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Leishmaniasis 

Leishmania is a member of the trypanosomatid protozoa belonging to the order 

kinetoplastida. It is the causative agent of leishmaniasis, diseases transmitted by the blood 

sucking phlebotomine sandfly. Early accounts of the occurrence of human leishmaniasis 

were recorded around 1824AD in Asia near the Indian border of Bangladesh. Subsequently 

epidemics were described in the Gangetic plains where it still has a major presence.  

The leishmaniasis afflicts the world's poorest populations. Humans are infected via 

the bite of phlebotomine sandflies, which breed in forest areas, caves, or the burrows of small 

rodents. There are four main types of the disease: 

 In cutaneous forms, skin ulcers usually form on exposed areas, such as the face, 

arms and legs. These usually heal within a few months, leaving scars.  

 Diffuse cutaneous leishmaniasis produces disseminated and chronic skin lesions 

resembling those of lepromatous leprosy. It is difficult to treat.  

 In mucocutaneous forms, the lesions can partially or totally destroy the mucous 

membranes of the nose, mouth and throat cavities and surrounding tissues.  

 Visceral leishmaniasis, also known as kala azar, is characterized by high fever, 

substantial weight loss, swelling of the spleen and liver, and anaemia. If left 

untreated, the disease can have a fatality rate as high as 100% within two years. 

Occurring in several forms, the disease is generally recognized for its cutaneous 

form which causes non-fatal, disfiguring lesions, although epidemics of the 

potentially fatal visceral form cause thousands of deaths. 
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Visceral Leishmaniasis (VL) 

Visceral leishmaniasis (VL), the most severe in the disease spectrum, being fatal if 

left untreated, is caused by the members of Leishmania donovani complex that includes L. d 

donovani and L. d. infantum. In the Indian subcontinent and East Africa, VL is mainly caused 

by L. d. donovani, while in the Mediterranean basin and South America it is L. d. infantum. The 

disease is characterized by irregular fever, weight loss, swelling of the liver and spleen and 

anemia. The annual incidence and prevalence of VL cases worldwide is 0.5 million and 2.5 

million respectively. More than 90% of the VL cases in the world are reported from 

Bangladesh, Brazil, India, Nepal and Sudan [WHO, 2003]. 

For many years, the public health impact of the leishmaniasis has been grossly 

underestimated, mainly due to lack of awareness of its serious impact on health. Over the last 

10 years, endemic regions have been spreading further and there has been a sharp increase in 

the number of recorded cases of the disease. As declaration is compulsory in only 32 of the 

88 countries affected by leishmaniasis, a substantial number of cases are never recorded. In 

fact, 2 million new cases (1.5 million for CL and 500 000 for VL) are considered to occur 

annually, with an estimated 20 million people presently infected worldwide. Globally 

leishmaniasis is responsible for approximately 59,000 deaths annually with 350 million at 

risk. The global burden of leishmaniasis is estimated at 2.4 million disability adjusted life 

years lost [WHO, 2002]. The two major clinical forms of leishmaniasis, cutaneous and 

visceral are the result of infection by different species of the parasite. 

Widespread in 22 countries in the New World and in 66 nations in the Old World, 

leishmaniasis is primarily found in South-east Asia, East Africa, South America and 

Mediterranean region. Human infections are found in 16 countries in Europe, including 
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France, Italy, Greece, Malta, Spain and Portugal (Fig.1.1). Among the two million new cases 

each year in the 88 countries where the disease is endemic, it is estimated that 80% earn less 

than $2 a day [Davies et al., 2003].  

Fig.1.1 Distribution of Old World and New World visceral leishmaniasis 

  

The problem of VL has become more serious because of co-infection with HIV that is 

becoming increasingly frequent with cases reported in 34 countries [Pintado and Lopez-

Velez, 2001; Desjeux, 2003]. Control of leishmaniasis is complicated by the multiplicity of 

Leishmania species and their diverse clinical manifestations [Amaral et al.., 2002].  

 

VL in South East Asia (SEA) Region  

 VL or kala-azar (KA) as it is known in India is a significant infectious disease in the 

developing world and of late in the developed world because of increased international travel 

 
Data source:  WHO/CSR/EDC-UNAIDS 
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and HIV infection. The disease is endemic in three countries of WHO’s South East Asia 

Region –Bangladesh, India and Nepal. Approximately 200 million people in the region are 

“at risk” from the disease. The disease is now being reported in 45 districts in Bangladesh, 52 

in India and 12 in Nepal (Fig. 1.2). The total number of districts reporting Kala-azar exceeds 

109. Of the estimated 500,000 people in the world infected each year, nearly 100,000 are 

estimated to occur in the region. In the endemic countries, kala-azar affects the poorest 

among the poor. The very poor have little knowledge about the disease and hence they are 

unlikely to seek early treatment, and most of those who start treatment cannot afford to 

complete it. The occurrence of the disease drags then further into the downward spiral of 

poverty from which they are unable to recover. Kala azar worsens the poverty amongst the 

people. It contributes to poor development of the area and stresses the overstretched health 

system. 

 

 

 

 

 

 

 

 

 

India

Nepal

Bangladesh
India

Nepal

Bangladesh

 

Fig.1.2. Kala-Azar endemic districts of SEA region, 1995-2005 

 Data source:  WHO/CSR/EDC-UNAIDS  
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The situation is worsening due to asymptomatic cases, PKDL, undernutrition and 

kala-azar/HIV co-infections (Fig. 1.3 A). However, the mortality is stable because of 

improved case management (Fig. 1.3 B) in the recent years due to availability of better 

diagnostic tools (rK39 kits) and oral drug miltefosine. India alone contributes more than 80% 

of the cases in the South East Asia (SEA) Region (Fig. 1.3 C). There are inadequacies in 

reporting since only government agencies are reporting the disease to the programme. The 

number of cases reported is increasing and this is probably a reflection of some improvement 

in the drugs and diagnostic services provided by the government. There is still a large gap 

between the reported cases and estimated cases.  

After recovery from VL nearly 10-20% of the patients develop chronic Post Kala-azar 

Dermal Leishmaniasis (PKDL) in India that requires long and expensive treatment. In the 

absence of any animal hosts PKDL patients are deemed singular source of L donovani in 

India [Thakur and Kumar, 1992].   PKDL is an unusual dermatosis that develops as a sequel of 

KA, producing gross cutaneous lesions in the form of hypopigmented macules, erythema and 

nodules. The disease is relatively common in the Indian subcontinent and in East Africa, but less 

frequent in the American and European continents [Ramesh and Mukherjee, 1995].  The 

number of reported cases of PKDL is not clear. India estimates the PKDL to be about 10-

20% while Nepal estimates it at 10%. There are difficulties in recognizing cases of PKDL. 
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Leishmania transmission 

Leishmania are transmitted between long-lived vertebrate hosts by short lived 

phlebotomine sand flies (Phlebotomus spp., Lutzomyia spp. and Psychodopygus spp.) and 

have a cycle of development in each host. In the sand fly the parasites are in the promastigote 

form (1.5-3m x 10-20 m) with an anterior flagellum and in the vertebrate host they reside 

intra- and extracellularly as oval, non-motile cells with only a very short flagellum and a 

maximum diameter of 2.5 x 6.8 m, which are called amastigotes. Multiplication of each 

form is by binary fission [Bryceson, 1996]. 
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Life cycle of the Leishmania parasite 

 Leishmania parasites are dimorphic and reside in two hosts, the sand-fly vector 

and the mamamalian host. A schematic diagram of Leishmania life cycle is shown in Fig. 

1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sand fly vector of genus Phlebotomus (old world) or Lutzomyia (new world) 

becomes infected when feeding on the blood of an infected individual or an animal reservoir 

(Fig 1.4). The Leishmania parasites live in the macrophages as round, non-motile 

amastigotes. The fly ingests the macrophages during the blood meal and the amastigotes are 

released into the stomach of insect [Killick-Kendrick, 1990]. Almost immediately the 

amastigotes transform into the motile, elongated, flagellate promastigote form. The 

       Fig. 1.4.  Schematic diagram of the Leishmania digenic life cycle.  
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promastigotes then migrate to the alimentary tract of the fly, where they live extracellularly 

and multiply by binary fission [Guevara et al., 2001]. Sand fly saliva selectively inhibits 

parasite killing by macrophages and nitric oxide production [Hall & Titus, 1995]. The major 

surface glycoconjugate lipophosphoglycan (LPG) constitutes a dense glycocalyx that covers 

the entire surface of the parasite including the flagellum. Immature organisms, termed 

procyclics, express shorter LPG molecules but mature metacyclics bear the capping at the 

terminal β- galactose residues with α-arabinose and elongation by increasing the numbers of 

repeating disachharides unit by two to three folds [Pimenta et al., 1991, 1994]. This mature 

metacylic form of the organism is released from the midgut and migrates to the proboscis. 

PpGalec, a tandem repeat galectin expressed in the midgut of the sandfly P. papatasi, is a 

LPG receptor, used by L. major for mediating specific binding to insect midgut via LPG. The 

presence of species specific receptor in the sandfly midgut demonstrates the feasibility of 

using midgut receptors for parasite ligands as target antigens for transmission – blocking 

vaccines [Kamhawi et al., 2004].  

When the sand fly next feeds on a mammalian host, it transfers the metacyclic 

Leishmania promastigotes to the host along with the saliva [Sacks, 2001]. The sand fly rips 

up the epidermis and eventually gains access to dermal capillaries. During this process, 

parasites are regurgitated into the bite wound. Under natural conditions, sand flies transmit 

very low numbers of promastigotes, which are able to induce the disease. Several changes, 

individually and collectively, allow the metacyclic promastigotes to withstand complement 

activation and to infect macrophages successfully. The lipophosphoglycan binds to serum-

mannan binding protein, which has a complement activating C1q domain [Green et al., 

1994]. This results in the lysis of procyclic but not metacyclic promastigotes. L. donovani 
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and L. major metacyclics are protected by a thick glycocalyx augmented by elongation of 

lipophosphoglycan through an increase in the number of phosphorylated disaccharide repeat 

units [Sacks et al., 1995]. Gp63, which is upregulated in metacyclic, also inhibits 

complement-mediated lysis and promotes parasite uptake by cleaving C3b to C3bi 

[Brittingham & Mosser, 1996]. Opsonisation of parasites with C3b and more particularly 

with C3bi, which bind to the macrophage receptors CR1 and CR3 respectively, provides the 

predominant means by which metacyclics bind to and access the host macrophages. Other 

receptors for uptake of promastigotes by macrophages that have been identified include 

mannose-fucose receptor, CR4, the fibronectin receptor, the receptor for advanced 

glycosylation end products, the Fc receptor and the C-reactive protein receptor [Alexander et 

al., 1999].  

Presence of multiple receptors allows the parasite an easy access into macrophages 

and langerhans cells where the parasites transform into amastigotes. Langerhans cells are 

thought to provide a safe haven for the parasite by their failure to produce inducible nitric-

oxide synthase. More significantly, although parasites fail to replicate in langerhans cells, 

they are not rapidly killed and might save the host cells from apoptosis [Moore & 

Matlashewski, 1994]. Once in the host, the promastigotes are taken up by the macrophages 

where they rapidly revert to the amastigotes form [Pulvertaft & Hoyle, 1960], survive and 

multiply within the phagolysosome of the macrophages, eventually leading to the lysis of the 

macrophages. The released amastigotes are taken up by additional macrophages and so the 

cycle continues. Infected macrophages either remain in the skin and cause cutaneous disease 

or disseminate throughout the reticuloendothelial system producing disseminated disease.  
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Occasionally, sandflies are not involved in transmission. VL can be directly initiated 

by amastigotes via blood (shared needles, transfusion, transplacental spread) or organ 

transplantation; cutaneous infection can develop after inadvertent needle stick if the needle or 

syringe contains infected material [Cruz et al., 2002; Basset et al., 2005]. Risk of acquiring 

infection is determined by local sandfly behaviour and by the presence of an infected animal 

or human reservoir. 

Leishmania genome organization 

 The Leishmania genome is a relatively small eukaryotic genome with an 

estimated size of 3.5X10
7
 bp. Old World Leishmania (L. donovani and L. major groups) 

have 36 chromosome pairs (0.28 to 2.8 Mb) [Wincker et al., 1996], whereas New World 

species have 34 or 35, with chromosomes 8+29 and 20+36 fused in the L. mexicana 

group and 20+34 in the L. braziliensis group [Britto et al., 1998] and possess repetitive 

telomeric sequences which do not condense during the mitotic cycle. Gene order and 

sequence are highly conserved among the ~30 Leishmania species [Ravel et al., 1999]. 

The Leishmania genome differs from the typical eukaryotic genome.  Variations in the 

relative sizes of homologous chromosomes have been reported in the Old World species 

of Leishmania [Britto et al., 1998]. The chromosomal organization of Leishmania is 

similar to many protozoan parasites; a compartmentalization into conserved core domains 

and polymorphic chromosome ends [Lanzer et al., 1995]. In terms of structure and 

maintenance of chromosomal termini, Leishmania conforms to those described in other 

eukaryotes. Telomerase activity, the activity of the ribonucleoprotein enzyme complex 

responsible for addition of deoxyribonucleotide triphosphate to the 3’ ends of 
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chromosomal strands, has been demonstrated in Leishmania with primer recognition and 

elongation properties similar to those of other eukaryotes [Cano et al., 1999].  

Leishmania were found to be more G/C rich (58%) than T. brucei (51%) or T. 

cruzi (44%) [Alonso et al., 1992]. Further, coding regions had a higher G/C content than 

non-coding regions (NCR) and 3' NCR were more G/C rich than 5' NCR. It was 

speculated that the high G/C content of Leishmania might be a reflection of the more 

primitive nature of these organisms. Moreover, Leishmania were found to share a similar 

base-utilization scheme at all three codon positions. Within a codon, there is a strong 

preference (about 85%) for G or C in the third, or 'wobble', position of Leishmania 

amino-acid codons, a slight A/T bias (about 55%) in codon position 2 and a G/C bias 

(about 60%) in codon position 1 [Alvarez et al., 1994]. 

The genome sequence of L. major released in July, 2005 were obtained by 

shotgun sequencing large-insert clones and purified chromosomal DNA [Ivens et al., 

2005]. A single contiguous sequence was generated for each of the 36 chromosomes 

although the “right” end of chromosome 8 lacks a small amount of sub-telomeric 

sequence and telomeric hexamer repeats. Although the genome is partially aneuploid 

[Sunkin et al., 2000] and there are three large scale allelic differences, there are very few 

(<0.1%) sequence polymorphisms.  

Analysis of the L. major sequence using several algorithms predicts 896 RNA 

genes, 71 pseudogenes, and 8370 protein coding genes, of which 3083 cluster into 662 

putative families of related genes. Most of the smaller (<10 members) gene families 

appear to have arisen from tandem gene duplication, whereas most members of larger 

(>10 members) families have multiple loci containing single genes and/or tandem arrays; 
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many of the latter contain Leishmania-specific genes. Out of ~8379 genes, 310 are 

experimentally characterized, the identity of 2610 genes is inferred from homology to 

other databases, 4674 genes code for conserved hypothetical proteins, 690 sequences are 

orphan meaning no predicted function can be attributed to them and 71 genes are termed 

as pseudogenes and have premature stop codons and/or frame shifts.  The L. infantum 

genome contains 8184 genes present on 36 chromosomes (last update March 2008) and 

L. braziliensis 8312 genes present on 35 chromosomes (last update Jan 2007). Full 

annotations of the genes of both species are under processing. The difference in 

chromosome number is due to the fusion of chromosomes 20 and 34 to make a single 

chromosome in Leishmania braziliensis. 

Comparison of the L. major, L. infantum and L. braziliensis genomes 

From an evolutionary perspective, phylogenetic analyses have suggested a 

neotropical origin for the Leishmania genus [Stevens et al., 2001] and, while there has 

been some controversy in this designation [Kerr, 2000], this has been largely resolved in 

a recent multifactorial genetic study [Lukes et al., 2007]. Irrespective of this debate, L. 

braziliensis is the most genetically and biologically divergent of the three sequenced 

species. Divergence between the Leishmania species complexes is estimated to have 

occurred 15–50 million years ago [Lukes et al., 2007], within the same range as two 

potential host species, mouse and human. Given this period of isolation, it was expected 

that there would be significant differences in both genome architecture and gene 

repertoire between L. braziliensis, L. infantum and L. major. Indeed, while the genomes 

have a similar DNA content of around 33 Mb, karyotypic differences had already been 

identified by linkage group analysis [Britto et al., 1998]: L. major and L. infantum, in 
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common with other Old World species, have a haploid content of 36 chromosomes, while 

the New World species have either 35 (L. braziliensis complex) or 34 (L. mexicana 

complex). These differences were shown to be due to fusion of pairs of chromosomes 

(chromosomes 20 +34 in L. braziliensis; chromosomes 8 +29 and 20 +36 in L. 

mexicana), with the former observation now confirmed in the sequencing project. 

Surprisingly, comparison of the respective orthologous chromosomes has revealed 

remarkable conservation of both gene content and gene order in all three genome species. 

Despite the differences in gene copy number within some of the major protein-coding 

families described above, not a single chromosomal re-arrangement has been identified 

between L. major and L. infantum across the whole genome, while L. braziliensis has 

only a few possible sequence re-arrangements [Peacock et al., 2007]. Equally surprising, 

from the total content of 8,300 genes in each species, only 200 can be identified as 

differentially distributed between the three genomes. The most divergent, L. braziliensis, 

possesses 47 genes that are absent from the other two species. In comparison, L. major 

has 27 species-specific genes while L. infantum has only five. A number of the other 

differentially distributed genes are found in two out of the three species. Some of these 

species-specific sequences have already been analysed at the molecular level. Examples 

include the L. major A2 gene that encodes an amastigote-specific repeat-containing 

protein previously characterized in L. donovani, the only Leishmania sequence to date 

that confers a change in virulence phenotype when introduced into L. major by genetic 

transfection [Zhang et al., 2003]; and the HASP and SHERP genes, expressed from a 

single locus (absent in L. braziliensis) in infective stages of L. major and L. infantum, 

with their protein products localizing to the plasma membrane and intracellular 
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membranes, respectively, in these species [Denny et al., 2000; Knuepfer et al., 2001]. In 

the Tritryp genome analyses, most genes specific to each of the representative species 

were found either at the ends of the DGCs or in the sub-telomeric regions of the 

chromosomes, regions that appear to be more tolerant to genome re-arrangement. 

However, comparison of the three Leishmania genomes has revealed that gene variation 

is not predominantly restricted to the sub-telomeric regions or even the SSRs but is 

evenly distributed across the genome [Peacock et al., 2007]. Leishmania is also 

distinctive from other eukaryotes in the apparent mechanism by which species-specific 

gene variation occurs. Whereas insertions/deletions and sequence re-arrangements play 

major roles in gene diversification in most other eukaryotes characterized to date, 

degeneration of existing genes (leading to probable loss of function) accounts for 80% of 

the species differences in Leishmania. These degenerate sequences have in-frame stop 

codons and frame shifts, generating truncated open reading frames that are presumably 

not translated. One example is the gene encoding cysteine peptidase Pfp1, which is 

present as an intact gene and translated in L. major [Eschenlauer et al., 2006]. However, 

there are five in-frame stop codons and a frame shift in the L. major orthologue, while the 

syntenic region in L. braziliensis is even more degenerate. Pfp1 like some of the other 

species-specific genes appears to be another candidate for lateral gene transfer from 

bacteria. Of the remaining species-specific sequences not caused by loss of function, 

many also fall into this category. One example is the cyclopropane fatty acyl synthase 

(CFAS) gene, present in L. major and L. braziliensis but absent from L. major. 

Acquisition of novel genes in this way may be a mechanism for environmental adaptation 

to promote survival; similar adaptations to stress or other stimuli may lead to the 
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redundancy of other sequences clearly identified as pseudogenes in the Leishmania 

genomes [Peacock et al., 2007]. In the case of CFAS, acquisition of this gene may have 

an impact on parasite survival in the host, since the CFAS orthologue in Mycobacterium 

tuberculosis is associated with increased virulence and persistence, functions that 

apparently require cyclopropanation of a mycolic acid substrate in the bacterial cell wall 

[Rao et al.,2005]. Despite its chromosomal plasticity [Martinez-Calvillo et al., 2005], the 

incredible conservation of synteny revealed by comparative genomic analyses of these 

three species suggests that the Leishmania genome is highly stable and has not undergone 

major genomic re-arrangements during speciation. One contributing factor to this 

stability could be a lack of mobile DNA elements, as originally demonstrated in the L. 

major genome and verified in L. major [Bringaud et al., 2006]. The comparative 

sequencing project has revealed some surprising observations, however, one of the most 

striking being the presence of transposable elements in L. braziliensis. 

In vitro differentiation of promastigotes-to-amastigotes 

To study these parasites, promastigotes and amastigotes have been cultured under 

different in vitro laboratory conditions and have been the subject of numerous biological 

and biochemical studies. Studies undertaken on in vitro cultured stages of Leishmania 

suggest that two environmental factors are sufficient to induce differentiation of 

promastigotes to amastigote-like forms (axenic amastigotes); a mild rise in temperature to 

33–37
o
C and decrease in pH to 5.5, conditions that mimic the environment in the 

macrophage phagolysosome [Dwyer et al., 2004]. However, not all species of 

Leishmania can be induced to differentiate with these stimuli, and other factors (such as 

opsonization with host serum components [Bee et al., 2001]) may be required for 
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differentiation in vivo. Very little is known about how these external signals are perceived 

by Leishmania, or how they are transmitted to down-stream targets responsible for 

differentiation. In fact, no signal transduction pathways have been fully elucidated in any 

of the trypanosomatid parasites. While it is possible that Leishmania differentiation is 

triggered by the activation of specific cell surface receptors/channels or kinases, analysis 

of the L. major genome have not revealed any candidate proteins (i.e.G-protein coupled 

receptors, receptor tyrosine kinases). Moreover, pharmacological agents that induce 

protein misfolding and/or the promastigote heat shock response can trigger promastigote-

amastigote differentiation in vitro, indicating that differentiation signals could originate 

in the cytosol [Wiesgigl and Clos, 2001; Barak et al.., 2005]. The next challenge is to 

identify how these stress responses are transmitted to other down-stream targets that 

regulate the biogenesis of different organelles and cellular metabolism. In other 

eukaryotes, the mitogen-activated protein (MAP) kinase pathway plays a key role in 

regulating cellular responses to various stresses and nutrient signals. Several of the L. 

mexicana MAP kinases have been shown to be important for parasite growth in rich 

medium (i.e. LmMPK4, LmMPK2) or lesion development in animal models (LmMPK1 

and LmMPK5) indicating critical roles in normal growth and stress responses [Weise, 

2007]. A surprising number of these kinases are also involved in modulating flagellum 

length (LmMPK9, LmMPK13, LmMPK3), which varies enormously in different 

promastigote stages and amastigote. Whether these kinases are directly regulating the 

intra-flagellum transport machinery or modulating other cellular processes that impact on 

flagellum length remains to be defined. A major challenge now is to define further up-

stream kinases and signals, as well as down-stream targets of these signalling cascades. 
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Increased protein turnover and degradation is likely to be a particularly important process 

in differentiation, given the dramatic remodelling of the endomembrane system and 

contraction in cell size that accompanies promastigote-amastigote differentiation. 

Belesterio et al. [2007] describe the major proteolytic systems in Leishmania, and 

highlight recent studies on the possible role of autophagy in parasite differentiation and 

nutrition. This group has recently shown that autophagy is markedly increased in 

stationary phase promastigotes and is required for metacyclogenesis (the transition to a 

mammalian-infective promastigote stage) and subsequent differentiation to amastigotes. 

It will be of interest to determine whether autophagy is also essential for ongoing survival 

of amastigotes in the macrophage, and the extent to which protein turnover via the 

proteosome and autophagy have overlapping or complementary roles in the amastigotes. 

Leishmania survival in macrophages 

Leishmania promastigotes preferentially utilize glucose as their primary carbon 

source and are thought to have acquired a number of enzymes involved in carbohydrate 

scavenging/metabolism to exploit the sugar-rich environment of the sandfly digestive 

tract [Opperdoes and Coombs, 2007]. By contrast, recent studies suggest that the 

Leishmania-occupied phagolysosome (PV) contains low levels of sugars and that 

amastigotes may dependent on amino acids as their major carbon source [Naderer et al., 

2006]. Consistent with this notion, the genomes of Leishmania spp. contain many amino 

acid permeases that would allow amastigotes to scavenge amino acids from the lumen of 

the PV in competition with the host PV transporters. Amino acid uptake is also required 

to satisfy the complex amino acid requirements of these parasites, which are auxotrophic 

for at least 10 amino acids [McConville et al., 2007]. Intracellular amastigotes can also 
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endocytose host proteins that are continuously delivered in the parasite-occupied 

phagolysosome. The degradation of host proteins in the amastigote lysosome would 

provide another source of amino acids and other essential metabolites (Fe, heme). Levels 

of lysosomal proteinases are increased in the amastigotes of many species, and L. 

mexicana mutants lacking some of the proteinases exhibit a severe loss of virulence 

[Besterio et al., 2007]. While both amino acid scavenging and lysosomal degradation 

pathways are likely to be important for parasite growth in macrophages, it is notable that 

amastigote growth can be stimulated by supplementation of the culture media of infected 

macrophages with essential free amino acids [Iniesta et al., 2005; Wanasen et al., 2007], 

indicating that some amino acids may still be limiting for intracellular growth. The up-

regulation of cysteine proteinase expression in amastigotes represents one of the few 

examples of stage-specific transcriptional regulation of metabolic enzymes in these 

parasites. Cohen-Freue et al. [2007] have reviewed recent genome-wide transcript 

profiling studies that reveal that the vast majority (>95%) of the genes in the L. major and 

L. mexicana genomes are constitutively expressed. Of the mRNAs that did change in a 

stage-specific manner, only a minority did so in both species, further emphasizing the 

lack of stage-specific changes in mRNA levels. These findings suggest that stage-specific 

differences in metabolism and ultrastructure are likely to be mediated by a combination 

of changes in protein translation, turnover and/ or post-translational modification. This is 

supported by proteomic analyses of promastigotes and amastigotes which have revealed 

significant changes in the levels of many proteins [Cohen-Freue et al., 2007]. However, 

analysis of the proteome has not revealed the concerted changes in metabolic pathways 

observed in many other prokaryotic and eukaryotic pathogens. It is possible that the 
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constitutive expression of enzymes involved in major pathways of central carbon 

metabolism confers a selective advantage, by allowing these parasites to exploit variable 

nutrient conditions in the sandfly or mammalian host. Interestingly, the constitutive 

expression of genes and proteins essential for pathogenicity has also been reported in 

another obligatory intracellular pathogen, Mycobacterium tuberculosis [Rengarajan et al., 

2005]. The absence of a conventional network of transcription factors in Leishmania and 

the constitutive expression of (most of) the parasite genome presents a particular 

challenge to scientists studying the control and regulation of metabolic pathways. It is 

possible that studies on metabolic regulation in Leishmania will reveal mechanisms that 

exist in other eukaryotes but have been largely overlooked because of overlying 

transcriptional/translational regulatory mechanisms. Alternatively, these organisms may 

have evolved new regulatory mechanisms. Regardless, exploration of metabolic 

regulation in Leishmania should provide interesting new information. 

Virulence factors in Leishmania  

A number of Leishmania antigens found to elicit antibodies often at high titers in 

kala-azar patients [Requena et al., 2000]. Fig. 1.5 summarizes few pathoantigenic 

determinants identified till now.  

 

 

 

 

 

 

 

Fig.1.5 

 Some Leishmania pathoantigenic 

determinants proposed to cause 

immunopathology manifested as the 

clinical symptoms in leishmaniasis. 

The molecules listed have been found 

to contain immunogenic B-cell 

epitopes. 
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These Leishmania antigens are identified by Western blot analysis and/or by 

immunoscreening of Leishmania expression libraries with patients' sera. Another striking 

feature of those listed in above figure is that they are all conserved structural or soluble 

cytoplasmic proteins, which are often complexed with other molecules to form 

subcellular particles. Although some of them, e.g. histones and heat shock proteins, are 

seemingly shared with those found in autoimmune diseases, they are not cross-reactive. 

Epitope-mapping reveals unique Leishmania sequences, which are recognized only by 

sera from patients with kala-azar [Requena et al., 2000]. One example worthy of mention 

is the unique 117 bp repeats in the Leishmania kinesin- like gene [Burns et al., 1993]. It 

is expressed by the amastigotes of visceralizing Leishmania, but not by cutaneous 

species. Some Leishmania-specific T-cell epitopes may also exist and cause additional 

immunopathology, although these epitopes have not been extensively studied in human 

leishmaniasis. Work in the direction of elucidating protective immunity has identified T- 

cell epitopes, which exist also in Leishmania cytoplasmic molecules [Probst et al., 2001]. 

Little is known about the protein components of the putative trans-spliceosome, although 

a number of small nuclear RNAs are known to participate in the process. Because cis-

splicing of introns in yeast and mammals and trans-splicing of the spliced leader in 

Leishmania and trypanosomes are mechanistically similar, however, it seems likely that 

similar proteins participate in these two processes. 

Another group of parasite molecules is hypothetically perceived as vaccine 

determinants. Their interactions with the host immune system lead to the elimination or 

reduction of parasites to affect a clinical cure. Differential expression of these 

determinants alone by parasites may alter their interactions with the hosts. Virulent 
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phenotype is consequently presented as a spectrum of manifestations from asymptomatic 

infection to fatality. A secondary level of regulation lies in host genetic and 

environmental factors. A hypothetical model to explain virulent phenotype in 

leishmaniasis in shown in Fig. 1.6 

 

 

 

 

 

 

 

Fig.1. 6 

A hypothetical model to explain 

virulent phenotype in leishmaniasis. 

The three groups of determinants are 

thought to interact with host immune 

system independently, but may 

progress sequentially to   produce the 

spectrum of sub clinical and clinical 

manifestations as the basis of virulent 

phenotypes seen. 
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The invasive/evasive determinants of Leishmania help to overcome the host 

immune and non-immune barriers to establish intracellular infection of macrophages. 

Infection must be maintained in order for the transition from asymptomatic phase to 

symptomatic phase, especially when host immunity becomes downregulated. The latter 

event alone produces no leishmaniasis without persistence of the infection. During the 

subsequent chronic course of infection, it appears that some intracellular amastigotes are 

killed or lysed inadvertently due, perhaps, to the incomplete protection by their 

invasive/evasive determinants. As a result of this, some cytoplasm molecules of 

amastigotes are exposed to the host immune system. The resulting immune response to 

these unique epitopes does not contribute to the anti-Leishmania immunity, but to the 

clinical symptoms observed in leishmaniasis. Thus, Leishmania determinants of infection 

and immunopathology are considered here as different, but sequentially necessary 

components for the expression of virulenceref. 

Regulation of virulence  

 Virulence (defined as the capacity of a pathogen to proliferate and induce 

disease) is illustrated by the severity of clinical manifestations, which vary from 

localized, self-healing cutaneous lesions to diffuse cutaneous diseases (e.g. disease 

caused by L. amazonensis, L. braziliensis, L. major, L. mexicana and L. tropica) and from 

asymptomatic infection to fatal visceral dissemination (e.g. disease caused by L. 

donovani and L. infantum).  Both host and parasite-specific factors contribute to 

virulence. A molecule is classed as a virulence factor if its absence results in an avirulent 

or attenuated phenotype and if its re-expression restores virulence [Turco et al., 2001]. In 

these aspects, Leishmania determinants are considered as the driving force of virulent 
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phenotype. Host and vector determinants are undoubtedly involved, but they play a 

secondary or passive role in natural conditions. 

Modulation of host macrophages by invading parasites  

Many studies have shown that Leishmania promastigotes can engage a variety of 

macrophage receptors and that the utilization of di .erent receptors can elicit different 

responses from the host cells. However, the physiological relevance of these interactions 

has recently been questioned with the finding that promastigotes may initially invade 

neutrophils (the first population of host cells to arrive at the site of infection) rather than 

macrophages [van Zandbergen et al., 2004]. Infected neutrophils subsequently undergo 

apoptosis and are then engulfed together with their parasite cargo by macrophages, where 

they transform into amastigotes and establish infection. While the extent to which 

promastigotes interact with and survive within neutrophils in vivo might be variable (and 

is still controversial [Lima et al.,1998]), it is clear that the interactions between 

amastigotes and macrophages are of paramount importance in establishing and 

maintaining infection in the animal host. As described by Kima [2007] it is clear that 

Leishmania amastigotes, like the promastigote stages, may engage a variety of different 

classes of macrophage phagocytosis receptors, including the Fc Receptor, the 

Complement Receptors, phosphatidylserine (receptor for apoptotic cells) and DC-SIGN 

(in the case of dendritic cells), as well as membrane domains not normally associated 

with phagocytosis (i.e.caveolae) [Kima, 2007]. The diversity of receptor combinations 

used by these parasites to invade macro- phages and dendritic cells may contribute to the 

remarkable capacity of most Leishmania species to invade a wide variety of animal hosts. 

While the mode of parasite internalisation may strongly influence initial macrophage 
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responses, there is growing evidence that Leishmania amastigotes actively modulate 

signaling pathways in the host cell once they are established in the phagolysosome. 

Notably, Leishmania invasion (by either promastigotes or amastigotes) results in the 

suppression of superoxide and nitric oxide production and inhibition of IL-12 secretion 

(required for a host protective TH 1 response). On the other hand, secretion of cytokines 

such as IL-10 and TGF-β is increased. While the degree to which host macrophages 

become activated may reflect the initial mode of entry, the long term anergy of infected 

macrophages indicates the active suppression of host signalling pathways by resident 

amastigotes. Much of the information on the interaction of the parasite and host 

macrophage derives from studies in mouse models of disease and an important challenge 

is to relate these findings to the situation in humans. As the contribution of host genetics 

to these processes is only now starting to be elucidated [Blackwell et al., 2004] the 

delineation of host-parasite interactions at this level is likely to be complex. The other 

challenge is to identify parasite molecules that might be involved in orchestrating 

macrophage functions. While there is evidence that components of the prominent 

promastigote surface glycocalyx suppress IL-12 secretion and superoxide production, 

many of these components are not expressed on amastigotes. Moreover, Leishmania 

mutants lacking the enzymes needed for their synthesis are still able to inhibit 

macrophage signalling and cytokine secretion. There is increasing evidence that some 

parasite proteins, including members of the cysteine proteinase B family of lysosomal 

proteins and EL-1 a are transported to the cytosol of the macrophage and interact directly 

with host signalling pathways [Kima, 2007]. It remains to be determined how transport of 

parasite proteins from the phagolysosome lumen to the host cytosol occurs. It is 
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conceivable that transport occurs directly across the phagolysosome membrane via 

endogenous (or parasite-encoded) transporters, or that some parasite proteins are 

transported from the phagolysosome to the endoplasmic reticulum via retrograde 

membrane transport pathways, and retro-translocated to the cytosol. Finally, while the 

focus of these studies has been on identifying processes that modulate host cell 

microbicidal processes, it is likely that Leishmania may also manipulate the metabolism 

of macrophages to facilitate access to nutrients. A number of recent studies have shown 

that alterations in the metabolic state of macrophages can influence the growth rate of 

intracellular amastigotes. For example, activation of infected macrophages with IL-4 (or 

in some cases with INF-γ can increase arginine and polyamine levels in the host cell and 

promote parasite growth, presumably reflecting the transport of low molecular weight 

nutrients from the host cytosol to the phagolysosome lumen [Iniesta et al.,2005; Wanasen 

et al.,2007]. As there are many precedents for other pathogens highjacking the signalling 

or metabolic machinery of their host cell, this promises to be a rich area of investigation 

for understanding the amastigote-macrophage biology, and an essential step toward the 

development of novel drugs and vaccines. 

 Host responses 

Leishmania are susceptible to complement-mediated lysis, and it is to the 

parasites’ advantage to enter the macrophage in an expedient manner. It is known that 

increased production of TGF-β and IL-10 are closely associated with disease 

susceptibility in humans and in animal models [Heinzel et al., 1991; Barral-Netto et al., 

1992; Ghalib et al., 1993; Reed & Scott, 1993]. Leishmania are obligate intracellular 

parasites of macrophages, and each of these above cytokines is associated with increasing 
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virulence of this and other pathogens. It is possible that induction of one or both of these 

molecules by vector saliva components could increase macrophage infection. Conversely, 

IL-12 and IFN-γ are cytokines associated with resistance to leishmaniasis [Scott 1991; 

Scharton-Kersten et al., 1995]. Kamhawi et al. [2000] demonstrated that the delayed-type 

hypersensitivity (DTH) response was induced in mice by prior exposure to sand fly bites. 

The DTH response was characterized by a massive cellular infiltrate; with T cells 

that produced IFN-γ, the effector cytokine most closely associated with limiting parasite 

replication in macrophage, and was correlated with reduced infections when the mice 

were subsequently bitten by infected sand flies [Behin et al., 1997]. At sites of infection, 

complex innate responses include multiple factors: cells (neutrophils, monocytes, natural 

killer cells, macrophages, dendritic cells); recognition receptor mechanisms eg, toll-like 

receptors [Brandonisio et al., 2004] and soluble products like complement, released 

cytokines including IL-1, IL-12, TNF [Sacks & Sher, 2002]. Three hypothesis have 

been proposed for explaining the Th1/Th2 imbalance in experimental leishmaniasis 

(Reiner & Locksley, 1995): (1) different peptides stimulate distinct groups of Th1 or Th2 

clones, (2) a particular pattern of cytokines and cofactors, produced by innate immune 

system accessory cells, would be the reason for the divergence, (3) under stimulation, T 

cells of different mice strains would have an innate tendency for the development of one 

of the two poles of the response (clones of T cells derived from C57BL/6 mice  for 

example, would take the Th1 direction while cells from BALB/c would go for the Th2 

pole).  

Leishmania infection in humans induces life long protection in a majority of 

individuals. Several studies have shown that the parasites persist at the lesion site 
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[Schubach et al., 1998; Engwerda et al., 2004; Mendonca et al., 2004] and that a 

generalized infection can recur in cases of immunosuppression [Desjeux, 1999]. The 

central memory and effector memory T-cell compartments are maintained in people 

living in endemic areas [DaCruz et al., 2002]; they are maintained by persistent parasites 

but might also be boosted by frequent re-infection if the individual remains in an endemic 

area, as might be the case for asymptomatic individuals living in such areas [Follador et 

al., 2002]. 

Gene expression analysis 

 Several techniques for the quantitative analysis of gene expression at mRNA level are 

available, such as Northern blotting, polymerase chain reaction after reverse transcription of 

RNA (RT-PCR), nuclease protection, cDNA sequencing, clone hybridization, differential 

display, subtractive hybridization, cDNA fingerprinting and serial analysis of gene 

expression (SAGE). However, these methods each have their limitations, which render them 

unsuitable if large number of expression products have to be studied at the same time. 

 The nature of an organism is defined by the genes that it expresses. Genome- and 

expressed-sequence-tag (EST) sequencing projects are underway for many of the major 

parasites of humans and animals. These provide essential datasets that delineate the genes 

present in an organism and, in the case of ESTs, some quantitative information on gene 

expression. The temporal and quantitative analysis of gene expression is essential to fully 

exploit these datasets and define the biology of the parasite at the molecular level. SAGE is a 

technique that allows the rapid, quantitative analysis of thousands of transcripts. It 

complements microarray analysis with the advantage that it is affordable for standard 

laboratories. It provides a platform to define complete metabolic pathways and has been 
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applied to study responses to drug treatment and the molecular events that are associated with 

arrested larval development [Knox & Skuce, 2005]. 

 Complex phenotypes are likely to be the summation of the effect of multiple genes. 

Screening techniques described earlier that have looked for such genes in the past have either 

measured small groups of genes a few at a time or measured differential RNA levels that 

were not reproducible. In recent times, substantial improvement in sensitivity and throughput 

of expression screening has been obtained by the introduction of DNA microarray 

technology. The study of gene expression by DNA microarray technology is based on 

hybridization of mRNA to a high-density array of immobilized target sequences, each 

corresponding to a specific gene. This technique has been successfully applied to a range of 

biological questions in pertaining to Leishmania biology including differentiation, drug 

resistance and PKDL biology [Goyal et al., 2006; Salotra et al., 2006; Saxena et al., 2003; 

Saxena et al., 2007; Srividya et al., 2007].  

 Differential gene expression in the procyclic and metacyclics promastigotes of L. 

major was compared and confirmed the stage-specific expression of several known 

genes, as well as identified a number of novel genes that were up-regulated in either 

procyclics or metacyclics [Saxena et al., 2003]. Expression profiling in parasite L. major 

has been carried out using random genomic DNA microarrays, to identify differentially 

expressed genes associated with the three major developmental stages of the protozoan, 

replicating promastigotes, infective non-replicating metacyclics, which occur in the sand 

fly vector, and in the amastigote stage residing within macrophage phagolysosomes in 

mammals [Akopyants et al., 2004]. Studies with cDNA microarray comparing stage-

regulated gene expression in L. major revealed ~35% genes upregulated in amastigotes 
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compared to ~12% in metacyclic promastigotes [Almeida et al.., 2004]. Leifso et al. 

[2007] used DNA oligo-nucleotide genome microarrays representing 8160 genes to 

analyze the mRNA expression profiles of L. major promastigotes and lesion derived 

amastigotes. Over 94% of the genes were expressed in both life stages and low degree of 

differential mRNA expression was observed: 1.4% genes in amastigotes and 1.5% in 

promastigotes. Genomic microarray technology was employed to identify genes that are 

expressed during early stages of L. donovani promastigote to amastigotes differentiation 

in in vitro systems [Srividya et al., 2007]. Approximately, 3.7% and 9.1% differentially 

expressed clones were identified at an intermediate stage of differentiation and terminally 

differentiated amastigotes respectively.  

In conclusion, the analysis of Leishmania promastigote and amastigote life stages 

by genome microarrays demonstrated that the vast majority of Leishmania mRNAs are 

constitutively expressed. Differentiation, virulence and pathogenesis may, therefore, not 

be dependent on the induction or regulation of gene or protein expression,. Rather, given 

the abundance of nutrients available to both the promastigote and the amastigote, 

Leishmania may be largely constitutively adapted for survival and replication in either 

the sand fly vector or macrophage host utilizing an appropriate set of genes/proteins for 

each vastly different environment. 

Treatment for VL  

Chemotherapy offers several advantages in the control of Leishmaniasis. 

Conventionally, long parenteral courses of pentavalent antimonials (SbV) drugs have been 

used for both visceral and cutaneous leishmaniasis. They include sodium stibogluconate 

(Pentostam) and meglumine antimoniate (Glucantime), the branded drugs which are quite 
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expensive, and the generic drug Sodium antimony gluconate (SAG) from Albert David Ltd, 

Kolkata, India. Both the branded and generic antimonial drugs were equally effective in a 

randomized trial under field conditions [Guerin et al., 2002]. The second line drugs 

Amphotericin B and the less frequently used pentamidine are quite toxic. The difficulties of 

treatment are exacerbated by the spread of resistance to antimony in India [Sundar et al., 

2000] and the intractability of the disease to all drugs in patients co-infected with HIV. In 

most endemic areas the use of some excellent treatments, notably liposomal Amphotericin B 

for VL, is limited by the cost [Sundar et al., 2001a]. 

 The problem of treatment failure for VL is exacerbated by geographical variations 

in antimonial treatment regimens, severity of disease, and sensitivity of Leishmania 

species. In North Bihar in India, there is clear evidence of acquired resistance of 

L.donovani for VL to antimonial drugs with up to 60% failure rate with treatment. 

Amphotericin B has been a standby treatment during this developing crisis; the drugs can 

be used in short course and gives >90% cure rate [Sundar et al., 2001b]. Pentamidine 

proved to be an unsatisfactory substitute for antimony in India. However, conventional 

amphotericin B is highly effective, albeit an arduous treatment because of infusions 

lengthy administration (20–30 days), and adverse reactions [Sundar et al., 2004]. Lipid 

formulations of amphotericin B, representing macrophage-targeted treatment, induce side 

effects much less frequently than the free drug and are very active in 5–10 day regimens. 

Indian kala azar is especially responsive to low total doses and even a single infusion of 

liposomal amphotericin B cures 90% or more of patients [Sundar et al., 2001]. 

Paromomycin, an aminoglycoside identical to aminosidine [Jha et al., 1998], has 

completed phase III testing in India and is being tested in East Africa. Once 
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commercially available, paramomycin’s anticipated high-level effcacy, minimum 

toxicity, and low cost for the 21-day course [Guerin et al., 2002]  should provide an 

injectable alternative to amphotericin B in India and a potential substitute for antimony 

worldwide. 

 However, it is the alkylphosphocholine Miltefosine, first developed as an anticancer 

drug that offers the most hope as an oral drug against KA. In a series of trials this drug 

achieved a 94% cure rate at doses of about 2.5 mg/kg (100 mg/day for four weeks) even 

among patients with antimony resistant disease [Jha et al., 1999]. Miltefosine was registered 

for treating VL in India in March 2002. Subsequent trials in children have yielded similar 

results. However, teratogenic potential of this drug requires that it should be used with 

caution in women of childbearing age. Another potential oral drug sitmaquine, lacked a 

linear correlation between dose and cure rate and had an unsatisfactory safety and efficacy 

profile [Davies et al., 2003]; a dose ranging study of sitamaquine for the VL treatment has 

shown good response [Jha et al., 2005]. HIV coinfections with L infantum have proved 

difficult to treat, with over 60% failure rate with most antileishmanial drugs used either alone 

or in combination. HAART (highly active antiretroviral therapy) has some effect on the 

relapse rate [de La Rosa et al., 2002]. 

 

VACCINATION AGAINST VISCERAL LEISHMANIASIS 

To date no vaccine is available despite substantial efforts by many laboratories. 

Advances in our understanding of Leishmania pathogenesis and generation of host 

protective immunity, together with the completed Leishmania genome sequence, open 

new avenues for vaccine research. The major challenges are the translation of data from 

animal models to human disease and the transition from the laboratory to the field.  
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The demands from a VL vaccine are more complex than for a CL vaccine and it is 

believed that human VL trials will follow any successful CL immunization programme. 

Whether the same vaccine will work against both forms of the disease remains to be seen. 

Similar to the situation in CL, protection against VL correlates with production of IFN-γ 

by Th1-type cells. However, co-existence of Th1 and Th2 responses has been reported in 

VL patients as well as experimental animals. In contrast to CL, Th2 responses do not 

hinder Th1 responses and early Th2 cytokines may in fact enhance IL-12 and IFN- γ 

production later on. Moreover, humoral immune responses seem to play a role in anti-VL 

immunity. It appears that a vaccine against VL may need to generate both cellular and 

humoral immune responses [Ravindran and Ali, 2004]. VL vaccination studies have been 

hampered by the lack of a suitable animal model of disease. The best animal models are 

the natural combination of dogs and L. infantum or L. chagasi [Hommel et al., 1995] and 

L. donovani in golden hamsters [Requena et al., 2000]. Several clinical symptoms and 

pathogenic features of infection in both models are similar to the human disease. The 

canine model is particularly useful in evaluating vaccine candidates since successful 

vaccination of dogs is thought, at least to some extent, to control the spread of disease to 

humans in endemic areas where the dog is the reservoir of infection [Tesh, 1991]. 

However, both models which use outbred animals also suffer from lack of immunological 

reagents and assays needed for the dissection of immune responses. The mouse model of 

VL has been the most widely used system. It has the advantage that there are many 

different knockout mice with specific lesions in the immune system and there are good 

immunological reagents. The Th1 and Th2 polarisation has not been observed for L. 
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donovani and often the mice have to be injected intravenously with large numbers of 

amastigotes in order to achieve visceral disease [Ravindran and Ali, 2004]. 

Single antigen vaccines 

The protective efficacy of several antigens delivered either as DNA vaccines or 

subunit vaccines has been tested in the canine model of visceral Leishmaniasis. Early 

studies showed that dp72 protected mice against L. donovani infection [Jaffe et al., 1990; 

Rachamim  and Jaffe, 1993]. Despite these early successes, there has been no progress on 

the use of this antigen for the development of vaccines. A handful of other recombinant 

proteins have been tested against visceral Leishmaniasis in murine models. The LACK 

DNA vaccine was tested in dogs and mice with variable outcomes [Melby et al., 2001]. 

The L. donovani amastigote LCR1 protein containing 67-amino acid repeats homologous 

to repeats in a Trypanosoma cruzi flagellar polypeptide, was administered as recombinant 

protein or expressed in BCG and tested for protection in mice. The recombinant protein 

induced partial protection against L. chagasi challenge [Wilson et al., 1995]. 

Immunisation with BCG-LCR1 elicited better protection than the protein alone, but 

protection depended on the site of immunisation, subcutaneous delivery being better than 

intra-peritoneal [Streit et al., 2000]. Immunisation with the A2 cysteine proteinase 

delivered as recombinant protein or as DNA offered protection against invasion of 

macrophages and disease progression [Ghosh et al., 2001a, b]. Recombinant hydrophilic 

acylated surface protein B1 (HASPB1), a member of a family of proteins expressed only 

in metacyclic and amastigote stages of development of several Leishmania species, was 

protective in the mouse model of VL and interestingly, protection did not require any 

adjuvants and seemed to be generated via mechanisms reminiscent of DNA vaccination 
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[Stager et al., 2000]. The PapLe22 antigen, a protein of unknown function, which 

localises to the promastigote nucleus is recognised by T cells from visceral Leishmaniasis 

patients [Suffia et al., 2000]. Although PapLe22DNA vaccination led to a marked 

decrease in parasite burden in immunised hamsters [Fragaki et al., 2001], it induced IL-

10 production in peripheral blood mononuclear cells from visceral Leishmaniasis patients 

indicating that in humans it might actually contribute to pathogenesis. Therefore, its use 

as a vaccine would need to consider the possibility that it may exacerbate disease. 

PapLe22 vaccine may be able to protect if the vaccine formulation would redirect T cell 

responses towards Th1 type responses. The Leishmania antigen ORFF, also a protein of 

unknown function [Ghosh et al., 1999], was able to induce protective immunity against 

L. donovani challenge when administered with CpGs oligonucleotides [Tewary et al., 

2004].  

Poly-protein vaccines  

Apart from defined single molecules, multicomponent vaccines have been 

demonstrated to afford protection against VL in experimental animals. Recombinant Q 

protein formed by fusion of antigenic determinants from four cytoplasmic proteins from 

L. infantum (Lip2a, Lip2b, P0 and histone H2A) co-administered with live BCG 

protected 90% of immunised dogs by enhancing parasite clearance [Molano et al., 2003]. 

 

DNA vaccines 

In 1995, DNA vaccination was proposed to be the way of the future [Waine and 

McManus, 1995]. DNA vaccines are relatively simple to produce and administer, they 

are often very immunogenic and offer a protein that is usually correctly folded and may 
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be post-translationally modified in a fashion similar to the native protein. Such vaccines 

are able to elicit humoral, CD4+ and CD8+ T cell immune responses, which can be 

further modulated by the addition of cytokines and/or CpG oligonucleotides [Alarcon et 

al., 1999]. They can also be modulated by prime-boost strategies that involve priming 

with DNA and boosting with protein [McShane, 2002]. Most nucleic acid vaccination 

efforts have been directed against viral infections, which require induction of CTL 

responses, a major feature of DNA vaccines. This method of immunisation is also 

attractive for Leishmaniasis since the induction of Th1 responses is also a general 

property of DNA vaccines [Gurunathan et al., 2000]. In addition, a growing body of 

evidence implicates CD8+ Tcells in anti-Leishmanial immunity [Rodrigues et al., 2003]. 

Most of the antigens described in the previous sections and delivered as recombinant 

proteins or expressed in live, microbial delivery systems have also been tested as DNA 

vaccines. The gene encoding gp63 was the first to be used as a DNA vaccine, and 

immunised mice developed strong Th1 responses as well as significant resistance to 

infection with L. major [Xu and Liew, 1994]. In another study, 30% protection was 

reported in immunised mice, with indications of strong Th1 responses being elicited by 

vaccination [Walker et al., 1998]. More recently, a comparative study evaluating 

Leishmania vaccines S97 different DNA vaccine candidates including gp63 showed that 

protection was transient, and eventually the immunised mice developed lesions similar to 

those observed in controls [Ahmed et al., 2004]. The same study also included PSA-2, 

which did not confer protection. This is in contrast with previous studies using PSA-2 

DNA immunisation as either prophylactic [Sjolander et al., 1998] or therapeutic vaccines 

[Handman et al., 2000], which showed protection associated with strong Th1 responses. 
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The difference in outcome between the two studies could be due to the use of susceptible 

BALB/c mice in the first, and resistant C3H/He mice in the second. Another comparative 

study demonstrated that gp63 DNA immunisation was able to reduce lesion size as well 

as parasite burden, while gp46/PSA-2 DNA vaccination led only to a reduction in lesion 

size without reduction of parasite burden [Dumonteil et al., 2003]. LACK is the most 

extensively studied DNA vaccine against both CL and VL. DNA vaccination with a 

plasmid harbouring the LACK gene with, or without co-administration of IL-12 induced 

robust, long-lasting protection against L. major challenge in mice, dependent on the 

immunoregulatory role of CD8+ T cells [Gurunathan et al., 2000]. In a heterologous 

challenge system, priming with L. infantum LACK followed by a booster with vaccinia 

virus expressing LACK afforded protection against L. major infection [Gonzalo et al., 

2002]. The protection was further enhanced by co-administration of plasmids expressing 

IL-12 and IL-18 cytokines [Tapia et al., 2003]. Since previous studies showed that 

LACK-induced immunity was dependent on CD8+Tcells, boosting with vaccinia virus 

probably enhanced this immunity by expanding the CD8+ T cells population [Zavala et 

al., 2001]. Boosting with recombinant Salmonella expressing LACK following a priming 

injection with DNA also conferred protection against infection and skewed responses 

towards Th1, thus enhancing the protection observed upon immunisation with DNA or 

Salmonella alone [Lange et al., 2004]. The prime-boost regimen was also employed to 

immunise dogs against VL and elicited protective responses in 60% of vaccinated 

animals [Ramiro et al., 2003]. Protective vaccination against L. major was also achieved 

following delivery of LACK in a minimalistic, immunogenically defined gene expression 

(MIDGE) vector [Lopez-Fuertes et al., 2002] with lower doses of plasmids required for 
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protection. The intranasal delivery of LACK DNA also protected mice against L. 

amazonensis challenge [Pinto et al., 2004]. These positive outcomes are overshadowed 

by several studies where immunisation with LACK offered no protection. These reports 

are mainly restricted to VL, but there are also reports in the L. major [Ahmed et al., 

2004] and L. mexicana models of disease [Dumonteil et al., 2003]. Melby and colleagues 

[2001] reported that despite triggering strong Th1 responses the LACK DNA vaccine did 

not induce protection in mice against L. donovani challenge. Moreover, the co-

administration of IL-12 did not improve the protective outcome. A recent study in the L. 

chagasi model, confirmed that LACK DNA vaccination does not confer protection 

against VL despite the presence of Th1 responses [Marques-da-Silva et al., 2005]. 

Several other antigens have been successfully tested as DNA vaccines against 

cutaneous or visceral infection. The former group include acidic ribosomal protein P0 

[Iborra et al., 2003], P4 nuclease [Campbell et al., 2003] and paraflagellar rod protein 2 

(PRP-2), whereas the latter contains ORFF [Sukumaran et al., 2003], kinetoplastid 

membrane protein-11 (KMP-11) [Basu et al., 2005], CPA and CPB [Rafati et al., 2005] 

and NH36, a main component of the fucose-mannose ligand [Aguilar-Be et al., 2005]. 

DNA vaccination against Leishmania is considered a promising technology, but no 

development of such a vaccine for use in humans has been reported so far. Conflicting 

reports as to the protective efficacy of the antigens delivered in this mode add to the 

confusion in the field. To complicate issues further, protective outcomes seem to be 

influenced by many factors including plasmid backbone, number of injections, challenge 

dose and virulence of the Leishmanial strain, developmental stage of the parasite 

(promastigote vs amastigote), experimental protocol employed, immunomodulators and 
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type of animal model. Therefore, it is not surprising that the initial enthusiasm has been 

tampered by the complexities and difficulties that have surfaced. 
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Introduction 

Leishmaniasis is widespread in 22 countries in the New World and in 66 nations 

in the Old World and afflicts the world's poorest populations. It is primarily found in 

tropical and sub-tropical regions including South-east Asia, East Africa, South America 

and Mediterranean region. Occurring in several forms, the disease is generally recognized 

for its cutaneous form which causes non-fatal, disfiguring lesions, although epidemics of 

the potentially fatal visceral form cause thousands of deaths.  

Visceral leishmaniasis (VL) or Kala-azar (KA) is caused by the protozoan 

parasites of the Leishmania donovani complex, comprising of L. d. donovani, L. d. 

infantum and L. d. chagasi.  More than 90% of the VL cases in the world are reported 

from Bangladesh, Brazil, India and Sudan [Desjeux, 2001]. In India, L. d. donovani is the 

primary causative agent of VL and states of Bihar, Eastern Uttar Pradesh and West 

Bengal are highly endemic foci of KA where periodic epidemics are common [Sundar 

and Rai, 2002]. 

 During their life cycle, the parasites undergo profound morphological changes. 

The life cycle of Leishmania includes two developmental stages: the extracellular 

promastigote form, transmitted to the mammalian host by the sand-fly vector, and the 

amastigote form, adapted to resist and replicate within the threatening environment of the 

phagolysosomes. This adaptation requires a dynamic process implicating morphological 

and physiological changes within the parasite [MacFarlane et al., 1990; Turco and Sacks, 

1991; Zilberstein and Shapira, 1994; Goyard et al., 2003] that are mainly orchestrated by 

the differential expression of a variety of genes.  

The process of promastigote-to-amastigote differentiation can be mimicked in axenic 

culture by shifting promastigotes from an insect-like (26
0
C, pH 7.4) to an intralysosomal-

like (37
0
C, pH 5.5 and 5% CO2) environment [Saar et al., 1998; Gupta et al., 2001; 

Somanna et al., 2002; Debrabant et al., 2004; Barak et al., 2005]. These axenic 

amastigotes resemble animal-derived amastigotes and have been widely used for 

investigating parasite activities without the complication of host cell material [Mengeling 

et al., 1997; Shaked-Mishan et al., 2001; Bente et al., 2003; Goyard et al., 2003]. This 

approach has been used previously to compare the different life cycle stages of L. major 

[Saxena et al., 2003; Akopyants et al., 2004; Almeida et al., 2004], L. donovani [Duncan 
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et al., 2004], L. infantum [McNicoll et al., 2006], and L. mexicana [Holzer et al., 2006]. 

Host-free cell differentiation systems allow one to examine the changes in gene 

expression during the transition from promastigotes to amastigotes, especially the 

intermediate stage of differentiation, which would be impossible to carry out using 

animal-derived parasites.  

A number of studies have been conducted searching for changes in gene expression 

amongst Leishmania stages, using methods such as differential or subtractive 

hybridization, AP-PCR, differential display, cDNA and genomic microarrays [Coulson 

and Smith, 1990; Charest and Matlashewski, 1994; Pogue et al., 1995; Heard et al., 1996; 

Liu et al., 2000; Wu et al., 2000; Almeida et al., 2002; Bellatin et al., 2002; Saxena et al., 

2003, 2007; Akopyants et al., 2004; Holzer et al., 2006; Leifso et al., 2007]. Microarray 

analysis holds the promise of tracking the expression pattern of a large collection of 

genes simultaneously. Expression patterns might change over time or in response to 

different environmental conditions, or with stages of internal physiological change, or 

between strains or cell types. This is a very sensitive technology to discover genes that 

may be expressed transiently at a critical point of differentiation.  

 Historically, cutaneous leishmaniasis has been the focus of vaccination attempts, 

probably because it has been known since antiquity that individuals who had healed their 

skin lesions were protected from further infections. Bedouin or some Kurdistani tribal 

societies traditionally exposed their babies’ bottoms to sand-fly bites in order to protect 

them from facial lesions. Another ancient technique practiced in the Middle East has been 

the use of a thorn to transfer infectious material from lesions to uninfected individuals. 

Current molecular techniques have led to the development of recombinant antigen 

vaccines, though they have not protected to the level of live attenuated parasites [Rivier 

et al., 1999].  Attenuated parasites, though effective, have been unacceptable for human 

use due to the absence of a defined genetic profile and danger of reversion [Handman, 

2001, Kedzierski et al., 2006].  The current techniques for discovery of new genes that 

determine parasite survival and the possibility of manipulation of the Leishmania genome 

reinforce the potential of a live attenuated parasite vaccine. 

The study aimed at identifying genes that may be expressed at various time points 

during differentiation of promastigotes into amastigotes. Whereas there are several 



                                                                                                                                                                               Synopsis                                                                                                                                                                                                                    

 

3 

studies on stage-specific expression of genes in promastigotes and terminally 

differentiated amastigotes [Coulson and Smith, 1990; Zhang and Matlashewski, 1997; 

Krobitsch et al., 1998; Boucher et al., 2002], the knowledge on genes that are expressed 

early during the differentiation is limited. Significant changes were observed in a few 

genes during early stages of differentiation [Duncan et al., 2001]. Hence, it is planned to 

find genes that may be expressed transiently during the intermediate stage of 

differentiation and might play a significant role in the differentiation process and disease 

pathogenesis. The transiently modulated genes may be undetected in studies with the two 

extreme life cycle stages. Genes showing differential expression early during the 

differentiation event will be identified using microarray technology. Selected gene(s) will 

be cloned and characterized to elucidate their role in Leishmania differentiation and 

hence, in disease pathogenesis. Such genes products that regulate differentiation into the 

intracellular amastigote form have great potential as targets to block the infection 

process.   

 

Specific objectives  

 

1. To set up cultures of L. donovani from Kala-azar patient samples 

 Leishmania have a tendency to spontaneously lose virulence during in vitro culture by 

processes not clearly understood. To ensure the representation of critical virulence genes, it 

was planned to use parasites isolated from Indian KA patients instead of standard WHO 

isolates that had been cultured in vitro for the past several years. Since it is difficult to obtain 

enough parasites from a clinical sample to perform biochemical and molecular analysis, it is 

necessary to culture the parasites for a few passages to obtain parasite material in sufficient 

quantity. Cultures of Indian isolates of L. donovani will be prepared from bone marrow 

aspirates of VL patients. The parasite isolates will be characterized using species specific 

PCR. 

 

2. To generate axenic amastigotes in culture 

 In vitro transformation of promastigotes into amastigotes will be done in order to 

obtain a continuous and developmentally staged parasite cultures. Homogeneous source of 



                                                                                                                                                                               Synopsis                                                                                                                                                                                                                    

 

4 

axenic amastigotes that are free from host contaminations will be obtained. Use of in vitro 

culture system will facilitate obtaining parasites at various stages during the differentiation 

process. 

 

3. Microarray hybridization to study the events of Leishmania differentiation    

Total RNA will be isolated from three biological preparations of developmentally 

staged cultures of L. donovani. Fluorescently labeled cDNA probes will be prepared from 

Promastigotes, an intermediate differentiation stage (PA24) and fully differentiated 

amastigotes that represent all the genes expressed in parasites at the particular life stage of 

interest. A cDNA probe from a reference sample labeled with one flourochrome (Cy3/Cy5) 

will be mixed with a probe from a differentiating sample labeled with a contrasting 

flourochrome (Cy5/Cy3) and hybridized to the genomic microarray.  Multiple microarray 

hybridizations using three different biological preparations as well as reverse labeling 

experiments will be carried out. Scanning the microarray with Axon 4100A scanner will 

measure the intensity of Cy3 and Cy5 signals at each spot and transfer the data directly to a 

computer for analysis.  For each spot on the array, the ratio of intensities of the two signals 

will identify clones specifically increased or decreased in expression in the test sample. 

Analysis of microarray data will be carried out using Acuity 3.1 software and MS-Excel and 

clones showing consistent higher expression will be selected. 

 

4. Characterization of identified clones.  

Selected clones showing significantly higher and consistent expression at a 

particular stage will be sequenced.  The sequences will be searched against Genbank to 

look for previous identification or homology to known proteins. 

 

5. Validation of microarray data 

Individual DNA clones selected by microarray experiments will be used as probes in 

Northern analysis with total RNA isolated from promastigotes, intermediate stage parasites 

and axenic amastigotes. Alternatively, RT-PCR of such clones will be carried out to validate 

the differential expression. Genes that are expressed at a higher level in any of the stages will 
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be selected for further analysis.  Molecular characterization of selected genes will be 

undertaken. 

 

6. Functional analysis of selected genes.   

Full-length genes with potential for functional analysis will be expressed as 

recombinant proteins and antibodies will be synthesized.  The differential expression of these 

genes will be verified at protein level. Transcript levels of these genes will be evaluated in 

human bone marrow samples. The gene (s) will be over expressed by transfection in parasites 

and genetically altered parasites will be assessed for growth and differentiation as evidence 

of the gene’s function. 

 

Results and Discussion 

Morphological changes during differentiation  

To study the structural and biochemical changes that are occurring during the 

process of differentiation, time course experiments comparing the promastigotes with an 

intermediate differentiation stage (PA24-promastigote-to-amastigote at 24hrs) were 

performed. Initially promastigotes were harvested at log phase (1.4 X 10
8
 cells and 8.4 X 

10
7 

cells), resuspended in amastigote medium and placed in an incubator at 37
0
C, and 5% 

CO2 for 24 hrs and 96 hrs respectively. At these times the differentiating parasites (PA24) 

and the axenic amastigotes were harvested.  

The extent of morphological change as evidence of differentiation was examined 

by light microscopy of stained cells from these samples. Promastigotes were 

distinguished by their elongated ellipsoidal shape, centrally located nuclei and prominent 

flagella. PA24 parasites were shorter and stouter than Pro with flagella present in few 

cells. Amastigotes were present in clusters and were round to ovoid in shape with no 

apparent flagella. Complete in vitro differentiation of Pro into Am was observed in 72-96 

hrs. To quantify the morphological change, a shape factor (width/ length) was calculated 

for 15 parasite images at each stage. 

With a shape factor of 0.897, the axenic amastigotes were about 3.3 times shorter 

than the promastigotes. Promastigotes at 0.274 were distinctively long and narrow. The 
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PA24 stage parasites had a mean shape factor of 0.517 and were 1.8 times shorter than 

promastigotes and 1.7 times longer than the amastigotes.         

 

Transcript profiling of L. donovani differentiation 

     Changes in mRNA abundance during differentiation of promastigotes into 

amastigotes were examined by genome-wide expression profiling using genomic DNA 

microarrays. To incur an estimate of accuracy and precision of the system, microarray 

hybridization was carried out comparing Cy3-labeled promastigote RNA to itself labeled 

with Cy5, which showed comparable intensities at both wavelengths (532 nm and 635 

nm) at all spots on the array indicating little or no dye bias (data not shown). Replicate 

experiments with three biological preparations were performed comparing PA24 or Am 

with promastigotes. 

To adjust for unequal fluorescence intensities of the two RNA samples and to 

allow comparison from experiment to experiment, the data was normalized using Acuity 

3.1 software. Normalization was carried out based on the premise that most genes on the 

array are not differentially expressed; therefore, the arithmetic mean of the ratios from 

every feature on the array is equal to 1.  To produce a continuous distribution of up and 

down regulated spots, the ratios were transformed to the log2 scale. Further normalization 

to account for the systematic dependence of ratio on intensity was performed by locally 

weighted linear regression (LOWESS).  

Analysis of microarray experiments revealed a number of DNA clones showing 

differential expression in PA24/Pro and Am/Pro Parasite stages. Of the 4224 genomic 

DNA clones, those showing  1.7 fold differential expressions in either of Leishmania 

life cycle stages were considered for further analysis. Initially when a cut off of  2.5 fold 

was used, 0.59% (25/4224) and 1.82% (77/4224) clones showed differential expression in 

PA24/Pro and Am/Pro microarrays respectively. However, by reducing the cut off value 

to  2 fold, there were 1.82% (77/4224) clones in PA24 vs. Pro and 5.04% (213/4224) 

clones in Am vs. Pro microarrays showing differential expression. Of these, the clones 

showing significant and consistently higher expression with ratio  1.7 in at least 8/9 

spots (SD < 1), Z ratio >1.9 and p value < 0.05 in three microarray hybridizations and 
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reproducibility in dye flip microarray experiments were chosen for further analysis. Z-

ratios are a direct measure of the likelihood that an observed change is an outlier in an 

otherwise normal distribution and are independent from their underlying intensity values. 

All the raw data have been submitted to ArrayExpress (accession no. E-MEXP-866). 

Fifty-seven clones ranking top in the fluorescence intensities with ratio  1.7 and 

reproducibility in replicate experiments were selected and sequenced for further analysis. 

Of the 57 clones, 30 were upregulated at the intermediate PA24 stage while 27 were 

found to be downregulated at the PA24 stage. The identities of these genomic clones 

were assigned by homology to regions in the ORF, 5’UTR (upto ~ 500 bp) or in 3’UTR 

(within 1.5kb) of known Leishmania genes. Among the 30 clones overexpressed at PA24 

stage, 16 clones showed further increase in their expression during the differentiation into 

Am. The expressions of 14 clones showed a transient increase at PA24 while their 

expression declined in Am though the expressions in Am stage remained significantly 

higher compared to Pro. Protein kinases and HSP10 were found to follow this pattern.  

 Among the 27 clones showing two-fold down regulation in PA24 stage compared 

to Pro stage, 10 clones were under-expressed at PA24 and Am stages. In 13 clones 

though the expression was low in PA24, their expression was regained as the parasite 

fully differentiated into Am. Of particular interest were 4 other clones which showed 

transient decrease at PA24 stage while their expression level increased by > 1.5 fold in 

Am in comparison to Pro. The identity of these clones revealed them to be surface 

molecules such as antigenic proteins and amino acid transporters.  

Analysis of the differentially expressed clones in PA24 vs. Pro and Am vs. Pro 

microarray revealed five different patterns of gene expression. The expression of 14 

clones increased transiently at PA24 stage when compared to Pro and Am. The clones 

that followed this expression pattern included PA phosphatase, two MAP kinases, two 

protein kinases, HSP10, tetratricopeptide repeat protein, ABC-1 transporter, 

phosphomannose mutase, two intergenic regions and three hypothetical proteins. Of the 

clones with increased expression at the PA24 stage, 5 maintained the same level of 

expression as they further differentiated to Am. Among these were HSP83 and a 

trypanosomatid specific protein of 27kDa (termed as P27) besides several hypothetical 

proteins. 11 clones showed continuous increase in their expression levels as the parasites 
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fully transformed into Am. The amastins, proteophosphoglycan, aldose-1 epimerase, 

calpain-like cysteine proteinase, serine carboxypeptidase, NAD/ FAD dependent 

dehydrogenase Spliced leader RNA, intergenic region and two hypothetical proteins were 

observed to follow this pattern. The expression pattern of 17 clones showing transient 

down regulation at PA24 stage. These were universal mini-circle binding protein, 

SnRNA, glutamate dehydrogenase, T-complex protein, regulatory subunit of protein 

kinase A like protein, amino acid transporter, Histone H2A, short-chain 3-hydroxyacyl 

coA dehydrogenase, splice leader associated RNA and few hypothetical proteins. Other 4 

clones in this category included surface molecules like PSA-2, surface antigen protein 2, 

amino acid permeases and a hypothetical protein were  under expressed at PA24 by -4 

fold were significantly overexpressed in Am compared to Pro. The fifth pattern of gene 

expression consisted of 10 clones showing down regulation at both PA24 and Am stages. 

Methyltransferase, eukaryotic initiation factor 3 subunit, kinesin, stomatin-like protein, 

V-type ATPase, 40s ribosomal S3a protein and 4 hypothetical proteins followed this 

expression pattern. The clones are grouped by gene ontology to facilitate interpretations 

about the correspondence between the pattern of gene expression changes with 

differentiation and the gene functions which follow that pattern. 

The 3’UTR of 14 amastigote upregulated genes were aligned with standard 450 

nucleotides sequence in GCG software, a multiple alignment program to check whether 

this regulatory sequence is present in the amastigote stage-specific expression. Except for 

29B8 (amastin specific) which showed 66% homology, the other amastigote upregulated 

gene sequences do not seem to contain this 450 nucleotides sequence 

The expression changes in representative clones from various categories were 

verified by RT-PCR and Northern hybridizations. The gene expression changes in 5 

clones representing different categories were validated by RT-PCR in three different 

patient isolates of L. donovani and 5 other clones were tested in Northerns in two patient 

isolates. The clones tested on northern blots were: 15B2, 36G8 and 46G8 (all of which 

are hypothetical proteins); 39B11 (Parasite Surface Antigen) and 28F12 (heat shock 

protein 10). The clones 29C8 (NAD/FAD dependent dehydrogenase), 40B11 

(Phosphomannomutase), 45E11, 46G8 (Hypothetical protein) and MAP kinase (28F11) 

were testedby RT-PCR. Northern blots and RT-PCR with different parasite lines gave 
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similar expression levels. Though the fold changes observed by Northerns and RT-PCR 

were different from those seen in microarray results, the expression patterns were found 

to be similar to microarray results.  

 

Characterization of a novel trypanosomatids gene P27 

The genomic clone 46G8 representing a transcribed sequence that exhibited 3.53 

( 0.40) fold higher expression at PA24 and 3.61 ( 0.26) fold higher expression at Am 

stage was selected for cloning of full-length gene. The nucleotide sequence of the clone 

46G8 was submitted to GenBank and granted the accession number ED004307. The 

clone sequence aligns with 3’UTR region of the gene LmjF28.0980. The nucleotide 

sequence of the 46G8 clone revealed it to be a part of 3’ UTR an ORF that coded for a 

protein of ~27kDa.   

 

Transcript demonstration in hamster derived amastigotes  

Our microarray study had been carried out with axenic amastigote cultures and we 

sought to check if P27 gene transcripts can be demonstrated in the hamster derived 

amastigotes as well. The expression of differentially expressed genes was validated using 

Relative Quantification study. The relative fold change in expression at different stages 

was determined with respect to promastigotes using either Leishmania specific α-tubulin 

or Leishmania specific GAPDH as internal controls.   

 Apart from axenic cultures, three folds higher expression was also observed in 

hamster spleen derived amastigotes confirming that this gene is transcribed in true 

amastigotes as well 

     

Transcript demonstration in human bone marrow samples 

We chose three genes (P27, amastigote specific gene A2 and a promastigotes 

upregulated gene V-type ATPase) to investigate the presence of transcripts in the cDNA 

samples of KA patients by semi-quantitative RT-PCR. Human HPRT gene was used for 

the normalization of bone marrow RNA. As an internal control, bone marrow cDNA was 

amplified with Leishmania specific α-tubulin primers in order to demonstrate the 
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presence of Leishmania RNA in the bone marrow RNA sample. We analyzed bone 

marrow samples from 4 KA positive patients and a KA negative sample.  

The trypanosomatid specific gene transcripts were present in all the 4 samples 

tested. However, the amastigote specific A2 gene transcript could be detected in 3 of the 

4 KA
+
 bone marrow samples tested. Another gene transcript V-type ATPase which was 

upregulated in the promastigote stage was not detectable in the infected patient’s sample. 

Quantitative analysis revealed that the gene expression was 4-39 folds higher compared 

to α-tubulin gene in human tissue samples which indicated that P27 gene is abundantly 

expressed in amastigotes in infected tissues of KA patients. The presence of P27 gene 

transcripts in KA patient’s bone marrow emphasizes the importance of this gene in 

disease pathogenesis. 

 

Cloning and Expression of P27 

The gene P27 identified for the first time is specific to the family 

Trypanosomatidae and coded for a protein whose function is undetermined. A search of 

GenBank database (NCBI) with BLAST revealed that the P27 gene was unique to 

trypanosomatids suggesting some specific role of this protein in trypanosomaids.  P27 

ORF from L. donovani genome was cloned in pCR
 

CT-TOPO expression vector and its 

nucleic acid sequence determined. The gene was found to be present in a single copy in 

Leishmania whereas T. brucei had two copies of the gene. The gene showed 100% 

homology to P27 from L. infantum (LinJ28.1020) and contained homologues in T. brucei. 

The P27 ORF was successfully expressed in a bacterial expression system confirming its 

coding capacity. The protein band of 27kDa could be readily detected on SDS-

polyacrylamide gels after purification with Nickel agarose. A sufficient quantity of the 

recombinant P27 was produced to inject into a rabbit for the production of antibodies to 

P27.  Subsequently polyclonal anti-sera to recombinant P27 were raised in rabbit for 

subsequent studies such as immuno-localization in Leishmania and detection of the gene 

product in different life cycle stages of Leishmania.  

 

Secondary structure prediction and localization of P27 

 The amino acid sequence of the protein was submitted to WoLF pSORT for 
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prediction of subcellular localization. The results of WoLF pSort analysis reveals the 

protein to be localized to mitochondria. Gavel: prediction of cleavage sites for 

mitochondrial presequence is predicted to be in the R-2 motif at position 90 GRY|VH. 

The amino acid sequence was also submitted to Predict Protein Web based server. The 

output of these predictions revealed the protein to be a part of inner mitochondrial 

membrane with a transmembrane helix in the center of the protein (residues 103-121). 

Prosite motif search of the protein revealed that it contains six protein kinase C 

phosphorylation site at amino acid 5, 12, 48, 120, 139 and 217, two casein kinase II 

phosphorylation sites at aa 88 and 170, two tyrosine kinase phosphorylation sites at aa 

151 and 198, one glycosaminoglycan attachment site at residue 236 and 4 N- 

myristoylation sites at aa 11, 39, 67 and 136. Disulfide analysis revealed the probability 

of cysteine linkages to be low and GLOBE predicted the protein to be compact as a 

globular protein.  Further the predictions from PHDhtm, revealed the presence of a 

transmembrane helix at the centre of the protein. These analyses predict the protein to be 

an intergrated protein of inner mitochondrial membrane which was also proven 

experimentally.  

 

Differential expression at various life cycle stages of Leishmania  

 The antibodies raised against recombinant P27 bind a single band of 

approximately 27kDa. The amastigote-specific pattern of expression, originally identified 

at RNA levels on the microarray, was observed to manifest at the level of protein as well. 

Western blot results showed that P27 protein expression starts immediately after the 

external stimulus for differentiation is provided and increases until full differentiation 

into amastigotes had taken place. The protein pattern of expression is very significant 

because the functional properties in living cells are determined by protein activity, thus 

P27 must perform a function particularly important in the amastigote stage.    

 

Immunogenic potential of recombinant P27  

Serum from 30 kala-azar patients and 20 control individuals were reacted against 

recombinant P27 protein. All kala-azar patients’ sera reacted with P27 protein indicating 

that the protein elicits an immune response in humans.  
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Cloning and characterization of PSA-2 

The genomic clone 42A11 representing a transcribed sequence that exhibited 4 ( 

0.54) fold lower expression at PA24 and 3.27 ( 0.07) fold higher expression at Am stage 

was selected for cloning of full-length gene. The nucleotide sequence of the clone 42A11 

was submitted to GenBank and granted the accession number ED004298. 

  

Validation of expression at protein level 

 Multiple transcripts of PSA-2 were found to be differentially expressed in our 

microarray experiments and expressions of two PSA-2 genes were validated by Northern 

blot or RT-PCR.  We tested the expression of PSA-2 protein at various life cycle stages 

of Leishmania on a western blot using anti PSA-2 antibodies. These antibodies were a 

kind gift from Dr. Handman and were raised against L. infantum native PSA-2 protein or 

monoclonal PSA-2 antibody raised against recombinant PSA-2 fusion protein. Polyclonal 

antibodies to native L. infantum PSA-2 detected the protein ~55kDa in all life cycle 

stages of L. donovani with uniform expression. However, PSA-2 ~46kDa was detected 

only in stationary promastigotes and terminally differentiated amastigotes when 

monoclonal anti-PSA-2 antibody was used suggesting this PSA-2 to have a role in 

parasite differentiation and virulence.  

 

Over-expression of PSA-2 in Leishmania 

 Towards understanding the role of this surface protein in parasite differentiation 

and virulence, PSA-2 was over-expressed in Leishmania donovani and its effect in 

parasite differentiation, virulence and resistance to complement mediated cell lysis was 

determined. The growth pattern of the promastigotes of LdPSA-2++ and LdpKS Neo 

were studied and compared with wild type L. donovani. The growth pattern of all the 

three strains was found to be comparable.  

 

In vitro differentiation into axenic amastigotes 

The ability of PSA2++ parasites to differentiate into axenic amastigotes in vitro 

was tested by growing the cells at different stages, i.e., promastigotes, PA24 and 

amastigotes and counting the number of cells with different morphologies at various time 
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points. At 24 hrs after the differentiation signals were provided, the number of PA24 

stage cells were higher in LdPSA-2++ as compared to wild type L. donovani or LdpKS 

Neo. The axenic amastigotes started to appear with 24hrs of the differentiation process in 

LdPSA-2++ which was not seen in wild type L. donovani or LdpKS Neo. This suggested 

that LdPSA-2++ cells were committed to amastigote stage within first 24 hrs of exposing 

them to amastigote culture conditions, indicating that the molecule plays a pivotal role in 

differentiation. 

 

Complement lysis assay 

Lysis by complement is one of the first immune mechanisms encountered by 

metacyclic promastigotes upon inoculation by fly bite into the vertebrate host. PSA has 

been shown earlier to mediate resistance to complement lysis. We had compared the wild 

type L. donovani, Ld pKS Neo and LdPSA-2++ to analyze if over-expressing PSA helps 

to increase the resistance to complement lysis. Our results showed that over-expression of 

PSA-2 results in 5 fold increase in resistance to complement mediated cell lysis as 

compared to wild type L. donovani, thus providing the direct evidence that PSA-2 is 

indeed responsible for increased resistance to complement mediated cell lysis. 

 

Immunofluroscence assay 

LdPSA-2++ cells were subjected to immunofluroscence assay using polyclonal 

anti-PSA-2 antisera. At PA24 stage, the LdPSA-2++ cells were larger in size than wild 

type L. donovani cells at the same stage suggesting some role of PSA-2 in cell 

differentiation. 

 

Summary 

In the present study, in vitro culture systems were set up for growing and 

differentiating L. donovani promastigotes into axenic amastigotes. Microarray 

experiments were carried out to study the pattern of gene expression during the 

differentiation process of L. donovani promastigotes to amastigotes. The gene expression 

in promastigotes was compared with an intermediate stage of differentiation (PA24) and 

terminally differentiated amastigotes (Am) using genomic microarrays. Fifty-seven 
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differentially expressed clones were selected for sequencing. Among the upregulated 

clones three patterns of expression were observed: those that were transiently upregulated 

at PA24 stage which included several protein kinases; those that showed higher 

expression at PA24 stage but their expression were maintained at the same level until full 

differentiation (HSP83, a trypanosomatid specific protein P27 and several hypothetical 

proteins) and those that showed continuous increase in expression levels as the parasites 

fully transformed into Am which included surface proteins like Amastins, PPG and 

several metabolic enzymes. Two patterns of gene expression were observed among the 

downregulated clones. First expression pattern consisted of 17 clones showing transient 

down regulation at PA24 stage. Of these, 4 clones which included surface molecules like 

PSA-2 and amino acid permeases, were underexpressed at PA24 by ~4 fold and were 

significantly overexpressed in Am compared to Pro. The second pattern of gene 

expression consisted of 10 clones showing down regulation at both PA24 and Am stages. 

The microarray results were confirmed by northern blot analysis and RT-PCR. 

Two clones that showed altered expression during the differentiation process were 

selected for further characterization. A trypanosomatid specific protein that showed 

overexpression soon after differentiation signals were provided was cloned for the production 

of recombinant protein. The nucleotide sequence analysis showed that the gene comprised of 

a 723bp ORF encoding a ~27kDa protein. The gene transcripts were demonstrated in human 

bone marrow tissue samples of kala-azar patients.  Quantitative real- time PCR experiments 

revealed that the gene was 2-3 fold upregulated in hamster-derived amastigotes and 4-39 

folds higher than Leishmania specific α-tubulin in human bone marrow tissue samples of 

kala-azar patients. The recombinant P27 was expressed in E. coli as a ~27kDa protein and 

polyclonal antiserum to this protein was raised in rabbit. Bioinformatic analysis revealed the 

protein to be a part of inner mitochondrial membrane. The expression of P27 was validated at 

protein level as well. Antibodies to r-P27 were detected in sera from kala-azar patients but 

absent in healthy controls suggesting that the protein elicits humoral immune response. 

  Another clone identified as PSA-2 that showed transient decrease in expression at 

an early stage of differentiation but was upregulated in terminally differentiated 

amastigotes was chosen for characterization. Western blot with antibodies against native 

L. infantum PSA-2 detected the protein at all life cycle stages of Leishmania whereas 
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monoclonal PSA-2 antibody raised against 46kDa PSA-2 fusion protein detected the 

protein in promastigotes and terminally differentiated amastigotes but not in the 

intermediate stages suggesting that PSA-2 indeed has a role in differentiation. The ORF 

region of PSA-2 was cloned in Leishmania expression vector and electroporated in L. 

donovani. Subjecting the mutant parasites to in vitro differentiation process revealed that 

the PSA-2 overexpressing parasites differentiate into axenic amastigotes sooner than the 

wild type parasites. Growth kinetics of the transfected parasites was studied and was 

found to be comparable to wild type L. donovani. The PSA-2 overexpressing cells 

showed a higher resistance to complement proteins when tested with graded 

concentrations of fresh human serum.   These results suggest that PSA-2 protein has a 

role in promastigote to amastigotes differentiation and may perhaps play a role in 

immune evasion of Leishmania parasite inside the mammalian host.  

The study establishes the increased expression of certain stage regulated genes 

that may be candidates for establishing infection and facilitating parasite survival inside 

the macrophages. Such differentially expressed genes hold the key to understanding of 

the parasite pathogenesis and may have a potential to be  vaccine candidates.  
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