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Abstract

Digital multipliers form an important part of digital arithmetic circuits. Important parameters

that characterize these multipliers are their precision and those related to their implementations

such as area, critical path delay, and power consumption.While certain applications demand

high precision, others would require optimality in terms of die-area, latency of operation and

power consumed. Thus the present thesis focuses on developing novel multiplier architectures

(binary, logarithmic and BCD) that lead to either improved precision or result in better imple-

mentation.

The first contribution of this thesis is the development of a reconfigurable, two-dimensional

(2D) bypass multiplier architecture that is based on dynamic bypassing of partial products. The

bypass elements incorporated into the multiplier reduce the power consumption by eliminating

redundant signal transitions.The reconfigurable architecture offers a good trade-off between

area, delay and power dissipation since it uses the same multiplier for performing one N or two

N/2 multiplications.

As the modern computing systems become increasingly embedded and portable, a growing

set of applications in media processing (graphics, audio, video, and image) has evolved. Many

of these applications, however, possess an inherent quality of error resilience. For example, it

is a known feature of image processing that a range of image resolutions/sharpness is accept-

able depending on the nature of the application. Thus arithmetic units (digital multipliers in

present case), that are not very precise but return an approximate value, can be utilized in such

applications. Such units, it may be anticipated, may result in area savings while also resulting

in reduced power consumption. The second contribution of this thesis is the development of a

novel approximate binary multiplier architecture that results in improved performance in terms
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of area, delay and power compared to existing architectures while the trade-off in accuracy is

only marginal.

Further, in recent years, logarithmic number system has been increasingly used as an alter-

native to the binary number system as it converts multiplication to addition resulting in simpli-

fied hardware. While logarithmic number system cannot be compared with that of binary in

terms of precision, usage of it in arithmetic operations such as multiplication certainly results

in reduced area and power consumption and thus is useful in applications where precise results

are not required. The third contribution of this thesis is the development of an efficient loga-

rithmic multiplier architecture that significantly reduces the area and power consumption of the

hardware while sacrificing the accuracy only marginally.

Extensive analysis of the hardware requirement of both the multipliers (approximate binary

and logarithmic) has been carried out, initially using unit gate modeling, and later on using

the synthesis tool. Furthermore, to quantify the advantage of the proposed architectures, both

have been used in an image sharpening algorithm (that employs extensive multiplication) and

benchmarked against certain standard and well known image processing applications such as

Lena, Cameraman and Pirate.

Finally, while binary arithmetic is all pervasive, BCD (decimal) arithmetic is preferred in

applications such as financial, scientific and commercial etc. owing to its comparatively high

precision. The fourth contribution of this thesis is the development of a generalized design

approach and architectural framework for decimal multiplication. In this approach, unlike the

existing decimal architectures, the decimal partial product generation is achieved in parallel

using fast and area efficient blocks, while the partial product reduction is achieved using hy-

brid multi-operand binary to decimal converters. A comprehensive analysis of the synthesis

results carried out on IEEE-compliant 16-digit decimal multiplier indicates the superiority of

the proposed architecture over the existing ones.

ii



Contents

Abstract i

Contents 1

List of Figures 6

List of Tables 11

Nomenclature 13

1 Introduction 16

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Steps involved in carrying out present research . . . . . . . . . . . . . . . . . 18

1.3.1 High Level Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Unit Gate Level Modeling . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 CAD tools used in the ASIC implementation . . . . . . . . . . . . . . 20

1.3.3.1 Cadence Simulator . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3.2 Cadence RTL Compiler . . . . . . . . . . . . . . . . . . . . 20

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Literature Review 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Classification of Multiplier Architectures . . . . . . . . . . . . . . . . . . . . 21

2.3 Binary Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



CONTENTS

2.4 Braun Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Partial Product Generation (PPG) . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Partial Product Reduction (PPR) . . . . . . . . . . . . . . . . . . . . . 24

2.4.2.1 Binary Carry Save (CSA) Adders . . . . . . . . . . . . . . . 25

2.4.3 Wallace Reduction Tree . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Final Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4.1 Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4.2 Carry Look-ahead Adder (CLA) . . . . . . . . . . . . . . . 31

2.4.4.3 Carry Look-ahead (CLA) based Parallel Prefix Adder . . . . 32

2.5 Low Power Techniques in Binary Multiplier Design . . . . . . . . . . . . . . 34

2.5.1 Dynamic Power Dissipation in CMOS based Circuits . . . . . . . . . . 35

2.5.2 Power Consumption in Parallel Multipliers . . . . . . . . . . . . . . . 35

2.5.3 Reconfigurable Binary Multiplier . . . . . . . . . . . . . . . . . . . . 36

2.5.4 A Review of Bypass Multiplier Architectures . . . . . . . . . . . . . . 36

2.5.4.1 Row-Bypass Scheme . . . . . . . . . . . . . . . . . . . . . 36

2.5.4.2 Column-Bypass Scheme . . . . . . . . . . . . . . . . . . . . 38

2.5.4.3 Two-Dimensional Bypass Scheme . . . . . . . . . . . . . . 39

2.6 A Review of Recursive Binary Multipliers . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Mathematical Analysis of Recursive Multiplier . . . . . . . . . . . . . 40

2.6.2 Truncation Schemes for Binary Multipliers . . . . . . . . . . . . . . . 41

2.6.2.1 Truncation Schemes for Array Multipliers . . . . . . . . . . 42

2.6.2.2 Truncation Schemes for the Recursive Multiplier . . . . . . . 42

2.7 Multipliers based on Logarithmic Number System . . . . . . . . . . . . . . . . 43

2.7.1 Mathematical Analysis of MA Based Multiplier . . . . . . . . . . . . 44

2.7.2 Hardware Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Decimal Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.1 ‘Digit-by-Digit’ Multiplier . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.2 A Review of Partial Product Generation and Reduction Schemes . . . . 49

2



CONTENTS

2.8.2.1 Partial Product Generation (Binary Product to BCD conver-

sion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8.2.2 Partial Product Reduction . . . . . . . . . . . . . . . . . . . 51

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 An Efficient Reconfigurable Binary Multiplier with 2-Dimensional bypassing 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Proposed Reconfigurable Binary Multiplier Architecture . . . . . . . . . . . . 55

3.2.1 Partial Product Arrangement . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1.1 Configuration Mode 1 (CM1) : . . . . . . . . . . . . . . . . 56

3.2.1.2 Configuration Mode 0 (CM0) : . . . . . . . . . . . . . . . . 57

3.2.2 Partial Product Reduction using 2-Dimensional Bypass Cells . . . . . . 57

3.2.2.1 Reconfigurable Two-Dimensional Bypass Cell (RTDBC) . . 60

3.2.2.2 Reconfigurable Row Bypass Cell (RRBC) . . . . . . . . . . 61

3.2.3 Reconfigurable Ladner-Fisher Prefix Adder . . . . . . . . . . . . . . . 62

3.3 Simulation and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 An Improved Fixed-Width Recursive Binary Multiplier 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 A New Approach to Error Correction in Fixed-Width Recursive Multipliers . . 70

4.2.1 Error Analysis for the proposed correction function . . . . . . . . . . 73

4.2.1.1 Hardware Implementation of the Proposed Fixed-Width Re-

cursive Multiplier . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Area and Delay Comparison of Various Multipliers using Unit Gate

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 Hardware Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . 79

3



CONTENTS

4.4 Benchmarking Various Multiplication Schemes-Application to Image process-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Image Sharpening Algorithm . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 An Iterative Logarithmic Multiplier with Improved Precision 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Mathematical Analysis of the Proposed Scheme . . . . . . . . . . . . . 87

5.2.2 A New Approach to the Approximation of Logarithmic Multiplier . . . 88

5.2.3 Truncated Iterative Multiplier (TIM) Hardware Implementation . . . . 93

5.2.3.1 Truncated Basic Logarithmic Block (TBLB) . . . . . . . . . 94

5.2.3.2 Modified Fractional Predictor (MFP) . . . . . . . . . . . . . 94

5.2.4 TIM Hardware for two Iterations . . . . . . . . . . . . . . . . . . . . . 96

5.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Area and Delay Comparison of Various Multipliers using Unit Gate

Level Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Synthesis Results of Various Multipliers . . . . . . . . . . . . . . . . 103

5.4 Benchmarking Various Multiplication Schemes-Application to Image process-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Image Sharpening Algorithm . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 An Improved ‘Digit-by-Digit’ Decimal Multiplier 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 A New Partial Product Generation Scheme in ‘Digit-by-Digit’ Multiplier . . . 110

6.2.1 High Performance Partial Product Binary to Decimal (PPBD) Con-

verter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Low Area Partial Product Binary to Decimal Converter (LAPPBD) . . 113

6.3 Partial Product Reduction (PPR) in ‘Digit-by-Digit’ Multiplier . . . . . . . . . 114

4



CONTENTS

6.3.1 Implementation of 16*16 ‘Digit-by-Digit’ Multiplier . . . . . . . . . . 115

6.3.2 Algorithm for Hybrid Multi-operand Binary to Decimal Converter . . 118

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Area and Delay Comparison using Unit Gate based Modeling . . . . . 121

6.4.2 Synthesis based Comparison . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.2.1 Partial Product Generation (PPG) . . . . . . . . . . . . . . . 124

6.4.2.2 Partial Product Reduction (PPR) . . . . . . . . . . . . . . . 125

6.4.2.3 Synthesis Results of 16*16 ‘Digit-by-Digit’ Multiplier . . . 127

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Conclusions and Future Work 131

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

References 133

List of My Publications 140

Biography 143

5



List of Figures

1.1 Research Flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Classification of digital multiplier architectures based on number system . . . . 22

2.2 A general binary multiplication structure . . . . . . . . . . . . . . . . . . . . . 23

2.3 (a) Partial product matrix representation in a 8*8 Braun multiplier (b) Partial

product computed using an AND gate . . . . . . . . . . . . . . . . . . . . . . 24

2.4 (a) Alternate representation of partial products in 8*8 Braun array multiplier

(b) Partial product computed using an AND gate . . . . . . . . . . . . . . . . 25

2.5 Carry- free operation using full adders . . . . . . . . . . . . . . . . . . . . . . 26

2.6 (a) Logic circuit of half adder (b) Half adder cell notation (c) Computation of

Sum and Carry-out using dot notation in a half adder . . . . . . . . . . . . . . 26

2.7 (a) Logic circuit of full adder (b) Full adder cell notation (c) Computation of

Sum and Carry-out using dot notation in a full adder . . . . . . . . . . . . . . 27

2.8 (a) Partial product reduction using CSA dot notation (b) A numerical example

related to partial product reduction . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 (a) Wallace tree partial product reduction structure using 3:2 and 2:2 counters

(b) Partial product computed using an AND gate (c) Representation of 3:2 and

2:2 counters (d) Computation of Sum and Carry-out using dot notation in a full

and half adder circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 4-bit Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 4-bit Carry Look-ahead adder . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 CLA based 8-bit parallel-prefix structure . . . . . . . . . . . . . . . . . . . . . 33

2.13 CLA based 8-bit Kogge-Stone prefix adder . . . . . . . . . . . . . . . . . . . 34

6



LIST OF FIGURES

2.14 (a) An example of 4*4 array multiplication (b) Schematic diagram of 4*4 Braun

multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Schematic diagram of a 4*4 Braun multiplier using row-bypassing technique . 38

2.16 Numerical example of row-bypass scheme for 4*4 multiplier . . . . . . . . . . 38

2.17 Schematic diagram of a 4*4 Braun multiplier with column-bypassing scheme . 39

2.18 Schematic diagram of a 4*4 Braun multiplier with two-dimensional-bypassing

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.19 Schematic diagram of the original recursive multiplication scheme . . . . . . . 42

2.20 Sub-multipliers in a recursive multipliers . . . . . . . . . . . . . . . . . . . . . 43

2.21 Functional diagram of Babic Iterative Multiplier (BIM) . . . . . . . . . . . . . 46

2.22 Functional diagram of truncated error correction (TEC) Scheme . . . . . . . . 47

2.23 A top-level architecture of ‘digit-by-digit’ multiplication . . . . . . . . . . . . 48

2.24 Example of 4*4 ‘digit-by-digit’ multiplication using BDMs . . . . . . . . . . . 49

2.25 Block diagram of ‘three-four split’ binary to BCD converter . . . . . . . . . . 50

2.26 Block diagram of ‘four-three split’ binary to BCD converter . . . . . . . . . . 51

2.27 (a) Compact notation of Nicoud cell (b) Linear array of Nicoud cells to form

Dadda multi-operand BD converter . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Block diagram of proposed reconfigurable binary multiplier . . . . . . . . . . . 56

3.2 Partial product matrix in configuration mode 1 . . . . . . . . . . . . . . . . . . 57

3.3 Partial product matrix in configuration mode 0 . . . . . . . . . . . . . . . . . . 58

3.4 (a) Proposed reconfigurable multiplier architecture with bypass computation

cells (b) Reconfigurable row and column bypass cells with mode bit, CM . . . 59

3.5 A section of the proposed reconfigurable multiplier . . . . . . . . . . . . . . . 60

3.6 Logic schematic of RTDBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Logic schematic of RRBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 A reconfigurable 8-bit Ladner-Fisher prefix adder . . . . . . . . . . . . . . . . 64

3.9 Latency of various bypass multiplier schemes . . . . . . . . . . . . . . . . . . 65

3.10 Comparison of various bypass multiplier schemes in terms of power . . . . . . 66

3.11 Power-delay product of various bypass multiplier schemes . . . . . . . . . . . 66

7



LIST OF FIGURES

3.12 Comparison of various bypass multiplier schemes in terms of area . . . . . . . 67

4.1 A 2n*2n recursive multiplication structure illustrating sub-multipliers . . . . . 71

4.2 Partial product matrix of a fixed-width recursive multiplier with two most sig-

nificant columns considered for correction . . . . . . . . . . . . . . . . . . . . 72

4.3 Average error Vs Number of most significant partial products columns consid-

ered for correction in a 8 * 8 fixed-width recursive multiplier . . . . . . . . . . 73

4.4 A new fixed-width recursive multiplier hardware . . . . . . . . . . . . . . . . 74

4.5 (a) Partial product reduction structure of a fixed-width recursive multiplier with

two most significant columns considered for correction (b) Partial product com-

puted using an AND gate (c) Representation of 3:2 and 2:2 counters (d) Com-

putation of Sum and Carry-out using dot notation in a full and half adder cir-

cuits (e) Notation for correction function with two most significant columns

considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 A Comparison of the proposed fixed-width recursive multiplier with various

existing multipliers in terms of area . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 A Comparison of proposed fixed-width recursive multiplier scheme with vari-

ous existing multipliers in terms of delay . . . . . . . . . . . . . . . . . . . . . 81

4.8 A Comparison of proposed fixed-width recursive multiplier scheme with vari-

ous existing multipliers in terms of power . . . . . . . . . . . . . . . . . . . . 81

4.9 Average errors of various multipliers . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Maximum errors of various multipliers . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Cameraman, Lena and pirate Images obtained using exact and the proposed

multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Average error Vs Number of fractional bits in 8 * 8 multiplication for one iteration 89

5.2 Block diagram of the proposed truncated iterative multiplier (TIM) . . . . . . 93

5.3 Block diagram of the truncated basic logarithmic block (TBLB) . . . . . . . . 94

5.4 Proposed method to detect leading one in fractional portion . . . . . . . . . . . 95

5.5 Variation of average error based on number of fractional bits . . . . . . . . . . 96

8



LIST OF FIGURES

5.6 Truncated iterative multiplier implementation for two iterations . . . . . . . . . 97

5.7 A comparison of maximum error of existing iterative multiplier designs with

TIM (T6,0 and T4,1) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 A comparison of average error of existing iterative multiplier designs with TIM

(T6,0 and T4,1) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Area comparison of various multipliers for different bit-widths . . . . . . . . . 101

5.10 Delay comparison of various multipliers for different bit-widths . . . . . . . . 102

5.11 Area comparison of various multipliers for three iterations . . . . . . . . . . . 102

5.12 Delay comparison of various multipliers for three iterations . . . . . . . . . . . 103

5.13 Maximum and Average errors of various multipliers for three iterations . . . . 106

5.14 Unit gate area statistics of various multiplier for three iterations . . . . . . . . . 107

5.15 Unit gate delay statistics of various multiplier for three iterations . . . . . . . . 107

5.16 Lena and Cameraman images obtained using exact and the proposed multiplier 108

6.1 (a) Compact notation of FBD cell (b) Linear array of FBD cells to form PPBD

converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 (a) Compact notation of LABD cell (b) Linear array of LABD and FBD cells

to form ‘high performance’ PPBD (HPPPBD) converter . . . . . . . . . . . . . 113

6.3 (a) Iterative array of Nicoud cells to form BDM (b) Linear array of Nicoud and

LABD cells to form LAPPBD . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 (a) Decimal partial products of six columns each of 4-bit (b) Example of partial

product, denoted using dot, reduction of column size C= 6 . . . . . . . . . . . 115

6.5 (a) Numerical example illustrating the reduction of decimal (BCD) partial prod-

ucts using CSAs (b) MBD converter formed using linear array of FBD cells to

convert binary number to decimal (BCD) . . . . . . . . . . . . . . . . . . . . 116

6.6 (a) Partial product matrix in a 16*16 ‘digit-by-digit’ multiplier (b) Partial prod-

uct reduction of column of largest size C=31 using CSA structure . . . . . . . 117

6.7 MBD converter for column size, C=31 in 16*16 ‘digit-by-digit’ multiplier . . . 118

6.8 MBD converter for column size, C=31 in 16*16 ‘digit-by-digit’ multiplier (a)

Using Nicoud cells (b) Hybrid converter using Nicoud and FBD cells . . . . . 119

9



LIST OF FIGURES

6.9 A Comparison of area consumption by various BDM at different technology

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.10 A Comparison of delay in various BDM at different technology nodes . . . . . 126

6.11 A Comparison of area consumption at PPR level in 16*16 ‘digit-by-digit’ mul-

tiplier at different technology nodes . . . . . . . . . . . . . . . . . . . . . . . 126

6.12 A Comparison of delay at PPR level in 16*16 ‘digit-by-digit’ multiplier at dif-

ferent technology nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.13 A Comparison of area consumption by various multiplier at different technol-

ogy nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.14 A Comparison of delay of various multiplier at different technology nodes . . . 128

6.15 A Comparison of area-delay product of various multiplier at different technol-

ogy nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10



List of Tables

2.1 Principle of Binary to BCD conversion . . . . . . . . . . . . . . . . . . . . . 50

3.1 Proposed configuration modes of an array multiplier . . . . . . . . . . . . . . . 56

3.2 Truth Table of reconfigurable two-dimensional bypass adder cell (RTDBC) . . 61

3.3 Truth Table of reconfigurable row-bypass cell (RRBC) . . . . . . . . . . . . . 61

3.4 Area, delay and power of various multipliers with various bypassing schemes . 65

4.1 An error comparison of various multiplier architectures . . . . . . . . . . . . . 77

4.2 Assumptions made for unit gate modeling . . . . . . . . . . . . . . . . . . . . 78

4.3 Unit gate modeling analysis of various multiplier architectures . . . . . . . . . 78

4.4 Area, delay and power of various multipliers with correction schemes . . . . . 80

4.5 A comparison of values of MSE and PSNR for benchmark images using various

multiplier schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 A comparison of maximum and average error (%) in the proposed TIM (T6,0)

and existing schemes for 3 iterations . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 A comparison of maximum and average error (%) in the proposed TIM (T4,1)

for 3 iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Area and Delay metrics of basic design components . . . . . . . . . . . . . . . 100

5.4 Area of logarithmic and truncated logarithmic shifter computed using unit gate

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Synthesis results of various 32*32 multipliers for one iteration . . . . . . . . . 103

5.6 A comparison of values of MSE and PSNR for benchmark images using various

multiplier schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11



LIST OF TABLES

6.1 Comparison of area and delay of various BDMs . . . . . . . . . . . . . . . . . 122

6.2 Performance comparison of different multi-operand converter designs using

Dadda and proposed cells for different column size . . . . . . . . . . . . . . . 123

6.3 Performance comparison of Dadda and Hybrid multi-operand converter in 16*16

multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 A Comparison of Dadda and proposed hybrid MBD converters for area and

delay performance across various technology nodes . . . . . . . . . . . . . . . 125

6.5 Area and Delay comparison in 16*16 ‘Digit-by-Digit’ multipliers . . . . . . . 130

12



Nomenclature

ASIC Application Specific Integrated Circuit

BCD Binary Coded Decimal

BD Binary to Decimal

BDM Binary Coded Decimal Digit Multiplier

BIM Babic Iterative Multiplier

BLB Basic Logarithmic Block

BM Binary Multiplier

CLA Carry Look-ahead Adder

CMOS Complementary Metal Oxide Semiconductor

CPA Carry Propagate Adder

CSA Carry Save Adder

DSP Digital Signal Processor

FA Full Adder

FBD Fast Binary to Decimal

FP Fractional Predictor

HA Half Adder

HDL Hardware Description Language

HPBDM High Performance Binary Coded Decimal Digit Multiplier

HPPPBD High Performance Partial Product Binary to Decimal

ITB Internal Tristate Buffer

IUS Incisive Unified Simulator

KOB Karatsuba-Ofman

13



NOMENCLATURE

LABD Low Area Binary to Decimal

LABDM Low Area Binary Coded Decimal Digit Multiplier

LAPPBD Low Area Partial Product Binary to Decimal

LNS Logarithmic Number System

LS Logarithmic Shifter

LSB Least Significant Bit

LSP Least Significant Portion

LUT Look-up Table

MA Mitchell Approximation

MBD Multi-operand Binary to Decimal

MFA Modified Full Adder

MFP Modified Fraction Predictor

MOA Multi-operand Adder

MRBA Modified Row-Bypass Adder

MSB Most Significant Bit

MSE Mean Square Error

MSP Most Significant Portion

ND Nicoud Cell

PE Priority Encoder

PP Partial Product

PPBD Partial Product Binary to Decimal

PPG Partial Product Generation

PPR Partial Product Reduction

PSNR Peak Signal to Noise Ratio

RAM Random Access Memory

RCA Ripple Carry Adder

RTDBC Reconfigurable Two Dimensional Bypass Cell

RTL Register Transfer Level

TBLB Truncated Basic Logarithmic Block

14



NOMENCLATURE

TDBA Two Dimensional Bypass Adder

TEC Truncated Error Correction

VLSI Very Large Scale Integration

15



Chapter 1

Introduction

1.1 Background

One of the most common and frequently executed operations in arithmetic computations is

multiplication. Significant amount of work has been carried out to improve the performance

of digital multipliers over the years and the same is expected to continue in future.The cri-

teria that are used to quantify their performance include latency, area and power consumed.

Thus any improvement made in the design/architecture of multipliers should be reflected in the

improvement of these parameters.

In digital static CMOS multipliers, transition activity (due to charging and discharging of

the load capacitance) dominates the total energy consumption. Thus, power saving can be

achieved by lowering the switching or transition activity per operation. Earlier efforts attempted

to reduce the switching activity of the binary multipliers through architectural modifications

such as row and/or column bypassing. In these schemes, the redundant signal switching is

eliminated by disabling the full adder circuits whose partial product is zero while forwarding

the output of the previous adder rows/columns to the next row/columns. However, the extra

bypass logic (mostly adder) has only limited effect in reducing the power dissipation while

contributing significantly to area overhead. Thus, there is a need to develop alternate bypass

multiplication architectures that can address large power consumption in multipliers.

Many of the signal and image processing applications possess an inherent quality of error

16



1.2. OBJECTIVES OF THE THESIS

resilience and thus do not require absolute accuracy in computation. Further, the final output in

these applications is interpreted by human senses which are not perfect. Thus approximation in

place of accuracy can be exploited that can lead to a significant improvement in area, power and

performance. Based on this idea, several techniques have been proposed that focus on approxi-

mate rather than accurate computing. However, most of these techniques provide solutions that

are based on trial and error and thus the accuracy achieved tends to be lower. Thus, realizing

efficient multiplier units (binary and logarithmic) for approximate computing in a systematic

way, which also have high precision would be of considerable interest.

The importance of error-free arithmetic is growing day-by-day and decimal (BCD) arith-

metic circuits are making their way into application such as financial, scientific and commer-

cial, etc. Like in binary arithmetic, one of the most vital and common operations in decimal

arithmetic, is multiplication. Decimal multiplication can be classified as serial multiplication,

parallel (‘word-by-digit’) and (‘digit-by-digit’) multiplication. Decimal (BCD) ‘digit-by-digit’

multipliers are appropriate for pipelined computations and result in improved regularity of the

circuits. This regularity, in conjunction with shorter interconnects, results in significant im-

provement in the multiplier performance. There is however a significant scope to develop more

efficient architectures for ‘digit-by-digit’ multiplication.

1.2 Objectives of the Thesis

The objectives of this thesis are as follows:

• To improve the existing binary multiplier architecture to reduce the switching activity

resulting in low power consumption.

• To design and implement truncated binary and iterative logarithmic multipliers targeted

for error resilient applications

• To develop a BCD multiplier with improved performance for high speed (parallel) mul-

tiplication

17
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1.3 Steps involved in carrying out present research

Figure 1.1 illustrates the steps involved in carrying out present work, summarized below:

• Modification of multiplier architectures to improve precision and/or performance for bi-

nary, logarithmic and decimal multiplication

• Modeling the architectures (fixed-width binary and logarithmic multiplier) in MATLAB

• Evaluation of the above using synthesis-independent unit gate level (hardware) modeling

• Verification using Verilog test benches and applying random stimuli to cover a wide input

range

• Synthesis of binary, logarithmic and decimal multipliers using Cadence RTL compiler to

obtain estimates of area, delay, and power

• Analysis of the above multipliers to evaluate and compare their performance with the

existing designs

1.3.1 High Level Modeling

The multiplier schemes (fixed-width binary and logarithmic multiplier) have been modeled

and verified in MATLAB environment. Metrics related to precision such as maximum error

and average error have been computed for different multiplier schemes.The main purpose of

carrying out high-level modeling is as follows:

1. It is a faster way of realizing optimized architectures/designs

2. It offers an easier and faster method to evaluate and compare different architectures/designs

3. A high-level model serves as an abstract model of the design to generate input stimulus

and verify the result

18
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Synthesizing the designs using Cadence
RTL compiler

Binary/Logarithmic/BCD Multipliers

Architectural modifications for
improved precision and/or

performance

Validating the concept with help of
high-level modelling

Developing a verilog RTL model for
the architecture specified

Functionality verification of RTL
model using verilog test bench

Unit gate level modelling

Design Validation

Figure 1.1: Research Flow chart

1.3.2 Unit Gate Level Modeling

All the designs (fixed-width binary, logarithmic and decimal (BCD) multipliers) under consid-

eration have been modeled using unit gate approach to obtain a rough estimate of area (A) and

delay (D). This model is useful for high-level analysis and does not depend strongly on any

one process technology, synthesis tool, or cell library. The assumptions made while perform-

ing the unit gate modeling are the following: Each two-input gate (AND, OR, NAND, NOR)

is counted as one gate while EX-OR and EX-NOR are counted as two gates for both area and

delay. Further, an m-input gate is assumed to be composed of a tree of m-1 input gates while
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the effects of wiring, buffering and inverting costs (area and delay) are neglected.

1.3.3 CAD tools used in the ASIC implementation

1.3.3.1 Cadence Simulator

Cadence NCSim is an RTL functional simulator that can simulate Verilog models. The func-

tional behavior of the modules (Binary, Logarithmic and BCD multipliers) was verified in NC-

Sim using Verilog test benches.

1.3.3.2 Cadence RTL Compiler

Cadence RTL Compiler is a hardware synthesis tool. It maps an RTL hardware description

model using a standard cell library into a gate-level net list. The output structural level thus

obtained is composed of cells that exist in the standard-cell technology library. The synthesis

tool accepts Verilog RTL code as an input and generates area, delay and power reports.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents a review of various existing multi-

plier architectures relevant to this research and their realization in hardware. It also provides

a detailed discussion of multipliers based on binary, logarithmic and BCD number systems.

Keeping in mind the importance of arithmetic precision, chapters 3 and 6 develop and validate

new techniques for improved precision of binary and decimal arithmetic circuits. Since preci-

sion is not as important as efficiency of implementation for error resilient applications, chapters

4 and 5 develop novel truncation schemes that lead to efficient implementation of binary and

logarithmic multipliers. These schemes have also been compared for performance against the

existing ones. Chapter 7 draws conclusions and provides recommendations for future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews a number of widely used multiplier architectures while focusing mainly

on those that will be of concern in this thesis. The chapter is organized as follows: Preliminary

information on the existing binary multiplier architectures is presented in Section 2.3 - 2.5, and

fixed-width (truncated) multipliers are discussed in Section 2.6. An outline of the existing log-

arithmic multipliers is presented in Section 2.7 while decimal (BCD) multipliers are reviewed

in Section 2.8.

2.2 Classification of Multiplier Architectures

Digital multipliers based on number system can be classified as (i) Binary multipliers (ii) Log-

arithmic multipliers and (iii) BCD multipliers. A pictorial representation of the same is given

in Fig.2.1 and explained in detail in the following sections.

2.3 Binary Multipliers

It is well known that binary multipliers can be classified into two categories, viz., integer

fixed-point and floating point. This thesis however focuses on integer fixed-point multiplier

architectures only. In fact, floating-point multipliers consist of a fixed-point multiplier for the
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Digital Parallel Multipliers

Binary Multipliers

Logaritmic
(Iterative)
Multipliers

BCD (Digit-by-Digit)
Multipliers

Full-Width
Multipliers

Fixed-Width
Multipliers

Figure 2.1: Classification of digital multiplier architectures based on number system

significant and additional circuitry to deal with the exponents and special values. Thus, tech-

niques developed for efficient binary multiplication presented in this thesis are also applicable

for floating-point multiplication.

Literature on binary computer arithmetic includes topics ranging from sequential to parallel

multipliers. Today, most of the advanced digital systems include a parallel binary multiplication

unit to carry-out mathematical computations. Array and Booth multipliers are a few examples

of parallel multiplication in this category. As is well known, array-based multipliers [1] are

ideal for very large scale integration (VLSI) and application specific integrated circuits (ASICs)

due to their regular layout. On the other hand, Booth multiplier [2], although faster compared

to array multipliers, has an irregular layout structure, making it not very suitable for VLSI

implementations.Thus, this thesis focuses on design and validation of area and power efficient

binary array multipliers. In order to provide more insight in to multiplication process, the

general structure of binary multiplier is described initially and implementation of the same is

illustrated using Braun array multiplier.

In general, binary multiplication involves three steps: (i) Partial product generation (PPG)

(ii) Partial product reduction (PPR) and (iii) Final product computation. A typical binary mul-

tiplier accepts two binary inputs A and B, each of N-bit width, as illustrated in Fig.2.2. Mul-

tiplication schemes primarily differ in the manner partial products are generated and/or accu-

mulated. The multiplication operation can be accelerated in two ways: generating optimized

number of partial products (PPs) in the first (PPG) step or accelerating their accumulation in
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second (PPR) step. One of the most effective ways of accumulating an array of partial products

into two rows is through carry save adder structure. These two rows are eventually reduced us-

ing a final adder in the last step. A detailed explanation of PPG and PPR in an array multiplier

is provided in subsequent sections.

Partial Product
Generation (PPG)

Carry Save Adder (CSA)
tree Structure

Final Adder

A B

Partial Product
Reduction (PPR)

Product

Partial Product
Generation (PPG)

N N

2N

Figure 2.2: A general binary multiplication structure

2.4 Braun Multiplier

The simplest array multiplier proposed was by Braun [3], generally known as carry save mul-

tiplier, suited for unsigned operations only. The mathematical model of a N*N unsigned array

multiplication is given below. Assume A and B to be two N-bit unsigned numbers, where A is

the multiplicand and B is the multiplier.

A =
n−1

∑
i=0

ai.2i (2.1)
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B =
m−1

∑
i=0

b j.2 j (2.2)

The product (P) can be written as: P = A∗B =∑
n−1
i=0 ∑

m−1
j=0 aib j.2i+ j

2.4.1 Partial Product Generation (PPG)

In general, to implement N ∗N binary multiplier in hardware, N2 partial products are required

for PPG which are generated using AND gates. As an example, consider hardware imple-

mentation of 8*8 Braun multiplier illustrated in Fig.2.3. A typical multiplication of two 8-bit

binary numbers results in a total of 64 PPs. Figure.2.3(a) depicts the arrangement of these par-

tial products in a matrix form. Each of these partial products (PPs) is obtained using an AND

gate as illustrated in Fig.2.3(b). Further, an alternate partial product representation of the same

multiplier is shown in Figure.2.4.
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(b)

Figure 2.3: (a) Partial product matrix representation in a 8*8 Braun multiplier (b) Partial prod-
uct computed using an AND gate

2.4.2 Partial Product Reduction (PPR)

The PPs generated must be accumulated to form the final product. In multiplication, accu-

mulation of PPs, also referred to as reduction of PPs, consumes most of the time taken for

multiplication. The reduction of the PPs is performed using two main methods, namely, ac-
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Figure 2.4: (a) Alternate representation of partial products in 8*8 Braun array multiplier (b)
Partial product computed using an AND gate

cumulation by rows and accumulation by columns. The building modules are referred to as

adders if the accumulation is by rows and conversely, if the reduction is by columns, they are

referred to as counters. A simple technique in the accumulation by rows involves multiple

two-operand carry propagate adders (CPAs). However, propagation of the carry using CPAs is

time-consuming and thus is slow [4]. An alternate and more efficient approach is to reduce the

columns by using carry-free adders, namely, carry save adders (CSAs) as discussed below.

2.4.2.1 Binary Carry Save (CSA) Adders

Carry save adders are popular structures used for partial product reduction in multiplication

process. The binary partial product reduction structure uses multiple levels of carry save adders

(CSAs). As illustrated in Fig.2.5, each bit-slice (group of 3-bits) of a CSA is realized using

a full adder. This binary full adder generates a sum-bit and a carry-bit. The carry input is

propagated from the previous bit-slice to the next most significant position in the reduction tree.

The PP reduction process results in two rows (sum and carry), which are eventually converted

to the final sum using a two operand adder (carry propagating adder). In short, binary PPR can

be implemented via CSA tree comprising of binary half adders (HAs) and full adders (FAs) as

basic elements.

As is well known, a half adder accepts two operand bits (A and B) as inputs and computes
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Ai-1Bi-1AiBiAi+1Bi+1

Ci-1
CiCi+1

Si-1SiSi+1

Bit-slice

Ci+2

Figure 2.5: Carry- free operation using full adders

sum (S) and output carry bit (Co) as outputs. The carry bit (Co) will eventually serve as input

carry-in for the successive half adder. The implementation of a half adder circuit follows the

Boolean equations 2.3 and 2.4 and its gate level implementation, cell notation and dot notation

are shown respectively in Fig.2.6 (a-c). The notations ‘⊕’, ‘.’ and ‘+’ denote logical XOR,

AND and OR gates respectively.

S = A⊕B (2.3)

C0 = A.B (2.4)

BA

SC0

Half
Adder
(HA)

S

BA

Co

(a) (b) (c)

SCo

A

B

Figure 2.6: (a) Logic circuit of half adder (b) Half adder cell notation (c) Computation of Sum
and Carry-out using dot notation in a half adder

Similarly, a full adder accepts three operands (A,B and carry in(Ci)) as inputs and computes

the sum (S) and output carry bit (Co) as outputs. The design of a full adder circuit follows

the Boolean equations 2.5 and 2.6 while the gate level implementation, cell notation and dot
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notation are illustrated in Fig.2.7(a-c) .

S = A⊕B⊕Ci (2.5)

C0 = (A⊕B).Ci +AB = AB+BCi +CiA (2.6)

PG

BA

S

Ci

Co

Full
Adder
(FA)

CiS

BA

Co

(a) (b) (c)

B

A

Ci

SCo

Figure 2.7: (a) Logic circuit of full adder (b) Full adder cell notation (c) Computation of Sum
and Carry-out using dot notation in a full adder

A row of full-adders, represented in Fig.2.5, can be viewed as a mechanism to reduce three

operands to two operands. For a CSA, each FA referred to as 3:2 counter has three dots in one

column as inputs. The resulting sum output will result in a dot with the same magnitude as the

inputs while carry output will result in a dot in the column to its left (one order of magnitude

higher) as shown in Fig.2.7(c).

For illustration purpose, reduction of two partial product columns (c0 and c1) is shown

in Fig.2.8(a) and the same is later extended to 8*8 multiplication as shown in Fig.2.9. Each

column, consisting of six partial products (each denoted by solid dot(•) ), is reduced in parallel

to sum (S) and carry (C). The sum is denoted by solid dot(•) with the same magnitude as the

inputs while the carry, denoted with hollow dot (◦), has higher positional weight compared to

input. The six partial products are reduced ( in three levels) to two rows using a tree of 3:2 and

2:2 full and half adders. These two rows of PP are eventually reduced to a binary number by
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using a carry propagation adder (CPA) represented with a horizontal line shown in Fig.2.8 (a) .
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Figure 2.8: (a) Partial product reduction using CSA dot notation (b) A numerical example
related to partial product reduction

The numerical example illustrated in Fig.2.8(b) describes the addition of two columns (c0

and c1 ), each consisting of six bits, where each partial product in the column is assumed to be

‘1’. These columns are reduced to two rows in four levels using a tree of full and half adders.

These two rows of PPs are reduced to final binary result by using a carry propagation adder

(CPA).

A variety of algorithms for accumulating the partial products using CSAs has been proposed

[1]. The advantage of using CSAs is that they do not contribute to hardware complexity and

one of the first algorithms proposed was by Wallace [5].

2.4.3 Wallace Reduction Tree

Wallace developed a method for reducing the columns in parallel. Figure.2.9 illustrates a

Wallace-like reduction tree organization for an 8∗8-bit unsigned multiplier, presented in Sec-

tion 2.4.1. As discussed earlier, a sum output (S) from a full or half-adder at one stage places a
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dot in the same column at the next stage. A carry output (Co) from a full or half-adder at one

stage places a dot one order of magnitude higher i.e., in the column to its left, in the next stage.

As shown in Fig.2.9(d), three dots joined by a solid diagonal line indicates that these PPs are

outputs of a (3,2) counter, while two dots joined by diagonal line indicates that these PPs are

outputs of a (2,2) counter. Consequently, the PP matrix is accumulated to a height of two in

four levels using a carry save adder (CSA) tree structure formed using full adder and half adder

as shown in Fig.2.9(a). A total of four reduction levels with matrix heights of 6, 4, 3 and 2 is

required to accumulate the PP matrix into two rows using Wallace technique. These two rows

are reduced to a final sum using a carry propagate adder (CPA) or any fast adder mentioned

below.

Final Adder

( (2,2) counter )
A

B

S

Co

Final Product

( (3,2) counter )
A
B

S

CoCi

(3,2) Counter

S

C0

S

C0

(a)

AND Gate

(b)

(c)

(d)

4
L
E
V
E
L
S

(2,2) Counter

Figure 2.9: (a) Wallace tree partial product reduction structure using 3:2 and 2:2 counters (b)
Partial product computed using an AND gate (c) Representation of 3:2 and 2:2 counters (d)
Computation of Sum and Carry-out using dot notation in a full and half adder circuits
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2.4.4 Final Adder

The last step in the partial product reduction process is the conversion of the redundant sum

obtained from Wallace reduction tree into non-redundant representation. This step is performed

using a non-redundant adder. There exist many topologies to implement the final adder namely,

ripple carry, carry look-ahead, and parallel prefix (or prefix tree) [6] among many. Based

on priorities (area and delay) appropriate adder topology can be selected from the available

literature. For instance, a ripple carry adder has area and a delay that is proportional to the

adder‘s length while prefix based adders have almost logarithmic delay but with area overhead.

Thus, appropriate adder design can be chosen depending on the requirement.

2.4.4.1 Ripple Carry Adder

The basic building blocks of a ripple-carry adder (RCA) are full adders. Consider two n-bit

numbers, A and B, described by equations 2.1 and 2.2. A total of n full adders are used, one

for each column. The full adder in column i adds the operand bits Ai and Bi plus the carry-in

(Ci), where i = 0,1 . . .N−1. The carry-out of previous stage full adder is passed down to the

carry-in of the full adder in the next most significant column. The Si outputs of the n full adders

form the sum. Figure 2.10 illustrates a 4-bit ripple carry adder.

FA0

A0B0

S0

CiFA1

A1B1

S1

FA2

A2B2

S2

FA3

A3B3

S3

C1C2C3Cout

Figure 2.10: 4-bit Ripple Carry Adder

Although, ripple carry adder is simple and easy to implement, it suffers from large delay.

This is because the full adder in the next stage has to wait for carry bit from the previous stage

full adder (FA). By inspecting the FA shown in Fig.2.10 it can be observed that each full adder

contributes to a two gate delay in the process of rippling the carry [6]. In general, critical path

length of the final carry propagation adder can be deduced as follows:
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CPAlength = 2N−2

2.4.4.2 Carry Look-ahead Adder (CLA)

The carry propagation delay in a ripple carry adder increases linearly with an increase in the

number of input bits. Efforts to reduce this delay has resulted in novel adder architectures and

Carry Look-ahead (CLA) is one such adder which improves the speed by computing the carry

signals in advance that depends on the input operands.

Based on the combination of inputs Ai and Bi, the signals, generate (Gi) and propagate(Pi),

determine the possibility of carry generation. Generate term determines if a carry-out would

be ‘1’ independent of carry-in while propagate term determines whether carry moves to the

next higher significant position. The standard carry look-ahead adder equations (Gi and Pi) that

dictate if the carry will be generated or propagated can be given as,

Gi = Ai.Bi (2.7)

Pi = Ai⊕Bi (2.8)

Clearly, carry generation depends on the values of Ai and Bi. For instance, when Ai = Bi

=‘1’, a carry of ‘1’ is produced at the ith position, while a carry of ‘0’ is generated when Ai = Bi

=‘0’. Conversely, carry propagation happens when Ai 6= Bi. Hence, when Ai 6= Bi and carry-in

(Cin) is ‘1’, then Cin is said to propagate to the next position.

Accordingly, the sum and carry recurrence for the ith stage is as follows:

Si = Pi⊕Ci (2.9)

Ci+1 = Gi +Pi.Ci (2.10)

Similarly, the carries in a 4-bit CLA are generated in parallel according to the following

equations:

C1 = g0 + p0c0 (2.11)
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C2 = g1 + p1g0 + p1 p0c0 (2.12)

C3 = g2 + p2g1 + p2 p1g0 + p2 p1 p0c0 (2.13)

C4 = g3 + p3g2 + p3 p2g1 + p3 p2 p1g0 + p3 p2 p1 p0c0 (2.14)

The logic circuit of a 4-bit CLA is illustrated in Fig.2.11.

1-bit FA

p0 g0

S0

A0B0

C1

1-bit FA

p1 g1

S1

A1B1

C2

1-bit FA

p2 g2

S2

A2B2

C3

1-bit FA

p3 g3

S3

A3B3

C0

C4 4-bit Carry Look Ahead

Figure 2.11: 4-bit Carry Look-ahead adder

One obvious disadvantage in CLA adder is that the carry block gets complicated for large

values of N. To mitigate this, a new class of adder networks has been designed that transfers

the carry through the look-ahead stage in about log2(N) stages. These networks are known

as tree networks and the adder circuits that utilize these networks are called prefix-adders or

tree-adders [7].

2.4.4.3 Carry Look-ahead (CLA) based Parallel Prefix Adder

There are numerous ways to design the parallel prefix tree adders that offer trade-offs among

parameters like the number of logic stages, the maximum fan-out of each logic gate and the

wiring complexity between the stages [6] etc. Based on these parameters a wide variety of

prefix tree architectures, namely, Sklansky, Brent-Kung, Kogge-Stone, Ladner-Fischer, Han-

Carlson and Knowles [6] have been developed.

In general, as illustrated in Fig.2.12, there are three stages in any prefix adder that can

be termed as (i) pre-computation stage (ii) prefix network stage and (iii) post-computation

stage [6,8,9]. The pre-computation stage determines the generate and propagate bits as per the

equations 2.7 and 2.8.
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Figure 2.12: CLA based 8-bit parallel-prefix structure

The prefix network stage computes the final carries from the individual generate and prop-

agate bits of pre-computation stage. Using associative principle, carry computation is trans-

formed to prefix problem using the operator ‘◦’ which associates pairs of generate and propa-

gate as mentioned below:

(g, p)◦ (g′, p′) = (g+ p.g′, p.p′) (2.15)

where g and g′ denote the generate terms and p and p′ represent the propagate terms. Using

the operator ‘◦’ consecutive generate and propagate pairs can be grouped to generate carry as

follows:

Ci = (gi, pi)◦ (gi−1, pi−1)◦ ....(g1, p1)(g0, p0) (2.16)

The post computation stage determines the final sum from carries generated in the prefix

network stage.

The graph model of prefix carry computation is obtained by representing the operator ‘◦ ‘ as

node •, while the signal pairs (g, p) are denoted as edges of a graph. Different prefix structures

differ only in prefix network stage.

To illustrate a prefix structure, an 8-bit Kogge-Stone [8] prefix tree is illustrated in Fig.2.13.

The dark color (•) node in the graph represents the logic module while the white color (◦) node
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denotes a feed through node with no logic (realized with a buffer in real hardware).

c0c2 c1c3c4c5c6c7

1 03 25 47 6

G*i
P*i-1G*j P*j-1

G*i:j

G*i

P*i-1:j-1 P*i-1:j-1G*i:j

P*i-1 G*j

P*j-1

ai biai bi

pi gi

pi gi

Figure 2.13: CLA based 8-bit Kogge-Stone prefix adder

2.5 Low Power Techniques in Binary Multiplier Design

Multipliers are logic circuits that are computationally heavy. Typically, a large number of logic

gates with high transition activity are devoted to perform the multiplication operation. The

logic transitions cause the logic gates to charge/discharge the load capacitance leading to dy-

namic power dissipation. This section provides a brief introduction to various sources of power

dissipation in CMOS based designs. It is followed by preliminary information on existing

reconfigurable multipliers and bypass techniques to minimize the dynamic power dissipation.
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2.5.1 Dynamic Power Dissipation in CMOS based Circuits

The main source of power dissipation in CMOS based circuits is the dynamic power dissipation

caused by switching activity of the logic circuits. Dynamic power dissipation is given by,

Pav =CLV 2
DD fpα (2.17)

Where:

CL = charged load capacitance

VDD = supply voltage

fp = clock frequency

α = switching activity factor.

The dynamic power dissipated is thus proportional to the number of transitions occurring in

a logic gate. Various power reduction methods to minimize the redundant switching(α) have

been proposed in the literature as described later.

2.5.2 Power Consumption in Parallel Multipliers

In general, multipliers can be implemented as sequential or combinational circuits. However,

in the current work, the focus is on parallel multipliers which are purely combinational cir-

cuits. Parallel multipliers are fairly complex circuits with a large transistor count and frequent

switching of these transistors to carry out logic computations leads to large dynamic power

dissipation. As elaborated in Section 3.2, parallel multipliers have the following computation

steps: partial product generation, partial product reduction and vector merge addition. The

partial product accumulation step, which predominantly comprises of adder units, dictates the

overall computation delay, area and power consumption. An obvious technique to minimize

power dissipation is to disable the unwanted computations in an adder. A number of methods

to bypass the adders has been proposed and discussed in the literature [10–12].
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2.5.3 Reconfigurable Binary Multiplier

In a binary multiplier, the die area and power consumption are largely dependent upon the

word-size. Assuming that an application needs N-bit precision, then using a data path element

of more than the required precision would result in wasted area and power. To overcome this

problem, a twin-precision multiplier has been proposed in [13]. An attempt has been made

to minimize the impact on delay and power of the N-bit multiplier by making as few modi-

fications as possible to the conventional multiplier. This twin-precision scheme decomposes

the N*N partial-product matrix into two N/2 * N/2 independent multiplications by configur-

ing the appropriate partial products [14]. When it operates on N/2-bit operands however, large

parts of the multiplier do not contribute to the final result although they may be active. Thus,

the multiplier dissipates considerable dynamic power due to the switching activity involved in

computing unwanted partial products. This problem is sought to be addressed in this work by

using bypass computation cells that disable unnecessary computations.

2.5.4 A Review of Bypass Multiplier Architectures

Figure.2.14(a) illustrates the example of multiplication of two unsigned 4-bit numbers, where

A = a3a2a1a0 is the multiplier and B = b3b2b1b0 is the multiplicand. In a conventional Braun

array multiplier for example, the partial products are generated in parallel with the AND gates

and added using a 1-bit full adder as illustrated in Fig.2.14(b) .

The adder circuits shown in Fig.2.14(b) tend to perform computation of the partial products

even if their value is ‘0’ and this results in undesired signal transitions. These transitions can

be avoided by disabling the respective adder cells which results in saving of power.

2.5.4.1 Row-Bypass Scheme

Various techniques have been proposed from time to time to reduce the switching activity in

array multipliers, of which bypass architectures are an offshoot. A simple approach to reduce

the power consumption is to avoid unnecessary computations. Ohban [10] proposed a row-

bypass scheme wherein some rows in the multiplier array are skipped to reduce the redundant

switching activity. Figure 2.15 illustrates an implementation of a 4*4 Braun multiplier using
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Figure 2.14: (a) An example of 4*4 array multiplication (b) Schematic diagram of 4*4 Braun
multiplier

row-bypassing technique.

This scheme includes adder cells (denoted by AC and highlighted in Fig.2.15) to bypass

the inputs to output whenever the row (horizontal) partial product is zero. The tri-state buffers

augmented at the inputs of the adder cell disable unnecessary transitions by shutting down the

full adder. The MUXes at the outputs of the adder cells automatically pass the carry-input and

the sum of the previous addition to the next computational unit when the corresponding partial

product is zero. A notable drawback in this scheme however is the additional logic circuitry

required as highlighted in grey color in Fig.2.15.

A numerical example illustrating the multiplication of two 4-bit numbers using row-bypass

scheme is shown in Fig.2.16. Since the partial products in the second row are zeroes, the

corresponding computational units are turned off to save power. The partial products in the
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Figure 2.15: Schematic diagram of a 4*4 Braun multiplier using row-bypassing technique

first row are bypassed and added with partial products in the next level (third row). In a similar

manner, the remaining partial products are reduced to form the final product.

1 1 1 1
X 1 1 0 1

1 1 1 1
0 0 0 0

1 1 1 1
1 1 1 1

1 1 0 0 0 0 1 1

Row
Bypass

Figure 2.16: Numerical example of row-bypass scheme for 4*4 multiplier

2.5.4.2 Column-Bypass Scheme

Wen [11] proposed a column-bypass scheme which avoids the adder operations in some columns

instead of rows. In this approach, some columns in the partial product matrix can be skipped

whenever their outputs are known. Consequently, the switching activity and therefore power

dissipation are reduced. This technique has two important advantages: (i) It removes the extra

compensating circuitry (ii) the modified full adder (MFA) unit is less complex than that used in
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the row-bypassing multiplier.

A typical 4*4 column-bypassing multiplier is illustrated in Fig.2.17 where the modified

adder (MFA) cell is highlighted. The MFA cell skips the full adder whenever the partial product

in the corresponding column is zero. This multiplier has less hardware complexity compared

to the row-bypassing scheme also because it does not need to consider bypassing of the carry

bit.

Column 0Column 1Column 2

P0P1P3P4P5P6P7Cout

Final
Adder

b0a0b1a0b2a0b2a1 b0a1b1a1b3a0

b0a2b1a2b2a2
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b1b2
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Si,j

biaj

1 0Ci,j

Modified adding Cell (MFA)

Figure 2.17: Schematic diagram of a 4*4 Braun multiplier with column-bypassing scheme

2.5.4.3 Two-Dimensional Bypass Scheme

In a 2-dimensional bypassing multiplier, the computing logic cells skip the corresponding row

and column depending on nullity of the partial products [12, 15]. Figure 2.18 shows the struc-

ture of the 4*4 Braun multiplier with 2-dimensional bypassing scheme [12].

To overcome the conflict that occurs when both row-bypassing and column-bypassing ap-

pear simultaneously, bypass adder cells (AC) incorporate additional logic. These bypass cells

have the capability to bypass when either row and/or column element is zero, however with

large circuit overhead. In view of this additional complexity, power saving tend to get re-
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Figure 2.18: Schematic diagram of a 4*4 Braun multiplier with two-dimensional-bypassing
scheme

duced. To overcome this, Hong [15] introduced two kinds of adder cells, namely, modified

row-bypassing adder (MRBA) and two-dimensional bypassing adder (TDBA). The MRBA

cells have row-bypassing capability while the TDBA cells are deactivated when either row

or column partial product becomes zero.

2.6 A Review of Recursive Binary Multipliers

This section presents the mathematical modeling of the recursive binary multiplier. This is

followed by various truncation schemes that have been used in the existing multiplier architec-

tures.

2.6.1 Mathematical Analysis of Recursive Multiplier

Recursive multipliers based on Karatsuba-Ofman Algorithm (KOA) [16] are found to have

a hierarchical architecture consisting of several sub-multipliers making them ideal for fixed-

width multiplication.

Assume A and B to be two 2n-bit unsigned numbers, where A is the multiplicand and B is

the multiplier. A and B can be written as:
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A =
2n−1

∑
i=0

ai.2i (2.18)

B =
2n−1

∑
j=0

b j.2 j (2.19)

The recursive multiplication is performed by partitioning each of the operands into two

equal portions of n-bit width. Based on this, the multiplicand (A) is split into AH and AL, while

multiplier (B) is divided into BH and BL respectively as mentioned in equations 2.20 and 2.21

given below:

A = AH ∗2n +AL (2.20)

B = BH ∗2n +BL (2.21)

The subscript H denotes the most significant portion while L denotes the lower significant

portion of the corresponding binary numbers.

The product (P) is written as follows:

P = A∗B = (AH ∗BH)∗22n +(AL ∗BH +AH ∗BL)∗2n +AL ∗BL (2.22)

Thus, multiplication can be performed using four n∗n binary sub-multipliers, namely, AH ∗

BH , AH ∗BL, AL ∗BH , and AL ∗BL, in parallel as shown in Fig.2.19. The partial products of

all the individual sub-multipliers are reduced to product (P) of 2n-bit width using a reduction

structure.

2.6.2 Truncation Schemes for Binary Multipliers

Several techniques [17–20] have been proposed in the past to achieve fixed-width multiplica-

tion. Among these, truncation techniques developed for recursive multipliers have been proven

to be efficient as opposed to the array multipliers in terms of die area and power dissipation [17].
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Figure 2.19: Schematic diagram of the original recursive multiplication scheme

2.6.2.1 Truncation Schemes for Array Multipliers

In truncation schemes for array multipliers, the least significant bits of the partial product matrix

are removed and a correction function, which is either constant or data-dependent, is added to

compensate for the error [21–24].

Authors in [21, 23] present a constant correction technique where compensation function

is based on the average value of the partial product bits which are not formed. This technique

results in simple hardware which in turn leads to higher power savings. However, the error

bounds obtained are high. To overcome this, a data-dependent correction technique proposed in

[22, 25] adds a correction value based on the partial products corresponding to least significant

column that are not formed. This technique, also referred to as variable correction, achieves

a lower error bound compared to the constant correction schemes, though at the cost of the

hardware complexity.

2.6.2.2 Truncation Schemes for the Recursive Multiplier

Most of the truncation techniques targeted at array multipliers focus on modifying the multiplier

structure. However, truncation schemes applied to recursive multipliers simply get rid of a least

sub-multiplier (ALBL) as shown in Fig.2.20 and replace it with a correction function which is

data dependent.

Three correction schemes can be found in the literature. In scheme 1 [18], AH ∗ BL or

AL ∗BH sub-multiplier replaces AL ∗BL while in scheme 2, the average value of AH ∗BL and
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Figure 2.20: Sub-multipliers in a recursive multipliers

AL ∗ BH is used. In scheme 3, the most significant partial product bit of AL ∗ BL, namely,

an−1 ∗ bn−1 forms the correction function. All these schemes are based on trial and error and

the precision achieved is also fixed. In this work, a tunable correction function is proposed

using a systematic approach and it‘s performance is compared with the existing ones.

2.7 Multipliers based on Logarithmic Number System

Most of the logarithmic multiplier schemes can be classified as iterative [26,27] or non-iterative

[28–32]. Non-iterative multipliers have limited precision due to the usage of techniques such

as piecewise linear approximation [33], memory look-up [34] or a combination of both [35]

making them limited to only a few applications. On the other hand, iterative multipliers tend to

improve the precision of the result with each successive iteration.

Mitchell [36] introduced the first iterative multiplier that was simple and flexible to meet

the requirements of a wide range of applications. This multiplier however suffered from large

relative error in the final result. Further, Mitchell approach cannot initiate next iteration until the

completion of the present one. Babic [26] modified the Mitchell design by introducing greater

pipeline-level parallelism with an objective to reduce the latency. However, his approach lead

to reduced precision in each iteration due to the neglect of carry. Babic iterative multiplier

(BIM) design was further improved by truncated error correction (TEC) method [27] which has

an additional capability for speculative carry, thereby improving the precision. This however

comes at the cost of area overhead.

To overcome these shortcomings, the present work combines carry speculation with an im-

proved fractional predictor leading to a better precision when compared to the existing work.
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The fractional predictor logic and its efficient precomputation contribute to the improved over-

all precision due to a fewer number of iterations required compared to the existing techniques.

Further, precision of the multiplier improves as the number of iterations increases. Also, sav-

ings in hardware are achieved using the truncation scheme proposed in this work. The proposed

and the existing logarithmic multipliers have been applied on an image sharpening algorithm

and compared in the context of certain well-known image processing benchmarks such as Lena

and Cameraman for performance.

2.7.1 Mathematical Analysis of MA Based Multiplier

This section presents the mathematical approach common for MA based multipliers [26,27,36]

described below:

According to Mitchell, the binary representation of two n-bit input numbers N1 and N2 is

given as :


N1 = 2k1(1+ x1)

N2 = 2k2(1+ x2)

(2.23)

The characteristics of N1 and N2 are k1 and k2 respectively, representing the most significant

operand bits with the value of ‘1’. Further, x1 and x2 denote fractional portions whose values

lie in the range [0,1].

The base-2 logarithm of the product, N1 and N2 is written as

log2 (N1 ∗N2) = k1 + k2 + log2 (1+ x1)+ log2 (1+ x2) (2.24)

To compute the antilogarithm of equation (2.24), Mitchell proposed the following analytical

expressions based on carry information from the fractional portion

N1 ∗N2 = 2k1+k2(1+ x1 + x2)+2k1+k2(x1 ∗ x2),

x1 + x2 < 1 (2.25)
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and

N1 ∗N2 = 2k1+k2+1(x1 + x2)+2k1+k2(x′1 ∗ x′2),

x1 + x2 ≥ 1 (2.26)

Where 2k1+k2(x1 ∗ x2) and 2k1+k2(x′1 ∗ x′2) are the correction terms.

Babic [26] ignored the carry altogether resulting in a simple and faster design with trade-off,

however, in precision. Accordingly, Babic used the above expression (2.25).

Further, error due to the approximation was avoided by considering the relation given in

equation (2.23) :


x1 ∗2k1 = N1−2k1

x2 ∗2k2 = N2−2k2

(2.27)

Combining equations 2.25 and 2.27 results in,

N1 ∗N2 = 2k1+k2 + f1 ∗ 2k2 + f2 ∗ 2k1 + f1 ∗ f2

Where N1−2k1 = f1 ; N2−2k2 = f2

The above equation is represented as

N1 ∗N2 = A0 + f1 ∗ f2 (2.28)

where approximate product term A0 = 2k1+k2 + f1 ∗2k2 + f2 ∗2k1

The computation of term f1 ∗ f2 given in equation (2.28) requires multiplication. Evidently,

the product N1∗ N2 gets simplified, if these terms are ignored which leads to sacrificing the pre-

cision. This was the approach adopted by Babic and TEC designs. Nevertheless, the correction

term ( f1 ∗ f2) can be computed in parallel with A0, which however results in area overhead.
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2.7.2 Hardware Architectures

The architecture of Babic multiplier [26] for one iteration is illustrated in Fig.2.21. It consists

of components such as basic logarithmic converter blocks (BLBs), decoder and adders.
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Figure 2.21: Functional diagram of Babic Iterative Multiplier (BIM)

A typical BLB includes a leading one detector (LOD), priority encoder (PE) and logarithmic

shifter modules. It forms the fundamental module in the design of iterative multipliers and

provides the characteristic (k ) and fractional portions ( f ).

Based on the binary number (N2) and characteristic (k1), the BLB2 block highlighted in

Fig.2.21 calculates the shifted fractional portion, f2∗2k1 and characteristic, k2. Similarly, BLB1

block computes the fractional portion, f1 ∗2k2 and characteristic, k1. The Adder 2 and Decoder

logic calculate the integer portion of the product (2k1+k2) while the summation of fraction

portions ( f1 ∗ 2k2 and f2 ∗ 2k1) computed using Adder 1 provides fractional portion ( f ). The

computation of the product (A0) is achieved by the addition of fractional portion ( f ) and output

of the Decoder using Adder 3 block. The inputs to next iteration are f1 and f2 which are

obtained from the respective LOD circuits.

The truncated error correction approach suggested in [27] extends the BIM scheme with

addition of fractional predictor (FP), shared logic, multi-operand addition (MOA) and mask as

illustrated in Fig.2.22.

46



2.8. DECIMAL MULTIPLICATION

BLB

N1

k2

k1

Adder 2

Decoder

Fractional 

Predictor

BLB

N2

Shared 

Logic

MOA 

Mask

Adder 1

N1 N2

I1

I2

A
(0 ) 

(N1-2
K1

)(N2-2
K2

)
Shifter Logic

Figure 2.22: Functional diagram of truncated error correction (TEC) Scheme

The speculation of carry from fractional portion is carried out by a variable size FP while

the shared logic gives the position of fractional bits that require error correction. The error

correction itself is accomplished using shifter and multi-operand adder (MOA) and the inputs

for next iteration are computed via mask logic. The shortcomings in TEC multiplier include

extra hardware circuitry and lower error reduction rate for successive iterations.

2.8 Decimal Multiplication

Decimal multiplication typically have the following stages: (i) partial product generation (ii)

partial product reduction and (iii) final product computation. A general architecture of ‘digit-

by-digit’ multiplier is shown in Fig.2.23. The decimal multiplier accepts two BCD inputs A

and B of m-bit width. In the partial product generation stage, the individual digits of multiplier

and multiplicand are multiplied using the BDMs.

The reduction of partial products is accomplished using ripple-free binary CSA tree and

conversion to decimal is achieved using the multi-operand BD converter. The final product is

obtained after the addition of the decimal digits using decimal adder.

The ‘digit-by-digit’ multiplication is presented in the following Subsection 2.8.1 while var-

ious existing partial product generation and reduction schemes adapted for present designs are

discussed in Subsection 2.8.2.
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Figure 2.23: A top-level architecture of ‘digit-by-digit’ multiplication

2.8.1 ‘Digit-by-Digit’ Multiplier

Decimal (BCD) arithmetic computations are generally sluggish (slow) and tend to occupy more

silicon area. This has led to efforts to improve decimal architectures that result in high perfor-

mance and compact arithmetic circuits [37]. For example, microprocessors such as IBM Power

PC [38] and IBM z10 [39] include dedicated decimal hardware units.

Like in binary arithmetic, one of the most vital and common operations in decimal arith-

metic is multiplication. While a large body of literature on decimal arithmetic covers serial

multiplication, parallel (‘word-by-digit’) [40–43] and (‘digit-by-digit’) [44, 45] multiplication

has also been reported recently. Decimal (BCD) ‘digit-by-digit’ multipliers are appropriate for

pipelined computations and result in improved regularity of the circuits. This regularity, in

conjunction with shorter interconnects, results in a significant improvement in the multiplier

performance [46].

A step by step implementation of 4*4 ‘digit-by-digit’ multiplication [44] is illustrated in

Fig.2.24. Multiplication of each digit of the multiplicand with the digit of multiplier is per-

formed using the BDM.

For example, multiplication of A1 and B1 is highlighted in the dotted circle of the figure.
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Figure 2.24: Example of 4*4 ‘digit-by-digit’ multiplication using BDMs

The output of the BDM results in most significant digit and least significant digit denoted by

H and L respectively. A typical BDM is composed of a 4*4 binary multiplier and a partial

product binary to decimal (PPBD) converter. Most of the previous work available in literature

is focused on PPBD converters at partial product generation stage which is discussed in Section

2.8.2.

The individual decimal partial product columns (one such column is highlighted with dotted

rectangle in Fig.2.24) are compressed in parallel by using a tree of binary carry save adders

(CSAs) resulting in a binary number as output of each column. The conversion from binary to

decimal is carried out using multi-operand BD (MBD) converters resulting in rows of decimal

digits R0-R7 and Q1-Q6 which are eventually compressed using a decimal adder to obtain the

final product (P0-P7).

2.8.2 A Review of Partial Product Generation and Reduction Schemes

2.8.2.1 Partial Product Generation (Binary Product to BCD conversion)

The algorithm proposed in [44] converts a 7-bit binary number (p6 p5 p4 p3 p2 p1 p0) to a 2-digit

BCD number (DH and DL ) to support high performance decimal multiplication. This algorithm

calculates the contributions for lower BCD digit (DL) and the higher BCD digit (DH) from each

of the input binary bits as shown in Table 2.1.
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Table 2.1: Principle of Binary to BCD conversion
80 40 20 10 4 3 2 1
0 p6 p5 p4 0 p2 p1 p0
0 0 p6 p5 p4 0 p4 0

p6 0 p5 0
p3 0 0 0

dh3 dh2 dh1 dh0 dl3 dl2 dl1 dl0

The first row in the Table shows the BCD weights. The binary numbers p3, p2, p1 and

p0 are retained in their position as their weights are same as the corresponding weights in the

original binary number. However, the weights 16, 32 and 64 corresponding to p4, p5 and p6

are decomposed into (10,4,2), (20,10,2) and (40,20,4), respectively. The four columns in

the right consisting of BCD digits are summed using BCD adder leading to the BCD digit DL

(dl3dl2dl1dl0) while the resulting carry is added to the BCD digit that is present in the left three

columns leading to DH (dh3dh2dh1dh0).

Work in [47] modifies the architecture in [44] by adding the contributions in a BCD fashion.

This design partitions or splits the binary input into two sub-parts, three MSBs and four LSBs.

It calculates the contributions for the two BCD digits and adds them in a BCD fashion to get

the final result.

Work presented in [48] proposes two schemes, ‘three-four split’ and ‘four-three split’ binary

to BCD converters. The ‘three-four split’ algorithms have optimized DL and DH generator

blocks resulting in better performance in terms of area, delay and power. An illustration of the

‘three-four’ split algorithm is provided in Fig.2.25.

p6 p5p4 (MSB)
Contribution
Generator

DH
Generator

p3 p2p1p0(LSB)
Contribution
Generator

DL
Generator

DH DL

X7X6X5X4 X3X2X1

C

Z3Z2Z1

4
4

4
3

4
Z4

Figure 2.25: Block diagram of ‘three-four split’ binary to BCD converter

The ‘four-three split’ design partitions the 7-bit binary input into four MSBs and three
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LSBs. Since the LSBs do not contribute to the higher BCD digit the LSB contribution generator

is removed resulting in area savings. However, this comes at the cost of increased complexity

of MSB contribution generator as shown in Fig.2.26. The ‘three-four split’ is faster than the

‘four- three split’ whereas the ‘four-three split’ results in a more area efficient design.

p6p5p4 (MSB)
Contribution
Generator

DH

Generator
DL

Generator

DH DL

Y7Y6Y5Y4 Y3Y2Y1

C

4 4

4
3

p0p1p2p3

Figure 2.26: Block diagram of ‘four-three split’ binary to BCD converter

Work published in [49] adapted a binary-to-BCD conversion cell proposed by Nicoud [50].

Although, it was Dadda [51] who first showed that an iterative array of Nicoud’s cells can be

used to design multi-operand BD converters at PPR level mentioned in later Section. This idea

was used in [49] however at PPG level to design PPBD converter.

Certain shortcomings, however, have been recognized in these methods such as (i) redun-

dant contribution blocks [47, 48] and (ii) large area consumption [49]. To alleviate these, two

partial product BD converters, namely ‘high performance’ PPBD (HPPPBD) and ‘low area’

PPBD (LAPPBD) converters, are proposed in this work (Section 6.2).

2.8.2.2 Partial Product Reduction

Partial product reduction in the first stage of ‘digit-by-digit’ multiplier is achieved using a bi-

nary CSA structure [52]. The binary result of each partial product column is subsequently

converted to decimal (BCD) using a multi-operand BD converter consisting of iterative con-

nection of Nicoud cells [50] suggested by Dadda [51]. A typical Nicoud (ND) cell would

accept a 4-bit binary input (b j), multiplies it by two, and then adds it to bi as depicted in Fig.

2.27(a). Thus the computation of BCD (decimal) outputs, b0 (higher digit) and D0 (lower digit)

is carried out using the relation {b0, D0}= 2 .b j +bi where the maximum values of b0 and D0
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are (1)10 and (9)10 respectively.
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ND
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Output BCD (Decimal) Number

Do

Figure 2.27: (a) Compact notation of Nicoud cell (b) Linear array of Nicoud cells to form
Dadda multi-operand BD converter

An example to convert a binary number to two BCD digits (b0 and D0) is illustrated in

Fig.2.27(b). Since the binary number (1010011)2 to be converted here is larger than (19)10,

four Nicoud cells are required to realize the converter. As illustrated in Fig.2.27(b), the input

to the Nicoud cell is restricted to (1001)2. Hence the 3 MSBs of binary input along with ‘0’

prepended (0101)2 is accepted as b j and the next significant binary input ‘0’ as bi resulting in

the outputs (1)2 and (0000)2. The 4-bit output (0000)2 of cell 1 along with the next significant

binary input ‘0’ form input to cell 2, resulting in (0)2 and (0000)2. Similarly, the 4-bit output

of each subsequent cell along with residual 1-bit binary input feeds the decimal input of the

following cell resulting in higher (P) digit (1000)2 and lower (Q) digit (0011)2. In general,

binary number of any operand width can be converted to decimal by a linear arrangement of

Nicoud cells.

The limitation of Nicoud cells however is their latency and thus the delay of multi-operand

BD converter increases with the size of the binary number. To mitigate this, a hybrid multi-

operand BD converter is proposed in this work. A detailed discussion of the partial product

reduction scheme is presented in Section 6.3 .
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2.9 Conclusions

In this chapter, the necessary background material about the multipliers based on different

number systems is presented. This knowledge is required to understand the subsequent chapters

included in the thesis. The objective of this chapter was to provide a quick introduction to

various architectures such as fixed width binary multipliers, logarithmic and BCD multipliers.

The multipliers based on binary and logarithmic number offers a low power alternative solution

in error resilience applications. On the other hand decimal arithmetic has been increasing used

in the financial applications where precision is very important. Finally, the overall research

approach followed in this thesis is presented.

53



Chapter 3

An Efficient Reconfigurable Binary

Multiplier with 2-Dimensional bypassing

3.1 Introduction

Recent developments in digital signal processing (DSP) have necessitated development of re-

configurable binary multiplier architectures that can dynamically adapt to varying application

needs [53]. For example, a typical digital system may need to switch between one application

that requires 4-bit accuracy to another application that needs 8-bit accuracy. This could par-

tially be compensated by having two multipliers, each of precise bit-width, and having smallest

bit-width multiplier that is adequate for current multiplication. Though, this approach opti-

mizes the multiplier in terms of delay, it results in area and power overhead in view of multiple

multiplier instances. Thus, one of the objectives in this chapter is to design a data path com-

ponent that can be configured to perform either one N or two independent N/2 multiplication

operations.

A wide variety of low-power array multiplier architectures exist in literature that are listed

in [10,11,54]. A simple and straightforward method to save power in these multipliers is to use

bypassing technique [10] which reduces the switching activity by avoiding unnecessary com-

putations. The second objective of this chapter is to design novel two-dimensional bypassing

computational cells and incorporate them into the reconfigurable multiplier mentioned above
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to reduce the switching activity further. Also, a reconfigurable Ladner-Fisher prefix adder that

simplifies the final product computation is included in the multiplier.

The proposed multiplier architecture is described in section 3.2 while synthesis results of

the performance of various multipliers are compared in section 3.3.

3.2 Proposed Reconfigurable Binary Multiplier Architecture

In this section, a bit-width aware reconfigurable multiplier architecture with two-dimensional

bypassing is proposed. In normal operation mode, this reconfigurable multiplier performs 8-

bit multiplication while for applications where accuracy can be relaxed, it can perform 4-bit

multiplication with only a fraction of the energy of 8-bit multiplication being expended. Also,

when performing two 4-bit parallel multiplication within a 8-bit multiplier, only one half of the

logic is used.

Further, to reduce the dynamic power, a new 2-dimensional bypassing technique is in-

corporated into the multiplier architecture. The bypass technique uses selective disabling of

computation cells when the column and/or row partial products are zero. This is achieved by

incorporating the new bypassing computational cells that improve the power efficiency and also

facilitate reconfigurability of the multiplier.

A block diagram of the proposed reconfigurable multiplier with bypass cells is shown in

Fig.3.1 below. As can be seen, it has two inputs each of m-bit width. The partial product

(PP) generation is accomplished using AND gates while the PP matrix reduction is achieved

using novel 2-dimensional bypass adder cells. The bypass adder logic, while reducing the PPs

into two rows, also helps in minimizing the latency and power dissipation by disabling the

unnecessary PPs. In addition, capability to reconfigure is built into the bypass computation

cells. To further improve the speed of operation, two rows are reduced to a final product using

a scalable Ladner-Fisher prefix adder.
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Figure 3.1: Block diagram of proposed reconfigurable binary multiplier

3.2.1 Partial Product Arrangement

Figure.3.2 illustrates the partial product arrangement in a 8*8 array multiplier while their re-

duction is shown in Section 3.2.2. Based on the configuration mode given in Table 3.1, the

partial product matrix in Fig.3.2 can be configured to perform either as one 8∗8 multiplier or

two independent 4∗4 multipliers.

Table 3.1: Proposed configuration modes of an array multiplier
Configuration Mode, CM Function Description

CM1 one 8*8 full-width multiplier
CM0 two independent 4 * 4 full-width multipliers

3.2.1.1 Configuration Mode 1 (CM1) :

In configuration mode 1, one 8 ∗ 8 multiplication can be performed as illustrated in Fig.3.2.

The PPG operation generates a total of 64 PPs, which are arranged in a matrix form as shown

in Fig.3.2. To eliminate the redundant switching activity, all the PPs are reduced using bypass

computation cells as discussed in section 3.2.2.
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Figure 3.2: Partial product matrix in configuration mode 1

3.2.1.2 Configuration Mode 0 (CM0) :

In configuration mode 0, two parallel 4 ∗ 4 multiplications can be performed as illustrated in

Fig.3.3. The partial products (colored in gray and black) that contribute to independent 4 ∗ 4

multiplications are given in the upper half of the PP matrix while those (enclosed in dotted box

in Fig.3.3) that do not contribute to the product are shown in the lower half of the PP matrix.

The computation cells corresponding to these PPs are turned-off, thus leading to power saving.

This has been achieved using new bypass computation cells discussed below.

3.2.2 Partial Product Reduction using 2-Dimensional Bypass Cells

Figure 3.4 illustrates the proposed bypassing architecture for an 8*8 array multiplier. The

reduction of partial products generated (shown in Fig.3.3) is carried out using the new adder

bypass logic cells besides the existing cells. The bypassing cells incorporated into the multiplier

skip the redundant computations whenever the row (horizontal) or the column (vertical) partial

product is zero. Two adder cells namely, TDBA and MRBA with bypassing capability, are

adapted from previous design [15] for this purpose and used. The TDBA cell has the capability

to bypass when either row or column element is zero while MRBA bypasses when only the row

element is zero.
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Figure 3.3: Partial product matrix in configuration mode 0

In mode 0 (CM 0), the bypass cells are intended to provide reconfigurability to the multiplier

besides minimizing the redundant switching activity. Therefore, two new adder cells, reconfig-

urable two-dimensional bypass cell (RTDBC) and reconfigurable row-bypass cell (RRBC) are

proposed in this work. These reconfigurable computation cells can be configured according to

the mode of operation using configuration mode bit, CM. The RTDBC cell is deactivated when

the corresponding row or column partial product is zero. Conversely, RRBC skips the compu-

tation unit when the corresponding row partial product is zero. A detailed implementation of

these cells is provided in Section 3.2.2.1 & 3.2.2.2. With the proposed RTDBC and RRBC, the

power saving of the multiplier is higher than the conventional bypassing architectures as will

be demonstrated later.

The operation of the multiplier that depends on the configuration mode can be described as

follows: When CM = ‘1’, one 8*8 full-width multiplication is carried out. Since in this mode

all the PPs contribute to the final result (P0−P15) it can be said that RTDBC and RRBC work

as normal bypass logic cells. The reconfigurable cells along with TDBA and MRBA are turned

off that depends on the nullity of partial products.

Conversely, when CM = ‘0’, two independent 4*4 multiplications can be performed. In this

mode, the partial products enclosed in dotted box in Fig.3.3 do not contribute to the final result.
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Figure 3.4: (a) Proposed reconfigurable multiplier architecture with bypass computation cells
(b) Reconfigurable row and column bypass cells with mode bit, CM

Therefore, RTDBC and RRBC computation cells corresponding to these PP bits are disabled

in Fig.3.4. This helps in minimizing the unnecessary transition activity in the multiplier.

Finally, the PPs out of the bypass cells are accumulated to two rows regardless of the mode

of operation. These rows are eventually reduced to final product using a scalable Ladner-Fisher

prefix adder discussed in section 3.2.3.

The reason for implementing the proposed multiplier with different cells (two dimensional

and row bypassing) is to avoid carry problem that occurs when both row and column-bypassing

are applied simultaneously. For example, in Fig.3.5 (a section of proposed multiplier high-
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Figure 3.5: A section of the proposed reconfigurable multiplier

lighted in dotted box in Fig.3.4), assume both column input B1 and row input A2 are zero and

the carry-input C1,2 is ‘1’. In such a case, the respective computation cell will be disabled and

carry output C2,1 is ‘1’ due to bypassing. If A3 is ‘1’, C2,1 is lost due to column-bypassing.

This introduces errors in the multiplication. To overcome this problem, the proposed multiplier

has 2-dimensional cells (TDBC / RTDBC) only in the first two rows and the first and the last

columns in which the carry problem does not occur, as illustrated in Fig.3.4. The remaining

portion of the multiplier should have different types of logic cells which are different from RT-

DBCs. The carry problem is solved using row-bypassing cells (MRBA/RRBC) built with less

number of logic gates.

3.2.2.1 Reconfigurable Two-Dimensional Bypass Cell (RTDBC)

The bypassing scheme in existing two-dimensional bypass approaches [12,54] consists of a full

adder and additional logic circuitry. The reconfigurable two-dimensional bypass cell (RTDBC)

in this work however is designed as per the Table 3.2. Clearly, the truth table of the RTDBC

cell is simple and can be implemented only with a few logic gates. In RTDBC, the unnecessary

logic computations are disabled using internal tri-state buffers (ITBs). The EX-OR used in this

cell is a 4-transistor type with cascaded inverter for driving the output [55]. As a result, the area

and power overhead are reduced.

Figure 3.6 shows a schematic of the reconfigurable two-dimensional bypass cell. As illus-
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Table 3.2: Truth Table of reconfigurable two-dimensional bypass adder cell (RTDBC)
CM A B Cout Sout

0

0 0 C Sin
0 1 C Sin
1 0 C Sin
1 1 C Sin

1

0 0 C Sin
0 1 C Sin
1 0 0 Sin
1 1 Cin +Sin Cin } Sin

trated in Fig. 3.6, ITBs that are augmented with 2-input NAND gate and inverters form the

input to the MUXs. When the input CM is ‘0’, both the NAND and inverter logic are disabled

and the MUX logic passes C and Sin to the outputs Cout and Sout respectively. For the case when

CM and the row input A is ‘1’, the output Cout depends on the column input B as shown in Fig.

3.6 . However, when row input A is ‘0’, the inverter logic gates are disabled and the output Cout

depends on input C while Sout follows the input Sin. Hence, using RTDBC, power consumption

can be reduced.

3.2.2.2 Reconfigurable Row Bypass Cell (RRBC)

The reconfigurable row bypass cell (RRBC) has the capability to bypass when the row element

is zero. The truth table of the RRBC illustrated in Table 3.3 is simple and can be implemented

with a few logic gates instead of using a full adder and additional logic. Further, RRBC does not

have the carry problem which is unlike RTDBC. To reduce the power consumption in RRBC,

ITBs are used to disable computation in cases where it is unnecessary. Figure 3.7 illustrates the

schematic of RRBC.

Table 3.3: Truth Table of reconfigurable row-bypass cell (RRBC)
CM A B Cout Sout

0 0 0 C Sin
0 0 1 C Sin
0 1 0 C Sin
0 1 1 C Sin
1 0 0 C Sin
1 0 1 C Sin
1 1 0 Cin.Sin Cin ⊕ Sin
1 1 1 Cin +Sin Cin } Sin
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Figure 3.6: Logic schematic of RTDBC

A typical RRBC consists of ITBs, 2-input NOR gate, 2-input NAND gate, and inverters

in front of MUXs. The EX-OR and EX-NOR gates used in this cell are 4-transistor type with

cascaded inverter for driving the output [55]. When the input CM is ‘0’, the ITB disables the

logic gates and the MUX logic passes C and Sin to the outputs Cout and Sout respectively. For

the case when CM is ‘1’ and the row input A, the output Cout depend on the column input B as

shown in Fig.3.7. However, when row input A is ‘0’, the inverter logic gates are disabled and

the output Cout depends on input C while Sout follows the input Sin.

3.2.3 Reconfigurable Ladner-Fisher Prefix Adder

The partial products are reduced to two rows using bypass computation cells at PPR level and

are converted to a product using a final adder. This adder implementation is based on Ladner-
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Fischer [9] adder architecture that is known to have a good trade-off between area and the

performance .

The Ladner-Fischer architecture illustrated in Fig.3.8 is modified to support either a one

8-bit addition or two 4-bit additions. Since the focus in this work is reconfigurability, an AND

gate is inserted in the carry propagation path and one of its inputs is connected to configuration

mode (CM). If the control bit CM is ‘1’, the adder will operate as a one 8-bit adder while if it

is ‘0’, the carry propagation is broken and the adder operates as two independent 4-bit adders.

This adder facilitates the proposed multiplier to carry out either one 8-bit multiplication or two

4-bit multiplications.

63



3.3. SIMULATION AND SYNTHESIS

CM

1234567 0

S0S1S2S3S4S5S6S7

G*i
P*i-1 G*j P*j-1

G*i:j

G*i

P*i-1:j-1 P*i-1:j-1G*i:j

P*i-1 G*j

P*j-1

ai biai bi

si
si

Figure 3.8: A reconfigurable 8-bit Ladner-Fisher prefix adder

3.3 Simulation and Synthesis

Detailed simulations of the proposed multiplier have been carried out and a comparison with

similar designs existing in the literature has been made. For a fair comparison, existing row-

bypass [10] and column-bypass [11] designs are independently combined with twin-precision

[14] to form a multiplier. For example, twin row-bypass multiplier is obtained by incorporating

row-bypass logic into twin-precision multiplier. Similarly, twin column-bypass is formed using

column bypass logic with twin-precision multiplier.

All the multiplier designs with bypass schemes given in Table 3.4 including the proposed

one have been described structurally using Verilog HDL and simulated using Cadence Incisive

Unified Simulator (IUS) v6.1. These multipliers have been mapped on to TSMC 180 nm tech-

nology slow-normal library (operating conditions 1.8 V, 25°C) using cadence RTL compiler

v7.1. Inputs were set to have a toggle rate of 50% and a frequency of 1GHz for calculating

dynamic power.

Table 3.4 presents performance metrics such as area, delay, power, and power-delay product

for the 8-bit reconfigurable multiplier with different bypass schemes including the proposed

one. Figures 3.9-3.12 provide a graphical comparison of the same.
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Table 3.4: Area, delay and power of various multipliers with various bypassing schemes

Mode Multiplier
Area
9µm23

]
change

Delay
9ps3

]
change

Power
9nW3

]
change

Power CDelay
product
91063J

]
change

Twin precision [14] 586 94] 2094 134] 13454 105] 28.1 140]

Twin Row [10] 660 105] 2013 127] 13254 103] 26.6 132]

CM1 Twin Column [11] 630 101] 1960 123] 13142 102] 25.7 128]

Proposed 625 100] 1560 100] 12838 100] 20 100]

Twin precision [14] 586 94] 2094 140] 13454 129] 28.1 181]

CM0 Twin Row [10] 660 105] 1905 127] 11073 106] 21 136]

Twin Column [11] 630 101] 1844 123] 10867 104] 20 129]

Proposed 625 100] 1492 100] 10379 100] 15.48 100]

It is clear from the Table 3.4 and Fig.3.9 that the proposed multiplier in mode 1 (CM1)

achieves 25 to 34% lesser delay compared to the existing designs.
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Figure 3.9: Latency of various bypass multiplier schemes

It can also be seen from the Table 3.4 (CM1) and Fig.3.10 that the proposed design con-

sumes 2 to 5% lesser power than the existing ones. This reduction in power dissipation is due

to the reduction in switching activity arising out of disabling the computational units.

From Table 3.4 (CM1) and Fig.3.11, it can be observed that there is also an improvement of

28 to 40% in power-delay product. This is due to the saving achieved in both power and delay

65



3.3. SIMULATION AND SYNTHESIS

Twin precision
[14]

Twin Row [10]
Twin Column

[11]
Proposed

Area 586 660 630 625

540

560

580

600

620

640

660

680

A
re
a
(µ
m

2
)

Twin
precision [14]

Twin Row
[10]

Twin Column
[11]

Proposed

Power 13454 13254 13142 12838

12500

12600

12700

12800

12900

13000

13100

13200

13300

13400

13500

13600

P
o
w
e
r
(n
W
)

Figure 3.10: Comparison of various bypass multiplier schemes in terms of power

mentioned above.Thus the proposed multiplier with a new 2-dimensional bypass scheme is

found to be better in terms of power, delay and power-delay product when compared to earlier

designs.

Twin precision
[14]

Twin Row [10]
Twin Column

[11]
Proposed

Area 586 660 630 625

540

560

580

600

620

640

660

680

A
re
a
(µ
m

2 )

Twin
precision

[14]

Twin Row
[10]

Twin
Column
[11]

Proposed

Power Delay product 28.1 26.6 25.7 20

0

5

10

15

20

25

30

P
o
w
e
r-
d
e
la
y
(f
J)

Figure 3.11: Power-delay product of various bypass multiplier schemes

It is evident from the Table 3.4 (CM1) and Fig.3.12 that the area overhead of row bypass

scheme alone is 9% while this increase is only 6% in the proposed design even after incorpo-

rating both row and column bypassing logic. This is because of the usage of efficient adder
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bypass cells which take up less area and are also fast.
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Figure 3.12: Comparison of various bypass multiplier schemes in terms of area

It can also be seen from the Table 3.4 (CM0) that the proposed design achieves 23-40% and

4-29% lesser delay and power respectively compared to the existing designs in mode 0 (CM0).

Also, an improvement of 29 to 80% in power-delay product is achieved. This reduction of

delay is because of the new bypass adder cells that have shorter critical path compared to the

conventional bypass cells. Another reason for the improvement in delay is due to bypassing of

the adder cells whenever the partial products in the PP matrix are zero. Accordingly, the more

the number of zeroes are in the PP matrix, the faster will be the design. For this reason, the

power improvement achieved in mode 0 is much larger compared to mode 1.

3.4 Conclusions

In this chapter, a reconfigurable multiplier with two dimensional bypassing scheme has been

proposed. In normal operation mode, the reconfigurable multiplier performs 8-bit multiplica-

tion. For applications where accuracy can be relaxed, the multiplier can perform 4-bit multi-

plication while expending only a fraction of the energy of a conventional 8-bit array multiplier.

Also, when performing two 4-bit parallel multiplications within an 8-bit multiplier only one

half of the logic is used.
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Further, to reduce the dynamic power, a new 2-dimensional bypassing technique is in-

corporated into the multiplier architecture. The bypass technique uses selective disabling of

computation cells when the column and/or row partial products are zero. This is achieved by

incorporating the new bypassing computational cells ( RTDBC and RMRBC) that improve the

power efficiency and also facilitate reconfigurability of the multiplier.

The proposed multiplier with the new 2-dimensional bypass scheme performs better than

other designs in terms of delay (a reduction of 34%) and power (a reduction of 5% ) resulting

in a overall reduction of 40% in power-delay product. The delay advantage in the proposed

design is due to the RTDBC and RMRBC cells that are simple and take up less logic unlike in

the existing designs.
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Chapter 4

An Improved Fixed-Width Recursive

Binary Multiplier

4.1 Introduction

Most of the signal and image processing applications possess an inherent quality of error re-

silience and hence can tolerate error up to a certain limit in computations [56]. In such appli-

cations, savings in power are achieved by pruning the data path units [57] such as truncating

a multiplier. Truncation however may lead to errors in computing and therefore it‘s always a

challenge between the amount of error that can be tolerated in an application and the advantage

that can be obtained in terms of it‘s implementation as reflected by the parameters such as area,

latency and power. Thus, the focus of this chapter is to implement and validate a fixed-width

multiplier with improved efficiency for error resilient applications.

A large variety of fixed-width (or truncated) multiplier designs has been proposed in the

literature and found to be a potential solution for efficient implementation. In these designs,

most of which are either array or recursive-based [17,18], the least significant bits (LSBs) of the

partial product matrix are removed and an error compensation function is added in their place

[21–23]. Multiplier designs based on recursive technique are faster and have the regularity of

array multipliers making them the most suitable candidate for VLSI implementation [19].

In this work, a recursive binary multiplier architecture based on Karatsuba algorithm [16]
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is chosen. This architecture possesses an inherent hierarchical structure that consists of several

sub-multipliers making it suitable for fixed-width applications [18]. Thus, rather than modi-

fying the entire multiplier structure, the sub-multiplier in the least significant position can be

removed and replaced with a data-dependent correction term. Following this, a new correction

scheme is developed in this work for fixed-width recursive multipliers. This scheme enables

tuning of the accuracy through a new error compensating function achieved in a systematic

manner. The proposed and the existing truncation schemes have been applied on an image

sharpening algorithm and compared in the context of certain well-known image processing

benchmarks such as Lena, Cameraman and Pirate for performance.

The rest of the chapter is organized as follows. The proposed fixed-width recursive multi-

plier architecture is described in Section 4.2. Performance analysis of both the proposed and

the existing multiplier architectures is carried out and compared in Section 4.3. They are used

in an image sharpening algorithm to quantify their performance, results of which are provided

in Section 4.4.

4.2 A New Approach to Error Correction in Fixed-Width

Recursive Multipliers

The proposed architecture is based on the fact that the error after removing the least signif-

icant sub-multiplier ALBL (which contributes minimum to the final result) is always positive

and hence the multiplication product obtained is less than the exact value. Error due to this

approximation is further reduced by using a data-dependent correction function that is based

on the least significant partial product columns within ALBL that are not formed.

A typical recursive multiplication of two inputs A and B, each of 2n-bit width, results in

four sub-multipliers as illustrated in Fig.4.1. The PPs generated in these sub-multipliers are

reduced using the partial product reduction structure [5] as mentioned earlier.

The product (Pexact) after multiplication is given by,

Pexact = PH1 +PH2 +PH3 +PL (4.1)
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AL* BL

2n 2n

A1B1

Partial Product Reduction

AH* BL

AL* BHAH* BH

Product, Pexact

Figure 4.1: A 2n*2n recursive multiplication structure illustrating sub-multipliers

Where PH1 = AHBH , PH2 = AHBL, PH3 = ALBH and PL = ALBL

In the proposed scheme, as in the other scheme, the sub-multiplier (ALBL) that contributes

minimum to the final result is removed. Further, error due to this approximation is reduced

using a data-dependent correction function (CF0) which is based on the least significant partial

product columns within ALBL that are not formed.

The expression for approximate product (Papprox) after removing ALBL and subsequent cor-

rection is as follows:

Papprox = PH1 +PH2 +PH3 +CF0 (4.2)

Since the correction function (CF0) does not include all the PP columns of ALBL, it leads

to an error. Further, the error magnitude and the hardware complexity depend on the function

selected.

The error due to replacement of ALBL using the correction function is determined as,

Error, e0 = ALBL−CF0 (4.3)
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Where

ALBL =
n−1

∑
j=0

n−1

∑
i=0

aib j2i+ j (4.4)

The operation of the proposed approach is demonstrated on a 8*8 recursive multiplier and

error analysis carried out. Figure.4.2 illustrates four sub-multipliers and their corresponding

partial products in a 8*8 recursive multiplier. As mentioned earlier, the sub-multiplier ALBL is

removed and replaced with the correction function (CF0).

a
3
b
4

a
2
b
4 a1b4 a0b4

a
4
b
4

a
5
b
4a6b4

a
7
b
4

a
0
b
7

a
1
b
7

a2b7
a3b7a4b7a5b7

a6b7a7b7

a
1
b
6

a
0
b
6

a
2
b
6

a
3
b
6

a
4
b
6

a
5
b
6a

6
b6a

7
b
6

a2b5 a1b5
a
0b5

a
3
b
5

a4b5a
5
b
5

a
6
b
5

a
7
b
5

a
7
b
0

a6b1

a6b 0

a5b1

a5b0

a4b1

a4b0

a3b1

a3b0

a2b1

a2b0

a1b1

a1b0

a0b1

a b

a7b1

0 0

212223242526272829210211212213214215

a5b 2 a4b2
a3 b2 a2b2 a1b2

a0b2a6b2
a7b2

a 4 b 3 a a
3

a5b3a6b3a7b3 a3b3 2
b
3 1b3

a
0
b

Proposeddesign
withtwocolumn

correction

20

H LA B
L LA B

L HA BH HA B

Figure 4.2: Partial product matrix of a fixed-width recursive multiplier with two most signifi-
cant columns considered for correction

The proposed approach considers the most significant partial product columns of ALBL for

the correction function. Based on the number of columns considered, the accuracy and hard-

ware requirements vary. The variation of average error with number of columns (considered

for correction) is carried out on a 8*8 recursive binary multiplier mentioned above, as illus-

trated in Fig.4.3. The plot shows the variation of average error as a function of the number of

most significant partial product columns of ALBL. It can be observed from the figure that the

average error reduces with the increase in number of partial product columns, though with an

area overhead. Further, it can be noted that the average error drops very sharply with only two

most significant columns considered. Beyond this point, even with the inclusion of more partial

product columns the rate at which the average error decreases is less.
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Figure 4.3: Average error Vs Number of most significant partial products columns considered
for correction in a 8 * 8 fixed-width recursive multiplier

4.2.1 Error Analysis for the proposed correction function

For the sake of understanding, error analysis when two most significant columns of ALBL (high-

lighted in a triangle in Fig.4.2) are considered for correction, is given below. The advantage

of the proposed method is that the partial product columns selected for correction have higher

weight when compared to those in the existing schemes. The correction function proposed in

this work thus tends to achieve better accuracy. The same is proved in Section 4.3.

A step-by-step implementation of unsigned multiplication using existing and the proposed

correction (where two most significant partial product columns are considered) schemes is

given in the numerical example 4.1 below .

Example 4.1.

A = (25)10 = (00011001)2

B = (20)10 = (00010100)2

Actual Product, Pexact = A∗B = (500)10 = (0000000111110100)2

Product using recursive multiplier with average value correction terms, Scheme 2 [18] :

Papprox2 = (475)10 = (0000000111011011)2

Average error (%) = (Pexact–Papprox2)
Pexact

= (500−475)
500 ∗100 = 5
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Product using recursive multiplier with 1-bit correction, Scheme 3 [18] :

Papprox1 = (464)10 = (0000000111010000)2

Average error (%) = (Pexact–Papprox1)
Pexact

= (500−464)
500 ∗100 = 7.2

Product using recursive multiplier with proposed correction (two most significant columns

considered for correction) scheme :

Papprox = (0000000111110000)2 = (496)10

Average error (%) = (Pactual–Papprox)
Pexact2

= (500−496)
500 ∗100 = 0.8

It can be observed from the above analysis that the proposed correction with two most

significant columns considered for correction achieves better accuracy when compared to the

existing schemes.

4.2.1.1 Hardware Implementation of the Proposed Fixed-Width Recursive Multiplier

The hardware block diagram of a 8∗8 fixed-width recursive multiplier is illustrated in Fig.4.4.

The sub-multipliers AHBH , ALBH , AHBL are implemented using 4*4 binary array multipli-

ers [3] while the compensation function essentially includes the two most significant partial

product columns highlighted in triangle in Fig.4.2. The PPs corresponding to sub-multipliers

along with the correction function are reduced using a tree carry save adders and final adder. A

detailed PP reduction mechanism is explained below.

AH AL BH BL

Multiplier
AHBH

Multiplier
ALBH

Multiplier
AHBL

Compensation
Function

Carry Save Adder (CSA) Tree

Product

Final Adder

Figure 4.4: A new fixed-width recursive multiplier hardware
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Figure 4.5 illustrates the reduction of PPs generated from individual sub-multipliers and

compensation function using a CSA tree structure. The partial products shown in grey color

corresponding to ALBL are discarded and a correction function highlighted in a triangle is

added. As mentioned earlier, the CSA structure is formed using full adder (3:2 counter) and

half adder (2:2 counter) circuits as shown in Fig.4.5(c). The sum output (S), from a full or half-

adder at one stage places a dot in the same column at the next stage. A carry output (Co) from

a full or half-adder at one stage places a dot one order of magnitude higher i.e., in the column

to its left, at the next stage. As shown in Fig.4.5(d), three dots joined by a solid diagonal line

indicates that these PPs are outputs of (3,2) counter while two dots joined by diagonal line in-

dicates that these PPs are outputs of (2,2) counter. Consequently, the PP matrix is accumulated

to a height of two in four levels using a carry save adder (CSA) tree structure, formed using

full adder and half adder as shown in Fig.4.5(a), that are eventually reduced to a product using

75



4.3. RESULTS

a final ripple carry adder [6] .

4.3 Results

In order to compare the proposed fixed-width multiplication scheme with the existing ones,

error analysis has been carried out using MATLAB to check the improvement in precision.

This is followed by unit gate level modeling and synthesis based analysis to understand the

hardware savings achieved.

4.3.1 Error Analysis

MATLAB program has been used to simulate various multiplier architectures including the pro-

posed one. For the simulation purpose, we randomly selected 10,000 inputs from all possible

input patterns (i.e., 0–65 535). Error analysis has been carried out to compute the average and

maximum error in the proposed and the existing schemes [18,21–23]. An example of calculat-

ing the average error has already been illustrated in example 4.1 given earlier. A comparison

of the errors is provided in Table 4.1. It may be noted that the proposed multiplier with two

most significant columns is taken as the reference (ratio of ‘1’). For example, constant correc-

tion [23] scheme has 15.2X error in comparison with the reference design. Also, lesser ratio

implies better precision.

For a fair comparison, the following have been taken into consideration. The existing

schemes have correction function which is fixed and hence the maximum and average error

shown in Table 4.1 do not mention the number of most significant columns considered for

correction unlike the proposed multiplier.

The fixed-width recursive multiplier schemes [18] including the proposed one perform bet-

ter in terms of precision compared to the fixed-width array multipliers [21, 22]. This is due to

the fact that in all the recursive architectures the sub-multiplier ALBL that contributes marginally

to final result is discarded.

It can be seen that in the proposed scheme when more number of columns is considered,

the average error reduces and hence the accuracy of multiplier improves. Results in Table 4.1
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Table 4.1: An error comparison of various multiplier architectures
Multiplier scheme Most

significant
columns

considered

Average error Ratio Maximum error Ratio

Constant
correction [23] - 0.4 15.2 4 4.77

Constant
correction [21] - 0.06 2.28 3 3.58

Variable
correction [22] - 0.06 2.28 1.4 1.67

Direct truncated
recursive
multiplier [58]
(Without correction)

- 0.059 2.1 1 1.19

Fixed-width recursive
multiplier with average
value correction
(Scheme 2) [18]

- 0.037 1.4 0.875 1.04

Fixed-width recursive
multiplier with 1-bit
correction (Scheme
3) [18]

- 0.055 2.24 1.25 1.49

Proposed recursive
fixed-width recursive
multiplier

1 0.055 2.24 1.25 1.49
2 0.0263 1 0.837 1
3 0.0229 0.87 0.810 0.96
4 0.0189 0.71 0.782 0.93

show that the new recursive scheme with two most significant columns as correction has an

improvement in average error of 1.4 to 15.2X compared to the existing designs. Similarly,

an improvement of 1.04 to 4.77X in maximum error is achieved. It can also be seen that an

improvement of 1.5 to 15.3X and 1.7 to 15.5X in average error is achieved, if column sizes of

‘3’ and ‘4’ are included for correction respectively. It can be observed that significant reduction

in error is obtained when only two most significant columns are considered for correction.

Although, there is an increase in the accuracy when the number of columns considered is more

than two, it is only nominal which comes at the cost however of increased hardware, as shown

in the next subsection.
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4.3.2 Area and Delay Comparison of Various Multipliers using Unit Gate

Analysis

Different correction schemes of various multipliers have been analyzed using unit gate model-

ing as this approach provides a decent model for computing the real cost of each component.

Further, it does not depend on any synthesis tool [59]. Design metrics such as area (A) and

delay (D), have been considered and compared for all the designs. Assumptions made while

calculating the area of components are shown in Table 4.2.

Table 4.2: Assumptions made for unit gate modeling
Gates Count

2- INPUT AND, OR, NAND, NOR 1
M- INPUT AND, OR, NAND, NOR M-1

2- INPUT XOR, XNOR, MUX 2

Each two-input gate (AND, OR, NAND, NOR) is counted as one gate while EX-OR and

EX-NOR are counted as two gates for area [59]. Moreover, an m-input gate is assumed to be

composed of a tree of 2-input gates and the effects of wiring, buffering and inverting costs are

neglected.

Table 4.3: Unit gate modeling analysis of various multiplier architectures
Multiplier scheme Most

significant
columns

considered

Area Percentage

Accurate recursive multiplier [19] - 470 124%
Direct truncated recursive multiplier
(Without correction) [58] - 364 96%

Fixed-width recursive with average value
correction (Scheme 2) [18] - 396 104%

Fixed-width recursive with 1-bit
correction (Scheme 3) [18] - 367 97%

Proposed recursive fixed-width recursive
multiplier

1 367 97%
2 379 100%
3 401 106%
4 421 111%

The results of unit gate modeling of various 8-bit multipliers, including the proposed mul-

tiplier, (with various number of columns considered) have been compared and given in Table
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4.3. The proposed multiplier with two most significant columns as correction is taken as the

reference. It can be seen that the hardware of the proposed design increases with the number

of columns considered for correction. It may be observed that there is an area overhead of 4%

of the proposed multiplier compared to the best performing recursive multiplier when only two

columns are considered for correction while it increases to 10% and 15% for column sizes of

three and four respectively. Thus, taking into account the precision improvement and hardware

required, it can be concluded that including two most significant columns for correction results

in a good trade-off between the precision and area of the hardware.

4.3.3 Hardware Synthesis Results

For a fair comparison, all the multiplier designs of 8-bit width have been modeled with Verilog

data flow modeling and simulated using cadence incisive unified simulator (IUS) v6.1 and

mapped on to TSMC 180nm technology, slow-normal library using cadence RTL compiler

v7.1. Hardware synthesis has been carried out to compare important implementation metrics

such as area, delay and power.
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Figure 4.6: A Comparison of the proposed fixed-width recursive multiplier with various exist-
ing multipliers in terms of area

Table 4.4 presents performance metrics such as area, delay and power for the 8-bit mul-

tiplier with different correction schemes including the proposed one. Also included in the

Table is performance in percentage of various designs in comparison with the proposed de-

signs. Further, Figs.4.6-4.8 provide a graphical comparison of area, delay and power of various
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Table 4.4: Area, delay and power of various multipliers with correction schemes
Multiplier scheme Area

(µm2)
Percentage

(%)
Delay
(ps)

Percentage
(%)

Power
(nW )

Percentage
(%)

Accurate recursive
multiplier [19]

1157 124% 2120 115% 40834 114%

Direct truncated
recursive multiplier

(Without
correction) [58]

913 98% 1715 93% 35196 98%

Fixed-width
recursive with
average value

correction (Scheme
2) [18]

975 105% 1952 106% 36405 102%

Fixed-width
recursive with 1-bit
correction (Scheme

3) [18]

917 99% 1795 97% 35245 98%

Proposed
fixed-width

recursive multiplier
with two column

correction scheme

927 100% 1843 100% 35849 100%

multipliers including the proposed one.

It is evident from Table 4.4 and Figs.4.6 & 4.7, that an improvement of up to 5% and 6%

in area and delay respectively is achieved by the proposed scheme compared to scheme 2 [18]

which comes closest in terms of the precision. It should however be remembered that scheme

2 has a precision that is 40% less than that of the proposed one. While other schemes may

marginally perform better in terms of area and delay, they are way off in terms of the precision

compared to the existing one. Thus, it can be concluded that the proposed fixed-width multiplier

scheme outperforms all other existing schemes in the literature.

4.4 Benchmarking Various Multiplication Schemes-Application

to Image processing

Image sharpening is an important image enhancement technique employed in image processing

applications. The computational process of sharpening an image involves a number of fixed
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Figure 4.7: A Comparison of proposed fixed-width recursive multiplier scheme with various
existing multipliers in terms of delay
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Figure 4.8: A Comparison of proposed fixed-width recursive multiplier scheme with various
existing multipliers in terms of power

point multiplications. It is therefore a good application to prove the efficacy of the proposed

fixed-width recursive multiplier.

4.4.1 Image Sharpening Algorithm

Human perception is highly sensitive to edges and fine details of an image. Since images es-

sentially consist of high-frequency components their visual quality is corrupted if these high

frequencies are removed. Conversely, increasing the high-frequency components of an image

improves the image quality. Image sharpening algorithm described in [60] is one such enhance-

ment technique which highlights the edges and fine details in an image.
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4.4. BENCHMARKING VARIOUS MULTIPLICATION SCHEMES-APPLICATION TO
IMAGE PROCESSING

This algorithm described below, accepts an image, processes it, and produces an image of

high quality. Suppose I is the original image, the processed image S is described using the

expression

S (x,y) = 2I (x,y)−M (4.5)

where M = 1
273 ∑

2
i=−2 ∑

2
j=−2 H (i+3, j+3) I (x− i ,y− j)

and H is a matrix defined as

H =



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


Since this expression involves a number of multiplications, an exact multiplier such as an

array multiplier can perform these operations accurately thereby producing an image of high

quality. On the other hand, using an approximate multiplier would result in an image of certain

quality which is quantified using established metrics such as mean square error (MSE) and peak

signal to noise ratio (PSNR).

The MSE represents the loss of information in the image and is expressed as,

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I (i, j)−K (i , j)]2 (4.6)

where MAXI represents the maximum possible pixel value of the image.

The peak signal to noise ratio (PSNR) in dB is expressed using MSE as follows:

PSNR in dB = 10.log10

(
MAX2

I
MSE

)
(4.7)

While the use of approximate multiplier may affect the image quality, it has the advantage

of savings in terms of area and delay as compared to an accurate multiplier. In what follows,

the performance of the existing recursive multipliers (Schemes 2 and 3) [18] and the proposed

multiplier with two column correction is studied and compared with reference to the image
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sharpening algorithm. The algorithm is applied to blocks of 5*5 pixels on a set of standard

images ( Cameraman, Lena and pirate). The exact multiplications are replaced by approximate

multiplications using existing multipliers and the proposed multiplier, while addition, subtrac-

tion and division operations are carried out using accurate techniques. The metric MSE is

computed by finding the mean of squares of difference in pixel values between original im-

age and the processed image using approximate multipliers and these values are substituted in

equation (4.7) to calculate PSNR values.

Table 4.5 provides a comparison of these metrics on a set of standard images ( Cameraman,

Lena and pirate). As is well known, the quality of image is decided by the magnitude of

MSE and PSNR values. It is evident from Table 4.5 that images processed with the proposed

multiplier have better MSE and PSNR compared to the images processed using the schemes

mentioned in [18].

Table 4.5: A comparison of values of MSE and PSNR for benchmark images using various
multiplier schemes

Image Metric Scheme 3 [18] Scheme 2 [18] Proposed
Cameraman

PSNR (dB)
43.2 43.6 44.1

Lena 39.2 39.3 39.7
Pirate 42.7 43.2 43.8

Cameraman
MSE

3.1 2.8 2.5
Lena 7.8 7.5 7
Pirate 3.5 3.1 2.7

The results are only expected since the proposed scheme has less average and maximum

error compared to schemes mentioned in [18] as illustrated in Figs.4.9 & 4.10.

Further, the performance of the proposed multiplier, in terms of both PSNR and MSE, may

be understood by observing the images processed by it. Figure.4.11 illustrates the images that

are processed using exact (array) and the proposed multiplier. It can be observed that the images

of Cameraman, Lena and Pirate processed with the proposed multiplier look very similar to the

original ones. Thus, it can be concluded that the proposed fixed-width recursive multiplier has

a better performance compared to all other similar and existing multipliers.
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Figure 4.9: Average errors of various multipliers
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4.5 Conclusions

In this chapter, a reconfigurable multiplier design with a new truncation technique targeted for

error resilience applications has been proposed. In this scheme, the sub-multiplier is replaced

ALBL with a data-dependent correction term. The heuristic correction function retains the por-

tion of partial product matrix that is more relevant and thus helps to achieve higher accuracy

compared to the earlier works. Also, the hardware overhead due to correction scheme is nomi-

nal.

Exhaustive analysis was carried out to compute the average and maximum error bound

in the proposed and existing recursive multiplier schemes. Results show 15.2X times and

3.7X times improvement in average error and maximum error respectively. The error analysis

84



4.5. CONCLUSIONS

(a) Exact Multiplier (b) Proposed Multiplier

(a) Exact Multiplier (b) Proposed Multiplier

(a) Exact Multiplier (b) Proposed Multiplier

Figure 4.11: Cameraman, Lena and pirate Images obtained using exact and the proposed mul-
tiplier

show that the proposed multiplier scheme represent, in most cases, a better trade-off between

accuracy and complexity.

Further, the proposed architecture efficiently performs N-bit fixed-width multiplications.

For applications with high demands on precision, the multiplier is capable of performing two

independent N/2-bit full precision multiplications in parallel.
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Chapter 5

An Iterative Logarithmic Multiplier with

Improved Precision

5.1 Introduction

In recent years, logarithmic number system (LNS) has been increasingly used as an alternative

to the binary number system as it converts multiplication to addition resulting in simplified

hardware [61]. However, they suffer from inherent error and any efforts in improving their

accuracy would help find their increased usage in arithmetic computations with efficient hard-

ware. In this chapter, a novel binary logarithmic multiplier with improved precision is designed

and demonstrated to perform better than the existing designs. Also, the multiplier has been

synthesized and it‘s performance metrics such as area, delay and power have been shown to be

better than those of the existing designs.

Throughout this chapter, the symbols ‘ ~ ’ and ‘ ’ ’ are used to denote 1‘s and 2‘s comple-

ment while the symbols ‘ & ’ and ‘ | ’ denote logic AND and logic OR operations respectively.

Rest of the chapter is organized as follows: Mathematical modeling and hardware architec-

ture of the proposed scheme are presented in Section 5.2. Detailed error analysis and hardware

synthesis results of various iterative logarithmic multipliers including the proposed one are pre-

sented and compared in Section 5.3. Proposed and the existing schemes have been applied on

an image sharpening algorithm to quantify their performance, results of which are provided in
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Section 5.4.

5.2 Proposed Approach

The contributions of this work include speculation of carry which results in better precision

when compared to BIM and TEC approaches. Further, savings in hardware is achieved using

the fractional predictor and adapted truncation scheme proposed in this work. This section

presents the mathematical modeling while the hardware implementation details are discussed

in the subsequent sections.

5.2.1 Mathematical Analysis of the Proposed Scheme

Similar to Babic’s approach, equation (2.26) is expressed when carry = 1 (x1 + x2 ≥1 ) as

N1 ∗ N2 = 2k1+k2+1(x1 + x2)+2k1+k2(x
′
1 ∗ x

′
2)

= 2k2+1 ∗ f1 +2k1+1 ∗ f2 + f
′
1 ∗ f

′
2

= A1 + f
′
1 ∗ f

′
2 (5.1)

Whereapproximateproduct, A1 = f1 ∗ 2k2+1 + f2 ∗ 2k1+1 (5.2)

Combining the equations 2.28 and 5.1, the final product terms based on carry information can

be obtained as,

N1 ∗ N2 = A0 +( f1 ∗ f2), x1 + x2 < 1 (5.3)

N1 ∗ N2 = A1 +( f
′
1 ∗ f

′
2), x1 + x2 ≥ 1 (5.4)

where A0 and A1 are the approximate product terms, f1 ∗ f2 and f
′
1 ∗ f

′
2 are the correction

terms that form the input to the next iteration based on carry condition. Since the carry infor-

mation is available prior to the completion of an iteration, error correction can be performed

concurrently in hardware.
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While this approach leads to improved precision, it also results in area overhead. Thus, a

new truncation scheme for logarithmic multiplication is proposed which when combined with

the above approach results in area savings.

5.2.2 A New Approach to the Approximation of Logarithmic Multiplier

The proposed approximation of logarithmic multiplier is based on the fact that the error due to

Mitchell approach is always positive [59] and hence the multiplication product obtained is less

than the exact value. Further, the least significant bits of these fractional portions ( f1 ∗2k2 , f2 ∗

2k1 , f1 ∗2k2+1 and f2 ∗2k1+1) are inaccurate. Thus, rounding off and manipulating these inexact

terms aid in achieving substantial hardware savings without compromising on precision. On

the other hand, the term 2k1+k2 (leading one) contributes to integer portion which is an exact

value and hence need not be approximated.

The product terms in equations 5.3 and 5.4 after truncation (Tt) of fractional portions are

written as follows:

N1 ∗N2 = 2k1+k2 +Tt( f1 ∗2k2)+Tt( f2 ∗2k1)+ f1 ∗ f2,

x1 + x2 < 1 (5.5)

N1 ∗N2 = Tt( f1 ∗2k2+1)+Tt( f2 ∗2k1+1)+ f
′
1 ∗ f

′
2,

x1 + x2 ≥ 1 (5.6)

where approximate product terms without and with carry are,

A0
t = 2k1+k2 +Tt( f1 ∗2k2)+Tt( f2 ∗2k1) and

A1
t = Tt( f1 ∗2k2+1)+Tt( f2 ∗2k1+1) respectively. Here t denotes the truncation width.

A typical logarithmic multiplication of two inputs N1 and N2, each of n-bit width, results in

2n product bits. In the proposed truncated approach however, from these 2n fractional bits, only

t bits are retained. The remaining (2n− t) bits are replaced either by ‘1’ (rounding up) or ‘0‘

(rounding down), denoted as Tt,1 and Tt,0 respectively. In order to arrive at an optimal value of
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t, error analysis of an 8*8 logarithmic multiplier is carried out for one iteration as illustrated in

Fig.5.1. The plot shows the variation of average error as a function of the number of fractional

bits. The horizontal line gives the error without truncation (Twt), while the curves Tt,1 and Tt,0

provide the error due to truncation.

t,1

t,0

Number of Fractional bits

Figure 5.1: Average error Vs Number of fractional bits in 8 * 8 multiplication for one iteration

It can be seen from the figure that the average error without truncation (Twt) (considering

2n fractional bits) remains constant and is independent of truncation width. Also, it is evident

from Tt,0 plot that with the increase in truncation width(t), the average error decreases rapidly

and from t = 6 onwards, attains a value almost equal to that without truncation. Therefore, it

can be inferred that the first 6 MSB fractional bits alone are contributing to the precision of

the multiplication product in most cases. Similarly, from Tt,1 plot it can be inferred that for

t = 3 error is almost same as that without truncation with precision being the best for t = 4.

Therefore, it can be concluded that the average error obtained is minimum for T4,1 scheme

compared to all other cases.

Since the error in multiplication due to approximation should decrease with each iteration,

the viability of T4,1 truncation scheme alone for multiple iterations has been investigated. It

is however found that the result obtained using T4,1 method for first iteration is more than the

exact value and further with each successive iteration there is a probability for the error to

increase. Thus, utilizing T4,1 scheme alone for multiple iterations may not be desirable. Based

on the error simulations, it is observed that truncating with T6,0 in initial iterations and T4,1 in

the final iteration results in improved error and the same is proved in the example given below.
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Further, it should be noted that error plots obtained for 16* 16 and 32*32 multipliers will have

characteristics similar to that in Fig.5.1.

The step-by-step procedure of the proposed truncation approach for two iterations is illus-

trated in example 5.1. Initially, for both 1st and 2nd iterations, truncation method T6,0 is applied.

Next, T6,0 is applied in the 1st iteration with T4,1 in the 2nd iteration.

Example 5.1. Let the two binary numbers N1 and N2 be

N1 = (00110011)2 = (51)10; N2 = (01110111)2 = (119)10

Exactproduct ,Aexact is givenbyN1 ∗N2 = (6069)10

Case 1: T6,0 is considered in both iterations

Iteration 1:

1. Initialization:

(N1) = (110011)2 ; (N2) = (1110111)2

( f1) = (10011)2 ; ( f2) = (110111)2

(k1) = (101)2 = (5)10 ; (k2) = (110)2 = (6)10

The addition of f1 and f2 generates a carry satisfying the condition x1 + x2 ≥ 1 and hence

equation (5.6) is considered.

2. Left shift the fractional portions,

f1 ∗2k2+1 = (2432)10 ; f2 ∗2k1+1 = (3520)10

3. Truncate the fractional portion and compute the approximate product :

T6,0( f1 ∗2k2+1) = (2432)10 ; T6,0( f2 ∗2k1+1) = (3520)10

which after the 1st iteration is,

A1 = (5952)10 (5.7)
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4. Percentage average error accumulated after 1st iteration:

AverageError =
(

Aexact−A1

Aexact

)
= 1.92%

Iteration 2:

Since x1 + x2 ≥ 1 in the 1st iteration,

the inputs (N1 and N2) to this iteration are f
′
1 and f

′
2 of 1st iteration

1. Initialization:

(N1) = (01101)2 ; (N2) = (001001)2

( f1) = (101)2 = (5)10 ; ( f2) = (001)2 = (1)10

(k1) = (11)2 = (3)10 ; (k2) = (11)2 = (3)10

For the proposed design with truncation (T6,0), condition x1 + x2 < 1 is satisfied as addition of

f1 and f2 does not generate a carry and hence equation (5.5) is considered.

2. Left shift the fractional portions:

f1 ∗2k2 = (00101000)2 = (40)10; f2 ∗2k1 = (1000)2 = (8)10

3. Truncate the fractional portion and compute
(
A0):

T6,0
(

f1 ∗2k2
)
= (00101000)2 = (40)10,

T6,0
(

f2 ∗2k1
)
= (1000)2 = (8)10; 2k1+k2 = (64)10

Approximate product after the 2nd iteration is,

A0 = (112)10

4. Percentage average error accumulated after two iterations:
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Atotal = A1 +A0 = (6064)10

AverageError =
(

Aexact−Atotal
Pexact

)
AverageError = 0.082%

Case 2:

The product in the first iteration is computed using the T6,0 scheme while in the second

iteration T4,1 scheme is adopted

Iteration 1 :

From equation (5.7) we obtain the approximate product in the 1st iteration as,

ApproximateProduct
(
A1)= (5952)10

Iteration 2 :

T4,1( f1 ∗2k2) = (00101011)2 = (43)10,

T4,1( f2 ∗2k1) = (1000)2 = (8)10; 2k1+k2 = (64)10

A0 = (115)10

Combining the products obtained in the first and second iteration with T6,0 and T4,1 schemes

respectively, we get the product:

Atotal = A1 +A0 = (6067)10

The corresponding average error is given by,

AverageError = 0.032%

Thus, it is observed that lower error is achieved if T6,0 is used for initial iterations followed by

T4,1 in the final iteration.
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5.2.3 Truncated Iterative Multiplier (TIM) Hardware Implementation

The iterative multiplier scheme illustrated in Fig.5.2 is essentially an implementation of equa-

tions 5.5 and 5.6. It comprises of truncated basic logarithm blocks (TBLBs), decoder logic,

adder blocks and mask logic. Based on the binary numbers (N1 and N2), the TBLBs gener-

ate the characteristics and truncated fractional portions. The addition of characteristics k1 and

k2 obtained from the respective TBLBs is accomplished using the Adder 2 block. Likewise,

the sum of inexact fractional portions ( f1 ∗ 2k2)T and ( f2 ∗ 2k1)T obtained from the respective

TBLBs is found using the Adder 1 module. Based on carry information, the control signal

(m_fp) is activated by the modified fractional predictor (MFP). The truncated BLB and MFP

are presented later in Sections. 5.2.3.1 & 5.2.3.2.

TBLB

Adder2

Decoder

Proposed
Fractional
Predictor TBLB

Adder1

Mask

Adder3

1-bit

FP * 2

Array of
Muxes

m_fp

FP

N1 N2

k1

k2 I1

I2

Approximate Product (A)

(N1-2
K1 ) (N2-2

K2 )
(f2 2

k1)T

FP

(f1 2
k2 )T

2k1+k2

(f1 2
k2 )T +(f2 2

k1 )T

*

*

* *

Figure 5.2: Block diagram of the proposed truncated iterative multiplier (TIM)

When the control signal m_fp is ‘0’, meaning no carry generation, the leading one
(
2k1+k2

)
obtained from the Decoder and the truncated fractional portions are added using Adder 3 to

form the approximate product (A0
t ) according to equation (5.5). On the other hand, if m_fp is

‘1’, the Decoder is disabled and the fractional portions are left-shifted by 1-bit as per equation
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(5.6) to form the approximate product
(
A1

t
)
. The MUX structure based on the carry signal

facilitates the selection of appropriate truncated fractional portions.

5.2.3.1 Truncated Basic Logarithmic Block (TBLB)

The Truncated BLB (TBLB) shown in Fig.5.3 used in this work is similar to the BLB presented

in [26] except for the truncated logarithmic shifter.

Encoder

LOD

Truncated

Log Shifter

N1

k2

k1 f1

(f1. 2K2)T

Figure 5.3: Block diagram of the truncated basic logarithmic block (TBLB)

The fact that the fractional portion
(

f ∗2k) computed by the shifter is always a positive

approximate term provides the possibility for truncating it without a significant loss of preci-

sion. Based on this idea, a method proposed in [59] implements a truncated logarithmic shifter

which is used in this work. The operation of the shifter is such that it retains only those most

significant bits as dictated by the truncation width. The truncated LSB section is manipulated

with either ‘1’ or ‘0’ that depends on rounding up or down.

5.2.3.2 Modified Fractional Predictor (MFP)

The TEC scheme [27] involves prohibitively large hardware circuitry in the form of fractional

predictor, shared logic and multi-operand adder to speculate the carry out of the fractional

portion. In order to overcome this, a simple and flexible carry prediction logic namely, modified

fraction predictor (MFP) is proposed in this work. The output of MFP logic is 1-bit (‘0’ or ‘1’),

irrespective of the number of input bits unlike in TEC approach.
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In this work, MFP is preceded by a number that refers to the number of fractional bits

considered for prediction. For instance, if number of fractional bits is one then it is termed as

1-bit MFP and so on. A 1-bit MFP is explained in detail using Example 5.2.

Example 5.2. Suppose two input binary numbers N1 and N2 are given by,

N1 = (00110011)2 = (51)10; N2 = (01110111)2 = (119)10

The characteristics (k1 and k2) and their 1‘s complement (S1 and S2) are :

k1 = (101)2 = (5)10 ; k2 = (110)2 = (6)10

S1 =∼ k1 = (010)2 ; S2 =∼ k2 = (001)2

The leading one of these two numbers is found by shifting N1 and N2 by an amount of S1 and

S2 respectively resulting in A and B as depicted in Fig.5.4. .

A = (11001100)2 ; B = (11101110)2

P = 1 1 0 0 1 1 0 0
Q = 1 1 1 0 1 1 1 0

MSBF

p[6] p[5] p[4] p[3] p[2] p[1] p[0]

2-1 2-2 2-3 2-4 2-5 2-6 2-7

Fractional Portion

q[6] q[5] q[4] q[3] q[2] q[1] q[0]

Figure 5.4: Proposed method to detect leading one in fractional portion

The MSBF in A and B has a weight of 2−1 or 0.5 and carry will be generated to next stage

when a[6] and b[6] is ‘1’. Conversely, if either a[6] or b[6] is logic ‘1’, then generation of carry

depends on the LSB portion of A[5 : 0] and B[5 : 0]. Thus, carry detection is performed without

waiting for actual addition to happen leading to implementation of error correction parallely.

Similarly, the logic for 2-bit and 3-bit MFP is deduced. The carry prediction logic corre-

sponding to 1-bit, 2-bit and 3-bit MFP are deduced as specified in equations (5.8-5.10) as

sel1 = a [6] &b [6] (5.8)
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sel2 = sel1 |((a[6]|b[6])&(a[5]&b[5])) (5.9)

sel3 = sel2 |sel (5.10)

Where sel = ((a[6]|b[6])&(a[5]|b[5])&(a[4]&b[4]))

To analyze the variation of average error with the number of fractional input bits, a graph

is plotted for one iteration as illustrated in Fig.5.5. It is evident from the graph that the error is

minimum for bit size of 4 but thereafter remains almost constant. Hence, MFP with four input

fractional bits is sufficient for accurate carry prediction.

Figure 5.5: Variation of average error based on number of fractional bits

5.2.4 TIM Hardware for two Iterations

Figure.5.6 illustrates the cascaded TIM multipliers. While the first one computes the approxi-

mate product (A), the second one calculates the correction term. The input to the second TIM

is determined by the mask circuit depending on m_fp. If m_fp is ‘1’, the inputs to next itera-

tion I1 and I2 are f
′
1 and f

′
2 otherwise f1 and f2 respectively as per equations 5.5 and 5.6. The

second TIM computes the correction term (C) based on I1 and I2. Similarly, in case of three

iterations there will be an approximate product (A) and two correction terms. Evidently, with

each successive iteration the error gets reduced.

96



5.3. ERROR ANALYSIS

TIM1 TIM2

Mask

N1
I1

I2

Adder

N2

Correction,C

Product after
correction, AC

Approximate
Product (A)

m_fp

Figure 5.6: Truncated iterative multiplier implementation for two iterations

5.3 Error Analysis

Exhaustive error analysis has been carried out using MATLAB to compare the accuracy of the

proposed multiplier with the existing iterative multiplier [26, 27].

The comparison of maximum and average error of existing designs with T6,0 and T4,1

schemes for three iterations is illustrated in Figs.5.7 & 5.8 respectively. Clearly, it can be

observed from both the graphs that except for the first iteration, truncated TIM has least max-

imum and average error. A more elaborate analysis corresponding to maximum and average

error for three iterations is presented in Table.5.1.
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Figure 5.7: A comparison of maximum error of existing iterative multiplier designs with TIM
(T6,0 and T4,1) approach
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Figure 5.8: A comparison of average error of existing iterative multiplier designs with TIM
(T6,0 and T4,1) approach

For a fair comparison, the following have been taken into consideration. The Babic iter-

ative multiplier (BIM) [26] is devoid of error correction logic and hence the maximum and

average error shown in Table.5.1 do not mention the number of mantissa fractional bits. The

error analysis carried out in TEC [27] corresponds to 3-bit and 4-bit MFP hence for proper

comparison the proposed TIM scheme with 3-bit and 4-bit MFP respectively is considered.

Moreover, analysis for 1-bit and 2-bit MFP proposed in this work has been carried out to prove

the improvement in precision achieved compared to higher bit TEC. Error metrics (maximum

and average error) have been considered and compared with that of existing designs for each

iteration.

A comparison of the proposed TIM scheme (T6,0) (as per the equations 5.5 and 5.6 ) with

BIM and TEC for maximum and average error for three iterations is shown in Table.5.1. It

can be observed that BIM multiplier is taken as a reference (ratio of 1) corresponding to each

iteration. The TIM (T6,0) performs as well as BIM with no MFP while it performs better even

with 1-bit MFP. Although, TIM approach achieves less precision compared to TEC [27] in the

first iteration, the same gets better with further iterations. Maximum error with 1-bit and 2-bit

MFP design has an improvement of at least 64% compared to both TEC of 3-bit MFP and BIM

in second iteration. Also, the TIM design with 3-bit and 4-bit MFP has 5X and 1.7X better

precision compared to TEC (3-bit and 4-bit) respectively in second iteration. In third iteration,

the maximum error of the proposed scheme with 3-bit and 4-bit MFP is 9X and 2.5X better
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than TEC (3-bit and 4-bit) MFP respectively.

Table 5.1: A comparison of maximum and average error (%) in the proposed TIM (T6,0) and
existing schemes for 3 iterations

Scheme
NoC of MFP

bits

Maximum Error 8]9 Average Error 8]9

Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio

BIM [26] 7 25 1 6C25 1 1C5 1 8C9 1 0C89 1 0C083 1

TIM 07bit 25 1 6C25 1 1C5 1 8C9 1 0C89 1 0C083 1

TIM 17bit 16 0C64 2C25 0C36 1C11 0C74 5C18 0C58 0C24 0C27 0C011 0C13

TIM 27bit 14 0C56 1C75 0C28 0C82 0C55 4C12 0C46 0C16 0C18 0C006 0C07

TIM

37bit

12C5 0C5 1C19 0C19 0C67 0C45 3C85 0C43 0C13 0C14 0C005 0C06

TEC [27] 6C25 0C25 6C25 1 6C25 4C16 1C36 0C15 0C77 0C86 0C76 9C15

TIM

47bit

11C75 0C47 0C92 0C14 0C6 0C4 3C8 0C42 0C12 0C13 0C004 0C05

TEC [27] 6C25 0C25 1C56 0C25 1C56 1C04 1C05 0C11 0C304 0C34 0C26 3C13

Further, Table.5.1 provides a comparison of the proposed TIM scheme (T6,0) (as per the

equations 5.5 and 5.6 ) with BIM and TEC for average error. TIM scheme with 1-bit and 2-bit

MFP design has at least 54% improvement in error compared to both TEC of 3-bit MFP and

BIM in second iteration. Moreover, TIM design with 3-bit and 4-bit MFP has 6X and 2.5X

better precision compared to TEC, 3-bit and 4-bit, respectively in second iteration. In third

iteration, the average error of the proposed scheme with 3-bit and 4-bit MFP is 152X and 65X

better compared to TEC, 3-bit and 4-bit, MFP respectively.

Having established the superiority of the T6,0 technique over BIM and TEC, the following

Table 5.2 provides a comparison of the same with TIM (T4,1). An improvement in maximum

and average error in truncated multiplier (T4,1) compared to T6,0 is evident from this Table.

Finally, as mentioned earlier in Section 5.2.2, irrespective of the number of iterations, T6,0 is

used for initial iterations while the final iteration is carried out using T4,1. For instance, if total

number of iterations is three, the initial two iterations are performed using T6,0 while the third

iteration is carried out using T4,1.

5.3.1 Area and Delay Comparison of Various Multipliers using Unit Gate

Level Modeling

All the logarithmic multipliers have been analyzed using unit gate modeling as this approach

provides a decent model for estimating the real cost of each component and does not depend

strongly on any synthesis tool. Design metrics, area (A) and delay (D), have been considered
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Table 5.2: A comparison of maximum and average error (%) in the proposed TIM (T4,1) for 3
iterations

Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio
TIM fT6,0F 16 1 2.25 1 1.11 1 5.18 1 0.24 1 0.011 1

TIM fT4,1F 15.91 0.99 2.2 0.97 1.01 0.9 4.02 0.77 0.2 0.83 0.0107 0.97

TIM fT6,0F 14 1 1.75 1 0.82 1 4.12 1 0.16 1 0.006 1

TIM fT4,1F 13.46 0.96 1.52 0.86 0.5 0.6 3 0.72 0.12 0.75 0.005 0.83

TIM fT6,0F 12.5 1 1.19 1 0.67 1 3.85 1 0.13 1 0.005 1

TIM fT4,1F 11.95 0.95 0.8 0.67 0.34 0.5 2.81 0.7 0.09 0.69 0.004 0.8

TIM fT6,0F 11.75 1 0.92 1 0.6 1 3.8 1 0.12 1 0.004 1

TIM fT4,1F 11.11 0.94 0.56 0.68 0.3 0.5 2.72 0.71 0.08 0.67 0.002 0.5

Average Error fcF

1-bit

2-bit

3-bit

4-bit

Maximum Error fcF
Scheme

No. of MFP
bits

and compared for all the designs. Assumptions made while calculating them are shown in

Table 5.3. Each two-input gate (AND, OR, NAND, NOR) is counted as one gate while EX-

OR and EX-NOR are counted as two gates, for both area and delay. Moreover, a m-input

gate is assumed to be composed of a tree of 2 input gates and the effects of wiring, buffering

and inverting costs are neglected [59]. First, the unit gate modeling of 8-bit, 16-bit and 32-bit

truncated logarithmic shifter in comparison with the logarithmic shifter is carried out and later

it is extended to multiplier designs.

Table 5.3: Area and Delay metrics of basic design components
Design Component (2-input) Area (A) Delay (D)

AND, OR, NAND, NOR Gates 1 1
EX-OR, EX-NOR, MUXes and Half Adder 2 2

The area and delay of leading one detector (LOD), encoder, decoder and adder are com-

puted as mentioned in [59] which are constant in the design. Similarly, the area (ALS) and delay

(DLS) of the logarithmic shifter (LS) without truncation is computed based on equations 5.11

and 5.12 shown below. The area of truncated logarithmic shifter with t = 4 is calculated and

shown in Table.5.4.

ALS(n) = Amux

(
n+

t

∑
0

2T

)
(5.11)

DLS(n) = Dmux ∗ log2(n) (5.12)

From Table.5.4, it is clear that the truncated logarithmic shifter is more area efficient com-

pared to the logarithmic shifter. For example, the 16-bit truncated shifter occupies 35% less

area compared to the logarithmic shifter. However, the delay of the truncated shifter is same as

that of normal shifter since the number of logic levels of computation does not change.
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Table 5.4: Area of logarithmic and truncated logarithmic shifter computed using unit gate
analysis

Logarithmic Shifter No. of bits Area Percentage
logarithmic Shifter [29]

8-bit
84 100%

Truncated logarithmic shifter
(truncation width =4)

60 71%

Logarithmic Shifter [29]
16-bit

240 100%
Truncated logarithmic shifter

(truncation width =4)
156 65%

Logarithmic Shifter [29]
32-bit

420 100%
Truncated logarithmic shifter

(truncation width =4)
348 83%

The unit gate area and delay analysis is carried out for various multiplier schemes in [26,27],

and the proposed TIM designs for 8-bit, 16-bit and 32-bit. Results have been compiled and

show in graph in Fig.5.9, that highlight the area savings achieved by TIM design compared to

BIM. For example, the 16-bit TIM scheme occupies 20% less area compared to the BIM of

same bit-width. The reason behind the area savings are attributed to the new truncation scheme

proposed in this work. Similarly, it can be concluded from Fig.5.10 that the 16-bit TIM is faster

compared to TEC however having a delay overhead of 5% compared to BIM of 16-bit width.

8-bits 16-bits 32-bits

BIM 341 850 2283

TEC 586 1132 3926

TIM 301 682 1921

0
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1000
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2500
3000
3500
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4500

A
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a

Figure 5.9: Area comparison of various multipliers for different bit-widths

Figures 5.11 & 5.12 present the area and delay improvement achieved by different 32-

bit iterative multiplier schemes for three iterations. It is observed from Fig.5.11 that the area

occupied by TIM is less compared to BIM and TEC in all iterations. For example, 32-bit TIM

scheme in the first iteration occupies at least 19% less area compared to BIM and TEC designs.
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Figure 5.10: Delay comparison of various multipliers for different bit-widths

Iteration 1 Iteration 2 Iteration 3

BIM 2283 4886 7494

TEC (FD=3) 3926 8173 12424

Proposed TIM
( FD=3 and t=4 ) 1921 4650 7284
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Figure 5.11: Area comparison of various multipliers for three iterations

The delay comparison of various multipliers for three iterations is presented in Fig.5.12. It

is observed that TIM method performs better than TEC in terms of delay for same precision.

However, it appears to have more delay compared to BIM which is not surprising because the

precision provided by BIM is much less compared to TIM and thus needs more iterations lead-

ing to more delay if a precision similar to that of TIM is to be achieved. The delay overhead

in TEC is due to carry speculation. The proposed design overcomes this problem by success-

fully replacing the complex fractional predictor design with a simple one (MFP) as discussed

in Section 5.2.3.2.
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Iteration 1 Iteration 2 Iteration 3

BIM 277 414 551

TEC
(FD =3) 327 465 672

TIM
( FD = 3 and t=4 ) 282 442 601
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Figure 5.12: Delay comparison of various multipliers for three iterations

5.3.2 Synthesis Results of Various Multipliers

For a fair comparison, TEC and BIM multipliers and the TIM have been modeled using Verilog

data flow modeling and simulated using cadence incisive unified simulator (IUS) v6.1. They

are mapped on to TSMC 180nm technology slow-normal library using cadence RTL compiler

v7.1.

Table 5.5: Synthesis results of various 32*32 multipliers for one iteration
32 * 32

Multiplier
Area

(µm2)
%

change
Delay(ps) %

change
Area-Delay

Product (∗105)
(µm2− ps)

%
change

BIM [26] 3675 100% 15454 100% 568 100%
TEC [27] 5696 155% 18235 117% 1038 182%
Proposed

TIM (T6,0)
3285 90% 16088 104% 528 93%

Hardware synthesis has been carried out to compare the important metrics such as area and

delay. Table.5.5 provides a performance comparison of 32*32 multiplier designed with above

three schemes for one iteration. As seen from the Table, the area consumed by the proposed

TIM scheme is 10% less compared to BIM and 65% less compared to TEC. While TIM has

a delay overhead of 4% compared to BIM, it has a 64% better precision than BIM. Although,

BIM performs better in delay with more iterations, TIM achieves a much better precision com-

103



5.4. BENCHMARKING VARIOUS MULTIPLICATION SCHEMES-APPLICATION TO
IMAGE PROCESSING

pared to BIM with only a marginal increase in delay. The reason for increase in delay in TIM

scheme is due to the inclusion of mask from second iteration onwards. Nevertheless, TIM

performs much better in terms of precision, area and delay compared to TEC. It is also evident

from Table.5.5 that TIM scheme has improved area-delay product (7 to 89%) compared to TEC

and BIM respectively. Overall, TIM scheme outperforms all other similar designs that exist in

the literature.

5.4 Benchmarking Various Multiplication Schemes-Application

to Image processing

Image sharpening is an important image enhancement technique employed in image processing

applications. The computational process of sharpening an image involves a number of fixed

point multiplications. It is therefore a good application to prove the efficacy of the proposed

truncated iterative multiplier.

5.4.1 Image Sharpening Algorithm

Human perception is highly sensitive to edges and fine details of an image. Since images es-

sentially consist of high-frequency components their visual quality is corrupted if these high

frequencies are removed. Conversely, increasing the high-frequency components of an image

improves the image quality. Image sharpening algorithm described in [60] is one such enhance-

ment technique which highlights the edges and fine details in an image.

This algorithm described below, accepts an image, processes it, and produces an image of

high quality. Suppose I is the original image, the processed image S is described using the

expression

S (x,y) = 2I (x,y)−M (5.13)

where M = 1
273 ∑

2
i=−2 ∑

2
j=−2 H (i+3, j+3) I (x− i ,y− j)

and H is a matrix defined as
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H =



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


Since this expression involves a number of multiplications, an exact multiplier such as an

array multiplier can perform these operations accurately thereby producing an image of high

quality. On the other hand, using an approximate multiplier would result in an image of certain

quality which is quantified using established metrics such as mean square error (MSE) and peak

signal to noise ratio (PSNR).

The MSE represents the loss of information in the image and is expressed as,

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I (i, j)−K (i , j)]2 (5.14)

The peak signal to noise ratio (PSNR) in dB is expressed using MSE as follows:

PSNR in dB = 10 log10

(
MAX2

I
MSE

)
(5.15)

where MAXI represents the maximum possible pixel value of the image.

While the use of approximate multiplier affects the image quality, it has the advantage of

savings in terms of area and delay as compared to an accurate multiplier. In what follows,

the performance of the existing multipliers such as BIM and TEC and the proposed TIM is

studied and compared with reference to the image sharpening algorithm. The algorithm is

applied to blocks of 5*5 pixels on a set of standard images ( Cameraman and Lena). The exact

multiplications are replaced by approximate multiplications using BIM, TEC and TIM, while

addition, subtraction and division operations are carried out using accurate techniques. The

metric MSE is computed by finding the mean of squares of difference in pixel values between

original image and the processed image using approximate multipliers and these values are

substituted in equation (5.15) to calculate PSNR values.

Table 5.6 provides a comparison of these metrics on a set of standard images (Lena and
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Cameraman). While PSNR of the proposed TIM is less compared to that of TEC in the first

iteration, the same gets better with higher number of iterations. This is due to the increase in

number of iterations, the accuracy of TIM improves over that of TEC. It can also been seen

from Fig.5.13 where maximum and average error for all the techniques is compared.

Table 5.6: A comparison of values of MSE and PSNR for benchmark images using various
multiplier schemes

Image Metric

1st Iteration 2nd Iteration 3rd Iteration

BIM TEC TIM BIM TEC TIM BIM TEC TIM

Cameraman

PSNR ( dB)

43.2 43.4 43.4 43.46 43.6 43.8 43.7 44.2 44.45

Lena 39 39.4 39.2 39.2 39.5 39.53 39.4 39.5 39.7

Pirate 42.8 43 42.8 43.1 43.2 43.4 43.2 43.4 43.7

Cameraman

MSE

3.1 3 3 2.95 2.8 2.7 2.8 2.5 2.35

Lena 7.9 7.5 7.7 7.75 7.35 7.3 7.5 7.2 7.05

Pirate 3.42 3.3 3.39 3.2 3.15 3 3.1 3 2.8

Further, BIM has the highest error for all iterations while between TEC and TIM, the latter

has relatively larger error in the first iteration which however falls sharply from the second

iteration onwards. While the difference between TEC and TIM for higher number of iterations

is not apparent from the graph, it is clear from Table 5.1 that TIM technique has a maximum

error and an average error that is less than that of TEC.
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Figure 5.13: Maximum and Average errors of various multipliers for three iterations

In what follows, BIM, TEC, and TIM are compared for precision while keeping in mind the

area and delay performance of the hardware. Figures.5.14 and 5.15 provide a comparison of

area and delay performance of various multiplier schemes. It is evident from these figures that
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TIM performs better than TEC. Although, as stated earlier, TEC has better precision for first

iteration, TIM performs better from the second iteration onwards. Also, TIM performs better

in terms of both area and delay for any number of iterations.

Figure 5.14: Unit gate area statistics of various multiplier for three iterations

Figure 5.15: Unit gate delay statistics of various multiplier for three iterations

Further, while TIM has a slightly better performance than BIM in terms of area, BIM does

well in terms of delay (Fig.5.15). However, this is not considered significant in the current

context since TIM has better precision as well as better PSNR and MSE for the benchmark

images considered, compared to BIM.
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Also, the performance of the proposed multiplier, in terms of both PSNR and MSE, may

be understood by observing the images processed by it. Figure.5.16 illustrates the images that

are processed using exact (array) and the TIM. It can be observed that the images of Lena and

Cameraman processed with the proposed multiplier look very similar to the original ones.

(a) Original Image (b) Processed Image(a) Original Image (b) Processed Image

Figure 5.16: Lena and Cameraman images obtained using exact and the proposed multiplier

5.5 Conclusions

In this work, an improved iterative multiplier has been proposed based on Mitchel algorithm

with enhanced precision. A new fractional detector scheme and a modified truncation method

presented significantly reduce the area of the related hardware. The fractional detector logic

and its efficient precomputation contribute to improved overall accuracy due to fewer number

of iterations required compared to the existing ones. Further, the precision of the multiplier

improves as the number of iterations increases. Performance improvement has been achieved

through the use of truncated logarithmic shifter and a fractional predictor.

Extensive analysis of the existing (TEC and BIM) and the proposed (TIM) schemes has

been carried out using unit gate modeling and compared with that obtained using synthesis tool.

Results of accuracy and hardware performance prove the superiority of the TIM technique over

TEC and BIM. The same has also been validated using image processing benchmarks, Lena,

cameraman, and pirate.
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Chapter 6

An Improved ‘Digit-by-Digit’ Decimal

Multiplier

6.1 Introduction

The previous chapters presented improved designs of binary and logarithmic multipliers. How-

ever, it may be noted that decimal arithmetic is preferred in applications such as financial,

scientific and commercial etc. owing to their higher precision compared to binary arithmetic.

However, these computations are generally sluggish (slow) and tend to occupy more silicon

area [48]. This has led to efforts in improving decimal architectures to enable high perfor-

mance and compact arithmetic circuits. Like in binary arithmetic, one of the most vital and

common operations in decimal arithmetic, is multiplication. While a large body of literature

on decimal arithmetic covers serial multiplication [62, 63], parallel (‘word-by-digit’) [40–43]

and (‘digit-by-digit’) [44, 45] multiplication has also been reported recently. Decimal (BCD)

‘digit-by-digit’ multipliers are appropriate for pipelined computations and result in improved

regularity of the circuits. This regularity, in conjunction with shorter interconnects, results in

improvement in the multiplier performance [46]. In this work, we focus on developing efficient

architectures for decimal ‘digit-by-digit’ multiplication.

The partial products in ‘digit-by-digit’ multiplication scheme are generated using BCD

digit-multiplier (BDM) and their reduction is accomplished using carry-free binary adders,
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multi-operand binary to decimal (BD) converters and decimal adder. Since BDM is an impor-

tant component in partial product generation, we focus on new and improved designs for BDM

cells in this chapter. Besides, novel designs of multi-operand BD converters are proposed to

convert the column binary sum to decimal in partial product reduction. Further, a hybrid multi-

operand BD converter algorithm is proposed and analyzed for its performance. It is expected

that these improvisations would result in significant savings in terms of area and latency.

Throughout this chapter, upper and lower case letters are used to signify decimal digits and

binary bits respectively, where a digit represents a 4-bit BCD number. The symbols ‘ . ’ and ‘ +

’ are used to denote AND and OR gates while the symbols ‘⊕’ and ‘�’ denote XOR and XNOR

operations respectively. Further, the term binary coded decimal (BCD) is used interchangeably

with decimal.

Rest of the chapter is organized as follows: An outline of the proposed partial product

generation and reduction schemes in 16*16 ‘digit-by-digit’ multiplier is provided and discussed

in Sections 6.2 and 6.3. In addition, design of hybrid multi-operand BD converters is described

in Section 6.3.2. A detailed performance analysis of 16*16 ‘digit-by-digit’ multiplier is carried

out and compared in Section 6.4.

6.2 A New Partial Product Generation Scheme in ‘Digit-by-

Digit’ Multiplier

This section presents two new partial product generation (PPG) schemes for improved area and

performance of BDM cell in ‘digit-by-digit’ multiplication. This is achieved through novel

designs of PPBD converter which forms a part of the BDM cell.

6.2.1 High Performance Partial Product Binary to Decimal (PPBD) Con-

verter

The first of the proposed two PPBD converters, the ‘high performance’ PPBD converter, is

designed using the fast BD (FBD) converter cells. A typical FBD cell, would accept a 4-
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bit binary input (b j), multiplies it by four, and then adds it to bi of 2-bits as illustrated in

Fig.6.1(a). Thus the computation of BCD (decimal) outputs, H0 (higher digit) and L0 (lower

digit) is carried out by using the relation {H0, L0} = 4 .b j + bi where the maximum values of

H0 and L0 are (3)10 and (9)10 respectively. Therefore, the output of FBD cell is limited at

most to (39)10 unlike (19)10 in Nicoud cell [50]. The binary inputs, b j and bi comprise of

{b3,b2,b1,b0} and {bi1,bi0} bits respectively.

0101

0000

0010

0100

FBD
cell 1

MSB LSB

(1000)2

Output BCD (Decimal) number

D1

D0

18 (L)(H)
(0001)2

X4

bj

Ho

4

4

22

bi

Lo

FBD
cell

FBD
cell 2

(a)
(b)

Binary Input- 0101 00 01

Figure 6.1: (a) Compact notation of FBD cell (b) Linear array of FBD cells to form PPBD
converter

The FBD cell is shown in Fig.6.1(a) and is described by the following equations derived

using truth tables :



H0 [1] = b3 +b2.b
′
1.b

′
0 +b

′
2.b1.b0 +b

′
2.b1.bi0

H0 [0] = b3 +b2.(b1 +b0)

L0 [3] = bi0.b3.b0 +b1.(b′i0(b2 }b0)+b
′
1.(b2bi0b

′
0)

L0 [2] = b3.b
′
0.bi0 +b2.b

′
0.(b1 +b

′
i0)+b

′
2.b0.(b

′
1 +b

′
3.bi0)

L0 [1] = b
′
2.(b

′
1.(b3⊕bi0)+b2.(b

′
0.(b1 }bi0)+ /O

L0 [0] = bi1

(6.1)

where Ø =b0(b′2.b1.b′i0 +b2.b′1.bi0)
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An example to convert a 7-bit binary number to two BCD digits (H and L) is illustrated

in Fig.6.1(b). Since the binary number (01010001)2 to be converted is larger than (39)10, two

FBD cells are required to realize the converter. As illustrated in Fig.6.1(b), the input to the FBD

cell 1 is restricted to (1001)2. Hence the 3 MSBs of binary input along with a ‘0’ prepended

(0101)2 are accepted as b j and the next significant two binary input bits “00” as bi results in

the outputs (10)2 and (0000)2. The 4-bit output (0000)2 of cell 1 along with residual binary

input “01” form inputs to cell 2, resulting in higher (H) digit (1000)2 formed by {D1, D0} and

lower (L) digit (0001)2. In general, binary number of any operand width can be converted to

BCD (decimal) by a linear arrangement of FBD cells.

Since a BCD digit can take values only between (0)10 and (9)10, the output of the 4*4

binary multiplier in BDM illustrated in Fig.2.24 is restricted to (81)10, that is equivalent to

(1010001)2. Thus, the input binary number to a PPBD converter is limited to (1010001)2.

This gives a possibility for optimization of FBD cell 1 shown in Fig.6.1(b), which eventually

results in simplified PPBD converter. As a consequence, the input to the FBD cell 1 is restricted

to (0101)2 as depicted in Fig.6.1(b). In view of this, the FBD cell 1 in Fig.6.1(a) gets simplified

resulting in ‘low area’ BD (LABD) cell as shown in Fig.6.2(a). The binary inputs {b2,b1,b0}

and {bi1,bi0} are applied to this cell which converts them into equivalent decimal number

H0 [1 : 0] and L0[3 : 0].

The resulting simplified equations for LABD cell which can be obtained from truth table

can be written as :



H1 [1] = b2.b
′
0 +b1.(b0 +bi0)

H0 [0] = b2.b0

L0 [3] = b1.b
′
0.b

′
i0 +b2.bi0

L0 [2] = b0.(b
′
2.b1 +bi0)+b2.b

′
0.b

′
i0

L0 [1] = b
′
i0.(b2.b

′
0 +b1.b0)+b

′
2.b

′
0.bi0

L0 [0] = bi1

(6.2)

112



6.2. A NEW PARTIAL PRODUCT GENERATION SCHEME IN ‘DIGIT-BY-DIGIT’
MULTIPLIER

Figure.6.2(b) depicts the ‘high performance’ PPBD (HPPPBD) converter scheme achieved

by a linear arrangement of LABD and FBD cells. This converter has improved performance in

terms of delay as illustrated later.

101

0000

0010

0100

LABD
cell

MSB LSB

(1000)2

Output BCD (Decimal) number

D1

D0

18 (L)(H)
(0001)2

b2

H0[1]
bi1

L0[3]

LABD
cell

FBD
cell

bi0

L0[2] L0[1] L0[0]

b1 b0

H0[0]

(a) (b)

Binary Input- 101 00 01

Figure 6.2: (a) Compact notation of LABD cell (b) Linear array of LABD and FBD cells to
form ‘high performance’ PPBD (HPPPBD) converter

6.2.2 Low Area Partial Product Binary to Decimal Converter (LAPPBD)

Work in [51] presents partial product reduction using a multi-operand BD converter consisting

of Nicoud cells as illustrated in Fig.6.3(a). We propose a design of PPBD converter using

Nicoud cells and FBD cells which however are used for partial product generation to achieve

area reduction as well as improve the performance. This design comprises of a linear array of

LABD cells (shown earlier in Fig.6.2(a)) and Nicoud cells as illustrated in Fig.6.3(b). Since

Nicoud cells have more latency, achieving a PPBD converter with these cells alone results in

a slower design. An alternative method is to use area optimized and faster LABD cell so as to

improve the performance of PPBD converter.

Referring to Fig.6.3(a), Nicoud cells (circled with dotted lines) are replaced with LABD

cell resulting in a PPBD converter shown in Fig.6.3(b) which has the advantage of lower area

as compared to all Nicoud cell converter.
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Binary Input : 01010001

(a) (b)
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0
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Figure 6.3: (a) Iterative array of Nicoud cells to form BDM (b) Linear array of Nicoud and
LABD cells to form LAPPBD

6.3 Partial Product Reduction (PPR) in ‘Digit-by-Digit’ Mul-

tiplier

This section discusses the decimal (BCD) partial product reduction scheme in ‘digit-by-digit’

multiplier using the proposed multi-operand BD converters. An example of this approach is

illustrated in Fig.6.4. Referring to decimal partial product of column length C=6 with six partial

products, each partial product consists of 4-bits, denoted with solid dots. The columns c0, c1,

c2 and c3 are reduced to two rows using tree of 3:2 binary Carry Save Adders (CSA) which

requires 2 levels to compress all the columns into two rows. These two rows are reduced to

further obtain the final binary result using the carry propagation adder represented with straight

line in grey color as shown in Fig.6.4.

A numerical example illustrates the addition of six BCD digits, each of 4-bits [(9)10 +

(9)10+(9)10+(9)10+(9)10+(9)10], as mentioned in Fig.6.5 (a). The maximum value of each

digit is (9)10. Addition of these digits is performed by a tree of CSAs and a carry propaga-
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c0c1c2c3

3:2
CSA

2 Rows

Level 1

Level 2

CPA

Final BinaryResult

S

b0b1b2b3b4b5

Column length,

c0c1c2c3

C=6

2:2
CSA

SC

Decimal partial products
of 4-bit wide

fa- fb-

C

Figure 6.4: (a) Decimal partial products of six columns each of 4-bit (b) Example of partial
product, denoted using dot, reduction of column size C= 6

tion adder resulting in final binary result (110110)2. The conversion of this binary number to

decimal (BCD) is accomplished by using the proposed multi-operand binary to decimal con-

verter. The two FBD cells are connected in a linear array to convert binary number (110110)2

to decimal (54)10 as illustrated in Fig.6.5(b).

The implementation details of partial product reduction in 16*16 ‘digit-by-digit’ multiplier

is presented below.

6.3.1 Implementation of 16*16 ‘Digit-by-Digit’ Multiplier

In a typical N ∗N ‘digit-by-digit’ multiplication, 2N2 decimal partial products with a maximum

column size of 2N− 1 are generated using BDM cells. As mentioned in Section 2.8.1, multi-

operand BD (MBD) converters are used at the partial product reduction stage. The reduction

scheme using these converters for 16∗16 ‘digit-by-digit’ multiplier is illustrated in Fig.6.6. It

can be seen here that the layout of decimal partial products (H and L) is in columns of varied

length as illustrated in Fig.6.6(a). The reduction of decimal partial products generated happens

in two steps: First, all the partial product columns are compressed in parallel using CSAs .

Next, the binary number obtained from respective columns is converted in to a decimal number

using the multi-operand binary to decimal (MBD) converters.
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(4)10

Figure 6.5: (a) Numerical example illustrating the reduction of decimal (BCD) partial prod-
ucts using CSAs (b) MBD converter formed using linear array of FBD cells to convert binary
number to decimal (BCD)

In this work, the existing MBD converter [51] is modified by replacing Nicoud cell with

FBD cell resulting in improved performance. The operation of the proposed MBD converter

for the largest column, C = 31 (highlighted by using dotted line in the Fig.6.6 (a)), is illustrated

in Fig.6.6(b) as an example. The binary addition of 31-digits column comprising of H and

L (whose maximum values, mentioned earlier, are considered) is performed using a tree of

3:2 binary CSAs [52]. It requires eight reduction levels to compress this column into 2 rows,

which are eventually reduced to a binary number using the carry propagation adder (CPA).

For instance, considering the case when output of the column size (C=31) results in a binary

number (0100001000)2, it is converted into decimal in two stages using a linear connection of

FBD cells (MBD converter) as shown in Fig.6.7.

In a similar manner, binary result from respective columns are compressed in parallel to

obtain decimal numbers which are then aligned according to their decimal weight and reduced

to a product using the decimal adder [64].

While this approach improves the performance by reducing the latency of the MBD con-

verter, it also results in area overhead. Further, decimal conversion of a column using Nicoud

cells [51] alone, while resulting in smaller area as illustrated in Fig.6.8(a) it increases the con-

verter latency significantly. To address these competing requirements, a hybrid multi-operand
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Figure 6.6: (a) Partial product matrix in a 16*16 ‘digit-by-digit’ multiplier (b) Partial product
reduction of column of largest size C=31 using CSA structure

BD converter using a mix of FBD and Nicoud cells is proposed that results in small area but

high speed of operation. For instance, Fig.6.8(b) shows a hybrid MBD converter consisting of

fast FBD cells in the critical path (stage1) while stage 2 comprises of (small area) Nicoud cells

resulting in a hybrid MBD converter that consumes less area without compromising on speed

when compared to the converter shown in Fig.6.7. Clearly, the hybrid converter is faster with

only a marginal increase in area when compared with that in Fig.6.8(a). As the column size

increases, selection of optimal number of FBD and Nicoud cells becomes tedious. Hence, a

hybrid multi-operand BD algorithm which helps in selecting the best combination of FBD and
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Figure 6.7: MBD converter for column size, C=31 in 16*16 ‘digit-by-digit’ multiplier

Nicoud cells is also proposed in this work and is discussed below.

6.3.2 Algorithm for Hybrid Multi-operand Binary to Decimal Converter

The algorithm for the design of hybrid multi-operand BD converter uses number of bits (nob) to

compute all possible combinations of Nicoud and FBD cells. The pseudo code of the algorithm

(given below) accepts the column size (C) and converts it into ‘nob’ using the relation nob =

ceil ( log2(C ∗P)), where P is the maximum decimal weight of partial product ((9)10). For

instance, given a value of C = 31 and P = 9, the value of ‘nob’ turns out to be 9. Depending

on the number of bits, the algorithm recursively computes all possible combinations of Nicoud

(ND) and fast binary to decimal (FBD) cells and their respective area and delay. The selection

of appropriate multi-operand BD converter itself is based on the area and delay requirements

of the design on hand. The area of individual FBD and ND cells is denoted by A1 and A2

respectively.

The algorithm, which calls three sub-functions Max_ND_Cell, Max_FBD_Cell and CAL

is explained as follows :

1. The input to the algorithm is the binary number obtained by reducing the partial product

column of length C.
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Figure 6.8: MBD converter for column size, C=31 in 16*16 ‘digit-by-digit’ multiplier (a) Using
Nicoud cells (b) Hybrid converter using Nicoud and FBD cells

2. The sub-function Max_ND_Cell computes the maximum number of ND cells (mndc)

required to design the converter.

3. Similarly, the sub-function Max_FBD_Cell determines the maximum number of FBD

cells (mfbdc) necessary to design the converter.

4. Higher priority is given for selection of FBD cells if the objective is to obtain a low

latency design.

5. The sub-function CAL calculates the number of unused FBD (m1) and ND (m2) cells

for various valid combinations.

6. For a given set of values m1 and m2, the algorithm computes the total number of utilized

FBD (n1) and ND (n2) cells and their area as well as the critical path delay for that

combination.
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7. The area and delay for all valid combinations are calculated and stored in a list as a tuple

<n1,n2,delay,area>.

8. The above steps are repeated till all valid combinations are exhausted.

Algorithm 6.1 Pseudo code of hybrid multi-operand converter
Input: nob
Output: utilized FBD cells(n1), utilized ND cells (n2), area, delay

1. function Hybrid_MBD

2. mndc = Max_ND_Cell

3. mfbdc = Max_FBD_Cell

4. for i = 0; i < mndc + 1; i++

5. for j = mfbdc + 1; j > -1; j–

6. m1, m2= CAL

7. if delay! = 0

8. if m1 >= 0and m2 >= 0

9. set area to ((|i−m1|)∗A1)+((| j−m2|)∗A2)

10. if [|i−m1|, | j−m2|, delay,area] not in list

11. add ([|i−m1|, | j−m2|, delay,area]) to list

12. end if

13. end if

14. end if

15. end for

16. end for

17. return (delay,area, n1, n2)

It can be noted from Fig.6.8(b) that the critical path of the MBD converter is dictated by

the first stage wherein the delay of individual cells chosen gets added up. However, in the

subsequent stages the delay of final cell alone is added [51]. Therefore, to achieve a faster

hybrid converter, delay per bit in the first stage has to be reduced by exclusively using FBD

cells.
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The algorithm terminates after storing all the values in a data set (list). No need to mention,

area efficient converter can be designed using more number of ND cells. Conversely, if high

speed converter is the objective, then more number of FBD cells can be used. Thus, the hybrid

algorithm provides flexibility in choosing appropriate multi-operand converter.

6.4 Results and Discussion

In order to compare the proposed multiplier with existing designs, initially unit gate level mod-

eling is carried out and later synthesis based analysis is performed.

6.4.1 Area and Delay Comparison using Unit Gate based Modeling

All the designs under consideration have been modeled using unit gate approach [59] to obtain a

synthesis-independent estimate of area (A) and delay (D). Further, each two-input gate (AND,

OR, NAND, NOR) is counted as one gate while EX-OR and EX-NOR are counted as two gates

for both area and delay [59]. Moreover, an m-input gate is assumed to be composed of a tree of

m-1 input gates while the effects of wiring, buffering and inverting costs (area and delay) are

neglected.

As discussed earlier, a BDM typically consists of a binary multiplier and a partial product

binary to decimal (PPBD) converter. In this work, the binary multiplier proposed by Jaberipur

2 [44], being the most efficient design in literature, is adopted for all the designs, shown in Table

below, together with respective PPBD schemes to form the BDM. For instance, the HPBDM

comprises of a Jaberipur binary multiplier and a HPPPBD.

Table 6.1 compares the area and delay performance of various BDM converters including

the two proposed schemes (HPBDM and LABDM) mentioned earlier. Besides each value of

area and delay, the percentage mentioned signifies how the proposed (HPBDM and LABDM)

designs perform compared to the existing designs. It can be observed that an improvement of

5% in delay is achieved in proposed HPBDM compared to the best performing Split_4_3 BDM.

Further, it can be seen that area-delay product of proposed LABDM design is better than every

other design. Also, the area occupied by LABDM and HPBDM is less in comparison with
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Table 6.1: Comparison of area and delay of various BDMs
Scheme Area %

change
Delay %

change
Area-Delay

Product
%

change
HPBDM 130 107% 20 95% 2600 102%
LABDM 121 100% 21 100% 2541 100%
N2BDM

[65]
119 98% 22 105% 2618 103%

Split_4_3
BDM [48]

173 143% 21 100% 3633 143%

Bhatt
BDM [47]

175 144% 22 105% 3850 151%

Sree
BDM [49]

187 154% 37 176% 6919 272%

other designs except N2BDM scheme.

As mentioned earlier, the decimal partial products obtained from BDMs are compressed

using binary CSA tree, multi-operand converters and decimal adders. The main focus at PPR

stage is the efficient design of multi-operand binary to decimal (MBD) converter. The PPR

stage of present work is compared with that of Dadda [51] which provides an efficient imple-

mentation in ‘digit-by-digit’ multipliers. The main difference between the Dadda and proposed

hybrid PPR schemes lies in MBD converters, which were realized using ND cells in Dadda

scheme, while hybrid (ND and FBD) cells are used in the present scheme. Hence, to prove

the efficacy of proposed hybrid MBD design, exhaustive comparisons are done at the multi-

operand binary to decimal converter stage.

The unit gate area and delay statistics of Dadda, FBD and proposed hybrid MBD converters

for various column (C) sizes in a 16* 16 multiplier illustrated in Fig.6.6 are shown in Table 6.2.

It can be noted that the number of cells (Dadda and/or FBD) required in each of the MBD

designs depends on the number of bits as well as the binary number. Hence for the same ‘nob’

the number of cells required varies. From the results obtained it can be concluded that MBD

converters formed using FBD cells alone have the speed advantage with, however, area over-

head while employing Nicoud (ND) cells alone results in area efficient design with increased

latency. On the other hand, MBD converters obtained from the hybrid converter algorithm (dis-

cussed in Section 6.3.2) have lesser delay compared to Dadda converters with marginal increase

in area. Further, hybrid MBD converters are more area efficient compared to FBD based, that
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Table 6.2: Performance comparison of different multi-operand converter designs using Dadda
and proposed cells for different column size

Dadda
[51] FBD Hybrid

Column
Size
(C)

No. of
bits
(nob)

No. of
ND Cells
[50] Area Delay

No. of
FBD Cells

Area Delay
No. of ND Cells

[50]

No. of
FBD Cells

Area Delay

31 9 7 105 28 4 184 24 3 2 137 24

29 9 7 105 28 4 184 24 3 2 137 24

27 8 7 105 28 4 184 24 3 2 137 24

25 8 7 105 28 4 184 24 3 2 137 24

23 8 7 105 28 4 184 24 3 2 137 24

21 8 7 105 28 4 184 24 3 2 137 24

19 8 6 90 24 3 138 18 2 2 122 20

17 8 6 90 24 3 138 18 2 2 122 20

15 8 5 75 20 3 138 18 1 2 107 16

13 7 5 75 20 3 138 18 1 2 107 16

11 7 5 75 20 3 138 18 1 2 107 16

9 7 4 60 16 2 92 12 0 2 92 12

7 6 3 45 12 2 92 12 1 1 61 10

5 6 3 45 12 2 92 12 1 1 61 10

3 5 2 30 8 1 46 6 2 0 30 8

too without any compromise on latency.

The total area and delay statistics of hybrid and Dadda MBD schemes for a 16*16 digit

by digit multiplier are shown in Table 6.3. The total area of MBD converter is decided by the

number of partial product columns while the critical path is decided by the largest column size.

It can be observed from Table 6.3 that hybrid MBD design is 17% faster compared to Dadda

however with 5% overhead in area.

Table 6.3: Performance comparison of Dadda and Hybrid multi-operand converter in 16*16
multiplier

Design Area %
change

Delay %
change

Proposed Hybrid MBD Converter 14138 100% 24 100%
Dadda MBD Converter [51] 13490 95% 28 117%

6.4.2 Synthesis based Comparison

To obtain more exact comparisons, Verilog-HDL models of various multiplier designs are syn-

thesized across different technology nodes. For a fair comparison, all the existing and proposed

multiplier schemes based on ‘digit-by-digit’ algorithm are extended to perform 16-digit parallel
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decimal multiplication, modeled using Verilog data flow modeling and simulated using cadence

incisive unified simulator (IUS) v6.1. The performance evaluation of each design has been

carried out at 180nm,130nm, 90nm, 65nm and 28nm process technology nodes using TSMC

library. Low power standard libraries of 13 track for 180nm/130nm, 11 track for 90nm/65nm

and 9 track for 28nm provided by foundry are adopted. Synopsys ‘Prime time’ tool is used

for delay calculation for all the BDM topologies on gate level net list with back annotated RC

values.

In this section, initially the synthesized area and delay statistics of various multiplier schemes

at partial product generation (PPG) stage are presented. Next, the area-delay figures of hy-

brid converters and partial product reduction (PPR) stage are detailed. Towards the end, a

comprehensive performance analysis of 16∗16 ‘digit-by-digit’ multiplier based approaches is

presented and discussed.

6.4.2.1 Partial Product Generation (PPG)

An area comparison of six BCD digit multipliers (BDMs) in ‘digit-by-digit’ scheme, including

that of two new schemes (depicted using solid lines), is provided in Fig.6.9. The BDM cells

considered are HPBDM, LABDM, N2BDM, split_4_3 BDM, Bhatt BDM and Sree BDM. It

can be observed from Fig.6.9 that the proposed LABDM designs performs well at all technol-

ogy nodes compared to the existing schemes and also conform to the gate level analysis carried

out in Section 6.4.1. The area consumed by LABDM is least in comparison to designs consid-

ered across various technology nodes, which is due to the LABD converter cells designed as a

part of this work except N2BDM reported in [65].

From the graphs shown in Fig.6.10, it can be observed that the proposed HPBDM is the

fastest among all the BDM cells compared. The HPBDM achieves a 15% reduction in delay

across various technology nodes compared to other implementations. Further, it can be noted

that proposed LABDM, though optimized for area, performs better compared to all existing

BDM cells.
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(nm)

Figure 6.9: A Comparison of area consumption by various BDM at different technology nodes

6.4.2.2 Partial Product Reduction (PPR)

The area and delay statistics across various technology nodes in case of Dadda [51] and pro-

posed hybrid MBD converters are shown in Table 6.4. It can be noted that hybrid MBD convert-

ers perform better in terms of delay compared to Dadda MBD converters with only a marginal

increase in area.

Table 6.4: A Comparison of Dadda and proposed hybrid MBD converters for area and delay
performance across various technology nodes

Dadda MBD Converter Hybrid MBD Converter

Technology

4nm. Area 4µm2. Percent Delay 4ps. Percent Area 4µm2. Percent Delay 4ps. Percent

180 1268 987 175 1137 1295 1007 155 1007

130 1214 97.707 161 1167 1242 1007 138 1007

90 1092 937 143 1167 1174 1007 123 1007

65 1024 92.707 127 1177 1104 1007 108 1007

28 804 927 98 1197 871 1007 82 1007

As pointed out earlier, PPR stage in Dadda and hybrid PPR schemes consists of binary

CSA [51], MBD converters and decimal adders [64]. While, Dadda PPR scheme uses the

MBD converters based on Nicoud cells, hybrid MBD converters are used in the proposed PPR

scheme. Figures 6.11 and 6.12 provide a comparison of the area and latencies of these two

approaches respectively at various technology nodes. It can be seen from these figures that the
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(nm)

Figure 6.10: A Comparison of delay in various BDM at different technology nodes

proposed scheme results in a 11% improvement in delay with only a small increase in area.

Similar pattern of behavior can be observed across all technology nodes.

(nm)

Dadda PPR

Figure 6.11: A Comparison of area consumption at PPR level in 16*16 ‘digit-by-digit’ multi-
plier at different technology nodes
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Figure 6.12: A Comparison of delay at PPR level in 16*16 ‘digit-by-digit’ multiplier at differ-
ent technology nodes

6.4.2.3 Synthesis Results of 16*16 ‘Digit-by-Digit’ Multiplier

The area and delay of different multiplier schemes based on ‘digit-by-digit’multiplication al-

gorithm have been investigated at various technology nodes 180nm,130nm, 90nm, 65nm and

28nm using TSMC library and are presented in Table 6.5. The PPG is carried out using

HPBDM, LABDM, N2BDM, split_4_3 BDM, Bhatt BDM and Sree BDM schemes. In PPR

stage, while HPBDM and LABDM schemes use the proposed hybrid PPR technique, rest of

the BDM schemes use Dadda PPR [51] approach. The proposed schemes have been found to

be functional across all the technology nodes. A detailed comparison of these multipliers in

terms of area, delay and area-delay product is provided in Table 6.5 and Figs.6.13-6.15. It is

evident that the HPBDM with Hybrid PPR performs better in terms of delay (10 to 29%) and

area-delay product (4 to 38%) while LABDM with Hybrid PPR achieves an improvement of

9 to 28% in delay and 5 to 39% in area-delay product across various technology nodes. The

improvements in delay and area-delay product are bound to increase further in multipliers in-

volving larger operand width. This is due to the efficient PPBD converters and multi-operand

converter realized using hybrid converter algorithm.
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Figure 6.13: A Comparison of area consumption by various multiplier at different technology
nodes

Technology Node
180

D
el
ay
(n
s)

2.5

3

3.5

4

4.5

5

5.5

6

HPBDM-Hybrid(proposed)
LABDM-Hybrid (proposed)
N2BDM-Dadda
Split-BDM-Dadda
Bhatt BDM -Dadda
Sree BDM -Dadda

Figure 6.14: A Comparison of delay of various multiplier at different technology nodes
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Figure 6.15: A Comparison of area-delay product of various multiplier at different technology
nodes

6.5 Conclusions

Digital multipliers (binary/decimal) have partial product generation and reduction stages and

any performance improvement in these stages will contribute to overall performance of the

multiplier. In this work, new schemes have been proposed to improve the partial product gen-

eration and reduction stages in decimal multipliers. Decimal partial products are generated in

parallel using fast and area efficient BCD digit multipliers and their reduction is achieved using

hybrid multi-operand binary to decimal converters. Also, a new hybrid algorithm to design a

multi-operand binary to decimal converter based on area and delay requirements has been pro-

posed. In contrast to most of the previous implementations, which propose changes either in

partial product generation or reduction, this work proposes modifications at both partial prod-

uct generation and reduction stages resulting in an improved performance. Results obtained for

a 16*16 ’digit-by-digit’ multiplier clearly show that a performance improvement, in terms of

delay of upto 8 to 24%, and an area-delay product of upto 4 to 32%.
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Table 6.5: Area and Delay comparison in 16*16 ‘Digit-by-Digit’ multipliers
Technology
Node pnmi Scheme Area pµm2i 9 Delaypnsi 9

y
Product
pµm2- nsi 9

HPBDM-Hybrid 185806 1039 4.73 989 878862 1019
LABDM-Hybrid 180065 1009 4.8 1009 864312 1009
N2 BDM -
Dadda 178126 999 5.11 1069 910224 1059

180
Split_4_3BDM -

Dadda 187745 1049 5.1 1069 957500 1109

Bhatt BDM -
Dadda 191329 1069 5.15 1079 985344 1149

Sree BDM -
Dadda 193377 1079 5.9 1229 1140924 1329

HPBDM-Hybrid 175306 1039 4.33 989 759075 1019

LABDM-Hybrid 170066 1009 4.41 1009 749991 1009
N2 BDM -
Dadda 168138 999 4.7 1069 790249 1059

130
Split_4_3BDM -

Dadda 176722 1049 4.73 1079 835895 1119
Bhatt BDM -
Dadda 181842 1079 4.8 1089 872842 1169

Sree BDM -
Dadda 183890 1089 5.4 1229 993006 1329

HPBDM-Hybrid 155240 1039 3.76 989 583702 1029

LABDM-Hybrid 150515 1009 3.8 1009 571957 1009

N2 BDM -
Dadda 149096 999 4.11 1089 612785 1079

90
Split_4_3BDM -

Dadda 156659 1049 4.1 1089 642302 1129
Bhatt BDM -
Dadda 161267 1079 4.19 1109 675709 1189

Sree BDM -
Dadda 166456 1109 4.7 1239 782343 1369

HPBDM-Hybrid 143151 1029 3.38 999 483850 1029

LABDM-Hybrid 140157 1009 3.4 1009 476534 1009
N2 BDM -
Dadda 136219 979 3.7 1099 504010 1069

65
Split_4_3BDM -

Dadda 145789 1049 3.76 1109 548167 1159
Bhatt BDM -
Dadda 150397 1079 3.9 1149 586548 1239

Sree BDM -
Dadda 152445 1099 4.3 1269 655514 1379

HPBDM-Hybrid 113718 1029 2.63 999 299078 1019

LABDM-Hybrid 111067 1009 2.65 1009 294328 1009
N2 BDM -
Dadda 107922 979 2.89 1099 311895 1059

28
Split_4_3BDM -

Dadda 115675 1049 2.87 1089 331987 1129
Bhatt BDM -
Dadda 118747 1069 3.1 1179 368116 1259

Sree BDM -
Dadda 121307 1099 3.4 1289 412444 1399

130



Chapter 7

Conclusions and Future Work

This thesis focused on designing new multiplier architectures in binary, logarithmic and BCD

number systems customized for different requirements (accuracy, speed, area and power) to

meet the diverse needs of practical applications. The architectures included that of a two-

dimensional binary bypass multiplier, a fixed-width binary multiplier, an iterative logarith-

mic multiplier, and a ‘digit-by-digit’ BCD multiplier. Various schemes developed to improve

these architectures have been detailed, discussed and superiority of their performance has been

demonstrated.

The first contribution of this thesis is the development of a reconfigurable two-dimensional

bypass multiplier based on dynamic bypassing of partial products. The bypass elements in-

corporated into the multiplier reduce the power consumption by eliminating redundant signal

transitions. Further, the reconfigurable multiplier offers a good trade-off between area, delay

and power dissipation by using the same multiplier for performing one N or two N/2 multipli-

cations.

The second contribution of this thesis is the development of a novel fixed-width binary

multiplier with a target to deploy in error resilient applications where the focus is less on accu-

racy and more in terms of improved hardware performance. Such units result in area savings

while also resulting in reduced power consumption. Further, to quantify the benefits achieved,

the performance of this multiplier has been validated using the image sharpening algorithm

applied on image processing benchmarks such as Lena, Cameraman, and Pirate.
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The third contribution of this thesis is the development of a novel binary logarithmic mul-

tiplier with improved precision. The hardware implementation of this multiplier shows that it

also has an improved performance in terms of parameters area and delay compared to other

designs existing in the literature.

The fourth contribution of this thesis is the development of a generalized design approach

and architectural framework for decimal multiplication. Decimal partial products have been

generated in parallel using fast and area efficient BCD digit multipliers and their reduction is

achieved using new hybrid multi-operand binary to decimal converters. The resulting multiplier

has been shown to perform better than the existing BCD multipliers in terms of delay and area-

delay product.

7.1 Future Work

The binary multiplier units designed and implemented in this work targeted at 180 nm tech-

nology and hence dynamic power dominates the overall power consumption. As process tech-

nologies shrink, leakage power dominates the overall power dissipation. Hence, it would be

interesting to understand the performance of the binary designs proposed in this work at lower

technology nodes.

Approximate computing offers potential benefits in terms of area, power and performance.

However, its impact on applications is difficult to measure. Researchers and practitioners alike

need tools to automate the process of carrying out approximate computing. Hence, developing

new approaches that are capable of generating and synthesizing circuits with reasonable error

tolerance and significantly less area consumption and power dissipation is an immediate need.
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[26] Z. Babić, A. Avramović, and P. Bulić, “An iterative logarithmic multiplier,” Microproces-

sors and Microsystems, vol. 35, no. 1, pp. 23–33, 2011.

[27] M. Sullivan and E. Swartzlander, “Truncated error correction for flexible approximate

multiplication,” in Signals, Systems and Computers (ASILOMAR), 2012 Conference

Record of the Forty Sixth Asilomar Conference on, pp. 355–359, Nov 2012.

135



BIBLIOGRAPHY

[28] K. Abed and R. Siferd, “Cmos vlsi implementation of a low-power logarithmic converter,”

Computers, IEEE Transactions on, vol. 52, pp. 1421–1433, Nov 2003.

[29] K. Abed and R. Siferd, “Vlsi implementation of a low-power antilogarithmic converter,”

Computers, IEEE Transactions on, vol. 52, pp. 1221–1228, Sept 2003.

[30] M. Combet, H. Van Zonneveld, and L. Verbeek, “Computation of the base two logarithm

of binary numbers,” Electronic Computers, IEEE Transactions on, vol. EC-14, pp. 863–

867, Dec 1965.

[31] E. L. Hall, D. Lynch, and I. Dwyer, S.J., “Generation of products and quotients using

approximate binary logarithms for digital filtering applications,” Computers, IEEE Trans-

actions on, vol. C-19, pp. 97–105, Feb 1970.

[32] S. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, “A fast, low-power logarithm

approximation with cmos vlsi implementation,” in Circuits and Systems, 1999. 42nd Mid-

west Symposium on, vol. 1, pp. 388–391 vol. 1, 1999.

[33] V. Mahalingam and N. Ranganathan, “Improving accuracy in mitchell’s logarithmic mul-

tiplication using operand decomposition,” Computers, IEEE Transactions on, vol. 55,

pp. 1523–1535, Dec 2006.

[34] T. Brubaker and J. Becker, “Multiplication using logarithms implemented with read-only

memory,” Computers, IEEE Transactions on, vol. C-24, pp. 761–765, Aug 1975.

[35] D. Mclaren, “Improved mitchell-based logarithmic multiplier for low-power dsp appli-

cations,” in SOC Conference, 2003. Proceedings. IEEE International [Systems-on-Chip],

pp. 53–56, Sept 2003.

[36] J. N. Mitchell, “Computer multiplication and division using binary logarithms,” Elec-

tronic Computers, IRE Transactions on, vol. EC-11, pp. 512–517, Aug 1962.

[37] M. Cowlishaw, “Decimal floating-point: algorism for computers,” in Computer Arith-

metic, 2003. Proceedings. 16th IEEE Symposium on, pp. 104–111, June 2003.

136



BIBLIOGRAPHY

[38] S. Shankland, “IbmŠs power6 gets help with math, multimedia.,” 2006.

[39] C. Webb, “Ibm z10: The next-generation mainframe microprocessor,” Micro, IEEE,

vol. 28, pp. 19–29, March 2008.

[40] L. Dadda and A. Nannarelli, “A variant of a radix-10 combinational multiplier,” in Circuits

and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pp. 3370–3373, May

2008.

[41] L. Han and S.-B. Ko, “High-speed parallel decimal multiplication with redundant internal

encodings,” Computers, IEEE Transactions on, vol. 62, pp. 956–968, May 2013.

[42] G. Jaberipur and A. Kaivani, “Improving the speed of parallel decimal multiplication,”

Computers, IEEE Transactions on, vol. 58, pp. 1539–1552, Nov 2009.

[43] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of high-performance parallel

decimal multipliers,” Computers, IEEE Transactions on, vol. 59, pp. 679–693, May 2010.

[44] G. Jaberipur and A. Kaivani, “Binary-coded decimal digit multipliers,” Computers Digital

Techniques, IET, vol. 1, pp. 377–381, July 2007.

[45] R. James, T. Shahana, K. Jacob, and S. Sasi, “Decimal multiplication using compact bcd

multiplier,” in Electronic Design, 2008. ICED 2008. International Conference on, pp. 1–

6, Dec 2008.

[46] S. Gorgin, G. Jaberipur, and B. Parhami, “Design and evaluation of decimal array multi-

pliers,” in Signals, Systems and Computers, 2009 Conference Record of the Forty-Third

Asilomar Conference on, pp. 1782–1786, Nov 2009.

[47] J. Bhattacharya, A. Gupta, and A. Singh, “A high performance binary to bcd converter for

decimal multiplication,” in VLSI Design Automation and Test (VLSI-DAT), 2010 Interna-

tional Symposium on, pp. 315–318, April 2010.

[48] O. Al-Khaleel, Z. Al-QudahJ, M. Al-Khaleel, C. A. Papachristou, and F. Wolff, “Fast

and compact binary-to-bcd conversion circuits for decimal multiplication,” in Computer

Design (ICCD), 2011 IEEE 29th International Conference on, pp. 226–231, Oct 2011.

137



BIBLIOGRAPHY

[49] S. Veeramachaneni and M. Srinivas, “Novel high-speed architecture for 32-bit binary

coded decimal (bcd) multiplier,” in Communications and Information Technologies, 2008.

ISCIT 2008. International Symposium on, pp. 543–546, Oct 2008.

[50] J.-D. Nicoud, “Iterative arrays ror radix conversion,” Computers, IEEE Transactions on,

vol. C-20, pp. 1479–1489, Dec 1971.

[51] L. Dadda, “Multioperand parallel decimal adder: A mixed binary and bcd approach,”

Computers, IEEE Transactions on, vol. 56, pp. 1320–1328, Oct 2007.

[52] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34, no. 5,

pp. 349–356, 1965.

[53] M. Sjalander and P. Larsson-Edefors, “Multiplication acceleration through twin preci-

sion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 9,

pp. 1233–1246, 2009.

[54] C.-C. Wang and G.-N. Sung, “Low-power multiplier design using a bypassing technique,”

Journal of Signal Processing Systems, vol. 57, no. 3, pp. 331–338, 2009.

[55] J.-M. Wang, S.-C. Fang, and W.-S. Feng, “New efficient designs for xor and xnor func-

tions on the transistor level,” IEEE Journal of solid-state Circuits, vol. 29, no. 7, pp. 780–

786, 1994.

[56] K. V. Palem, “Energy aware computing through probabilistic switching: A study of lim-

its,” IEEE Trans. Computers, vol. 54, no. 9, pp. 1123–1137, 2005.

[57] M. Hasan, T. Arslan, and J. S. Thompson, “A novel coefficient ordering based low power

pipelined radix-4 fft processor for wireless lan applications,” Consumer Electronics, IEEE

Transactions on, vol. 49, no. 1, pp. 128–134, 2003.

[58] J.-H. Tu and L.-D. Van, “Power-efficient pipelined reconfigurable fixed-width baugh-

wooley multipliers,” IEEE transactions on computers, vol. 58, no. 10, pp. 1346–1355,

2009.

138



BIBLIOGRAPHY

[59] M. Sullivan and E. Swartzlander, “Truncated logarithmic approximation,” in Computer

Arithmetic (ARITH), 2013 21st IEEE Symposium on, pp. 191–198, April 2013.

[60] M. S. Lau, K.-V. Ling, and Y.-C. Chu, “Energy-aware probabilistic multiplier: Design

and analysis,” in Proceedings of the 2009 International Conference on Compilers, Ar-

chitecture, and Synthesis for Embedded Systems, CASES ’09, (New York, NY, USA),

pp. 281–290, ACM, 2009.

[61] V. Paliouras and T. Stouraitis, “Low-power properties of the logarithmic number sys-

tem,” in Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on, pp. 229–

236, 2001.

[62] M. Erle and M. Schulte, “Decimal multiplication via carry-save addition,” in Application-

Specific Systems, Architectures, and Processors, 2003. Proceedings. IEEE International

Conference on, pp. 348–358, June 2003.

[63] M. Erle, E. Schwarz, and M. Schulte, “Decimal multiplication with efficient partial prod-

uct generation,” in Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium

on, pp. 21–28, June 2005.

[64] M. S. Schmookler and A. Weinberger, “High speed decimal addition,” IEEE Transactions

on Computers, vol. 20, no. 8, pp. 862–866, 1971.

[65] S. Gorgin, G. Jaberipur, and R. Hashemi Asl, “Efficient asic and fpga implementation of

binary-coded decimal digit multipliers,” Circuits, Systems, and Signal Processing, vol. 33,

no. 12, pp. 3883–3899, 2014.

139



List of My Publications

Publications Relevant to this Thesis

Journals

1. S. E. Ahmed, Santhosh, and M. B. Srinivas, “Improved designs of a digit- by- digit

decimal multiplier,” Integration, the VLSI Journal, Elsevier, 2017 (In press).

2. S. E. Ahmed M. B. Srinivas, “An Improved logarithmic multiplier for media process-

ing ,” Journal of Signal Processing Systems, Springer, 2017, (Submitted after revising

manuscript).

Conferences

1. S. E. Ahmed, S. Kadam, and M. B. Srinivas, “An iterative logarithmic multiplier with

improved precision,” in 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH),

pp. 104–111, July 2016, San Francisco, USA.

2. S. E. Ahmed, S. Abraham, S. Veeramanchaneni, M. B. Srinivas, et al., “A modified twin

precision multiplier with 2d bypassing technique,” in Electronic System Design (ISED),

2012 International Symposium on, pp. 102–106, IEEE, 2012, Kolkata, India.

3. K. V. S. Sashank and S. E. Ahmed, “A fixed width scheme for reconfigurable recursive

multipliers,” in 2013 IEEE Asia Pacific Conference on Postgraduate Research in Micro-

electronics and Electronics (PrimeAsia) pp. 126–130, Dec 2013, Visakhapatnam, India.

140



BIBLIOGRAPHY

Other Conference Publications

1. S. E. Ahmed, S. S. Srinivas, and M. B. Srinivas, “A hybrid energy efficient digital com-

parator,” in VLSI Design and 2016 15th International Conference on Embedded Systems

(VLSID), 2016 29th International Conference on, pp. 567–568, IEEE, 2016, Kolkata,

India.

2. S. E. Ahmed, S. Veeramanchaneni, N. M. Muthukrishnan, and M. B. Srinivas, “Recon-

figurable adders for binary/bcd addition/subtraction,” in Microelectronics and Electron-

ics (PrimeAsia), 2011 Asia Pacific Conference on Postgraduate Research in, pp. 106–109

IEEE, 2011, Macau, China.

3. S. Ganguly, A. Mittal, S. E. Ahmed, and M. B. Srinivas, “A unified flagged prefix con-

stant addition-subtraction scheme for design of area and power efficient binary floating-

point and constant integer arithmetic circuits,” in Circuits and Systems (APCCAS), 2014

IEEE Asia Pacific Conference on, pp. 69–72, IEEE, 2014, Ishigaki, Japan.

4. C. S. Varma, S. E. Ahmed, and M. B. Srinivas, “A decimal/binary multi-operand adder

using a fast binary to decimal converter,” in VLSI Design and 2014 13th International

Conference on Embedded Systems, 2014 27th International Conference on, pp. 365–368,

IEEE, 2014, Mumbai, India.

5. S. Ganguly, A. Mittal, and S. E. Ahmed, “A reconfigurable parallel prefix ling adder with

modified enhanced flagged binary logic,” in Microelectronics and Electronics (PrimeA-

sia), 2012 Asia Pacific Conference on Postgraduate Research in, pp. 1–6, IEEE, 2012,

Hyderabad, India.

6. V. C. Kumar, P. S. Phaneendra, S. E. Ahmed, V. Sreehari, N. M. Muthukrishnan, and

M. B. Srinivas, “Higher radix sparse-2 adders with improved grouping technique,” in

TENCON 2011-2011 IEEE Region 10 Conference, pp. 676–679, IEEE, 2011, Bali, In-

donesia.

7. C. Kumar, S. E. Ahmed, S. Veeramachaneni, N. M. Muthukrishnan, M. B. Srinivas,

141



BIBLIOGRAPHY

et al., “A prefix based reconfigurable adder,” in VLSI (ISVLSI), 2011 IEEE Computer

Society Annual Symposium on, pp. 349–350, IEEE, 2011, Chennai, India.

8. V. C. Kumar, P. S. Phaneendra, S. E. Ahmed, V. Sreehari, N. M. Muthukrishnan, and

M. B. Srinivas, “A reconfigurable inc/dec/2’s complement/priority encoder circuit with

improved decision block,” in Electronic System Design (ISED), 2011 International Sym-

posium on, pp. 100–105, IEEE, 2011, Kochi, India.

9. V. C. Kumar, P. S. Phaneendra, S. E. Ahmed, S. Veeramachaneni, N. M. Muthukrish-

nan, and M. B. Srinivas, “A unified architecture for bcd and binary adder/subtractor,” in

Digital System Design (DSD), 2011 14th Euromicro Conference on, pp. 426–429, IEEE,

2011, Oulu, Finland.

10. P. S. Phaneendra, C. Vudadha, S. E. Ahmed, V. Sreehari, N. M. Muthukrishnan, and

M. B. Srinivas, “Increment/decrement/2’s complement/priority encoder circuit for vary-

ing operand lengths,” in Communications and Information Technologies (ISCIT), 2011

11th International Symposium on, pp. 472–477, IEEE, 2011, Hangzhou, China.

11. C. Vudadha, G. Makkena, M. V. S. Nayudu, P. S. Phaneendra, S. E. Ahmed, S. Veera-

machaneni, N. M. Muthukrishnan, and M. B. Srinivas, “Low-power self reconfigurable

multiplexer based decoder for adaptive resolution flash adcs,” in VLSI Design (VLSID),

2012 25th International Conference on, pp. 280–285, IEEE, 2012, Hyderabad, India.

142



Biography of the Candidate

Syed Ershad Ahmed obtained M.Tech from Vishweshwaraiah Technological University, Bel-

gaum in Microelectronics and Control System Engineering and he is currently pursuing Ph.D

in the department of Electrical Engineering, BITS, Pilani, Hyderabad Campus.

He is also working as a Lecturer in the Electrical Engineering department at BITS, Pilani,

Hyderabad Campus. His research interests include low power VLSI design and Approximate

Computing.

143



Biography of the Supervisor

Prof.M.B.Srinivas obtained Ph.D. from IISc Bangalore in Electrical Engineering. He is cur-

rently a Professor in the Electrical Engineering department and Dean, Administration at BITS,

Pilani, Hyderabad Campus.

Prof.Srinivas’s research interests include High Performance Logic Design, VLSI Arith-

metic, Data Converters and Reversible Computing, areas in which he has more than 150 publi-

cations, in journals as well as conferences.

Prof.Srinivas is a recipient of AIF/Stanford Medicine ‘Med-Tech Innovation Award’ in

2016 and Microsoft Research Digital Inclusion Award in 2006. He was an Invited Speaker

at the ‘Wide-Open Access’ Workshop at Stockholm, Sweden in 2004, Microsoft Research Fac-

ulty Summit, Redmond in 2007 and Microsoft Research Latin-American Faculty Summit, Bina

Del-Mar, Chile in 2008. He also delivered an Invited Tutorial on ‘Reconfigurable ADCs’ at the

NASA Conference on ‘Adaptive Hardware Systems’ in San Diego, USA in 2011.

144



BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis entitled High Performance Binary, Logarithmic, and BCD

Multiplier Architectures and submitted by Syed Ershad Ahmed ID No 2009PHXF448H for

award of Ph.D. of the Institute embodies original work done by him under my supervision.

Signature of the Supervisor

Dr. M. B. SRINIVAS

Professor

Date:



Acknowledgements

Accomplishment of this doctoral thesis was not possible without the support of several people

directly and indirectly. It gives me great pleasure to express my deep sense of gratitude to

Prof. M.B.Srinivas, Professor, Department of Electrical Engineering, BITS-Pilani, Hyderabad

Campus for his invaluable guidance, cooperation and keen interest during my research work. I

am indeed fortunate to work under his supervision.

I am thankful to Prof. Souvik Bhattacharyya, Vice-Chancellor and Prof. G.Sundar, Di-

rector, BITS-Pilani, Hyderabad Campus for providing a research environment to enhance my

research interest and commitment.

I wish to enlist my deep sense of gratitude to Prof. Sanket Goel, Head, Electrical Engi-

neering Department, BITS-Pilani, Hyderabad Campus for providing me full support to carry

out this research work. I am extremely thankful to all the faculty, PhD scholars and staff of

Electrical Engineering Department.

I take this opportunity to thank my doctoral advising committee members, Prof. Prabhakar

Rao, and Prof. Subhendu Kumar Sahoo for providing suggestions during the entire thesis and

sparing their valuable time in providing useful comments for my draft thesis.

It’s my pleasure to thank my parents and wife who stood with me during tough times with

all their valuable and encouraging words.

2



Abstract

Digital multipliers form an important part of digital arithmetic circuits. Important parameters

that characterize these multipliers are their precision and those related to their implementations

such as area, critical path delay, and power consumption.While certain applications demand

high precision, others would require optimality in terms of die-area, latency of operation and

power consumed. Thus the present thesis focuses on developing novel multiplier architectures

(binary, logarithmic and BCD) that lead to either improved precision or result in better imple-

mentation.

The first contribution of this thesis is the development of a reconfigurable, two-dimensional

(2D) bypass multiplier architecture that is based on dynamic bypassing of partial products. The

bypass elements incorporated into the multiplier reduce the power consumption by eliminating

redundant signal transitions.The reconfigurable architecture offers a good trade-off between

area, delay and power dissipation since it uses the same multiplier for performing one N or two

N/2 multiplications.

As the modern computing systems become increasingly embedded and portable, a growing

set of applications in media processing (graphics, audio, video, and image) has evolved. Many

of these applications, however, possess an inherent quality of error resilience. For example, it

is a known feature of image processing that a range of image resolutions/sharpness is accept-

able depending on the nature of the application. Thus arithmetic units (digital multipliers in

present case), that are not very precise but return an approximate value, can be utilized in such

applications. Such units, it may be anticipated, may result in area savings while also resulting

in reduced power consumption. The second contribution of this thesis is the development of a

novel approximate binary multiplier architecture that results in improved performance in terms

i



of area, delay and power compared to existing architectures while the trade-off in accuracy is

only marginal.

Further, in recent years, logarithmic number system has been increasingly used as an alter-

native to the binary number system as it converts multiplication to addition resulting in simpli-

fied hardware. While logarithmic number system cannot be compared with that of binary in

terms of precision, usage of it in arithmetic operations such as multiplication certainly results

in reduced area and power consumption and thus is useful in applications where precise results

are not required. The third contribution of this thesis is the development of an efficient loga-

rithmic multiplier architecture that significantly reduces the area and power consumption of the

hardware while sacrificing the accuracy only marginally.

Extensive analysis of the hardware requirement of both the multipliers (approximate binary

and logarithmic) has been carried out, initially using unit gate modeling, and later on using

the synthesis tool. Furthermore, to quantify the advantage of the proposed architectures, both

have been used in an image sharpening algorithm (that employs extensive multiplication) and

benchmarked against certain standard and well known image processing applications such as

Lena, Cameraman and Pirate.

Finally, while binary arithmetic is all pervasive, BCD (decimal) arithmetic is preferred in

applications such as financial, scientific and commercial etc. owing to its comparatively high

precision. The fourth contribution of this thesis is the development of a generalized design

approach and architectural framework for decimal multiplication. In this approach, unlike the

existing decimal architectures, the decimal partial product generation is achieved in parallel

using fast and area efficient blocks, while the partial product reduction is achieved using hy-

brid multi-operand binary to decimal converters. A comprehensive analysis of the synthesis

results carried out on IEEE-compliant 16-digit decimal multiplier indicates the superiority of

the proposed architecture over the existing ones.
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Chapter 1

Introduction

1.1 Background

One of the most common and frequently executed operations in arithmetic computations is

multiplication. Significant amount of work has been carried out to improve the performance

of digital multipliers over the years and the same is expected to continue in future.The cri-

teria that are used to quantify their performance include latency, area and power consumed.

Thus any improvement made in the design/architecture of multipliers should be reflected in the

improvement of these parameters.

In digital static CMOS multipliers, transition activity (due to charging and discharging of

the load capacitance) dominates the total energy consumption. Thus, power saving can be

achieved by lowering the switching or transition activity per operation. Earlier efforts attempted

to reduce the switching activity of the binary multipliers through architectural modifications

such as row and/or column bypassing. In these schemes, the redundant signal switching is

eliminated by disabling the full adder circuits whose partial product is zero while forwarding

the output of the previous adder rows/columns to the next row/columns. However, the extra

bypass logic (mostly adder) has only limited effect in reducing the power dissipation while

contributing significantly to area overhead. Thus, there is a need to develop alternate bypass

multiplication architectures that can address large power consumption in multipliers.

Many of the signal and image processing applications possess an inherent quality of error
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resilience and thus do not require absolute accuracy in computation. Further, the final output in

these applications is interpreted by human senses which are not perfect. Thus approximation in

place of accuracy can be exploited that can lead to a significant improvement in area, power and

performance. Based on this idea, several techniques have been proposed that focus on approxi-

mate rather than accurate computing. However, most of these techniques provide solutions that

are based on trial and error and thus the accuracy achieved tends to be lower. Thus, realizing

efficient multiplier units (binary and logarithmic) for approximate computing in a systematic

way, which also have high precision would be of considerable interest.

The importance of error-free arithmetic is growing day-by-day and decimal (BCD) arith-

metic circuits are making their way into application such as financial, scientific and commer-

cial, etc. Like in binary arithmetic, one of the most vital and common operations in decimal

arithmetic, is multiplication. Decimal multiplication can be classified as serial multiplication,

parallel (‘word-by-digit’) and (‘digit-by-digit’) multiplication. Decimal (BCD) ‘digit-by-digit’

multipliers are appropriate for pipelined computations and result in improved regularity of the

circuits. This regularity, in conjunction with shorter interconnects, results in significant im-

provement in the multiplier performance. There is however a significant scope to develop more

efficient architectures for ‘digit-by-digit’ multiplication.

1.2 Objectives of the Thesis

The objectives of this thesis are as follows:

• To improve the existing binary multiplier architecture to reduce the switching activity

resulting in low power consumption.

• To design and implement truncated binary and iterative logarithmic multipliers targeted

for error resilient applications

• To develop a BCD multiplier with improved performance for high speed (parallel) mul-

tiplication
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1.3 Steps involved in carrying out present research

Figure 1.1 illustrates the steps involved in carrying out present work, summarized below:

• Modification of multiplier architectures to improve precision and/or performance for bi-

nary, logarithmic and decimal multiplication

• Modeling the architectures (fixed-width binary and logarithmic multiplier) in MATLAB

• Evaluation of the above using synthesis-independent unit gate level (hardware) modeling

• Verification using Verilog test benches and applying random stimuli to cover a wide input

range

• Synthesis of binary, logarithmic and decimal multipliers using Cadence RTL compiler to

obtain estimates of area, delay, and power

• Analysis of the above multipliers to evaluate and compare their performance with the

existing designs

1.3.1 High Level Modeling

The multiplier schemes (fixed-width binary and logarithmic multiplier) have been modeled

and verified in MATLAB environment. Metrics related to precision such as maximum error

and average error have been computed for different multiplier schemes.The main purpose of

carrying out high-level modeling is as follows:

1. It is a faster way of realizing optimized architectures/designs

2. It offers an easier and faster method to evaluate and compare different architectures/designs

3. A high-level model serves as an abstract model of the design to generate input stimulus

and verify the result

18



1.3. STEPS INVOLVED IN CARRYING OUT PRESENT RESEARCH

Synthesizing the designs using Cadence
RTL compiler

Binary/Logarithmic/BCD Multipliers

Architectural modifications for
improved precision and/or

performance

Validating the concept with help of
high-level modelling

Developing a verilog RTL model for
the architecture specified

Functionality verification of RTL
model using verilog test bench

Unit gate level modelling

Design Validation

Figure 1.1: Research Flow chart

1.3.2 Unit Gate Level Modeling

All the designs (fixed-width binary, logarithmic and decimal (BCD) multipliers) under consid-

eration have been modeled using unit gate approach to obtain a rough estimate of area (A) and

delay (D). This model is useful for high-level analysis and does not depend strongly on any

one process technology, synthesis tool, or cell library. The assumptions made while perform-

ing the unit gate modeling are the following: Each two-input gate (AND, OR, NAND, NOR)

is counted as one gate while EX-OR and EX-NOR are counted as two gates for both area and

delay. Further, an m-input gate is assumed to be composed of a tree of m-1 input gates while
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the effects of wiring, buffering and inverting costs (area and delay) are neglected.

1.3.3 CAD tools used in the ASIC implementation

1.3.3.1 Cadence Simulator

Cadence NCSim is an RTL functional simulator that can simulate Verilog models. The func-

tional behavior of the modules (Binary, Logarithmic and BCD multipliers) was verified in NC-

Sim using Verilog test benches.

1.3.3.2 Cadence RTL Compiler

Cadence RTL Compiler is a hardware synthesis tool. It maps an RTL hardware description

model using a standard cell library into a gate-level net list. The output structural level thus

obtained is composed of cells that exist in the standard-cell technology library. The synthesis

tool accepts Verilog RTL code as an input and generates area, delay and power reports.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents a review of various existing multi-

plier architectures relevant to this research and their realization in hardware. It also provides

a detailed discussion of multipliers based on binary, logarithmic and BCD number systems.

Keeping in mind the importance of arithmetic precision, chapters 3 and 6 develop and validate

new techniques for improved precision of binary and decimal arithmetic circuits. Since preci-

sion is not as important as efficiency of implementation for error resilient applications, chapters

4 and 5 develop novel truncation schemes that lead to efficient implementation of binary and

logarithmic multipliers. These schemes have also been compared for performance against the

existing ones. Chapter 7 draws conclusions and provides recommendations for future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews a number of widely used multiplier architectures while focusing mainly

on those that will be of concern in this thesis. The chapter is organized as follows: Preliminary

information on the existing binary multiplier architectures is presented in Section 2.3 - 2.5, and

fixed-width (truncated) multipliers are discussed in Section 2.6. An outline of the existing log-

arithmic multipliers is presented in Section 2.7 while decimal (BCD) multipliers are reviewed

in Section 2.8.

2.2 Classification of Multiplier Architectures

Digital multipliers based on number system can be classified as (i) Binary multipliers (ii) Log-

arithmic multipliers and (iii) BCD multipliers. A pictorial representation of the same is given

in Fig.2.1 and explained in detail in the following sections.

2.3 Binary Multipliers

It is well known that binary multipliers can be classified into two categories, viz., integer

fixed-point and floating point. This thesis however focuses on integer fixed-point multiplier

architectures only. In fact, floating-point multipliers consist of a fixed-point multiplier for the
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Digital Parallel Multipliers

Binary Multipliers

Logaritmic
(Iterative)
Multipliers

BCD (Digit-by-Digit)
Multipliers

Full-Width
Multipliers

Fixed-Width
Multipliers

Figure 2.1: Classification of digital multiplier architectures based on number system

significant and additional circuitry to deal with the exponents and special values. Thus, tech-

niques developed for efficient binary multiplication presented in this thesis are also applicable

for floating-point multiplication.

Literature on binary computer arithmetic includes topics ranging from sequential to parallel

multipliers. Today, most of the advanced digital systems include a parallel binary multiplication

unit to carry-out mathematical computations. Array and Booth multipliers are a few examples

of parallel multiplication in this category. As is well known, array-based multipliers [1] are

ideal for very large scale integration (VLSI) and application specific integrated circuits (ASICs)

due to their regular layout. On the other hand, Booth multiplier [2], although faster compared

to array multipliers, has an irregular layout structure, making it not very suitable for VLSI

implementations.Thus, this thesis focuses on design and validation of area and power efficient

binary array multipliers. In order to provide more insight in to multiplication process, the

general structure of binary multiplier is described initially and implementation of the same is

illustrated using Braun array multiplier.

In general, binary multiplication involves three steps: (i) Partial product generation (PPG)

(ii) Partial product reduction (PPR) and (iii) Final product computation. A typical binary mul-

tiplier accepts two binary inputs A and B, each of N-bit width, as illustrated in Fig.2.2. Mul-

tiplication schemes primarily differ in the manner partial products are generated and/or accu-

mulated. The multiplication operation can be accelerated in two ways: generating optimized

number of partial products (PPs) in the first (PPG) step or accelerating their accumulation in
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second (PPR) step. One of the most effective ways of accumulating an array of partial products

into two rows is through carry save adder structure. These two rows are eventually reduced us-

ing a final adder in the last step. A detailed explanation of PPG and PPR in an array multiplier

is provided in subsequent sections.

Partial Product
Generation (PPG)

Carry Save Adder (CSA)
tree Structure

Final Adder

A B

Partial Product
Reduction (PPR)

Product

Partial Product
Generation (PPG)

N N

2N

Figure 2.2: A general binary multiplication structure

2.4 Braun Multiplier

The simplest array multiplier proposed was by Braun [3], generally known as carry save mul-

tiplier, suited for unsigned operations only. The mathematical model of a N*N unsigned array

multiplication is given below. Assume A and B to be two N-bit unsigned numbers, where A is

the multiplicand and B is the multiplier.

A =
n−1

∑
i=0

ai.2i (2.1)

23



2.4. BRAUN MULTIPLIER

B =
m−1

∑
i=0

b j.2 j (2.2)

The product (P) can be written as: P = A∗B =∑
n−1
i=0 ∑

m−1
j=0 aib j.2i+ j

2.4.1 Partial Product Generation (PPG)

In general, to implement N ∗N binary multiplier in hardware, N2 partial products are required

for PPG which are generated using AND gates. As an example, consider hardware imple-

mentation of 8*8 Braun multiplier illustrated in Fig.2.3. A typical multiplication of two 8-bit

binary numbers results in a total of 64 PPs. Figure.2.3(a) depicts the arrangement of these par-

tial products in a matrix form. Each of these partial products (PPs) is obtained using an AND

gate as illustrated in Fig.2.3(b). Further, an alternate partial product representation of the same

multiplier is shown in Figure.2.4.
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b0
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(b)

Figure 2.3: (a) Partial product matrix representation in a 8*8 Braun multiplier (b) Partial prod-
uct computed using an AND gate

2.4.2 Partial Product Reduction (PPR)

The PPs generated must be accumulated to form the final product. In multiplication, accu-

mulation of PPs, also referred to as reduction of PPs, consumes most of the time taken for

multiplication. The reduction of the PPs is performed using two main methods, namely, ac-
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Figure 2.4: (a) Alternate representation of partial products in 8*8 Braun array multiplier (b)
Partial product computed using an AND gate

cumulation by rows and accumulation by columns. The building modules are referred to as

adders if the accumulation is by rows and conversely, if the reduction is by columns, they are

referred to as counters. A simple technique in the accumulation by rows involves multiple

two-operand carry propagate adders (CPAs). However, propagation of the carry using CPAs is

time-consuming and thus is slow [4]. An alternate and more efficient approach is to reduce the

columns by using carry-free adders, namely, carry save adders (CSAs) as discussed below.

2.4.2.1 Binary Carry Save (CSA) Adders

Carry save adders are popular structures used for partial product reduction in multiplication

process. The binary partial product reduction structure uses multiple levels of carry save adders

(CSAs). As illustrated in Fig.2.5, each bit-slice (group of 3-bits) of a CSA is realized using

a full adder. This binary full adder generates a sum-bit and a carry-bit. The carry input is

propagated from the previous bit-slice to the next most significant position in the reduction tree.

The PP reduction process results in two rows (sum and carry), which are eventually converted

to the final sum using a two operand adder (carry propagating adder). In short, binary PPR can

be implemented via CSA tree comprising of binary half adders (HAs) and full adders (FAs) as

basic elements.

As is well known, a half adder accepts two operand bits (A and B) as inputs and computes
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Ai-1Bi-1AiBiAi+1Bi+1

Ci-1
CiCi+1

Si-1SiSi+1

Bit-slice

Ci+2

Figure 2.5: Carry- free operation using full adders

sum (S) and output carry bit (Co) as outputs. The carry bit (Co) will eventually serve as input

carry-in for the successive half adder. The implementation of a half adder circuit follows the

Boolean equations 2.3 and 2.4 and its gate level implementation, cell notation and dot notation

are shown respectively in Fig.2.6 (a-c). The notations ‘⊕’, ‘.’ and ‘+’ denote logical XOR,

AND and OR gates respectively.

S = A⊕B (2.3)

C0 = A.B (2.4)

BA

SC0

Half
Adder
(HA)

S

BA

Co

(a) (b) (c)

SCo

A

B

Figure 2.6: (a) Logic circuit of half adder (b) Half adder cell notation (c) Computation of Sum
and Carry-out using dot notation in a half adder

Similarly, a full adder accepts three operands (A,B and carry in(Ci)) as inputs and computes

the sum (S) and output carry bit (Co) as outputs. The design of a full adder circuit follows

the Boolean equations 2.5 and 2.6 while the gate level implementation, cell notation and dot
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notation are illustrated in Fig.2.7(a-c) .

S = A⊕B⊕Ci (2.5)

C0 = (A⊕B).Ci +AB = AB+BCi +CiA (2.6)

PG

BA

S

Ci

Co

Full
Adder
(FA)

CiS

BA

Co

(a) (b) (c)

B

A

Ci

SCo

Figure 2.7: (a) Logic circuit of full adder (b) Full adder cell notation (c) Computation of Sum
and Carry-out using dot notation in a full adder

A row of full-adders, represented in Fig.2.5, can be viewed as a mechanism to reduce three

operands to two operands. For a CSA, each FA referred to as 3:2 counter has three dots in one

column as inputs. The resulting sum output will result in a dot with the same magnitude as the

inputs while carry output will result in a dot in the column to its left (one order of magnitude

higher) as shown in Fig.2.7(c).

For illustration purpose, reduction of two partial product columns (c0 and c1) is shown

in Fig.2.8(a) and the same is later extended to 8*8 multiplication as shown in Fig.2.9. Each

column, consisting of six partial products (each denoted by solid dot(•) ), is reduced in parallel

to sum (S) and carry (C). The sum is denoted by solid dot(•) with the same magnitude as the

inputs while the carry, denoted with hollow dot (◦), has higher positional weight compared to

input. The six partial products are reduced ( in three levels) to two rows using a tree of 3:2 and

2:2 full and half adders. These two rows of PP are eventually reduced to a binary number by
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using a carry propagation adder (CPA) represented with a horizontal line shown in Fig.2.8 (a) .
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Figure 2.8: (a) Partial product reduction using CSA dot notation (b) A numerical example
related to partial product reduction

The numerical example illustrated in Fig.2.8(b) describes the addition of two columns (c0

and c1 ), each consisting of six bits, where each partial product in the column is assumed to be

‘1’. These columns are reduced to two rows in four levels using a tree of full and half adders.

These two rows of PPs are reduced to final binary result by using a carry propagation adder

(CPA).

A variety of algorithms for accumulating the partial products using CSAs has been proposed

[1]. The advantage of using CSAs is that they do not contribute to hardware complexity and

one of the first algorithms proposed was by Wallace [5].

2.4.3 Wallace Reduction Tree

Wallace developed a method for reducing the columns in parallel. Figure.2.9 illustrates a

Wallace-like reduction tree organization for an 8∗8-bit unsigned multiplier, presented in Sec-

tion 2.4.1. As discussed earlier, a sum output (S) from a full or half-adder at one stage places a
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dot in the same column at the next stage. A carry output (Co) from a full or half-adder at one

stage places a dot one order of magnitude higher i.e., in the column to its left, in the next stage.

As shown in Fig.2.9(d), three dots joined by a solid diagonal line indicates that these PPs are

outputs of a (3,2) counter, while two dots joined by diagonal line indicates that these PPs are

outputs of a (2,2) counter. Consequently, the PP matrix is accumulated to a height of two in

four levels using a carry save adder (CSA) tree structure formed using full adder and half adder

as shown in Fig.2.9(a). A total of four reduction levels with matrix heights of 6, 4, 3 and 2 is

required to accumulate the PP matrix into two rows using Wallace technique. These two rows

are reduced to a final sum using a carry propagate adder (CPA) or any fast adder mentioned

below.

Final Adder

( (2,2) counter )
A

B

S

Co

Final Product

( (3,2) counter )
A
B

S

CoCi

(3,2) Counter

S

C0

S

C0

(a)

AND Gate

(b)

(c)

(d)

4
L
E
V
E
L
S

(2,2) Counter

Figure 2.9: (a) Wallace tree partial product reduction structure using 3:2 and 2:2 counters (b)
Partial product computed using an AND gate (c) Representation of 3:2 and 2:2 counters (d)
Computation of Sum and Carry-out using dot notation in a full and half adder circuits
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2.4.4 Final Adder

The last step in the partial product reduction process is the conversion of the redundant sum

obtained from Wallace reduction tree into non-redundant representation. This step is performed

using a non-redundant adder. There exist many topologies to implement the final adder namely,

ripple carry, carry look-ahead, and parallel prefix (or prefix tree) [6] among many. Based

on priorities (area and delay) appropriate adder topology can be selected from the available

literature. For instance, a ripple carry adder has area and a delay that is proportional to the

adder‘s length while prefix based adders have almost logarithmic delay but with area overhead.

Thus, appropriate adder design can be chosen depending on the requirement.

2.4.4.1 Ripple Carry Adder

The basic building blocks of a ripple-carry adder (RCA) are full adders. Consider two n-bit

numbers, A and B, described by equations 2.1 and 2.2. A total of n full adders are used, one

for each column. The full adder in column i adds the operand bits Ai and Bi plus the carry-in

(Ci), where i = 0,1 . . .N−1. The carry-out of previous stage full adder is passed down to the

carry-in of the full adder in the next most significant column. The Si outputs of the n full adders

form the sum. Figure 2.10 illustrates a 4-bit ripple carry adder.

FA0

A0B0

S0

CiFA1

A1B1

S1

FA2

A2B2

S2

FA3

A3B3

S3

C1C2C3Cout

Figure 2.10: 4-bit Ripple Carry Adder

Although, ripple carry adder is simple and easy to implement, it suffers from large delay.

This is because the full adder in the next stage has to wait for carry bit from the previous stage

full adder (FA). By inspecting the FA shown in Fig.2.10 it can be observed that each full adder

contributes to a two gate delay in the process of rippling the carry [6]. In general, critical path

length of the final carry propagation adder can be deduced as follows:
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CPAlength = 2N−2

2.4.4.2 Carry Look-ahead Adder (CLA)

The carry propagation delay in a ripple carry adder increases linearly with an increase in the

number of input bits. Efforts to reduce this delay has resulted in novel adder architectures and

Carry Look-ahead (CLA) is one such adder which improves the speed by computing the carry

signals in advance that depends on the input operands.

Based on the combination of inputs Ai and Bi, the signals, generate (Gi) and propagate(Pi),

determine the possibility of carry generation. Generate term determines if a carry-out would

be ‘1’ independent of carry-in while propagate term determines whether carry moves to the

next higher significant position. The standard carry look-ahead adder equations (Gi and Pi) that

dictate if the carry will be generated or propagated can be given as,

Gi = Ai.Bi (2.7)

Pi = Ai⊕Bi (2.8)

Clearly, carry generation depends on the values of Ai and Bi. For instance, when Ai = Bi

=‘1’, a carry of ‘1’ is produced at the ith position, while a carry of ‘0’ is generated when Ai = Bi

=‘0’. Conversely, carry propagation happens when Ai 6= Bi. Hence, when Ai 6= Bi and carry-in

(Cin) is ‘1’, then Cin is said to propagate to the next position.

Accordingly, the sum and carry recurrence for the ith stage is as follows:

Si = Pi⊕Ci (2.9)

Ci+1 = Gi +Pi.Ci (2.10)

Similarly, the carries in a 4-bit CLA are generated in parallel according to the following

equations:

C1 = g0 + p0c0 (2.11)
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C2 = g1 + p1g0 + p1 p0c0 (2.12)

C3 = g2 + p2g1 + p2 p1g0 + p2 p1 p0c0 (2.13)

C4 = g3 + p3g2 + p3 p2g1 + p3 p2 p1g0 + p3 p2 p1 p0c0 (2.14)

The logic circuit of a 4-bit CLA is illustrated in Fig.2.11.

1-bit FA

p0 g0

S0

A0B0

C1

1-bit FA

p1 g1

S1

A1B1

C2

1-bit FA

p2 g2

S2

A2B2

C3

1-bit FA

p3 g3

S3

A3B3

C0

C4 4-bit Carry Look Ahead

Figure 2.11: 4-bit Carry Look-ahead adder

One obvious disadvantage in CLA adder is that the carry block gets complicated for large

values of N. To mitigate this, a new class of adder networks has been designed that transfers

the carry through the look-ahead stage in about log2(N) stages. These networks are known

as tree networks and the adder circuits that utilize these networks are called prefix-adders or

tree-adders [7].

2.4.4.3 Carry Look-ahead (CLA) based Parallel Prefix Adder

There are numerous ways to design the parallel prefix tree adders that offer trade-offs among

parameters like the number of logic stages, the maximum fan-out of each logic gate and the

wiring complexity between the stages [6] etc. Based on these parameters a wide variety of

prefix tree architectures, namely, Sklansky, Brent-Kung, Kogge-Stone, Ladner-Fischer, Han-

Carlson and Knowles [6] have been developed.

In general, as illustrated in Fig.2.12, there are three stages in any prefix adder that can

be termed as (i) pre-computation stage (ii) prefix network stage and (iii) post-computation

stage [6,8,9]. The pre-computation stage determines the generate and propagate bits as per the

equations 2.7 and 2.8.
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Figure 2.12: CLA based 8-bit parallel-prefix structure

The prefix network stage computes the final carries from the individual generate and prop-

agate bits of pre-computation stage. Using associative principle, carry computation is trans-

formed to prefix problem using the operator ‘◦’ which associates pairs of generate and propa-

gate as mentioned below:

(g, p)◦ (g′, p′) = (g+ p.g′, p.p′) (2.15)

where g and g′ denote the generate terms and p and p′ represent the propagate terms. Using

the operator ‘◦’ consecutive generate and propagate pairs can be grouped to generate carry as

follows:

Ci = (gi, pi)◦ (gi−1, pi−1)◦ ....(g1, p1)(g0, p0) (2.16)

The post computation stage determines the final sum from carries generated in the prefix

network stage.

The graph model of prefix carry computation is obtained by representing the operator ‘◦ ‘ as

node •, while the signal pairs (g, p) are denoted as edges of a graph. Different prefix structures

differ only in prefix network stage.

To illustrate a prefix structure, an 8-bit Kogge-Stone [8] prefix tree is illustrated in Fig.2.13.

The dark color (•) node in the graph represents the logic module while the white color (◦) node
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denotes a feed through node with no logic (realized with a buffer in real hardware).

c0c2 c1c3c4c5c6c7

1 03 25 47 6

G*i
P*i-1G*j P*j-1

G*i:j

G*i

P*i-1:j-1 P*i-1:j-1G*i:j

P*i-1 G*j

P*j-1

ai biai bi

pi gi

pi gi

Figure 2.13: CLA based 8-bit Kogge-Stone prefix adder

2.5 Low Power Techniques in Binary Multiplier Design

Multipliers are logic circuits that are computationally heavy. Typically, a large number of logic

gates with high transition activity are devoted to perform the multiplication operation. The

logic transitions cause the logic gates to charge/discharge the load capacitance leading to dy-

namic power dissipation. This section provides a brief introduction to various sources of power

dissipation in CMOS based designs. It is followed by preliminary information on existing

reconfigurable multipliers and bypass techniques to minimize the dynamic power dissipation.
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2.5.1 Dynamic Power Dissipation in CMOS based Circuits

The main source of power dissipation in CMOS based circuits is the dynamic power dissipation

caused by switching activity of the logic circuits. Dynamic power dissipation is given by,

Pav =CLV 2
DD fpα (2.17)

Where:

CL = charged load capacitance

VDD = supply voltage

fp = clock frequency

α = switching activity factor.

The dynamic power dissipated is thus proportional to the number of transitions occurring in

a logic gate. Various power reduction methods to minimize the redundant switching(α) have

been proposed in the literature as described later.

2.5.2 Power Consumption in Parallel Multipliers

In general, multipliers can be implemented as sequential or combinational circuits. However,

in the current work, the focus is on parallel multipliers which are purely combinational cir-

cuits. Parallel multipliers are fairly complex circuits with a large transistor count and frequent

switching of these transistors to carry out logic computations leads to large dynamic power

dissipation. As elaborated in Section 3.2, parallel multipliers have the following computation

steps: partial product generation, partial product reduction and vector merge addition. The

partial product accumulation step, which predominantly comprises of adder units, dictates the

overall computation delay, area and power consumption. An obvious technique to minimize

power dissipation is to disable the unwanted computations in an adder. A number of methods

to bypass the adders has been proposed and discussed in the literature [10–12].
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2.5.3 Reconfigurable Binary Multiplier

In a binary multiplier, the die area and power consumption are largely dependent upon the

word-size. Assuming that an application needs N-bit precision, then using a data path element

of more than the required precision would result in wasted area and power. To overcome this

problem, a twin-precision multiplier has been proposed in [13]. An attempt has been made

to minimize the impact on delay and power of the N-bit multiplier by making as few modi-

fications as possible to the conventional multiplier. This twin-precision scheme decomposes

the N*N partial-product matrix into two N/2 * N/2 independent multiplications by configur-

ing the appropriate partial products [14]. When it operates on N/2-bit operands however, large

parts of the multiplier do not contribute to the final result although they may be active. Thus,

the multiplier dissipates considerable dynamic power due to the switching activity involved in

computing unwanted partial products. This problem is sought to be addressed in this work by

using bypass computation cells that disable unnecessary computations.

2.5.4 A Review of Bypass Multiplier Architectures

Figure.2.14(a) illustrates the example of multiplication of two unsigned 4-bit numbers, where

A = a3a2a1a0 is the multiplier and B = b3b2b1b0 is the multiplicand. In a conventional Braun

array multiplier for example, the partial products are generated in parallel with the AND gates

and added using a 1-bit full adder as illustrated in Fig.2.14(b) .

The adder circuits shown in Fig.2.14(b) tend to perform computation of the partial products

even if their value is ‘0’ and this results in undesired signal transitions. These transitions can

be avoided by disabling the respective adder cells which results in saving of power.

2.5.4.1 Row-Bypass Scheme

Various techniques have been proposed from time to time to reduce the switching activity in

array multipliers, of which bypass architectures are an offshoot. A simple approach to reduce

the power consumption is to avoid unnecessary computations. Ohban [10] proposed a row-

bypass scheme wherein some rows in the multiplier array are skipped to reduce the redundant

switching activity. Figure 2.15 illustrates an implementation of a 4*4 Braun multiplier using
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Figure 2.14: (a) An example of 4*4 array multiplication (b) Schematic diagram of 4*4 Braun
multiplier

row-bypassing technique.

This scheme includes adder cells (denoted by AC and highlighted in Fig.2.15) to bypass

the inputs to output whenever the row (horizontal) partial product is zero. The tri-state buffers

augmented at the inputs of the adder cell disable unnecessary transitions by shutting down the

full adder. The MUXes at the outputs of the adder cells automatically pass the carry-input and

the sum of the previous addition to the next computational unit when the corresponding partial

product is zero. A notable drawback in this scheme however is the additional logic circuitry

required as highlighted in grey color in Fig.2.15.

A numerical example illustrating the multiplication of two 4-bit numbers using row-bypass

scheme is shown in Fig.2.16. Since the partial products in the second row are zeroes, the

corresponding computational units are turned off to save power. The partial products in the
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Figure 2.15: Schematic diagram of a 4*4 Braun multiplier using row-bypassing technique

first row are bypassed and added with partial products in the next level (third row). In a similar

manner, the remaining partial products are reduced to form the final product.

1 1 1 1
X 1 1 0 1

1 1 1 1
0 0 0 0

1 1 1 1
1 1 1 1

1 1 0 0 0 0 1 1

Row
Bypass

Figure 2.16: Numerical example of row-bypass scheme for 4*4 multiplier

2.5.4.2 Column-Bypass Scheme

Wen [11] proposed a column-bypass scheme which avoids the adder operations in some columns

instead of rows. In this approach, some columns in the partial product matrix can be skipped

whenever their outputs are known. Consequently, the switching activity and therefore power

dissipation are reduced. This technique has two important advantages: (i) It removes the extra

compensating circuitry (ii) the modified full adder (MFA) unit is less complex than that used in
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the row-bypassing multiplier.

A typical 4*4 column-bypassing multiplier is illustrated in Fig.2.17 where the modified

adder (MFA) cell is highlighted. The MFA cell skips the full adder whenever the partial product

in the corresponding column is zero. This multiplier has less hardware complexity compared

to the row-bypassing scheme also because it does not need to consider bypassing of the carry

bit.

Column 0Column 1Column 2

P0P1P3P4P5P6P7Cout

Final
Adder

b0a0b1a0b2a0b2a1 b0a1b1a1b3a0
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1 0Ci,j
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Figure 2.17: Schematic diagram of a 4*4 Braun multiplier with column-bypassing scheme

2.5.4.3 Two-Dimensional Bypass Scheme

In a 2-dimensional bypassing multiplier, the computing logic cells skip the corresponding row

and column depending on nullity of the partial products [12, 15]. Figure 2.18 shows the struc-

ture of the 4*4 Braun multiplier with 2-dimensional bypassing scheme [12].

To overcome the conflict that occurs when both row-bypassing and column-bypassing ap-

pear simultaneously, bypass adder cells (AC) incorporate additional logic. These bypass cells

have the capability to bypass when either row and/or column element is zero, however with

large circuit overhead. In view of this additional complexity, power saving tend to get re-
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Figure 2.18: Schematic diagram of a 4*4 Braun multiplier with two-dimensional-bypassing
scheme

duced. To overcome this, Hong [15] introduced two kinds of adder cells, namely, modified

row-bypassing adder (MRBA) and two-dimensional bypassing adder (TDBA). The MRBA

cells have row-bypassing capability while the TDBA cells are deactivated when either row

or column partial product becomes zero.

2.6 A Review of Recursive Binary Multipliers

This section presents the mathematical modeling of the recursive binary multiplier. This is

followed by various truncation schemes that have been used in the existing multiplier architec-

tures.

2.6.1 Mathematical Analysis of Recursive Multiplier

Recursive multipliers based on Karatsuba-Ofman Algorithm (KOA) [16] are found to have

a hierarchical architecture consisting of several sub-multipliers making them ideal for fixed-

width multiplication.

Assume A and B to be two 2n-bit unsigned numbers, where A is the multiplicand and B is

the multiplier. A and B can be written as:
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A =
2n−1

∑
i=0

ai.2i (2.18)

B =
2n−1

∑
j=0

b j.2 j (2.19)

The recursive multiplication is performed by partitioning each of the operands into two

equal portions of n-bit width. Based on this, the multiplicand (A) is split into AH and AL, while

multiplier (B) is divided into BH and BL respectively as mentioned in equations 2.20 and 2.21

given below:

A = AH ∗2n +AL (2.20)

B = BH ∗2n +BL (2.21)

The subscript H denotes the most significant portion while L denotes the lower significant

portion of the corresponding binary numbers.

The product (P) is written as follows:

P = A∗B = (AH ∗BH)∗22n +(AL ∗BH +AH ∗BL)∗2n +AL ∗BL (2.22)

Thus, multiplication can be performed using four n∗n binary sub-multipliers, namely, AH ∗

BH , AH ∗BL, AL ∗BH , and AL ∗BL, in parallel as shown in Fig.2.19. The partial products of

all the individual sub-multipliers are reduced to product (P) of 2n-bit width using a reduction

structure.

2.6.2 Truncation Schemes for Binary Multipliers

Several techniques [17–20] have been proposed in the past to achieve fixed-width multiplica-

tion. Among these, truncation techniques developed for recursive multipliers have been proven

to be efficient as opposed to the array multipliers in terms of die area and power dissipation [17].
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Figure 2.19: Schematic diagram of the original recursive multiplication scheme

2.6.2.1 Truncation Schemes for Array Multipliers

In truncation schemes for array multipliers, the least significant bits of the partial product matrix

are removed and a correction function, which is either constant or data-dependent, is added to

compensate for the error [21–24].

Authors in [21, 23] present a constant correction technique where compensation function

is based on the average value of the partial product bits which are not formed. This technique

results in simple hardware which in turn leads to higher power savings. However, the error

bounds obtained are high. To overcome this, a data-dependent correction technique proposed in

[22, 25] adds a correction value based on the partial products corresponding to least significant

column that are not formed. This technique, also referred to as variable correction, achieves

a lower error bound compared to the constant correction schemes, though at the cost of the

hardware complexity.

2.6.2.2 Truncation Schemes for the Recursive Multiplier

Most of the truncation techniques targeted at array multipliers focus on modifying the multiplier

structure. However, truncation schemes applied to recursive multipliers simply get rid of a least

sub-multiplier (ALBL) as shown in Fig.2.20 and replace it with a correction function which is

data dependent.

Three correction schemes can be found in the literature. In scheme 1 [18], AH ∗ BL or

AL ∗BH sub-multiplier replaces AL ∗BL while in scheme 2, the average value of AH ∗BL and
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Figure 2.20: Sub-multipliers in a recursive multipliers

AL ∗ BH is used. In scheme 3, the most significant partial product bit of AL ∗ BL, namely,

an−1 ∗ bn−1 forms the correction function. All these schemes are based on trial and error and

the precision achieved is also fixed. In this work, a tunable correction function is proposed

using a systematic approach and it‘s performance is compared with the existing ones.

2.7 Multipliers based on Logarithmic Number System

Most of the logarithmic multiplier schemes can be classified as iterative [26,27] or non-iterative

[28–32]. Non-iterative multipliers have limited precision due to the usage of techniques such

as piecewise linear approximation [33], memory look-up [34] or a combination of both [35]

making them limited to only a few applications. On the other hand, iterative multipliers tend to

improve the precision of the result with each successive iteration.

Mitchell [36] introduced the first iterative multiplier that was simple and flexible to meet

the requirements of a wide range of applications. This multiplier however suffered from large

relative error in the final result. Further, Mitchell approach cannot initiate next iteration until the

completion of the present one. Babic [26] modified the Mitchell design by introducing greater

pipeline-level parallelism with an objective to reduce the latency. However, his approach lead

to reduced precision in each iteration due to the neglect of carry. Babic iterative multiplier

(BIM) design was further improved by truncated error correction (TEC) method [27] which has

an additional capability for speculative carry, thereby improving the precision. This however

comes at the cost of area overhead.

To overcome these shortcomings, the present work combines carry speculation with an im-

proved fractional predictor leading to a better precision when compared to the existing work.
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The fractional predictor logic and its efficient precomputation contribute to the improved over-

all precision due to a fewer number of iterations required compared to the existing techniques.

Further, precision of the multiplier improves as the number of iterations increases. Also, sav-

ings in hardware are achieved using the truncation scheme proposed in this work. The proposed

and the existing logarithmic multipliers have been applied on an image sharpening algorithm

and compared in the context of certain well-known image processing benchmarks such as Lena

and Cameraman for performance.

2.7.1 Mathematical Analysis of MA Based Multiplier

This section presents the mathematical approach common for MA based multipliers [26,27,36]

described below:

According to Mitchell, the binary representation of two n-bit input numbers N1 and N2 is

given as :


N1 = 2k1(1+ x1)

N2 = 2k2(1+ x2)

(2.23)

The characteristics of N1 and N2 are k1 and k2 respectively, representing the most significant

operand bits with the value of ‘1’. Further, x1 and x2 denote fractional portions whose values

lie in the range [0,1].

The base-2 logarithm of the product, N1 and N2 is written as

log2 (N1 ∗N2) = k1 + k2 + log2 (1+ x1)+ log2 (1+ x2) (2.24)

To compute the antilogarithm of equation (2.24), Mitchell proposed the following analytical

expressions based on carry information from the fractional portion

N1 ∗N2 = 2k1+k2(1+ x1 + x2)+2k1+k2(x1 ∗ x2),

x1 + x2 < 1 (2.25)
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and

N1 ∗N2 = 2k1+k2+1(x1 + x2)+2k1+k2(x′1 ∗ x′2),

x1 + x2 ≥ 1 (2.26)

Where 2k1+k2(x1 ∗ x2) and 2k1+k2(x′1 ∗ x′2) are the correction terms.

Babic [26] ignored the carry altogether resulting in a simple and faster design with trade-off,

however, in precision. Accordingly, Babic used the above expression (2.25).

Further, error due to the approximation was avoided by considering the relation given in

equation (2.23) :


x1 ∗2k1 = N1−2k1

x2 ∗2k2 = N2−2k2

(2.27)

Combining equations 2.25 and 2.27 results in,

N1 ∗N2 = 2k1+k2 + f1 ∗ 2k2 + f2 ∗ 2k1 + f1 ∗ f2

Where N1−2k1 = f1 ; N2−2k2 = f2

The above equation is represented as

N1 ∗N2 = A0 + f1 ∗ f2 (2.28)

where approximate product term A0 = 2k1+k2 + f1 ∗2k2 + f2 ∗2k1

The computation of term f1 ∗ f2 given in equation (2.28) requires multiplication. Evidently,

the product N1∗ N2 gets simplified, if these terms are ignored which leads to sacrificing the pre-

cision. This was the approach adopted by Babic and TEC designs. Nevertheless, the correction

term ( f1 ∗ f2) can be computed in parallel with A0, which however results in area overhead.
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2.7.2 Hardware Architectures

The architecture of Babic multiplier [26] for one iteration is illustrated in Fig.2.21. It consists

of components such as basic logarithmic converter blocks (BLBs), decoder and adders.
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Figure 2.21: Functional diagram of Babic Iterative Multiplier (BIM)

A typical BLB includes a leading one detector (LOD), priority encoder (PE) and logarithmic

shifter modules. It forms the fundamental module in the design of iterative multipliers and

provides the characteristic (k ) and fractional portions ( f ).

Based on the binary number (N2) and characteristic (k1), the BLB2 block highlighted in

Fig.2.21 calculates the shifted fractional portion, f2∗2k1 and characteristic, k2. Similarly, BLB1

block computes the fractional portion, f1 ∗2k2 and characteristic, k1. The Adder 2 and Decoder

logic calculate the integer portion of the product (2k1+k2) while the summation of fraction

portions ( f1 ∗ 2k2 and f2 ∗ 2k1) computed using Adder 1 provides fractional portion ( f ). The

computation of the product (A0) is achieved by the addition of fractional portion ( f ) and output

of the Decoder using Adder 3 block. The inputs to next iteration are f1 and f2 which are

obtained from the respective LOD circuits.

The truncated error correction approach suggested in [27] extends the BIM scheme with

addition of fractional predictor (FP), shared logic, multi-operand addition (MOA) and mask as

illustrated in Fig.2.22.
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Figure 2.22: Functional diagram of truncated error correction (TEC) Scheme

The speculation of carry from fractional portion is carried out by a variable size FP while

the shared logic gives the position of fractional bits that require error correction. The error

correction itself is accomplished using shifter and multi-operand adder (MOA) and the inputs

for next iteration are computed via mask logic. The shortcomings in TEC multiplier include

extra hardware circuitry and lower error reduction rate for successive iterations.

2.8 Decimal Multiplication

Decimal multiplication typically have the following stages: (i) partial product generation (ii)

partial product reduction and (iii) final product computation. A general architecture of ‘digit-

by-digit’ multiplier is shown in Fig.2.23. The decimal multiplier accepts two BCD inputs A

and B of m-bit width. In the partial product generation stage, the individual digits of multiplier

and multiplicand are multiplied using the BDMs.

The reduction of partial products is accomplished using ripple-free binary CSA tree and

conversion to decimal is achieved using the multi-operand BD converter. The final product is

obtained after the addition of the decimal digits using decimal adder.

The ‘digit-by-digit’ multiplication is presented in the following Subsection 2.8.1 while var-

ious existing partial product generation and reduction schemes adapted for present designs are

discussed in Subsection 2.8.2.
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Figure 2.23: A top-level architecture of ‘digit-by-digit’ multiplication

2.8.1 ‘Digit-by-Digit’ Multiplier

Decimal (BCD) arithmetic computations are generally sluggish (slow) and tend to occupy more

silicon area. This has led to efforts to improve decimal architectures that result in high perfor-

mance and compact arithmetic circuits [37]. For example, microprocessors such as IBM Power

PC [38] and IBM z10 [39] include dedicated decimal hardware units.

Like in binary arithmetic, one of the most vital and common operations in decimal arith-

metic is multiplication. While a large body of literature on decimal arithmetic covers serial

multiplication, parallel (‘word-by-digit’) [40–43] and (‘digit-by-digit’) [44, 45] multiplication

has also been reported recently. Decimal (BCD) ‘digit-by-digit’ multipliers are appropriate for

pipelined computations and result in improved regularity of the circuits. This regularity, in

conjunction with shorter interconnects, results in a significant improvement in the multiplier

performance [46].

A step by step implementation of 4*4 ‘digit-by-digit’ multiplication [44] is illustrated in

Fig.2.24. Multiplication of each digit of the multiplicand with the digit of multiplier is per-

formed using the BDM.

For example, multiplication of A1 and B1 is highlighted in the dotted circle of the figure.

48



2.8. DECIMAL MULTIPLICATION

L

H L

H LL L

L H H H

H H H L L L

L L L H H H

H H H H

H

L L L L

R7 R6 R5 R4 R3 R2 R1 R0

P7 P6 P5 P4 P3 P2 P1 P0

Q6 Q5 Q4 Q3 Q2 Q1

A4 A3 A2 A1

B4 B3 B2 B1

*

Decimal Adder

Final Product

PPBD

4*4Binary
Multiplier

B1 A1

H L

4

4

4

4

BDM

H- HigherorderByte
L - LowerorderByte

−MBDConverters

L

Figure 2.24: Example of 4*4 ‘digit-by-digit’ multiplication using BDMs

The output of the BDM results in most significant digit and least significant digit denoted by

H and L respectively. A typical BDM is composed of a 4*4 binary multiplier and a partial

product binary to decimal (PPBD) converter. Most of the previous work available in literature

is focused on PPBD converters at partial product generation stage which is discussed in Section

2.8.2.

The individual decimal partial product columns (one such column is highlighted with dotted

rectangle in Fig.2.24) are compressed in parallel by using a tree of binary carry save adders

(CSAs) resulting in a binary number as output of each column. The conversion from binary to

decimal is carried out using multi-operand BD (MBD) converters resulting in rows of decimal

digits R0-R7 and Q1-Q6 which are eventually compressed using a decimal adder to obtain the

final product (P0-P7).

2.8.2 A Review of Partial Product Generation and Reduction Schemes

2.8.2.1 Partial Product Generation (Binary Product to BCD conversion)

The algorithm proposed in [44] converts a 7-bit binary number (p6 p5 p4 p3 p2 p1 p0) to a 2-digit

BCD number (DH and DL ) to support high performance decimal multiplication. This algorithm

calculates the contributions for lower BCD digit (DL) and the higher BCD digit (DH) from each

of the input binary bits as shown in Table 2.1.
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Table 2.1: Principle of Binary to BCD conversion
80 40 20 10 4 3 2 1
0 p6 p5 p4 0 p2 p1 p0
0 0 p6 p5 p4 0 p4 0

p6 0 p5 0
p3 0 0 0

dh3 dh2 dh1 dh0 dl3 dl2 dl1 dl0

The first row in the Table shows the BCD weights. The binary numbers p3, p2, p1 and

p0 are retained in their position as their weights are same as the corresponding weights in the

original binary number. However, the weights 16, 32 and 64 corresponding to p4, p5 and p6

are decomposed into (10,4,2), (20,10,2) and (40,20,4), respectively. The four columns in

the right consisting of BCD digits are summed using BCD adder leading to the BCD digit DL

(dl3dl2dl1dl0) while the resulting carry is added to the BCD digit that is present in the left three

columns leading to DH (dh3dh2dh1dh0).

Work in [47] modifies the architecture in [44] by adding the contributions in a BCD fashion.

This design partitions or splits the binary input into two sub-parts, three MSBs and four LSBs.

It calculates the contributions for the two BCD digits and adds them in a BCD fashion to get

the final result.

Work presented in [48] proposes two schemes, ‘three-four split’ and ‘four-three split’ binary

to BCD converters. The ‘three-four split’ algorithms have optimized DL and DH generator

blocks resulting in better performance in terms of area, delay and power. An illustration of the

‘three-four’ split algorithm is provided in Fig.2.25.
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DH DL
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Figure 2.25: Block diagram of ‘three-four split’ binary to BCD converter

The ‘four-three split’ design partitions the 7-bit binary input into four MSBs and three
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LSBs. Since the LSBs do not contribute to the higher BCD digit the LSB contribution generator

is removed resulting in area savings. However, this comes at the cost of increased complexity

of MSB contribution generator as shown in Fig.2.26. The ‘three-four split’ is faster than the

‘four- three split’ whereas the ‘four-three split’ results in a more area efficient design.
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4 4

4
3
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Figure 2.26: Block diagram of ‘four-three split’ binary to BCD converter

Work published in [49] adapted a binary-to-BCD conversion cell proposed by Nicoud [50].

Although, it was Dadda [51] who first showed that an iterative array of Nicoud’s cells can be

used to design multi-operand BD converters at PPR level mentioned in later Section. This idea

was used in [49] however at PPG level to design PPBD converter.

Certain shortcomings, however, have been recognized in these methods such as (i) redun-

dant contribution blocks [47, 48] and (ii) large area consumption [49]. To alleviate these, two

partial product BD converters, namely ‘high performance’ PPBD (HPPPBD) and ‘low area’

PPBD (LAPPBD) converters, are proposed in this work (Section 6.2).

2.8.2.2 Partial Product Reduction

Partial product reduction in the first stage of ‘digit-by-digit’ multiplier is achieved using a bi-

nary CSA structure [52]. The binary result of each partial product column is subsequently

converted to decimal (BCD) using a multi-operand BD converter consisting of iterative con-

nection of Nicoud cells [50] suggested by Dadda [51]. A typical Nicoud (ND) cell would

accept a 4-bit binary input (b j), multiplies it by two, and then adds it to bi as depicted in Fig.

2.27(a). Thus the computation of BCD (decimal) outputs, b0 (higher digit) and D0 (lower digit)

is carried out using the relation {b0, D0}= 2 .b j +bi where the maximum values of b0 and D0
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are (1)10 and (9)10 respectively.
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Figure 2.27: (a) Compact notation of Nicoud cell (b) Linear array of Nicoud cells to form
Dadda multi-operand BD converter

An example to convert a binary number to two BCD digits (b0 and D0) is illustrated in

Fig.2.27(b). Since the binary number (1010011)2 to be converted here is larger than (19)10,

four Nicoud cells are required to realize the converter. As illustrated in Fig.2.27(b), the input

to the Nicoud cell is restricted to (1001)2. Hence the 3 MSBs of binary input along with ‘0’

prepended (0101)2 is accepted as b j and the next significant binary input ‘0’ as bi resulting in

the outputs (1)2 and (0000)2. The 4-bit output (0000)2 of cell 1 along with the next significant

binary input ‘0’ form input to cell 2, resulting in (0)2 and (0000)2. Similarly, the 4-bit output

of each subsequent cell along with residual 1-bit binary input feeds the decimal input of the

following cell resulting in higher (P) digit (1000)2 and lower (Q) digit (0011)2. In general,

binary number of any operand width can be converted to decimal by a linear arrangement of

Nicoud cells.

The limitation of Nicoud cells however is their latency and thus the delay of multi-operand

BD converter increases with the size of the binary number. To mitigate this, a hybrid multi-

operand BD converter is proposed in this work. A detailed discussion of the partial product

reduction scheme is presented in Section 6.3 .
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2.9 Conclusions

In this chapter, the necessary background material about the multipliers based on different

number systems is presented. This knowledge is required to understand the subsequent chapters

included in the thesis. The objective of this chapter was to provide a quick introduction to

various architectures such as fixed width binary multipliers, logarithmic and BCD multipliers.

The multipliers based on binary and logarithmic number offers a low power alternative solution

in error resilience applications. On the other hand decimal arithmetic has been increasing used

in the financial applications where precision is very important. Finally, the overall research

approach followed in this thesis is presented.
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Figure 2.23: A top-level architecture of ‘digit-by-digit’ multiplication

2.8.1 ‘Digit-by-Digit’ Multiplier

Decimal (BCD) arithmetic computations are generally sluggish (slow) and tend to occupy more

silicon area. This has led to efforts to improve decimal architectures that result in high perfor-

mance and compact arithmetic circuits [37]. For example, microprocessors such as IBM Power

PC [38] and IBM z10 [39] include dedicated decimal hardware units.

Like in binary arithmetic, one of the most vital and common operations in decimal arith-

metic is multiplication. While a large body of literature on decimal arithmetic covers serial

multiplication, parallel (‘word-by-digit’) [40–43] and (‘digit-by-digit’) [44, 45] multiplication

has also been reported recently. Decimal (BCD) ‘digit-by-digit’ multipliers are appropriate for

pipelined computations and result in improved regularity of the circuits. This regularity, in

conjunction with shorter interconnects, results in a significant improvement in the multiplier

performance [46].

A step by step implementation of 4*4 ‘digit-by-digit’ multiplication [44] is illustrated in

Fig.2.24. Multiplication of each digit of the multiplicand with the digit of multiplier is per-

formed using the BDM.

For example, multiplication of A1 and B1 is highlighted in the dotted circle of the figure.
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Figure 2.24: Example of 4*4 ‘digit-by-digit’ multiplication using BDMs

The output of the BDM results in most significant digit and least significant digit denoted by

H and L respectively. A typical BDM is composed of a 4*4 binary multiplier and a partial

product binary to decimal (PPBD) converter. Most of the previous work available in literature

is focused on PPBD converters at partial product generation stage which is discussed in Section

2.8.2.

The individual decimal partial product columns (one such column is highlighted with dotted

rectangle in Fig.2.24) are compressed in parallel by using a tree of binary carry save adders

(CSAs) resulting in a binary number as output of each column. The conversion from binary to

decimal is carried out using multi-operand BD (MBD) converters resulting in rows of decimal

digits R0-R7 and Q1-Q6 which are eventually compressed using a decimal adder to obtain the

final product (P0-P7).

2.8.2 A Review of Partial Product Generation and Reduction Schemes

2.8.2.1 Partial Product Generation (Binary Product to BCD conversion)

The algorithm proposed in [44] converts a 7-bit binary number (p6 p5 p4 p3 p2 p1 p0) to a 2-digit

BCD number (DH and DL ) to support high performance decimal multiplication. This algorithm

calculates the contributions for lower BCD digit (DL) and the higher BCD digit (DH) from each

of the input binary bits as shown in Table 2.1.
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Table 2.1: Principle of Binary to BCD conversion
80 40 20 10 4 3 2 1
0 p6 p5 p4 0 p2 p1 p0
0 0 p6 p5 p4 0 p4 0

p6 0 p5 0
p3 0 0 0

dh3 dh2 dh1 dh0 dl3 dl2 dl1 dl0

The first row in the Table shows the BCD weights. The binary numbers p3, p2, p1 and

p0 are retained in their position as their weights are same as the corresponding weights in the

original binary number. However, the weights 16, 32 and 64 corresponding to p4, p5 and p6

are decomposed into (10,4,2), (20,10,2) and (40,20,4), respectively. The four columns in

the right consisting of BCD digits are summed using BCD adder leading to the BCD digit DL

(dl3dl2dl1dl0) while the resulting carry is added to the BCD digit that is present in the left three

columns leading to DH (dh3dh2dh1dh0).

Work in [47] modifies the architecture in [44] by adding the contributions in a BCD fashion.

This design partitions or splits the binary input into two sub-parts, three MSBs and four LSBs.

It calculates the contributions for the two BCD digits and adds them in a BCD fashion to get

the final result.

Work presented in [48] proposes two schemes, ‘three-four split’ and ‘four-three split’ binary

to BCD converters. The ‘three-four split’ algorithms have optimized DL and DH generator

blocks resulting in better performance in terms of area, delay and power. An illustration of the

‘three-four’ split algorithm is provided in Fig.2.25.
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Figure 2.25: Block diagram of ‘three-four split’ binary to BCD converter

The ‘four-three split’ design partitions the 7-bit binary input into four MSBs and three
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LSBs. Since the LSBs do not contribute to the higher BCD digit the LSB contribution generator

is removed resulting in area savings. However, this comes at the cost of increased complexity

of MSB contribution generator as shown in Fig.2.26. The ‘three-four split’ is faster than the

‘four- three split’ whereas the ‘four-three split’ results in a more area efficient design.
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Figure 2.26: Block diagram of ‘four-three split’ binary to BCD converter

Work published in [49] adapted a binary-to-BCD conversion cell proposed by Nicoud [50].

Although, it was Dadda [51] who first showed that an iterative array of Nicoud’s cells can be

used to design multi-operand BD converters at PPR level mentioned in later Section. This idea

was used in [49] however at PPG level to design PPBD converter.

Certain shortcomings, however, have been recognized in these methods such as (i) redun-

dant contribution blocks [47, 48] and (ii) large area consumption [49]. To alleviate these, two

partial product BD converters, namely ‘high performance’ PPBD (HPPPBD) and ‘low area’

PPBD (LAPPBD) converters, are proposed in this work (Section 6.2).

2.8.2.2 Partial Product Reduction

Partial product reduction in the first stage of ‘digit-by-digit’ multiplier is achieved using a bi-

nary CSA structure [52]. The binary result of each partial product column is subsequently

converted to decimal (BCD) using a multi-operand BD converter consisting of iterative con-

nection of Nicoud cells [50] suggested by Dadda [51]. A typical Nicoud (ND) cell would

accept a 4-bit binary input (b j), multiplies it by two, and then adds it to bi as depicted in Fig.

2.27(a). Thus the computation of BCD (decimal) outputs, b0 (higher digit) and D0 (lower digit)

is carried out using the relation {b0, D0}= 2 .b j +bi where the maximum values of b0 and D0
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are (1)10 and (9)10 respectively.
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An example to convert a binary number to two BCD digits (b0 and D0) is illustrated in

Fig.2.27(b). Since the binary number (1010011)2 to be converted here is larger than (19)10,

four Nicoud cells are required to realize the converter. As illustrated in Fig.2.27(b), the input

to the Nicoud cell is restricted to (1001)2. Hence the 3 MSBs of binary input along with ‘0’

prepended (0101)2 is accepted as b j and the next significant binary input ‘0’ as bi resulting in

the outputs (1)2 and (0000)2. The 4-bit output (0000)2 of cell 1 along with the next significant

binary input ‘0’ form input to cell 2, resulting in (0)2 and (0000)2. Similarly, the 4-bit output

of each subsequent cell along with residual 1-bit binary input feeds the decimal input of the

following cell resulting in higher (P) digit (1000)2 and lower (Q) digit (0011)2. In general,

binary number of any operand width can be converted to decimal by a linear arrangement of

Nicoud cells.

The limitation of Nicoud cells however is their latency and thus the delay of multi-operand

BD converter increases with the size of the binary number. To mitigate this, a hybrid multi-

operand BD converter is proposed in this work. A detailed discussion of the partial product

reduction scheme is presented in Section 6.3 .
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2.9 Conclusions

In this chapter, the necessary background material about the multipliers based on different

number systems is presented. This knowledge is required to understand the subsequent chapters

included in the thesis. The objective of this chapter was to provide a quick introduction to

various architectures such as fixed width binary multipliers, logarithmic and BCD multipliers.

The multipliers based on binary and logarithmic number offers a low power alternative solution

in error resilience applications. On the other hand decimal arithmetic has been increasing used

in the financial applications where precision is very important. Finally, the overall research

approach followed in this thesis is presented.
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Chapter 3

An Efficient Reconfigurable Binary

Multiplier with 2-Dimensional bypassing

3.1 Introduction

Recent developments in digital signal processing (DSP) have necessitated development of re-

configurable binary multiplier architectures that can dynamically adapt to varying application

needs [53]. For example, a typical digital system may need to switch between one application

that requires 4-bit accuracy to another application that needs 8-bit accuracy. This could par-

tially be compensated by having two multipliers, each of precise bit-width, and having smallest

bit-width multiplier that is adequate for current multiplication. Though, this approach opti-

mizes the multiplier in terms of delay, it results in area and power overhead in view of multiple

multiplier instances. Thus, one of the objectives in this chapter is to design a data path com-

ponent that can be configured to perform either one N or two independent N/2 multiplication

operations.

A wide variety of low-power array multiplier architectures exist in literature that are listed

in [10,11,54]. A simple and straightforward method to save power in these multipliers is to use

bypassing technique [10] which reduces the switching activity by avoiding unnecessary com-

putations. The second objective of this chapter is to design novel two-dimensional bypassing

computational cells and incorporate them into the reconfigurable multiplier mentioned above
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to reduce the switching activity further. Also, a reconfigurable Ladner-Fisher prefix adder that

simplifies the final product computation is included in the multiplier.

The proposed multiplier architecture is described in section 3.2 while synthesis results of

the performance of various multipliers are compared in section 3.3.

3.2 Proposed Reconfigurable Binary Multiplier Architecture

In this section, a bit-width aware reconfigurable multiplier architecture with two-dimensional

bypassing is proposed. In normal operation mode, this reconfigurable multiplier performs 8-

bit multiplication while for applications where accuracy can be relaxed, it can perform 4-bit

multiplication with only a fraction of the energy of 8-bit multiplication being expended. Also,

when performing two 4-bit parallel multiplication within a 8-bit multiplier, only one half of the

logic is used.

Further, to reduce the dynamic power, a new 2-dimensional bypassing technique is in-

corporated into the multiplier architecture. The bypass technique uses selective disabling of

computation cells when the column and/or row partial products are zero. This is achieved by

incorporating the new bypassing computational cells that improve the power efficiency and also

facilitate reconfigurability of the multiplier.

A block diagram of the proposed reconfigurable multiplier with bypass cells is shown in

Fig.3.1 below. As can be seen, it has two inputs each of m-bit width. The partial product

(PP) generation is accomplished using AND gates while the PP matrix reduction is achieved

using novel 2-dimensional bypass adder cells. The bypass adder logic, while reducing the PPs

into two rows, also helps in minimizing the latency and power dissipation by disabling the

unnecessary PPs. In addition, capability to reconfigure is built into the bypass computation

cells. To further improve the speed of operation, two rows are reduced to a final product using

a scalable Ladner-Fisher prefix adder.
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Generation of Partial
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Bypass logic cells
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A B

m m

PPG

PPR

Figure 3.1: Block diagram of proposed reconfigurable binary multiplier

3.2.1 Partial Product Arrangement

Figure.3.2 illustrates the partial product arrangement in a 8*8 array multiplier while their re-

duction is shown in Section 3.2.2. Based on the configuration mode given in Table 3.1, the

partial product matrix in Fig.3.2 can be configured to perform either as one 8∗8 multiplier or

two independent 4∗4 multipliers.

Table 3.1: Proposed configuration modes of an array multiplier
Configuration Mode, CM Function Description

CM1 one 8*8 full-width multiplier
CM0 two independent 4 * 4 full-width multipliers

3.2.1.1 Configuration Mode 1 (CM1) :

In configuration mode 1, one 8 ∗ 8 multiplication can be performed as illustrated in Fig.3.2.

The PPG operation generates a total of 64 PPs, which are arranged in a matrix form as shown

in Fig.3.2. To eliminate the redundant switching activity, all the PPs are reduced using bypass

computation cells as discussed in section 3.2.2.
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Figure 3.2: Partial product matrix in configuration mode 1

3.2.1.2 Configuration Mode 0 (CM0) :

In configuration mode 0, two parallel 4 ∗ 4 multiplications can be performed as illustrated in

Fig.3.3. The partial products (colored in gray and black) that contribute to independent 4 ∗ 4

multiplications are given in the upper half of the PP matrix while those (enclosed in dotted box

in Fig.3.3) that do not contribute to the product are shown in the lower half of the PP matrix.

The computation cells corresponding to these PPs are turned-off, thus leading to power saving.

This has been achieved using new bypass computation cells discussed below.

3.2.2 Partial Product Reduction using 2-Dimensional Bypass Cells

Figure 3.4 illustrates the proposed bypassing architecture for an 8*8 array multiplier. The

reduction of partial products generated (shown in Fig.3.3) is carried out using the new adder

bypass logic cells besides the existing cells. The bypassing cells incorporated into the multiplier

skip the redundant computations whenever the row (horizontal) or the column (vertical) partial

product is zero. Two adder cells namely, TDBA and MRBA with bypassing capability, are

adapted from previous design [15] for this purpose and used. The TDBA cell has the capability

to bypass when either row or column element is zero while MRBA bypasses when only the row

element is zero.

57



3.2. PROPOSED RECONFIGURABLE BINARY MULTIPLIER ARCHITECTURE

P00P01

P10

P20

P11

P02

P30

P21

P12

P03

P31

P22

P13

P40

P04

P32

P23

P41

P50

P05

P14

P33

P60

P51

P42

P24

P15

P06

P70

P61

P52

P43

P34

P25

P16

P07

P44

P71

P62

P53

P35

P26

P17

P54

P45

P72

P63

P36

P27

P64

P55

P46

P73

P37

P74

P65

P56

P47

P75

P66

P57

P76

P67

P77

a7 a6 a5 a4 a3 a2 a1 a0

*

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 Po

b7 b6 b5 b4 b3 b2 b1 b0

Figure 3.3: Partial product matrix in configuration mode 0

In mode 0 (CM 0), the bypass cells are intended to provide reconfigurability to the multiplier

besides minimizing the redundant switching activity. Therefore, two new adder cells, reconfig-

urable two-dimensional bypass cell (RTDBC) and reconfigurable row-bypass cell (RRBC) are

proposed in this work. These reconfigurable computation cells can be configured according to

the mode of operation using configuration mode bit, CM. The RTDBC cell is deactivated when

the corresponding row or column partial product is zero. Conversely, RRBC skips the compu-

tation unit when the corresponding row partial product is zero. A detailed implementation of

these cells is provided in Section 3.2.2.1 & 3.2.2.2. With the proposed RTDBC and RRBC, the

power saving of the multiplier is higher than the conventional bypassing architectures as will

be demonstrated later.

The operation of the multiplier that depends on the configuration mode can be described as

follows: When CM = ‘1’, one 8*8 full-width multiplication is carried out. Since in this mode

all the PPs contribute to the final result (P0−P15) it can be said that RTDBC and RRBC work

as normal bypass logic cells. The reconfigurable cells along with TDBA and MRBA are turned

off that depends on the nullity of partial products.

Conversely, when CM = ‘0’, two independent 4*4 multiplications can be performed. In this

mode, the partial products enclosed in dotted box in Fig.3.3 do not contribute to the final result.
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Figure 3.4: (a) Proposed reconfigurable multiplier architecture with bypass computation cells
(b) Reconfigurable row and column bypass cells with mode bit, CM

Therefore, RTDBC and RRBC computation cells corresponding to these PP bits are disabled

in Fig.3.4. This helps in minimizing the unnecessary transition activity in the multiplier.

Finally, the PPs out of the bypass cells are accumulated to two rows regardless of the mode

of operation. These rows are eventually reduced to final product using a scalable Ladner-Fisher

prefix adder discussed in section 3.2.3.

The reason for implementing the proposed multiplier with different cells (two dimensional

and row bypassing) is to avoid carry problem that occurs when both row and column-bypassing

are applied simultaneously. For example, in Fig.3.5 (a section of proposed multiplier high-
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Figure 3.5: A section of the proposed reconfigurable multiplier

lighted in dotted box in Fig.3.4), assume both column input B1 and row input A2 are zero and

the carry-input C1,2 is ‘1’. In such a case, the respective computation cell will be disabled and

carry output C2,1 is ‘1’ due to bypassing. If A3 is ‘1’, C2,1 is lost due to column-bypassing.

This introduces errors in the multiplication. To overcome this problem, the proposed multiplier

has 2-dimensional cells (TDBC / RTDBC) only in the first two rows and the first and the last

columns in which the carry problem does not occur, as illustrated in Fig.3.4. The remaining

portion of the multiplier should have different types of logic cells which are different from RT-

DBCs. The carry problem is solved using row-bypassing cells (MRBA/RRBC) built with less

number of logic gates.

3.2.2.1 Reconfigurable Two-Dimensional Bypass Cell (RTDBC)

The bypassing scheme in existing two-dimensional bypass approaches [12,54] consists of a full

adder and additional logic circuitry. The reconfigurable two-dimensional bypass cell (RTDBC)

in this work however is designed as per the Table 3.2. Clearly, the truth table of the RTDBC

cell is simple and can be implemented only with a few logic gates. In RTDBC, the unnecessary

logic computations are disabled using internal tri-state buffers (ITBs). The EX-OR used in this

cell is a 4-transistor type with cascaded inverter for driving the output [55]. As a result, the area

and power overhead are reduced.

Figure 3.6 shows a schematic of the reconfigurable two-dimensional bypass cell. As illus-
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Table 3.2: Truth Table of reconfigurable two-dimensional bypass adder cell (RTDBC)
CM A B Cout Sout

0

0 0 C Sin
0 1 C Sin
1 0 C Sin
1 1 C Sin

1

0 0 C Sin
0 1 C Sin
1 0 0 Sin
1 1 Cin +Sin Cin } Sin

trated in Fig. 3.6, ITBs that are augmented with 2-input NAND gate and inverters form the

input to the MUXs. When the input CM is ‘0’, both the NAND and inverter logic are disabled

and the MUX logic passes C and Sin to the outputs Cout and Sout respectively. For the case when

CM and the row input A is ‘1’, the output Cout depends on the column input B as shown in Fig.

3.6 . However, when row input A is ‘0’, the inverter logic gates are disabled and the output Cout

depends on input C while Sout follows the input Sin. Hence, using RTDBC, power consumption

can be reduced.

3.2.2.2 Reconfigurable Row Bypass Cell (RRBC)

The reconfigurable row bypass cell (RRBC) has the capability to bypass when the row element

is zero. The truth table of the RRBC illustrated in Table 3.3 is simple and can be implemented

with a few logic gates instead of using a full adder and additional logic. Further, RRBC does not

have the carry problem which is unlike RTDBC. To reduce the power consumption in RRBC,

ITBs are used to disable computation in cases where it is unnecessary. Figure 3.7 illustrates the

schematic of RRBC.

Table 3.3: Truth Table of reconfigurable row-bypass cell (RRBC)
CM A B Cout Sout

0 0 0 C Sin
0 0 1 C Sin
0 1 0 C Sin
0 1 1 C Sin
1 0 0 C Sin
1 0 1 C Sin
1 1 0 Cin.Sin Cin ⊕ Sin
1 1 1 Cin +Sin Cin } Sin
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Figure 3.6: Logic schematic of RTDBC

A typical RRBC consists of ITBs, 2-input NOR gate, 2-input NAND gate, and inverters

in front of MUXs. The EX-OR and EX-NOR gates used in this cell are 4-transistor type with

cascaded inverter for driving the output [55]. When the input CM is ‘0’, the ITB disables the

logic gates and the MUX logic passes C and Sin to the outputs Cout and Sout respectively. For

the case when CM is ‘1’ and the row input A, the output Cout depend on the column input B as

shown in Fig.3.7. However, when row input A is ‘0’, the inverter logic gates are disabled and

the output Cout depends on input C while Sout follows the input Sin.

3.2.3 Reconfigurable Ladner-Fisher Prefix Adder

The partial products are reduced to two rows using bypass computation cells at PPR level and

are converted to a product using a final adder. This adder implementation is based on Ladner-
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Figure 3.7: Logic schematic of RRBC

Fischer [9] adder architecture that is known to have a good trade-off between area and the

performance .

The Ladner-Fischer architecture illustrated in Fig.3.8 is modified to support either a one

8-bit addition or two 4-bit additions. Since the focus in this work is reconfigurability, an AND

gate is inserted in the carry propagation path and one of its inputs is connected to configuration

mode (CM). If the control bit CM is ‘1’, the adder will operate as a one 8-bit adder while if it

is ‘0’, the carry propagation is broken and the adder operates as two independent 4-bit adders.

This adder facilitates the proposed multiplier to carry out either one 8-bit multiplication or two

4-bit multiplications.
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Figure 3.8: A reconfigurable 8-bit Ladner-Fisher prefix adder

3.3 Simulation and Synthesis

Detailed simulations of the proposed multiplier have been carried out and a comparison with

similar designs existing in the literature has been made. For a fair comparison, existing row-

bypass [10] and column-bypass [11] designs are independently combined with twin-precision

[14] to form a multiplier. For example, twin row-bypass multiplier is obtained by incorporating

row-bypass logic into twin-precision multiplier. Similarly, twin column-bypass is formed using

column bypass logic with twin-precision multiplier.

All the multiplier designs with bypass schemes given in Table 3.4 including the proposed

one have been described structurally using Verilog HDL and simulated using Cadence Incisive

Unified Simulator (IUS) v6.1. These multipliers have been mapped on to TSMC 180 nm tech-

nology slow-normal library (operating conditions 1.8 V, 25°C) using cadence RTL compiler

v7.1. Inputs were set to have a toggle rate of 50% and a frequency of 1GHz for calculating

dynamic power.

Table 3.4 presents performance metrics such as area, delay, power, and power-delay product

for the 8-bit reconfigurable multiplier with different bypass schemes including the proposed

one. Figures 3.9-3.12 provide a graphical comparison of the same.
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Table 3.4: Area, delay and power of various multipliers with various bypassing schemes

Mode Multiplier
Area
9µm23

]
change

Delay
9ps3

]
change

Power
9nW3

]
change

Power CDelay
product
91063J

]
change

Twin precision [14] 586 94] 2094 134] 13454 105] 28.1 140]

Twin Row [10] 660 105] 2013 127] 13254 103] 26.6 132]

CM1 Twin Column [11] 630 101] 1960 123] 13142 102] 25.7 128]

Proposed 625 100] 1560 100] 12838 100] 20 100]

Twin precision [14] 586 94] 2094 140] 13454 129] 28.1 181]

CM0 Twin Row [10] 660 105] 1905 127] 11073 106] 21 136]

Twin Column [11] 630 101] 1844 123] 10867 104] 20 129]

Proposed 625 100] 1492 100] 10379 100] 15.48 100]

It is clear from the Table 3.4 and Fig.3.9 that the proposed multiplier in mode 1 (CM1)

achieves 25 to 34% lesser delay compared to the existing designs.

Twin precision
[14]

Twin Row [10]
Twin Column

[11]
Proposed

Area 586 660 630 625

540

560

580

600

620

640

660

680

A
re
a
(µ
m

2 )

Twin precision
[14]

Twin Row [10]
Twin Column

[11]
Proposed

Delay 2094 2013 1960 1560

0

500

1000

1500

2000

2500

D
e
la
y
(p
s)

Figure 3.9: Latency of various bypass multiplier schemes

It can also be seen from the Table 3.4 (CM1) and Fig.3.10 that the proposed design con-

sumes 2 to 5% lesser power than the existing ones. This reduction in power dissipation is due

to the reduction in switching activity arising out of disabling the computational units.

From Table 3.4 (CM1) and Fig.3.11, it can be observed that there is also an improvement of

28 to 40% in power-delay product. This is due to the saving achieved in both power and delay
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Figure 3.10: Comparison of various bypass multiplier schemes in terms of power

mentioned above.Thus the proposed multiplier with a new 2-dimensional bypass scheme is

found to be better in terms of power, delay and power-delay product when compared to earlier

designs.
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Figure 3.11: Power-delay product of various bypass multiplier schemes

It is evident from the Table 3.4 (CM1) and Fig.3.12 that the area overhead of row bypass

scheme alone is 9% while this increase is only 6% in the proposed design even after incorpo-

rating both row and column bypassing logic. This is because of the usage of efficient adder
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bypass cells which take up less area and are also fast.
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Figure 3.12: Comparison of various bypass multiplier schemes in terms of area

It can also be seen from the Table 3.4 (CM0) that the proposed design achieves 23-40% and

4-29% lesser delay and power respectively compared to the existing designs in mode 0 (CM0).

Also, an improvement of 29 to 80% in power-delay product is achieved. This reduction of

delay is because of the new bypass adder cells that have shorter critical path compared to the

conventional bypass cells. Another reason for the improvement in delay is due to bypassing of

the adder cells whenever the partial products in the PP matrix are zero. Accordingly, the more

the number of zeroes are in the PP matrix, the faster will be the design. For this reason, the

power improvement achieved in mode 0 is much larger compared to mode 1.

3.4 Conclusions

In this chapter, a reconfigurable multiplier with two dimensional bypassing scheme has been

proposed. In normal operation mode, the reconfigurable multiplier performs 8-bit multiplica-

tion. For applications where accuracy can be relaxed, the multiplier can perform 4-bit multi-

plication while expending only a fraction of the energy of a conventional 8-bit array multiplier.

Also, when performing two 4-bit parallel multiplications within an 8-bit multiplier only one

half of the logic is used.
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Further, to reduce the dynamic power, a new 2-dimensional bypassing technique is in-

corporated into the multiplier architecture. The bypass technique uses selective disabling of

computation cells when the column and/or row partial products are zero. This is achieved by

incorporating the new bypassing computational cells ( RTDBC and RMRBC) that improve the

power efficiency and also facilitate reconfigurability of the multiplier.

The proposed multiplier with the new 2-dimensional bypass scheme performs better than

other designs in terms of delay (a reduction of 34%) and power (a reduction of 5% ) resulting

in a overall reduction of 40% in power-delay product. The delay advantage in the proposed

design is due to the RTDBC and RMRBC cells that are simple and take up less logic unlike in

the existing designs.
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Chapter 4

An Improved Fixed-Width Recursive

Binary Multiplier

4.1 Introduction

Most of the signal and image processing applications possess an inherent quality of error re-

silience and hence can tolerate error up to a certain limit in computations [56]. In such appli-

cations, savings in power are achieved by pruning the data path units [57] such as truncating

a multiplier. Truncation however may lead to errors in computing and therefore it‘s always a

challenge between the amount of error that can be tolerated in an application and the advantage

that can be obtained in terms of it‘s implementation as reflected by the parameters such as area,

latency and power. Thus, the focus of this chapter is to implement and validate a fixed-width

multiplier with improved efficiency for error resilient applications.

A large variety of fixed-width (or truncated) multiplier designs has been proposed in the

literature and found to be a potential solution for efficient implementation. In these designs,

most of which are either array or recursive-based [17,18], the least significant bits (LSBs) of the

partial product matrix are removed and an error compensation function is added in their place

[21–23]. Multiplier designs based on recursive technique are faster and have the regularity of

array multipliers making them the most suitable candidate for VLSI implementation [19].

In this work, a recursive binary multiplier architecture based on Karatsuba algorithm [16]
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is chosen. This architecture possesses an inherent hierarchical structure that consists of several

sub-multipliers making it suitable for fixed-width applications [18]. Thus, rather than modi-

fying the entire multiplier structure, the sub-multiplier in the least significant position can be

removed and replaced with a data-dependent correction term. Following this, a new correction

scheme is developed in this work for fixed-width recursive multipliers. This scheme enables

tuning of the accuracy through a new error compensating function achieved in a systematic

manner. The proposed and the existing truncation schemes have been applied on an image

sharpening algorithm and compared in the context of certain well-known image processing

benchmarks such as Lena, Cameraman and Pirate for performance.

The rest of the chapter is organized as follows. The proposed fixed-width recursive multi-

plier architecture is described in Section 4.2. Performance analysis of both the proposed and

the existing multiplier architectures is carried out and compared in Section 4.3. They are used

in an image sharpening algorithm to quantify their performance, results of which are provided

in Section 4.4.

4.2 A New Approach to Error Correction in Fixed-Width

Recursive Multipliers

The proposed architecture is based on the fact that the error after removing the least signif-

icant sub-multiplier ALBL (which contributes minimum to the final result) is always positive

and hence the multiplication product obtained is less than the exact value. Error due to this

approximation is further reduced by using a data-dependent correction function that is based

on the least significant partial product columns within ALBL that are not formed.

A typical recursive multiplication of two inputs A and B, each of 2n-bit width, results in

four sub-multipliers as illustrated in Fig.4.1. The PPs generated in these sub-multipliers are

reduced using the partial product reduction structure [5] as mentioned earlier.

The product (Pexact) after multiplication is given by,

Pexact = PH1 +PH2 +PH3 +PL (4.1)
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AL* BL

2n 2n

A1B1

Partial Product Reduction

AH* BL

AL* BHAH* BH

Product, Pexact

Figure 4.1: A 2n*2n recursive multiplication structure illustrating sub-multipliers

Where PH1 = AHBH , PH2 = AHBL, PH3 = ALBH and PL = ALBL

In the proposed scheme, as in the other scheme, the sub-multiplier (ALBL) that contributes

minimum to the final result is removed. Further, error due to this approximation is reduced

using a data-dependent correction function (CF0) which is based on the least significant partial

product columns within ALBL that are not formed.

The expression for approximate product (Papprox) after removing ALBL and subsequent cor-

rection is as follows:

Papprox = PH1 +PH2 +PH3 +CF0 (4.2)

Since the correction function (CF0) does not include all the PP columns of ALBL, it leads

to an error. Further, the error magnitude and the hardware complexity depend on the function

selected.

The error due to replacement of ALBL using the correction function is determined as,

Error, e0 = ALBL−CF0 (4.3)
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Where

ALBL =
n−1

∑
j=0

n−1

∑
i=0

aib j2i+ j (4.4)

The operation of the proposed approach is demonstrated on a 8*8 recursive multiplier and

error analysis carried out. Figure.4.2 illustrates four sub-multipliers and their corresponding

partial products in a 8*8 recursive multiplier. As mentioned earlier, the sub-multiplier ALBL is

removed and replaced with the correction function (CF0).
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Figure 4.2: Partial product matrix of a fixed-width recursive multiplier with two most signifi-
cant columns considered for correction

The proposed approach considers the most significant partial product columns of ALBL for

the correction function. Based on the number of columns considered, the accuracy and hard-

ware requirements vary. The variation of average error with number of columns (considered

for correction) is carried out on a 8*8 recursive binary multiplier mentioned above, as illus-

trated in Fig.4.3. The plot shows the variation of average error as a function of the number of

most significant partial product columns of ALBL. It can be observed from the figure that the

average error reduces with the increase in number of partial product columns, though with an

area overhead. Further, it can be noted that the average error drops very sharply with only two

most significant columns considered. Beyond this point, even with the inclusion of more partial

product columns the rate at which the average error decreases is less.
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Figure 4.3: Average error Vs Number of most significant partial products columns considered
for correction in a 8 * 8 fixed-width recursive multiplier

4.2.1 Error Analysis for the proposed correction function

For the sake of understanding, error analysis when two most significant columns of ALBL (high-

lighted in a triangle in Fig.4.2) are considered for correction, is given below. The advantage

of the proposed method is that the partial product columns selected for correction have higher

weight when compared to those in the existing schemes. The correction function proposed in

this work thus tends to achieve better accuracy. The same is proved in Section 4.3.

A step-by-step implementation of unsigned multiplication using existing and the proposed

correction (where two most significant partial product columns are considered) schemes is

given in the numerical example 4.1 below .

Example 4.1.

A = (25)10 = (00011001)2

B = (20)10 = (00010100)2

Actual Product, Pexact = A∗B = (500)10 = (0000000111110100)2

Product using recursive multiplier with average value correction terms, Scheme 2 [18] :

Papprox2 = (475)10 = (0000000111011011)2

Average error (%) = (Pexact–Papprox2)
Pexact

= (500−475)
500 ∗100 = 5
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Product using recursive multiplier with 1-bit correction, Scheme 3 [18] :

Papprox1 = (464)10 = (0000000111010000)2

Average error (%) = (Pexact–Papprox1)
Pexact

= (500−464)
500 ∗100 = 7.2

Product using recursive multiplier with proposed correction (two most significant columns

considered for correction) scheme :

Papprox = (0000000111110000)2 = (496)10

Average error (%) = (Pactual–Papprox)
Pexact2

= (500−496)
500 ∗100 = 0.8

It can be observed from the above analysis that the proposed correction with two most

significant columns considered for correction achieves better accuracy when compared to the

existing schemes.

4.2.1.1 Hardware Implementation of the Proposed Fixed-Width Recursive Multiplier

The hardware block diagram of a 8∗8 fixed-width recursive multiplier is illustrated in Fig.4.4.

The sub-multipliers AHBH , ALBH , AHBL are implemented using 4*4 binary array multipli-

ers [3] while the compensation function essentially includes the two most significant partial

product columns highlighted in triangle in Fig.4.2. The PPs corresponding to sub-multipliers

along with the correction function are reduced using a tree carry save adders and final adder. A

detailed PP reduction mechanism is explained below.
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Figure 4.4: A new fixed-width recursive multiplier hardware
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Chapter 4

An Improved Fixed-Width Recursive

Binary Multiplier

4.1 Introduction

Most of the signal and image processing applications possess an inherent quality of error re-

silience and hence can tolerate error up to a certain limit in computations [56]. In such appli-

cations, savings in power are achieved by pruning the data path units [57] such as truncating

a multiplier. Truncation however may lead to errors in computing and therefore it‘s always a

challenge between the amount of error that can be tolerated in an application and the advantage

that can be obtained in terms of it‘s implementation as reflected by the parameters such as area,

latency and power. Thus, the focus of this chapter is to implement and validate a fixed-width

multiplier with improved efficiency for error resilient applications.

A large variety of fixed-width (or truncated) multiplier designs has been proposed in the

literature and found to be a potential solution for efficient implementation. In these designs,

most of which are either array or recursive-based [17,18], the least significant bits (LSBs) of the

partial product matrix are removed and an error compensation function is added in their place

[21–23]. Multiplier designs based on recursive technique are faster and have the regularity of

array multipliers making them the most suitable candidate for VLSI implementation [19].

In this work, a recursive binary multiplier architecture based on Karatsuba algorithm [16]
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is chosen. This architecture possesses an inherent hierarchical structure that consists of several

sub-multipliers making it suitable for fixed-width applications [18]. Thus, rather than modi-

fying the entire multiplier structure, the sub-multiplier in the least significant position can be

removed and replaced with a data-dependent correction term. Following this, a new correction

scheme is developed in this work for fixed-width recursive multipliers. This scheme enables

tuning of the accuracy through a new error compensating function achieved in a systematic

manner. The proposed and the existing truncation schemes have been applied on an image

sharpening algorithm and compared in the context of certain well-known image processing

benchmarks such as Lena, Cameraman and Pirate for performance.

The rest of the chapter is organized as follows. The proposed fixed-width recursive multi-

plier architecture is described in Section 4.2. Performance analysis of both the proposed and

the existing multiplier architectures is carried out and compared in Section 4.3. They are used

in an image sharpening algorithm to quantify their performance, results of which are provided

in Section 4.4.

4.2 A New Approach to Error Correction in Fixed-Width

Recursive Multipliers

The proposed architecture is based on the fact that the error after removing the least signif-

icant sub-multiplier ALBL (which contributes minimum to the final result) is always positive

and hence the multiplication product obtained is less than the exact value. Error due to this

approximation is further reduced by using a data-dependent correction function that is based

on the least significant partial product columns within ALBL that are not formed.

A typical recursive multiplication of two inputs A and B, each of 2n-bit width, results in

four sub-multipliers as illustrated in Fig.4.1. The PPs generated in these sub-multipliers are

reduced using the partial product reduction structure [5] as mentioned earlier.

The product (Pexact) after multiplication is given by,

Pexact = PH1 +PH2 +PH3 +PL (4.1)
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AL* BL

2n 2n

A1B1

Partial Product Reduction

AH* BL

AL* BHAH* BH

Product, Pexact

Figure 4.1: A 2n*2n recursive multiplication structure illustrating sub-multipliers

Where PH1 = AHBH , PH2 = AHBL, PH3 = ALBH and PL = ALBL

In the proposed scheme, as in the other scheme, the sub-multiplier (ALBL) that contributes

minimum to the final result is removed. Further, error due to this approximation is reduced

using a data-dependent correction function (CF0) which is based on the least significant partial

product columns within ALBL that are not formed.

The expression for approximate product (Papprox) after removing ALBL and subsequent cor-

rection is as follows:

Papprox = PH1 +PH2 +PH3 +CF0 (4.2)

Since the correction function (CF0) does not include all the PP columns of ALBL, it leads

to an error. Further, the error magnitude and the hardware complexity depend on the function

selected.

The error due to replacement of ALBL using the correction function is determined as,

Error, e0 = ALBL−CF0 (4.3)
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Where

ALBL =
n−1

∑
j=0

n−1

∑
i=0

aib j2i+ j (4.4)

The operation of the proposed approach is demonstrated on a 8*8 recursive multiplier and

error analysis carried out. Figure.4.2 illustrates four sub-multipliers and their corresponding

partial products in a 8*8 recursive multiplier. As mentioned earlier, the sub-multiplier ALBL is

removed and replaced with the correction function (CF0).
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Figure 4.2: Partial product matrix of a fixed-width recursive multiplier with two most signifi-
cant columns considered for correction

The proposed approach considers the most significant partial product columns of ALBL for

the correction function. Based on the number of columns considered, the accuracy and hard-

ware requirements vary. The variation of average error with number of columns (considered

for correction) is carried out on a 8*8 recursive binary multiplier mentioned above, as illus-

trated in Fig.4.3. The plot shows the variation of average error as a function of the number of

most significant partial product columns of ALBL. It can be observed from the figure that the

average error reduces with the increase in number of partial product columns, though with an

area overhead. Further, it can be noted that the average error drops very sharply with only two

most significant columns considered. Beyond this point, even with the inclusion of more partial

product columns the rate at which the average error decreases is less.
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Figure 4.3: Average error Vs Number of most significant partial products columns considered
for correction in a 8 * 8 fixed-width recursive multiplier

4.2.1 Error Analysis for the proposed correction function

For the sake of understanding, error analysis when two most significant columns of ALBL (high-

lighted in a triangle in Fig.4.2) are considered for correction, is given below. The advantage

of the proposed method is that the partial product columns selected for correction have higher

weight when compared to those in the existing schemes. The correction function proposed in

this work thus tends to achieve better accuracy. The same is proved in Section 4.3.

A step-by-step implementation of unsigned multiplication using existing and the proposed

correction (where two most significant partial product columns are considered) schemes is

given in the numerical example 4.1 below .

Example 4.1.

A = (25)10 = (00011001)2

B = (20)10 = (00010100)2

Actual Product, Pexact = A∗B = (500)10 = (0000000111110100)2

Product using recursive multiplier with average value correction terms, Scheme 2 [18] :

Papprox2 = (475)10 = (0000000111011011)2

Average error (%) = (Pexact–Papprox2)
Pexact

= (500−475)
500 ∗100 = 5
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Product using recursive multiplier with 1-bit correction, Scheme 3 [18] :

Papprox1 = (464)10 = (0000000111010000)2

Average error (%) = (Pexact–Papprox1)
Pexact

= (500−464)
500 ∗100 = 7.2

Product using recursive multiplier with proposed correction (two most significant columns

considered for correction) scheme :

Papprox = (0000000111110000)2 = (496)10

Average error (%) = (Pactual–Papprox)
Pexact2

= (500−496)
500 ∗100 = 0.8

It can be observed from the above analysis that the proposed correction with two most

significant columns considered for correction achieves better accuracy when compared to the

existing schemes.

4.2.1.1 Hardware Implementation of the Proposed Fixed-Width Recursive Multiplier

The hardware block diagram of a 8∗8 fixed-width recursive multiplier is illustrated in Fig.4.4.

The sub-multipliers AHBH , ALBH , AHBL are implemented using 4*4 binary array multipli-

ers [3] while the compensation function essentially includes the two most significant partial

product columns highlighted in triangle in Fig.4.2. The PPs corresponding to sub-multipliers

along with the correction function are reduced using a tree carry save adders and final adder. A

detailed PP reduction mechanism is explained below.
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Figure 4.4: A new fixed-width recursive multiplier hardware
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Figure 4.5: (a) Partial product reduction structure of a fixed-width recursive multiplier with two
most significant columns considered for correction (b) Partial product computed using an AND
gate (c) Representation of 3:2 and 2:2 counters (d) Computation of Sum and Carry-out using
dot notation in a full and half adder circuits (e) Notation for correction function with two most
significant columns considered

Figure 4.5 illustrates the reduction of PPs generated from individual sub-multipliers and

compensation function using a CSA tree structure. The partial products shown in grey color

corresponding to ALBL are discarded and a correction function highlighted in a triangle is

added. As mentioned earlier, the CSA structure is formed using full adder (3:2 counter) and

half adder (2:2 counter) circuits as shown in Fig.4.5(c). The sum output (S), from a full or half-

adder at one stage places a dot in the same column at the next stage. A carry output (Co) from

a full or half-adder at one stage places a dot one order of magnitude higher i.e., in the column

to its left, at the next stage. As shown in Fig.4.5(d), three dots joined by a solid diagonal line

indicates that these PPs are outputs of (3,2) counter while two dots joined by diagonal line in-

dicates that these PPs are outputs of (2,2) counter. Consequently, the PP matrix is accumulated

to a height of two in four levels using a carry save adder (CSA) tree structure, formed using

full adder and half adder as shown in Fig.4.5(a), that are eventually reduced to a product using
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a final ripple carry adder [6] .

4.3 Results

In order to compare the proposed fixed-width multiplication scheme with the existing ones,

error analysis has been carried out using MATLAB to check the improvement in precision.

This is followed by unit gate level modeling and synthesis based analysis to understand the

hardware savings achieved.

4.3.1 Error Analysis

MATLAB program has been used to simulate various multiplier architectures including the pro-

posed one. For the simulation purpose, we randomly selected 10,000 inputs from all possible

input patterns (i.e., 0–65 535). Error analysis has been carried out to compute the average and

maximum error in the proposed and the existing schemes [18,21–23]. An example of calculat-

ing the average error has already been illustrated in example 4.1 given earlier. A comparison

of the errors is provided in Table 4.1. It may be noted that the proposed multiplier with two

most significant columns is taken as the reference (ratio of ‘1’). For example, constant correc-

tion [23] scheme has 15.2X error in comparison with the reference design. Also, lesser ratio

implies better precision.

For a fair comparison, the following have been taken into consideration. The existing

schemes have correction function which is fixed and hence the maximum and average error

shown in Table 4.1 do not mention the number of most significant columns considered for

correction unlike the proposed multiplier.

The fixed-width recursive multiplier schemes [18] including the proposed one perform bet-

ter in terms of precision compared to the fixed-width array multipliers [21, 22]. This is due to

the fact that in all the recursive architectures the sub-multiplier ALBL that contributes marginally

to final result is discarded.

It can be seen that in the proposed scheme when more number of columns is considered,

the average error reduces and hence the accuracy of multiplier improves. Results in Table 4.1
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Table 4.1: An error comparison of various multiplier architectures
Multiplier scheme Most

significant
columns

considered

Average error Ratio Maximum error Ratio

Constant
correction [23] - 0.4 15.2 4 4.77

Constant
correction [21] - 0.06 2.28 3 3.58

Variable
correction [22] - 0.06 2.28 1.4 1.67

Direct truncated
recursive
multiplier [58]
(Without correction)

- 0.059 2.1 1 1.19

Fixed-width recursive
multiplier with average
value correction
(Scheme 2) [18]

- 0.037 1.4 0.875 1.04

Fixed-width recursive
multiplier with 1-bit
correction (Scheme
3) [18]

- 0.055 2.24 1.25 1.49

Proposed recursive
fixed-width recursive
multiplier

1 0.055 2.24 1.25 1.49
2 0.0263 1 0.837 1
3 0.0229 0.87 0.810 0.96
4 0.0189 0.71 0.782 0.93

show that the new recursive scheme with two most significant columns as correction has an

improvement in average error of 1.4 to 15.2X compared to the existing designs. Similarly,

an improvement of 1.04 to 4.77X in maximum error is achieved. It can also be seen that an

improvement of 1.5 to 15.3X and 1.7 to 15.5X in average error is achieved, if column sizes of

‘3’ and ‘4’ are included for correction respectively. It can be observed that significant reduction

in error is obtained when only two most significant columns are considered for correction.

Although, there is an increase in the accuracy when the number of columns considered is more

than two, it is only nominal which comes at the cost however of increased hardware, as shown

in the next subsection.
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4.3.2 Area and Delay Comparison of Various Multipliers using Unit Gate

Analysis

Different correction schemes of various multipliers have been analyzed using unit gate model-

ing as this approach provides a decent model for computing the real cost of each component.

Further, it does not depend on any synthesis tool [59]. Design metrics such as area (A) and

delay (D), have been considered and compared for all the designs. Assumptions made while

calculating the area of components are shown in Table 4.2.

Table 4.2: Assumptions made for unit gate modeling
Gates Count

2- INPUT AND, OR, NAND, NOR 1
M- INPUT AND, OR, NAND, NOR M-1

2- INPUT XOR, XNOR, MUX 2

Each two-input gate (AND, OR, NAND, NOR) is counted as one gate while EX-OR and

EX-NOR are counted as two gates for area [59]. Moreover, an m-input gate is assumed to be

composed of a tree of 2-input gates and the effects of wiring, buffering and inverting costs are

neglected.

Table 4.3: Unit gate modeling analysis of various multiplier architectures
Multiplier scheme Most

significant
columns

considered

Area Percentage

Accurate recursive multiplier [19] - 470 124%
Direct truncated recursive multiplier
(Without correction) [58] - 364 96%

Fixed-width recursive with average value
correction (Scheme 2) [18] - 396 104%

Fixed-width recursive with 1-bit
correction (Scheme 3) [18] - 367 97%

Proposed recursive fixed-width recursive
multiplier

1 367 97%
2 379 100%
3 401 106%
4 421 111%

The results of unit gate modeling of various 8-bit multipliers, including the proposed mul-

tiplier, (with various number of columns considered) have been compared and given in Table
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4.3. The proposed multiplier with two most significant columns as correction is taken as the

reference. It can be seen that the hardware of the proposed design increases with the number

of columns considered for correction. It may be observed that there is an area overhead of 4%

of the proposed multiplier compared to the best performing recursive multiplier when only two

columns are considered for correction while it increases to 10% and 15% for column sizes of

three and four respectively. Thus, taking into account the precision improvement and hardware

required, it can be concluded that including two most significant columns for correction results

in a good trade-off between the precision and area of the hardware.

4.3.3 Hardware Synthesis Results

For a fair comparison, all the multiplier designs of 8-bit width have been modeled with Verilog

data flow modeling and simulated using cadence incisive unified simulator (IUS) v6.1 and

mapped on to TSMC 180nm technology, slow-normal library using cadence RTL compiler

v7.1. Hardware synthesis has been carried out to compare important implementation metrics

such as area, delay and power.
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Figure 4.6: A Comparison of the proposed fixed-width recursive multiplier with various exist-
ing multipliers in terms of area

Table 4.4 presents performance metrics such as area, delay and power for the 8-bit mul-

tiplier with different correction schemes including the proposed one. Also included in the

Table is performance in percentage of various designs in comparison with the proposed de-

signs. Further, Figs.4.6-4.8 provide a graphical comparison of area, delay and power of various
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Table 4.4: Area, delay and power of various multipliers with correction schemes
Multiplier scheme Area

(µm2)
Percentage

(%)
Delay
(ps)

Percentage
(%)

Power
(nW )

Percentage
(%)

Accurate recursive
multiplier [19]

1157 124% 2120 115% 40834 114%

Direct truncated
recursive multiplier

(Without
correction) [58]

913 98% 1715 93% 35196 98%

Fixed-width
recursive with
average value

correction (Scheme
2) [18]

975 105% 1952 106% 36405 102%

Fixed-width
recursive with 1-bit
correction (Scheme

3) [18]

917 99% 1795 97% 35245 98%

Proposed
fixed-width

recursive multiplier
with two column

correction scheme

927 100% 1843 100% 35849 100%

multipliers including the proposed one.

It is evident from Table 4.4 and Figs.4.6 & 4.7, that an improvement of up to 5% and 6%

in area and delay respectively is achieved by the proposed scheme compared to scheme 2 [18]

which comes closest in terms of the precision. It should however be remembered that scheme

2 has a precision that is 40% less than that of the proposed one. While other schemes may

marginally perform better in terms of area and delay, they are way off in terms of the precision

compared to the existing one. Thus, it can be concluded that the proposed fixed-width multiplier

scheme outperforms all other existing schemes in the literature.

4.4 Benchmarking Various Multiplication Schemes-Application

to Image processing

Image sharpening is an important image enhancement technique employed in image processing

applications. The computational process of sharpening an image involves a number of fixed
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Figure 4.7: A Comparison of proposed fixed-width recursive multiplier scheme with various
existing multipliers in terms of delay
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Figure 4.8: A Comparison of proposed fixed-width recursive multiplier scheme with various
existing multipliers in terms of power

point multiplications. It is therefore a good application to prove the efficacy of the proposed

fixed-width recursive multiplier.

4.4.1 Image Sharpening Algorithm

Human perception is highly sensitive to edges and fine details of an image. Since images es-

sentially consist of high-frequency components their visual quality is corrupted if these high

frequencies are removed. Conversely, increasing the high-frequency components of an image

improves the image quality. Image sharpening algorithm described in [60] is one such enhance-

ment technique which highlights the edges and fine details in an image.
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This algorithm described below, accepts an image, processes it, and produces an image of

high quality. Suppose I is the original image, the processed image S is described using the

expression

S (x,y) = 2I (x,y)−M (4.5)

where M = 1
273 ∑

2
i=−2 ∑

2
j=−2 H (i+3, j+3) I (x− i ,y− j)

and H is a matrix defined as

H =



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


Since this expression involves a number of multiplications, an exact multiplier such as an

array multiplier can perform these operations accurately thereby producing an image of high

quality. On the other hand, using an approximate multiplier would result in an image of certain

quality which is quantified using established metrics such as mean square error (MSE) and peak

signal to noise ratio (PSNR).

The MSE represents the loss of information in the image and is expressed as,

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I (i, j)−K (i , j)]2 (4.6)

where MAXI represents the maximum possible pixel value of the image.

The peak signal to noise ratio (PSNR) in dB is expressed using MSE as follows:

PSNR in dB = 10.log10

(
MAX2

I
MSE

)
(4.7)

While the use of approximate multiplier may affect the image quality, it has the advantage

of savings in terms of area and delay as compared to an accurate multiplier. In what follows,

the performance of the existing recursive multipliers (Schemes 2 and 3) [18] and the proposed

multiplier with two column correction is studied and compared with reference to the image
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sharpening algorithm. The algorithm is applied to blocks of 5*5 pixels on a set of standard

images ( Cameraman, Lena and pirate). The exact multiplications are replaced by approximate

multiplications using existing multipliers and the proposed multiplier, while addition, subtrac-

tion and division operations are carried out using accurate techniques. The metric MSE is

computed by finding the mean of squares of difference in pixel values between original im-

age and the processed image using approximate multipliers and these values are substituted in

equation (4.7) to calculate PSNR values.

Table 4.5 provides a comparison of these metrics on a set of standard images ( Cameraman,

Lena and pirate). As is well known, the quality of image is decided by the magnitude of

MSE and PSNR values. It is evident from Table 4.5 that images processed with the proposed

multiplier have better MSE and PSNR compared to the images processed using the schemes

mentioned in [18].

Table 4.5: A comparison of values of MSE and PSNR for benchmark images using various
multiplier schemes

Image Metric Scheme 3 [18] Scheme 2 [18] Proposed
Cameraman

PSNR (dB)
43.2 43.6 44.1

Lena 39.2 39.3 39.7
Pirate 42.7 43.2 43.8

Cameraman
MSE

3.1 2.8 2.5
Lena 7.8 7.5 7
Pirate 3.5 3.1 2.7

The results are only expected since the proposed scheme has less average and maximum

error compared to schemes mentioned in [18] as illustrated in Figs.4.9 & 4.10.

Further, the performance of the proposed multiplier, in terms of both PSNR and MSE, may

be understood by observing the images processed by it. Figure.4.11 illustrates the images that

are processed using exact (array) and the proposed multiplier. It can be observed that the images

of Cameraman, Lena and Pirate processed with the proposed multiplier look very similar to the

original ones. Thus, it can be concluded that the proposed fixed-width recursive multiplier has

a better performance compared to all other similar and existing multipliers.
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4.5 Conclusions

In this chapter, a reconfigurable multiplier design with a new truncation technique targeted for

error resilience applications has been proposed. In this scheme, the sub-multiplier is replaced

ALBL with a data-dependent correction term. The heuristic correction function retains the por-

tion of partial product matrix that is more relevant and thus helps to achieve higher accuracy

compared to the earlier works. Also, the hardware overhead due to correction scheme is nomi-

nal.

Exhaustive analysis was carried out to compute the average and maximum error bound

in the proposed and existing recursive multiplier schemes. Results show 15.2X times and

3.7X times improvement in average error and maximum error respectively. The error analysis
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(a) Exact Multiplier (b) Proposed Multiplier

(a) Exact Multiplier (b) Proposed Multiplier

(a) Exact Multiplier (b) Proposed Multiplier

Figure 4.11: Cameraman, Lena and pirate Images obtained using exact and the proposed mul-
tiplier

show that the proposed multiplier scheme represent, in most cases, a better trade-off between

accuracy and complexity.

Further, the proposed architecture efficiently performs N-bit fixed-width multiplications.

For applications with high demands on precision, the multiplier is capable of performing two

independent N/2-bit full precision multiplications in parallel.
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Chapter 5

An Iterative Logarithmic Multiplier with

Improved Precision

5.1 Introduction

In recent years, logarithmic number system (LNS) has been increasingly used as an alternative

to the binary number system as it converts multiplication to addition resulting in simplified

hardware [61]. However, they suffer from inherent error and any efforts in improving their

accuracy would help find their increased usage in arithmetic computations with efficient hard-

ware. In this chapter, a novel binary logarithmic multiplier with improved precision is designed

and demonstrated to perform better than the existing designs. Also, the multiplier has been

synthesized and it‘s performance metrics such as area, delay and power have been shown to be

better than those of the existing designs.

Throughout this chapter, the symbols ‘ ~ ’ and ‘ ’ ’ are used to denote 1‘s and 2‘s comple-

ment while the symbols ‘ & ’ and ‘ | ’ denote logic AND and logic OR operations respectively.

Rest of the chapter is organized as follows: Mathematical modeling and hardware architec-

ture of the proposed scheme are presented in Section 5.2. Detailed error analysis and hardware

synthesis results of various iterative logarithmic multipliers including the proposed one are pre-

sented and compared in Section 5.3. Proposed and the existing schemes have been applied on

an image sharpening algorithm to quantify their performance, results of which are provided in
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Section 5.4.

5.2 Proposed Approach

The contributions of this work include speculation of carry which results in better precision

when compared to BIM and TEC approaches. Further, savings in hardware is achieved using

the fractional predictor and adapted truncation scheme proposed in this work. This section

presents the mathematical modeling while the hardware implementation details are discussed

in the subsequent sections.

5.2.1 Mathematical Analysis of the Proposed Scheme

Similar to Babic’s approach, equation (2.26) is expressed when carry = 1 (x1 + x2 ≥1 ) as

N1 ∗ N2 = 2k1+k2+1(x1 + x2)+2k1+k2(x
′
1 ∗ x

′
2)

= 2k2+1 ∗ f1 +2k1+1 ∗ f2 + f
′
1 ∗ f

′
2

= A1 + f
′
1 ∗ f

′
2 (5.1)

Whereapproximateproduct, A1 = f1 ∗ 2k2+1 + f2 ∗ 2k1+1 (5.2)

Combining the equations 2.28 and 5.1, the final product terms based on carry information can

be obtained as,

N1 ∗ N2 = A0 +( f1 ∗ f2), x1 + x2 < 1 (5.3)

N1 ∗ N2 = A1 +( f
′
1 ∗ f

′
2), x1 + x2 ≥ 1 (5.4)

where A0 and A1 are the approximate product terms, f1 ∗ f2 and f
′
1 ∗ f

′
2 are the correction

terms that form the input to the next iteration based on carry condition. Since the carry infor-

mation is available prior to the completion of an iteration, error correction can be performed

concurrently in hardware.
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While this approach leads to improved precision, it also results in area overhead. Thus, a

new truncation scheme for logarithmic multiplication is proposed which when combined with

the above approach results in area savings.

5.2.2 A New Approach to the Approximation of Logarithmic Multiplier

The proposed approximation of logarithmic multiplier is based on the fact that the error due to

Mitchell approach is always positive [59] and hence the multiplication product obtained is less

than the exact value. Further, the least significant bits of these fractional portions ( f1 ∗2k2 , f2 ∗

2k1 , f1 ∗2k2+1 and f2 ∗2k1+1) are inaccurate. Thus, rounding off and manipulating these inexact

terms aid in achieving substantial hardware savings without compromising on precision. On

the other hand, the term 2k1+k2 (leading one) contributes to integer portion which is an exact

value and hence need not be approximated.

The product terms in equations 5.3 and 5.4 after truncation (Tt) of fractional portions are

written as follows:

N1 ∗N2 = 2k1+k2 +Tt( f1 ∗2k2)+Tt( f2 ∗2k1)+ f1 ∗ f2,

x1 + x2 < 1 (5.5)

N1 ∗N2 = Tt( f1 ∗2k2+1)+Tt( f2 ∗2k1+1)+ f
′
1 ∗ f

′
2,

x1 + x2 ≥ 1 (5.6)

where approximate product terms without and with carry are,

A0
t = 2k1+k2 +Tt( f1 ∗2k2)+Tt( f2 ∗2k1) and

A1
t = Tt( f1 ∗2k2+1)+Tt( f2 ∗2k1+1) respectively. Here t denotes the truncation width.

A typical logarithmic multiplication of two inputs N1 and N2, each of n-bit width, results in

2n product bits. In the proposed truncated approach however, from these 2n fractional bits, only

t bits are retained. The remaining (2n− t) bits are replaced either by ‘1’ (rounding up) or ‘0‘

(rounding down), denoted as Tt,1 and Tt,0 respectively. In order to arrive at an optimal value of
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t, error analysis of an 8*8 logarithmic multiplier is carried out for one iteration as illustrated in

Fig.5.1. The plot shows the variation of average error as a function of the number of fractional

bits. The horizontal line gives the error without truncation (Twt), while the curves Tt,1 and Tt,0

provide the error due to truncation.

t,1

t,0

Number of Fractional bits

Figure 5.1: Average error Vs Number of fractional bits in 8 * 8 multiplication for one iteration

It can be seen from the figure that the average error without truncation (Twt) (considering

2n fractional bits) remains constant and is independent of truncation width. Also, it is evident

from Tt,0 plot that with the increase in truncation width(t), the average error decreases rapidly

and from t = 6 onwards, attains a value almost equal to that without truncation. Therefore, it

can be inferred that the first 6 MSB fractional bits alone are contributing to the precision of

the multiplication product in most cases. Similarly, from Tt,1 plot it can be inferred that for

t = 3 error is almost same as that without truncation with precision being the best for t = 4.

Therefore, it can be concluded that the average error obtained is minimum for T4,1 scheme

compared to all other cases.

Since the error in multiplication due to approximation should decrease with each iteration,

the viability of T4,1 truncation scheme alone for multiple iterations has been investigated. It

is however found that the result obtained using T4,1 method for first iteration is more than the

exact value and further with each successive iteration there is a probability for the error to

increase. Thus, utilizing T4,1 scheme alone for multiple iterations may not be desirable. Based

on the error simulations, it is observed that truncating with T6,0 in initial iterations and T4,1 in

the final iteration results in improved error and the same is proved in the example given below.
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Further, it should be noted that error plots obtained for 16* 16 and 32*32 multipliers will have

characteristics similar to that in Fig.5.1.

The step-by-step procedure of the proposed truncation approach for two iterations is illus-

trated in example 5.1. Initially, for both 1st and 2nd iterations, truncation method T6,0 is applied.

Next, T6,0 is applied in the 1st iteration with T4,1 in the 2nd iteration.

Example 5.1. Let the two binary numbers N1 and N2 be

N1 = (00110011)2 = (51)10; N2 = (01110111)2 = (119)10

Exactproduct ,Aexact is givenbyN1 ∗N2 = (6069)10

Case 1: T6,0 is considered in both iterations

Iteration 1:

1. Initialization:

(N1) = (110011)2 ; (N2) = (1110111)2

( f1) = (10011)2 ; ( f2) = (110111)2

(k1) = (101)2 = (5)10 ; (k2) = (110)2 = (6)10

The addition of f1 and f2 generates a carry satisfying the condition x1 + x2 ≥ 1 and hence

equation (5.6) is considered.

2. Left shift the fractional portions,

f1 ∗2k2+1 = (2432)10 ; f2 ∗2k1+1 = (3520)10

3. Truncate the fractional portion and compute the approximate product :

T6,0( f1 ∗2k2+1) = (2432)10 ; T6,0( f2 ∗2k1+1) = (3520)10

which after the 1st iteration is,

A1 = (5952)10 (5.7)
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4. Percentage average error accumulated after 1st iteration:

AverageError =
(

Aexact−A1

Aexact

)
= 1.92%

Iteration 2:

Since x1 + x2 ≥ 1 in the 1st iteration,

the inputs (N1 and N2) to this iteration are f
′
1 and f

′
2 of 1st iteration

1. Initialization:

(N1) = (01101)2 ; (N2) = (001001)2

( f1) = (101)2 = (5)10 ; ( f2) = (001)2 = (1)10

(k1) = (11)2 = (3)10 ; (k2) = (11)2 = (3)10

For the proposed design with truncation (T6,0), condition x1 + x2 < 1 is satisfied as addition of

f1 and f2 does not generate a carry and hence equation (5.5) is considered.

2. Left shift the fractional portions:

f1 ∗2k2 = (00101000)2 = (40)10; f2 ∗2k1 = (1000)2 = (8)10

3. Truncate the fractional portion and compute
(
A0):

T6,0
(

f1 ∗2k2
)
= (00101000)2 = (40)10,

T6,0
(

f2 ∗2k1
)
= (1000)2 = (8)10; 2k1+k2 = (64)10

Approximate product after the 2nd iteration is,

A0 = (112)10

4. Percentage average error accumulated after two iterations:
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Atotal = A1 +A0 = (6064)10

AverageError =
(

Aexact−Atotal
Pexact

)
AverageError = 0.082%

Case 2:

The product in the first iteration is computed using the T6,0 scheme while in the second

iteration T4,1 scheme is adopted

Iteration 1 :

From equation (5.7) we obtain the approximate product in the 1st iteration as,

ApproximateProduct
(
A1)= (5952)10

Iteration 2 :

T4,1( f1 ∗2k2) = (00101011)2 = (43)10,

T4,1( f2 ∗2k1) = (1000)2 = (8)10; 2k1+k2 = (64)10

A0 = (115)10

Combining the products obtained in the first and second iteration with T6,0 and T4,1 schemes

respectively, we get the product:

Atotal = A1 +A0 = (6067)10

The corresponding average error is given by,

AverageError = 0.032%

Thus, it is observed that lower error is achieved if T6,0 is used for initial iterations followed by

T4,1 in the final iteration.
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5.2.3 Truncated Iterative Multiplier (TIM) Hardware Implementation

The iterative multiplier scheme illustrated in Fig.5.2 is essentially an implementation of equa-

tions 5.5 and 5.6. It comprises of truncated basic logarithm blocks (TBLBs), decoder logic,

adder blocks and mask logic. Based on the binary numbers (N1 and N2), the TBLBs gener-

ate the characteristics and truncated fractional portions. The addition of characteristics k1 and

k2 obtained from the respective TBLBs is accomplished using the Adder 2 block. Likewise,

the sum of inexact fractional portions ( f1 ∗ 2k2)T and ( f2 ∗ 2k1)T obtained from the respective

TBLBs is found using the Adder 1 module. Based on carry information, the control signal

(m_fp) is activated by the modified fractional predictor (MFP). The truncated BLB and MFP

are presented later in Sections. 5.2.3.1 & 5.2.3.2.

TBLB

Adder2

Decoder

Proposed
Fractional
Predictor TBLB

Adder1

Mask

Adder3

1-bit

FP * 2

Array of
Muxes

m_fp

FP

N1 N2

k1

k2 I1

I2

Approximate Product (A)

(N1-2
K1 ) (N2-2

K2 )
(f2 2

k1)T

FP

(f1 2
k2 )T

2k1+k2

(f1 2
k2 )T +(f2 2

k1 )T

*

*

* *

Figure 5.2: Block diagram of the proposed truncated iterative multiplier (TIM)

When the control signal m_fp is ‘0’, meaning no carry generation, the leading one
(
2k1+k2

)
obtained from the Decoder and the truncated fractional portions are added using Adder 3 to

form the approximate product (A0
t ) according to equation (5.5). On the other hand, if m_fp is

‘1’, the Decoder is disabled and the fractional portions are left-shifted by 1-bit as per equation

93



5.2. PROPOSED APPROACH

(5.6) to form the approximate product
(
A1

t
)
. The MUX structure based on the carry signal

facilitates the selection of appropriate truncated fractional portions.

5.2.3.1 Truncated Basic Logarithmic Block (TBLB)

The Truncated BLB (TBLB) shown in Fig.5.3 used in this work is similar to the BLB presented

in [26] except for the truncated logarithmic shifter.

Encoder

LOD

Truncated

Log Shifter

N1

k2

k1 f1

(f1. 2K2)T

Figure 5.3: Block diagram of the truncated basic logarithmic block (TBLB)

The fact that the fractional portion
(

f ∗2k) computed by the shifter is always a positive

approximate term provides the possibility for truncating it without a significant loss of preci-

sion. Based on this idea, a method proposed in [59] implements a truncated logarithmic shifter

which is used in this work. The operation of the shifter is such that it retains only those most

significant bits as dictated by the truncation width. The truncated LSB section is manipulated

with either ‘1’ or ‘0’ that depends on rounding up or down.

5.2.3.2 Modified Fractional Predictor (MFP)

The TEC scheme [27] involves prohibitively large hardware circuitry in the form of fractional

predictor, shared logic and multi-operand adder to speculate the carry out of the fractional

portion. In order to overcome this, a simple and flexible carry prediction logic namely, modified

fraction predictor (MFP) is proposed in this work. The output of MFP logic is 1-bit (‘0’ or ‘1’),

irrespective of the number of input bits unlike in TEC approach.
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In this work, MFP is preceded by a number that refers to the number of fractional bits

considered for prediction. For instance, if number of fractional bits is one then it is termed as

1-bit MFP and so on. A 1-bit MFP is explained in detail using Example 5.2.

Example 5.2. Suppose two input binary numbers N1 and N2 are given by,

N1 = (00110011)2 = (51)10; N2 = (01110111)2 = (119)10

The characteristics (k1 and k2) and their 1‘s complement (S1 and S2) are :

k1 = (101)2 = (5)10 ; k2 = (110)2 = (6)10

S1 =∼ k1 = (010)2 ; S2 =∼ k2 = (001)2

The leading one of these two numbers is found by shifting N1 and N2 by an amount of S1 and

S2 respectively resulting in A and B as depicted in Fig.5.4. .

A = (11001100)2 ; B = (11101110)2

P = 1 1 0 0 1 1 0 0
Q = 1 1 1 0 1 1 1 0

MSBF

p[6] p[5] p[4] p[3] p[2] p[1] p[0]

2-1 2-2 2-3 2-4 2-5 2-6 2-7

Fractional Portion

q[6] q[5] q[4] q[3] q[2] q[1] q[0]

Figure 5.4: Proposed method to detect leading one in fractional portion

The MSBF in A and B has a weight of 2−1 or 0.5 and carry will be generated to next stage

when a[6] and b[6] is ‘1’. Conversely, if either a[6] or b[6] is logic ‘1’, then generation of carry

depends on the LSB portion of A[5 : 0] and B[5 : 0]. Thus, carry detection is performed without

waiting for actual addition to happen leading to implementation of error correction parallely.

Similarly, the logic for 2-bit and 3-bit MFP is deduced. The carry prediction logic corre-

sponding to 1-bit, 2-bit and 3-bit MFP are deduced as specified in equations (5.8-5.10) as

sel1 = a [6] &b [6] (5.8)
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sel2 = sel1 |((a[6]|b[6])&(a[5]&b[5])) (5.9)

sel3 = sel2 |sel (5.10)

Where sel = ((a[6]|b[6])&(a[5]|b[5])&(a[4]&b[4]))

To analyze the variation of average error with the number of fractional input bits, a graph

is plotted for one iteration as illustrated in Fig.5.5. It is evident from the graph that the error is

minimum for bit size of 4 but thereafter remains almost constant. Hence, MFP with four input

fractional bits is sufficient for accurate carry prediction.

Figure 5.5: Variation of average error based on number of fractional bits

5.2.4 TIM Hardware for two Iterations

Figure.5.6 illustrates the cascaded TIM multipliers. While the first one computes the approxi-

mate product (A), the second one calculates the correction term. The input to the second TIM

is determined by the mask circuit depending on m_fp. If m_fp is ‘1’, the inputs to next itera-

tion I1 and I2 are f
′
1 and f

′
2 otherwise f1 and f2 respectively as per equations 5.5 and 5.6. The

second TIM computes the correction term (C) based on I1 and I2. Similarly, in case of three

iterations there will be an approximate product (A) and two correction terms. Evidently, with

each successive iteration the error gets reduced.
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TIM1 TIM2

Mask

N1
I1

I2

Adder

N2

Correction,C

Product after
correction, AC

Approximate
Product (A)

m_fp

Figure 5.6: Truncated iterative multiplier implementation for two iterations

5.3 Error Analysis

Exhaustive error analysis has been carried out using MATLAB to compare the accuracy of the

proposed multiplier with the existing iterative multiplier [26, 27].

The comparison of maximum and average error of existing designs with T6,0 and T4,1

schemes for three iterations is illustrated in Figs.5.7 & 5.8 respectively. Clearly, it can be

observed from both the graphs that except for the first iteration, truncated TIM has least max-

imum and average error. A more elaborate analysis corresponding to maximum and average

error for three iterations is presented in Table.5.1.
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Figure 5.7: A comparison of maximum error of existing iterative multiplier designs with TIM
(T6,0 and T4,1) approach
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Figure 5.8: A comparison of average error of existing iterative multiplier designs with TIM
(T6,0 and T4,1) approach

For a fair comparison, the following have been taken into consideration. The Babic iter-

ative multiplier (BIM) [26] is devoid of error correction logic and hence the maximum and

average error shown in Table.5.1 do not mention the number of mantissa fractional bits. The

error analysis carried out in TEC [27] corresponds to 3-bit and 4-bit MFP hence for proper

comparison the proposed TIM scheme with 3-bit and 4-bit MFP respectively is considered.

Moreover, analysis for 1-bit and 2-bit MFP proposed in this work has been carried out to prove

the improvement in precision achieved compared to higher bit TEC. Error metrics (maximum

and average error) have been considered and compared with that of existing designs for each

iteration.

A comparison of the proposed TIM scheme (T6,0) (as per the equations 5.5 and 5.6 ) with

BIM and TEC for maximum and average error for three iterations is shown in Table.5.1. It

can be observed that BIM multiplier is taken as a reference (ratio of 1) corresponding to each

iteration. The TIM (T6,0) performs as well as BIM with no MFP while it performs better even

with 1-bit MFP. Although, TIM approach achieves less precision compared to TEC [27] in the

first iteration, the same gets better with further iterations. Maximum error with 1-bit and 2-bit

MFP design has an improvement of at least 64% compared to both TEC of 3-bit MFP and BIM

in second iteration. Also, the TIM design with 3-bit and 4-bit MFP has 5X and 1.7X better

precision compared to TEC (3-bit and 4-bit) respectively in second iteration. In third iteration,

the maximum error of the proposed scheme with 3-bit and 4-bit MFP is 9X and 2.5X better
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than TEC (3-bit and 4-bit) MFP respectively.

Table 5.1: A comparison of maximum and average error (%) in the proposed TIM (T6,0) and
existing schemes for 3 iterations

Scheme
NoC of MFP

bits

Maximum Error 8]9 Average Error 8]9

Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio

BIM [26] 7 25 1 6C25 1 1C5 1 8C9 1 0C89 1 0C083 1

TIM 07bit 25 1 6C25 1 1C5 1 8C9 1 0C89 1 0C083 1

TIM 17bit 16 0C64 2C25 0C36 1C11 0C74 5C18 0C58 0C24 0C27 0C011 0C13

TIM 27bit 14 0C56 1C75 0C28 0C82 0C55 4C12 0C46 0C16 0C18 0C006 0C07

TIM

37bit

12C5 0C5 1C19 0C19 0C67 0C45 3C85 0C43 0C13 0C14 0C005 0C06

TEC [27] 6C25 0C25 6C25 1 6C25 4C16 1C36 0C15 0C77 0C86 0C76 9C15

TIM

47bit

11C75 0C47 0C92 0C14 0C6 0C4 3C8 0C42 0C12 0C13 0C004 0C05

TEC [27] 6C25 0C25 1C56 0C25 1C56 1C04 1C05 0C11 0C304 0C34 0C26 3C13

Further, Table.5.1 provides a comparison of the proposed TIM scheme (T6,0) (as per the

equations 5.5 and 5.6 ) with BIM and TEC for average error. TIM scheme with 1-bit and 2-bit

MFP design has at least 54% improvement in error compared to both TEC of 3-bit MFP and

BIM in second iteration. Moreover, TIM design with 3-bit and 4-bit MFP has 6X and 2.5X

better precision compared to TEC, 3-bit and 4-bit, respectively in second iteration. In third

iteration, the average error of the proposed scheme with 3-bit and 4-bit MFP is 152X and 65X

better compared to TEC, 3-bit and 4-bit, MFP respectively.

Having established the superiority of the T6,0 technique over BIM and TEC, the following

Table 5.2 provides a comparison of the same with TIM (T4,1). An improvement in maximum

and average error in truncated multiplier (T4,1) compared to T6,0 is evident from this Table.

Finally, as mentioned earlier in Section 5.2.2, irrespective of the number of iterations, T6,0 is

used for initial iterations while the final iteration is carried out using T4,1. For instance, if total

number of iterations is three, the initial two iterations are performed using T6,0 while the third

iteration is carried out using T4,1.

5.3.1 Area and Delay Comparison of Various Multipliers using Unit Gate

Level Modeling

All the logarithmic multipliers have been analyzed using unit gate modeling as this approach

provides a decent model for estimating the real cost of each component and does not depend

strongly on any synthesis tool. Design metrics, area (A) and delay (D), have been considered
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Table 5.2: A comparison of maximum and average error (%) in the proposed TIM (T4,1) for 3
iterations

Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio Iteration 1 Ratio Iteration 2 Ratio Iteration 3 Ratio
TIM fT6,0F 16 1 2.25 1 1.11 1 5.18 1 0.24 1 0.011 1

TIM fT4,1F 15.91 0.99 2.2 0.97 1.01 0.9 4.02 0.77 0.2 0.83 0.0107 0.97

TIM fT6,0F 14 1 1.75 1 0.82 1 4.12 1 0.16 1 0.006 1

TIM fT4,1F 13.46 0.96 1.52 0.86 0.5 0.6 3 0.72 0.12 0.75 0.005 0.83

TIM fT6,0F 12.5 1 1.19 1 0.67 1 3.85 1 0.13 1 0.005 1

TIM fT4,1F 11.95 0.95 0.8 0.67 0.34 0.5 2.81 0.7 0.09 0.69 0.004 0.8

TIM fT6,0F 11.75 1 0.92 1 0.6 1 3.8 1 0.12 1 0.004 1

TIM fT4,1F 11.11 0.94 0.56 0.68 0.3 0.5 2.72 0.71 0.08 0.67 0.002 0.5

Average Error fcF

1-bit

2-bit

3-bit

4-bit

Maximum Error fcF
Scheme

No. of MFP
bits

and compared for all the designs. Assumptions made while calculating them are shown in

Table 5.3. Each two-input gate (AND, OR, NAND, NOR) is counted as one gate while EX-

OR and EX-NOR are counted as two gates, for both area and delay. Moreover, a m-input

gate is assumed to be composed of a tree of 2 input gates and the effects of wiring, buffering

and inverting costs are neglected [59]. First, the unit gate modeling of 8-bit, 16-bit and 32-bit

truncated logarithmic shifter in comparison with the logarithmic shifter is carried out and later

it is extended to multiplier designs.

Table 5.3: Area and Delay metrics of basic design components
Design Component (2-input) Area (A) Delay (D)

AND, OR, NAND, NOR Gates 1 1
EX-OR, EX-NOR, MUXes and Half Adder 2 2

The area and delay of leading one detector (LOD), encoder, decoder and adder are com-

puted as mentioned in [59] which are constant in the design. Similarly, the area (ALS) and delay

(DLS) of the logarithmic shifter (LS) without truncation is computed based on equations 5.11

and 5.12 shown below. The area of truncated logarithmic shifter with t = 4 is calculated and

shown in Table.5.4.

ALS(n) = Amux

(
n+

t

∑
0

2T

)
(5.11)

DLS(n) = Dmux ∗ log2(n) (5.12)

From Table.5.4, it is clear that the truncated logarithmic shifter is more area efficient com-

pared to the logarithmic shifter. For example, the 16-bit truncated shifter occupies 35% less

area compared to the logarithmic shifter. However, the delay of the truncated shifter is same as

that of normal shifter since the number of logic levels of computation does not change.
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Table 5.4: Area of logarithmic and truncated logarithmic shifter computed using unit gate
analysis

Logarithmic Shifter No. of bits Area Percentage
logarithmic Shifter [29]

8-bit
84 100%

Truncated logarithmic shifter
(truncation width =4)

60 71%

Logarithmic Shifter [29]
16-bit

240 100%
Truncated logarithmic shifter

(truncation width =4)
156 65%

Logarithmic Shifter [29]
32-bit

420 100%
Truncated logarithmic shifter

(truncation width =4)
348 83%

The unit gate area and delay analysis is carried out for various multiplier schemes in [26,27],

and the proposed TIM designs for 8-bit, 16-bit and 32-bit. Results have been compiled and

show in graph in Fig.5.9, that highlight the area savings achieved by TIM design compared to

BIM. For example, the 16-bit TIM scheme occupies 20% less area compared to the BIM of

same bit-width. The reason behind the area savings are attributed to the new truncation scheme

proposed in this work. Similarly, it can be concluded from Fig.5.10 that the 16-bit TIM is faster

compared to TEC however having a delay overhead of 5% compared to BIM of 16-bit width.

8-bits 16-bits 32-bits

BIM 341 850 2283

TEC 586 1132 3926

TIM 301 682 1921

0
500
1000
1500
2000
2500
3000
3500
4000
4500

A
re
a

Figure 5.9: Area comparison of various multipliers for different bit-widths

Figures 5.11 & 5.12 present the area and delay improvement achieved by different 32-

bit iterative multiplier schemes for three iterations. It is observed from Fig.5.11 that the area

occupied by TIM is less compared to BIM and TEC in all iterations. For example, 32-bit TIM

scheme in the first iteration occupies at least 19% less area compared to BIM and TEC designs.
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8-bits 16-bits 32-bits

BIM 68 113 273

TEC 89 184 327

TIM 71 119 289
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Figure 5.10: Delay comparison of various multipliers for different bit-widths

Iteration 1 Iteration 2 Iteration 3

BIM 2283 4886 7494

TEC (FD=3) 3926 8173 12424

Proposed TIM
( FD=3 and t=4 ) 1921 4650 7284
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Figure 5.11: Area comparison of various multipliers for three iterations

The delay comparison of various multipliers for three iterations is presented in Fig.5.12. It

is observed that TIM method performs better than TEC in terms of delay for same precision.

However, it appears to have more delay compared to BIM which is not surprising because the

precision provided by BIM is much less compared to TIM and thus needs more iterations lead-

ing to more delay if a precision similar to that of TIM is to be achieved. The delay overhead

in TEC is due to carry speculation. The proposed design overcomes this problem by success-

fully replacing the complex fractional predictor design with a simple one (MFP) as discussed

in Section 5.2.3.2.
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Iteration 1 Iteration 2 Iteration 3

BIM 277 414 551

TEC
(FD =3) 327 465 672

TIM
( FD = 3 and t=4 ) 282 442 601
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Figure 5.12: Delay comparison of various multipliers for three iterations

5.3.2 Synthesis Results of Various Multipliers

For a fair comparison, TEC and BIM multipliers and the TIM have been modeled using Verilog

data flow modeling and simulated using cadence incisive unified simulator (IUS) v6.1. They

are mapped on to TSMC 180nm technology slow-normal library using cadence RTL compiler

v7.1.

Table 5.5: Synthesis results of various 32*32 multipliers for one iteration
32 * 32

Multiplier
Area

(µm2)
%

change
Delay(ps) %

change
Area-Delay

Product (∗105)
(µm2− ps)

%
change

BIM [26] 3675 100% 15454 100% 568 100%
TEC [27] 5696 155% 18235 117% 1038 182%
Proposed

TIM (T6,0)
3285 90% 16088 104% 528 93%

Hardware synthesis has been carried out to compare the important metrics such as area and

delay. Table.5.5 provides a performance comparison of 32*32 multiplier designed with above

three schemes for one iteration. As seen from the Table, the area consumed by the proposed

TIM scheme is 10% less compared to BIM and 65% less compared to TEC. While TIM has

a delay overhead of 4% compared to BIM, it has a 64% better precision than BIM. Although,

BIM performs better in delay with more iterations, TIM achieves a much better precision com-
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pared to BIM with only a marginal increase in delay. The reason for increase in delay in TIM

scheme is due to the inclusion of mask from second iteration onwards. Nevertheless, TIM

performs much better in terms of precision, area and delay compared to TEC. It is also evident

from Table.5.5 that TIM scheme has improved area-delay product (7 to 89%) compared to TEC

and BIM respectively. Overall, TIM scheme outperforms all other similar designs that exist in

the literature.

5.4 Benchmarking Various Multiplication Schemes-Application

to Image processing

Image sharpening is an important image enhancement technique employed in image processing

applications. The computational process of sharpening an image involves a number of fixed

point multiplications. It is therefore a good application to prove the efficacy of the proposed

truncated iterative multiplier.

5.4.1 Image Sharpening Algorithm

Human perception is highly sensitive to edges and fine details of an image. Since images es-

sentially consist of high-frequency components their visual quality is corrupted if these high

frequencies are removed. Conversely, increasing the high-frequency components of an image

improves the image quality. Image sharpening algorithm described in [60] is one such enhance-

ment technique which highlights the edges and fine details in an image.

This algorithm described below, accepts an image, processes it, and produces an image of

high quality. Suppose I is the original image, the processed image S is described using the

expression

S (x,y) = 2I (x,y)−M (5.13)

where M = 1
273 ∑

2
i=−2 ∑

2
j=−2 H (i+3, j+3) I (x− i ,y− j)

and H is a matrix defined as
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H =



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


Since this expression involves a number of multiplications, an exact multiplier such as an

array multiplier can perform these operations accurately thereby producing an image of high

quality. On the other hand, using an approximate multiplier would result in an image of certain

quality which is quantified using established metrics such as mean square error (MSE) and peak

signal to noise ratio (PSNR).

The MSE represents the loss of information in the image and is expressed as,

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I (i, j)−K (i , j)]2 (5.14)

The peak signal to noise ratio (PSNR) in dB is expressed using MSE as follows:

PSNR in dB = 10 log10

(
MAX2

I
MSE

)
(5.15)

where MAXI represents the maximum possible pixel value of the image.

While the use of approximate multiplier affects the image quality, it has the advantage of

savings in terms of area and delay as compared to an accurate multiplier. In what follows,

the performance of the existing multipliers such as BIM and TEC and the proposed TIM is

studied and compared with reference to the image sharpening algorithm. The algorithm is

applied to blocks of 5*5 pixels on a set of standard images ( Cameraman and Lena). The exact

multiplications are replaced by approximate multiplications using BIM, TEC and TIM, while

addition, subtraction and division operations are carried out using accurate techniques. The

metric MSE is computed by finding the mean of squares of difference in pixel values between

original image and the processed image using approximate multipliers and these values are

substituted in equation (5.15) to calculate PSNR values.

Table 5.6 provides a comparison of these metrics on a set of standard images (Lena and
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Cameraman). While PSNR of the proposed TIM is less compared to that of TEC in the first

iteration, the same gets better with higher number of iterations. This is due to the increase in

number of iterations, the accuracy of TIM improves over that of TEC. It can also been seen

from Fig.5.13 where maximum and average error for all the techniques is compared.

Table 5.6: A comparison of values of MSE and PSNR for benchmark images using various
multiplier schemes

Image Metric

1st Iteration 2nd Iteration 3rd Iteration

BIM TEC TIM BIM TEC TIM BIM TEC TIM

Cameraman

PSNR ( dB)

43.2 43.4 43.4 43.46 43.6 43.8 43.7 44.2 44.45

Lena 39 39.4 39.2 39.2 39.5 39.53 39.4 39.5 39.7

Pirate 42.8 43 42.8 43.1 43.2 43.4 43.2 43.4 43.7

Cameraman

MSE

3.1 3 3 2.95 2.8 2.7 2.8 2.5 2.35

Lena 7.9 7.5 7.7 7.75 7.35 7.3 7.5 7.2 7.05

Pirate 3.42 3.3 3.39 3.2 3.15 3 3.1 3 2.8

Further, BIM has the highest error for all iterations while between TEC and TIM, the latter

has relatively larger error in the first iteration which however falls sharply from the second

iteration onwards. While the difference between TEC and TIM for higher number of iterations

is not apparent from the graph, it is clear from Table 5.1 that TIM technique has a maximum

error and an average error that is less than that of TEC.
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Figure 5.13: Maximum and Average errors of various multipliers for three iterations

In what follows, BIM, TEC, and TIM are compared for precision while keeping in mind the

area and delay performance of the hardware. Figures.5.14 and 5.15 provide a comparison of

area and delay performance of various multiplier schemes. It is evident from these figures that
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TIM performs better than TEC. Although, as stated earlier, TEC has better precision for first

iteration, TIM performs better from the second iteration onwards. Also, TIM performs better

in terms of both area and delay for any number of iterations.

Figure 5.14: Unit gate area statistics of various multiplier for three iterations

Figure 5.15: Unit gate delay statistics of various multiplier for three iterations

Further, while TIM has a slightly better performance than BIM in terms of area, BIM does

well in terms of delay (Fig.5.15). However, this is not considered significant in the current

context since TIM has better precision as well as better PSNR and MSE for the benchmark

images considered, compared to BIM.
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Also, the performance of the proposed multiplier, in terms of both PSNR and MSE, may

be understood by observing the images processed by it. Figure.5.16 illustrates the images that

are processed using exact (array) and the TIM. It can be observed that the images of Lena and

Cameraman processed with the proposed multiplier look very similar to the original ones.

(a) Original Image (b) Processed Image(a) Original Image (b) Processed Image

Figure 5.16: Lena and Cameraman images obtained using exact and the proposed multiplier

5.5 Conclusions

In this work, an improved iterative multiplier has been proposed based on Mitchel algorithm

with enhanced precision. A new fractional detector scheme and a modified truncation method

presented significantly reduce the area of the related hardware. The fractional detector logic

and its efficient precomputation contribute to improved overall accuracy due to fewer number

of iterations required compared to the existing ones. Further, the precision of the multiplier

improves as the number of iterations increases. Performance improvement has been achieved

through the use of truncated logarithmic shifter and a fractional predictor.

Extensive analysis of the existing (TEC and BIM) and the proposed (TIM) schemes has

been carried out using unit gate modeling and compared with that obtained using synthesis tool.

Results of accuracy and hardware performance prove the superiority of the TIM technique over

TEC and BIM. The same has also been validated using image processing benchmarks, Lena,

cameraman, and pirate.
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Chapter 6

An Improved ‘Digit-by-Digit’ Decimal

Multiplier

6.1 Introduction

The previous chapters presented improved designs of binary and logarithmic multipliers. How-

ever, it may be noted that decimal arithmetic is preferred in applications such as financial,

scientific and commercial etc. owing to their higher precision compared to binary arithmetic.

However, these computations are generally sluggish (slow) and tend to occupy more silicon

area [48]. This has led to efforts in improving decimal architectures to enable high perfor-

mance and compact arithmetic circuits. Like in binary arithmetic, one of the most vital and

common operations in decimal arithmetic, is multiplication. While a large body of literature

on decimal arithmetic covers serial multiplication [62, 63], parallel (‘word-by-digit’) [40–43]

and (‘digit-by-digit’) [44, 45] multiplication has also been reported recently. Decimal (BCD)

‘digit-by-digit’ multipliers are appropriate for pipelined computations and result in improved

regularity of the circuits. This regularity, in conjunction with shorter interconnects, results in

improvement in the multiplier performance [46]. In this work, we focus on developing efficient

architectures for decimal ‘digit-by-digit’ multiplication.

The partial products in ‘digit-by-digit’ multiplication scheme are generated using BCD

digit-multiplier (BDM) and their reduction is accomplished using carry-free binary adders,
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multi-operand binary to decimal (BD) converters and decimal adder. Since BDM is an impor-

tant component in partial product generation, we focus on new and improved designs for BDM

cells in this chapter. Besides, novel designs of multi-operand BD converters are proposed to

convert the column binary sum to decimal in partial product reduction. Further, a hybrid multi-

operand BD converter algorithm is proposed and analyzed for its performance. It is expected

that these improvisations would result in significant savings in terms of area and latency.

Throughout this chapter, upper and lower case letters are used to signify decimal digits and

binary bits respectively, where a digit represents a 4-bit BCD number. The symbols ‘ . ’ and ‘ +

’ are used to denote AND and OR gates while the symbols ‘⊕’ and ‘�’ denote XOR and XNOR

operations respectively. Further, the term binary coded decimal (BCD) is used interchangeably

with decimal.

Rest of the chapter is organized as follows: An outline of the proposed partial product

generation and reduction schemes in 16*16 ‘digit-by-digit’ multiplier is provided and discussed

in Sections 6.2 and 6.3. In addition, design of hybrid multi-operand BD converters is described

in Section 6.3.2. A detailed performance analysis of 16*16 ‘digit-by-digit’ multiplier is carried

out and compared in Section 6.4.

6.2 A New Partial Product Generation Scheme in ‘Digit-by-

Digit’ Multiplier

This section presents two new partial product generation (PPG) schemes for improved area and

performance of BDM cell in ‘digit-by-digit’ multiplication. This is achieved through novel

designs of PPBD converter which forms a part of the BDM cell.

6.2.1 High Performance Partial Product Binary to Decimal (PPBD) Con-

verter

The first of the proposed two PPBD converters, the ‘high performance’ PPBD converter, is

designed using the fast BD (FBD) converter cells. A typical FBD cell, would accept a 4-
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bit binary input (b j), multiplies it by four, and then adds it to bi of 2-bits as illustrated in

Fig.6.1(a). Thus the computation of BCD (decimal) outputs, H0 (higher digit) and L0 (lower

digit) is carried out by using the relation {H0, L0} = 4 .b j + bi where the maximum values of

H0 and L0 are (3)10 and (9)10 respectively. Therefore, the output of FBD cell is limited at

most to (39)10 unlike (19)10 in Nicoud cell [50]. The binary inputs, b j and bi comprise of

{b3,b2,b1,b0} and {bi1,bi0} bits respectively.

0101

0000

0010

0100

FBD
cell 1

MSB LSB

(1000)2

Output BCD (Decimal) number

D1

D0

18 (L)(H)
(0001)2

X4

bj

Ho

4

4

22

bi

Lo

FBD
cell

FBD
cell 2

(a)
(b)

Binary Input- 0101 00 01

Figure 6.1: (a) Compact notation of FBD cell (b) Linear array of FBD cells to form PPBD
converter

The FBD cell is shown in Fig.6.1(a) and is described by the following equations derived

using truth tables :



H0 [1] = b3 +b2.b
′
1.b

′
0 +b

′
2.b1.b0 +b

′
2.b1.bi0

H0 [0] = b3 +b2.(b1 +b0)

L0 [3] = bi0.b3.b0 +b1.(b′i0(b2 }b0)+b
′
1.(b2bi0b

′
0)

L0 [2] = b3.b
′
0.bi0 +b2.b

′
0.(b1 +b

′
i0)+b

′
2.b0.(b

′
1 +b

′
3.bi0)

L0 [1] = b
′
2.(b

′
1.(b3⊕bi0)+b2.(b

′
0.(b1 }bi0)+ /O

L0 [0] = bi1

(6.1)

where Ø =b0(b′2.b1.b′i0 +b2.b′1.bi0)
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An example to convert a 7-bit binary number to two BCD digits (H and L) is illustrated

in Fig.6.1(b). Since the binary number (01010001)2 to be converted is larger than (39)10, two

FBD cells are required to realize the converter. As illustrated in Fig.6.1(b), the input to the FBD

cell 1 is restricted to (1001)2. Hence the 3 MSBs of binary input along with a ‘0’ prepended

(0101)2 are accepted as b j and the next significant two binary input bits “00” as bi results in

the outputs (10)2 and (0000)2. The 4-bit output (0000)2 of cell 1 along with residual binary

input “01” form inputs to cell 2, resulting in higher (H) digit (1000)2 formed by {D1, D0} and

lower (L) digit (0001)2. In general, binary number of any operand width can be converted to

BCD (decimal) by a linear arrangement of FBD cells.

Since a BCD digit can take values only between (0)10 and (9)10, the output of the 4*4

binary multiplier in BDM illustrated in Fig.2.24 is restricted to (81)10, that is equivalent to

(1010001)2. Thus, the input binary number to a PPBD converter is limited to (1010001)2.

This gives a possibility for optimization of FBD cell 1 shown in Fig.6.1(b), which eventually

results in simplified PPBD converter. As a consequence, the input to the FBD cell 1 is restricted

to (0101)2 as depicted in Fig.6.1(b). In view of this, the FBD cell 1 in Fig.6.1(a) gets simplified

resulting in ‘low area’ BD (LABD) cell as shown in Fig.6.2(a). The binary inputs {b2,b1,b0}

and {bi1,bi0} are applied to this cell which converts them into equivalent decimal number

H0 [1 : 0] and L0[3 : 0].

The resulting simplified equations for LABD cell which can be obtained from truth table

can be written as :



H1 [1] = b2.b
′
0 +b1.(b0 +bi0)

H0 [0] = b2.b0

L0 [3] = b1.b
′
0.b

′
i0 +b2.bi0

L0 [2] = b0.(b
′
2.b1 +bi0)+b2.b

′
0.b

′
i0

L0 [1] = b
′
i0.(b2.b

′
0 +b1.b0)+b

′
2.b

′
0.bi0

L0 [0] = bi1

(6.2)
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Figure.6.2(b) depicts the ‘high performance’ PPBD (HPPPBD) converter scheme achieved

by a linear arrangement of LABD and FBD cells. This converter has improved performance in

terms of delay as illustrated later.

101

0000

0010

0100

LABD
cell

MSB LSB

(1000)2

Output BCD (Decimal) number

D1

D0

18 (L)(H)
(0001)2

b2

H0[1]
bi1

L0[3]

LABD
cell

FBD
cell

bi0

L0[2] L0[1] L0[0]

b1 b0

H0[0]

(a) (b)

Binary Input- 101 00 01

Figure 6.2: (a) Compact notation of LABD cell (b) Linear array of LABD and FBD cells to
form ‘high performance’ PPBD (HPPPBD) converter

6.2.2 Low Area Partial Product Binary to Decimal Converter (LAPPBD)

Work in [51] presents partial product reduction using a multi-operand BD converter consisting

of Nicoud cells as illustrated in Fig.6.3(a). We propose a design of PPBD converter using

Nicoud cells and FBD cells which however are used for partial product generation to achieve

area reduction as well as improve the performance. This design comprises of a linear array of

LABD cells (shown earlier in Fig.6.2(a)) and Nicoud cells as illustrated in Fig.6.3(b). Since

Nicoud cells have more latency, achieving a PPBD converter with these cells alone results in

a slower design. An alternative method is to use area optimized and faster LABD cell so as to

improve the performance of PPBD converter.

Referring to Fig.6.3(a), Nicoud cells (circled with dotted lines) are replaced with LABD

cell resulting in a PPBD converter shown in Fig.6.3(b) which has the advantage of lower area

as compared to all Nicoud cell converter.
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Figure 6.3: (a) Iterative array of Nicoud cells to form BDM (b) Linear array of Nicoud and
LABD cells to form LAPPBD

6.3 Partial Product Reduction (PPR) in ‘Digit-by-Digit’ Mul-

tiplier

This section discusses the decimal (BCD) partial product reduction scheme in ‘digit-by-digit’

multiplier using the proposed multi-operand BD converters. An example of this approach is

illustrated in Fig.6.4. Referring to decimal partial product of column length C=6 with six partial

products, each partial product consists of 4-bits, denoted with solid dots. The columns c0, c1,

c2 and c3 are reduced to two rows using tree of 3:2 binary Carry Save Adders (CSA) which

requires 2 levels to compress all the columns into two rows. These two rows are reduced to

further obtain the final binary result using the carry propagation adder represented with straight

line in grey color as shown in Fig.6.4.

A numerical example illustrates the addition of six BCD digits, each of 4-bits [(9)10 +

(9)10+(9)10+(9)10+(9)10+(9)10], as mentioned in Fig.6.5 (a). The maximum value of each

digit is (9)10. Addition of these digits is performed by a tree of CSAs and a carry propaga-
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Figure 6.4: (a) Decimal partial products of six columns each of 4-bit (b) Example of partial
product, denoted using dot, reduction of column size C= 6

tion adder resulting in final binary result (110110)2. The conversion of this binary number to

decimal (BCD) is accomplished by using the proposed multi-operand binary to decimal con-

verter. The two FBD cells are connected in a linear array to convert binary number (110110)2

to decimal (54)10 as illustrated in Fig.6.5(b).

The implementation details of partial product reduction in 16*16 ‘digit-by-digit’ multiplier

is presented below.

6.3.1 Implementation of 16*16 ‘Digit-by-Digit’ Multiplier

In a typical N ∗N ‘digit-by-digit’ multiplication, 2N2 decimal partial products with a maximum

column size of 2N− 1 are generated using BDM cells. As mentioned in Section 2.8.1, multi-

operand BD (MBD) converters are used at the partial product reduction stage. The reduction

scheme using these converters for 16∗16 ‘digit-by-digit’ multiplier is illustrated in Fig.6.6. It

can be seen here that the layout of decimal partial products (H and L) is in columns of varied

length as illustrated in Fig.6.6(a). The reduction of decimal partial products generated happens

in two steps: First, all the partial product columns are compressed in parallel using CSAs .

Next, the binary number obtained from respective columns is converted in to a decimal number

using the multi-operand binary to decimal (MBD) converters.
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Figure 6.5: (a) Numerical example illustrating the reduction of decimal (BCD) partial prod-
ucts using CSAs (b) MBD converter formed using linear array of FBD cells to convert binary
number to decimal (BCD)

In this work, the existing MBD converter [51] is modified by replacing Nicoud cell with

FBD cell resulting in improved performance. The operation of the proposed MBD converter

for the largest column, C = 31 (highlighted by using dotted line in the Fig.6.6 (a)), is illustrated

in Fig.6.6(b) as an example. The binary addition of 31-digits column comprising of H and

L (whose maximum values, mentioned earlier, are considered) is performed using a tree of

3:2 binary CSAs [52]. It requires eight reduction levels to compress this column into 2 rows,

which are eventually reduced to a binary number using the carry propagation adder (CPA).

For instance, considering the case when output of the column size (C=31) results in a binary

number (0100001000)2, it is converted into decimal in two stages using a linear connection of

FBD cells (MBD converter) as shown in Fig.6.7.

In a similar manner, binary result from respective columns are compressed in parallel to

obtain decimal numbers which are then aligned according to their decimal weight and reduced

to a product using the decimal adder [64].

While this approach improves the performance by reducing the latency of the MBD con-

verter, it also results in area overhead. Further, decimal conversion of a column using Nicoud

cells [51] alone, while resulting in smaller area as illustrated in Fig.6.8(a) it increases the con-

verter latency significantly. To address these competing requirements, a hybrid multi-operand
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Figure 6.6: (a) Partial product matrix in a 16*16 ‘digit-by-digit’ multiplier (b) Partial product
reduction of column of largest size C=31 using CSA structure

BD converter using a mix of FBD and Nicoud cells is proposed that results in small area but

high speed of operation. For instance, Fig.6.8(b) shows a hybrid MBD converter consisting of

fast FBD cells in the critical path (stage1) while stage 2 comprises of (small area) Nicoud cells

resulting in a hybrid MBD converter that consumes less area without compromising on speed

when compared to the converter shown in Fig.6.7. Clearly, the hybrid converter is faster with

only a marginal increase in area when compared with that in Fig.6.8(a). As the column size

increases, selection of optimal number of FBD and Nicoud cells becomes tedious. Hence, a

hybrid multi-operand BD algorithm which helps in selecting the best combination of FBD and
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Figure 6.7: MBD converter for column size, C=31 in 16*16 ‘digit-by-digit’ multiplier

Nicoud cells is also proposed in this work and is discussed below.

6.3.2 Algorithm for Hybrid Multi-operand Binary to Decimal Converter

The algorithm for the design of hybrid multi-operand BD converter uses number of bits (nob) to

compute all possible combinations of Nicoud and FBD cells. The pseudo code of the algorithm

(given below) accepts the column size (C) and converts it into ‘nob’ using the relation nob =

ceil ( log2(C ∗P)), where P is the maximum decimal weight of partial product ((9)10). For

instance, given a value of C = 31 and P = 9, the value of ‘nob’ turns out to be 9. Depending

on the number of bits, the algorithm recursively computes all possible combinations of Nicoud

(ND) and fast binary to decimal (FBD) cells and their respective area and delay. The selection

of appropriate multi-operand BD converter itself is based on the area and delay requirements

of the design on hand. The area of individual FBD and ND cells is denoted by A1 and A2

respectively.

The algorithm, which calls three sub-functions Max_ND_Cell, Max_FBD_Cell and CAL

is explained as follows :

1. The input to the algorithm is the binary number obtained by reducing the partial product

column of length C.
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Figure 6.8: MBD converter for column size, C=31 in 16*16 ‘digit-by-digit’ multiplier (a) Using
Nicoud cells (b) Hybrid converter using Nicoud and FBD cells

2. The sub-function Max_ND_Cell computes the maximum number of ND cells (mndc)

required to design the converter.

3. Similarly, the sub-function Max_FBD_Cell determines the maximum number of FBD

cells (mfbdc) necessary to design the converter.

4. Higher priority is given for selection of FBD cells if the objective is to obtain a low

latency design.

5. The sub-function CAL calculates the number of unused FBD (m1) and ND (m2) cells

for various valid combinations.

6. For a given set of values m1 and m2, the algorithm computes the total number of utilized

FBD (n1) and ND (n2) cells and their area as well as the critical path delay for that

combination.
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7. The area and delay for all valid combinations are calculated and stored in a list as a tuple

<n1,n2,delay,area>.

8. The above steps are repeated till all valid combinations are exhausted.

Algorithm 6.1 Pseudo code of hybrid multi-operand converter
Input: nob
Output: utilized FBD cells(n1), utilized ND cells (n2), area, delay

1. function Hybrid_MBD

2. mndc = Max_ND_Cell

3. mfbdc = Max_FBD_Cell

4. for i = 0; i < mndc + 1; i++

5. for j = mfbdc + 1; j > -1; j–

6. m1, m2= CAL

7. if delay! = 0

8. if m1 >= 0and m2 >= 0

9. set area to ((|i−m1|)∗A1)+((| j−m2|)∗A2)

10. if [|i−m1|, | j−m2|, delay,area] not in list

11. add ([|i−m1|, | j−m2|, delay,area]) to list

12. end if

13. end if

14. end if

15. end for

16. end for

17. return (delay,area, n1, n2)

It can be noted from Fig.6.8(b) that the critical path of the MBD converter is dictated by

the first stage wherein the delay of individual cells chosen gets added up. However, in the

subsequent stages the delay of final cell alone is added [51]. Therefore, to achieve a faster

hybrid converter, delay per bit in the first stage has to be reduced by exclusively using FBD

cells.
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The algorithm terminates after storing all the values in a data set (list). No need to mention,

area efficient converter can be designed using more number of ND cells. Conversely, if high

speed converter is the objective, then more number of FBD cells can be used. Thus, the hybrid

algorithm provides flexibility in choosing appropriate multi-operand converter.

6.4 Results and Discussion

In order to compare the proposed multiplier with existing designs, initially unit gate level mod-

eling is carried out and later synthesis based analysis is performed.

6.4.1 Area and Delay Comparison using Unit Gate based Modeling

All the designs under consideration have been modeled using unit gate approach [59] to obtain a

synthesis-independent estimate of area (A) and delay (D). Further, each two-input gate (AND,

OR, NAND, NOR) is counted as one gate while EX-OR and EX-NOR are counted as two gates

for both area and delay [59]. Moreover, an m-input gate is assumed to be composed of a tree of

m-1 input gates while the effects of wiring, buffering and inverting costs (area and delay) are

neglected.

As discussed earlier, a BDM typically consists of a binary multiplier and a partial product

binary to decimal (PPBD) converter. In this work, the binary multiplier proposed by Jaberipur

2 [44], being the most efficient design in literature, is adopted for all the designs, shown in Table

below, together with respective PPBD schemes to form the BDM. For instance, the HPBDM

comprises of a Jaberipur binary multiplier and a HPPPBD.

Table 6.1 compares the area and delay performance of various BDM converters including

the two proposed schemes (HPBDM and LABDM) mentioned earlier. Besides each value of

area and delay, the percentage mentioned signifies how the proposed (HPBDM and LABDM)

designs perform compared to the existing designs. It can be observed that an improvement of

5% in delay is achieved in proposed HPBDM compared to the best performing Split_4_3 BDM.

Further, it can be seen that area-delay product of proposed LABDM design is better than every

other design. Also, the area occupied by LABDM and HPBDM is less in comparison with
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Table 6.1: Comparison of area and delay of various BDMs
Scheme Area %

change
Delay %

change
Area-Delay

Product
%

change
HPBDM 130 107% 20 95% 2600 102%
LABDM 121 100% 21 100% 2541 100%
N2BDM

[65]
119 98% 22 105% 2618 103%

Split_4_3
BDM [48]

173 143% 21 100% 3633 143%

Bhatt
BDM [47]

175 144% 22 105% 3850 151%

Sree
BDM [49]

187 154% 37 176% 6919 272%

other designs except N2BDM scheme.

As mentioned earlier, the decimal partial products obtained from BDMs are compressed

using binary CSA tree, multi-operand converters and decimal adders. The main focus at PPR

stage is the efficient design of multi-operand binary to decimal (MBD) converter. The PPR

stage of present work is compared with that of Dadda [51] which provides an efficient imple-

mentation in ‘digit-by-digit’ multipliers. The main difference between the Dadda and proposed

hybrid PPR schemes lies in MBD converters, which were realized using ND cells in Dadda

scheme, while hybrid (ND and FBD) cells are used in the present scheme. Hence, to prove

the efficacy of proposed hybrid MBD design, exhaustive comparisons are done at the multi-

operand binary to decimal converter stage.

The unit gate area and delay statistics of Dadda, FBD and proposed hybrid MBD converters

for various column (C) sizes in a 16* 16 multiplier illustrated in Fig.6.6 are shown in Table 6.2.

It can be noted that the number of cells (Dadda and/or FBD) required in each of the MBD

designs depends on the number of bits as well as the binary number. Hence for the same ‘nob’

the number of cells required varies. From the results obtained it can be concluded that MBD

converters formed using FBD cells alone have the speed advantage with, however, area over-

head while employing Nicoud (ND) cells alone results in area efficient design with increased

latency. On the other hand, MBD converters obtained from the hybrid converter algorithm (dis-

cussed in Section 6.3.2) have lesser delay compared to Dadda converters with marginal increase

in area. Further, hybrid MBD converters are more area efficient compared to FBD based, that
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Table 6.2: Performance comparison of different multi-operand converter designs using Dadda
and proposed cells for different column size

Dadda
[51] FBD Hybrid

Column
Size
(C)

No. of
bits
(nob)

No. of
ND Cells
[50] Area Delay

No. of
FBD Cells

Area Delay
No. of ND Cells

[50]

No. of
FBD Cells

Area Delay

31 9 7 105 28 4 184 24 3 2 137 24

29 9 7 105 28 4 184 24 3 2 137 24

27 8 7 105 28 4 184 24 3 2 137 24

25 8 7 105 28 4 184 24 3 2 137 24

23 8 7 105 28 4 184 24 3 2 137 24

21 8 7 105 28 4 184 24 3 2 137 24

19 8 6 90 24 3 138 18 2 2 122 20

17 8 6 90 24 3 138 18 2 2 122 20

15 8 5 75 20 3 138 18 1 2 107 16

13 7 5 75 20 3 138 18 1 2 107 16

11 7 5 75 20 3 138 18 1 2 107 16

9 7 4 60 16 2 92 12 0 2 92 12

7 6 3 45 12 2 92 12 1 1 61 10

5 6 3 45 12 2 92 12 1 1 61 10

3 5 2 30 8 1 46 6 2 0 30 8

too without any compromise on latency.

The total area and delay statistics of hybrid and Dadda MBD schemes for a 16*16 digit

by digit multiplier are shown in Table 6.3. The total area of MBD converter is decided by the

number of partial product columns while the critical path is decided by the largest column size.

It can be observed from Table 6.3 that hybrid MBD design is 17% faster compared to Dadda

however with 5% overhead in area.

Table 6.3: Performance comparison of Dadda and Hybrid multi-operand converter in 16*16
multiplier

Design Area %
change

Delay %
change

Proposed Hybrid MBD Converter 14138 100% 24 100%
Dadda MBD Converter [51] 13490 95% 28 117%

6.4.2 Synthesis based Comparison

To obtain more exact comparisons, Verilog-HDL models of various multiplier designs are syn-

thesized across different technology nodes. For a fair comparison, all the existing and proposed

multiplier schemes based on ‘digit-by-digit’ algorithm are extended to perform 16-digit parallel
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decimal multiplication, modeled using Verilog data flow modeling and simulated using cadence

incisive unified simulator (IUS) v6.1. The performance evaluation of each design has been

carried out at 180nm,130nm, 90nm, 65nm and 28nm process technology nodes using TSMC

library. Low power standard libraries of 13 track for 180nm/130nm, 11 track for 90nm/65nm

and 9 track for 28nm provided by foundry are adopted. Synopsys ‘Prime time’ tool is used

for delay calculation for all the BDM topologies on gate level net list with back annotated RC

values.

In this section, initially the synthesized area and delay statistics of various multiplier schemes

at partial product generation (PPG) stage are presented. Next, the area-delay figures of hy-

brid converters and partial product reduction (PPR) stage are detailed. Towards the end, a

comprehensive performance analysis of 16∗16 ‘digit-by-digit’ multiplier based approaches is

presented and discussed.

6.4.2.1 Partial Product Generation (PPG)

An area comparison of six BCD digit multipliers (BDMs) in ‘digit-by-digit’ scheme, including

that of two new schemes (depicted using solid lines), is provided in Fig.6.9. The BDM cells

considered are HPBDM, LABDM, N2BDM, split_4_3 BDM, Bhatt BDM and Sree BDM. It

can be observed from Fig.6.9 that the proposed LABDM designs performs well at all technol-

ogy nodes compared to the existing schemes and also conform to the gate level analysis carried

out in Section 6.4.1. The area consumed by LABDM is least in comparison to designs consid-

ered across various technology nodes, which is due to the LABD converter cells designed as a

part of this work except N2BDM reported in [65].

From the graphs shown in Fig.6.10, it can be observed that the proposed HPBDM is the

fastest among all the BDM cells compared. The HPBDM achieves a 15% reduction in delay

across various technology nodes compared to other implementations. Further, it can be noted

that proposed LABDM, though optimized for area, performs better compared to all existing

BDM cells.
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(nm)

Figure 6.9: A Comparison of area consumption by various BDM at different technology nodes

6.4.2.2 Partial Product Reduction (PPR)

The area and delay statistics across various technology nodes in case of Dadda [51] and pro-

posed hybrid MBD converters are shown in Table 6.4. It can be noted that hybrid MBD convert-

ers perform better in terms of delay compared to Dadda MBD converters with only a marginal

increase in area.

Table 6.4: A Comparison of Dadda and proposed hybrid MBD converters for area and delay
performance across various technology nodes

Dadda MBD Converter Hybrid MBD Converter

Technology

4nm. Area 4µm2. Percent Delay 4ps. Percent Area 4µm2. Percent Delay 4ps. Percent

180 1268 987 175 1137 1295 1007 155 1007

130 1214 97.707 161 1167 1242 1007 138 1007

90 1092 937 143 1167 1174 1007 123 1007

65 1024 92.707 127 1177 1104 1007 108 1007

28 804 927 98 1197 871 1007 82 1007

As pointed out earlier, PPR stage in Dadda and hybrid PPR schemes consists of binary

CSA [51], MBD converters and decimal adders [64]. While, Dadda PPR scheme uses the

MBD converters based on Nicoud cells, hybrid MBD converters are used in the proposed PPR

scheme. Figures 6.11 and 6.12 provide a comparison of the area and latencies of these two

approaches respectively at various technology nodes. It can be seen from these figures that the
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(nm)

Figure 6.10: A Comparison of delay in various BDM at different technology nodes

proposed scheme results in a 11% improvement in delay with only a small increase in area.

Similar pattern of behavior can be observed across all technology nodes.

(nm)

Dadda PPR

Figure 6.11: A Comparison of area consumption at PPR level in 16*16 ‘digit-by-digit’ multi-
plier at different technology nodes
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Figure 6.12: A Comparison of delay at PPR level in 16*16 ‘digit-by-digit’ multiplier at differ-
ent technology nodes

6.4.2.3 Synthesis Results of 16*16 ‘Digit-by-Digit’ Multiplier

The area and delay of different multiplier schemes based on ‘digit-by-digit’multiplication al-

gorithm have been investigated at various technology nodes 180nm,130nm, 90nm, 65nm and

28nm using TSMC library and are presented in Table 6.5. The PPG is carried out using

HPBDM, LABDM, N2BDM, split_4_3 BDM, Bhatt BDM and Sree BDM schemes. In PPR

stage, while HPBDM and LABDM schemes use the proposed hybrid PPR technique, rest of

the BDM schemes use Dadda PPR [51] approach. The proposed schemes have been found to

be functional across all the technology nodes. A detailed comparison of these multipliers in

terms of area, delay and area-delay product is provided in Table 6.5 and Figs.6.13-6.15. It is

evident that the HPBDM with Hybrid PPR performs better in terms of delay (10 to 29%) and

area-delay product (4 to 38%) while LABDM with Hybrid PPR achieves an improvement of

9 to 28% in delay and 5 to 39% in area-delay product across various technology nodes. The

improvements in delay and area-delay product are bound to increase further in multipliers in-

volving larger operand width. This is due to the efficient PPBD converters and multi-operand

converter realized using hybrid converter algorithm.

127



6.4. RESULTS AND DISCUSSION

Technology Node
180

#105

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
HPBDM-Hybridtproposed)
LABDM-Hybrid tproposed)
N2BDM-Dadda
Split-BDM-Dadda
Bhatt BDM -Dadda
Sree BDM -Dadda

Figure 6.13: A Comparison of area consumption by various multiplier at different technology
nodes

Technology Node
180

D
el
ay
(n
s)

2.5

3

3.5

4

4.5

5

5.5

6

HPBDM-Hybrid(proposed)
LABDM-Hybrid (proposed)
N2BDM-Dadda
Split-BDM-Dadda
Bhatt BDM -Dadda
Sree BDM -Dadda

Figure 6.14: A Comparison of delay of various multiplier at different technology nodes

128



6.5. CONCLUSIONS

Technology Node

A
re
a-
D
el
ay
pr
od
uc
t

#105

2

3

4

5

6

7

8

9

10

11

12
HPBDM-Hybrid [proposed]
LABDM-Hybrid [proposed]
N2BDM-Dadda
Split-BDM-Dadda
Bhatt BDM -Dadda
Sree BDM -Dadda

Figure 6.15: A Comparison of area-delay product of various multiplier at different technology
nodes

6.5 Conclusions

Digital multipliers (binary/decimal) have partial product generation and reduction stages and

any performance improvement in these stages will contribute to overall performance of the

multiplier. In this work, new schemes have been proposed to improve the partial product gen-

eration and reduction stages in decimal multipliers. Decimal partial products are generated in

parallel using fast and area efficient BCD digit multipliers and their reduction is achieved using

hybrid multi-operand binary to decimal converters. Also, a new hybrid algorithm to design a

multi-operand binary to decimal converter based on area and delay requirements has been pro-

posed. In contrast to most of the previous implementations, which propose changes either in

partial product generation or reduction, this work proposes modifications at both partial prod-

uct generation and reduction stages resulting in an improved performance. Results obtained for

a 16*16 ’digit-by-digit’ multiplier clearly show that a performance improvement, in terms of

delay of upto 8 to 24%, and an area-delay product of upto 4 to 32%.
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Table 6.5: Area and Delay comparison in 16*16 ‘Digit-by-Digit’ multipliers
Technology
Node pnmi Scheme Area pµm2i 9 Delaypnsi 9

y
Product
pµm2- nsi 9

HPBDM-Hybrid 185806 1039 4.73 989 878862 1019
LABDM-Hybrid 180065 1009 4.8 1009 864312 1009
N2 BDM -
Dadda 178126 999 5.11 1069 910224 1059

180
Split_4_3BDM -

Dadda 187745 1049 5.1 1069 957500 1109

Bhatt BDM -
Dadda 191329 1069 5.15 1079 985344 1149

Sree BDM -
Dadda 193377 1079 5.9 1229 1140924 1329

HPBDM-Hybrid 175306 1039 4.33 989 759075 1019

LABDM-Hybrid 170066 1009 4.41 1009 749991 1009
N2 BDM -
Dadda 168138 999 4.7 1069 790249 1059

130
Split_4_3BDM -

Dadda 176722 1049 4.73 1079 835895 1119
Bhatt BDM -
Dadda 181842 1079 4.8 1089 872842 1169

Sree BDM -
Dadda 183890 1089 5.4 1229 993006 1329

HPBDM-Hybrid 155240 1039 3.76 989 583702 1029

LABDM-Hybrid 150515 1009 3.8 1009 571957 1009

N2 BDM -
Dadda 149096 999 4.11 1089 612785 1079

90
Split_4_3BDM -

Dadda 156659 1049 4.1 1089 642302 1129
Bhatt BDM -
Dadda 161267 1079 4.19 1109 675709 1189

Sree BDM -
Dadda 166456 1109 4.7 1239 782343 1369

HPBDM-Hybrid 143151 1029 3.38 999 483850 1029

LABDM-Hybrid 140157 1009 3.4 1009 476534 1009
N2 BDM -
Dadda 136219 979 3.7 1099 504010 1069

65
Split_4_3BDM -

Dadda 145789 1049 3.76 1109 548167 1159
Bhatt BDM -
Dadda 150397 1079 3.9 1149 586548 1239

Sree BDM -
Dadda 152445 1099 4.3 1269 655514 1379

HPBDM-Hybrid 113718 1029 2.63 999 299078 1019

LABDM-Hybrid 111067 1009 2.65 1009 294328 1009
N2 BDM -
Dadda 107922 979 2.89 1099 311895 1059

28
Split_4_3BDM -

Dadda 115675 1049 2.87 1089 331987 1129
Bhatt BDM -
Dadda 118747 1069 3.1 1179 368116 1259

Sree BDM -
Dadda 121307 1099 3.4 1289 412444 1399
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Chapter 7

Conclusions and Future Work

This thesis focused on designing new multiplier architectures in binary, logarithmic and BCD

number systems customized for different requirements (accuracy, speed, area and power) to

meet the diverse needs of practical applications. The architectures included that of a two-

dimensional binary bypass multiplier, a fixed-width binary multiplier, an iterative logarith-

mic multiplier, and a ‘digit-by-digit’ BCD multiplier. Various schemes developed to improve

these architectures have been detailed, discussed and superiority of their performance has been

demonstrated.

The first contribution of this thesis is the development of a reconfigurable two-dimensional

bypass multiplier based on dynamic bypassing of partial products. The bypass elements in-

corporated into the multiplier reduce the power consumption by eliminating redundant signal

transitions. Further, the reconfigurable multiplier offers a good trade-off between area, delay

and power dissipation by using the same multiplier for performing one N or two N/2 multipli-

cations.

The second contribution of this thesis is the development of a novel fixed-width binary

multiplier with a target to deploy in error resilient applications where the focus is less on accu-

racy and more in terms of improved hardware performance. Such units result in area savings

while also resulting in reduced power consumption. Further, to quantify the benefits achieved,

the performance of this multiplier has been validated using the image sharpening algorithm

applied on image processing benchmarks such as Lena, Cameraman, and Pirate.
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The third contribution of this thesis is the development of a novel binary logarithmic mul-

tiplier with improved precision. The hardware implementation of this multiplier shows that it

also has an improved performance in terms of parameters area and delay compared to other

designs existing in the literature.

The fourth contribution of this thesis is the development of a generalized design approach

and architectural framework for decimal multiplication. Decimal partial products have been

generated in parallel using fast and area efficient BCD digit multipliers and their reduction is

achieved using new hybrid multi-operand binary to decimal converters. The resulting multiplier

has been shown to perform better than the existing BCD multipliers in terms of delay and area-

delay product.

7.1 Future Work

The binary multiplier units designed and implemented in this work targeted at 180 nm tech-

nology and hence dynamic power dominates the overall power consumption. As process tech-

nologies shrink, leakage power dominates the overall power dissipation. Hence, it would be

interesting to understand the performance of the binary designs proposed in this work at lower

technology nodes.

Approximate computing offers potential benefits in terms of area, power and performance.

However, its impact on applications is difficult to measure. Researchers and practitioners alike

need tools to automate the process of carrying out approximate computing. Hence, developing

new approaches that are capable of generating and synthesizing circuits with reasonable error

tolerance and significantly less area consumption and power dissipation is an immediate need.

132



Bibliography

[1] B. Parhami, Computer arithmetic, vol. 20. Oxford university press, 1999.

[2] A. D. Booth, “A signed binary multiplication technique,” The Quarterly Journal of Me-

chanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951.

[3] E. L. Braun, Digital computer design: logic, circuitry, and synthesis. Academic Press,

2014.

[4] P. Behrooz, “Computer arithmetic: Algorithms and hardware designs,” Oxford University

Press, vol. 19, pp. 512583–512585, 2000.

[5] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on electronic Com-

puters, no. 1, pp. 14–17, 1964.

[6] R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis. Cite-

seer, 1998.

[7] W. N. HE et al., Cmos Vlsi Design: A Circuits And Systems Perspective, 3/E. Pearson

Education India, 2006.

[8] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a general

class of recurrence equations,” IEEE transactions on computers, vol. 100, no. 8, pp. 786–

793, 1973.

[9] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the ACM

(JACM), vol. 27, no. 4, pp. 831–838, 1980.

133



BIBLIOGRAPHY

[10] J.-n. Ohban, V. G. Moshnyaga, and K. Inoue, “Multiplier energy reduction through by-

passing of partial products,” in Circuits and Systems, 2002. APCCAS’02. 2002 Asia-

Pacific Conference on, vol. 2, pp. 13–17, IEEE, 2002.

[11] M.-C. Wen, S.-J. Wang, and Y.-N. Lin, “Low power parallel multiplier with column by-

passing,” in 2005 IEEE International Symposium on Circuits and Systems, pp. 1638–

1641, IEEE, 2005.

[12] G.-N. Sung, Y.-J. Ciou, and C.-C. Wang, “A power-aware 2-dimensional bypassing mul-

tiplier using cell-based design flow,” in 2008 IEEE International Symposium on Circuits

and Systems, pp. 3338–3341, IEEE, 2008.

[13] M. Själander, M. Draždžiulis, P. Larsson-Edefors, and H. Eriksson, “A low-leakage twin-

precision multiplier using reconfigurable power gating,” in Circuits and Systems, 2005.

ISCAS 2005. IEEE International Symposium on, pp. 1654–1657, IEEE, 2005.

[14] M. Själander, H. Eriksson, and P. Larsson-Edefors, “An efficient twin-precision multi-

plier,” in Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Pro-

ceedings. IEEE International Conference on, pp. 30–33, IEEE, 2004.

[15] S. Hong, T. Roh, and H.-J. Yoo, “A 145µw 8× 8 parallel multiplier based on optimized

bypassing architecture,” in 2011 IEEE International Symposium of Circuits and Systems

(ISCAS), pp. 1175–1178, IEEE, 2011.

[16] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,” in Soviet

physics doklady, vol. 7, p. 595, 1963.

[17] M. J. Schulte, J. E. Stine, and J. G. Jansen, “Reduced power dissipation through trun-

cated multiplication,” in Low-Power Design, 1999. Proceedings. IEEE Alessandro Volta

Memorial Workshop on, pp. 61–69, IEEE, 1999.

[18] K. Biswas, P. Mokrian, H. Wu, and M. Ahmadi, “Truncation schemes for recursive multi-

pliers,” in Signals, Systems and Computers, 2005. Conference Record of the Thirty-Ninth

Asilomar Conference on, pp. 1177–1180, IEEE, 2005.

134



BIBLIOGRAPHY

[19] A. N. Danysh and E. E. Swartzlander Jr, “A recursive fast multiplier,” in Signals, Systems

&amp; Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference

on, vol. 1, pp. 197–201, IEEE, 1998.

[20] K. Biswas, H. Wu, and M. Ahmadi, “Fixed-width multi-level recursive multipliers,” in

Signals, Systems and Computers, 2006. ACSSC’06. Fortieth Asilomar Conference on,

pp. 935–938, IEEE, 2006.

[21] E. E. Swartzlander Jr, “Truncated multiplication with approximate rounding,” in Signals,

Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Confer-

ence on, vol. 2, pp. 1480–1483, IEEE, 1999.

[22] E. J. King and E. E. Swartzlander Jr, “Data-dependent truncation scheme for parallel mul-

tipliers,” in Signals, Systems &amp; Computers, 1997. Conference Record of the Thirty-

First Asilomar Conference on, vol. 2, pp. 1178–1182, IEEE, 1997.

[23] Y. Lim, “Single-precision multiplier with reduced circuit complexity for signal processing

applications,” Computers, IEEE Transactions on, vol. 41, no. 10, pp. 1333–1336, 1992.

[24] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient multipliers for digital

signal processing applications,” IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing, vol. 43, no. 2, pp. 90–95, 1996.

[25] J. M. Jou, S. R. Kuang, and R. Der Chen, “Design of low-error fixed-width multipliers

for dsp applications,” IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 46, no. 6, pp. 836–842, 1999.
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Chapter 7

Conclusions and Future Work

This thesis focused on designing new multiplier architectures in binary, logarithmic and BCD

number systems customized for different requirements (accuracy, speed, area and power) to

meet the diverse needs of practical applications. The architectures included that of a two-

dimensional binary bypass multiplier, a fixed-width binary multiplier, an iterative logarith-

mic multiplier, and a ‘digit-by-digit’ BCD multiplier. Various schemes developed to improve

these architectures have been detailed, discussed and superiority of their performance has been

demonstrated.

The first contribution of this thesis is the development of a reconfigurable two-dimensional

bypass multiplier based on dynamic bypassing of partial products. The bypass elements in-

corporated into the multiplier reduce the power consumption by eliminating redundant signal

transitions. Further, the reconfigurable multiplier offers a good trade-off between area, delay

and power dissipation by using the same multiplier for performing one N or two N/2 multipli-

cations.

The second contribution of this thesis is the development of a novel fixed-width binary

multiplier with a target to deploy in error resilient applications where the focus is less on accu-

racy and more in terms of improved hardware performance. Such units result in area savings

while also resulting in reduced power consumption. Further, to quantify the benefits achieved,

the performance of this multiplier has been validated using the image sharpening algorithm

applied on image processing benchmarks such as Lena, Cameraman, and Pirate.
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7.1. FUTURE WORK

The third contribution of this thesis is the development of a novel binary logarithmic mul-

tiplier with improved precision. The hardware implementation of this multiplier shows that it

also has an improved performance in terms of parameters area and delay compared to other

designs existing in the literature.

The fourth contribution of this thesis is the development of a generalized design approach

and architectural framework for decimal multiplication. Decimal partial products have been

generated in parallel using fast and area efficient BCD digit multipliers and their reduction is

achieved using new hybrid multi-operand binary to decimal converters. The resulting multiplier

has been shown to perform better than the existing BCD multipliers in terms of delay and area-

delay product.

7.1 Future Work

The binary multiplier units designed and implemented in this work targeted at 180 nm tech-

nology and hence dynamic power dominates the overall power consumption. As process tech-

nologies shrink, leakage power dominates the overall power dissipation. Hence, it would be

interesting to understand the performance of the binary designs proposed in this work at lower

technology nodes.

Approximate computing offers potential benefits in terms of area, power and performance.

However, its impact on applications is difficult to measure. Researchers and practitioners alike

need tools to automate the process of carrying out approximate computing. Hence, developing

new approaches that are capable of generating and synthesizing circuits with reasonable error

tolerance and significantly less area consumption and power dissipation is an immediate need.
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