 3 _—
z, (R=+ = w’) tant =L = 7/-0, (6.2.2)

z A capacitive impedance is thus as-

A A T “sociated with a negative angle.
Consider now the simple circuit
shown in Fig. 6-1, consisting of an
inductive branch of impedance Z;/6;,
L—aaan—Ze 1; vector ohms, and a capacitive branch
of impedance Z,/—8, vector chms.
v The circuit is simulating a constant
Figure 6-1 voltage system with an inductive

or
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load in parallel with a capacitive load. The current through the inductive
load is

| 4
=1I./—8.
Zujbs 1/—0r.
The voltamperes supplied to this inductive load is
. V:
= VI./—8
Z1/0, /=61
This may be written in complex form
2
ZZ_@= VILcos6y — jVILsin 6y (6.2.3)
= P — JjOL. 5 (6.2.4)

It shows that the reactive power in an inductive load on a constant poten-
tial circuit is negative.
" ~The curfént in the capacitive load, under the same condition of voltage, is
4
Ze/—6.

The voltamperes supplied to the capacitive load is

= 1/s..

-—c/—o’: - VIZ_-
or
Vo VI.cost + jVI,sin 6, (6.2.5)
Zc( —oc ¢ ‘ ] ‘ ’ -
= P, + jQ.. (6.2.6)

This last equation indicates “that the reactive power in a capacitive
load on a constant potential system is positive. From what has been said
above, it follows that positive reactive power corresponds to a leading cur-
rent and to a negative 1mbédance angle and pertains to a capacitive circuit.
Neégative reactive power, on the other hand, corresponds to a lagging cur-
Tent; 4 positive impedance angle and pertains to an inductive circuit.

The positive and negative signs attached to the symbol Q used for reac-
tive power of a synchronous reactor do »of indicate circuit direction in the
sense that when the reactor is underexcited it receives reactive energy and
when overexcited it supplies reactive energy. Whether positive or negative,
the reactive power of a synchrepous reactor is stipplied by the generating
eqmpment of fﬁe system The positive sign indicates that the current leads
the voltage in time phase, and the negative sign indicates that the current

lagg thngnlugewm time phase. If an overexcited synchronous reactor, how-
ever, is connected in parallel with an inductive load, the lagging component
of the load current, and the leading current of the synchronous reactor are
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in opposite time phase. This means, in effect, that during the interval that
the inductive load receives its reactive power, the synchronous reactor
delivers it. There is thus a total or a partial exchange of reactive energy
between the synchronous reactor and the load. It should not be forgotten,

“however, that the exchange of the reactive energy is through the agency
of the generating equipment.

6.3. Reactive Power for Voltage Con- Consider the simple case of a short
trol. line for which the linear line admit-
tance (G + jCw) is negligibly small.
The transmission equations in such a case are
V.=V, + 1,Z (6.3.1)
I, =1,
where V, and V, are, respectively, the station-end and receiving-end volt-
ages per phase and Z = 2§ is the line impedance per conductor. Taking V,
as the reference vector, the above voltage equation may be written

Vifo= V[0 + L[0:2 ]t

Writing the right-hand member of this expression in the complex form
gives

Vo/ds =V, + (I + jI)(R + jX), (6.3.2)
|1, in which
I, = I, cos#,
I,=I,sin6,. (6.3.3)
Ve 1"' 1"’ The quantities R and X are the re-
sistance and reactance, respectively,
per conductor at the operating fre-

quency of the supply. The system to
which the above equations pertain
is shown schematically in Fig. 6-2. Equation (6.3.2) may be written

Vi/ss= Ve+ IR — IX + j(I,X + IR). (6.3.4)

The value of J, depends upon the required dissipative power at the
receiving end. The quantities R and X are line constants. Hence the only
two quantities that could be adjusted to maintain V., constant are V, and /.
Methods of voltage control by adjustment of the station voltage V, were
mentioned in § 6.1. Such methods are imperative when the quadrature
component I, of the load current I, is left uncontrolled.

The value-and siga-of 7, may be controlled, however, by means of syn-
chronous reactors connected across the line in parallel with the load, as indi-

Figure 6-2
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cated i in. Fig. 6-3. The excitation of the synchronous reactor is adjusted to
normal for a certain predetermined value of the receiving-end load, for
which V, is normal. When the load
decreases, the receiving-end voltage g~ W
"V, tends to increase. The synchronous
yogctor automatically adjusts its ex- 1 l l'
citation to a lower value. It thus o o gl"
demands - and._ takes. from the line a
larger and nearly 90° lagging current. I
This adds directly to the quadrature Figure 6-3
component Jq 0f the load current.
The total quadrature component I, of the receiving-end current is thus
increased, increasing the line drop I,Z “and reducing the receiving-end
voltage to normal.
~ On the other hand if the load current increases by virtue of an increase
in load demand, the tendency for V, is to decrease because of the increase
in J,Z. This automatically brings about an increase in the excitation of the
synchronous reactor. The 90° lagging current of the reactor decreases until
the receiving-end voltage is increased to normal. @us automatic control
of the excitation is generally so arranged. that. when. the receiving-end Joad
is about half normal, the excitation of the synchronous reactor is normal.
Itst rea.ctlve power is zero, and V. is at its normal value) The synchronous
reactor becomes overexcited and demands leading reactive power for all
receiving-end loads larger than half of the normal. Under this condition the
reactive power of the reactor is positive and that of the load negative. The
total reactive power at the receiving end is thus decreased and with it the
receiving-end current .. The line drop is thus reduced and V', is increased
to normal. In contradistinction to voltage control by the adjustment of the
station voltage V,, voltage control by synchronous reactors tends to and
automatically changes the line drop thus causing simultaneous adjustment
in the value of the receiving-end voltage. ——

The fact that an overexcited synchronous reactor takes a leading, i.e.,
positive reactive power while the load demands lagging reactive power, has
led many operators to assume erroneously that the positive and negative
signs attached to reactive power connotes circuit direction of flow of such
power. The positive reactive power of overexcited synchronous reactors is
thus thought of, erroneously, as being produced by the reactor. The physi-
cal fact is that the reactive characteristics of reactor and load are opposite
when one takes leading and the other lagging power. This means that_the
cylic storage and restoration of the reactive energy..are just. oppos:te
When one stores, the other restores. :
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6.4. Generalized Formula for Reactive The use of the general transmission
Power to Maintain Receiving-End equation

Voltage Constans. V.= AV, + BI, (6.4.1)

to determine the needed reactive power for the control of the voltage of
transmission systems will result, obviously, in generalized results which
could be applied to any specific case. Thus, with the proper choice of values
for the transmission constants A and B, the resulting formulas will hold
for lines of any length, complete systems of transmission including the ter-
minal transformers, and for lines in parallel operation with or without the
end transformers.

Using the receiving-end voltage V., as the reference vector, and associ-
ating the angle a with 4, and 8 with B, and assuming that 6, is the phase
of the load current I, with respect to V,, formula (6.4.1) when written in
the polar form becomes,

V./8s= AV./a + BI,/B + 6,. (6.4.2)
Expanding the right-side term yields
V./8y = AV, cos a + B, cos (8 + 6,) + jlAV, sin « + BI, sin (8 + 6,)].

Since the numerical value of the right-side term is the square root of the
sum of the squares of the horizontal and quadrature components, the above
expression gives

V2= (AV,) + (BI)* + 24B(VI), cos (a — 8 — 6,)

or
V= (4V,)* + (BI,)* + 2AB(VI), cos (a — B) cos b,
+ 24B(VI), sin (a — B) sin 6,. (6.4.3)
But ; -
V,I,ﬂcog_g, = P,
VI sin 6, = Q.. } (644)

Equation (6.4.3) may be written, therefore,
V= (AV,)? + (BI,)* + 24BP, cos (a — B) + 24 BQ, sin (a — B).
Setting
24Bcos(a — B)=m (6.4.5)
and
24Bsin (a — B) = n,
the preceding expression simplifies to

V3= (4V,)? + (BI.)* + mP, + nQ.. (6.4.6)
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Furthermore, since
Ip=I124+12
and

H
Sk S

I,
I,

where I, and I, are, respectively, the dissipative and reactive components
of the receiving-end current /,, equation (6.4.6) may be written

V= 4V + (%’,i)’ + mP, + (%04)’ +nQ,

(%&)’ ( ")+P,=+mp,( )+Q +nQ,( )

It should be noted that the two members in Q, and the two members in P,
may be thought of, respectively, as members of perfect squares. Hence, by
adding to the right-hand member of the preceding equation

”ll/'r2 2 ‘"lI/y-2 2 + ﬂVr2 2 71«1/,-2 2
( 2B ) ( 2B? ) ( 232) <ﬁ) ’
it may be written

VV 2 AV22 mV22 sz" 2 nV22
2T = ([ Pr r — r n _ ¢
( B ) ( B ) +( 232) (232) (Q 232) (232)
or

(BE) = (ALY + (o 2 + (04 2] - 2L o

or

But, by (6.4.5),
m + nt = 448

m+ ot _ (A)".

whence

4B* B

Referring this to (6.4.7), it will be seen that the first and the last members
of the right-hand side cancel and the equation becomes

(LBV“) ( zw) ( ) ©48)

Ve _
v, k

Setting

and solving for Q, gives

0. = —“53(%)' + \/(5};:)' - [P, + %(g’:—r (6.4.9)
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Using the values of m and # as given by (6.4.5), this expression becomes

0= % V2sin (8 — a) + \/(%—2)2 - [P, + % V.2 cos (8 — a)]’-

(6.4.10)

This expression gives the needed reactive power at the receiving end of the
system to maintain a predetermined constant voltage V, at that end in
terms of the constant voltage (V, = kV,) at the sending end, the dissipative
receiving-end power P,, and the transmission properties of the system as
embodied in the constants 4 and B.

6.5. Generalized Formula for the Reac- The expression for the receiving-
tive Power of Phase Modifier to end reactive power Q, obtained in
Maintain Constant Receiving-End  the preceding article includes the
Voltage. reactive power Q; of the load and

the reactive power-Qy of the phase
modifier, i.e.,

Q= Qi+ Qu (6.5.1)
In terms of the dissipative power P., the reactive power of the load is
Ql = P, tan@,,

where 6, is the angle corresponding to the power factor of the load.
The reactive power of the phase modifier, by equations (6.4.10) and
(6.5.1), is

Qu =—P,tan 6, + % Visin (8 — a) + \/(Ml;’z)2 - [Pr + % V2 cos (B — ar)]2
(6.5.2)

For the particular case when P, = 0, this expression becomes

Oumo = %’2 [4sin (8 — @) £ VE® — A%cos? (B — a)). (6.5.3)

There are two cases, however, for which the dissipative power P, is zero.
One is when the receiving end of the system is open-circuited. In this case,
as previously shown in discussing regulation, there is a rise in voltage. The
function of the modifier is to reduce the voltage by demanding lagging reac-
tive power. This case is taken care of in equation (6.5.3) by making the
radical negative. The second case when P, might be equal to zero is when
the receiving end of the system is short-circuited, in which case the receiv-
ing-end voltage decreases to zero, and the reactive power Qu, in equation
(6.5.3) becomes zero. This condition, however, is quite remote, for the
breakers will open the circuit. From what has been said above it follows
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that, under all conditions of syStem loading, the radical in equation (6.5.2)
is negative and the equation is written

Qu=—P,tan0+4 V2sin (g a) - \/(%) - [P, +4 v cos (3 - @]ﬁ
(6.5.4)

6.6. Generalized Formula for the Re- The excitation control of the phase
quired Voltage Ratio k. Dissipative modifier is generally adjusted to
Power Limit. permit the phase modifier to take

leading reactive power for all receiv-
ing-end loads above 50 per cent of the normal load, and lagging reactive
power for receiving-end loads below 50 per cent of the normal. Under these
conditions, it follows that Qu == 0 when P, is half normal load. For this
specific condition, equation (6.5.4) may be written

_Patan® A paoa_ oy \/2V,2)2_|:P,,, 4., _ ]t
and 4 Ayrsin@—a)=+ k(——B o A ycos (8- )
(6.6.1)

where P,, denotes the normal dissipative load at the receiving end. With
P, V,, cos 0, and the system constant A/a and B/B known, the ratio
k = V,/V, can be determined quite easily for any system.

With V, and & thus predetermined, the value of the reactive power Qs
of the phase modifier to maintain constant receiving-end voltage depends
only upon P,. Referring to equation (6.5.4) it is seen that when the radical
in this expression is equal to zero, i.e., when the dissipative power has the
particular value

V.2
7 |

the reactive power of the phase modifier is

P = k — A cos (B — a), (6.6.2)

Obtm = — Pom tan 8, + % V.2sin (8 — a). (6.6.3)

Note that P, as given by (6.6.2), is the maximum dissipative power
that can be transmitted over the system with the given values of V, and k.
Values of P, > P,, make the radical in equation (6.5.4) imaginary.

6.7. Voltage Conirol by Phase Modifi- The varivus formulas obtained in

ers; the Short Line. the preceding articles may be ap-

plied directly to short lines. The

shunt admittance of such lines is neglected, hence the transmission constants
are A=1/0°
B=2/;,
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where
2% = (R* + L%*)S?
Lw
= -1 =X
¢ = tan R

S = length of line in miles
R = resistance per mile of line conductor
Lw = reactance per mile of line conductor.

In accordance with the above, formula (6.4.10) for the reactive power Q,
at the receiving end of a short line, required to maintain constant terminal

voltages, becomes

_ Vising _ \/ EV 2\ V.2 cos ;)2. '
0.= L2sing ( : ) > (P,+ fhgns (6.7.1)

Formula (6.5.3) which gives the reactive power of the phase modifier to
maintain the receiving-end voltage constant when P, = 0 becomes, for

short lines,

Oxo = -%’2 [sin§ —VE — cos?¢{]. (6.7.2)

Equation (6.5.4), which gives the reactive power of the phase modifier
for any receiving-end dissipative load P, of power factor cos 6; and con-
stant terminal voltages, becomes for a short line

Ou=—P, tan, + Kz—zsl"—f - \/(ﬂz’f)2 - (Pr + V—zg‘isi)z (6.7.3)

The voltage ratio # = V,/V, is calculated by (6.6.1) which, modified for a
short line, becomes

_ Pntan | V?2sing _ \/ (_V__,’)2 — (P Vi2cos 3’)’
7 T 7 yt =) (6.7.4)

where P,, is the normal receiving-end load. The ‘reactive power demand
by the phase modifier to maintain constant receiving-end voltage for a
short line, by (6.6.3), is

Qutm = — Pom tan 0; + ﬂ;‘-’ﬁ (6.7.5)
where
V 2 .
Py = —2'— (k — cos¢) (6.7.6)

is the maximum dissipative power that could be transmitted over the short
line, with the terminal voltage constant.
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6.8. Illustrative Study of Voltage Con- To illustrate the material discussed
trol by Phase Modifiers; Short in the preceding articles, consider
Lines. : the 250,000 circ. mil stranded cop-

per cable three-phase line whose
constants were calculated in § 3.4. Assuming that the length of the line is

25 miles, the line resistance per conductor is

RS = 0.263 X 25 = 6.575 ohms.
The inductive reactance per conductor at the frequency of 60 cps is
LwS = 0.765 X 25 = 19.12,
The line impedance per conductor at the frequency of 60 cps is

Z = 20.2/71° vector ohms.
Hence

&= T1°
Assuming that the normal receiving-end load is 15000 kw per phase at a
lagging power factor of 87 per cent (8, =—29.5), and V, = 19 kv per
phase, corresponding to a line voltage of 33 kv, the value of required volt-
age ratio may be calculated by (6.7.4). Thus,

P, tan6; _ 15000 X 10°tan (—29.5%) _ _, 943 5 108
2 L '

192 X 108
=2 _— = 17. 0s
20.2 86 X 1

V2
z
(.‘.’Z_f ' = 319.3 X 10
53 ] °
Vising _ 19X 10°sin 71° _ 46 g3 v 108

Z 20.2
V2cos¢ _ 192 X 108 cos 71°
z = = 5.82 X 108,
Z 20.2 582X

Substituting these calculated values in (6.7.4) gives

(4.243 X 10°) + (16.88 X 10%) =+V/319.3 X 1012k — (7500 X 10° 4 5.82 X 108)2,
This gives

k=14,
Using this voltage ratio in (6.7:3) gives for full load

QOun = 8.486 X 10® + 16.88 X 10® —V/625 X 1012 — (15 + 5.82)* X 10t
= 11540 kilo-vars per phase, leading.

This is the reactive power needed to maintain V, = 19 kv and
Ve=19 X 14 = 26.6 kv to neutral when the receiving-end power is
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15000 kw per phase at 87 per cent power factor lag. The reactive power of
the load itself is
@ = —8480 kilo-vars per phase.
The reactive power at the receiving end, therefore, is
0, = 11540 — 8480
= 3060 kilo-vars per phase, leading.
The phase angle between the receiving-end current and receiving-end volt-
age changed from 29.5° lag to
6, = tan~' &%
= 11.5° leading.
The power factor at the receiving end changed from 0.87 lag to 0.981 lead.
The reactive power demand by the phase modifier to maintain the
recdiving-end voltage constant when the receiving-end dissipative power
P, = 0 on open circuit is, by (6.7.2),
Oumo= 17.86 X 10sin 71° —Vv'1.96 — cos? 71°]
= 17.86 X 10%(0.945 — 1.363)
= —7.45 X 108 vars per phase
or 7450 lagging kilo-vars per phase.
The maximum dissipative power that can be transmitted over the short
line with terminal voltages constant is, by (6.7.6),

P, = 17.86 X 10%(1.4 — 0.325) = 19200 kw per phase.
The reactive power of the phase modifier corresponding to the above
maximum dissipative power of 87 per cent power factor lag is, by (6.7.5),

Qum = —19.2 X 108 tan (—29.5°) + 17.86 X 10®sin 71°
= 10860 4 16880 = 27750 kilo-vars per phase.

6.9. Illustrative Study of Voltage Con- Substantially accurate results are
trol by Phase Modifiers; Medium obtained by the use of the nominal
Long Lines. T for lines not exceeding about

100 miles in length. Consider the
illustrative line used in § 6.8 assuming it to be 100 miles long. The resistance
of the line per conductor is

RS = 0.263 X 100 = 26.3 ohms.
The inductive reactance at the frequency of 60 cps is
LaS = 0.765 X 100 = 76.5 ohms,
The linear line impedance, therefore, is
25 = 80.8/71° vector ohms.
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The series impedance of the nominal T is

80.8/71°
Zr = 2_—

= 40.4/71° vector ohms.

The capacitive susceptance of the line is
CwS = 5.58 X 10~% X 100 = 558 X 10~% mhos.
The shunt admittance of the nominal T is
Yr = 558 X 10%/90° vector mhos.

By equation (4.2.4), the transmission constants of the nominal T are

A= 14 ZyYyp
B= 2+ Zr¥Yr)Zy.

For the particular case under consideration
4= 1+ (40.4/71°)(558 X 10-%/90°)

1 —0.02254/—19°

= 0.9787/0°
substantially.
Hence
A= 9787/0°
and
a=0°
B= (2 — 0.02254/—19°)(40.4/71°)
= 80.8/71° — 0.91/52°
B = 80/71.2°
and
g = T1.2°

Assume that the voltage to neutral at the receiving end is 63.5 kv cor-
responding to a line voltage of 110 kv; the normal receiving-end dissipative
power is P, = 15000 kw per phase at 87 per cent power factor. The follow-
ing values may be calculated for use in (6.6.1) to obtain the voltage ratio %.

P tan 6; _ 15000 X 10° tan (—29.5°) _

- 6
5 2 4.24 X 10
V2 _ 63.52 X108
L= D = 50, 6
B 30 50.4 X 10
];2 4 sin 71.2° = 50.4 X 10° X 0.9787 sin 71.2°
= 46.6 X 10°¢

V 2\2
(_BL) = (50.4 X 10%)2 = 2540 X 102

%'fA cos 71.2° = 50.4 X 108 X 0.9787 cos 71.2°
= 15.87 X 10°
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Substituting these values in (6.6.1) yields

(4.24 X 10°) + (46.6 X 10%) =V/2540 X 10"%%2 — [(7.5 X 10%) + (15.87 X 108)]?
3121 = 2540%?
k= 1.11.

Using a voltage ratio # = 1.1 in (6.5.4) and P, = 15000 kw per phase
at a power factor of 87 per cent lag gives for full load,

Ou = (8.48 X 10%) + (46.6 X 10%) —V/1.21 X 2540 X 10"z — (15 + 15.87)210%2
= 9.08 X 108 vars per phase

or
Qu = 9080 kilo-vars per phase,

to maintain a line voltage of 110 kv at the receivingend and 1.1X110=121kv
at the sending end.
The reactive power of the load itself is

Q1 = — 8480 kilo-vars per phase, lagging.

The calculated reactive power of the phase modifier is
Qu = 9080 kilo-vars per phase leading.

The reactive power at the receiving end is

Q- = 9080 — 8480
= 600 kilo-vars per phase, leading.

The phase angle between the receiving-end current and voltage changed
from —29.5° without the phase modifier to

6, = tan! 1§§85 = 2.29°
with the phase modifier. The power factor at the receiving end changed
from 0.87 lag to practically unity power factor. .
The reactive power demand by the phase modifier to maintain the receiv-
ing-end voltage at the above values when P, = 0 on open circuit is given
by (6.5.3). For the particular case considered it is

QOwmo= 50.4 X 10%0.925 —V/1.21 — (0.9787 cos 71.2°)7]
= 50.4 X 10%(0.925 — 1.053) vars per phase
= — 6450 kilo-vars per phase.

The maximum dissipative power that can be transmitted over the line
with the terminal voltages constant at the value stated above is, by (6.6.2),

P = 50.4 X 10%(1.1 — 0.9787 cos 71.2°)
= 39200 kw per phase.
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The reactive power demand by the phase modifier for the above dissipa-
tive power is given by (6.6.3). For the particular case considered it is

Qum = 68780 kilo-vars per phase.

6 10. Illustrative Study of Voltage Con- Consider the illustrative line used
' trol by Phase Modifiers; Lomg in § 6.8 assuming it to be 300 miles
Lines. long. The transmission constants of

the line calculated in § 3.4 are:

A = cosh pS = 0.816/4.35°
B = Z,sinh pS = 227.2/72.3°.
Assume that the voltage to neutral at the feceiving end is 125 kv cor-
responding to a line voltage of 216.5 kv. The normal dissipative load is

= 15000 kw at 87 per cent power factor. The voltage ratio is calculated
by (6.5.1) in which

Pratanb _ _ 494 % 10

2
Vi 1252 X 108
Ve 1258 X100 _ g7 % 100
B 2 - 8T X 10
Asin (8 — a) = 0.816 sin (72.3° — 4.35°)
= 0.7563
A cos (B — a) = 0.816 cos 67.95°
= 0.3063
Al‘; sin (8 — a) = 68.7 X 108 X 0.7563
= 51.95 X 108
AV2 _ 6
A22 cos (B — a) = 68.7 X 10° X 0.3063
= 21.04 X 108

V 2\2
-} = 4720 102,
(B) X

uting the required values in (6.6.1) gives

4.24 X 10% + 51.95 X 108 =V/4720 X 101k — [(7.5 X 10%) + (21.04 X 10%)]
= $333 = 0.8414 )
=.0.919.
Using & = 0.92 in (6.5.4) for a normal dissipative power of 15000 kw at
87 per cent power factor, gives for the reactive power

Q., = (8.48 X 10%) + (51.95 X 10%) —V/0.846 X 4720 X 10" — (15 + 21.04)210%
. = 8530 kilo-vars,
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per phase to maintain ¥, = 125 kv and V, = 115 kv to neutral for a nor-
mal load of 15000 kw at 87 per cent lagging power factor per phase. The
reactive power of the load itself is

Q: = — 8480 kilo-vars per phase, lagging.
The calculated reactive power of the phase modifier is

Qu = 8530 kilo-vars per phase, leading.
The reactive power at the receiving end is

Qr = 8530 — 8480
= 50 kilo-vars, leading.

The phase angle between the receiving-end current and voltage changed
from —29.5° without the phase modifier to

6. = tan™! %% = 0.191°

with the phase modifier. The power factor at the receiving end changed
from 87 per cent lag to substantially 100 per cent.

The reactive power demand by the phase modifier to maintain the ter-
minal voltages constant at the above stated values when P, = 0 on open
circuit is given by (6.5.3). For the special case considered it is

Quo = 68.7 X 10%(0.7563 —V/0.8414 — 0.3063?]
= 68.7 X 10%(0.7563 — 0.8680) vars per phase
= — 7720 kilo-vars per phase.

The maximum dissipated power that could be transmitted over the line
with the terminal voltages constant at the above stated values is, by (6.6.2),

P, = 68.7 X 10%(0.92 — 0.3063)
= 42160 kw per phase.

The reactive power demand by the phase modifier for this dissipative
power to maintain the receiving-end voltages constant would be, by (6.6.3),

Qum = 75790 kilo-vars per phase leading.

6.11. Dissipative and Reactive Power The preceding articles of this chap-
at the Station End of Transmis- ter deal with dissipative and reac-
sion Systems with Voltage Con- tive power conditions at the receiv-
trol. ing end of transmission systems

whose receiving-end voltage are
controlled by phase modifiers installed at the receiving end. The station-end
voltage of such systems is maintained at a constant predetermined value.

The vector impedance Z, to neutral at that end can be obtained from the
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known line constants and receiving-end impedance. Then if V, is the volt-
age to neutral at the station end, the current at that end is

I,= vector amperes. (6.11.1)

Vs
Z./6,
The dissipative power at the station end is

P, = (kv),I, cos 6, kw per phase, (6.11.2)
and the reactive power at that end is
Q. = (kv),l, sin 6, kilo-vars per phase. (6.11.3)

To obtain the generalized formula for the station-end impedance in
terms of the line constants consider the generalized formulas for station-
end voltage and current in terms of receiving-end values

V, = AV, + BI,
I, = Al + DV,.
The station-end impedance is V,/I,, i.e.,
Z, = AV, + Bl (6.11.4)
Al. + DV,

Since V, = I.Z,, the formula becomes

— 42, + B
z,= A_-i—-—DZ (6.11.5)
The quantity Z, in this formula is the impedance at the receiving end.

For the specific case of a transmitting system with a definite receiving-
end load in parallel with a phase modifier at that end, V, is constant and
known. The dissipative power P, and the total reactive power Q, are known
for the normal load conditions. Hence, the kva at the receiving end may be

calculated by
(kva), =V P2+ Q2

The receiving-end current, therefore, is

_ (kva),
L= (kv),

and
=Y /tan-t

This is the vector value of Z, in formula (6.11.5).
For a short line, as shown elsewhere, A =1, D=0, and B = Z/{.

Hence,
z,= 2,00, + 2/t. (6.11.6)
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For a line simulated by a symmetrical T network:

A= 14 ZyYr
B= (24 ZrYr)Zr. (6.11.7)
D=Yr,
and for a long line

= cosh pS
B = Z,sinh pS (6.11.8)
D= sinh pS

lo

The respective values of 4, B, and D in equation (6.11.5) will give the
required value of the impedance Z at the station end of the system.

6.12. Tllustrative Calculation of Sta- a. Short Line. A 250,000 circ. mil
tion-End Dissipative and Reactive stranded copper three-phase line
Pouwers of Transmission Systems 25 miles long is equipped with
with Phase Modifiers. phase modifiers to maintain the

receiving-end voltage constant at

V,= 19 kv and V, = 26.6 kv to neutral (¢ = 1.4). The normal dissipative

load is 15000 kw per phase at 87 per cent lagging power factor. The reactive
power of the modifier for this particular load, as calculated in § 6.8, is
Qun = 11540 kilo-vars. Calculate the dissipative and reactive powers at the

station end.
The reactive power of load and phase modifier is Q, = 3060 kilo-vars

and the kva at the receiving end is

(kva), = 15000 + § 3060
= 15300/11.54°.

The current at the receiving end is
_ 15300/11.54°
. 19
= 805/11.54° vector amperes.

The receiving-end impedance, therefore, is

Z= 19000

"~ 805/11.54°
= 23.6/—11.54° vector ohms.

The line impedance per conductor as calculated in § 6.8 is Z/¢ = 20.2/71°.
The impedance at the station end, therefore, by (6.11.6), is

Z,= 23.6/—11.54° 4 20.2/71°

= 33.1/25.8° vector ohms.
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The station-end current /, is substantially 805 and lags the station-end
voltage by 25.8°.
The kva at the station end is
(kva), = 26.6 X 805/—25.8°
= 21410/—25.8°.

The dissipative power at the station end is

P, = 21410 cos (—25.8°)
= 19250 kw per phase.

The reactive power at the station end is

Q, = 21410 sin (—25.8°)
= —9310 kilo-vars.

The power factor at the station end is
cos (—25.8°) = 0.9 lagging.
Note that the power factor is 97.7 per cent at the receiving end and nearly
90 per cent lag at the station end.
The efficiency of transmission with the phase modifiers is
1= 13§2%
= 77.9 per cent.

. b. Medium Long Line. A 250,000 circ. mil stranded copper cable three-
“phase line 100 miles long is equipped with phase modifiers to maintain the
‘receiving-end voltage at 63.5 kv and the station-end voltage at 69.8 kv

(k = 1.1). The normal dissipative load is 15000 kw per phase at 87 per cent
factor. The reactive power of the phase modifier to maintain the terminal
voltage constant for this particular load, as calculated in § 6.9, is Qu = 9080
kilo-vars. The reactive power of load and phase modifier is Q, = 600 kilo-
vars. Calculate the power conditions at the station end.

The kva at the receiving end is

(kva), = 15000 + j 600
= 15010/2.29°.

The current at the receiving end is
_15010/2.29°
"6 ,
= 236.5/2.29° vector amperes.
The receiving-end impedance including the phase modifier is
— _ 63500
T 236.5/2.29°
= 268/—2.29° vector ohms.
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The transmission constants for this line, as calculated in § 6.9, are

= 0.9787/0°

B = 80/71.2°

D= V7= 558X 10-5/90°.

Using these values in (6.11.5) gives
' _ (0.9787/0°)(268.0/—2.29°) + 80/71.2°
' 0.9787/0° + (558 X 107°/90°)(268.0/ — 2.29°)

= 297.6/4.15° vector ohms.

The station-end current is
_ 69800
*297.6/4.15°
= 234.8/—4.15° vector amperes.

The kva at the station end is

(kva), = 69.8 X 234.8/—4.15°
= 16370/ —4.15°
The dissipative power at the station end is
P, = 16370 cos (—4.15°)
= 16300 kw per phase.
The reactive power at the station end is
Q. = 16370 sin (—4.15°)
= —1184 kilo-vars lagging.
The power factor at the station end is
cos (—4.15°) = 0.997.
The efficiency of transmission is
1= 13848
= 92.1 per cent.

c. Long Line. A 250,000 circ. mil stranded copper cable 300 miles long is
equipped with phase modifiers to maintain the receiving-end voltage at
125 kv and the station-end voltage at 115.0 kv to neutral (¢ = 0.92). The
normal dissipative load is 15000 kw per phase at 87 per cent power factor.
The reactive power of the phase modifier, as calculated in §6.10, is
Qu = 8530 kilo-vars. The reactive power of load and phase modifier is
Q- = 50 kilo-vars. '

The kva at the receiving end is

(kva), = 15000 + 7 50
= 15000/0° kilo-voltamperes substantially.
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The current at the receiving end is

;. 15000/0°
125
= 120/0° vector amperes.

The impedance at the receiving end, including that of the phase modifier, is

7= 125000
T 120/0°
= 1041/0° vector ohms.

The transmission constants of the line, as calculated in § 5.7, are
A = cosh pS = 0.816/4.35°
B = Z,sinh pS = (380/—9.5°)(0.598/81.8°) = 227.2/72.3°
Siﬂh pS _ 0598/8180
Z, 380/ —9.5°

D= = 15.73 X 10—4/90°.

The sending-end impedance, by (6.11.5), is

_ (0.816/4.35°)(1041/0°) + 227.2/72.3°
" 0.816/4.35° + (15.73 X 10-4/90°)(1041/0°)
_ 850/4.35° + 227.2/72.3°
T 0.816/4.35° + 1.64/90°
506/ —47.4° vector ohms.

The current at the station end is

_ 115000
506/ —47.4°
= 227/47 .4° vector amperes.

L

The kva at the station end is
(kva), = 115 X 227/47.4°
= 26100/47.4°.
The dissipative power at the station end is

P, = 26100 cos 47.4°
= 17660 kilowatts per phase.

The reactive power at the station end is

Q. = 26100 sin 47.4°
= 19200 kilo-vars per phase, leading.
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The power factor at the station end is

cos 47.4° = 0.676.

The efficiency of transmission is

n= 13§83
= 84.9 per cent.
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SUGGESTIVE PROBLEMS Chapter 6

1. A three-phase 350,000 circ. mil copper cable line 30 miles long supplies a load
of 12,000 kw per phase at a lagging power factor of 85 per cent. Assuming the
receiving-end line voltage equal to 33 kv,

Calculate:

a.
b.

g

The reactive power of the load.
The reactive power of a phase modifier to maintain the receiving-end line
voltage at 33 kv.

. The combined reactive power at the receiving end of load and phase

modifier.

. The change in power factor at the receiving end caused by the use of the

phase modifier.

. The constant line sending-end voltage obtainable by the use of the phase

modifier.

. The dissipative power limit that can be transmitted over the line with

the sending-end voltage maintained at the value calculated in (e).
The maximum reactive power of the phase modifier for the power limit
calculated in (f).

2. Recalculate Prob. 1, on the assumption that the line is 112 miles long, and the
receiving-end line voltage 110 kv.

3. Recalculate Prob. 1, on the assumption that the line is 278 miles long, and the
receiving-end line voltage 220 kv.
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7.1. General Considerations. It was shown in § 2.8 that if the

station-end voltage, V,, of a trans-
mission line is maintained constant, there is a definite value of receiving-
end impedance Z, for which the kva at that end is a maximum. This means
in effect that a transmission line, through its inherent characteristics as a
vehicle of energy transfer, can transmit a limited amount of power.

It was similarly shown in the preceding chapter that when the receiving-
end voltage V, of a transmission line is maintained constant, there is a defi-
nite maximum dissipative power and a definite corresponding maximum
reactive power that can be transmitted over the line. It follows, therefore,
that only a limited amount of power can be transmitted over a line whose
receiving- and station-end voltages are both maintained constant.

The power limit in this latter case will differ in amount from that in
the first case, although both will depend to a considerable degree upon the
power factor of the load.

The power limit of a system of transmission will depend also upon
whether the load is increased in gradual and small steps or whether the
demand for power is sudden and large. This is particularly true when the
load is synchronous in character, in which case the stability of operation
will depend upon the maintenance of synchronist between the synchronous
generating equipment at the station end and the synchronous load or con-
trol equipment at the receiving end.

‘The maximum amount of power that can be transferred over a trans-
mission system when the load, either static or synchronous, is increased
gradually and in small steps is called steady state power limit. The ability

‘ 177
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of a transmission system to transfer gradually increased amounts of power
within the limit of the steady state is referred to as steady-state stability.

7.2. Steady State Power Limit; Gener- Consider a transmission system
alized Transmission Line with whose transmission constants A4,
Constant Station-End Voltage and B, and D are known. The receiving-

Static Load. end voltage is
V,= AV, — BI, (7.2.1)
This may be written
v, = (A - gi) V., (7.2.2)

where Z, is the station-end impedance. Substituting its value, as given by
(6.11.5) in the preceding expression, gives

A’ — BD
V.= (m) Vs. (7.2.3)
(VA),
(VA)M' 3
T v
Vio
(1), I
Figure 7-1 z,

Curve marked V, in Fig. 7-1 shows the variation of the receiving-end volt-
age with receiving-end impedance. The maximum value of V, is when

Z,-» o and is
y,, = (4 — BD)V, —ABD Ve, (7.2.4)
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The current at the receiving end is

I, = Al, — DV.. (1.2.5)
This may be written
= (4 -
L= ( 4 D) V.. (7.2.6)
Substituting (6.11.5) for Z, gives for the current at the receiving end
= (4= BD
I (AZ - B) V. (7.2.7)

Curve marked I, in Fig. 7-1 shows the variation of the receiving-end cur-
rent with Z,. The current is a maximum

L= (52—%1’2) v, (7.2.8)

when Z, = 0.

It is evident from the shape of the V, and I, curves that their product
(VI), results in a curve that passes through a definite maximum as indi-
cated. The quantity (VI).m cos 8, is the steady state power limit for the
case considered.

The ratio of the.voltage and current corresponding to the maximum
(VI)m gives the corresponding value of the receiving-end impedance. Its
value is defined completely by the characteristics of the transmission sys-
tem. Thus, multiplying (7.2.2) by (7.2.6) yields

_ (Az, — B)(A — DZ,)
VI = 2 Ve
The maximum value of V,7, as a function of Z, may be obtained by solving
awv.L) _
dz,

The solution shows that the maximum value of V,I, occurs when

_ _24B

{ A2 + BD (7.2.9)

Using the value of Z, expressed by (6.11.5) gives

AZ,+B_ _24B
A+Dz, A+ BD

which, when solved for Z,, gives the receiving-eﬂd impedance Z,» for maxi-
mum voltamperes.

B
™= = 7.2.10
Zm=7 (7.2.10)
This shows that the receiving-end impedance for the power limit depends

only on the constants of the transmission system with or without the trans-
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former equipment as the case may be. Thus, for a short line, since 4 = 1
and B = Z/{, it follows that the power limit is that for which

Zm= 2/t (7.2.11)

i.e., the power limit of the system will be reached when the load impedance
is equal to the line impedance.
If the line is simulated by a symmetrical T network, then
A=1 + ZTY Ty

and
B= (24 ZrYr)Zr.

By (7.2.10) the demand for the power limit occurs, therefore, when

z, = 2+ 2¥nr, (7.2.12)
14 ZrYr
Furthermore, since for a long line
A = cosh pS
B = Z,sinh pS§,
the demand for the power limit by (7.2.10) occurs when
Z,, = 7,5mh pS* 7.2.13
cosh pS (7.213)

7.3. Receiving-End Dissipative and Re- Consider the generalized voltage
active Power in Terms of the equation of a transmission system,
Displacement Angle; Power-Circle
Diagram.

V.= AV, + BI,. (7.3.1)

In polar form this equation is
V./s = AV./a + B/BI,/8,

where 6 is the time-phase angle between the station-end voltage V, and the
receiving-end voltage V. taken as the reference vector. This angle, generally
referred to as a displacement angle, plays an important role in stability
studies of transmission systems.

Solving the above equation for the current gives

I,La_,: Ki/a_ﬂ—A_KE{a_g.
B — B
The receiving-end voltamperes, therefore, is

D, fo=Teps— g -4V ja g (1.3.2)

* See equation (2.8.10).
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Since the horizontal component of the voltamperes is the dissipative
power (P,) and the quadrature component is the reactive power (Q,), it
follows that

P=Vllcs@—p) - Arcos )] (7.3.3)
and
0= K}-’&[Sin 6—8) — %,L?' sin (a — 13)]' (7.3.4)

These two formulas hold for any relationship between the terminal volt-
ages. However, if the station-end voltage V, is maintained constant by
adjustment of generator excitation, and the receiving-end voltage V, is
also maintained constant by means of phase modifiers, so that V,/V, = k,
the above expressions for P, and (Q, become, respectively,

P, = %’ [k cos (5 — B) — A cos (a — B)] (1.3.5)
and i
0 = lBﬁ [k sin (5 — B) — A sin (« — 8)]. (7.3.6)

These two equations indicate that, for any particular transmission sys-
tem having constant station- and receiving-end voltages, both P, and Q.
are functions of the displacement angle 8. In accordance with (7.3.5) the
maximum value that P, may have is

Ve
P, = —BL [ — A cos (@ — B)] (7.3.7)

and it occurs when é = B. The corresponding reactive power, in accordance
with equation (7.3.6), is*
Om =422 5in (8 - . (7.3.8)
The variation of the receiving-end voltamperes, and of its components
P, and Q, with the displacement angle 8, may be visualized by the polar
diagram of equation (7.3.2), usually referred to as power-circle diagram.
Note that the first term of this equation is a vector of constant magnitude
and of position depending upon the displacement angle 8. Its locus is, there-
fore, a circle of radius (V,V,/B) starting, when & = 0, from a position (—8)
measured from the horizontal and moving counserclockwise with increases
in the value of 8.
The second term of the equation is a vector of constant magnitude
(AV,*/B) and fixed position (@ — B) with reference to the horizontal.
Since the voltamperes (V1), is the vector difference of the two terms, its locus

* See equations (6.2) and (6.3).
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will also be a circle of radius (V,V,/B) but with the center at the end of
the fixed vector.
Accordingly, to construct the receiving-end power-circle diagram lay off
the fixed vector
0a/180° + (a—5)=—4—]‘3/ﬁ/a—- 8

to an appropriately chosen scale and with reference to the positive hori-
zontal. Since the angle B is invariably larger than o this vector will be in
the second quadrant measured from the horizontal through o and as indi-
cated in Fig. 7-2. With point (@) as a center, draw to the same scale a circle

§=0
Figure 7-2. Receiving-End Power-Circle Diagram

of radius (V,V,/B). This circle is the locus of the first term of equation (7.3.2)
as the displacement angle é is increased. The initial point of this locus
occurs when § = 0, i.e., when (V,V,/B) makes an angle (—8) with the hori-
_zontal through the center at (a) as indicated by the line ab in the figure.
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The same circle, but with o as the origin, represents the locus of the
receiving-end voltamperes (V7), as the displacement angle & is increased.
The initial point of this locus is also at (b) and the initial value of (VI),
occurring when é = 0 is 0b.

Lines such as ob, oe, and of drawn from the origin at (o) to the circular
locus give, therefore, the receiving-end voltamperes in terms of the chosen
scale. The angles such as 6, which these lines make with the horizontal
through the origin at (o), are, respectively, the time-phase angles between
the receiving-end current and the receiving-end voltage as the reference.

The displacement angles corresponding to the indicated values of (VI),
such as ob, oe, etc., are measured from the initial position (ab) of the
(V,V./B) vector as indicated in the figure by é..

The horizontal projections of the (VI), vectors represent to the chosen
scale the receiving-end dissipative power P, as given by equation (7.3.3).
The power limit P,» = of; is the horizontal component of (VI), = of, cor-
responding to the displacement angle § = 8. Note that point (f) is the
intersection of the horizontal from the center (a) to the circle locus.

The vertical projections of the (VI), vectors represent to the chosen scale
the receiving-end reactive power Q, as given by equation (7.3.4) and illus-
trated by Q.. in Fig. 7-2. Note also that the reactive power is lagging in
character when 6, is negative and leading when 6, is positive such as 6,.. The
reactive power Q. (7.3.8) corresponding to the dissipative power limit is
thus equal to the vertical projection from (f) and is leading in character.

The construction of the receiving-end power-circle diagram given in
Fig. 7-2 is for the particular long line for which

A = cosh pS = 0.816/4.35°
B = Z,sinh pS = (380/—9.5°)(0.598/81.8°) = 227.5/72.3°

V.
Yo p=1,
V.
Substituting these values in (7.3.2) gives
V2 0.816V 2
o0, = —— /6 — 72.3° — ———T /4.35° — 72.3°
(VD[ = gyr5 0= 128" = D s (438 = T2.¥°

or

V2 o o
(VD)8 = 77 1.0/ = 72.3° + 0.816/112.05°)
Only the bracketed member was used in the construction of the diagram.
Actual values are obtained by multiplying measured values of P, Q,, and
(VI), by the factor (V,2/227.5). Thus, if the receiving-end voltage is in kv,
the measured values multiplied by (kv,2/227.5) will give, respectively,
receiving-end kva, kw, and the reactive power in kilo-vars.
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The receiving-end voltamperes for a short line is substantially
- 'VlVr —_—F - _I_,Lz -
Dp="Tefs ¢ - T2 ¢

Ve e V2 g
== /8 s“+Z/180 ¢ (7.3.9)

where Z/{ is the linear-line impedance.

From the similarity of this expression with (7.3.2) it may be inferred
that the construction of the power-circle diagram of such a line is identical
to that given above for the long line.

7.4. Station-End Dissipative and Re- Consider the generalized voltage
active Power in Terms of the equation of a transmission system
Displacement Angle. Power-Circle in terms of station-end values,
Diagram.

V. = AV, — BI,. (7.4.1)

In polar notation this equation is

V./0° = AV./a + 5 — B/BL /6, + b
where 4§ is the displacement angle between V, and V,, the latter being taken
as the reference vector. Solving for the current gives

L= g2 /-0 +p).

The voltamperes at the station end, therefore, is
(VI)./8, = 14-;—/'—2 [a—B— YLBKI /— (8 + B). (7.4.2)

The dissipative power at the station end is the horizontal component
of this expression

P. = &[& cos (a —_— ﬂ) — COS (5 + B)]' (7.43)
B V.
The reactive component is the quadrature component of (V7), and is
0. = KBL[AVV_ sin (a — 6) + sin (5 + ﬁ)]- (7.4.4)

For constant values of V, and V, and V,/V, = k the above two equa-
tions for the dissipative and reactive power at the station end, respectively,

be 2
come P.= %—[A c0s (o — f) — %cos 6+ B)] (7.4.5)
0.= % [A sin (@ — f) + % sin (5 + B)} | (7.4.6)

For any particular system having constant sending- and receiving-end
voltages both P, and (., are functions of the displacement angle. By
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(7.4.5), it is seen that the power limit at the sfation end occurs when
cos (6 + B) =—1, i.e.,, when ‘

6= 180° — 8.
Its value under these conditions is
=V - 1],
Pu=L [A cos (o — B) + k] (7.4.7)

The reactive power corresponding to the above dissipative power limit,

by (7.4.6), is
Om = L sin (a - ). (1.48)

As in the case of the receiving end, the variation of the voltamperes and
of its components P, and Q, with the displacement angle é may be visual-
ized by a power-circle diagram obtained from equation (7.4.2).

§=0°
\‘//—\leo"-a

\

Figure 7-3. Sending-End Power-Circle Diagram
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The construction is quite similar to that of the receiving end discussed
in the preceding article. Thus, referring to Fig. 7-3 lay off the fixed vector

2
Ag, /a -8B

og/a — B=

to an appropriately chosen scale and with reference to the positive hori-
zontal. Since the angle « is invariably smaller than B, this vector will be
in the fourth quadrant as indicated in the figure. With point (g) as a center,
draw to the same scale, a circle of radius (V,V,/B). This circle with (g) as
the origin is the locus of the second term of equation (7.4.2) as the displace-
ment angle is varied. The initial point of this locus occurs when & = 0°,
i.e., when (V,V,/B) makes an angle (180° — ) with the horizontal through
the center at (g) as indicated by the line gh.

The same circle, but with (o) as the origin, represents the locus of the
voltamperes at the station end (V7), as the displacement angle is increased.
The initial point of this locus is at % and the initial value of (V7), occurring
when § = 0° is oh.

Lines ok, of, ok, etc., drawn from the origin at (o) to the circular locus,
give values of (VI), in terms of the chosen scale. The angles that these
(VI), vectors make with the horizontal through the origin at (o) are the
respective time-phase angles between the station-end current and the sta-
tion-end voltage.

The displacement angles, §;, &, etc., corresponding to the various values
of (VT), are measured from the initial position gk of the (V,V./B) vector
as shown in the figure.

The horizontal projections ohi, ofi, ok, etc., Tepresent to the chosen
scale the dissipative power P, delivered to the system at the station end.
The power limit at this end is P, = om;. It is the horizontal component
of (VI), = om, corresponding to the displacement angle § = 180° — 8 and
is given by equation (7.4.7).

The vertical projections of the (VT), vectors such as ko, kk,, etc.,
give to the chosen scale the reactive powers at the station end. The reac-
tive power corresponding to the power limit P,, is Qmm = mm, and is
represented by equation (7.4.8).

The construction of the station-end power-circle diagram given in
Fig. 7-3 is for the particular long line for which

4= 0.816/4.35°
B=2275/72.3 and l‘;—‘:k =1

T

Substituting these values in (7.4.2) gives

(VI)./8, = -2-5‘%—"5 (0.816/—67.95° + 1.0/107.7° — ).
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Only the bracketed member was used in the construction of the diagram.
Actual values are obtained by multiplying measured values by the multi-

plying factor V,2/227.5.
The voltamperes at the station end of a short line is substantially

(VI)./6, = ‘j J—¢ - -"7"— /=05 + ). (7.4.9)

where Z/{ is the linear-line impedance. From the similarity of this expres-
sion with (7.4.2), it follows that the construction of the power-circle diagram

is identical.

Figure 7-4. Combined Power-Circle Diagram



188 CH. 7 STEADY STATE POWER LIMITS

Using the same origin and the same scale, the power-circle diagram for
the receiving end, Fig. 7-2, and that for the station end, Fig. 7-3, may
be combined as shown in Fig. 7-4. By so doing, the values of voltamperes,
dissipative and reactive powers at the two ends of the transmitting system
for any displacement angle § may be determined very easily. Thus, referring
to the figure, it is seen that the power limit at the station end is quite larger
than that at the receiving end. That at the receiving end occurs at a smaller
displacement angle. The significance of this fact is discussed in § 7.8.

The (VI), for the power limit, occurring when & = S, is proportional
to the distance of. The corresponding (VI), for the same value of § is of:.
The ratio of/of1 gives the voltampere efficiency for the receiving-end power
limit.

The power limit at the receiving end is proportional to the distance ok.
The corresponding dissipative power delivered at the station end is similarly
proportional to the distance ok,. The power efficiency of transmission is,
therefore, ok/ok,. The loss in the line at the power limit is proportional to
the distance kk,. Values of VI, P, losses and efficiency for other values of
displacement angle may be obtained in the same manner.

*

1.5. Power-Angle Curves. Graphical methods of investigation

are used frequently in system sta-
bility studies. The graphical representation of the power-angle equations
(7.3.5) and (7.4.5) are of great importance in such stability studies and are

called power-angle curves.
To illustrate power-angle curves, consider the short 25-mile line used in

the illustrative problem in § 6.8. Its constants are:
A=1/0°%B=202/71°V,= 19kvand k= 14,

The power-angle equation, by (7.3.5), is
P, = 17860[1.4 cos (5 — 71°) — cos 71°]
= 25000 cos (5 — 71°) — 5820 kw.
The power-angle curve for this line is shown in Fig. 7-5.

The constants of the 100-mile line used in the illustrative problem in
§6.9 are: A = 0.9787/0°; B = 80/71.2°; V, = 63.5 kv and k = 1.1. The
power-angle equation for this line in accordance with (7.3.5) is

P, = 50400[1.1 cos (8 — 71.2°) — 0.9787 cos 71.2°]
= 55440 cos (5§ — 71.2°) — 15900 kw.
Similarly the constants of the 300-mile line used in the illustrative prob-
lem in §6.10 are: 4 = 0.816/4.35°; B = 227.2/72.3°; V, = 12§ kv and
k = 0.92. The power-angle equation for this line, by (7.3.5), is ’
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P, = 68800 [0.92 cos (6 — 72.3°) — 0.816 cos 67.95°]
" = 63400 cos (8 — 72.3°) — 21080 kw.

The power-angle curves as obtained from these equations are sinusoidal,
similar in shape to that shown in Fig. 7-5 for the short line.

10° Kilowatts

o x

0l 1 1 1 ) 1 1 1 Il
0 20 40 60 80 100 120 140 \ 160 180 Degrees

Power Angle §

Figure 7-5

1.6. Single Impedance Equivalent of a It was shown in the previous three
Transmission Sysiem. chapters that symmetrical T net-
works may be used with great con-

venience in the investigation of the performance of transmission systems.
For short lines the shunt branch of the T equivalent of the line is assigned
zero admittance. For medium long lines, the shunt branch of the T equiva-
lent is assigned the lumped value of the linear-line admittance, and each
series branch is assigned one-half of the lumped linear-line impedance.
For very long lines, the shunt branch is assigned a lumped admittance
(sinh pS)/Z, and each series branch a lumped impedance equal to
Z, tanh (p5/2). Lumped impedance values for the series branches and
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lumped admittance values for the shunt branch may be obtained for lines
with transformers or for twin lines with or without transformers as dis-
cussed in the preceding chapters.

z, Z, In the study of power limits and

pAAAY pAAAL stability behavior of complete power

T s I, l systems or parts thereof, such as
Vs l,l Z, V, transmission lines, it is frequently de-
L sirable and often imperative to sim-
_____ —_ plify further the network between the
Figure 7-6 termini of the system by replacing it

by a single fictitious impedance.
Thus, consider the general T network shown in Fig. 7-6. Let V, be the
potential difference to neutral across the receiving ends. Referring to the
figure it is seen that
Vi= L2+ LZ, + V.. (7.6.1)

Since
L=5L+ I

the preceding expression may be written in terms of 7,

Vo= 12+ Z,) + ILZ, + V..

Furthermore, since
I V., + I.Z,
= L1 b2
Z;

)

the above equation becomes

_ 22 . (2
v, = lf(zl+zg+ Zﬂ)+(zs+1)v,.

This simplifies to

V, = Ir [(Zl + ZS)ZZ + Zl] + (zl + ZZ) Vr,
23 Z;
or
z, 1 ( 22 :
(zl + Zs) I (zl Bt z,) +v. (7.62)

This expression indicates that the
T network, shown in Fig. 7-6, may
be replaced by the one shown in
Fig. 7-6a in which the series equiva-
lent impedance replacing the T is

= 2125 *
Zo 7.1z + 2, (7.6.3)

Figure 7-6a * This follows also from Thevenin’s theorem.
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and the sending-end voltage V, changed to

(21 ) (7.6.4)

It is important to note that in this equivalent circuit the receiving-end
voltage V. and current I, are the same as in the actual circuit while the
sending-end voltage and current differ from their respective values in the
actual circuit. It follows, therefore, that the equivalent circuit in Fig. 7-6a
could be used to calculate actual voltage, current, and power at the receiv-
ing end but not at the sending end.

Another series equivalent circuit may be obtained for the calculation of
the actual voltage, current, and power values at the sending end. Thus, the
voltage equation (7.6.1) of the T circuit may be written in terms of I, as

follows
Vo= 121+ 2;) — IiZ: + V,.

Va - Iazl
z, ’

Since
13 s

the expression becomes

v, = 1,<z, +22+Z‘~Z—2) 2V y,
%
or
(z-z + Za) V=1, [Zz LA+ Za)] ‘v
A Z;
or
- Z.Z; Z;
V.= 1, (z, + 52 Za) + <22 4 Zs) .. (7.6.5)

This expression indicates that the T network shown in Fig. 7-6 may be
replaced also by the one shown in

z
Fig. 7-6b in which the series equiva- z, .
lent impedance replacing the T is AN
2,2, T Is z
Zo=12+; . (7.6.6 s
w=at gy (189 Vs. o
and the receiving-end voltage changed L -_l
to z P T T
e = (-2 V. 6.7) Figure
e (e oo

Note again that, in the equivalent circuit shown in Fig. 7-6b, the send-
ing-end voltage V, and current I, are the same as in the actual circuit while
the receiving-end voltage and current differ from their respective values
in the actual circuit. It follows, therefore, that the equivalent circuit in
Fig. 7-6b could be used to calculate actual voltage, current, and power at
the sending end but not at the receiving end.
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For the specific case when the T network is symmetrical, as is the case

of lines with or without transformers, Z; = Z, = Zr and Z; = 1/Yr.
Accordingly,

Z _ 1
742 1+zimp © (7.68)

Equations (7.6.4) and (7.6.7) may therefore be written for the series
equivalent of a symmetrical T

- Ve
Vie 1+ Zr¥r = aV, (7.6.9)
and
V. = .
Vie = 1Tz, avV,. (7.6.10)

Equations (7.6.3) and (7.6.6) for the series equivalent impedances of a
symmetrical T are thus equal and of value

Zr
Z20=20=12 —_—
b T+1+ZTYT

Z,= Zr(1 + a). (7.6.11)
To illustrate the above, consider the T equivalent of the 300-mile line
used in § 4.2. The T network is shown in Fig. 7-6. By (7.6.8),

1
1+ (125.3/69.75°)(1573 X 107¢/90°)

a=

= 1.224/—4.82°.
Hence, by (7.6.11),
Z,= 125.3/69.75°(1 + 1.224{—4.82°)
= 278/67.08°

and
V= (1.224/—4.82°)V,

for the equivalent circuit shown in Fig. 7-6a, and
= (1.224/— 482V,

for the equivalent circuit in Fig. 7-6b.

1.1. Dissipative and Reactive Powers From what has been said in the
in Terms of the Single Impedance preceding article it follows that the
Equivalent of a Line. line should be represented in this

case by the series equivalent im-
pedance Z, given by (7.6.11). To obtain receiving-end values, the sending-
end voltage must be changed to that given by (7.6.9). The voltage equation
of the circuit is

Vn_/ﬁ - Vrzg_a + (I r[_:) (ch_{)
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Solving for the current gives

Vu/so - g-c _ Vr/_ga
Z, Z,

/6, =

The voltamperes at the receiving end are

VieVe/oe — £ V=S

(VDn/o, = 2 Z.

(7.7.1)

From the above, it follows that the dissipative and corresponding reac-
tive powers are, respectively,

P = V;" [ V“ ] @12)
o= V;V [sm (8 — &) + sm ¢ e] (7.1.3)

where §, is the displacement angle between the receiving-end voltage as the
reference and the equivalent sending-end voltage V,. that must be used
with the single impedance equivalent of the transmission system.

It should be noted that the above expressions for P, and Q, areidentical
in form to those for a short line in which the linear-line admittance is
neglected.

To obtain the dissipative and reactive powers at the sending end, the
receiving-end voltage should be changed to that given by (7.6.10). Accord-
ingly, the voltage equation of the circuit, using V,. as the reference

Vee/0° = V,/8.~ (1./8, + 8.)(Z./L.).
This gives for the current at the sending end

Vc/— g—a _ Vrc/_(ae + g-r)
Z, Z,

1,/6, =

The voltamperes at the station end is

V.g/_g-’ _ VcVnZ" (jsr+ g'e)
Z, Z.

(VI)./6, =

1

The dissipative and reactive powers at the station end are, accordingly,

VVse [ V,
Ze Vrc

Q‘ VZV" [sm (50 + 3‘.) - i,"‘" sin fe] (775)

P, = cos ¢, — cos (8, + Q‘e)] (7.7.4)
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7.8. Steady State Power Limit of Gen- The method developed in the pre-

erator and Line. Generator Excita- ceding article for the determination

tion emf and Receiving-End Volt- of the dissipative powers P, and P,,

age Maintained Constant. respectively, supplied to and deliv-

ered by a transmission system using

the series impedance equivalent of the system may be extended to systems
including the generator equipment at the station end.

When the bus voltage at either end of a transmission system is main-
tained constant and is unaffected by any change in the dissipative or in the
reactive power or in both, the bus at that end is said to be an infinite bus.
The name implies that the impedance behind such a bus is capable of
receiving an infinite amount of energy provided it can get it.

The system is represented diagrammatically by Fig. 7-7 in which Zg is
the impedance per phase of the generator.

ALY WY AAAA
Y
(] Y, vV, E, v,
L | 4L
—— — B -
Figure 7-7 Figure 7-7a

For the determination of the power at the receiving-end where V, is
maintained constant, the system should be represented by the series imped-
ance equivalent shown in Fig. 7-7a. This equivalent series impedance in-
cluding the phase impedance Zg of the generator is obtained by (7.6.3) in
which

Z,= Za + ZT
_1
Z; = s
and
ZQ = z'r.
This gives
Z,=—ZetZr |4 (1.8.1)

T 1+ (Zo+ Zp)Yr

The generated emf at the sending end, by (7.6.9), is

, Eg
Eg= ———€ . 8.
“" 1% @o+ Zr)¥r (7.82)
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By analogy to (7.7.1), the dissipative power at the receiving end is

P, = _E_g_'!./i[cos (50«: —_ g’,a) -_— EV' cos g'w], . (7.83)

ea

Ge

where 8,, is the displacement angle
between V, and Eg., and ¢.. is the
angle associated with the series im-
pedance equivalent Z,,.

The series circuit equivalent to Ee Ve
the system circuit, and which should L _J
be used for the determination of the — e e e

dissipative power supplied by the Figure 7-7b

prime mover and converted into

electrical power by the generator, is shown in Fig. 7-7b. The equivalent
series impedance is, by (7.6.6),

= Zr__
Zy= (Z2¢+2r)+ 1 Z, ¥, (7.8.4)

and the voltage at the receiving end should be changed, by (7.6.7), to

V
Vie= —2 . 7.8.5
1+ Z;Yr ( )
By analogy to equation (7.7.2), the dissipative power converted in the
generator per phase is
Pg = Eg——-V" [—E—q COS {op — COS (6,5 -+ f,b)] (786)
eb re
where Eg is the generator excitation voltage per phase, 8., the displacement
angle between E¢ and V,,, and {., the angle associated with the equivalent
impedance Z.
Equation (7.8.3) indicates that the power limit at the receiving end
occurs when cos (8,s — {e.) = 1, i.e., when 8., = (., and is

Similarly, equation (7.8.6) indicates that the maximum converted power
occurs when cos (84 + ¢e) =—1, i.e., when
Sep = 180° — {op.

The value of the maximum converted power, accordingly, is

= EaVre[Ea . 1].
Pgm 7 [V,. cos $eb + (7.8.8)
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To illustrate the above, consider a transmission system for which
Zy = 125.3/69.75°; ¥Yp = 1573 X 10-8/90°;
and generator phase impedance

Zg = 10/90°.
By (7.8.1),

2., = 292/61.72°.
By (7.8.2),

Eg,= (1.25/=4.9°)E.
By (7.8.4),

Z., = 288/67.86°,
and by (7.8.5),
Ve = (1.22/—4.81°)V.,.
For the specific case, when Eg/V, = 1.2, obtain

Ve — 0.667
Ge

Eg _

V. 0.984
E(;,V,- = 1.25EOV,-
EGV,-, = 1.22 EGV,-

0 = 6 — 4.9°

85 = &+ 4.81°

Substituting in the equations for P, and Pg gives
P, = LBEVr (0oq (5 — 4.9° — 67.72°) — 0.667 cos 67.72°]

202
Po= 1'—23—%’—"' [0.984 cos 67.86° — cos (5 + 4.81° + 67.86%)]
or
EGVr o
r = — - . - 0.
P, = £2¥(c0s (5 — 7262°) — 0.253]
Po=EVr10.371 — cos (5 + 72.67°).
236
Setting
EGVf -
2335
then
EgV, - N
Ed¥: — o9gon,

and the above expressions reduce to
P, = Nlcos (§ — 72.62°) — 0.253]
Pg = N[0.367 — 0.989 cos (5§ + 72.67°)].
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The curves in Fig. 7-8 show the variation of P, and Pg as functions of
the displacement angle 8. Note that the power limit P, at the receiving
end occurs when & = 72.62°, and the power limit Pgn, converted by the
generator for the particular excitation voltage E¢ = 1.2 V,occurs when
6 = 180° — 72.67° = 107.33°. The curves show that, as the power demand

1.5

N\

W Nen

AN
10
// P../N

> N[N

ye NG y

N
)

180°-§,;
Figure 7-8

increases at the receiving end, the power supplied to and converted by the
generator increases also but much more rapidly in proportion to the demand
at the receiving end because of the increased losses that must be taken
care of. The fact that the power limit P, at the receiving end is reached
at a smaller displacement angle than that required by the power limit Pgn
supplied by the prime mover indicates that it is uneconomical to operate
the system beyond the power limit at the receiving end. For beyond that a
large amount of power is produced by the prime mover but only a small
portion is delivered to the load.

The discussion of the power limits in this article pertains to a system
in which the excitation voltage Eg of the alternator is maintained constant
and the receiving end is an infinite bus. The fact that the generated emf E¢
is maintained constant presupposes that the bus voltage at the station end
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is permitted to change with changes in load. Its value for any displacement
angle & between the known values of E¢ and V, may be obtained from the
relations pertaining to the series
equivalent of the system shown in
Fig. 7-7b.
From this figure note that
EG —LZy =V,

where V, is obtained by (7.8.5).
Hence,
EG - Vre.

Zeb

The bus voltage V, at the station
end, therefore, is

V.= Ea - LZg.

The calculations are visualized in
the vector diagram shown in Fig. 7-9
for given values of Eg¢, V,, and dis-
placement angle 4.

I, =

Figure 7-9

7.9. Steady State Power Limit; Receiv- 1In the case discussed in the preced-
ing-End Infinite Bus; Sending- ing article, the excitation voltage
End Voltage Maintained Constant Eq was maintained constant and
by Adjustment of Excitation emf. the station-end bus voltage V, per-

mitted to vary as the receiving-end
load increased to its limiting value. The power limit of the generator was
obtained by converting the T equivalent of the system into the series
equivalent Fig. 7-7b and the receiving-

Z, zZ, end power limit was similarly obtained

MWV VWV by th f the series equivalen
y the use o q t

shown in Fig. 7-7a. In the present case
the excitation emf Eg is adjusted to
maintain V, constant as the receiving
end load is continually increased. The
system is represented diagrammati-
cally in Fig. 7-7, but neither of its
series equivalents, Figs. 7-7a and 7-7b,
can be used in the solution of the present case. An approximate solution
may be arrived at, however, by neglecting the linear-line admittance ¥
and thus assuming the same current at sending and receiving ends of the

system as indicated in the diagram, Fig. 7-10.
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The system impedance from the receiving-end to the sending-end bus is

2,, = 2Zy, (7.9.1)
and that including the generator impedance is

er = ZG + zn— (7.9.2)
The expression for the receiving-end power is

P, = ————EZ"Z [cos (br¢ — $va) — L—’; cos rrc:l, (7.9.3)

where 8¢ is the displacement angle between the receiving-end voltage V,
taken as a reference and Eq. The angle {,¢ is the angle of the system imped-
ance Z,¢ as given by (7.9.2).

To determine the power limit by the above expression it is necessary
that Eq be expressed in terms of the known quantities V, and V, and the
displacement angle 8., between them.

Referring to Fig. 7-10 it is seen that

Va&= Vr_/io + (IZ_B_Y_) (Zra_/if_l_): (794)

where {,, is the angle associated with Z,,; 8, is the phase angle between I
and V,, and é,, the displacement angle between V, and V,.

The voltage equation of the system from the receiving end including the
excitation emf Eg, similarly, is

Eg/8,6 = V,/0+ (1/6:)(Z:6/$ra)- (7.9.5)

Solving (7.9.4) and (7.9.5), respectively, for the current 7, and equating,
yields

Vo/brs =

Vr Zr rG — Zl’l// T8
ZEEG/arG'i_{ra_g-fG'*_ ( G@ i_)'

q Zw/tre

Note that by (7.9.2)

(7.9.6)

Zr6/$r6 = Zn/tn = Zo[y
where v is the angle of the generator phase impedance Zg.
Setting for brevity’s sake

6r0+g'ﬂ—' {rG= ¢l 7 7
7—§r0=¢2 } ('9.)

the above voltage expression may be written copveniently,

Vb = Z;E" (b1 + =2 Z"V L /s (7.9.8)

The scalar relation between the quantities involved, accordingly, is
Ve= [Z"EG cos ¢; + ZGV' COS ¢2 T [ nko i ¢+ 267r ZGV’ £67rsin¢ :r
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Collecting terms, gives

V.’ = (ZnEG)2 + (Z(]'Vi-)2 + ZZnZ'a EGV' cos (¢‘ — ¢2)_ (7.9.9)
Za Z Z,at
To solve this expression for Eg, set
(Z,-GV,)?’ —_ A
Zfl
ZGVs 2 —_—
(T,. ) =3 (7.9.10)
and
gZZ—GV' cos (¢1 — ¢2) = C.

Equation (7.9.9) becomes, accordingly,

EGZ + CEa = A - B
which, when solved, gives

-=C4 @ _
Eg Zi 4+(A B).

Substituting the relations given in (7.9.10) gives

— 7. < _ 2
Eg= ZV, CZS:.(‘#: ¢1) + \/ (—Z;%) [cos*(¢1 — ¢) — 1] + (————Z'Z‘;f')z.

Since cos? (¢ — ¢2) — 1 = — sin? (¢, — ¢,) the above expression may be

written
'—Z Vr - Zr Vr 2 r ? 1 -_—
Eo ¢ cc;s"(m $2) ¥ \/(_29:_) - (Zg,‘,/) sin? (¢1 — ¢2).
(7.9.11)

Factoring out ZgV,/Z,, and using the values of ¢, and ¢; from (7.9.7), this
expression becomes:

Eﬂzég‘l'/’tl (ZLV')z_Sinz(ara‘l"fn_'Y)_c°5(6r0+§.n_7)}'

Zrc 1 ZGV,-
(7.9.12)
This value of E¢ should be used in expression (7.9.3) for the receiving-end
power P,.
Note, however, that the expression for P, may be written -

EgV, V.2
= == 6 — ¢ - c—— .
P, » cos (8¢ — ¢+q) 7 08 {re

Hence, using the above value of Eg, gives

= .Z_G_Kg - \/ ZrGVc 2 —_—al -
P, Z.oZn cos (Gra er) { (’——ZGV') sin® (5,.0 + $rs 'Y)
— ¢08 (8¢ + $ru — ) } - -;—’—' €08 {1 (7.9.13)

rG
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Note that the only variable in this expression is the displacement angle
d.c between V, and Eg.
The power limit may now be determmed by first obtaining the condi-

tion for which dP, _
d‘er
To do this set, for the sake of convenience,
;GGI;" cos (8¢ — ¢re) = X

\/(%)ﬂ — sin? (8, + £ra — ) =
GV r
(o0 ) (670 "*' {n - 7) =

V2
L cos{e = K
rG

ZeVy _
ZfGZ s M

2
Accordingly, the expression for P, simplifies to
P, = XY —- XU — K.
Hence,

@=Xdy+ YdX_XdU_ UadX
dbrg db,q dd.q dbrg d5,-q

X(dY dU)+(y U)

and

dd,g  désg darG
in which
;—g—& =—M sin (6, — ¢r6)
aY _ —cos (8,6 + v — ) sin (8o + £ — )
daro ' VN — sin? (bre + tra — )
and
au

d;_T-G_—sm (6r0+ $ra — 7)'

Substituting in the above derivative of P, gives,

P, _ Mcosa[ﬂ__ﬁ—_s_i—n—é+ sinﬁ]-- M sin o VN — sin? 8 — cos 8]
dé@ V' N—sin?8

where, for convenience

gt tre—r=28
and
O — tre = a.
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" The above derivative may be further simplified to

Ei%r: A\i——-%———_oz:y;[vN — sin? 8 — cos 8] — M sin a[VN — sin? 8 — cos 8.

Factoring out the quantity in the bracket gives

ab, _ M[V'N — sin? g8 — cos ] [w — sin a]- (7.9.14)
dirg VN — sin?B

For dP,/ds,¢ = 0, either the first or the second bracket in the above expres-
sion must be equal to zero. Setting the first equal to zero gives N = 1.
But, since

ZrGVa
N =207y,
ZgV, g

it follows that the second bracket in the above expression is equal to

zero, i.e.,
cosasinfB = sina VN — sin?g.

Squaring and collecting terms gives
(cos® a + sin? a) sin* 8 = N sin’ «
sin=VN sin a.
Using the values of a and 8, the expression becomes
sin (86 + §r = 7) =V/N sin (b6 — {70)-
Expanding and collecting terms, yields
sin 8rglcos (£re — v) =V N cos el = —cos 8,6V N sin e+ sin (Fre — 7))
or

VN sin ¢, + sin (£ — 7) (7.9.15)

tan 6, = -
VN €os g-rG — COs (g-n - ‘Y)
where, as stated above,
\/N — ZrGVu_

ZgV,
Equation (7.9.15) gives the displacement angle between the receiving-end
voltage V., and the excitation emf Eg for the power limit at the receiving

end.
The maximum value §,¢ can have is 180° — {,s when the generator

pulls out of synchronism. It follows, therefore, that if
o0 < 180° — {0 '

when calculated by (7.19.15) it is an indication that the receiving-end
power limit may be obtained by the use of the calculated value of §.¢ in

the power equation (7.9.3).
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If, on the other hand, the calculated value of the displacement angle is
found to be bg > 180° — g

it is an indication that in the adjustment of the generator excitation emf
to maintain V, constant, the generator would pull out of synchronism
before the receiving-end power limit is reached. If such is the case, the
receiving-end power limit is determined by the use of 180° — {,¢ for é,¢
in expression (7.9.3).

Note that the displacement angle §,¢ depends (a) upon the maintained
ratio V,/V. between the sending- and receiving-end voltages; (b) the ratio
of the total impedance Z.¢ to that of the generator Zg; and (c) the angles
{r¢ and v of these impedances, and that of the system impedance {,,
between sending and receiving ends.

The angle {,, of the series impedance of transmission systems is some-
where between 60° and 80°. The value of the generator impedance angle v
is large, almost 90°. Hence, the value of system impedance angle will be
larger than {,,, somewhere between 63° to 85°.

To illustrate the above, assume
Zig_ . Ve_
o= =12
= 65°; v=90° and (¢ = 69°.

Substituting in (7.9.15) gives

2.4 sin 69° + sin (65° — 90°)
tan 8,q = = —39.65
B 86 = S cos 69° — cos (657 — 90%)

8¢ = 180° — 88.56° = 91.44°
is the displacement angle between V, and Eg. It is smaller than 180° — 69°
and should be used in (7.9.3) for the calculation of the receiving-end power
limit.
If, on the other hand,

Zg V.
{re=1T75° v=90° and {¢= 80°
_ 1.35 sin 80° + sin (75° — 90°) _ —1477
tan érg 1.35 cos 80° — cos (75° — 90°) ’

8¢ = 180° — 55.9° = 124.1°.
The displacement angle at which the generator falls out of step is
180° — 80° = 100°.
Since this is smaller than the above calculated value of §,¢ it should be
used in expression (7.9.3) for the predetermination of the receiving-end

power limit.

Zie_ 15, Yoo o9
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7 10. Vector Relations between the Con- Since the sending- and receiving-
stant Receiving- and Semding- end voltages for the case considered
End Voltages and the Adjusted in the preceding article are con-
emf of the Generator. stant, the equations for P, and Q,
at the sending end are identical to
(7.7.4) and (7.7.5), respectively.

P, = KZ'-I—/:[COS (8,8 — ¢rs) — =" cOSY, u] (7.10.1)

= ViV _ ¥,
Q. = 7 [sm (Ors — $ra) + v sin ;,.] (7.10.2)

where Z,./{r, is the series impedance of the transmission system and &,
the displacement angle between V, and the bus voltage V. at the receiving
end.

If the above calculated values of P, and (), are expressed in terms of
watts and vars, respectively, the voltampere at the sending end is

(VI)./6, =VP2 + Q.2/tan™ Q./P.. (7.10.3)
The magnitude of the current at the sending end is, therefore,
I= ——Q‘PV“" (7.10.4)

The phase angle of V, with reference to 7 is

0‘ = tan—l &.

The generator emf per phase is, accordingly,
Eof0g = V./8,+ IZs/y.

Figure 7-11
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The vector relations between the quantities involved are shown in the
diagram, Fig. 7-11, in which, for convenience, I taken as the reference
vector is assumed leading V.

7.11. Steady State Power Limit with This case differs from those dis-
Synchronous Motor Load. Gen- cussed in the preceding articles by
erator and Motor emf’s Specified. the fact that the receiving-end bus

is not infinite. It is represented by
the equivalent T circuit shown in Fig. 7-12 or by the series equivalent
of this T circuit as indicated in Fig. 7-12a in which Ze¢ and Zy are the

Zy

Figure 7-12a

phase impedances of generator and motor, respectively. The total series
equivalent impedance of the circuit is

Z2q+ 27
2= —>"—" 47 V4 7.11.1
TF o+ 2z0ps T 27 T 2x (7.11.9)

and the equivalent emf at the generator end is

. Eg
Eg, = (7.11.2
“T1F (26 + Zr)Yr ( )

The dissipative power per phase converted into mechanical power
through the motor at the receiving end is

— Eg.En — sy _ Eu
Px 7. [cos (6 — ¢a) o cos g‘.], (7.11.3)
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and the reactive power per phase, similarly, is

Ou = Ea,EM [sm (6, — ) + Lm sm g-e], (7.11.4)

where &, is the displacement angle between Eg, and Ey, and ¢, is the angle
of the series equivalent impedance of the system. Note that &, is the dis-
placement angle & between Eg and Ej modified by the angle associated
with the modifying factor 1/1 + (Zs + Zr)Yr as given by (7.11.2).

From expression (7.11.13) it is seen that the power limit of the motor
at the receiving end is reached when

0, = g-e
Pun = Eon [1 - o cosg‘] (1.11.5)
The voltampere per phase in the motor winding is
(VD /0y =V Pa* + Qu*/tan™ Qu/Pu.
The current per phase in the motor winding is therefore

In= ——Q—”’ME*F“ (7.11.6)
M

The angle of the voltage E, with reference to Iy is

and its value is

0 =ta‘1&.
M n Py

Figure 7-13
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The terminal voltage per phase at the motor terminals is
Vu= Eu+ IuZu, or Vu= Eu/0u + InZu/vu

where Zy/vu is the impedance per phase of the motor. The vector rela-
tions between the quantities involved are shown in the diagram, Fig. 7-13,
in which for convenience the current I, taken as the reference vector, is
assumed leading Ey.

7.12. Steady State Power Limit; Sys- This case presupposes that for each
tem with Synchronous Motor increase in load, the excitation volt-
Load and Terminal Voltages ages Eg of the generator, and Ey
Maintained Constant. of the motor are automatically ad-

justed so as to maintain, respec-
tively, the terminal voltages V¢ and Vi at constant specified values. The
power transfer from a synchronous generator to a synchronous motor whose
shaft load is increased in small steps depends upon the excitation voltages

Figure 7-14
Zo Z;
z, Z,
—— \VVVV— b AAA%
[}
Y "
___? Vu f_—
G Ec, En 6@
S Lo b

Figure 7-14a

of the machines and the displacement angle § between these voltages. The
power limit, as discussed in preceding articles, depends upon the particular
values of excitation voltages Eq and Ey, corresponding, respectively, o the
constant values of Vg and Vy, at the time when the displacement angle §
is equal to the system impedance angle {;. The system is illustrated diagram-
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matically in Fig. 7-14. Since both Eg and Ex are to be determined simul-
taneously for a certain predetermined value of 8, none of the two possible
series equivalents shown in Figs. 7-14a and 7-14b can be used. For, although

Figure 7-14b

the angle 5 between E¢ and E is known, the values of Eg and Ey are not,
and if the values of V¢ and Vi are known, the angle between them is
not.

If the line is comparatively short, however, the linear-line admittance
is neglected and the circuit may be substantially represented, as previously
shown, by the series equivalent shown in Fig. 7-14c. For medium long and

Z, z, z, Zy
—— AV I AAAA—— AN AAMAA——

P

]

2

Figure 7-14¢

long lines, I, and I, differ by the no load or charging current. The use of
the circuit in Fig. 7-14c will give, therefore, only an approximate solution
in the determination of Eg and Ey.

Using, therefore, the approximate diagram, Fig. 7-14c, the values of
Eg and Ey for the power limit, (§ = {;) may be determined graphically as
indicated in Fig. 7-15.

1. Draw a horizontal line OI proportional to any assumed value of the
current  through the circuit.

2. From an arbitrarily chosen point such as (¢) draw a line ab = IZy
to a properly chosen scale of volts and making an angle vx with the hori-
zontal. This gives the voltage drop per phase in the motor winding for the
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Figure 7-15

assumed value of I. It follows from the above that to the scale of IZy
line oa = Eyx and 0b = Vi for

VM = EM + IZM.

3. At point b draw a line bc = 2IZr the voltage drop in the line, making
an angle { with the horizontal. Since

Vu + 212y = Ve,

it follows that a line drawn from o to ¢ would be equal to V¢ for the arbi-
trarily chosen current 7.

4. At point ¢ draw a line ¢d = IZg, the voltage drop per phase in the
generator winding, making an angle y¢ with the horizontal. Since

Ve + 12 = Eg,
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it follows that a line drawn from o to d would be equal to Eg for the arbi-
trarily chosen current 7.

The four voltages Ey, Vi, Vo, and Eg thus obtained are in correct
vector relation to each other but do not satisfy quantitatively the actual
values of V¢ and Vi and the condition & = {; for the power limit.

If the chosen current is of unit value in the above graphical construc-
tion, then ab = Zy; bc = 2Zr; ¢d = Zg; and ad = ab + bc + cd = Z,, the
total series impedance of the circuit. The lines oa, 0b, oc, and od would
represent the respective voltages per unit current.

5. To determine the lengths of oa and od, i.e., of Ey and Eg for the par-
ticular condition when § = {,, erect a perpendicular de on line ad at ¢ and
draw a line df, making an angle {, with de as indicated.

6. Draw a line gh perpendicular to ad at its midpoint g. Then the inter-
section k of line df and gk is the center of a circle which passes through
points @ and d. Lines drawn from any point on this circle such as ¢ to points
a and d have an angle {; between them. Since the angle {; is equal to the
displacement angle & between Ey and Eg for the power limit, it follows
that the origin for oa = Eyx and od = Eg must be on the circle.

7. To satisfy the condition that Ey correspond to a fixed value of Vy,
and Eg correspond to a fixed value of Vg, strike an arc with a radius pro-
portional to Vj and center at point b and an arc with a radius proportional
to V¢ and center at point ¢. Lines drawn from the intersection of these two
arcs such as (1) to points & and ¢, respectively, will satisfy the required
proportional relationship between V and V.

8. In the diagram the excitation voltages E¢ and Ey and the correspond-
ing terminal voltages Vg and Vy have a common origin, and this origin
must be on the circle to satisfy the condition & = {,. To obtain, therefore,
this common origin repeat the striking of arcs as directed above, using dif-
ferent values of Vy and Vg.but keeping the ratio V/Vi constant. The
intersections of these arcs are marked 1, 2, and 3 in the diagram. The inter-
section of the line drawn through these points with the circle at point m
is the common origin of the voltage vectors Eg, Ex, Vg, and Vy.

9. From the construction of the diagram as outlined above, it follows
that line ma is proportional to Ex; line mb is proportional to Vy; line mc
is proportional to V¢; and line md is proportional to Eg.

10. The final step in this construction is the determination of the length
of ma = Ey and of md = Eg in volts from the known length of either
mb = Vu or of mc = Vg measured in volts.

The values of Eg and Ey thus obtained, substituted in

EgENy Ex
= ] — =X
Py 2 ( E cos ¢ g)
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gives substantially the power limit for the motor per phase when the line
is short and approximately for medium long and long lines.*
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SUGGESTIVE PROBLEMS Chapter 7

1. Construct the receiving-end power-circle diagram for the particular long line
specified in Prob. 4 at end of Chap. 3.

2. Construct the station-end power-circle diagram for the line stated in Prob. 1.

3. Obtain the power-angle curve for the line specified in Prob. 2 at the end of
Chap. 4.

4. Obtain the single impedance equivalent of the 300 mile A.C.S.R. stated in
Prob. 4 at the end of Chap. 3.

5. Calculate the steady-state power limit of the line given in Prob. 2 under the
assumption that the receiving-end line voltage is 220 kv and the voltage ratio
is k= 1.15.

6. Calculate the power-angle curve of the 100 mile line used in the illustrative
problem in § 6.8, for which 4 = 1/0°, B = 79.9/71.2°, assuming that the re-
ceiving-end voltage to neutral is 63.5 kv and k# = 1.25.

* The graphical solution given above is essentially the one developed by Edith Clarke of the
General Electric Co. and given in her paper on Calculation of Steady-State Stability of Transmis-
sion Lines, Trans. A.LE.E., 1926.
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7. Obtain the single-impedance equivalent of a T circuit, whose series impedance
is Zr = 130/75° vector ohms and whose shunt admittance is 1700 X 10~¢/90°
vector mhos at 60 cps. Calculate the resistance and reactive components of
the single-impedance equivalent. Is the reactive component capacitive or in-
ductive in character?.

8. Following the graphical method outlined in § 7.12, determine the relative
values of the excitation voltages of the generator at the station end, and syn-
chronous motor at the receiving end assuming that the terminal voltages
remain constant, that their ratio is 1.2, and that Zy = 2/80° Zg = 3/80°
and Z L= 14@? .



Chapter 8 Faulted Transmission
Systems

8.1. General Considerations. The term fault is generally applied

to a partial or complete open or a
partial or complete skort circuit accidentally occurring at some point in the
system.

The occurrence of an open, although sufficiently serious in as much as
service to customers is interrupted thereby, is not as troublesome as short
circuits, unless it causes undue rises in voltage at various points in the
system.

The occurrence of a complete or partial short circuit at some point of a
transmission system results in a change in the impedance structure of the
circuit with the consequent decreases in voltage and increases in current.
The magnitude of the current under a short-circuit condition depends not
only upon the completeness of the short circuit but also upon its location
from the source or sources of energy supply. Short-circuit faults not only
cause interruption of service, but may, unless removed within reasonable
time, seriously injure generators, transformers, and other parts of system
equipment. A short circuit, by virtue of the large demand for current, may
cause synchronous machines to fall out of synchronism resulting in more or
less complete breakdown of the system.

The initial magnitude of the current due to a short circuit depends
upon the particular instantaneous value of the generator emf at the instant
the fault occurs. Its occurrence and calculation is not within the scope of
this book. This chapter is concerned with the investigation and calculation
of system behavior on sustained faults such as are usually caused, for

example, by a breakdown of the insulation at some part on the system.
' 213
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Such breakdowns may occur at the supporting insulators of busses or
switch disconnects. The insulating equipment within an oil breaker tank
or transformer tank may fail and cause injurious short circuits. The insu-
lating compound between transformer windings may fail, or a supporting
insulator of line conductors may break down. Ice formation on line conduc-
tors may cause rupture and subsequent falling of conductors against each
other, against the sides of the supporting tower, or to ground. Insulation
failures resulting in short circuits may be caused also by flashovers caused
by sudden rises in voltage. Such rises in voltage may be due to lightning
discharges, switching, ground arcing, and sudden loss of load coupled with
generator overspeeding.

8.2. Isolated and Grounded Transmis- The insulation provided for a trans-
ston Systems; Arcing Grounds. mission system, including the end
transformers, is determined by
whether the system is to have an isolated neutral or a grounded neutral.
The grounding of the neutral of a high voltage system, in addition to
reducing the cost of the insulation requirements for transformers and line,
provides also increased reliability by limiting the voltage on the insula-
tion equipment. With grounded neutral, each insulator is subject to only
100/1.73 = 57.8 per cent of the line voltage. These are, of course, definite
reasons in favor of grounding the neutral of a system. On the other hand,
with an unbalanced load on a grounded system, the ground or residual cur-
rent may cause inductive interference with neighboring telephone lines. An
accidental single conductor to ground connection on a grounded system
is a definite short-circuit fault which may cause considerable trouble. Non-
grounded isolated systems do not cause inductive interference, and an acci-
dental direct connection between a line conductor and ground is not a
short circuit. Although a line to ground short circuit of a grounded system
may prove troublesome, the short-circuit current itself provides the means
of operating relays for the automatic disconnection of the faulted circuit.
The short-circuited current in such a case can be effectively limited in
magnitude by inserting a resistance or a high reactive impedance between
the neutral connection and ground. On the other hand, an accidental con-
nection between a line conductor and ground in an ungrounded system,
although in itself not a short circuit, may be conducive to serious short-
circuit faults through what is generally referred to as arcing grounds. This
is particularly the case with long lines in which the capacitive effect is
appreciable as evidenced by the magnitude of the charging current.
Consider an isolated system such as the one shown schematically in
Fig. 8-1, in which the line to ground capacitances are denoted by the con-
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densers a, b, ¢. It is obvious that with the line under normal conditions of
operation the line to ground capacitances form a wye-connected, approxi-
mately balanced, and nearly 90° leading load. If the conductor of phase B
should accidentally become grounded at some point such as at F, the circuit
direction of current flow changes from that pertaining to a\normal Y-¥
system to that shown by the arrows in the figure. There is nothing particu-
larly serious except that the capacitive load, because of its magnetizing
action, has a tendency to increase the voltages of the unaffected phases.

Figure 8-1 % 7 7 7

The situation is somewhat different, however, if the accidental contact
between conductor B and the ground is, for instance, through an arc-over
of a defective insulator. In this case the actual contact between conductor B
and ground is removed when the arc goes out at the instant the current is
zero. At that instant, however, the voltage across the nonaffected conduc-
tors and ground is a maximum by virtue of the leading current but is
somewhat greater than the normal maximum because of the magnetizing
action of the leading current. The immediate effect is that the arc is re-
established, and goes out again when the current passes again through
zero. The voltage to ground of the two, as yet unaffected, conductors is
further increased with the subsequent result that a more severe arc is estab-
lished. The voltage thus builds up until it is three to four times the normal
when it may cause a flashover at some other weak insulator in lines 4 or C
or both. The condition is somewhat as indicated in Fig. 8-2. The second
flashover conducive to a short circuit may be quite remote from the first.
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The occurrence of such line-line to ground (Z-L-G) short circuits on non-
grounded high voltage lines is usually referred to as arcing grounds. Such
arcing grounds are practically eliminated in grounded systems. In case of
an arc formation between one conductor and ground, the excessive build-
ing up of volfage on the nonaffected conductors is prevented by the neutral
ground.*

(2)
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8.3. Symmeirical Phase Components.  1f adequate protection of equip-

' ment against injurious effects of
short circuits is to be provided, a more or less accurate knowledge of the
magnitude of short-circuit currents is important. The various factors that
enter into the calculation of such currents are seldom known with any
great accuracy. The circuit structure under short-circuit conditions is usu-
ally too complicated to permit a rigorous solution. Furthermore, with the
single exception of a complete three-phase short circuit, all other short-
circuit faults cause dissymmetry in the circuit structure. The solution of
such unsymmetrical systems is greatly simplified by the use of Symmetrical
Phase Componenis.t By this method, the nonsymmetrical system is split

* Clem, Arcing Grounds and Effect of Newtral Grounding Impedance, Trans. A.IE.E., 1930.

1 Fortescue, C. L., Method of Symmetrical Coordinates Applied to the Solution of Polyphase Nel-
works, Trans. ALE,E., 1918, .
Mackeras, H. P., Caloulation of Single-Phase Short Circuits by the Method of Symmstrical Com-
ponents, G. E. Review, Apr., 1926.

Weinbach, M. P., 4. C. Circwits, Chap. VIII, Macmillan Co.
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into three symmetrical systems each of which is solved independently, and
the results superxmposed to give the complete solution. ~ -

“The Tundamental principles un-
derlying the method are based upon
the fact that any nonsymmetrical
system of vectors, such as the one
shown in Fig. 8-3, may be split into
three symmetrical systemsof vectors:
The first called positive-phase se-
quence, Iy, Is, Iz, shown in Fig. 8-4
in which the three vectors are equal,
120° apart and in positive phase
sequence, i.e., numbered clockwise

and rotating counterclockwxse The
second is called nega?z-?;:—phase se-
quence, I1, L,, Ls, and is shown
in Fig. 8—4a. The three members of
this phase sequence component are
also equal to each other, 120° apart,
but in negative phase sequence, i.e.,
they are numbered countercloekmse
The third-phase sequence ‘compo-
nent consists of three members equal
to each other and of the same phase
with reference to the horizontal, i.e.,
of zero phase with reference to each
other. For this reason it is called
2ero-phase sequence and is shown in
Fig. 8-4b.

The relation between the non-
symmetrical system of vectors I,
L, I; with the phase sequence com-
ponents in which it may be split
up, is such that the first member of
the positive sequence component is,
referring to Fig. 8-3,

5
" 82
5,
Iz
Figure 8-3
Is
1202

120° ‘2!)’

Figure §—4

'n’

120°

120

I} "3
Figure 8—4a

Figure 8—4b

la=1.5713

Ipl&= -}(Ilﬁl_ 4 I:& M + Ia[_6_a B4_0°) (8.3.1)

The other two members of the positive phase component are equal to I,
and lagging it by 120° and 240°, respectively, as indicated in Fig. 84.
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The first member of the negative sequence component is

In/B = ¥(1,/8, + I2/8; /—120° + I3/8; / —240°). (8.3.2)

The other two members of this component are equal to I,; but leading it,

respectively, by 120° and 240°, as shown in Fig. 8-4a.
The zero-sequence component is

L/y = 3(I,/8, + I,/8, + Is/55). (8.3.3)
Conversely, if the phase sequence components are known, then

L/sy= L/a+ L/8+ L/y (8.3.4)

L/oy = Ip/a [—120° + I,/B /120° + L/y (8.3.5)
and

I3/8s = I/a [—240° + /8 /240° + I./v. (8.3.6)

In accordance with the above it follows that:

1. The voltage and current vectors of balanced three-phase systems consist
only of positive sequence components.

2. The current vectors of three-phase unbalanced wye circuits consist of
only positive and negative sequence components.

3. The voltage vectors of unbalanced wye circuits consist of positive, nega-
tive, and zero sequence components.

' 4. The line voltage vectors of unbalanced wye or delta circuit consist of

positive and negative sequence components.

8.4. Sequence Impedance. The impedance to the flow of any

sequence component current is usu-
ally designated by the particular sequence component. Thus, the impedance
to the flow of a positive-sequence component current is called positive
sequence impedance. To illustrate, consider the current I in phase (1) of a
nonsymmetrical static network. If the impedance of that particular phase
is Z, the voltage drop across this impedance, by (8.3.4), is

nz,= I,Z, + 1.z, + L.z,
or
Vi=V,+ Vo + V..

This indicates that the phase sequence impedances of a static network are
equal and equal to the actual impedance of the network. The currents in
the line conductors of nongrounded, isolated transmission systems have no
zero sequence components. In the case of grounded systems, the zero
sequence components of the currents in each conductor are equal and in
phase. The ground return carries three times the zero sequence component.
Hence, the impedance of the ground return to the zero sequence current is
three times the actual impedance of the ground return. The zero-sequence
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impedance per phase of the line is, therefore, equal to the sum of the zero-
sequence impedance of the conductor and three times the impedance of the
ground return. \

Because of their symmetrical structure, synchronous machines generate
only positive sequence emf’s. But if these emf’s are impressed upon a non-
symmetrical circuit, the resulting nonsymmetrical currents will have nega-
tive sequence current components and, if the neutral is grounded, also zero
sequence current components. These sequence component currents flow
through the respective phase windings of the machine. Each phase offers,
therefore, a negative-sequence impedance to the negative-sequence current
and a zero sequence impedance to the flow of the zero-sequence current,
differing in magnitude from each other and from the positive sequence.*

The impedance of two-winding transformers in each phase of a three-
phase transmission system to the positive and negative sequence compo-
nents of nonsymmetrical currents is the same as the actual joint impedance
of the windings. This is because transformers are nonrotating apparatus.
The zero sequence impedance on the other hand is either equal to the actual
impedance if proper grounds are provided to complete the circuit for zero
sequence currents or it is infinitely large as is the case of wye-wye connected
transformers with nongrounded neu-
trals, or delta-delta connected trans-
formers, there being no circuit for
zero sequence currents. It is also ob-
vious, from what was said above,
that the only case of two-winding Figure 5-5
transformer for which the zero se-
quence impedance must be taken into consideration is a wye to wye con-
nection with solidly grounded neutrals as shown in Fig. 8-5. For any other
transformer connections the zero sequence impedance is infinite.

8.5. Impedance of Single Conductor The study and calculation of short-
" with Ground Return. Carson’s For- circuit faults in transmission sys-
mula. tems by means of symmetrical
phase components calls for a knowl-

edge of the zero-sequence impedance of conductors'and of the ground return.
If the earth were a perfect conductor, the ground ‘return from an overhead
conductor would be confined, by virtue of the skin effect, to a very thin
film of ground surface with the greatest density just below the overhead
conductor. This of course is not the case, for the earth is far from being a

* For the experimental determination of the negative and zero sequence impedances of synchro-
nous machinery, see Wagner and Evans, Symmetrical Components, McGraw-Hill.
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good conductor. Substantially accurate results are obtained by assuming
that the return path of the current is a conducting plane some distance
below the surface of the earth.* The distance below the earth’s surface
-———weeee— depends upon the conductive charac-

F ter of the earth and upon the fre-

H

| quency. With currents of frequency
7 /'f' ' g 60 cps, the distance of the ground

i return is assumed to be vertically

below the surface equal to the height
of the conductor above the surface,
as indicated diagrammatically in Fig. 8-6. If R, is the resistance per mile
of the conductor, X, the reactance per mile of the grounded conductor
at 60 cps, and Z, the impedance per mile, then

Figure 8-6

Z.= R+ jXop
By (1.8.11), this is
Z.= R.+ j 74113 X 10~ » log 2 ohms/mile. 8.5.1)

gm

The joint impedance of conductor and ground return per mile, i.e., one
mile of conductor and one mile of ground return is, obviously,

M g, (8.5.2)

am

= R.+ 774113 X 10~% w log

where Z, is the impedance per mile of the ground return.

Theoretical studies on the determination of the impedance Z, of ground
returns were made by various investigators here and in Europe. These
investigations were based on various assumed distribution patterns of alter-
nating currents at different frequencies in the earth.{

The investigations of Carson and Pollaczek, although independent of
each other, were predicated upon the identical basic assumption that the
earth is perfectly homogenous and of finite resistivity, that the overhead
conductor is a portion of an infinitely long one, and as a consequence the
direction of current flow in the ground return is parallel to the overhead
conductor.

Although the mathematical methods of handling the problem by Carson
and Pollaczek are different, the results obtained for the self- and mutual
impedance of ground return paths are substantially the same.

* Pollaczek, F., Elekirische Nachrichien, Tecknic, Sept. 3, 1926; Jan. 4, 1927.
t Breisig, F., Teegraphen and Fem:prxldthck Apr. 14, 1925,
gcmlé 216 R Wave Propagation in Owrhcad Wires with Ground Return, Bell Syst. Tech. Jour.,
t
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In its simplified form, Carson’s formula, for the impedance Z, of the
ground return path, is

Z, = 4w(P + jQ) abohms/cm.

Since, in this book, the symbols P and Q are used for dissipative and reac-
tive powers, respectively, the symbols M and N are used instead, and
Carson’s formula is written

Z, = 4w(M + jN) abohms/cm. (8.5.3)

The complex form of this expression indicates that it takes into considera-
tion both the resistance and the reactance of the ground return path for
the particular frequency stated by w. The formula indicates also that the
resistance of the ground return is a function of the frequency.

Converting the above formula in ohms per mile gives

_ 4o(M + jN)(5280 X 100)

z
¢ 3.281 X 10°

or
Z, = 643.9 X 10~*w(M + jN) ohms/mile (8.5.4)

of the ground return.
Carson’s formulas for the quantities A/ and N which enter in the expres-
sion for Z, are

M=T_pcost l’ﬁl‘gﬁ‘? (().6728 + In ;) 4 Bfsin29 ig‘ ¥ (855)

8 32
= — 0.0386 + 1 In f + Ls%‘%f (8.5.6)

These two formulas, in accordance with Carson’s paper, hold for values of

¢ = 0.25 in which
p=2kVa (8.5.7)

where £ is the height of the conductor above the ground expressed in centi-
meters, and

a = dr\w.
The symbol A in the expression stands for the conductivity of the earth
expressed in abmhos per centimeter cube. The expression for p, as given
above, may be written, therefore,

p= 2nVim
or
b= VrhV. : (8.5.8)

Since the resistive properties of the earth are stated internationally in ohms
per meter cube, the above formula for p should be stated in terms of the
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resistivity p of the earth in ohms per meter cube rather than in terms of

the conductivity in abmhos per centimeter cube.
If p1 is the resistivity of the earth in abohms per centimeter cube, then

o= 51‘ abohms/cm?.

or
—9
= %— ohms/cm?.

The resistance p of a body of earth 1 meter long and 1 square meter in
cross-sectional area is

10000 100 '
This gives
—11
A= 19" hmhos/cm=s. (8.5.9)
p

Using this value of N in the expression for p gives

p= 4V X 3.16 X 10—6\/‘-9- (8.5.10)
p
Expressing the height of the conductor above the earth in feet (H) instead
of centimeters (%), the above expression becomes

p = 683.2 X 10~°H \/‘i’ (8.5.11)
p

The formulas for M and VN include also an angle 6, which, in accordance
with Carson’s paper, is defined as follows: Consider two conductors (a)
and (b) parallel to each other, and each grounded at the far end as shown
in Fig. 8-7. The angle 0 in the equation for M and N is the angle between
the imaginary line drawn between (a) and its image at (c) and the imagi-
nary line drawn between (a) and the image (d) of point (3). It should be
noted that the angle 6 becomes larger as the spacing distance between con-
ductors (a) and (b) is increased. When the spacing distance is infinitely
large, there is left a single grounded conductor, and the angle 8 = /2.

From what has been said above, it follows that the value of M and N
to be used in equation (8.5.4) are, by (8.5.5) and (8.5.6), respectively,
using 8 = 7/2. ) '

-7
M—g—g@mm+mﬁ

1, 2
= — 0. ~1ln &
N 0386+21np
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Using logarithms to the base 10 in lieu of the natural logarithms gives

=T_F 2
u=-1-2 (0.6728 + 2.302 log p) (8.5.12)
N =—0.0386 + 1.151 log -f;, (8.5.13)

where for any specific case with regard to conductor height H, frequency
and resistivity of the earth, p is given by (8.5.11).

7
//
e

a Dab b

H ?w H

N 4 L/
H H
(]

c d

Figure 8-7

The application of Carson’s formula (8.5.4) to the calculation of the
impedance of the ground return of a transmission line in any one particular
locality presupposes a knowledge of the resistivity of the earth in that locality.

To illustrate the application of the formula, consider a conductor at
the somewhat exaggerated height of 50 feet above the ground, and operated
at a frequency of 60 cps. ’

Using earth resistivities of p = 50, 100, and 2000 ohms per meter cube
in (8.5.11) gives .

pso = 683.2 X 10-% X 50V &L = 0.09378
100 = 683.2 X 10~ X S0VF}E = 0.06631
Proco = 683.2 X 1078 X S0V = 0.01482,
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Note that in each of the above cases the value of p is less than 0.25 and
thus Carson’s formulas for M and N hold. If these values of p for the dif-
ferent values of p are substituted in (8.5.12), it will be seen that for a single
conductor with ground return operated at 60 cps, the value of M is prac-
tically independent of the resistivity of the earth, and that its value is

substantially
=7=10.39
3927.

Consider now the value of NV as given by (8.5.13). If the value of N were
calculated for the above values of p, it will be found that by neglecting
the negative member in the formula, the error introduced.in doing so is
less than 3 per cent. Considering the insufficient accuracy pertaining to the
value of the resistivity of the earth, the formula for N, for a single over-
head conductor with ground return may be written, therefore,

N = 1.151 log -; (8.5.14)

where p for any specific case is given by (8.5.11).

Using the value of M = 0.3927 and the value of N, from equation
(8.5.14) in (8.5.4), gives for the impedance of the ground return path of a
single overhead conductor

Z,= 643.9 X 10~% (0.3927 +j 1.151 log %)
or

Z,= 253 X 10~%w + § 741.13 X 10~% log 13, ohms/mile.

This is the impedance per mile of the ground return path. The impedance
per mile of the overhead conductor is given by (8.5.1). The impedance per
mile of conductor and mile of ground return, therefore, is

Z,= R+ 253 X 10~% + j 74113 X 10~% [log f_q + log %]
om

Substituting the value of p from equation (8.5.11) in the logarithmic mem-
ber of the above expression gives

log 44 log 44 —
Prom 683.2 X 10~*HrmVw/p
log 5858V p/w
.

The formula for the joint impedance of conductor and ground return path
pet mile, therefore, is
Vp/s,

= (R + 253 X 10~%) + j 741.13 X 10~ log 228Y /0 5858 (8.5.15)
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It is important to note from this formula (1) that the joint impedance of
conductor and ground return path is independent of the height of the con-
ductor above the ground; (2) that the resistance of the ground return path
depends upon the frequency and paradoxically is independent of the resis-
tivity of the earth; and (3) the joint reactance of the conductor and return
path depends upon the resistivity of the earth. If the supply to this line is
at a frequency of 60 cps, the formula becomes

301.2Vp.
4

om

Z,,= R.+ 0.0954 + 7 0.2794 log - (8.5.16)

For an assumed resistivity of p = 100 ohms per meter cube, the above
becomes
Z,= (R, + 0.0954) + 0.2794 log §:’—13, (8.5.17)

gm

where 0.0954 is the resistance of the ground return path per mile, R. is the
resistance of the overhead conductor per mile, 7, is the geomean radius
of the conductor, with values as given in Table I. The number 3012 may
be interpreted as a fictitious spacing distance between the overhead con-
ductor and the ground return path measured in feet. For the particular case
considered, it is equivalent to a conductor height of 1506 feet above the earth’s
surface, and of the ground return path 1506 feet below the earth’s surface!

For a conductor whose geomean radius is 0.5 inch, the joint reactance
of conductor and ground return path is for p = 100 ohms per meter cube,

3012 X 12

Xep = 02794 log ===

= 1.358 ohms.
For p = 2000 and r,, = 0.5 inches,

X, = 0.2794 log (7230Vv/2000)
= 1.54.

A 1900 per cent increase in p causes an increase in the joint reactance of a
single overhead conductor of 0.5 inch geomean radius only 13.32 per cent!

It appears, therefore, that great accuracy in the value of the earth’s
resistivity is not required for the calculation of the joint reactance of a
single overhead conductor with ground return.

8.6. Impedance per Conductor of a Sys- Carson’s formula as applied to the
tem of Two Parallel Conductors determination of the impedance of
with Ground Return. a single conductor and ground re-

turn discussed in the preceding
article may be extended to the formulation of the impedance equation of

two conductors with ground return, shown schematically in Fig. 8-7.
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Let V, be the voltage to ground of conductor (a) at the station end and
I, the current in conductor (a). The self-impedance of conductor (a) is
;’—" = (Z.4S)a ohms, (8.6.1)
where Z,, is the joint impedance of the conductor and the ground return
path, per mile, as given by formula (8.5.15), and S is the length of the con-
ductor. Similarly, the self-impedance of conductor (b) is
1 = (Z.,5)s ohms, (8.6.2)
b
where V, is the voltage to ground of conductor () at the station end.
Carson’s paper indicates also that the mutual impedance between the
two parallel conductors with ground return may be expressed by
(Zat)m = Zup + Z, ohms/mile, (8.6.3)
where Z, is the mutual impedance in ohms per mile between conductors (@)
and (b) under the assumption that the common ground return path is of
perfect conductivity, and Z, is the impedance in ohms per mile of the ground
return path. The formula for Z, in ohms per mile was determined in the
preceding article and is
Z, = 643.9 X 10~%w(M + jN) ohms/mile. (8.6.4)
The formulas for M and N, as determined by Carson, are given by (8.5.5)
and (8.5.6), respectively. Their values for the particular case under con-
sideration are determined below.
The mutual impedance Z, between conductor (¢) and conductor (b)
with its ground return is*

Zu = j T41.13 X 10~ log gﬂﬂ ohms/mile. (8.6.5)
ab
* Referring to Fig. 8-7, note that conductor (b) carrying the current /, produces by equation
(1.6.4) a magnetic flux _u [,,1 R+ Da
Pl Dab

which links with conductor (a). Simxlarly, the ground return d of conductor (b) carrying the
current — Ip produces a flux
—uly, R+ Da
Pee 2x In Doy
which links with conductor (¢). The distances D, and Dag are negligibly small in comparison
with Ry which is the large distance from either conductor (b) or its ground return d at which
their magnetic effects become negligible. The mutual inductance between conductor (a) and
conductor (b) with its ground return is accordingly
(Lat)m = St da _ 4 In == Dus henry/meter.
Iy 2x  Da
Using logarithms to the base 10, u = 4x X 1077 for air in the rationalized mks system of units,
and the mile for the unit of conductor length, gives

(Lab)m = 741.13 X 107 log D“ henry/mile.
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In terms of ohms per mile, formula (8.6.3) becomes, therefore,
(Zu)m = § 74113 X 10-% log 22 + 643.9 X 10~% (M + jN). (86.6)
ab

The value of p which enters in the formulas for M and N, equations (8.5.5)
and (8.5.6), for the particular case of two parallel conductors with a com-
mon ground return, as obtained by Carson, is

p=DwVa (8.6.7)

In this expression, D’,qis the distance in centimeters between conductor (a)
and the image of conductor (b) and

a= 4riw,
where \ is the conductivity of the ground return in abmhos per centimeter

cube. Using the resistivity in ohms per meter cube and expressing the dis-
tance D,q in feet, the above formula for p becomes

p= 254X 12X Dy 4R X 1070
p

= 341.6 X 10—**Dad\/%" (8.6.8)

Referring to Fig. 8-7, it will be seen that
Dag =V Dgp* + 4H. (8.6.9)

To determine the value that should be assigned to the angle 8 which en-
ters in the formulas for M and N, refer again to Fig. 8-7. Note that the
mutual impedance between the two conductors is larger when the spacing
distance between them is smaller. It follows, therefore, that the maximum
mutual impedance for the case under consideration is obtained by setting
6 = 0. Using this particular limiting value of 6 in equations (8.5.5) for M
and (8.5.6) for N gives

M="_—_2_ 1(06728 1 ) 6.10
v +np (8.6.10)
and
=— 0038 +1iln2+ 2. 8.6.11
nP 3V2 ( )

To determine what consideration should be given to these formulas in
the calculatidn of the mutual impedance, assumé a case in which D, =25 ft.
and H = 50 ft. Substituting in formula (8.6.8) gives

p = 341.6 X 10~4V25* + 1002\[

= 35210 X 10— \/;
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For a frequency of 60 cps this becomes

_ 0.684
? v
For the two particular and rather extreme values of the earth’s resis-
tivities, p = 100 and p = 2000 ohms per meter cube, the values of p are

P10 = 0.0684

and
?2000 = 001528

Substituting these values of p in (8.6.10) and carrying out the calculations
involved, it will be found that irrespective of what values of p are used the
last two terms in the equation for M/ may be neglected and the equation
written

M="__?_
& 3V2
= 0.3927 — 4_5?@- (8.6.12)

This expression for M was obtained by setting § = 0 in equation (8.5.5)
for M. For the particular case under consideration, however, Da = 25 ft.
and H = 50 ft. The angle, therefore, is

0 = tan™' 1%
= 14.03°.
Using cos 14.03° = 0.97 in equation (8.5.5), instead of 1.0, will make only
a very slight difference in the result. It follows, therefore, that for all cases
of two parallel conductors with ground return operated at 60 cps, irrespec-
tive of spacing distance, or height above the ground, since the earth’s
resistivity is not known with any great accuracy, the value of M may be
taken as substantially equal to the first two terms of its formula as indi-
cated by (8.6.12).
Using again the maximum value that cos # might have in formula (8.5.6)
gives
=— _?_
N =—00386 + 1n2 il 3 G

=— _?_. !
0.0386 + 1.151 log s + 155 (8.6.13)

For the particular case of py0 = 0.0684 (o = 100), this Becomes

0.0684

Nioo = —0.0386 + 1.151 log 29.07 + —— 2247

= 1.6655.
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This result indicates that no significant error is introduced by neglecting
the first and the last members in formula (8.6.13) for N, when p = 100 and
the frequency is 60 cps. Similar results are obtained using the value of
p for p = 2000, and by using different values of 7 and D, within the limits
of practical applications. It may be said, therefore, that in the calculation
of the mutual impedance of two parallel conductors with ground return
operated at 60 cps, irrespective of height, spacing distance, the value of N
as given by (8.6.13) is substantially equal to the second term only, i.e.,

N = 1.151 log ;:f- (8.6.14)

Substituting the value of M as given by (8.6.12) and the value of N as
given by (8.6.14) in the formula (8.6.6) for the mutual impedance gives

(Zas)m = j T41.13X 10~ log 22 + 643.9% 10~% (0.3927 — 2 + j 1.151 1og 2).
Dab 4.242 P

Collecting terms yields

)m = 643.9 X 10~% (0.3927 — —2_) + j741.13 X 10~ Do 2
(Zur)n = 6439 X w( 4'242)+ j 74113 X w(logDab+logP

= 253 X 10~% — 152 X 10~%wp + 7 741.13 X 10~% log %,

ab
Using the value of p as given by (8.6.8) in the second member of the above
equation gives for that member

152 X 10~%w (341.6 X 10D, \/‘_3) = 519230 X 10-2D,, \/é
P P

For reasonable values of Da4, p, and w, this member in the equation for
(Zab)m is negligible in comparison with the first. The formula for (Z,). above
becomes, accordingly, "

(Zas)m = 253 X 10~% — j 741.13 X 10~% log %%‘d'

ab
Substituting the value of p in the logarithmic member gives for that member
$es 341.6 X 10~*Dyg \@: D

=1 2 X 108Vp/w
% T 341.6D.s

- 108 5858 V w.
Dsb

log
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The equation for the mutual impedance becomes, accordingly,

(Za)m = 253 X 10~% + j 741,13 X 10~% log S C0Le 5858 v "/ ® ohms/mile.  (8.6.15)

1f the two eonductors are identical, then the joint impedance per mile of
conductor and ground return path is

Zag = Zby = Ly + (Zab)m
where Z,, is given by (8.5.15). Hence,
Zu = Zuy= R.+ 506 X 10-% + j 741.13 X 10~% log §§282(——P/-‘1) (8.6.16)

abl gm

gives the joint impedance per mile of conductor and ground return path.
The impedance of the two conductors in parallel is one-half as much, i.e.,

Zypy = e S+ 253 X 107% + j 74113 X 10-% log 3858V e/o, (8.6.17)
(D ab’m)’

8.7. Zero-Sequence Impedance of a Consider a three-phase line com-
Three-Phase Linc with Grounded pletely grounded at some point S
Conductors. miles from the sending end as shown

in Fig. 8-8. Let Z,, 2, Z., be,
respectively, the joint impedance per mile of each individual conductor and
ground return. Assuming that the

b conductors are of the same size, these
self-impedances will be ‘equal and
a their values are given by equation
i (8.5.15).
c Setting for brevity’s sake
1 253 X 105 = 4
Figure 8-8 741130 X 10°= B (8.7.1)
5858V p/w = D,
formula (8.5.15) becomes
Zy= 2y, =Z,= R.+ A + jBlog f’—e, 8.7.2)
om

where R, is the resistance per mile per conductor.

If (Za)m and (Zs.)m are the mutual impedances, respectively, between
conductor a and 3, and @ and ¢ per mile, their values are given by (8.6.15).
By (8.7.1), they may be written in the abbreviated form

(Za)m= A + jBlog 11))' (8.7.3)
ab

(Za)n = A + jB log 1—?1. (8.7.4)
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Similarly, the mutual impedances between conductors b and a, and b and ¢
are, respectively,

(Zoa)m= A + jBlog BDz (8.7.5)
ab
D,

(Zve)m = A + jBlog D (8.7.6)

(2
be
In the same manner, the mutual impedance between conductors ¢ and a,
and ¢ and b are

(Ze)n = A + jBlog b’?z (8.1.7)

ac

(Ze)n = A + jBlog f—DDi- (8.7.8)
be

Since the ground return current I, of a threc-phase grounded system is
Ig= Ia+ Ib+ Ic,

and, by (8.3.3), the zero-sequence component I, of a three-phase unbal-
anced system is

L= 3L+ I+ L),
it follows that

I, =3I, (8.7.9)

Each conductor of the grounded system under consideration carries a cur-
rent I, equal to the zero-sequence component. If V,, is the voltage to ground
of conductor a due to the zero-sequence current flowing in that conductor,
it must be equal to the drop due to the impedance of conductor a and the
ground return path, plus the drop due to the mutual impedance between
conductors a and b, and plus the drop due to the mutual impedance between
conductors a and ¢, i.e.,

Vao = [Iozay + Ia(zab)m + Io(zac)m]S,

where S is the length of the line to the point where the line is grounded.
The above may be written

g;z = Zog+ Zadw + Zoddm = Zoo . (8.7.10)

This is the impedance to the zero-sequence current of conductor a. By
(8.7.2), (8.7.3), and (8.7.4), this may be written

Ze= R, + 34 + jBlog ;;5%- 8.7.11)
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The formulas for the zero-sequence impedance of conductors & and ¢ may
be obtained in a similar manner and, respectively, are

D 3
Zy= R. + 34 iB 1 8.7.12
50 + 34 + jBlog —*— o DuDa ( )
and Z,= R.+ 34 + jBlog —2¢ (8.7.13)
“ ¢ J 8 rymDm:Dbc o
The zero-sequence impedance of the three conductors in parallel is
Z;= ZuoZrod o (8.7.14)

zaozba + Zbozm + Zwlaa
If the spacing is uniform, i.e., Dab—Dbc D.lc D, then Zoo=2Zp=Zco=2Zon

and Dﬂ ®_ ohms/mile. (8.7.15)

Z,,= R.+ 34 + jBlog
Tym

The zero-sequence impedance Z,; for the three conductors in parallel when
uniformly spaced is one-third as much, i.e.,

Zy=21= R4 44 iBlog—L¢_ ohms/mile. (8.7.16)
3 3 (romD)}
Using the values of 4 and B stated in (8.7.1) yields
Zy= K + 253 X 10~% 4 j 741.13 X 10~% log 55(‘58 v ';/ © ohms/mile. (8.7.17)

8.8. Zero-Sequence  Impedance of In a transposed line such as the one
Three-Phase Transposed Line shown in Fig. 8-9, each conductor

with Grounded Conductors. takes successively the position of
X the other conductors for one-third

of the line. It follows, therefore, that the zero-sequence impedance of each

"

Figure 8-9 ==

conductor is the sum of one-third of the impedance of each of the three
conductors, assumed not transposed, i.e.,

2= ¥(Zuo + Zso + Z.) : (8.8.1)
where Z,,, Zy,, and Z,, are the zero-sequence impedances of the conductors
a, b, and ¢, respectively, when not transposed and are given by equations
(8.7.11), (8.7.12), and (8.7.13). Substituting these equations in (8.8.1) gives
for the impedance per mile of transposed grounded conductor
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. 3 D2
Zo=1[3R, +94 3(1 log — D log — 2 ]
' 5[ + 94 +jB(log WD.,bDuJ’ % DwDa T 87 DD
or
. D2
Zi=R +34+iBlog— D& . 8.8.2
L jBlog D DD (8.8.2)

The zero-sequence impedance of the three conductors in parallel, through
the common ground connection, assuming that the conductors are of the
same size, is one-third that of a single conductor and is
D,
Zy= 2 + A + jBlog ———=¢ , (8.8.3)
’ ] (DabQD bcﬂDac2rpma) %

where the values of 4, B, and D are stated in (8.7.1).

If the conductors are spaced uniformly, i.e., if Dy = Dy = Do = D,
the above equation becomes

Za;———+A+]Blog

(8.8.4)

( 2’01'-)*
Using the values of 4, B, and D given by (8.7.1), the zero-sequence imped-
ance of the three grounded conductors is

Zis= %4- 253w X 10~ + j 741.13 X 10-% log 2838V e )% “ chms/mile. (8.8.5)
-,
c d
D, /rf\\
o. D D
e
/ D

F igure 8-10

8.9. Zero-Sequence Impedance of Non- It will be assumed that each of
transposed Twin Three-Phase the two lines (abc) and (def) are
Line with  All  Conduclors equally and uniformly spaced with
Grounded. a spacing, distance D as shown in

Fig. 8-10. Let the distance be-
tween the conductors in the two systems be
Dy. = D,
D,;= Dyg= D,
Dyy= Dyy = D., = Due = Dy
Dy = Dey= Du.
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Assuming that the conductors are grounded, the mutual impedances per
mile between conductor a and the three conductors d, e, and f, respectively,
by (8.6.15), are

(Zudn= A + jBlog 2
D
(Zu)m = A + jB log 2e (89.1)
D;
(Zaj)n = A + jBlog 2e
D,
where
A= 253 X 10~%
B = 741.13 X 10~%
and

D, = 5858V p/w.
The mutual impedance of conductor a due to conductors d, e, and f jointly is

(Zam)l = (Zad)m + (Zae)m + (Zaf)m
or, by (8.9.1),

D'i
Zom)1 = 9.
(Zaw)y = 34 + jBlog o2 (89.2)

The zero-sequence impedance of the grounded conductor e without the
effect of conductors d, ¢, and f given by (8.7.15) is

= R.+ 34 +jBlog D;o (8.9.3)

The total zero-sequence impedance of conductor a, therefore, is
(zoa)t = 2o + (Zam)l-
This, by (8.9.2) and (8.9.3), becomes

(Zos)e = R. + 64 + jB (log +logwa
or
DO
Zoa R.+6 Blog ———=—— 894
(Zw)e= R+ 64 +j. ongwmm (894)

The mutual impedance per mile between conductor b, and conductors d, e,
and f, respectively, are found in the same manner. Thus

(Zu)w= 4 + jBlog 22
D

= : D,
(Zoe)m = A + jB log D (8.9.5)
and

(Zos)m= A+ jB log D 2,
s



§ 8.9 IMPEDANCE OF NON-TRANSPOSED TWIN THREE-PHASE LINE 235

The mutual impedance per mile of conductor b due to conductors d, e, and f
jointly is

(Zom)s = 34 + jB log D/

Dod (8.9.6)

The total zero-sequence impedance per mile of conductor b, accordingly, is

D 6
(Zob)t = R + 64 +]B lOg W (8.9.7)

The mutual impedances per mile of conductor ¢ and conductors d, ¢, and f,
respectively, are

(Z:a)m = A + jBlog D,
. D,

(Z.)mw= A +jBlog D,
D,

and
D,
(Zes)m = A + jBlog =+
D,
The mutual impedance per mile of conductor ¢ due to conductors d, e, and f
jointly is

(Zow)r = 34 + jBlog (8.9.8)

D}
DyD3D;
The total zero-sequence impedance per mile of conductor ¢, therefore, is

. D 6
=R, e . 9.9
(Zoc)e = R, + 64 + jBlog DD 5 (8.9.9)

The average zero-sequence impedance per mile of conductor of the line abc
is the average of\ (Zo), (Zw):, and (Z,):. Thus, denoting by Z,, the aver-
age value of this impedance, its value is

Zo = §[(Zos)e + (Zor)e + (Zoc)).
This, by (8.9.4), (8.9.7), and (8.9.9), becomes

8
Zy= R, + 64 + jBlog D (8.9.10)
(7 m‘DGD |D22D3‘D42)§

This is average value of the zero-sequence impedance per mile per con-

ductor. '
The zero-sequence impedance per mile of the three grounded conductors

of line abc is one-third of Z,, i.e.,

R. . D;
Za=Re 124 +iB1 (8.9.11)
*T3 15 8 D DD 2D D A
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The zero-sequence impedance per mile of the twin lines, consisting of 6
conductors having a common ground return, is one-half of Z, i.e.,

Zo=R L 44 iBlog D ohms/mile, (8.9.12)
6 (f‘,,,,sDGDlDz?D34D42)‘l‘
where the values of 4, B, and D are given by (8.7.1), and R, is the resistance
per mile of conductor, all six conductors being assumed of the same size.

8.10. Zero-Sequence Impedance of It will be assumed that the two
Twin Transposed Three-Phase lines shown schematically in Fig.
Grounded Lines. 8-11 have symmetrical and equal

spacing distances D. By virtue of
the transposition each conductor in each line takes the position of each of
the other conductors in that line for one-third of the length of the line. It

b

C

a

— i

-~

follows, therefore, that if (Zum)1, (Zom)1, and (Z.s), are the mutual imped-

ances per mile of the line abc, the mutual impedance of conductor ¢ when
transposed is )

Zym = %[(Zam)l + (me)l + (zcm)l]-
By (8.9.2), (8.9.6), and (8.9.8), this becomes

) D}
Zim=34 +jBlog—2 . 8.10.1
s (D\D*Ds*D )} ( )

The zero-sequence impedance of a conductor ¢ without the effect of con-
ductors d, e, and f is given by (8.7.15). The total zero-sequence impedance
per mile of conductor a, therefore, is

5
%

Figure §-11

(Zow) R+6A+'B(l L D/ )
am)t = I\ O (¢}
‘ PN D2 T 8 D DaDAD R
or ‘ ‘ .
[
(Zam)e = R, + 64 + jBlog D (8.10.2)
(’,,fD‘D;Dz’Da‘D})* .

Because of the transposition, the zero-sequence impedances of each of the
three conductors are equal, i.e., (Zam): = (Zom): = (Zom):. The zero-sequence
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impedance of the three conductors of line abc, since they aré in parallel, is
obtained by dividing (8.10.2) by three. Thus,

D2
(rom*D*D:D2Dy' D)
The impedance of the two transposed, grounded three-phase lines, operated
in parallel, is one-half as much, i.e.,

Zy= % 24 + jBlog (8.10.3)

or

D ' .
Zys = + A + jBlo < ohms/mile, (8.10.4)
’ T o D*DiDEDS D) s
where the values of A, B; and D are given in (8.7.1), and the spacing dis-
tances are as shown in Fig. 8-10.

8.11. Resistivity of the Earth Return.  The study of the transmission cir-
cuits with ground return in the pre-
ceding six articles is based fundamentally upon the formulas obtained by
Carson in his theoretical investigation of the subject. The impedance for-
mulas of the various grounded transmission systems obtained in the preced-
ing articles are substantially accurate for the commercial power frequencies
of 25 and 60 cps. The approximations are due to the neglect of certain terms
in Carson’s formulas. The neglect of these terms accounts for the fact that
the resistance component of the impedance formula of a conductor with
ground return appears as independent of the resistivity of the earth.
The impedance formulas for all the systems discussed in the preceding
articles contain the term

B log D 741.13 X 108 w log 5858V p/w (8.11.1)

where p is the re51st1v1ty of the earth in ohms per meter cube. Carefully
conducted tests by;a joint Research and Development Subcommittee of
the National Electric Light Association, now the Edison Institute, and the
American Telephone and Telegraph Co.* indicate that the resistivity of
the earth differs considerably over the United States of America. In accord-
ance with the report of this research committee, the resistivity of the earth
measured at a frequency of 60 cps may be anywhere from 16 to 500 ohms
per meter cube, in California and Nevada; from 10 to 40 ohms in Utah,
Colorado, Arizona, and New Mexico; about 10 ohms per meter cube in
Texas, Oklahoma, Kansas, and Louisiana; 13 to 100 ohms in Iowa; 40 to

* Pierce, D. A., and Ferris, L. P., Coupling Factors for Ground Relurn Circuits,. Eng Report
No. 14 N.ELA. and Bell Telephone System, Vol. II, April, 1932. w
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180 ohms in Missouri; 24 to 800 ohms in New Jersey; 29 ohms in Ohio;
2200 ohms in Pennsylvania; 500 ohms in Tennessee; 20 to 1200 ohms in
West Virginia ; 2000 ohms in Wisconsin; 5.7 ohms in New York ;* swampy
ground from 10 to 1000 ohms; dry earth about 1000 ohms; sea water from
0.1 to 1 ohm; sandstone 10 ohms per meter cube. The report mentioned
above states specifically that the earth resistivity for the various states
given above ‘‘must not be considered indicative of the resistivity to be
expected . . . since wide variations may be found within a single state.””

The term B log D., stated in (8.11.1) and which enters in all the imped-
ance formulas of systems of conductors with ground return, becomes for
the commercial power frequency of 60 cps

Blog D. = 0.279 log 301.8V/p. (8.11.2)

The following table gives the value of this term for increasing values of p.

TABLE VI

B log D,
1 0.692
10 0.832
50 0.934
100 0.972
500 1.213
1000 1.360
2000 1.430

The table shows that large changes in the value of p produce relatively
small changes in the value of Blog D,. Thus, a change in the value of p
from 50 to 100, or 100 per cent causes an increase of only 4 per cent in the
value of Blog D.. A change in the value of p from 100 to 500, an increase
of 400 per cent changes the value of Blog D, somewhat less than 25 per
cent. It follows, therefore, that although accuracy in the value of p is not
necessary, the value to be used in the impedance formula for any one par-
ticular case should be reasonably within the required degree of magnitude.
Thus, the use of p = 25 for p = 40 or vice versa may not introduce serious
errors, while the use of p = 1000 for p = 50 or vice versa will affect the
result quite seriously.

The relationship between B log D, and p for a frequency of 60 cps is
shown graphically in the curves, Fig. 8-12. The average value of B log D,
for values of p from 1 to 2000 is in the neighborhood of 1.0 and it corre-

* See earth resistivity distribution map in Wagner and Evans, Symmetrical Components, p. 147,
McGraw-Hill.
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sponds to a value of p in the neighborhood of 100. From a large number
of tests made by the N.E.L.A. and A.T. & T. Co.’s Research Subcommittee
referred to above, it appears that the average value of the earth’s resistivity
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Figure 8-12

in the United States is roughly 100 ohms per meter cube. In the absence
of earth resistivity data for any particular locality or the possibility of
determining the resistivity by test, the value of p = 100 may be used for
short-circuit calculations of transmission systems in that locality.

8.12. Summary of Line Reactances. The reactance of line conductors

enters in all calculations of system
performances under all conditions including short circuits. Tables of line
reactance per conductor per mile for various size conductors and symmetri-
cal triangular spacing have been calculated for the commercial frequencies
of 25 and 60 cps and are given in handbooks of electrical engineering. It
should be kept in mind that the positive and negative sequence reactances
of line conductors are the same as the actual value. The symbols in the
following list of formulas for the reactances of typical lines developed in

this book are
B= 74113 X 10~%
D = equilateral spacing distance in feet
7em = geomean radius of conductors in feet

D, = 5858 \/E'
3
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For Dy, Dy, D;, and D,, which are spacing distances in feet between con-

ductors in twin three-phase lines, refer to § 8.9.
1. The reactance per mile per conductor of three-phase line, by

(1.10.7), is
X = Blog '—D—. (8.12.1)

gm

2. The reactance per mile per conductor of a single conductor with
ground return, by (8.5.15) and (8.7.1), is

X., = Blog Ze. (8.12.2)

Tom

3. The reactance per mile per conductor of two identical conductors
with ground return, by (8.6.16) and (8.7.1), is

X., = 2B log —2-
(romDar)¥ (8.12.3)
2

fngab

= Blog

4. The zero-sequence reactance per mile per conducto; of symmetrically-
spaced grounded three-phase line, by (8.7.15), is

D} _ D.
Xo = Blog = 3B log o (8.12.4)
Wagner and Evans have shown by calculated values of reactances of
transmission lines with various size conductors, spacing distances, and earth
resistivity that for single, three-phase lines that have no grounded neutral
wires, the zero-sequence reactance per conductor is approximately 3.5 times
the positive-sequence reactance of the conductor. For systems with ground
wires, however, the ratio of the zero-sequence reactance to the positive
sequence reactance “‘is much smaller, decreasing to 2.7 or 1.7, depending
upon the effectiveness of the ground-wire system.”
5. The average reactance per mile per conductor of transposed or non-
transposed twin three-phase lines, by (1.12.9), is

D(Dszbg)s ,
X = Blog 2D/, (8.12.5)

Tom
The zero-sequence impedance per mile per conductor of transposed or
nontransposed twin, three-phase lines with all conductors grounded, by
(8.10.4), is

D ;
X,= 6B1 <l . 8.12.6
8 (7om*D*D1D? DD )7 ( )
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8.13. Per Unit gnd.Per,Cent Reactance. A knowledge of values of the cur-

rent under short-circuit conditions
at points of systems where such faults are likely to occur is quite essential
if adequate protection of equipment and maintenance of service is to be
provided for. From the discussion given in the preceding articles of this
chapter, it appears that some of the factors that must be considered in the
calculation of short-circuit currents are not often known with substantial
accuracies. Furthermore, the circuit structures of transmission systems,
quite complicated when normal, become even more so under short-circuit
conditions. Rigorous solutions become impossible even by test methods
such as with artificially set-up networks simulating faulted systems. Such
set-up networks are called network calculators or calculating boards. How-
ever, since great accuracies are not essential, the difficulties are not very
serious. Because of the facts just mentioned and also because the imped-
ance of the component parts of generating and transmitting systems have
rather large angles, the calculations are simplified by neglecting the smaller
resistance component of such impedances. Furthermore, in a system con-
sisting of generators, transformers, lines, and receiving equipment each
operating at different voltages, and carrying different currents, the actual
ohmic reactances cannot be combined directly unless they are first con-
verted to a common base voltage. Thus, in one phase of a three-phase sys-
tem, there is the generator phase reactance X, carrying the generator cur-
rent; a step-up transformer whose low-voltage leakage reactance X, carries
the same current as the generator and whose high-voltage leakage reactance
X carries the high-voltage current; the line reactance X, carrying also the
high-voltage current, and so on. These reactances can be combined directly
only by either converting the reactances X, and X on the high side to the
low-voltage base by multiplying by the square of the ratio of transforma-
tion, (Vi/V5)? = a?, or by converting the reactances X, and X; on the low-
voltage side to the high-voltage base by dividing by the same factor. The
total reactance, when referred to the low-voltage side, is

X;=Xg+Xl+ath+a2XL+"')

where, if E is the generator emf per phase and I the rated current, then

X, = %E

From the above it follows that

Xi, aXa , a°Xy
= 2s 13.1
1 X,+ + = X, + == X, +- (8.13.1)
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where X, ,,/ X, is the per unit reactance of the generator phase, (X;+a2X3)/ X,
is the per unit reactance of the transformer, and ¢?X./X, is the per unit
reactance of the line. The above addition of the per unit reactances may

be written also
g& 4 I ; X)) IaEXL oo (8.13.2)

1=

indicating that all reactances are converted to a common current and volt-

age base.
However, since

I= ll'
a
and
E= aE;.,

it follows that the last member of the above equation may be written

12X, _ LXy
E E,’

and the equation becomes

1——Eﬂ+IXT+I"XL+ (8.13.3)

where Xr = X; 4+ a?X, is the equivalent reactance of the transformer.
This indicates that if a part of a circuit is in the low-voltage side, its per
unit reactance is the actual voltage drop across that part divided by the
total low-voltage acting across the entire circuit. Similarly, if the part is in
high-voltage side, its per unit reactance is the actual voltage drop across the
part divided by the equivalent high-voltage acting across the entire circuit.

Reactances of system equipment are usually expressed in per cent. Thus,
when the reactance of a transformer is said to be 12 per cent, it is meant
that the voltage drop across the transformer is 12 per cent of the rated
voltage at rated current. From the point of view of short-circuit conditions
it also means that if one winding were short-circuited while the other is
subject to full rated voltage, the short-circuit current would be 492 times
the rated current.

The reactances of synchronous generators and of synchronous motors
are also expressed in terms of per cent or per unit values. When the syn-
chronous reactance of a synchronous machine is said to be 10 per cent, it
is meant that there is a 10 per cent drop in voltage per phase when the
machine delivers rated current. The reactance of synchronous machinery
used in short-circuit calculation is called transient reactance. 1t is defined as
“the ratio of the fundamental component of reactive armature voltage due
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to the fundamental direct-axis alternating current component of the arma-
ture current to this component of current under suddenly applied load
conditions and at rated frequency, the value of the current to be determined
by the extrapolation of the envelope of the alternating current component
of the current wave to the instant of the sudden application of load, neg-
lecting the high-decrement currents during the first few cycles.”* This
rather involved definition implies that the transient reactance of a syn-
chronous machine is the reactance to the initial value of the current at the
instant the short circuit occurs.} The transient reactance of high-speed
turbo-alternators is from 10 per cent to 25 per cent. Slow-speed water-
turbine driven generators have transient reactances of 30 per cent to
40 per cent. The transient reactance of synchronous motors is about 30 per
cent. In the absence of any definite data from the manufacturer for any
particular case the above may be used in short-circuit calculations.

8.14. Dependency of Per Unit React- If a certain reactance X ohms is
ance on the kva Base. part of a circuit subject to a rated
voltage V; and the rated current

in the circuit is 7y, then, by (8.13.2), the value of X in per unit is

X = DX, (8.14.1)
Vi
If the same value of reactance X is part of another circuit subject to a
rated voltage V; and the rated current in the circuit is Ip, the value of X
in per unit is

- Xy = 12X, (8.14.2)
Ve

The above relations indicate that a definite reactance X ohms may have
different per unit (or per cent) values, depending upon the voltage and the
current in the circuit of which X is a part. The ratio of the above two equa-
tions is

X ul V2I 1

Lul o Ta2l1, 8.14.3

This equation gives the relation by means of which per unit values of
reactance for a certain voltage rating V, and current rating 7, may be
changed to another voltage rating V, and current rating I,. To illustrate
the above, consider a transmission line conductor whose total reactance is

* Definition 10.35.120, American Standard Definitions of Electrical Terms, A.LLE.E. 1941, p. 69.
t Transient reactance of synchronous machinery is discussed in detail in Effect of Armature
Resistance upon Hunting by C. F. Wagner, Trans. A.I.E.E., Vol. 29, 1930.
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12 ohms. If the voltage to neutral at the sending end is 10 kv and the cur-
rent is 100 amperes, the reactance of the line conductor in per unit is

_12X100

1 = 0.12 per unit

X ul
or 12 per cent with reference to the phase voltage of 10 kv and line current
of 100 amperes. If the line were operated at 20 kv per phase and 50 amperes”
line current, the reactance in per unit, by (8.14.3), would be

10 X 50
20 X 100
= 0.03 per unit

Xug = 0.12 X

or 3 per cent.
Under the condition of equal voltages for the circuits, equation (8.14.3)
becomes -
Xul VIl (kva)l
Qul - 71 \FOON 144
Xuz VIz (kva)g’ (8 )

where X, is the per unit value of the reactance X to the (kva), base and
X2 is the per unit value of the same reactance X to the (kva), base. The
above equation shows that to change the per unit (or per cent) reactance
from one kva base to another, under the same condition of voltage, multiply
the given per unit reactance by the ratio of the new base to the old base.
The reactances of the various equipment in a transmission system, such
as generators, transformers, synchronous motors, phase modifiers, are usu-
ally stated in per cent to their own kva rating as a base. Before such react-
ances can be added they must be changed to a common base.
Thus, let
Xu1 = 0.12 to 1000 kva base
Xuz = 0.26 to 2000 kva base
Xus = 0.17 to 5000 kva base.

To add these per unit reactances, it is necessary to change all of them to a
common kva base. If the chosen common base is 10000 kva, then,

X'w1= 0.12 X 39900 = 1.2 to 10000 kva base
X'ug = 0.26 X 15000 = 1,30 to 10000 kva base

X'us = 0.17 X X%000 = 0.34 to 10000 kva base.

and

The total reactance, therefore, is

Xu=124+134034 -
= 2.84 in per unit to 10000 kva base.
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8.15. Per Unit Reactance of Transmis- While the reactances of synchro-
ston Line Conductors. : nous machinery and of transform-
ers are usually stated in per unit or
per cent of their respective kva rating, the series reactance (Lw) of trans-
mission lines is usually stated in terms of ohms per mile of conductor at
the operating frequency. Line reactance is part of the system circuit struc-
ture, and as such it must be combined in short-circuit calculations with the
reactances of other parts of the structure, all of which are expressed either
in per unit or in per cent values to a common kva base as discussed in the
preceding articles. The line reactance must be converted, therefore, from
ohms to per unit value at the required kva base.
To do this, consider a line conductor whose total series reactance at the
operating frequency is LwS= X ohms. The per unit reactance, by (8.14.1), is

- 1X
Va
Ix

= 't
1000(ka),, o Uit

X

where 7 is the actual current in the line and (kv), is the rated voltage to
neutral at which the line operates.
The expression may be written

— (ko). IX |

Xu=
1000(kv) 2

(8.15.1)

Using rated line voltage kv in place of the voltage to neutral, the equation
becomes
x. = Y3()IX

“ 1000(kv)?

and since \/S(kv)l is the three-phase kva rating, the per unit line reactance

may be calculated by

— X(kva) .
Xu = o0t (8.15.2)

Thus, a line of 20 ohms reactance in a three-phaéé system rated 33000 kva
at 66 kv line voltage has a per unit reactance of

X, = 20 X 33000

= 1000 X (66" = 0.1515 per unit

or 15.15 per cent at 33000 kva base.
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8.16. Three-Phase Short Circuits. This is the most severe type of fault

that may occur on a transmission
system. Diagrammatically it is shown in Fig. 8-13. As seen from this figure
a three-phase short circuit, frequently referred to as an L-L-L fault, is
equivalent to either a symmetrical delta or a symmetrical wye structure of
zero impedance per branch. The system, under an L-L-L fault remains
symmetrical, and the short-circuit currents in each phase are equal. They
may be calculated by dividing the generated emf by the sum of the transient
reactance of the generator and the conductor reactance to the point of the
fault. This straightforward method
cannot be used when the system in-
cludes transformers, or when the
load is synchronous in character or
[/ both. In such cases the system re-
, w actances stated in per unit or per
Figure 8-13 cent are subject to different volt-

ages, and as a consequence are not
additive directly. When the system is short-circuited, the synchronous ma-
chines at the receiving end act as generators and feed the fault with the
energy stored in their rotors.

With the exception of the line, the reactances of all component parts
of the system are usually stated in per cent to their own kva rating. By
converting these per cent reactances, however, to a common kva base, as
discussed in the preceding three articles, they become directly additive,
and the combined per cent reactance to the fault easily calculated.

Assuming that the phase voltage has the same value when the system
carries the short-circuit current 7, and the per cent reactance to the com-
mon kva base is X per cent, as when the system carries the rated current 7,
and the per cent reactance of the system is 100 per cent, then, by (8.14.3),

100 _ I,
X I,

The short-circuit current, therefore, is

1007,

Ia= X

(8.16.1)
Thus, if the reactance per phase to the fault is 25 per cent, the short-circuit
current is four times the normal current.

The case of three-phase to ground short-circuit (usually denoted by
L-L-L-G) on a single grounded line is identical with the one discussed
above. '
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The short circuit being symmetrical, the currents in each phase are
equal and 120° apart in time phase, and the ground return current is,
therefore, zero.

To illustrate the calculation of an L-L-L fault, consider the three-phase
single line system shown in Fig. 8~14. The system is fed from two stations,
A and B, and the load is not shown.

3¢S 3s
> S
P Li 3$
S PR3
3 3$
s S

Figure 8-14

Generators A and B are identical and rated 13.8 kv, 21000 kva, and
have a transient reactance of 30 per cent at own kva base.

The transformers are also identical and are rated 13.8/66 kv, 7000 kva,
and have a reactance of 8.4 per cent to their own kva base.

The tic line is 50 miles long; each conductor has a reactance of 0.848
ohms per mile. The three-phase fault is assumed at ¥, 20 miles from sta-
tion 4.

Taking the rated kva of the generator as the kva base, the reactances

are as follows:
X4 = 30 per cent
X p = 30 per cent.

The reactance of each transformer to 21000 kva base is

Xr= 8.4 X 21000 25.2 per cent.

7000
The reactance of the line conductor to 21000 kva base at 66 kv, by
(8.15.2), is
— 0.848 X 50 X 21000 X 100

Xz 1000 X 662 :

= 20.5 per cent.

The conductor reactance from station 4 to the fault is
Xar= % X 20.5 = 8.2 per cent.
The conductor reactance from fault to station B is

Xpr= £ X 20.5 = 12.3 per cent.
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The circuit diagram per phase of the faulted system is shown in Fig. 8-14a.
With reference to the fault, the reactance of the faulted system is

L= (304252 + 82)(12.3 + 25.2 + 30)

X

63.4+ 675
= 32.7 per cent.
/00 00 /TO0 00
30 25.2 8.2 J_ 12.3 25.2 30

Figure 8-14a

The rated current is
I = (kva)base/3 _ (kva)base,

kv/V'3 V3ko

For the particular case under consideration at 13.8 kv it is

21000

= = 880 amperes.

13.8V3 . pe

By (8.16.1),
1, = 1007,
s XF

Hence, the current in the short circuit is

88000
32.7

at 13.8 kv line voltage. Of this current generator 4 supplies

_ 37 _
I, = 634 X 2690 = 1385 amperes,

I,= = 2690 amperes,

and generator B supplies
32.7

= 220 % 2690 = .
Ip 675 X 1305 amperes
The current in the short-circuited conductor toward station 4 is
13.8

I,= 1385 X 6 290 amperes,

and the current in the short-circuited conductor toward station B is

I, = 1305 X %8 = 273 amperes.
To further illustrate the calculations of an L-L-L fault, consider the
single-wire diagram of a twin three-phase system, shown schematically in
Fig. 8-15. The figure shows only one phase to neutral. .
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Generator A is rated 13.8 kv, 35000 kva, and has a transient reactance
of 30 per cent at own kva base. Generator B is rated 13.8 kv, 21000 kva,
and has a transient reactance of 30 per cent at own kva base.

< ‘gload
23

W
MW\

A ‘%l.ocd

T, represents two identical transformers connected in parallel, each
rated 13.8/66 kv, 20000 kva, having 8.4 per cent reactance at own kva
base. Transformers 7> and T are identical and rated 13.8/66 kv, 20000 kva,
and have 8.4 per cent reactance at own kva base.

The lines are identical, 50 miles long, #0000 copper, 16.5 feet equivalent
triangular spacing, and have 0.848 ohms reactance per mile. The procedure
in calculating the short-circuit currents when an L-L-L fault occurs at
some point in the system such as at the high side of transformer T is
given below.

Select an appropriate kva base and convert all given reactances to this
base. Thus taking 35000 kva which is the rating of generator 4 as the
common base, the reactances are as follows:

Figure 8-15

X4 = 30 per cent
— 30 X 35000 _

Xp= 1000 50 per cent.

The transformer reactances are

_ 84X 35000 _
20000

The reactances of the line per conductor in per cent to 35000 kva base at
13.8 kv, by (8.15.2), is '

Xr 14.7 per cent.

0.848 X 50 X 35000 X 100
66® X 1000
= 34.1 per cent.

X,=
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Neglecting the load, the circuit diagram of the faulted system is shown in
Fig. 8-15a. The arrows indicate the direction of current flow toward the
fault.

14.7 34. 14.7
-~ 300 /I ——TI0™

———

=

—_— 5 ——

IO /00
14.7 34.1 14.7

Figure 8-15a

The reactance from the neutral of generator 4 to the fault is
Xar= 30+ 1;—7 = 37.35 per cent.
The reactance from the neutral of generator B to the fault is

34.1 4 14.7
2
= 74.4 per cent.

Xpr= 50+

With reference to the fault these two reactances are in parallel and their

joint value is
_ 37.35 X 74.4
37.35 4+ 744

= 24.9 per cent

Xr

to 35000 kva base.
The rated current for 100 per cent reactance is equal to the base volt-
amperes per phase divided by the phase voltage, i.e.,

I = (kva) base
V3ky
For the particular case under consideration it is
35000
I, = = 1467 amperes.
13.8V3 pe
The short-circuit current 7,;, by (8.16.1), is
1007
I o= T,
L3 XF
For the particular case under consideration it is
1,, = 146700
"u9

= 5890 amperes.
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Of this current, the generator A supplies
24.9

Iy= 3735 X 5890
= 3920 amperes,
and generator B supplies
_ 249
Ig= 734 X 5830
= 1970 amperes.
Each of the two lines from generator B to the fault carries a current
1970 , 13.8
Iig = ~212 % 22:°
LB 2 X 6
= 206 amperes.

The current in the fault is

5890 X %§ = 1232 amperes.

8.17. Line to Line Fault. With this nonsymmetrical short

circuit, usually referred to as an
L-L fault, the system structure is unbalanced as shown in the diagram,
Fig. 8-16. If the system does not include transformers, and the load at the

I
X -
F
Y

Figure 8-16

receiving end is nonsynchronous, the short-circuit current may be calcu-
lated by
V3E

2Xrp’

where E is the emf per phase and Xr is the total reactance in ohms per
phase, from neutral to the fault.

The above formula cannot be used, however if the system includes
transformers. As in the case of a three-phase fault, the reactances must be
converted in per unit or per cent values to a common kva base, so that
they can be combined directly. Furthermore, since under the faulted con-
dition the circuit is nonsymmetrical, it is more convenient to solve it by
the method of phase-sequence components.

Ilh=

(8.17.1)
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Referring to the figure, it is reasonable to assume that the current in
the nonfaulted phase ¢ is negligibly small in comparison with the currents
in the two short-circuited phases. Furthermore, since there is no ground
return with an L-L fault, the short-circuit currents have no zero-sequence
components. In terms of their phase sequence components, these currents,
by (8.3.4), (8.3.5), and (8.3.6), are

L=1I,+1,
I, = I1,/—120° + I,/120° (8.17.2)
L= I,/—240° + I,/240°.

Since, by assumption I. = 0, it follows that

I,/ —240° = —I,,/240°,

which, when solved for I,, gives

IL=—1,/—120° = I,/60°. (8.17.3)

This indicates that the negative and the positive sequence components of
the currents under the faulted condition are equal to each other numeri-
cally and 60° apart. By (8.17.3), the set of equations given by (8.17.2)

becomes
L= 1I,— I,/—120° =V/3[,/30°
I,=I,/—120° — I, =V/3I,/—150° (8.17.4)
L= I,/—240° — I,/120° = 0.

This shows that the magnitude of the current in the short-circuited phases

is 73 per cent larger than the positive-sequence component current.
Referring to Fig. 8-16, let Ve, be the potential to neutral at point x

of the fault and Vg, the potential to neutral at point y of the fault, then

VF’: = Ea —Va (8.17.5)

and
Vr,, = Ey — Vb, (8176)

where E, and E, are the excitation emf’s in phases ¢ and b, respectively,
equal in value with E, lagging E, by 120°. The quantities ¥, and ¥, are
the drops in the respective phases under the faulted condition. Keeping in
mind that the excitation emf’s have no negative and no zero-sequence com-
ponents, the above two expressions may be written in terms of sequence
components
' VF: = Ea b (Vp + Va)a
Ve, = E, — (Vp + Vn)bv
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Since the potential difference Vp, — Vp, = 0 across the fault it follows
from the preceding two equations that

E hand Eb (V + Vn)a (Vp + Vu)b
Ea - Eb = (Ipxp + lwxﬁ)ﬂ - (IPXP + IﬂXu)b
or, by (8.17.2),

V3E/[30° = I,X, + I.Xn — X,I,/—120° — X,I,/120°
= X,(I, — I,/—120°) 4+ X.(I, — I./120°)

or

or
V3E/30° = V3(X,1,/30° + XoIn/—30°). (8.17.7)

Using the value of I, as stated by (8.17.3) gives

E/30° = X,I,/30° — X,I,/—120° /—30°
= X,I,/30° — X.I,/—150°

or
E = I(X, + X.,). (8.17.8)
Identical expressions can be obtained for the other two phases indicat-
ing that the nonsymmetrical L-L faulted circuit may be replaced by a
symmetrical one whose reactance per phase from neutral to the fault is
X, 4+ X, ohms and which carries the positive sequence component 7, of the
short-circuit current. This means in effect that,

. . /I
since X, is the actual reactance of the phase from Xp
neutral to the fault, the fault itself is replaced F
by a symmetrical wye circuit whose branch con- Xp
sists of the negative sequence of the system from
neutral to the fault. This equivalent symmetri- Xp
. els . . Xn
cal circuit is shown in Fig. 8-16a.
If the reactances X, and X, are expressed in Y X

ohms, then equation (8.17.8) may be used directly gy, 5164
in the calculation of the short-circuit current

I;. If these reactances are stated, as they usually are, in per cent to a
common kva base, then by (8.16.1) the value of 7, is .

1001, |
(XP + X'\)W cent

With the value of the positive-sequence component known, the current in
the short circuit may be calculated by (8.17.4).

To illustrate the calculation of the short-circuit currents caused by an
L~L fault, consider the three-phase transmission system supplied by two
generators, 4 and B, such as shown in Fig. 8-16. Assume a line to line fault
across lines @ and b at F, 20 miles from station 4. Generators A and B are

Ip= (8.17.9)
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identical, are rated 21000 kva at 13.8 kv, and have a positive-sequence
reactance X, = 30 per cent and a negative-sequence reactance of X, = 15
per cent at own kva base. The transformers are also identical and are rated
13.8/66 kv, 7000 kva, and have a reactance of 8.4 at own kva base. The
line is 50 miles long; each conductor has a reactance of 0.848 ohms per mile.
Taking the kva rating of the generators as a common base, the various
reactances of the system are:
X4p = X, = 30 per cent
X4n= Xpn= 15 per cent.
o = 84X 21000
T

= 25.2 .
7000 5.2 per cent

The reactance of the 50-mile tie-line per conductor is

Xy = 0848 X SO X 21000 X 100 _ 5 < o cone

1000 X 66°
The reactance of each line conductor from station 4 to the fault is
Xar = % X 20.5 = 8.2 per cent.
The reactance of the line conductor from fault to station B is
Xpr = # X 20.5 = 12.3 per cent.

Figure 8-17

Figure §-17a

The positive sequence reactance diagram per phase is shown in Fig. 8-17
and that of the negative sequence reactance in Fig. 8-17a. The positive
sequence reactance per phase as viewed from the fault is
x, = 304252 + 82)(12.3 + 252 + 30)
63.4 + 67.
= 32.7 percent. -
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Similarly, the negative sequence reactance per phase as viewed from the
fault is

X. = (15 + 25.2 + 8.2)(12.3 + 25.2 4 15)
" 48.4 4 52.5
= 25.2 per cent.

This is the reactance per branch of the symmetrical wye network which
replaces the fault at the point of its occurrence. The equivalent circuit of
the faulted system which carries the positive-sequence component current
I, of the short-circuit current is as shown in Fig. 8-17b. The reactance per

Figure §-17b

phase of the circuit, equivalent to the faulted system, and which by (8.17.8)
carries the positive-sequence component of the short-circuit current, is

XF = Xp + X,.
= 32.7 4 25.2 = 57.9 per cent.
The rated current is
I' — (kva)bau
V3ky
_ 21000
13.8V73

The positive phase sequence component of the short circuit, by (8.16.1), is

= 878 amperes.

1007,
I, = 2
P Xr

which, for the specific case under consideration, is

I,= It L 1520 amperes.

57.9
This value of current flows in the fictitious wye circuit which replaces the
fault.
The positive-sequence component of the short-circuit current supplied
by generator 4 is
_ 32.7

.= X 1520 = 784 amperes.
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The positive-sequence component of the short-circuit current supplied by
generator B is
_ 327y 0=
Ip= 675 X 1520 = 736 amperes.
The actual short-circuit current supplied by generators 4 and B, respec-
tively, by (8.17.4), is

Lo =3 X 784 = 1360 amperes
Is=V3X 736 = 1272 amperes.

The total current on the low-voltage side to the fault is
1360 4 1272 = 2632 amperes.

The total current in the fault is

Ir = 2632 X %8 = 551 amperes.

8.18. Line to Ground Fault. Three- Like the L-L fault discussed in the
Phase System. preceding article, this fault, usu-

ally denoted by L-G, may also be

calculated directly from the constants of the circuit provided there are no
transformers. It is shown in Fig. 8-18, from which it may be seen that if
E, is the excitation voltage in the phase, subject
to the fault at the instant the fault occurs and
X the total reactance from neutral to the fault,
then

Iy = f{-—" amperes.

b —=|,
Figure 8-18 ’ This method cannot be used if the transmission
system includes transformers. Per cent react-
ances to a common kva base and phase-sequence components must be
used in the calculation of the short-circuit currents.
In terms of phase-sequence components, the currents in the phases of
the system are

IL=L+IL+1 (8.18.1)
In= I,/—120° + I,/120° + I, (8.18.2)
I.=I,/—240° + I,/240° + I.. (8.18.3)

It is reasonable to assume that the load currents are negligibly small in
comparison to the short-circuit current, i.e.,

Li=I=0
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Accordingly, by (8.18.2) and (8.18.3),

I,/—120° + I,/120° = I,/—240° + I./240°.

This gives
I,=I. (8.18.4)

Substitute this in (8.18.2) and get
0= I,/—120° + I,/120° + I,

or
I=1, (8.18.5)

By (8.18.4) and (8.18.5), it follows that if the load current is neglected,
the positive, negative, and zero-sequence currents are equal to each other
in magnitude and phase. Equation (8.18.1) may be written, therefore,

I.= 31, (8.18.6)

Now let Vr be the voltage to ground at the fault. In terms of its sequence
components it is
Ve = VFp + Vra + Vro (8.18.7)

Since the negative and the zero sequence components of the excitation
emf are zero, these sequence-component voltages are

Ve, = E — LX,
VFn = _Ian
Vo = —IXo. (8.18.8)

The symbol E denotes the excitation emf per phase and is the same as the
positive-sequence component. The quantities X, X,, and X, are the posi-
tive, negative, and zero sequence reactances, respectively, from the neutral
of the generator to the fault. Since, by (8.18.4) and (8.18.5), I, = I, = I,,
and also since the voltage to ground at the fault Vg = 0, it follows, by

(8.18.8), that
E= I,(X,+ Xo+ X). (8.18.9)

Identical expressions can be obtained for the other two phases indicating
that the nonsymmetrical L-G faulted circuit may be replaced by a symmetri-
cal one whose reactance per phasé from neutral to the fault is X, + X, + X,
ohms and which, by (8.18.9), carries the positive-sequence component cur-
rent. This means in effect that, since X, is the actual reactance of the phase
from neutral to the fault, the fault itself is replaced by a symmetrical wye
circuit whose branches consist of the sum of the positive and negative
reactance of the original system (X, + X,) from neutral to the fault. The
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symmetrical circuit equivalent to the faulted circuit is shown in Fig. 8-18a
and carries the positive-sequence component I, of the short-circuit current,
which, by (8.18.6), is

I.= 3I,

Figure 8-18a

The value of 7, may be calculated by (8.18.9) if the reactances are given in
ohms. If the reactances are stated in per cent to a common kva base, then,
by (8.16.1),

1= 1007,
P X+ Xat+ X))

where
1, = k2o, (8.18.10)

V3ky

To illustrate the calculation of the short-circuit current caused by an
LG fault, consider the 50-mile three-phase transmission system used in
the preceding article and assume an L—G fault 20 miles from station 4. The
various reactances to a 21000 kva base at 13.8 kv are

Xap= XBp= 30 per cent
Xr = 25.2 per cent

X1p = Xin= 20.5 per cent

Xun= XBs = 15 per cent.

The zero-sequence reactance of turbo-alternators ranges between 1 and
8 per cent.* For the particular case under consideration, it will be assumed

* Lewis, W. W., Transmission Line Engineering, p. 165, McGraw-Hill Book Co.
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4 per cent at own kva base. The zero-sequence reactance of the grounded
conductor must be calculated by the appropriate formula as outlined in
§ 8.12. For the particular case under consideration, the zero-sequence react-
ance per mile is given by (8.12.4) and is

X'pp = 3 X 741.13 X 10-% log 3858V e/w

h ile.
Dot ohms/mile

Tom
For a #0000 copper conductor, 7,4, = 0.23 inch. Assuming a spacing distance
of 16.5 feet, and p = 100, the above formula becomes for w = 377

3018
0.23 3
023 o (16.5)2
(557 x aesr)
= 2.71 ohms/mile.

X' =3 X 0.279 log

By §8.12, the zero-sequence reactance of a grounded line conductor is
approximately 3.5 times the positive-sequence reactance, i.e.,

X'or = 3.5 X 0.848
= 2.96 ohms/mile

as compared with the value obtained above by assuming the resistivity of
the earth p = 100 ohms per meter cube.

Taking X', = 2.96, the zero sequence rcactance of the 50-mile line
conductor in per cent to 21000 kva base, by (8.15.1), is

2.96 X 50 X 21000 X 100
(66)* X 1000
= 71.3 per cent.

XoL=

The zero-sequence reactance of the 20-mile line conductor from sta-
tion 4 to the fault is

(Xor) = § X 71.3 = 28.5 per cent.

The zero sequence reactance of the 30-mile conductor from the fault to

station B is
(XoL)n = § X 71.3 = 42.8 per cent.

The faulted system is shown schematically in Fig. 8-19. The positive-
sequence reactance diagram per phase of the system is shown in Fig. 8-19a.
The negative-sequence reactance diagram per phase of the system is as
shown in Fig. 8-19b. The zero-sequence reactance diagram per phase of the
system is shown in Fig. 8-19c. The zero sequence reactance as viewed from

the fault is
X, = (4 4+ 25.2 + 28.5)(42.8 + 25.2 4 4)
7.7+ 172
= 31.8 per cent.
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The reactance diagram of the fictitious circuit per phase which replaces
the faulted system, but carries only the positive sequence component of the
short-circuit current is shown in Fig. 8-19d. The reactance of this circuit
as viewed from the fault is

_ (3042524 82)(123 42524+ 30) | 5oy 313

63.4 4 67.5
= 32.7 4 25.2 4 31.8 = 89.7 per cent.

The normal rated current of the system, at 13.8 kv line voltage, by pre-
vious calculation is 7, = 878 amperes. The positive-sequence current carried
by the equivalent circuit, by (8.18.10), is

87800
"89.7
= 078 amperes.

I,=

The positive-sequence component of the short-circuit current supplied by
generator A is

Ips = iﬂ X 978

= 505 amperes.

The positive-sequence component of the short-circuit current supplied by

generator B is
32.7
67.5

= 475 amperes.

Ip= X 978

The actual short-circuit current supplied by generator 4 is
I+ = 3 X 505 = 1515 amperes,

and the short-circuit current supplied by generator B is
Ip = 3 X 475 = 1425 amperes.

The actual short-circuit on the high side of station 4 is

1515 X -13—8 = 320 amperes.

The actual short-circuit current on the high side of station B is
1425 X %ﬁé = 208 amperes.

The actual current in the fault is 618 amperes.
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8.19. Line—Line to Ground Fault. Consider the L-L-G fault across

Three-Phase System. phases a and b of the simple system
shown in Fig. 8-20.

In termsof phase-sequence components, the currents in the faulted system

< are L=14+1+1
. I=1,/—120° + I,/120° + I,
o I=1,/—240° + I,/240° + L. (8.19.1)

i
On the supposition that the load current may

Figure 8-20 be neglected in comparison with the short-circuit

current, I, = 0. It follows, therefore, that

I,/—240° + I.,/240° + I, = 0. (8.19.2)

Let Vra, Vrs, and Vp, be the voltages from the respective phases to ground
at the point of the fault. In terms of their respective sequence components,
the voltages are

Vie= Vo + Vo + V, (8.19.3)
Vpb = Vp/,— 120° + V,./120° + Va (8194)
Vee= V,/—240° + V,/240° + V, (8.19.5)

Since the fault is a short circuit to ground, it follows, however, that
Vee = 0 and Vg, = 0. Equations (8.19.3) and (8.19.4) may be combined,
therefore, into

V, + Va= V,/—120° + V,/120°

which, when solved for V,, gives

Vo= V,/—120°. (8.19.6)

Using this value of V, in (8.19.3) and solving for V, gives
Vo= V,/120°. (8.19.7)

The preceding two expressions indicate that the positive, negative, and
zero-sequence components of the phase voltages at the fault form a sym-
metrical three-phase circuit.

In terms of the excitation emf, and keeping in mind that the excitation
emf’s do not have negative and zero sequence components, the above com-
ponent voltages at the fault are

V,=E — LX, (8.19.8)
Vo=—1X, (8.19.9)
Vo =—ILX.. (8.19.10)
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Using (8.19.6) and (8.19.9),

—LX,= V,/—120°
or
Vo/—120°
I, = ——-——_—_p'/'j(———- (8.19.1 1)
n

Similarly, using (8.19.7) and (8.19.10),
—LX,= V,/120°

V,/120°
_]0 = A=, .19,
< (8.19.12)
Substituting (8.19.11) and (8.19.12) in (8.19.2) gives
/—120°/240° 120°
/2 = Vo120 [0 | Vy/12
[—240° X, Xo
or
V V
= _P -2
L=x."x
or
_— XnXu .
=Ly K
Substituting this in (8.19.8) results in
— Xﬂ. * Xo .
E=1, (X,, + X,,) (8.19.13)

This indicates that the nonsymmetrical L-L-G fault may be replaced by a
symmetrical circuit carrying only the positive-sequence component of the
short-circuit current and whose reactance per phase to neutral is

X, X
Xe=X L 2. 8.19.14
=Xty TR, ( )

o/

Figure §-20a

This means in effect that, since X, is the actual reactance per phase from
neutral to the fault, the fault is replaced by a symmetrical wye network,
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whose branches consist of the negative and zero sequence components of

" the system from neutral to the fault in parallel connection as indicated in
Fi:y 8-20a.

ZFhe value of I, may be determined by (8.19.13). But since the reactances

are 1n per cent to a common kva base, the positive-sequence current, by
(8.16.1), is

_ 1001,
I,= X» (8.19.15)
where XFr is given by (8.19.14) in per cent values.
To determine the actual short-circuit current, note that since I, = —1,

(8.19.1) gives

=2, = I, + I,/=120° + I, + I,/120°

or
—I,= 3(I,/—60° + I./60°). (8.19.16)

Equation (8.19.2) similarly gives
—1I,= I,/—240° + I,/240°

or
L= I,/—60° + 1,/60°. (8.19.17)

Adding (8.19.16) and (8.19.17) gives
1.51,/60° = — 151,/ — 60°

or
‘ I = I,/60°. (8.19.18)

Substituting this in (8.19.17) results in
I, = I,/=60° + I,,/120° = 0. (8.19.19)

The current in the short-circuit conductors, therefore, by (8.19.1), (8.19.18),
and (8.19.19), is

L=1I,+ I,/60°
=V31,/30°. (8.19.20)

To illustrate the calculations involved in this type of fault consider the
illustrative system used in the preceding article with a short-circuit fault
across conductors @ and b, 20 miles from station 4.

The reactance diagram per phase of the circuit which replaces the
faulted system and which carries only the positive sequence component of
the short-circuit current is shown in Fig. 8-20b. The reactance of the
circuit, by (8.19.14), is

Xp = (30 + 25.2 4 8.2)(12.3 + 25.2 4 30) + 25.2 X 31.8
63.4 + 61.5 25.2 4 318
= 32.7 4 14.02 = 46.72 per cent. :
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£ 10N 700
123 252
X,=31.8

Figure 8-20b

The rated current, by previous calculation, is 7, = 880 amperes. The value
of I, therefore, is

_ 88000

T 4672

= 1880 amperes.

1,

The positive-sequence component of the short-circuit current supplied by

generator 4 is

32.7
= === X 1880
Ipa 634 X

= 970 amperes.

The positive-sequence component of the short-circuit current supplied by

generator B is

32.7
= = 0
Top = G5 % 188

= 910 amperes.

The actual short-circuit currents supplied by the generators 4 and B, |
respectively, by (8.19.20), are

1. =V3970 = 1680 amperes
I5=v3910 = 1580 amperes.

The total current supplied to the fault by the two generators is
1680 + 1580 = 3260 amperes.
The actual current in the fault is

3260 X % = 680 amperes.
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SUGGESTIVE PROBLEMS Chapter 8

1. Calculate and plot the joint impedance of a single conductor and ground
return path per mile at 60 cps frequency as a function of the earth’s resistivity.
The conductor is a 19 strand, 250,000 circ. mils annealed copper cable having
an outside diameter of 0.575 inches, and a resistance of 0.263 ohms per mile.

2. Calculate the joint impedance at 60 cps per mile of conductor and ground
return path of a system of two grounded parallel conductors having the speci-
fications as stated in Prob. 1 and a spacing distance of 12 ft. Assume the
earth’s resistivity p = 100 ohms per meter cube.

3. Calculate the joint impedance at 60 cps per mile of conductor and ground
return path of a system of three grounded parallel conductors equilaterally
spaced with a spacing distance of 12 feet. The specification of the conductors
are as stated in Prob. 1, and the earth resistivity 100 ohms per meter cube.

4. Calculate the zero sequence reactance per mile per conductor at 60 cps of a
symmetrically grounded three-phase line having equilateral spacing of 12 ft.
and conductor specifications as stated in Prob. 1. Assume the earth’s resistivity
equal to 100 ohms per meter cube.
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5.

Calculate the per unit reactance of the line in Prob. 4, assumed 150 miles long
and operated at 110 kv to neutral and at 100,000 kva base. What would be
the per unit reactance at 50,000 kva base?

. Recalculate the illustrative problem in § 8.16, on the assumption that the

three-phase fault is on the high side of the transformers at the B terminus,
Fig. 8-14.

. Recalculate the illustrative problem in § 8.17, on the supposition that an

L-L fault occurs at the high side of the transformers in lines (¢) and (b) at
the 4 terminus of the system shown in Fig. 8-14.

. Recalculate the illustrative problem in § 8.18, on the assumption that the

line-to-ground fault is at the high side of the transformer in line (a) at the
A terminus of the system shown in Fig. 8-14. Assume transformers have
grounded wye connection.

. Recalculate the illustrative problem in § 8.19, on the assumption that an L-L-G

fault occurs 20 miles from the 4 terminus of the system shown in Fig. 8-14.
Assume transformers connected as in Prob. 8.



Chapter 9 Transient Stability

9.1. General Considerations. Transient stability is said to exist

in a system if, “after an aperiodic
disturbance has taken place, the system regains steady-state stability.” *
This definition implies that a system may become unstable during the
period it is subject to a nonperiodic disturbance. It has been shown in
Chap. 7 that there is a definite limit to the power that may be transferred
over a transmission system, when the load is increased gradually. That
limit was referred to as steady-state power limit. Aside from any economic
consideration, steady-state power limit is due entirely to the physical prop-
erties of the line, the terminal voltages, the methods of their control, and
the reactive character of the load as defined by the power factor.

One of the most common disturbances of transmission systems is due
to the synchronous load on the system. If the shaft load is suddenly increased
to a value in excess of the power limit corresponding to the initial load,
there may be a falling out of step between the synchronous machinery at
the termini of the system. If the excess load is not removed within a defi-
nite length of time, the machines may not be able to recover their synchro-
nism, and service is interrupted.

Somewhat similar conditions are imposed when the system is subject to
a fault. On the occurrence of a fault, the synchronous motors at the receiv-
ing end may fail to receive the power demanded by their shaft loads and
thus begin to slow down, delivering the energy stored in their rotors to the
fault. At the same time the power demand on the generator may become less
than the mechanical input from the prime mover. If such is the case the

* Report of Joint Interconnection Subcommittee of the Committee on Power Generation, Pro-
tective Devices and Power Transmission and Distribution, A.ILE.E. Winter Convention,

Jan,, 1932.
268
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generator will speed up. The simultaneous slowing down of the synchronous
machinery at the receiving end and the speeding up of the synchronous
generating machinery at the station end results, obviously, in a rapid in-
crease in the power angle of the system. This may cause a complete loss of
synchronism and subsequent interruption of service unless the condition is
remedied within a definite length of time. If the disturbance is removed in
time, the motors and generators will pull back in step, and the system
recovers its steady-state stability. This chapter deals with the basic factors
that enter into transient stability studies and their fundamental relations
leading to the development of methods of solution.

9.2. Motor-Generator System; Voltage- A convenient introduction to the
Current Relations. basic relations which enter in tran-
sient stability studies of power sys-

tems is through the behavior of a simple system comprising a single three-
phase synchronous motor of known impedance and rating supplied from a
three-phase synchronous generator of known rating and impedance. One
phase of such a simple system is shown in Fig, 9-1. To further simplify the

L)
NG

Eg Enm
Figure 9-1

problem in its general aspects, it will be assumed (a) that the rated capacity
of the generator is very large compared with that of the motor. Its speed
is, therefore, independent of changes of load. (b) That the losses in both
generator and motor are insignificant. This implies that the resistance of
generator and motor are negligibly small. (c) That the line resistance and
capacitive susceptance are also negligibly small, and (d) that the generator
and motor reactances are unaffected by changes in load.

Under these particular assumptions, let E; and Ex be the excitation
emf’s per phase of generator and motor, respectively, and & the angle be-
tween them. The current flowing in the circuit is then

Eo/d — En/0°

ILO_’—- W, (9.2.1)

where
t= X+ X1+ Xu. (9~2-2)
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The angle é is the time phase angle in electrical degrees between the
generator and motor, the motor emf being taken as the reference vector.
With Eg and Ex maintained constant by controlling devices, an increase in
shaft load on the motor increases the space-phase angle between the rotating
members of the motor and generator. The corresponding time-phase angle &
will also increase, thereby increasing the load current I to that demanded
by the shaft load. If a, represents the space-phase between the rotors of
the two machines with reference to the field, then

22 (9.2.3)

a 2

where p represents the number of poles of the motor field.

9.3. Power-Angle Curves. Under the assumption of negligible
losses in the system, the power con-

verted in the generator through the electro-magnetic reactions taking place

in its armature must be equal to the power converted by the motor and

delivered as mechanical power to its shaft. Denoting by P, the generator

power and by Py the power delivered by the motor to its shaft, it follows

from what has been said above that

i Pg = Pu,

ie.,

EglI cos 6 = Enl cos Oy, 9.3.1)
where 0, and 0y are the respective time-phase angles between the emf’s and
the current. For any value of shaft load Py on the motor, there is a definite
time-phase displacement & between the vector values of E; and Ex corre-
sponding to a definite space-phase angle
_%

?

between the rotors of the two machines. The dissipative power transferred
from a generator to a motor when linear-line admittance is neglected is
given by equation (7.11.3) and is

P= %—-ﬁ‘:“[cos 6—¢)— E—EZCOSD}

Oty

where Z,/{, is the total circuit impedance. Under the particular assumption
of negligible resistance, the above expression becomes
EgEy o _ En o]
P = =2==%1cos (6 — 90°) — == cos 90° |,
o [ 6 = 907 — 3

ie.,

P = Eofu g5, (9.3.2)
X
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This expression, called the power-angle formula represents a sine curve
called the power-angle curve. The power limit of a system under the simplified
conditions, stated in § 9.2, is, therefore, by (9.3.2),
_ Eoliu

P= e (9.3.3)
occurring when & = 90°, i.e., when the rotor of the motor drops behind the
generator rotor 180/p mechanical degrees. It should be noted from (9.3.2)
that sin & represents the power in per unit of the maximum.

9.4. Synchronizing Power of Alterna- Consider two alternators connected
tors in Parallel. through a tie line and feeding a

_ common load, as indicated in

Fig. 9-2. That the two machines should divide the load, their voltages at
the junction must be equal, in time phase, and in opposite circuit direction
with reference to each other, i.e., the two machines must be in synchronism.

ST
NG %1 = \_/ 1

‘ K, Es
Figure 9-2
The inherent behavior of the two machines in joint operation is such that,
if for any cause whatever the alternators fall apart from synchronism, there
is always a tendency for its re-establishment, provided the displacement
angle does not exceed a definite limit.
Let E; and E; be the excitation voltages of the machines; Z; and Z, the
respective impedance of each, including the line impedance to the junction.
V is the voltage to neutral at the common junction. Referring to the figure,

this voltage is V=E — 12,
V= Ez - 1222, (9.41)
‘where I and I are the respective currents from the generators, and
I=nL+1

is the load current. In terms of the voltage equations given above, this load

current is
E\—V E—V
1=
Zy + Z, '’

which, when solved for V, gives

v= Bz + B2y — 12,2,
Z,+ 2,
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Using this expression in (9.4.1) and solving for I, and I yields

E,— E, Z,
L= I 9.4.2
= rrntn+anl (04.2)

and ( )
—(E, — E, Z,
= I 9.4.3
Z,+ 2, + Z)+ 2. ( )
If the excitation voltages of the two machines are equal (E; = E;) and in
phase with each other (§ = 0), the current equations above reduce to

I

Z‘,
L=—2_1 4.
= (9.4.4)
and
=21 (9.4.5)
Z+2,

It follows, therefore, that under the stated condition (E; = E;; § = 0)
the load will be shared by the two machines in inverse proportion of the
impedances from neutral to the common junction.

Now, if one of the machines, for instance generator (2), falls behind
machine (1) in space-phase an angle a,, there is immediately a correspond-
ing time-phase displacement

| - b

’ 2
between the, two excitation voltages. The first members of (9.4.2) and
(9.4.3) become highly significant. Generator (1) delivers a current equal to

-
Z,+ Z,

in excess of that demanded by the load as given by (9.4.4). The first
member of (9.4.3), being equal and negative, indicates that generator
(2) delivers its share of the load less the excess current I, delivered by
generator (1). This means that if machine (2) falls behind in space-
phase, machine (1) becomes more heavily loaded and tends to slow down.
Machine (2) having been relieved of some of its load tends to speed up.
The rotors of the two machines, therefore, pull back in step and syn-
chronism is regained provided that the displacement angle does not exceed
a certain limit. For this reason the current I, given by (9.4.6) is called
synchronizing current.

If the resistance components of the impedances are neglected, equa-
tion (9.4.6), for the synchronizing current delivered to the machine (2),
becomes

I, (9.4.6)

_E/C— B/

A
jX
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- Es j(Es cos§ — E,)
I, 3 sin 8 + X (9.4.7)

or

where
X = X, + X;ohms.

The synchronizing voltamperes supplied by generator (1) is

B, = Blaging 4 jErfacost = BY, (9.4.8)
The first member of this expression is called synchromizing power. It is
identical to expression (9.3.2), which represents the power angle curve. The
synchronizing power between two generators in parallel operation for a
definite space-phase displacement is thus numerically the same as the dis-
sipative power of the same two-machine system having an equal space-
phase displacement, but with one machine functioning as a motor. Equa-
tion (9.4.8) may, accordingly, be written

EgI=—E—°XE—‘55iné+j[ % cos&—-E—G- (9.4.9)

The real component is the ordinate of the power-angle curve and
represents the dissipative power in the motor-generator system or the syn-
chronizing power in the two-generator system. Since the losses are neglected,
this member of the equation represents also the shaft load on the motor as
a function of the displacement angle. The j-component is the reactive
power supplied by the generator to the system reactance. Note that it is
also a function of the displacement angle.

The area under the power-angle curve is

EGEM . = —EGEM
f———X sin d db —— cos 8.

It has the characteristics of a power quantity and is 90 degrees apart from
the dissipative power EgEy sin §/X as components of the voltamperes. It
is, therefore, reactive in character and represents the rate of energy storage
or restoration in the rotor during the transient interval when the displace-
ment angle changes from one value to another during changes of load. The
value of the above integral between proper limits of displacement angle §
is, therefore, proportional to the reactive mechanical energy stored in the
rotor by virtue of its space-phase displacement.

9.5. The Energy Stored in a Rotor. The rapidity with which the space-

., . Phase angle between a synchronous
generator and a synchronous motor changes in value on increase of load or
because of some disturbance, depends entirely. apon the inertia of the rotat-
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ing members of both machines. It takes a longer time for a machine of
large inertia to change its relative space-phase position. If a machine with
large inertia is thus less liable to fall out of step, it is also less able to swing
back into synchronism. This means in effect that machines with large
inertia, other factors being the same, have a larger power limit for the
same initial load. The detailed effect of this inertia upon the behavior of
the machine during the transitional period of load change may be investi-
gated through the variations in the stored energy in the rotor. To determine
the amount of stored energy, let

€ = stored energy in watt-seconds,
J = moment of inertia in meter’-kilograms,

and
Q = angular velocity of rotor in mechanical radians/sec,
then
. e= 1 JQ? watt-seconds. 9.5.1)
I
m = mass of rotor in kilograms,
and
p = radius of gyration in meters,
then

J = mp? meter’-kilograms. 9.5.2)
Furthermore, if

n = speed of rotor in revolutions per minute,
then

2mn .
= ——rad X
0 radians/sec

Substituting in (9.5.1) gives
— 1 9 21("” 2
e = 3(mp? 0 watt-seconds. (9.5.3)

Using & to denote energy in kilowatt-seconds and multiplying out yields
& = 0.547mpn? 10-5 kw-seconds.

If the mass is expressed in terms of W pounds and the radius of gyration
in terms of r feet, then '

& = 0.547 W_(r ¥ n? 10~% kw-seconds.
2.202 \3.281

Multiplying out gives for the energy stored in a rotating rotor
& = 0.231(Wr*)n? 10— kw-seconds. (9.5.4)
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9.6. Inertia Constants of Machines. Consider a motor revolving at its
rated speed # rpm and delivering
its rated load P, corresponding to a torque 7,. The amount of energy
stored in the rotor is given by equation (9.5.4). If the electrical power
supply to the motor is suddenly removed, while the shaft load is on, the
motor will decelerate and come to rest. All the energy stored in the rotor
at the time it was rotating at the rated speed must be dissipated during

the period it takes the machine to come to rest.

Let P = the rate of dissipation of the stored energy in kw.
M = the time in seconds it takes the machine to come to rest,
then the stored energy is

M
§= L P (9.6.1)

Under conditions of constant shaft torque, the speed of the rotor decreases
at a uniform rate. Since the rate of energy dissipation P is at any instant
proportional to the speed (P = 2xTn/60), it follows that its value will
decrease at a uniform rate, as shown P
by the curve, Fig. 9-3. The equation

of this curve is

4
=p(1-21) P
P P( M)

and the stored energy, by (9.6.1), is

1 M
&= f ( ) dt. Figure 9-3

This gives, what may also be seen readily from the figure,

&= —PEIZM kw-seconds.

The time it takes the machine to come to rest is, therefore,

M= —2; seconds. (9.6.2)
Using the value of & from (9.5.4) gives
M= 0.462(W1§2)n2 1078 seconds. (9.6.3)

The quantity denoted by M is called nertia constant of the machine and
represents the time in seconds that it takes a machine to come to rest from
rated speed and under constant rated torque load.
The time 4, in seconds that it takes a rotor to decelerate one revolution,
by (9.6.3), is
b, = MW‘%{M sec/rev. (9.6.4)
r
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The interval in seconds #,4 that it takes a rotor to decelerate one space
degree is £,/360, i.e.,
_ L.280Wr)n 10~
P,

If p represents the number of poles of the machine, the interval in sec-
onds Z.q that it takes a rotor to decelerate one electrical degree is, by (9.2.3),
2t,d/P, ile.,

lea

Yo sec/degree.

_ 2.56(Wr?)n 10~

P sec/elect degree.

But, since the frequency

= b
4 120
the above may be written
2
toa = %%T—I—Oj sec/ elec degree. (9.6.5)

The value of the energy stored in rotating machinery is usually stated
in kw-seconds per kva capacity at rated speed. Thus, if a hydro-generator
is said to have 2.4 kw-seconds per kva, it means that the amount of energy

stored is
= 24 X kva  kw-seconds.

The inertia constant, by (9.6.2), is

4.8 kva
M= 25 (9.6.6)

where P, is the rated load in kw. With a unity power factor load the inertia
constant would be 4.8 seconds.

The following average values of stored energy for various machinery are
frequently used in stability studies :*
Hydro-generators, 1500 to 35000 kva capacity

2.4 kw-seconds per kva.
Turbo generator of 1500 to 35000 kva capacity

10.97 kw seconds per kva.
Rotary converters, 750 to 3250 kva capacity

2.0 kw-seconds per kva.
Synchronous motors, 2.0 kw-seconds per kva.
Synchronous condensers, 1000 to 40000 kva capacity

1.45 kw-seconds per kva.

* Evans and Wagner, Trans., ALE.E., 1926.
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The inertia constant of these machines may be calculated by (9.6.6).
At unity power factor, the inertia constant M is numerically equal to twice
the energy stored per kva capacity.

Some manufacturers of electrical machinery prefer to furnish directly
values of the inertia constant M instead of the stored energy & in kw per kva.
In the absence of accurate information, however, the following average
values of time constants® may be used in stability calculations:

Turbo-generators 16 seconds
Hydro-generators . 6
Synchronous motors 45 ¢
Synchronous condensers 3
Induction motors 1«

These values differ somewhat from those calculated from stored energy
values given above, obtained by different experimenters on machines of
different manufacture. More recent data on inertia constants are given in
the report on Power Stability by the Subcommittee of Interconnection and
Stability Factors.}

9.7. Equivalent Inertia Constant of Consider a number of machines of

Machines in Parallel. rated kw capacities P,1, P, P,

etc., all generators delivering en-

ergy jointly to the same system, or all motors receiving energy from the

same source. If My, M,, M;, etc., are their respective inertia constants, and
81, &, and &, etc., the corresponding stored energies, then, by (9.6.2),

&= __M12Prl }
6 = Mzzp,2
&3 = A.l_szl)ﬂ.

If P, is the joint kw capacity of these machines, M the equivalent inertia
constant, and & the energy stored in all, then

_ MP,
==
From the above it follows that
= M lP rl M 2P r2 .« oo
M ———P, + ——Pr + .7.1)

* Park and Banker, Trons., A.LE.E., 1929, t Electrical Engineering, February, 1937.
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This indicates that the joint or equivalent inertia constant of several ma-
chines in parallel operation is the sum of inertia constants of the several
machines reduced to a common power base, which may be either the combined

power or some other appropriate power base.

9.8. Acceleration of Rotor. Let AT represent the accelerating
torque of a rotating body in Newton-
perpendicular-meters and J = mp?, the moment of inertia in meter?-
kilograms. The resulting acceleration is
.= diﬁ—‘ = AT space radians/sec.? (9.8.1)
ar mp®
The value of mp? as given by (9.5.1) and (9.5.2)

m.,_Ze
-

substituted in the above equation gives
A, =é§TS_Z’ space radians/sec? (9.8.2)
€

where ¢ is the stored energy in watt-seconds and @ is the angular velocity

in space radians per second.
Expressing the energy in kw-seconds, and the power in kilowatts, gives

ATQ _
1000 = APkw
and since
T666 = & kw-seconds,

the acceleration may accordingly be written

A, = Az%ﬂ space radians/sec?.

If n, the velocity in revolutions per minute is used instead of @, the equa-
tion becomes

27” AP 2
A, = 0 | g Pace radians/sec?. (9.8.3)
In terms of electrical radians, this becomes
= 2mn QAP 1 rad 2 0.8.4
0 238 elect rad/sec , (9.8.4)

where p = number of poles on the machine. Since f = pn/120, the above

may be written
A= %’éf AP, (9.8.5)
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Expressing the energy stored & in terms of the inertia constant M as
given by equation (9.6.2) gives

\

= _2_1!’[£ 2
A M P, elect rad/sec?, (9.8.6)
or in terms of degrees
Ag= %0-[ A’-?E elect degrees/sec? (9.8.7)

where P, is the rated load of the machine, or the base rated load if several
machines are considered jointly.

9.9. Equivalent Inertia Constant of Stability calculations of a two-
Generator and Motor Combined. machine system are greatly simpli-
fied by assuming that one of the
machines is an infinite bus. This assumption implies that any change in the
system causing a corresponding change in the displacement angle between
the two machines is attributed to only one of the machines. Thus, if for
any cause whatever, the motor slows down and the generator speeds up,
the total change in the displacement angle may be assigned to the motor
if the generator is assumed an infinite bus. This means, in effect, that the
inertia constant of the motor must be altered so as to include the change
that might otherwise take place in the generator.

Let Jg and Ju be, respectively, the actual moments of inertia of a
generator and motor connected by a transmission line of negligible resist-
ance. A reduction in power output of the generator due to any cause what-
ever, other than that demanded by a decrease in motor load, will tend to
cause the generator to speed up with an acceleration given by (9.8.7)

Ag= 3607 AP et degrees/sec?. (9.9.1)
Mg Pg

Since the power supply to the motor is now reduced by virtue of the reduced
power output of the generator, and its shaft load remains unchanged, the
motor will immediately slow down with a deceleration

Ay = 7;%0! %- (9.9.2)
If the motor is assumed to be an infinite bus; the entire change in the
acceleration is assigned to the generator. Its equivalent acceleration becomes
Age= Ag — An
or, by (9.9.1) and (9.9.2),
1

Ag,= 360jAP(—-—+ ! )

—, 9.9.3
MoPy T MnPu (99.3)
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In this expression Mg and My are the inertia constants of the two machines
to their own rated power P, and Py as bases. If the inertia constants are
converted to a common power base P, and Ma, and Mg, are the respec-
tive inertia constants to the power base P, then

M(;PG = MePr
MuPy = MysPr.
These, substituted in (9.9.3), gives

Am:swaP(l + 1)

and

Pu\Mg, = M,
or
Age = 360faP elect deg/sec? (9.9.4)
Me Prb
where
May « M
M,= —=_—22. 9.9.5
Mg, + M ( )

Equation (9.9.3) gives the equivalent rate of change in speed in a two-
machine system, when the change is attributed wholly to only one of the
machines. Equation (9.9.5) similarly gives the equivalent inertia constant
of the two machines in a two-machine system when the change in speed is
associated entirely with only one of the machines.

It is important to keep in mind that to obtain the equivalent inertia
constant of a group of machines, the inertia constants of each of these
machines must be expressed to a common kw base.

9.10. Determination of the Displace- It was shown in § 9.3 that under
ment Angle and of the Maximum condition of zero loss the power-
Synchronizing Power for Anmy angle formula
Given Load.

P = £eBM gin§ = P.sins (9.10.1)
represents the power transferred from the generator armature, where it is
converted from mechanical into electrical power, to the motor armature
where it is delivered to the shaft as mechanical power. In §9.4, it was
shown that the same formula represents also the synchronizing power that
comes into play to pull generators operated in parallel back into synchro-
nism, in case they have fallen out of step due to a sudden and excessive
increase in load or due to some transient disturbance.

For any one particular load P on the system, there is, as previously
stated, a definite displacement angle between the excitation voltages of the
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two machines. Furthermore, should some disturbance tend to pull the
machines out of synchronism, there is immediately available a definite
maximum synchronizing power to bring the machines into step again. The
maximum synchronizing power for any load P is

EgEy P
Py= "= — 9.10.
M X sin &’ (9.10.2)

which indicates that its value can be obtained from the displacemenf angle
corresponding to the load. To determine this angle, consider the two-

|

Figure 94

machine system shown in Fig. 9—4. A simple expression for determining the
angle é is (9.2.1), which gives

Eg/s = Ey/0° + IX/90° + Ou. (9.10.3)

In this expression 6y is the angle between the excitation voltage E) and
the current, and X is the system reactance in ohms. A similar formula which
relates & with the other quantities is

Eu/—8 = Eg/0° — IX/%0° + 6. (9.10.4)

In this expression g is the angle between Eg and I, and X is the system
reactance in ohms. Neither ) nor 6; give what might be said to be the
system power factor, particularly if both machines are generators supply-
ing a common load. A compromise may be made, therefore, by having the
phase of the current referred to the voltage V at the electrical midpoint
of the system. In this case the displacement angle § is the sum of the angles
d; and &; between E¢ and V and Ex and V, respectively. The formulas
which relate these angles with the quantities involved are

Eoft= v/ + X /900 + 6

Eu/by= V/[0° — % /90° + (9.10.5)

and d=6&6+ 52,
where 0 is the phase angle between the phase voltage V and the current I.
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To generalize the above expressions, it is convenient to express all the
quantities in per cent to a definite VI base. Thus, if X, denotes the value
in per cent to the VI base, then

(IX)100 _

V Xp!

The voltage drop in per cent may be written, therefore,

100(IX) = X,(V)
_ X,P

" Tcos®

where P is the load on the system in watts corresponding to the power
factor cos 6.
The per cent voltage drop to any base (kva), is accordingly

100(IX) = Yﬁ(zk%cj’ﬂ. (9.10.6)

Note that if the base is in kva, the power P must be expressed in terms

of kw.
Denoting per cent values by the subscript p, the voltage equations

given by (9.10.5) may be written, therefore,

(XpP/cos 6)/90° + 6
2(kva)b
(X,P/cos )/90° + 6
2(kva)y

(EG)pZiS_{_= 100 +
(9.10.7)

(EuM)p/85 = 100 —

The voltage V = 100 is thus made the base voltage of the system and
[XoP/2 (kva)y cos 6] is the voltage drop in per cent corresponding to the
given load P in kw from each of the termini to the electrical midpoint of
the system.

" Another method of calculating the value of the displacement angle § is
suggested by the graphical relation between the above two equations shown
in Fig. 9-5 in which 6 is assumed negative.

— XpP/cosb
D S(kva)s ‘ (9.10.8)
a=90°40
and
tan 6 = tan (8; + &)
tan 6, 4 tand,
T—tan3, tans, (9.10.9)
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EO
L,—D Sin
—D
\D Cos o
Figure 9-5
By referring to the figure it is seen that
_ Dsina
tan 8, = 100 + Dcos
and
_ Dsina |
. mnaz—loo—DCOSa
It follows, therefore, that
D sin o Dsina
tan é ta =
n 8 + tand, 100 + Dcosa 100 — Dcosa’
which brought to the same denominator and simplified yields
- 200D sin o .
tan §; + tan 4, 10000 — (D cos a)F (9.10.10)
Similarly,
D sin a D sin «
- =1 .
1~ tand tand, 100+ Dcosa 100 — Dcosa
—1— (D sin a)?
10000 — (D cos a)?
_ 10000 — D*
=1 (D oos 2 (9.10.11)
Substituting (9.10.10) and (9.10.11) in (9.10.9) gives
- 200D sin 10000 — (D cos a)?
08 = 15000 — (Dcosa) < 10000 — D?
— 200Dsina
10000 — D?
or, since @ = 90° + 6
200D cos ¢
b= LR 9.10.12
129 = 10000 — D? (.10.12)

where D is given by (9.10.8).



284 . CH. 9 TRANSIENT STABILITY

Knowing the value of the displacement angle § corresponding to a load
of P in kw at a given power factor from (9.10.12), the maximum available
synchronizing power in case of a disturbance may be calculated by

= 2.
sin & .

To illustrate the above two methods of calculating &, let the load on
the above two-machine system be P = 15000 kw at a power factor of
86.6 per cent lag corresponding to 6 = —30°. ,

Assuming that the system reactance is 120 per cent to a 50000 kva
base, formulas (9.10.7) become, respectively,

120 X 15000 o
2 X 50000 X 0.866 /50"

120 X 15000 o
— 60°.
2 X 50000 X 0.866 L_‘

(Ec)p_/_51_= 100 +

(En)p/82 = 100
This gives

(Eg),/01 = 100 + 20.8/60° = 111.8/9.27°
and

(Eu)p/8 = 100 - 20.8/60° = 91.4/—11.36°.
The results show that Eg leads V by 9.27° and Ey lags V by 11.36°. Hence
the angle & between Eg and Ey is

= 9.27° 4+ 11.36° = 20.63°.

Using equation (9.10.12) for the calculation of 8, since D = 20.8, gives

200 X 20.8 X 0.866
10000 — 432.64
6 = 20.6°.

tané =

9.11. Determination of Load Corre- Equation (9.10.12) for tan é may be
sponding to a Definite Displace- written
ment Angle and Power Factor.

D+ (-2%191935—”) D = 10000, ©.11.1)
which when solved for D gives
_ N rerrapey:
D= 100[ cosb 3 m‘:‘;’ ke = °°5”’] (9.11.2)

Using the expression for D given by (9.10.8), and solving for P, gives

— 200(kva)s cos 6 _ cos @ (co____sﬂ)z]
P 2 [ o8t [+ cosd (9.11.3)

The positive sign is used with the radical, because P is always positive.
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9.12. Load Swing and Acceleration on - Consider a two-machine system

Change of Shaft Load. connected through a tie line and

having a total reactance X in per

cent to a definite kva base. Let P; be the shaft load on the motor in kw

and §; the corresponding displacement angle, determined by either one of

the two methods discussed in § 9.10. The maximum synchronizing power
or power limit is calculated by

o= Po

sin 61

and the power-angle curve plotted as shown in Fig. 9-6.

@d\
/_ - \\
P b c S e
oot
AP

ol

[ (]

O 6 62 "'6:
Figure 9-6

The area 0aé;0 under the curve as stated in § 9.4 is proportional to the
reactive mechanical energy stored in the rotor by virtue of its space-phase
position during the transitional period when the displacement angle changed
from zero to 6;. When an additional load P, — P, is thrown on the system,
the stored reactive mechanical energy increases to that proportional to the
area ocd0 which corresponds to the rotor space-phase displacement &,
demanded by the load P,.

If the increase in load were gradual, the rotor would slip from one
space-phase position to the other without any noticeable change in speed.
Because of the .inertia of the rotor, however, there is no instantaneous
response to the sudden increase in power. As a consequence the motor
begins to decelerate, and part of the required energy for the load and for
the reactive mechanical energy demanded by the new displacement angle
is temporarily supplied from the stored inertia energy (& = P,M/2 kw-sec)
in the rotor. During the small interval that the rotor changes its space-
phase position from &, to 3, its stored reactive mechanical energy increases
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by an amount proportional to the area 8,ac8,8;. Its stored inertia energy
decreases simultaneously by an amount proportional to the area abca, be-
cause when the rotor in its deceleration reaches the space-phase position 8,
its speed is somewhat lower than the normal synchronous value.

Furthermore, due to the acquired momentum, the rotor drops further
back in space-phase past the displacement angle corresponding to the shaft
load P,. Referring to the power-angle curve, it is seen that the power sup-
plied becomes greater than that demanded by the shaft load and the rotor
begins therefore to gain in speed. For the interval corresponding to any
slip in space-phase past the angle &, the stored reactive mechanical reactive
energy exceeds that demanded for the displacement angle §;. Although the
motor gains in speed, the slip in space-phase past the angle continues until
the excess energy received is larger than the amount lost from the stored
inertia energy. If such is the case, the motor accelerates and the displace-
ment angle decreases. By virtue of its momentum, however, the rotor over-
travels past the required angle 8, and overspeeds past the normal synchro-
nous speed. The supply becomes again smaller than thie demand; the rotor
slows down, then speeds up, and oscillates in speed about the synchronous
value, and in space-phase about the power-angle &, corresponding to the
load demand P, with a decaying swing amplitude as shown qualitatively
in Fig. 9-7.

1\"82

8, //\ /'\VA
v
Time (in seconds)

Figure 9-7

5

Referring to the power-angle curve, Fig. 9-6, it is seen that as the rotor
slips in space-phase on sudden increase in load past the angle 8, the sup-
plied power exceeds the demand. It may reach the power limit P, when
8 = 90°. If the rotor slips past this position, the power supply decreases
again. Note that when the space-phase position of the rotor is = — 8, the
power supply is again equal to that demanded by the shaft load P,. The
excess energy received by the rotor during the interval the power supply
is greater than the demand is proportional to the area cdec.

If this area is larger than the area abca, the maximum excess energy
received by the rotor during the interval it slips past 8; to = — &, is larger
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than that lost by the rotor from its stored inertia energy. The rotor will
recover its synchronous speed and settle in its rotation at a space-phase
angle corresponding to the load P,. If, on the other hand, the area cdec is
smaller than the area abca, the maximum excess energy received by the
rotor is smaller than the amount it lost from the stored inertia energy. If
such is the case, the rotor continues to decelerate and eventually falls out
of synchronism unless the load is reduced to a safe value within a specified
time.

Referring to the figure, let P represent the power at any instant during
the transitional period of load change from P; to P, and § the displace-
ment angle corresponding to this instantaneous load.

If AP is the required increment in power from the instantaneous load P
to the final one P, as indicated in the figure, then

AP = P, — P.
But, by (9.10.1),
Pz = LI'm Siﬂ 52
and
P = P,siné.
Hence,
AP = P,(sin §; — sin é). 9.12.1)

Substituting this in equation (9.8.6) for the acceleration gives

4= 2nf Py, (sin 8, — sin 8) elect radians/sec
M. Pr (9.12.2)
where P, is the power base.

There are two general and well-defined problems in connection with
transient stability studies. The first is to determine the limiting values of
load which, when added to any initial load, would lead to unstable conditions
and possible loss of synchronism. Such load will be referred to in what
follows as maximum safe load. The second problem is the determination of
the limiting time prior to which an unsafe load must be removed to pre-
vent loss of synchronism.

9.13. Determination of Maximum Ad- It was shown in the preceding arti-

ditional Safe Load. cle that if the operating condition

of a motor is to remain stable when

its shaft load is increased, the area cdec, which is proportional to the maxi-

mum excess energy supplied by the generator must be either larger or at

least equal to the area abca. This area, (abca), is proportional to energy

lost by the motor from its stored inertia energy, during the transitional
period. The criterion for the stability limit, therefore, is

area (abca) = area (cdec). (9.13.1)
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Let P, represent the maximum additional safe load that may be added
suddenly to an initial load P; of a two-machine system whose power angle
curve corresponding to P; is shown in Fig. 9-8. The total safe load corre-
sponding to P; is

P,= P, + P, (9.13.2)

= s

Figure 9-8

To determine the condition that would satisfy (9.13.1), refer to Fig. 9-8 and
note that

area (abca) = area (befhb) — area (acefha). (9.13.3)
Also
area (befhb) = area (mefkm) — area (mbhkm)
= (mk) - (kf) — (bh) - (kh).
Since
bh = mk= P 8t
kh = 5.‘
and
kf=m— 4,

it follows that
area (befhb) = P, (r — 8,) — Poids
= Py(r — 8, — 6,). (9.13.4)

Similarly area (acefha) is the area under the power-angle curve between
the limits of é; and = — §, less the area (cdec). It may be written, therefore,

area (acefha) = [ "Pnsin 6 db — area (cdec).  (9.13.5)
Substituting (9.13.4) and (9.13.5) in (9.13.3) gives
area (abca) — area (cdec) = P,(x — 8, — 8;) — j; T-“P.. sin & dé.
By (9.13.1), it follows that the transient stability limit is reached when
Pulr = 8, — 8) = Pu 'sind ds. (9.13.6)
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Since
P,, = P, sind,, (9.13.7)

the preceding equation becomes
. —_— f_al .
(1r—6.—6.')sm6,—-£'_ sin § dé.

Carrying out the integration and substituting the limits gives
(r — 8, — &) sin &, = cos §, + cos &;. (9.13.8)

To determine the value of the limiting safe load, equation (9.13.7), it
is necessary to obtain the angle §, corresponding to it from (9.13.8). This
equation, it will be observed, does not lend itself to a direct algebraic solu-
tion for §,. The solution may, however, be obtained graphically by plotting
the two sides of the equation for the known values of §; against assumed
values of §,. The intersection of the two curves gives the required value
of §,. The solution may be generalized for future use by obtaining a curve
of 8, vs. 8;. Such a curve gives the maximum safe angle corresponding to a
given initial angle. Furthermore, since

sin §, = %
and
sin §; = £'-

represent, respectively, the limiting safe load, and the initial load in per
unit of the maximum synchronizing power a curve 100 sin &, vs. 100 sin é;
may be plotted which will give directly the maximum safe load as a func-
tion of the initial load both expressed in per cent of the maximum synchro-
nizing power. Another curve, 100 (sin 8, — sin §,) vs. 100 sin §;, may also be
plotted. This curve gives the additional safe load that may be added to
any initial load, both expressed in per cent of the maximum synchronizing
power.

The curves marked a, b, ¢ in Fig. 9-9 represent the left-hand side of equa-
tion (9.13.8) as a function of 8, expressed in degrees for increasing values
of §; in radians. Similarly, the straight lines in Fig. 9-9 represent corre-
sponding values of the right-hand side of this equation as a function of §,.
The curve drawn through the respective intersections gives the values of 8,

for corresponding values of 3; and so plotted in degrees is shown in Fig. 9-10.

Curve P, vs. P;, in Fig. 9-11, gives the limiting safe power as a func-
tion of the initial load P,, both expressed in per cent of the maximum syn-
chronizing power Pn. Curve marked P, vs. P; gives the additional safe load
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(Pse — P;) as a function of P;, both expressed in per cent of the maximum
synchronizing power. Thus, refesring to these curves it will be noted that
for an initial load of 50 per cent of the maximum P,, corresponding to a
displacement angle of § = sin—! 0.5 = 30° the additional load that may be
thrown safely on the system is 36.5 per cent of the maximum. Any addi-
tional load larger than 36.5 per cent of the maximum will be conducive to
loss of synchronism. The maximum safe load for the initial load is 86.5 per
cent of the maximum.

100
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o
o
N
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o
N

100 Sin &,/ Sin 6,=100 P, /P,

20

.

0

0 20 40 60 80 100
100 Sin §; .

Figure 9-12

The curve marked 100 P;/P,, in Fig. 9-12, giving the initial load on a
system in per cent of the maximum safe load (100 sin 8,/sin &,) as a func-
tion of the initial load in per cent of the maximum (100 sin §;) will be found
very convenient in the determination of limiting values of load that the
system can transfer with a fault on.
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9.14. Power-Angle-Time Relations. It was stated in the preceding arti-

cles that if the load suddenly added
to any initial load of a system is larger than the safe value P, correspond-
ing to that initial load, the displacement angle increases beyond the safe
value and synchronism will be lost unless the load is reduced to a safe
value before the limiting angle is reached. This is also the case when the
falling out of step is due to transient disturbances such as faults.

To determine the length of time during which the load must be reduced
or the fault removed, so that stability be re-established, consider equa-
tion (9.12.2) which gives the equivalent rate of change of the speed of the
two machines:

n .
A =2 P (gin 5, — sins). 9.14.1

T (sin & ) ( )

In this expression M., is the equivalent inertia constant of the two machines,

as given by (9.9.5). The term P, is the maximum of the power-angle curve
corresponding to the initial load P;, and its value is obtained by

The angle §; is obtained by formula (9.10.7) or by (9.10.12). The term P,
is the rated kw base, obtained from the kva base used in the calculation
of per cent reactances and the system power factor. The angle §; corre-
sponds to the final load

P;= P;+ P,

where P,, the additional load, is larger than the additional safe load P,,
and is, therefore, conducive to loss of synchronism, unless it is removed in
time. The angle & in (9.14.1) corresponds to any value of load P during
the transitional period when the load changes from P; to P;.

Setting for simplicity’s sake

27!'! P, 9
B = - . .
M. be, ( 14 2)

and, since the acceleration is

_ &
dF,
equation (9.14.1) becomes
P8 _ B(sin b, — sin ). (9.14.3)

ar
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To integrate this equation, it may be written

2
%—idt %t—i = B(sin §; — sin é) dé.
Setting
d _
a

where v represents the rate of change of the displacement angle, the above
equation becomes

vdl ‘—‘1}; = B(sin ; — sin 8) dé

or

vdv = B(sin §; — sin d) do. (9.14.4)
The limits of this expression are determined as follows: When the load is P,
the displacement angle is 8§ = §;, and the rate of change dé;/d¢t = 0. When
the load has changed to a value P, the displacement is 8, and the rate of
change in & is d6/dt = v. Using then these limits, equation (9.14.4) becomes

0 8 . .
j;v dv =£‘B(sxn 8; — sin ) dé. (9.14.5)

Integrating and substituting limits gives
v ="V2B[( — &) sin d; + cos & — cos &]%.
Since v = d§/dt, the above equation becomes
V2B di = dé (9.14.6)
[(6 — 8;) sin 8; + cos & — cos &,]%

Let &, be the safe limiting displacement angle, corresponding to the safe
limiting interval ¢, for the re-establishment of the stability of the system,
measured from ¢ = 0 when & = §,. With these limits the above equation
becomes, when the left-hand side is integrated,

VBl = [* 4 : (9.14.7)
5 [(5 — ;) sin 8; + cos & — cos 5]

This expression does not lend itself to integration by usual methods.* It
may be integrated, however, by a point by point method based upon the
.analysis given below. Let

1
= F(3), 9.14.8
[(3 — &) sin & + cos & — cos o ® ( )

then (9.14.7) becomes

V2Bl = [“F@) &s. (9.14.9)

* It was integrated by the use of the M.I.T. integraph and the results published. Summers, I. H.,
and McClure, J. B., Progress in the Study of System Stability, Trans., A.].LE.E., 1930.
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Assume now that F(8) is represented graphically by the curve in Fig. 9-13,
so that the integral in (9.14.9) is the area under the curve. As such, the
integral may be obtained by dividing
the area under the curve into a large \
number of small areas of equal width \
¢ so small in fact that any distance
along the curve such as ab may be
thought of as straight lines. The value
. - P ab
of any one of these elemental areas is —

> e—p

F(5)

area (abcda) = (ad + bc) %i = q. L 6,+1 d ~¥

C
Setting 5; §;+2 §+k? Motk
ad = F(é:; + k) Figurc 9-13
bc= F(3: -+ k + 1)
dc= ¢,

the little area ¢ may be written
a=[F(:+ k) + F(b: + k + 1)] %‘

But, since
S+kt+1=06+k+ ¢,

the elemental area may be written, generally,
o= [FG:+ B + FGit b+ o))

Starting with &; where & = 0, the values of the successive elemental areas are
a1 = [FG) + Fo:+ #)1 3
o= [F(5+ ¢) + FG: + 20)] 3

s = [F(3:+ 2¢) + F6: + 3¢)]‘12’

19

o= (Flo+ (k — D)6] + FG: + ko)) (9.14.10)

From what has been said above, it follows that equation (9.14.9) may be

written
V2Bti=a+a+a+ -at+ - +a

or
tm=n

V2B, =,§ {Floc+ (k — )] + F(5: + ko)) g, (9.14.11)
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in which, by (9.14.8),
Flo;4 (B — 1)¢] =

and

1
{(k — 1)¢ sin &; + cos [6; + (k — 1)¢] — cos &}

1
[k¢ sin 8; + cos (8; + k¢) — cos &;JF

Substituting in (9.14.11) gives

F(5: — ko) =

¢/2
21{(;& — 1)¢ sin 8, + cos [6; + (& — 1)¢] — cos &;}
+ ¢/2 } . (9.14.12)
{k¢ sin &; + cos (6: + ko) — cos 6;} ¥

This general expression is used in the calculation of the elemental areas by
giving to k successively the values 1, 2, 3, ... #n. The value of n¢ should
be equal to the maximum safe angle §,. The sum of these elemental areas
thus calculated gives the value of the integral V2B 2Bt,.

The area of the first elemental area is obtained by setting 2 = 1, result-
ing in

V2Bt =

V2B, = ¢/2 + ¢/2
(cos 6; — cos 8;)%  [¢ sin 8, + cos (8; + ¢) — cos 5,1}
This, it will be observed, is indeterminate as ¢ > 0, i.e., in the vicinity of
8 = 8;. To determine, however, the value of this first area, consider the
general integral, equation (9.14.7). In the immediate vicinity of the initial
angle 8; with ¢ as the variable this equation becomes by expanding the
denominator by substituting é = ¢ 4 4,
\/2_511 = f‘ dé '
© [¢ sin 8; + cos 8; cos ¢ — sin &; sin ¢ — cos 8]}
If the limiting value of ¢ is not greater than 2.5, then sin ¢ is very nearly
equal to the value of ¢ in radian measure (0.0436), and cos ¢ is very nearly
equal to 1. The above equation becomes, accordingly, when ¢ is very small,

VB = [*——l8
' J:’ V¢ (sin 8; — sin &;)
ot
sin §; — sin §;
When integrated, this gives for the first elemental area
ViBh= 2% . (9.14.13)
V'sin 6; — sin &
This relationship is substantially correct only when ¢ is not larger than
0.0436 radians corresponding to 2.5 degrees.
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Inserting the value of the first elemental area just obtained in equa-
tion (9.14.12) gives

V2Bi= 2 —O%
sin §; — sin &,

8a— 01

R /2
22 [(k — 1)¢sind; + cos (8; + (k — 1)¢) — cos &}
+ #/2 } (9.14.14)
[k¢ sin &, + cos (8; + ko) — cos 5,]*

A convenient value of ¢ when radian measure is used is 0.04 radians.

The actual calculations, if carried out in accordance with a definite pre-
arranged schedule, is not as fcrmidable as the above equation looks. To
illustrate, assume a system with an initial load P;. An additional load P,,
larger than the corresponding safe additional load, is suddenly thrown on
the system. The condition is thus conducive to loss of synchronism unless
the additional load is decreased or completely removed. The problem is to
determine the interval of time in which this should be done. The calcula-
tion is as follows:

a. Obtain §; by the method outlined in § 9.10. This gives sin §; = P;
in per unit of the power limit P,,. The power limit or maximum synchroniz-
ing power is calculated by

p = Pe.
sin d;
b. The final load is calculated by
P/ = P( + Pu-
Hence,
ins, = L.
sin é; 7.
c. The maximum safe angle §, is obtained from the curve &, vs. §;,
Fig. 9-10.
d. Using ¢ = 0.04 radians, calculate the first elemental area @; by
(9.14.13).

e. For the other successive areas the schedule of calculations is as indi-
cated in Table VII in which
1. Column 1 gives the successive values of k =1,2,3...(0,— 8)¢.
For ¢ = 0.04 the last value of % is 25(5, — 38;), with 3, and 6 expressed in
radian measure.
2. Column 2 gives the successive values of k¢ in radians.
3. Column 3 gives the successive values of k¢ in degrees.
4. Column 4 gives the successive values of (k¢ sin §;).
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5. Column 5 gives successive values of (8; + k@) in degrees.

6. Column 6 gives successive values of cos (8; + k¢).

7. Column 7 gives successive values of (k¢) sin 874 cos (8;+ k¢)—cos &;
as obtained from Columns 4 and 6.

8. Column 8 gives the reciprocals of the values in Column 7.

9. Column 9 gives the square root of the values in Column 8.

10. Column 10 is obtained by adding successive values in Column 9;
the first with second; the second with third; the third with the fourth, and
so on. This column gives, therefore, twice the average height of successive
elemental areas beginning with the second.

11. Column 11 is obtained by multiplying the successive values in
Column 10 by ¢/2. The values of this column are, therefore, the elemental
areas, beginning with the second.

12. Column 12 gives the summation of the area values in Column 11,
i.e., the integral of equation (9.14.14) for successive values of (8; + k¢) up
and including the upper limit corresponding to §,. The last value in this
Column is thus

V2Bt, = a4 +2 Column 11.

The first quantity in this column is the first elemental area a, obtained
by (9.14.13).

The value of ¢, in this equation is the interval in seconds during which
the disturbance should be removed to prevent loss of synchronism. This
interval is frequently stated in terms of cycles. For the operating frequency
of 60 cps it is 60¢,.

To illustrate the above, consider a two-machine system carrying an
initial load P; = 30 per cent of the maximum synchronizing power P,, and
that a load P, = 60 per cent of the maximum is suddenly added. The
problem is to determine whether the system remains stable with the addi-
tional load thrown on. If the system is not stable calculate the interval
t, during which the load must be reduced so that stable operation be
recovered. The calculation is as follows:

Since
P; = 0.30P,,
it follows that
sin 5¢ = 0.30
8; = 17.45°.
The final load is
P, = (0.30 + 0.60)P,,
corresponding to
sin & = 0.9

5/ = 64.15°.
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The maximum safe angle 8, corresponding to 8; = 17.45° is obtained from
curve, Fig. 9-10, and is
= 54.12 = .945 radians.

Since 8; > §,, the system will become unstable and will lose synchronism
unless the load is reduced to safe value, less than 100 sin §, = 81.4 per cent
of the maximum synchronizing power within a specified time.

The calculation of this time interval is given below. Taking ¢ = 0.04
radians, the first elemental area, by (9.14.13), is

_ / 0.04
al - 2 v e . e
sin 8; — sin &;
= / 0.16
09— 0.3

= 0.515 =V 2Bi,.

Table VII gives the tabulated calculations for the integral V' 2Bi, as out-
lined above using ¢ = 0.04. The calculated value of the integral is

V/2Bt, = 2.105.
TABLE VII
12 3 4 5 6 7 8 9 10 1 12
— —— —— 1745 0954 — —— — — — —
004 229 0036 19.74 0941 0023 433 66 —— —— 05150 =

0.08 4.58 0.072 22.03 0.927 0.045 222 4.71 11.31 0.2262 0.7412
0.12  6.87 0.108 24.32 0911 0.065 154 393 8.64 0.1728 0.9140
0.16 9.11 0.144 26.61 0.894 0.084 119 3.45 7.38 0.1476 1.0616
. 11.45 0.180 2890 0.875 0.101 99 3.15 6.60 0.1220 1.1836

024 13.74 0.216 31.19 0.855 0.117 835 293 6.08 0.1216 1.3052

0.28 16.03 0.253 33.48 0.834 0.132 7.57 2.86 5.79 0.1158 1.4210

0.32 18.32 0.288 35.67 0.812 0.146 6.85 2.62 5.48 0.1096 1.5306

0.36 20.61 0.324 37.96 0.788 0.148 6.32 2.52 5.14 0.1028 1.6334
10 040 2290 0.360 40.25 0.762 0.168 595 2.44 4.96 0.0992 1.7326
11 044 25.19 0396 42.54 0.736 0.178 5.62 2.37 4.81 0.0962 1.8288
12 048 2748 0432 44.83 0.708 0.186 5.38 2.32 4.69 0.0938 1.9226
13 0.52 29.77 0468 47.22 0.679 0.193 518 2.28 4.60 0.092 2.0146
14 056 3209 0.504 49.54 0.649 0.199 5.02 2.24 4.52 0.0904 2.1050
15 060 3438 0.540 51.83 0.618 0.204 491 2.22 4.46 0.0892 2.1942
16 0.64 36.67 0.576 54.12 0.586 0.208 4.81 2.19 4.41 0.0882 2.2824

O 00U W N -
=]
N
(=}

The interval during which the load must be decreased to avoid loss of
synchronism is 2.105

b=
V2B

or, for the operating frequency of 60 cps, 60¢, cycles.
The value of B in the above relations is given by (9.14.2).

seconds
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Curve, Fig. 9-14, shows the relation between successive values of space-
phase angle § in degrees as given by Column 5 and the corresponding
values of V'2Bt, as given by Column 12, Table VII, for the above illustra-
tive example.

70
\
/

/

50 /

'S
o
N

(2]
o

8=6,+k® (in degrees)

0
0 | 2 3

V2B ¢
Figure 9-14

A more direct method for the calculation of the "portion of the area
represented by the summation in equation (9.14.14) is to plot F(3) as
given by (9.14.14) as a function of §, between the limits § = §; and § = ..
The curves have the general form shown in Fig. 9-15. The area (a) between
the values §, and 3, may be obtained conveniently by means of a planimeter.
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The first elemental area between the limits of 6; and §, is obtained by
(9.14.13) in which ¢ = &, — &;. This method although more direct requires
as mentioned above a planimeter.
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SUGGESTIVE PROBLEMS Chapler 9

1. The inertia constant of a 2-pole, 60 cycle 25000 kva turbo-generator is 15 sec-
onds. Calculate (a) the energy stored in the rotor; when it delivers rated load;
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3.

(b) the time in seconds that it takes the rotor to decelerate one revolution;
(c) the time in seconds it takes the rotor to decelerate one electrical degree.

Three 4-pole 60 cycle synchronous motors rated 500, 750, and 1000 kva are
operated in parallel. The measured inertia constants of these machines are
3.9, 4.2, and 4.5 seconds, respectively, at their own kw base. Calculate the
equivalent inertia constant of the three motors to a common base of (a) 500,
(b) 750, (c) 1000, and (d) 10000 kw.

Four hydro-generators each rated 13.8 kv, 21500 kw at 90% power factor have
inertia constants of 3.27 seconds at own base. What is their joint inertia con-
stant at a base of 100000 kw?

. Calculate the equivalent inertia constant of the four generators in Prob. 3

and the three motors in Prob. 2.

A simple two-machine system as shown schematically in Fig. 94 has a load
of 20000 kw at 909, power factor lag. Assume that the system reactance is
60 per cent to a 25000 kva base and calculate the displacement angle in elec~
trical degrees between the excitation voltages at the termini of the system.
What is the maximum synchronizing power for the stated load on the system?
Check the results by the method based upon Fig. 9-35.

. A two-machine system similar to the one stated in Prob. 4 carries an initial

load of 25% of the maximum synchronizing power. An additional load of 50
of the maximum is suddenly thrown on the system. Determine whether the
system remains stable.



Chapter 10 System Instability

10.1. General Considerations. It was shown in the preceding chap-
ter that the sudden addition of load
in excess of that corresponding to the safe displacement angle is conducive
to loss of synchronism unless the load is reduced to a safe value within a
definite time limit. The emphasis was put on the displacement angle, first
because it was a convenient method of approach and second because any
transient disturbance which would impair the transfer of the power may be
investigated in terms of either an actual or apparent change in the dis-
placement angle. In this manner, the problem of instability of transmission
systems due to faults, switching of lines in and out of service either under
normal or abnormal conditions, may be studied by adapting the principles
established in the preceding chapter.
Consider, for instance, the power-angle equation

The preceding chapter dealt with the changes in the value of § as demanded
by a change in the load P, which is transferred from the source to the
receiving end. The transfer of this amount of power may, however, be im-
paired if and when there is sudden increase in the reactance such as would
occur on the switching of a line out of service or some other kind of tran-
sient change in the system. The value of P is thus decreased while the shaft
load remains the same. The motor will immediately slow down, the gen-
erator will speed up, the displacement angle increases, the machines fall
out of step, and synchronism is lost.
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10.2. Instability Due to Line Switch- Consider a two-machine system
ing. interconnected by two lines as in-
dicated in Fig. 10-1. Let X¢ and

Xu be the synchronous reactances of the two machines, respectively, and
X, and X, the reactances of the two lines including the transformers in per

—E—

Xe s Xu
<

wW
MW

2
Xp B3
Figure 10~1

cent to a common kva base. Under normal conditions when the two lines
are in service, the equivalent reactance between the two machines is

XX
= 2+ Xu. 10.2.1
X:1= X¢+ X r Xb+ M ( )

If line & is switched out, the reactance of the system is changed from X; to

Xo= Xo¢+ X, + Xu. (10.2.2)
Since .
X X5
x> i X
it follows that
X, > X,

The switching of a line out of service increases automatically the equiva-
lent reactance of the system.

Let P, be the load on the system, cos 8, the power factor, and §, the
corresponding displacement angle, calculated by (9.10.12). The maximum
power that can be transferred over the system with the two lines in service is
=P _ EcEx (10.2.3)

sin §; X,

ml

where X is the total system reactance in ohms. Under the conditions stated,
the system operates on a power-angle curve whose maximum value is P,
as indicated in Fig. 10~2. When line b is tripped out of service, the load
remaining the same, the maximum power is immediately reduced to a value

= _____EOEM .
P, m2 Xs
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By (10.2.3) it follows that, in terms of per cent reactances (X; and X3) to
a common kva base,
Pz . Xa,
P ml X 2

It appears from what was said above that the switching out of line (b)
changes the operation of the system from the power-angle curve (1) to the
power-angle curve (2).

(10.2.4)

A

6, 6, 90
Figure 10-2

With regard to the power, the switcbing out of line (b) is identical in
effect to that which would occur if the system were operating on power-
angle curve (2) with an initial load

Pi= P,ysind, (10.2.5)
and the load suddenly increased, on the tripping of the line, to
P1 = L'm2 sin 53. ;\. (1026)

Two possible cases may arise in connection with the instability created by
line switching. One is when the load on the system at the time of switching
is less than the maximum power that can be transferred with one line, i.e.,
P; < Pp. In this case the instability may or may not be of a transient
character, i.e., the system may or may not recover its stable operation.
The second case is when the load on the system at the time of switching
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is greater than the maximum with one line tripped, Py > Ppe. In this case,
the instability created by switching is definitely conducive to loss of syn-
chronism unless the tripped line is switched back into service within a
definite length of time.

10.3. Line Switching; CaseI: P, < Pn;. Figure 10-2 illustrates this case.

The situation is, as stated above,
identical to a two-machine system operating on power-angle curve (2) with
an initial load P;, and the load suddenly increased to a value P,. The prob-
lem is to determine whether P, is smaller or larger than the maximum safe
load corresponding to P, as discussed in § 9.13. To do this, calculate the
displacement angle 8;, by (9.10.12). Then, since

P| = Pml sin 51
and
P1 = ng sin 52,
it follows that
sz sin 61
= . 10.3.1
P,y siné; ( )

By (10.2.4), this may be written

sin 61 __ X 1

eyl (10.3.2)
Calculate §; from this equation and from curve §, vs. §;, Fig. 9-10, determine
the safe displacement angle é, corresponding to 8, = §,. If §, as obtained
from this curve is larger than &,, the instability caused by the switching is
only transient. But, if 8, < 8, the instability caused by the tripping out of
the line is conducive to loss of synchronism unless the tripped line is replaced
in service within a definitely specified time, which may be calculated as
outlined in § 9.14.

From what is said above, it follows that the value of sin é, correspond-

ing to

X1 _ siné
e T 10.3.3
X, siné, ( )

is the load in per unit of the maximum safe value which the system can
transfer with one line tripped. It may be obtained directly from curve,
Fig. 9-12, which is plotted (sin 8,/sin 8,) vs. sin 8;. Curves of sin § vs. P
or vs. P/P, for any particular power factor may be obtained from the rela-
tion between & and P discussed in § 9.10. These curves give the actual load
or the load in per unit of rated power that can be transferred with only
one line. ‘
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10.4. Line Switching; Case I1; This case is illustrated graphically

Py > P,,. in Fige 10-3 in which curve marked

(1) is the power-angle curve for the

normal condition of two lines in service, curve (2) is the power-angle curve

for the condition when one line is tripped out. g'he load is Py and its corre-
sponding angle is 8;. The maximum of curve (i is determined from

Pml = .P‘
sin é,
Pml
e —
S=—No
‘X .
2\
—\
A
3 b c A f
’-
d Pm2
P, a 2
k h g
(o] -
6! 6: 1\’-6,
Figure 10-3

where &, is first obtained by (9.10.12). The maximum of curve (2) is obtained
from

Pne _ X

= 10.4.1

P m) X 2 ( )

If one line is suddenly tripped out, and the line reactance changes

accordingly from X; to X,, the system changes its operation from the
power-angle curve (1) to power-angle curve (2). As in the previous case,
the effect is identical to a sudden change from a fictitious load

P.' = P,..z sin 51

on power-angle curve (2) to a load Py > Ppms. The condition is, obviously,
conducive to loss of synchronism unless the tripped line is restored to
service within a definite specified time.
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At the instant the line is tripped out, the motor begins to slow down,
the generator begins to speed up, and the two machines pull apart from
synchronism. Assume now that the tripped line is restored to service at the
particular instant when the displacement angle has reached the value 4,.
The operation changes to power angle curve (1). During the interval of
time that the displacement angle changes from &, to §,, the decelerating
motor lost from its stored energy an amount proportional to the area abcda.

In its deceleration, the rotor may overtravel to the space-phase position
corresponding to the displacement angle = — &,. During the interval cor-
responding to the change in displacement angle from §, to = — §,, the
source supplies in excess to the required energy an amount proportional to
the area cefc. If the amount of energy represented by the area cefc is larger
than the amount of energy represented by the area abcda, the instability
created by the switching operation is transient, and the system recovers its
stability. The criterion for stable condition is, therefore, that

area (abcda) = area (cefc) (10.4.2)
Referring to the figure, note that
area (abcda) = area (oP,fgo) — area (oP1bko) — area (cfghc) — area (adhka).
This may be written
area (abcda) = Pu(x — 61) — Piby — Pilr — 61— &) — [, Pagsinddb.  (10.4.3)
Similarly,

area (cefc) = area (hefgh) — area (hcfgh)
or

area (cefo) = [Py sin8ds — Por — b1 = 3,). (10.4.4)

The criterion for stability is obtained by equating (10.4.3) and (10.4.4),

resulting in .
[ Pusinsas + j:‘p.., sinsds = Pir — 26,). (10.4.5)

This, when integrated between the indicated limits, gives
Pru(c0s 8 + c088,) + Pra(c08 8 — co88,) = Plr — 28:).

It may be written also
(Pml + Pmﬂ) cos &, + (Pml -, P‘i) Cosaa = Pl(ﬂ' - 281)' .
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which, when solved for §,, gives

Pl(‘r - 251) - (Pml + sz) cos 8y

yoR— (10.4.6)

cos §, =

where §, is the maximum safe angle. The tripped line should be restored
during the interval corresponding to this angle if loss of synchronism is to
be avoided. Using P; = P, sin 8;, and the relation given by (10.4.1), the
above equation becomes
sin &;(r — 28,) — (1 + % cos &y

cosd, = 2 .

Setting .
21— 4y, (10.4.7)

the final form from which the safe angle 6, may be calculated is

sin &(r — 26:) — (1 + m) cos &

(10.4.8)
1—m

Cos 0, =

The interval during which the tripped line should be restored is given by
the integral (9.14.7), in which
sin 5/ = —&‘

m2

Since for the case under consideration Py= P, sin 8; and Pme= (X1/X3)Ppm,
the above may be written
sin 3, = Sind, (10.4.9)
m

The integral given by (9.14.7) applied to this particular case becomes,
therefore,

\% ZBt. = b dd
J [T I — (10.4.10)

m

and its value determined by the method outlined in § 9.14.

10.5. Instability to L-L-1L-G Fault. It was shown in § 8.16 that a three-

phase to ground fault in a system
may be replaced in the diagrammatic representation of the faulted systems
by a wye circuit of zero impedance per branch. Thus, consider one phase
of a two-machine system interconnected through a twin line as shown in
Fig. 10-4.
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The reactance of the system under normal conditions before the occur-
rence of the fault is

XX

X = =2 10.5.1

1 XG+Xu+Xb+XM’ ( )
Xa

£ VT — T X,

sl _

X L NN TN T En -

Figure 104

where X¢ and X are the reactances of the generator and motor, respec-
tively.

If P, is the load on the system, and cos 8 is the power factor, the cor-
responding displacement angle 8, may be calculated by (9.10.12). Then the
maximum power that can be transferred normally over the system is

— EoEn (10.5.2)

& &
Figure 10-5
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where Eg and Ey are the excitation emf’s of generator and motor, respec-
tively, and X, is the total reactance in ohms.

The system operates on the power-angle curve (1) whose maximum is
P, as shown in Fig. 10-5. Assume now an L-L-L-G fault at the high side
of transformer in line b as shown in Fig. 104. At the instant the fault
occurs, the diagrammatic structure of the system changes to that shown
in Fig. 10-6 in which Xg and X,, are now the transient reactances of
the generator and motor, respectively, and X, and X are the reactances
of line b on either side of the fault.

’66'0"5;'6\’6'66\

X
3 xd
LJIO P00 IO
L

Figure 10-6

To obtain the equivalent reactance of the system under the faulted
condition, convert the delta circuit, Fig. 10-6, to the wye circuit, Fig. 10-6a,
in which
XX,

= 10.5.3
X Xa + Xc + Xd ( )
XX ’
= Qecfd 10.5.4
XI Xa + Xn + Xd ( )
and
X. X
X, = ad 10.5.5
T X+ X+ X (1055)

It was shown in § 7.6 that a circuit of the type shown in Fig. 10-6a
may be further simplified by connecting the grounded branch X in parallel

Ea Eﬂ

L oo
AN AN

X ; Xm

Figure 10-6a

with (X5 + Xa) and simultaneously changing the value of the Ex to an
equivalent value

X
Eneo= —-——L-——)E . 10.5.6
M (x,+xh+xm . (10.5.6)
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The faulted system per phase may now be represented by the diagram,
Fig. 10-6b. The reactance between the termini of the system becomes,
accordingly

X/(Xn+ Xurr)
X=X X+ SLor T AMy 10.5.7
3= Xa:t + +X;+X;.+Xm ( )
X, Xoe
E LTO0 — UUU —
(] EM.
Lo o
l \_// X,
~ Ja I =
X
Figure 10-6b

The maximum value of the power-angle curve on which this equivalent of
the faulted system operates, by (10.2.3), is

EgEu.
P,y = —9Me, 10.5.8
X, (105.8)
Setting for brevity
Xat+ Xe= Xi
Xn+ Xue= X,

the preceding equation may be written, by (10.5.7),

_ X/EGEm/(X; + Xa)

X/ X
_AfAm
X+ %

EqGEy (10.5.9)

N X Xom
Xi + Xm .
x + + X,

Prs

The power-angle curve (3) in Fig. 10-5 has this maximum value.
Referring the preceding equation to (10.5.8) it is seen that the react-
ance of the faulted system in per cent is

= X+ X + Xele. (10.5.10)
X,
Now let the load on the system just prior to the occurrence of the fault
be P, and the corresponding displacement angle, as calculated by (9.10.12),
1. The occurrence of the fault changes the operation of the system from
the power-angle curve (1), whose maximum is.
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to the power-angle curve (3) whose maximum value, by (10.2.4), is
= p,, X
P m3 P, ml Xa
The situation is identical to that which would take place if the system were
operating initially on the power-angle curve (3) with a fictitious load of

P = P,,.a sin 51
and the load suddenly increased to a value
P, = m3 sin § I

If the load P, is smaller than the power limit Pnms of the system with
the fault on, the instability created by the fault may be transient and the
system carry fault and load, or the fault may be conducive to loss of syn-
chronism. In the first case area (cdec) > area (abca) in Fig. 10-5. To deter-
mine whether the system can carry the fault and the load, obtain the safe
angle 8, corresponding to §; from Fig. 9-10. The value of sin §, in

siné;, _ X,
= A1 10.5.11
sind, X3 (10.5.11)

is the load in per unit of Pn, which the system can transfer with the fault
on. It may be obtained directly from the curve (sin é,/sin §,) vs. sin &,
Fig. 9-12. The actual power in kw for any given power factor which could
be transferred with the fault on may be obtained directly from the curve-
plotted sin § vs. P shown in Fig. 10-21. Curve sin § vs. P/P, shown in
the same Fig. 10-21 gives the value of this power in per unit of the rated
power P,.

If the area (abca) > area (cdec), the fault is definitely conducive to loss
of synchronism unless the fauit is removed within a definite interval of
time corresponding to the respective safe angle. This time interval may be
calculated by integrating

Bt, = | ds
& [(6 — 8,) sin 8; + cos & — cos &1

in which §, is the displacement angle correspording to the load at the
given power factor and is calculated by (9.10.12). The angle §, is the safe
angle corresponding to §; and is obtained directly from curve §, vs. 8y,
Fig. 9-10. The angle 3, in the above integral is the angle which corresponds
to the load P, on power-angle curve (3). Its value is obtained by (10.4.9)
and is

. sin 6
= 10.5.12
sin & X1/ Xs ( )
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Setting X1/ X3 = m;, the above integral becomes

VBl = | % - db (10.5.13)
& [(6 — &) —-Sl:; ! + cos & — cos 6{P

3

The integration is carried out as outlined in § 9.14.

If the load on the system is larger than the power limit with the fault
on, i.e., when Py > Py, the disturbance is conducive to loss of synchronism,
unless the fault is cleared during the interval corresponding to the respec-
tive safe angle. The analysis of this particular situation is analogous to
Case II of line switching discussed in § 10.4. The return to service of the
tripped line in that case corresponds to the clearing of the fault in the

short-circuit case.

10.6. Three-Phase to Ground Fault; 1f the three-phase fault is conducive

Faulted Line Tripped. to loss of synchronism as is the case

discussed in the last part of the

preceding article, stability of operation may possibly be recovered by trip-
ping the faulted line out of service.

There are three sequent stages which must be considered. The first per-
tains to the system under normal operation with the two lines in service,
just prior to the occurrence of the fault. The reactance of the system at
this stage is X1 as given by equation (10.5.1). The system is operating on
power-angle curve (1) whose maximum is

=P (10.6.1)
sin 0,

ml

as obtained in the preceding article and as shown in Fig. 10-7. The angle 6,
corresponding to the load P; is calculated by (9.10.12).

The second stage pertains to the system under the faulted condition.
The reactance of the system under this condition is Xj, and its value is
given by (10.5.10). The power limit for this stage, by (10.4.1), is

X,
Ppz = == Ppn1. 10.6.2
m3 Xa 1 ( )

Curve (3), Fig. 10-7, is the power-angle curve for this stage.
The third stage pertains to the system with the faulted line tripped out
of service. The system operates on one line only and its reactance is

Xe=Xo+ X. + Xu. (10:6.3)
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The power limit for this particular condition is

X,
P = =2 P,
2 XzPl

Curve (2), in Fig. 10-7, is the power-angle curve for this stage.

8 &, Sy & m-&,
Figure 10-7

There are two general aspects to the problem. One when the actual
load P; on the system prior to the occurrence of the fault is smaller than
the power limit with the fault on, i.e., Py < Ppns but the fault is conducive
to loss of synchronism, and the faulted line tripped. This is the case shown
in Fig. 10-7. The other case, when Py > Pns. The method of analysis,
however, is the same. ,

Considering the case illustrated in the figure, a three-phase short circuit
on one of the lines is, as shown in the preceding article, identical in effect
to a sudden increase in load, as if the system were operating on power-angle
curve (3) with an initial load P; suddenly changed to P,. Assuming that
area (abca) > area (cdhc), the fault is conducive to loss of synchronism. If
the faulted line is switched out of service, the system immediately begins
to operate on power-angle curve (2). Referring to the figure, during the
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interval that the motor rotor slipped from angle 6, to dys, it lost an amount
of energy proportional to the area (abca). Assuming that the faulted line is
tripped when the power angle is d,, the energy supplied by the source is
proportional to the sum of the area (cdec) (supplied before the line is tripped)
and area (efge) (supplied after the faulted line is tripped). If the amount
of energy supplied by the source exceeds that lost by the rotor from its
stored energy, synchronism will be recovered. The criterion of recovery is,
therefore, equality between the above-mentioned areas

area (abca) = area (cdec) + area (efge). (10.6.4)

The angle &,, for which these two areas are equal, is the limiting angle by
which the corresponding limiting time for tripping the line out of service
may be obtained.

Referring to the figure it will be seen that

8
area (abca) = P|(1r - 5/2) — P, — Pl(ﬂ' - 5/2 - 5/3) —j;hPms sin 8 dé
area (cdec) = J; *Prms 5in 6 d6 — P8, — ds3)
area (¢/ge) = || TP o sin 8d6 — Py — 8y2 — 5.

1

Using these three expressions in (10.6.4) yields
/s . 3s . v =8y .
Pir — 82— 8) — [ Prasin 8 ds =f%1’,na sin & db +£_ " P sin 8 db.

This, when integrated between the stated limits, gives

Py(m — 872 — 1) + Pma(cos dy3 — cos 81) = — Pra(cos 8, — cos dys)
+ P,p(cos 8, + cos bys),
which simplifies to

(Pma — Pns) cos 8, = Pi(w — 873 — 81) — P2 €08 82 — Prg COS ). (10.6.5)
Since
P1 = L'm1 sin 51
Py = —&Pm: M:Ppn,
X2 (10.6.6)
X,
Ppy = = Pm =M m
3 Xﬂ 1 8P 1y

the above equation may be written, when solved for cos 4,,

cos 5,
where by (10.4.9)

- sin 8i(x — 8,2 — 81) — (M3 cos 8,2 + M cos 8;)
e (106.7)

in & =-s£1-_8.!'.=_-—_.5inal- L0,
sin 8y, XX~ i, (10.6.8)
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The safe limiting time ¢, for tripping out the faulted line is given by
the integral

V2B, = f" 4 (10.6.9)
4 [(5 — &) sin 873 + cos & — cos 5]t

where

sind; _ sinéi,
Xi/Xs M,
It is important to note that for the case Py > Png, there is no actual angle
8s3. Furthermore, the quantity sin 8,/M; may be larger than 1. It is, there-
fore, more appropriate to write the above integral

88
V2B, = |, da : (10.6.11)

” [(6 — &) %L}jl + cosé — cos&l]‘)
3

sin 673 = (10.6.1‘())

10.7. Transient Instability Due to Non- Sustained nonsymmetrical faults
symmetrical Faults. were discussed more or less in de-
tail in Arts. 8.17-8.19 inclusive. It
was seen that nonsymmetrical faults may be replaced in the diagrammatic
representation of the faulted system by a fictitious symmetrical wye-con-
nected circuit. The reactance per branch of this fictitious wye circuit depends
upon the type of fault. Thus, for an L-L-L fault or L-1.-L-G fault it is
zero. The schematic representation of a two-line system before the occur-
rence of a fault is as shown in Fig. 104, and the system reactance between
termini is given by (10.5.1). With an L-L-L-G fault at the high side of
the transformer at F in line b, the system is shown schematically by Figs.
10-6, 10-6a, and 10-6b. The reactance of the faulted system by diagram,
Fig. 10-6b, is given by equation (10.5.10).

An L-L fault is replaced, for purposes of calculation, with a fictitious
wye circuit whose reactance per branch is the negative sequence reactance
X, of the system as viewed from the point of fault. For the same two-line
system as discussed above, but with L~L fault at the same place, the sche-

!g EM

® PG — T @

= XG‘ fo

Xa

Figure 10-8
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matic diagram is as shown in Fig. 10-8. The reactance between the termini
of the faulted system is

(Xo)io = X+ Xn + 'X,X%T (10.7.1)
where Xi = X¢: + X, and Xp = Xp + X
An L-L—G fault is replaced for purposes of calculation with a fictitiouswye
circuit whose reactance per branch consists of the negative and zero sequence
reactances of the system as viewed from the fault, and as if connected in
parallel. For the two-line system considered above and the fault at the
same place, the reactance diagram per phase is shown in Fig. 10-9.

@WF’WQ

= X X

Xo Xn

Figure 10 9
The reactance between the termini of the faulted system is

(Xa)ire = Xp + Xm + (10.7.2)

where X; and X, have the values stated above.

In the case of an L-G fault, the fault is replaced with a fictitious wye
circuit whose reactance per branch consists of the negative and zero sequence
reactances of the system as viewed from the fault and as if connected in
series. For the two-line system considered and with the fault at the same
place, the reactance diagram per phase is shown in Fig. 10-10. The react-
ance between the termini of the faulted system is

= — XiXm |
(Xs)re = Xi + Xm + X T XX, (10.7.3)
From what has been said above, it follows that with the single exception
that the system reactances (X3;) under the faulted conditions are different
for the various faults, the methods of determining whether a fault causes
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a transient disturbance or not, and the calculation of the limiting time in
which to remove the fault, or to switch out a faulted line are, respectively,
the same as those discussed in the preceding articles of this chapter.

Eo EM

L)oo L)

Figure 10-10

10.8. General Assumptions in System Before applying the method devel-

Stability Studies. oped in the preceding articles of

this chapter to the study of a spe-

cific system under faulted condition, it is advisable to restate the assump-

tions basic to the formulation of the method, and to state a few others

which are essential to the solution of the stability problem under considera-
tion.

1. The resistances and capacitances of the component parts of the
system impedances are neglected.

2. All machines in parallel connection which act jointly as generators
are replaced by a single equivalent generator. Similarly, all machines in
parallel connection which act jointly as motors are also replaced by a single
equivalent motor. The system is thus reduced to a two-machine system.

3. The equivalent generator is assumed to supply an infinite bus
through a nondissipative line. This presupposes that the combined inertia
of all machines acting as generators, and of all machines functioning as
motors, is concentrated in the equivalent single generator.

4. The assumption made in (3) implies also that all changes in the
displacement angle (power angle) due to variations in load, line switching,
or faults are attributed to the single equivalent generator. The acceleration
in the equivalent generator rotor is treated as an equivalent deceleration of
the motor rotor, or vice versa.

5. Local generators assisting the line to supply local loads are treated
as motors.

6. The machines nearest the fault will be assumed as the generators’
of the system.
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7. High-speed voltage regulation for all synchronous machinery is
assumed, so that the excitation emf’s of generators and motors are thought
of as remaining constant during any disturbance created by an increase in
load or the occurrence of a fault.

8. The damping of field windings and governor action in prime movers
is neglected.

9. In the absence of accurate information, all local loads are assumed
as consisting of 25 per cent dissipative load, 25 per cent in synchronous
motors at 100 per cent power factor, and 50 per cent in induction motors
at 90 per cent power factor.

10. All motors are assumed operating at 75 per cent of their respective
rated capacities.

10.9 TIllustrative System Stability (4) System Data. The system
Study. whose stability is investigated in
the following pages is shown dia-

grammatically in Fig. 10-11, and consists of the following:

1. Six hydro generators. Each rated 13.8 kv; 21,500 kw at 90 per cent power
factor, positive X,, negative X, and zero-sequence reactances X,:
X, = 30 per cent at own kva base.
X, = 44.4 per cent at own kva base.
X, neglected.
Inertia constant 3.27 seconds at own kw base.
2. 4 transformer banks. 13.8/132 kv; connected delta-wye and grounded; each
transformer rated 20,000 kva.
X = 15 per cent at own kva base.
3. Twin lines. Each line 121 miles long of #0000 copper, 16.5 ft effective equi-
lateral spacing.
X = 0.848 ohms per conductor mile.
4. Two transformer banks, 132/6.6 kv, 20,000 kva per bank, connected wye-
delta and grounded.
X = 8 per cent at own kva base.
5. Two synchronous condensers, each rated 25,000 kva at 6.6 kv.
X, = 40 per cent at own kva base.
X, = 28 per cent at own kva base.
Inertia constant = 1.5 seconds at own kw base.
6. Local load of 33,350 kva: ‘

25 per cent dissipative,
25 per cent synchronous motor load at 100 per cent power factor,
50 per cent induction motor load at 90 per cent power factor.
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Figure 10-11. Power System Network
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10.

11.

CH. 10 SYSTEM INSTABILITY

Synchronous motor load:
X, = 30 per cent at own kva base.
X, = 22 per cent at own kva base.
Inertia constant 4.5 seconds at own kw base.

Induction motor load:
X, = 300 per cent at bwn kva base.
X, = 15 per cent at own kva base.
Inertia constant = 1 second at own kw base.

. Two lines; 58 miles long of #0000 copper, 16.5 ft effective equilateral spacing,

132 kv.
X = 0.848 ohms per conductor mile.

. Two transformer banks. 132/6.6 kv, connected wye-delta and grounded;

12,500 kva per transformer.
X = 7.41 per cent at own kva base.

. Twin lines; 138 miles of #0000 copper, 21 ft effective spacing.

X = 0.874 ohms per conductor mile.

Two transformer banks, 132/13.8 kv, 20,000 kva per transformer.
X = 15 per cent at own kva base.

Two transformer banks; 13.8/6.6 kv, 37,500 kva per bank;
X = 8.3 per cent per transformer at own kva base.

12 and 14. Two frequency converter sets, each rated 20,000 kw at 70 per cent

13.
15.

16.

17.
18.

19.

power factor and 13.8 kv.
X, = 29 per cent at own kva base.
X» = 21.2 per cent at own kva base.
Inertia constant = 4.87 seconds at own kw base.
Local load of 16,700 kva.
Cable line, 8 miles long of 750,000 circ mil copper, 6.6 kv.
X = 7.1 per cent at 100,000 kva base.
Transformer bank, 50,000 kva per bank at 6.6/13.8 kv.
X = 8.4 per cent at own kva base.
Local load of 20,000 kva.
Generator and reactor, 35,000 kw at 90 per cent power factor, 13.8 kv.
X, = 15 per cent at own kva base.
Xa= 12.35 per cent at own kva base.
X, = neglected.
Inertia constant = 10.19 seconds at own kw base.
Generator and reactor, 20,000 kw at 90 per cent power factor, 13.8 kv.
X, = 15 per cent at own kva base.
X, = 12.35 per cent at own kva base.
X, = neglected.
Inertia constant = 5.81 seconds at 55,000 kw base.
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20. Twin line; 4.8 miles.

X, = 8.28 per cent per conductor mile at 100,000 kva base.
21. Two transformer banks, each 50,000 kva, 6.6/13.8 kv.

X = 8.4 per cent at own kva base.

22 and 23. Local load, each 32,200 kva.

24. Generator and reactor, 35,000 kw at 90 per cent power factor, 13.8 kv.
15 per cent at own kva base.

12.35 per cent at own kva base.

X, = neglected.

Inertia constant = 6.58 seconds at 85,000 kw base.

o

Xy
Xn

25. Generator and reactor, 50,000 kw at 90 per cent power factor, 13.8 kv.

X, = 20.3 per cent at own kva base.
X, = 17.5 per cent at own kva base.
Inertia constant = 9.42 seconds at 85,000 kw base.

26. Bus reactor, X = 7 per cent at 50,000 kva base.
27. Bus reactor, X = 5.5 per cent at 50,000 kva base.

(B) Calculation of System Reactance to a Common kva Base of 100,000 kva,
at 132 k.

1. Generators:

X, = 30X 10° X 09 _ 125.5 per cent.

» 21500
_ 444X 10°X 09 _
Xn 50 185 per cent.

X, = neglected.

2. Transformers:

15 X 10%
Xo=Xn=Xo= _Q—L = 75 per cent.
3. Lines:
X = 0.848 X 121 = 102.8 ohms per conductor.
By (8.15.1),
102.8 X 10°

= Xp= ———— = 58, .

X,=X 132 % 10° 58.9 per cent

By § 8.12, following equation (8.12.4),
X, = 3.5X, = 3.5 X 58.9 = 206 per cent.

4. Transformers:

Xp=Xo= X,= 8 X 108

20000/3= 120 per cent.
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5. Synchronous condensers:
40 X 108

X, =
»7 725000
28 X 10°
725000

6. local load of 33,350 kva.

.2_5_?51.0}(%59 8340 kva dissipative load.

25 X 33350 __
100

50 X 33350
100

For the dissipative load
X = Xn - X = 0

= 160 per cent.

Xn = = 112 per cent.

= 8340 kva synchronous motors.

= 16680 kva induction motors.

CH. 10 SYSTEM INSTABILITY

Synchronous motor capacity ﬁ = 11,100 kva.

30 X 108
=1 = 270 .
X, T 270 per cent
— 22 X105 _
Xa 00 198 per cent.
Induction motor capacity —1(—)6-67? = 22,200 kva.
— 300 X 105 _
X, = 22200 1350 per cent.
15 X 108
Xp= =—2—— = 061.5 .
72200 7.5 per cent
7. Lines:
X, = 58 X 0.848 = 49.2 ohms/conductor.
49.2 X 105
X,=Xn= 132" X 10° = 28.3 per cent.

Xo = 3.5 X X, = 99 per cent.

8. Transformer:
7.41 X 108

Xp,=Xo=X,= 12500 = 59.2 per cent.
9. Line:
= 138 X 0.874 = 120.7 ohms/conductor.
120.7 X 105 _
Xp=X.= 1320 % 10° 69.3 per cent.

X, = 3.5X, = 242.1 per cent.
10. Transformers:
X’= Xﬂ= Xo= 15 x 105

3 = 75 per cent.
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11.

Transformer:

Xp=Xp=X,= = 66.4 per cent.

12 and 14. Frequency converters:

13.

15.

16.

17.

Rated capacity %—: C7: 0 28,600 kva.

29 X 105
X,=—=—— =101 .
» % S per cent
21.2 X 108
X.= = 74. .
08600 2 per cent

Local load of 16,700 kva:
25 per cent or 4175 kva, resistive,
235 per cent or 4175 kva in synchronous motors,
50 per cent or 8350 kva, induction motor load.

Synchronous motor capacity 4177 5 = 5560 kva.
30 X 10°
X, = = 540 .
»= T5s60 540 per cent
_ 22 X105 _
Xn 5560 396 per cent.
Induction motor capacity (§)—37§9 = 11,120 kva:
_ 300 X 10°
X, 11120 = 2695 per cent.
— 15 X 10° _
X,.= 11120 134.7 per cent.
Cable line:
X, = X, = 7.1 per cent.
Xo = 3.5X, = 24.85 per cent.
Transformer:
8.4 X 10°
X, =Xa=X, = = 50. .
» 5 73 50.4 per cent
Local load of 20,000 kva:

25 per cent or 5000 kva resistive load,
25 per cent or 5000 kva in synchronous motors,
50 per cent or 10,000 kva in induction motors.

5000 _ .
075 6670 kva:

= 450 per cent.

Synchronous motor capacity, ——

_ 30X 108
? 6670
_ 22X 108
Xn 6670

= 330 per cent.
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Induction motor capacity -160(;(—;(2 = 13,333 kva:

300 X 105
X, =22 "0 .
» 13333 2250 per cent
— 15X 10° _
X, 13333 112.5 per cent.
18. Generator and reactor:
15 X 10°
=22 — 386 )
» = 35000/0.0  “o:0 per cent
12.35 X 105
X, = 35000/0.9 = 31.7 per cent.
19. Generator and reactor:
15 X 10°
p= T()O:)fm = 675 per cent.
12.35 X 10°
n= " = 55, .
X > 70.9 5.5 per cent
20. Line:

X, = Xn.= 8.28 per cent at 100,000 kva base.
Xo= 3.5 X 8.28 = 28.98 per cent.

21. Transformer:

X, = X, = X, = 84X 10

750000/3
22 and 23. Local loads of 32,200 kva each:
25 per cent, i.e., 8050 kva is resistive,
25 per cent, i.e., 8050 kva is in synchronous motors,
50 per cent, i.e., 16,100 kva is induction motors.

= 50.4 per cent.

Synchronous motor capacity, —— 8050 = 10,750 kva:

0.75
_ 30X 105 _
X, 10750 279 per cent.
_ 22X 10% _
Xo= 10750 204.5 per cent.
Induction motor capacity 16;(;0 21,500 kva:
— 300 X 105 _
X, 31500 1395 per cent.
15 X 108
X,= 21500 = 69.8 per cent.
24. Generator and reactor:
— 1§ X108 _
X, 35000/0.9 . 70.9 38.6 per cent.
X, = M = 31.7 per cent.

35000/0.9
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Figure 10-12. Positive Sequence System
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25. Generator and reactor:
20.3 X 10°

X, = 50000/0.9 = 36.5 per cent.

X, = %(%73-% = 31.5 per cent
26. Bus reactor:

Xp=Xo=X,= 7—%—0%.?= 14 per cent.
27. Bus reactor:

X, = Xo= Xo= 22X 0 = 11 per cent,

Figure 10-12 gives the diagram of the system with the calculated values
of the positive sequence reactances to 100,000 kva base indicated.

(C) System Reactance under Normal Operation. The reactance diagram
of the system under normal operation is the same as the positive phase
sequence reactance diagram. In accordance with the calculated values to
a common kva base, the diagram per phase is given in Fig. 10-12. A faulted
condition is assumed to occur on the high side of a transformer at point
marked F. A network analyzer or calculating board would be very con-
venient to reduce the diagram to a single reactance between station (a) and
station (b). Because of its nearness to the assumed location of the fault,
station (a) will be taken as the generating station. All the other rotating
equipment will be lumped into a single equivalent motor. By using the
rather laborious process of delta-wye conversion, the system diagram was
reduced to that shown in Fig. 10-13.

73.6
20.9 10.43
L LI
l 75 F 115.2 l
= Xl T >

Figure 10-13

The total equivalent reactance of the system under normal conditions,

therefore, is
- 73.6 X (75 + 115.2)
Xr= 209+ 73.6 + 75 + 115.2 +1043

= 84.5 per cent.

(D) Positive Sequence Reactance Diagram of System per Phase with Fauli
On. The diagram in Fig. 10-13a is identical to that shown in Fig. 10-13,
with the single exception that the point of the fault is grounded as shown.
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Fig. 10-13a represents the positive sequence impedance diagram. Convert-
ing the delta to a wye gives the diagram in Fig. 10-13b for the positive
sequence reactance of the faulted system.

73.6
Eg Enm
20.9 10.43
1 75 Y 15.2
F;'gurc 10-13a -_;_L )
4\, .
e T 2233w l
= 328 =
Figure 10-13b

(E) Negative Sequence Reactance Diagram of the System per Phase as
Viewed from the Fault. This is structurally identical with the one shown in
Fig. 10-12, but with negative sequence reactances to the common kva basc
as calculated in (B). Reduced through delta-wye conversions, it is shown
in Fig. 10-14. Converting the delta to a wye circuit, the circuit is changed
to that shown in Fig. 10-14a. In accordance with this reactance diagram,
the negative sequence reactance of the system is
53.86 X 40.54
53.86 + 40.54
= 54.4 per cent.

82.95

Xn= 3138 +

53.86

l | Gaae

-lll——— J

~

Figure 10~14a
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(F) Zero Sequence Reactance Diagram of the System per Phase as Viewed
from Fault, Since the neutrals of the transformers are grounded, the zero
sequence reactance diagram of the system is, in accordance with the dis-
cussion in § 8.4, as indicated in Fig. 10-15. It is seen that the only portion
of the system to be considered for the zero sequence reactance is the faulted
line and the transformers connected to it. Using the reactance values as
calculated in part (B), the zero sequence reactance diagram becomes as in-
dicated in Fig. 10-15a. Referring to this diagram, it is seen that the zero
sequence reactance to the right of the fault at F is

_120(99 + 59.2)

= 206 = 274.4 t.
1204+ 9+ 592 T per cen

The zero sequence reactance as viewed from the fault, therefore, is

X, = 75 X 274.4
° 1542744
= 58.9 per cent.
T, 0
3S oy Line3 3s
S S
A-Yy Line 7 Y-
& VW,
A MW\
Figure 10-15
Tz F L: T4
/000 ¥ /IO
_l_ 75 l 206 120
- - L, S99
Te 592
Figure 10-15a

(G) Calculation of System Reactance under Faslied Condstion. By § 10.7,
the reactance of a system subject to some kind of short circuit is obtained
by replacing the fault at the point of its occurrence with a symmetrical
wye circuit whose reactance per phase depends upon the type of fault. -

(G1) L-L-L-G Fault. The value of the reactance per phase which re-
places at the point of the fault a three-phase short circuit is zero. Accord-
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ingly, the reactance diagram per phase is the positive sequence reactance
diagram as shown in Fig. 10-13a.
By (10.5.10), the reactance of the system with the three-phase short
circuit on is
Xirre = 41.8 + 42.53 +

= 138.6 per cent.

41.8 X 42.53
32.8

(Gy) L-L-G Fault. The reactance per phase which replaces at the point
of the fault a line-line to ground short circuit consists of the negative and
zero sequence reactances of the system as viewed from the point of the
fault, and as if they were connected in parallel. The system reactance dia-
gram per phase with this particular fault on at the same point is, therefore,

'o EM
/IO IOV
418 42.53
3238
1 F =
X,=589 X,=54 4

Figure 10-16

as shown in Fig. 10-16. The reactance of the system with the line-line to
ground short circuit on, by (10.7.2), is

41.8 X 42.53
32.8 + 58.9 X 544

58.9 + 54.4
= 113.8 per cent.

Xireg= 418+ 42.53 +

(Gs) L-L Fault. The reactance per phase which replaces at the point
of the fault a line to line short circuit consists, as previously shown, of the
negative sequence reactance of the system as viewed from the point of the
fault. The system reactance diagram per phase with this particular fault

E; Em

‘ 328 v l

Xa=54.4

Figure 10-17
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on at the same point is as shown in Fig. 10-17. The reactance of the system
with the line to line short circuit is, therefore, by (10.7.1),

_ 41.8 X 42.5

Xy = 41.8 4+ 4253 + 328 + 544 T 544

= 104.7 per cent.

(Gs) L-G Fault. The reactance per phase which replaces at the point of
the fault a line to ground short circuit consists of the negative and zero
sequence reactances of the system as viewed from the fault, and as if they
were connected in series. The reactance diagram of the system with a line
to ground fault at the same point as the other faults considered is as shown
in Fig. 10-18. The reactance of the system with this fault on, by (10.7.3), is

41.8 X 42.53
32.8 + 58.9 + 54.4

Xig= 41.8 4+ 42.53 +
= 96.5 per cent.

K En
e .
U 418 4243
328
X,=589
Xo=54.4

Figure 10-18

(Gs) Reactance of System with Faulted Line Switched Out of Service. Re-
moving the reactance of the faulted line and all reactances in series with it
in Fig. 10-12, and again using delta-wye conversions, the reactance diagram
of system is as shown in Fig. 10-19. This gives

194.6 X 128.8
194.6 + 128.8
= 105.1 per cent.

X = 209 + + 6.55

194.6
/IO

209 6.55

1288

-

Figure 10-19
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(H) Calculation of the Displacement Angle Corresponding to Limiting
Stable Loads. It was shown in § 10.3, equation (10.3.3), that

sin &, = i{—; sin 8,
is the value of the load in per unit of the corresponding maximum synchro-
nizing power (P;/Pme) that can be transferred over the system with one
line tripped out of service. It was similarly shown in § 10.5 that if Xj; is
the reactance of the system under any particular fault, then

sin §; = % sin §,,
gives the load in per unit (Py/Py.s) of the corresponding maximum synchro-
nizing power that the system can carry with the respective fault on.

To determine these limiting values of load, calculate X,;/X; for the
various faults, and X;/X, for the system with the faulted line tripped.
Then since the ratio (X,/X;) corresponds to a definite sin 8,/sin §,, obtain
the corresponding value of sin 8, from curve, Fig. 9-12. Table VIII gives
the values of sin 8; obtained in this manner for the system under consid-
eration and under the conditions as stated.

TABLE VIII

System sin & 51
condition X X 1/X ) Pl/ P degrees
normal 84.5 = X, 1.000 1.000 90
L-L-L-G 138.6 - 0.609 0.530 32
L-L-G 113.8 0.742 0.685 43.2
L-L 104.7 0.807 0.755 49
LG 96.7 0.876 0.850 58.2
faulted line

tripped 1051 = X, 0.803 0.750 48.6

The angle 8, in this table is the displacement angle corresponding to
the limiting stable load that the system could tarry under the particular
condition as indicated. The curve in Fig. 10-20 shows graphically the results
obtained above. A three-phase short circuit at the particular point consid-
ered can be carried by the system without loss of stability for any load in
per unit of the respective maximum within the range marked 4. If the
load is within the range marked B, and such a fault occurs on the system,
stable operation will be lost unless the faulted line is tripped out. If the
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load on the system is within the range marked C, and a three-phase fault
occurs at the point considered, it is conducive to loss of stability. If the
faulted line is tripped, the load on the system is larger than the safe load
for the system with one line only. Stable operation will be lost unless the
load is reduced so that one line can carry it, or the fault removed within the
limited specified time, if the two lines are to carry it.

1.0
/
K,=0803
s 8 | =
< Ky=0.742 -
2, | |
< - K,=0.609 L-L-L
£ ! //
[72]
n
>
x4
< A 8 cH
2 -
g
7
0
0 R 2 3 4 .5 b 7 8 9 10
Sin 6,=P, /P,
Figure 10-20

(I) Calculation of Limiting Stable Loads and Maximum Synchronizing
Powers under Fault Condition. The dissipative power P in kw (or megawatts)
corresponding to any displacement angle é and for any power factor cos 8
is given by equation (9.11.3)

P= 200 (kva), cos 0 —cos 0 / (cos 6 ]
X tan ) tan g

where for the particular case under consideration

(kva), = 100,000
cosf = 0.9
X = the reactance pertaining to condition of the system, and

8 = the displacement angle corresponding to the system con-
dition.
Thus, for the power limit with the system under normal condition and
for which X = 84.5 and § = 90°, the equation becomes

200 X 105 X 09 —0.9
Pa= 84.5 [ta 90°+V1+(tan90"):l

= 212900 kw.
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From the data on the system given in Part (4) the rated capacity of
the system per phase at 90 per cent power factor is

6 X 21000 + (2 X 35000) 4 50000 + 20000

- Py= 3

= 88660 kw.

Hence,
212900

88660

indicating that the power limit under normal operation is nearly 2.5 times
the rated capacity of the system.

Table IX gives the calculated values of the limiting stable loads which
the system can carry under the various stated conditions, the maximum
synchronizing power for these stated conditions, and the loads which the
system can carry in per unit of the rated capacity of the system at 90 per
cent power factor. The displacement angle 8, used in these calculations is
given in Table VIII.

P _ = 245,
P

TABLE IX
P P P,/P.
System condition X EN kw P/sin & P,./88600
normal 84.5 90 212900 212900 245
L-L-L-G 138.6 32 40800 77200 0.46
L-LG 113.8 43.2 67200 100300 0.757
L-L 104.7 49 85500 113500 0.963
LG 96.7 58.2 109000 128500 1.23
faulted line .
tripped 105.1 48.6 82600 110400 0.933

This table indicates that for a power factor of 90 per cent

1. The system can carry 2.45 times the rated capacity with no loss of
synchronism.

2. The system is capable of carrying 23 per cent in excess of the rated
capacity with a line to ground short at the point considered.

3. The system can carry 93.3 per cent of the rated capacity with the faulted
line tripped.

4. It can carry 96.3 per cent of the rated capac1ty with a line to line short
circuit at the point considered.

5. That with a three-phase short circuit at the point considered, the system
will become unstable when the load exceeds 46 per cent of the rated

capacity.
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6. That with loads between 46 and 93.3 per cent of the rated capacity, the
instability caused by the three-phase fault at the point considered may
be removed by switching out the faulted line within a specified time.

7. That for loads larger than 93.3 per cent of rated capacity the instability
caused by an L-L-L-G or an L-L-G fault at the point considered may
be removed by removing the fault within a specified time.

(J) Calculation of the Displacement Angle and of the Maximum Synchro-
nizing Power for Any Load. This may be accomplished by (9.10.12)

200D cos 6
§ = LU COS0
tan o = 16000 — ¥

where, by (9.10.8), and for the particular case considered in which X = 84.5,
cos § = 0.9, and (kva), = 100000

__ 845P
2X 10°X 0.9

This, substituted in the formula for 8, gives

846 X 10~P
10000 — 22.1 X 10-°P*

tané =

Table X gives the calculated values of the displacement angle, the maxi-
mum synchronizing power P, = P/sin §, and the load in per unit of the
rated capacity for increasing assumed values of load P. The results are
visualized in the curves, Fig. 10-21.

T ]
1501 501 1.0 )/ ’
1 v
| A1/
%‘“0 401 08 IV 4
2 | AL vs P —
51304 3006 V.Y aSAT o
e e e ] il
b3 1 —
[N ’
no{ 104 02 D s
wol ol o z//

0 0 .20 30 40 P.’;O 60 70 80 90 10

r

0 20 40 60 80 100 120 140 160 160 200
P in Mega-watts
Figure 10-21
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The curve sin & vs. P/P, gives the calculated values of the load in per
unit of the maximum synchronizing power as a function of the same load
in per unit of rated capacity.

TABLE X
r ) P, r/pP,
megawatts degrecs megawatts P/88.66 P/P,=siné
10 4.87 117.8 0.1127 0.085
20 9.69 118.8 0.2254 0.168
30 14.51 119.6 0.3380 0.254
40 19.35 120.5 0.4510 0.331
50 24.60 121.5 0.563 0.416
60 28.88 124.5 0.678 0.484
70 33.58 126.5 0.789 0.552
80 38.20 129.2 0.902 0.617
90 42.90 132.0 0.976 0.681
100 47.35 136.0 1.127 0.747
110 51.80 140.0 1.240 0.786
120 56.10 144.5 1.351 0.830
130 060.70 149.0 1.465 0.872

(K) Calculation of the Safe Angle; Three-Phase to Ground Fault. The
calculation of the safe angle §, corresponding to the safe limiting time ¢,
prior to which the faulted line must be tripped out of service to avoid loss
of synchronism, by (10.6.7), is

sin 81(m — 8;2 — 81) — (M cos d;2 + M cos 8y)

8, =
cos M. — M,

For the particular case under consideration

X, 105.1
X, 84.5
=1l = —" = 0.609
M, Xiie 1386
By (10.6.8),
= -1 Sin 51 - s =1 Sin 6[ o
6/11 sin (—_X‘ X sin (0.803)

The values of sin é; depend upon the load at the time the fault occurs.
From Table VIII, or the corresponding curve, Fig. 10-20, it is found that
stable operation is lost when the load is at some value between 0.53 and
0.75 of the respective maxima, i.e., between 77200 and 110400 kw as obtained
in Table IX. To prevent loss of synchronism the faulted line must be tripped.
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The curve 8, vs. sin 8, in Fig. 10-22 is calculated from cos &, above for values
of sin &; between 0.53 and 0.75. It gives the values of the safe angle 3, as
a function of sin é;, to be used in the calculation of the integral vV 2B%,.

130 \

120

ol 1\
o \

n N

50 ~— AN
40 . N . -~
50 55 50 85 70 75 .80
Sin 6|

Figure 10-22
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(L) Calculation of the Integral Vv 2Bt,. The equation of this integral is
given by (10.6.11)

\/ZBt.=f" ___db -
& [(5 - ao%“lﬁ + cosd — cosbl:r ‘

It may be integrated for given values of sin é,, 4,, and fault as defined by
M; = X,/X;, either by the point by point method or by the use of a pla-
nimeter for the measurement of the area under the curve F(8) vs. § as dis-
cussed in § 9.14. The value of F(8) is

1
[(6 — &) %}—5—‘ + cos & — cos 51]§
3

F() =

The value of the limiting interval ¢, to trip the faulted line, will be
calculated for a three-phase short circuit at point F indicated in Fig. 10-12,
for several values of load on the system, which jointly with the fault would
cause loss of stability.

(Ly) Py, = 55 Per Cent of Respective Synchronizing Power Pmi. Three-
Phase Fault at Point F on System Diagram, Fig. 10-12. By curve sin § vs.
P/P,, Fig. 10-21, it is found that the assumed load P, is 77 per cent of
the rated system capacity. Since sin 8; = 0.55, the corresponding angle is
81 = 33.4° or 0.583 radians; cos §; = 0.835. The limiting safe angle cor-
responding to the given 8; = 33.4° is obtained from curve, Fig. 10-22, and
is 8, = 120.3° = 2.10 radians; M = X,/ X; = 0.609. The actual load cor-
responding to its given value in per cent of the maximum is obtained from
curve & vs. P, Fig. 10-21, and is 70000 kw. The maximum synchronizing
power P, corresponding to this load, is obtained from curve P, vs. P,
Fig. 10-21, and is 121000 kw.

Substituting the values of 8;, sin 6, cos 8y, and M; in the equation for

F(8) gives .

1
F(a) = =
[( — 0583) 1 Qﬁ + cosé — 0. 835]* VN

The calculation of this function for various values of 4 is given in Table XI.
The curve F(8) vs. & between the limitsof § = 6, = 0.583 and § = 8, = 2.10
radians is shown in Fig. 10-23. The area under the curve between the limits
of 0.59 radians and 2.1 radians was obtained by means of a planimeter
taking 10 units of §.F(3) equal to one sq cm as read on the planimeter.
Planimeter reading 62.9; area under the curve is, therefore, 6.29 §.F(8) units.
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TABLE XI
5 5= 0583 055 5 F(s) =
radians radians ~ 0.609 degrees cos & N 1/vVN
0.583 0.00 0.0 33.4 0.835 0.0
0.590 0.007 0.00632 33.8 0.831 0.00232 20.7
0.650 0.067 0.0605 317.25 0.796 0.0215 6.8
0.750 0.167 0.1510 430 0.731 0.0470 4.61
1.00 0.417 0.3770 573 0.540 0.0820 3.5
1.250 0.667 0.6030 71.6 0.316 0.0840 3.45
1.500 0.917 0.8280 86.0 0.070 0.0630 3.98
1.750 1.167 1.057 1003 | —0.179 0.043 4.80
2.100 1.517° 1.373 372.25 —0.505 0.033 5.50

The area under the curve between the limits of 0.583 and 0.59, i.e., in
the vicinity of 8;, by equation (9.14.13), is

a, = 2 (‘—¢__.._‘)%.
sin §; — sin §

For the particular case under consideration

¢ = 0.59 — 0.583 = 0.007

sin 8, = sin 61 _ 0.55
T M, T 0.609
Hence,
_ (0.007\}
@ =2 (0.356)
= 0.28.

The total area under the curve in §.F(8) units, therefore, is

V2Bt, = 0.28 + 6.29
= 6.57

(Ly) Calculation of the Value of B in the Quantity V'2Bt,. The value
of this quantity, which enters into the calculation of the time limit for
switching the faulted line out of service or for clearing a fault, is given by
equation (9.14.2),

2, P,
B 7
where
P
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is the maximum synchronizing power in kw corresponding to the given
load. For the particular problem under consideration P;, as obtained from
curve & vs. P, Fig. 10-21, (8; = 33.4°), is 70000 kw. The corresponding
maximum synchronizing power Pn,; may be obtained from curve P, vs. P,
Fig. 10-21. Its value is 121000 kw.

The value of Py in the formula for B is the base rated power. For the
case on hand the chosen kva base is 100000. The power factor of the system
is assumed 90 per cent. The base rated power, therefore, is

Py, = 100000 X 0.9
= 90000 kw
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The formula for B, above, becomes accordingly

B = 377X 121000
90000M,
_ 506.85
7

where M, is the equivalent inertia constant of the system.

(Ls) Calculation of the Inertia Constant of the System for the Assumed
Location of the Fault. From the given data in Part (4) the value of the
inertia constant of each generator at station (a) is 3.27 seconds at own kw
base of 21500 kw. For the six generators at 90000 kw base it is

1. Mg= 6 X 3.27 X 21500
4.69 seconds.

It

5. Two synchronous condensers
M, = 2X 1.5 X 25000
° 90000

0.834 seconds.

6. Synchronous motor load of 8334 kva at unity power factor
_ 45X 8334
M= 0000
= 0.4165 seconds.
Induction motor load of 16668 kva at 90 per cent power factor
Mo = 1 X 16668 X 0.9
90000
= 0.167 seconds.

12 and 14. Two frequency converter sets
My = 487X 20000 X 0.70 X 2
90000
= 1.515 seconds.

13. Synchronous motor load of 4175 kva at unity power factor

Mgy = A5 X 4175

: = (.209 seconds.
Induction motor load of 8350 kva at 90 per cent power factor
| My = 1X 8350 X 09
90000
= (.0835:seconds.
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17. Synchronous motor load of 5000 kva at unity power factor
My = 45X 5000
= 0.272 seconds.
Induction motor load of 10000 kva at 90 per cent power factor

Mar = 1 X 10000 X 0.9

72— —
90000
= 0.1 second.

18. Generator rated 35000 kw
M= 10.19 X 35000

= 3.55 seconds.

22 and 23. Synchronous motor load of 8050 kva at unity power factor

4.5 X 8050
¥ = o000
= 0.403 seconds.
Induction motor load of 16100 kva at 90 per cent power factor
M,y = 1X 16100 X 09
90000

= (0,161 seconds.

24. Generator rated 35000 kw having an inertia constant of 6.58 seconds at

85000 kw base
6.58 X 85000

90000
= 6.22 seconds.

M=

25. Generator rated 50000 kw, having an inertia constant of 9.42 seconds at

85000 kw base
_ 9.42 X 85000

90000
= 8.9 seconds.

M%

The equivalent inertia constant of all machines acting jointly as an
equivalent motor is the sum of the inertia constants of all machines except
the six generators at station (a):

M = 27.5425 seconds.
The equivalent inertia constant of the equivalent generator and equiva-
lent motor, with the motor taken as an infinite bus, by (9.9.5), is

_ 4.69 X 27.5425
4.69 + 27.5425
= 4.0 seconds.

M,



344 CH. 10 SYSTEM INSTABILITY

(L) Calculation of the Limiting Switching Time t,. In Part (L,), there
was obtained

= 85T
V2B
From Part (L,),
B = 50685
M,
From Part (L;),
M,= 40.
Substituting in the expression for B above, gives
B = 506.85
4.0
= 126.71.
Hence, the value of the limiting switching interval is
L= 657
V22X 126.71

= 0.412 seconds
= 24.72 cycles.

(M) Calculation of the Limiting Time t, for Tripping of Faulted Line;
Load on System P, = 60 Per Cent of Maximum Synchronizing Power. From
curve sin & vs. P/P,, Fig. 10-21, it is found that P, = 87 per cent of rated
system capacity; sin 8, = 0.60; 8; = 36.9° = 0.644 radians; cos §; = 0.8;
M; = 0.609. The limiting safe angle is obtained from Fig. 10-22 and is
5, = 98.5° = 1.713 radians. The actual load, corresponding to its given value
in per cent of the maximum is from curve é vs. P, Fig. 10-21, P, = 77000 kw.
The maximum synchronizing power is obtained from curve P, us. P,
Fig. 10-21, and is 128500 kw. Substituting the values of 8, sin 8;, cos 8,
and M; in the equation for F(3) gives

1

F(o) =
[(6 — 0.644)0.988 4 cos & — 0.8]¥
The curve F(8) vs. & is plotted in Fig. 10-24 between the limits
8 =8, = 0.644 and § = §, = 1.713 radians. The area between the limits of
8 = 0.66 and 1.713 radians, measured by planimeter is

a = 3.78 in 8.F(8) units.
The small area in the vicinity of §; = 0.644 radians between the limiting
values of 0.644 and 0.660 radians, by (9.14.13), is

.660 — 0.644)&
0.988 — 0.60
= 0.406.

01=2
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The total area equal to the integral, therefore, 1s

V2Bt, = 0.406 + 3.78
= 4,186 §.F(8) units,

where
B= 2 Pm
Me Prb
and
P, = 77000
P,,.l = 128500
P,-b = 90000
M,.= 4.0.
Hence,
B = 377128500
4.0 90000
= 134.5.
This gives
, o 4186
V2 X 1345
= 0.256 seconds
= 15.36 cycles.

(N) Calculation of the Limiting Time i, for the Tripping of Faulted Line;
Load on Sysiem 65 Per Cent of Maximum Synchronizing Power. From the
curve sin 8 vs. P,/P,, Fig. 10-21, obtain P, = 95 per cent of the rated
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‘capacity of the system, corresponding to siné; = 0.65. The angle
§; = sin10.65 = 40.5° = 0.707 radians; cos &; = 0.761; and M; = 0.609.
The limiting safe angle, obtained from curve, Fig. 10-22, is §, = 79.4° =1.385
radians. The actual load in kw obtained from curve & vs. P, Fig. 10-21, is
P, = 83000 kilowatts. The maximum synchronizing power, obtained from
curve P, vs. P, Fig. 10-21, is P,, = 131000 kilowatts.

Substituting the values of &, sin 8;, cos é;, and Mj in the equation for

F(8) gives
1

[(6 — 0.707)1.07 + cos & — 0.761]i'
This equation, plotted between the limits of § = §, = 0.707 radians and

6 = 8, = 1.385 radians, is shown in Fig. 10-25. The area measured by pla-
nimeter between the limits of & = 0.717 and 6 = 1.385 radians is

a = 2.566 6.F(9) units.

The small area in the vicinity of §; = 0.707 radians between the limiting
values of 0.707 and 0.717, by (9.14.13), is

o= 2 (0.717 ~ 0.707)4;

F@) =

1.07 — 0.65
= 0.309 4.F(8) units.

The total area equal to the integral, therefore, is

V2Bt, = 0.309 + 2.566
= 2.875 4.F(5) units.
B = 2/ Pay
M¢ Prb
_ 377 131000
4.0 90000
= 137.1.
This gives
_ 2875
CVIx 1311
= 0,173 seconds
= 7.58 cycles.

From the curve in Fig. 10-20, it is found that the largest load the sys-
tem could carry with a three-phase short circuit at the designated point is
53 per cent of the corresponding maximum. The displacement angle is
8 = sin~? 0.53 = 32°. From curve & vs. P, Fig. 10-21, it is found that this
load corresponds to 64000 kw.

The curve in Fig. 10-20 shows also that the maximum load the system can
carry with the faulted line tripped is 75 per cent of the corresponding maxi-
mum synchronizing power. The displacement angle is § = sin—0.75 = 48.5°.
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From the curve 8 vs. P, Fig. 10-21, it is found that this corresponds to a
load of 102000 kw. The curve in Fig. 10-26, plotted from the above calcu-
lated values, gives the time in cycles as a function of the load on the sys-
tem, during which the line with an Z-L-L fault at the designated point
must be tripped out of service in order to recover the stability of operation
disturbed by the fault.
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Figure 10-26

For loads larger than 102500 kw, the three-phase Tault will cause loss
of synchronism, unless the fault is cleared within a limited time which may
be calculated in a similar manner given above in detail.

Line-line to ground, line to line and line to ground short circuits on
transmission systems were discussed in preceding articles and may be in-
vestigated in the same manner as the L-L-L fault used in the illustrative
problem.
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SUGGESTIVE PROBLEMS Chapter 10

Investigate the stability of the system shown schematically in Fig. 10-11, and
whose data is given in § 10.9 for a L-L-L, L-L, LG, and L-L-G fault at any
point such as:

(1) At the high side at either end of any of the two lines marked (a), or

(2) at the high-voltage side of transformer marked (16), or

(3) at the high voltage-side of either of the two transformers marked (4), or
(4) at the high-voltage side of either of the two transformers marked (8).



Appendix I The Geomean Distance
between Any Number of
Points Equally Spaced
around a Circle of Any
Radius

Consider a circle of unit radius with m
points equally spaced around its circum-
ference and marked a,, a1, a2 . . . Gm-1,
as indicated in the figure.

The angular distance between the
points is obviously 2r/m. Let X be the
radius vector to any of the m points,
such as the kth.

Then

XK - ej(2ar/m)l (1)
Xgm = &*em, (2)

Since k is a whole number, and
"% = cos k(2x) + j sin k(2x) = 1,

or

it follows that

Xm—1=0. 3
The m roots of this expression are, referring to the above figure,
X, =¢°=a,
X1 = !n'/" =
Xy = €100/m = g2 @

.X”._l ; e;(ill’-l)ﬂﬁ'/m = g™,
350
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Expression (3) may be written, therefore,

Xm—1l=X-1DX—-a)X —a®) (X — a™). (5)
This may be written

o le (- a)(X = a)(X = a) -+ (X — am), ©)
By actual division the left-hand member is

ALl Xt Xt X o X X

=Xl Xm 2 XS+ X 41 (7
It follows from (5) and (7) that
(X—a)(X—a?)(X—af) + - - (X—a™ )= Xm1q Ym2p Xm3p ... 4 X4+1. (8)
Since the magnitude of X is 1, the expression may be written
(1 - 01)(1 - 012)(1 - (113) e (1 - (11"'_‘) = m. (9)
Consider now another circle of radius r, concentric with the unit circle, and
assume that the radii a,, a,, @, etc., are extended to 4,, 41, 4., etc., respectively.
It is obvious that the magnitude of the distance 4.4, is the vector difference
04, — 04y, ie.,
Aod) = re’® — re?*/™
which, by (4), may be written
dodi=r(1 — ay). (10)
Similarly, the magnitude of the distance AoA4. is the vector difference
DA() et 0A 1y i.e., .
Aoda = refe — reexim, (an
which, by (4), becomes
AoAg = f(l - 012). (12)

In the same manner, the magnitude of any distance such as A¢dm-1 is
. Aodm = r(1 — ay™ ).

The product of all the distances from the point at 4, to all the other (m—1)
points is . .
(4oA1)(4od2)(Aods) « « * (oA m-r) =1 —a))(1 —aH)(1—ad) + - - (1 = a™).
By (9), this expression becomes

(AoA1)(dod2)(Aods) + + * (AoAm-i) = mr™1, (13)
This states that the products of all the distances fron. any one of the m points to
the remaining m — 1 points on the circle of radius r is mr™. There are m — 1
such distances. If all the distances involved are considered, there are m times as
many, or a total of m(m — 1) distances and their product is, therefore, m times

the value given by (13), i.e., mr™ raised to the mth power. The geometric mean
distance, therefore, is

g = ¢ V. (14)



Appendix I Evaluation of Inverse
Complex Hyperbolic

Functions

1. Evaluation of @ + j8 when sinh (a + jB) = A /Y.

From
sinh (¢ + jB) = sinh e cos 8 + j cosh ¢ sin 8, (6]
and
Ay = Acosy + jAsiny, 2)
it follows that
sinhacosf= 4 cosy = M, 3)
and
coshasinf = 4 siny = M,. 4
Since
sinh?a = cosh?a — 1
and

cos?fB =1 — sin?B,
equation (3) may be written

(cosh?a — 1)(1 — sin? ) = M2
or
cosh?a + sin? 8 = M2 + 1 + cosh? g sin? 8. (5)

Adding 2 cosh @ sin 8 on both sides of the equality sign, gives
(cosh @ + sin 8)2 = M2+ (1 + cosh a sin §)2, ‘
which, by (4), becomes
cosha + sin 8 =VME + (1 + My (6)

352
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Subtracting 2 cosh a sin 8 from both sides of the equality sign in equation (5),
similarly gives
(cosh @ — sin 8)2 = M,®+ (1 — cosh a sin 8)2
which, by (4), becomes
cosha — sinf = m )
Subtracting equation (7) from (6) gives

8= sin™ (‘/Mx2+(1+M'z)2; \/M12+(1—M2)2), ®)
It is worthwhile to keep in mind that each radical in (8) may be thought of as the
hypothenuse of a right triangle whose sides are M, and (1 + M) for one, and M,
and (1 — M) for the other. As such they may be caiculated conveniently by trigo-
nometric methods.

With the value of 8 thus obtained by (8), calculate, by (3),

= sinh (E%‘SLB) ©)

The complex function is

a+ jB=Va*+ §/tan! B/a, (10)
where the value of 8 must be in radian measure,
To illustrate the above, assume

sinh (a + jB) = 1.065/47.57°
= 0.7185 + ;7 0.7861,

hence,
M, = 0.7185
M, = 0.7861.
By (8),
o (\/6.7185‘+1.7861‘-\@.7185’4—0.2139
B = sin 3 K)
= 36.5° = 0.638 radians.
By (9),
4= sinh-t0-7185
cos 36.5
a = 0.805,
whence '

o+ j8 = 0.805 + j0.638 = 1.038/38.4°.
2. Evaluation of ¢ + jB when cosh (¢ + jB8) = B/¢.

From
cosh (@ + jB) = cosh a cos 8 + jsinh asing (11)
and
B/¢ = Bcos¢ + jBsing 12)
it follows that
coshacos 8= Bcos¢ = M, - (13)

sinhasinf = Bsing = M, (14)
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Since
sinh? ¢ = cosh?aq — ¥
and
sin?8 = 1 — cos? B,

equation (14) may be written
(cosh?a — 1)(1 — cos?B) = M

or

cosh?a + cos? 8 = MZ + 1 4 cosh? @ cos? 8. (15)
Adding 2 cosh a cos 8 on both sides of the equality sign, gives
(cosh @ 4+ cos )2 = M2 4+ (1 + cosh a cos 8)=.
This, by (13), may be written
cosh e + cos B = m (16)

Subtracting 2 cosh a cos 8 on both sides of the equality sign of (15), gives, simi-

larly,
cosha —cos = M&+ (1 — M) a7

Subtracting (17) from (16) gives
8= cos™! (\/M42+(1+Ma>2; VM42+<1~M3)2). (18)

Note the similarity between this and expression (8).
With the value of 8 obtained by (18), calculate, by (14),
a = sinh! (—Mi-) (19)
sin B,
The complex function is calculated by equation (10).
To illustrate the above, let

cosh (a + jB) = 1.2/25.75°
= 1.081 + j0.522,

hence,
M;= 1.081
By (18),
\/ 2 2 _\/ 2
g= cos—‘[ 0.522" 4 2.081 . 0.522° + 0.081
= 35.6°.
By (19),
. 0.522
= -1 Yl
@ = sinh™ = 356
a = 0.809.
3. Evaluation of a 4 jB8 when
tanh (¢ + j8) = D/§ ' (20)

= Dcoss + jDsind = Ny + jN.. (1)
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Since b )
.oy — sinh (¢ + 78
tanh (¢ + j6) cosh (a + jB)’

it follows by (1), (3), and (4), and also by (11), (13), and (14) that

tanh (¢ + j8) = %ﬁ—ﬁ%

which may be written
oy = (M + M) (M3 — M)
tanh =Mt :
(@ 78 = (04, + L0 ot — 30
- M\M;+ MM, +jM2Ma - MM,
Mi+ M M2+ M2’
where, by (3) and (13), (4) and (14), (4) and (13) and (3) and (14)

M M3 = sinh a cosh a cos? 8
MM, = sinh a cosh a sin? g
MM 3 = sin 8 cos § cosh? a
M M, = sin 8 cos 8 sinh? a.

Hence,
MiM3;+ MM, = sinh a cosh a
M:Ms; — M M, = sin 8 cos 8.
Also Mg + M2 = cosh? a cos? 8 + sinh? g sin*B

(1 + sinh? ) cos? B + sinh? a(1 — cos? 8)
sinh? ¢ 4+ cos? 8.

Substituting (24), (25), and (26) in (23) gives

.n _ sinhacosha . sinfcosf .
tanh (a + j§) sinh? @ 4 cos? B sinh? @ 4 cos? B
Since
sinh @ cosh ¢ = } sinh 2a
and

sin 8 cos 8 = } sin 28,
the above equation becomes

o 1 sinh 2a . sin 28 .
tanh (a + j8) 2 [sinh2 a + cos’f sinh? ¢ 4 cos? ﬂ]
Referring this to (21), it is seen that
sinh 2a _
sinh? @ + cos? B = 2N
and
sin 28 -
sinh? @ 4 cos? 8 s
Note that
Vsinh? a 4 cos? 8 = cosh (¢ + jB)
and

V'sinh? @ + sin? 8 = sinh (@ + jB).
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It follows, therefore, by (22) and (20), that

sinh® g + sin* 8 _ b
sinh? @ + cos®
or
sinh? ¢ + sin’ g _ 1
sinh? g + cos? 8 +r
or

2sinh?a + 1
—_— =14 D
sinh? @ 4+ cos? B +

or
cosh2e _ + D

sinh? ¢ + cos? 8
Dividing (29) by (32) gives
_2N,
1+ D?
Equation (31) may also be written

tanh 2¢ =

_sinh’a +sin*g _ ., _
1 sinh? ¢ + cos? 8 1=
or
cos 28
_—t =1 D2
sinh? g + cos?B b

Dividing (30) by (34) gives

— _2N,
tan 28 = T Dt
By (33) it follows that
a= %tanh"( 2N, )
1+ D?

and, by (35),
= ~1 ﬂ B
p=tan ((22)
To illustrate the above, assume
tanh (a + j8) = 0.5/30°

= 0.4335 + j0.25
D=05
Ny = 0.4335
Ns= 025 .
_ 1 [2X 0433
o= }tanh ( 1+ 025 )
a = 04275

and
8=} tan-! (2 X 0.25)

1-10.25
= 16.85°.
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Appendix Il The Ferranti Effect

The voltage at the open end of a two-wire line is given by equation (2.8.6) and is

= _.V‘__.
Vro = cosh pS ®

The numerical value of this voltage is

V.
Vo= : ,
(sinh? aS + cos? BS)¥ @

where ¢ is the attenuation constant and g the phase constant for the particular
frequency at which the line is operated, and S is the length of the line.

The condition which the line must satisfy, that V,, > V,, generally referred to
as the Ferranti effect, may be obtained by differentiating equation (2) with refer-
ence to S.

This gives
dVy _ _ V.(2asinh aS cosh ¢S — 28 sin 8S cos BS)
as 2(sinh? aS + cos?8S)¥
_ V(B sin 285 — a sinh 2a5), 3)
2(sinh? aS + cos? BS)}

That V. shall be greater than V, the slope dV,./dS of the curve V,, vs. S as given
by equation (2) must be positive, and it is positive by equation (3) only when

B sin 28S > asinh 2aS. O]

However, since each member of this relation is a function of S, it is necessary
* to determine the slope of each as a function of S as S approaches zero. Thus,

d 2;‘253 = 26 cos 285 = 26°
357
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as § approaches zero, and

d(asinh 2a5) _ 900 oc 2aS = 2a?
das

as .S approaches zero.
1t follows from the above that dV,./dS is positive and hence V,, increases with

S when
B> a. (5)

This shows that a transmission line is subject to the Ferranti effect at any par-
ticular frequency when the phase constant is larger than the attenuation constant
for that frequency, i.e., when the angle of the propagation constant Vzy is larger
than 45°. .

The particular line length for which the Ferranti effect is a maximum may be
obtained by setting equation (3)

av,
E¥r . 6
rQ ©)
The solution shows that the maximum Ferranti effect occurs for the particular
value of S for which

a sinh 245 = B sin 28S. )

The intersection of the curves (a sinh 2aS) vs. S and (8 sin 28S) vs. S gives the
value S for the maximum Ferranti effect.

The solutions show that only under ideal conditions when ¢ = 0, does the Fer-
ranti effect occur at the open end of a quarter-wave length line. For actual lines,
the maximum Ferranti effect will occur when the line is shorter than quarter-wave
length by an amount which depends upon the relative values of a and 8. A quarter-
wave length line at 60 cps would be a line about 750 miles long. None of the
present transmission lines is that long.
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Acceleration of rotor, 278
Admittance, linear line, 79
Air density factor, 55
Aluminum, conductivity, 4

density, 4

resistivity, 4

tensile strength, 4
Arcing grounds, 214
Attenuation constant, 65, 79

Cables, geomean radii, 23
Calculating boards, 241
Capacitance, general formula, 33
per conductor of a system of parallel con-
ductors, 36
per conductor of a three-phase line, 40
per conductor of a transposed twin three-
phase line, 44
per conductor of a two-wire line, 39
single-conductor cables, 35
single cylindrical conductor parallel to the
ground, 40
Carson’s formula, 219
Characteristic impedance, 61
of transmission lines, 62, 79
Characteristic resistance, 82
Charging current, 78, 80
Circuit properties of transmission lines, 1
Classification of transmission lines, 1
Complex circuit of line with transformers, 145
Conductance, leakage, 3, 47
Conductor inductance, 5
inductance due to external flux inter-
linkage, determination, 13
materials, 3
Conductors, geomean radii, 16

Copper, coefficient of expansion, 4
conductivity, 3
density, 4
melting point, 4
specifications, 3
temperature coefficient, 4
tensile strength, 4
Corona, 51
disruptive potential gradient, 51
loss and equivalent leakage conduct-
ance, 55
Current, at short-circuited end of a line, 78, 81
at station-end when receiving-end is short-
circuited, 78, 81
charging, 78, 80
formulas of transmission lines, 74

Dielectric constant, 35
Direct current line, 82
characteristic resistance, 82
Displacement angle, 180
corresponding to limiting stable loads,
calculation, 333
for any given load, determination, 280, 336
Dissipative and reactive power at the station-
end of transmission systems with volt-
age control, 170
in terms of the single impedance equiva-
lent of a line, 192
Dissipative power limit, 163

Earth resistivity, 237
Elastance, 44
Energy stored in a rotor, 273
Equivalence, general conditions, 106
of T and r circuits, 114
359
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Equivalent circuits of transmission lines, 106
inertia constant of generator and motor
combined, 279
inertia constant of machines in parallel,
277
leakage conductance and corona loss, 55
line spacing, 43
x circuit, 111
T of transformers from given data, cal-
culation, 137
Evaluation of inverse hyperbolic functions, 352
Exponential and hyperbolic terms, significance
and evaluation of, 71

Faulted transmission systems, 213
Ferranti effect, 90, 357

Field intensity, 52

Flux, magnetic, 5

General conditions of equivalence, 106

Generalized formula for reactive power of
phase modifier to maintain constant
receiving-end voltage, 162

Generalized formula for reactive power to
maintain constant receiving-end volt-
age, 160

Generalized formula for required voltage ratio
k, 163

Generator and motor combined, equivalent
inertia constant, 279

Geomean distance between any number of
points equally spaced around a circle of
any radius, 21, 350

Geomean radii, cables, 23

conductors, 16
Grounds, arcing, 214

High-voltage transformers, 134
Hyperbolic and exponential terms, significance
and evaluation, 71

Ideal line, 85
Impedance, characteristic, 61
and inductance of stranded conductors, 18
formula of transmission lines, 69
line, 4
of single conductor with ground re-
turn, 219
Impedance of a two-wire line, 16
per conductor of a system of two parallel
conductors with ground return, 225
Inductance, conductor, due to external flux
linkage, determination, 13
and impedance of stranded conductors, 18
of a conductor, §
of nontransposed three-phase lines, 26
of transposed three-phase lines, 28
of twin three-phase lines, 31
per conductor of twin single-phase lines, 24

INDEX

Inertia constants of machines, 275

Infinite line, 71

Instability due to line switching, 304

Instability to L-L-L-G fault, 309

Inverse hyperbolic functions, complex, evalu-
ation, 352

Irregularity factor, 53

Isolated and grounded transmission systems,
214 -

Isolated neutral, 214

Leading and lagging reactive power, 156
Leakage conductance, 3, 47
Leakage impedance Z), calculation, 134
Limiting stable loads, displacement angle,
calculation, 333
Limiting stable loads under fault condition,
calculation, 334
Line as a circuit, 2
capacitance table, 43
impedance, 4
inductance table, 29
Line-line to ground fault, three-phase system,
262
Line propagation constant, 65
reactances, summary, 239
spacing, equivalent, 43
switching, 306, 307
Line to line fault, 251
Line with transformers, complex circuit, 145
with transformers, illustrative problems,
141, 147
with transformers, performance formulas,
140
Linear inductance and impedance of a two-
wire line, 16
line admittance, 79
line impedance, 4
Lines in parallel, 151
Load corresponding to a definite displacement
angle and power factor, determination,
284
Load swing and acceleration on change of shaft
load, 285

Machines in parallel, equivalent inertia con-
stant, 277

Magnetic flux, 5

Magnetomotive force, 7

Maximum additional safe load, determination,
287

Maximum safe load, 287

Maximum synchronizing power for any given
load, determination, 280, 336

Maximum synchronizing powers under fault
condition, 334

Motor-generator system; voltage-current rela-
tions, 269

Mutual admittance ¥, calculation, 134



INDEX

Negative-phase sequence, 217
Negative sequence reactance diagram of the
system per phase as viewed from the
fault, 329
Network calculators, 241
Neutral, isolated, 214
Nominal r equivalent of short lines, 113
T equivalent of short lines, 110
Nondissipative a-c line, fundamental rela-
tions, 84
Nondissipative line, performance, 87
Nonsymmetrical faults, 251
transient instability due to, 317

Open-circuit and short-circuit tests, 131
Operating voltages, 1

Performance formulas of line with trans-
formers, 140
Permittivity, 35
relative, 35
Phase constant, 65, 79
control, 55
modifiers, 55
modifiers, voltage control by, 163
Pi and T line elements, 59
circuit, equivalent, 111
circuits and T circuits, equivalence, 114
network, 60
Positive-phase sequence, 217
Positive sequence reactance diagram of system
per phase with fault on, 328
Potential gradient, 52
Power-angle curves, 188, 270
Power-angle formulas, 271
Power-angle-time relations, 293
Power-circle diagram, 180, 184
Problems, suggestive, 16, 104, 126, 154, 176,
211, 266, 301, 349
Propagation constant of transmission lines,
64, 79

Reactance of system with faulted line switched
out of service, 332
per unit and per cent, 241
per unit, dependency on the kva base, 243
per unit, of transmission line conductors,
245
transient, 242
Reactive power for voltage control, 158
power, leading and lagging, 156
power of phase modifiers to maintain con-
stant receiving-end voltage, generalized
formula, 162
power to maintain receiving-end voltage
constant, generalized formula, 160
Receiving-end and station-end currents on
short-circuited receiving-end, 78
current, 76, 80 ‘
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dissipative and reactive power in terms of
displacement angle, 180
impedance for maximum voltamperes,
78, 81
voltage to neutral, 77, 80
Resistance, characteristic, 82
of a lane conductor, 5
Resistivity of the earth return, 237
Résumé of derived transmission line formulas,
79
Rotor, acceleration, 278
energy stored in, 273

Safe angle; three-phase to ground fault, cal-
culation, 337
Sending-end impedance to ground or neutral,
71, 80
Sequence impedance, 218
Short line illustrative calculations, 116
lines, nominal » equivalent, 113
lines, nominal T equivalent, 110
Significance and evaluation of exponential and
hyperbolic terms, 71
Single conductor cables, capacitance, 35
conductor with ground return, impedance,
219
cylindrical conductor parallel
ground, capacitance, 40
impedance equivalent of a transmission
system, 189
impedance equivalent of very short lines,
116
Single-phase line, 1
Skin effect, 5, 11
Smooth line, 71
Space-rate of change of voltage drop, 59
Station-end current, 75, 80
dissipative and reactive power, 184
dissipative and reactive powers of trans-
mission systems with phase modi-
fiers, illustrative calculations, 172, 173,
174
impedance to neutral or ground, 69
voltage to neutral, 77, 80
Steady state power limit, 177
state power limit; generalized transmission
line with constant station-end voltage
and static load, 178
state power limit of generator and line,
194, 198 .
state power limit with synchronous motor
load, 205, 207
Stranded conductors, inductance and imped-
ance, 18
Surge impedance, 63, 79
Symmetrical phase components, 216
Synchronizing current, 272
power, 273
power of alternators in parallel, 271

to the
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System instability, 303

reactance, calculations to a common kva
base of 100,000 kva at 132 kv, 323

reactance, calculations under faulted con-
ditions, 330

reactance under normal operation, 328

stability studies, general assumptions, 319

stability study, illustrative, 320

T circuits and = circuits, equivalence, 114
equivalent of transformers, 127
equivalent of transmission lines, 107
line and « line elements, 59
network, 60

Three-phase lines, capacitance per conductor,

lines, general relations, 92
lines, inductance of nontransposed, 26
lines, inductance of transposed, 28
lines, performance calculations, 94, 99,
101
short-circuits, 246
to ground fault; fault line tripped, 314
Transformers, calculation of equivalent T from
given data, 137
high-voltage, 134
in parallel, 149
Transient instability due to nonsymmetrical
faults, 317
reactance, 242
stability, 268
Transmission equations, 107
formulas of the equivalent T of trans-
formers, 130
line formulas, 59, 79
lines, characteristic impedance, 62, 79
lines, classification, 1
lines, current formulas, 74
lineg, equivalent circuits, 106
lines, impedance formula, 69
lines, propagation constant, 64, 79
systems, faulted, 213
systems, isolated and grounded, 214
systems, single impedance equivalent, 189
Transposed twin three-phase line, capacitance
per conductor, 44 '

INDEX

Twin single-phase lines, impedance per con-
ductor, 24
three-phase lines, inductance, 31
three-phase lines with end transformers,
152
Two-wire line, capacitance per conductor, 39
line, impedance, 16
line, inductance, 16

Vector relations between constant receiving-
end and sending-end voltages and the
adjusted emf of the generator, 204

Velocity of energy propagation, 80

of energy transfer, 66
of phase propagation, 66
Visual critical potential difference, 54
critical voltage, 51
potential gradient, 51
Voltage control by phase modifiers, 163
control by phase modifiers, illustrative
studies, 165, 166, 169
control of transmission systems, 155
control of transmission systems, general
considerations, 155
control, reactive power for, 158
formula of transmission lines, 77
regulation, 78, 81
to ground, 53
to neutral, 80
Voltamperes at receiving-end, 78, 81

Wavelength, 69, 80

Zero-phase sequence, 217
Zero-sequence impedance of nontransposed
twin three-phase line with all conductors
grounded, 233
impedance of a three-phase line with
grounded conductors, 230
impedance of three-phase transposed line
with grounded conductors, 232
impedance of twin transposed three-phase
grounded lines, 236
reactance, 240
reactance diagram of the system per phase
as viewed from the fault, 330, 331, 332
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