
Methods for Efficient and Secure Service Availability
in Peer-to-Peer Overlay Networks

THESIS

Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

K HARI BABU

Under the Supervision of

Prof. Chittaranjan Hota

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE
PILANI (RAJASTHAN) INDIA

July 2012

http://www.bits-pilani.ac.in
http://www.bits-pilani.ac.in

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI, RAJASTHAN

CERTIFICATE

This is to certify that the thesis entitled "To Develop Algorithms for Efficient and Secure
End-to-End Service Availability in Peer-to-Peer Overlay Networks", submitted by K
Hari Babu ID.No 2006PHXF016P for the award of Ph.D. degree of the Institute, embodies
original work done by him under my supervision.

Signature of the supervisor : ___________________

Name : DR. CHITTARANJAN HOTA
Designation : Associate Professor & HoD,

Department of Computer Science
and Information Systems,
BITS Pilani, Hyderabad Campus
Hyderabad

Date : __________

tad-vak-visargo janatagha-viplavo
yasmin prati-slokam abaddhavaty api
namany anantasya yaso ankitani yat
srnavanti gayanti grnanti sadhavah

Srimad Bhagavatham (1.5.11)

Those teachings aimed at glorifying the Supreme Lord have the potency to
bring revolution in the impious lives. Those who are thoroughly honest, hear,

sing and deeply accept them into their lives.

Dedicated To

one who is thoroughly honest in hearing, singing and
accepting the teachings of Srimad Bhagavatham

Acknowledgements

I would like to express my gratitude to several personalities for their constant

guidance, help, support and well-wishes.

I acknowledge with great pleasure, my deep sense of gratitude to my supervi-

sor Dr. Chittaranjan Hota for his constant encouragement, valuable guidance,

and inspiring suggestions throughout the course of this work. At several times,

research went into despair state. At that time, having a few minutes talk with

him kindles the hope and lets the work keep rolling. He gave the direction,

and clues that made me go deeper into the work. He never let me stagnate but

kept me on the move.

I would like to thank my DAC members, Prof. Sundar Shan Balasubramaniam

and Prof. Shanta Pendkar for reviewing my proposal and for their valuable

inputs throughout the thesis work. I feel indebted to colleagues Prof. Rahul

Banerjee and Murali for sharing their views on some of my work and encour-

aging me. I would like to thank Prof. R K Mittal, Prof. Siva Subramaniam

and Prof. B R Natarajan for their constant encouragement and help. I would

like to thank Prof. N N Sharma, Prof. Navneet Goyal, Prof. A K Giri, Prof.

Raghunathan, and Prof. B K Rout for encouraging me to complete my thesis.

I would like to thank my students Dayakar, Saravana, Dushyanth, Arindam,

Bhavik, Anilkumar and Sirish for their sincere project work. I would like

to thank Ganeshan Subramanyam, and Amit Raj Narayan for spending time

in discussing and suggestions. I would like to thank Prof. Sasu Tarkoma

and John Douceur for their valuable comments on some of the work. I thank

all the anonymous reviewers who spent their valuable time to read in detail

and suggested several ways of improvement. I thank Abhishek Varshney for

helping me in converting word documents into Latex.

Thanks are due to Prof. B N Jain, Vice-chancellor and Prof. G. Raghurama,

Director for the constant support and concern. I would like to gratefully ac-

knowledge Prof. Ashish Kumar Das, Dean, RCD and many other adminis-

trators for providing us with suitable working atmosphere. I thank all my

colleagues in our department and those known to me in other departments

for their well wishes.

Words fail to express my gratitude to my parents Sri K Pradadesi and Srimati

K Syamala for their love, care and patience. Without their love and support i

would not have got any education. I thank my sisters Saritha and Jayanthi for

their affection.

I deeply thank those who dedicated their lives to Srimad Bhagavatham, the

oasis in this deserted age.

Abstract

Peer-to-peer overlay traffic forms a major part of the Internet traffic. Peer-to-

peer overlays have prominent applications in file-sharing, communication, and

content distribution. Peer-to-peer paradigm is largely applied in file-sharing

over internet. More than 54 peta bytes of data is being shared on these net-

works. Due to their decentralised nature, and large size, searching for a file

is an important service. Efficiency of search service affects the overall per-

formance of the overlay. User directly perceives the effectiveness of search.

In this work, approaches for improving efficiency and quality of search are

developed and evaluated. Another important consideration for decentralised

networks is security. In a peer-to-peer overlay, the end systems act as routers.

Traffic passes through end-systems. Also end systems contribute to the stor-

age, and computational resources of the network. In this work, we address

an important problem known as Sybil attack which can exploit the routing

service and resources shared by other honest participants for selfish purposes.

Two basic approaches to search in peer-to-peer overlays are flooding and ran-

domwalk. Flooding has the advantage of quick response and enormous traf-

fic and randomwalk has the advantage of negligible traffic and very delayed

response. The in-between approach consists of intelligent selection of neigh-

bours to forward the queries. A content-oriented metric is proposed which

proved to have edge over the other metrics. Other metrics are built upon

the observations over a period of time. This alone is insufficient to guide the

queries. Therefore the proposed approach considers what type of content the

neighbours are sharing and how popular it is and compares this with what

type of content query is looking for and how popular is the content. This in-

formation is subjective and is modelled using Fuzzy Sets. Queries are guided

by the probabilities obtained from fuzzy sets. The proposed approach has got

39% improvement on search efficiency index.

Search without indexing is not imaginable. Floating Indexes technique is pro-

posed to improve search in peer-to-peer networks. This technique doesn’t need

any extra messages but utilise the query traffic to disseminate and maintain

the indexes. This technique has increased the search efficiency metric to 154.

When this technique is combined with fuzzy based neighbour selection, the

metric has increased to 174. The methods of propagating are thoroughly anal-

ysed and concluded that ’breadth-wise dissemination of indexes using ran-

domwalk’ approach most utilizes the query traffic to disseminate the indexes.

It is further observed that although search algorithm finds an object in the

system, it doesn’t have the capability to take user expectations in guiding the

search. Since, in most cases, a user searches for a file with a purpose of retriev-

ing it, i.e., either through downloading, or streaming etc, search and retrieval

are linked together. Users do have variety of expectations. To increase user

satisfaction, a QoS-constrained search is developed. This model takes user ex-

pectations into account and transforms them into QoS constraints. Search is

performed for the file in such a way that QoS constraints are best matched. A

cost metric is designed to guide the user in selecting the most suiting result

of the query. Simulations have shown that this algorithm performs according

to user expectations without increasing load on network. This search algo-

rithm involves finding a feasible path with multiple constraints. It is compared

with SAMCRA and found to be giving exactly the same results for 84% of the

queries.

A challenge-response model solution to Sybil attack is developed. It works on

challenging the storage constraint of the Sybil nodes. It has the advantage that

it doesn’t require simultaneous challenges to be issued to all Sybil identities

at the same time. Simulations have shown that when 40% of the nodes in the

network are Sybils, this approach can detect upto 60% of Sybil identities.

A solution based on Psychometric tests is proposed for detecting Sybil attacks.

It works on finding the personality characteristics of the people behind the vir-

tual identities. Metrics, tests and clustering methods are developed to identify

the Sybil groups. Through experiments it has been shown that 75% of the Sybil

groups or 69% Sybil identities are detected. It is also shown that the method

has the capability to cluster Sybil identities of the same group together so that

they all can be issued a challenge simultaneously.

Table of Contents

List of Figures viii

List of Tables ix

List of Abbreviations/Symbols ix

1 Introduction 1

1.1 Defining Peer-to-Peer Computing . 3

1.2 Peer-to-Peer and Grid Computing . 4

1.3 Definition of Peer-to-Peer Overlay Networks 5

1.4 Characteristics of Peer-to-Peer Overlay Networks 6

1.5 Applications of Peer-to-Peer Overlay Networks 7

1.5.1 Distributed computing . 7

1.5.2 Internet Services . 7

1.5.3 Distributed Databases . 8

1.5.4 Communication and Collaboration 8

1.5.5 Content Streaming and Multi-casting 8

1.5.6 Content Publishing and Storage . 9

1.5.7 File Sharing . 9

1.6 Classification of P2P Overlays by Degree of Centralization 12

1.6.1 Purely Decentralized Architectures 12

1.6.2 Partially Decentralized Architectures 12

1.6.3 Hybrid Decentralized Architectures 13

1.7 Classification of P2P Overlays by Network Structure 13

vii

TABLE OF CONTENTS

1.7.1 Unstructured Networks . 15

1.7.2 Structured Networks . 15

1.7.3 Loosely Structured Networks . 16

1.8 Search in Peer-to-Peer Overlays . 16

1.8.1 Design Characteristics of a Search Mechanism 17

1.8.1.1 Decentralization . 17

1.8.1.2 Efficiency . 17

1.8.1.3 Scalability . 17

1.8.1.4 High Quality Results . 17

1.8.1.5 Fault-resilience . 18

1.8.2 Search Performance Metrics . 18

1.8.2.1 Efficiency . 18

1.8.2.2 Quality of Service (QoS) . 18

1.8.2.3 Robustness . 18

1.8.3 Components in a Distributed Search Mechanism 19

1.9 Peer-to-Peer Overlay Networks: Examples 20

1.9.1 Freenet . 20

1.9.2 Gnutella . 22

1.9.2.1 Gnutella Topology Characteristics 23

1.9.2.2 Power-law Graph Characteristics 27

1.9.3 Kazaa and Gnutella 0.6 . 29

1.9.4 Chord . 30

1.10 Security in Peer-to-Peer Overlays . 31

1.10.1 Sample Attacks and Threats . 31

1.10.2 Peer-to-Peer Overlay Layer Attacks 33

1.10.2.1 Attacks on Message Routing 33

1.10.2.2 Sybil Attacks . 33

1.10.2.3 Eclipse Attacks . 34

1.11 Scope of the Thesis . 34

viii

TABLE OF CONTENTS

2 Problem Definition and Known Approaches 36

2.1 Search in File-sharing Overlays . 37

2.1.1 Search Problem . 37

2.1.2 Factors Affecting Search Performance 38

2.2 Approaches to Improve Search . 39

2.2.1 Adapting Topology . 43

2.2.2 Replicating Objects . 43

2.2.3 Modifying Routing . 44

2.2.3.1 Neighbour Selection . 44

2.2.3.2 Adaptive TTL Selection . 45

2.2.3.3 Routing using Indexes . 45

2.2.4 Search Issues Addressed in this Thesis 46

2.3 Study of Sybil Attack in File-sharing Overlays 47

2.3.1 Defining Sybil Attack . 47

2.3.2 Observed Instances of the Sybil Attack 48

2.3.3 Sybil Attack Vs Collusion . 48

2.3.4 Characteristics of Sybil Attacks . 49

2.4 Approaches to Limit Sybil Attacks . 50

2.4.1 Challenge-Response . 50

2.4.2 Binding Identity to Network Metrics 52

2.4.3 Central Authority Certified Node Identities 53

2.4.4 Based on Social Network Characteristics 53

2.4.5 Based on Sybil Behavioral Aspects . 54

2.4.6 Incentives . 55

2.4.7 Sybil Issues Addressed in this Thesis 55

3 Algorithms to Improve Search Efficiency 56

3.1 Search Efficiency . 56

3.2 Improving Efficiency by Fuzzy Probabilities 60

3.2.1 Fuzzy Scheme for Choosing Neighbour-subset 61

3.2.1.1 Neighbour Content Classification 62

ix

TABLE OF CONTENTS

3.2.1.2 Fuzzification . 63

3.2.1.3 Output Fuzzy Set . 66

3.2.1.4 Knowledge Base . 67

3.2.1.5 Rule Implication . 68

3.2.1.6 Defuzzification . 70

3.2.2 Search Algorithm . 72

3.2.3 Experiment Setup . 74

3.2.3.1 Simulator Model . 74

3.2.3.2 Simulation Setup . 75

3.2.4 Result Analysis . 76

3.2.4.1 Query Efficiency . 78

3.2.4.2 Search Responsiveness . 79

3.2.4.3 Search Efficiency . 81

3.2.4.4 Load Distribution on Neighbours 81

3.2.4.5 Hybrid Approach . 83

3.2.5 Conclusion . 86

3.3 Improving Efficiency by Indexing . 88

3.3.1 Indexing in Peer-to-Peer Search . 89

3.3.2 Proposed Indexing Scheme . 90

3.3.2.1 Index Creation . 91

3.3.2.2 Index Dissemination . 93

3.3.2.3 Search Procedure . 97

3.3.3 Experiment Setup . 98

3.3.4 Result Analysis . 101

3.3.4.1 Flooding . 102

3.3.4.2 Random-walk . 103

3.3.4.3 Floating Indexes Breadth-wise through Random-walk (FI-

BRW) . 103

3.3.4.4 Floating Indexes Depth-wise through Random-walk (FIDRW)105

3.3.4.5 Floating Indexes Breadth-wise through Fuzzy-walker (FIB-

Fuzzy) . 105

x

TABLE OF CONTENTS

3.3.4.6 Attenuated BloomFilters(ABF) 107

3.3.4.7 Floating Indexes Breadth-wise through Flooding (FIBFL) . 107

3.3.4.8 Results Summary . 108

3.3.4.9 Effect of Index Dissemination on Message Traffic & Path-

lengths . 110

3.3.4.10 Utilization of Query Traffic for Index Dissemination 112

3.3.4.11 Adapting to Churn . 116

3.3.5 Conclusion . 116

3.4 Conclusion . 118

4 Quality of Service (QoS) in Content Search 119

4.1 Quality of Service (QoS) . 119

4.1.1 QoS in Internet . 119

4.1.2 QoS in Peer-to-Peer Search . 120

4.1.2.1 Network Characteristics of Peers 123

4.1.3 Summary . 125

4.2 Proposed Solution . 126

4.2.1 QoS Parameters . 126

4.2.2 QoS Path Selection in the Overlay . 128

4.2.3 Object Search cum QoS Path-Selection Algorithms 132

4.2.3.1 System Model . 132

4.2.3.2 Requester Node . 133

4.2.3.3 Forwarding Node . 134

4.2.3.4 Query Hit Node . 138

4.2.3.5 Intermediate Node . 138

4.2.3.6 Complexity Analysis . 138

4.2.4 Weight Calculation . 140

4.2.5 Measuring QoS Metrics . 142

4.2.5.1 Overlay-Link Bandwidth . 142

4.2.5.2 Overlay-Link Latency Measurement 143

4.2.5.3 Object Location Probability 145

xi

TABLE OF CONTENTS

4.2.6 Link-cost Functions . 146

4.2.6.1 Weighted Average . 146

4.2.6.2 Compromise Programming 147

4.2.6.3 TOPSIS . 147

4.3 Experimental Analysis . 148

4.3.1 Simulation Setup . 148

4.3.1.1 Building Topology . 149

4.3.1.2 Assigning Link-level Parameters 150

4.3.1.3 Object Replication . 150

4.3.1.4 Query Generation . 152

4.3.2 Result Analysis . 152

4.3.2.1 Comparing Results with SAMCRA 161

4.4 Conclusion . 164

5 Mechanisms for Detecting Sybils 166

5.1 Introduction . 166

5.2 Related Work . 166

5.2.1 Admission Control . 166

5.2.2 Detection . 167

5.2.3 Limiting Damage . 167

5.3 Storage Constrained Challenge-Response Model 168

5.3.1 System Model . 168

5.3.1.1 Threat Model . 169

5.3.2 Proposed Solution . 170

5.3.2.1 Storage Constraint . 170

5.3.2.2 Algorithms for Detecting Sybil Identities 171

5.3.3 Attack Strategies of an Adversary . 174

5.3.4 Experimental Setup . 176

5.3.5 Results Analysis . 177

5.3.5.1 Sybil Detection Pattern . 178

5.3.5.2 Sybil Detection Vs Replica Losses 179

xii

TABLE OF CONTENTS

5.3.5.3 Effect of Number Replicas on Sybil Detection 179

5.3.5.4 Effect of Waiting Time on Sybil Detection 180

5.3.6 Conclusion . 182

5.4 Detecting Sybils using Psychometric Tests . 182

5.4.1 Background . 183

5.4.1.1 Detecting Sybil Groups vs Detecting Sybil Identities 183

5.4.1.2 Psychometric Tests . 184

5.4.1.3 Luscher Short Color Test . 185

5.4.2 System Model . 187

5.4.2.1 Threat Model . 187

5.4.3 Proposed Solution . 188

5.4.3.1 Outline . 188

5.4.3.2 Protocol . 188

5.4.3.3 Questionnaire Preparation 189

5.4.3.4 Questionnaire Evaluation . 191

5.4.3.5 Cluster Validation . 193

5.4.3.6 Limitations . 194

5.4.4 Attack Strategies of an Adversary . 194

5.4.5 Experiment Setup . 195

5.4.6 Results Analysis . 197

5.4.6.1 Effectiveness in Detecting Sybil Groups 198

5.4.6.2 Luscher Color Test Vs MBTI Test 202

5.4.6.3 Quality of Clusters (Sybil Groups) Detected 204

5.4.6.4 Detecting Sybil Groups Vs Detecting Sybil Identities 204

5.4.6.5 Barren Clusters . 206

5.4.7 Conclusion . 206

5.5 Conclusion . 207

6 Conclusion 208

6.1 Conclusions . 208

6.2 Summary of Contributions . 210

xiii

TABLE OF CONTENTS

6.3 Future Research . 211

A Simulator Source 212

A.1 Simulator Main . 212

A.2 Node . 217

A.3 Utility Functions . 225

A.4 SybilNode Implementation . 233

B Psychometric Tests 238

B.1 MBTI Questionnaire . 238

B.2 Clustering Algorithm Implementation . 243

B.3 Similarity Measures at Different Cluster Configurations 246

References 251

Publications 268

Biographies 270

xiv

List of Figures

1.1 Distribution of protocol traffic in 2008/2009 2

1.2 Peer-to-peer overlay . 5

1.3 Purely Decentralized P2P overlay . 12

1.4 Partailly Decentralized P2P overlay . 13

1.5 Hybrid Decentralized P2P overlay . 14

1.6 P2P Overlay classification by Overlay Structure 14

1.7 Components of decentralized search mechanism 19

1.8 Stack used by a Freenet node . 21

1.9 Search in Gnutella . 23

1.10 Usage of TTL and loop-free condition in Gnutella 24

1.11 Gnutella topology graph captured in 2000 25

1.12 Pathlength and clustering coefficient at different degrees of random con-

nectivity . 26

1.13 Pathlength distribution in Gnutella during March 2001 27

1.14 Node degree distribution of Gnutella during March 2001 28

1.15 Node degree distribution of Gnutella during 2005 28

1.16 Search in super-peer networks . 29

1.17 Lookup procedure in Chord overlay . 30

1.18 Sybil entities and identities in a peer-to-peer network 34

2.1 File sharing in a P2P overlay . 37

2.2 Flooding in P2P overlay with TTL=3 . 41

2.3 Randomwalk in P2P overlay . 42

xv

LIST OF FIGURES

2.4 2-Randomwalk in P2P overlay . 42

3.1 Duplicate queries reaching nodes D and E 58

3.2 Membership function for number of files (no f) 64

3.3 Membership function for percentage of popularity sub-category files (po f) 65

3.4 Membership function for of finding the probability of the same content in

neighbours (ngprob) . 67

3.5 Membership function for fuzzy output variable (probability) 67

3.6 Mamdani implication rule applied to Rule 1 70

3.7 Mamdani implication rule applied to Rule 1 and Rule 19 70

3.8 Aggregated fuzzy outputs of all rules . 72

3.9 Procedure: ProcessSearchQuery() . 73

3.10 Procedure: UpdateProbabilityTable() . 74

3.11 Simulator Model . 75

3.12 Percentages of duplicate messages of neighbour subset selection approaches 78

3.13 Average query efficiencies of neighbour subset selection approaches 79

3.14 Average hops between the requesting node and the hit node in neighbour

subset selection approaches . 80

3.15 Search responsiveness of neighbour subset selection approaches 81

3.16 Search efficiencies of neighbour subset selection approaches 82

3.17 CDF of messages per node for top three neighbour subset selection ap-

proaches . 82

3.18 Average query efficiencies of the hybrid approach 86

3.19 Search responsiveness of the hybrid approach 86

3.20 Search efficiencies of the hybrid approach . 87

3.21 CDF of messages per node for the hybrid approach 87

3.22 A simplified system model of unstructured peer-to-peer network 94

3.23 Floating indexes Breadth-wise (FIB) scheme 96

3.24 Floating indexes Depth-wise (FID) scheme 96

3.25 Search procedure at source node: Search(Keywords W) 98

3.26 Query processing at a node: ReceiveQuery(Query q, Node sender) 99

xvi

LIST OF FIGURES

3.27 Procedure for loading index onto a query: loadIndex(Query q, IndexCache I) . 100

3.28 Procedure for copying indexes from query to node: updateIndexinNode(Query

q, IndexCache I) . 100

3.29 Summary statistics of index dissemination methods 108

3.30 Search efficiency metric comparison of Floating Indexes scheme with other

methods . 109

3.31 Search efficiency metric comparison among floating indexes schemes with

varied number of walkers . 110

3.32 Message generation CDF for Floating Indexes and other methods 111

3.33 Pathlength CDF for Floating Indexes and other basic methods 112

3.34 Pathlength CDF for different Floating Indexes schemes and Attenuated

Bloom Filters . 113

3.35 Spread of foreign indexes across nodes . 114

3.36 Percentage of network spread of indexes . 115

3.37 Percentage of cache operations for various schemes 115

3.38 Percentage of average foreign indexes at the local node 116

3.39 Effect of churn on Floating Indexes: message generation 117

3.40 Effect of churn on Floating Indexes: pathlengths 117

4.1 Internet applications classified by traffic . 120

4.2 Forwarding in peer-to-peer overlay . 121

4.3 Bandwidth and latency requirements for different classes of applications . 122

4.4 Heterogeneous nature of bandwidth capacities in Napster 124

4.5 Bandwidth distributions of nodes in Gnutella 124

4.6 Latency distribution in Gnutella Source . 125

4.7 Latency and bandwidth distribution in Gnutella 125

4.8 System model for QoS-constrained search . 132

4.9 Requester node initializing query upon users search request 134

4.10 Procedure for processing QueryHit messages 135

4.11 Procedure for processing queued Query messages 135

4.12 Procedure for processing Query message . 136

xvii

LIST OF FIGURES

4.13 Effect of looping guard-condition on QoS path selection 137

4.14 Attenuated Bloomfilter FAB at node A for neighbour B 145

4.15 Node-degree distribution in the simulation topology 149

4.16 Bandwidth distribution of the overlay links in the simulation 150

4.17 Latency characteristics of the overlay links in the simulation 151

4.18 Object replica distribution in the simulation 151

4.19 Comparison of bottleneck bandwidths of QoS-constrained search with Flood-

ing, and Randomwalk . 153

4.20 Comparison of pathlengths of QoS-constrained search with Flooding, and

Randomwalk . 153

4.21 Comparison of accumulated delays of QoS-constrained search with Flood-

ing, and Randomwalk . 154

4.22 Comparison of bottleneck bandwidths by cost function 155

4.23 Comparison of pathlengths by cost function 155

4.24 Comparison of accumulated delay by cost function 156

4.25 Preset-wise comparison of bottleneck bandwidths 157

4.26 Preset-wise comparison of pathelngths . 158

4.27 Preset-wise comparison of accumulated delays 158

4.28 Bottleneck bandwidth comparison for least-cost path and other paths . . . 159

4.29 Accumulated delay comparison for least-cost path and other paths 160

4.30 Pathlength comparison for least-cost path and other paths 161

4.31 Comparison of delays obtained by SAMCRA and QoS algorithm with cost

function TOPSIS . 162

4.32 Difference of delays obtained by SAMCRA and QoS algorithm with cost

function TOPSIS . 163

4.33 Comparison of pathlengths obtained by SAMCRA and by QoS algorithm . 163

4.34 Comparison of bandwidths obtained by SAMCRA and by QoS algorithm . 164

5.1 System model for storage-constrained challenge-response Sybil detection . 170

5.2 Procedure for replicating a file f by file owner 171

5.3 Procedure for verification of a replica of file f by file owner 172

xviii

LIST OF FIGURES

5.4 Procedure for making a verification message by file owner 173

5.5 Procedure for verifying a reply sent from a replica owner by file owner . . 173

5.6 Chord network topology setup for simulation 177

5.7 Sybil detection pattern at the different % of Sybil identities in the network 178

5.8 Effect of % of Sybils on detection algorithm 179

5.9 Reduction of replica losses by detecting Sybil identities 180

5.10 Effect of number of files replicated in the network 181

5.11 The effect of verification reply timeout on Sybil detection 181

5.12 Sybil groups and Sybil identities . 184

5.13 Colors in Luscher Short Color Test . 185

5.14 Sybil detection architecture . 187

5.15 Survey participation statistics . 196

5.16 Sybil Groups in the mapped network . 197

5.17 Standard deviation of responses per individual 198

5.18 Values of Rand Statistic for Kendall’s τ . 199

5.19 Values of Jaccard Statistic for Kendall’s τ . 199

5.20 Values of Fowlkes & Mallow’s index for Kendall’s τ 200

5.21 Percent of Sybil (Weak and Strong) groups detected when running cluster-

ing algorithm for different metrics . 202

5.22 Percent of false positives when clustering algorithm is run for different

metrics . 203

5.23 Percent of Sybil identities (weak and strong) when clustering algorithm is

run for different metrics . 203

5.24 Spread of Sybil groups across clusters . 204

5.25 Percent of Identities detected in the detected Sybil groups 205

5.26 Depiction of the gain in % of Sybil identities detected through detecting

Sybil groups . 205

5.27 Cluster statistics for different metrics . 206

B.1 Values of Rand Statistic for Spearman’s ρ . 246

B.2 Values of Jaccard Statistic for Spearman’s ρ 247

xix

LIST OF FIGURES

B.3 Values of Fowlkes & Mallow’s index for Spearman’s ρ 247

B.4 Values of Rand Statistic for Pearson coefficient 248

B.5 Values of Jaccard Statistic for Pearson coefficient 248

B.6 Values of Fowlkes & Mallow’s index for Pearson coefficient 249

B.7 Values of Rand Statistic for Cosine similarity coefficient 249

B.8 Values of Jaccard Statistic for Cosine similarity coefficient 250

B.9 Values of Fowlkes & Mallow’s index for Cosine similarity coefficient 250

xx

List of Tables

1.1 P2P Traffic . 2

1.2 Traditional Overlays . 6

1.3 Peer-to-Peer Applications . 10

1.4 Commercial P2P overlays . 11

1.5 P2P Overlays by Structure and by Decentralization 16

1.6 Message types in Gnutella 0.4 protocol . 24

1.7 Network topology graph characteristics . 25

1.8 Search performance comparison of some overlays 32

3.1 Criteria for selecting a subset of neighbours 61

3.2 Content types and proportion percentage . 63

3.3 Example: Files shared by a peer . 63

3.4 Fuzzy rules . 68

3.5 Mamdani implication rule applied to all rules 71

3.6 Aggregated fuzzy outputs . 71

3.7 Search performance metrics computed for various approaches 77

3.8 Search performance metrics computed for hybrid approach 85

3.9 Classification of peer-to-peer indexing schemes 89

3.10 Search performance metrics computed for Flooding 102

3.11 Search performance metrics computed for Randomwalk 103

3.12 Search performance metrics computed for Floating Indexes with Breadth-

wise spread (FIB) . 104

xxi

LIST OF TABLES

3.13 Search performance metrics computed for floating indexes depth-wise (FID)

with randomwalkers . 105

3.14 Search performance metrics computed for Floating Indexes with Breadth-

wise spread (FIB) using fuzzy walkers . 106

3.15 Search performance metrics computed for attenuated bloom filters (ABFL3) 107

3.16 Search performance metrics computed for floating indexes breadth-wise

(FIB) with flooding . 107

4.1 File extensions in Gnutella . 127

4.2 File types searched for in Gnutella . 127

4.3 Mapping service requirements to QoS parameters (B:Bandwidth, L:Latency,

F:Object Location Probability) . 128

4.4 Saaty’s nine-point scale for relative importance. 140

4.5 A sample of relative importance to QoS-parameters for fast-downloads . . 141

4.6 A sample of relative importance to QoS-parameters for streaming multime-

dia preset . 141

4.7 A sample of relative importance to QoS-parameters for quick-find search

preset . 141

4.8 Bandwidth ranges and normalized values . 144

4.9 Latency ranges and normalized values . 144

4.10 Object location probability ranges and normalized values 146

4.11 Simulation parameters and their values . 149

5.1 Sybil solutions and their methods . 167

5.2 Number of Sybil nodes removed with different compositions of Sybil iden-

tities . 177

5.3 Colours and their psychological significance 186

5.4 Sample questions for testing introvert quality 190

5.5 Some questions for testing intuition quality 190

5.6 Some questions for testing feeling quality . 190

5.7 Some questions for testing perceiving quality 191

xxii

LIST OF TABLES

5.8 Values of Epsilon and minPoints for DBSCAN algorithm at the best cluster

formation stage i.e. at the maximum Rand Statistic value 200

5.9 Values of Epsilon and minPoints for DBSCAN algorithm at the best cluster

formation stage i.e. at the maximum Jaccard Coefficient 201

5.10 Values of Epsilon and minPoints for DBSCAN algorithm at the best cluster

formation stage i.e. at the maximum Fowlkes & Mallows Index 201

xxiii

LIST OF TABLES

List of Abbreviations/Symbols

Term Definition
P2P Peer-to-Peer

TCP Tranmission Control protocol

IP Internet Protocol

RFC Request For Comments

SMTP Simple Mail Transfer Protocol

NNTP Network News Transfer Protocol

MBone Multicast Backbone

SETI Search for Extraterrestrial Intelligence

CAN Content Addressable Network

DHT Distributed Hash Tables

SHA Secure Hash Algorithm

TTL Time to live

GUID Globally Unique Id

APS Adaptive Probabilistic Search

RTT Round-trip Time

NAT Network Address Translation

SE Search Efficiency

GT-ITM Georgia Tech Internetwork Topology Model

f pp false positive probability

FI Floating Indexes

FIB Floating Indexes Breadth-wise

FID Floating Indexes Depth-wise

QIR Query Index Record

NIR Node Index Record

ABF Attenuated Bloom Filters

IETF Internet Engineering Task Force

QoS Quality of Service

RSVP Resource Reservation Setup Protocol

MCOP Multi-constrained Optimal Path

MCDM Multi-criterion Decision Making

SAMCRA Self-Adaptive Multiple Constraints Routing Algorithm

MBTI Myers-Briggs Type Indicator

d Average node degree

h Number of hops

xxiv

Chapter 1

Introduction

The peer-to-peer (P2P) paradigm started becoming popular in the middle of 2000 among

the music lovers. Since then, due to its inherent positive characteristics, the term ’P2P’

has become very popular amongst Internet users, researchers and industries. The emer-

gence of P2P file sharing networks has increased the interest amongst Internet users to

use the Internet beyond web browsing and exchanging e-mails. There is large number

of applications such as Napster [nap 1999], Gnutella[gnu 2000], Kazaa [kaz 2001], eDon-

key [edo 2000] developed for deploying P2P technologies in the Internet. There is an

exponential increase in number of users taking interest in these applications. Researchers

across the world have taken great interest in P2P networks and contributed to their via-

bility in several aspects. Researchers have contributed large number of models based on

P2P overlay networks, suiting to different requirements such as data sharing, distributed

file systems, anonymity, media streaming etc. Due to their ease of deployment and scal-

ability, industries have formed the consortium named "P2P-Next Generation" [p2p 2008]

to support research to effectively use the P2P technology for mass media distribution.

P2P traffic occupies a major chunk of the Internet traffic [Saroiu et al. 2002a]. Table 1.1

shows the huge increase in traffic generated by peer-to-peer protocols [cac 2005]. Figure

1.1 shows the dominent proportion of traffic by peer-to-peer protocols in all regions of

the world [ipo 2010]. The kind of impact they generate on the whole Internet motivates

researchers to study and improve the scalability and performance of these networks.

1

Table 1.1: P2P Traffic - Percent of Internet traffic occupied by P2P Protocols

Year Web Traffic FTP Traffic P2P Traffic
1999 65% 10% -
2005 24% 2% 72%

Figure 1.1: Distribution of protocol traffic in 2008/2009 - source:[ipo 2010]

2

1.1 Defining Peer-to-Peer Computing

1.1 Defining Peer-to-Peer Computing

Peer-to-peer is a very broad term that can accommodate any two systems communicating

at the same level. In particular, this is true for any two systems communicating on the

Internet at TCP layer and IP layer. A broader definition that is widely accepted is "peer-to-

peer is a class of applications that take advantage of resources-storage, cycles, content, human

presence-available at the edges of the internet" [Oram 2001]. This definition includes not

only fully decentralized peer-to-peer systems but also Napster [nap 1999], SETI@home

[set 1999], instant messaging systems yahoo, gTalk, MSN, AOL which are supported by

central servers for their operation but appear to be using resources on end systems just

like peer-to-peer applications. This definition also includes applications from the field of

Grid computing which are to provide support for sharing resources on systems situated

geographically apart.

[Androutsellis-theotokis & Spinellis 2004] gives a stricter definition of peer-to-peer

computing. In this definition, two characteristics were identified that define peer-to-peer

computing. The first characteristic is that nodes in the peer-to-peer network share the

resources by direct exchange without the mediation of a centralized server. Since the

nodes in the peer-to-peer network need to communicate with each other without a cen-

tral coordinating server, the nodes themselves have to actively participate in carrying out

the tasks that enable communications in the network. That means the nodes have to get

involved in routing messages and information, executing network maintenance routines

such as to update the routing state, searching for content on behalf of others, replicating

objects as per network policies, etc. This characteristic of peer-to-peer networks doesn’t

match with Napster which uses a centralized server to index clients and their data. The

peers are sharing resources but they don’t get involved in managing the network. In Nap-

ster[nap 1999], there is no network formation from the view of a peer. Each client views

only a central server. The second characteristic is that nodes in a peer-to-peer network are

capable of dealing with instability and variable connectivity as the norm and they auto-

matically adapt to highly transient population and failures in the network. That means

the network topology is dynamically changed by participating nodes so as to maintain

connectivity and performance. This leads to the definition: "Peer-to-peer systems are dis-

3

1.2 Peer-to-Peer and Grid Computing

tributed systems consisting of interconnected nodes able to self-organize into network topologies

with the purpose of sharing resources such as content, CPU cycles, storage and bandwidth, capable

of adapting to failures and accommodating transient populations of nodes while maintaining ac-

ceptable connectivity and performance, without requiring the intermediation or support of a global

centralized server or authority" [Androutsellis-theotokis & Spinellis 2004]. This definition

includes the super-peer based peer-to-peer architectures where some high capacity peers

are dynamically chosen to act as a super-peer. Super peers are not the same as central-

ized servers, for they are peers of the network dynamically chosen and they leave at any

time. This doesn’t limit the scalability of super-peer network as in the case of centralized

servers. Some peer-to-peer systems do use central servers for tasks such as authentication,

and boot-strapping but such servers don’t get involved in the network operations.

RFC 5694 [Camarillo & IAB 2009] gives an official definition of a peer-to-peer sys-

tem: A system is to be considered P2P if the elements that form the system share their

resources in order to provide the service the system has been designed to provide. The

elements in the system both provide services to other elements and request services from

other elements. This definition highlights the two characteristics i.e. (i) peers must share

their resources for the purpose of network services and (ii) peers must be both service

requesters and service providers.

1.2 Peer-to-Peer and Grid Computing

Grid computing is emerging out of the scientific and academic area in to the commer-

cial world. Current grid computing systems use client-server architecture for distributed

computing. The Grid computing is defined by [Foster et al. 2001] as "Grids are distributed

systems that enable the large-scale coordinated use and sharing of geographically dis-

tributed resources, based on persistent, standards based service infrastructures, often

with a high-performance orientation". Grid computing, like peer-to-peer computing, is

also about sharing resources. But the sharing that grid computing is concerned with is

not primarily file exchange, but rather direct access to computers, software, data and

other resources. Resources in the grid can be high performance supercomputers, massive

storage space, sensors, satellites, software applications, and data belonging to different

4

1.3 Definition of Peer-to-Peer Overlay Networks

institutions. The grid provides the infrastructure that enables institutions like commercial

companies, universities, government institutions, and laboratories to form virtual organ-

isations that share resources and collaborate for the sake of solving common problems

[Foster & Kesselman 2004]. The kind of issues addressed by grid computing includes

authentication, authorization, resource discovery and resource access etc. The initial peer-

to-peer applications targeted file sharing without any access control.

As the systems size grows, grid computing faces the problem of scalability due to its

centralized-server approach. Here is the opportunity to apply the techniques of peer-to-

peer networks [Marzolla et al. 2007] to improve upon scalability.

1.3 Definition of Peer-to-Peer Overlay Networks

An overlay network is a logical (virtual) network at the application layer providing con-

nectivity, routing and messaging amongst the addressable end points [Buford et al. 2009].

It has its own own topology different from the underlying physical network. Overlay net-

works have their way of routing messages with the help of the Internet. Overlay networks

are frequently used as a substrate for deploying new network services, or for providing a

routing topology not available from the underlying physical network as shown in figure

1.2.

Many peer-to-peer systems are overlay networks that run on top of the Internet. Even

before peer-to-peer overlay networks have evolved, overlay networks existed on the In-

ternet for various services. Some of the traditional Internet overlays are listed in Table

1.2 which interconnect infrastructure servers. Here the address space is not virtualized,

and churn (joining and leaving of nodes) is not a major design concern. On the other

hand, peer-to-peer overlays interconnect end systems (peers), use virtual address space

and churn is a major design issue in them.

1.4 Characteristics of Peer-to-Peer Overlay Networks

Peer-to-peer overlay networks have several characteristics that make them very interesting

and applicable for practical purposes:

5

1.4 Characteristics of Peer-to-Peer Overlay Networks

Figure 1.2: Peer-to-peer overlay - logical network built on top of Internet

Table 1.2: Traditional Overlays - overlays that existed prior to P2P in the Internet

Service Example Since
Email SMTP 1970s
Internet news NNTP 1986
Multicast MBone 1992
Web caching Internet cache protocol 1995
Content delivery network Akamai 1999

6

1.4 Characteristics of Peer-to-Peer Overlay Networks

Resource sharing: Each peer contributes system resources to the operation of the

peer-to-peer overlay. The resources are CPU cycles, memory, storage, content etc.

Networked: All nodes are interconnected with other nodes in the peer-to-peer overlay

i.e., any node is reachable from any other node. The nodes form a connected graph. It is

the collective responsibility of the nodes to see to it that the network is not partitioned.

Decentralization: The behavior of the peer-to-peer overlay is determined by the col-

lective actions of peer nodes, and there is no central control point. This is the difference

between client-server applications and peer-to-peer applications.

Symmetry: Nodes assume equal roles in the operation of the peer-to-peer overlay

network. In many overlays such as Kazaa [kaz 2001] this property is relaxed. In such

networks, some peers are dynamically chosen to be super-peers. Only super peers act as

service requesters and service providers.

Autonomy: Participation of the peer in the peer-to-peer overlay network is determined

locally.

Self-organization: Organizing the nodes into topologies as nodes join and leave and

adapting to failures are also properties of P2P overlay networks. Self-organization has

two-fold objective: self-maintenance and self-repair. For self-maintenance, node joining

and leaving is handled in a distributed manner, without requiring the member change

information to be propagated through the entire network. When a node fails without a

warning, its connected nodes still regard it as alive. In this case, a self-repair function

need to be run regularly to keep the network connected.

Scalable: This is a crucial characteristic that makes peer-to-peer an attractive alter-

native to client-server architectures. To operate peer-to-peer overlays with millions of

simultaneous nodes, scalability is prerequisite. That means the resources consumed at

each peer grow as a function of overlay size which is less than linear. It also means that

response time of the network services doesn’t grow more than linearly as a function of

overlay size.

Stability: Within a maximum churn rate, the peer-to-peer system should be stable,

i.e., it should maintain its connected graph and be able to route deterministically within

a practical hop-count bound.

7

1.5 Applications of Peer-to-Peer Overlay Networks

1.5 Applications of Peer-to-Peer Overlay Networks

Peer-to-peer overlays have been recognized for their applicability in various domains. A

variety of applications have been developed based on peer-to-peer overlays

1.5.1 Distributed computing

To utilize the computing power available at the edge nodes, SETI@home[set 1999] project

has divided its work into small units and distributed them to the peers or end user de-

vices. This is a very simple example of applying peer-to-peer paradigm in solving larger

problems.

1.5.2 Internet Services

Peer-to-peer applications have been developed to support variety of internet services. IP

level multicasting is costly and limited in the Internet. Scribe, a peer-to-peer overlay

application is developed by [Castro et al. 2002b] to support large-scale multicasting in

the Internet. I3 is developed by [Stoica et al. 2002] providing same service offered by

DNS but using a completely decentralized infrastructure. This doesn’t need root servers.

Security related issues such as intrusion detection [Janakiraman et al. 2003], and spam

[Zhou et al. 2003] are also handled by peer-to-peer overlay based applications. [Keromytis

et al. 2002] have developed secure peer-to-peer overlays to provide protection against

denial of service and virus attacks. Squirrel [Iyer et al. 2002] facilitates mutual sharing

of web data objects among client peers, and enables the peers to export their local caches

to other peers in the network, thus creating a large shared virtual web cache.

1.5.3 Distributed Databases

Several researchers have done work on designing distributed database systems based

on peer-to-peer overlay networks. Local Relational Model (LRM) is a model proposed by

[Bernstein et al. 2002] to support databases in peer-to-peer environment. PIER is a scalable

distributed query engine developed by [Huebsch 2008] to support relational queries on

data that is spread across thousands of peers in a peer-to-peer overlay network.

8

1.5 Applications of Peer-to-Peer Overlay Networks

1.5.4 Communication and Collaboration

Jabber as explained by [Saint-Andre 2005] is an XML-based application developed to pro-

vide messaging and presence. Skype [sky 2003] is a peer-to-peer application that provides

voice and video calls, voice calls to PSTN end points, and instant messaging. It connects

around 15 million users simultaneously over the globe. Its characteristics are analysed in

[Xie & Yang 2007]. Groove [Edwards 2002] provides collaborative services such as group

calendaring, collaborative editing and drawing, and collaborative web browsing among

its users. SharedMind [Ang & Datta 2010] is a collaborative peer-to-peer application that

supports editing of shared data using mind-maps.

1.5.5 Content Streaming and Multi-casting

Digital content on the Internet, its access by users and streaming of such content is grow-

ing exponentially each day demanding bandwidth at servers and internet backbone. Con-

tent Delivery Networks (CDN) are facing problems with bandwidth in streaming video

content. Many CDN networks are using peer-to-peer overlays to stream the content in a

distributed way. Commercial systems such as Kontiki [kon 2000], Zattoo [zat 2006] pro-

vide mass media distribution over internet using peer-to-peer overlays or P2PTV. Various

models are used, including torrent-style distribution, application layer multicasting, and

hybrid CDNs. Example P2PTV applications include Babelgum [bab 2005], Joost [joo 2007],

PPTV[PPT 2005], PPStream [PPS 2010], SopCast [sop 2004]. P2PTV is expected to play an

important role in future IPTV deployments. Narada[hua Chu et al. 2002], Scribe[Castro

et al. 2002a], Management overlay network (MON)[Liang et al. 2005] are some peer-to-peer

applications that support group management and multicasting services.

1.5.6 Content Publishing and Storage

Applications are developed to provide content management (updating, removing, version

control). Users will be able to publish, store, and distribute content in a secure and persis-

tent manner. OceanStore[Kubiatowicz et al. 2000], is global-scale, highly available storage

utility. It is built on Tapestry to disseminate encoded file block, efficiently and clients can

quickly locate and retrieve near by blocks by their Id, despite server and network facil-

9

1.6 Classification of P2P Overlays by Degree of Centralization

ities. PAST [Rowstron & Druschel 2001] is a large-scale persistent storage utility that is

based on Pastry. Each peer is capable of initiating and routing client requests. Pastiche

[Cox et al. 2002] is a simple and inexpensive backup system built on Pastry that provides

content-based indexing and convergent encryption.

1.5.7 File Sharing

File sharing is the most popular application in peer-to-peer overlay networks. Content

sharing systems offer mechanisms for content search and for transferring content. Content

transfer can happen in two ways: downloading and streaming. Streaming means a node

consumes the content while it is being transported. Downloading means the content

is fully transferred to local node and then it is used. File sharing systems generally

support downloading of content. In this thesis work, the focus is on file sharing peer-to-

peer overlay networks. There are several examples of file-sharing applications. Gnutella,

Free haven, Kazaa, Napster, Bittorrent[bit 2001], eDonkey are some of the well known

examples. Table 1.3 lists applications developed over peer-to-peer overlays using different

architectures. Table 1.4 lists some of the peer-to-peer applications which are implemented

by commercial organizations.

1.6 Classification of P2P Overlays by Degree of Centralization

Peer-to-peer overlay networks by their characteristic are expected to be fully decentralized.

But in practice this is not always true. The following three kinds of centralization are

found among the current peer-to-peer systems.

1.6.1 Purely Decentralized Architectures

All peers in the network take the same roles i.e. there is complete symmetry. Each peer

acts as a client and also as a server. Peers in such systems are known as "servents". All

peers participate in the network operations such as routing the message, data, searching

for file requests etc. These networks exhibit robustness to churn and node failures. Nodes

have limited knowledge about the network. Therefore, they can’t provide guarantee on

search efficiency and content availability. Gnutella 0.4, FreeHaven, Freenet, Chord, Pastry,

10

1.6 Classification of P2P Overlays by Degree of Centralization

Table 1.3: Peer-to-Peer Applications - classified according to architecture of P2P overlay

Application Purpose Purely Decentralized Partially
Decentral-
ized

Hybrid
Decentral-
ized

Content Publishing &
Storage

Freenet, PAST,
OceanStore, CFS

File Sharing Gnutella, Free Haven Gnutella
0.6, Kazaa

Napster,
BitTorrent

Anonymous Storage Freenet
Communication &
Messaging

Groove, SharedMind Skype Jabber

Backup operations Pastiche
Infrastructure base Chord, Pastry,

Tapestry, CAN
Routing Resilient Overlay Net-

works (RON)
Search engines Minerva, ODISSEA
Computation SETI@home
Web Caching Squirrel
Multicasting Split Stream, Scribe,

Bayeux
Spam filtering SpamWatch
Domain name lookup DNS using Chord
Multimedia Streaming PPLive, Coolstreaming
Intrusion Detection Indra

11

1.6 Classification of P2P Overlays by Degree of Centralization

Table 1.4: Commercial P2P Overlays - P2P overlay networks formed and maintained by
commercial organizations

Application Purpose Organization Since
Kontiki Hybrid peer-to-peer content distri-

bution targeting media content
M K Capital 2008

Skype Voice over peer-to-peer eBay 2006
Groove Collaboration without any help of

central server. Known customers:
Dell, Department of Defense, Glax-
oSmithKline and Veridian

Groove Net-
works

2001

Magi P2P infrastructure platform for
building secure, cross-platform,
collaborative applications

Endeavours
Technologies

2001

Zattoo Streaming to TV viewers over inter-
net

Zattoo 2006

CoolStreaming To share television content using
swarms

Roxbeam
Corp.

2005

PPTV Live and on-demand TV service
over internet

PPLive 2005

Joost Streaming legal videos in agree-
ment with publishers

Adconion
Media Group

2009

Alluvium For broadcasting over internet Foundation
for Decen-
tralization
Research

2003

RawFlow internet broadcasting of audio and
video

RawFlow Ltd. 2002

12

1.6 Classification of P2P Overlays by Degree of Centralization

Tapestry are examples of this architecture. Topology of Purely Decentralized Architecture

is shown in Figure 1.3.

Figure 1.3: Purely Decentralized P2P overlay - all nodes in the network take the same roles

1.6.2 Partially Decentralized Architectures

These systems are also same as purely decentralized architectures except that some nodes

take a more important role. Such nodes are known as "super peers" or "ultra peers".

These super peers collect and store file indexes of all the local peers attached to it. All

super peers are connected like in a pure decentralized architecture. Super peers don’t

pose the problem of single point of failure, as they are chosen dynamically. If some super

peer leaves or fails, local peers automatically connect to another super peer and the net-

work will chose a replacement for the failed super peer. Gnutella2, Kazaa, eDonkey2000,

Edutella[Nejdl et al. 2002] are examples of this architecture. Topology of Partially Decen-

tralized Architecture is shown in Figure 1.4.

1.6.3 Hybrid Decentralized Architectures

In this architecture, there is a centralized arrangement to facilitate the interactions between

peers. Central servers maintain metadata such as file indexes or data segment locations

etc. Surely these servers become bottlenecks and single point of failures. Napster, Publius

[Waldman et al. 2000], BitTorrent are examples of such architectures. Topology of Hybrid

Decentralized Architecture is shown in Figure 1.5.

13

1.6 Classification of P2P Overlays by Degree of Centralization

Figure 1.4: Partailly Decentralized P2P overlay - Some nodes are attached to ’super peers’
which perform important roles

Figure 1.5: Hybrid Decentralized P2P overlay - Nodes are attached to central server which
facilitates interaction among nodes

14

1.7 Classification of P2P Overlays by Network Structure

1.7 Classification of P2P Overlays by Network Structure

Network structure refers to whether the network topology formation and object placement

are based on certain rule or it is left the way nodes want to do it. According to this, there

are three categories of peer-to-peer overlay networks as described below:

Figure 1.6: P2P Overlay classification by Overlay Structure - variation in topology and object
placement policies

1.7.1 Unstructured Networks

Overlay network is formed without any predefined rules. Nodes and content are added

to the network without strict rules. Such overlays form topologies which can be compared

to random graphs, scale-free or power-law random graphs, graphs exhibiting small world

phenomena and social networks. The placement of content (files) is completely unrelated

to the overlay topology. Therefore, content needs to be located through messaging. Peer

relies only on its adjacent peers for delivery of messages to other peers in the overlay.

Figure 1.6 lists examples.

1.7.2 Structured Networks

Structured networks are proposed as an improvement to unstructured networks. Work

on distributed hash tables(DHT) by [Devine 1993] as well as [Litwin et al. 1993], [Litwin

15

1.8 Search in Peer-to-Peer Overlays

et al. 1996] triggered many researchers to build overlays using DHTs. Plaxton, Rajaraman,

and Richa (PRR) [Plaxton et al. 1997] presented the first algorithms for distributed object

location and routing, using a suffix forwarding scheme. This algorithm was the basis for

subsequent influential designs such as Tapestry and Pastry.

In structured P2P overlay networks, network topology is tightly controlled and con-

tent is placed not at random peers but at specified locations that will make subsequent

queries more efficient. The content is distributed among the nodes. The nodes and objects

are mapped to a key space. The key space of the objects is partitioned and distributed

among the peers. They provide deterministic time bounds on lookup. As shown in Fig-

ure 1.6, there are different types of structured networks namely logarithmic degree, con-

stant degree, variable hop, O(1)− hop etc. Logarithmic degree means each node has to

maintain links with neighbours in the logarithmic order of overlay size. Constant degree

means each node maintains the same number of neighbour links irrespective of overlay

size. Variable-hop indicates that the lookup of the object will take variable number of

hops depending on the node capacity and network capacity. O(1)− hop means that each

node keeps the references to all other nodes in the overlay. Table 1.5 shows the example

infrastructures and applications using structured networks.

1.7.3 Loosely Structured Networks

In these networks, structure evolves over a period of time. There are no predefined rules

that specify the node positions within the overlay. Based on the redundant replication of

the files, the nodes accumulate references to other nodes. Since these references govern the

overlay structure, the structure evolves with content placement. Freenet [Clarke et al. 2001]

has this type of overlay network.

1.8 Search in Peer-to-Peer Overlays

Peer-to-peer file sharing systems lack a centralized index placed at a group of server ma-

chines. The index is placed at peers themselves i.e. it is a distributed index. Therefore,

search in a peer-to-peer overlay refers to finding any given data item by looking at the in-

dexes stored at individual peers. Since it is a distributed algorithm, the performance of the

16

1.8 Search in Peer-to-Peer Overlays

Table 1.5: P2P Overlays by Structure and by Decentralization - combining both type of
classifications

Network Structure Decentralization
Hybrid Partial Pure

Unstructured Napster, Publius Kazaa, Gnutella,
Edutella

Gnutella, Free-
Haven

Loosely structured Freenet
Structured Infrastruc-
tures

Structured Su-
perPeers

Chord, CAN,
Tapestry, Pas-
try, Kademlia ,
Viceroy

Structured Systems OceanStore,
Mnemosyne,
PAST etc

algorithm depends on overlay geometry and routing protocol. Search becomes complex

in peer-to-peer file sharing systems because of transient population of nodes and dynamic

changes in the content. The centralized search systems such as Google, Yahoo, etc. have

to deal with web pages which live longer than objects in the peer-to-peer file sharing

systems. Such centralized systems don’t prove to be efficient in large-scale distributed

systems due to content and node population dynamism. Therefore search in peer-to-peer

file sharing systems has different requirements when compared to a centralized search

mechanism.

1.8.1 Design Characteristics of a Search Mechanism

The following gives important requirements for a search algorithm in large-scale peer-to-

peer file sharing overlays.

1.8.1.1 Decentralization

There is always a trade-off between the scope of the index and maintenance cost. In one

extreme every node can keep index of all the objects available in the network. That will

surely make all the queries one-hop. But the cost associated with maintaining such an

index prohibits such an approach. On the other extreme, searching loses its grace with-

out indexing. Indexing is the most important tool for searching [Baeza-Yates & Ribeiro-

Neto 1999]. The index construction process should be distributed among the participating

17

1.8 Search in Peer-to-Peer Overlays

nodes. The index itself should be distributed among the overlay nodes for achieving uni-

form load distribution and fault-resilience.

1.8.1.2 Efficiency

While building the index and while looking it up, the algorithm should not consume

significant resources of the network namely the bandwidth and storage at each node. The

high rate of introducing new files into the network and relocation of documents either due

to replication or rejoining of a node makes the index building and maintaining process

very intensive.

1.8.1.3 Scalability

Efficiency of the search mechanism should not degrade with increase in the network size.

1.8.1.4 High Quality Results

The quality of search is measured by its recall rate, precision and response time. Recall

rate is measured as the percentage of files that are returned against the actual number

of such files available in the network. Precision refers to the number of results that are

relevant to the query. Search algorithm is expected to have high completeness, high

precision and fast response time.

1.8.1.5 Fault-resilience

Peer-to-peer overlays are subjected to churn i.e., high rate of joining and departing nodes.

Nodes depart from network without prior notification. The search algorithm is expected

to adapt to such failures providing quality of service efficiently to the user.

1.8.2 Search Performance Metrics

Search performance can be measured in the following view points. These are explained

in [Daswani et al. 2002].

18

1.8 Search in Peer-to-Peer Overlays

1.8.2.1 Efficiency

Peer-to-peer networks use the computation, storage and bandwidth resources of peer

nodes. Efficiency of search algorithm is measured in terms of consumption of these re-

sources. In overlays, the bandwidth consumption is approximately proportional to num-

ber of messages required to complete the search. The storage refers to the size of the

indexes the peers have to keep with them. The computation refers to the complexity of

the operations the individual nodes have to carry out in search operation.

1.8.2.2 Quality of Service (QoS)

Quality of service (QoS) focuses on user perceived qualities where as efficiency refers to

the utilization of overlay network resources. QoS depends on individual application. In

general, it can be measured as number of results, response time, and relevance. Response

time is measured as the time elapsed from the time when the query is fired and till the

time when the first reply is received. Relevance is measured by recall rate and precision.

1.8.2.3 Robustness

QoS and efficiency have to be tested against the overlay dynamics. The node population

as well as the content is variably changing. This directly affects the search performance.

The metrics mentioned above are observed for their change with respect to nodes join and

leave and content additions and changes to the network.

1.8.3 Components in a Distributed Search Mechanism

A distributed search mechanism, in large-scale peer-to-peer overlays, is composed of three

components namely query semantics, translating semantics for routing, and routing the

query as shown in figure 1.7.

Peers share different types of objects in a file sharing network. The meta information

consisting of behavioural and functional aspects of the object is expressed in terms of

properties in a schema. In file-sharing systems, these properties for each type of object

such as song, movie, software etc. are globally known in standard schemas. Expressive-

ness refers to the capability of search in expressing the user expectations. The minimum

19

1.8 Search in Peer-to-Peer Overlays

Figure 1.7: Components of decentralized search mechanism - some components are carried
out at the requester node and the other at every node receiving the search query

level of expressiveness is exact-keyword-match which is supported in DHT[Devine 1993]

based structured networks. That means the user has to specify exact properties that were

used to hash the file and generate its key. User has to know the properties of the file

completely. Another level of expressiveness is partial-keyword-match. This is supported

in unstructured file-sharing systems. Query semantic refers to formation of the query

as expressed by user and supported by the network using standard schema. Query is

specified in a query language. In most of the file sharing networks, there is no specific

language used. To support complex queries involving logical, and relational operators,

XQuery[Chamberlin & Robie 2007], XPath[Kay & Robie 2007], SPARQL[Prud’hommeaux

& Seaborne 2007] are proposed.

The translation component transforms the query information into information use-

ful for routing purpose. In unstructured networks only when informed search schemes

are used, the query semantics are transformed to calculate some metrics to enhance the

search efficiency. These metrics are used in deciding where to forward the query. In

blind search schemes, the routing is basically either random or a broadcast. In struc-

tured networks based on DHT, the routing is based on keys. The keys are transformation

of query semantics using a hashing scheme. The translation component transforms the

query semantics into a key.

20

1.9 Peer-to-Peer Overlay Networks: Examples

Routing component involves forwarding the query to one or more neighbours at every

node. There is content-based routing and key-based routing. In content-based routing,

the query semantics are utilized for making routing decisions at every hop. Content-

routing allows partial match queries and complex queries. It doesn’t guarantee search

completeness or discovery of rare objects. In structured networks, the routing is carried

out using routing tables maintained at each node. The key based routing is efficient but

doesn’t support partial match and complex queries.

In unstructured networks, the efficiency of search mechanism depends largely on rout-

ing component. Routing policy affects the bandwidth of the network. The computation

overhead at each node is affected by translation component. The query semantics will

help in enhancing the efficiency and QoS of the search mechanism.

1.9 Peer-to-Peer Overlay Networks: Examples

This section presents some widely used or deployed overlay networks from the point of

view of their search mechanisms.

1.9.1 Freenet

Freenet is a distributed peer-to-peer system designed for anonymous storage. The anonymity

is in terms of who is storing the file, what the contents of the file are, who is requesting

the file, and who is fulfilling the request. It offers robustness, scalability, efficiency and

privacy. Freenet is purely decentralized system. Each node in the network allocates disk

space to be used by Freenet. Freenet provides a virtual file system logically connecting

disk space provided by each node in the network.

Each data item is associated with a key. Node stores the data item along with the

key. Every node in the network maintains references to some other nodes in the network.

These references are accumulated based on file exchange over a period of time. When

DataInsert message is sent along with the file, the file is cached on all nodes on the path.

This caching will help in load balancing. Every node on the path will add the reference

of the node from which it has received the file. The same is the case when DataRequest

message is replied. Therefore the lists of references are dynamic. Depending on Least

21

1.9 Peer-to-Peer Overlay Networks: Examples

Recently Used (LRU) policy, nodes keep deleting the references to accommodate the new

references in a constant-sized routing table. The routing of messages for inserting and

retrieving files is carried out using these references. Since the routing of messages is

based on links (references) that have already been formed based on keys associated with

files, there is locality on key space. Similar keys are grouped together. A sample routing

table (stack) is shown in figure 1.8. Routing happens by proximity in the keys. The local

node decides which node will receive the next query by the closeness of the destination

key with the list of keys it has. The locality in key distribution helps in scalability of the

network.

Figure 1.8: Stack used by a Freenet node - source: [Oram 2001]

Since Freenet is a fully decentralized network, there is a possibility of malicious nodes

returning the false documents. Since there is inherent caching of the objects over the path,

the false documents can spread in the network like a wildfire. To prevent this Freenet

uses keys. It offers three types of keys. A document can be associated with one of these

keys. But other type of keys can be used to form a chain of keys to reach the document.

Content Hash Keys (CHK) are the result of hashing the file using SHA-1. They are useful

in verifying the integrity of the file returned. Keyword Signed Keys (KSK) are based on

public key system derived from text strings provided by the user. Signature Verification

Keys (SVK) are also based on public key system but are purely binary in nature. SVK

provides namespaces using pseudonyms to avoid revealing the identity of the person.

22

1.9 Peer-to-Peer Overlay Networks: Examples

1.9.2 Gnutella

Gnutella is a purely decentralized file-sharing peer-to-peer overlay network. It came into

existence in mid 2000 initially with a purpose of enabling users to share their recipes.

Later, it became a very popular file-sharing network connecting millions of nodes or users.

In Gnutella, every node is connected to a set of other nodes which are called as neigh-

bour nodes. Each node specifies files to be shared on the network. To search for a file, a

node sends a query to all neighbours. They check with themselves a match. If the match

is found or not, the query is forwarded further to its neighbours. If the match is found,

a reply is sent to the immediate neighbour from whom this request is received. This way

the reply is routed back to the request node. This process is depicted in figure 1.9. The

requester node receives several replies.

Figure 1.9: Search in Gnutella - Query with TTL=2 fired by node A and response is triggered
by node G. File transfer is through a direct TCP connection from A to G.

This search algorithm is known as flooding. In flooding, the messages created for

the query increase exponentially at every hop. To limit such message explosion, a TTL

(time-to-live) limit is defined for the query by the requester. At every node, the TTL is

reduced by 1. If a node receives a query with TTL 0, it doesn’t forward the query further.

Another characteristic of this algorithm is that it avoids looping of messages by assigning a

23

1.9 Peer-to-Peer Overlay Networks: Examples

Globally Unique Identifier (GUID) using algorithm defined in [Leach et al. 2005] for every

new query. This GUID is associated with that query and its replies all throughout the

network. Once they receive the query, nodes cache this GUID and address of neighbour

who sent the query. This helps in preventing duplicate queries being forwarded. If the

same query is received later from another neighbour, node can detect the duplication and

thus avoid forwarding it again as shown in figure 1.10.

Figure 1.10: Usage of TTL and loop-free condition in Gnutella - Query with TTL=2 fired
by node A and response is triggered by node G. At node C and node G, GUID prevents
duplicate query forwarding.

The GUID also helps in dynamically routing the replies back to the requester with-

out knowing requester identity. This provides requester anonymity in Gnutella. This

anonymity doesn’t remain if the requester needs to download the file. The downloading

of the file from the node which has sent the reply happens by direct TCP connection. In

that case requester’s identity is revealed.

Gnutella protocol uses five types of messages for its operation: Ping, Pong, Push,

Query, QueryHit. Every message has the GUID, message type, TTL, hops and payload

length common to them. Each message type is meant for a particular network operation

as mentioned in table 1.6.

24

1.9 Peer-to-Peer Overlay Networks: Examples

Table 1.6: Message types in Gnutella 0.4 protocol - each message has its own message format

Message Type Description
Ping Used for topology discovery of the network. A node re-

ceiving a Ping message is expected to respond with one or
more Pong messages.

Pong The response to a Ping message. Includes the address of
a connected Gnutella node and information regarding the
amount of data it is making available to the network.

Query The primary mechanism for searching the distributed net-
work. Query message includes minimum speed acceptable
and the search keywords. A node receiving a Query mes-
sage will respond with a QueryHit message if a match is
found against its local dataset.

QueryHit The response to a Query. This message provides the re-
cipient with enough information like IP, port, speed, and
list of matching files. Node makes a TCP connection to
acquire the data matching the corresponding query.

Push A mechanism that allows nodes behind firewall to con-
tribute a file to the Gnutella network. If requester can’t
connect, it sends a "push" message instead, with its IP ad-
dress and port number. Offerer does an outbound connect
to that host, and sends the file.

1.9.2.1 Gnutella Topology Characteristics

Gntella topology is a random graph. A simulated diagram of Gnutella topology is shown

in the figure 1.11. There are two characteristics of the graph that help us understand

topology of the network. They are listed in table 1.7 for regular and random graphs.

Table 1.7: Network topology graph characteristics - for a graph with n vertices and average
number of edges per vertex is k. l indicates the actual number of edges in the graph.

Graph type Pathlength Cluster coefficient
Regular Graph n

2k
l

k(k−1)
2

Random Graph ≈ log n
log k ≈ k

n

Characteristic pathlength is defined as the average of shortest paths of all vertex pairs

in the graph. If this metric is small, it means that any two nodes in the network can

communicate with in small number of hops. The message routing cost is low. Another

characteristic is clustering coefficient, which is defined as proportion of actual number of

links to the number of all possible links among neighbours of a node. The characteristic

clustering coefficient is the average of clustering coefficients of all vertices in the graph.

25

1.9 Peer-to-Peer Overlay Networks: Examples

Figure 1.11: Gnutella topology graph captured in 2000 - Source: [M. 2000]

The regular graphs have high pathlength and high clustering coefficients. Random

graphs have low path length and low clustering coefficients. As shown in the diagram

figure 1.12, regular and random graphs are two extremes of the graph. Starting with a

regular graph, with some probability links are changed to connect to a randomly chosen

node. The graph shows the two metrics as the probability of changing a link is increased.

It can be observed that at probability 0.01, the cluster coefficient is also held high and

pathlength also is low. This intermediate topology is known as small world graph [Watts

& Strogatz 1998]. Small-world networks have a small diameter and exhibit high clustering.

Studies have shown that the Web [Albert & Barabasi 1999, Broder et al. 2000], scientific

collaboration on research papers [Newman 2001], film actors [Amaral et al. 2000], and

general social networks [Adamic et al. 2003] have small-world properties.

Gnutella’s traffic is analysed and found that it has the small-world characteristics.

Small-world means short pathlength and high clustering coefficient. Pathlength distribu-

tion is shown in figure 1.13. Short path length indicates reduction in number of messages

to reach any node. But in Gnutella the query is propagated by flooding the neighbours.

This means that number of messages increase exponentially at every hop, although the

26

1.9 Peer-to-Peer Overlay Networks: Examples

Figure 1.12: Pathlength and clustering coefficient at different degrees of random connec-
tivity - regular graph is at the left most side and the random graph is at the right most side.
Source: [Oram 2001]

27

1.9 Peer-to-Peer Overlay Networks: Examples

object may be found in few hops itself. Clustering helps in communities where similar

interest nodes are grouped together so that the object requested is found in the neigh-

bourhood itself. Gnutella doesn’t have any rules or provisions for clustering based on

interests of the nodes.

Figure 1.13: Pathlength distribution in Gnutella during March 2001 - Source: [Ri-
peanu 2001a]

1.9.2.2 Power-law Graph Characteristics

Power law characteristics of Gnutella describe the node degree distribution, while the

small world describes characteristics of path length and clustering coefficient as dis-

cussed above. The power law distribution is a popular phenomenon in complex net-

works. Gnutella has been shown to exhibit power-law network characteristics in [Ri-

peanu 2001b, Adamic et al. 2001, Sen & Wang 2002]. Peers connect to a node i with

probability di
∑ N

j=1dj
, where N is the set of nodes currently in the network and di is the node

degree of peeri , which yields a power-law network [Medina et al. 2000]. In other words,

in power-law networks, the number of nodes with degree k is equal to ck−r where c and r

are network constants. In power-law networks, large portion of the nodes have few links

and small fraction of the nodes have large number of links. This phenomena is shown

to occur in natural networks such molecules, species and also in naturally formed social

networks [Broder et al. 2000]. The characteristic of such systems is that they are highly

stable and resilient to failures. Even if a large number of nodes are removed from the

network, still the network continues to function as most of the nodes that are removed

28

1.9 Peer-to-Peer Overlay Networks: Examples

from the network have a few links. But a planned attack against highly connected nodes

can bring down the whole network [Albert et al. 2000]. Figure 1.14 shows the node degree

distribution of Gnutella network in May 2001. This graph is linear on log-log scale and

gives clear indication of power-law characteristics. But after 4 years i.e. in 2005, study

done by [Stutzbach & Rejaie 2005], as depicted in figure 1.15, shows the deviation from

power-law characteristics when Gnutella is enhanced with super-peer structure.

Figure 1.14: Node degree distribution of Gnutella during March 2001 - Source: [Ri-
peanu 2001a]

Figure 1.15: Node degree distribution of Gnutella during 2005 - Source: [Stutzbach & Re-
jaie 2006]

29

1.9 Peer-to-Peer Overlay Networks: Examples

1.9.3 Kazaa and Gnutella 0.6

In pure decentralized systems, search for files is limited to certain hop-limit due to huge

number of messages generated by flooding algorithm used. To improve upon that, certain

high capacity nodes in terms of computation and network are promoted to ’super-peers’.

A certain number of leaf nodes are connected to each super peer. Super peer indexes

the files available with its leaf nodes and also maintains connections with other super

peers. Any leaf node sending search query first reaches super peer. Super peer looks at

its local index and if there is no match it will forward the request to other super peers

connected to it. There is flooding among the super peers. Since super peers are few

in number compared to total number of nodes, the reachability of the query is greatly

enhanced. Since super peers are also prone to churn and failures the leaf nodes are

generally connected to more than one super peer. This will increase the robustness of

the network. In Gnutella 0.6, a leaf peer is connected to 3 ultrapeers, and each ultrapeer

is connected to more than 32 other ultrapeers. Kazaa also follows similar super-node

structure. Figure 1.16 shows the search in super-peer networks.

Figure 1.16: Search in super-peer networks - Leaf node A queries super-peer S1. S1 checks
with itself and forwards to all neighbour super-peers. Reply is sent by S3 since the file is at
its leaf node E. A gets file from E by direct connection

30

1.9 Peer-to-Peer Overlay Networks: Examples

1.9.4 Chord

Chord was developed by [Stoica et al. 2001] at MIT, USA. It is one of the first peer-to-peer

overlay network based on distributed hash table (DHT). Chord uses an m-bit identifier

space with range 0 to 2m− 1 . Chord assigns an identifier using consistent hashing [Karger

et al. 1997] to a node in this range. Similarly the objects with keys are also assigned

identifiers. Consistent hashing ensures with some probability that the keys are distributed

among the nodes uniformly. The identifier space is organized in a ring topology as shown

in figure 1.17. All network operations are carried out in clock-wise direction on the ring.

The object with key Kj is stored by the node Ni immediately following j on the ring. If

the object’s key coincides with node identifier, that object is stored at that node.

Each node has a reference to its successor node on the ring in the clock-wise direction.

To have robustness in case of failures, Chord maintains successor list of size r. Correctness

in successor links ensures correctness in lookup. Just the successor list will have worst-

case lookup complexity O(n) where n is the overlay size. To improve the efficiency of

lookup protocol, each node maintains a finger table of size m. The ith entry in finger table

is successor(n + 2i−1). Hence finger table maintains links to nodes at 1
2 , 1

4 , 1
8 , . . . distances

from itself. With finger table, in every hop the distance to destination node is reduced

approximately by half. This way Chord guarantees lookups in O(log n) hops.

Figure 1.17: Lookup procedure in Chord overlay - the id space is in the range 0 to 127. To
lookup object with key 80, node 8 contacts its finger 60, whose distance from key 80 is the
minimum. Node 60, in turn, does the same.

The lookup request of key k at node i happens in the following way. First node i

31

1.10 Security in Peer-to-Peer Overlays

checks if k is in (i, successor(i)] . If k is found in the range, the request is forwarded to the

successor. If not found, it is forwarded to the largest finger in the finger table such that

it is ≤ k. The same procedure is carried out at intermediate nodes. This is depicted in

figure 1.17.

Newly arrived node uses consistent hashing to generate its identifier. Then it contacts

bootstrapping node, to know its successor node. By running the stabilization protocol, it

establishes it’s routing table. This protocol is run periodically to learn about the node fail-

ures and corrects its routing table. The churn is a problem in Chord as in any structured

network. It is proven that if the node’s successor list size (r) is O(log n), lookup can still

succeed with high probability even if every node fails with probability of 1
2 .

1.10 Security in Peer-to-Peer Overlays

Security is the fundamental issue to be addressed when the system involves multiple users

and their shared resources. Large-scale peer-to-peer overlays involve millions of user

identities and their devices contributing to the functioning of the network. Authentication,

integrity, confidentiality and non-repudiation are some of the security properties expected

to be supported by the system. These issues become significantly more challenging than in

the case of traditional domains due to distributive ownership, lack of centralized control

and lack of global knowledge in large-scale peer-to-peer overlays. Therefore peer-to-

peer overlays face additional security risks when compared to security issues in network

applications. Some of such security risks come under large-scale impersonation attacks,

using peer-to-peer overlay as a platform for distributed denial of service attacks, and file

pollution. Peer-to-peer overlays introduce an additional layer called "overlay layer" which

involves specific security risks which are not common in the Internet applications.

1.10.1 Sample Attacks and Threats

Theft is a major risk discovered in the studies of file sharing systems security conducted

by [Johnson & Dynes 2007, Johnson et al. 2009]. Adversaries took advantage of lack of

confidentiality in communication and inadvertent disclosures by innocent users to access

confidential information. USA Today article in September 2007 [Johnson 2007] has stated

32

1.10 Security in Peer-to-Peer Overlays

Table 1.8: Search performance comparison of some overlays - n refers to overlay size. Space
complexity: no. of entries in routing table at each node, time complexity:no. of overlay hops
per query , and message complexity: no. of messages generated per request

Network
Type

Search
Algo-
rithm

Space
Com-
plexity

Time Complexity Message Complexity

Freenet Key
Based
Routing
(KBR)

O(1) O(log n) O(log n)

Gnutella Flooding O(1) Varies with individual
requests depending on
object distribution. It
is constant with re-
spect to overlay size as
there is timeout limit
on search request

O(dk) where d refers
to average node degree
and k is TTL

Kazaa,
Gnutella
0.6

Flooding O(1) Varies with individual
requests depending on
object distribution. It
is constant with respect
to overlay size

O(dk) where d refers
to average node degree
and k is HTL (hops-to-
live). But this is only
among the super peers

Napster,
Bittorent

Contact
central
server or
tracker

O(n) at
central
server or
tracker

O(1) O(1)

Chord Key
based
routing
using
DHT
as sub-
strate

O(log n) O(log n) O(log n)

33

1.10 Security in Peer-to-Peer Overlays

that the number of people affected by lack of confidentiality in P2P protocols is in the

order of hundreds and the total amount lost is in the order of hundreds of thousands

of dollars. The most well-known security violation is illegal copy and distribution of

multimedia content and software. [Zeng et al. 2006] has stated that annually 447 million

dollars are a loss due to online piracy. Peer-to-peer networks open avenues for serving

as platforms for distributed denial service of attacks (DDoS). In [Naoumov & Ross 2006],

authors proposed that by poisoning indexes and routing tables in the nodes of the peer-to-

peer network, target-host is bombarded with requests and thus causing denial of service.

Also, peer-to-peer networks offer an attractive platform for spreading viruses by infecting

popular downloads with viruses.

1.10.2 Peer-to-Peer Overlay Layer Attacks

Attacks on the overlay can be divided into attacks on message routing, Sybil, and Eclipse

attacks.

1.10.2.1 Attacks on Message Routing

There are several known attacks that work by modifying the node’s routing tables. Rout-

ing tables are key resources for the stability of structured networks. In [Castro et al. 2002a],

it is noted that an attacker can obtain specific node Ids and strategically position in the

overlay such that he controls the access to specific peers or objects. Also poisoning of

routing tables and message forwarding attacks are possible. These attacks are discussed

in [Castro et al. 2002a] and [Wallach 2003].

1.10.2.2 Sybil Attacks

In this attack, an entity can represent itself as multiple identities in the overlay and

thus gain control over disproportionate resources. This attack was first pointed out by

[Douceur 2002]. In this attack, an attacker can influence the reputation of the systems and

objects and also carry out malicious attacks like disrupting the overlay operations. In this

thesis, the focus is on developing novel distributed approaches to limiting Sybil attacks.

In Figure 1.18, it can be observed that there are entities and identities (blue circles). Some

34

1.10 Security in Peer-to-Peer Overlays

entities forge themselves as multiple identities in the network. Because of their large

fraction of identities, the entities can control the network. To differentiate between a real

identity and a sybil identity is very difficult. It is stated in [Douceur 2002] that without

a centralized authority it is not possible to completely eliminate the sybil identities from

the network. Since peer-to-peer overlays fit decentralized mechanisms, in this thesis, we

have put effort to develop algorithms to limit sybils in a distributed way.

Figure 1.18: Sybil entities and identities in a peer-to-peer network - Entity is represented by
a rectangle and identity by an ellipse

1.10.2.3 Eclipse Attacks

In these attacks, one first gains control over a large number of nodes along strategic

routing paths and then separate the network into different sub-networks. Traffic between

the sub networks has to go through one of the attacker’s node. This way this attack can be

used to disrupt the network in a systematic way or propagating false files in a systematic

and fast-paced way.

35

1.11 Scope of the Thesis

1.11 Scope of the Thesis

Peer-to-peer overlays have many research issues to be addressed such as efficient search

in unstructured networks, complex queries in structured networks, overlay adaptation

to churn, user privacy and trust, securing overlays from different types of attacks using

decentralized approaches etc. In this thesis, the focus is on two issues: (i) developing

distributed approaches to improve search performance in unstructured networks and (ii)

developing distributed approaches to limit Sybil attacks in large-scale peer-to-peer over-

lays. P2P networks are large in size and the node and object placement is random in

unstructured networks. Providing a efficient search for finding objects in such overlays

faces many challenges. Sybil attacks are hard to detect even using centralized algorithms.

Here we propose distributed mechanisms.

The thesis is organized as follows. Chapter 2 discusses the previous approaches in the

literature to these two issues. Chapter 3 discusses the proposed approaches to improve

search performance, chapter 4 discusses a QoS model for P2P file sharing networks and

Chapter 5 discusses the proposed approaches for limiting Sybil attacks. Chapter 6 gives

the conclusions.

36

Chapter 2

Problem Definition and Known

Approaches

Peer-to-peer overlay networks have applications in variety of domains, namely communi-

cation, file-sharing, multi-media distribution, file-storage, collaboration, and QoS routing

in the Internet, etc. In this thesis, the focus is on file-sharing peer-to-peer systems. Within

this domain, there are fundamental issues to be addressed by researchers. Some of them

are search, security, churn, load-balancing, topology adaptation with overlay dynamics,

etc. In this thesis, the focus is on improving search in unstructured overlays in terms

of efficiency and quality of service and developing distributed approaches to limit the

Sybil identities in peer-to-peer overlays. Search scalability in unstructured overlays, at the

same time giving quality of service is one of the rigorous research areas as most of the

well-known peer-to-peer file sharing systems are built on unstructured overlays. In this

chapter, the study of approaches proposed in the literature is presented. [Douceur 2002]

has proved that Sybil attack can be fully solved only by a central authority which issues

certificates based on some physical evidence such as photo identity etc. But this will pose

as a big barrier for their deployment and limit its reach to users. Therefore, distributed

approaches become a necessity to overcome these pitfalls. File-sharing systems involve

rating of objects by their users. Such reputation schemes can be thoroughly influenced by

Sybil entities. In this chapter, approaches proposed in literature to limit Sybil attacks are

also presented.

37

2.1 Search in File-sharing Overlays

2.1 Search in File-sharing Overlays

The amount of data in the web was estimated to be 66.8 to 91.9 Petabytes [pro 2003]. The

amount of data stored by Google was estimated to be 24 Petabytes of storage. The size

of data shared by Kazaa file-sharing system, as of 15th October 2005 was estimated to be

54 Petabytes [sta 2005]. This huge data can be accessed by all users of the network only

if search is effective. Thus search is of vital importance in file sharing systems without

which most of the data will remain hidden and inaccessible to users.

2.1.1 Search Problem

The search problem in a peer-to-peer overlay refers to finding any given data item in a

scalable manner. More specifically, given a data item stored at some dynamic set of nodes

in the overlay, we need to locate it [Balakrishnan et al. 2003].

Figure 2.1: File sharing in a P2P overlay - this is an unstructured overlay. File are shared by
nodes as per their wish. Some nodes don’t share any files

In an unstructured overlay, nodes share files as per their wish. As shown in figure 2.1,

files are present at random locations. A file is shared by many nodes or just one. Some

nodes share many files and some not even one. No node in the overlay has the global

38

2.1 Search in File-sharing Overlays

knowledge of the entire topology. A node knows only few links connecting it to the rest

of the overlay. Nodes are transient, i.e. any node can leave the system at any time. This

type of situation is called as ’churn’. Churn can make the network partitioned.

In such a system, the only way a node can search for a file is through its neighbours.

Such a search can result in querying every node on the overlay. This is highly undesirable

as it consumes resources heavily and results in burdening other nodes. So the search

problem is about locating the files in a dynamic overlay in a scalable way and at the same

time maintaining search quality.

2.1.2 Factors Affecting Search Performance

Search in an unstructured peer-to-peer file sharing system is dependent on many factors

centred on overlay topology, data placement and routing. Search in a decentralized system

involves many other nodes in the overlay. How many nodes and how much they are

involved depends on the overlay organization and it’s routing. Pathlength and clustering

of nodes in the overlay affect the efficiency and quality of search results. Pathlength is

the average number of hops required to reach any node from any node. If the links

between the nodes involve long-range links i.e., links which connect to the nodes beyond

the local neighbourhood, then pathlength is reduced. Pathlength has effect on bandwidth

and processing overhead. Smaller pathlengths provide quick coverage of the network

in smaller hps and thus reducing the message traffic. Some researchers have devised

algorithms to adapt the topology dynamically to keep the pathlength as low as possible.

Clustering of the nodes in the local neighbourhood has a direct effect on the quality of

results. If the clustering is based on the semantics of files then it is most likely that

relevant files will be available in the local neighbourhood itself. Several researchers have

proposed building overlays centred on the nature of their interests, content etc. Node

heterogeneity in terms of network capacity and processing capacity is inherent in any

large scale networks. Search and maintenance functions of the overlay are distributed in

proportion to node’s capacity.

In unstructured decentralized networks, routing involves decrementing Time-to-Live

(TTL) at every hop. Searches with larger TTL generate enormous traffic consuming huge

39

2.2 Approaches to Improve Search

network bandwidth and generating duplicate queries. Several search algorithms pro-

posed in the literature that control TTL limit iteratively, adaptively etc. Routing also

involves choosing the nodes to forward the query. Number of nodes are chosen at ev-

ery hop has influence on the query traffic generated. Choosing the nodes can be a blind

decision or an intelligent decision. Intelligent decisions contribute to quality of results.

Intelligence is derived from the history maintained at the nodes. Building indexes helps

in searching, increasing both efficiency and quality of results. But maintenance of indexes

in a dynamic population of nodes and objects adds to the overhead in terms of bandwidth

and processing overhead on nodes. BloomFilters[Bloom 1970] help in reducing the size

of the messages thus reducing the overhead. Replication of files or keeping several copies

of the same file on different nodes across the overlay enables load balancing, availability

and also efficient and quality of search.

In the next section, the approaches proposed in the literature are categorized and

presented with respect to these parameters.

2.2 Approaches to Improve Search

A good search mechanism is one which allows users to effectively locate desired data

in a resource-efficient manner [Daswani et al. 2002]. In unstructured overlays, there are

several challenges like their large size, transitive population of nodes, heterogeneity, user

autonomy etc. There are number of search algorithms proposed to meet these challenges.

The first file sharing network [nap 1999] maintained a centralized index of all the files.

Search is carried out by the central server itself without involving other nodes in the

network. Central servers have the following limitations.

• Central servers pose as single point of failure. If they are down, the whole network

becomes unavailable.

• Can’t scale well with increased demand. The processing capacity and bandwidth

are throttled.

• Central servers are prone to malicious attacks from envious people.

• Content becomes subjected to censorship-laws of different countries.

40

2.2 Approaches to Improve Search

With litigations in Napster, Gnutella [gnu 2000] became popular. Gnutella uses a fully

decentralized search mechanism which is known as flooding or breadth-first-search [Yang

& Garcia-Molina 2002]. In flooding, the query is forwarded to every neighbour node with

a certain TTL limit. Advantage of flooding is that initial results are reported very fast.

The disadvantage is that the traffic generated increases exponentially at every hop. Every

node in the overlay handles the query traffic that is proportional to the total number of

nodes in the overlay [Adamic et al. 2001]. [Lv et al. 2002a] notes several limitations of

flooding, as below:

• Heterogeneity is not taken into account. The low capacity nodes are burdened with

the same load as the higher capacity nodes.

• Choosing an appropriate TTL is not easy. If the TTL is too high, the node unneces-

sarily burdens the network. If it is too low, the node might not find the object even

though copy exists somewhere.

• Duplicate queries are those which are sent to a node by its neighbours, although the

node has received that same query and processed it. Such messages are pure over-

head. Although Gnutella has duplicate detection mechanism that avoids processing

them, but that doesn’t prevent the duplicate messages being sent to the neighbours.

The figure 2.2 shows the duplicate messages in the network

[Lv et al. 2002a] proposes a method for addressing the TTL selection problem which

they call it as ’expanding ring’ method. Requester node searches with increasing TTLs

until a success is found. The results show that the method reduces the number of mes-

sages at the cost of delay in getting the response. [Yang & Garcia-Molina 2002] proposed

a flooding policy known as iterative deepening which performs multiple breadth-first

searches with successively larger depths. Suppose the policy P = {a.b.c} is defined at a

global level. The first search is carried out with TTL as a and second search with TTL

as b and the third search is carried out with TTL as c . The advantage with this is that

the requesting node has the freedom to decide whether to go for flooding at higher TTL

levels or not. The disadvantage is that the response can be huge in case the objects are

not found in lower TTLs. Also it generates a lot of duplicate messages. This is because

41

2.2 Approaches to Improve Search

Figure 2.2: Flooding in P2P overlay with TTL=3 - duplicate messages can be observed at
nodes D and E

the query with next level TTL has to go through all the nodes which would have already

received this query although they don’t process it.

The use of random walk method to find an object is proposed by [Lv et al. 2002a]. In

this method, the query is forwarded to a randomly chosen neighbour at each hop until

the object is found. k-random walkers can be used to reduce the delay. k-walkers after T

steps reach roughly the same number of nodes as 1-walker after kT steps. This way by

using k-walkers, the delay is reduced by a factor of k. 1-randomwalk is depicted in figure

2.3. 2-randomwalk is depicted in figure 2.4. The termination of random walkers is caused

either by TTL or checking with the source node or by maintaining status of the queries

received at each node.

The key difference between k-random walk and flooding is that, the granularity of

coverage is small in random walk. An additional step of search results in k messages in

random walk where as in flooding it results in dTTL number of messages, where d is the

average degree of the node.

The basic flooding and random walk searches have limitations. Flooding is inefficient

and doesn’t scale and random walks have long response times. These basic methods are

improved upon by several ways like overlay topology, routing criteria, object placement

etc. which are discussed below:

42

2.2 Approaches to Improve Search

Figure 2.3: Randomwalk in P2P overlay - randomwalk is initiated by node A. At each hop
the query is forwarded to a randomly selected neighbour. The randomwalk is terminated
when TTL reaches 0.

Figure 2.4: 2-Randomwalk in P2P overlay - two walkers are initiated by node A. At each hop
the walker is directed to a randomly selected neighbour. The walker is terminated when TTL
reaches 0.

43

2.2 Approaches to Improve Search

2.2.1 Adapting Topology

[Pandurangan 2001] proposes a scheme to build a connected overlay network of constant

degree and logarithmic diameter based on simple rules of choosing neighbours to connect

to from a cache maintained by a host which is always available. It does so with no global

knowledge of all the nodes and their topology in the network.

[Ratnasamy et al. 2002] proposes a ’binning’ strategy to build low-latency networks.

The nodes when they join measure their distance with respect to a set of land mark

machines in the Internet. Based on either the order of distances or the level of absolute

distances, the node chooses the bin to put itself in. This binning also helps in choosing the

peer with minimum latency to download the content from. This approach works without

any global knowledge and it is scalable.

[Lv et al. 2002b] proposes a simple capacity based topology adaptation mechanism

based on the neighbour statistics. In this method, if a node finds that node is sending

queries at a rate which it can’t handle, node finds another node among its neighbours

that has the maximum spare capacity and directs the qury to that node. By adapting links

in this way, the nodes are directed towards higher capacity nodes.

GES [Zhu & Hu 2006] uses information retrieval algorithms such as Vector Space

Model (VSM) and relevance ranking algorithms to improve search performance in Gnutella.

GES uses a distributed topology adaptation algorithm to organize semantically relevant

nodes into same semantic groups by using the notion of node vector. Given a query, GES

employs an efficient search protocol to direct the query to the most relevant semantic

groups for answers, thereby achieving high recall with probing only a small fraction of

nodes.

There are several other works that focus on topology adaptation to improve search.

Some of them are described in [Condie et al. 2004], [Xiao et al. 2005], and [Wang &

Wang 2006].

2.2.2 Replicating Objects

Some schemes have used replicating objects in the network in order to increase efficiency

and quality of results. Major considerations in replication are selection of objects and

44

2.2 Approaches to Improve Search

selection of sites. There are various replication techniques explored in literature like path

replication, square root replication [Lv et al. 2002a], Pull-Then-Push replication [Leontiadis

et al. 2006] etc.

2.2.3 Modifying Routing

There are several algorithms proposed in literature which explore possibilities of increas-

ing search performance by modifying routing mechanism of the search queries.

2.2.3.1 Neighbour Selection

In flooding, the query is forwarded to the entire set of neighbours blindly. Instead of

making the selection blind, it can be done with intelligence. In directed breadth-first-

search [Yang & Garcia-Molina 2002], the queries are forwarded to selected neighbours.

The selection of neighbours is based on a history maintained for each neighbour with

the characteristics such as number of query results returned and network latency of that

neighbour etc. Here, this selection is only done by the requesting node and the forwarding

nodes do flooding. In intelligent search [Kalogeraki et al. 2002], the selection of neighbours

is done by similarity metric that indicates how well the neighbour has answered similar

queries in the past. The similarity is measured by cosine similarity model. Unlike directed

BFS, in this case every forwarding node selects a subset of neighbours and forwards the

query. Intelligent search works better in locality based overlays.

In Adaptive Probabilistic Search (APS) [Tsoumakos & Roussopoulos 2003], k-randomwalk

is modified by incorporating probabilistic selection of neighbours to forward at each hop.

Each node maintains probability values for each of the neighbours. The probability value

is computed based on the results returned for the past queries. The node starts with

a guess value initially. As the queries are triggered in the network, the guess values

are adapted to reflect the neighbour’s response to the queries. While forwarding the

query, the neighbour with the maximum probability value is selected. Compared to

k-randomwalk, this mechanism has the same search efficiency but there is an increase

in the quality of the search results. [Zhang et al. 2007] considers object popularity and

neighbour node degree in combination with probability to select the neighbours which

45

2.2 Approaches to Improve Search

has further increased the efficiency of search. [Zhuge et al. 2005] developed a neighbour

ranking method based on trust metric. [Yuan & Yin 2007] proposed a neighbour rank-

ing method that considers number of shared files, number of query hits returned by the

neighbour, and the link capacity.

[Adamic et al. 2001] has shown that in power-law graphs, if random walk is targeted

to a well connected node instead of random selection, the search time and search coverage

is greatly improved. In a scalable overlay "Gia" proposed by [Chawathe et al. 2003], the

search is carried out using random walks that are targeted to nodes with high capacity.

In Gia, neighbours are free to say that if they are ready to accept queries or not. Nodes

distribute tokens to neighbors depending on their query handling capacity. A node selects

the highest capacity neighbor for which it has got the token which helps in flow-control.

2.2.3.2 Adaptive TTL Selection

For both flooding and random walk based searches, the TTL plays an important role of

determining when to terminate the search. Therefore in [Lv et al. 2002a], it is outlined

that TTL should be an adaptive parameter rather than a static value. In [Fisk 2005] a

dynamic query routing protocol is proposed. In this protocol, the source peer first sends

query packets towards a few neighbours with a small TTL value. The purpose of this

probe phase is to have an initial estimate of the popularity of the searched item. Then an

iterative process takes place. In each iteration, the source peer estimates the number of

peers to be contacted in order to obtain the desired number of results; then it calculates

the TTL of the query packet to be sent to the next neighbour. This iterative process

stops when the desired number of results is returned, or all neighbours have been visited.

[Jiang & Jin 2005] has enhanced the dynamic query routing by using greedy method of

selecting only one neighbour in each iteration. [Bisnik & Abouzeid 2007] have derived an

expression that gives the relationship between popularity of the object, number of random

walkers, and the TTL value. They have suggested that if the object popularity is known,

then the expression will give the number of random walkers and the TTL value so that the

search performance is optimized. [Thampi & Sekaran 2009] has categorized the network

into peers and power peers. Power peers have the capability of enhancing the TTL value

if they find that the object is very rare in the network.

46

2.2 Approaches to Improve Search

2.2.3.3 Routing using Indexes

Indexing is the most important tool for searching [Baeza-Yates & Ribeiro-Neto 1999]. In-

dex building is about creating and maintaining data structures that have files and their

location information.

In local indices technique [Yang & Garcia-Molina 2002], each node maintains an index

of data of all nodes within r hops of itself. When a node receives the query, it processes it

on behalf of all the nodes within r hops of radius. Creating and maintaining such index

involves extra overhead on the network. In routing indices technique [Crespo & Garcia-

Molina 2002], index is created for different topics in different routes. The index is used for

choosing a neighbour to forward the query. In this technique, the aggregate updates are

exchanged among the nodes to keep the index up to date. By sending only the aggregated

vectors, the overhead is reduced. In attenuated bloom filter technique [Rhea & Kubiatow-

icz 2002], an index for every neighbour and up to d number of hops is maintained. Index

for neighbour n stores the bits of objects generated by Bloom Filter [Bloom 1970] avail-

able at hop d through neighbour n. The index is maintained by exchanging the changed

bits. In [Zhang & Hu 2007], a global but partial index is built using a Distributed Hash

Tables (DHT) on top of the unstructured overlay. The index consists of peer’s top inter-

ests which is reflected by the nature of queries and objects a peer has. Changes in the

interests of peers involve changing the neighbours. In [Kumar et al. 2006], super peers de-

velop multi-attribute based content index by observing the QueryHit messages that pass

through it. They use this index to efficiently forward the queries to selected neighbouring

super peers. There is a separate index table for every attribute. The entries are deleted

based on an age factor. In advertisement based technique [Gu et al. 2007], a local index

is built by requesting neighbours up to certain hop level to send their ads or indexes. In

eSearch [Tang & Dwarkadas 2004b], index for every term is created. One node is respon-

sible for maintaining an index of one term. Nodes analyse their documents and find top

terms and publish them to the respective nodes responsible for those terms.

47

2.3 Study of Sybil Attack in File-sharing Overlays

2.2.4 Search Issues Addressed in this Thesis

There are several dimensions over which search problem can be investigated. One of the

dimensions that is considered in this research work is that adapting search function to

user needs. There is variety of search needs in a file-sharing overlay. Search can be for

a file to be downloaded, a music file to be streamed etc. Adapting search to provide for

the diverse search needs of users is one of the issues addressed in this research. Second

issue is that enhancing search efficiency by building an index without sending any extra

messages. Third issue addressed is that enhancing the search efficiency and quality by

making probabilistic decisions at every hop with the help of a soft computing technique.

2.3 Study of Sybil Attack in File-sharing Overlays

[Douceur 2002] has first given the name ’Sybil’ to the type of attacks where there can be

many to one correspondence between identity and entity in peer-to-peer networks.

2.3.1 Defining Sybil Attack

Sybil attack is an attack where an entity in a peer-to-peer network can masquerade itself

as multiple simultaneous identities in the network [Douceur 2002]. A peer-to-peer overlay

file sharing network consists of set E of infrastructural entities e. An identity is an abstract

representation that persists across multiple communication events. Each entity e attempts

to present an identity i to other entities in the system. Each correct entity e will attempt to

present one legitimate identity. Each faulty entity f may attempt to present a legitimate

identity and one or more counterfeit identities. Ideally, the system should accept all

legitimate identities but no counterfeit entities.

The problem with such duplicitous mapping of many virtual identities on to one entity

is the collective influence a single user can exert on the decisions & working of the entire

network if the multiple identities created by the user form a significant fraction of the

peer-to-peer network. This problem is pervasive in all distributed systems.

This attack is possible in any distributed network. But peer-to-peer network is an

attractive field for this attack due to its lack of central control, and large size. Peer-to-peer

networks have huge resources like processing power, bandwidth and storage contributed

48

2.3 Study of Sybil Attack in File-sharing Overlays

by the participants. These resources pose attractive target for attackers as the attackers

can exploit these resources for selfish purposes. Although this kind of attack is possible

in mobile ad-hoc networks and sensor networks, but there the nodes are constrained by

their physical characteristics [Dinger & Hartenstein 2006]. Since peer-to-peer network is

built at application layer the physical constraints don’t limit the Sybil attacks.

It is not very difficult to set up a Sybil attack. Creating an identity in the network is

as simple as starting another instance of the peer-to-peer client. If a malicious user has a

vast pool of resources at his disposal, he can create a large number of such identities.

2.3.2 Observed Instances of the Sybil Attack

Due to large size of P2P networks it becomes difficult to assess trustworthiness of a peer

with whom we interact. Therefore reputation systems are used to aggregate the collec-

tive experiences of peers about other peers [Resnick et al. 2000]. When a peer needs to

interact with another with whom it has not interacted so far, the reputation system helps

in making opinion about that peer. In online systems like Amazon, eBay etc reputation

systems are used to aggregate the ratings of sellers and goods. Such ratings have impact

on business transactions [Depken & Gregorius 2008]. In file-sharing overlays, reputation

of files affect users opinion whether to view that file or not. Such benefits attract mali-

cious attempts to manipulate the reputation systems. [Gyongyi & Garcia-Molina 2005]

have reported that the web page rankings can be manipulated by setting up a link farm.

[Bhattacharjee & Goel 2005] [Cheng & Friedman 2005] have reported similar instances

of manipulations using Sybil attacks. Sybil attack is commonly used to fool Google’s

PageRank algorithm [Bianchini et al. 2005]. PageRank algorithm is one of the most com-

monly used algorithms to compute the reputation of peers in reputation systems [Kamvar

et al. 2003].

The major problem in peer-to-peer computational systems such as SETI@home is that,

server should ensure that the clients are not cheating by submitting deceptive results

without fully performing all the computations specified. One way to detect this cheating

is to allocate the same task to multiple clients. But this redundancy can be subverted if

there is an agreement among the clients that they would return the same manipulated-

49

2.3 Study of Sybil Attack in File-sharing Overlays

result. In internet it is possible that all these clients can be instances of the same devious

entity who can synchronize the outputs of all the clients and thus mislead the server

[Yurkewych et al. 2005].

Sybil attacks create false routes in mobile ad hoc networks [Hu et al. 2002]. Sybil attacks

can disturb anonymous systems such as Tor by revealing user identities of anonymous

routing protocols [Dingledine et al. 2004]. Pastiche is a file storage system built on Pastry

overlay. Sybil attacks can subvert the distributed quotas by free-riding cooperative file

storage systems [Cox et al. 2002].

2.3.3 Sybil Attack Vs Collusion

Collusion attacks and Sybil attacks appear the same in their purpose but they do differ in

the means [Cheng & Friedman 2006]. Collusion is a strategy where nodes mutually agree

to subvert a network policy in a cooperative way. In Sybil attack, a single entity creates

multiple identities which are then used by the entity to subvert a network policy. In

collusion, every colluding node wants to gain advantage at the expense of its participation

in the subversion. But in Sybil attacks, all identities are controlled by one entity and

therefore there is no competition for gaining advantage. In collusion attack, the number

of nodes are not an large as in Sybil attacks. In Sybil attack creating large number of

identities is easy and cheap.

2.3.4 Characteristics of Sybil Attacks

The following are the some of the characteristics of Sybil attacks:

• The strength of Sybil attack depends on the number of identities it creates and how

much fraction of the network they occupy. The influence on the network is exerted

as a group but not at the individual identity itself. Therefore it is difficult to resolve

a Sybil attack at the identity level.

• Having a centralized server issuing the logins or providing authentication itself is

not sufficient to prevent Sybil attacks. Amazon, eBay etc have centralized authen-

tication systems but still they face Sybil attacks. The principle behind preventing

Sybil attack is that one should be able to map the real infrastructure entity to the

50

2.4 Approaches to Limit Sybil Attacks

virtual identities and then put a limit on such number of mappings. Such a system

requires one to authenticate the identity by a physical proof such as photo identity

card, credit card etc. Such a restriction on enrolling new entities into the system

severely limits the spread of systems among users.

• Sybil entities need not necessarily be creating disturbance in the network such as

launching distributed DoS attacks, or dropping the packets or poisoning the routing

tables, partitioning the network etc. It may be difficult to say what a Sybil identity

is doing is wrong. It may be doing the same thing like any other honest identities.

For example, a Sybil entity can position its identities strategically at different places

in the network and make sure that every packet in the network will pass through at

least one of its identity so that Sybil has control over the network. Looking at the

identity, one can’t say it is doing something malicious. It should be determined at

the network level. Another example is that a Sybil entity can increase the reputation

of a particular file by making all its identities respond positively to the reputation

metric. Looking at the individual identity it is difficult to say that what it is doing

is wrong because every identity has free will to respond positively or negatively to

the file.

2.4 Approaches to Limit Sybil Attacks

[Douceur 2002] proved that it is not possible to completely eliminate the Sybils in a peer-

to-peer network without a centralized authority which can verify the one-to-one corre-

spondence between identities and entities. He described puzzle methods that exploit

communication, storage or computational resource constraints. He proved that computa-

tional puzzle methods are not viable. In these puzzles, the verifier sends a large random

value to every other identity it wants to verify. These identities must then compute the

solution within a constrained amount of time. If an entity has more than one identity

it will fail to compute the solution within this time. The paper says that this can be cir-

cumvented by taking help of other powerful nodes. Thus he advocates the existence of a

central authority to prevent Sybil attacks.

Solutions to Sybil attack can be categorized as challenge-response imposing constraints

51

2.4 Approaches to Limit Sybil Attacks

on resources, binding the identity to physical characteristics, central authority certifica-

tion, characteristics of social networks based on trusted connections, based on Sybil be-

havioral characteristics and incentives.

2.4.1 Challenge-Response

The goal of resource testing is to attempt to determine if a number of identities possess

fewer resources than would be expected if they were independent. Challenge-response

utilizes puzzle methods that exploit communication, storage or computational resource

constraints of the participating nodes. In these puzzles, the verifier sends a large random

value to every other identity it wants to verify. These identities must then compute the

solution within a constrained amount of time. If an entity has more than one identity

it will fail to compute the solution within this time. These tests include checks for com-

puting ability, storage ability, and network bandwidth, as well as limited IP addresses

[Levine & Margolin 2006]. [Douceur 2002] says that this can be circumvented by taking

help of other powerful nodes and therefore, advocates the existence of a central authority

to prevent Sybil attacks.

[Borisov 2006] proposes to use computational puzzles to defend Chord from Sybil

attacks. In Chord, every node sends periodic ping messages to its neighbors. This scheme

proposes that along with every ping message, a sequence number and a challenge will

be sent to neighbor yi. The challenge is actually transformation of all neighbor identities,

latest sequence numbers and the latest challenges received from them. The SHA1 hash of

concatenating together the neighbor yi identity, and sequences number and challenge and

a random number and the challenge generated by the node in the previous round forms

the challenge for the next round. The puzzles are formed out of these challenges and

sequence numbers. The dependence of puzzle on the values received from the neighbors

makes it verifiable by the neighbors also. The author proposes that every node needs to

solve the puzzle by the time next ping message received. Even honest nodes are expected

to solve these puzzles. Here the heterogeneity of the nodes in their computation capacity

is not addressed.

[Rowaihy et al. 2007] present a hierarchical admission control system where at every

52

2.4 Approaches to Limit Sybil Attacks

level computation puzzle are used to validate the identity. The system creates a tree

where the root must be trusted and reliable. The root allows other trusted systems such

as major ISPs to join the system. These in turn allow smaller providers which in turn

allow ordinary users to join the system. When an ordinary wants to join the network, it

contacts one of the leaf nodes y of the hierarchical system. y gives a puzzle of guessing

R to x. The puzzle is hash(BKx ‖TS ‖R) where TS is a timestamp, BKx is the x’s public

key, R is the random number generated by y. The x must solve the puzzle by guessing R

so that it matches the value specified by y. Once x solves the puzzle correctly, y issues a

token that is encrypted by the secret key shared by y with y’s parent. When x approaches

the parent with the token, parent gives another puzzle to x. This way when x solves the

puzzle given by the root, then the root gives a special token suing which x can join the

network. This scheme only slows down the identity generation but not prevent the Sybil

attack. In case of the sybil being part of the hierarchy, the scheme proposes that parents

can observe the rate of generating tokens of their children. If it exceeds certain threshold,

that node can be removed from the hierarchy. There is also expiration time associated

with token so that even if a node tries to acquire large number of identities, the tokens

can’t be accumulated for long time. Here the honest nodes are also subjected to the same

tests.

2.4.2 Binding Identity to Network Metrics

[Bazzi & Konjevod 2005] proposed that an identity can be mapped to its physical loca-

tion. There are two types of nodes: applicants and beacon nodes. Geometric certificate

contains the distances measured between the node and the beacon and signed by both.

This approach introduces a equivalence relation where all nodes in one relation can’t be

distinguished from others in the same relation. Here the defect is that if the Sybil is

controlling entities in different relations then it is not possible to detect it. Also the al-

gorithms to measure distance don’t give stable values and requires considerable effort to

achieve stable values.[Bazzi & Konjevod 2005] proposes a secure distance vector routing

protocol that tolerates Sybil attack. They hop-chains using which the destination node

can certify remotely its distance to the nodes in the network. This protocol is on the lines

53

2.4 Approaches to Limit Sybil Attacks

of the method proposed by [Bazzi & Konjevod 2005] replacing round-trip delays with

hop-counts.

[Wang et al. 2005] proposed a concept of net-print. The net-print of a node is built using

node’s default router IP address, its MAC address and a vector of RTT measurements from

the node to designated land marks. Here the node identity is bound to physical network

characteristics. This data can be verified by other nodes making the identity theft difficult.

If there are several identities operating from the same subnet, they can be challenged with

computational puzzles concurrently. The changing network conditions will affect metrics

like RTT measurements. So to depend on these measurements to validate an identity

requires certain tolerance range on the measured values. This challenges the strict security

requirement in values. This approach fails when the node changes its physical location.

So this solution doesn’t apply to mobile hosts.

[Dinger & Hartenstein 2006] proposed a distributed registration mechanism for Chord.

Each identity calculates its id as a hash of its IP address and port number and registers

itself at r registration nodes in the Chord ring. These r registration nodes are discovered

using hash of IP and an integer j (1 ≤ j ≤ r). Registration nodes maintain list of identities

registered with them. If the registration node finds that the number of identities registered

with an IP exceed system-wide constant a, then it will reject the new identity. The new

node will be accepted only if
⌈ r

2

⌉
registration nodes confirm the acceptance. This solution

will work only if majority of the nodes are honest. Here the mapping is between identity

and its IP address. The cardinality of this mapping is controlled through a distributed

registration process. In this solution the influence of Sybil is limited to the number of IP

addresses it can possess.

2.4.3 Central Authority Certified Node Identities

[Castro et al. 2002a] argue that the only practical solution to prevent Sybil identities in the

peer-to-peer overlay network is to produce signed certificates that bind node identity to a

public key and the IP address of the node. To a prevent a malicious entity from obtaining

large number of certificates, one of the ideas authors propose is that each certificate can

be issued against a charge. Another is that certificates can bind to real-world identities.

54

2.4 Approaches to Limit Sybil Attacks

They allow multiple node IDs per IP address. Certainly this solution prevents Sybils but

it also slows down the propagation of the network services to new users. For IP based

schemes, for the nodes behind NAT-based firewalls, special provisions have to be made.

2.4.4 Based on Social Network Characteristics

[Danezis et al. 2005] present a modified Distributed Hash Table (DHT) routing model us-

ing a bootstrap tree for Chord network to resist the impact of Sybil attacks. The bootstrap

tree is an initial overlay that connects designated attachment nodes that can be used by

others to join the overlay. It is assumed that bad nodes or Sybil nodes are connected to the

rest of the bootstrap network through a single good node. Chord protocol is modified that

a node not only stores the ids of predecessors, successors and fingers but also the path

from itself to the nodes it knows. When a lookup query is received, the node distributes

the queries among the nodes it knows so that not too much trust is put on one single

node. At every lookup step in the iterative model, the node returns all its neighbors and

bootstrap paths. A node is trusted if it is on the bootstrap path from the requesting node

to itself. The core of Sybil defense mechanism consists of distributing queries around the

network in such a way that no small set of nodes is predominantly present on the paths

of the queries. It is not mentioned to what extent the logarithmic lookup times can be

maintained with this approach. It increases the overhead in lookups.

In Sybilguard [Yu et al. 2006], the authors have proposed a distributed algorithm to

limit the entry of Sybil identities into a social network, exploiting the fact that there are

very few trust edges between an honest and a Sybil group in a social network. They have

designed a protocol in which the verification of a new entry into the network is done by

intersection of random routes. The problem with these approaches is that they work only

with networks that have evolved based on social trust relationships. This is not the case

in a majority of the existing public peer-to-peer file sharing systems such as Gnutella,

Freenet etc.

[Lesniewski-Laas & Kaashoek 2010] present Whanau, a one hop DHT based routing

protocol which exploits social connections between users to construct routing tables which

allow for Sybil resilient lookups. The file lookup algorithm suggested offers a significant

55

2.4 Approaches to Limit Sybil Attacks

speed up over the traditional flooding techniques seen in existing peer to peer networks.

A major drawback of the approach is that it assumes that honest nodes have more social

connections to other honest nodes rather than to Sybil nodes which may not always be

the case.

SybilInfer [Danezis & Mittal 2009] offers a decentralized protocol to guard the network

against Sybil attacks exploiting the fact that a Sybil attack would interfere with the fast

mixing property of social networks. The approach entails a probabilistic model to help

tag network nodes as either honest or Sybil wherein each such tag contains an assigned

probability, referring to the degree of certainty of the result. The approach suffers from

assuming that there is at least one honest node in the network which is known a priori

whereas in reality there is always a remote possibility of an attacker mimicking the hon-

est side of the social network as a consequence of which no detector would be able to

distinguish the honest region from the corrupt one.

2.4.5 Based on Sybil Behavioral Aspects

[Jyothi & Dharanipragada 2009] have proposed a mechanism that by observing the be-

haviour of a node by an honest node, the extent of damage Sybils can cause can be

limited. The method associates every peer with another non-sybil peer known as SyMon.

A given peer’s SyMon is chosen dynamically such that the chances of both of them being

Sybils are very low. The chosen SyMon is entrusted with the responsibility of moderating

the transactions involving the given peer and hence makes it almost impossible for Sybils

to compromise the system. The SyMons’ feedbacks help new requester peers in verifying

the past transaction history of provider peers and hence in identifying honest provider

peers that serve good files. Thus, SyMon can help in preventing Sybils from decreasing

the content availability of the system. The authors propose secure algorithms to choose

the SyMon. Here the method serves its purpose only in the cases where the nodes be-

haviour can be termed bad by looking at its bad history. But in case of Sybils, the nodes

need not necessarily be doing bad activities at the individual identity level.

56

2.4 Approaches to Limit Sybil Attacks

2.4.6 Incentives

[Margolin & Levine 2007] analyse an economic approach to Sybil attack detection em-

ploying a protocol referred to as Informant. Informant uses a Dutch auction technique to

determine the minimum possible reward to force the Sybil to reveal itself. The method

assumes that there are some nodes in the network called detectives who are not Sybils.

These nodes start the protocol offering monetary benefits to nodes if they reveal their Sybil

identity. Detectives keep increasing the monetary benefit until it reaches the B
2 where B

is the detective’s monetary benefit for learning about a Sybil relationship. This proposal

requires implementation of digital currency. Also the model assumes that Sybil identities

are rational.

2.4.7 Sybil Issues Addressed in this Thesis

We have classified and discussed the existing approaches to Sybil attack in the previ-

ous sections. Along those lines, the thesis contributes approaches namely in challenge-

response, based on behavioural characteristics, and based on psychometric personality

tests.

57

Chapter 3

Algorithms to Improve Search

Efficiency

Search is an essential function of peer-to-peer file sharing overlays. The objects are shared

by nodes in the network. When a particular node needs a file, first it needs to locate the

file and then get the file. Without search functionality, file sharing is not practical.

In this chapter, two methods are proposed to improve the efficiency of search in un-

structured peer-to-peer networks.

3.1 Search Efficiency

Search in peer-to-peer networks is different from search in a local repository of docu-

ments. Precision and recall are two metrics primarily used to measure the performance of

search in a local repository. Suppose a repository having n documents has a set r of rele-

vant documents for a query q. When q is executed, system retrieved a set t of documents.

Precision and recall are defined as

precision =
|{r} ∩ {t}|
|{t}| (3.1)

recall =
|{r} ∩ {t}|
|{r}| (3.2)

58

3.1 Search Efficiency

Metrics in 3.1 and 3.2 indicate the efficiency of search algorithm. More the precision and

recall more efficient is the search algorithm.

In peer-to-peer networks scenario, the search is carried over a network of nodes. There-

fore apart from the metrics in 3.1 and 3.2, network performance also needs to be consid-

ered. Network resources like bandwidth, storage and computation cycles of nodes are

utilised in carrying out the search. The consumption of network resources coupled with

characteristics of search results determines the efficiency of a search algorithm. An ideal

search algorithm will utilise minimum resources and gives best quality results. The fol-

lowing parameters quantify resource consumption and results quality. Finally we outline

a unifying measurement of search efficiency.

• Coverage: In an unstructured network, the success of a query depends on its cov-

erage. Larger is the coverage, more is the probability to find the object. Larger

coverage also results into large number of results. This is defined as the ratio of

number of nodes receiving the query to the total number of nodes in the network.

In a network of N nodes, if the query reaches c nodes, then

coverage =
c
N

(3.3)

• Message Count: Any network protocol requires a set of messages to be transmitted.

Here a message is exchanged over a overlay link between two nodes. The generation

of such messages has a direct implication on consumption of network resources.

The more the messages, the more will be bandwidth consumption and the more

will be processing and storage overhead on individual nodes. In a n-node network

with average degree d, the average aggregate bandwidth ABW of a search query Q

having size S(Q) with TTL k is computed as

ABW = [((d− 1) + (d− 1)2 + . . . + (d− 1)k) + (1 + (d− 1)

+(d− 1)2 + . . . + (d− 1)k−1)] ∗ S(Q)

ABW =
[
(d− 1) 1−(d−1)k

2−d + 1−(d−1)k

2−d

]
∗ S(Q)

ABW = d
(

1− (d− 1)k

2− d

)
∗ S(Q) (3.4)

59

3.1 Search Efficiency

ABW computed by the eqn. 3.4 gives an approximate because here the duplicate

messages, variations in node degree, and responses are not considered.

• Message Duplication Rate: As shown in in figure 3.1, duplicate messages get gen-

erated during the query propagation. These messages are transmitted over the net-

work but never processed at the receiving ends. They consume bandwidth. Less the

number of duplicate messages, more will be the efficiency of the search algorithm.

Figure 3.1: Duplicate queries reaching nodes D and E - The query is triggered by A reaches
D and E twice although it is not processed

• Success Rate: Success rate is how many queries have found the object successfully.

In unstructured networks, there is a possibility that the object may not be found

although it may be present in the network. This is due to the limited network-

coverage of the search. Coverage of flooding is limited by TTL. If there are |Q|

queries fired, and if there are only |SQ| successful queries then success rate SR is

defined as

SR =
|SQ|
|Q| (3.5)

• Response Time: Response time is the time counted from triggering of the query to

the time when first response is received. This metric indicates how quickly search

could give answers. This metric is related to user satisfaction. Sometimes response

60

3.1 Search Efficiency

time is also measured as the number of hops between requester node and responder

node.

• Query Hits: Number of query hits is the number of responses received for a single

query. The number of responses can at the most be the number of replicas of the

object being searched for. This metric gives indication of extent of freedom the user

has in choosing where to get the object from.

• Unifying Metric All the above metrics give different aspects of search efficiency. [Lin

& Wang 2003] defines a single metric for measuring and comparing performance

of different search algorithms. For a network of size n, if a query q generates m

messages, and returns h number of query hits then query efficiency (QE) of query q

is defined as

QEq =
h
m
n
=

nh
m

(3.6)

Search responsiveness (SP) is defined as ratio of success rate (as in eqn. 3.5) to

response time. Response time is proportional to hops between requester and re-

sponder. Search responsiveness is defined as

SP =
SR

∑
q=|SQ|
q=1

hopsq
|SQ|

(3.7)

Search Efficiency (SE) is defined as (QE)avg × SP.

SE =
|Q|

∑
q=1

QEq

|Q| × SP (3.8)

This is a relative measurement. It is important to have unifying metric. For example,

a search procedure may consume very few messages but the query hits may be

very few. This procedure is very efficient but not satisfactory. This unifying metric

combines the effect of both, query efficiency and quality.

61

3.2 Improving Efficiency by Fuzzy Probabilities

3.2 Improving Efficiency by Fuzzy Probabilities

In peer-to-peer networks, peers connect to the network through neighbour-peers. There-

fore neighbour selection is an important task as a part of joining the network. This is done

once at the time of joining the network. There are several criteria by which a peer can

select neighbours. But there is another instance where a peer selects a few of its neigh-

bours while searching. This selection of subset of neighbour-peers greatly enhances the

efficiency in consuming network resources. In flooding search method, all neighbours are

selected to forward the query message. This in-turn is imitated by all the neighbours in

the consequent hops. As per bandwidth expression 3.4, query messages increase expo-

nentially with every hop. On other extreme, a random-walk chooses a single neighbour

on a random fashion and forwards the query. For a 1000-node network with an average

node degree of 8 and a query TTL of 7, flooding generates approximately 87 = 2097152

messages but to reach all 1000 nodes we need only 1000 messages.

Randomwalk generates only a single message in every hop. But Flooding has the

advantage of quick coverage of significant network nodes and quick results where as

randomwalk is very slow and covers only very small fraction of network. Therefore a

balanced approach can blend the advantages of quick coverage and efficient network

resource usage. One of the ways of bringing this balance is by being considerate about

selecting a subset of neighbours to forward the query. In literature, random selection of

neighbours is classified under blind-search schemes and selection based on some specific

criteria is classified under intelligent-search schemes.

There are various ways by which a subset of neighbours are selected. Heuristic cri-

teria proposed by [Yang & Garcia-Molina 2002] is shown in table 3.1. Cosine similarity

approach is proposed by [Kalogeraki et al. 2002]. For a given query q, a peer ranks its

neighbours using a cosine similarity function. Peer maintains a profile for each neighbour

and records the queries answered by them. When q needs to be forwarded it computes

aggregated query similarity between q and the queries answered by its neighbours.

62

3.2 Improving Efficiency by Fuzzy Probabilities

Table 3.1: Criteria for selecting a subset of neighbours - Source: [Yang & Garcia-Molina 2002]

Criteria Description
> RES Returned the greatest number of results in the past 10

queries
< TIME Had the shortest average time to satisfaction in the past 10

queries
< HOPS Had the smallest average number of hops taken by results

in the past 10 queries
> MSG Sent our client the greatest number of messages (all types)
< QLEN Had the shortest message queue
< LAT Had the shortest latency
> DEG Had the highest degree (number of neighbors)

3.2.1 Fuzzy Scheme for Choosing Neighbour-subset

Previous works used criteria based solely on the past performance of the neighbours.

Past performance does indicate the node’s capability to answer the queries. But recording

past performance takes time and it is not immediately applicable to new neighbours.

Also for any type of query, using past performance alone may lead to targeting only few

nodes making them hotspots and overloaded. In this scheme, we propose a neighbour-

subset selection scheme that is based on content classification and a set of heuristics.

[Zhao et al. 2006] and [Meng et al. 2006] analysed the files shared in Gnutella network.

One inference from that analysis is that all types of content like audio, video, document,

programs are not uniformly shared by nodes. Some nodes share audio more than video,

some video more than audio etc. Keeping this in view, a neighbour-subset selection can

be based on what type of content the neighbour is sharing. For finer discrimination, each

type of file is further classified based on the popularity of the file: popular, normal, rare.

The heuristic is that if the query is looking for a rare video file, it is mostly likely that

it may be found in a node which shares a large number of video files and out of which

large proportion is rare video files. Popularity of a file is decided by the user. The concept

of popularity of a file is dependent on a person’s perception and it is totally up to the

individual to decide whether a file should be regarded as popular or rare or normal. One

person may consider a particular file as popular and another may consider it to be normal.

This is a subjective choice. Fuzzy logic is useful in representing such ambiguities.

Fuzzy system was first proposed by [Zadeh 1965]. He showed that fuzzy logic can

63

3.2 Improving Efficiency by Fuzzy Probabilities

accept values between TRUE and FALSE, unlike classical logic. Elements of a fuzzy set

not only represent TRUE or FALSE but also a degree of truth or a degree of falseness.

Classical set theory classifies the elements into a crisp set where as fuzzy set theory can

classify the elements into a continuous set using the notion of degree of membership.

Membership function gives the values in the range [0, 1]. We use fuzzy sets to classify

content, popularity etc.

3.2.1.1 Neighbour Content Classification

A node in a peer-to-peer network shares variety of content like audio, video, documents

etc,. [Meng et al. 2006] through their study on Gnutella peer-to-peer network identified

the content types the nodes share and the estimated proportions. The table 3.2 shows

these content types and the percentage proportion. This information about a node can

give indications for what type of content it can be approached. Suppose if a node shares

a large number of video files, it is highly probable that the video file another node is

searching for may be found here. But this is not guaranteed. It is just an indication. To

map this kind of heuristics to peer-to-peer search, we use fuzzy sets to classify the content

with some confidence. On the basis of the study of [Meng et al. 2006], in every node, the

content is classified into Audio, Video, Programs, Archives, Documents, and Pictures. It

is upto the individual node to classify the content. Popularity is one of the notions which

guide people’s decisions and search for an object. For example, generally to look for a

rare book, one goes to an established library. To find some book which is very popular,

any street shop is fine. These tendencies are also mapped to peer-to-peer search. Each file

of a particular content type is classified as popular, normal or rare with some confidence.

This way there are totally 18 (6× 3) categories into which the files shared by a neighbour

are classified. A file can be classified into multiple popularity categories as the user thinks

it may fit in. For an example, a peer is sharing 110 files. Out of 110 files, audio files are

20, programs are 15, videos are 25, documents are 20, pictures are 25, and archives are

5. These files are further classified as popular, normal and rare files. These statistics are

shown in table 3.3.

64

3.2 Improving Efficiency by Fuzzy Probabilities

Table 3.2: Content types and proportion percentage - these statistics are measured over total
network

Content Type Percent of Files
Audio 79%
Program 6%
Video 5%
Document 4%
Picture 4%
Archive 2%

Table 3.3: Example: Files shared by a peer - Popular, normal and rare columns show the
number of files under a particular content type

Content Type Number of Files Popular Normal Rare
Audio 20 10 6 4

Program 15 3 2 10
Video 25 13 5 7

Document 20 20 0 0
Picture 25 20 5 0

Archives 5 3 2 0

3.2.1.2 Fuzzification

Previous section 3.2.1.1 described how a peer classifies its content. The goal of classi-

fication is to let the neighbours know the probabilities of finding the contents with it.

Each file is classified as Audio-Rare, Audio-Normal, Audio-Popular, Video-Rare, Video-

Normal, Video-Popular etc. Given that a neighbour is searching for Video-Rare file, what

is the probability that such a file can be found in this peer. To answer such questions, a

peer computes the probabilities for all 18 categories. There are simple ways of computing

the probabilities but here the human search tendencies needs to be properly represented

in the probability value. Fuzzy sets help in capturing the human judgements in quanti-

fying values. This section describes the fuzzy variables, fuzzy sets and their membership

functions used in the proposed search scheme.

There are three fuzzy input variables, namely the number of files in a content category,

the percentage of files in a popularity subcategory and the probability of finding the

content in neighbours.

Number of files in a content category (no f): The input variable no f consists of three

fuzzy sets, i.e., large, medium, and small. The fuzzifiers used are triangular and trape-

zoidal membership functions. The membership function associated with each fuzzy set is

65

3.2 Improving Efficiency by Fuzzy Probabilities

defined as

µ
no f
small =

1 if no f < 20
80−no f

60 if no f ≥ 20 and no f ≤ 80

0 if no f > 80

(3.9)

µ
no f
medium =

0 if no f < 20
no f−20

30 if no f ≥ 20 and no f ≤ 50
80−no f

30 if no f ≥ 50 and no f ≤ 80

0 if no f > 80

(3.10)

µ
no f
large =

0 if no f < 20
no f−20

60 if no f ≥ 20 and no f ≤ 80

1 if no f ≥ 80 and no f ≤ 100

0 if no f > 100

(3.11)

These membership functions are determined by intuition and experience. A graphical

presentation of membership function of no f is shown in figure 3.2. For example, to

calculate the probability of Video-Rare, no f (as listed in table 3.3) is 25. From equations

3.11, 3.10, and 3.9, the values for each fuzzy set are determined as

µ
no f
small(25) = 0.92 µ

no f
medium(25) = 0.17 µ

no f
large(25) = 0.084

Figure 3.2: Membership function for number of files (no f) - fuzzy sets small and large have
trapezoidal fuzzifiers and medium has triangular membership function

Percentage of files in a popularity subcategory(po f): The input variable po f is the

percentage proportion of number of files of a popularity sub-category in a category. Sup-

pose we want a very old book whose publication had stopped. Its more probable that we

will find it in a library which keeps old books rather than a book shop though both of

66

3.2 Improving Efficiency by Fuzzy Probabilities

them contains almost the same number of books. The probability of finding a rare book is

more in a library since the library has more number of such rare books. The tendency to

share or liking for certain type of files is represented by percentage proportion. The input

variable po f consists of three fuzzy sets, i.e., high, medium, and low. The membership

function associated with each fuzzy set is defined as

µ
po f
low =

1 if po f < 20
80−po f

60 if po f ≥ 20 and po f ≤ 80

0 if po f > 80

(3.12)

µ
po f
medium =

0 if po f < 20
po f−20

30 if po f ≥ 20 and po f ≤ 50
80−po f

30 if po f ≥ 50 and po f ≤ 80

0 if po f > 80

(3.13)

µ
po f
large =

0 if po f < 20
po f−20

60 if po f ≥ 20 and po f ≤ 80

1 if po f ≥ 80 and po f ≤ 100

0 if po f > 100

(3.14)

A graphical presentation of membership function of po f is shown in figure 3.3. For

example, to calculate the probability of Video-Rare, po f (as listed in table 3.3) for rare

files is 7
25 × 100 = 28%. From equations 3.14, 3.13, and 3.12, the values for each fuzzy set

are determined as

µ
po f
low(28) = 0.87 µ

po f
medium(28) = 0.27 µ

no f
high(28) = 0.14

Figure 3.3: Membership function for percentage of popularity sub-category files (po f) -
fuzzy sets low and high have trapezoidal fuzzifiers and medium has triangular membership
function

67

3.2 Improving Efficiency by Fuzzy Probabilities

Probability (≤ 1) of finding the same content in neighbours(ngprob): The input

variable ngprob is the probability of finding the same category-subcategory content in the

neighbours. If the neighbours have different probabilities, the maximum is assigned to

this variable. Purpose of this variable is to embed the next-hop feasibility in the current

hop’s probability. The input variable ngprob consists of three fuzzy sets, i.e., high, medium,

and low. The membership function associated with each fuzzy set is defined as

µ
ngprob
low =

1 if ngprob < 0.2
0.8−ngprob

0.6 if ngprob ≥ 0.2 and ngprob ≤ 0.8

0 if ngprob > 0.8

(3.15)

µ
ngprob
medium =

0 if po f < 0.2
ngprob−0.2

0.3 if ngprob ≥ 0.2 and ngprob ≤ 0.5
0.8−ngprob

0.3 if ngprob ≥ 0.5 and ngprob ≤ 0.8

0 if ngprob > 0.8

(3.16)

µ
ngprob
large =

0 if po f < 0.2
ngprob−0.2

0.6 if ngprob ≥ 0.2 and ngprob ≤ 0.8

1 if ngprob ≥ 0.8 and ngprob ≤ 1

0 if ngprob > 1

(3.17)

A pictorial presentation of membership function of ngprob is shown in figure 3.4. For

example, to calculate the probability of Video-Rare, ngprob of five neighbours is taken as

max {0.2, 0.34, 0.13, 0.67, 0} = 0.67. From equations 3.17, 3.16, and 3.15, the values for each

fuzzy set are determined as

µ
ngprob
low (0.67) = 0.23 µ

ngprob
medium(0.67) = 0.44 µ

ngprob
high (0.67) = 0.78

3.2.1.3 Output Fuzzy Set

The probability of finding category-subcategory content in a node is considered to be

the output fuzzy variable. The output fuzzy variable probability has five fuzzy sets, i.e.,

verylow, low, medium, high, and veryhigh. The universe of discourse for each member of

the fuzzy set is

68

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.4: Membership function for of finding the probability of the same content in
neighbours (ngprob) - fuzzy sets low and high have trapezoidal fuzzifiers and medium has
triangular membership function

• Very Low [0, p]

• Low [q, r]

• Medium [s, t]

• High [u, v]

• Very High [w, 1]

where p, q, r, s, t, u, v, w are real numbers between 0 and 1. The membership function for

probability is pictorially shown in 3.5.

Figure 3.5: Membership function for fuzzy output variable (probability) - fuzzy sets verylow
and veryhigh have trapezoidal fuzzifiers and others have triangular membership function

3.2.1.4 Knowledge Base

Rules are designed based on human logic to find the output from the conditions of input

variables. They are arrived at by experience. For example, if the number of video files

is large and the percentage of the files with ’rare’ popularity rating is medium and the

probability of finding the ’video-rare’ content in neighbours is low then the probability of

finding a ’rare video’ file in that peer is high. There are several rules like this. They are

69

3.2 Improving Efficiency by Fuzzy Probabilities

all put into tabular format as shown in table 3.4. These 27 rules are used to determine

the value of output fuzzy variable. The fuzzy output is defuzzified to get the actual

probability value.

Table 3.4: Fuzzy rules - no f , po f , and ngprob are input fuzzy variables and probability is the
output fuzzy variable

Rule no f po f ngprob probability
1 small low low very low
2 small medium low very low
3 small high low low
4 medium low low low
5 medium medium low medium
6 medium high low medium
7 large low low high
8 large medium low high
9 large high low very high
10 small low medium very low
11 small medium medium very low
12 small high medium low
13 medium low medium medium
14 medium medium medium medium
15 medium high medium medium
16 large low medium high
17 large medium medium very high
18 large high medium very high
19 small low high very low
20 small medium high low
21 small high high low
22 medium low high medium
23 medium medium high medium
24 medium high high high
25 large low high high
26 large medium high very high
27 large high high very high

3.2.1.5 Rule Implication

A rule contains antecedents (inputs) and consequent (output) actions. Rule gives the

linguistic mapping between these two sets. To map on degree of membership between

input and output fuzzy sets, Mamdani implication rule [Mamdani 1977] is used. For the

input fuzzy set A and output fuzzy set B, Mamdani implication rule is stated in eqn. 3.18.

70

3.2 Improving Efficiency by Fuzzy Probabilities

The implication result is a fuzzy set which is a minimum of µA and µB.

φ[µA(x), µB(y)] ≡ µA(x) ∧ µB(y) (3.18)

Example for calculating Video-Rare probability: Consider Rule 1 in table 3.4. It states

that if the number of video files are small, and the percentage of rare video files is low

and the probability of finding it in neighbour is also low then the probability of finding a

rare-video in this node is very low. In this rule there are three input fuzzy sets and one

output fuzzy set. First, all three input fuzzy sets need to be combined into one. They are

connected by ’and’ connective. The ’and’ connective is replaced by intersection operator.

Intersection of fuzzy sets A and B is the minimum degree of memberships of sets A and

B. It is stated in eqn. 3.19.

µA∩B(x) = µA(x) ∧ µB(x)

= min(µA(x), µB(x)) (3.19)

The resultant antecedent value for Rule 1 is calculated as

= µ
no f
small(25) ∧ µ

po f
low(28) ∧ µ

ngprob
low (0.67)

= min {0.92, 0.87, 0.23}

= 0.23

Now Mamdani implication rule (eqn. 3.18) is applied to antecedent and consequent fuzzy

sets of the rule.
≡ µA(x) ∧ µB(y)

≡ min
{

0.23, µ
probability
verylow

}
The resultant antecedent membership value 0.23 truncates the membership of verylow

output fuzzy set along the ordinate axis. This is graphically presented in figure 3.6. The

same way, for the ’video-rare’ example, other 26 rules need to be applied. While applying

rules, the same fuzzy set may have two different Mamdani rule implications. For example,

for rule 1 and rule 19, the output fuzzy set verylow receives two implications. This is

graphically presented in 3.7.In such cases, the output is aggregated using union operator.

71

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.6: Mamdani implication rule applied to Rule 1 - Red line is the minimum value
along the ordinate axis

Table 3.5 shows the application of Mamdani implication rule to all rules for the ’rare-

video’ example. The final aggregated values for each fuzzy set is listed in table 3.6. The

implications are graphically presented in figure 3.8.

Figure 3.7: Mamdani implication rule applied to Rule 1 and Rule 19 - final output is the
union of the output by Rule 1 and Rule 19

3.2.1.6 Defuzzification

Fuzzified inputs are transformed into fuzzy outputs. The process of deriving a scalar

or crisp value from the fuzzified outputs is called defuzzification. The final fuzzy output

aggregate is shown in figure 3.8. The centre of gravity method is the most commonly used

method to derive crisp value. Centre of gravity method was proposed by [Sugeno 1985].

The defuzzified value is obtained by

x∗ =
∫

µi(x)xdx∫
µi(x)dx

(3.20)

where x∗ is the defuzzified output, µi(x) is the aggregated membership function and x is

the output variable. For the aggregated output shown in figure 3.8, the defuzzified output

72

3.2 Improving Efficiency by Fuzzy Probabilities

Table 3.5: Mamdani implication rule applied to all rules - actual implication is on the fuzzy
set membership. The last column shows the truncating value along the ordinate axis for fuzzy
output set probability

Rule no f po f ngprob upper bound
1 0.92 0.87 0.23 0.23
2 0.92 0.27 0.23 0.23
3 0.92 0.14 0.23 0.14
4 0.17 0.87 0.23 0.17
5 0.17 0.27 0.23 0.17
6 0.17 0.14 0.23 0.14
7 0.084 0.87 0.23 0.084
8 0.084 0.27 0.23 0.084
9 0.084 0.14 0.23 0.084

10 0.92 0.87 0.44 0.44
11 0.92 0.27 0.44 0.27
12 0.92 0.14 0.44 0.14
13 0.17 0.87 0.44 0.17
14 0.17 0.27 0.44 0.17
15 0.17 0.14 0.44 0.14
16 0.084 0.87 0.44 0.084
17 0.084 0.27 0.44 0.084
18 0.084 0.14 0.44 0.084
19 0.92 0.87 0.78 0.78
20 0.92 0.27 0.78 0.27
21 0.92 0.14 0.78 0.14
22 0.17 0.87 0.78 0.17
23 0.17 0.27 0.78 0.17
24 0.17 0.14 0.78 0.14
25 0.084 0.87 0.78 0.084
26 0.084 0.27 0.78 0.084
27 0.084 0.14 0.78 0.084

Table 3.6: Aggregated fuzzy outputs - the outputs for different rules are aggregated using
union operator

Output Fuzzy Set Upper Bound
Very Low 0.78
Low 0.27
Medium 0.17
High 0.14
Very High 0.084

73

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.8: Aggregated fuzzy outputs of all rules - final aggregation is also shown in the
bottom portion

can be computed as

x∗ =
∫ 0.144

0 0.78xdx+
∫ 0.246

0.144 (−5x+1.5)xdx+
∫ 0.446

0.246 0.27xdx+
∫ 0.466

0.446 (−5x+2.5)xdx+
∫ 0.666

0.466 0.17xdx+∫ 0.144
0 0.78dx+

∫ 0.246
0.144 (−5x+1.5)dx+

∫ 0.446
0.246 0.27dx+

∫ 0.466
0.446 (−5x+2.5)dx+

∫ 0.666
0.466 0.17dx+

+
∫ 0.672

0.666 (−5x+3.5)xdx+
∫ 0.872

0.672 0.14xdx+
∫ 0.8832

0.872 (−5x+4.5)xdx+
∫ 1

0.8832 0.084xdx

+
∫ 0.672

0.666 (−5x+3.5)dx+
∫ 0.872

0.672 0.14dx+
∫ 0.8832

0.872 (−5x+4.5)dx+
∫ 1

0.8832 0.084dx

x∗ = 0.008+0.01+0.0186+0.002+0.019+0.0006+0.02+0.001+0.009
0.11+0.053+0.054+0.0044+0.034+0.00093+0.028+0.001+0.0098

x∗ = 0.09
0.298

x∗ = 0.3

This calculation is for the category ’Video-Rare’. It says that a rare video file can be

found in this node with probability of 0.3. There are 17 more categories for which the

same procedure is applied to obtain the probabilities. Every node maintains 6× 3 matrix

containing probability values for 18 categories. This matrix is broadcast to neighbours

upon any changes.

3.2.2 Search Algorithm

Previous section described how a node classifies its content and assigns probabilities to

content classes. In search process, these probabilities are used to direct the queries. There

are two actors in this process, i.e.,

• Query Processing Node

74

3.2 Improving Efficiency by Fuzzy Probabilities

• Neighbour Node

Query Processing Node:This node is any node which processes the query that is on its

way. If a node n has ng neighbours, then it would maintain ng 6× 3 probability matrices

in addition to its own. When a search query arrives at its door step, it will execute steps

as shown in the algorithm given in figure 3.9. When the node joins the network, it gets

the probability tables from its neighbours.

Input: Query q

1 if TTL(q)=0 then
2 discard query;
3 return;
4 end
5 if q is already processed then
6 discard query;
7 return;
8 end
9 foreach file in FileSet do

/* check whether the file is found locally */
10 hits← φ;
11 if keywords(q) match keywords(file) then
12 hits← hits ∪ f ile;
13 end
14 end
15 if hits 6= φ then
16 send hits back to requester;
17 else
18 continue;
19 end
20 foreach neighbour ng in neighbourSet do

/* probability tables are stored in local cache */
21 probTable← getProbabilityTable(ng);
22 prob[ng]← f indProbability(probTable, f ileType(q), popularity(q));
23 end
24 sortDescendingOrder(prob);
25 ng← getTopEntry(prob);
26 TTL(q)← TTL(q)− 1;
27 Forward Query q to ng ;
28 return;

Figure 3.9: Procedure: ProcessSearchQuery()

Neighbour Node: Every neighbour node maintains its own probability tables. When-

ever there is a content change in the neighbour node it updates the probability values and

broadcasts probability table to all its neighbours. The steps in this process is shown in the

75

3.2 Improving Efficiency by Fuzzy Probabilities

algorithm given in figure 3.10.

1 foreach category c in 6 ContentTypes do
2 foreach subcategory s in 3 Popularities do
3 Compute no f , po f , ngProb;
4 Fuzzify input variables no f , po f , ngProb;
5 foreach rule r in FuzzyRuleSet do
6 Compute resultant antecedent membership function for r;
7 Apply Mamdani Implication Rule on r;
8 end
9 Aggregate the fuzzy outputs for all rules;

10 prob[c, s]← Defuzzified crisp value using centre of gravity method;
11 end
12 end
13 foreach neighbour ng in NeighbourSet do
14 send prob to ng;
15 end
16 return;

Figure 3.10: Procedure: UpdateProbabilityTable()

3.2.3 Experiment Setup

A discrete-event simulator is developed to perform simulations.

3.2.3.1 Simulator Model

The simulator model is shown in figure 3.11. Nodes are modelled as objects who have

references for the neighbour nodes. Every node has an incoming queue that accumulates

the messages added by neighbour nodes. The processing of these messages is handled

by an individual thread. Each node object is handled by a separate thread. The message

passing is done by directly adding the message to the incoming queue of the destination

node. Each node runs in an infinite loop processing the messages in the queue. The end

of simulation is indicated by the Simulator thread by setting a loop-guard parameter to

true. The messages are categorized into query, and query hit. The messages are treated

differently according to their type. If the message is a query it is cloned and forwarded

to neighbours.

Simulator thread reads the topology and accordingly builds the whole network. The

bandwidth and latency values are assigned to the links. It also distributes the objects to

76

3.2 Improving Efficiency by Fuzzy Probabilities

nodes according to the plan given. Simulator thread fires the queries in sequential way

on behalf of the nodes. It puts the query messages into the queue of the corresponding

node. This model resembles the real world network very closely. The advantage of this

model is that one can record time based observations like traffic growth w.r.t time. It also

gives fine control on logging, and giving statistics summaries.

Figure 3.11: Simulator Model - each node is an object and a queue is attached to every node

3.2.3.2 Simulation Setup

A 1000-node topology, generated by GT-ITM[Zegura et al. 1996] is used. Simulator builds

a network of 1000 nodes with average degree of 9.34. There are 150 distinct objects in the

network. Each object is replicated in proportion to its popularity following zipf distribu-

tion [Chu et al. 2002]. If n objects are ranked from 1 to n by their popularity, then the

number of replicas r of object i with rank k are calculated as

ri ∝ 1
kα

(3.21)

α is taken as 0.83. There is a total of 4756 objects spread across the network. 3008 queries

are fired for objects in the network. The proportion of queries for an object is proportional

to the popularity of the object, reflecting the real situation. Simulation is done for differ-

ent neighbour-subset selection strategies proposed in the literature. In all cases, query

propagation is done through 20 walkers, each with TTL of 1024.

77

3.2 Improving Efficiency by Fuzzy Probabilities

3.2.4 Result Analysis

The purpose of carrying out this simulation was to compare our approach with other

neighbour-subset selection approaches proposed in the literature. Apart from the fuzzy

based approach developed herein, random selection, cosine similarity, maximum node

degree, maximum messages, maximum results, and minimum hops were considered for

simulation and cross comparison. All approaches were simulated with a common sim-

ulation environment. Search performance of different approaches was compared on the

basis of the metrics mentioned in the section 3.1. The search statistics were collected from

log files. They are displayed in table 3.7.

78

3.2
Im

proving
Efficiency

by
Fuzzy

Probabilities

Table 3.7: Search performance metrics computed for various approaches - these statics are obtained from simulations done in the same environ-
ment

Random
Selection

Cosine
Similarity

Maximum
Results

Maximum
Node
degree

Minimum
Hops

Maximum
Messages

Fuzzy
Based
Probability

Number of nodes 1000 1000 1000 1000 1000 1000 1000
Total queries fired 3008 3008 3008 3008 3008 3008 3008
Total query hits 17195 19508 15771 11853 15612 17885 18438
Successful queries 2941 2905 2851 2577 2856 2954 2929
Total messages 354750 403424 302030 179165 300156 381451 224149
Average Hops from
HitNode

5.51 3.296 4.734 2.93 4.62 6.07 3.488

Duplicate Messages 11051 8744 12494 16392 12648 10520 9822
Avg Query efficiency 1.61 1.61 1.74 2.2 1.73 1.56 2.73
Search Responsiveness 17.74 29.3 20.02 29.24 20.55 16.18 27.92
Search efficiency 28.56 47.17 34.83 64.33 35.55 25.24 76.22

79

3.2 Improving Efficiency by Fuzzy Probabilities

3.2.4.1 Query Efficiency

Query efficiency is measured by the following parameters. They indicate consumption of

network resources.

• Message Generation: From the table 3.7, number of messages generated are largest

in cosine similarity approach and smallest in maximum-node-degree approach. Larger

are the number of messages, greater is the network bandwidth consumed. The num-

ber of messages generated by Fuzzy-probabilities approach is nearly half of that of

cosine similarity approach. Message generation is proportional to number of hops

taken by the query. In cosine similarity approach, the object is found far away from

the requester node and very near by in maximum-node-degree approach.

• Duplicate Messages: One of the factors that effect performance of the search algo-

rithm is duplicate messages. A duplicate message is a message that is forwarded to

a neighbour which processed the same message before. A large number of dupli-

cate messages indicate that there is some problem with the query propagation. The

messages would have been directed in a better way. Duplicate message percentages

for these approaches are presented in figure 3.12.

Figure 3.12: Percentages of duplicate messages of neighbour subset selection approaches -
Flooding is not a neighbour subset selection approach. It is given here as a contrast.

80

3.2 Improving Efficiency by Fuzzy Probabilities

From the figure it can be observed that the highest duplication percentage is of

flooding. Among the neighbour subset selection approaches, highest percentage

is of maximum node degree 9.15% and the least is of cosine similarity approach

2.17%. In cosine similarity approach, the forwarding of the query is based on how

closely the keywords match with the profile of the neighbour. Therefore every query

is forwarded according to the characteristics of the query. But in maximum-node-

degree approach, every query is forwarded to the neighbour with maximum degree.

Therefore there is high probability that queries will reach the same node again. In

fuzzy-based-probability approach, 4.38% of messages are getting wasted. Although

the query propagation is based on content type, but not by the actual keyword

match as in the case of cosine-similarity approach.

Figure 3.13: Average query efficiencies of neighbour subset selection approaches - efficiency
value doesn’t correspond to percent.

Different approaches have advantages in different metrics. Query efficiency is mea-

sured by eq. 3.6. Query efficiencies for all approaches are depicted in figure 3.13.

Query efficiency is maximum in fuzzy-probability approach.

3.2.4.2 Search Responsiveness

Search responsiveness is measured by the following parameters. They measure user sat-

isfaction.

• Success Rate: Success rate is defined by eq. 3.5. It is maximum in maximum-

messages approach and minimum in maximum-node-degree approach. Fuzzy-

81

3.2 Improving Efficiency by Fuzzy Probabilities

probabilities approach has success rate near to best case. Success rate indicates

ability to find the object even if it is in far away place.

• Hop Count: Hop count is measured as the number of hops between the requester

node and the hit node. Hop count is small, it means the response is very quick.

Smallest hop count is found in maximum-node-degree approach and largest is

found in maximum-messages approach. Fuzzy approach is near the best case. This

is graphically presented in figure 3.14. It means that maximum-node-degree ap-

proach is finding objects in the shortest path. This also means that minimum num-

ber of messages are required to reach the hitnode.

Figure 3.14: Average hops between the requesting node and the hit node in neighbour
subset selection approaches - hops indicate the response time

• Query Hits: Query hits are the number of responses received from network for a

query. User can select a suitable response and initiate the transfer of data. Cosine-

similarity model has maximum number of responses returned.

Search responsiveness is given by eq. 3.7. These values are depicted in figure 3.15.

Best response is offered by cosine-similarity, maximum-node-degree approaches and

fuzzy-probability approach.

82

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.15: Search responsiveness of neighbour subset selection approaches - responsive-
ness value doesn’t correspond to percent. It is merely a metric for comparison and doesn’t
stand on its own.

3.2.4.3 Search Efficiency

Each approach is performing good in some parameter and performing bad in some pa-

rameter. Search efficiency is measured by the eq. 3.8. These values are computed from

table 3.7 and plotted in figure 3.16. The maximum search efficiency is found in fuzzy-

probability approach. It has 18.5% increase over maximum-node-degree approach.

3.2.4.4 Load Distribution on Neighbours

One of the implications of neighbour selection approaches is the load they incur on the

neighbours. If the same set of neighbours are chosen frequently to forward the queries, it

will overburden them. Comparison of the load per node in three approaches is presented

in figure 3.17.

The graph presents message generation CDF curves of maximum-node-degree, cosine-

similarity and fuzzy-probability approach. It can be noted that cosine-similarity has

fastest growing CDF and maximum-node-degree approach has the slowest growing curve

upto some node. Cosine-similarity approach generated largest number of messages.

Maximum-node-degree approach generated smallest number of messages. Another im-

portant thing to look at is the pattern of load per node. In maximum-node-degree ap-

83

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.16: Search efficiencies of neighbour subset selection approaches - efficiency value
doesn’t correspond to percent. It is merely a metric for comparison and doesn’t stand on its
own.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 100 200 300 400 500 600 700 800 900 1000

M
es

sa
ge

 C
ou

nt

Node Number

Max Degree CDF
Fuzzy Probability CDF
Cosine Similarity CDF

Figure 3.17: CDF of messages per node for top three neighbour subset selection approaches
- CDF means Cumulative Distribution Function

84

3.2 Improving Efficiency by Fuzzy Probabilities

proach there is sudden increase in the slope after node number 900. A closer look at

this reveals that 92% of the nodes processed only 38% of the traffic and 8% of the nodes

process 62% of the traffic. This means that some of the neighbours are overloaded than

others. There will some load imbalance because nodes are heterogeneous in their capac-

ities. Some have better capabilities than others. But here the load distribution is greatly

skewed. In cosine similarity approach, 8% of nodes processed 21.6% of the traffic whereas

in fuzzy-probability approach 8% of nodes processed 22.8% of the query traffic.

3.2.4.5 Hybrid Approach

The disadvantage of maximum-node-approach is that it creates a load-imbalance on

neighbours, high percentage of duplicate messages, low success rate and it has low query

efficiency. Advantages of this approach are targets are found in shortest path, and has got

high search responsiveness. The disadvantage of fuzzy-based approach is that it is not

able to find the objects in short paths and its responsiveness is also low. The advantage of

this approach is that it has got high success rate and the highest query efficiency. Com-

bining the two approaches can result in an hybrid approach to neighbour selection. The

hybrid criteria for choosing the neighbour j is computed as

criteriaj = w1×
nodedegreej

dmax
+ w2× f p (3.22)

where w1 and w2 are weights for degree of neighbour and fuzzy probability of neighbour

respectively. dmax is the highest node degree in the network and f p is the fuzzy probability

of the neighbour.

As it is expected, this approach has got higher returns. The results are summarised

in table 3.8. Query efficiency, search responsiveness and search efficiency are shown in

figures 3.18, 3.19 and 3.20. The two approaches are combined at various proportions of

w1 and w2 to get a hybrid metric. There are improvements in both ways, i.e., query

efficiency and search responsiveness. The maximum search efficiency is found when they

are combined at 36-64 proportion, i.e., 36% weight given to maximum-node-degree and

64% given to fuzzy-probability approach. The load imbalance also is reduced as depicted

in figure 3.21. In Hybrid approach, 8% of the nodes processed 38% of the query traffic in

85

3.2 Improving Efficiency by Fuzzy Probabilities

the network as compared to 62% in the case of maximum-node-degree approach..

86

3.2
Im

proving
Efficiency

by
Fuzzy

Probabilities

Table 3.8: Search performance metrics computed for hybrid approach - these statics are obtained from simulations done in the same environment

Only
Node
Degree
(100-0)

60-40 50-50 40-60 37-63 36-64 35-65 33-67 30-70 Only
Fuzzy
Prob
(0-100)

No of nodes 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Total query hits 11853 14050 14987 16118 16398 16451 16534 16720 17115 18438
Successful queries 2577 2731 2776 2833 2836 2853 2856 2863 2856 2929
Total msgs 179165 182179 184681 190604 192137 192074 193937 196142 202150 224149
Total queries 3008 3008 3008 3008 3008 3008 3008 3008 3008 3008
Avg Hops 2.93 2.98 3 3.043 3.058 3.0356 3.071 3.133 3.19 3.488
Avg Query efficiency 2.2 2.56 2.7 2.81 2.84 2.85 2.83 2.83 2.81 2.73
Search Responsive-
ness

29.24 30.47 30.76 30.95 30.83 31.24 30.92 30.38 29.76 27.92

Search efficiency 64.33 78 83.05 86.97 87.56 89.03 87.5 85.98 83.63 76.2287

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.18: Average query efficiencies of the hybrid approach - 60-40 indicates 60% weight
given to maximum-node-degree and 40% weight given to fuzzy-probability

Figure 3.19: Search responsiveness of the hybrid approach - 60-40 indicates 60% weight
given to maximum-node-degree and 40% weight given to fuzzy-probability

3.2.5 Conclusion

We have proposed a new approach for neighbour subset selection. Many of the pre-

vious approaches are based on the heuristics which don’t consider the incoming query

expectations. Cosine similarity approach considers the incoming query expectations but

considers only the past answering profile of the neighbours to direct queries. Maximum-

88

3.2 Improving Efficiency by Fuzzy Probabilities

Figure 3.20: Search efficiencies of the hybrid approach - 60-40 indicates 60% weight given to
maximum-node-degree and 40% weight given to fuzzy-probability

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600 700 800 900 1000

M
es

sa
ge

 C
ou

nt

Node Number

Fuzzy Only CDF
30-70 CDF
33-67 CDF
35-65 CDF
34-66 CDF
37-63 CDF
40-60 CDF
50-50 CDF
60-40 CDF

Max Degree Only CDF

Figure 3.21: CDF of messages per node for the hybrid approach - CDF means Cumulative
Distribution Function

89

3.3 Improving Efficiency by Indexing

node-degree approach is very good at systematically propagating the queries but lacks in

success rate and has huge loss of messages. Fuzzy approach guides the queries to those

neighbours which have the similar tendencies in content sharing. Simulations show that

fuzzy approach has increased the search efficiency by 18.5%. Also by combining the fuzzy

approach with maximum-node-degree approach, the best of both are combined with 38%

increase in search efficiency.

3.3 Improving Efficiency by Indexing

In the previous section 3.2, search problem is addressed by modifying routing procedure.

It reduces traffic but yet keeping the search results at par. In this section, the search

problem is approached through indexing. No information retrieval system can function

efficiently without indexing. Indexing works through indirection. Pointers to objects are

collected and placed in a particular order to create an index. Once the index is created, the

lookup for any data item happens on the index first. Then the information of the location

of the data item is known. Accessing the data item takes only O(1) time. In centralized

systems, index is created and maintained at a single location for all data items.

In a fully decentralized system, data is spread across the nodes in the network. Each

node has information only about its own data items. In such a situation, pointers or

indexes to data items that belong to other nodes can be created. These indexes will

give information about where does the data item is located. But the question is how to

create such indexes. Indexes can include all data items or few data items in the network.

This decision effects the number of messages required to create the index. To create

indexes, nodes need to exchange special messages telling about each other about the data

items. In a very large network, the number of messages also increase exponentially. Also

maintaining the consistency of the indexes becomes a problem here.

In unstructured P2P networks, the lookup for an object involves forwarding the queries

to all neighbours. This generates huge message traffic in the network. As the queries are

forwarded, the traffic exponentially multiplies at each hop. This degrades the network

performance and thus limits the scalability in terms of number of queries. As the num-

ber of queries increase in the network, the whole network bandwidth is consumed by

90

3.3 Improving Efficiency by Indexing

these query messages. This burdens the peers with unnecessary duplicate messages and

message processing resulting in huge response times to the querying peers. There are

ways to utilize the huge traffic generated and reduce further the query explosion. Here

a query-based index propagation approach for disseminating the content indices through

the query traffic is presented. Every query carries a summarized index of contents of the

peers that are on its way. At every node, the indices are copied to local cache and the local

indices are updated in the query message. The nodes can lookup the local index cache

and directly contact the node for the object. If the index record is not found, the search

falls back on the default lookup algorithm. As time passes, the query traffic reduces and

reaches a steady state. In this work, we focus on how to best utilise the query traffic to

disseminate the indexes, and evaluate different methods of doing it.

3.3.1 Indexing in Peer-to-Peer Search

Search in unstructured peer-to-peer networks is carried out with the help of several nodes.

In this situation, indexing means storing the address of the node where the data item is

located. Creation of index involves exchange of messages among the nodes. The aim of

indexing in such a situation would be to reduce the number of hops taken to find the

object and at the same time balancing with index maintenance cost. Index maintenance

cost is measured in terms of number of messages required to create and update the index.

[Zhang & Hu 2007] proposed a taxonomy for indexing schemes in peer-to-peer systems.

They have classified the schemes in terms of scaling of number of nodes and number of

objects. This classification is shown in table 3.9.

Table 3.9: Classification of pee-to-peer indexing schemes - columns indicate the scope of
nodes and rows indicate the scope of the objects

Nodes in Neighbour-
hood

All Nodes at Global-
scale

Partial Data Items Routing indexes Assisted search
Total Data Items Floating Indexes (our

approach), Probabilis-
tic location routing us-
ing attenuated bloom
filters

pSearch , eSearch

Routing indexes [Crespo & Garcia-Molina 2002] method indexes subject areas and the

91

3.3 Improving Efficiency by Indexing

number of items available for that subject in a neighbour. Scope of indexing is limited to

only for local neighbour hood. In attenuated bloom filter based approach [Rhea & Kubia-

towicz 2002], all items are indexed but only the indexes of local neighbourhood are stored

at one place. Our approach also approximately fits into this category. Assisted search

[Zhang & Hu 2007], pSearch [Tang et al. 2003], and eSearch [Tang & Dwarkadas 2004a]

are discussed in chapter 2. In the proposed approach, all items are indexed but the indexes

are distributed through queries. Therefore indexes may reach every node in the network

or may reach only a few. It depends on several factors. At least it can be confidently said

that every node will have indexes of its neighbourhood.

3.3.2 Proposed Indexing Scheme

The approach encourages the idea that instead of using separate messages, index infor-

mation is disseminated by the query traffic. There is always a trade-off between the scope

of the index and maintenance cost. In one extreme every node can keep index of all

the objects available in the network. That will surely make all the queries one-hop (zero

hops for lookup and one hop for getting the object). But the cost associated with main-

taining such an index prohibits that approach. On the other extreme searching loses its

grace without indexing. Indexing is the most important tool for searching [Baeza-Yates &

Ribeiro-Neto 1999].

Our approach is based on day-to-day observation that information about festivals,

events and government policies are propagated the posters on the public transportation

buses, trains etc. The vehicles communicate the information to the people wherever they

go. There is additional cost for transport. We augment that idea to suit the peer-to-

peer networks. Each query can be seen as a vehicle carrying the index information of

all the nodes it has passed through. The nodes receiving the query copy all the index

information. Before forwarding the query it adds its indices to the query if there is

free space in the query. This way whoever the query reaches gets benefited. When the

node needs to find the object, it looks up its index cache and if there is a match it will

immediately contact the peer.

Our approach is fundamentally based on the observation that query traffic of pub-

92

3.3 Improving Efficiency by Indexing

lic file sharing peer-to-peer networks occupies most of the internet traffic. In [Saroiu

et al. 2002a], it is observed that p2p network traffic occupies the 40% of total internet

traffic. In [Gummadi et al. 2003], it is reported that there are 562 transactions per second

happening in Kazaa [kaz 2001] network. This clearly gives the extent of queries in p2p

systems. Not only successful queries but even unsuccessful queries can be used as ve-

hicles for carrying index information. Not only queries but even the query replies and

download requests can be used for this purpose. This provides us with a large percentage

of traffic for conveying index information.

3.3.2.1 Index Creation

A query passes through many nodes and if every node adds its index to the query, query

will increase in size and will consume huge bandwidth. To address this issue we use

Bloom Filers to store and send only the summarized index for specified number of files

in one node. Bloom Filters [Bloom 1970] are widely used to represent elements of a set

using a bit set hashed through a set of hash functions. The filter may report an element

is present even though it is not present in the set. This is known as false positive. But the

filter never reports absence of an element when it is present in the set. The false positive

probability (f pp) of representing set of elements of size n depends on size (in number of

bits) m of Bloom Filter and size k of the set of hash functions. From equation 3.24, it can

be noted that f pp reduces exponentially as n is reduced, and as k and m are increased.

Typically m and f pp are computed as follows.

m =
k ∗ n
ln 2

(3.23)

f pp = (0.6185)
m
n

(3.24)

Now let us apply Bloom Filters to Gnutella protocol. Here we have a set of constraints.

First, query message size is limited. Maximum query size as per Gnutella protocol 0.6

[gnu 2002], is 4 KB. The number of files shared by users varies from zero to thousands. So

to have one bloom filter for all files in a node is not feasible. Second, Bloom Filters don’t

have an option for deleting elements. It can only add new elements into the filter. So

93

3.3 Improving Efficiency by Indexing

nodes create a set of Bloom Filters for the objects shared for the network. Nodes exchange

Bloom Filters not a part of it. That is if there is an update in a Bloom Filter, entire Bloom

Filter is exchanged with neighbour nodes. So it requires identifying each Bloom Filter

uniquely across the network so that it is possible to replace old Bloom Filter with new

one.

As observed in [Saroiu et al. 2002b], in a p2p file sharing network, 75% of nodes share

100 or less number of files. So it will be appropriate to group 100 files of a node and

represent their file names in one Bloom Filter. Nodes having more than 100 files will have

more than one Bloom Filter to convey their indices. By fixing size of n at 100, we have

various alternatives in choosing the sizes of m and k. [Fan et al. 2000] documents the f pp

values for optimised combinations of m
n and k. As k increases f pp falls exponentially. The

choice of k effects the bandwidth consumption, and the time required to disseminate the

indices.

For supporting efficient dissemination and updating of indices across the network

without extra cost we propose the following structure called Query Index Record (QIR).

QIR record consists of the following fields.

• N: node identity such as IP address

• B: the bandwidth (mbps) of the connection available at node N

• R, S, Dc: set of Bloom Filter Record (BFR) at N

– R: record number unique for N

– S: m bit vector

– Dc: date on which Bloom filter is created by N. It is measured as seconds that

have elapsed since the starting of the network. This date is used to compare

the freshness of the BFR.

A BFR is uniquely identified in the network by the combination of N and R.

A query carries several QIR records as many as it can fit in its message. Let us see an

example of estimating the number of indexes carried by a query. As observed in [Saroiu

et al. 2002b], a node is sharing maximum of 8000 files. Each BFR can store summary of

94

3.3 Improving Efficiency by Indexing

100 files as discussed above. The value of R doesn’t exceed 100 in worst case thus takes 1

byte space. For k = 6, the size of BFR record in bytes is (1, 109, 4) = 114 bytes. The size

of QIR record in bytes is (4, 1, size of BFR set). Also each node has a local cache of Node

Index Records (NIR). When a query arrives at a node, the QIR is stored at the local node

in the form of NIR. Each NIR has the following fields in addition to the fields in QIR.

• Dlu: the date on which it was last successfully used. Dlu is used for removing the

NIR after certain time.

• Dll : the date on which it was loaded on to a query. Dll is used in deciding which

indices to be loaded onto the query.

A Gnutella 0.6 Query message takes maximum of 54 bytes assuming that keywords

usually take less than 30 characters thus be within maximum of 30 bytes. Maximum

message size is 4 KB. Then it is possible to fit in 4096−54
119 = 35 index records in each

Query message. The 35 index records convey the locations of 3500 objects in the network.

What should be done when there are more than 35 index records to load on to a query is

discussed in next section.

So, indexes for data items are created in units of Bloom filters. Each bloom filter is

identifiable uniquely in the network.

3.3.2.2 Index Dissemination

In an unstructured peer-to-peer network, queries are propagated either through flood-

ing or through a random-walk or by a hybrid method. Flooding is a breadth-first search

method where as random-walk is a depth first search method. In the proposed indexing

scheme, the indexes are propagated through queries. Therefore index dissemination is

completely dependent on how well queries are propagated. Three parameters that char-

acterize this are:

• Query density: This indicates how query firing is spread out in a network. In this

work, it is assumed that approximately each node fires the same number of queries.

• Query rate: It is the number of queries fired by a node per unit time. If the rate at

which queries are fired is γ, then the probability that a node will fire q queries in t

95

3.3 Improving Efficiency by Indexing

time units is

P(q, t) =
(tγ)q

q!
e−nγ (3.25)

• Query forwarding method: There are two primary methods, i.e. flooding and

random-walk. In flooding, a single query is cloned into all neighbours at every hop.

But in random walk with k-walkers, at every hop, a query is forwarded to only one

neighbour. In flooding query traffic is much higher than that of random walk.

Figure 3.22: A simplified system model of unstructured peer-to-peer network - A has d
neighbours. Every node has d neighbours.

Consider a simple model shown in figure 3.22. Assume that for transferring a message

or query from one node to another, one unit of time is taken. Every node fires γ queries

per unit time. In case of flooding,

• at t0, every node fires γ queries.

• at t1, every query advances by one hop. At node A, the number of incoming queries

are dγ.

• at t2, number of incoming queries are dγ + ∑d−1
i=0 neighbourCount(i)× γ.

96

3.3 Improving Efficiency by Indexing

Steady state is reached when t = TTL. At steady state the number of queries (β)

entering node A per unit time is

βA = dγ + d(d− 1)γ + d(d− 1)2γ + . . . + d(d− 1)TTL−1γ

= dγ 1−(d−1)TTL−1

2−d

(3.26)

In case of random-walk having k walkers,

• at t0, every node fires γ queries.

• at t1, at node A, the number of incoming queries are k
d γ. k

d is the probability of

choosing node A by a neighbour to forward the query.

• at t2, number of incoming queries are k
d γ + k

d−1 γ.

• at t3, number of incoming queries are k
d γ + k

d−1 γ + k
(d−1)2 γ.

At steady state (t = TTL), the number of queries (β) entering node A per unit time is

βA = k
d γ + k

d−1 γ + k
(d−1)2 γ + . . . + k

(d−1)TTL−1 γ

= kγ(1 + 1
d−1 +

1
(d−1)2 + . . . + 1

(d−1)TTL−1)

= kγ
1−(1

d−1)
TTL−1

1− 1
d−1

≈ kγ(d−1
d−2) for large TTL values

(3.27)

Equations 3.26 and 3.27 estimate the maximum number of queries that enter a node per

unit time. Many of the queries might have found a match or they would have become

a duplicate message etc. In flooding, the probability of a query reaching the same node

which it had reached before is quite high. But in random walk, this is very low.

Index creation in each local node is described in section 3.3.2.1. These indexes are dis-

seminated either through flooding or through random-walk methods. Since the indexes

are floated through queries, this indexing scheme is called as ’Floating Indexes(FI)’. There

are two ways in which floating indexes can be replicated.

• Floating indexes Breadth-wise (FIB): In this scheme, the query relinquishes all the

indexes in the local node and takes in a set of indexes which are given by the local

node. In figure 3.23, node A has (x, y, z) indexes stored with it. The incoming query

97

3.3 Improving Efficiency by Indexing

is carrying (a, b, c) indexes. When the query reaches A, all the indexes in the query

are copied to cache of A and a set of indexes in A are loaded onto the query based

on some selection criteria.

Figure 3.23: Floating indexes Breadth-wise (FIB) scheme - A has (x, y, z) indexes. Incoming
query is carrying (a, b, c) indexes

• Floating indexes Depth-wise (FID): In this scheme, the indexes in the query are

preserved. In addition, if there is free space, local indexes are added to the query.

The original indexes are not relinquished. In figure 3.24, when the query reaches

node A with indexes (a, b, c), the indexes are copied to local node and the indexes

with A are added to the query if there is space.

Figure 3.24: Floating indexes Depth-wise (FID) scheme - A has (x, y, z) indexes. Incoming
query is carrying (a, b, c) indexes

98

3.3 Improving Efficiency by Indexing

In FIB scheme, an index at node A is spread in proportion to the number of queries

processed by node A. In FID scheme, the indexes are spread in proportion to the number

of queries fired by the node. In FIB, incidents of duplicate indexes reaching the same

where they are already present are far less than in FID where the query carries the index

of the source node intact. In FIB scheme, even if the node itself doesn’t have too many

queries to fire, still its local indexes are propagated equally. In FID scheme, the node

which fires a search query propagates its indexes to the depth of TTL. If a node doesn’t

have too many search queries but has many files to share, its indexes are not well spread.

In flooding, due to vast coverage of the queries, overall both the schemes work the same

way. But in random walk, FID scheme spreads the indexes in more uniform way than

in FIB scheme due to random selection of neighbours to forward the queries. For prop-

agating updates or the changed indexes, in FIB it is quicker because there are kγ(d−1
d−2)t

queries in t time units where as FID has only γt queries in the strict sense.

3.3.2.3 Search Procedure

Node Join: When a node joins the network, during the initial handshake with neighbours,

it collects NIR from each neighbour and updates its local index cache. Acquiring NIR

from queries alone would take enormous time given the fact that nodes would use indexes

to lookup the objects instead of queries. Also, node creates NIR records for the files it

wants to share.

Search: When a node wants to lookup for set of keywords W, it first looks up its

own files and index as shown in the search algorithm in 3.25. If successful, the output

of this algorithm is a set of hosts H which may have the file. Out of set of hosts H,

choseHostWithMaxBw() procedure chooses the host h with maximum bandwidth. If there

are no matches, it will resort to usual lookup method i.e, flooding or random walk. It

creates a new query. The query q is populated with the NIR. In case the node has

more indices than it could fit in the query, it will choose the indices based on Dll as

shown in 3.27. The indices are chosen in a round-robin fashion ensuring that all the

indices are propagated. The sort() method sorts the index records on Dll in ascending

order. Similarly when a node receives the query, procedure given in 3.26 is executed.

The node will scan the incoming query q for the QIR records and either replaces or

99

3.3 Improving Efficiency by Indexing

adds them to local cache. The criterion for either replacing or adding is shown in 3.28.

After updating the local index cache, it will search files and the local index cache. If

it finds a match or matches, it will make a reply message and includes the addresses

and the bandwidth information of all the nodes it has found to have the desired object.

But it doesn’t confirm whether the object really exists in the network. So the result may

include the false positives also. If it doesn’t find a match, it will forward the query to its

neighbours.

1 begin
2 NodeIdentity: N; Bandwidth: B; Result: R;
3 Host: H;
4 IndexCache: I;
5 Files: F;
6 Neighbours: P;
7 foreach file f in F do
8 if match(f, W) = true then
9 R← R ∪ f ;

10 end
11 end
12 if R = φ then
13 foreach index record i in I do
14 if BloomFilterMatch(i, W) then
15 H ← H ∪ (N, B)i;
16 end
17 end
18 else
19 return R;
20 end
21 if H = φ then
22 q← makeQuery(W);
23 q← loadIndex(q, I);
24 foreach neighbour n in P do
25 forward q to n;
26 end
27 else
28 h← choseHostWithMaxBw(H);
29 requestDownload(h, W);
30 end
31 end

Figure 3.25: Search procedure at source node: Search(Keywords W)

100

3.3 Improving Efficiency by Indexing

1 begin
2 NodeIdentity: N; Bandwidth: B; Result: R;
3 Host: H;
4 IndexCache: I;
5 Files: F;
6 Neighbours: P;
7 Guidcache: C;
8 updateIndexinNode(q, I);
9 if guid(q) in C then

10 return
11 end
12 foreach file f in F do
13 if match(keyword(f), keyword(q)) = true then
14 R← R ∪ f
15 end
16 end
17 if R = φ then
18 foreach index record i in I do
19 if BloomFilterMatch(i, W) then
20 H ← H ∪ (N, B)i;
21 end
22 end
23 else
24 return R;
25 end
26 if H = φ then
27 q← loadIndex(q, I);
28 select a neighbour n from P at random;
29 forward q to n;
30 else
31 send H ∪ R to sender;
32 end
33 end

Figure 3.26: Query processing at a node: ReceiveQuery(Query q, Node sender)

101

3.3 Improving Efficiency by Indexing

1 begin
2 Int: QSize;
3 I ← sort(I, ”Dll”);
4 q← clearIndexes(q);
5 QSize← 0;
6 foreach index i in I do
7 load (N, B, R, S, Dc)i onto q;
8 set Dll to current time;
9 QSize← QSize + QIR_SIZE;

10 if QSize + QIR_SIZE > QUERY_MSG_SIZE then
11 return;
12 end
13 end
14 end

Figure 3.27: Procedure for loading index onto a query: loadIndex(Query q, IndexCache I)

1 begin
2 boolean: f ound;
3 foreach index record r in R do
4 f ound← f alse;
5 foreach index record i in I do
6 if Ni = Nr and Ri = Rr then
7 f ound← true;
8 if Dc(i) < Dc(r) then
9 i← r;

10 end
11 end
12 end
13 end
14 if not found then
15 I ← I ∪ r;
16 end
17 end

Figure 3.28: Procedure for copying indexes from query to node: updateIndexinNode(Query q,
IndexCache I)

102

3.3 Improving Efficiency by Indexing

3.3.3 Experiment Setup

The simulator model is discussed in section 3.2.3.1. We used a 1000 node random graph

generated by GT-ITM [Zegura et al. 1996] with average degree of 9.3. We used a pure P2P

model where there is no distinction among the peers. All peers have equal functionalities.

There are 6000 distinct objects in the network with the 1st object being the most popular

and 6000th object being the least popular. The objects and queries are distributed accord-

ing to the observations made in [Chu et al. 2002]. The replica distribution of these objects

is done according to the Zipfian distribution with parameter α = 0.82. The replicas are

placed at randomly selected nodes. Queries for these objects also follow the Zipfian dis-

tribution (α = 0.82) i.e. the popular objects receive more queries than that of less popular

objects. Total number of objects in the network including the replicas are 28137. Average

number of objects per node are 36.5. There are 10000 queries, each query being fired from

a randomly chosen node. The lapse between two consequent queries is approximately

100 milli seconds. The node distribution is kept the same for all simulations. But the

file distribution, and query firing order are kept in two different sets. Results of set1 are

shown here. Results from set2 are similar to that of set1.

Churn: Churn refers to the events of nodes joining and leaving the system. The rate

of these events is high in peer-to-peer file sharing networks. To model the churn scenario,

after every 500 queries, 30 nodes are removed from the network and 30 nodes are added.

The new nodes start functioning without any prior knowledge. A set of new objects are

replicated onto these new nodes according to Zipfian distribution. For simulating the

search method flooding, the TTL is set to 4 and for k-random walk 4 walkers are used

and TTL for each is set to 1024. The parameters for Bloom Filter are number of files

m/n = 32, k = 8. With these parameters there is false positive probability of 5.73× e−06

[Fan et al. 2000]. Maximum query size is 4096 bytes.

3.3.4 Result Analysis

The purpose of this simulation is to verify the effectiveness of floating indexing scheme

and compare it with the attenuated bloom filters (ABF) or probabilistic routing scheme

proposed in [Rhea & Kubiatowicz 2002]. Simulations are carried out for various combi-

103

3.3 Improving Efficiency by Indexing

nations:

• Flooding TTL=4

• Random-walk with 4 walkers

• Floating indexes with flooding with breadth-wise spread

• Floating indexes with random-walk with breadth-wise spread (FIB)

• Floating indexes with random-walk with depth-wise spread (FID)

• Floating indexes with fuzzy-walk with breadth-wise spread (fuzzyFIB). This is the

integration with the solution proposed in the section 3.2.

• Attenuated Bloom Filters (ABF) with levels 2 and 3

3.3.4.1 Flooding

Table 3.10 displays the summary findings for flooding search method for various TTL

values.

Table 3.10: Search performance metrics computed for Flooding approach - these statics are
obtained from simulations done in the same environment

TTL=1 TTL=2 TTL=3 TTL=4
Number of nodes 1000 1000 1000 1000
Total query hits 2672 9216 33818 56647
Successful queries 951 3331 8612 9908
Total messages 112367 1012711 7415698 23280193
Total queries fired 10001 10001 10001 10001
Average Hops from
HitNode

0.9 1.68 2.65 3.45

Avg Query efficiency 0.24 0.09 0.05 0.02
Search Responsive-
ness

10.57 19.84 32.49 28.68

Search efficiency 2.54 1.79 1.62 0.57

Query efficiency, search responsiveness and search efficiency are all computed as per

equations 3.6, 3.5, and 3.8. Flooding has the nature of quick responses and huge over-

head on the network. This can be understood from this table. There is an exponential

increase in number of messages as the TTL value is increased. Search efficiency decreases

drastically due to this.

104

3.3
Im

proving
Efficiency

by
Indexing

3.3.4.2 Random-walk

Table 3.11 shows the summary findings for random-walk search method.

Table 3.11: Search performance metrics computed for Randomwalk approaches - w refers to number of walkers. These statistics are obtained
from simulations done in the same environment

w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=10
Number of nodes 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Total query hits 2833 3676 4422 5074 5745 6303 6661 7239 7310 7674
Successful queries 2343 2711 2984 3269 3474 3669 3680 3923 3876 4026
Total messages 623554 779166 906705 1015052 1114270 1204466 1268964 1332066 1375369 1412537
Total queries fired 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001
Average Hops from
HitNode

13.93 11.97 10.59 9.65 8.78 8.40 7.79 7.56 7.23 7.33

Avg Query effi-
ciency

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Search Responsive-
ness

1.68 2.26 2.82 3.39 3.95 4.37 4.73 5.19 5.36 5.49

Search efficiency 0.08 0.11 0.14 0.17 0.2 0.22 0.24 0.26 0.27 0.27

When compared with flooding, random-walk has higher hop-counts and thus has lower response values. Random-walks have very

low success rate. As the number of walkers are increased, there is decrease in hop-count and increase in success ration. This contributes

to increase in efficiency. As number of walkers are increased to a value around the average node degree, i.e., 9.33, efficiency reaches

maximum value.

105

3.3
Im

proving
Efficiency

by
Indexing

3.3.4.3 Floating Indexes Breadth-wise through Random-walk (FIBRW)

Table 3.12 shows the results of simulations carried out using floating indexes with breadth-wise spread (FIB) through random-walk.

Success ratio is more than 99%. The average hop-count or pathlength to the object is less than 2 hops much less than that of random-walk

Table 3.12: Search performance metrics computed for Floating Indexes with Breadthwise spread (FIB) - w refers to number of walkers. These
statistics are obtained from simulations done in the same environment

w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9
Number of
nodes

1000 1000 1000 1000 1000 1000 1000 1000 1000

Total query hits 15507 17554 19205 20728 21693 22470 23514 23526 24097
Successful
queries

9957 9973 9971 9976 9983 9982 9979 9984 9988

Total messages 65382 73905 79864 84060 89934 92927 96460 96317 99350
Total queries
fired

10001 10001 10001 10001 10001 10001 10001 10001 10001

Average Hops
from HitNode

1.59 1.64 1.64 1.62 1.67 1.65 1.64 1.62 1.66

Avg Query effi-
ciency

2.37 2.37 2.4 2.47 2.41 2.42 2.44 2.44 2.43

Search Respon-
siveness

62.78 60.63 60.96 61.63 59.9 60.46 60.99 61.61 60.31

FI Breadhwise
Search Eff.

148.79 143.69 146.3 152.23 144.36 146.31 148.82 150.33 146.55

which is around 8 hops. This is very interesting.

106

3.3
Im

proving
Efficiency

by
Indexing

3.3.4.4 Floating Indexes Depth-wise through Random-walk (FIDRW)

Table 3.13 shows the results of propagating indexes depth-wise with random walkers.

Table 3.13: Search performance metrics computed for floating indexes depth-wise (FID) with randomwalkers - w refers to number of random
walkers. These statistics are obtained from simulations done in the same environment

FID RW w=4 FID RW w=8 FID RW w=9
Number of nodes 1000 1000 1000
Total query hits 18241 21877 21354

Successful queries 9707 9750 9730
Total messages 148934 181714 179300

Total queries fired 10001 10001 10001
Average Hops from HitNode 2.35 2.37 2.28

Avg Query efficiency 1.22 1.2 1.19
Search Responsiveness 41.31 41.16 42.58

FI Depthwise Search Eff. 50.4 49.39 50.67

Success ratio is low as around 300 queries are unsuccessful. Its hop count is higher and search efficiencies are three times below when

compared with breadth-wise spread.

3.3.4.5 Floating Indexes Breadth-wise through Fuzzy-walker (FIBFuzzy)

The table 3.14 shows the results of simulations on the approach that combines floating indexes and fuzzy walkers approach. Fuzzy

walkers approach was discussed in section 3.2. Here the walkers are guided by the fuzzy probability values of neighbours instead of

random selection. This has both advantages and disadvantages as we see ahead.

The fuzzy results are slightly better than that of FIBRW. Here the pathlength to hit node is smaller and has lower success ratio. The

reduction in pathlength is due to fuzzy probabilities.

107

3.3
Im

proving
Efficiency

by
Indexing

Table 3.14: Search performance metrics computed for Floating Indexes with Breadthwise spread (FIB) using fuzzy walkers - w refers to number
of walkers. These statistics are obtained from simulations done in the same environment

Fuzzy FIB w=1 Fuzzy FIB w=2 Fuzzy FIB w=3 Fuzzy FIB w=4 Fuzzy FIB w=5 Fuzzy FIB w=6
Number of nodes 1000 1000 1000 1000 1000 1000
Total query hits 22288 27106 30623 33226 34630 34772

Successful queries 9775 9818 9834 9869 9893 9920
Total messages 85705 101226 112815 122427 128008 130906

Total queries fired 10001 10001 10001 10001 10001 10001
Average Hops from HitNode 1.50 1.51 1.50 1.53 1.54 1.57

Avg Query efficiency 2.6 2.68 2.71 2.71 2.71 2.66
Search Responsiveness 65.15 65.05 65.41 64.43 64.33 63.22

Fuzzy FI Search eff. 169.39 174.33 177.26 174.61 174.33 168.17

108

3.3 Improving Efficiency by Indexing

3.3.4.6 Attenuated BloomFilters(ABF)

Table 3.15 shows the results of simulations on probabilistic routing algorithm using atten-

uated bloom filters with 3 levels.

Table 3.15: Search performance metrics computed for attenuated bloom filters (ABFL3) - w
refers to number of walkers. The depth of bloom filter array is 3. These statistics are obtained
from simulations done in the same environment

w=1 w=2 w=3 w=4 w=5
Number of nodes 1000 1000 1000 1000 1000
Total query hits 18534 21179 23244 24822 26103

Successful queries 9963 9979 9988 9993 9996
Total messages 2636774 2697374 2752060 2803030 2848957

Total queries fired 10001 10001 10001 10001 10001
Average Hops from HitNode 4.30 4.09 3.91 3.77 3.67

Avg Query efficiency 0.07 0.08 0.08 0.09 0.09
Search Responsiveness 23.18 24.41 25.55 26.49 27.27

Search efficiency 1.62 1.95 2.04 2.38 2.45

It has high success ratio but huge message overhead. These messages are predomi-

nantly due to index building and propagation.

3.3.4.7 Floating Indexes Breadth-wise through Flooding (FIBFL)

Table 3.16 shows the results of simulations on Floating indexes breadth-wise (FIB) ap-

proach with flooding as the carrier. The results are better than basic methods like flooding

and randomwalk but far below when compared with FIB with randomwalk as the carrier.

Major difference is in number of messages generated.

Table 3.16: Search performance metrics computed for floating indexes with flooding - TTL
refers to hop limit for each query. These statistics are obtained from simulations done in the
same environment

TTL=2 TTL=4
Number of nodes 1000 1000
Total query hits 32565 53024

Successful queries 9447 9969
Total messages 210659 769135

Total queries fired 10001 10001
Average Hops from HitNode 1.38 2.59

Avg Query efficiency 1.55 0.69
Search Responsiveness 68.38 38.45

Search efficiency 105.99 26.53

109

3.3 Improving Efficiency by Indexing

3.3.4.8 Results Summary

The summary of the statistics are shown in figure 3.29. Figure 3.30 shows the comparison

between basic search methods such as flooding and random-walk and floating indexes

scheme and probabilistic routing algorithm schemes. There is a huge improvement in

floating indexes schemes.

Figure 3.29: Summary statistics of index dissemination methods - TTL for methods with
Floodng as carrier is 4 and number of walkers are 4. FIB refers to Floating Indexes with
breadth-wise spread, FID refers to Floating Indexes with depth-wise spread, ABF refers to
attenuated bloom filters

• Floating Indexes Vs Flooding & Random-walk: When we compare Floating In-

dexes approach with basic methods flooding and random-walk there is a clear im-

provement in search efficiency. The efficiency improvement is prominently due to

higher success rate, lower pathlenghts and reduction in message traffic. The effi-

ciencies of flooding and random-walk approaches are only 0.57 and 0.17. Search

efficiency of all ’Floating Indexes’ approaches is above 20.

• Floating Indexes Vs Attenuated BloomFilters: Certainly attenuated bloom filters

approach reduces pathlength to 3.77 and increases success rate to 99.99%. But its

only drawback is it requires huge number of messages to build the BloomFilters.

Since there are no extra messages required for index propagation in Floating Indexes

approach, there is enormous improvement search efficiency.

110

3.3 Improving Efficiency by Indexing

Figure 3.30: Search efficiency metric comparison of Floating Indexes scheme with other
methods - FIB refers to Floating Indexes with breadth-wise spread, ABF refers to attenuated
bloom filters

• Carrier methods: Major difference is that the number messages generated in flood-

ing is high compared to that of random-walk methods. In flooding the majority of

messages end up as duplicate messages. Duplicate messages use network resources

but don’t add indexes to the node because that query is already processed by the

node. In the figure it can be noticed that in breadth-wise spreading, messages gen-

erated by flooding are 9 times more than that of random-walk, though results are

similar.

• Dissemination Schemes: Among the breadth-wise and depth-wise schemes, breadth-

wise scheme has better results. It is observed that breadth-wise spreading of indices

is giving three times better results than depth-wise spreading of indices. From the

figure 3.29, depth-wise scheme either through flooding or random-walk, has very

low success rate, huge number of messages and very few query hits per query. This

is because depth-wise spreading is biased towards spreading indexes of a few nodes

all over the network. This is discussed further in the coming section.

• Effect of number of walkers: Figure 3.31 shows the search efficiencies with in-

111

3.3 Improving Efficiency by Indexing

creased number of walkers. The performance remains roughly consistent irrespec-

tive of number of walkers.

Figure 3.31: Search efficiency metric comparison among floating indexes schemes with
varied number of walkers - FI refers to Floating Indexes

3.3.4.9 Effect of Index Dissemination on Message Traffic & Path-lengths

Figure 3.32 depicts the rate of rise in messages as the nodes fire queries. In pure ran-

domwalk method, the messages increase at a constant rate per query. In floating indexes

breadth-wise scheme with flooding as the carrier, initially it is exponential rise in the

messages. But as the indexes spread, the queries are answered in nearby neighbour-

hoods. Therefore we see the slope of the curve reduces and becomes almost flat towards

the end. This indicates that at steady state, most of the queries are answered with the for-

eign indexes available locally. Also we see that there are many spikes in the curve whose

frequency reduces as the curve grows. The steeps indicate that certain queries could not

be answered within the neighbourhood and that led to sudden increase in the number of

messages. In attenuated bloom filters based method (ABF), the slope is almost constant

but much less than the pure randomwalk method. That means in attenuated bloom filters

based routing method, there are constant number of messages being generated per each

query. The three curves at the bottom portion of the graph correspond to three schemes

112

3.3 Improving Efficiency by Indexing

in floating indexes with walkers as the carrier. Among them FIB with random walkers

has the lowest slope. Next lowest slope is for FIB with fuzzy walkers and the next is for

FI depth-wise dissemination. In fuzzy walkers, at every hop the walkers are directed to

a neighbour which has the highest probability value. In this case there is high chance of

encountering the same neighbour for most of the queries thus reducing the spreading of

the indexes. In FI depth-wise dissemination, the query carries the indexes loaded by first

few nodes in the query into the depth of the network. Since walkers coverage of network

is very less, the spread is not extensive.

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 M

es
sa

ge
s

Number of Queries

Randomwalk (4 walkers) CDF
Floating Indexes (flooding ttl=4) CDF

Floating Indexes (randomwalk walkers=4) CDF
Floating Indexes (Depthwise randomwalk walkers=4) CDF

Floating Indexes (fuzzy randomwalk walkers=4) CDF
Attenuated Bloomfilters (depth=3, randomwalk walkers=4) CDF
Attenuated Bloomfilters (depth=2, randomwalk walkers=4) CDF

Figure 3.32: Message generation CDF for Floating Indexes and other methods - A point
on CDF curve indicates the total number of messages generated so far for the corresponding
number of queries on x-axis

Figure 3.33 depicts the pathlengths of query hits. A pathlength is defined as the

number of hops between the source node and the queryhit node. Queryhit node is where

the query has found a match. In this figure, pure random walk has the maximum slope.

That means every query has got the same pathlength and this pathlength is higher than

that of other methods. The gap between pure randomwalk and pure flooding increases

as the number of queries increase. This indicates that the pathlengths in randomwalk

113

3.3 Improving Efficiency by Indexing

are more than that of flooding. It is observed that Floating indexes have far less growth

in pathlength. FI with randomwalk takes time to settle down where as FI with flooding

settles down at an early time. In FI due to the spread of indexes, pathelength reduces to

zero in most of the queries. Although FI with flooding is offering better pathlengths, but

it has the negative point of generating more messages than that of FI with randomwalk.

In figure 3.34, the pathlength rate of increase for attenuated bloom filters is much higher

compared to schemes of Floating Indexes. Among the floating indexes schemes, Floating

Indexes with random walkers has the best result. It has the least growth in pathlengths.

It indicates that pathlength per query is very small or likely zero.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2000 4000 6000 8000 10000

P
at

hl
en

gt
h

pe
r

Q
ue

ry

Number of Queries

Pure Randomwalk (4 walkers) CDF
Pure Flooding (ttl=4) CDF

Floating Indexes (Flooding ttl=4) CDF
Floating Indexes (Randomwalk walkers=4) CDF

Figure 3.33: Pathlength CDF for Floating Indexes and other basic methods - A point on
CDF curve indicates the sum of pathlengths of queryhits received so far for the corresponding
number of queries on x-axis

3.3.4.10 Utilization of Query Traffic for Index Dissemination

Figure 3.35 shows that FID spreads the indexes evenly across the network i.e. almost all

nodes have acquired equal number of indexes. FIB has bigger variations. But looking at

characteristics of indexes spread, in FID, indexes of 50% nodes are spread across more

than 80% of the network and indexes of 30% nodes are spread only in less than 20% of

114

3.3 Improving Efficiency by Indexing

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 2000 4000 6000 8000 10000

P
at

hl
en

gt
h

pe
r

Q
ue

ry

Number of Queries

Floating Indexes (Randomwalk walkers=4) CDF
Floating Indexes Depthwise (Randomwalk walkers=4) CDF

Floating Indexes Fuzzy (walkers=4) CDF
Attenuated Bloomfilters Depth=3 (walkers=4) CDF
Attenuated Bloomfilters Depth=2(walkers=4) CDF

Figure 3.34: Pathlength CDF for different Floating Indexes schemes and Attenuated Bloom
Filters - A point on CDF curve indicates the sum of pathlengths of queryhits received so far
for the corresponding number of queries on x-axis

the network. In FID, indexes of 6.9% nodes are not distributed at all. In FIB, indexes

of around 60% of the nodes are spread across 50-80% of the network. Clearly, in FIB

indexes of all nodes are spread to good extent giving better accessibility to indexes. This

is depicted in 3.36.

Looking closely at the dissemination of indexes would give us effectiveness of the

approach. When a query reaches a node, node copies the indexes from the query to the

local node. The result of this operation can be either new addition or update or just a

duplicate index received. In figure 3.37, the % of those results is listed. The maximum

of duplicates is found in flooding methods. In schemes with walkers as the carriers,

fuzzy walkers scheme and depth-wise scheme have maximum duplicates. This gives

us the idea that how the traffic is being utilised for disseminating the indexes. Surely

flooding has more cases where the query reaches the same node more than once. In fuzzy

walkers case, the walkers are directed towards a neighbour which have the maximum

fuzzy probability value for finding the content it is looking for. The probability of selecting

a set of neighbours more often than others is high. Therefore the same indexes may reach

115

3.3 Improving Efficiency by Indexing

more than once. The best case here is floating indexes breadth-wise with random walkers.

Since the neighbours are chosen randomly, there is high probability that each neighbour

is equally likely to forward the query. In figure 3.38, the percentage of foreign indexes

accumulated at each node is depicted. Although FI fuzzy scheme and FI depth-wise

scheme have nearly the same percentage of traffic utilized but the percentage of indexes

accumulated is much less compared to FI depth-wise scheme. This can be explained as:

in FI fuzzy scheme, the walkers are guided towards the content. The average pathlength

is around 1.5. That means the queries are answered very quickly. So the walkers end up

at early stages. Therefore the spread of indexes is not as much.

Although FID scheme has uniform spread, spreading larger number of indexes yet

its search performance is much below the FIB. Looking at tables 3.13, and 3.12, it can be

noticed that FID has fewer successful queries and larger hop lengths. This indicates that

in FID, the indexes accumulated at a node are predominantly that of few nodes where

as in FIB they are mix of large number of nodes across the network. This is depicted in

figure 3.36.

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

%
 o

f f
or

ei
gn

 in
de

xe
s

in
 th

e
ca

ch
e

Node no (sorted by FIB data)

Floating Indexes Breadthwise FIB (w=4)
Floating Indexes Depthwise FID (w=4)

Figure 3.35: Spread of foreign indexes across nodes - FIB has standard deviation of 8.21%
and FID has standard deviation of 4.28%

116

3.3 Improving Efficiency by Indexing

Figure 3.36: Percentage of network spread of indexes - x-axis: % of network spread, y-axis:
% of nodes whose indexes are spread

3.3.4.11 Adapting to Churn

To observe the churn effect, after 6000th query onwards, 30 nodes are removed and 30

nodes are added at every 500th query. The effect would be that objects, indexes stored at

that node will be lost. When new nodes join, they would share new objects. So when

nodes query for those items which are freshly added to the network, there will be surge

of messages as that item would not have been indexed by now. Figure 3.39 depicts this

behaviour in the network. At 6000th query, there is sudden rise in the messages. But soon

that settles down. The degree of such rises also decrease with the progress of queries. Fig-

ure 3.40 depicts the effect on pathlegths. At 6000th query the gap between the two curves

increases but soon after this gap becomes even. This indicates that proposed approach is

quickly adapting to the churn scenarios.

117

3.3 Improving Efficiency by Indexing

Figure 3.37: Percentage of cache operations for various schemes - each operation results in
either addition, updation or duplicate detection

Figure 3.38: Percentage of average foreign indexes at the local node - NIR refers to Node
Index Records

118

3.3 Improving Efficiency by Indexing

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2000 4000 6000 8000 10000 12000

M
es

sa
ge

s
pe

r
Q

ue
ry

Number of Queries

Withoutchurn CDF (walkres=4)
With churn CDF

Figure 3.39: Effect of churn on Floating Indexes: message generation - churn is the scenario
in which considerable number of nodes leave the system and new nodes join the system

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000

P
at

hl
en

gt
h

pe
r

Q
ue

ry

Number of Queries

Floating Indexes CDF (walkres=4) without churn
Floating Indexes CDF (walkres=4) with churn

Figure 3.40: Effect of churn on Floating Indexes: pathlengths - churn is the scenario in which
considerable number of nodes leave the system and new nodes join the system

119

3.4 Conclusion

3.3.5 Conclusion

The approach proposes an indexing scheme known as ’Floating Indexes’ without using

any extra messages. Various schemes within this approach are in detail discussed. In

conclusion, Floating Indexes with random walkers has the best returns as far as index

dissemination is considered. In comparison to attenuated BloomFilters method, there is

an improvement of 53% in pathlengths, 97% reduction in message traffic, keeping the

same success rate. Breadth-wise spreading of indexes through random-walk utilized 54%

of the query traffic effectively to spread the indexes. This method has spread indexes of

77% of the nodes onto more than 50% of the network. This method has limitation that

entire index propagation is dependent on query traffic.

3.4 Conclusion

In this chapter, two approaches are proposed. One is Fuzzy-probability based neighbour

subset selection and the second is ’Floating Indexes’ approach. Both have better gains over

their counter parts. It was shown that fuzzy-probability approach has better forwarding

policy over cosine-similarity and other methods. The improvement is in capturing the

heuristics through classifying and fuzzifying the parameters. The major contribution of

’Floating Indexes’ approach is that it doesn’t need extra messages and has given very

good results in utilizing query traffic for index dissemination.

It is also discussed about the effects of combining these two approaches as Floating

indexes breadth-wise with fuzzy walkers. Although it has good returns, it is not effective

in disseminating indexes which is the primary purpose of the second approach. We give

the following conclusion on how to decide which approach to choose in peer-to-peer file

sharing networks.

• Context of application for Fuzzy-based neighbour subset selection approach: The

objects in the network fall into fixed set of categories and each object can be relatively

rated on its popularity by the user. The number of objects in the network are not

too high.

• Context of application for Floating Indexes approach: Network has extensive

120

3.4 Conclusion

query traffic.

Since the contexts are not complimentary, these two approaches can be combined for

better efficiency and responses at the cost of reduced index dissemination.

121

Chapter 4

Quality of Service (QoS) in Content

Search

Search in peer-to-peer networks is measured by metrics generally grouped into efficiency

metrics and quality-of-service (QoS) metrics. QoS metrics measure the search perfor-

mance from the user’s point of view. In this chapter, a search mechanism is presented

that addresses QoS in search considering user preferences in terms of his node’s link

capacity, link latency, type of file etc.

4.1 Quality of Service (QoS)

4.1.1 QoS in Internet

Packet-switched networks like the Internet offer best-effort delivery of network traffic.

This may be suitable for applications like FTP etc where traffic is elastic. The elastic traffic

can tolerate delays, losses and adapt to congestion. But applications like video streaming

etc can tolerate the latency only within a particular range. Such traffic is inelastic. There is

rapid increase in usage of such applications in the Internet. Categorization of internet ap-

plications is shown in figure 4.1. QoS provides network services that are differentiated by

their bandwidth, latency, jitter, and error rates. Collective effect of service performances

that determine the degree of satisfaction by a user of the service.

IETF task forces have outlined schemes Integrated Services (IntServ) and Differenti-

122

4.1 Quality of Service (QoS)

ated services (DiffServ) and also a Resource Reservation Protocol (RSVP). IntServ offers

per-flow QoS which requires routers to maintain per-flow state information where as Diff-

Serv offers per-class QoS which doesn’t require routers to maintain state. Thus DiffServ is

suitable for large-scale networks. RSVP acts as the protocol to signal resource reservation.

This protocol is used by both IntServ and DiffServ schemes [Ferguson & Huston 1998].

IntServ provides guaranteed service and controlled-load service. Guaranteed service tar-

gets at hard real-time applications which need absolute provisioning. User specifies traffic

characteristics (TSpec) and a service requirement. Controlled-load targets at applications

which can adapt to network conditions within a certain performance window. DiffServ

labels the packets with a priority and defines behaviours for routers to deal with packets

different priorities.

Figure 4.1: Internet applications classified by traffic - Source: [Kosiur 1998]

4.1.2 QoS in Peer-to-Peer Search

As discussed in Chapter 1, peer-to-peer networks are overlays built on Internet having

topology and routing different from the underlying network. Forwarding a packet from

peer B to peer A actually involves many links in the underlying network as shown in

figure 4.2. So providing QoS in the underlying network doesn’t automatically provide

QoS in peer-to-peer overlay. QoS in the Internet is provisioned at the routers. But in peer-

to-peer overlay the routing is carried out by the overlay nodes themselves with the help

123

4.1 Quality of Service (QoS)

of underlying network. So provisioning QoS in peer-to-peer network involves the overlay

nodes or nodes at the Internet edge.

Figure 4.2: Forwarding in peer-to-peer overlay - Forwarding on one overlay link involves
many links in the internet

[Ge & Cai 2008] have proposed a DiffServ QoS model for peer-to-peer file sharing

systems. They have considered two classes of services namely standard service and pre-

mium service for standard users and premium users respectively. They have considered

response time, throughput and warm-up time as QoS parameters. The idea is that the

master node in the cluster labels each message with the priority and the nodes in the

overlay forward the premium messages with high priority. Premium messages not only

include the messages from premium users but also the system maintenance messages.

This reduces the warm-up time. In this model, the differentiation is made between the

users. But each individual user’s requirements can be many-fold not just premium or

standard. This is not addressed. [Zhang et al. 2009] proposed Web Ontology Language

(OWL) for describing QoS classes in semantic service discovery. The QoS parameters

used are connectivity, reliability and trust degree. These research contributions adapt the

QoS schemes at the Internet level to overlay layer. An important consideration that has to

be made here is that the characteristics of routers in the Internet and the characteristics

of nodes in the peer-to-peer overlay are significantly different. Routers in the internet

are special-purpose devices that are highly available, resourceful and tuned to give high

performance routing throughput. The links connecting routers have huge bandwidths,

124

4.1 Quality of Service (QoS)

low latencies and are highly available. The systems in peer-to-peer content sharing over-

lays are transient and have diverse network capacities. In section 4.1.2.1, the measured

network characteristics of peers are discussed. This brings us to the point that while con-

sidering QoS in peer-to-peer overlays, distinction between whom to forward and whom

not to forward is to be made. In this work, we consider this aspect.

QoS in search is defined by [Daswani et al. 2002] as provisioning user-perceived qual-

ities such as number of results, response time, relevance, user satisfaction etc in their

acceptable performance. The exact list of qualities or metrics and their acceptable range

is application specific. These qualities or metrics are affected by network parameters such

as bandwidth, latency, neighbour’s reliability, search method used etc.

Figure 4.3: Bandwidth and latency requirements for different classes of applications -
Source:[Kosiur 1998]

As shown in figure 4.3, the network applications have diverse requirements of band-

125

4.1 Quality of Service (QoS)

width and latency. The user-interacting applications such as terminal sessions, speech,

streaming etc require low latencies. In those applications requiring file-transfers, the con-

cern is more about bandwidth. Overall, there is a judicious combination of bandwidth

and latency levels for each application. In a peer-to-peer content sharing overlay, the con-

tent is distributed by downloading as well as streaming. In download, the entire file is

first transmitted and then used. In streaming, the file is used while being transmitted.

Even in streaming there are different network requirements for streaming different types

of video files. Each method has its own QoS specifications.

In a content-sharing overlay, the content-search precedes the transmitting of content.

In the search process, the resource-peer is discovered. The QoS requirements of content

transmission are to be validated during the search process. This is different from the Inter-

net where there is no host discovery process before transmitting content. The host address

is already known to the content seeker. Requester directly sends a download request. But

in peer-to-peer networks, the content is discovered first and then transmitted to the re-

quester. The content is transmitted by the resource-peer along the same path as the path

taken by the query to reach the resource-peer. In some networks like Gnutella, the content

is transmitted through a direct TCP connection between the requester and the resource-

peer. But in a system like Freenet, the content is transmitted along the query path. In

Gnutella, the user anonymity is not preserved. But Freenet provides user anonymity by

hiding the requester identity. The work in this thesis, assumes a model like Freenet for

transmitting content.

[Li 2008] argues that peer-to-peer networks should serve heterogeneous needs of the

users. Currently there are systems for providing file sharing, there are different systems

for streaming, and there are different systems for IP telephony. He argues that for peer-to-

peer in order to make best utilized there is a need to integrate all the services into a single

network. In this work, a QoS model is proposed which can integrate variety of services.

4.1.2.1 Network Characteristics of Peers

Due to their large size and wide spread use of peer-to-peer overlays, the characteristics

of the nodes are not uniform. Some nodes have high network capacity, but some have

low capacity. [Saroiu et al. 2002a] analyse the characteristics of the nodes in Napster and

126

4.1 Quality of Service (QoS)

Gnutella in 2002. In figure 4.3, the range of bandwidth capacities of nodes is presented. It

can be observed that most of the nodes (65%) use broadband connections (cable modems,

DSL, T1, T3) and the rest use dial-up modems. The home users mainly use modems, cable

modems and DSL.

Figure 4.4: Heterogeneous nature of bandwidth capacities in Napster - Source: [Saroiu
et al. 2002a]

Figure 4.5: Bandwidth distributions of nodes in Gnutella - Source: [Saroiu et al. 2002a]

In figure 4.4, a pie chart of bandwidths used by user is presented. It can be observed

in figure 4.5 that while 92% of the participating peers have downstream bottleneck band-

widths of at least 100Kbps, only 8% of the peers have upstream bottleneck bandwidths

of at least 10Mbps. Moreover, 22% of the participating peers have upstream bottleneck

bandwidths of 100Kbps or less. This variation poses a challenge to providing QoS on

downloads. Similarly in figure 4.6, approximately 20% of the peers have latencies of at

least 280ms, whereas another 20% have latencies of at most 70ms. For streaming, latency

is an important consideration as the timing at which audio or video frames arrive decides

whether they are worth for playing.

127

4.1 Quality of Service (QoS)

Figure 4.6: Latency distribution in Gnutella Source - Source: [Saroiu et al. 2002a]

Figure 4.7: Latency and bandwidth distribution in Gnutella - Source: [Saroiu et al. 2002a]

In 4.7, it can be observed that the there are two clusters having low bandwidth and

high latency systems (20-60Kbps, 100-1,000ms), and systems with high bandwidth and

low latency (1,000Kbps, 60-300ms). They correspond to modems and broadband connec-

tions.

4.1.3 Summary

The discussion is summarized as follows.

• Forwarding of a packet on one link at overlay level may actually involve many

links in the underlying network. Therefore QoS provisioning should give specific

attention to nodes in the overlay.

• The nodes in the peer-to-peer overlay act as routers at the overlay level. These nodes

have different characteristics from the routers in the underlying network.

• There are diverse requirements of bandwidth and latency across the network appli-

128

4.2 Proposed Solution

cations. The choice of the links according to these parameters has direct affect on

the user perceived qualities (QoS) of the search mechanism.

• The peer-to-peer systems are built at different times for different purposes. But there

is no integrated access for all such services in one single network.

4.2 Proposed Solution

The scope of the problem is defined as below.

• The overlay network is content sharing network where the content can be of large

files like video, and music which can be both downloadable and/or streamed. Also

content may mean any documents like pdf, word documents, power point slides etc.

• In such a network, to provide quality of service to the user, the network require-

ments for the type of file the user has requested must be differentiated and accord-

ingly provided.

• The QoS as provided in DiffServ can’t fully serve such requirements, the reasons

being: the resource node is not known in advance and the nodes capabilities are

too diverse. There is difference between routers in IP layer and the overlay nodes in

terms of their capability and the availability. Therefore taking any path to reach the

resource node may include nodes whose capacity and availability is too much below

the requirements. Although the packets may be forwarded with high priority, but

the overall throughput may not meet the requirements.

• Therefore the problem we are addressing here is to provide QoS requirements based

on the file type in the search by path selection.

4.2.1 QoS Parameters

[Kwok & Yang 2004] have done a study on Gnutella network identifying the characteristics

of the users of the network. Table 4.1 shows the percentages of different kinds of files that

are requested by the users. Table 4.2 summarizes the results into well known file types.

129

4.2 Proposed Solution

Table 4.1: File extensions in Gnutella Source:[Kwok & Yang 2004]

File Extension Percentage (%)
mp3 22.76
Avi 17

Mpg 9.72
Zip 1.64

Mpeg 1.61
Jpg 1.08
Asf 0.81

File Extension Percentage (%)
Divx 0.69
Ra 0.64
Rm 0.42
Pdf 0.39
Exe 0.34

Rarm 0.34
Ps 0.17

Mov 0.17

Table 4.2: File types searched for in Gnutella - Source: [Kwok & Yang 2004]

File Category Percentage (%)
Video 30.01
Audio 24.15

Compressed file 2.01
Graphic 1.12

Document 0.67
Software 0.36

Other 41.69

It can be observed that video and audio are the most requested type. This gives us

an idea that in peer-to-peer content sharing networks users have varied interests and thus

expect varied services from the network.

The services can be classified into 3 categories.

1. Downloading large files such as music, video, software etc

2. On-demand viewing of videos and listening to music etc

3. Retrieving documents like pdf, doc, zip etc and graphics such as jpg, gif etc whose

size is small

These services have different network requirements. The requirements vary for each type

of service and are to be specified in terms of the overlay network parameters namely

overlay link bandwidth, overlay link latency and object location probability. Table 4.3

shows the mapping between the user expectations and the corresponding QoS conditions

to be fulfilled. The QoS metrics applicable in a file sharing system are bandwidth, latency

and object location probability. Bandwidth (B) is non-additive parameter in the end-to-

end bandwidth computation. It is taken as the minimum of the available bandwidths

130

4.2 Proposed Solution

of the links comprising the path. Latency (L) is an additive parameter for computing

end-to-end latency. It is the sum of individual link latencies of the path. Object location

probability (F) is the probability of finding the object in a particular neighbour or its

further neighbours.

Table 4.3: Mapping service requirements to QoS parameters (B:Bandwidth, L:Latency,
F:Object Location Probability)

Services Qualities
Expected by
User

QoS Parameters Overlay
Path
QoS (Pa-
rameter
Priority)

Overlay
Link Qual-
ities

Overlay
Node
Qualities

Downloading
large files

Fast file
download

High Band-
width

B > F ≥
L

Playing a on-
demand/live
video/audio

Uninterrupted
Play

Low La-
tency

L > F ≥
B

Finding and
retrieving
documents,
images etc

Quick search
and retrieval

Object Lo-
cality

F > B =
L

The relative importance of parameters is chosen by the user for particular search trans-

action. They may be available as presets 1 in the user application.

4.2.2 QoS Path Selection in the Overlay

Providing QoS parameters for different services requires selecting overlay path that con-

forms to the QoS condition. In IntServ QoS provisioning, a per-flow state is maintained

in the routers and reservation of resources is made [Ferguson & Huston 1998]. But this

method is not suitable for large overlays because it is not scalable, and there is huge vari-

ation among the capacities of the overlay nodes as described in 4.1.1. Every overlay node

can’t be expected to provide the same facility. So in our method, suitable overlay nodes

are chosen to form a path up to the resource-node. There is no QoS-state information

maintained in the overlay nodes. Choosing a right node to form the path involves choos-

1Preset is a set of parameter values set and fixed by the user which will be default for the rest of the
requests

131

4.2 Proposed Solution

ing one node at each hop among many neighbour nodes such that the chosen link satisfies

multiple criteria QoS metrics like required bandwidth, latency, delay, packet loss etc.

This problem is commonly known as Multi-Constrained Path (MCP) selection problem

which is NP-complete [Wang & Crowcroft 1996]. There are several algorithms in litera-

ture for finding feasible paths satisfying multiple constraints. [Chen & Nahrstedt 1998]

showed that the problem can be modified by scaling down one weight of each link to

a bounded integer x and that solving this problem by Dijkstra’s or Bellman-Ford algo-

rithm will give the solution to the original problem. To find a feasible path, x should

be very large leading to huge time complexity O(x2N2) in case of Dijkstra’s algorithm is

used. [Yuan 2002] used two heuristics, the limited-granularity heuristic and limited-path

heuristic and proposed Limited Path Heuristic Algorithm (LPHA) that has time complex-

ity as O(x2NE) where x is number of non-dominated paths to be maintained at each

node. TAMCRA(SAMCRA) proposed by [Neve & Mieghem 2000] uses a non-linear path

function and computes feasible paths by an extended Dijkstra’s algorithm.

[Jaffe 1984] proposed a linear link-cost function that combines link costs in propor-

tion to their weights. This single aggregate metric is used to find shortest path using

any shortest path algorithm. Here the algorithm assumes the availability of global state

at the current node. [Mieghem et al. 2001] proposed hop-by-hop QoS (HbHDBO) rout-

ing algorithm assuming that global state is available at each node. They use non-linear

weight function for the path. This algorithm makes use of TAMCRA proposed by [Neve

& Mieghem 2000]. [Sobrinho 2003] uses an algebraic approach to investigate the path

optimization problem. He provides properties of path weights that need to be satisfied to

avoid loops and attain optimal paths.

All the above algorithms assume that there exist a global topology and link-state infor-

mation at the current node which is not a scalable approach for large-scale peer-to-peer

networks. [Li & Garcia-Luna-Aceves 2006] proposed a distributed approach for finding

feasible paths satisfying multiple constraints. In their work every node stores a metric to

every destination through every neighbour. The space complexity at each node is O(xkN)

where x is the number of routes to keep, k is the number of neighbours, and N is the

number of nodes in the system. As the network grows large, state per node also linearly

grows. This is not desirable in the large peer-to-peer overlays.

132

4.2 Proposed Solution

All the above algorithms know the destination in advance. Their aim is to find a fea-

sible path given a source and destination. But in peer-to-peer file sharing systems the

destination is not known in advance and it has to be searched out. There can be multiple

destinations depending on the number of replicas of the target object. Searching a desti-

nation is coupled with the availability of a path that satisfies the constraints from source

to destination. Therefore the search procedure is to be augmented with the function of

finding the path that satisfies the given constraints. The distributed search procedure

needs to locate destination in a way that it finds a path that satisfies the given constraints.

In the above algorithms there are two ways of path selection.

• One way is to select paths satisfying the given constraints. For example: Suppose

there are two constraints: Latency L ≤ α and bandwidthB ≥ β. Now every link on

a path is tested to see that these two constraints are satisfied. If there is a path from

source to destination satisfying these constraints at every link then that path is said

to be feasible path. Among such feasible paths selection of a path that is optimized

with respect to a metric (usually hop count) is known as Multi-constrained optimal

path (MCOP) problem.

• Another way is to combine the link metrics into a single aggregated-metric and

choose the shortest path with respect to aggregated-metric. The individual metrics

can be combined in linear and in non-linear ways. For example: Bj and Lj are

bandwidth and latency measured at node n to neighbour j. wB and wL are the

weights assigned to bandwidth and latency respectively. Then aggregated metric is

computed as

mj = wB × Bj + wL × Lj

This aggregated-metric is known as the link-weight or link cost. It is used in the

computation of shortest-path. Path computed using aggregated metric may not have

all the links satisfying the given constraints. Most of the proposed algorithms use

aggregated metric to compute the paths. Out of these paths, some may be feasible

paths.

Even with global state (topology and link-state) of the network available at one place,

133

4.2 Proposed Solution

to compute a feasible path is known to be NP-complete problem. That’s why, the above

mentioned algorithms use heuristics to find optimal paths. To compute a feasible path in

a distributed way is more difficult due to unavailability of network global state. It creates

more uncertainty in path selection. Therefore our proposed solution has the following

characteristics.

• Path selection is performed while searching for the object

• Path selection is done using aggregated cost in a hop-by-hop manner

• It doesn’t require global state at the node

• It doesn’t guarantee feasible paths but finds candidate paths according to the priori-

ties the user has set. There is provision to choose optimal candidate paths according

to an end-to-end aggregate-metric. It is different from DiffServ in that it is aiming at

path selection instead of class-based prioritized forwarding. Class-based prioritized

forwarding or guaranteed QoS as in IntServ can be utilized once a candidate path

is identified from source to destination. The problem being addressed here is to

identify optimal candidate paths according to the type of search query.

Basically, the path selection based on aggregate-metric is a greedy approach. Every

time the link with minimum aggregate-metric is selected. If the aggregate is based on lo-

cal neighbourhood, it doesn’t guarantee reaching the global optimal path. If the aggregate

has some basis of global end-to-end characteristic then there is a scope for achieving the

global optimum if that metric satisfies greedy-choice property and optimal-substructure

property[Cormen et al. 2009]. In our solution, the aggregate is computed on local band-

width, object location probability and local latency. The probability of locating the object is

derived from pre-computed attenuated bloom filters. This is not entirely a local metric but

has limited global scope to the extent of levels in attenuated bloom filter. The aggregated-

metric doesn’t satisfy greedy-choice property and thus it can’t guarantee global optimum

path selection. But the quality of the path selection or how closely it fulfils the user ex-

pectations is dependent on the cost function for calculating the aggregate-metric. The

solution is tested with one linear cost function and two non-linear cost functions.

The problem of choosing the best alternative that satisfies multiple criteria among

134

4.2 Proposed Solution

many alternatives in literature is known as Multi-Criterion Decision Making (MCDM).

There are methods based on distance, outranking, and utility [Raju & Kumar 2010] for

solving MCDM problems. We used Weighted average, Compromise Programming, and

Technique by Order Preference by Similarity to an Ideal Solution (TOPSIS) as the cost

functions to compute aggregate-metric.

4.2.3 Object Search cum QoS Path-Selection Algorithms

This section describes the search procedure in general and procedures required for path

selection. First we describe the system model followed by the actors of the system and

their roles are explained.

4.2.3.1 System Model

The model is a fully decentralized peer-to-peer unstructured network. There are N nodes

numbered 0 to N-1 in the overlay as shown in the figure 4.8. Each node n has a set of

neighbors G. Each node n regularly probes and stores bandwidth B and latency L of the

neighbour links. Bj refers to the bottleneck-bandwidth measured at n to neighbor j. Lj

refers to latency measured at n to neighbor j. Bmax refers to the theoretical maximum

available bandwidth in the network. Lmax refers to the theoretical maximum latency in

the network. Bnormalized
j refers to the normalized bandwidth and Lnormalized

j refers to the

normalized latency of the link.

Figure 4.8: System model for QoS-constrained search - n0 is searching for f available at n7

135

4.2 Proposed Solution

Files of various kinds like music, video, documents etc are shared by the individual

nodes. Same file may be available at multiple nodes. Depending on the popularity of the

file, the file soon spreads to other nodes. [Chu et al. 2002] observed that this distribution

follows Zipf distribution. Requester node n sends a query Qguid searching for file f .

Each query is associated with a globally unique identifier guid. The user specifies the

QoS requirements. While forwarding the query the next hop destination is decided by

these QoS requirements. At each node, a guid-cache is maintained which contains the

mapping between guid and the node which has sent the query Qguid. Any node if it finds

a matching object with it, it will form a QueryHit reply QHguid. QueryHit travels in the

same path taken by the query Qguid.

The following are the participants or executors of the different procedures in a path-

selection process.

• Requester Node

• Forwarding Node

• Intermediate Node

• Query Hit Node

4.2.3.2 Requester Node

The search is triggered by the user. This node initiates the query. The query carries the

following items:

• guid

• keywords

• hop count

• weights for bandwidth, latency and object location probability

• path weight or cost

The weights for the QoS parameters are computed based on the priorities chosen or set by

the user. The weight computation is performed by Analytical Hierarchical Process (AHP)

136

4.2 Proposed Solution

method [Saaty 1994]. The details of it are explained with examples in the coming section.

The path-weight parameter in the query accumulates the link weights. This parameter

is returned by QueryHit node through QueryHit message to Requester node. Requester

Node chooses the best path as the path with minimum path-cost. The requester node

executes procedure searchFile() upon receiving its user search request. This procedure is

presented in figure 4.9.

1 searchFile(Preset: P, KeyWords: KW)
2 begin
3 Query: Q;
4 Timer: t;

5 Q.guid← generateGuid();
6 Q.hopCount← MAX_HOPS;
7 Q.keywords← KW;
8 Q.weights← getWieghts(P);
9 Q.pathCost← 0;

10 Q.path← Φ;
11 start timer t;
12 processQuery(Q, currentNode);
13 end

Figure 4.9: Requester node initializing query upon users search request

Requester node waits for QueryHit messages until the timer expires. This is depicted

in procedure processQueryHit(). Once the timer expires, it sorts the QueryHit messages

based on their path cost and the minimum-cost path is chosen for sending content request.

This procedure is presented in figure 4.10.

4.2.3.3 Forwarding Node

Forwarding node refers to any node in the network that receives the query, processes and

forwards it. Every node has a data structure that stores the bandwidth, latency and object

location probabilities of the overlay links connecting to neighbours. The node probes

the neighbours periodically to keep these values uptodate. The method for computing

bandwidth and latency is described in later sections. Upon receiving a query, the node

executes the procedure processQueuedQueries() shown in figure 4.11. For each query in

the sorted queue, this procedure calls processQuery(). The processQuerey() is presented in

figure 4.12.

137

4.2 Proposed Solution

1 processQueryHit(QueryHit: QH)
2 begin
3 Node: dest;
4 ResultSet: R;
5 guidCache: C;
6 Timer: t;

/* guidCache C has mapping between guid received and node
which sent it */

7 dest← get sender address from C looking up QH.guid;
8 if dest = thisNode then
9 R← R ∪ { QH.queryHitNode, QH.pathcost, QH.path};

10 else
11 send QH to dest;
12 end
13 if isExpired(t) then
14 R← sortResultsByPathCostAsc(R);

/* the first entry in R, i.e, R[0] has the least-cost
path */

15 Send Content Request along the path specified in R[0].path;
16 end
17 end

Figure 4.10: Procedure for processing QueryHit messages

1 processQueuedQueries(Queue: U);
2 begin

/* sort the queries in ascending order based on the cost
accumulated so far */

3 U← sortbyCostAsc(U);
4 while !isEmpty(̄U) do

/* the first entry in U, i.e, U[0] has the least
accumulated cost */

5 processQuery(U[0].query, U[0].sender);
6 remove 0th entry from U;
7 end
8 end

Figure 4.11: Procedure for processing queued Query messages

138

4.2 Proposed Solution

1 processQuery(Query: Q, Node: sender);
2 begin
3 GuidCache: C;
4 Result: R=φ;
5 Files: F;
6 QueryHit: QH;
7 Query: CQ;
8 NeighbourSet: G;
9 CostSet: T = φ;

10 C← loadGUIDCache();
11 if Q.guid found in C then
12 return
13 end
14 foreach file f in F do
15 if match(f.keywords, Q.keywords) = true then
16 R← R ∪ f
17 end
18 end
19 if R != Φ then
20 QH.guid← Q.guid;
21 QH.R← R;
22 QH.pathCost← Q.pathCost;
23 QH.path← concat(QH.path, address of thisNode));
24 send QH to sender;
25 else if Q.hopCount = 0 then
26 return
27 else
28 C← C ∪ {Q.guid, sender};
29 foreach neighbour g in G do
30 if g != sender then

/* computeCost() computes the cost of a link
associated with neighbour g. It uses cost function
discussed later */

31 T← T ∪ {g, computeCost(Q, g)};
32 end
33 end

/* sort the queries in ascending order based on costs of
neighbour links */

34 T← sortbyCostAsc(T);
35 for i:1 to count(G)× 1

Q.popularity do
36 if T[i].g != sender then
37 CQ← clone(Q);
38 Q.hopCount← CQ.hopCount - 1;
39 Q.pathCost← Q.pathCost + T[i].cost;
40 CQ.path← concat(CQ.path,address of thisNode);
41 send CQ to T[i].g;
42 end
43 end
44 end
45 end

Figure 4.12: Procedure for processing Query message

139

4.2 Proposed Solution

One of the features in the procedure given in 4.12 that makes it work is guid or globally

unique id assigned to every message in the system. To avoid loops in forwarding the

queries, node on the query path caches the guid of the query and sender of the query. Next

time if a query arrives with the same guid, it is rejected. This way the system prevents

looping in forwarding. This check may have a negative influence in QoS path selection.

This can be illustrated with an example. Consider the diagram shown in figure 4.13.

Node n0 is initiating a query. We can observe that node n4 is receiving the same query

from n1, n2, n3 and n5. Whichever query reaches first at n4, that will be considered and

others will be discarded. This prevents looping. At node n4, if query from n2 comes first,

then all other queries are discarded although their path-cost is lesser. In order to reduce

this negative effect, it is proposed that before processing the queued queries, the queue

is sorted by path-cost. This will ensure that the minimum path-cost query is considered

first. In the procedure given in figure 4.11, it can be observed that the queued messages

are sorted based on their path-cost.

Also it can be observed that the procedure computes cost for each neighbour except

the one from which it has received the query. Then it sorts the cost-vector. The query is

forwarded to the least cost links. The number of neighbours considered for forwarding is

inversely proportional to the popularity of the file requested. If the file is popular, then

there must be many replicas in the system. If it is unpopular, then it is forwarded to larger

number of neighbours so that the coverage will be wider and may include the unpopular

file.

4.2.3.4 Query Hit Node

Query Hit node is the node which has found one or more matches for the query. This

node stops forwarding the query further. It makes the QueryHit message and copies

the parameters from query message. The query hit message is sent over the same route

through which the query has come. It assigns the same guid to QueryHit message as that

of Query message. This is required for forwarding via the same path through which the

query has reached the current path. This is shown in the algorithm given in 4.12 from

lines 18− 23.

140

4.2 Proposed Solution

Figure 4.13: Effect of looping guard-condition on QoS path selection - guid is used to
prevent looping in forwarding

4.2.3.5 Intermediate Node

Intermediate node refers to the node on the path of the QueryHit message. When this

node receives the QueryHit message, it retrieves the destination node address from guid-

cache. The QueryHit message is forwarded to destination node. This procedure is pre-

sented in figure 4.10.

4.2.3.6 Complexity Analysis

Time complexity: The time complexity to evaluate a single query at a node is as follows.

F refers to the number of files to be searched at the local node and N refers to the number

of neighbours. File search can be made constant or logarithmic time using indexing

techniques. The costs are computed using different methods mentioned in section 4.12.

The costs are sorted using a sorting technique. If we use linear search for files, and

weighted-average method for cost computation and merge sort for sorting and flooding

like forwarding then we have the expression for worst-case time complexity as given in

equation 4.1.

O
(

F, N
)
= O

(
F
)
+ O

(
1
)
+ O

(
N log N

)
+ O

(
N
)

(4.1)

O
(

F, N
)
= O

(
F
)
+ O

(
N log N

)
(4.2)

141

4.2 Proposed Solution

If the cost computation method is TOPSIS or Compromise-programming, then

O
(

F, N
)
= O

(
F
)
+ O

(
N
)
+ O

(
N log N

)
+ O

(
N
)

(4.3)

O
(

F, N
)
= O

(
F
)
+ O

(
N log N

)
(4.4)

Space complexity: The state maintained at each node comprises

1. bandwidth, latency, probability vectors: for N neighbours, the space complexity is

O
(

N
)
.

2. guid cache: the size of cache is computed as given below.

Assume that the guid-cache expiration time is δt. α is the query-rate per δt. We would

like to calculate the extent of guids to be stored at the node in one cycle of expiration time.

Assuming that every node has d as the node-degree and every query has hop-count limit

as h and δt is maximum time for a query to travel h hops and return to the same node.

Then during the interval δt the number of queries reaching to node are

Qδt = 2 ∗ (αt + (α ∗ d)t+1 + (α ∗ d2)t+2 + (α ∗ d3)t+3 + + (α ∗ dh)t+h)

Qδt = 2 ∗ (α(1 + d + d2 + d3 + + dh))

Qδt =
∣∣∣ 2α(1−dh+1)

1−d

∣∣∣
(4.5)

O
(
α, d, h

)
δt =

∣∣∣ α(1−dh+1)
1−d

∣∣∣ (4.6)

The space complexity considered above is proportional to dh. This is true in the case of

flooding where every query is forwarded to all neighbours. But in the current solution the

query is forwarded to only few neighbours, i.e., the number of neighbours is inversely

proportional to the popularity p of the object being searched for. p is the index in 0-

100 range. The lesser the value of p, more popular the object is. In that case the space

complexity is proportional to
(p

100 ∗ d
)h. We can notice that the space complexity does not

involve the network size. A small reduction in d will result in huge gains.

If we take hop-count to be 7, α as 0.034, d as 15 and p is 30 then the size of guid-cache

will be

=
2.034(1− 4.58)

14
= 816.72

142

4.2 Proposed Solution

If we consider every guid occupying 8 bytes then the space requirement for guid-cache in

the worst-case comes out to be = 6.380kb where as in the case of flooding it would have

been = 97254kb

4.2.4 Weight Calculation

The requester node calculates weights based on the user priorities or presets of priorities.

The weight calculation uses Analytical Hierarchal Process (AHP) technique [Saaty 1994].

This method is helpful in assigning relative weights to each criterion based on subjective

judgements. The input for this method is a pair-wise comparison matrix for each criterion.

The method computes eigenvector corresponding to the maximum eigenvalue. The table

4.4 gives a nine-point scale of relative importance. User gives priorities as per the scale in

this table.

For example, for downloading a large file, sample priorities are shown in Table 4.5.

Bandwidth is given very strong importance over latency and strong importance over ob-

ject location probability. Object location probability is given moderate importance over

latency. The weights computed for this matrix using AHP are 0.73, 0.08, 0.19 assigned to

bandwidth, latency and object location probability respectively.

Similarly for streaming search, a sample preset of priorities is shown in 4.6. The

weights computed for bandwidth, latency and object location probability are 0.08, 0.73,

and 0.19 respectively.

Similarly for quick-find search, sample preset of priorities is shown in 4.7. The weights

computed are 0.1, 0.1 and 0.8 respectively.

Power method is used to compute eigenvalues. The maximum eigenvalue (λmax) is

used to compute the eigenvector to determine the weights. The consistency index (CI) is

defined as

CI =
λmax − N

N − 1
(4.7)

Random Index (RI) is the consistency index of a randomly filled matrix of size N. The

consistency ratio (CR) is defined as

CR =
CI
RI

(4.8)

The consistency ratio value less than 0.1 is considered as acceptable [Saaty 1994]. The CR

143

4.2 Proposed Solution

Table 4.4: Saaty’s nine-point scale for relative importance -[Raju & Kumar 2010]

Stage of Scale Definition Characteristics
1 Equal importance Two criterion con-

tribute equally
3 Moderate impor-

tance
Experience and judge-
ment moderately
favour one criteria over
another

5 Essential or strong
importance

Experience and judge-
ment strongly favour
one criteria over an-
other

7 Very strong impor-
tance

A criteria is strongly
favoured and its domi-
nance demonstrated in
practice

9 Extreme impor-
tance

The evidence favouring
one criteria over an-
other is of the highest
possible order of affir-
mation

2, 4, 6, 8 When compromise is
needed

Reciprocals If criteria 1 has one of
the above numbers as-
signed to it when com-
pared with criteria 2,
then criteria 2 has the
reciprocal value of 1/2
when compared with
criteria 1.

Table 4.5: A sample of relative importance to QoS-parameters for fast-download preset-
fast-download preset is for downloading large files which requires huge bandwidth

Bandwidth Latency Object Loca-
tion Probabil-
ity

Bandwidth 1 7 (Very Strong
Importance)

5 (Strong Im-
portance)

Latency 1/7 1 1/3
Object Location
Probability

1/5 3 (Moderate
Importance)

1

144

4.2 Proposed Solution

Table 4.6: A sample of relative importance to QoS-parameters for streaming multimedia
preset-streaming preset is for viewing audio/video files which requires low latency

Bandwidth Latency Object Loca-
tion Probabil-
ity

Bandwidth 1 1/7
1/3

Latency 7 1 5
Object Location
Probability

3 1/5 1

Table 4.7: A sample of relative importance to QoS-parameters for quick-find search preset-
quickfind preset is for retrieving small size files such as pdf,doc, or images where locating
them is a priority

Bandwidth Latency Object Loca-
tion Probabil-
ity

Bandwidth 1 1 1/8
Latency 1 1 1/8
Object Location
Probability

8 8 1

value for both fast-download and streaming matrix is 0.032
0.58 = 0.056. The CR value for

quick-find search is 0.0
0.58 = 0.

4.2.5 Measuring QoS Metrics

As discusses in section 4.2.4, there is local decision at every hop to decide where to for-

ward the query. This decision is based on an aggregate-cost whose computation involves

the parameters link bandwidth, link latency and the object location probability. The mea-

surement and scaling of these parameters is discussed in this section.

4.2.5.1 Overlay-Link Bandwidth

Every node regularly measures bandwidths of the links connecting to its neighbours. The

link at the overlay layer actually consists of many links at the Internet level and most of the

time crossing the administrative boundaries as shown in the figure 4.2. It is not expected

that every peer will run services that help other peers in measuring bandwidth. Therefore

measurement has to be done without expecting any cooperation from the receiving peer.

Bandwidth of a link is defined as number of bits that can be transmitted over a period

145

4.2 Proposed Solution

of time. If an overlay link consists of m physical links in the Internet each link Li having

a capacity (bandwidth) of Ci then the bottleneck-bandwidth C is defined as

C ≡ min{Ci}
i=1...m

. (4.9)

This is the maximum bandwidth the overlay link can provide for a flow if there is no

other traffic on that path. Available bandwidth Btis defined as

Bt ≡ min{Ci[1− ut]}
i=1...m

(4.10)

Here ut refers to the average link utilization rate at time t. Available-bandwidth is the

maximum bandwidth an overlay link can provide for a fresh flow at time t. Bottleneck-

bandwidth is fixed for a path but available bandwidth varies with traffic. Therefore it is

easier to measure bottleneck-bandwidth compared to available-bandwidth of an overlay

link.

The tool used in [Saroiu et al. 2002a] for measuring bottleneck bandwidth is Sprobe

[Sariou et al.]. Sprobe has the capability to measure upstream and downstream band-

widths without expecting the cooperation of the target node. Recently [Jain & Dovro-

lis 2003] proposed that in-band bandwidth can be measured without separate endeav-

our. They used the data-flow itself to piggy-back certain information to measure in-band

(achievable TCP throughput) bandwidth.

Once bandwidth is measured it is important to scale it. This scale should be uniform

for all parameters and across the network. Such a condition will enable the requester node

to compare the path-costs of different paths and chose the least-cost. To have the uniform

scaling, minimum and maximum values 0, Bmax are defined globally for the network. The

range [0, Bmax] is divided into 10 sub-ranges. Each range is given a value from 0 to 10.

The ranges and the corresponding values are shown in Table 4.8. Here the bandwidth

values are mapped to values in the range 0 − 10 but in reverse order. That is higher

bandwidths are given lower values. This is because the cost function is to be minimized.

So the corresponding parameters should be given values of minimizing nature.

146

4.2 Proposed Solution

Table 4.8: Bandwidth ranges and normalized values- B refers to the bottleneck-bandwidth
of the link

Range Value(
0, Bmax

10

]
10(

Bmax
10 , 2 ∗ Bmax

10

]
9(

2 ∗ Bmax
10 , 3 ∗ Bmax

10

]
8(

3 ∗ Bmax
10 , 4 ∗ Bmax

10

]
7(

4 ∗ Bmax
10 , 5 ∗ Bmax

10

]
6(

5 ∗ Bmax
10 , 6 ∗ Bmax

10

]
5(

6 ∗ Bmax
10 , 7 ∗ Bmax

10

]
4(

7 ∗ Bmax
10 , 8 ∗ Bmax

10

]
3(

8 ∗ Bmax
10 , 9 ∗ Bmax

10

]
2(

9 ∗ Bmax
10 , Bmax

]
1

4.2.5.2 Overlay-Link Latency Measurement

Latency is measured as the time taken for a message to travel from one end of a network

to the other. Latency has impact on multimedia streaming. It is measured as Round Trip

Time (RTT). RTT varies with network traffic. Therefore it is measured regularly at the

overlay node. The measured RTT value is scaled down appropriately as per the Table 4.9.

The large RTT values are assigned large values and vice-versa. This is to minimize the

cost function. The maximum link latency across the network is taken as Lmax.

4.2.5.3 Object Location Probability

In unstructured peer-to-peer overlays the location of the object is unknown to the querying

node. The query is directed blindly or intelligently at each hop to certain neighbours. The

neighbours in turn forward it to others. While forwarding, the probability of finding the

object in a particular direction is uncertain.

Here we have adapted a method from [Rhea & Kubiatowicz 2002], called Attenuated

Bloom Filters (ABF) to give direction for the object’s location. ABF is an array of Bloom

Filters [Bloom 1970]. Bloom Filter is a bit vector that maps to the hash values of k hash

functions that are applied over a string. It is popularly used for storing membership

147

4.2 Proposed Solution

Table 4.9: Latency ranges and normalized values-L refers to the latency measured over a
neighbour link

Range Value(
0, Lmax

10

]
1(

Lmax
10 , 2 ∗ Lmax

10

]
2(

2 ∗ Lmax
10 , 3 ∗ Lmax

10

]
3(

3 ∗ Lmax
10 , 4 ∗ Lmax

10

]
4(

4 ∗ Lmax
10 , 5 ∗ Lmax

10

]
5(

5 ∗ Lmax
10 , 6 ∗ Lmax

10

]
6(

6 ∗ Lmax
10 , 7 ∗ Lmax

10

]
7(

7 ∗ Lmax
10 , 8 ∗ Lmax

10

]
8(

8 ∗ Lmax
10 , 9 ∗ Lmax

10

]
9(

9 ∗ Lmax
10 , Lmax

]
10

Figure 4.14: Attenuated Bloomfilter FAB at node A for neighbour B - source: [Rhea &
Kubiatowicz 2002]

148

4.2 Proposed Solution

Table 4.10: Object location probability ranges and normalized values- P refers to the prob-
ability of finding the object over the neighbour link

Range Value(
0, Pmax

10

]
10(

Pmax
10 , 2 ∗ Pmax

10

]
9(

2 ∗ Pmax
10 , 3 ∗ Pmax

10

]
8(

3 ∗ Pmax
10 , 4 ∗ Pmax

10

]
7(

4 ∗ Pmax
10 , 5 ∗ Pmax

10

]
6(

5 ∗ Pmax
10 , 6 ∗ Pmax

10

]
5(

6 ∗ Pmax
10 , 7 ∗ Pmax

10

]
4(

7 ∗ Pmax
10 , 8 ∗ Pmax

10

]
3(

8 ∗ Pmax
10 , 9 ∗ Pmax

10

]
2(

9 ∗ Pmax
10 , Pmax

]
1

information of a group in relatively small storage space. ABF contains BF, an array of

Bloom Filters each one corresponding to a level. The first BF[0] contains hashes of all the

files at one of the neighbours and BF[1] contains the hashes of all the files of neighbour’s

neighbours. This is depicted in figure 4.14. Node A maintains ABF vector FAB for the

neighbour B. There are three levels. In the first level, the file names at node B are hashed

using three hash functions. These values are 1, 3, 8. The corresponding bits are set in

level-1 vector of FAB. Similarly files available two hops away along the link AB, they are

set in level-2. If the file is matching with level-1, the probability is assigned as 1/2. If

it is found in level-2, and level-3 the probabilities 1/4, 1/8 are assigned respectively. If it

is found in more than one level, the probabilities are summed up. For example, the file

"Uncle John’s Band" is found at level-2 and level-3. Then the probability of finding that

item at A along the link AB will be 1
4 +

1
8 = 3

8 . The maximum probability (Pmax) for any

item can be 1
2 +

1
4 +

1
8 = 7

8 .

The probabilities are also scaled to uniform values. More the probability more will be

the chance of finding that item. The probability values are divided into 10 sub-ranges.

They are assigned values similar to bandwidth as shown in Table 4.10.

149

4.2 Proposed Solution

4.2.6 Link-cost Functions

At each hop, the parameters need to be combined into an aggregate-metric. That function

which combines these parameters either linearly or non-linearly is the link-cost function.

They are discussed below.

4.2.6.1 Weighted Average

This is a linear combination of the metrics. At node n the link-cost for neighbour j is

defined as

costj = wbw × Bnormalized
j + wlt × Lnormalized

j + wolp ×QPnormalized
j (4.11)

The weights are indicated by wbw, wlt, wolpfor bandwidth, latency and object-location prob-

ability respectively. Among all the links connecting to neighbours, the link with the lowest

cost costj is considered as the best alternative.

4.2.6.2 Compromise Programming

Compromise Programming defines the best alternative as the one whose point is at the

least distance from an ideal point [Zeleny 1982]. The goal is to minimize the distance

between the ideal f ∗ and actual value. We choose an alternative that is as close as possible

to ideal conditions. At node n, the link-cost for neighbour j is defined as

costj =

[
(wbw)

p
∣∣∣∣ f ∗bw − Bj

Bmax
n − Bmin

n

∣∣∣∣p]
1
p

+

[
(wlt)

p
∣∣∣∣ f ∗lt − Lj

Lmax
n − Lmin

n

∣∣∣∣p]
1
p

+

[(
wolp

)p

∣∣∣∣∣ f ∗olp − Pj

Pmax
n − Pmin

n

∣∣∣∣∣
p] 1

p

(4.12)

where f ∗bw refers to the ideal value of bandwidth parameter among the given neighbour

links. Same is applicable to other parameters. The weights are indicated by wbw, wlt, wolpfor

bandwidth, latency and object-location probability respectively. Bmax
n and Bmin

n refers to

the maximum and minimum bandwidth values among the neighbour links. The same is

applicable to other parameters. Here, normalized values are not used. normalization is

inbuilt into the equation 4.12. Signs are assigned to the parameters depending on how

150

4.3 Experimental Analysis

they contribute to the minimization of the function. Latency is given negative sign and the

other two are given positive sign. p refers to the balancing factor with respect to the com-

pensations between deviations. For p = 1, all deviations from f ∗ are taken into account

in direct proportion to their magnitudes. In this work, p = 1 is used. After computing

the cost values for neighbour links, the neighbour with least link-cost value is considered

the best alternative.

4.2.6.3 TOPSIS

TOPSIS is expanded as Technique for Order Preference by Similarity to an Ideal Solution.

It identifies the alternative that has shortest distance from ideal solution f ∗ and farthest

distance from the negative ideal solution f ∗∗ [Chen & Hwang 1992]. For each neighbour

link j, separation distance measures D+
j and D−j are computed sing Euclidean-distance

formula as shown in equations 4.13 and 4.14.

D+
j =

√(
Bnormalized

j − f ∗bw

)2
+
(

Lnormalized
j − f ∗lt

)2
+
(

Pnormalized
j − f ∗olp

)2
(4.13)

D−j =

√(
Bnormalized

j − f ∗∗bw

)2
+
(

Lnormalized
j − f ∗∗lt

)2
+
(

Pnormalized
j − f ∗∗olp

)2
(4.14)

f ∗bw and f ∗∗bw are the maximum and minimum bandwidths available among the neighbour

links. The same is applicable to object location probability parameter. In case of latency,

f ∗lt and f ∗∗lt are the minimum and maximum latency values among the neighbour links.

The relative closeness to ideal solution is measure as shown in equation 4.15.

costj =
D+

j

D+
j + D−j

(4.15)

Among all the costj values, neighbour with least cost value is considered as the best

alternative.

4.3 Experimental Analysis

The simulations for the proposed solution are carried out on a custom-built simulator on

Java platform. It was discussed in section 3.2.3.1.

151

4.3 Experimental Analysis

Table 4.11: Simulation parameters and their values-ABF refers to attenuated bllomfilter

Parameter Value
Nodes 1000
Topology Fully Decentral-

ized
Average Degree 9.3
Objects 150
Replicas 5000
No of queries 3008
Fast Download Search
Preset

[0.73, 0.08, 0.19]

Multimedia Stream-
ing Search Preset

[0.05, 0.76, 0.18]

Quick Find Preset [0.1, 0.1, 0.8]
ABF Levels 3
Bloom Filter Length 253 bytes

4.3.1 Simulation Setup

The simulation parameters are summarized in Table 4.11. The purpose of simulation is

to measure the effectiveness of the proposed QoS search algorithm in meeting the user

expectations. User priorities are derived from the network requirements for the expected

service. The simulation is setup in the following steps.

• building topology from a pre-defined file

• assigning bandwidth and latencies to links

• replicating files in the network

• query generation

4.3.1.1 Building Topology

The network consists of 1000 nodes. The connectivity is according to the random model

generated by GT-ITM [Zegura et al. 1996] topology generator. The average node degree is

9.34. The distribution of node-degree is shown in figure 4.15. The nodes are arranged in

fully-decentralized fashion.

152

4.3 Experimental Analysis

Figure 4.15: Node-degree distribution in the simulation topology - y-axis is the percent of
nodes with number of neighbours projected on x-axis

4.3.1.2 Assigning Link-level Parameters

The bandwidth and latency properties of the overlay links are randomly assigned in a

reasonable range. All bandwidths are taken in mega bytes per second (Mbps) and all

latency values are taken to be in milli-seconds. As it can be observed from figure 4.16,

there are all types bandwidths in the network. The bandwidth ranges from 1 to 99 Mbps.

Similarly latency values are also assigned randomly to the links. The link-latency values

range from 1 to 999 milli-seconds. The distribution of these values is shown in the figure

4.17. The distribution is uniform across the ranges.

4.3.1.3 Object Replication

There are 150 unique objects. They are replicated in the overlay according to their pop-

ularity. 1st object is the most popular and 150th object being the least. The objects and

queries are distributed according to the observations made in [Chu et al. 2002]. The replica

distribution of these objects is done according to the Zipfian distribution with parameter

α = 0.82. The replicas are placed at randomly selected nodes. The replica distribution is

as shown in figure 4.18. The graph shows that it is a power-law distribution.

153

4.3 Experimental Analysis

Figure 4.16: Bandwidth distribution of the overlay links in the simulation - all ranges of
bandwidths are almost evenly distributed

Figure 4.17: Latency characteristics of the overlay links in the simulation - all ranges of
latencies are approximately evenly distributed

154

4.3 Experimental Analysis

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

 o
f R

ep
lic

as

Keyword No

Figure 4.18: Object replica distribution in the simulation - replicas are distributed according
to Zipf distribution

4.3.1.4 Query Generation

Queries for these objects follow the Zpifian distribution (α = 0.82) i.e. the popular objects

receive more queries than that of less popular objects. The queries are generated according

to this pattern. Query is fired every 100 milli-seconds. The query message is added to the

queue of the node from which it needs to be fired.

4.3.2 Result Analysis

The purpose of the analysis is to show that the QoS-constrained search gives better results

than usual methods like flooding and random walk and also fulfills the expectations of

the user.

The comparison of bandwidth, latency and pathlength characteristics of QueryHit

messages with respect to three search methods, namely flooding, random walk and QoS-

constrained TOPSIS is explained below. Figure 4.19 shows the comparison of bottleneck-

bandwidths returned by the QueryHit messages. The TOPSIS-based search returns 88.7%

of the QueryHits having bandwidth above 50 Mbps whereas flooding and random walk

return only 25% of the QueryHits having bandwidth above 50 Mbps.

Figure 4.20 depicts the comparison of pathlengths of QueryHit messages. Pathlength

155

4.3 Experimental Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 o
f H

its

Bandwidth

Random Walk
Flooding
TOPSIS

Figure 4.19: Comparison of bottleneck bandwidths of QoS-constrained search with Flood-
ing, and Randomwalk - in QoS search, for each query, bottleneck bandwidth is measured for
least-cost QueryHit

is defined as the number of hops between requesting node and the QueryHit node. The

figure shows that 97% of the QueryHit messages returned through TOPSIS have path

lengths between 1 and 3. Flooding has only 83% of QueryHits having pathlengths in that

range. On the other hand, random walk has QueryHits with pathlengths ranging from

1 to 22. This is expected from randomwalk algorithm because of its depth-first-search

nature. Randomwalk has only 62% of QueryHits having pathlengths between 1 and 3.

The comparison of accumulated delays is depicted in figure 4.21. The figure shows

that 91% of the QueryHits obtained through QoS-based TOPSIS have accumulated delays

less than 1000 milli-seconds. Flooding and randomwalk algorithms obtain only 54% and

42% of QueryHits having accumulated delays less than 1000 milli-seconds.

There are three cost functions used for enabling QoS-constrained search. They are

Weighted Average, Compromise Programming, and TOPSIS. Bandwidth, accumulated-

delay and pathlength characteristics of QueryHits obtained through these methods are

compared herein. Figure 4.22 depicts the comparison of bottle-neck bandwidths. Obvi-

ously TOPSIS outperforms the other two. 62% of the QueryHits obtained through TOP-

156

4.3 Experimental Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

%
 o

f H
its

Hop Number

Random Walk
Flooding
TOPSIS

Figure 4.20: Comparison of pathlengths of QoS-constrained search with Flooding, and
Randomwalk - in QoS search, for each query, pathlength is measured for least-cost QueryHit

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500

P
er

ce
nt

 o
f H

its

Delay

Random Walk
Flooding
TOPSIS

Figure 4.21: Comparison of accumulated delays of QoS-constrained search with Flooding,
and Randomwalk - in QoS search, for each query, accumulated delay is measured for least-
cost QueryHit

157

4.3 Experimental Analysis

SIS are having bandwidth above 70 Mbps whereas only 52% of the QueryHits are having

bandwidth above 70 Mbps in the other two methods. It can also be observed that both

weighted average and compromise programming methods perform in similar ways.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

 o
f H

its

Bandwidth

Weighted Average
Compromise Programming

TOPSIS

Figure 4.22: Comparison of bottleneck bandwidths by cost function - for each query, bottle-
neck bandwidth is considered for least-cost QueryHit

It can be observed from figure 4.23 that all three cost functions perform similarly. This

is because the probability of finding the object is computed from the ABF and this factor

has no global relevance. Bottleneck-bandwidth and accumulated-delays are computed

end-to-end.

Figure 4.24 depicts the accumulated delays for all three methods. Clearly TOPSIS per-

forms better than the other two. TOPSIS obtains 54% of QueryHits having delays from

0-300 milli-seconds where as the other two obtain only that of 50%. Both weighted aver-

age and compromise programming perform nearly same but towards the higher delays

compromise programming gives better results.

The simulation is carried out with different preset priorities for bandwidth, delay and

probability of finding the object. The same settings (topology, queries) were employed

while simulating each preset priorities. The presets considered are fast-download search,

multimedia-streaming search, quick-find search and equal-importance. The maximum

158

4.3 Experimental Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8

P
er

ce
nt

 o
f H

its

Hop Count

Weighted Average
Compromise Programming

TOPSIS

Figure 4.23: Comparison of pathlengths by cost function - for each query, bottleneck band-
width is considered for least-cost QueryHit

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500

P
er

ce
nt

 o
f H

its

Delay

Weighted Average
Compromise Programming

TOPSIS

Figure 4.24: Comparison of accumulated delay by cost function - for each query, accumu-
lated delay is considered for least-cost QueryHit

159

4.3 Experimental Analysis

priority is given to bandwidth, delay and probability in each of these presets respec-

tively. Equal-importance preset assigns equal priority to all three parameters. Figure

4.25 depicts the bottleneck-bandwidth comparisons of QueryHits obtained in each pre-

set. Paths discovered with Fast-download preset, carry bottle-neck-bandwidths in higher

range. This surpasses the bandwidths obtained in other preset conditions. Equal impor-

tance and quick-find preset conditions give similar results due to the equal priority given

to bandwidth and latency. In multimedia-streaming preset, we see a reverse pattern of

fast-download preset. This is because multimedia-streaming gives lowest importance to

bandwidth.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

 o
f H

its

Bandwidth

Quick Find Search
Streaming Search

Fast Download Search
Equal Importance

Figure 4.25: Preset-wise comparison of bottleneck bandwidths - for each query, bottleneck
bandwidth is considered for least-cost QueryHit

In figure 4.26, the pathlengths comparison is depicted. Quick-find search gives the

best performance in finding shortest-pathlength paths. This is the expected outcome of

this preset. It should find the object quickly. Pathlength is indication of quickness of

response i.e. smaller path lengths will give quicker responses. The streaming-preset and

download-preset perform similarly because both treat probability of finding the object

with equal priority.

Figure 4.27 depicts the comparison of accumulated delays of paths obtained in dif-

160

4.3 Experimental Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8

P
er

ce
nt

 o
f H

its

Hop Count

Quick Find Search
Streaming Search

Fast Download Search
Equal Importance

Figure 4.26: Preset-wise comparison of pathelngths - for each query, pathlength is considered
for least-cost QueryHit

ferent presets. Clearly multimedia-streaming preset obtains most paths with minimum

accumulated delays. Fast-download preset performs the worst because of its lowest pref-

erence to latency. But fast-download also performs as good as the flooding or random

walk would have performed. The outcome expected from multimedia-streaming preset is

to obtain paths with lowest accumulated delays. It can be observed that this expectation

is achieved.

It is usual for a query to receive multiple QueryHits from different replicas of the

object. Each QueryHit will have its own path characteristics. So far the analysis is about

least-cost paths. That is every QueryHit carries a cost value accumulated over its path.

Only those QueryHits having least cost are chosen. Now least-cost path characteristics are

compared with paths of other QueryHits. Figure 4.28 depicts the bottleneck-bandwidth

characteristics. Average bandwidth is calculated as average of bottleneck-bandwidths as-

sociated with all QueryHits received. The graph is plotted over the queries sorted by their

average bandwidth. One thing to notice is that the variation of average bandwidth curve

in download-preset, streaming-preset and quick-find-preset. In download-preset, the av-

erage bandwidth rises very steeply, indicating that all paths have bottleneck-bandwidths

161

4.3 Experimental Analysis

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500

P
er

ce
nt

 o
f H

its

Delay

Quick Find Search
Streaming Search

Fast Download Search
Equal Importance

Figure 4.27: Preset-wise comparison of accumulated delays - for each query, accumulated-
delay is considered for least-cost QueryHit

much above other presets. The points on either side of the average-line indicate the band-

width of least-cost path. In most of the cases, the least-cost path’s bandwidth is higher

than the average bandwidth. In few cases (13%), the non-least-cost paths had better band-

widths. This can be explained as follows: the cost is computed by cost function which

takes three parameters as input. The cost is added at every hop to compute end-to-

end path-cost. For fast-download preset, the maximum priority is given to bandwidth.

Bottleneck-bandwidth is a min-parameter i.e. the minimum bandwidth in the end-to-end

path becomes the bandwidth of the whole path. Since the way end-to-end cost is com-

puted and the way end-to-end bandwidth is computed differ, the least-cost-path need not

necessarily indicate the highest bandwidth. In the case of delay, the ways of computing

end-to-end delay and end-to-end cost match. Least-cost-path necessarily means minimum

end-to-end delay.

In figure 4.29, both least-cost-path’s accumulated delay and the average of accumu-

lated delays over all the QueryHits received is depicted. This is done for three presets,

namely fast-download search, multimedia streaming search and quick-find search. Firstly,

it can be observed that the slopes of average curves are distinctly different across the pre-

162

4.3 Experimental Analysis

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

B
an

dw
id

th

Download Preset

Least cost Bandwidth
Average Bandwidth

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

Streaming Preset

Least cost Bandwidth
Average Bandwidth

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

Quickfind Preset

Least cost Bandwidth
Average Bandwidth

Figure 4.28: Bottleneck bandwidth comparison for least-cost path and other paths - bottle-
neck bandwidth obtained for least-cost path is compared to average bottleneck bandwidth of
all QueryHit-paths

sets. The steepest average-curve is in fast-download preset. The slowest growing curve

is in multimedia-streaming preset. For most of the queries, the accumulated-delay falls

below 2000. Secondly, accumulated-delays of least-cost paths fall well below the average

curve. This indicates that least-cost is an appropriate measure for finding the best Query-

Hit. As discussed above, the way of computing end-to-end cost and end-to-end delay are

same. Therefore they have direct correspondence.

Figure 4.30 depicts the pathlengths measured of least-cost paths and the average over

all QueryHit paths. The graph is plotted by sorting the queries by their average path-

length. Firstly, it can be observed that quick-find preset has the slowest growing average

curve. It indicates that all the QueryHits received are pathlength aware. The least-cost

pathlengths are well below the corresponding average pathlength. The least-cost path-

lengths form parallel lines due to the discrete values of hops. Pathlengths can take values

1,2,3,4 only. In quick-find preset 19% of the queries have average pathlength as 1 where

as in other presets it is only 0.02%.

163

4.3 Experimental Analysis

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500

La
te

nc
y

Download Preset

Least cost Latency
Average Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500

Streaming Preset

Least cost Latency
Average Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500

Quickfind Preset

Least cost Latency
Average Latency

Figure 4.29: Accumulated delay comparison for least-cost path and other paths - accu-
mulated delay obtained for least-cost path is compared to average accumulated delay of all
QueryHit-paths

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500

P
at

hl
en

gt
h

Download Preset

Leastcost Pathlength
Average Pathlength

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500

Streaming Preset

Leastcost Pathlength
Average Pathlength

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500

Quickfind Preset

Leastcost Pathlength
Average Pathlength

Figure 4.30: Pathlength comparison for least-cost path and other paths - path length ob-
tained for least-cost path is compared to average pathlength of all QueryHit-paths

164

4.3 Experimental Analysis

4.3.2.1 Comparing Results with SAMCRA

TAMCRA(or SAMCRA) proposed by [Neve & Mieghem 2000] uses a non-linear aggregate

cost function. It uses this cost metric to compute feasible paths by an extended Dijkstra’s

algorithm. This algorithm works with the assumption that global topology with network

parameters like bandwidth and latency is available at one place. In the first step, it prunes

the whole network and removes the links that are less than the required minimum band-

width constraint. Then it uses Dijkstra’s algorithm to select paths with minimum cost

aiming at minimizing the end-to-end delay and hops. The implementation of this algo-

rithm is available at [sam 2006]. We have run this algorithm on our simulation topology

and computed the paths for the queries used in our simulation. The topology and link

parameters bandwidth, and latency are common to both approaches. In SAMCRA the

bandwidth constraint is specified as 0 Mbps.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500

D
el

ay

Query No (sorted by SAMCRA delay)

Dealy from SAMCRA
Delay from TOPSIS

Figure 4.31: Comparison of delays obtained by SAMCRA and QoS algorithm with cost
function TOPSIS - the entries on x-axis are query numbers sorted on SAMCRA delays

In our approach, streaming preset has settings with highest priority for obtaining

minimum delay paths. So we compared results of SAMCRA with results obtained from

streaming preset. Cost function used is TOPSIS. Delays obtained from running SAMCRA

165

4.3 Experimental Analysis

algorithm and delays obtained by running our approach are compared. The delays are

plotted in figure 4.31. We found that for 82.53% of the queries, the delays are the same

as that of SAMCRA results. In 16.51% of the queries, the delays are more than SAMCRA

delays. In 0.96% of the cases, the delays are lower than the SAMCRA delays. The delay

difference is plotted in figure 4.32. It can be observed that the difference is zero for most

of the queries.

-1500

-1000

-500

 0

 500

 1000

 0 500 1000 1500 2000 2500 3000 3500

D
el

ay
 D

iff
er

en
ce

 (
S

A
M

C
R

A
 -

 T
O

P
S

IS
)

Query No (Sorted by Difference)

Delay Diff(SAMCRA - TOPSIS)

Figure 4.32: Difference of delays obtained by SAMCRA and QoS algorithm with cost func-
tion TOPSIS - delay differences are sorted in ascending order

SAMCRA also aims at minimizing the pathlengths. The path lengths obtained from

SAMCRA and pathlengths obtained from streaming preset are compared in 4.33. We

found that 84.95% of the queries obtained the same pathlengths in both the algorithms.

In 11.97% of the queries, the pathlengths obtained through SAMCRA found to be longer.

In 3.08% of the queries the pathlengths of SAMCRA found to be shorter.

Bandwidths obtained through SAMCRA and our approach are depicted in 4.34. In

84.49% of the queries, bandwidths obtained by SAMCRA and our approach are the same.

In 5.52% of the queries, bandwidths obtained by SAMCRA are higher. In 10.98% of the

queries, bandwidths obtained by SAMCRA are lower. Overall, QoS-constrained search

algorithm has near-match performance with SAMCRA.

166

4.3 Experimental Analysis

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500

P
at

hl
en

gt
h

Query No (queries sorted by SAMCRA pathlength)

Pathlength from SAMCRA
Pathlegth from TOPSIS

Figure 4.33: Comparison of pathlengths obtained by SAMCRA and by QoS algorithm - the
entries on x-axis are query numbers sorted on SAMCRA pathlengths

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500

B
an

dw
id

th

Query No (queries sorted by SAMCRA bandwidth)

Bandwidth from SAMCRA
Bandwidth from TOPSIS

Figure 4.34: Comparison of bandwidths obtained by SAMCRA and by QoS algorithm - the
entries on x-axis are query numbers sorted on SAMCRA bandwidths

167

4.4 Conclusion

4.4 Conclusion

There are several ways on how to make search efficient in peer-to-peer file sharing net-

works. Herein, we have attempted to address this issue by differentiating user requests

and correspondingly adapting the search procedure. The proposed search algorithm is

evaluated on 1000-node network. Results of simulation indicate 40-55% gains over tra-

ditional methods like flooding and random-walk. It has near-match performance (82%

exact matches) with SAMCRA. The following are the advantages of the proposed search

algorithm:

• It takes user preferences, machine settings into account and incorporates them into

search.

• It differentiates between the requests as fast-download search, multimedia-streaming

search, and quick-find search. It defines presets for them which can be picked by

the user.

• Applies heuristics at each hop in order to find the best path to destination satisfying

user preferences.

• It returns several replies with path costs, allowing the user to choose the path with

the least cost.

The limitations of the model are:

• It doesn’t guarantee that user preferences will be fully met.

• It doesn’t provide a solution for reserving any resources at the nodes.

168

Chapter 5

Mechanisms for Detecting Sybils

5.1 Introduction

Security is a fundamental issue to be addressed when the system involves multiple users

and their shared resources. Large-scale peer-to-peer overlays involve millions of user iden-

tities and their devices contributing to the functioning of the network. These distributed

networks are attractive platform for malicious intents due to their decentralized nature,

lack of central control, huge shared resources etc. Sybil attack is an attack intended at

gaining control over a network through forged identities for misutilising resources and

influencing global decisions of the network.

5.2 Related Work

Solutions for identifying or detecting Sybil attack proposed in the literature are analyzed

by their methods. This is presented in table 5.1. There are three types of solutions:

5.2.1 Admission Control

In this type of solution, the identities are verified before admitting into the network.

Most of the solutions are of this kind. In centralized solutions, the identities and their

characteristics are maintained at a central location. They are matched with new identity

to check the duplication. In distributed mechanisms, the verification is distributed among

honest identities.

169

5.2 Related Work

5.2.2 Detection

In this type of solution, the system looks for Sybil identities in the network. The de-

tection can be by tests such as resource-challenging [Borisov 2006] or network character-

istics [Wang et al. 2005] or personality characteristics. The solution proposed by [Wang

et al. 2005] aims at detecting groups and then issuing computation puzzles.

Table 5.1: Sybil solutions and their methods

Solution Execution
level

Means Level of De-
fense

Douceur
2002

Central Au-
thority

- Admission
Control

Borisov
2006

Distributed Computational puzzles Detecting

Rowaihy et
al. 2007

Hierarchical Computational puzzles Admission
Control/Lim-
iting Damage

Bazzi and
Konjevod
2005

Central Au-
thority

Geometric distance certifi-
cates

Admission
Control

Wang et al.
2005

Centralized
/Distributed

Netprint: router IP + MAC+
vector of RTT measurements
from land mark nodes

Detection of
Groups

Dinger and
Hartenstein
2006

Distributed Registering IP at r nodes Admission
Control

Castro et al.
2003

Central Au-
thority

Signed certificates, fee per
registration

Admission
Control

Danezis et
al. 2005

Distributed Distributing queries among
trusted nodes

Limiting Dam-
age

Yu et al.
2006

Distributed Trust relationships Admission
Control

Jyothi and
Janakiram
2009

Distributed Past transactional history Limiting Dam-
age

5.2.3 Limiting Damage

Some solutions are proposed to limit the damage caused by the Sybil identities. The

damage can be corrupting the files, generating spurious replies etc.

In this chapter, we propose two approaches for Sybil attack. They are storage con-

strained challenge-response model, and using psychometric tests. They are discussed

170

5.3 Storage Constrained Challenge-Response Model

below.

5.3 Storage Constrained Challenge-Response Model

File replication in P2P has many advantages such as reducing traffic congestion; increas-

ing object availability and fault tolerance. Single node failures, like crashes of nodes, can

be tolerated because of the redundancy introduced by replicas. If a host of a replica fails,

requester may access another host with a replica. Data replicated at more than one site

also helps in efficient access. But, large scale Peer to Peer systems face security threats

from faulty or hostile elements. Peer-to-Peer (P2P) based file sharing applications have

become highly popular in today’s Internet due to the spread of platforms such as Napster,

Gnutella, KaZaa, eDonkey, BitTorrent, and others. The Sybil attack in which a single user

can pose as multiple identities is a serious threat to P2P file sharing systems because the

malicious entity can sabotage the replication mechanism.

Sybil attack has its impact on file sharing systems especially in replication systems.

By knowing the mechanism of replication which is used in a particular P2P network,

a malicious user (Sybil attacker) can create fake identities in the network so that the

file replication of a particular file happens entirely or partially on the Sybil identities

created by this particular user. Once the replica is in the hands of Sybil identity, it can

corrupt, hide or destroy the copy. Worst case is when all copies are replicated on Sybil

identities only. Sybil attack goes against maintaining quality and accessibility of content,

and robustness of the network. Here we propose a challenge-response model for limiting

the Sybil growth in the network.

5.3.1 System Model

The network is a structured network like Chord [Stoica et al. 2001] where the nodes are

placed in pre-determined positions according to the node id. Node ids are generated

using the SHA-1 hashing function. The Chord network is based on underlying Distributed

Hash Table (DHT). The topology of Chord is ring shaped i.e. the ids are arranged in a ring

shape and most of the operations are in clock-wise direction. The data is placed in the

node whose id is the closest to the hashed key of the object. In most structured networks,

171

5.3 Storage Constrained Challenge-Response Model

the objects are replicated in r number of successors, r being dependent on individual

system. The node where the object is originally stored is called ’owner’ of the object.

The owner replicates the copies of the object in r successors. The owner of the file has

details about to which nodes the file has been replicated. It is assumed that for a normal

node, there will not be a situation where it doesn’t have space to store the file. This is

because the object placement is done by the consistent hashing [Karger et al. 1997]. This

will ensure equal distribution of load. So no node at any time can refuse to store the file.

5.3.1.1 Threat Model

• Peer Model: Network consists of honest and Sybil identities. Honest identities are

created by honest users and they always adhere to the protocol of the network. Sybil

identities are generated by a malicious user in a large proportion. These identities

may subvert the protocol for selfish goals. There can be several malicious users

or Sybil entities which create Sybil identities in a large proportion. Sybil identities

appear to be normal nodes but they don’t have their own computational, memory

and storage resources but use the resources of the Sybil entity. Identities created by

one Sybil entity share the resources available with entity. For the nodes in the net-

work, these identities appear to be non different from normal nodes. Sybil entities,

through their managed-Sybil identities, influence voting objects, and use dispropor-

tionate amount of resources in their favour.

Nodes, before joining the network, need to generate a public key/private key pair

and hash the public key using SHA-1 to get its identity. This will prevent the nodes

from choosing advantageous position in the topology.

• Replication Model: Owner of a file replicates the file among a set R of nodes. Nodes

or identities1 in R may not be Sybil identities, some may be Sybil identities or all

be Sybil identities. File owner can be honest node or Sybil node. It is considered

that owner Sybil identities don’t carry out DOS attacks by sending repeated replica

requests or replica verification requests.

1In this discussion node and identity are interchangeably used.

172

5.3 Storage Constrained Challenge-Response Model

5.3.2 Proposed Solution

5.3.2.1 Storage Constraint

All the Sybil identities created by one malicious user share the same storage. So, the data

that has been replicated in Sybil identities created by that malicious user will be stored

in a single storage area. The malicious user has a limited storage capacity. It is assumed

that it is not economically viable for the malicious user to scale the storage in proportion

to the number of Sybil identities. This model is depicted in figure 5.1. Nodes 3, 5, 6, and

8 are Sybil identities. These nodes don’t have their own storage because they are virtual

and are actually running in a single system. The owner of file1, file2 and file3 is node 1.

When it replicates these files, the copies that go to Sybil identities are all stored in a single

storage space at Sybil entity 5.

Sybil Identity

Common Storage
for all Sybil Identities

Honest Identity

File Owner

file1

file1

file2

file2

file3

file3

file1

file2

file3

1

1

3

4

5

6
7

8

9

10

11

Figure 5.1: System model for storage-constrained challenge-response Sybil detection - the
number of replicas to be stored by a Sybil user are proportional to the number of Sybil iden-
tities created by him

173

5.3 Storage Constrained Challenge-Response Model

5.3.2.2 Algorithms for Detecting Sybil Identities

The following algorithms outline how the Sybil detection test happens.

• File Owner: The owner is the node in which DHT has stored the file. Thus every

node in the network receives a set of files F. The owner node replicates every file

in the set F on a set of successor nodes R. How to select this set of successors

is predefined globally. How many replicas to make for each file in F is a global

constant (REPLICA_LIMIT) in the network. The owner node keeps track of the

nodes in which it has replicated each of the files in F. However the file owner

checks whether the successor is a Sybil and avoids storing the replicas in that node.

Replication procedure is shown in figure 5.2.

1 Replicate(File: f)
2 begin
3 SuccessorsList: R;
4 SybilDetectedList: D;
5 Int: noReplica = 0;
6 ReplicaList: L;
7 foreach successor s in R do
8 if s in not in D then

/* putIntoNetwork() utilizes the DHT framework to
store the file */

9 putIntoNetwork(s, f);
10 add the pair (s, f) to L;
11 noReplica = noReplica + 1;
12 if noReplica > REPLICA_LIMIT then
13 break from for loop;
14 end
15 end
16 end
17 end

Figure 5.2: Procedure for replicating a file f by file owner

Owner node verifies the existence of the replicas for all files in the set F at regu-

lar intervals. The verification is done by requesting a random sequence of bytes

from the replica owner. The verification message consists of {fileId, fromByteOffset,

toByteOffset}. The file owner sends a message to each node where the replica is

placed asking for a randomly chosen byte range within the file. After sending the

verification request, the owner waits for the reply. The receiver is expected to send

174

5.3 Storage Constrained Challenge-Response Model

the verification reply which contains those few bytes extracted from the object and

within the expected time. The verification reply message consists of {fileId, fromBy-

teOffset, toByteOffset, bytes}. When the file owner receives a reply, it verifies the byte

range. If either the reply is not received or the reply is received and is not correct

then, the owner notes the node identifier of the node. If the same situation occurs

for more than THRESHOLD number of times, the owner suspects the node to be

a Sybil identity. Then it will not replicate the objects any more on this node. The

suspected node is added to Sybil set S. The replica verification algorithm is shown

in figure 5.3. The procedures makeVeri f icationMessage() and veri f yReply() used in

figure 5.3 are shown in figure 5.4 and 5.5 respectively.

1 VerifyReplications(ReplicaList:L)
2 begin
3 SybilDetectedList: S;
4 ReplicaList: L;
5 VerificationMessage: v;
6 VerificationReplyMessage:vr;
7 foreach replica r in L do
8 v← makeVerificationMessage(r);
9 send verification message v to r.s;

10 wait for VERIFICATION_TIMEOUT;
11 vr ← receiveReply();
12 if verifyReply(r, v, vr) = f alse or vr = null then
13 L.noReplyCount← L.noReplyCount + 1;
14 if L.noReplyCount > THRESHOLD then
15 add r.s to S;
16 end
17 end
18 end
19 end

Figure 5.3: Procedure for verification of a replica of file f by file owner

• Replica Owner: Replica owner is the node in which a file owner has requested

a replica to be placed. It is the responsibility of the replica owner to store it and

supply whole or part of the file when requested by file owner. For a normal honest

node, the number of replicas it has to store will be within the storage capacity. It

never gets a problem of shortage of space because the network ensures that no node

gets more than what it is supposed to store. This is ensured by using consistent

175

5.3 Storage Constrained Challenge-Response Model

1 VerificationMessage makeVeri f icationMessage(Replica : r)
2 begin
3 Int: f romByte;
4 Int: toByte;
5 VerificationMessage: v;

6 f romByte← getRandomNo()
sizeo f (r. f) ;

7 toByte← getRandomNo()
sizeo f (r. f) ;

8 if fromByte>toByte then
9 swap f romByte and toByte;

10 end
11 v. f ← r. f ;
12 v. f romByte← f romByte;
13 v.toByte← toByte;
14 return v;
15 end

Figure 5.4: Procedure for making a verification message by file owner

1 veri f yReply(Replica : r, Veri f icationMessage : v, Veri f icationReplyMessage : vr)
2 begin
3 actualData← byterange of r. f from v. f romByte to v.toByte;
4 if actualData matches vr.data then
5 return true;
6 end
7 return false;
8 end

Figure 5.5: Procedure for verifying a reply sent from a replica owner by file owner

176

5.3 Storage Constrained Challenge-Response Model

hashing [Karger et al. 1997]. In case of Sybil identities, since all the Sybil identities

are sharing the same storage space, soon they will run out of storage space. Thus

the Sybil identities can neither say no to storing the replica nor have space to store

that replica. They simply drop it or find some malicious means to store it. When

file owner sends a verification message, Sybil can’t answer it or answers it wrongly.

If this happens consistently, the file owner detects it to be a Sybil identity.

The proposed solution detects Sybil identities in a decentralized way and also protects

replicas from losses. The detection happens not at one time but over the life time of

the network. This behaviour is depicted in the simulation section. The replica losses

are because they stored on Sybil identities. Once the network identifies which nodes are

Sybil identities, then gradually the nodes avoid storing in those Sybil identities. Thus the

losses reduce in proportion to Sybil detection. This behaviour is also proved in simulation

studies.

5.3.3 Attack Strategies of an Adversary

The various ways in which a Sybil Node can attack or disrupt the functioning of the file

replication are given below:

• Drop Replica: A Sybil identity may drop the replica. This is detected by the verifi-

cation process outlined before.

• Store Replica Partially: A Sybil identity may store only a partial portion of a replica

in order to save storage space. This is detected by the verification process outlined

before.

• Sybil Identity Subverting the Solution: As discussed in previous section, it is pos-

sible that a Sybil identity may take to illegitimate ways of storing the replica when it

is short of storage space. The Sybil, when requested by owner of an object to repli-

cate, it might ask any other honest node to store and this way overcome the shortage

of space for storing large number of objects on its disk. When the file owner sends

a verification request, the Sybil identity can simply forward it to the honest node

and get the reply. This way the Sybil can protect itself from being detected. This

177

5.3 Storage Constrained Challenge-Response Model

problem can be solved by looking up the hashed key of the file. The file is put into

the network by hashing its contents and getting a file id. The file is stored in a node

whose id is most proximate to the file id. Now when the honest node gets a request

for storing a file, it can derive the file id and lookup if the node requesting is same as

the node where the file is stored. This will give a definite answer whether to accept

the request or not. When a Sybil identity sends a malicious request, the honest node

can easily detect it.

• Content Deletion: Sybil identities may delete the files replicated on them. A mali-

cious user may decide to delete all copies of a particular music file on his group of

Sybil identities. This may lead to non-availability of that file although it may be a

very popular one.

In the proposed solution, file owner verifies the existence of the replica it has de-

posited. If it doesn’t get the reply with in THRESHOLD number of times, it dis-

connects from that Sybil identity and stops storing replicas on that identity.

• Content Concealment: The Sybil node can possess the file and not send it to the

requesting node. In this case, the Sybil identity might possess the data (so that if the

owner node verifies, it would be able to respond and confirm it) and but conceal it

from other requesting nodes.

A node requests a download request to a replica owner but replica owner refuses to

serve it although he has the copy. In such a situation, requesting node should do the

lookup on the file id and find owner. It can inform the file owner. If the file owner

receives such complaints more than THRESHOLD number of times, it can suspect

that it is a Sybil identity and severe its connections with it.

• Content Pollution: The Sybil identities can replace all or part of the content with

white noise, cutting the duration, shuffling blocks of bytes within the digital record-

ing, inserting warnings of the illegality of file sharing in the recording, and inserting

advertisements; the main aim being to render the file unusable and thereby reduc-

ing its popularity. Now, this polluted content can be replicated on a large number

of honest or Sybil nodes in the P2P Network. A normal user who is oblivious to all

178

5.3 Storage Constrained Challenge-Response Model

these, downloads these content and thus the polluted content spreads throughout

the file sharing network eventually exceeding the number of original copies. As the

users download more and more polluted copies, it might lead to frustration among

users and subsequently leading them to abandon the file sharing. For example,

when a recording company is on the verge of releasing a song that will likely be

popular; the rival record company might pay a pollution company to spread bo-

gus copies of the song through one or more P2P networks thereby reducing the

popularity of the file.

The solution for this problem is to limit the Sybil growth so that not a majority of

replicas fall on Sybil identities.

5.3.4 Experimental Setup

Simulation was carried out on a 1000-node Chord network. We used PlanetSim [Ahulló

& López 2008] overlay network simulator. Necessary changes were made in the Node

classes to represent the current purpose of simulation. New procedures were written for

replication and verification. The simulator was a step based simulator. Every step, the

messages are transferred from current node to next node. The simulation was carried out

for 45000 steps. The files are replicated in the system throughout the simulation using a

Poisson process with average as 4. Each node can store 50 files. Node makes 5 replicas

of each file on its successors. The threshold value for terming a node as Sybil is 4. The

waiting time for a verification reply is set to 10 seconds. The topology of the Chord

network is shown in 5.6.

In the beginning of the simulation, all the honest and Sybil nodes are created. The

honest nodes are 1000 in number. The Sybil nodes are varied from 50 to 850 i.e. 4.7% to

46% for different experiments. Whenever the messages are transferred from one node to

another, whenever a replica request is made, replica is placed or failed to place in a node,

in all such events necessary information is recorded in log files. These log files are later

used to analyse the behaviour of the network. The results are discussed in the following

section.

179

5.3 Storage Constrained Challenge-Response Model

Figure 5.6: Chord network topology setup for simulation - the lines across the circle are the
finger pointers

5.3.5 Results Analysis

The proposed solution could detect 84%-42% of the Sybils in 45000 steps when the Sybil

proportion is varied from 5% - 46% respectively. The detection effectiveness is analysed

below with respect to the parameters like initial percent of Sybil identities, total number

of objects replicated in the network, waiting time for a verification reply etc.

Table 5.2: Number of Sybil nodes removed with different compositions of Sybil identities
- percentage of Sybil identities is out of total identities (honest+Sybil) in the network

Honest nodes Sybil
Nodes

Sybil Iden-
tities (%)

Total Sybil Iden-
tities removed

% of Sybils re-
moved

1000 50 4.76 44 88
1000 150 13.04 115 76.67
1000 250 20 183 73.2
1000 350 25.93 240 68.57
1000 450 31.03 300 66.67
1000 550 35.48 361 65.64
1000 650 39.39 393 60.46
1000 750 42.86 439 58.53
1000 850 45.95 374 44

The honest nodes are 1000 in number. They are kept constant for all experiments. But

the Sybil nodes are varied from 50 to 850 i.e. 4.7% to 46% in different experiments. The

details are shown in table 5.2. The percent of Sybil identities in the network affect the

probability that a replica is placed on a Sybil node. More the percent of Sybil identities

are, more is the probability that a replica is placed in a Sybil identity.

180

5.3 Storage Constrained Challenge-Response Model

5.3.5.1 Sybil Detection Pattern

Graph in figure 5.7 shows that there is rapid detection initially and later the curves are

not changing much i.e the slope is not changing drastically. As the time progresses, and

as the Sybil identities are detected, the remaining Sybil identities presence in the network

reduces. So the probability that a replica is placed on a Sybil identity also reduces. That

is why the steepness of the curves reduces.

Also we can observe that as the proportion of the Sybil identities in the network

is increased, the time taken to detect Sybil identities also increases. This is due to the

fact that the number of files being stored in the network and number of their replicas

being distributed kept constant. When the number of files is kept constant, and the Sybil

identities proportion is increased, then the probability of placing a replica on a Sybil

identity reduces. This means that if the proportion of Sybil identities is more, then the

number of files replicated should also be more. This pattern is depicted in figure 5.8.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100000 200000 300000 400000 500000 600000 700000 800000

N
um

be
r

of
 S

yb
il

Id
en

tit
ie

s
in

 th
e

N
et

w
or

k

Time(millisecs)

5% Sybil Identities
13% Sybil Identities
20% Sybil Identities
26% Sybil Identities
31% Sybil Identities
36% Sybil Identities
40% Sybil Identities
43% Sybil Identities
46% Sybil Identities

Figure 5.7: Sybil detection pattern at the different % of Sybil identities in the network -
time is measured from the beginning of the simulation

181

5.3 Storage Constrained Challenge-Response Model

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 13 20 26 31 35 39 43 46

% of Sybil Identities in the Network

% Sybils detected % Sybils undetected

Figure 5.8: Effect of % of Sybils on detection algorithm - Network size is 1000 nodes. The
data presented here is only for the first few minutes of the simulation, long enough to compare

5.3.5.2 Sybil Detection Vs Replica Losses

In figure 5.9, we see that as the Sybil identities are detected, the replica losses are also

reduced. Thus reducing the number of Sybil identities has direct effect on file losses

incurred in the network due to Sybil identities. We can see from the Sybil CDF that

when it has reached a slow progress state, accordingly the file losses also have reduced.

Normally the replica losses are due to the Sybil identities because they don’t have the

storage space to store replicas of all the Sybil identities. When such failures are detected,

the files are replicated on a different set of nodes probably honest nodes. That way the

file replicas are safer.

5.3.5.3 Effect of Number Replicas on Sybil Detection

We have already seen that detection slows down if we increase the number of sybils but

keep the number of files constant. The positive side of increasing the number of files is

shown in figure 5.10. Here we can see how the Sybil detection procedure is dependent on

the number of files replicated in the network. The whole algorithm is dependent on the

182

5.3 Storage Constrained Challenge-Response Model

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 S

yb
ils

 R
em

ov
ed

/N
um

be
r

of
 R

ep
lic

as
 L

os
t

Time(Secs)

Replica Loss CDF
Sybil Detection CDF

Figure 5.9: Reduction of replica losses by detecting Sybil identities - loss of replica is due
to lack of storage space in a Sybil entity

replicas of files. More the number of files replicated, more is the probability that they will

be replicated on Sybil identities and better will be the detection of the Sybil identities.

5.3.5.4 Effect of Waiting Time on Sybil Detection

In figure 5.11, it can be observed that, the waiting time for a verification reply from a

node has no drastic influence of the detection of Sybil identities. A node may not get a

reply due to reasons like the replica owner may not be present in the network, network

errors, or replica owner may be on a slow network connection. There may be a possibility

that a small timeout may lead to false positives. But this doesn’t happen as several nodes

replicate their objects on a Sybil node. The increase in waiting time doesn’t delay the

detection because there are several other nodes which are verifying meanwhile. So if one

fails, the other may detect the node to be a Sybil identity.

183

5.3 Storage Constrained Challenge-Response Model

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500 550

N
um

be
r

of
 S

yb
il

Id
en

tit
ie

s
in

 th
e

N
et

w
or

k

Time(Secs)

Number of Replicas: 500
Number of Replicas: 1000

Figure 5.10: Effect of number of files replicated in the network - Number of Sybil identities
detected depends on the number of objects replicated in the network

 0

 50

 100

 150

 200

 250

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

N
um

be
r

of
 S

yb
il

Id
en

tit
ie

s
in

 th
e

N
et

w
or

k

Time(millisecs)

Verification Reply Timeout: 5 sec
Verification Reply Timeout: 1 sec

Verification Reply Timeout: 0.25 sec
Verification Reply Timeout: 0.1 sec

Figure 5.11: The effect of verification reply timeout on Sybil detection - the effect is almost
nil

184

5.4 Detecting Sybils using Psychometric Tests

5.3.6 Conclusion

In this work we presented a novel decentralized protocol for limiting the corruptive in-

fluence of Sybil attacks on replication system in peer-to-peer networks by detecting Sybil

identities and there by avoiding storing replicas on them. This approach relies on the

principle that Sybil doesn’t scale its storage capacity to the factor of its identities. Also

unlike the other challenge-response approaches, this approach is more reliable because

the storage is persistent. Here it is not difficult to simultaneously test the storage capacity

of most identities because it can be done over a period of time. Experimental evaluations

on this approach have shown that Sybil identities were detected to the extent of 60% of

initial Sybil identities when the 40% of the nodes in the network were Sybil identities.

Also the effect of parameters like initial percent of Sybil identities, total number of objects

replicated in the network, waiting time for a verification reply are analysed. The simula-

tion results show that this approach can detect Sybil identities to the degree that loss of

file replicas are reduced to less than .0001%. However, this approach is less efficient when

the number of replicas being maintained is less.

5.4 Detecting Sybils using Psychometric Tests

An approach for detecting Sybil Groups using Psychometric tests is proposed here. The

following are the purposes of this work:

• to study the feasibility of using psychometric tests to assess the characteristics of the

participants

• to devise methods to overcome some of limitations of this method

• to measure the extent of the effectiveness with which we can use this technique

• to understand the advantages of approaching Sybil groups instead of Sybil identi-

ties.

In our current solution, we aim at a partially decentralized solution that detects Sybil

groups using personality characteristics.

185

5.4 Detecting Sybils using Psychometric Tests

5.4.1 Background

The solution with psychometric methods is first of its kind. In this section a brief back-

ground on the degree of difficulty of detecting Sybils in the network and applicability of

psychometric tests is presented.

5.4.1.1 Detecting Sybil Groups vs Detecting Sybil Identities

The strength of Sybil attack depends on the number of identities it creates and what

fraction of the network they occupy. The influence on the network is exerted as a group

but not at the individual identity itself. Therefore Sybil attack is very difficult to detect at

the identity level. In figure 5.12, it can be observed that there are entities and identities

(blue coloured circles). Some entities have represented themselves as multiple-identities

forming large fraction of the network.

Having a centralized server issuing logins or providing authentication itself is not suf-

ficient to prevent Sybil attacks. Amazon, eBay etc have centralized authentication systems

but still they face Sybil attacks. The principle behind preventing Sybil attack is that one

should be able to map the real infrastructure entity to the virtual identities and then put a

limit on such number of mappings. Such a system requires one to authenticate the iden-

tity by a physical proof such as photo identity card, credit card etc. Such a restriction on

enrolling new entities into the system severely limits the spread of systems among users.

Sybil entities may not necessarily be creating disturbance in the network such as

launching distributed DoS attacks, or dropping packets or poisoning the routing tables,

partitioning the network etc. It may be difficult to say what a Sybil identity is doing is

wrong. It may be doing the same thing like any other honest identities. For example, a

Sybil entity can position its identities strategically at different places in the network and

make sure that every packet in the network will pass through at least one of its identi-

ties so that the Sybil has control over the network. Looking at the identity, one can’t say

it is doing something malicious. It should be determined looking at the network level.

Another example is that a Sybil entity can increase the reputation of a particular file by

making all of its identities respond positively to the reputation metric query. Looking at

the individual identity it is difficult to say that what it is doing is wrong because every

186

5.4 Detecting Sybils using Psychometric Tests

identity is free to respond positively or negatively to the file request.

Figure 5.12: Sybil groups and Sybil identities - Sybil groups (Red colored rectangles) and
Sybil identities (Blue colored circles)

So the approach to detecting Sybils in a peer-to-peer network should be free from any

assumptions about the behaviour at the identity level.

5.4.1.2 Psychometric Tests

There are many theoretical approaches to conceptualizing and measuring personality.

Some of them include the Minnesota Multiphasic Personality Inventory (MMPI), the Five-

Factor Model [Books 2010]. There are some tools developed to measure personality. They

include Personality and Preference Inventory (PAPI) and the Myers-Briggs Type Indicator

(MBTI) [Books 2010]. PAPI measures personality in work environment. It is designed to

determine behaviours and preferences which are related to workplace. The MBTI mea-

surement is a psychometric questionnaire designed to measure psychological preferences

in how people perceive the world and make decisions [Myers & Myers 1995]. In this paper

we use MBTI due to its applicability to normal population [Pearman & Albritton 1997].

MBTI test categorises the human personality into four pairs of cognitive functional types:

• Extraversion-Introversion

187

5.4 Detecting Sybils using Psychometric Tests

• Sensing-Intuition

• Thinking-Feeling

• Judgement-Perception

These terms have specific meanings much different from those indicated by the normal

usage of the term. These meanings are not relevant in this study. MBTI states that an in-

dividual has preference to one of the functions in a pair. The questionnaires are designed

to reveal these preferences.

5.4.1.3 Luscher Short Color Test

[Lüscher & Scott 1971] proposed a colour test to assess the human personality. The test is

based on selecting 8 colours according to individual’s liking for the colours. Each colour

has an objective meaning and subjective meaning. The objective meaning remains the

same for all individuals. But the subjective meaning of the colour is dependent on the

position of the colour in the ranking of the colours by the individual. Liking for a colour

has deep connection with the psychology of the person. The colors are shown in figure

5.13. Their psychological significance is listed in 5.3.

Figure 5.13: Colors in Luscher Short Color Test - each color has a psychological significance

In this study, the objective is to group the identities based on their common personality

characteristics. For this purpose MBTI and Luscher colour tests are employed. Since the

purpose is to find the similarity amongst the personalities of identities in the network, the

188

5.4 Detecting Sybils using Psychometric Tests

Table 5.3: Colours and their psychological significance-[Lüscher & Scott 1971]

Colour Traits linked to the color
Orange-Red Represent “force of will” and correspond to desire, domi-

nation, sexual interests, aggression, controlled passion, con-
cern for others.

Blue-Green Represent “elasticity of will” and corresponds to persis-
tence, resistance to change, self-assertion, obstinacy, pos-
sessiveness, positive self-esteem, concern for self.

Dark-Blue Represent “depth of feeling” and has emotional correspon-
dence with tranquility, calmness, recharging, contentment,
tenderness, unification, sensitivity, love and affection.

Bright-Yellow Represent “spontaneity” and correspond to exhilaration,
originality, expectancy, variability, desire to be active.

Violet Represent intuitive and sensitive understanding of the un-
real. Considered for mystical intimacy or understanding.

Brown Represent sensation as it applies to bodily senses indicating
a need for or hopeless forfeit of bodily comfort. It indicates
a strong need to overcome a bad situation causing discom-
fort (physical or emotional).

Black Represent absolute boundary where life ceases. It means a
person rejecting and renouncing everything out of stubborn
protest.

Gray Represent intellect, knowledge and wisdom. Also implies
long-lasting, classic, dignified, authoritative. Represent
neutrality as it is between black and white.

189

5.4 Detecting Sybils using Psychometric Tests

interest is only in the metrics. So we limit our discussions to finding correlations rather

than the actual personality of the individuals.

5.4.2 System Model

We model our solution on a super-peer type unstructured network which employs a

Gnutella like protocol between client nodes. This allows for a questionnaire to be sent to

the peers as a request and then, the solved questionnaire as a response.

Figure 5.14: Sybil detection architecture - personality server is a centralised component

The architecture is shown in figure 5.14. The components involved are leaf nodes

(some are Sybil identities), super-peers, and Personality server. Personality server is a

central server that collects and stores the personality metrics of the leaf nodes. Having

central server in a distributed network is not a flaw as long as that central server itself is

not involved in routine network operations such as routing etc.

5.4.2.1 Threat Model

• Peer Model: Network consists of honest and Sybil identities. Honest identities are

created by honest users and they always adhere to the protocol of the network.

Honest nodes answer the questionnaires sincerely when they are sent a question-

naire by the super-peer. Sybil identities are generated by a malicious user in a large

190

5.4 Detecting Sybils using Psychometric Tests

proportion. These identities may subvert the protocol for selfish goals. There can

be several malicious users or Sybil entities which create Sybil identities in a large

proportion. For the nodes in the network, these identities appear to be non different

from normal nodes. Super peers are honest nodes. They adhere to the protocol.

• Questionnaire Model: A super peer may have one or more Sybil identities regis-

tered under it. Here the interaction can be of two types. Super peer interacting

with honest node and super peer interacting Sybil node. Communications in these

interactions are encrypted with the public keys of the receiving nodes.

5.4.3 Proposed Solution

In this section we will discuss about the proposed method.

5.4.3.1 Outline

As discussed in previous Section 5.4.1, Sybils are present in groups. Extent of their in-

fluence is proportional to their group size. There can be several Sybil groups within a

peer-to-peer network. In essence a Sybil group is defined as the set of identities created

by a single individual. The identities act as per the individual’s want them to act. If the

identities occupy a large fraction of the network, then the functioning of the network can

be easily affected for selfish purposes. The solution to this problem is to cluster iden-

tities which have similar personality characteristics. Such clusters are then tested using

challenge-response protocols as described in section 5.2. To identify personality character-

istics, each identity in the network is given personality tests, Myers Briggs Psychometric

Test and Luscher Color Test to answer. These answers are collected and analyzed at one

place to identify the clusters.

5.4.3.2 Protocol

The principle communications involved in the network apart from the routine commu-

nications are 1) Super peer → Leaf node 2) Leaf Node → Super peer 3) Super peer →

Personality Server 4) Personality Server → Super peer. These communications and their

contents are explained below.

191

5.4 Detecting Sybils using Psychometric Tests

Leaf node’s Behaviour: A leaf node receives a questionnaire from a super peer at reg-

ular times. The contents of the questionnaire are explained in the coming section. Super

peer specifies the time within which it should receive the answers to the questionnaire.

This is one way to differentiate between the honest and the Sybil entity. If the node doesn’t

answer with in the expected time although it is still active in the network, it is given a

warning that it might be labelled as a malicious node. In case, the node still does not

answer even after some time interval after first warning, the node is then black-listed or

treated as a malicious node and taken out of the network. For the node to again come

back, it has to join as a new node and follow the protocol.

Super-peer’s Behaviour: Super-peer generates a questionnaire from a pool of ques-

tions corresponding to each personality trait. Then, it will send it to the leaf nodes. It

will act depending on the response or no response of the leaf node. After collecting the

answers it will send them to Personality Server.

Personality Server: The personality server receives the data from the super peers. It

periodically runs a clustering algorithm to cluster the nodes based on their psychometric

values. For every cluster discovered, it issues simultaneous computational puzzles to the

nodes in that cluster. Generally the cluster contains at least some of the Sybil identities be-

longing to the same Sybil group. This fact is confirmed in our experiments as discussed in

coming sections. In case of the presence of Sybil identities in a cluster, the Sybil entity will

not be able to respond with in expected time with the answer to the resource-intensive-

computational puzzle for each Sybil identity. An honest node can answer the challenge

with in the expected time. By this differentiation between Sybil identities and honest

nodes, the Personality server can identify all these late-responding identities within the

cluster as one Sybil group. These identities are communicated to super-peers so that they

may restrict their cooperation or disconnect them.

5.4.3.3 Questionnaire Preparation

The questionnaire will evaluate the psychometric index of the peers based on MBTI or

Luscher Color Test. The questionnaire consists of 3 kinds of questions. Firstly, there

are questions based on each of the 4 categories of personality traits according to MBTI

model which gives us the information about the psychological orientation of a person.

192

5.4 Detecting Sybils using Psychometric Tests

The personality traits are extroversion-introversion, sensing- intuition, thinking-feeling,

judging-perceiving. For e.g., we can ask a person whether he likes to hear less and talk

more or he likes to hear more and talk less. In tables 5.4 - 5.6, some of the questions

which help us to know about each of the traits in a person are presented. The options to

these questions are designed in an appropriate way relating to one’s work or colleagues

or family so that users may spontaneously answer the questions.

Table 5.4: Sample questions for testing introvert quality-these questions enquire the psy-
chological personality of the person

Quality Questions
Extroversion-
Introversion

Do you talk more than listen or
vice-versa?
Do you have high energy or
quiet energy?
Do you want to stay behind
scenes or want a public role?

Table 5.5: Some questions for testing intuition quality-these questions enquire the psycho-
logical personality of the person

Quality Questions
Sensing-Intuition Do you focus on details or do

you see the big picture?
Do you work at a steady pace or
bursts of energy?
Do you trust gut instincts or ac-
tual experience?

Table 5.6: Some questions for testing feeling quality-these questions enquire the psycholog-
ical personality of the person

Quality Questions
Thinking-Feeling Do you appear cool and reserved

or warm and friendly?
Do you value honesty and fair-
ness more or harmony and com-
passion?
Do you tend more to see faults
or you are quick to compliment
others?

Secondly, we have 2 sets of color tests (each color test has 8 colors) in each question-

naire. The leaf nodes are to fill in their preferences of colors from most preferred to least

preferred. Each colour is associated with some particular trait [Lüscher & Scott 1971].

193

5.4 Detecting Sybils using Psychometric Tests

Table 5.7: Some questions for testing perceiving quality-these questions enquire the psy-
chological personality of the person

Quality Questions
Judging-Perceiving Do you work first, play later or

play first, work later?
Do you like to make and stick to
plans or keep flexible plans?
Do you like freedom to be
spontaneous or find comfort in
schedules?

These associations are findings of the research in psychology field. For example, the

orange-red color represent “force of will” & correspond to desire, domination, aggres-

sion, controlled passion, concern for others. The list is given in table 5.3.

Also, the questionnaire includes CAPTCHAS inserted at random places to prevent

automated answers. CAPTCHAS are designed to be understood only by humans but not

by machine.

5.4.3.4 Questionnaire Evaluation

The answers submitted by the leaf peers to super-peer are communicated to Personality

server. The evaluation is carried out at the Personality server. There are two types of

answers in a questionnaire. One is the set of options selected for the MBTI questionnaire.

The other is list of rankings given to the 8-set colours.

To evaluate the similarity between the colour rankings of two different identities, rank-

correlation coefficients are used. Kendall’s rank-correlation coefficient τ and Spearman’s

rank-correlation coefficient ρ are used to cluster the identities based on colour test. The

τ is computed by finding the concordant (Nc) and discordant pairs (Nd) for n number of

items to be ranked.

τ =
Nc − Nd

1
2 n(n− 1)

(5.1)

The ρ is computed by finding the squared differences of rankings given to all n items.

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(5.2)

The options selected by identities for MBTI questionnaire are transformed into a vector

194

5.4 Detecting Sybils using Psychometric Tests

of weights. Each vector consists of 8 weights corresponding 8 qualities in four dichotomic

cognitive functional pairs namely extraversion, introversion etc. There is one vector cor-

responding to one questionnaire. The similarity between two such vectors is found by

using two metrics Cosine similarity metric and Pearson correlation coefficient. The cosine

similarity metric for two vectors A and B of length n is computed as

cos(θ) = ∑n
i=1 Ai × Bi√

∑n
i=1(Bi)2 ×

√
∑n

i=1(Ai)2
(5.3)

The Pearson correlation coefficient of two random variables X and Y with X and Y as

their means is computed as

∑n
i=1(Xi − X)(Yi −Y)√

∑n
i=1(Xi − X)2 ×

√
∑n

i=1(Yi −Y)2

(5.4)

The clustering algorithm chosen is DBSCAN [Ester et al. 1996]. It has the following

advantages in the present context.

• It doesn’t need number of clusters to be specified as input parameter.

• It supports arbitrary shaped clusters.

• It has concept of noise data and leaves out noise points.

• Cluster formation doesn’t depend on the ordering of the data.

• The algorithm works well with high dimensional data.

The algorithm finds the clusters on the principle of neighbourhood of a point. Generally

the neighbourhood is found with Euclidian distance. But Euclidian distance becomes an

ineffective measure for high dimensional data. This problem is also known as curse of

dimensionality [Bellman & Corporation 1957]. Therefore in this work, we have used the

above mentioned metrics to find neighbourhood of a given point. The time-complexity of

the algorithm is O(n2) and space-complexity is O(n2). By using R∗-tree indexing struc-

tures the complexity can be brought down to O(n log n).

The algorithm works on the notion of density-reachability and density-connected proper-

ties of a two points in the dataset. The algorithm takes two parameters ε and minPoints. ε

195

5.4 Detecting Sybils using Psychometric Tests

is the neighbourhood radius. minPoints is the minimum number of points required in the

neighbourhood of a point to form the cluster. The algorithm is very sensitive to these two

parameters. It groups all the points that fall within the radius ε of the current point and

its neighbours into one cluster.

5.4.3.5 Cluster Validation

One of the most important issues in cluster analysis is the evaluation of clustering results

to find the partitioning that best fits the underlying data [Halkidi et al. 2001]. What values

for parameters ε and minPoints are needed so that the algorithm would give the best fit?

We have used external criteria to validate clustering. Rand Statistic [Rand 1971], Jaccard

Coefficient [Jaccard 1901] and Fowlkes and Mallows index [Fowlkes & Mallows 1983] are

used to measure the cluster goodness.

Consider that all data points with d dimensionality are present in dataset D. Consider

that P = {P1, P2,Pn} are the predefined clusters and C = {C1, C2,Cn} are the clusters

formed out of DBSCAN algorithm. Every pair of points (xi, xj) in the dataset D can be

assigned to one of the following sets depending on the condition it satisfies.

• True Positives (n00): if both points xi and xj belong to the same cluster of C and to

the same cluster of P

• False Positives (n10): if both points xi and xj belong to the same cluster of C and to

different clusters of P

• False Negatives (n01): if points xi and xj belong to different clusters of C and to the

same cluster of P

• True Negatives (n11): if point xi and xj belong to different clusters of C and to

different clusters of P

Rand Statistic gives ratio of true positive pairs (TP) and true negative pairs (TN) to total

pairs in the data set. It is defined as

R =
(n00 + n11)

n00 + n10 + n01 + n11
(5.5)

196

5.4 Detecting Sybils using Psychometric Tests

Jaccard coefficient gives ratio of true positive pairs to total of true positive, false positive

(FP) and false negative pairs (FN). It is defined as

J =
n00

n00 + n10 + n01
(5.6)

These two indices take values in the range [0,1]. If the values are nearer to 1, closer are

the two points. Fowlkes and Mallows index is computer as

FM =
(n00 + n11)√

(n00 + n01)× (n10 + n11)
(5.7)

5.4.3.6 Limitations

• False Positives: A honest user’s psychology may match with the psychology of a

malicious user, thus falling in the same cluster as the malicious user. Here the honest

user also has to go through the challenge-response test. This imposes an overhead

on the honest user.

• False Negatives: The test is based on psychological metrics. So it might happen that

the psychometric ratings of some Sybil identities coming from the same Sybil group

may not fall within the same cluster boundaries. This way some of the Sybil iden-

tities may escape getting detected. This introduces false negatives in our proposed

model. First of all such deviations of psychological pattern happen in few cases as

found in our experiments. Secondly, since majority of the Sybil identities of a group

are detected, the group origins can be traced and thus detect the missed out Sybil

identities.

5.4.4 Attack Strategies of an Adversary

• Not Answering: A Sybil identity may not answer the questionnaires. In this case

super-peer may penalize that node by limiting its access to resources or may discon-

nect it from it.

• Random Answering: Another apparent limitation is that what if the users give

random answers by some automated means or the person himself. One way to

197

5.4 Detecting Sybils using Psychometric Tests

address the automated answers is by inserting CAPTCHAs in the questionnaire.

Suppose a person is answering but randomly. To address this issue, super-peer

by random selection stores a copy of the questionnaire and the answers received.

Super-peers use this to cross verify the answers received later. If the answers are

random, then it is very less likely that answers would match. Since Sybil attacks

comprise large number of Sybil identities, it is not feasible for a person to answer

the questions individually for all identities.

• Replay Attack: A Sybil node can store a copy of the answers and may reproduce

the in future. This can be answered as:

A questionnaire consists of randomly selected questions. Each question is reframed

in several other forms expecting the same answer. There are challenges like CAPTCHAS

or simple questions in between. The questions and answers are randomly ordered.

So users can’t blindly store the answers and respond. Of course, this requires a huge

question bank.

• Direct the Questionnaire to an Honest Node: Since the communications are en-

crypted with self-generated public/private key pair, a node can verify the authen-

ticity of the super peer. If the assumption that super-peer is not an honest node is

violated, then this will become a complex problem.

5.4.5 Experiment Setup

The experiment for validating our solution is carried out by conducting a survey. Sur-

vey is chosen instead of simulation because the validation involves responses of humans

depending on their psychological personality characteristics. These characteristics are

difficult to simulate on a machine.

The survey is conducted among the faculty and students of our university for duration

of 15 days through the medium of web. Totally 185 people took part in the survey. Each

of them was requested to participate more than one time. The frequency of attempts is

depicted in figure 5.15. The participants are requested to attempt the survey at different

times so that they are not remembering the answers. Still there can be some degree of

198

5.4 Detecting Sybils using Psychometric Tests

randomization or overlaps in their responses. But overall, the survey resembles the peer-

to-peer scenario where each participating identity is given a questionnaire to solve.

There are 46.49% participants who attempted the survey only once. They are consid-

ered as honest entities in the network. There are 28% percent participants who attempted

the survey more than 4 times. There are 25% participants who attempted the survey more

than once and less than 5 times. The participants who attempted the survey more than

once are classified as Sybil entities each entity representing Sybil identities equal to the

number of times they have attempted the survey. The survey is mapped to a network of

577 identities; out of which there are 86 honest identities and rest all are Sybil identities

grouped in 99 groups. The maximum Sybil identities are 21 in one group, the minimum

and the average being 2 and 7.6. The Sybil groups can be classified into two classes:

• Weak Sybil groups: The weak Sybil groups are those whose number of identities is

less than 5. There are 47 weak Sybil groups observed.

• Strong Sybil groups: The strong Sybil groups are those whose number of identities

is equal or greater than 5. There are 52 strong groups observed.

The Sybil groups in the mapped network are depicted in figure 5.16.

Figure 5.17 shows the standard deviation of responses by individuals along with the

number of times each have attempted. 65% of individuals or Sybil groups have standard

deviation more than 0.2 indicating that some of their responses are outliers i.e. they are too

different from other responses. Those Sybil groups with standard deviation less than 0.2

mostly have 2 identities indicating high probability of being the same. But when a person

attempted larger number of times, responses are considerably differing. Considering this

pattern of standard deviation, the input can be safely said to be a suitable sample for

investigation.

5.4.6 Results Analysis

The results are analysed with the objective of how good are the psychometric tests to

detect Sybil groups in an overlay network. There are two types of data to analyse: rank-

ings given to Luscher 8 colors and answers chosen for MBTI questionnaires. The similarity

metrics for ranking data are Kendall’s coefficient τ [Kendall & Smith 1939] and Spearmans

199

5.4 Detecting Sybils using Psychometric Tests

Figure 5.15: Survey participation statistics - one attempt means a participant has answered
the questionnaire once

Figure 5.16: Sybil Groups in the mapped network - one attempt by participant is mapped to
one identity in peer-to-peer network

200

5.4 Detecting Sybils using Psychometric Tests

Figure 5.17: Standard deviation of responses per individual - standard deviation is com-
puted for Spearman rank correlation coefficient

Correlation Coefficient ρ [Spearman 1987]. DBSCAN algorithm is run on the ranking data

collected in each questionnaire for ε taking values in [0,1] each time incremented by 0.01

and minPoints taking values from 1 to 5. For each run, cluster goodness indices Rand

statistic, Jaccard Coefficient and Fowlkes and Mallows index are measured. Figures 5.18,

5.19, and 5.20 show Rand Statistic, Jaccard coefficient and Fowlkes and Mallows index

drawn for Kendall’s τ. It can be observed that the graphs reach the highest values at

a particular combination. Similar graphs for other similarity measures are presented in

Appendix B.3.

Tables 5.8, 5.9 and 5.10 show the values of ε and minPoints at the best recorded values

of Rand, Jaccard and Fowlkes and Mallows indices respectively. Similarly for the MBTI,

the similarity indexes are Cosine Similarity Metric and Pearson Correlation Coefficient.

The index’s values and the best ε and minPoints are also shown in table 5.8, 5.9 and 5.10.

Rest of the analysis is carried out only at the values of ε and minPoints listed in tables 5.8,

5.9 and 5.10.

201

5.4 Detecting Sybils using Psychometric Tests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

R
an

d
 S

ta
ti

st
ic

(Epsilon, minPoints)

Figure 5.18: Values of Rand Statistic for Kendall’s τ - Rand statistic is calculated for various
combinations of ε and minPoints

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

Ja
cc

ar
d

 C
o

ef
fi

ci
en

t

(Epsilon, MinPoints)

Figure 5.19: Values of Jaccard Statistic for Kendall’s τ - Jaccard statistic is calculated for
various combinations of ε and minPoints

202

5.4 Detecting Sybils using Psychometric Tests

0

2

4

6

8

10

12

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

Fo
w

lk
es

 &
 M

al
lo

w
 In

d
ex

(Epsilon, minPoints)

Figure 5.20: Values of Fowlkes & Mallow’s index for Kendall’s τ - Fowlkes & Mallow’s
index is calculated for various combinations of ε and minPoints

Table 5.8: Values of Epsilon and minPoints for DBSCAN algorithm at the best cluster forma-
tion stage i.e. at the maximum Rand Statistic value

Test Neighbour Dis-
tance Metric

Rand Statistic

Epsilon MinPoints Value
Luscher Short
Color Test

Kendall’s Tau (K) 0.86 1 0.948

Luscher Short
Color Test

Spearman’s Rho
(S)

0.94-0.95 1 0.9682

MBTI Cosine Similarity
Metric (C)

0.95-0.99 1 0.95

MBTI Pearson Correla-
tion Coeff (P)

0.43-0.44 1 0.829

203

5.4 Detecting Sybils using Psychometric Tests

Table 5.9: Values of Epsilon and minPoints for DBSCAN algorithm at the best cluster forma-
tion stage i.e. at the maximum Jaccard Coefficient

Test Neighbour Dis-
tance Metric

Jaccard Coefficient

Epsilon MinPoints Value
Luscher Short
Color Test

Kendall’s Tau (K) 0.80-0.85 1 0.0394

Luscher Short
Color Test

Spearman’s Rho
(S)

0.94-0.95 1 0.0578

MBTI Cosine Similarity
Metric (C)

0.95-0.99 3 0.0121

MBTI Pearson Correla-
tion Coeff (P)

0.23-0.29 1-5 0.0133

Table 5.10: Values of Epsilon and minPoints for DBSCAN algorithm at the best cluster forma-
tion stage i.e. at the maximum Fowlkes & Mallows Index

Test Neighbour Dis-
tance Metric

Fowlkes & Mallows
Index
Epsilon MinPoints Value

Luscher Short
Color Test

Kendall’s Tau (K) 0.86 1 9.996

Luscher Short
Color Test

Spearman’s Rho
(S)

0.94-0.95 1 10.211

MBTI Cosine Similarity
Metric (C)

0.95-0.99 1 10.019

MBTI
Pearson Correla-
tion Coeff (P)

0.43-0.44 1 8.751

204

5.4 Detecting Sybils using Psychometric Tests

5.4.6.1 Effectiveness in Detecting Sybil Groups

Figure 5.21: Percent of Sybil (Weak and Strong) groups detected when running clustering
algorithm for different metrics - K, S, C and P refer to neighbour distance metrics. e means
epsilon and m means minimum points

The results show that our method is able to detect 51.5% of the total Sybil groups.

75% of strong Sybil groups are detected. The percent of Sybil groups detected per each

metric is shown in figure 5.21. Although cluster formation with Pearson metric discover

71.7% of the Sybil groups, it has got other limitations that all the Sybil groups are spread

in just 4 clusters and the number of false positives is too high totalling to 25.7%. The

false positives are shown in figure 5.22. That means that those four clusters are crowded

with unnecessary identities. So Pearson correlation metric is not much useful in cluster

formation here. It can be observed that it is difficult to detect weak Sybil groups compared

to strong Sybil groups. This is depicted in figures 5.21. This is due to their small number

of identities per group. One more thing to notice here is that more the number of identities

in a Sybil group, more these tests can be consistent.

5.4.6.2 Luscher Color Test Vs MBTI Test

The results show that Lusher’s colour test gave better results compared to MBTI test. This

is depicted in figure 5.21, and 5.23. This may be due to the fact that in every questionnaire

205

5.4 Detecting Sybils using Psychometric Tests

Figure 5.22: Percent of false positives when clustering algorithm is run for different metrics
- K, S, C and P refer to neighbour distance metrics. e means epsilon and m means minimum
points

the colour set remained the same but the MBTI questions were not. The MBTI questions

were selected from each functional pair randomly. The rankings given to colours were

mostly consistent but the options chosen for the questions were not consistent.

5.4.6.3 Quality of Clusters (Sybil Groups) Detected

The quality of the Sybil groups detected can be observed from two perspectives. One

is that if the ratio of clusters to groups is near to 1, it means that the whole cluster is

dedicated to one Sybil group. This eases the further process of issuing computational

puzzles simultaneously to all identities in one Sybil group. As shown in figure 5.24, most

of the metrics except the Pearson metric, the ratio comes near to 1. Second perspective is

to see how much of a Sybil group is discovered. If most of the identities of a Sybil group

are discovered that means all the identities will be issued computational puzzles putting

real constraint on the resources of the Sybil entity. Figure 5.25 shows that for Luscher’s

test, roughly 65% of the group is detected in strong group category.

206

5.4 Detecting Sybils using Psychometric Tests

Figure 5.23: Percent of Sybil identities (weak and strong) when clustering algorithm is run
for different metrics - K, S, C and P refer to neighbour distance metrics. e means epsilon and
m means minimum points

Figure 5.24: Spread of Sybil groups across clusters - K, S, C and P refer to neighbour distance
metrics. e means epsilon and m means minimum points

207

5.4 Detecting Sybils using Psychometric Tests

Figure 5.25: Percent of Identities detected in the detected Sybil groups - K, S, C and P refer
to neighbour distance metrics. e means epsilon and m means minimum points

Figure 5.26: Depiction of the gain in % of Sybil identities detected through detecting Sybil
groups - K, S, C and P refer to neighbour distance metrics. e means epsilon and m means
minimum points

208

5.4 Detecting Sybils using Psychometric Tests

5.4.6.4 Detecting Sybil Groups Vs Detecting Sybil Identities

It can be observed from figures 5.21 and 5.23, detecting Sybil groups has advantages

compared to detecting Sybil identities. For example, using Kendall’s eps=0.80, the number

of Sybil groups discovered are 51 and the number of Sybil identities in all these groups

are 340. For the same, the number of Sybil identities discovered is only 231 which is 47%

of the total. If we go by discovering Sybil groups, we can end up removing 69% of the

Sybil identities from the network. These comparisons are depicted in figure 5.26.

5.4.6.5 Barren Clusters

Figure 5.27: Cluster statistics for different metrics - K, S, C and P refer to neighbour distance
metrics. e means epsilon and m means minimum points

Also we can observe from figure 5.27 that the number of clusters discovered doesn’t

hold as much significance as the number of Sybil groups discovered, because a good

percent of clusters are barren. From the Personality server system’s point of view, it

doesn’t have the knowledge of Sybil groups. It has the information of clusters only.

Therefore the relationship between number of clusters and number of Sybil groups holds

significance. As depicted in figure 5.24, if the ratio comes to 1, that is the best. Then the

system can understand that each cluster is a Sybil group and then act accordingly.

209

5.5 Conclusion

5.4.7 Conclusion

In this work we have presented a novel approach to detecting Sybil groups using psycho-

metric tests. A survey is conducted amongst students and faculty in the campus. The

experimental results have shown that 75% of the strong Sybil groups were detected. This

shows that it is feasible to use psychometric tests to detect Sybil groups. The effectiveness

of the test is also proved by detecting on average 67% of Sybil identities in Sybil group.

Mechanisms are developed to safe-guard from Sybil strategies to subvert the solution.

5.5 Conclusion

In this chapter, two approaches are proposed for detecting Sybils: (i) Storage constraint

based challenge-response approach and (ii) detecting Sybil groups based on psychometric

tests approach. The first one is a fully distributed approach and the the one needs a central

component. In storage-constraint approach, Sybil’s attempt to drop, corrupt replicas is

detected and actions are taken to keep the replicas safe. In psychometric tests approach,

Sybil entity or group is detected and challenges are issued.

The following outlines the contexts in which they can be suitable.

• Context of application for Storage constraint based challenge-response approach:

This approach is fully dependent on file replication. A network where large number

of files are shared and replicated evenly on neighbours will be suitable.

• Context of application for Psychometric tests approach: Any network which can

expect users to fill in the questionnaires regularly.

210

Chapter 6

Conclusion

6.1 Conclusions

Two objectives addressed in this thesis work are

1. To propose efficient algorithms for object search in Peer-to-Peer Overlays

2. To propose novel algorithms to safeguard against Sybil attacks in Peer-to-Peer Over-

lays

In Chapter 2, these problems are explained and the solutions in the literature were dis-

cussed. Chapter 3 and chapter 4 addressed first objective and chapter 5 addressed the

second objective. The following are the conclusions.

1. In Chapter 2, factors that affect search in unstructured overlays are identified. They

are topology adaptation, object placement and routing. In routing, further factors

are neighbour selection, TTL and indexing.

2. In Chapter 3, a new approach for neighbour selection is proposed. It is identified

that the previous approaches focussed on historical performance as the basis of

neighbour selection. Historical performance alone can’t select neighbours because

each query is looking for a different content. Therefore we proposed a approach

which takes nature of the query into account. Two parameters, namely what type of

content query is looking for and how popular is it are considered to guide the query.

Since these two parameters are very subjective, Fuzzy Sets are used to represent

211

6.1 Conclusions

them. This approach is proved to be better than existing approaches. Seeing its

limitations and advantages of maximum-node-degree approach, they are combined

to derive a hybrid metric. It is showed that this hybrid metric gave the best results.

3. In Chapter 3, an indexing technique is proposed to improve search in unstructured

networks. This indexing doesn’t need extra messages. The propagation of the in-

dexes and the updates on them is done through query traffic. Space efficient data

structures are designed using Bloomfilters. This indexing technique is named as

’Floating Indexes’. Analysis on different carrier methods like flooding, random

walk, fuzzy walkers is carried out. Also the two ways of distributing indexes namely

breadth-wise and depth-wise are analysed. In conclusion, breadth-wise spreading

through random walkers is the better efficient way of indexing. Also the technique

is compared to attenuated Bloomfilters indexing technique and found to be more

efficient.

4. User satisfaction in search can’t be fully addressed unless user requirements are

taken into consideration. Two users may be searching for the same file, one with the

intention of downloading it and the other with the intention of playing it through

streaming. If the search is solely based on keywords, then these requirements are

missed out and the results may disappoint the user. In Chapter 4, a QoS-search

model is presented with performance evaluation. Network parameters namely

bandwidth, latency and overlay parameter object locality are mapped to user expec-

tations namely file downloads, streaming and document retrieval. Search is guided

by the QoS constraints set by the user. Cost metric is designed to help the user

select the result that best matches his expectations. This model is evaluated and it is

proved to be providing results meeting user requirements. Our search algorithm is

compared with SAMCRA, a centralised multi-constraint QoS algorithm. It is found

that our algorithm has got results almost close to that of SAMCRA although our

algorithm is distributed in all aspects.

5. In Chapter 2, a clear analysis of Sybil problem is presented. The solutions pro-

posed in literature are classified and discussed. The solutions are categorised into

challenge-response imposing constraints on resources, binding the identity to phys-

212

6.2 Summary of Contributions

ical characteristics, central authority certification, characteristics of social networks

based on trusted connections, based on Sybil behavioural characteristics and incen-

tives.

6. Challenge-response model relies on the principle that since Sybil means multiple

identities originating from a single physical entity, if each identity is given a task

demanding the entire resources of one single physical entity, Sybils will fail to an-

swer the challenge. In Chapter 5, storage constraint challenge-response approach is

proposed. The storage constraint has an advantage compared to other constraints

such as computational power and memory because in other constraints all Sybil

identities need to be issued challenges simultaneously. In the case of storage con-

straint, the challenges can be spread over a period of time. A model centred on

storage constraint is proposed. The relationship between number of replicas, pro-

portion of Sybils are analysed.

7. An approach first of its kind based on Psychometric tests is proposed in chapter 5 as

a solution to Sybil problem. It is based on the principle that Sybil identities originate

from an individual person. Therefore there should be some common psychological

characteristics among the Sybil identities. Through experimental means, it is proven

to be very effective. It has the capability to detect Sybil group as a whole instead of

working on detecting Sybil identities.

6.2 Summary of Contributions

The following are the contributions of the research carried out as a part of this thesis

work.

1. Developed a content-oriented neighbour selection metric using Fuzzy Sets.

2. Developed a hybrid metric combining Fuzzy Set approach and maximum-node-

degree approach.

3. Developed an indexing technique ’Floating Indexes’, very apt for high query traffic

in peer-to-peer networks, that doesn’t need any extra messages.

213

6.3 Future Research

4. Analysed in detail the ways of transporting indexes through queries.

5. Developed a user-centric QoS search model for peer-to-peer file sharing networks.

6. Developed a routing mechanism to find paths that satisfy multiple constraints in

peer-to-peer file sharing systems.

7. Developed a challenge-response solution to detect Sybil identities that doesn’t need

simultaneous challenges to be issued.

8. Developed a first of its kind, Psychometric Tests based solution for detecting Sybil

groups.

6.3 Future Research

The following are the areas that need further research.

1. A mathematical approach to model the query traffic in peer-to-peer overlays is re-

quired to provide guarantees on performance using indexing techniques.

2. Finding paths with QoS with local knowledge alone doesn’t lead to optimal paths.

Techniques such as landmarks based routing etc can give better results.

3. Storage-constraint based challenge-response model and Psychometric tests based

model need to be deployed into a real peer-to-peer network and measure their per-

formance.

214

Appendix A

Simulator Source

The simulator model is explained in section 3.2.3.1. It has two main classes namely,
Simulator Main and Node.

A.1 Simulator Main

Here is the source code of the Main class that loads the topology and setsup the network.

Listing A.1: Simulator Main

package floatingIndexes;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Date;
import java.util.Random;
import java.util.StringTokenizer;
import javax.swing.Timer;
import Common.PoissonDistribution;
import Jama.*;

public class Main {
static int lastHighestNodeNo = 0;
static long startTime = System.currentTimeMillis();
static int msgid = 0;
static int qindex = 0;
static int exitnode_count = 0;
static float kwwtsum = 0;
static String kw[] = { "urban", "xmas", "ora", "ate", "bat", "cat", "dot"

,... };

static String filetype[] = { "mp3", "Avi", "Mpg", "Zip", "Mpeg", "jpg"...
};

/**
* A-audio D-Document G-Program R-Archive P-Picture V-Video

*/

215

A.1 Simulator Main

static String filecat[] = { "A", "A", "A", "A", "A", "A", "A", "V", "P"...
};

/**
* P - Populart, N-Normal, R-rare

*/
static String filepopularity[] = { "P", "P", "P", "P", "P", "P", "P", "P"

... };

static String downloadtype[] = { "S", "S", "S", "D", "D", "V", "D", "D"
...};

static ArrayList<String> kwlist = new ArrayList<String>();
static ArrayList<Integer> kwwt = new ArrayList<Integer>();
static ArrayList<Integer> qperkw = new ArrayList<Integer>();
static ArrayList<Node> al = new ArrayList<Node>();
static Timer t = null;
static Timer nodeRedist = null; // for node redistribution at regular
// intervals of time
static Timer objectRedist = null; // for object redistribution at regular

intervals of time
static int totalqueries = 0;
/*
* Weights

*/
static Matrix wts = null;
public static void main(String args[]) {

System.out.println("In Main");
String app = Constants.Application;

if (app.equals("Downloading"))
wts = Weights.getWeights(new Matrix(Constants.pairwisematrix_d));

if (app.equals("Streaming"))
wts = Weights.getWeights(new Matrix(Constants.pairwisematrix_s));

if (app.equals("Viewing"))
wts = Weights.getWeights(new Matrix(Constants.pairwisematrix_v));

if (app.equals("Equal"))
wts = Weights.getWeights(new Matrix(Constants.pairwisematrix_e));

if (wts.get(0, 0) == 0)
System.exit(0);

/**
* Creating Node objects

*/

for (int i = 0; i < Constants.MAX_NODES; i++) {
Node n = new Node(i);
al.add(n);

}
/**
* Loading topology information

*/
lastHighestNodeNo = al.size() - 1;
BufferedReader br = null;
try {
br = new BufferedReader(new FileReader("E:/r1000-2.alt"));

} catch (FileNotFoundException e) {
}
String line;
try {
while ((line = br.readLine()) != null) {
int fnode = -1;

216

A.1 Simulator Main

int tnode = -1;
int wt = 0;
int wt1 = 0, wt2 = 0, wt3 = 0;
StringTokenizer st = new StringTokenizer(line);

if (st.countTokens() == 6) {
fnode = Integer.parseInt(st.nextToken());
tnode = Integer.parseInt(st.nextToken());
wt = Integer.parseInt(st.nextToken());
wt1 = Integer.parseInt(st.nextToken());
wt2 = Integer.parseInt(st.nextToken());
wt3 = Integer.parseInt(st.nextToken());

}
al.get(fnode).addNeighbour(al.get(tnode));
al.get(fnode).setWeight(al.get(tnode), wt);
al.get(fnode).setWeight2(al.get(tnode), wt2);
al.get(fnode).setWeight3(al.get(tnode), wt3);
al.get(tnode).addNeighbour(al.get(fnode));
al.get(tnode).setWeight(al.get(fnode), wt);
al.get(tnode).setWeight2(al.get(fnode), wt2);
al.get(tnode).setWeight3(al.get(fnode), wt3);

}
} catch (IOException e) {
System.out.println(e);

}
/**
* Loading the objects

*/

BufferedReader br0 = null;
try {
br0 = new BufferedReader(new FileReader(

"E:/Bhakata Seva (PhD & Teaching) Parama Siddhi/Thesis/
Simulationfiles/" + Constants.INPUT_SET + "/files.csv"));

} catch (FileNotFoundException e) {
System.out.println(e);

}
String line0;
try {
while ((line0 = br0.readLine()) != null) {
int i, k;
String[] line_token1 = line0.split(",");
k = Integer.parseInt(line_token1[0]);
kwlist.add(k, line_token1[1]);
//al.get(i).addItem(new Item(new KeyWord(kwlist.get(k)), filecat[k],

filepopularity[k]));
}

} catch (Exception e) {
e.printStackTrace();
System.out.println(e);

}
/**
* Replicating the objects

*/

BufferedReader br1 = null;
try {
br1 = new BufferedReader(new FileReader(

"E:/Bhakata Seva (PhD & Teaching) Parama Siddhi/Thesis/
Simulationfiles/" + Constants.INPUT_SET + "/files_nodes.csv"));

} catch (FileNotFoundException e) {

217

A.1 Simulator Main

System.out.println(e);
}
String line1;
try {
while ((line1 = br1.readLine()) != null) {
int i, k;
String[] line_token1 = line1.split(",");
k = Integer.parseInt(line_token1[0]);
i = Integer.parseInt(line_token1[1]);
al.get(i).addItem(new Item(new KeyWord(kwlist.get(k)), "A", "P"));

}
} catch (Exception e) {
e.printStackTrace();
System.out.println(e);

}

/**
* Loading queries from file

*/
final int queryorder[][] = new int[10100][2];
BufferedReader br2 = null;
try {
String line2;
br2 = new BufferedReader(new FileReader(

"E:/Bhakata Seva (PhD & Teaching) Parama Siddhi/Thesis/
Simulationfiles/" + Constants.INPUT_SET + "/query_order_oct.csv
"));

int j = 0;
while ((line2 = br2.readLine()) != null) {
int i, k;
String[] line_token2 = line2.split(",");
k = Integer.parseInt(line_token2[0]);
i = Integer.parseInt(line_token2[1]);
queryorder[j][0] = k;
queryorder[j][1] = i;
j++;

}
}
catch (Exception e) {
System.out.println(e);

}

/**
* Starting node threads

*/
for (int i = 0; i < al.size(); i++) {
Thread t = new Thread(al.get(i), i + "");
al.get(i).th = t;
t.start();

}

/**
* Firing queries

*/

t = new Timer(100, new ActionListener() {
public void actionPerformed(ActionEvent ae) {
if(qindex%500==0)System.out.println(qindex + " queries are over");
Query m = new Query();
m.msgid = msgid++;
m.responseTime = 0;

218

A.1 Simulator Main

m.hopcount = Constants.MAX_HOPS;
m.kw = new KeyWord(kwlist.get(queryorder[qindex][1]));
m.msgType = 0;
m.filetype = filetype[queryorder[qindex][1]];
m.downloadtype = Constants.Application;
m.cost = 0;
m.inversepopularity = (float) (queryorder[qindex][1] + 1)

/ (float) (Constants.MAX_ITEMS + 1);

m.fuzzfiletype=filecat[queryorder[qindex][1]];
m.fuzzyfilepopularity=filepopularity[queryorder[qindex][1]];

m.bw_weight = wts.get(0, 0);
m.delay_weight = wts.get(1, 0);
m.quckfind_weight = wts.get(2, 0);

m.downloadtype=downloadtype[queryorder[qindex][1]];

Node n = al.get(queryorder[qindex][0]);
m.qoscost = m.bw_weight * n.getNormalizedBW(10)

+ m.delay_weight * n.getNormalizedAccDelay(100)
+ n.getNormalizedQFProb(.125) * m.quckfind_weight;

m.delay_accumulated = 0;
n.addMessage(n, m);

if (qindex == 10000) {
try {
System.out.println("Going to sleep");
Thread.sleep(60000);

} catch (Exception e) {
System.out.println(e);

}
for (int i = 0; i < al.size(); i++) {
al.get(i).isEndofAllQueries = true;

}
Log.isEndofAllQueries = true;
LogPathEntries.isEndofAllQueries = true;
t.stop();

}
qindex++;

// }
}

});

t.start();
for (int i = 0; i < al.size(); i++) {
try {
al.get(i).th.join();

} catch (Exception e) {
}

}

System.out.println("End of Main");

}

public static void computeKWWts() {

219

A.2 Node

double d = 0;
double alpha = 0.83;
for (int i = 0; i < kwlist.size(); i++)
d = d + (1 / Math.pow(i + 1, alpha));

System.out.println(d);
// Assuming that the objects are ranked from 1 to 100
for (int i = 0; i < kwlist.size(); i++) {
kwwt.add(new Integer((int) Math

.ceil(((1 / Math.pow(i + 1, alpha)) / d)

* Constants.MAX_REPLICAS)));

}
}

}

A.2 Node

Here is the source code for the basic functionality of a node.

Listing A.2: Node

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Random;
import Common.BloomFilter;
import Common.Utils;
import Jama.Matrix;

public class Node implements Runnable {
int nodeno;
boolean visited=false;
int wt = 0;
public boolean isEndofAllQueries = false;
Thread th = null;
BloomFilter ngbf[][] = null;
ArrayList<Node> ng = new ArrayList<Node>();
ArrayList<Item> ic = new ArrayList<Item>();
ArrayList<Integer> ngwt = new ArrayList<Integer>();
ArrayList<Integer> bwwt = new ArrayList<Integer>();
ArrayList<Integer> dlwt = new ArrayList<Integer>();
ArrayList<MessageInfo> mc = new ArrayList<MessageInfo>(); // Message Cache
ArrayList<Integer> wts = new ArrayList<Integer>();

/* Queue object for storing the incoming messages*/
LinkedList<QueuedMessage> mq = new LinkedList<QueuedMessage>();// Message

//fuzzy related
/**0 A-audio

* 1 D-Document

* 2 G-Program

* 3 R-Archive

* 4 P-Picture

* 5 V-Video

*/

220

A.2 Node

Matrix filestats=new Matrix (Constants.NO_OF_FILE_TYPES, Constants.
NO_OF_POPULAR_CATEGORIES+1);

Matrix fuzzyprob=new Matrix(Constants.NO_OF_FILE_TYPES, Constants.
NO_OF_POPULAR_CATEGORIES+1);

Matrix ngstats=null;

/**
* floatingIndexes

*/
ArrayList<NodeIndexRecord> indexCache=new ArrayList<NodeIndexRecord>();

float ahplist[] = { 0.1f, 0.1f, 0.1f, 0.7f };
double bf_levelprob[] = null;
float matlist[][];
float b[];
float tkw;
int bw[];
int pr[];
int dl[];
double qfp[];
int mean;
float sd;
private Random generator = new Random();
public Node(int nodeno) {
this.nodeno = nodeno;

}

void setWeight(Node n, int wt) {
if (ngwt.size() < ng.size()) {
for (int i = 0; i < ng.size(); i++) {
ngwt.add(20);

}
}
int index = -1;
for (int i = 0; i < ng.size(); i++)
if (ng.get(i).nodeno == n.nodeno) {
index = i;
break;

}
if (index == -1)
return;

try {
ngwt.add(index, new Integer(wt));

} catch (ArrayIndexOutOfBoundsException e) {
ngwt.add(index, new Integer(wt));

}
}
void setWeightBW(Node n, int wt) {

if (bwwt.size() < ng.size()) {
for (int i = 0; i < ng.size(); i++) {
bwwt.add(20);

}
}
int index = -1;
for (int i = 0; i < ng.size(); i++)
if (ng.get(i).nodeno == n.nodeno) {
index = i;
break;

}
if (index == -1)
return;

221

A.2 Node

try {
bwwt.add(index, new Integer(wt));

} catch (ArrayIndexOutOfBoundsException e) {
bwwt.add(index, new Integer(wt));

}
}

void setWeightDelay(Node n, int wt) {
if (dlwt.size() < ng.size()) {
for (int i = 0; i < ng.size(); i++) {
dlwt.add(20);

}
}
int index = -1;
for (int i = 0; i < ng.size(); i++)
if (ng.get(i).nodeno == n.nodeno) {
index = i;
break;

}
if (index == -1)
return;

try {
dlwt.add(index, new Integer(wt));

} catch (ArrayIndexOutOfBoundsException e) {
dlwt.add(index, new Integer(wt));

}
}

int getWeight(Node n) {
int index = -1;
for (int i = 0; i < ng.size(); i++)
if (ng.get(i).nodeno == n.nodeno) {
index = i;
break;

}
if (index == -1)
return 0;

return ngwt.get(index).intValue();
}

public boolean addNeighbour(Node n) {
// check for duplicates
Iterator<Node> itr = ng.iterator();
while (itr.hasNext()) {
Node n1 = itr.next();
if (n1.nodeno == n.nodeno)
return false;

}
ng.add(n);
return true;

}

private int getNeighbourIndex(Node n){
for(int i=0;i<ng.size();i++){

if(ng.get(i).nodeno==n.nodeno) return i;
}
return -1;

}

synchronized public void addMessage(Node n, Message m) {

222

A.2 Node

m.responseTime = m.responseTime + n.getWeight(this);
synchronized (mq) {
mq.addLast(new QueuedMessage(m, n));

}
/**
* Logging the message stats

*/
Log.writeNodeCoverage(m.msgid + "," + m.hopcount +"," +n.nodeno+ ",

" + this.nodeno+ ","+m.msgType + "," + m.hopstravelled + ","+ m
.fuzzfiletype + "," + m.fuzzyfilepopularity+ "\n");

if (m.msgType == 2) {
Log.writeQH(m.msgid, ((QueryHit) m).hitnode.nodeno, m.pathlength,

m.inversepopularity, m.cost, m.bw, m.dl, m.fuzzfiletype,
m.fuzzyfilepopularity, (long) Math.floor((System

.currentTimeMillis() - Main.startTime) / 1000),
m.responseTime);

}
}

/**
* Starting point for the thread. It processes the queued messages.

*/

public void run() {

bw = new int[ng.size()];
dl = new int[ng.size()];
qfp = new double[ng.size()];
int y;
for (y = 0; y < ng.size(); y++) {
bw[y] = (int) bwwt.get(y);
dl[y] = (int) dlwt.get(y);

}

/**neighbour stats*/
/**0-avg hops taken by qh, 1-avg responsetime taken by result, 2-greatest

no of results, 3-greatest no of mesgs received

*/
ngstats=new Matrix(ng.size(), 4);
for(int i=0;i<ngstats.getRowDimension();i++)
for(int j=0;j<ngstats.getColumnDimension();j++){
ngstats.set(i, j, 0);
if(j==0||j==1) ngstats.set(i, j, 10000);

}

long msgCounter=0;
while (true) {
while (mq.size() > 0) {

try {
for (int i = 0; i < mq.size(); i++) {
Message m = mq.get(i).m;
msgCounter++;
if (m.msgType == 0) {
receiveQuery(mq.get(i).sender, (Query) m);
int ngindex=getNeighbourIndex(mq.get(i).sender);

223

A.2 Node

if(ngindex!=-1) ngstats.set(ngindex, 3, ngstats.get(ngindex, 3)
+1);

}
if (m.msgType == 1) {
if (mq.get(i).sender.nodeno != this.nodeno)
receiveQueryHit(mq.get(i).sender, (QueryHit) m);

int ngindex=getNeighbourIndex(mq.get(i).sender);
if(ngindex!=-1) ngstats.set(ngindex, 3, ngstats.get(ngindex, 3)

+1);
}
if (m.msgType == 2) {

this.addItem(new Item(m.kw, m.fuzzfiletype, m.
fuzzyfilepopularity));

int ngindex=getNeighbourIndex(mq.get(i).sender);
if(ngindex!=-1) {
if(ngstats.get(ngindex, 0)==10000) ngstats.set(ngindex, 0, m

.pathlength);
else ngstats.set(ngindex, 0, (ngstats.get(ngindex, 0)+m.

pathlength)/2);
if(ngstats.get(ngindex, 1)==10000) ngstats.set(ngindex, 1, m

.responseTime);
else ngstats.set(ngindex, 1, (ngstats.get(ngindex, 1)+m.

responseTime)/2);
ngstats.set(ngindex, 2, ngstats.get(ngindex, 2)+1);
ngstats.set(ngindex, 3, ngstats.get(ngindex, 3)+1);
}

}
synchronized (mq) {
mq.remove(i);

}
}

} catch (Exception e) {
System.out.println(e);
e.printStackTrace();

}
}

try {
Thread.sleep(1000);

} catch (InterruptedException e) {
e.printStackTrace();

}
if (isEndofAllQueries && mq.size() == 0) {
System.out.println("Node " + nodeno + " exiting");
int local=0, nonlocal=0;
for(int i=0;i<indexCache.size();i++)
if(indexCache.get(i).n.nodeno!=nodeno)
nonlocal++;
else local++;

Log.writeNodeCache(nodeno + "," + indexCache.size() + "," + local+ ",
"+ nonlocal + "\n");

break;
}

}
Main.exitnode_count++;
System.out.println("Total Nodes exited so far:" + Main.exitnode_count);

}

/**
* Procedure for processing a query

*/

224

A.2 Node

private void receiveQuery(Node sn, Query m) {
int ni = 0;
if (m.hopcount == 0)
return;

for (int i = 0; i < mc.size(); i++) {
if (mc.get(i).msgid == m.msgid){

Log.writeDuplicateMsgs(nodeno + "," + sn.nodeno + "," + m.msgid + "
," + m.hopstravelled + ","+ m.fuzzfiletype + "," + m.
fuzzyfilepopularity + "\n");

return;
}

}
mc.add(new MessageInfo(m, sn, new Date()));

/**
* floatingIndexes

*/
updateIndexcacheFromQuery(m);
refreshIndexCacheforLocalItems();
addIndexCacheToQuery(m);

for (int i = 0; i < ic.size(); i++) {
if (ic.get(i).matches(m.kw))
ni++;

}

ArrayList<Node> al=searchIndexCache(m.kw);

if ((ni > 0||al.size()>0) && sn.nodeno != this.nodeno) {

for (int i = 0; i < m.hopstravelled; i++) {
//LogPathEntries.writeMisc(m.msgid + "," + this.nodeno + "," + i

}

QueryHit hm = new QueryHit();
hm.msgid = m.msgid;
hm.kw = m.kw;
hm.hopcount = Constants.MAX_HOPS + 2;
hm.msgType = 1;
hm.hitnode = this;
hm.nof = ni;
hm.bw = 0;
hm.dl = 0;
hm.pathlength = 1;
hm.responseTime = m.responseTime;
hm.downloadtype = m.downloadtype;
hm.inversepopularity = m.inversepopularity;
hm.cost = m.cost;
hm.filetype = m.filetype;
hm.fuzzfiletype=m.fuzzfiletype;
hm.fuzzyfilepopularity=m.fuzzyfilepopularity;
if (sn.nodeno == this.nodeno) {
System.out.println("FOUND in the SAME Node " + nodeno);
hm.msgType = 2;

}
sn.addMessage(this, hm);

} else {
/*
*
* Finding Quick find probability

225

A.2 Node

*/

NeighbourCost arr[] = null;
double N=0;
if(nodeno==sn.nodeno){
arr=new NeighbourCost[ng.size()];
N=ng.size();}

else{
arr=new NeighbourCost[ng.size()-1];
N=ng.size()-1;

}

int k=0;
for (int i = 0; i < ng.size(); i++) {
if (ng.get(i).nodeno!=sn.nodeno){

(m.fuzzfiletype, m.fuzzyfilepopularity);

if(nodeno==sn.nodeno) {
N=9;

}else N=0;
//N=ng.size();
for (int i=0; i <= Math.min(N, arr.length-1); i++) {

Query q = m.clone();
q.hopcount--;
q.cost = q.cost + arr[i].cost;
q.bandwidth[q.hopstravelled] = bw[arr[i].ngindex];
q.delay[q.hopstravelled] = dl[arr[i].ngindex];
q.qfp[q.hopstravelled] = qfp[arr[i].ngindex];
q.hopcost[q.hopstravelled] = arr[i].cost;
q.nodenos[q.hopstravelled] = nodeno;

q.delay_accumulated=q.delay_accumulated+dl[arr[i].ngindex];

q.hopstravelled++;
ng.get(arr[i].ngindex).addMessage(this, q);

}

}
}

/**
* Procedure for processing a query hit

*/

private void receiveQueryHit(Node sn, QueryHit m) {
Node tobesentto = null;
for (int i = 0; i < mc.size(); i++) {
if (mc.get(i).msgid == m.msgid) {
tobesentto = mc.get(i).n;
break;

}
}
if (tobesentto == null)
return;

else {
int i, j = 0;
for (i = 0; i < ng.size(); i++) {
if (ng.get(i) == sn)
j = i;

}

226

A.2 Node

if ((m.bw != 0) && (m.bw < bw[j]))
;

else
m.bw = bw[j];

m.dl = m.dl + dl[j];
if (tobesentto.nodeno == this.nodeno) {
m.msgType = 2;
addMessage(this, m);

} else {
m.pathlength = m.pathlength + 1;
tobesentto.addMessage(this, m);

}
}

}

public String toString() {
return nodeno + "";

}

}

class MessageInfo {
public MessageInfo(Query m, Node sn, Date date) {

msgid = m.msgid;
n = sn;
t = date;

}

int msgid;

Node n;

Date t;
}
/**
* A class for encapsulating the incoming message

*/

class QueuedMessage implements Comparator {
public QueuedMessage(Message m2, Node n) {

m = m2;
sender = n;

}

Message m;

Node sender;

public int compare(Object arg0, Object arg1) {
QueuedMessage a = (QueuedMessage) arg0;
QueuedMessage b = (QueuedMessage) arg1;
if (a.m.msgid > b.m.msgid)
return 1;

else if (a.m.msgid == b.m.msgid) {
if (a.m.cost > b.m.cost)
return 1;

else if (a.m.cost < b.m.cost)
return -1;

else

227

A.3 Utility Functions

return 0;
} else
return -1;

}
}

/**
* A class for storing the cost for each neighbour for a particular query

*/
class NeighbourCost implements Comparator {

double cost;

int ngindex;

NeighbourCost(double cost, int ngindex) {
this.cost = cost;
this.ngindex = ngindex;

}

public int compare(Object arg0, Object arg1) {
NeighbourCost a = (NeighbourCost) arg0;
NeighbourCost b = (NeighbourCost) arg1;

if (a.cost > b.cost)
return -1; //1 ascedning //-1 descending

else if (a.cost < b.cost)
return 1; //-1 asc 1-desc

else
return 0;

}

}

A.3 Utility Functions

The following functions are coded to assistin fuzzy based and QoS based operations.

Listing A.3: Fuzzy and QoS reated functions

/**
* Fuzzy utility Functions

*/

public double getFilePercent(String filetype, String filepopularity){
int total=0,subtotal=0;
for(int k=0; k<ic.size();k++)
if(ic.get(k).fileCat.equals(filetype)){
total++;

if(ic.get(k).popularity.equals(filepopularity)) subtotal++;
}

if (total==0) return 0;
return (subtotal/total)*100;
}

public double getFuzzyProb(String filetype, String filepopularity){
int findex=-1, pindex=-1;
for(int i=0;i<Constants.NO_OF_FILE_TYPES;i++)

228

A.3 Utility Functions

if(Constants.FILE_TYPES[i].equals(filetype)) findex=i;
for(int i=0;i<Constants.NO_OF_POPULAR_CATEGORIES+1;i++)
if(Constants.POPULAR_CATEGORIES[i].equals(filepopularity)) pindex=i;

return fuzzyprob.get(findex, pindex);
}

class FuzzyConfidenceValues{
double fpl;
double fpm;
double fph;

public void print(){
System.out.println("\n fpl:" + fpl + " fpm:" +fpm + " fph:" + fph);

}

public void print(double val){
System.out.println("\n Value:" +val + " fpl:" + fpl + " fpm:" +fpm + "

fph:" + fph);
}
}

public FuzzyConfidenceValues getConfidenceValues(double tp){
double fptl=0,fptm=0,fpth=0;

//low confidence values
if(tp>=0 && tp <=20) fptl=1;
if(tp>=20 && tp <=80) fptl= (80-tp)/60;
if(tp>80) fptl=0;

//medium confidence values
if(tp<20) fptm=0;
if(tp>=20 && tp <=50) fptm=(tp-20)/30;
if(tp>=50 && tp <=80) fptm= (80-tp)/(30);
if(tp>80) fptm=0;

//high confidence values
if(tp<20) fpth=0;
if(tp>=20 && tp <=80) fpth=(tp-20)/60;
if(tp>=80 && tp <=100) fpth=1;
if(tp>100) fpth=0;
FuzzyConfidenceValues fcv=new FuzzyConfidenceValues();
fcv.fph=fpth;
fcv.fpl=fptl;
fcv.fpm=fptm;

return fcv;
}

private void computeFuzzyProbabilities(){
for(int i=0; i<filestats.getRowDimension();i++)

for(int j=0;j<filestats.getColumnDimension();j++){
double total=0;
for(int k=0; k<ic.size();k++){
if (j==0) if(ic.get(k).fileCat.equals(Constants.FILE_TYPES[i])) total

++;
if(j>0) if(ic.get(k).fileCat.equals(Constants.FILE_TYPES[i]) && ic.

get(k).popularity.equals(Constants.POPULAR_CATEGORIES[j])) total
++;

}
filestats.set(i, j, total);

}
for(int i=0; i<fuzzyprob.getRowDimension();i++)

229

A.3 Utility Functions

for(int j=0;j<fuzzyprob.getColumnDimension();j++)
fuzzyprob.set(i, j, 0);

for(int i=0; i<filestats.getRowDimension();i++){
for(int j=1;j<filestats.getColumnDimension();j++){

if(i>=0 && j>=0){
double tp=ic.size();//(filestats.get(i,0)/ic.size())*100;
FuzzyConfidenceValues tpfcv=getConfidenceValues(tp);
double popcatp;
if (filestats.get(i,0)==0)
popcatp=0;

else popcatp=(filestats.get(i,j)/filestats.get(i,0))*100;
FuzzyConfidenceValues popfcv=getConfidenceValues(popcatp);
double max=0;
for(int k=0;k<ng.size();k++){
//double x=ng.get(k).getFilePercent(Constants.FILE_TYPES[i],Constants

.POPULAR_CATEGORIES[j]);
double x=100 * ng.get(k).getFuzzyProb(Constants.FILE_TYPES[i],

Constants.POPULAR_CATEGORIES[j]);
if(x>max)max=x;

}
FuzzyConfidenceValues ngfcv=getConfidenceValues(max);

Matrix ngl=new Matrix(3,3);
ngl.set(0, 0, Math.min(Math.min(tpfcv.fpl,popfcv.fpl), ngfcv.fpl));
ngl.set(0, 1, Math.min(Math.min(tpfcv.fpl,popfcv.fpm), ngfcv.fpl));
ngl.set(0, 2, Math.min(Math.min(tpfcv.fpl,popfcv.fph), ngfcv.fpl));

ngl.set(1, 0, Math.min(Math.min(tpfcv.fpm,popfcv.fpl), ngfcv.fpl));
ngl.set(1, 1, Math.min(Math.min(tpfcv.fpm,popfcv.fpm), ngfcv.fpl));
ngl.set(1, 2, Math.min(Math.min(tpfcv.fpm,popfcv.fph), ngfcv.fpl));

ngl.set(2, 0, Math.min(Math.min(tpfcv.fph,popfcv.fpl), ngfcv.fpl));
ngl.set(2, 1, Math.min(Math.min(tpfcv.fph,popfcv.fpm), ngfcv.fpl));
ngl.set(2, 2, Math.min(Math.min(tpfcv.fph,popfcv.fph), ngfcv.fpl));

Matrix ngm=new Matrix(3,3);
ngm.set(0, 0, Math.min(Math.min(tpfcv.fpl,popfcv.fpl), ngfcv.fpm));
ngm.set(0, 1, Math.min(Math.min(tpfcv.fpl,popfcv.fpm), ngfcv.fpm));
ngm.set(0, 2, Math.min(Math.min(tpfcv.fpl,popfcv.fph), ngfcv.fpm));

ngm.set(1, 0, Math.min(Math.min(tpfcv.fpm,popfcv.fpl), ngfcv.fpm));
ngm.set(1, 1, Math.min(Math.min(tpfcv.fpm,popfcv.fpm), ngfcv.fpm));
ngm.set(1, 2, Math.min(Math.min(tpfcv.fpm,popfcv.fph), ngfcv.fpm));

ngm.set(2, 0, Math.min(Math.min(tpfcv.fph,popfcv.fpl), ngfcv.fpm));
ngm.set(2, 1, Math.min(Math.min(tpfcv.fph,popfcv.fpm), ngfcv.fpm));
ngm.set(2, 2, Math.min(Math.min(tpfcv.fph,popfcv.fph), ngfcv.fpm));

Matrix ngh=new Matrix(3,3);
ngh.set(0, 0, Math.min(Math.min(tpfcv.fpl,popfcv.fpl), ngfcv.fph));
ngh.set(0, 1, Math.min(Math.min(tpfcv.fpl,popfcv.fpm), ngfcv.fph));
ngh.set(0, 2, Math.min(Math.min(tpfcv.fpl,popfcv.fph), ngfcv.fph));

ngh.set(1, 0, Math.min(Math.min(tpfcv.fpm,popfcv.fpl), ngfcv.fph));
ngh.set(1, 1, Math.min(Math.min(tpfcv.fpm,popfcv.fpm), ngfcv.fph));
ngh.set(1, 2, Math.min(Math.min(tpfcv.fpm,popfcv.fph), ngfcv.fph));

ngh.set(2, 0, Math.min(Math.min(tpfcv.fph,popfcv.fpl), ngfcv.fph));
ngh.set(2, 1, Math.min(Math.min(tpfcv.fph,popfcv.fpm), ngfcv.fph));
ngh.set(2, 2, Math.min(Math.min(tpfcv.fph,popfcv.fph), ngfcv.fph));

230

A.3 Utility Functions

double vlc=Math.max(Math.max(ngl.get(0, 0), ngl.get(0, 1)), Math.max(
ngm.get(0, 0), ngm.get(0, 1)));

vlc=Math.max(vlc, ngh.get(0, 0));
double lc=Math.max(ngl.get(0, 2), ngl.get(1, 0));
lc=Math.max(lc, Math.max(ngm.get(0, 2), Math.max(ngh.get(0, 1), ngh.get

(0, 2))));
double mc = Math.max(ngl.get(1, 1), ngl.get(1, 2));
mc=Math.max(mc, Math.max(Math.max(ngm.get(1, 0), ngm.get(1, 1)), ngm.

get(1, 2)));
mc=Math.max(mc, Math.max(ngh.get(1, 0), ngm.get(1, 1)));
double hc=Math.max(Math.max(ngl.get(2, 0), ngl.get(2, 1)), ngm.get(2,

0));
hc=Math.max(hc, Math.max(ngh.get(1, 2), ngh.get(2, 0)));
double vhc=Math.max(Math.max(ngl.get(2, 2), ngm.get(2, 1)), ngm.get(2,

2));
vhc=Math.max(vhc, Math.max(ngh.get(2, 1), ngh.get(2, 2)));

double x= (vlc*0.0 + lc * 0.3 + mc * 0.5 + hc * 0.7 + vhc * 1)/ (vlc+lc
+mc+hc+vhc);

fuzzyprob.set(i, j,x);
}

}
}

}

/**
* Floating Index functions

*/

private void updateNodeIndexCache(NodeIndexRecord qir){
boolean found=false;
for(int i=0;i<indexCache.size();i++){
if (indexCache.get(i).n.equals(qir.n) && indexCache.get(i).rno==qir.rno){
found=true;
if(qir.cdate>=indexCache.get(i).cdate) indexCache.set(i,qir);

}
}

if(!found)
indexCache.add(qir);

}
private void updateNodeIndexCache(QueryIndexRecord qir){

boolean found=false;
for(int i=0;i<indexCache.size();i++){

if (indexCache.get(i).n.equals(qir.n) && indexCache.get(i).rno==qir.rno){
found=true;
if(qir.cdate>=indexCache.get(i).cdate){
indexCache.set(i,new NodeIndexRecord(qir));

}
}
}

if(!found)
indexCache.add(new NodeIndexRecord(qir));

}
public void addIndexCacheToQuery(Query m){

m.qc.clear();
Collections.sort(indexCache, new Comparator<NodeIndexRecord>(){

public int compare(NodeIndexRecord o1, NodeIndexRecord o2){
if(o1.lldate<o2.lldate) return -1;
if(o1.lldate>o2.lldate) return 1;
return 0;

231

A.3 Utility Functions

}});
int size=0;
for(int i=0;i<indexCache.size();i++){

indexCache.get(i).lldate=new Date().getTime()/1000;
m.qc.add(new QueryIndexRecord(indexCache.get(i)));
size=size+Constants.BF_QIRSIZE;
if(size>Constants.BF_QUERYSIZE) break;

}
}

ArrayList<Node> searchIndexCache(KeyWord k)
{

ArrayList<Node> al=new ArrayList<Node>();
for(int i=0;i<indexCache.size();i++)
{

if(indexCache.get(i).bf.hasKey(k.kw))
al.add(indexCache.get(i).n);

}
return al;

}

void refreshIndexCacheforLocalItems(){
for(int i=0;i<indexCache.size();i++){
if(indexCache.get(i).n.nodeno==this.nodeno) indexCache.remove(i);

}
QueryIndexRecord q=new QueryIndexRecord(); //assumtpion that no of items <

Constants.BF_NOOFELEMENTS
q.B=1;
q.cdate=new Date().getTime()/1000;
q.n=this;
q.rno=1;
int size=0;
int k=1;
for(int i=0;i<ic.size();i++){

q.bf.put(ic.get(i).kw.kw);
size=size+1;
if(size>=Constants.BF_NOOFELEMENTS){
updateNodeIndexCache(q);
q= new QueryIndexRecord();
q.B=1;
q.cdate=new Date().getTime()/1000;
q.n=this;
q.rno=k++;
size=0;

}
}

updateNodeIndexCache(q);
}

void updateIndexcacheFromQuery(Message m){
Query qy=(Query)m;

for(int i=0;i<qy.qc.size();i++){
boolean found=false;
for(int j=0; j<indexCache.size();j++){
if(qy.qc.get(i).n.nodeno==indexCache.get(j).n.nodeno && qy.qc.get(i

).rno==indexCache.get(j).rno){
found=true;
if(qy.qc.get(i).cdate>=indexCache.get(j).cdate){
indexCache.remove(j);
updateNodeIndexCache(qy.qc.get(i));

232

A.3 Utility Functions

}
}

}
if(!found)
updateNodeIndexCache(qy.qc.get(i));

}
}

/**
* QoS utility functions

*/
double getQuickFindProbability(int ngindex, KeyWord kw) {

double prob = 0;
for (int i = 0; i < Constants.NO_OF_BLOOMFILTERS; i++)
if (ngbf[ngindex][i].hasKey(kw.kw)) {

prob = prob + bf_levelprob[i];
}

return prob;
}

int getNormalizedBW(float bw) {
double max = Constants.MAX_BW;
if (bw >= 0 && bw <= max / 10)
return 10;

if (bw > max / 10 && bw <= 2 * max / 10)
return 9;

if (bw > 2 * max / 10 && bw <= 3 * max / 10)
return 8;

if (bw > 3 * max / 10 && bw <= 4 * max / 10)
return 7;

if (bw > 4 * max / 10 && bw <= 5 * max / 10)
return 6;

if (bw > 5 * max / 10 && bw <= 6 * max / 10)
return 5;

if (bw > 6 * max / 10 && bw <= 7 * max / 10)
return 4;

if (bw > 7 * max / 10 && bw <= 8 * max / 10)
return 3;

if (bw > 8 * max / 10 && bw <= 9 * max / 10)
return 2;

if (bw > 9 * max / 10 && bw <= 10 * max / 10)
return 1;

return 0;
}

int getNormalizedQFProb(double quickfindprob) {
double max = 0.875;
if (quickfindprob >= 0 && quickfindprob <= max / 10)
return 10;

if (quickfindprob > max / 10 && quickfindprob <= 2 * max / 10)
return 9;

if (quickfindprob > 2 * max / 10 && quickfindprob <= 3 * max / 10)
return 8;

if (quickfindprob > 3 * max / 10 && quickfindprob <= 4 * max / 10)
return 7;

if (quickfindprob > 4 * max / 10 && quickfindprob <= 5 * max / 10)
return 6;

if (quickfindprob > 5 * max / 10 && quickfindprob <= 6 * max / 10)
return 5;

if (quickfindprob > 6 * max / 10 && quickfindprob <= 7 * max / 10)
return 4;

233

A.3 Utility Functions

if (quickfindprob > 7 * max / 10 && quickfindprob <= 8 * max / 10)
return 3;

if (quickfindprob > 8 * max / 10 && quickfindprob <= 9 * max / 10)
return 2;

if (quickfindprob > 9 * max / 10 && quickfindprob <= 10 * max / 10)
return 1;

return 0;
}

int getNormalizedDelay(float delay) {
double max = Constants.MAX_DELAY;
if (delay >= 0 && delay <= max / 10)
return 1;

if (delay > max / 10 && delay <= 2 * max / 10)
return 2;

if (delay > 2 * max / 10 && delay <= 3 * max / 10)
return 3;

if (delay > 3 * max / 10 && delay <= 4 * max / 10)
return 4;

if (delay > 4 * max / 10 && delay <= 5 * max / 10)
return 5;

if (delay > 5 * max / 10 && delay <= 6 * max / 10)
return 6;

if (delay > 6 * max / 10 && delay <= 7 * max / 10)
return 7;

if (delay > 7 * max / 10 && delay <= 8 * max / 10)
return 8;

if (delay > 8 * max / 10 && delay <= 9 * max / 10)
return 9;

if (delay > 9 * max / 10 && delay <= 10 * max / 10)
return 10;

return 0;
}

int getNormalizedAccDelay(float delay) {
double max = 6000;
if (delay >= 0 && delay <= max / 10)
return 1;

if (delay > max / 10 && delay <= 2 * max / 10)
return 2;

if (delay > 2 * max / 10 && delay <= 3 * max / 10)
return 3;

if (delay > 3 * max / 10 && delay <= 4 * max / 10)
return 4;

if (delay > 4 * max / 10 && delay <= 5 * max / 10)
return 5;

if (delay > 5 * max / 10 && delay <= 6 * max / 10)
return 6;

if (delay > 6 * max / 10 && delay <= 7 * max / 10)
return 7;

if (delay > 7 * max / 10 && delay <= 8 * max / 10)
return 8;

if (delay > 8 * max / 10 && delay <= 9 * max / 10)
return 9;

if (delay > 9 * max / 10 && delay <= 10 * max / 10)
return 10;

return 0;
}

double getWeightedAvgCost(int i, Message m) {

234

A.3 Utility Functions

double cost = m.bw_weight * this.getNormalizedBW(bw[i])
+ m.delay_weight * this.getNormalizedAccDelay(m.delay_accumulated+dl[

i])
+ m.quckfind_weight * this.getNormalizedQFProb(qfp[i]);

return cost;
}

double getCompromiseProgCost(int i, Message m) {
double idealbw, idealdl;
double idealqfp;
double diffbw, diffdl;
double diffqfp;
double bwa, dla, qfpa;
idealbw = Utils.getmax(bw, ng.size());
idealdl = Utils.getmin(dl, ng.size());
idealqfp = Utils.getmaxf(qfp, ng.size());
diffbw = Utils.getmax(bw, ng.size()) - Utils.getmin(bw, ng.size());
diffdl = Utils.getmax(dl, ng.size()) - Utils.getmin(dl, ng.size());
diffqfp = Utils.getmaxf(qfp, ng.size()) - Utils.getminf(qfp, ng.size());
bwa = bw[i];
dla = -1 * dl[i];
qfpa = qfp[i];
if (diffbw == 0 || diffdl == 0 || diffqfp == 0)
return 0;

double cost = m.bw_weight * Math.abs(((idealbw - bwa) / diffbw))
+ m.delay_weight * Math.abs(((idealdl - dla) / diffdl))
+ m.quckfind_weight * Math.abs(((idealqfp - qfpa) / diffqfp));

return cost;
}

double[] TOPSIS_init(Message m) {
double idealbw, idealdl;
double idealqfp;
double nidealbw, nidealdl, nidealqfp;

double bw1[] = new double[ng.size()];
double dl1[] = new double[ng.size()];
double qfp1[] = new double[ng.size()];

double dplus[] = new double[ng.size()];
double dminus[] = new double[ng.size()];
double cost[] = new double[ng.size()];

for (int i = 0; i < ng.size(); i++)
bw1[i] = getNormalizedBW(bw[i]);

//bw1 = Utils.normalize_method4(bw1);

for (int i = 0; i < ng.size(); i++)
bw1[i] = bw1[i] * m.bw_weight;

for (int i = 0; i < ng.size(); i++)
dl1[i] = getNormalizedDelay(dl[i]);

//dl1 = Utils.normalize_method4(dl1);
for (int i = 0; i < ng.size(); i++)
dl1[i] = dl1[i] * m.delay_weight;

for (int i = 0; i < ng.size(); i++)
qfp1[i] = getNormalizedQFProb(qfp[i]);

//qfp1 = Utils.normalize_method4(qfp1);
for (int i = 0; i < ng.size(); i++)
qfp1[i] = qfp1[i] * m.quckfind_weight;

235

A.4 SybilNode Implementation

idealbw = Utils.getmaxf(bw1, ng.size());
nidealbw = Utils.getminf(bw1, ng.size());

nidealdl = Utils.getminf(dl1, ng.size());
idealdl = Utils.getmaxf(dl1, ng.size());

idealqfp = Utils.getmaxf(qfp1, ng.size());
nidealqfp = Utils.getminf(qfp1, ng.size());

for (int i = 0; i < ng.size(); i++) {
dplus[i] = Math.sqrt((bw1[i] - idealbw) * (bw1[i] - idealbw)

+ (dl1[i] - idealdl) * (dl1[i] - idealdl)
+ (qfp1[i] - idealqfp) * (qfp1[i] - idealqfp));

dminus[i] = Math.sqrt((bw1[i] - nidealbw) * (bw1[i] - nidealbw)
+ (dl1[i] - nidealdl) * (dl1[i] - nidealdl)
+ (qfp1[i] - nidealqfp) * (qfp1[i] - nidealqfp));

if (dminus[i] == 0 && dplus[i] == 0)
cost[i] = 0;

else
cost[i] = dminus[i] / (dplus[i] + dminus[i]);

}

return cost;
}

A.4 SybilNode Implementation

The following is the implementation of SybilNode class in PlanteSim for simulating the
method described in section 5.3.

Listing A.4: SybilNode

package planet.chord;

import java.util.Vector;
import planet.chord.message.BroadcastMessage;
import planet.chord.message.IdMessage;
import planet.chord.message.NodeMessage;
import planet.chord.message.SuccListMessage;
import planet.commonapi.EndPoint;
import planet.commonapi.Id;
import planet.commonapi.Message;
import planet.commonapi.NodeHandle;
import planet.commonapi.RouteMessage;
import planet.commonapi.exception.InitializationException;
import planet.generic.commonapi.factory.GenericFactory;
import planet.simulate.Globals;
import planet.simulate.Logger;
import planet.simulate.MessageListener;
import planet.simulate.Results;

public class SybilNode extends ChordNode
{
public static planet.commonapi.Message[] storage=new planet.commonapi.

Message[10];

236

A.4 SybilNode Implementation

public SybilNode() throws InitializationException{
super();

}
public void dispatcher(RouteMessage msg) {

//Response message but not successor list type (key == null)
if (msg.getMode() == REPLY && msg.getKey() != null) {
String key = msg.getKey();
try {
((MessageListener) listeners.get(key)).onMessage(msg);

} catch (NullPointerException e) {
Logger.log("I’m [" + id + "]; not exist listener for key ["

+ msg.getKey() + "]", Logger.ERROR_LOG);
}
removeMessageListener(key);

} else if (msg.getMode() == Globals.ERROR) {
if (msg.getKey() != null) {
String key_fp = msg.getKey();
Logger.log("Node " + this.id + " destroy message key " + key_fp

+ " type " + Globals.typeToString(msg.getType()) + " content "
+ msg.getMessage(), Logger.MSG_LOG);

MessageListener lst = (MessageListener) listeners.get(key_fp);
if (lst != null) {
removeMessageListener(key_fp);

}
}
//Successor lost
if (finger[0] != null && msg.getSource().equals(finger[0])

&& succList.size() > 0) {
//if not exists, succ_list is unchanged
succList.remove(finger[0]);
if (succList.size() > 0) {
finger[0] = (NodeHandle) succList.firstElement();
//send notify

this.sendMessage(msg,null,nodeHandle,finger[0],finger[0],
SET_PRE,REFRESH,new NodeMessage(nodeHandle));

}
} else
//if source not exists, succ_list is unchanged
succList.remove(msg.getSource());

} else {
switch (msg.getType()) {
//DATA
case DATA :

dispatchDataMessage(msg,REQUEST,REFRESH);
break;

//CONTROL
//REFRESH
case SET_SUCC :
NodeHandle succ = ((NodeMessage) msg.getMessage()).getNode();
setSucc(succ);
GenericFactory.freeMessage(msg);
break;

case SET_PRE :
setPred(((NodeMessage) msg.getMessage()).getNode());
GenericFactory.freeMessage(msg);
break;

case NOTIFY :
notify(msg.getSource());
GenericFactory.freeMessage(msg);
break;

case BROADCAST :

237

A.4 SybilNode Implementation

NodeHandle r, new_limit;
BroadcastMessage bm = (BroadcastMessage) msg.getMessage();
NodeHandle limit = bm.getLimit();
Id limitId = limit.getId();
planet.commonapi.Message info = bm.getInfo();

for (int i = 0; i < bitsPerKey - 1; i++) {
//Skip a redundant finger
if (!finger[i].equals(finger[i + 1])) {
//Forward while within "Limit"
if (finger[i].getId().between(this.id, limitId)) {
r = finger[i];
//New Limit must not exceed Limit
if (finger[i + 1].getId().between(this.id, limitId)) {
new_limit = finger[i + 1];

} else {
new_limit = limit;

}
//no reuse of RouteMessage msg ==> send one
// message to different nodes ==> requires
// different messages
planet.commonapi.RouteMessage aMsg = null;
try {
// String appId,Id from, Id to, Id nextHop
aMsg = getBroadcastMessage(msg

.getApplicationId(), this.nodeHandle, r, r,
new BroadcastMessage(info,new_limit));

sendMessage(aMsg);
Results.incTraffic();

} catch (InitializationException e) {
Logger.log(

"ERROR: Cannot get a RouteMessage of MessagePool\n"
+ e.getMessage(), Logger.ERROR_LOG);

}
}

}
}
Logger.log("Broadcast : Node " + this.id + " info : "

+ info, Logger.EVENT_LOG);
msg.setMessage(info);
Results.decTraffic();
((EndPoint) endpoints.get(msg.getApplicationId())).scheduleMessage(

msg, 0);
break;

//REQUEST
case FIND_SUCC :
//source --> join();
NodeHandle fSucc = findSuccessor(msg.getSource());
if (fSucc != null) {

this.sendMessage(msg,msg.getKey(),nodeHandle,msg.
getSource(),msg.getSource(),msg.getType(),REPLY,
new NodeMessage(fSucc));

} else {
String key_fp = GenericFactory.generateKey();

NodeHandle aux = closestPrecedingFinger(msg.getSource
().getId());

addMessageListener(key_fp, new FindPredListener(this,
msg.getKey()));

this.sendMessage(msg,key_fp,nodeHandle,aux,aux,
FIND_PRE,REQUEST,new IdMessage(msg.getSource().
getId()));

238

A.4 SybilNode Implementation

}
break;

case FIND_PRE :
Id idMesg = ((IdMessage) msg.getMessage()).getNode();

if (finger[0] != null && idMesg.betweenE(this.id, finger[0].getId()
)) {

//return successor
Id msgId = ((IdMessage) msg.getMessage()).getNode();
try {

sendMessage(msg,msg.getKey(),GenericFactory.
buildNodeHandle(msgId,true),

msg.getSource(),msg.getSource(),FIND_PRE,
REPLY,new NodeMessage(getSucc()));

} catch (InitializationException e1) {
e1.printStackTrace();

}
} else if (idMesg.equals(getId())) {

try {
sendMessage(msg,msg.getKey(),GenericFactory.

buildNodeHandle(idMesg, true),
msg.getSource(),msg.getSource(),

FIND_PRE,REPLY,new NodeMessage(
nodeHandle));

} catch(InitializationException e) {
e.printStackTrace();

}
} else {
//next node

NodeHandle aux = closestPrecedingFinger(idMesg);
sendMessage(msg,msg.getKey(),msg.getSource(),aux,aux,

msg.getType(),msg.getMode(),msg.getMessage());
}
break;

case GET_PRE :
//origen --> stabilize();

sendMessage(msg,msg.getKey(),nodeHandle,msg.getSource(),
msg.getSource(),GET_PRE,REPLY,new NodeMessage(
predecessor));

break;
case SUCC_LIST :
if (msg.getMode() == REQUEST) {

this.sendMessage(msg,msg.getKey(),nodeHandle,msg.
getSource(),msg.getSource(),SUCC_LIST,REPLY,new
SuccListMessage(succList));

} else if (msg.getMode() == REPLY) {
SuccListMessage succs = (SuccListMessage) msg.getMessage();

succList.clear();
succList.add(msg.getSource());
succList.addAll(succs.getSuccs());
cleanSuccList();

GenericFactory.freeMessage(msg);
}

case OWNER: //added
Vector succlist = this.succList;
for(int i=0; i<succlist.size();i++)
{
String skey = GenericFactory.generateKey();
this.sendMessage(skey,nodeHandle,(NodeHandle)succlist.get(i),

REPLICATE,REQUEST,(Message)msg);
}
break;

239

A.4 SybilNode Implementation

case REPLICATE: //added
for(int i=0;i<10;i++)
{

if(storage[i] == null)
continue;

else
storage[i]=msg.getMessage();
break;

}
break;

}
}

}

}

240

Appendix B

Psychometric Tests

Our approach for detecting Sybils using Psychometric tests is presented in chapter 5. The
following sections present some graphs, questionnaire and DBSCAN algorithm imple-
mentaion.

B.1 MBTI Questionnaire

The following are the questions designed for MBTI test. There are 36 questions

Q1. In interacting with friends and colleagues:
a. I tend to talk on all topics whether I know them or not
b. I like to talk on the topics i know somewhat but prefer to hear about

those which are completely unknown to me
c. i don’t have any idea on how I interact with friends
d. Mostly I keep hearing others and restrict myself to talk only on topics i

am very much familiar with
e. I keep hearing even if i am very much well-versed in that topic

Q2. If you have to do unfamiliar things, you prefer :
a. step-by-step Directions.
b. to figure out with considerable help
c. doing in random ways
d. to figure out with a little help.
e. to figure out myself without any help

Q3. I often :
a. Do things first and then start thinking
b. Start doing things after a bit of thinking.
c. I believe doing things is not related to thinking
d. Think thoroughly of most weighted factors before doing
e. Think thoroughly of all the factors in detail before doing

Q4. If you have to decide :
a. I take all my decisions right away.
b. I take most of my decisions immediately, but keep some options open.
c. never took decisions
d. I take a few decisions, but keep most of the options open.
e. Never. I’d like to keep options open.

Q5. Do you think out loud i.e. speak out while you think:
a. Yes, I think out loud all the time
b. Usually , i think out loud
c. Thinking! I never did that
d. No, most of the time i think quietly inside my head.

241

B.1 MBTI Questionnaire

e. Never. I always think quietly inside my head

Q6. 6. You can described as a person who thinks :
a. Always about possibilities in future
b. Most of the time about future possibilities and less about present.
c. I have no idea about both present and future. I live with myself.
d. More about present and less about future
e. Always about present.

Q7. Do you always see faults :
a. Yes, i see faults with everything.
b. Yes, i see faults with things/people i closely observe/work with.
c. i see life as full of faults at the same time life is faultless.
d. I tend to see no faults but when I am asked to, I do find faults
e. No, i generally don’t see faults in anything even if I am asked to.

Q8. Are you comfortable with schedules :
a. Yes, I’m always comfortable with schedules
b. Yes, usually I’m comfortable with schedules
c. Never had a schedule
d. Somewhat, More comfortable in being spontaneous
e. No, I want complete freedom to be spontaneous.

Q9. Do you prefer compassion to Honesty and directness?
a. I always go beyond my limits to help anyone in problem
b. I go beyond rules and my level to help only if it doesn’t implicate me
c. Never helped anyone
d. I prefer to stay in rules and my limits to help others but go beyond for

near and dear ones
e. I always stay in rules and my limits in helping others

Q10. When you do something do you think about its future implications :
a. Yes, I always think about future implications
b. Yes , i usually think about future implications
c. Never considered any implication in life.
d. No , most of the time i think about its immediate implications.
e. No, I think about immediate implications

Q11. Do you pay attention to time and be prompt:
a. Yes, i always pay attention to time and I’m always prompt.
b. I pay attention to time almost every time.
c. No idea
d. No, most of the time i run late.
e. No , i always run late

Q12. When you have to judge an issue that affects someone, you are more
convinced by :

1. only rational arguments
2. to a great extent rational arguments but feelings of the concerned do

matter
3. never judged anyone in life
4. feelings and emotions of the person comes first and arguments are

considered later
5. only the feelings of the person

Q13. Are your decisions based on Values and feelings :
a. My decisions are always based on values and feelings
b. Usually, my decisions are based on values and feelings
c. I don’t understand values and feelings
d. yes , most of my decisions are objective
e. No , All my decisions are always objective

242

B.1 MBTI Questionnaire

Q14. Are you comfortable being alone?
a. I’m always comfortable being alone.
b. Usually , I’m comfortable alone but i do need people sometimes
c. No idea
d. I like to be with people, but not always
e. I like to be with people always

Q15. Regarding work, select the best that suits you :
1. Energetic and passionate to do any task
2. i am very passionate and energetic to do things that give me high return
3. I never worked
4. tasks that give me content, i carry them with determination irrespective

of monetary gain
5. any task given to me, i carry it with determination even if a higher

return alternative is available

Q16. What do you think about general rules :
a. I always think all the rules are necessary.
b. I always think that most of the rules are necessary but i question a few.
c. Rules don’t exist for me.
d. I think most of the rules are unnecessary and a few as necessary.
e. I question the need for most rules

Q17. Do you prefer to work at a steady pace :
a. Yes, i always work at a steady pace
b. I do most of my work at a steady pace
c. Never worked
d. I work at a steady pace only when it is required.
e. No, i prefer to work in bursts of energy.

Q18. Are you easily distracted by allurements and disruptions :
a. Yes, always distracted by any issue.
b. Easily distracted by issues that doesn’t concern me
c. No idea
d. Can withstand the issues that don’t concern me.
e. No , I have strong powers of concentration

Q19. You are best described as :
a. Always honest.
b. I want to be honest, but sometimes the situation forces me to be

diplomatic.
c. Dishonest, non-diplomatic person
d. Mostly diplomatic but honest with some people.
e. always diplomatic and tactful

Q20. Do you prefer to develop components for your project :
a. Yes, i always prefer building/developing all components on my own.
b. I build/develop most of the parts, but use available components for

critical things
c. Never did a project in life
d. Yes, only if they are not readily available.
e. No, i prefer using available components only.

Q21. Do you make all your decisions?
1. Yes, i make all my decisions.
2. Yes, most of the time i make my own decisions.
3. never made a decision in life
4. most of the time it is difficult to make decisions
5. always, I have difficulty in making decisions

243

B.1 MBTI Questionnaire

Q22. Do you prefer to start new projects :
a. Yes , i am always excited about new projects.
b. Yes, but sometimes it depends on my current project.
c. Never got exposure to a project
d. Only if my current projects permit the time
e. i prefer completing already assigned projects

Q23. Do you like arguing all the time :
a. Yes, arguing is fun.
b. Usually, i find myself in an argument.
c. No idea
d. Only when i am obliged to.
e. No , i like to avoid such things

Q24. Do you like to focus on details or Big Picture of a project:
a. I focus more on the details.
b. I focus more on the details with a little idea of the big picture.
c. Never worked on project
d. I generally focus on the big picture but some details are necessary.
e. Focus entirely on big picture.

Q25. You are motivated by :
1. Achieving the goal irrespective of criticism from all people
2. Achieving the goal with some people supporting it by appreciating
3. Can’t say what motivates me. I am dull to motivation
4. People appreciating me to pursue the goal
5. Unless i receive appreciation from all people, i can’t work to achieve the

goal

Q26. How can you describe your interaction with people :
a. i am at ease and enthusiastic in talking to everyone
b. i am at ease and enthusiastic in talking to most of the people but keep

myself reserved with some
c. i don’t know how i talk. i just talk.
d. most of the time i keep myself reserved and speak to myself. Only with few

people i talk freely
e. i am always reserved and speak to myself.

Q27. While interacting with others you see yourself as :
a. Cool and reserved with everyone
b. Cool and reserved with most of the people, but warm and friendly with

some.
c. I don’t know about how i project myself.
d. Warm and friendly with most of the people, but cool and reserved with

some.
e. Very warm and friendly with everyone.

Q28. If you are asked to judge some ideas for a project, what do you prefer
:

a. I like solutions that are implementable and they need not be creative.
b. I prefer solutions that are implementable but should be creative in some

aspects.
c. No idea what a project is
d. creative Ideas , but they should be partially implementable
e. creative in all aspects, but need not be practical

Q29. Do you like to notice everything/issue with a different perspective :
a. Yes, I like to see everything differently.
b. Yes, I like to see most of the things differently.
c. No idea
d. No , I like to see most of the things in a conventional way

244

B.1 MBTI Questionnaire

e. No, I rather like to notice and remember facts.

Q30. If someone says something bad about you, do you take it personally?:
a. No, i don’t bother what people say.
b. Yes, only if it is someone who i care.
c. No has told anything to me so far
d. Yes, i tend take most of the things personally.
e. Yes, i tend take everything personal.

Q31. While working do you prefer a public role to being behind the scenes :
a. Yes, in all of my work I prefer a public role.
b. Yes, in most of my work i prefer a public role.
c. I never had any work
d. In most of my work, i prefer to work behind the scenes.
e. Never, i like to work behind the scenes

Q32. While working are you always serious :
a. Yes, i’m always serious while working
b. Usually, i’m serious while working
c. I never got opportunity to work
d. No , I try to be playful all the time , but sometimes i need to be

serious.
e. I’m always playful while working.

Q33. If you are to work on a project with a fixed schedule, will you stick
to it :

a. Yes , i strictly adhere to the schedule
b. Yes, i always stick to the schedule with a few exceptions
c. I was never a part of project
d. No, I prefer flexibility but sometimes I’m required to stick to the

schedule
e. No , I like being flexible. I can’t work on a fixed schedule.

Q34. Do you believe in ’Play first, work later’?
a: Yes
b. Usually play first with small work periods in between.
c. I have no beliefs. I do things doubtfully.
d. Usually work first with small play-breaks in between.
e: No, I believe in work first and play later.

Q35. Do you trust your instincts?
a: No, I better believe in actual experience and logic, whether personal or

of others.
b. I occasionally trust my instincts, but rely mostly on experience and logic

.
c. I don’t trust anyone/anything.
d. I usually trust my instincts but occasionally rely on experience and logic

.
e. Yes, always.

Q36. Are you a:
a: Multi-tasker and prefer doing lot of things at a time
b. Usually a multi-tasker but tends to act as perfectionist from time to time

.
c. I have no idea
d. Usually a perfectionist but tends to act as a multi-tasker from time to

time.
e: Perfectionist and prefer to do one thing at a time.

245

B.2 Clustering Algorithm Implementation

B.2 Clustering Algorithm Implementation

Listing B.1: Source code for Point class and DBSCAN algorithm

class Point {
static double findDistance(Point p1, Point p2) {
double sum = 0;
for (int i = 0; i < p1.getDimension(); i++) {
float x = Math.abs(p1.getCoordinate(i) - p2.getCoordinate(i));
sum = sum + x * x;

}
return Math.sqrt(sum);

}
static long pid = 0;
int d;
float p[];
boolean visited = false;
boolean noise = false;
String nick = null;
int ecid;// expected cluster id
int acid;// allocated cluster id
static int primes[] = { 73, 179, 283, 419, 547, 661, 811, 947 };
static int primes_colors[] = { 173, 281, 409, 541, 659, 809, 941, 1069 };
long id;
Point(int d) {

this.d = d;
p = new float[d];
id = pid++;
acid = -1;

}
double findSpearmansCoefficient(Point p1) {

double sum = 0;
for (int i = 0; i < d; i++) {
sum = sum + (p[i] - p1.p[i]) * (p[i] - p1.p[i]);

}
return 1 - ((6 * sum) / (d * (d * d - 1)));

}
double findKindallsTauCoefficient(Point p1) {
double Tau = 0;
double xi, yi, xj, yj;
int concord = 0;
int discord = 0;
for (int i = 0; i < d; i++) {
xi = p[i];
yi = p1.p[i];
for (int j = i + 1; j < d; j++) {
xj = p[j];
yj = p1.p[j];
if (xi > xj && yi > yj)
concord++;

if (xi < xj && yi < yj)
concord++;

if (xi > xj && yi < yj)
discord++;

if (xi < xj && yi > yj)
discord++;

}
}
Tau = (double) (concord - discord) / (double) (((d * (d - 1)) / 2));
return Tau;

246

B.2 Clustering Algorithm Implementation

}

double findCosineSimilarity(Point p1) {
double sum = 0;
for (int i = 0; i < d; i++) {
sum = sum + p[i]

* p1.p[i];
}
double dsum1 = 0;
for (int i = 0; i < d; i++) {
dsum1 = dsum1 + p[i]

* (int) p[i];
}
dsum1 = Math.sqrt(dsum1);
double dsum2 = 0;
for (int i = 0; i < d; i++) {
dsum2 = dsum2 + p1.p[i]

* p1.p[i];
}
dsum2 = Math.sqrt(dsum2);

return (sum / (dsum1 * dsum2));
}

double findPearsonCoefficient(Point p1) {
double sumx = 0;
double sumy = 0;
double suma = 0, sumb = 0;
double avgx, avgy;
int d1 = d;
for (int i = 0; i < d1; i++)
sumx = sumx + p[i];

avgx = sumx / d1;
for (int i = 0; i < d1; i++)
sumy = sumy + p1.p[i];

avgy = sumy / d1;

for (int i = 0; i < d1; i++)
suma = suma + (p[i] - avgx)

* (p1.p[i] - avgy);

for (int i = 0; i < d1; i++)
sumx = sumx + (p[i] - avgx)

* (int) p[i] - avgx;
for (int i = 0; i < d1; i++)
sumy = sumy + (p1.p[i] - avgy)

* (int) p1.p[i] - avgy;

sumb = Math.sqrt(sumx * sumy);
if (suma / sumb > 0.9)
return (suma / sumb);

}

float getCoordinate(int i) {
return p[i];

}

int getDimension() {
return d;

}

247

B.2 Clustering Algorithm Implementation

void print() {
for(int i=0;i<d;i++)
System.out.print(p[i]+",");

System.out.print("\n");
}

}

void DBSCAN(ArrayList<Point> plist, double eps, int minpnts) {
for (int i = 0; i < plist.size(); i++) {
Point p = plist.get(i);
if (p.visited == false) {
p.visited = true;
Cluster N = getNeighbors(p, i, eps);
print("Point " + p.nick + " Nsize " + N.size());
if (N.size() < minpnts) {
p.noise = true;

}

else {
cluster_count++;
Cluster c = new Cluster(cluster_count);
clusters_found.add(cluster_count, c);
expandCluster(p, i, N, c, eps, minpnts);

}
}

}
}

void expandCluster(Point p, int index, Cluster N, Cluster c, double eps,
int minpnts) {

c.pnts.add(p);
for (int i = 0; i < N.size(); i++) {
Point p1 = N.pnts.get(i);
if (p1.visited == false) {
p1.visited = true;
Cluster N1 = this.getNeighbors(p1, plist5.indexOf(p1), eps);
if (N1.size() >= minpnts) {
for (int j = 0; j < N1.size(); j++)
N.pnts.add(N1.pnts.get(j));

}
}
boolean found = false;
for (int j = 0; j < clusters_found.size(); j++)
for (int k = 0; k < clusters_found.get(j).size(); k++) {
if (clusters_found.get(j).pnts.get(k).id == p1.id) {
found = true;
break;

}
}

if (!found) {
p1.acid = c.index;
c.pnts.add(p1);

}
}

}

248

B.3 Similarity Measures at Different Cluster Configurations

B.3 Similarity Measures at Different Cluster Configurations

0

0.2

0.4

0.6

0.8

1

1.2

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

R
an

d
 S

ta
ti

st
ic

Epsilon, minPoints

Figure B.1: Values of Rand Statistic for Spearman’s ρ - Rand statistic is calculated for various
combinations of ε and minPoints

249

B.3 Similarity Measures at Different Cluster Configurations

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

Ja
cc

ar
d

 C
o

ef
fi

ci
en

t

(Epsilon, minPoints)

Figure B.2: Values of Jaccard Statistic for Spearman’s ρ - Jaccard statistic is calculated for
various combinations of ε and minPoints

0

2

4

6

8

10

12

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

Fo
w

lk
es

 &
 M

al
lo

w
s

In
d

ex

Epsilon, minPoints

Figure B.3: Values of Fowlkes & Mallow’s index for Spearman’s ρ - Fowlkes & Mallow’s
index is calculated for various combinations of ε and minPoints

250

B.3 Similarity Measures at Different Cluster Configurations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(0
,1
)

(0
.0
2
,4
)

(0
.0
5
,2
)

(0
.0
7
,5
)

(0
.1
,3
)

(0
.1
3
,1
)

(0
.1
5
,4
)

(0
.1
8
,2
)

(0
.2
,5
)

(0
.2
3
,3
)

(0
.2
6
,1
)

(0
.2
8
,4
)

(0
.3
1
,2
)

(0
.3
3
,5
)

(0
.3
6
,3
)

(0
.3
9
,1
)

(0
.4
1
,4
)

(0
.4
4
,2
)

(0
.4
6
,5
)

(0
.4
9
,3
)

(0
.5
2
,1
)

(0
.5
4
,4
)

(0
.5
7
,2
)

(0
.5
9
,5
)

(0
.6
2
,3
)

(0
.6
5
,1
)

(0
.6
7
,4
)

(0
.7
,2
)

(0
.7
2
,5
)

(0
.7
5
,3
)

(0
.7
8
,1
)

(0
.8
,4
)

(0
.8
3
,2
)

(0
.8
5
,5
)

(0
.8
8
,3
)

(0
.9
1
,1
)

(0
.9
3
,4
)

(0
.9
6
,2
)

(0
.9
8
,5
)

R
an

d
 S

ta
ti

st
ic

Epsilon, minPoints

Figure B.4: Values of Rand Statistic for Pearson coefficient - Rand statistic is calculated for
various combinations of ε and minPoints

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(0
,1
)

(0
.0
2
,4
)

(0
.0
5
,2
)

(0
.0
7
,5
)

(0
.1
,3
)

(0
.1
3
,1
)

(0
.1
5
,4
)

(0
.1
8
,2
)

(0
.2
,5
)

(0
.2
3
,3
)

(0
.2
6
,1
)

(0
.2
8
,4
)

(0
.3
1
,2
)

(0
.3
3
,5
)

(0
.3
6
,3
)

(0
.3
9
,1
)

(0
.4
1
,4
)

(0
.4
4
,2
)

(0
.4
6
,5
)

(0
.4
9
,3
)

(0
.5
2
,1
)

(0
.5
4
,4
)

(0
.5
7
,2
)

(0
.5
9
,5
)

(0
.6
2
,3
)

(0
.6
5
,1
)

(0
.6
7
,4
)

(0
.7
,2
)

(0
.7
2
,5
)

(0
.7
5
,3
)

(0
.7
8
,1
)

(0
.8
,4
)

(0
.8
3
,2
)

(0
.8
5
,5
)

(0
.8
8
,3
)

(0
.9
1
,1
)

(0
.9
3
,4
)

(0
.9
6
,2
)

(0
.9
8
,5
)

Ja
cc

ar
d

 C
o

ef
fi

ci
en

t

Epsilon, minPoints

Figure B.5: Values of Jaccard Statistic for Pearson coefficient - Jaccard statistic is calculated
for various combinations of ε and minPoints

251

B.3 Similarity Measures at Different Cluster Configurations

0

1

2

3

4

5

6

7

8

9

10

(0
,1
)

(0
.0
2
,4
)

(0
.0
5
,2
)

(0
.0
7
,5
)

(0
.1
,3
)

(0
.1
3
,1
)

(0
.1
5
,4
)

(0
.1
8
,2
)

(0
.2
,5
)

(0
.2
3
,3
)

(0
.2
6
,1
)

(0
.2
8
,4
)

(0
.3
1
,2
)

(0
.3
3
,5
)

(0
.3
6
,3
)

(0
.3
9
,1
)

(0
.4
1
,4
)

(0
.4
4
,2
)

(0
.4
6
,5
)

(0
.4
9
,3
)

(0
.5
2
,1
)

(0
.5
4
,4
)

(0
.5
7
,2
)

(0
.5
9
,5
)

(0
.6
2
,3
)

(0
.6
5
,1
)

(0
.6
7
,4
)

(0
.7
,2
)

(0
.7
2
,5
)

(0
.7
5
,3
)

(0
.7
8
,1
)

(0
.8
,4
)

(0
.8
3
,2
)

(0
.8
5
,5
)

(0
.8
8
,3
)

(0
.9
1
,1
)

(0
.9
3
,4
)

(0
.9
6
,2
)

(0
.9
8
,5
)

Fo
w

lk
es

 &
 M

al
lo

w
s

In
d

ex

Epsilon, minPoints

Figure B.6: Values of Fowlkes & Mallow’s index for Pearson coefficient - Fowlkes & Mal-
low’s index is calculated for various combinations of ε and minPoints

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

R
an

d
 S

ta
ti

st
ic

Epsilon, minPoints

Figure B.7: Values of Rand Statistic for Cosine similarity coefficient - Rand statistic is cal-
culated for various combinations of ε and minPoints

252

B.3 Similarity Measures at Different Cluster Configurations

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

Ja
cc

ar
d

 C
o

ef
fi

ci
en

t

(Epsilon, minPoints)

Figure B.8: Values of Jaccard Statistic for Cosine similarity coefficient - Jaccard statistic is
calculated for various combinations of ε and minPoints

0

2

4

6

8

10

12

(0
.7
,1
)

(0
.7
,5
)

(0
.7
1
,4
)

(0
.7
2
,3
)

(0
.7
3
,2
)

(0
.7
4
,1
)

(0
.7
4
,5
)

(0
.7
5
,4
)

(0
.7
6
,3
)

(0
.7
7
,2
)

(0
.7
8
,1
)

(0
.7
8
,5
)

(0
.7
9
,4
)

(0
.8
,3
)

(0
.8
1
,2
)

(0
.8
2
,1
)

(0
.8
2
,5
)

(0
.8
3
,4
)

(0
.8
4
,3
)

(0
.8
5
,2
)

(0
.8
6
,1
)

(0
.8
6
,5
)

(0
.8
7
,4
)

(0
.8
8
,3
)

(0
.8
9
,2
)

(0
.9
,1
)

(0
.9
,5
)

(0
.9
1
,4
)

(0
.9
2
,3
)

(0
.9
3
,2
)

(0
.9
4
,1
)

(0
.9
4
,5
)

(0
.9
5
,4
)

(0
.9
6
,3
)

(0
.9
7
,2
)

(0
.9
8
,1
)

(0
.9
8
,5
)

(0
.9
9
,4
)

Fo
w

lk
es

 &
 M

al
lo

w
s

In
d

ex

Epsilon, minPoints

Figure B.9: Values of Fowlkes & Mallow’s index for Cosine similarity coefficient - Fowlkes
& Mallow’s index is calculated for various combinations of ε and minPoints

253

References

[Adamic et al. 2001] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani and
Bernardo A. Huberman. Search in power-law networks. Phys. Rev. E, vol. 64, no. 4,
page 046135, Sep 2001. 27, 40, 44

[Adamic et al. 2003] Lada A. Adamic, Orkut Buyukkokten and Eytan Adar. A social net-
work caught in the Web. First Monday, vol. 8, no. 6, 2003. 26

[Ahulló & López 2008] Jordi Pujol Ahulló and Pedro García López. PlanetSim: an exten-
sible framework for overlay network and services simulations. In Proceedings of the
1st international conference on Simulation tools and techniques for communica-
tions, networks and systems & workshops, Simutools ’08, pages 45:1–45:1, ICST,
Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering). 176

[Albert & Barabasi 1999] Jeong H. Albert R. and A. L Barabasi. The Diameter of the World
Wide Web. Nature, vol. 401, pages 130–131, 1999. 26

[Albert et al. 2000] Reka Albert, Hawoong Jeong and Albert-Laszlo Barabasi. Error and
attack tolerance of complex networks. NATURE, vol. 406, page 378, 2000. 28

[Amaral et al. 2000] L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley. Classes
of small-world networks. Proceedings of the National Academy of Sciences, vol. 97,
no. 21, pages 11149–11152, October 2000. 26

[Androutsellis-theotokis & Spinellis 2004] Stephanos Androutsellis-theotokis and Dio-
midis Spinellis. A survey of peer-to-peer content distribution technologies. ACM Com-
puting Surveys, vol. 36, pages 335–371, 2004. 3, 4

[Ang & Datta 2010] Rzadca K. Ang S. and A. Datta. SharedMind: A tool for collaborative
mind-mapping. In IEEE International Conference on Multimedia and Expo (ICME).
IEEE Computer Society, 2010. 8

[bab 2005] Babelgum. http://en.wikipedia.org/wiki/Babelgum, 2005. Retrieved on 6th
March 2011. 9

254

REFERENCES

[Baeza-Yates & Ribeiro-Neto 1999] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.
Modern information retrieval. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999. 17, 45, 90

[Balakrishnan et al. 2003] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert
Morris and Ion Stoica. Looking up data in P2P systems. Commun. ACM, vol. 46,
no. 2, pages 43–48, February 2003. 37

[Bazzi & Konjevod 2005] Rida A. Bazzi and Goran Konjevod. On the establishment of dis-
tinct identities in overlay networks. In Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, PODC ’05, pages 312–320,
New York, NY, USA, 2005. ACM. 52

[Bellman & Corporation 1957] R.E. Bellman and Rand Corporation. Dynamic program-
ming. Rand Corporation research study. Princeton University Press, 1957. 192

[Bernstein et al. 2002] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsiet-
sidis, John Mylopoulos, Luciano Serafini and Ilya Zaihrayeu. Data Management
for Peer-to-Peer Computing : A Vision. In WebDB, pages 89–94, 2002. 8

[Bhattacharjee & Goel 2005] Rajat Bhattacharjee and Ashish Goel. Avoiding ballot stuffing
in eBay-like reputation systems. In Proceedings of the 2005 ACM SIGCOMM work-
shop on Economics of peer-to-peer systems, P2PECON ’05, pages 133–137, New
York, NY, USA, 2005. ACM. 48

[Bianchini et al. 2005] Monica Bianchini, Marco Gori and Franco Scarselli. Inside PageRank.
ACM Trans. Internet Technol., vol. 5, pages 92–128, February 2005. 48

[Bisnik & Abouzeid 2007] Nabhendra Bisnik and Alhussein A. Abouzeid. Optimizing ran-
dom walk search algorithms in P2P networks. Comput. Netw., vol. 51, pages 1499–
1514, April 2007. 45

[bit 2001] Bittorrent Protocol Specification. http://wiki.theory.org/BitTorrentSpecification,
2001. Retrieved 6th March 2011. 9

[Bloom 1970] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, vol. 13, pages 422–426, July 1970. 39, 46, 91, 145

[Books 2010] LLC Books. Personality tests: Myers-briggs type indicator, purity test, min-
nesota multiphasic personality inventory, oxford capacity analysis. General Books
LLC, 2010. 184

[Borisov 2006] Nikita Borisov. Computational Puzzles as Sybil Defenses. In 6th IEEE Inter-
national Conference on Peer-to-Peer Computing, 2006 (P2P 2006), pages 171–176,
September 2006. 51, 167

255

REFERENCES

[Broder et al. 2000] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan,
Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins and Janet Wiener. Graph
structure in the Web. In Proceedings of the 9th international World Wide Web
conference on Computer networks : the international journal of computer and
telecommunications netowrking, pages 309–320, Amsterdam, The Netherlands,
The Netherlands, 2000. North-Holland Publishing Co. 26, 28

[Buford et al. 2009] J.F.K. Buford, H.H. Yu and E.K. Lua. P2p networking and applications.
Morgan Kaufmann series in networking. Elsevier/Morgan Kaufmann, 2009. 5

[cac 2005] Cache Logic Study of P2P traffic. http://www.slyck.com/story914_CacheLogic_Study_P2P_is_Changing,
2005. Retrieved 6th March 2011. 1

[Camarillo & IAB 2009] G. Camarillo and IAB. Peer-to-Peer (P2P) Architecture: Definition,
Taxonomies, Examples, and Applicability. RFC 5694 (Informational), November 2009.
4

[Castro et al. 2002a] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron
and Dan S. Wallach. Secure routing for structured peer-to-peer overlay networks.
SIGOPS Oper. Syst. Rev., vol. 36, pages 299–314, December 2002. 9, 33, 53

[Castro et al. 2002b] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec and Antony
Rowstron. SCRIBE: A large-scale and decentralized application-level multicast infras-
tructure. IEEE Journal on Selected Areas in Communications (JSAC, vol. 20, page
2002, 2002. 7

[Chamberlin & Robie 2007] SimÂt’eon J. Boag S. Florescu D. FernÂt’andez M.F.
Chamberlin D. and J. Robie. XQuery 1.0: An XML query language.
http://www.w3.org/TR/2007/REC-xquery-20070123/, 2007. Retrieved 6th March
2011. 19

[Chawathe et al. 2003] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham and
Scott Shenker. Making gnutella-like P2P systems scalable. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for com-
puter communications, SIGCOMM ’03, pages 407–418, New York, NY, USA, 2003.
ACM. 45

[Chen & Hwang 1992] Shu-Jen J. Chen and C. L. Hwang. Fuzzy multiple attribute deci-
sion making: Methods and applications. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1992. 147

[Chen & Nahrstedt 1998] Shigang Chen and K. Nahrstedt. On finding multi-constrained
paths. In Communications, 1998. ICC 98. Conference Record.1998 IEEE Interna-
tional Conference on, volume 2, pages 874 –879 vol.2, jun 1998. 129

256

REFERENCES

[Cheng & Friedman 2005] Alice Cheng and Eric Friedman. Sybilproof reputation mecha-
nisms. In Proceedings of the 2005 ACM SIGCOMM workshop on Economics of
peer-to-peer systems, P2PECON ’05, pages 128–132, New York, NY, USA, 2005.
ACM. 48

[Cheng & Friedman 2006] Alice Cheng and Eric Friedman. Manipulability of PageRank
under Sybil Strategies. In First Workshop on the Economics of Networked Systems
(NetEcon06), 2006. 48

[Chu et al. 2002] Jacky Chu, Kevin Labonte and Brian Neil Levine. Availability and Locality
Measurements of Peer-to-Peer File Systems. In Proc. ITCom: Scalability and Traffic
Control in IP Networks II Conference, volume SPIE 4868, pages 310–321, July 2002.
75, 101, 132, 150

[Clarke et al. 2001] Ian Clarke, Oskar Sandberg, Brandon Wiley and Theodore W. Hong.
Freenet: A Distributed Anonymous Information Storage and Retrieval System. In IN-
TERNATIONAL WORKSHOP ON DESIGNING PRIVACY ENHANCING TECH-
NOLOGIES: DESIGN ISSUES IN ANONYMITY AND UNOBSERVABILITY, pages
46–66. Springer-Verlag New York, Inc., 2001. 16

[Condie et al. 2004] T. Condie, S.D. Kamvar and H. Garcia-Molina. Adaptive peer-to-peer
topologies. In Peer-to-Peer Computing, 2004. Proceedings. Proceedings. Fourth In-
ternational Conference on, pages 53 – 62, aug. 2004. 43

[Cormen et al. 2009] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction
to algorithms. The MIT Press, 3rd édition, 2009. 131

[Cox et al. 2002] On P. Cox, Christopher D. Murray and Brian D. Noble. Pastiche: making
backup cheap and easy. In In OSDI: Symposium on Operating Systems Design and
Implementation, pages 285–298, 2002. 9, 48

[Crespo & Garcia-Molina 2002] Arturo Crespo and Hector Garcia-Molina. Routing Indices
For Peer-to-Peer Systems. In Proceedings of the 22 nd International Conference on
Distributed Computing Systems (ICDCS’02), ICDCS ’02, pages 23–, Washington,
DC, USA, 2002. IEEE Computer Society. 46, 89

[Danezis & Mittal 2009] George Danezis and Prateek Mittal. SybilInfer: Detecting Sybil
Nodes using Social Networks. In NDSS, February 2009. 54

[Danezis et al. 2005] George Danezis, Chris Lesniewski-laas, M. Frans Kaashoek and Ross
Anderson. Sybil-resistant DHT routing. In In ESORICS, pages 305–318. Springer,
2005. 53

[Daswani et al. 2002] Neil Daswani, Hector Garcia-Molina and Beverly Yang. Open Prob-
lems in Data-Sharing Peer-to-Peer Systems. In Proceedings of the 9th Interna-

257

REFERENCES

tional Conference on Database Theory, ICDT ’03, pages 1–15, London, UK, 2002.
Springer-Verlag. 18, 39, 122

[Depken & Gregorius 2008] Craig A. Depken and Brandon Gregorius. Auction Charac-
teristics, Seller Reputation, and Closing Prices: Evidence from eBay Sales of the iPhone.
SSRN eLibrary, 2008. 48

[Devine 1993] Robert Devine. Design and Implementation of DDH: A Distributed Dynamic
Hashing Algorithm. In 4th International Conference on Foundations of Data Orga-
nization and Algorithms (FODO, pages 101–114, 1993. 15, 19

[Dinger & Hartenstein 2006] J. Dinger and H. Hartenstein. Defending the Sybil attack in
P2P networks: taxonomy, challenges, and a proposal for self-registration. In Availability,
Reliability and Security, 2006. ARES 2006. The First International Conference on,
page 8 pp., april 2006. 47, 52

[Dingledine et al. 2004] Roger Dingledine, Nick Mathewson and Paul Syverson. Tor: The
Second-Generation Onion Router. In In Proceedings of the 13th USENIX Security
Symposium, pages 303–320, 2004. 48

[Douceur 2002] John R. Douceur. The Sybil Attack. In Revised Papers from the First In-
ternational Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London,
UK, 2002. Springer-Verlag. 33, 34, 36, 47, 50, 51

[edo 2000] eDonkey2000 Protocol Specification. http://hydranode.com/
docs/ed2k/ed2kproto.php, 2000. Retrieved 6th March 2011. 1

[Edwards 2002] J Edwards. Peer-to-peer programming on groove. Addison-Wesley, Indi-
anapolis„ 2002. 8

[Ester et al. 1996] Martin Ester, Hans-Peter Kriegel, Joerg Sander and Xiaowei Xu. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Evangelos Simoudis, Jiawei Han and Usama M. Fayyad, editeurs, Second In-
ternational Conference on Knowledge Discovery and Data Mining, pages 226–231.
AAAI Press, 1996. 192

[Fan et al. 2000] Li Fan, Pei Cao, Jussara Almeida and Andrei Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., vol. 8, pages
281–293, June 2000. 92, 101

[Ferguson & Huston 1998] P. Ferguson and G. Huston. Quality of service: delivering qos
on the internet and in corporate networks. Wiley, 1998. 120, 128

[Fisk 2005] A. A Fisk. Gnutella Dynamic Query Protocol v0.1.
http://www.ic.unicamp.br/ celio/peer2peer/gnutella-related/gnutella-dynamic-
protocol.htm, 2005. Retrieved 28th March 2011 (last modified on 1 Apr 2005).
45

258

REFERENCES

[Foster & Kesselman 2004] I. Foster and C. Kesselman. The grid: blueprint for a new
computing infrastructure. The Morgan Kaufmann Series in Computer Architecture
and Design Series. Elsevier, 2004. 5

[Foster et al. 2001] Ian Foster, Carl Kesselman and Steven Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. Int. J. High Perform. Comput. Appl., vol. 15,
pages 200–222, August 2001. 4

[Fowlkes & Mallows 1983] E. B. Fowlkes and C. L. Mallows. A Method for Comparing Two
Hierarchical Clusterings. Journal of the American Statistical Association, vol. 78,
no. 383, pages 553–569, 1983. 193

[Ge & Cai 2008] Ping Ge and Hailong Cai. Providing differentiated QoS for peer-to-peer file
sharing systems. Operating Systems Review, vol. 42, no. 6, pages 17–23, 2008. 121

[gnu 2000] Gnutella Protocol Specification Version 0.4. http://rfc-
gnutella.sourceforge.net/developer/stable/index.html, 2000. Retrieved 6th
March 2011. 1, 40

[gnu 2002] Gnutella Protocol Specification Version 0.6. http://rfc-
gnutella.sourceforge.net/src/rfcdraft.html, 2002. Retrieved 6th March 2011.
91

[Gu et al. 2007] Peng Gu, Jim Wang and Hailong Cai. ASAP: An Advertisement-based Search
Algorithm for Unstructured Peer-to-peer Systems. In Parallel Processing, 2007. ICPP
2007. International Conference on, page 8, sept. 2007. 46

[Gummadi et al. 2003] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D.
Gribble, Henry M. Levy and John Zahorjan. Measurement, modeling, and analysis of
a peer-to-peer file-sharing workload. SIGOPS Oper. Syst. Rev., vol. 37, pages 314–329,
October 2003. 90

[Gyongyi & Garcia-Molina 2005] Zoltan Gyongyi and Hector Garcia-Molina. Web Spam
Taxonomy. In First International Workshop on Adversarial Information Retrieval
on the Web (AIRWeb 2005), April 2005. 48

[Halkidi et al. 2001] Maria Halkidi, Yannis Batistakis and Michalis Vazirgiannis. On Clus-
tering Validation Techniques. Journal of Intelligent Information Systems, vol. 17,
pages 107–145, 2001. 193

[Hu et al. 2002] Yih-Chun Hu, Adrian Perrig and David B. Johnson. Ariadne: a secure
on-demand routing protocol for ad hoc networks. In Proceedings of the 8th annual in-
ternational conference on Mobile computing and networking, MobiCom ’02, pages
12–23, New York, NY, USA, 2002. ACM. 48

259

REFERENCES

[hua Chu et al. 2002] Yang hua Chu, S.G. Rao, S. Seshan and Hui Zhang. A case for end
system multicast. Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8,
pages 1456 – 1471, oct 2002. 9

[Huebsch 2008] Ryan Jay Huebsch. PIER: Internet Scale P2P Query Processing with Dis-
tributed Hash Tables. PhD thesis, EECS Department, University of California, Berke-
ley, May 2008. 8

[ipo 2010] Internet Study 2008/2009. http://ipoque.com/sites/default/files/
mediafiles/documents/internet-study-2008-2009.pdf, 2010. Retrieved 6th March
2011. 1, 2

[Iyer et al. 2002] Sitaram Iyer, Antony Rowstron and Peter Druschel. Squirrel: a decentral-
ized peer-to-peer web cache. In Proceedings of the twenty-first annual symposium
on Principles of distributed computing, PODC ’02, pages 213–222, New York, NY,
USA, 2002. ACM. 8

[Jaccard 1901] Paul Jaccard. Étude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, vol. 37,
pages 547–579, 1901. 193

[Jaffe 1984] Jeffrey M. Jaffe. Algorithms for finding paths with multiple constraints. Networks,
vol. 14, no. 1, pages 95–116, 1984. 129

[Jain & Dovrolis 2003] Manish Jain and Constantinos Dovrolis. End-to-end available
bandwidth: measurement methodology, dynamics, and relation with TCP throughput.
IEEE/ACM Trans. Netw., vol. 11, pages 537–549, August 2003. 143

[Janakiraman et al. 2003] R. Janakiraman, M. Waldvogel and Qi Zhang. Indra: a peer-to-
peer approach to network intrusion detection and prevention. In Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceed-
ings. Twelfth IEEE International Workshops on, pages 226 – 231, june 2003. 8

[Jiang & Jin 2005] H. Jiang and S. Jin. Exploiting dynamic querying like flooding techniques
in unstructured peer-to-peer networks. In Network Protocols, 2005. ICNP 2005. 13th
IEEE International Conference on, page 10 pp., nov. 2005. 45

[Johnson & Dynes 2007] M. Eric Johnson and Scott Dynes. Inadvertent disclosure - informa-
tion leaks in the extended enterprise. In In Workshop on the Economics of Information
Security (WEIS, pages 7–8, 2007. 31

[Johnson et al. 2009] M. Eric Johnson, Dan McGuire and Nicholas D. Willey. Why file
sharing networks are dangerous? Commun. ACM, vol. 52, pages 134–138, February
2009. 31

[Johnson 2007] G. Johnson. Arrest in case of ID theft by file sharing. USA Today, September
2007. 31

260

REFERENCES

[joo 2007] Joost. http://en.wikipedia.org/wiki/Joost, 2007. Retrieved on 6th March 2011.
9

[Jyothi & Dharanipragada 2009] B.S. Jyothi and J. Dharanipragada. SyMon: Defending
large structured P2P systems against Sybil attack. In Peer-to-Peer Computing, 2009.
P2P ’09. IEEE Ninth International Conference on, pages 21 –30, sept. 2009. 54

[Kalogeraki et al. 2002] Vana Kalogeraki, Dimitrios Gunopulos and D. Zeinalipour-Yazti.
A local search mechanism for peer-to-peer networks. In Proceedings of the eleventh
international conference on Information and knowledge management, CIKM ’02,
pages 300–307, New York, NY, USA, 2002. ACM. 44, 60

[Kamvar et al. 2003] Sepandar D. Kamvar, Mario T. Schlosser and Hector Garcia-Molina.
The Eigentrust algorithm for reputation management in P2P networks. In Proceedings of
the 12th international conference on World Wide Web, WWW ’03, pages 640–651,
New York, NY, USA, 2003. ACM. 48

[Karger et al. 1997] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine and Daniel Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, STOC ’97, pages 654–663,
New York, NY, USA, 1997. ACM. 30, 169, 172

[Kay & Robie 2007] FernÂt’andez M.F. Boag S. Chamberlin D. Berglund A.
SimÂt’eon J. Kay M. and J. Robie. XML path language (XPath) 2.0.
http://www.w3.org/TR/2007/REC-xpath20-20070123/, 2007. Retrieved 6th
March 2011. 19

[kaz 2001] Kazaa. http://en.wikipedia.org/wiki/Kazaa, 2001. Retrieved 6th March 2011.
1, 6, 91

[Kendall & Smith 1939] M. G. Kendall and Babington B. Smith. The Problem of m Rankings.
The Annals of Mathematical Statistics, vol. 10, no. 3, pages 275–287, September
1939. 197

[Keromytis et al. 2002] Angelos D. Keromytis, Vishal Misra and Dan Rubenstein. SOS:
secure overlay services. In Proceedings of the 2002 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, SIGCOMM
’02, pages 61–72, New York, NY, USA, 2002. ACM. 8

[kon 2000] Kontiki. http://en.wikipedia.org/wiki/Kontiki, 2000. Retrieved on 6th March
2011. 8

[Kosiur 1998] D.R. Kosiur. Ip multicasting: the complete guide to interactive corporate
networks. Wiley, 1998. 120, 122

261

REFERENCES

[Kubiatowicz et al. 2000] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells and Ben Zhao. OceanStore: an architecture
for global-scale persistent storage. SIGPLAN Not., vol. 35, pages 190–201, November
2000. 9

[Kumar et al. 2006] P. Kumar, S. Gopalan and V. Sridhar. Multi-Attribute Based Similar
Content Indexing in Hybrid Peer-to-Peer Networks. In Networking and Services, 2006.
ICNS ’06. International conference on, page 24, july 2006. 46

[Kwok & Yang 2004] Sai Ho Kwok and Christopher C. Yang. Searching the peer-to-peer
networks: The community and their queries. JASIST, vol. 55, no. 9, pages 783–793,
2004. 126, 127

[Leach et al. 2005] Paul J. Leach, Michael Mealling and Richard Salz. A Universally Unique
IDentifier (UUID) URN Namespace. Internet RFC 4122, July 2005. 22

[Leontiadis et al. 2006] Elias Leontiadis, Vassilios V. Dimakopoulos and Evaggelia Pi-
toura. E.: Creating and Maintaining Replicas in Unstructured Peer-to-Peer Systems.
Rapport technique, In 12th International Euro-Par Conference on Parallel Process-
ing, 2006. 43

[Lesniewski-Laas & Kaashoek 2010] Chris Lesniewski-Laas and M. Frans Kaashoek.
Whanau: a sybil-proof distributed hash table. In Proceedings of the 7th USENIX con-
ference on Networked systems design and implementation, NSDI’10, pages 8–8,
Berkeley, CA, USA, 2010. USENIX Association. 54

[Levine & Margolin 2006] Shields C. Levine B. N. and B.N. Margolin. A Survey of Solu-
tions to the Sybil Attack. Rapport technique, University of Massachusetts Amherst,
Amherst, MA, October 2006. 51

[Li & Garcia-Luna-Aceves 2006] Zhenjiang Li and J. J. Garcia-Luna-Aceves. A distributed
approach for multi-constrained path selection and routing optimization. In Proceed-
ings of the 3rd international conference on Quality of service in heterogeneous
wired/wireless networks, QShine ’06, New York, NY, USA, 2006. ACM. 129

[Li 2008] Jin Li. On peer-to-peer (P2P) content delivery. PeertoPeer Networking and Appli-
cations, vol. 1, no. 1, pages 45–63, 2008. 123

[Liang et al. 2005] Jin Liang, Steven Y. Ko, Indranil Gupta and Klara Nahrstedt. MON:
on-demand overlays for distributed system management. In Proceedings of the 2nd
conference on Real, Large Distributed Systems - Volume 2, WORLDS’05, pages
13–18, Berkeley, CA, USA, 2005. USENIX Association. 9

262

REFERENCES

[Lin & Wang 2003] Tsungnan Lin and Hsinping Wang. Search Performance Analysis in Peer-
to-Peer Networks. In Proceedings of the 3rd International Conference on Peer-to-
Peer Computing, P2P ’03, pages 204–, Washington, DC, USA, 2003. IEEE Computer
Society. 59

[Litwin et al. 1993] Witold Litwin, Marie-Anne Neimat and Donovan A. Schneider. LH:
Linear Hashing for distributed files. In Proceedings of the 1993 ACM SIGMOD in-
ternational conference on Management of data, SIGMOD ’93, pages 327–336, New
York, NY, USA, 1993. ACM. 15

[Litwin et al. 1996] Witold Litwin, Marie-Anna Neimat and Donovan A. Schneider. LH*
- a scalable, distributed data structure. ACM Trans. Database Syst., vol. 21, pages
480–525, December 1996. 15

[Lüscher & Scott 1971] M. Lüscher and I.A. Scott. The lüscher color test. Pocket Books.
Pocket Books, 1971. 185, 186, 190

[Lv et al. 2002a] Qin Lv, Pei Cao, Edith Cohen, Kai Li and Scott Shenker. Search and repli-
cation in unstructured peer-to-peer networks. In Proceedings of the 16th international
conference on Supercomputing, ICS ’02, pages 84–95, New York, NY, USA, 2002.
ACM. 40, 41, 43, 45

[Lv et al. 2002b] Qin Lv, Sylvia Ratnasamy and Scott Shenker. Can Heterogeneity Make
Gnutella Scalable? In IPTPS, pages 94–103, 2002. 43

[M. 2000] Jovanovic M. Modelling large-scale peer-to-peer networks and a case study of gnutella.
Master’s thesis, Department of Electrical and Computer Engineering and Com-
puter Science, University of Cincinnati, June 2000. 25

[Mamdani 1977] E H Mamdani. Applications of fuzzy set theory to control systems: a survey.
Fuzzy Automata and Decision Processes, pages 1–13, 1977. 68

[Margolin & Levine 2007] N. Boris Margolin and Brian Neil Levine. Informant: Detecting
Sybils Using Incentives. In Sven Dietrich and Rachna Dhamija, editeurs, Financial
Cryptography, volume 4886 of Lecture Notes in Computer Science, pages 192–207.
Springer, 2007. 55

[Marzolla et al. 2007] Moreno Marzolla, Matteo Mordacchini and Salvatore Orlando. Peer-
to-peer systems for discovering resources in a dynamic grid. Parallel Comput., vol. 33,
pages 339–358, May 2007. 5

[Medina et al. 2000] Alberto Medina, Ibrahim Matta and John Byers. On the origin of power
laws in Internet topologies. Rapport technique, Boston University Computer Science
Department, 2000. 27

[Meng et al. 2006] Shicong Meng, Cong Shi, Dingyi Han, Xing Zhu and Yong Yu. A Sta-
tistical Study of Today’s Gnutella. In APWeb, pages 189–200, 2006. 61, 62

263

REFERENCES

[Mieghem et al. 2001] Piet Van Mieghem, Hans De Neve and Fernando Kuipers. Hop-by-
hop quality of service routing. Computer Networks, vol. 37, no. 3-4, pages 407 – 423,
2001. 129

[Myers & Myers 1995] Isabel Briggs Myers and Peter B. Myers. Gifts differing: under-
standing personality type. Davies-Black Pub., 1995. 184

[Naoumov & Ross 2006] Naoum Naoumov and Keith Ross. Exploiting P2P systems for
DDoS attacks. In Proceedings of the 1st international conference on Scalable infor-
mation systems, InfoScale ’06, New York, NY, USA, 2006. ACM. 33

[nap 1999] Napster. http://en.wikipedia.org/wiki/Napster, 1999. Retrieved on 6th March
2011. 1, 3, 39

[Nejdl et al. 2002] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-
tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér and Tore Risch. EDUTELLA:
a P2P networking infrastructure based on RDF. In Proceedings of the 11th interna-
tional conference on World Wide Web, WWW ’02, pages 604–615, New York, NY,
USA, 2002. ACM. 13

[Neve & Mieghem 2000] Hans De Neve and Piet Van Mieghem. TAMCRA: a tunable accu-
racy multiple constraints routing algorithm. Computer Communications, pages 667–
679, 2000. 129, 161

[Newman 2001] M. E. J. Newman. The structure of scientific collaboration networks. Proceed-
ings of the National Academy of Sciences of the United States of America, vol. 98,
no. 2, pages 409–415, January 2001. 26

[Oram 2001] Andy Oram. Peer-to-Peer : Harnessing the Power of Disruptive Technolo-
gies. O’Reilly, March 2001. 3, 21, 26

[p2p 2008] P2P-Next Generation Consortium. http://www.p2p-next.org/, 2008. Retrieved
on 6th March 2011. 1

[Pandurangan 2001] G. Pandurangan. Building Low-Diameter P2P Networks. In Proceed-
ings of the 42nd IEEE symposium on Foundations of Computer Science, FOCS ’01,
pages 492–, Washington, DC, USA, 2001. IEEE Computer Society. 43

[Pearman & Albritton 1997] R.R. Pearman and S.C. Albritton. I am not crazy, i am just
not you:. Davies-Black Pub., 1997. 184

[Plaxton et al. 1997] C. Greg Plaxton, Rajmohan Rajaraman and Andréa W. Richa. Access-
ing nearby copies of replicated objects in a distributed environment. In Proceedings of
the ninth annual ACM symposium on Parallel algorithms and architectures, SPAA
’97, pages 311–320, New York, NY, USA, 1997. ACM. 15

264

REFERENCES

[PPS 2010] PPStream. http://en.wikipedia.org/wiki/PPS.tv, 2010. Retrieved on 6th
March 2011. 9

[PPT 2005] PPTV. http://en.wikipedia.org/wiki/PPTV, 2005. Retrieved on 6th March
2011. 9

[pro 2003] "How Much Information?". http://www2.sims.berkeley.edu/research/
projects/how-much-info-2003/index.htm, 2003. accessed on 6th March 2011. 37

[Prud’hommeaux & Seaborne 2007] Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF (Working Draft). Rapport technique, W3C, March 2007. 20

[Raju & Kumar 2010] Srinivasa Raju and Nagesh Kumar. Multicriterion analysis in engi-
neering and management. Prentice-Hall Of India Pvt. Ltd., 2010. 131, 140

[Rand 1971] William M. Rand. Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association, vol. 66, no. 336, pages 846–850,
1971. 193

[Ratnasamy et al. 2002] Sylvia Ratnasamy, Mark Handley, Richard M. Karp and Scott
Shenker. Topologically-Aware Overlay Construction and Server Selection. In INFO-
COM, 2002. 43

[Resnick et al. 2000] Paul Resnick, Ko Kuwabara, Richard Zeckhauser and Eric Friedman.
Reputation systems. Commun. ACM, vol. 43, pages 45–48, December 2000. 48

[Rhea & Kubiatowicz 2002] S. C. Rhea and J. Kubiatowicz. Probabilistic Location and Rout-
ing. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 3, pages 1248–
1257, 2002. 46, 90, 101, 145

[Ripeanu 2001a] M. Ripeanu. [15] Peer-to-Peer Architecture Case Study: Gnutella Network.
In Proceedings of the First International Conference on Peer-to-Peer Computing,
P2P ’01, pages 99–, Washington, DC, USA, 2001. IEEE Computer Society. 27, 28

[Ripeanu 2001b] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Peer-
to-Peer Computing, 2001. Proceedings. First International Conference on, pages 99
–100, aug 2001. 27

[Rowaihy et al. 2007] H. Rowaihy, W. Enck, P. McDaniel and T. La Porta. Limiting Sybil
Attacks in Structured P2P Networks. In INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE, pages 2596 –2600, may 2007. 51

[Rowstron & Druschel 2001] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer storage utility. In Proceedings
of the eighteenth ACM symposium on Operating systems principles, SOSP ’01,
pages 188–201, New York, NY, USA, 2001. ACM. 9

265

REFERENCES

[Saaty 1994] T L Saaty. How to Make a Decision: The Analytic Hierarchy Process. Interfaces,
vol. 24, no. 6, pages 19–43, 1994. 133, 140, 142

[Saint-Andre 2005] Peter Saint-Andre. Streaming XML with Jabber/XMPP. IEEE Internet
Computing, vol. 9, pages 82–89, September 2005. 8

[sam 2006] SAMCRA (Self-Adaptive Multiple Constraints Routing Algorithm).
http://totem.run.montefiore.ulg.ac.be/algos/samcra.html, 2006. Retrieved
on 6th March 2011. 161

[Sariou et al.] Stefan Sariou, Krishna and Steven. SProbe: A Fast Technique for Measuring
Bottleneck Bandwidth in Uncooperative Environments. In IEEE Infocomm 2002. 143

[Saroiu et al. 2002a] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Grib-
ble and Henry M. Levy. An analysis of Internet content delivery systems. SIGOPS
Oper. Syst. Rev., vol. 36, pages 315–327, December 2002. 1, 90, 123, 124, 125, 143

[Saroiu et al. 2002b] Stefan Saroiu, Krishna P. Gummadi and Steven D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems. January 2002. 91, 92

[Sen & Wang 2002] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
In Internet Measurement Workshop, pages 137–150, Marseille, France, November
2002. 27

[set 1999] SETI@home project. http://setiathome.berkeley.edu/, 1999. Retrieved 6th March
2011. 3, 7

[sky 2003] Skype. http://en.wikipedia.org/wiki/Skype, 2003. Retrieved on 6th March
2011. 8

[Sobrinho 2003] João Luis Sobrinho. Network routing with path vector protocols: theory and
applications. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, SIGCOMM ’03, pages
49–60, New York, NY, USA, 2003. ACM. 129

[sop 2004] SopCast. http://www.sopcast.com/, 2004. Retrieved on 6th March 2011. 9

[Spearman 1987] C. Spearman. The proof and measurement of association between two things.
By C. Spearman, 1904. The American journal of psychology, vol. 100, no. 3-4, pages
441–471, 1987. 197

[sta 2005] StartSurfing Encyclopedia. "Petabyte". http://startsurfing.com/encyclopedia//p/e/t/Petabyte.html,
2005. Retrieved on 6th March 2011. 37

[Stoica et al. 2001] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 conference on Applications, technologies, architectures,

266

REFERENCES

and protocols for computer communications, SIGCOMM ’01, pages 149–160, New
York, NY, USA, 2001. ACM. 30, 168

[Stoica et al. 2002] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker and Sonesh
Surana. Internet Indirection Infrastructure. In In Proceedings of ACM SIGCOMM,
pages 73–86, 2002. 8

[Stutzbach & Rejaie 2005] D. Stutzbach and R. Rejaie. Capturing accurate snapshots of the
Gnutella network. In IEEE Global Internet Symposium, pages 127–132, 2005. 28

[Stutzbach & Rejaie 2006] Daniel Stutzbach and Reza Rejaie. Capturing Accurate Snapshots
of the Gnutella Network. In INFOCOM. IEEE, 2006. 28

[Sugeno 1985] Michio Sugeno. Industrial applications of fuzzy control. Elsevier Science
Inc., New York, NY, USA, 1985. 70

[Tang & Dwarkadas 2004a] Chunqiang Tang and Sandhya Dwarkadas. Hybrid global-local
indexing for effcient peer-to-peer information retrieval. In Proceedings of the 1st confer-
ence on Symposium on Networked Systems Design and Implementation - Volume
1, pages 16–16, Berkeley, CA, USA, 2004. USENIX Association. 90

[Tang & Dwarkadas 2004b] Chunqiang Tang and Sandhya Dwarkadas. Hybrid Global-
Local Indexing for Efficient Peer-to-Peer Information Retrieval. In NSDI, pages 211–224,
2004. 46

[Tang et al. 2003] Chunqiang Tang, Zhichen Xu and Mallik Mahalingam. pSearch: infor-
mation retrieval in structured overlays. Computer Communication Review, vol. 33,
no. 1, pages 89–94, 2003. 90

[Thampi & Sekaran 2009] S.M. Thampi and C.K. Sekaran. An Enhanced Search Technique
for Managing Partial Coverage and Free Riding in P2P Networks. International Journal
of Recent Trends in Engineering, vol. 2, no. 1–6, pages 33–41, 2009. 45

[Tsoumakos & Roussopoulos 2003] Dimitrios Tsoumakos and Nick Roussopoulos. Adap-
tive Probabilistic Search for Peer-to-Peer Networks. In Proceedings of the 3rd Interna-
tional Conference on Peer-to-Peer Computing, P2P ’03, pages 102–, Washington,
DC, USA, 2003. IEEE Computer Society. 44

[Waldman et al. 2000] Marc Waldman, Aviel D. Rubin and Lorrie Faith Cranor. Publius:
A robust, tamper-evident, censorship-resistant, web publishing system. In In Proc. 9th
USENIX Security Symposium, pages 59–72, 2000. 13

[Wallach 2003] Dan S. Wallach. A survey of peer-to-peer security issues. In Proceedings of
the 2002 Mext-NSF-JSPS international conference on Software security: theories
and systems, ISSS’02, pages 42–57, Berlin, Heidelberg, 2003. Springer-Verlag. 33

267

REFERENCES

[Wang & Crowcroft 1996] Zheng Wang and J. Crowcroft. Quality-of-service routing for sup-
porting multimedia applications. Selected Areas in Communications, IEEE Journal
on, vol. 14, no. 7, pages 1228 –1234, sep 1996. 128

[Wang & Wang 2006] Yufeng Wang and Wendong Wang. On studying P2P topology based
on modified fuzzy adaptive resonance theory. In Proceedings of the 2006 international
conference on Intelligent computing: Part II, ICIC’06, pages 410–420, Berlin, Hei-
delberg, 2006. Springer-Verlag. 43

[Wang et al. 2005] Honghao Wang, Yingwu Zhu and Yiming Hu. An Efficient and Secure
Peer-to-Peer Overlay Network. In Proceedings of the The IEEE Conference on Local
Computer Networks 30th Anniversary, LCN ’05, pages 764–771, Washington, DC,
USA, 2005. IEEE Computer Society. 52, 167

[Watts & Strogatz 1998] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, vol. 393, no. 6684, pages 440–442, 1998. 26

[Xiao et al. 2005] L. Xiao, Yunhao Liu and L.M. Ni. Improving unstructured peer-to-peer sys-
tems by adaptive connection establishment. Computers, IEEE Transactions on, vol. 54,
no. 9, pages 1091 – 1103, sept. 2005. 43

[Xie & Yang 2007] H. Xie and Y. Yang. A Measurement-based Study of the Skype Peer-to-Peer
VoIP Performance. In The Sixth International Workshop on Peer-to-Peer Systems,
February 2007. 8

[Yang & Garcia-Molina 2002] B. Yang and H. Garcia-Molina. Improving search in peer-to-
peer networks. In Distributed Computing Systems, 2002. Proceedings. 22nd Inter-
national Conference on, pages 5 – 14, 2002. 40, 44, 45, 60, 61

[Yu et al. 2006] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons and Abraham Flax-
man. SybilGuard: defending against sybil attacks via social networks. In Proceedings of
the 2006 conference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’06, pages 267–278, New York, NY, USA,
2006. ACM. 54

[Yuan & Yin 2007] Liu J. Yuan F. and C. Yin. A Scalable Search Algorithm for Unstructured
Peer-to-Peer Networks. In Eighth ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
âĂŞ SNPD, pages 199–204, 2007. 44

[Yuan 2002] Xin Yuan. Heuristic algorithms for multiconstrained quality-of-service routing.
IEEE/ACM Trans. Netw., vol. 10, pages 244–256, April 2002. 129

[Yurkewych et al. 2005] Matthew Yurkewych, Brian N. Levine and Arnold L. Rosenberg.
On the cost-ineffectiveness of redundancy in commercial P2P computing. In Proceedings

268

REFERENCES

of the 12th ACM conference on Computer and communications security, CCS ’05,
pages 280–288, New York, NY, USA, 2005. ACM. 48

[Zadeh 1965] L.A. Zadeh. Fuzzy Sets. Information Control, vol. 8, pages 338–353, 1965. 61

[zat 2006] Zattoo. http://en.wikipedia.org/wiki/Zattoo, 2006. Retrieved on 6th March
2011. 8

[Zegura et al. 1996] Ellen W. Zegura, Kenneth L. Calvert and Samrat Bhattacharjee. How
to Model an Internetwork. In INFOCOM, pages 594–602, 1996. 75, 98, 149

[Zeleny 1982] M. Zeleny. Multiple criteria decision making. McGraw-Hill, New York,
1982. 147

[Zeng et al. 2006] Wenjun Zeng, Heather Yu and Ching-Yung Lin. Multimedia security
technologies for digital rights management, chapitre Introduction: Digital Rights
Management. Academic Press, Inc., Orlando, FL, USA, 2006. 33

[Zhang & Hu 2007] Rongmei Zhang and Y.C. Hu. Assisted Peer-to-Peer Search with Partial
Indexing. Parallel and Distributed Systems, IEEE Transactions on, vol. 18, no. 8,
pages 1146 –1158, aug. 2007. 46, 89, 90

[Zhang et al. 2007] Haoxiang Zhang, Lin Zhang, Xiuming Shan and V.O.K. Li. Probabilistic
Search in P2P Networks with High Node Degree Variation. In Communications, 2007.
ICC ’07. IEEE International Conference on, pages 1710 –1715, june 2007. 44

[Zhang et al. 2009] Ying Zhang, Houkuan Huang, Dong Yang, Hongke Zhang, Han-Chieh
Chao and Yueh-Min Huang. Bring QoS to P2P-based semantic service discovery for the
Universal Network. Personal Ubiquitous Comput., vol. 13, pages 471–477, October
2009. 121

[Zhao et al. 2006] Shanyu Zhao, Daniel Stutzbach and Reza Rejaie. Characterizing files in
the modern gnutella network: A measurement study. In In Proceedings of SPIE/ACM
Multimedia Computing and Networking, 2006. 61

[Zhou et al. 2003] Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, Anthony D. Joseph
and John Kubiatowicz. Approximate object location and spam filtering on peer-to-peer
systems. In Proceedings of the ACM/IFIP/USENIX 2003 International Conference
on Middleware, Middleware ’03, pages 1–20, New York, NY, USA, 2003. Springer-
Verlag New York, Inc. 8

[Zhu & Hu 2006] Yingwu Zhu and Yiming Hu. Enhancing Search Performance on Gnutella-
Like P2P Systems. Parallel and Distributed Systems, IEEE Transactions on, vol. 17,
no. 12, pages 1482 – 1495, dec. 2006. 43

269

REFERENCES

[Zhuge et al. 2005] Hai Zhuge, Xue Chen and Xiaoping Sun. Preferential walk: towards
efficient and scalable search in unstructured peer-to-peer networks. In Special interest
tracks and posters of the 14th international conference on World Wide Web, WWW
’05, pages 882–883, New York, NY, USA, 2005. ACM. 44

270

Publications

Conference Papers

1. K. Haribabu, Dayakar Reddy, Chittaranjan Hota, Antti Yla-Jaaski, and Sasu Tarkoma,
Adaptive Lookup for Unstructured Peer-to-Peer Overlays, in Proc. of Third Inter-
national Conference on Communication Systems & Middleware (IAMCOM/COM-
SWARE 2008), Bangalore, 5-10 January 2008, pp. 776-782.

2. K. Haribabu, Chittaranjan Hota, and Antti Yla-Jaaski, Indexing Through Query-
ing in Unstructured Peer-to-Peer Overlay Networks, in Proc. of 11th Asia-Pacific
Network Operations and Management Symposium (APNOMS 2008), Beijing, 22-24
October 2008. pp. 102-111, Springer, 2008.

3. K Haribabu, Chittaranjan Hota, Saravana S, Detecting Sybils in Peer-to-Peer File
Replication Systems, in Proc. International Conference on Information Security
and Digital Forensics, ISDF 2009, City University, London, Sept 2009, pp. 152-164,
Springer, 2009.

4. Sirish Kumar, K Haribabu, Chittaranjan Hota, Efficient Search in Peer-to-Peer Net-
works Using Fuzzy Logic, in Proc. International Conference on Distributed Com-
puting and Information Technology , ICDCIT 2010, Bhubaneshwar, Feb 2010, pp.
188-193, Springer, 2010.

5. K Haribabu, Dushyant Arora, Bhavik Kothari, Chittaranjan Hota, Detecting Sybils in
Peer-to-Peer Overlays using Neural Networks and CAPTCHAs, in Proc. IEEE Inter-
national Conference on Computational Intelligence and Communication Networks,
CICN 2010, Bhopal, Nov 2010, pp. 154-161. IEEE Computer Society 2010.

6. K Haribabu, Arindam Paul, Chittaranjan Hota, Detecting Sybils in Peer-to-Peer
Overlays using Psychometric Analysis Methods, in Proc. 25th IEEE International
Conference on Advanced Information Networking and Applications Workshops
(WAINA-2011), Singapore, Mar 2011, pp. 114-119. IEEE Computer Society 2011.

Journal Papers

1. K Haribabu, Chittaranjan Hota, Securing Peer-To-Peer Overlays From Multiple Iden-
tity Forgery Attacks, International Journal of Advanced Engineering & Applications,
Vol II, pp. 132-138, Jun 2010.

2. GAUR: A method to detect Sybil groups in Peer-to-Peer overlays, Haribabu K, Chit-
taranjan Hota, and A Paul, Int. J. Grid and Utility Computing, IJGUC, Vol. 3, Nos.
2/3, Inderscience, pp. 145-156, 2012.

271

3. K Haribabu, Chittaranjan Hota, A QoS Model for P2P Filesharing Networks (To be
communicated).

4. K Haribabu, Chittaranjan Hota, Sirishkumar Balaga, A Novel Metric for Neighbour
Selection in Query Forwarding (To be communicated).

5. K Haribabu, Chittaranjan Hota, A Novel Indexing Technique for Efficient Search in
P2P (To be communicated).

272

Biographies

Brief Biography of the Candidate

K Haribabu is currently Lecturer in the Department of Computer Science at Birla Institute
of Technology & Science, Pilani, Rajasthan, India. He has completed MSc.(Tech) in 2003
and Masters of Engineering degree in Software Systems in 2005. He was executive com-
mittee member of BITS Alumni Association for several years. He is a nucleus member
of Academic Registration and Counselling Division and carried out several computeri-
zation tasks. He acted as a Web-Co chair for two reputed conferences. He is a member
of IEEE. He presented papers at reputed international conferences COMSWARE’08, ICD-
CIT’10 and AINA’11. He was a reviewer for Student Symposium ICDCIT 2012. He teaches
courses like Network Programming, Computer Programming, Database Systems, Object
Oriented Programming etc. His research interests are in the areas of Peer-to-peer overlays,
Mobile communication, and Quality of Service.

Brief Biography of the Supervisor

Chittaranjan Hota is currently Associate Professor in the Department of Computer Science
and Information Systems at Birla Institute of Technology and Science, Pilani Hyderabad
Campus, Hyderabad, India. He has earned his Bachelors degree in Computer Engineer-
ing, Masters degree in CSE, and PhD degree in CSE from Amravati (MS), TIET (deemed)
and BITS, Pilani (deemed) in the year 1990, 1998, and 2006. He shoulders the responsi-
bility of Head of the Computer Sc & Information Systems department from the inception
of BITS Pilani Hyderabad campus (2008). He is also the Faculty In-Charge of Informa-
tion Processing and Business Intelligence Division at BITS Hyderabad. He has worked in
Academic and Research institutes within and outside India over past 22 years. Over these
years he had been teaching and researching in areas of Computer Networks, Distributed
Systems, Information Security, Network Programming, and Operating Systems. He has
worked with teaching and research appointments at universities abroad like, School of
Computer Science and Engineering, University of New South Wales, Sydney, Australia;
Helsinki Institute of Information Technology, Helsinki, Finland; School of Mathematics
& Engineering, City University, London; and Department of Electronics and Computer
Engineering, University of Cagliari, Italy over past several years. He has published ex-
tensively in national and international conferences and journals. He is a life member of
ISTE, India; member of IE, India and member of ACM. His research interests are in the
areas of Traffic Engineering in IP Networks, Security and Quality of Service issues over
the Internet, Peer-to-Peer Overlays, Mobile Wireless Networks, and Cloud Computing.

273

	List of Figures
	List of Tables
	List of Abbreviations/Symbols
	1 Introduction
	1.1 Defining Peer-to-Peer Computing
	1.2 Peer-to-Peer and Grid Computing
	1.3 Definition of Peer-to-Peer Overlay Networks
	1.4 Characteristics of Peer-to-Peer Overlay Networks
	1.5 Applications of Peer-to-Peer Overlay Networks
	1.5.1 Distributed computing
	1.5.2 Internet Services
	1.5.3 Distributed Databases
	1.5.4 Communication and Collaboration
	1.5.5 Content Streaming and Multi-casting
	1.5.6 Content Publishing and Storage
	1.5.7 File Sharing

	1.6 Classification of P2P Overlays by Degree of Centralization
	1.6.1 Purely Decentralized Architectures
	1.6.2 Partially Decentralized Architectures
	1.6.3 Hybrid Decentralized Architectures

	1.7 Classification of P2P Overlays by Network Structure
	1.7.1 Unstructured Networks
	1.7.2 Structured Networks
	1.7.3 Loosely Structured Networks

	1.8 Search in Peer-to-Peer Overlays
	1.8.1 Design Characteristics of a Search Mechanism
	1.8.1.1 Decentralization
	1.8.1.2 Efficiency
	1.8.1.3 Scalability
	1.8.1.4 High Quality Results
	1.8.1.5 Fault-resilience

	1.8.2 Search Performance Metrics
	1.8.2.1 Efficiency
	1.8.2.2 Quality of Service (QoS)
	1.8.2.3 Robustness

	1.8.3 Components in a Distributed Search Mechanism

	1.9 Peer-to-Peer Overlay Networks: Examples
	1.9.1 Freenet
	1.9.2 Gnutella
	1.9.2.1 Gnutella Topology Characteristics
	1.9.2.2 Power-law Graph Characteristics

	1.9.3 Kazaa and Gnutella 0.6
	1.9.4 Chord

	1.10 Security in Peer-to-Peer Overlays
	1.10.1 Sample Attacks and Threats
	1.10.2 Peer-to-Peer Overlay Layer Attacks
	1.10.2.1 Attacks on Message Routing
	1.10.2.2 Sybil Attacks
	1.10.2.3 Eclipse Attacks

	1.11 Scope of the Thesis

	2 Problem Definition and Known Approaches
	2.1 Search in File-sharing Overlays
	2.1.1 Search Problem
	2.1.2 Factors Affecting Search Performance

	2.2 Approaches to Improve Search
	2.2.1 Adapting Topology
	2.2.2 Replicating Objects
	2.2.3 Modifying Routing
	2.2.3.1 Neighbour Selection
	2.2.3.2 Adaptive TTL Selection
	2.2.3.3 Routing using Indexes

	2.2.4 Search Issues Addressed in this Thesis

	2.3 Study of Sybil Attack in File-sharing Overlays
	2.3.1 Defining Sybil Attack
	2.3.2 Observed Instances of the Sybil Attack
	2.3.3 Sybil Attack Vs Collusion
	2.3.4 Characteristics of Sybil Attacks

	2.4 Approaches to Limit Sybil Attacks
	2.4.1 Challenge-Response
	2.4.2 Binding Identity to Network Metrics
	2.4.3 Central Authority Certified Node Identities
	2.4.4 Based on Social Network Characteristics
	2.4.5 Based on Sybil Behavioral Aspects
	2.4.6 Incentives
	2.4.7 Sybil Issues Addressed in this Thesis

	3 Algorithms to Improve Search Efficiency
	3.1 Search Efficiency
	3.2 Improving Efficiency by Fuzzy Probabilities
	3.2.1 Fuzzy Scheme for Choosing Neighbour-subset
	3.2.1.1 Neighbour Content Classification
	3.2.1.2 Fuzzification
	3.2.1.3 Output Fuzzy Set
	3.2.1.4 Knowledge Base
	3.2.1.5 Rule Implication
	3.2.1.6 Defuzzification

	3.2.2 Search Algorithm
	3.2.3 Experiment Setup
	3.2.3.1 Simulator Model
	3.2.3.2 Simulation Setup

	3.2.4 Result Analysis
	3.2.4.1 Query Efficiency
	3.2.4.2 Search Responsiveness
	3.2.4.3 Search Efficiency
	3.2.4.4 Load Distribution on Neighbours
	3.2.4.5 Hybrid Approach

	3.2.5 Conclusion

	3.3 Improving Efficiency by Indexing
	3.3.1 Indexing in Peer-to-Peer Search
	3.3.2 Proposed Indexing Scheme
	3.3.2.1 Index Creation
	3.3.2.2 Index Dissemination
	3.3.2.3 Search Procedure

	3.3.3 Experiment Setup
	3.3.4 Result Analysis
	3.3.4.1 Flooding
	3.3.4.2 Random-walk
	3.3.4.3 Floating Indexes Breadth-wise through Random-walk (FIBRW)
	3.3.4.4 Floating Indexes Depth-wise through Random-walk (FIDRW)
	3.3.4.5 Floating Indexes Breadth-wise through Fuzzy-walker (FIBFuzzy)
	3.3.4.6 Attenuated BloomFilters(ABF)
	3.3.4.7 Floating Indexes Breadth-wise through Flooding (FIBFL)
	3.3.4.8 Results Summary
	3.3.4.9 Effect of Index Dissemination on Message Traffic & Path-lengths
	3.3.4.10 Utilization of Query Traffic for Index Dissemination
	3.3.4.11 Adapting to Churn

	3.3.5 Conclusion

	3.4 Conclusion

	4 Quality of Service (QoS) in Content Search
	4.1 Quality of Service (QoS)
	4.1.1 QoS in Internet
	4.1.2 QoS in Peer-to-Peer Search
	4.1.2.1 Network Characteristics of Peers

	4.1.3 Summary

	4.2 Proposed Solution
	4.2.1 QoS Parameters
	4.2.2 QoS Path Selection in the Overlay
	4.2.3 Object Search cum QoS Path-Selection Algorithms
	4.2.3.1 System Model
	4.2.3.2 Requester Node
	4.2.3.3 Forwarding Node
	4.2.3.4 Query Hit Node
	4.2.3.5 Intermediate Node
	4.2.3.6 Complexity Analysis

	4.2.4 Weight Calculation
	4.2.5 Measuring QoS Metrics
	4.2.5.1 Overlay-Link Bandwidth
	4.2.5.2 Overlay-Link Latency Measurement
	4.2.5.3 Object Location Probability

	4.2.6 Link-cost Functions
	4.2.6.1 Weighted Average
	4.2.6.2 Compromise Programming
	4.2.6.3 TOPSIS

	4.3 Experimental Analysis
	4.3.1 Simulation Setup
	4.3.1.1 Building Topology
	4.3.1.2 Assigning Link-level Parameters
	4.3.1.3 Object Replication
	4.3.1.4 Query Generation

	4.3.2 Result Analysis
	4.3.2.1 Comparing Results with SAMCRA

	4.4 Conclusion

	5 Mechanisms for Detecting Sybils
	5.1 Introduction
	5.2 Related Work
	5.2.1 Admission Control
	5.2.2 Detection
	5.2.3 Limiting Damage

	5.3 Storage Constrained Challenge-Response Model
	5.3.1 System Model
	5.3.1.1 Threat Model

	5.3.2 Proposed Solution
	5.3.2.1 Storage Constraint
	5.3.2.2 Algorithms for Detecting Sybil Identities

	5.3.3 Attack Strategies of an Adversary
	5.3.4 Experimental Setup
	5.3.5 Results Analysis
	5.3.5.1 Sybil Detection Pattern
	5.3.5.2 Sybil Detection Vs Replica Losses
	5.3.5.3 Effect of Number Replicas on Sybil Detection
	5.3.5.4 Effect of Waiting Time on Sybil Detection

	5.3.6 Conclusion

	5.4 Detecting Sybils using Psychometric Tests
	5.4.1 Background
	5.4.1.1 Detecting Sybil Groups vs Detecting Sybil Identities
	5.4.1.2 Psychometric Tests
	5.4.1.3 Luscher Short Color Test

	5.4.2 System Model
	5.4.2.1 Threat Model

	5.4.3 Proposed Solution
	5.4.3.1 Outline
	5.4.3.2 Protocol
	5.4.3.3 Questionnaire Preparation
	5.4.3.4 Questionnaire Evaluation
	5.4.3.5 Cluster Validation
	5.4.3.6 Limitations

	5.4.4 Attack Strategies of an Adversary
	5.4.5 Experiment Setup
	5.4.6 Results Analysis
	5.4.6.1 Effectiveness in Detecting Sybil Groups
	5.4.6.2 Luscher Color Test Vs MBTI Test
	5.4.6.3 Quality of Clusters (Sybil Groups) Detected
	5.4.6.4 Detecting Sybil Groups Vs Detecting Sybil Identities
	5.4.6.5 Barren Clusters

	5.4.7 Conclusion

	5.5 Conclusion

	6 Conclusion
	6.1 Conclusions
	6.2 Summary of Contributions
	6.3 Future Research

	A Simulator Source
	A.1 Simulator Main
	A.2 Node
	A.3 Utility Functions
	A.4 SybilNode Implementation

	B Psychometric Tests
	B.1 MBTI Questionnaire
	B.2 Clustering Algorithm Implementation
	B.3 Similarity Measures at Different Cluster Configurations

	References
	Publications
	Biographies

